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Abstract. We present a deep residual learning approach to address the
single image reflection removal problem. Specifically, residual learning
exploits the mapping between the observed image and its comparatively
simple reflection information, which is then removed to obtain a clear
background. Different from other methods that roughly eliminating the
reflections and producing the images with remanent sticking, a novel
generative adversarial framework is proposed, where the generator is
embedded with the deep residual learning, significantly boosting the per-
formance without impairing the intactness of the background by adver-
sarial training. Moreover, a multi-part balanced loss is introduced with
comprehensive consideration on the measure of feature similarity as well
as the discriminating ability of GAN. It produces the result of high qual-
ity by learning the reflection and the background feature simultaneously.
Experiments show that the proposed method achieves a state-of-the-art
performance.

Keywords: Reflection removal · Residual learning · GAN

1 Introduction and Related Work

Along with the rapid advancement and application of the digital camera, pho-
tographing is becoming increasingly prevailing and indispensable in our daily
life. However, the image would be corrupted by some additional undesirable
parts when is taken in the reflective surroundings such as glass, water, and win-
dows, which exerts considerable degradation on the visual perceptual quality. As
shown in Fig. 1, the reflection in the images tends to distract our eyes from the
scenes behind the glass. Furthermore, reflection, as a typical kind of noise, would
impede both human and computer vision programs from better understanding
the scene. Therefore, single image reflection removal is the active and essential
research in computer vision community.
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Fig. 1. Captured image samples with reflection in the real world.

Years of studies on solving the reflection removal problem have made some
achievements especially on eliminating reflection from non-metallic surfaces by
adjusting the assembled component in the camera, e.g. rotating a polarized lens
[3,4], moving focus [5], and using a flash [6]. Yet, hardware-based method is usu-
ally constrained by the lack of adaptability and flexibility when dealing with var-
ious background scenes and tricky reflection sources. In comparison, algorithms
that tackle the reflection removal issue are more practical. Conventionally, prior
knowledge and hand-crafted features [1,2,7] are utilised to learn the represen-
tation or mapping between the input image and the clear background scene. Li
et al. [7] introduce gradient histogram for the image to construct long tail dis-
tribution, assuming that the relative smoothness for reflection and background
are different, by which to determine and separate reflection. However, we can
not tell the reflection is always smooth in the real case. Arvanitopoulos et al. [8]
try to solve the problem by suppressing the reflection instead of getting rid of it
by manually adjusting the thresholds of Laplacian data fidelity term and an l0
gradient sparsity term on the output, which is a trade-off between suppressing
reflection artifacts and image details. Therefore, it probably causes a degrada-
tion on important image details. Although traditional algorithms could basically
solve the problem, they still suffer great limitations on coping with challenging
situations. Deep learning based methods have greatly mitigated the illogicality
between the robustness and adaptiveness compared with traditional methods.
CEILNet [9] is the first to address the reflection removal problem with a deep
convolutional network, where two cascaded sub-networks are combined, one for
edge prediction and the other for image reconstruction. However, features are
too many in input images and two-cascaded structure is complicated.

Under the same the precondition that other methods use [7,9], our method
is also conducted on the basis of the assumption that the observed image is a
compound of a reflection image and a clear background image. This assumption
is rational and valid in practice since the reflective source or objects are usually
observed and known when people take pictures of a scene. However, they usu-
ally focus on reflection removal by suppressing reflection artifacts to restore the
background scene only, the learning and separation of the reflection are ignored,
which causes a degradation on the result. It is substantial to learn both reflection
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information and the background scene jointly as they are intertwined in a single
observed image.

