
Microservices: The Evolution
and Extinction of Web Services?

Luciano Baresi and Martin Garriga

Abstract In the early 2000s, service-oriented architectures (SOA) emerged as a
paradigm for distributed computing, e-business processing, and enterprise integra-
tion. Rapidly, SOA and web services became the subject of hype, and virtually
every organization tried to adopt them, no matter their actual suitability. Even
worse, there were nearly as many definitions of SOA as people adopting it.
This led to a big fail on many of those attempts, as they tried to change the
problem to fit the solution. Nowadays, microservices are the new weapon of
choice to achieve the same (and even more) goals posed to SOA years ago.
Microservices (“SOA done right”) describe a particular way of designing software
applications as suites of independently deployable services, bringing dynamism,
modularity, distributed development, and integration of heterogeneous systems.
However, nothing comes for free: new (and old) challenges appeared, including
service design and specification, data integrity, and consistency management. In
this chapter, we identify such challenges through an evolutionary view from the
early years of SOA to microservices, and beyond. Our findings are backed by a
literature review, comprising both academic and gray literature. Afterwards, we
analyze how such challenges are addressed in practice, and which challenges remain
open, by inspecting microservice-related projects on GitHub, the largest open-
source repository to date.

L. Baresi
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
e-mail: luciano.baresi@polimi.it

M. Garriga (�)
Faculty of Informatics, National University of Comahue, Neuquán, Argentina

CONICET, National Scientific and Technical Research Council, Buenos Aires, Argentina
e-mail: martin.garriga@fi.uncoma.edu.ar

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_1&domain=pdf
mailto:luciano.baresi@polimi.it
mailto:martin.garriga@fi.uncoma.edu.ar
https://doi.org/10.1007/978-3-030-31646-4_1

4 L. Baresi and M. Garriga

1 Introduction

Some 20 years ago, service-oriented architecture (SOA), web services, and service-
oriented computing (SOC) were the buzzwords of the day for many in the business
world [11]. Virtually every company adopted, or claimed to adopt, SOA and web
services as key enablers for the success of their projects. However, there were
nearly as many definitions of SOA as organizations adopting it. Furthermore, such
panorama obscured the value added from adopting the SOA paradigm. The many
proposed standards (e.g., WSDL and BPEL) were supposed to break the barriers
among proprietary systems and serve as common languages and technologies
to ease the integration of heterogeneous, distributed components, fostering the
cooperation among independent parties. However, these approaches often failed
when applied in practice, mainly because ever-changing business requirements, to
which they were not able to (nor designed to) react timely [25]. In other words, many
organizations applied SOA because of the hype and not given their actual needs.

Nowadays, we are witnessing the same hype for a new set of buzzwords:
microservices and microservice architectures [26]. Microservices describe a partic-
ular way of designing software applications as suites of independently deployable
services. One may also say that it is nothing but “SOA done right,” as they preach
for the same advantages, such as dynamism, modularity, distributed development,
and integration of heterogeneous systems. However, now the focus is not on reuse
and composition, as it is on independence, replaceability, and autonomy [28].
Services then become micro in terms of their contribution to the application,
not because of their lines of code. They must be entities that can be conceived,
implemented, and deployed independently. Different versions can even coexist and
the actual topology of the system can be changed at runtime as needed. Each single
component (microservice) must be changeable without impacting the operation and
performance of the others.

However, as happened with SOA, microservices are not a silver bullet. With
them, new challenges have appeared, as old ones regained attention. Just like any
incarnation of SOA, microservice architectures are confronted with a number of
nontrivial design challenges that are intrinsic to any distributed system—including
data integrity and consistency management, service interface specification and
version compatibility, and application and infrastructure security. Such design issues
transcend both style and technology debates [49].

This chapter attempts to provide an evolutionary view of what services have
been, are, and will be from the early times of SOA—with WSDL/SOAP-based
services—through RESTful services, and finally to the advent of microservices and
their possible evolution into functions-as-a-service (FaaS) [35]. By doing this, we
shed some light on what is novel about microservices, and which concepts and
principles of SOA still apply. Then, we complement this evolutionary view with
a literature review (including both academic and gray literature) to identify the new
(and the old) challenges still to be faced when adopting microservices. Finally, we
analyze how practitioners are addressing such challenges by diving into the current

Microservices: The Evolution and Extinction of Web Services? 5

microservices landscape in the biggest open-source repository to date: GitHub.1

Our preliminary study on mining microservices on GitHub helps us understand the
trending topics, challenges being addressed, as well as popular languages and tools.

