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Abstract. Skeleton-based action recognition plays an important role in
the field of human action recognition. Recently, with the introduction of
Graph Convolution Network (GCN), GCN has achieved superior perfor-
mance in the field of skeleton-based human action recognition. In this
work, we propose a high-order GCN model. In this model, we introduce
the expression of high-order skeletons and establish a new high-order
adjacency matrix. Through this matrix, the relationship between skele-
ton nodes and non-neighbor nodes has being established. In addition,
based on the degree of node association of different hierarchical neigh-
borhoods, the value of the matrix expresses the importance of different
hierarchies. As a result, the proposed model extracts the co-occurrence
feature of the skeleton which is superior to the local features and improves
the recognition rate. We evaluate our model on two human skeleton
action datasets, Kinetics-skeleton and NTU RGB+D, and then further
explore the influence of skeleton nodes based on different hierarchies on
the recognition results.

Keywords: Human action recognition · High-order skeleton
information · Graph convolution network

1 Introduction

Human action recognition is an important and challenging research field of com-
puter vision, and has received extensive attention in recent years. At present, the
RGB image sequence is the main research field of human action recognition [1–8].
However, it is greatly affected by the environment, such as light and background.
In addition, human action recognition based on RGB image sequences is difficult
to distinguish subtle motion differences between similar actions. Currently, with
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the continuous development of software and hardware equipment, advanced algo-
rithms for extracting skeleton sequences [9] and human action datasets based on
skeleton [10] have been proposed. Based on this, skeleton-based human action
recognition algorithm is proposed [12–14]. These Convolutional Neural Network
(CNN) based models tend to be complex and difficult to obtain skeleton spatial
features. For example, the TCN model [14] proposed by Kim et al. only consid-
ers the temporal information of the skeleton and ignores the spatial relationship
between the skeleton nodes. In order to solve these problems, Yan et al. [18]
proposed a new model, which breaks through the traditional CNN method and
uses GCN to extract temporal and spatial information of the skeleton.

CNN has been able to efficiently process Euclidean data. It refers to grids,
sequences, etc. For instance, images can be viewed as 2D grids data. There are
many non-Euclidean data in reality, however, such as the human skeleton. Kipf
et al. [23] formally proposed GCN to deal with non-Euclidean data, and also
achieved good results in the field of human action recognition [18]. Compared
with the traditional CNN method, the GCN is simpler and more precise.

At present, the GCN-based model extracts feature information through con-
nections between nodes. This makes the feature representation of human skele-
ton simpler and more comprehensive than CNN. However, there is a correlation
between multiple joints of the human skeleton when the person is moving. For
example, in Fig. 1, when the person is drinking water, the wrist, elbow, shoulder,
neck and head will have relative movement, even the interaction of the left and
right arms is required to fully realize the behavior of drinking water. Therefore,
when using GCN to implement skeleton-based human action recognition, only
the skeleton nodes and their adjacent nodes are considered, that is limited.

Fig. 1. People need to interact with multiple joints when drinking water, such as wrists,
elbows, shoulders, neck and head.

In this paper, we propose a graph convolutional network model based on
higher-order skeletons. Based on the current best network model ST-GCN [18],
we consider the spatial-temporal information of the skeleton during motion and
the kinematics theorem of the body. Furthermore, the expressions of higher-
order skeleton nodes and higher-order adjacency matrices are introduced. In
addition, we establish connections between non-neighboring nodes and express
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the importance of joint points of different hierarchies by parameters, which is
determined by the degree of correlation between the nodes. The main details
and superiors of this work are listed as follows:

(1) Based on the ST-GCN network, we propose a high-order graph convolu-
tion network model based on skeleton. Through this model, the relationship
between the high-order skeletons is expressed, and the co-occurrence char-
acteristics of the skeleton are extracted. We verified the effectiveness of the
method through experiments.

(2) We propose a new high-order neighborhood representation that achieves
the importance of different neighborhood nodes by defining parameters and
learnable weights. It reduces the noise and experimentally verifies that the
method can improve the result.

