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Abstract. Spatial regularization can effectively solve the unwanted
boundary effect of discriminative correlation filters (DCF). However, the
predefined mask is independent of the feature, which limits the perfor-
mance improvement. In this paper, we take the mask as a variable that
plays the same role as the filter, and an attention regularization correla-
tion filter (ARCF) is proposed for visual tracking. Especially, the mask is
no longer a binary but a real value between 0 and 1, used as the weight of
the corresponding feature. Additionally, the temporal coherence is also
considered when the filter and the mask are simultaneously optimizing
via ADMM algorithm, so the filter can fit the variation of the target in
the temporal domain. Extensive experiments on the OTB100 database
prove that our algorithm is much better than the traditional SRDCF
algorithm both in the performance and speed.

Keywords: Object tracking · Regularization · Correlation filters ·
Attention

1 Introduction

Visual tracking is an important task in many computer vision topics. One of the
main challenges of this task is to address the target’s appearance changes over
time. Recent years, discriminative correlation filters (DCF) [8] have shown state-
of-the-art performance in the fashion tracking data set [17] and competitions [11].
The advantages of DCF [8] benefit from the periodic assumption of training sam-
ples. However, such an assumption leads to unwanted boundary effects since the
examples including many unrealistic, wrapped-around circularly shifted versions
of the target due to the circularity. Thus, the discriminative power of the learned
filter shown in Fig. 1(a) is limited, so that the tracking performance is difficult
to further improve.

The above problem was addressed in the recent works [6,9,12]. Danneljan
et al. [6] introduced predefined Inverse Gaussian distribution matrix as a spa-
tial regularization to penalize filter values outside the target boundaries, which
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Fig. 1. Spatial Regularizations. Figure 1(a) shows filter of the standard discriminative
correlation filters (DCF) [8], the filter regularized by the inverse Gaussian distribution
matrix [6] and zero-padding mask [9] are shown in 1(b) and 1(c), respectively. The
filter constrained by the proposed attention regularization is shown in 1(d).

is shown in Fig. 1(b). Different from the solution that was implemented by the
Gauss-Seidel method with high computational complexity, STRCF tracker [12]
trains the filter on the single sample via the alternating direction method of multi-
pliers (ADMM) algorithm [3]. Galoogahi et al. [9] proposed zero-padding the filter
shown in Fig. 1(c) to eliminate the background during training, then the optimiza-
tion is also performed by the ADMM [3]. The ideas behind these methods are to
design a predefined mask to overcome the boundary effects, however, there are
some drawbacks: (1) The predefined regular shape of the mask can fit the appear-
ance of the target (2) The value of the mask is binary that indicates whether this
pixel is a target or not (3) The temporal coherence of the mask is not considered
anymore.

To overcome these problems, an attention regularization correlation filter
(ARCF) is proposed for visual tracking in this study. A spatial attention mask
is learned with the filter and utilized to indicate the corresponding importance
of each position in the filter. Unlike the existing methods that treat the mask as
a hyper-parameter, we take the mask as a variable that plays the same role as
the filter, then they are simultaneously optimized via ADMM algorithm. Here,
the mask is no longer a binary but a real value between 0 and 1, used as the
weight of the corresponding feature. Therefore, the position corresponding to the
large weight forms the spatial attention of the image. Additionally, the temporal
coherence is also considered when the filter and the mask are optimizing, so
the filter can fit the variation of the target in the temporal domain. Figure 1(d)
shows the learned filter by our spatial attention map. It can be seen that the
discriminative ability of the features is enhanced by our method compared with
the other methods. The contributions of this paper are summarized as follows:

– We propose a visual attention mechanism to regularize the correlation filter
both in the spatial and temporal domain.

– The value of the spatial attention mask is released to [0, 1] replaced binary
values {0, 1} to indicate the weights of the corresponding features.

– We propose to constrain the temporal coherence of the learned mask to adapt
to the variation of the target in the temporal domain.
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2 Related Work

2.1 Spatial Regularization

Unwanted boundary effects in correlation filter based tracking lead to inaccurate
representation and insufficient discrimination of targets, especially in the clut-
tering background. Some works [6,12] wanted to solve this limitation by investi-
gating the scale relationship between the training samples and filters. That is to
say, the filter coefficients are penalized in terms of spatial locations [6] or tem-
poral rank [12] to achieve more robust appearance modeling suitable for large
variations. But the introduced noise of background became inevitable [10].

