
Exploiting Category-Level Semantic
Relationships for Fine-Grained Image

Recognition

Xianjie Mo1, Jiajie Zhu1, Xiaoxuan Zhao1, Min Liu2, Tingting Wei1,
and Wei Luo1(B)

1 College of Mathematics and Informatics, South China Agricultural University,
Guangzhou 510642, GD, People’s Republic of China

cedricmo.cs@gmail.com, {Zhujiajie,zhaobear}@stu.scau.edu.cn,
weitingting@scau.edu.cn, cswluo@gmail.com

2 School of Computer, National University of Defense Technology, Changsha 410003,
HN, People’s Republic of China

gfsliumin@gmail.com

Abstract. We present a label-based, semantic distance induced regular-
ization learning method for Fine-grained image recognition (FGIR). In
contrast to previous label-based methods that involve a nontrivial opti-
mization in multi-task metric learning, our approach can be integrated
into an end-to-end network without introducing any extra parameters,
thus easy to be optimized. To this end, a category-level hierarchical
distance matrix (HDM) that encodes semantic distance between sub-
categories through a tree-like label hierarchy is constructed. HDM is
then incorporated into a DCNN to aggregate misclassified prediction
probabilities for model learning, thus providing additional discrimina-
tive information for fine-grained feature learning. Experiments on three
fine-grained benchmark datasets (Stanford Cars, FGVC-Aircraft, CUB-
Birds) validate the effectiveness of our approach and demonstrate its
improvements over previous methods.

Keywords: Fine-grained image recognition · Deep convolutional
neural networks · Label structure

1 Introduction

Fine-grained image recognition (FGIR) aims at distinguishing images of subor-
dinate categories that belong to the same base class, e.g., bird [22] species, car
models [10], aircraft model variants [16], etc. Different from the base-class recog-
nition, the differences between subordinate categories are subtle and usually
exist in local regions, which make recognition models difficult to learn effective
discriminative feature to distinguish them, e.g., for a car dataset with four-level
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hierarchical annotations—year, model, make and type, the visual differences in
appearance between cars of the same type but from different makers and models
are difficult to be ascertained. Intuitively, it is important to delve deeply into
the rich semantic relationship inherited in fine-grained categories to learn better
representations for FGIR.

Exploiting semantic relationships between categories for FGIR is usually pro-
ceeded from three aspects—parts [6,7,29,30], objects [24,34], and labels [23,25,
33]. Leveraging parts and bounding box annotations to propose geometry con-
straints for part detector learning [29,30] possesses the advantage of reducing
the number of false positive parts compared to that of unsupervised part learn-
ing methods [20,26]. However, the application of this method is limited due
to its requirements of annotations. Utilizing the relationship between objects is
implicitly implemented in the configuration of weakly-supervised learning, which
minimizes averaging prediction loss across training samples with only image-level
labels available [24,34]. This methodology relaxes the requirements of data anno-
tation but with a trade-off between data annotation and prediction accuracy.
Constructing the hierarchy of fine-grained labels for FGIR was also studied in
the community. A number of methods propose to learn different-granularity fea-
tures from different label granularities [23], and several other approaches make
efforts to utilize similarities among categories through multi-task metric learn-
ing [33]. Although the idea of learning fine-grained features by leveraging label
relationships is straightforward, it is usually difficult to well define the relation-
ships between labels and involves a nontrivial optimization procedure to learn
the model, like the metric learning presented in [33].

In this paper, we propose a simple but effective regularization method that
exploits the semantic relationship between categories by constructing a hier-
archy distance matrix from fine-grained labels for FGIR. Our method leverages
the hierarchical structure inherited in fine-grained labels to build a category-level
hierarchical distance matrix (HDM), in which each entity represents the semantic
distance between two fine-grained categories. To this end, a tree-like hierarchy
based on semantics or domain knowledge is built with the coarsest and finest
granularity labels located on the root and leaf nodes, respectively. For example, a
car with year, model, maker, and type, like ‘2012 BMW M3 coupe’, forms a four-
level hierarchical structure—year, model, maker and type respectively represent
the leaf, the penultimate layer, the second top, and the root nodes. Then a path
from the root node to a leaf node naturally defines a kind of inclusion relation-
ship in which a son node contains more fine-grained information than its parent
node. Therefore, the semantic distance between any two fine-grained categories
is defined as the smallest number of edges travelled through from one leaf node to
another via the tree. In order to incorporate HDM into deep convolutional neural
networks (DCNNs) for fine-grained feature learning, a regularization term based
on the inner product between DCNNs’ output class-probability and columns of
HDM indexed by the true label is established. This regularizer can effectively
aggregate large amounts of supervising information from misclassified categories
in the training stage, especially from those with extreme similarities in appear-
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ance but with large semantic distances. Experiments on three public available
fine-grained datasets—Stanford Cars, CUB-Birds, and FGVC-aircraft, validate
the effectiveness of our approach and demonstrate a clear improvement over
existing methods. In summary, we make the following three concrete contribu-
tions:

– We propose a method to exploit the semantic relationship between categories
by constructing a category-level hierarchical distance matrix (HDM) for fine-
grained labels.