To conclude, and summarize, the contributions of this chapter are threefold:

• An evolutionary view of SOA, from WSDL/SOAP to microservices and beyond
• A discussion regarding current challenges on microservices, based on a review

of academic and gray literature
• A panorama of the current landscape of microservices on GitHub, and how those

challenges are being addressed

The rest of this chapter is organized as follows. Section 2 presents the evolution-
ary view from first-generation SOA through REST to microservices and serverless.
Section 3 revisits old and new challenges of SOA in the era of microservices. Sec-
tion 4 discusses the microservices ecosystem on GitHub. Finally, Sect. 5 concludes
the chapter.

2 Web Services Then and Now

This section provides an evolutionary view from the early days of WSDL/SOAP-
based services (Sect. 2.1), to RESTful services (Sect. 2.2), then to microservices
(Sect. 2.3), and the possible evolution into the novel functions-as-a-service
(FaaS) [35] (Sect. 2.4).

2.1 SOA(P) Services

Service-oriented architectures (SOA) emerged as a paradigm for distributed com-
puting, e-business processing and enterprise integration. A service, and particularly
a web service, is a program with a well-defined interface (contract) and an id (URI),
which can be located, published, and invoked through standard Web protocols [29].
The web service contract (mostly specified in WSDL) exposes public capabilities
as operations without any ties to proprietary communication frameworks. Services
decouple their interfaces (i.e., how other services access their functionality) from
their implementation.

The benefits of SOA are multifaceted [10]. It provides dynamism, as new
instances of the same service can be launched to split the load on the system.
Modularity and reuse, as complex services are composed of simpler ones and the
same services can be (re)used by different systems. Distributed development, since
distinct teams can develop conversational services in parallel by agreeing on their

1https://github.com/.

https://github.com/

6 L. Baresi and M. Garriga

interfaces. Finally, integration of heterogeneous and legacy systems, given that
services merely have to implement standard protocols (typically SOAP—Simple
Object Access Protocol [7]) to communicate over existing logic.

On top of that, specific workflow languages are then defined to orchestrate several
services into complex compositions (e.g., WS-BPEL, BPEL4WS) [16]. As these
languages share ideas with concurrency theory, this aspect fostered the development
of formal models for better understanding and verifying service interactions (i.e.,
compositions), ranging from foundational process models of SOA to theories for
the correct composition of services [10]. In the early years of SOAP-based service
composition, according to different surveys [32, 40] the literature mainly focused
on two aspects: Definition of clear/standard steps (modeling, binding, executing,
and verifying) of Web Service composition, and classification of compositions into
workflow-based industry solutions (extending existing languages, e.g., WS-BPEL
and BPEL4WS) and semantics-based academic solutions, using planning/AI upon
semantic languages such as OWL-S.

2.2 RESTful Services

Years after SOA irruption, stakeholders still disagreed about its materialization, and
mostly failed to implement it [25]. First, the absence of widely accepted usage
standards led organizations to develop and/or describe web services and compo-
sitions using divergent specification practices and concept models [16, 17]. Besides,
daunting requirements regarding service discovery (e.g., UDDI registries [36]) or
service contracts agreements (WSLA) hindered the adoption of early SOA models.
Second, the claimed benefits and hype of SOA tempted organizations to adopt it
even when their particular context said the contrary [25]. Pursuing flexibility too
early, before creating stable and standardized business processes, plus the problems
of interoperability and data/process integration (through too smart communication
mechanisms such as the enterprise service bus), led traditional SOA to fail often.

In such a context, REST (REpresentational State Transfer) [13] appeared as
a simpler, lightweight, and cost-effective alternative to SOAP-based services.
Although the term was coined in 2000 by Roy Fielding, RESTful services gained
traction around one decade after [30]. RESTful services use the basic built-in HTTP
remote interaction methods (PUT, POST, GET, and DELETE) and apply their
intended semantics to access any URI-referenceable resource. HTTP methods then
became a standardized API for services, easier to publish and consume.

As the years passed, REST and HTTP (and JSON as data exchange format)
became ubiquitous in the industry, in detriment of WSDL/SOAP-based solu-
tions [36]. This dominance fits well with the characteristic of microservices being
built on top of lightweight communication mechanisms, as we will see in the next
section.

Still, reuse and composition issues were under discussion in the REST-
ful era. Humans being considered as the principal consumer/composer of

Microservices: The Evolution and Extinction of Web Services? 7

RESTful services explains the lack of machine-readable descriptions, and the
massification of user-driven composition approaches (mashups) [17]. We can keep
the aforementioned distinction between workflow- and semantic-based solutions;
process-oriented mashups and extended business composition languages (such as
BPEL4REST) belong to the first group, while semantic annotations, planning-based
solutions, and formalization efforts define the second class [17].

2.3 Microservices

Nowadays, most of the issues related to defining, classifying, and characterizing ser-
vices and composition solutions mentioned in the previous sections are overcome.
However, yet new challenges appeared, posed by the internet of services/things,
pervasive computing, and mobile applications.

