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Abstract. Regular inspection is important for ensuring safe operation
of the power lines. Point cloud segmentation is an efficient way to carry
out these inspections. Most of the existing methods depend on priori
knowledge from a paticular power line corridor, which is not applicable
for other unknown power line corridors. To address this problem, we
propose the first end-to-end deep learning based framework for power
line corridor point cloud segmentation. Specifically, we design an effective
channel presentation for Light Detection and Ranging (LiDAR) point
clouds and adapt a general convolutional neural network as our basic
network. To evaluate the effectiveness and efficiency of our method, we
collect and label a dataset, which covers a 720,000 square meter area of
power line corridors. To verify the generalization ability of our method,
we also test it on KITTI dataset. Experiments shows that our method
not only achieves high accuracy with fast runtime on power line corridor
dataset, but also performs well on KITTI dataset.

Keywords: Power line inspection · Point cloud segmentation ·
Convolutional neural network

1 Introduction

Power line is considered as one of the most significant infrastructures, which
requires regular inspection to ensure the safe operation of a power grid. Thus,
power line components such as power lines and pylons need regular checking to
diagnose faults, for example, mechanical damage. In addition, power lines’ sur-
rounding objects like trees also require regular inspection in case their branches
get close or touch the power line, which will cause disaster. Therefore, it is nec-
essary to develop an automatic method for detecting obstacles along power line
corridors. Point cloud segmentation is an efficient approach to carry out power
line inspection, which has received much attention [2–6,9].
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Developing efficient and robust LiDAR point cloud segmentation for power
line corridor scene remains as a challenging task owing to the variability of power
line corridors. More specifically, power line corridors have complicated terrains
where steep slopes and flat grounds interlace, leading the challenge of recognizing
objects from unseen and diverse geographical environments. In addition, LiDAR
point clouds have variant attribute. Their LiDAR intensity distributions could
change dramatically even though they are collected from the same areas, due to
the difference of airborne laser scanner’s fight height and atmosphere conditions.

Although researchers have explored point cloud segmentation on power line
corridor scene, their works [2–4,6,9] depends on handcrafted features, which
requires much priori knowledge. Therefore, developing a feasible approach that
is able to handle the aforementioned challenges for point cloud segmentation on
power line corridor scene remains to be unsolved. Recently, deep convolutional
neural networks for point cloud segmentation [1,7,15] have been brought into
being, but there is a lack of deep learning method for power line corridor point
cloud segmentation. Due to this fact, we contribute a deep learning approach for
segmenting point cloud on power line corridor scene.

In this paper, we propose an end-to-end pipeline for power line corridor point
cloud segmentation. To be more specific, we design an effective channel presen-
tation for LiDAR point cloud and utilize a current state-of-the-art network [1]
as our basic network, which is further adapted to be suitable for our input and
output channels. To evaluate the effectiveness and efficiency of our approach, we
collect and label a large scale point cloud dataset on power line corridor scene
to do experiments. To verify the generalization ability of our approach, we also
implement it on KITTI dataset [16].

The key contributions of this paper are: (1) It is the first deep learning based
approach for segmenting power line corridor point clouds; (2) We design an
effective channel presentation for LiDAR point cloud, which is not only suitable
for power line corridor scene, but also other scene.

2 Related Work

2.1 Object Segmentation on Power Line Corridor Scene

Methods for recognizing and extracting objects of power line corridor scene
can be divided into two categories: (a) point cloud based methods [2–4]; (b)
image based methods [5,6,9]. Previous methods primarily work on LiDAR point
clouds and comprise multiple stages including calculating hand-crafted features
for points, designing filters based on the features and extracting objects with the
filters. [4] classifies ground and non-ground points by statistically analyzing the
skewness and kurtosis of the LIDAR intensity data and detects power lines by
employing Hough transfer after that. [2] calculates 21 features of points, and use
them to train a decision tree based filter, which is used to segment points. [3]
removes ground by applying elevation-difference and slope criteria and then use
a combination of height and spacial-density filters to extract power lines. For the
methods mentioned above, the selection of handcrafted features highly depends
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on priori knowledge from specific areas, which makes them hard to generalize and
infeasible in practical applications. Recently, many researchers utilize unmanned
aerial vehicle (UAV) images to carry out power line inspection [5,6,9]. [6] seg-
ments power line components with three steps. It first segments images with
fully convolutional neural network, and then implements 3D reconstruction with
the images to get a point cloud, and finally matches points from images to the
point cloud. In this case, compounded errors are caused by multiple steps. [9]
proposed a novel method to sidestep the 3D reconstruction. It first utilize UAV
images and ground sample distance (GSP) to generate Epipolar images and then
uses left and right Epipolar images to calculate the 3D vectors of power lines.
This method extracts power lines in a single step and achieve high accuracy, but
its performance is sensitive to the illumination and resolution of the images.