– We study a regularization method to aggregate misclassified information by
using HDM to guide the fine-grained feature learning for FGIR.

– We construct a four-level tree-like label hierarchy—year, model, makers, and
type—for images from Stanford Cars and make it publicly available for com-
munity research.

The remainder of this paper is organized as follows: Sect. 2 reviews related work.
Section 3 details the construction of the hierarchical distance matrix (HDM) and
our model learning with HDM. Experimental results and analysis are presented
in Sect. 4 and we conclude our work in Sect. 5.

2 Related Work

2.1 Label Induced FGIR

Exploiting label relationships for performance improvement has been widely
adopted in many applications [17,36]. The motivation behind this idea is that
there is a latent semantic relationship between categories. For FGIR, the rela-
tionship between categories is apparent since all subcategories are derived from
the same base category, namely, they generally share the same structure and
attributes [10,16,22]. Therefore, [1] investigates attribute-based label embed-
dings for FGIR. [4,25] propose to augment training samples from external sources
either to build super-type and factor-type super categories or combine with
attributes for FGIR respectively. Developing similarities between categories from
fine-grained labels was studied in [18,33,35], where [33] employs metric learning
with triplet loss to facilitate feature learning, [35] groups fine-grained labels into
several independent coarse label groups and learns features cooperatively, and
[18] tries to maximize the entropy between visually very similar subcategories to
prevent the classifier from being too confident in its outputs for feature learning.
These methods normally involve a nontrivial optimization procedure to learn
their models effectively. Besides, the hierarchy inherited in fine-grained labels
was also studied, in which [2] incorporates predictions for high-level categories
as prior knowledge to guide the feature learning of the low-level fine-grained
categories while [23] combines features from different label granularities for pre-
diction. Our work in this paper also focuses on exploiting label relationships and
extends to man-made objects, which are limited in [2,23]. In addition, our work
establishes a semantic distance between fine-grained categories while not a reg-
ularization relationship between different-granularity labels like that in [2,35].
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Further, our model only involves a single network for model learning. This is
different from previous work [2,23,33], which need to train an ensemble of net-
works.

2.2 Part Localization Based FGIR

Another line of research focuses on semantic parts localization [8,19,24,29].
The idea behind this viewpoint is that the discriminative structures are sub-
tle and existed in local areas. Thus it is practical to first localize these areas
and then extract feature from these local areas for FGIR. Early work in this line
of research utilizes parts or bounding box annotations to guide part detectors
learning [31,32] and then employ the learned detectors for part detection and fea-
ture extraction [29,30]. However, the requirements of part annotations limit its
applications. With the increasing understanding of the functionality of neurons
in DCNNs [3,15,28], developing detectors from DCNNs dominates the research.
[20] finds constellations of neural activation patterns computed in DCNNs. [34]
also studies this idea to select neural channels for detectors learning. Combin-
ing bottom-up and top-down information for part detectors discovering was also
studied in [24]. Although improvements have been achieved by these methods,
they involves a multi-stage optimization. Recent work unifies the detector learn-
ing and parts feature extraction in a single model, in which [13] explore the
idea of visual attention for model learning by employing reinforcement learn-
ing while [14,27] learn fine-grained models by localizing semantic parts through
exploiting the high-level feature maps. A weakness of these methods is that they
either need to train an ensemble of networks or occasionally involve a sepa-
rate initialization. Although our work in this paper does not involve localizing
semantic parts, our model on the other hand can be trained end-to-end without
introducing any extra parameters, and is thus easy to be extended to large-scale
datasets. Moreover, our work is orthogonal to the part-based methods and can
be easily integrated into these models.

3 Approach

We detail our approach in this section. Our approach includes two key com-
ponents: (1) Constructing a category-level hierarchical distance matrix (HDM)
based on a tree-like label hierarchy from fine to coarse (Sect. 3.1); and (2) Guid-
ing fine-grained feature learning by aggregating misclassified output probabilities
through HDM (Sect. 3.2). An overview of our approach is depicted in Fig. 1.