To alleviate the aforementioned problems, a deep residual learning based sin-
gle image reflection removal method is proposed. Instead of predicting the back-
ground image layer from the observed image directly, the proposed method learns
a mapping between the observed image and its reflection layer since the back-
ground image is usually intractable for a generator [10] to learn while the reflec-
tion is relatively consistent in terms of luminance and color. Intuitively, residual
learning is embedded into the proposed generative adversarial framework which
provides an effective approach that decouples the reflection information from the
entangled observed image [17,18]. Simultaneously, the discriminator is trained to
encourage the generated background image, the observed one without residual
reflection information, to be more similar to the real background image. Unlike
other deep reflection removal network, each part in our proposed method aims at
a different target that jointly contributes to solving the reflection removal prob-
lem. To make it feasible in practice, the excogitation of loss function is supposed
to be balanced, taking both feature similarity and discriminatory ability into
consideration. Therefore, the proposed multi-part balanced loss comprises the
content loss which measures the similarity between the learned residual infor-
mation and the real reflection information, a perceptual loss that encourage the
feature of the decoupled image to be more consistent with the real background
image, and an adversarial loss for improving the discriminating ability of the
discriminator. Through experiments, the multi-part balanced loss is proved to
be beneficial to eliminating the gradient vanishing and exploding during training
while the residual learning with the generative adversarial network is of great
ability for both modeling the reflection information and the background image
feature.

Our main contributions are as follows:

• A deep residual learning approach is proposed to solve the single image reflec-
tion removal problem. It exploits the mapping between the observed image
and its reflection information, repressing the intractable issue of learning the
complicated feature of the background image directly. Residual learning pro-
vides an effective method for deep reflection removal framework, yielding a
faster convergence for training the model as well as an enhancement on its
performance.

• The design of a novel generative adversarial network is utilized in this task,
where the generator is embedded with the residual learning strategy and the
discriminator is assigned to distinguish the generated background image from
the real background image. The proposed generative adversarial framework
for single image reflection removal demonstrates an exceeding performance by
keeping the intactness of the background image through adversarial training.

• A multi-part balanced loss as the objective function is proposed, which is
composed of the content loss, the perceptual loss, and the adversarial loss. It
is of comprehensive consideration on both the measure of feature similarity
and the description of the discriminating ability, which entails the network
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to produce the background image of high quality by learning the reflection
information and the background feature simultaneously.

The experiment results show the effectiveness of the proposed method for single
image reflection removal task.

2 Deep Residual Learning Network with GAN

2.1 The Generative Adversarial Framework

The proposed generative adversarial framework is shown in Fig. 2, which can be
rendered into two parts, one is a generator embedded with deep residual learning
while the other is a discriminator to distinguish the generated background image
and its corresponding real one. The captured image is first input into the gener-
ator, then the generator is trained to produce its reflection image through resid-
ual learning. The difference between the generated reflection image and the real
reflection (ground-truth) will be formulated as the content loss which is a part
of the objective function for the network. The discriminator is then trained to
discriminate the generated background image and the real background (ground-
truth), which in turn acts on the generator to produce a reflection image layer
that is largely identical to the reality. Hence, residual learning and adversar-
ial training are implemented in the generative adversarial framework. For the
target of acquiring a clear background image without any reflection remanent,
the features of both generated background image and real background image
are extracted from several layers of a pretrained VGG-19 network [12], being
reinforced to be similar by introducing a perceptual loss. By learning the map-
ping of the input image and its reflection information, together with modeling
the distribution of the background image, the proposed method enjoys a high
efficiency and quality for single image reflection removal. The implementations
and details of the proposed method can be referred in the following parts in this
paper.

2.2 Residual Learning

Reflection in an observed image usually presents a high intensity of light, emerg-
ing in part or full area in the image, pretty confusing when entangled with
the background objects. Therefore, it imposes restrictions upon the network to
learn the subtle features of the background image, which is normally the rea-
son why extracting the background image directly would not be a favorable
solution. Residual learning aims at learning the reflection information from the
input image. It is a roundabout method that enables more effective learning to
separate the reflection layer from the entangled image without impairing the
background scene.