The environment in which services are developed and executed has become more
open, dynamic, and ever changing. This raises several malleability issues, includ-
ing the ability of self-configuring, self-optimizing, self-healing, and self-adapting
services. This may involve devices with limited resources and computational
capabilities [6], and calls for novel algorithms for dynamically managing such
lightweight and simple services. Also, to manage services in current pervasive
environments, one must address context awareness, heterogeneity, contingencies
of devices, and personalization. A pervasive environment claims for appropriate
semantic technologies, shared standards, and mediation to assure interoperability
of heterogeneous entities, such as mobile devices, sensors, and networks. Finally, as
users are now becoming “prosumers” [22] (i.e., both producers and consumers), it is
still unclear how to combine the need for aggregating several services, maintaining
their QoS, and keeping the coupling level as low as possible.

In this context, microservices came to the scene as the weapon-of-choice to
address such challenges at the enterprise scale. Microservices are independently
deployable, bounded-scoped components that support interoperability by communi-
cating through lightweight messages (often a HTTP API) [27]. In turn, microservice
architecture is a style for engineering highly automated, evolvable software systems
made up of capability-aligned microservices [27]. Each service also provides a
physical module boundary, even allowing for different services to be written in
different programming languages and be managed by different teams [26].

However, most of this definition applies to traditional SOAP-based or REST-
ful services as well, which feeds the debate regarding microservices and SOA.
Although microservices can be seen as an evolution of SOA, they are inherently
different regarding sharing and reuse. SOA is built on the idea of fostering reuse:
a share-as-much-as-possible architecture style, whereas microservice architectures
seconds the idea of a share-as-little-as-possible architecture style [33]: the goal
became how to build systems that are replaceable while being maintainable [26].
Given that service reuse has often been less than expected [47], microservices
should be “micro” enough to allow for the rapid development of new versions that

8 L. Baresi and M. Garriga

can coexist, evolve, or even replace the previous one according to the business
needs [19]. This is also possible thanks to continuous deployment techniques [2],
such as canary deployment—pushing the new versions to a small number of end
users to test changes in a real-world environment; and version concurrency—
incrementally deploying new versions of a service, while both old and new versions
of the service contract are running simultaneously for different clients. Thus,
microservices fit well to scenarios with loose data integration and highly dynamic
processes, bringing the opportunity to innovate quickly [25].

Undoubtedly, also microservices will be replaced by the next technological
choice to implement the SOA architectural style. Thus, before moving to the
challenges being faced nowadays by microservices (Sect. 3), we discuss one of
the possible evolution paths for this architecture: functions-as-a-service (FaaS), also
known as serverless computing. One should note that FaaS conveys the same design
principles and benefits of microservices (isolation, interchangeability), but presents
substantial differences to support such design at the technical and technological
level, as we will see below.

2.4 Upcoming Faasification

A serverless architecture is a refined cloud computing model that processes
requested functionality without pre-allocating any computing capability. Provider-
managed containers are used to execute functions-as-a-service, which are event-
triggered and ephemeral (may only last for one invocation) [35]. This approach
allows one to write and deploy code without considering the runtime environment,
resource allocation, load balancing, and scalability; all these aspects are handled by
the provider.

Serverless represents a further evolution of the pay-per-use computing model: we
started allocating and managing virtual machines (e.g., Amazon EC2) by the hour,
then moved to containers (e.g., CS Docker Engine), and now we only allocate the
resources (a container shared by several functions) for the time needed to carry out
the computation—typically a few seconds or milliseconds.

The serverless architecture has many benefits with respect to more traditional,
server-based approaches. Functions share the runtime environment (typically a pool
of containers), and the code specific to a particular application is small and stateless
by design. Hence, the deployment of a pool of shared containers (workers) on a
machine (or a cluster of machines) and the execution of some code onto any of
them become inexpensive, efficient, and completely handled by the cloud provider.

Horizontal scaling is completely automatic, elastic, and quick, allowing one to
increase the number of workers against sudden spikes of traffic. The serverless
model is much more reactive than the typical solutions of scaling virtual machines
or spinning up containers against bursts in the workload [20]. Finally, the pay-
per-use cost model is fine-grained, down to a 100 ms execution granularity for all
the major vendors, in contrast to the “usual” hour/minute-based billing of virtual

Microservices: The Evolution and Extinction of Web Services? 9

machines and containers. This allows companies to drastically reduce the cost of
their infrastructures with respect to a typical monolithic architecture or even a
microservice architecture [46].

Several cloud providers have developed serverless solutions recently that share
those principles. AWS Lambda is the first and perhaps most popular one, followed
by Azure Functions, Google Firebase, and IBM/Apache Openwhisk (the only open-
source solution among the major vendors). A couple other promising open source
alternatives are OpenFaaS (multilanguage FaaS upon Docker or Kubernetes) and
Quarkus (heavily optimized for Java and Kubernetes).

