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Abstract. Lesion detection is an essential technique in medical diagnos-
tic systems. Since there are great differences in intensity and appearance
within a same lesion category, lesion detection from computed tomogra-
phy (CT) scans is still a challenging task. Sufficiently using 3D context
information become the research hotpot in lesion detection area, since
algorithms can benefit from geometry and texture of lesions. Motivated
by this trend, we propose a multi-scale CNN based on 3D context fusion,
called M3DCF, for extracting lesion area from CT scans. In order to
speed up the algorithm, the one-stage regression-based detector, rather
than region proposal network, is adopted. Specifically, we employ 3D
context fusion strategy that allows M3DCF fusing features from neigh-
boring slices. Finally, we use a multi-scale scheme to combine low-level
and high-level features. This strategy allows us to get more meaningful
semantic information. The experimental results conducted on DeepLe-
sion dataset indicates that the proposed method outperformed state-of-
the-arts, including RetinaNet, Faster R-CNN, and 3DCE. The source
code is available on https://github.com/JMUAIA/M3DCF.
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1 Introduction

Computed tomography (CT) scans are the most frequently used medical images
for high-precision X-ray measurement. Hence, lesion can be identified by a spe-
cialist based on CT images’ density. Different from common images, CT images
have more details and self-similar texture. So far, machine learning based auto-
matic diagnosis from CT scans cannot make a breakthrough due to the fact
that there is lack of large-scale annotated lesion database. Recently, NIHCC
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released a large-scale medicine database called DeepLesion [1] on July 20, 2018.
The DeepLesion dataset contains 32,735 lesions on 32,120 axial slices, which are
annotated from 10,594 CT studies of 4,427 unique patients. Different from exist-
ing datasets that typically focus on one type of lesion, DeepLesion contains a
variety of lesions including those in Abdomen, Liver, Mediastinum, etc. Basi-
cally, DeepLesion provides a good chance to handle the task of general lesion
extraction, since mainstream object detection algorithms are mainly depended
on large scale annotated data.

In the past five years, algorithms of object detection can be divided into
two classes. The first one is based on two-stages scheme, which is based on
proposal driven mechanism. The second scheme employs an end-to-end CNN [2]
framework to regress the coordinates and the confidences of each target.

In the development of the two-stages network structures, R-CNN [3] (Region
CNN) was the first use of deep learning for object detection. The author of
RCNN has won awards in PASCAL VOC [4] at that time. R-CNN adopted
selective search [5] to generate possible ROIs (Regions of Interest), then the pro-
posals are classified by standard convolutional neural networks. Fast R-CNN [6]
is an improved version of R-CNN that adopted ROI Pooling (Region of Interest
Pooling) to share parameters. Faster R-CNN [7] integrates object proposal gen-
eration with classifier into a single convolution network, which is faster than Fast
R-CNN since Region Proposal Network (RPN) shares full-image convolutional
features. Mainstream two-stage algorithms including R-CNN, SPP-Net [8], Fast
R-CNN, Faster R-CNN, R-FCN [9], etc.

OverFeat [10] is a first one-stage object detector based on CNNs. Recently,
YOLO [13–15], SSD [11], DSSD [16] and RetinaNet [12] have innovative behavior
in one-stage methods. SSD adopted multi-scale feature maps for object detec-
tion, 3 × 3 convolution kernels are used for fewer parameters. Besides this,
anchor boxes are used for easier training, which are popular used in two-stages
method. Since the featues SSD extracted are not as great as two-stages’ features,
DSSD adopted better backbone and deconvolution layers for feature extraction,
therefore more expressive features are obtained. In addition, since imbalanced
proportion of positive and negative samples have serious impacts on network
training, a novel loss and well-designed network are used by RetinaNet and
which achieves promising results.

Although deep learning achieves enduring greatness on the field of object
detection. Most object detectors are designed for 2D images. Different from
traditional 2D images, lesions in CT images have self-similar texture, which
means non-lesions and true lesions areas may have similar appearances. Under
such circumstances, using 3D context information to improve the performance
of lesion detection becomes the research hotspot. To this end, Dou et al. [17]
attempted to predict microbleeds in brain MRI by using a modified 3D CNN.
Hwang and Kim [18] adopted weakly-supervised deep learning to detect nodules
in chest radiographs and lesions in mammography. Besides, Teramoto et al. [19]
proposed a novel CNNs for handling multi-model fusion task.
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Recently, the DeepLesion team proposed a 3D Context Enhanced Region-
based Convolutional Neural Network [20] (3DCE) for extracting lesion areas
from CT scans. It is worth noting that this 3DCE adopts 3D context fusion
strategy in the pipeline. The neighbor slices of target image are used to be the
input to CNNs. Then the Region Proposal Network (RPN) of 3DCE generates
a sparse set of candidate lesions. Finally, the feature maps of each candidate
are used to lesion type classification. Although 3DCE CNN is a cost-efficient
solution, the algorithm suffers from too much false positives. Since the proposed
method is motivated by 3DCE, their results on Deeplesion are regarded as the
baseline.