Let G be the trained network for residual learning. I represents the input
image while Ib and Ir represent the real background image and the real reflection
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Fig. 2. Overview of the proposed generative adversarial framework. Generator is
embedded with deep residual learning to produce reflection image (left). The content
loss is conducted between two images in grey dashed box. The generated background
image (yellow point) is produced (red dashed box) to be discriminated with the real
background image (red triangle) by Discriminator (right). The perceptual loss is also
acted as shown. (Color figure online)

image. Let Ob and Or represent the generated background image and generated
reflection image, respectively.
The assumption mentioned above can be interpreted as:

I = Ib + Ir (1)
And residual learning can be formulated as:

Or = G(I, θ) (2)
where θ is the parameter in the network G.

Combine (1) and (2), we have:
Or = G(Ib, Ir, θ) (3)

Under the assumption mentioned above, the generated background image is
formulated by following equation:

Ob = I − G(Ib, Ir, θ) (4)
As shown in Fig. 3, a captured image is sent to the network, which learns a

mapping between it and its reflection information. The output is a generated
reflection image, which is further used to get the generated background image.
Experiments reveal that residual learning effectively improves the quality of
reflection removal. More details can be found in Sect. 3.

2.3 Design of GAN for Single Image Reflection Removal

The network design of generator of our proposed GAN is shown in Fig. 3. Firstly,
a captured image is directly passed into the network with padding in each layer to
keep the scale invariant. In the first block, a 9× 9 convolutional kernel is adopted
to enlarge receptive field so as to acquire as much as valuable information. The
following two convolutional layers utilize kernels of size 3× 3. Then its output
passes through a series of residual blocks [11], as shown in Fig. 3, which enable
the network being extended or squeezed without gradient vanishing and to learn
more powerful representation by stacking a different number of them. In the
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implementation of our case, 36 residual blocks are used in the proposed GAN
architecture. Symmetrically, the output is then passed to two convolutional layers
with kernel size 3× 3 and one with kernel size 9× 9. Finally, the output is a
residual image captures the reflection information of the input image.

Discriminator plays an important role in the proposed method since the
performance, to a large extent, depends on the gradient from it. However, the
network of discriminator does not require much complex design but simply a
stack of convolutional network layers. Specifically, we adopt eight convolutional
layers with a kernel of size 3× 3 and an additional convolutional layer with a
kernel of size 1× 1 to replace fully connection layer. For each interval of the
convolutional layer, a batch normalization layer [15] is inserted to normalize
the network. Adversarial training is conducive to model the distribution of the
generated background image and the real background image when the generator
is embedded with residual learning strategy. It is conceivable that the generated
background image stems from the captured image without reflection information,
which shares a great similarity to the real background image. Therefore, for the
latter stages of discriminator training, the challenging cases will dramatically
enhance the discriminating ability of discriminator, further providing effective
gradient information to instruct generator and the entire model to learn better
feature and generate more vivid details coherently.
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Fig. 3. Network design of generator in proposed GAN.

2.4 Multi-part Balanced Loss

Based on deep residual learning and designed network for single image reflection
removal task, an objective function called multi-part balanced loss is proposed.
To ensure the gradient information exist both in training the generator and the
discriminator, the objective function should balance the network for each part
to achieve a different purpose as contributing to the general goal. A content
loss measures the similarity between the learned residual information and real
reflection information. To encourage the feature of the generated background
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image to be more consistent with the real background image, a perceptual loss is
exploited. Features for perceptual loss is sampled from several layers from a deep
pretrained convolutional network, VGG-19 [12]. Along with an adversarial loss
which keeps the detail information in the images by improving the discriminating
ability of the discriminator, the proposed multi-part balanced loss is composed
of the three parts above, instructing the network to produce an image of high
quality. Specifically, let G be the generator in our proposed GAN and D be
the discriminator. The rest representations are the same as those in Sect. 2.2.
For each sample in one mini-batch, the content loss between Ir and Or can be
formulated as:

Lcontent(Ir, Or) = Avg

w∑

i=1

h∑

j=1

MSE(ti,j , oi,j), (5)

where w, h represents the weight and height for each sample, ti,j and oi,j repre-
sent the target and the predicted value for each pixel, respectively.
Perceptual loss is calculated between the features of Ib and Ob, we indicate
perceptual loss by Lperceptual:

Lperceptual(Ib, Ob) =
n∑

i=k

(Ib,k − Ob,k)2, (6)

where k indicate each convolutional layer from the total selected n layers while
Ib,k and Ob,k represent the features for Ib and Ob, respectively.