2.2 3D Point Cloud Semantic Segmentation

Previous methods depends on intrinsic [10,11] and extrinsic [12] hand-crafted
features to address specific semantic segmentation tasks. Invariant descriptors
make them hard to generalize. Later on, deep learning methods occurs and shows
great generalization performance by taking the advantage of massive training
data. Volumetric CNNs [13,14] are the pioneers to implement 3D convolutional
neural network on voxelized point cloud inputs. But their power is limited by
the sparsity of data presentation and huge computation cost. Recently, light con-
volutional neural networks [1,7,15] was developed, which achieve high efficiency
by directly consuming point clouds. But these methods are far from mature and
only work well on specific experimental dataset.

3 Method Description

3.1 Dataset Collection

Power Line Corridor Dataset. To the best of out knowledge, there is no
official or public point cloud dataset on power line corridor scene. In order to
conduct our study, we collect and label a large scale power line corridor dataset.
The original point cloud data is obtained by airborne laser scanners. And we
manually label the point clouds by a software named CloudCompare [19]. Points
of the dataset are classified into nine categories – high-voltage iron pylon, colum-
nar pylon, power line, lightening protection line, insulator, tree, ground, others
and noise. Finally, we get a point cloud dataset with 16 files, which covers a
720,000 m2 area of power line corridors in total, containing eight kinds of dif-
ferent pylons. In this dataset, there are variable terrains where steep slopes and
flat grounds interlace with each other. In addition, the distributions of LiDAR
intensity varies from one file to another, because flight height and atmosphere
conditions could be different during each journey of the airborne laser scanner. In
order to simplify the segmentation task but also take practical applications into
consideration, in experiments, we rearrange our dataset into three categories–
pylon, power line and others. Others category mainly contains trees and a small
part of grounds. One example of the rearranged dataset is shown in Fig. 1.
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Fig. 1. Examples of LiDAR point cloud and segmentation label. LiDAR point cloud
is at the top. The segmentation label is at the bottom. Polygons are denoted in blue,
power lines in yellow and trees in red. (Color figure online)

KITTI Point Cloud Dataset. Initial data is from KITTI [16] Velodyne point
clouds, which is a autonomous driving scene. However KITTI does not provide
the point-wise labels. Due to the fact, we label the data by ourselves with the
method described by [17]. Specifically, using the 3D bounding box labels from
KITTI, all points within a 3D bounding box are considered belonging to an
object. Corresponding label is then assigned to each point. With this method,
we collected 7481 point clouds with point-wise labels.

Fig. 2. Visualization of the original and downsampled point cloud Examples. Original
point cloud example is on the left. Downsampled point cloud example is on the right.
(Color figure online)

3.2 Point Cloud Preprocessing

In order to feed point clouds into the CNN based model, we need to preprocess
the point clouds into a series of groups that meets the need of CNN’s input. In
specific, point clouds are cut into several W ×W m2 square blocks with identical
area. And then, N points are randomly sampled from each block. So points in
each block are of size N ×C, where C represents channels. In this way, points in
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blocks are of the same size, so the CNN based model can directly consume them.
When preprocessing power line corridor point cloud dataset, W = 10, N = 4096
is an appropriate choice. W = 10 is selected because blocks of such size are
able to cover most areas of the components of interest like pylons and trees in
the power line corridor. By statistics, pylons’ widths are in range of 8–11 m
and trees’ are less than 6 m. N = 4096 is selected because downsampling point
clouds to 40.96 points/m2 not only still let point clouds completely describe the
profiles of primary components in the power line corridors, as shown in Fig. 2,
but also simplify computation.