In this paper, we propose a novel method called Multi-scale Convolutional
Neural Network based on 3D Context Fusion for lesion detection (M3DCF).
First, we adopt one-stage framework rather than region proposal network. The
purpose is to speed up the algorithm. Second, we designed multi-scale prediction
scheme to fuse 3D context information. Third, our method performs bounding
box regression directly from the last layer of our neural network. The experimen-
tal results show that the proposed method achieves state-of-the-art accuracy with
faster speed than the mainstream algorithms such as RetinaNet, Faster R-CNN
and 3DCE.

2 The Proposed Method

2.1 3D Context Features Fusion Network

Figure 1 describes the pipeline of the proposed method. First, we used three
neighboring axial slices to compose a three-channel image. Second, 3*M
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Fig. 1. Structure of the neural network we proposed
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sequential slices have been divided into M images as the input of M3DCF. Note
that the middlemost slice is the target slice with annotation. The main advan-
tage of our fusion strategy is that it makes full use of shape information through
3D context, thus can enhance the discrimination ability of features.

Third, each image is fed into a respective convolutional neural network for
performing feature extraction. M3DCF uses the Darknet-53 as its backbone net-
work, since Darknet-53 is an efficient architecture that suitable for one stage
object detection. In particular, Batch Normalization [21] (BN) is used in the
backbone with each convolution layer. Moreover, we adopt the Rectified Linear
Unit [22] (Relu) as our activation function after BN. The Convolution + Batch
Norm + LeakyRelu (CBL) is a fundamental module in the pipeline of our frame-
work. Additionally, residual modules [23] are proposed to improve the training
of a deeper neural network. To ensure efficient training, we adopt residual mod-
ules of layer 1, 2 and 8. As shown in Fig. 1, we concatenate feature maps which
are generated after several residual modules to construct a 3D context features.
The concatenation of extracted features is a key component of M3DCF, which
ensure more expressive features can be obtained. Different from simple addition,
the concatenation in our method will expand the dimension of feature.

Most worthy of mention is that we adopt a multi-scale prediction strategy.
The design of multi-scale anchors is an essential component for sharing features.
Besides, the resolution of feature maps can be easily adjusted by changing the
stride of convolution layer. In this way, we can transform the dimensions of
tensor without any pooling layer and fully connected layer. As shown in Fig. 1,
the input images are reduced to 1/32 of its original size in the first branch. For
example, using stride as (2, 2) can halve the width and the height of the input
size, then an input image with the size of 608 × 608 will be resized into 19×19.

Moreover, with the goal of multi-scale prediction, we need to combine low-
level and high-level features. As shown in Fig. 1, feature map from former layers
will be merged with upsampled features from latter layers. After that, convo-
lutional layers are used to process combined feature maps. It is worth noting
that our method predicts 3 boxes at different scales. The output tensor encod-
ing the coordinates of a bounding box, the confidence of an object, and the class
predictions. Since the only category is ‘lesion’ in our task, the dimension of the
output tensor is N × N × [3 × (4 + 1 + 1)]. Finally, we perform non-maximum
suppression (NMS) on the detection confidence maps to obtain detection results.

2.2 Loss Function

Loss function has the important guiding significance of neural network during
the training process. The neural network benefits a lot from a well-designed loss
function and achieves competitive performance. There are many reliable loss
functions and most of them have widespread adoption. Traditional loss function
such as Mean Square Error [24] (MSE), Cross-Entropy [25] (CE), Root means
squared error [26] (RMSE) and Sum Square Error [27] (SSE) are successfully
used in different situations. Therefore, using a well-designed loss function for the
practical problem may produce better results. As for object detection, there are
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4 attributions need to be considered, such as location, size, class, and confidence.
It’s worth noting that there is only one category in the DeepLesion database and
thus we haven’t taken the category error into consideration.

2.2.1 Bounding Box Location Loss
First, we use binary cross-entropy loss for the location predictions. Thus, this
formulation will be helpful when we move to more complex domains like the
area of Pelvis. Since lesion detection has distinct difference of probability dis-
tribution, cross-entropy loss function is more suitable when there is large error
between the predicted bounding boxes and the ground truths. Cross-entropy loss
function makes the weights update faster, which accelerates the training process
of CNNs. The location loss is defined as the following equation.