2 Related Work

The current mainstream models and methods for human action recognition are
based on RGB video, such as C3D [4,5], Two-stream [1–3] and Long Short Term
Memory (LSTM) [6,7], etc. However, with the introduction of the human skele-
ton extraction method [9] and the establishment of related datasets [10], the
skeleton-based human action recognition has gradually developed. Early tradi-
tional methods mainly used the sliding window [15] or relative position between
joints [16] to obtain characteristic information of skeleton. With the populariza-
tion of deep learning in the field of computer vision, deep networks based on
skeleton-based human action recognition is proposed. It is mainly divided into
two methods: One is to convert the node coordinate information of the skeleton
[11] or the distance between the joint points and the angle between the skeletons
into a picture [12], and then extract features through the CNN. Li et al. [17]
proposed a new end-to-end hierarchical feature learning network, which realizes
the aggregation from the point level to the global co-occurrence feature. On the
other hand, Song et al. [19] introduced the spatial-temporal attention mecha-
nism based on the RNN neural network of LSTM and achieved good results.
Liu et al. [20] optimized the spatial-temporal attention model and improved the
performance of the network. Wang et al. [21] used two-stream RNN to realize
the extraction of spatial-temporal features. Zhang et al. [22] proposed a new
idea, which is a new viewpoint adaptive scheme. The coordinates of the skele-
ton are rotated to the appropriate angle of view, and the action recognition is
performed through the RNN. Its has been greatly improved compared to the
previous method.

With the emergence of many datasets in the form of graphs or networks,
neural networks based on graph structure are an emerging topic in current deep
learning research. In the past few years, many researchers have paid attention to
the problem of generalizing neural networks to handle arbitrary graph structures.
For example: Bruna et al. [24] first proposed the application of irregular grids on
CNN, and proposed two methods: spatial domain and spectrum domain. For the
spectral domain, Henaff et al. [25] proposed using a smooth kernel to implement
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a local filter. For the spatial domain, Niepert et al. [26] proposed to use the CNN
to efficiently process the graph structure data by labeling the graph nodes and
then convolving the nodes according to the sequence. Thomas et al. [23] proposed
an extensible semi-supervised learning convolutional neural network method to
process graph-based data and formally propose GCN. Meantime, with the intro-
duction of GCN, it provides new research directions for data application based
on graph structure [27,28], such as skeleton-based human action recognition.
Although CNN and LSTM perform well in skeleton-based human action recog-
nition, they have problems such as complex models and difficulty in training.
Therefore, Yan et al. [18] proposed using GCN to realize skeleton-based human
action recognition (ST-GCN), which shows better performance than the most
advanced model.

3 Method

Actions of the human body is a range of local motion centered on certain joint
points. Therefore, an important step of human action recognition based on high-
order skeleton is to divide the skeleton based on kinematics. In addition, since
the establishment of the network framework is based on the graph convolution,
it is necessary to transform the skeleton into the expression form of the graph
structure, and then realize the representation, division and graph convolution
method of the high-order skeleton.

3.1 Skeleton Graph Construction

(a) Spatial diagram (b) Spatial-Temporal diagram

Fig. 2. Skeleton spatial-temporal structure diagram. (a): The spatial relationship of
the skeleton is represented by the connection between joint points. (b): The temporal
relationship of the skeleton is represented by connecting the same joint points between
consecutive frames.

The human skeleton is a typical graph structure. When describing the behavior
of the human body, we need to obtain the spatial and temporal information
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of the skeleton. Therefore, the joint point set of the skeleton can be expressed
as V = {vtn|t = 1, 2, . . . , T, n = 1, 2, . . . , N}, where T represents the number of
video frames and N represents the number of joint nodes. First, one connects the
joint points in the same frame, then each edge represents the spatial relationship
of the joint points, as shown in Fig. 2(a). We use a subset to represent the
spatial relationship of the edges, denoted as Es = {vtivtj |(i, j) ∈ S}, where
S represents the natural connection of the human joint. Temporal relationship
is established by connecting the same joint point between consecutive frames.
The set of temporal relational edges can be expressed as Et = {vtiv(t+1)i|t =
1, 2, . . . , T − 1, i = 1, 2, . . . , N}. The set E of skeleton edges can be expressed
as: E = Es