Back to microservices, one of their main concerns is the effort required to deploy
and scale each microservice in the cloud [46]. Although one can use automation
tools such as Docker, Chef, Puppet, or cloud vendor-provided solutions, their
adoption consumes time and resources. To address this concern, FaaS appears as
a straightforward solution. Once deployed, functions can be scaled automatically,
hiding the deployment, operation, and monitoring of load balancers or web servers.
The per-request model helps reduce infrastructure costs because each function
can be executed in computing environments adjusted to its requirements, and
the customer pays only for each function execution, thus avoiding infrastructure
payment when there is nothing to execute [46].

Thus, the way to go for microservices could be to become even more fine-
grained, slayed into functions. For instance, given a RESTful microservice that
implements an API with basic CRUD operations (GET, POST, PUT, DELETE), one
might have a single function to represent each of these API methods and perform
one process [41]. Furthermore, when CRUD microservices are not desirable,2 event-
driven or message-based microservices could still be represented as functions,
tailored to the same events that the microservices listen(ed) to. Besides, serverless
computing is stateless and event-based, so serverless microservices should be
developed as such.

However, these new solutions bring together new challenges and opportunities.3

For example, we still need to determine the sweet spots where running code in a
FaaS environment can deliver economic benefits, automatically profile existing code
to offload computation to serverless functions [4], bring adequate isolation among
functions, determine the right granularity to exploit data and code locality, provide
methods to handle state (given that functions are stateless by definition) [39], and
finally increase the number of out-of-the-box tools to test and deploy functions
locally. Additionally, going serverless is not recommended when one wants to [41]:

• Control their own infrastructure (due to regulations or company-wide policies)
• Implement a long-running server application (transactional or synchronous calls

are the rule)

2https://www.ben-morris.com/entity-services-when-microservices-are-worse-than-monoliths/.
3https://blog.zhaw.ch/icclab/research-directions-for-faas/.

https://www.ben-morris.com/entity-services-when-microservices-are-worse-than-monoliths/
https://blog.zhaw.ch/icclab/research-directions-for-faas/

10 L. Baresi and M. Garriga

• Avoid vendor lock-in (given that each provider has its own set of serverless APIs
and SDKs)

• Implement a shared infrastructure (as multi-tenancy is managed by the provider).

3 Challenges

The evolutionary view from early SOA to the advent of microservices helped us
understand what is novel about microservices, and which concepts and principles
of SOA still apply. In this section, we complement this evolutionary view with a
discussion of the challenges still to face when adopting microservices.

The challenges presented throughout this section are the result of a literature
review, following the guidelines for systematic literature review (SLR) proposed
in [24]. Although a complete SLR is outside the scope of this work, this helped us
organize the process of finding and classifying relevant literature. We considered
research published up to the first quarter of 2017. This led us to a collection of 46
relevant works,4 both primary (28) and secondary studies (18). Interested readers
can refer to [15] for details on these studies.

Given the novelty of the topic, we enriched our results by comparing them with
those of a recent gray literature review [38], which includes materials and research
produced by organizations outside of the traditional academic publishing and
distribution channels—such as reports, white papers, and working documents from
industry [14]. Interestingly, academic and gray literature share common findings
regarding open challenges in the microservice era, as we will see throughout
this section. For the sake of organization, we divide such challenges regarding
the lifecycle stages: Design (Sect. 3.1), Development (Sect. 3.2), and Operations
(Sect. 3.3) and conclude with a discussion (Sect. 3.4).

3.1 Design Challenges

Despite the hype and the business push towards microservitization, there is still a
lack of academic efforts regarding the design practices and patterns [19]. Design
for failure and design patterns could allow to address challenges early as to
bring responsiveness (e.g., by adopting “let-it-crash” models), fault tolerance, self-
healing, and variability characteristics. Resilience patterns such as circuit-breaker
and bulkhead seem to be key enablers in this direction. It is also interesting
to understand whether the design using a stateless model based on serverless
functions [20] can affect elasticity and scalability as well [8].

4Due to the space limit, the full list can be found at: https://goo.gl/j5ec4A.

https://goo.gl/j5ec4A

Microservices: The Evolution and Extinction of Web Services? 11

Another problem at design time is dimensioning microservices—i.e., finding
the right granularity level [38]. This obviously implies a trade-off between size
and number of microservices [19]. Intuitively, the more microservices, the higher
the isolation among business features, but at the price of increased network
communications and distribution complexity. Additionally, the boundaries among
the business capabilities of an application are usually not sharp. Addressing this
trade-off systematically is essential for identifying the extent to which “splitting” is
beneficial regarding the potential value of microservitization [3].