Different from those methods that perform regularization and filtering in
a separated process with auxiliary features, our method is only required the
features for visual tracking and simultaneously optimized the filter and spatial
map. This is the motivation of this study.

2.2 Visual Attention

The visual attention derived from the cognitive neuroscience has been applied to
some computer vision tasks, such as image classification [15] and image caption.
It is so popular because the attention mechanism gives the model the discrimi-
native ability between objects. The spatial weights, such as the cosine window
map [2] and the Gaussian window map [8], are used as an attentional mechanism
to be integrated into the correlation filter for visual tracking tasks.

However, these approaches emphasized attentive features and resort to addi-
tional attention modules to generate feature weights. In contrast to that, our
method is self-attention, which exploited the attention map as a regularization
term coupled with the standard correlation filter. And the attention map and the
filter can be optimized simultaneously by the ADMM [3] algorithm for robust
trackers.

3 Method

3.1 Learning Attention Regularization

Recently, the correlation filter received much attention with its ability to
use circular matrix for dense sampling. But, the unwanted boundary effects
derived from the periodic assumption of training samples limits the performance
improvement further. To address this problem, an inverse Gaussian distribution
matrix [6] is as a spatial regularization to penalize filter values outside the tar-
get boundaries. The spatial regularization correlation filter is rewritten with T
training samples as:

L(Φ) =
T∑

k=1

εk

∥∥∥∥∥

D∑

l=1

Φl ∗ xl
k − yk

∥∥∥∥∥

2

+
D∑

l=1

‖w � Φ‖2 , (1)
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where Φ ∈ R
D denotes the filter, the symbol ∗ represents correlation operation,

y is the regression values of the feature x ∈ R
D and εk is the regularization term

of the kth sample xk. The size of feature x, filter Φ and regression y is M × N .
w is the spatial regularization matrix, which is the weight of the location in the
filter Φ.

In this study, we introduce a attention mechanism, which makes the filter
pay more attention to the target and the desired response lower at the back-
ground. Additionally, the temporal coherence is also considered constraining the
regularization term w learning. We learn the spatial attention map correlation
filter with the loss function:

L(Φ,w) =
1
2

∥∥∥∥∥

D∑

l=1

Φl ∗ xl − y

∥∥∥∥∥

2

︸ ︷︷ ︸
Regression Term

+
1
2

D∑

l=1

||w � Φl||2
︸ ︷︷ ︸

Spatial Term

+
μ

2
||w − w0||2

︸ ︷︷ ︸
Temporal Term

, (2)

where μ is temporal regularization coefficients, respectively. Unlike the existing
works, the w is a variable to learn, not a hyper-parameter. Here, w0 is an initial
prior distribution which is predefined as an invert Gaussian distribution similar
to the work [6].

The aim of minimizing the loss of Eq. (2) is to learn the filter Φ and the
attention map w simultaneously. The first term is the regression term to learn
the filter Φ with the feature x and the expected response y, which is same as the
standard correlation filter. The spatial and temporal regularization terms are
shown in the second term and third term to learn the attention regularization.
According to the importance of the spatial position to learn the attention map
w, the feature of the target are attached with the smaller spatial weights, and
the background feature gives a bigger spatial constraint weight, which makes
the learned filter more discriminative than that learned by the fixed spatial
regularization. This can enhance the distinction between goals and background.
Additionally, in order to deal with the variation of the target, the attention
regularization is also constrained in the temporal domain which is represented
in the third term of the Eq. (2). Temporal regularization terms make the filter
change not too severe in the case of target occlusion, which can guarantee the
performance of tracking.

According to the above theory, the flow chart of the algorithm is as shown
in Fig. 2. By using the first frame I0 information, the target frame is initialized
and the spatial constraint weight w0 in the first frame is assigned to the inverse
Gaussian distribution, and the training is performed to obtain the filter Φ. The
target position is predicted in the next frame by using the trained filter. At the
same time, using the information of target position in the current frame can
update the filter, and the weight map w is updated in the time domain and the
frequency domain according to the position feature weight map in the current
frame and the initial frame w0, which can achieve more robust tracking.
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Fig. 2. Pipeline of learning attention regularization for correlation filter tracking. g1
is the object bounding box in the first frame and w0 is the spatial weight in the first
frame. w is updated according to the spatial attention map in each subsequent frame
during the learning process.