3.3 An Effective Channel Presentation for LiDAR Points

Unlike [1,7,15] which try to explore more complicated and powerful network
architectures, this paper aims to find an ideal channel presentation for LiDAR
point clouds. The channel presentations p0–p4 that we will discuss are defined
as follows:

p0 : Xc, Yc, Z, IN ,Xn, Yn, Zn

p1 : Xc, Yc, Zl, IN ,Xn, Yn, Zn

p2 : Xc, Yc, Zl, IN2,Xn, Yn, Zn

p3 : Xc, Yc, Zl, IN1,Xn, Yn, Zn, IN2

Fc = F − (Fmin of block + block size/2)
FN = F/255.0, FN1 = F/Fmax of block, FN2 = F/Fmax of file

Fn = F/Fmax of file, Fl = F − Fmin of block

where Fmin of block is the minimal value of feature F within a block; Fmax of file

is the maximal value of feature F within the current point cloud file; digit 255.0
is the maximal value of LiDAR intensity; block size is the width of the block.

Under presentation p0 that is directly transformed from PointNet’s, pylon
category cannot be recognized by the model unless weighted-loss is used during
training. Note that only this experiment uses weighted-loss, the rest of exper-
iments in this paper are done without weighted-loss. The result trained with
weighted-loss under p0 is shown in Fig. 3a. As seen from the result, points on
the flat region can be quite precisely recognized, however, points on the top
of the slope are severely misclassified as pylons or power lines. From this phe-
nomenon, it can be inferred that the model tends to classify points relying on
global height information–altitude, causing points with the same altitude to gain
the same classification labels. Hence, the model needs local height information
to make prediction. From intuitional perspective, within a block, pylons should
be higher than the ground or trees, and the power lines should locate in the
upper part of pylons. In presentation p0, both feature ‘Z’ and ‘Zn’ represent
global height information. So we design p1 to replace the third feature ‘Z’ with
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‘Zl = Z−Zmin of block’, which represents information of local height. Now we get
the first three coordinate features for local geometric information, and the last
three coordinate features for global. With the new presentation p1, we obtain
predicted result as shown in Fig. 3b. From the picture we see that pylon category
is recognized and there are no longer a large amount of misclassified points at
the top of the slope, which proves our new presentation more effective.

Fig. 3. Predicted results under different channel presentations. Figure 3a is the result
under presentation p0. Figure 3b is the result under presentation p1. Figure 3c is the
result under presentation p2. (Color figure online)

In addition, we notice that distributions of LiDAR intensity in different
point cloud files of our power line corridor dataset are quite different, as shown
in Fig. 4, and list different point clouds’ maximal value of LiDAR intensity in
Table 1. As mentioned above, presentation p1 normalize intensity with a fixed
value 255.0. That is not optimal, because intensity features are more obvious if
normalized intensity values have relatively bigger contrast among points. So we
design p2 to normalize the intensity feature with the maximal intensity value
of the current point cloud file rather than a fixed value. So the normalized ‘IN ’
is replaced with ‘IN2 = I/Imax of file’. Through this modification, we obtain
further improvement in the predicted result as shown in Fig. 3c. Finally, follow-
ing the concept of local and global features, the existing normalized intensity
feature ‘IN2 = I/Imax of file’ is regarded as a global feature and we design p3
by adding an extra feature ‘IN1 = I/Imax of block’ as a local intensity feature.
With presentation p3, we obtain the best performance among our experiments.
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Fig. 4. Distribution of laser intensity for different point clouds

Table 1. Maximal intensity value of different point clouds

Point cloud index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Maximal intensity 147 100 101 206 100 163 236 166 249 120 101 150 100 112 126 101

3.4 Network Structure

Our deep learning based framework is shown in Fig. 5, which is adapted from
PointNet [1]. It is a simple but effective 3D semantic segmentation network that
directly consumes point clouds.