Losslocation =
L∑

l=1

αl

S2
l∑

i=0

B∑

j=0

τobj
ij CrossEntropy[(xi, yi), (x̂i, ŷi)] (1)

where l = 1, 2..., L denotes the number of different resolutions of the output
layer. x and y represent the upper-left coordinates of predicted bounding boxes,
respectively. x̂ and ŷ stand for the ground truths. S2

l denotes the number of cells
in each resolution, B indicates the number of boxes predicted in each cell. αl

is a weighting factor of the lth resolution loss term. Additionally, τobj
ij stand for

whether the Intersection over Union (IoU) of jth window predicted by the ith

cell is higher than a specific threshold, which value is set to be 0 or 1. Generally,
the IoU threshold is set to be 0.5.

2.2.2 Bounding Box Size Loss
As sum of squared error loss has been widely used in the object detection domain.
We adopt sum of squared error loss as our bounding box size loss, and the
formulation of bounding box size loss is shown as follow.

Losssize =
L∑

l=1

αl

S2
l∑

i=0

B∑

j=0

τobj
ij · [(

√
wi −

√
ŵi)2 + (

√
hi −

√
ĥi)2] (2)

where w and h denote the size of predicted bounding boxes, respectively. ŵ and
ĥ respectively stand for the ground truths. The other symbols are defined in
Sect. 2.2.1.

2.2.3 Confidence Loss
The last component represents whether a predicted bounding box contains a
lesion or not. Since confidence describes the terms of probability distribution,
we adopt the cross entropy to construct the confidence loss. Since the values of
confidence ranges from 0 to 1, there is not weighting factor in the confidence loss
for different resolutions. Hence, if regressed bounding box contains a lesion, the
confidence loss is given as the following equation.
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Lossobject =
L∑

l=1

S2
l∑

i=0

B∑

j=0

τobj
ij · CrossEntropy(Ci, Ĉi) (3)

The definitions of L, S2
l , B, τobj

ij are given in Sect. 2.2.1. As shown in Eq. 3,
the loss combines the confidence errors in all proposal bounding boxes from
different scales. On the contrary, if a regressed bounding box does not contain a
lesion, the confidence loss is defined as Eq. 4.

Lossnoobj =
L∑

l=1

S2
l∑

i=0

B∑

j=0

τnoobj
ij · CrossEntropy(Ci, Ĉi) (4)

where τnoobj
ij denotes whether the jth bounding box that predicted by ith cell

contains a lesion or not. If the intersection over union (IoU) of prediction and
the ground truth is below a well-setting threshold, τnoobj

ij is set to be 0. As is
mentioned in Sect. 2.2.1, we set IoU = 0.5 in the confidence loss function.

2.2.4 Overall Loss Function
In summary, the loss function of M3DCF is a combination of the mentioned
components, and which is defined as the following equation.

Loss = λcoordLlocation + λcoordLsize + Lobject + λnoobjLnoobj (5)

where λcoord and λnoobj are respectively the weighting factors, which are designed
for addressing imbalance of coordinate and confidence loss. For the reason that
the ranges of location, size and confidence are different, the values of λcoord and
λnoobj should depend on the ratio of their range. Generally, YOLO v3 recom-
mends that the weights of location and the size can be the same, where the
values should relate to the size of input object. Based on this scheme, we anal-
ysis the resolution of lesions in DeepLesion database. It’s worth noting that the
loss ranges of location, size and confidence will achieve stabilization during the
training process when λcoord = 0.5 and λnoobj = 0.5.

3 Experiments

3.1 Experiment Setup

The experiments are conducted on DeepLesion dataset to evaluate the perfor-
mance of the proposed algorithm. Specially, the training and the testing pro-
cesses of all methods are performed on NVIDIA 1080Ti GPU. The DeepLesion
is divided into training (70%, 22,901 lesions), validation (15%, 4887 lesions),
and testing (15%, 4912 lesions) sets. There are several categories of DeepLesion,
including Bone, Mediastinum, Abdomen, Liver, Softtissue, Lung, Kidney,
and Pelvis. With the goal of encoding 3D information, we used three axial
slices to compose three-channel images, and then each image is used to be the
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input to CNN. Note that only the target CT slice that contains the ground truth
bounding box. As for state-of-the-arts, we chose 3DCE, Faster R-CNN and Reti-
naNet as the baselines. As for Faster R-CNN, we use VGG-16 [28] pretrained on
ImageNet as the backbone. The learning rate is set to be 0.001, and the batch is
set to be 1 with the momentum is 0.9. RetinaNet is trained with Resnet-50 [23]
where the input image size is 600 × 1000 × 3. The initial learning rate of Reti-
naNet is set to be 0.00001, where the batch and the momentum is respectively
as 1 and 0.9. As for 3DCE, we used VGG-16 as its pretrained backbone. The
input image is with sized of 512 × 512 × 3 (or 512 × 512 × 9), the batch and
the gradient descent momentum is set to be 1 and 0.9, respectively.