Security by design is also an open challenge, given the proliferation of endpoints
in microservice ecosystems, which are only the surface of a myriad of small,
distributed and conversational components. The attack surface to be secured is hence
much larger with respect to classical SOA, as all the microservices are exposing
remotely accessible APIs [38]. In this direction, access control is crucial, as the
design of microservice-based applications should allow each component to quickly
and consistently ascertain the provenance and authenticity of a request, which is
challenging due to the high distribution [38].

3.2 Development Challenges

Most of today’s microservices exploit RESTful HTTP communication [36]. Mes-
sage queues are promising but not adopted as expected, in concordance with the lack
of proposals for asynchronous interaction models [15]. As such, communications
are purely based on remote invocations, where the API becomes a sort of contract
between a microservice and its consumers. This generates coupling and directly
impacts APIs’ versioning, as new versions must always be retro-compatible to avoid
violating the contracts among microservices, hence allowing them to continue to
intercommunicate [38].

This suggests not only that microservices are being used in-house, with contracts
negotiated between different teams/people inside the company, but also that their
reuse should support concurrent versions and incremental releases: new versions can
be (re)developed entirely to fulfill new requirements, while keeping old versions for
other clients. The recent efforts on standardizing RESTful APIs through OpenAPI
specifications5 seem interesting and also applicable to specify microservices [3].

Another challenge comes from data persistency issues. A database can be part
of the implementation of a microservice, so it cannot be accessed directly by
others [34]. In this scenario, data consistency becomes difficult to achieve. Eventual
consistency (the distributed database does not exhibit consistency immediately
after a write, but at some later point) is an option, even if not always acceptable
for any domain, and not easy to implement too. At the same time, this heavy
distribution complicates distributed transactions and query execution (also because

5https://www.openapis.org/.

https://www.openapis.org/

12 L. Baresi and M. Garriga

of the heterogeneity of the data stores to be queried). In this scenario, testing is also
complex, as the business logic is partitioned over independently evolving services.
Approaches that use/propose frameworks for resilience testing [21] or reusable
acceptance tests [31] are highly required.

3.3 Operation Challenges

The primary challenge during the operation of microservice-based applications is
given by their resource consumption. More services (with respect to traditional
SOA) imply more runtime environments to be distributed, and remote API invo-
cations. This increases consumption of computing and network resources [38].
However, there seems to be a mistrust regarding built-in solutions of cloud
providers, which sometimes become too rigid [5] or cumbersome to configure and
adjust [20]. In the meantime, cloud providers are growing in variety and usability
(e.g., AWS has offered around 1000 new features per year6), and we believe that
they will become the standard to deploy and manage cloud microservices in the
near future [15].

Operational complexity also comes along with the distributed and dynamic
nature of microservices. They could be flexibly scaled in and out, or migrated from
one host to another. Moreover, they could be switched from the cloud to the edge
of the network [6]. This, along with the huge number of microservices forming an
application, makes it challenging to locate and coordinate their concrete instances.
At the same time, distributed logging calls for aggregation approaches that help
track the reasons behind issues/errors [38].

3.4 Discussion

The challenges of microservice-based applications are mainly due to their novelty
and intrinsic complexity and distribution. Their design, development, and operation
is hampered by the fact that the business logic in such applications is heavily
distributed over many independent and asynchronously evolving microservices [38].
As a summary, Table 1 highlights the relationship among the usual steps of
the development process (design, development, operation), the principles behind
microservices (defined in the seminal book by Newman [28]), example features
related to each principle extracted from the (academic and grey) literature review,
and finally example tools or practices applicable to such a stage/principle. In this
way, we pave the ground to the analysis of the microservices ecosystem on GitHub,
presented in the next section.

6https://techcrunch.com/2016/12/02/aws-shoots-for-total-cloud-domination/.

https://techcrunch.com/2016/12/02/aws-shoots-for-total-cloud-domination/

Microservices: The Evolution and Extinction of Web Services? 13

Table 1 Relationship among microservices lifecycle stages, principles, features, and tools

Stage Principle Example features Tools/practices

Design Modeled
around business
domain

Contract, business, domain, functional,
interfaces, bounded context,
domain-driven design, single responsibility

Domain-driven
design (DDD),
bounded context

Design Hide
implementation
details

Bounded contexts, REST, RESTful, hide
databases, data pumps, event data pumps,
technology-agnostic

OpenAPI,
Swagger, Kafka,
RabbitMQ, Spring
Cloud Data Flow

Dev Culture of
automation

Automated, automatic,
continuous*(deployment, integration,
delivery), environment definitions, custom
images, immutable servers

Travis-CI, Chef,
Ansible, CI/CD

Dev Decentralize all DevOps, Governance, self-service,
choreography, smart endpoints, dumb
pipes, database-per-service, service
discovery

