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Abstract. In this paper, we propose a new tracker based on dictionary learning
and confidence map estimation for a robot-assisted therapy system. We first over-
segment the image into superpixel patches, and then employ color and depth cues
to estimate the object confidence of each superpixel patch. We build two Bag-of-
Word (BoW) models from initial frames to encode foreground/background
appearance, and compute object confidence at superpixel level using BoWmodel
in both foreground and background. We further refine target confidence by
depth-based statistical features to mitigate noise interference and the uncertainty
of visual cues. We derive the global confidence of each target candidate at bag
level, and incorporate the confidence estimations to determine the posterior
probability of each candidate within the Bayesian framework. Experimental
results demonstrate the superior performance of the proposed method, especially
in long-term tracking and occlusion handling.
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1 Introduction

Tracking and analyzing the behavior of the patients, in particular to track the objects in
interaction plays a significant role in a Robot-Assisted Therapy (RAT) system.
Although many excellent tracking methods have been proposed, issues of robustness
and reliability make these methods unsuitable for real-world situations. One main cause
of failing tracking is the degradation of the tracking model, where the accumulation of
inaccurate tracking results and corresponding model update over a period of time may
cause focus to drift from the subject.

Object tracking has witnessed great advance in both generative and discriminative
branches [1]. One of the advantages of generative model is that the method models
target appearance without large number of training samples, however, it cannot sep-
arate target effectively from clutter background, occlusion, and long-term period.
Discriminative tracking methods [2–5] achieve superior performance both in success

© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): PRCV 2019, LNCS 11857, pp. 147–159, 2019.
https://doi.org/10.1007/978-3-030-31654-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31654-9_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31654-9_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31654-9_13&amp;domain=pdf
https://doi.org/10.1007/978-3-030-31654-9_13


and precision rate thanks to the combination of robust feature representation, dis-
criminative classifier and the exploit of background and foreground information.
However, these methods cannot well handle clutter background and sudden target
appearance variation problems. Recently, trackers proposed by combining Convolu-
tional Neural Network (CNN) and Discriminative Correlation Filter (DCF) achieve
state-of-the-art performance due to the representation of deep feature and the compu-
tational efficiency of DCF. For instance, one or multiple layer deep features have been
employed to train the DCF in frequency domain and thus can get good performance
[6]. Tao et al. [7] employ two Siamese CNN to learn a generic matching function for
tracking task to handle appearance variation and lacking of training samples. David
et al. [8] propose to learn a regression function by CNN from large annotated video
sequence, which achieves a very high tracking speed (more than 100FPS). In recent
years, superpixel-based tracking methods [9–11] have attracted extensive attentions
due to high accuracy and robustness. Yang et al. [9] compute a target-background
confidence map using discriminative appearance model based on superpixels, and
obtain the best candidate by maximizing a posterior estimate. In [10], a Dynamic
Graph-based Tracker (DGT) is built to model the superpixel interactions, the tracking
problem is then posed as a matching problem between the target graph and the can-
didate graph. In [11], tracking method based on Bag-of-Word (BoW) model is pro-
posed to estimate target confidence, however, the method cannot handle the image
patches with similar appearance to both background and foreground, which make
tracker prone to degradation over-time and not appropriate for long-term tracking.

The aforementioned trackers either suffer from lacking background information
supervision, computational burden, or cannot handle noisy patch interference, which
are inappropriate for accurate real-world tracking. To meet the goal of long-term robust
target tracking for the RAT system, this paper proposes a discriminative model-based
tracking method to achieve robust and accurate tracking even for long-term period by
fusing color and depth information to estimate target confidence.

2 Proposed Tracking Method

Fig. 1. Pipeline of the proposed tracking method.
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The architecture of the proposed tracking method is illustrated in Fig. 1. The target
object and background patches are over-segmented into superpixel collections, and
then an adaptive AP is employed to select discriminative superpixel patches as
background/foreground codebook. When a new frame arrives, we derive the posterior
probability of each target candidate from three aspects within the Bayesian framework.
To overcome model degradation over time, we propose a new update strategy based on
the inspiration that the best appearance model could minimize the reconstruction error
of current target.