To implement adversarial training, we adopt binary cross entropy loss for the
discriminator as the objective function:

Ladversarial(Ib, Ob) = log[D(Ib)] + log[D(1 − Ob)], (7)

For each time updating discriminator in a mini-batch, the loss is the average
of the summation of (6) and (7). The loss for generator is the average of (5) and
the second term in (7).
The objective function in the proposed method can be interpreted as:

Lmulti−part balanced(G,D) = min
G

max
D

(Lcontent + Lperceptual + Ladversarial) (8)

3 Experiment

In this section, several experiments are conducted on both synthetic and real-
world datasets to demonstrate the superiority of the proposed method. On the
one hand, we set experiments to show the effectiveness of each component in the
proposed method and further analyse the model in terms of quality and quan-
titative results. On the other, a comparison between the proposed method and
state-of-the-art methods is conducted on both synthetic and real-world images.
SSIM [14] and PSNR [13] are exploited as metrics to evaluate the generated
images.
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Background  Reflection Input Image

Fig. 4. Synthetic dataset samples. The background scene, the reflection image layer,
and the synthetic image (from left to right).

3.1 Dataset

On account of the difficulty of labelling the real-world images, we handcraft a
synthetic dataset using the images from PASCAL VOC2012 [16], which is widely
adopted by current methods. Based on the valid assumption that the observed
image is a compound of the reflection image layer and the clear background image
layer, we synthesis one image by adding a reflection layer to a background image.
In practice, to make the reflection image more consistent with the true case, a
random Gaussian blur is first imposed on it. Subsequently, a clear background
image and a randomly selected reflection image are added as an input image. As
shown in Fig. 4, the clear background images show more details compared with
the reflection images that transmit the moderate light. The synthetic images
demonstrate a striking similarity to the real world cases. The synthetic dataset
contains 11453 images in total and 500 from which is assigned as a test dataset.

In addition, we test our model on both the synthetic images and real-world
images from CEIL dataset [9]. The CEIL real-world image test dataset contains
45 images in total with different degrees of reflection on various background
scenes.

3.2 Implementation and Analysis

We implement training the model by deep learning platform PyTorch. It runs on
the GPU of NVIDIA Tesla M40 of memory size 24 GB with CUDA version 8.0.44
and CUDNN version 5. The model was trained using Adam optimizer with each
mini-batch of 10 and a learning rate of 0.0001. The maximum epoches was set
to be 50. The model was tested on 500 pictures from the synthetic dataset.
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Table 1. Ablation experiment results on the synthetic test dataset.

Model SSIM PSNR

RL 0.8564 22.71

GAN+P 0.8545 23.17

RL+P 0.8841 23.95

RL+GAN+P 0.8924 24.84

RL+GAN+PInput Image RL+PGAN+PRL

Fig. 5. Qualitative results of ablation experiment with different settings.

To verify the effectiveness of each component in the proposed method. We
conduct several ablation experiments in terms of SSIM and PSNR metrics. As
shown in Table 1, RL indicates that the model is implemented by residual learn-
ing while GAN means the model is trained by adversarial learning in the pro-
posed GAN framework. Letter P represents that the features of predicted and
real background images are measured by the perceptual loss function. Simply
applying residual learning gains 0.8564 in SSIM and 22.17 in PSNR on average
respectively. Comparing the second and the last experiment settings, it shows
that deep residual learning contributes to the final results by 0.0379 in SSIM and
1.67 in PSNR, leading a prominent enhancement. In addition, it can be noticed
that the proposed GAN is conducive to the performance by comparing the third
and the last settings. Perceptual loss evaluates the features of the generated
background images and the real background images, which directly benefits the
network to produce images of high quality. Therefore, from the results of the
first and the third settings, it improves the performance by 0.0277 in SSIM and
1.24 in PSNR averagely.