Zookeper, Netflix
Conductor

Dev/ Ops Isolate failure Design for failure, failure patterns,
circuit-breaker, bulkhead, timeouts,
availability, consistency, antifragility,

Hystrix, Simian
Army, Chaos
Monkey

Ops Deploy
independently

versioning, one-service-per-host,
containers

Docker,
Kubernetes,
canary|A/B|blue/
green testing

Ops Highly
observable

Monitoring, logging, analytics, statistics,
aggregation

ELK,
Elasticsearch,
Logstash, Kibana

Recent implementations of microservices take the SOA idea to new limits, driven
by the goals of rapid, interchangeable, easily adapted, and easily scaled components.
As a cloud-native architecture, they play well on the basic functional features of
cloud computing and its delivery capabilities [44]. The resulting factorization of
workloads and incrementally scalable features of microservices provide a path by
which SOA can be evolved from its previously rigid and overly formal implemen-
tation settings and be implemented in much less forbidding ways.

One consequence of this evolution is the development of new architectural pat-
terns and the corresponding emergence and use of standards [37]. In that direction,
we believe that open standard agreement is the basic prerequisite for achieving high
interoperability and compatibility, being a key issue to be addressed [17]. The most
clear example is a continued emphasis on the use and proper documentation of
RESTful APIs, by means of Swagger/OpenAPI specifications [37]. A standardized
service description and choreography approach can assure compatibility with any
service, and achieve greater evolvability. Finally, standardized services in the surface
can collaborate with partners for better data portability, collaborating to solve the
challenges around distributed storage in microservices [38].

14 L. Baresi and M. Garriga

Finally, a few words about the organizational aspects that surround microser-
vices. It is important to link more explicitly microservices with the DevOps
(development plus operations as a single team) movement. DevOps seems to be
a key factor in the success of this architectural style [1], by providing the necessary
organizational shift to minimize coordination among the teams responsible for
each component, and removing the barriers for an effective, reciprocal relationship
between teams. DevOps implies an organizational rewiring (equivalent to, e.g.,
the adoption of agile methodologies) and certain key practices (e.g., continuous
delivery, integration, management). As this organizational shift is not simple, the
literature reports different sociotechnical patterns [43] to enable the transition
towards microservices. For example, sociotechnical-risks engineering, where crit-
ical architecture elements remain tightly controlled by an organization and loosely
coupled with respect to outsiders, or shift left, where organizational and operational
concerns (e.g., DevOps team mixing) are addressed earlier (“left”) in the lifecycle
toward architecting and development, rather than implementation and runtime.

4 Microservices on GitHub

Given the open challenges discussed in the previous section, we are interested in
how practitioners are addressing them in practice. To answer this, we delve into
the current microservices landscape in the biggest source of software artifacts on
the Web to date: GitHub.7 Our main goal is to identify the actual incidence of
microservices and related tooling in practice. We stated the following research
questions (RQs):

• RQ1: What is the activity and relevance of microservices in open source public
repositories?

• RQ2: What are the characteristics of microservices-related repositories?
• RQ3: How are these projects addressing the aforementioned open challenges?

4.1 Dataset Creation

We followed the guidelines for mining GitHub defined in the literature [23, 48], and
considered the following information:

• Releases of a repository: Each release is a specially tagged push event, composed
of several commits (at least one) to a stable repository branch.

7https://GitHub.com/.

https://GitHub.com/

Microservices: The Evolution and Extinction of Web Services? 15

• Push events to the master branch of a repository, as an indicator of repository
activity (each push event is composed of one or more commits, and is triggered
when a repository branch is pushed to).

• Stars, as an indicator of repository relevance for the GitHub community (starring
a repository allows one to keep track of interesting projects).

• Topics, as an indicator of the repository topics (this allows one to describe, find,
and relate repositories).

Then, we used GitHub Archive8 as our datasource of GitHub events. GitHub
Archive provides a daily dump of GitHub activity (around 2.5 Gb of events per day).
Given its size, it is only accessible through Google Big Query,9 a web service that
allows one to perform SQL-like interactive analysis of massive datasets (billions of
rows).

We started by looking for active repositories—those with a Push event to their
master branch during the last month. The total amount of active projects during
2018 exceeds 1 million. Thus, we additionally filtered repositories corresponding
to our research—i.e., those using the topic “microservice” or “microservices” or
mentioning these terms in the repository description.

The total number of repositories related to microservices is around 36,000.
However, when analyzing sample repositories at random, we noticed that some
of them are personal or class projects that, although being active, are not relevant
for the community. These repositories have only one contributor, zero forks, and
low popularity. With this dataset as a starting point, we narrowed our scope
to active repositories related to microservices. Then, we defined an additional
criteria for relevant repositories as those with 10+ stars (equivalent to followers
or level of popularity). This information is accessed through the GraphQL-based
GitHubAPI.10 All in all, the number of 2018’s relevant and active microservices-
related repositories on GitHub is 651,11 roughly 2% of the total 36,000 repositories,
excluding forks and duplicated.