Fig. 5. Network architecture (Color figure online)

The input of the network is a B×N×C×1 tensor representing points within
a block as described in Sect. 3.2, where B is the batch size; N is the amount
of points sampled from a block; C represents channels, which is mentioned in
Sect. 3.3; and digit 1 is the expended dimension that helps to form the input
shape for a CNN. Conv1∼conv5 layers implement point-wise convolutions, that
is to say each point is convolved independently. These five layers is used to
extract features from each point. Next, a symmetry function, max pooling is
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applied to make the model invariant to input permutation, dealing with the
unordered point clouds. Skip connection is then used to fuse local features from
conv5 and global features from fc2. Fusing lower level and higher level features
can effectively improve smoothness and detail of the segmentation output [8].
Finally, the model gets predicted classification for each point. In the last layer,
P is the number of categories.

4 Experiments

The effectiveness and efficiency of our approach are evaluated on power line
corridor dataset. In addition, the generalization ability of our approach is verified
on KITTI dataset.

4.1 Evaluation Metrics

Our method’s performance is evaluated on class-level. We compare predicted
and ground-truth label values and calculate precision, recall and IoU (intersec-
tion over union) between them respectively. Among the three, IoU is the most
important metric to estimate the performance of segmentation. So we mainly
discuss IoU in this section. The evaluation metrics are defined as follows:

Precisonc =
|Pc ∩ Gc|

|Pc| , recallc =
|Pc ∩ Gc|

|Gc| , IoUc =
|Pc ∩ Gc|
|Pc ∪ Gc| (1)

where Pc and Gc represent the predicted and ground truth point sets belonging
to class c respectively, | ∗ | calculates the amount of points in the point set *.

4.2 Segmentation on Power Line Corridor Dataset

Settings. There are 16 large scale point cloud files in our dataset. Each of them
covers an approximate area. One file is randomly chosen as validation set and the
remaining 15 files are set as training set. In our split, validation set is ensured
to be unseen during training. Note that our dataset is reorganized into three
categories: pylon, power line and others. Others category mainly contains trees
and grounds. In point cloud preprocessing procedure, point clouds are separated
into 10 × 10 m2 blocks and 4096 points are randomly sampled from each block
as the inputs, as discussed in Sect. 3.2. And then, the network mentioned in
Sect. 3.4 is trained without weighted-loss on a GTX 1070 GPU.

Results and Analysis. Experiments are implemented under different chan-
nel presentations that are discussed in Sect. 3.3. We compare our method with
PointNet [1]. The results are summarized in Table 2. Note that results under p0
represent the results of PointNet.

Local height channel is critical. Point presentation of PointNet does not con-
tain local height channel. As we can see, PointNet fails to recognize pylon cate-
gory. In contrast, presentation p1 contains local height channel. Under p1, model
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Table 2. Experiment Results under Different Point Channel Presentation. All values
in the table are in percentages

Pylon Power line Others

p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

Precision Nan 87.41 88.65 85.53 95.55 90.88 98.72 99.37 99.87 99.99 99.99 99.99

Recall 0 51.11 81.21 89.29 97.75 99.39 99.11 98.69 99.99 99.93 99.99 99.99

IoU 0 47.61 73.56 77.57 94.30 90.37 97.85 98.07 99.94 99.94 99.99 99.99

can segment pylon category with a relatively high IoU 47.61, which shows that
local height channel is important and proves our channel presentation for LiDAR
point cloud effective.

Appropriate normalization for LiDAR intensity is important. Presentation
p1 normalizes intensity with a fixed value, while p2 normalizes intensity with a
flexible value. This modification lets normalized intensity values have relatively
bigger contrast among points, making points have more obvious intensity fea-
tures. From the results, a relative 54.5% IoU improvement from presentation p1
to p2 in pylon category can be seen and IoUs of other categories also improve,
which shows that normalizing features properly is vital. In addition, following
the concept of local and global features, presentation p3 adds another normal-
ized intensity feature as a local feature while regarding the original one as a
global feature. Presentation p3 further improves the IoU in every category and
it performs the best in our experiments.

Table 3. Statistics on our power line corridor dataset. All the values in this table are
in percentages.