3.2 Results and Discussions

3.2.1 Overall Evaluation
Most existing works use sensitivity as their evaluative criteria, since the sensi-
tivity measures the proportion of actual positives that are correctly identified
as such (e.g., the percentage of lesions which are correctly identified as having
the condition). The 3DCE adopts “sensitivity at 4 false positives per image” as
their assessment criteria. In 3DCE, they drew the sensitivity curve with aver-
age false positives per image, then the sensitivity rise as more false predictions
allowed. In order to obtain more general evaluation, we considered this general
object detection evaluation metric, namely mean average precision, to measure
the performance of each algorithm. Specifically, we draw precision-recall curve
to visualize the results of all methods.

Fig. 2. Precision-recall curve and mAPs of different algorithms.

Figure 2 shows the precision-recall curve and the Mean Average Precision of
all methods, respectively. It is obvious that the proposed algorithm significantly
outperforms the other methods. Noteworthy that our method increases at least
0.13 mAP than state-of-the-art methods, such as 3DCE 9 slices. The results of
3DCE 9 slices indicates 3D context feature fusion drastically improve the dis-
criminant ability of lesion features that extracted from different scales. Moreover,
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one can see that the accuracy of all algorithms dropped significantly when recall
reaches a high level such as recall > 0.8. This phenomenon means that there will
be a large proportion of false positives with high confidence. It is worth noting
that our method has significant produces a better result while M3DCF maintains
the precision with 0.4. M3DCF obviously achieves state-of-the-art accuracy with
faster than the other existing lesion detectors.

Table 1. The mAP and AP of the experimented algorithms.

Method mAP AP

Bone Abdomen Mediastinum Liver Lung Kidney Softtissue Pelvis

RetinaNet 0.510 0.510 0.418 0.543 0.515 0.603 0.415 0.440 0.407

Faster R-CNN 0.484 0.530 0.369 0.495 0.541 0.574 0.411 0.422 0.362

3DCE 9slices 0.544 0.475 0.451 0.560 0.553 0.648 0.468 0.426 0.451

3DCE 3slices 0.506 0.423 0.408 0.507 0.537 0.617 0.415 0.413 404

3DCFF 0.678 0.671 0.629 0.761 0.722 0.689 0.591 0.524 0.681

As shown in Table 1, M3DCF has higher mAP and APs in all categories,
which indicates that the feature fusion scheme M3DCF has significant benefits
over the other lesion detection algorithms. Actually, M3DCF achieves an approx-
imately 0.13 higher mAP than the other methods. Noteworthy that we achieve at
least 0.2 mAP higher than the other lesion detectors in the categories of Pelvis
and Mediastinum. Furthermore, our method also produces better qualitative
results in Bone, Abdomen, Liver, Kidney, etc. General speaking, 3D feature
fusion schemes are always better than detectors that only depend on one target
image as the input. The exceptional thing is that RetinaNet and Faster R-CNN
obtain better AP in category of Bone than 3DCE 9 slices.

3.2.2 Evaluation of Each Part
We plot the precision-recall curves of all algorithms shown in Fig. 3a, which was
experimented in the area of Mediastinum. We can empirically observe that the
average precision of most algorithms is above 0.5 while our method achieves an
excellent result for AP = 0.761. Specially, the result of our method is close to the
standard of practical application and which is 0.20 higher than 3DCE 9 slices. In
addition, when the recall reaches 0.8, our method maintains the precision above
0.6 while the other methods drop rapidly. Figure 4 shows the detection results
of experiments. It’s shown that the texture of lesion is similar with surrounding
areas and the lesion entirely blend with adjacent tissues. The 3DCE and Faster
R-CNN which is based on Region Proposal Network generate a lot of candidate
boxes, however, it’s an extremely challenging task to recognize lesions under
such conditions. Therefore, 3DCE and Faster R-CNN generate many useless
false positives. Also, RetinaNet cannot handle this problem. On the contrary, the
method we proposed successfully extract the lesion without any false positives.
Meanwhile, we can infer that the fusion and multi-scale prediction strategy we
designed can regress lesions precisely.
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(a) (b)

Fig. 3. Precision-recall curve of Mediastinum (a) and Pelvis (b)

(a) (b) (c)

(d) (e) (f)

Fig. 4. The detection results on the position of Mediastinum (No. 000238 10 01 130),
with (a) Ground truth; (b) 3DCE 3slices; (c) 3DCE 9slices; (d) Faster R-CNN; (e)
RetinaNet; (f) M3DCF.