4.2 Quantitative Analysis

From the dataset of 651 repositories extracted in the previous step, we performed
an initial quantitative analysis with the goal of answering the research questions.
We started by identifying their topics, languages used, and other metadata such as
commits, stars, and forks. Table 2 presents a summary of the initial analysis and tries
to answer RQ1: (What is the activity and relevance of microservices in open source

8https://www.GitHubarchive.org/.
9https://bigquery.cloud.google.com/.
10https://developer.GitHub.com/v4/.
11The full list can be found at: http://cor.to/Gvyp.

https://www.GitHubarchive.org/
https://bigquery.cloud.google.com/
https://developer.GitHub.com/v4/
http://cor.to/Gvyp

16 L. Baresi and M. Garriga

Table 2 Summary of Microservice Projects on GitHub (RQ1)

Metric Total Average Median

Total microservices projects ∼36,000 – –

Active and relevant projects (+10 stars, PR in the last month) 651 – –

Pull requests per project – 128.7 17

Stars per project (average) – 730.6 77

Watchers per project (average) – 62.7 15

Fig. 1 Languages distribution of microservices projects (RQ2)

public repositories?). For brevity, raw data and the scripts and queries used to gather
and analyze repositories metadata are accessible within our replication package.12

Moving to RQ2 (What are the characteristics of the microservices-related
repositories?), Fig. 1 decomposes the use of programming languages in our dataset.
Interestingly, Java is the most common language (27.8%), followed by Go (18.4%)
and JavaScript (16.8%). Other languages show a narrower adoption, including
Python, PHP, Typescrypt, and C#, among others. Given the polyglot nature of
microservices, some of the repositories adopt various languages—we report the
main language for each. Our results suggest that Java is still widely used [36] and,

12http://www.GitHub.com/webocs/mining-GitHub-microservices.

http://www.GitHub.com/webocs/mining-GitHub-microservices

Microservices: The Evolution and Extinction of Web Services? 17

although it is perceived as an “old-fashioned” language, it can make microservices
easier to adopt by Java developers, and also easier to integrate with legacy
Java systems. Besides, microservices are commonly associated with lightweight,
scripting languages such as JavaScript, which is reflected in practice—although we
expected JavaScript to be the most popular language. Finally, Go is mostly a server-
side language (developed by Google), mainly adopted for projects that provide
support for microservices in the form of frameworks or middleware infrastructures.

As for RQ3, (How are these projects addressing the aforementioned open
challenges?), we performed a topic ranking to grasp the underlying types of
solutions and technologies used. Topics are labels that create subject-based con-
nections between GitHub repositories and let one explore projects by, e.g., type,
technology, or keyword.13 Our ranking is summarized in Table 3. Note that
microservices/microservice do not appear as a topic on all repositories, but it can
be part of the description. Apart from those, the most popular languages: java,
nodejs (javascript) and golang (go) appear among the top topics. The others are
several tools for deploying and operating microservices such as docker (containers),
kubernetes (a container orchestration tool) and spring-boot (spring “containers”),
and cloud-related topics (cloud, spring-cloud). There are a few topics regarding
specific solutions for microservices communication (rpc, grpc, REST, rabbitmq)
and/or API design (API, REST, rest-api). Other challenges are underrepresented
in the list of topics with quite small percentages.

Table 3 Main topics in microservices projects

Topic Times % Topic Times % Topic Times %

Microservices 270 41.47 API 31 4.76 Python 20 3.07

Microservice 222 34.10 Framework 30 4.61 Cloud 17 2.61

Java 88 13.52 Microservices-arch 28 4.30 Service-mesh 17 2.61

Docker 68 10.45 Distributed-systems 28 4.30 CQRS 16 2.46

Kubernetes 63 9.68 grpc 25 3.84 DevOps 16 2.46

Spring-boot 57 8.76 Rest 24 3.69 redis 16 2.46

Golang 52 7.99 API-gateway 23 3.53 http 16 2.46

Nodejs 51 7.83 Rest-API 21 3.23 Spring-cloud-
core

16 2.46

Cloud-native 46 7.07 Containers 21 3.23 mongodb 15 2.30

Go 41 6.30 Serverless 20 3.07 Kafka 15 2.30

Spring-cloud 41 6.30 Service-discovery 20 3.07 DDD 15 2.30

Spring 41 6.30 Javascript 20 3.07 Proxy 14 2.15

rpc 33 5.07 Rabbitmq 20 3.07 Consul 13 2.00

13https://blog.GitHub.com/2017-01-31-introducing-topics/.