2.1 Superpixel Appearance and BoW Model Construction

To compute the confidence of each superpixel, we construct foreground and background
discriminative appearance model based on superpixel segmentation and BoW theory.
Given the training image set I1; I2; . . .. . .; Ikf g, where k is number of training image, we
first over-segment them into a set of superpixel patches using SLIC algorithm [12], and
then the normalized color histogram f ki in the HSI space is extracted as an appearance
representation descriptor, where i is superpixel index in Ik. HIS color histogram is
employed because of its robustness in handling light changes and its discriminative
ability in feature representation. Those superpixels inside the target areaOk are treated as
positive training patches, while those outside the area of Ok but within 2 � Ok are
treated as negative training patches. The annular band can be expressed as Sk .

Given the feature set f ki
� �

of target superpixel collection, the codebook of BoW
model is generated by performing clustering, and cluster centers are used to initialize
the codebook. In [11], the authors employ k-means algorithm to perform feature center
selection. However, it needs to specify seed points manually. To remedy this, we utilize
the Affinity Propagation (AP) clustering method [13] to determine the feature centers,
which can facilitate two advantages: (1) it has the ability to determine the number of
cluster centers automatically and (2) it is computation efficient. The input of AP is the

affinity matrix of S�RN�N . Each data point of S i; jð Þ ¼ � f Ki � f kj

���
���2 is defined as the

negative Euclidean distance between f ki and f ki . By viewing each data point as a node in
a network, the cluster centers and the corresponding exemplars are emerged by
recursively transmit real-value distances along edges.

After the AP clustering, we can get two sets of codebook Fm ¼ FF
1 ;F

F
2 ; . . .;F

F
m

� �
and Bn ¼ FB

1 ;F
B
2 ; . . .;F

B
n

� �
corresponding to feature centers of background and fore-

ground superpixel training sets, in which m and n denote the length of codebook, and
the superscripts F and B correspond to foreground and background sets. The super-
pixels in Ok and Sk of each training samples are assigned to the nearest elements in Fm

and Bn respectively, by minimizing Eqs. (1) and (2)

LFn ¼ argmin
i

k f kn � FF
i k; f kn 2 Ok ð1Þ

LBm ¼ argmin
i

k f km � FB
i k; f km 2 Sk ð2Þ
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where f kn is the n-th superpixel feature vector of the k-th training image. LFn and LBm
denote index of the n-th superpixel assigned to the word in codebook. Two histograms
HF Ið Þ and HB Ið Þ are generated corresponding to the foreground and background bags,
which indicate the occurrence frequency of each codeword in k training images. FF

i and
FB
i denote the i-th codewords of foreground and background codebook, respectively.

2.2 Local Background-Foreground Confidence Estimation

One challenge to estimate the foreground and background confidence of each super-
pixel is the interference of those superpixels which are inside the foreground rectangle
patch but not belong to the target, which we name them as false-positive superpixels.
So, the first step of our confidence estimation is to remove the impact of false-positive
superpixels. For a test image I, we segment it into a set of superpixels
SP ¼ sp 1ð Þ; sp 2ð Þ; . . .; sp kð Þf g, and then compute two distances dF ið Þ; dB ið Þf g
between the i-th superpixel and the nearest codeword in FF

n and FB
m. Let d

F i;mð Þ and
dB i;mð Þ be the superpixel similarity to foreground and background codewords.

dFði;mÞ ¼ expð� k spkðiÞ � FF
m k22Þ ð3Þ

dBði; nÞ ¼ expð� k spkðiÞ � FB
n k22Þ ð4Þ

The similarity of sp(k) to the nearest codeword is obtained by minimizing

dFðiÞ ¼ min
m

dFði;mÞ; and dBðiÞ ¼ min
n

dBði; nÞ ð5Þ

We define a false-positive superpixel based on rules in Eq. (6)

M ið Þ ¼
�1 if dF ið Þ� dB ið Þ
0 if dF ið Þ� thF ; dB ið Þ� thB

1 if dF ið Þ� dB ið Þ

8><
>: ð6Þ

where thF and thB represent the outlier thresholds of foreground and background. If
M(i) = 0, then the i-th superpixel is an ambiguity one, otherwise, it belongs to either
foreground (M(i) = 1) or background (M(i) = − 1). We assign foreground and back-
ground confidence of each superpixel based on the combination of bag similarity and
superpixel distance. In Eq. (5), each superpixel in SP is assigned to the nearest
codeword in codebook Fm and Bn. So, it is easy to compute bag histogram distribution
of BF Ið Þ and BB Ið Þ. Therefore, two bag similarities (see Eqs. (7) and (8)) can be
determined.