3.2 Model Optimization

In this subsection, we will introduce how to optimize the loss function Eq. (2),
which is convex, and the optimal solution can be solved by iterative the alternat-
ing direction method of multipliers (ADMM) algorithm [3]. Therefore, through
introducing the constraint condition Φ = Θ, Lagrangian equation of the Eq. (2)
can be rewritten as:

L(Φ,w,Θ, β) =
1
2
||

D∑

l=1

Φl ∗ xl − y||2 +
1
2

D∑

l=1

||w � Θl||2

+
μ

2
||w − w0||2 + βT

D∑

l=1

(Φl − Θl) +
α

2

D∑

l=1

||Φl − Θl||2,
(3)

where β is the Lagrange multiplier and α is the penalty parameter.
When δ = β

α , the augmented Lagrangian equation can be written as:

L(Φ,w,Θ, δ) =
1
2

∥∥∥∥∥

D∑

l=1

Φl ∗ xl − y

∥∥∥∥∥

2

+
1
2

D∑

l=1

∥∥w � Θl
∥∥2

+
μ

2
||w − w0||2 +

α

2

D∑

l=1

∥∥Φl − Θl + δl
∥∥2

.

(4)

The ADMM algorithm is used to solve the following subproblems:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φ(i+1) = arg min
Φ

∥∥∥∥
D∑

l=1

Φl ∗ xl − y

∥∥∥∥
2

+ α ‖Φ − Θ + δ‖2,

Θ(i+1) = arg min
Θ

D∑
l=1

||w � Θl||2 + α ‖Φ − Θ + δ‖2,
δ(i+1) = δ(i) + Φ(i+1) − Θ(i+1).

(5)
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Subproblem Φ. According to the iterative equation of ADMM algorithm, the
solution of subproblem Φ can be converted to Fourier domain for solving,

L(Φ̂) =

∥∥∥∥∥

D∑

l=1

Φ̂l � x̂l − ŷ

∥∥∥∥∥

2

+ α
∥∥∥Φ̂ − Θ̂ + δ̂

∥∥∥
2

, (6)

where Φ̂ is the discrete Fourier transform of the filter Φ. By taking the derivative
of Φ̂ be zero, the equation can be obtained as follows:

2(Φ̂ � x̂ − ŷ) � x̂T + 2α(Φ̂ − Θ̂ + δ) = 0. (7)

So, we have a closed-form solution of Φ̂:

Φ̂ =
αΘ̂ − αδ̂ + ŷ � x̂T

x̂ � x̂T + αI
. (8)

Subproblem Θ. For the solution of subproblem Θ, we can take the derivative
of Θ be zero in the time domain directly,

2wT � wΘ + 2α(Φ − Θ + δ) = 0. (9)

And we can also get a closed-form solution for Θ:

Θ =
αΦ + αδ

wT � w + α
. (10)

Subproblem w. For updating the spatial weight w temporally, we can utilize
Eq. (4) to take the derivative of w directly,

∂L (Φ,Θ, δ)
∂w

= w �
D∑

l=1

(Θl)2 + μ (w − w0) . (11)

By solving ∂L(Φ,Θ,δ)
∂w = 0 we get the closed-form solution

w =
μw0

Q + μ
, (12)

where Q is
∑D

l=1(Θ
l)2. By Eq. (12), we can update w which includes information

about the target in the current frame.

Updating Penalty Parameter α. The stepsize parameter α is updated as:

α(i+1) = min(αmax, ρα(i)), (13)

where αmax is the maximum value of α and the scale factor ρ.
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3.3 Object Tracking

Algorithm 1. Learning Attension Regulizaiton Correlation Filter for Visual
Tracking
Input:
1: Frames: It, t = 0, 1, 2, · · · ; initial object bounding box: g1 = (x1, y1, w1, h1);
Output:
2: Prediction : rt−1 = (xt−1, yt−1, wt−1, ht−1) ;
3: Initialization:
4: initialize the correlation filters, initialize the spatial weight map: w0 is an invert

Gaussian distribution;
5: Learn Φ by minimizing Eq. (2), update w1 by the solution Eq. (12) via the first

frame with given bounding box, t = 2 ;
6: while t ≥ 2 do
7: Crop an image patch Rt from It at the last bounding gt and extract its feature

map xt;
8: Detect the object location by calculating the response via xt and Φ and the estimate

the scale of the target, thus get gt;
9: Update Φt by Eq. (2) using iterative ADMM algorithm via xt and wt−1;

10: Learn wt by the closed-form solusion Eq. (12) ;
11: t = t + 1;
12: return rt

In this subsection, we describe the proposed tracking framework based on learn-
ing attention regularization. The overview of the proposed tracker is shown in
Algorithm 1.