⋃
Et. Skeleton spatial-temporal relationship diagram is shown in

Fig. 2(b).
The spatial relationship of the skeleton can be converted into an adjacency

matrix. In t frame, if there is a connection between two nodes: vtivtj ∈ Es. It
can be expressed as Aij = 1 in the adjacency matrix A. In addition, taking into
account the impact of the joint itself, we set Aii = 1. If there is no association
between nodes, i.e. vtivtj /∈ Es and i �= j, then Aij = 0. The temporal rela-
tionship of the skeleton, we recall, is constructed by connecting the same nodes
of consecutive frames. Therefore, based on the spatial relationship, it can be
easily extended to the spatial-temporal relationship. Suppose we operate on the
skeleton in the time range θ, the spatial-temporal relationship ST (vti) can be
expressed as:

ST (vti) = {vqi|d(vti, vtj) < n, |t − q| ≤ �θ/2�} (1)

3.2 Division Strategy

Skeleton High-Order Adjacency Matrix. According to the graph structure
of the skeleton, we can establish the 1-order adjacency matrix of the skeleton.
However, based on the kinematics of the human body, the human body needs
multiple coordination of the body to complete the exercise. In this regard, we
can obtain the co-occurrence characteristics of the skeleton joint by establishing
a high-order adjacency matrix. To distinguish the joint points of different hierar-
chies, we use the shortest path length of the two joints, d(vi, vj), to express the
relationship between the joint points. Then the nodes in the n-order that affect
each other need to satisfy: d(vi, vj) ≤ n, where if i = j, set d(vi, vj) = 1. It is
known that the adjacency matrix A represents the spatial relationship informa-
tion between the node and the neighbor nodes. The n-order adjacency matrix
An can be expressed by a 1-order adjacency that extends the expression of the
spatial relationship to non-neighbor nodes:

An = An (2)

Where A is the 1-order adjacency matrix, n means nth order. The n-order adja-
cency matrix established by Eq. (2) implements the adjacency matrix parameter
to represent the shortest distance between the joint points of the skeleton. The
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equation is as follows:

Aij
n =

{
0 d (vi, vj) > n
d (vi, vj) d (vi, vj) ≤ n

(3)

High-Order Skeleton Division. Human action is based on the local motion
of some joint nodes within a range, so it is necessary to divide the skeleton.
Referring to the division method in [18], the division of the skeleton needs to
consider the kinematics of the human skeleton. For simplicity, we only consider
skeleton partitioning within a single frame. The division of the skeleton is mainly
divided into two parts, as shown in Fig. 3. Firstly, the multi-order neighborhood
of skeleton node is divided. We set Nn(v) is the nth-order neighborhood of node
v. Therefore, assuming that the 3-order node neighborhood of the skeleton is
divided, the n-order neighbor nodes of node v can be expressed as:

N(v) = N1(v) + N2(v) + N3(v) (4)

where N1(v) includes node v itself.

(a) Dividing nodes by layer (b) Dividing nodes by kinematics

Fig. 3. Division strategy. Taking the division of the 3-order skeleton as an example, the
skeleton is divided according to the division strategy. (a): The red dashed line indicates
the connection of the 2nd-order neighborhood joint point, and the green dashed line
indicates the connection of the 3rd-order neighborhood joint point. (b): The red node
represents the center point. We further divide the nodes of different hierarchies, and
different colors represent different divided regions.

We divided the skeleton according to the kinematics theory of the human
body. Then, considering that all movements of the human body belong to cen-
tripetal or eccentric motion, we select the central node c of the skeleton as the
center of the motion range. The nth-order neighborhoods of the skeleton are
respectively divided, and a label map r is set for each partition. We divide the



20 Z. Bai et al.

skeleton according to the following method: (i). According to the law of motion,
the first division should be the node itself. The corresponding mapping is r = 0.
(ii). For a neighboring node in a hierarchy, if the distance from the node to
the center point is closer or equal to the distance from the feature node to the
center point, then the neighboring node belongs to the second partition. The
corresponding mapping is r = 1. (iii). The remaining nodes, that is, the distance
from the node to the central point is farther than the distance from the feature
node to the central point, belonging to the third partition. The corresponding
mapping is r = 2.