3.1 The Construction of HDM

Existing methods for FGIR by exploiting label relationships either utilize label
granularities to augment the amount of training samples [23,25] or build similar-
ity relationships between categories [33,35]. These methods usually need to train
an ensemble of networks with each corresponding to one granularity or involve
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Fig. 1. An overview of our approach. The top row is an exemplification of the construc-
tion of HDM. The bottom row is a DCNN that extracts features and outputs prediction
probabilities. The probabilities are regularized through a weighted sum, with weights
from the column of HDM indexed by the ground-truth label, e.g., cl and dT

l . The whole
model is then trained end-to-end with gradients from the HDM regularization loss and
the cross-entropy prediction loss.

a nontrivial optimization procedure. In this section, we propose a method to
exploit label relationships for FGIR by constructing HDM from fine-grained
labels, which can then be integrated into a network for end-to-end training.

Given a set of fine-grained categories with labels from set C = {ck}Kk=1,
we can construct a label hierarchy from C since the fine-grained label usually
contain a full description of its derivative information, i.e., ‘2012 BMW M3
Coupe’. Supposing a M -layer relationship can be explored from C, we can then
construct a M + 1-level hierarchy with the leaf and root nodes representing the
finest and coarsest labels, respectively. Consequently, a path from the root node
to a leaf node naturally defines a kind of inclusion relationship in which the son
node contains more fine-grained information than its parent node. The distance
between two fine-grained categories can then be defined as the smallest number
of edges needed to be traveled through from one leaf node to another. Figure 2
illustrates the idea of our HDM.

Formally, for two different fine-grained categories ci and cj , represented by
two leaf nodes i and j respectively, with a common parent node in layer Lm (0 <
m ≤ M), the category-level semantic distance between them can be simply
defined as:

dij(m) = 2me i, j ∈ L0, (1)

where e is a constant denoting the length of the edge. We set e = 1 in this work.
Thus the distance between two categories is completely determined by m. There-
fore, for a set of K fine-grained labels, we encode the semantic distances between
every two fine-grained categories into a matrix DK×K , in which the entries on
the main diagonal are all zeros (that is, the matrix is a hollow matrix). Com-
pared to previous designs of label relationships between fine-grained categories
[33,35], our design is simple yet effective and easy to be optimized (see Sect. 4).
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Fig. 2. An illustration of the construction of HDM on Stanford Cars. A 5-layer hier-
archical tree is exemplified on the left by exploring derivative information inherited
in the fine-grained labels. We build the 5-layer hierarchy according to the inclusion
relationship of year-model-maker-type. Based on this hierarchy, the semantic distance
between any pair of categories (e.g., cl and cK on the left) can be determined by the
smallest number of edges needed to be traveled through between their corresponding
nodes. The right is the constructed HDM.

3.2 Regularization Learning with HDM

HDM explicitly encapsulates the prior knowledge of category similarities into
its design. Thus we can incorporate HDM into DCNNs for feature learning.
Intuitively, this can be implemented in a regularization term that guides the fine-
grained feature learning by providing more discriminative information through
aggregating misclassified probabilities.

Given DK×K = [d1,d2, · · · ,dK ]T , where each column dt is a K-dimensional
vector. Let plj be the output class-probability for cj given an image with ground-
truth label cl, which could be predicted by the softmax layer. Then the regular-
ization loss introduced by HDM can be defined as (see Fig. 1):

Lr =
1
N

N∑

l=1

K∑

k=1

b
(k)
l dT

k pl (2)

where N is the total number of training samples, b
(k)
l ∈ {0, 1} is a binary variable.

b
(k)
l = 1 indicates that sample l belongs to ck, otherwise b

(k)
l = 0. dk denotes the

kth column from DK×K . pl represents the prediction probability from our model
for sample l. Together with the HDM regularization loss, pl is also employed in
a cross-entropy loss for model training:

Lc = − 1
N

N∑

l=1

K∑

j=1

tlj log plj (3)

Therefore, our model can be learned by minimizing:

L = Lc + λLr (4)
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where λ is a balance weight. Compared to canonical cross-entropy learning where
misclassified prediction probabilities are unused, the HDM regularization term
can effectively aggregate misclassified prediction probabilities to guide the model
training. Therefore, it provides additional supervising discriminative information
for fine-grained feature learning, especially for those categories with extreme
similarities in appearance but with large semantic distance (see Sect. 4.6). We
will develop our approach on DCNNs in this paper, e.g., ResNet [5] and SE-
ResNet [9].