SF ¼ min
l2½1;k�

fexpð� k BFðIÞ � HF
l kÞg ð7Þ

SB ¼ min
l2½1;k�

fexpð� k BBðIÞ � HB
l kÞg ð8Þ
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where HF
l and HB

l denote background and foreground BoW histograms of the l-th
positive and negative training sample. The two similarities indicate the target back-
ground confidence of a sample at bag level.

To further refine the confidence of each superpixel patch, a local confidence value
C(i)2(0; 1) is assigned based on SF and SB. The value is computed as follows.

CðiÞ ¼ MðiÞ 	 wðIÞ 	maxfdFðiÞ; dBðiÞg ð9Þ

wðIÞ ¼ SF

SF þ SB
ð10Þ

wherew(I) denotes theweighting term of the sample image I belonging to target. The local
confidence ofC(i) is determined jointly byM(i),w(I) andmax dF ið Þ; dB ið Þf g.M(i) is used
to distinguish which category of the i-th superpixel belongs to. w(I) corresponds to
the weighting term of image I belonging to target, which is defined in Eq. (10).
max dF ið Þ; dB ið Þf g indicates the likelihood of the superpixel. It should be noted that the
confidence of ambiguity superpixel patches is set to zero, which means that the local
feature based on superpixel patch is not enough to estimate target-background confidence.

2.3 Depth-Based Confidence Estimation

For a superpixel patch which is difficult to estimate target confidence from appearance
model, by incorporating the depth feature we can predict its category easily. However,
only relying on the depth cue is still not enough to predict which category of a
superpixel belongs to due to the fact that the depth is weak in encoding target texture
feature. To remedy this, we employ both depth cue and appearance model to estimate
the confidence of false-positive superpixel and refine the confidence of the other
superpixels.

Instead of estimating superpixel confidence directly, we propose to use the afore-
mentioned AP clustering result to compute the confidence of each cluster. Then the
cluster center FF

m and its member set spm kð Þf g, where k is the superpixel index, cor-
respond to their own image regions in training samples. Here, we compute two scores
Rin ið Þ and Rout ið Þ for each cluster and its corresponding members. Rin ið Þ denotes the
area of the i-th cluster and its members overlapping the target area. Rout ið Þ indicates the
superpixel area out of the target region. The cluster confidence is defined as Eq. (11).

CclustðiÞ ¼ RinðiÞ � RoutðiÞ
RinðiÞþRoutðiÞ ð11Þ

where Cclust ið Þ� �1; 1½ �, higher value indicates that the superpixel clustering owns
higher confidence belonging to target, otherwise, the clustering is more likely to
belonging to background.
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Then, we compute the depth mean and standard deviation of each cluster as the
depth model to constraint the background and foreground confidence. Let

meanmðiÞ ¼ 1
k

XK
k¼1

depthðspðkÞÞ ð12Þ

and

stdmðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

XK
k¼1

ðdepthðkÞ � meanðiÞÞ2
vuut ð13Þ

be the depth mean and standard deviation of cluster FF
M and the corresponding

superpixel set spm kð Þf g. Intuitively, for the superpixel patches belonging to the same
clustering, their depth distribution should be uniform and the standard deviation is
expected to be small. Although the depth feature of superpixel lacks discriminative
capacity and semantic information to estimate confidence, it is an important cue to
predict target confidence based on the prior knowledge of the homogeneity of the depth
distribution and the continuity of depth changing.

The confidence value of each superpixel patch with depth constraint is defined as

CdepthðiÞ ¼ wdepthði;mÞ 	 CclustðiÞ ð14Þ

wdepthði;mÞ ¼ expð�kd � depthðiÞ � meanmðiÞj j
stdmðiÞ Þ ð15Þ

where wdepth i;mð Þ is the constraint term and follows the Gaussian distribution. Greater
distance to mean cluster depth indicates lower likelihood of the superpixel belonging to
the foreground, the pairwise index of i and m means that the i-th superpixel is assigned
to the m-th cluster by Eqs. (1) and (2).