We use the information of the first frame to initialize the target frame and
filter. The spatial regularization weight w0 in the first frame is assigned to the
inverse Gaussian distribution. During the tracking process, the filters obtained by
training in the previous frame are used to detect the position of the target in the
search area of the next frame. After determining the target position, the training
region centered on the target position of the current frame is extracted to update
filter model. According to the spatial attention map, the spatial constraint weight
w is adjusted.

4 Experiments

In this section, we present comprehensive experimental evaluations of the pro-
posed algorithm using OTB100 [17] data set. First, we describe the implementa-
tion details and the evaluation protocols. Next, we demonstrate the effectiveness
of each component in the proposed tracker in the form of experiment. Finally,
the algorithm proposed in this paper is compared with other representative algo-
rithms to obtain comprehensive experimental results.
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4.1 Implementation Details

Tracker Parameters. Our filter is based on a regularized filter, but the pro-
posed algorithm has a certain change in the parameter setting because the filter
weight parameter is no longer a super parameter, but a real number from 0 to
1. Through many experiments, we set the hyperparameter in Eq. (2) to μ = 18.
Initial constraint parameters α(0), maximum constraint parameters αmax, and
scale factor ρ are set to 10,100 and 1.2.

Evaluation Protocols. In this paper, the algorithm is evaluated by the success
rate and precision rate curve. The AUC is area under the curve for success rate.
The DP is the value in the precision rate curve when the threshold is 20. Based
on the benchmark library settings, we compare the proposed tracker with the
state-of-the-art trackers using one-pass evaluation (OPE) (each tracker evaluates
in the initial frame with the ground-truth box until the end of each sequence).

4.2 Overall Performance

The table below shows the algorithm presented in this paper performs signif-
icantly better than most of the competing trackers that use different tracking
methods.

Table 1. The algorithm of this paper is compared with the regularization-based algo-
rithm on the OTB100 [17] data set. The AUC, DP and the operation speed are used
as evaluation criteria.

Tracker AUC (%) DP (%) Speed (FPS)

OURS 65.7 87.0 27

SRDCF [6] 59.8 78.9 5

STRCF [12] 61.4 86.3 36

CSR-DCF [13] 59.8 73.3 15

BACF [9] 63.0 81.6 35

Comparison with the Trackers Based on Spatial Regularization. We
evaluated the proposals for the four recently released trackers: STRCF [12],
CSR-DCF [13], BACF [9], SRDCF [6]. The Table 1 and Fig. 3 shows that the
tracker proposed in this paper achieves excellent results under two test criteria.
As the benchmark algorithm SRDCF [6] uses Gauss-Seidel iterative method in
the algorithm operation, its tracking speed is slower. Meawhile, because the
temporal regularization isn’t introduced to SRDCF [6], its performance is poor
when facing videos such as occlusion. Therefore, the proposed algorithm has a
larger improvement compared with the benchmark algorithm SRDCF [6]. And
we can see the success plot has increased by about 8%, and the precision plot
has increased by about 7%.
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Table 2. The algorithm of this paper is compared with the algorithm based on neural
network attention mechanism on the OTB100 [17] data set. The AUC, DP and the
operation speed are used as evaluation criteria.

Tracker AUC (%) DP (%) Speed (FPS)

OURS 65.7 87.0 27

DAT [14] 66.3 90.2 1

AFCN [4] 57.5 80.2 15

RASNet [16] 64.2 – 83

Comparison with the Trackers Based on Neural Network Attention
Mechanisms. We evaluate the trackers proposed in this paper compared with
state-of-the-art neural network attention-based trackers, including DAT [14],
RASNet [16], and ACFN [4]. The algorithm improves the tracking effect by
using a more flexible filter weight coefficient, which can improve filter response
to the target and reduce background interference to the target. As are shown in
Table 2 and Fig. 3, the algorithm perfors better than RASNet [16] and ACFN
[4]. When compared with DAT [14], although the proposed algorithm is different
from DAT [14] by about 3% in performance, it has an obvious performance in
terms of tracking speed as this paper uses ADMM [3] (Alternating Direction
Method of Multipliers) iterative algorithm. The improvement of the algorithm
proposed in this paper is 27 times faster than DAT [14].