Point percentage Block percentage

Pylon 0.14 0.80

Power transmission line 4.15 25.89

Others 95.71 98.71

Note that recalls for both power line and others categories are near perfect,
higher than 98%, which is desirable for power line inspection, as dangerous
spots lie where trees are too close to power lines. However, even when using the
most effective point presentation p3, recall for pylon is 89%, though high but
relatively lower than other two categories. Lower performance on pylon category
is attributed to two reasons: (a) Samples of different categories are unbalanced.
Quantity characteristics of the power line corridor dataset is summarized in
Table 3. Both point and block percentage on pylon category are much smaller
than those on other two categories. Point percentage is defined as (number of
points belonging to category c/number of all points); Block percentage is defined
as (number of blocks containing category c points/number of all blocks). As a
result, model does not ‘see’ enough samples of pylons so has lower performance
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of segmenting them; (b) As shown in Fig. 2, geometric structure of pylon is more
complicated than those of other two categories and pylons have joint places with
power lines and grounds, making it more difficult to segment.

Fig. 6. Visualization of PointNet’s and our method’s predicted results. (Color figure
online)

A visualization of the segmentation results by our method, PointNet and
ground truth label is shown in Fig. 6. Our method performs well on all categories
while PointNet cannot recognize pylon category. On the whole, our predicted
result is very close to the ground truth label. In addition, our model is efficient.
On a GTX 1070 GPU, it only takes 0.93 ms to predict 1 m2 data of our power
line corridor dataset.

4.3 Segmentation on KITTI Point Cloud Dataset

Settings. KITTI point cloud dataset is randomly separated into a training
set with 6481 frames and a validation set with 1000 frames. In addition, each
point cloud is separated into 4 × 4 m2 blocks. And 2048 points are randomly
sampled from each block as the inputs. Reasons for the setting here is similar
to those of the power line corridor dataset. Our method is implemented under
our presentation p3 mentioned above, and PointNet [1] is under its original
presentation p0. The model is trained on the same machine mentioned above.

Results and Analysis. To evaluate the generalization ability of our method,
experiments on KITTI point cloud dataset are included. We compare our method
with PointNet and SqueezeSeg [17]. SqueezeSeg is a leading segmentation algo-
rithm on KITTI point cloud dataset. Experiment results on IoU are summarized
in Table 4. Our method surpasses PointNet on all categories and is comparable
with SqueezeSeg on car and pedestrian categories. IoU on car category from our
method is even higher than that from SqueezeSeg without CRF. Consequently,
our method not only has prominent performance on power line corridor dateset,
but also generalizes well on KITTI dataset.

Note that PointNet’s performance on KITTI is much better than that on
Power Line Corridor Dataset. The difference is attributed to the following rea-
son. PointNet was initially designed on S3DIS dataset [18], an indoor scene with
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Table 4. Comparison with other methods on KITTI Dataset. Metric is IoU. All values
in the table are in percentages

Car Pedestrian Cyclist

SqueezeSeg 60.9 22.8 26.4

SqueezeSeg with CRF 64.6 21.8 25.1

PointNet 60.7 13.9 8.4

Our method 64.1 21.8 8.7

rooms. And KITTI is collected from roads. Both rooms and roads are flat land-
forms, which are different from power line corridor where steep slopes exist. In
such conditions, the local height information referring to a block could be rep-
resented by global height referring to a file, so PointNet’s channel presentation
is effective on KITTI. This experiment also shows that our channel presentation
is suitable for various terrains.

5 Conclusion

We propose the first deep learning based framework for power line corridor point
cloud segmentation. In specific, we design an effective channel presentation for
LiDAR point clouds and adapt a general convolutional neural network as our
basic network. Compared to the existing works, our approach has three superi-
orities: (a) It does not rely on hand-crafted features which requires priori knowl-
edge, but utilize a trainable deep learning model, which has strong generalization
ability; (b) It does not use images but LiDAR data, so it is not sensitive to outer
factors like illumination and thus more stable; (c) It finishes segmentation tasks
within a single stage rather than multiple stages, so is able to leverage object
context and get rid of propagated errors. In order to evaluate the effectiveness
of our approach, we collect and label a large scale point cloud dataset of power
line corridor scene to do experiments. To verify the generalization ability of our
approach, we also test it on KITTI dataset. Experiments shows that our model
can achieve very high segmentation accuracy with fast and stable runtime (0.93
± 0.5 ms/m2) on power line corridor dataset and generalize well on KITTI,
which means that our approach is not only potential to meet the urgent need
of automatically inspecting power lines but also is useful for other applications
like autonomous driving.
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