2.4 Global Confidence Estimation

The previous appearance-based model and depth-based model are used to determine
the confidence of a certain superpixel. Now we use bag similarity to compute global
confidence of a test sample. When a target candidate arrives, we first segment it to a set
of superpixels sp(i), i 2 1; 2; . . .;Nf g, where N is the number of superpixels. Then, we
assign each superpixel patch to the nearest codeword to compute two candidates’ bags
(codeword distribution) corresponding to background histogram HB

t (I) and foreground
histogram HF

t (I). Two similarities SF(I) and SB(I) are employed to measure the can-
didate I belonging to background or foreground, and then they are considered to
determine the global candidate confidence Cglobal(I) jointly.
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CglobalðIÞ ¼ SFðIÞ � SBðIÞ
SFðIÞþ SBðIÞ ð16Þ

SFðIÞ ¼ expð�kf� k HF
t ðIÞ � HFðIÞ k22Þ ð17Þ

SBðIÞ ¼ expð�kb� k HB
t ðIÞ � HBðIÞ k22Þ ð18Þ

The global confidence ranges from −1 to 1. When the similarity of candidate image
becomes similar to the background model, its confidence value is close to −1, the
confidence value is close to 1 if it is similar to the foreground model. Different from
other global confidence estimation methods, two BoW models are used to estimate the
target confidence, which is robust in dealing with the ambiguous candidates. In other
words, when the candidate is close to both foreground and background models, its
confidence of being the target is close to 0.

2.5 The Proposed Tracking Method

Given the target observation set Yt ¼ yt1; y
t
2; . . .; y

t
n

� �
at frame t, where ytn denotes the

n-th observation of target at the t-th frame. We perform tracking by maximizing the
posteriori probability in Eq. (19).

X̂t ¼ argmax
xit

pðXi
t jYtÞ ð19Þ

where Xi
t stands for the i-th target candidate state of frame t, and Yt denotes the

corresponding observation of Xi
t. In this paper, we define the target state as

Xt ¼ Xc
t ;X

sx
t ;X

sy
t

� �
, where Xc

t , X
sx
t , and Xsy

t represent the target center location, target
scales in x-axis and y-axis, respectively. The posterior probability of the given obser-
vation set Yt up to frame t is achieved by the Bayesian theorem recursively.

pðXtjYtÞ / pðYtjXtÞ
Z

pðXtjXt�1ÞpðXt�1jYt�1ÞdXt�1 ð20Þ

where p(YtjXt) and p(XtjXt�1) denote the observation model and motion model
respectively. The motion model indicates the relationship between target state and
frames in time domain, and we assume that it follows the Gaussian distribution. Thus,
the target state variation can be formulated as Eq. (21).

pðXt�1jYt�1Þ ¼ NðXt;Xt�1;WÞ ð21Þ

where W is a diagonal covariance matrix, and the elements in W denote the standard
deviation of target state. The observation model is formulated based on the sum of
appearance confidence in Eq. (9), depth confidence in Eq. (14) and the corresponding
global target confidence at bag level in Eq. (16). When the target location of frame
t − 1 has been determined, we select a rectangle Rt area around the previous target
center as the searching space in the t-th test image. To reduce computation load, we
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only over-segment image into superpixels within Rt once. For each candidate target
state in Xi

t, we assign the corresponding superpixel set to it, and then approximate the
confidence based on the assigned superpixel collections.

pðYtjXtÞ / CglobalðIÞþ
X
i2X

ðCðiÞþCdepthðiÞÞ ð22Þ

where Ω denotes the superpixel set when the target state is set to Xt. The state
observation estimation is proportional to confidence sum in Eq. (22).

It is essential to update model effectively for capturing target appearance variation
due to pose change, illumination change, and occlusion et al. In this paper, the words in
codebook play an important role in encoding target appearance. So, the way to select
and update discriminative words in both temporal and spatial domain is particular
important. We assume that the best update strategy is to select words that can minimize
the reconstruction error of the current target. Based on this inspiration, we propose a
simple and effective sparse representation method to select the most discriminative
words from the previous frames to estimate target state of current frame.