The qualitative results are shown in Fig. 5, where the visual perception of
the proposed method transcends all other settings, which further proves the
significance of the deep residual learning and the proposed method.

3.3 Comparison to State-of-the-art Methods

Several experiments are conducted to show both qualitative and quantitative
superiorities compared with state-of-the-art methods. Figure 7 compares the
visual results on our synthetic datasets, where the proposed method turns out
to tackle different complex scenes. As shown in Fig. 8, the proposed method also
shows better performance on the images provided by CEILNet [9], where more
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(c)(b)(a)

Fig. 6. Comparison of the real-world image with CEILNet.

image details are preserved after reflection removal while other methods leave
some remanet artifacts. From top to down, images (a) to (g) show remarkable
differences in the marked boxes. The results of the proposed method precede the
rest images with clearer background and least reflection remaining.

Samples of real-world image dataset in Fig. 6 further illustrate the exceeding
performance especially on fidelity and less distortion of background scene. As
we can see, the tone of the objects on the image suffers a degeneration after
the process of CEILNet [9], while the result of the proposed method is capable
of preserving better color authenticity. From box of the second image, it can be
found that the proposed method could deal with the reflection even if it is shown
on the confusing background scene. Please zoom in for better view.

Table 2. Quantitative comparison to state-of-the-art methods on images (a) to (g)
corresponding to each column in Figs. 7 and 8.

SSIM PSNR

Image Li [7] Nikolaos [8] CEILNet [9] Ours Li [7] Nikolaos [8] CEILNet [9] Ours

(a) 0.7379 0.9008 0.9499 0.9702 19.7754 23.2607 24.9851 28.5102

(b) 0.7497 0.8579 0.8912 0.9142 21.4570 20.9500 21.4921 22.6718

(c) 0.6434 0.8987 0.9458 0.9602 18.0398 21.2330 24.0125 24.3933

(d) 0.8359 0.9305 0.9098 0.9344 21.6833 22.4701 26.0067 27.6002

(e) 0.7261 0.9303 0.9028 0.9311 20.0862 23.4430 24.2102 26.2652

(f) 0.5784 0.8672 0.9088 0.9169 13.2471 22.2741 23.9800 24.7217

(g) 0.5522 0.9231 0.8312 0.9429 12.8058 25.2152 23.8229 26.0204

Table 2 compares the SSIM and PSNR of the images (a) to (g) corresponding
to each column in Figs. 7 and 8. Out of fairness, we set the hyperparameters for
Nikolaos method [8] to its best adaptiveness for each picture. It is obvious that
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(a) (b) (c) (d)

Fig. 7. Reflection removal comparison of the synthetic dataset in this paper with Li,
Nikolaos, CEILNet and the proposed method from top to bottom (original images are
on the first line).

the evaluation figures of the proposed method outstrip the rest methods, yielding
0.9385 and 25.7404 on average in terms of SSIM and PSNR respectively, which
further demonstrates the excellent performance of our proposed method.
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(e) (f) (g)

Fig. 8. Comparison of the synthetic images in CEILNet with Li, Nikolaos, CEILNet
and the proposed method from top to bottom (original images are on the first line).

4 Conclusion

In this paper, a deep residual learning approach is proposed to address the sin-
gle image reflection removal problem. Instead of eliminating or suppressing the
reflection information from the observed images directly, the proposed method
first exploits the mapping between the observed image and its reflection infor-
mation which is comparatively simple, and then removed it to obtain a clear
background image. A novel generative adversarial framework is also proposed
that dramatically improves the performance through deep residual learning and
adversarial training. Furthermore, a multi-part balanced loss is introduced by
considering both the reflection information learning and the background feature
similarity measurement simultaneously. The proposed method entails a great
performance by keep the intactness of the background scene. Experiments com-
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pared with several state-of-the-art methods reveal a significant meaning of deep
residual learning and effectiveness of the proposed method on the single image
reflection removal task.
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