Figure 5 shows a typical slice of the area of Pelvis, the lesion located on the
top left corner. It’s an extremely challenging task to extract lesion since sur-
rounding areas environmentally similar to the target area. Under such circum-
stances, current algorithms have poor performance on detection. It’s worth not-
ing that the average precision of 3DCE 9 slices is below 0.46 while Faster RCNN
at 0.362 AP. However, our method achieves AP = 0.681 and which exceeds
0.2 accuracy. Besides, M3DCF has a competitive balance in the precision-recall
trade off since the other algorithms generate a large proportion of false positives
in a high recall. Obviously the strategy adopted is surprisingly effective.

3.2.3 Typical Fail Condition
We show representative failure cases in Fig. 6. CT slices’ low-resolution, similar
texture with surrounding, making the association of tissues complex. The results
in Fig. 6 are difficult to regress precisely for M3DCF. As we can observe, the lesion
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(a) (b) (c)

(d) (e) (f)

Fig. 5. The detection results on the position of Pelvis (No. 000268 03 01 127), with (a)
Ground truth; (b) 3DCE 3slices; (c) 3DCE 9slices; (d) Faster R-CNN; (e) RetinaNet;
(f) M3DCF.

of Fig. 6a and c located in the marginal region of the Lung, and there is plenty of
similar tissues which make the performance worse. Since the lesion in Fig. 6b sur-
rounded by the tissues and affected by light intensity, the method we proposed
cannot extract the lesion well and makes a poor performance. In such cases, the
algorithm is required to have strong edge sensitivity. Figure 6d and e are the slices
of Pelvis, compared with other regions, more complex information like composi-
tion and texture bring more interference. Figure 6f shows the Softtissue area, it’s
difficult to recognize the lesion since the target is wrapped by tissues. In general, it
is intractable for our method to detect the lesion especially for complicated shape,
low-resolution, wrapped by surrounding tissues, etc.

(a) (b) (c)

(d) (e) (f)

Fig. 6. The detection results on the position of Pelvis (No. 000268 03 01 127), with (a)
Ground truth; (b) 3DCE 3slices; (c) 3DCE 9slices; (d) Faster R-CNN; (e) RetinaNet;
(f) M3DCF.
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Table 2. The average runtime of experimented algorithms.

Method Average runtime (ms)

Faster R-CNN 159

RetinaNet 154

3DCE - 3 slices 79

3DCE - 9 slices 148

M3DCF 49

4 Runtime Evaluation

Runtime results for lesion detection are shown in Table 2. And runtimes are
measured on a NVIDIA 1080 Ti. As shown in the experiment, since mainstream
algorithms such as Faster RCNN and 3DCE adopt Region Proposal Network
(RPN) for proposal generation proceeding. In addition, the backbone of Faster
R-CNN for feature extraction is a relatively complicated network and which cost
a lot of time. As shown in Table 2, the average processing time of Faster R-CNN
is 159 ms. It is worth noting that the processing time of RetinaNet is 154 ms
closed to Faster R-CNN. 3DCE 3 slices takes the half time of 3DCE 9 slices,
which obviously proved that method based on 3DCE has not made a tradeoff of
speed and accuracy. Most worthy of mention is that the extra time cost can be
reduced by using Darknet-53 for its significant time efficiency. At 608 × 608 our
method runs 49 ms at 67.8 mAP with three times faster than 3DCE 9 slices.

5 Conclusion

In this paper, we propose a new method called M3DCF that acts as a more
effective alternative to previous approaches for lesion detection. First, we adopt
a one-stage detector to enable the network is faster and simpler. And which
gives rise to effective results. Second, for characteristics of computed tomography
(CT) scans, we propose a novel feature fusion strategy based on 3D context to
sufficiently fuse the extracted feature of multiple neighboring slices. Third, based
on our 3D context fusion strategy, the multi-scale strategy allows us to get more
meaningful semantic information, and it obviously improves the performance
on the test set of DeepLesion database. The experimental results conducted on
DeepLesion dataset indicates that the proposed method surpass the accuracy of
the mainstream algorithms such as Faster R-CNN, RetinaNet, and 3DCE, while
still being faster.
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