In order to effectively use the depth distribution to reduce the uncertainty of
superpixel appearance, we update the mean and standard deviation of each cluster
based on the depth distribution of the tracked target every frame. We use a temporal
low-pass filtering method to accommodate target depth distribution variation.

mean	mðiÞ ¼ ð1� q1ÞmeanmðiÞþmeankðiÞ ð23Þ

std	mðiÞ ¼ ð1�q2ÞstdmðiÞþ stdkðiÞ ð24Þ

where meank ið Þ and stdk ið Þ denote the mean depth and standard deviation of the k-th
frame target area.

3 Experimental Results and Analysis

Six challenging video sequences with RBG color channel and depth channel are
captured by our RAT system, namely Bear, Bear2, Wolf, Wolf2, Ballon, Dog. Both the
RGB channel and depth channel are recorded by a Kinect sensor and calibrated to the
same coordinate system. We annotate the target bounding box manually by a rectangle
in each image, and then the rectangle is projected to depth image as annotation. The
annotation in RGB and depth channels is treated as groundtruth to evaluate the per-
formance of our tracker. Each of the recorded video sequence contains at least one
challenge such as occlusion, shape deformation, rotation, etc. The length of each video
is 800, 952, 731, 1027, 1109 and 1210 frames, respectively.

We use SLIC algorithm to over-segment image in HSI color space and employ a
KCF with HOG feature to track the initial four image frames (from the second to the
fifth). A total of 5 frames are used to construct the BoW model. When performing AP
clustering, we employ negative Euclidean distance as the real value information. The
exemplar preference is set to 1.5 times of the average negative Euclidean distance. We
update the codewords every 5 frames and update the depth model every frame.
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3.1 Codewords Extracted by AP

To verify the impact of the number of codewords on appearance model, we implement
varieties of Fm and Bm by setting different codeword numbers. The target and back-
ground appearances are encoded by codewords in Fm and Bm. We employ the AP
method to select representative superpixel patches as feature centers adaptively, which
overcomes the deficiency of generating seed points manually. However, another
parameter, the number of codewords in Fm and Bm, is considered highly important.
In AP cluster method, the number of clusters is influenced by a real value s(k,k), which
is referred as “preference” for each feature vector k. So, the feature vector with larger
values of s(k,k) is more likely to be chosen as a cluster center. As a priori knowledge,
all the feature vectors are equally considered as cluster center candidates, and we set a
common “preference” to each superpixel patch as initial state. The shared value can be
varied to produce different numbers of clusters. Specifically, we will get a moderate
number of clusters when set s(k,k) to the median of input similarities. If the shared
value is set to a smaller value than the median of input similarities, it would result in a
smaller number of clusters.

In Table 1, we build different target appearance codebooks by setting s(k,k =
{1.0,0.8,0.6,0.4,1.2,1.4,1.6} in Wolf video sequence. s(k,k) = 1.0 denotes that we set
the preference value to 1.0 times the median similarity. It can be seen that the AP
cluster number increases with the value of s(k,k). As s(k,k) increases from 1 to 1.6, the
number of clustering centers increases from 64 to 101, however, the AUC of success
plot and precision plot are reduced by 5.8% and 4.4%, respectively. On the contrary,
the cluster center number drops to 35 from 64 with respect to s(k,k) varying from 1.0 to
0.4, while the corresponding tracking performance is reduced by about 13.2% (Suc-
cess) and 6.2% (Precision). This indicates that the number of codewords plays an
important role in appearance model. Too many codewords undermine the discrimi-
native ability of the appearance model, while insufficient codewords is not robust to
target appearance variation.