4 Experiments

4.1 Datasets

The empirical evaluation of our method is performed on Stanford Cars [10],
FGVC-Aircraft [16], and CUB-200-2011 [22]. Statistics numbers of training and
testing samples of all 3 datasets are shown in Table 1. FGVC-Aircraft orga-
nizes its labels in a Model-Family-Manufacturer hierarchy. We use the hierarchi-
cal labels for CUB-200-2011 from [2], which is organized based on a Species-
Genera-Family-Order taxonomy. We construct a hierarchy based on a Year-
Model-Maker-Type taxonomy for Stanford Cars since its fine-grained labels have
already include such information. Finally, we obtain 16 years, 178 models, 49
makers, and 9 types on Stanford Cars. We will make the hierarchical labels
publicly available.

Stanford Cars. Stanford Cars dataset contains 16,185 images of 196 classes of
cars. The data is split into 8,144 training images and 8,041 testing images, where
each class has been split roughly in a 50-50 split.

FGVC-Aircraft. FGVC-Aircraft is a dataset containing 10,000 images of air-
craft, spanning 100 aircraft models, and organized in a three-level hierarchy. It
includes 6667 and 3333 samples for training and testing respectively.

CUB-200-2011. CUB-200-2011 includes 11,788 bird images from 200 sub-
species with 5,994 images for training and 5,794 images for testing.

4.2 Implementation

We experiment our model with ResNet-50 [5] and SE-ResNet-50 [9] on 4 NVIDIA
GTX 1070 GPUs in PyTorch. We train our model 30 epochs with the batch size
of 32 and momentum 0.9 by SGD [12]. The initial learning rate is 0.01 and
decayed by 0.1 every 15 epochs. The images are first resized to 600 × 600 and
then randomly cropped a region of size 448 × 448 as the input with a horizontal
flipping probability of 0.5. A Center crop of 448×448 without horizontal flipping
is used in testing. The balance weights, λ, are determined on the validation sets
and set to 0.1, 0.2 and 0.1 for Stanford Cars, FGVC-Aircraft, and CUB-200-2011,
respectively.
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Table 1. Statistics of benchmark datasets

Datasets #class #Train #Test

CUB-200-2011 200 5,994 5,794

Stanford Cars 196 8,144 8,041

FGVC Aircraft 100 6,667 3,333

Table 2. Performance evaluation on Stanford Cars. 1-stage means end-to-end learning.

Method 1-stage Accuracy

TLAN [24] × –

Part-CNN w/o bbox [30] × –

MG-CNN w/o bbox [23] × –

PDFR [34] × –

HAR-CNN [25] × 80.8%

ELS [33]
√

88.4%

ResNet-50 [5]
√

91.1%

SE-ResNet-50 [9]
√

91.2%

ResNet-50 + HDM (ours)
√

91.6%

SE-ResNet-50 + HDM (ours)
√

92.2%

Results of ResNet and SE-ResNet are from our reimplementation. The results
of three label-induced methods—HAR-CNN [25], ELS [33], and MG-CNN [23],
are from the authors reports. HAR-CNN acquires a large number of hyper-class-
labeled images for mode training. ELS embeds label structures into a multi-task
learning framework with a generalized triplet loss. MG-CNN learns an ensemble
of networks for different label granularities. We develop our HDM regularization
and report its performance based on ResNet-50 and SE-ResNet-50.

4.3 Results on Stanford Cars

The experimental results are presented in Table 2. HAR-CNN [25] and ELS [33]
are correspondingly based on AlexNet [11] and GoogleNet [21]. From compari-
son, it shows clearly advantages of advanced network architectures, as we achieve
91.1% and 91.2% for ResNet-50 [5] and SE-ResNet-50 [9], respectively. The effec-
tiveness of HDM is significant since it improves by 0.5% and 1.0% for ResNet-
50 and SE-ResNet-50 respectively. Considering the simplicity of our HDM, the
improvements effectively demonstrate the usefulness of misclassified probabili-
ties in training for providing more supervised information to fine-grained feature
learning.
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Table 3. Performance evaluation on FGVC-Aircraft. The 1st group are methods with
bbox annotations. The 2nd group are weakly-supervised methods. 1-stage means end-
to-end learning.