According to the partitioning strategy and label mapping, correspondingly,
the adjacency matrix An can be divided. Assume that ANi

is used to rep-
resent the adjacency matrix of the i-th neighbor node. Then, ANi

is further
divided according to the partitioning strategy, and finally the high-order adja-
cency matrix can be expressed as:

An =
n∑

i=1

2∑

r=0

Ar
Ni

(5)

where Ar
Ni

represents the matrix after ANi
is partitioned.

In addition, considering the different degrees of association between different
hierarchies, we define a parameter Φ represent the importance of different hier-
archies, the setting of which is related to the hierarchy of the node. In summary,
the expression of the higher-order adjacency matrix is as follows:

An = Φ(Ni)
n∑

i=1

2∑

r=1

Ar
Ni

(6)

3.3 Spatial-Temporal Graph Convolution

We learn the spatial feature information of the skeleton on a single frame. The
convolution operation acts on the node. If the n-order neighbor of vti is sampled,
the sampling function is: p(vti, vtj) = {vtj |d(vti, vtj ≤ n)}.

Compared with the sampling function, the definition of the weight function
has a relatively large change. The node spatial structure of the graph structure
is not fixed, and the number of neighbor is different. The weight of the graph
structure can be expressed in another form, that is, the adjacency matrix of the
graph. The adjacency matrix is another expression of the spatial relationship
of the graph structure. The parameter of the adjacency matrix is the weight
of the graph convolution. Therefore, the weight function W can be written as:
W (vti, vtj) = An(vti, vtj). Spatial graph convolution can be expressed as:

Fsout =
∑

vtj∈p(vti,vtj)

fin(p(vti, vtj)) · An(vti, vtj) (7)

The convolution operation in the temporal direction is relatively simple. After
determining the node information in the spatial direction, the convolution in the
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time direction needs to implement the convolution of the same node in a certain
period of time. We set the input of the convolution network to X(vqi, t). It rep-
resents vqi node within the t frame range. Therefore, the convolution operation
in the time direction is as follows:

Ftout(vqi) =
θ/2∑

|t−q|=0

X(vqi, t) · w(t, 1) (8)

In addition, we consider that even the nodes in the same neighborhood have
different effects on motion. Therefore, when extracting the features in the spatial
direction, we set a parameter matrix M that can be learned. Set all the param-
eters in M to 1, multiply with An by element, and learn the parameters of each
node through deep learning network. Therefore, higher-order graph convolution
operation can be expressed by:

fout =
∑

n

Λ−1/2
n M ⊗ AnΛ−1/2

n fin · Wt (9)

where Λij
n =

∑
k Aik

n + α, we set α = 0.001 to avoid empty rows in An. Wt is
a weight function in the time direction. fin is the characteristic function of the
input skeleton. ⊗ represents multiplication of the M matrix and the An matrix
by elemental correspondence.

Fig. 4. High-order graph convolutional network model.

Before performing feature learning, the data needs to be pre-processed to fit
the graph convolution network. The human skeleton data of a video is converted
into a 3-dimensional tensor (C, T, V ). C represents the number of channels, which
corresponds to the 3-dimensional coordinates of the skeleton. T represents the
number of video frames, and V represents the number of nodes. The extraction
of spatial-temporal information is realized by convolution operations on spatial
dimensions and temporal dimensions. The network frame of the spatial-temporal
graph convolution is shown in Fig. 4.
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4 Experiment

We verified that our approach can achieve better accuracy. We separately eval-
uated the human motion datasets based on 2D and 3D skeletons, and discussed
the experimental results based on different high-order skeleton data. In order to
make the experimental result data more objective, we set the same experimental
environment for the experiments under each dataset.

4.1 2D Skeleton Data

The 2D skeleton data we used is Kinetics-skeleton, which is extracted from the
Kinetics human action video dataset [29] via openpose [9]. Then use openpose
to identify the 18 joint points of the skeleton, and extract the skeleton of the
human behavior in each frame. The storage form of the skeleton node is (X, Y,
C), and (X, Y) represents the 2D coordinates of the skeleton node, C represents
the confidence score of the skeleton node. According to the recommendations of
the dataset authors, we use Top − 1 and Top − 5 to evaluate their performance.
The probability of correct classification. The performance of this dataset on the
graph convolution network of the nth-order skeleton is shown in the following
table. In this experiment, we set batchsize = 100, epoch = 60 and experiment
with n = 1, 2, 3, 4 respectively.