Table 1. Analysis of AP preference on target appearance model in video sequence wolf

s(k,k) Superpixel patch AP clusters AUC of success AUC of precision

1.0 382 64 0.68 0.89
0.8 382 52 0.642 0.875
0.6 382 35 0.61 0.85
0.4 382 22 0.59 0.835
1.2 382 71 0.67 0.865
1.4 382 80 0.665 0.86
1.6 382 101 0.64 0.85
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3.2 Effectiveness of the Background/Foreground Appearance Model

Contrary to existing target confidence map estimation methods, we propose to use
background and foreground appearance model to perform confidence estimation
jointly. We design the dual models mainly considering the disturbance of ambiguous
superpixel patches. As a priori, when a superpixel is similar to both background and
foreground, we consider it will undermine the model representative ability. Moreover,
the confidence map based on these ambiguous superpixels is unreliable. Inspired by
this observation, we propose to build a robust background-aware target appearance
model.

As shown in Fig. 2, the target appearance model based on background and fore-
ground achieves excellent precision in predicting target confidence. From frame 10 to
350, the target experiences significant appearance variation (rotation and occlusion).
The proposed dual model can identify ambiguous and noisy superpixel patches and
then prevent them to participate in appearance mode building. On the other hand, the
dual model selects the most discriminative superpixel automatically to encode target
appearance, which is an effective method to prevent model degradation as well as keeps
model robust to distractors. On the contrary, the confidence map in the second row of
Fig. 2 is the result estimated from only target appearance model. In other words, we
complete another appearance model with the same method to dual model, the main
difference is that only target appearance (without considering background context) is
used to compute the confidence map. The confidence map of the 100th frame has
shown a significant deviation, with the increase in the number of frames, this error is
gradually accumulated and results in model degradation. At frames 180 and 350, the

Fig. 2. Confidence estimation results between dual appearance model and target-based
appearance model. The first row indicates the RGB image captured from the Kinect sensor.
The second and the third rows indicate the corresponding confidence maps of a single appearance
model (the second row) and a dual appearance model (the third row).
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confidence map from dual model still shows a high precision compared to the
groundtruth in the first row. However, the confidence map corresponding to frames 180
and 350 in the second row starts to show large deviation and discontinuity, while the
confidence margin between the background part and target becomes smaller.

3.3 Quantitative Analysis

We use two protocols to evaluate the tracking performance: area under curve (AUC) of
one-pass evaluation (OPE) using success plot, and center location error (CLE). The
success plot is used to measure the overlap rate between tracked bounding box and the
grountruth on a sequence of video frames. The later metric denotes the distance
between the tracked target center and groundtruth center.

We evaluate our tracker against 7 state-of-the-art trackers including SPT [9], HDT
[14], CT [15], MIL [16], TLD [4], Struck [17], and SRDCF [18]. Among them, the
SPT tracker is a superpixel-based tracking method, the SRDCF is a state-of-the-art
KCF-based tracking method, the HDT is a hierarchical convolutional neural network
and correlation filter based method, and the other trackers are selected due to their
excellent performance in OTB benchmark. The quantitative evaluation results between
the proposed tracker and the state-of-the-art trackers are show in Fig. 3. The success
plot shows that our tracker outperforms all of the other trackers with a large margin.
Comparing with the second-best tracker SRDCF and the third best tracker HDT, the
proposed tracking method obtains the AUC of 0.652 and improves the performance of
SRDCF and HDT by about 12% and 16%, respectively. Both the proposed tracker and
SPT tracker make use of superpixel confidence to track object, however, our method
shows an obvious improvement in terms of the both success and precision. As to center
location error, our method is still superior to the rest trackers. Table 2 summarizes the
average CLE of each tracker. The results demonstrate that the proposed tracker
achieves the best performance with the minimum average CLE on all video sequences.

Fig. 3. Average success plot (left) and precision plot (right) of OPE on our own video sequences
datasets.
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4 Conclusion

In this paper, we have presented a novel object tracking method using RGB and depth
images from the Kinect sensor for a RAT system. We trained two BoW models to
encode the target background appearance, and combined depth distribution to refine
tracking result. To achieve accurate and long-term tracking, we computed two target
confidence maps based on color and depth information at superpixel level, and com-
puted a global confidence of each target candidate using codewords. Furthermore, our
tracking method was equipped with a sparse representation-based discriminative on-
line update strategy to handle with target appearance variation and occlusion. Exper-
iments on six video sequences have showed that the proposed tracking method out-
performed the state-of-the-art tracking methods in both success and precision plots.
Moreover, our method can prevent tracking model degradation effectively which is
suitable for long-term tracking and real-world application.
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