Method 1-stage Accuracy

Part-CNN w/bbox [30] × –

MG-CNN w/bbox [23] × 86.6%

SPDA [29] × –

TLAN [24] × –

Part-CNN w/o bbox [30] × –

MG-CNN w/o bbox [23] × 82.5%

PDFR [34] × –

HAR-CNN [25] × –

ELS [33]
√

–

ResNet-50 [5]
√

89.5%

SE-ResNet-50 [9]
√

90.8%

ResNet-50 + HDM (ours)
√

89.8%

SE-ResNet-50 + HDM (ours)
√

91.2%

4.4 Results on FGVC-Aircraft

Table 3 shows the performance of methods on this dataset. We achieve the best
performance of 91.2%. Compared to MG-CNN [23], our approach only needs to
train one network to make full use of information from different label granular-
ities, while MG-CNN trains an ensemble of networks with each corresponding
to one label granularity. This can save huge of training time for our model over
that of MG-CNN. In addition, We can find the bounding box (bbox) annotations
have a big influence on MG-CNN since it drops by 4.1% in performance when
without bbox. Moreover, compared to the two supporting frameworks—ResNet-
50 and SE-ResNet-50, training with HDM steadily improves their performance,
which indicates the robustness of our approach.

4.5 Results on CUB-Birds

Table 4 demonstrates the prediction accuracy on CUB birds. Our approach
achieves almost the best result on this dataset. Compared to the best result
of methods with bbox (85.7%), our result is comparable (84.4%), considering
only image-level labels are employed in our approach. Our approach surpasses
almost all methods that employs multi-stage training while without annotations,
like TLAN [24], Part-CNN [30], and MG-CNN [23]. The comparable performance
with PDFR [34] advocates the effectiveness of our approach. In comparison with
PDFR, our approach is much more simple and easy to extend to large-scale
datasets since it does not introduce any extra parameters into its supporting
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Table 4. Performance evaluation on CUB-200-2011. The 1st group are methods with
bbox annotations. The 2nd group are weakly-supervised methods. 1-stage means end-
to-end learning.

Method 1-stage Accuracy

Part-CNN w/bbox [30] × 76.4%

MG-CNN w/bbox [23] × 83.0%

SPDA [29] × 85.7%

TLAN [24] × 69.7%

Part-CNN w/o bbox [30] × 73.9%

MG-CNN w/o bbox [23] × 81.7%

PDFR [34] × 84.5%

HAR-CNN [25] × –

ELS [33]
√

–

ResNet-50 [5]
√

81.6%

SE-ResNet-50 [9]
√

83.6%

ResNet-50 + HDM (ours)
√

82.0%

SE-ResNet-50 + HDM (ours)
√

84.4%

Fig. 3. The left image in every group is misclassified into the category of the right
image in the corresponding group by SE-ResNet since they have a very similar visual
appearance. However, by exploiting the semantic relationships between categories, our
SE-ResNet+HDM can correctly predict their true categories. The images in (a) Stan-
ford Cars, (b) FGVC-Aircraft, and (c) CUB-Birds, from left to right, are respectively
from categories ‘Bentley Continental GT Coupe 2007’, ‘Aston Martin Virage Coupe
2012’, ‘A340-300’, ‘A340-200’, ‘Hooded Oriole’, and ‘Baltimore Oriole’.

networks and can be trained end-to-end. PDFR, however, involves a multi-stage
training and needs to select filters in a DCNN to train part detectors for local-
izing parts before training a classification network.

4.6 Improvements Inspection

It is essential to inspect in which aspect HDM contributes to FGIR. To this end,
we select the SE-ResNet-50 as our observation model since it surpasses ResNet-
50 and achieves the best performance on all datasets. Figure 3 illustrates our
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findings. We find that, by exploiting semantic distance between fine-grained
categories, HDM can effectively distinguish objects that come from different
categories but with an extremely similar visual appearance. The objects with
this kind of properties are difficult to be correctly classified as demonstrated by
SE-ResNet-50. Thus, we conclude that HDM contributes to correctly classify
images that are almost indistinguishable in visual appearance.

5 Conclusion

In this paper, we proposed a method to exploit semantic relationships between
subcategories by constructing a hierarchical distance matrix from fine-grained
labels. In order to take advantage of this relationship to improve the performance
of FGIR, we studied an HDM-induced regularization approach that aggregates
misclassified prediction probabilities to guide the model learning. With more
supervised discriminative information from the HDM regularizer, our approach
improves the performance of FGIR significantly. Experiments on benchmark
datasets validate the effectiveness of our approach and demonstrate its improve-
ments over existing methods.
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