Table 1. Action recognition performance for high-order skeleton based models on
the Kinetics database. 2-order ST-GCN* means that parameters Φ that represent the
importance of different orders are not considered

Method Top-1 Top-5

Deep LSTM [10] 16.6 35.3

TCN [14] 20.5 40.4

ST-GCN [18] 31.6 53.7

1-order GCN 31.5 54.2

2-order GCN* 32.7 55.4

2-order GCN 33.3 56.2

3-order GCN 33.8 56.4

4-order GCN 33.7 56.0

Under this dataset, when only 1-order neighbor nodes are considered, our
method is similar to st-gcn and the result is basically the same. If we only
increase the order of the skeleton and regardless of the importance of different
classes (the 2-order GCN* in Table 1), the results show that the accuracy rate
will increase 1%. When we add a parameter that expresses the importance of
the hierarchy, the accuracy increased by a further 0.5%.



High-Order Graph Convolutional Network 23

4.2 3D Skeleton Data

The 3D skeleton dataset used in this study is NTU RGB+D [10], which is the
largest dataset of behavior recognition research based on 3D skeleton data. The
preservation form is the 3D coordinates (X, Y, Z) of the skeleton node, and
the skeleton sequence includes 25 joint points whose center point is the joint
point located at the center point of the human skeleton. This dataset divides
all skeletons into two themes: X-sub and X-view. X-sub implements training
and testing of different skeletons, that is, training with some actors and testing
with other actors; X-view realizes skeleton training and testing from different
perspectives, that is, training with two perspectives and testing with another
perspective. We use Top−1 to evaluate its performance. The performance of the
dataset in the high-order spatial-temporal graph convolution network is shown in
the following table. In this experiment, we set batchsize = 30, epoch = 100 and
experiment with n = 1, 2, 3, 4 respectively. In addition, we changed the center
point of the 3D skeleton to the center of the human body (It is 1-order GCN in
Table 2). The experimental results were improved compared with ST-GCN.

Table 2. Skeleton based action recognition performance on NTU-RGB+D datasets.
2-order ST-GCN* means that parameters Φ that represent the importance of different
orders are not considered

Method X-sub X-view

Deep LSTM [10] 60.5 67.0

TCN [14] 74.2 82.9

C-CNN+MTLN [11] 79.0 84.2

ST-GCN [18] 79.5 86.4

1-order GCN 80.5 88.0

2-order GCN* 80.8 88.7

2-order GCN 81.1 89.3

3-order GCN 80.6 89.2

4.3 Discussion

The two datasets in experiments have very different natures. The 2D skeleton
dataset is extracted by openpose and the 3D skeleton dataset is obtained by
depth sensor. The number of skeleton nodes and the saved form are different,
which makes the performance on the high-order spatial-temporal convolution
network also very different. The experimental results based on 2D data show
that before the 3-order, the accuracy rate is on the rise, and the accuracy is
stable after the 3rd order. However, based on 3D data, it is bounded by 2-order.
We suspect that this is due to the large noise generated by the 3D skeleton
data annotation. Therefore, when the order is gradually increased, the error will



24 Z. Bai et al.

accumulate and accumulate more and more, which may affect the accuracy of
the high-order skeleton data. However, based on the above results, we can still
conclude that for any human skeleton data, when performing human behavioral
motion, the feature information of a certain node should consider all neighbor
information in the 2nd or 3rd order neighborhood.

5 Conclusion

In this work, we propose a high-order spatial-temporal graph convolutional net-
work model, which is mainly to redefine the structure of the high-order skeleton
and to divide the skeleton based on it. The divided skeleton is inputted into the
Spatial-Temporal graph convolution network to realize the action recognition of
the human body. The model shows good performance on different datasets, but
it is difficult to express the skeleton nodes that are far away, which makes the
expression of higher order features limited. In addition, certain behaviors of the
human body are accomplished by the cooperation of various parts of the body.
At this time, there are different degrees of correlation between different parts.
We can learn this correlation through the network to get higher accuracy, which
is reserved for future work.
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