Fig. 3. The success plot and precision plot on the OTB100 [17] data set are quantita-
tively evaluated by the OPE method. The legend is the AUC and DP scores for each
algorithm.

Compare with the Most Advanced and Classic Algorithms. SiamFC [1]
and ECO [5] are currently advanced trackers, which uses different ways. SiamFC
[1] classify the target using the method of joining the Alexnet network to improve
the extraction accuracy of the target feature. However, due to the classification
nature of the network, the problem of similar background interference cannot
be solved, which makes tracking effect worse. The proposed algorithm solves the



Learning Attention Regularization Correlation Filter for Visual Tracking 83

problem of similar interference by introducing temporal regularization, so it is
far ahead of SiamFC [1] in performance. ECO [5] is due to the sparse update
strategy, which makes the calculation process complicated and the operation
speed slow down. The algorithm can be slightly weaker than the ECO [5], but
the tracking speed is more than 4 times that of ECO [5]. DSST [7] is a relatively
classic algorithm proposed in 2014. It adopts the method of feature fusion, which
enables the algorithm to have a better adaptive process for scale variation of the
target. As shown in Fig. 3, the proposed algorithm performs far better than
DSST [7].

4.3 Ablation Study

The core idea of this paper mainly includes the real valued (learning attention)
between the filter weight coefficient from fixed super-parameters to variable 0 to
1, and a regularization method in the time domain. In order to prove that each
component improves the performance of the algorithm, a assessment of each part
of the algorithm will be performed.

Regularization in the time domain can effectively solve the problem of occlu-
sion of the target. We will remove the algorithm of time domain regularization
with ARCFp. The change of the filter weight parameter can make the response
value of the target larger and reduce the background interference. We will remove
the learning attention algorithm by ARCFq. As is shown in Table 3, the results
are compared.

Table 3. In this evaluation, the OTB100 [17] data set is used as the test sequence.
Meanwhile, DP and AUC are used as the evaluation criteria, where DP is the value
with a threshold of 20 and AUC is the area under the curve of success plot curve.

ARCFp ARCDq ARCF

AUC (%) 61.5 47.7 65.7

DP (%) 82.6 69.3 87.0

4.4 Qualitative Analysis

We analyze the tracker performance using 11 annotation attributes in the
OTB100 [17] data set: illumination variation, out-of-plane rotation, scale vari-
ation, occlusion, deformation, motion blur, etc. Figure 4 shows the results of a
one-pass evaluation of these challenging attributes for visual object tracking.
From the results, the tracker proposed in this paper in the illumination vari-
ation, out-of-plane rotation, scale change, occlusion, deformation, motion blur,
fast motion, in-plane rotation, background clutter and low resolution can per-
forme well and score at the top. Due to the fixed weight coefficient of the filter,
other algorithms using similar methods have problems in poor ability of discrim-
inating target and background and uneven mask distribution, resulting in poor
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Fig. 4. The precision plot curve under each difficulty attribute, where the value after
the curve is the value when the threshold is 20. (This evaluation method is the current
mainstream qualitative analysis method)

overall tracking performance. However, the filter weight coefficient of the pro-
posed algorithm is no longer a fixed weight or an inverse Gaussian distribution,
but can vary from 0 to 1 depending on the target and background, so that the
filter constraint weights at the background are gradually increasing as the target
response increases. This can improve the tracking effect.

5 Conclusion

In this paper, we proposed an attention regularization correlation filter (ARCF)
for visual tracking. The mask is treated as a variable that plays the same role as
the filter, then they are simultaneously optimized via ADMM algorithm. Here,
the greater the weight is, the more important the corresponding feature is. Addi-
tionally, the temporal coherence is also considered when the filter and the mask
are optimizing, so the filter can fit the variation of the target in the temporal
domain. Extensive experiments show that our method is much better than the
traditional SRDCF tracker both in the performance and speed.

In the future, we want to investigate how to generally apply the proposed
method with the CNN features that are powerful ability to describe the object
in the semantic domain. This is helpful to distinguish the background, even
distractors.
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