https://blog.GitHub.com/2017-01-31-introducing-topics/

18 L. Baresi and M. Garriga

4.3 Qualitative Analysis

Continuing with RQ3, (How are these projects addressing the aforementioned
challenges?), we performed a Qualitative analysis divided into two parts. First,
we took a small sample (64 projects, 10% of the total) at random and analyzed
it, which led to some preliminary insights. Support for the microservices lifecycle
is the most common practice (44%), ranging from templates and boilerplate
code for development to operational support in the form of containerization
solutions, continuous integration, load-balancing, etc.—broadly speaking, DevOps
practices—followed by specific solutions for communication among microservices
(33%), implementing orchestration mechanisms, asynchronous communication, and
API gateways. The rest of the projects actually implement microservices (23%),
ranging from sample applications fully developed with several microservices to
single or few microservices—e.g., for authentication or cryptography.

Interestingly, the focus is on supporting microservice architectures rather than on
the development of microservices themselves. We believe that this is mainly due to
two factors:

• A complexity shift: The claimed simplicity of microservices moves the complex-
ity to their supporting systems [19].

• A different reuse perspective [33]: Instead of reusing existing microservices for
new tasks or use cases, they should be small and independent enough to allow
for rapidly developing a new one that can coexist, evolve, or replace the previous
one according to the business needs [19].

Afterwards, we performed qualitative analysis on the whole dataset, organized
around each stage of microservice lifecycle (recall Table 1). For doing this, we
assessed the documentation of the repositories, in particular the Readme documents
at the master branch. We crafted a dataset of 590 readme documents (90% of the
total), given that some of the projects did not present their documentation in such a
standard way.

We used the dataset (along with the metadata of repositories) to populate Apache
Solr,14 a search engine that features advanced matching capabilities including
phrases, wildcards, and clustering. Solr makes use of Apache Lucene,15 a well-
known search library based on the TF.IDF model. This scoring model involves a
number of scoring factors such as term frequency (the frequency with which a term
appears in a document), inverse document frequency (the rarer a term is across all
documents in the index, the higher its contribution to the score is) and other tuning
factors such as coordination factor (the more query terms are found in a document,
the higher its score is) and field length (the more words a field contains, the lower its
score is). The exact scoring formula that brings these factors together is outside the

14http://lucene.apache.org/solr/.
15https://lucene.apache.org/.

http://lucene.apache.org/solr/
https://lucene.apache.org/

Microservices: The Evolution and Extinction of Web Services? 19

scope of the present chapter, but a detailed explanation can be found in the Lucene
documentation.16

Then, we built the queries accounting the different features and tools/practices
presented in Table 1. The following discussion of obtained results is also organized
around lifecycle steps, namely: design, development, and operation.

Table 4 shows the three queries related to the design stage, together with the
total number of repositories found for each query, and the top 5 (most relevant)
results. Clearly, the least addressed topic in the design of microservices is their
modeling around the business domain, or domain-driven design, with only 29
repositories listed. As modeling is somewhat subjective, one may argue that tool
support or examples may be scarce or not extrapolable to different domains.
However, designing microservices and determining their granularity is still an open
challenge [38], thus this may be a call for further efforts. Note that the most relevant
repositories are sample applications and not supporting tools—with the exception
of #4 (boilerplate architecture) and #5 (an opinionated framework for .NET).

Conversely, RESTful interfaces (specified through Swagger/OpenAPI) seem to
be a widespread practice (208 repositories) in line with the perceived state-of-
practice in industry [36]—#1 bringing together the most popular communication
style (REST) with the most popular language (Java). Gaining traction, 147 reposi-
tories deal with asynchronous communication through messaging protocols such as
RabbitMQ or Spring Cloud Stream for Java (#3).

Entering development stage (Table 5), the most addressed topic is automa-
tion (275 repositories) through continuous integration and deployment techniques
(CI/CD), Travis being the weapon of choice, perhaps because of its easy integration
with GitHub [48]. One may highlight #1 as it provides an interesting approach for
managing multiple apps in a single (mono) repository.

Orchestration/choreography (41 repositories) are not so popular, as microservice
integration so far has been usually ad hoc and in-house. The salient example is
Netflix Conductor (#1), nowadays the most popular orchestrator for microservices.
Somewhat service discovery (101 repositories) is more popular, although from
a different perspective w.r.t. discovery in traditional SOA [18]. Nowadays, the
problem is to find the “alive” endpoints among the multiple copies of a microservice
at runtime [42], through tools such as Apache Zookeeper, etcd, Consul or VertX
(#2). However, for large-scale microservice architectures, orchestration and chore-
ography solutions are a must-have, although there is not a large number of these
cases on GitHub. Technologies such as NGINX, AWS API gateways, or Kubernetes
control plane are the alternatives for enterprise microservices management.

Finally, Table 6 summarizes results for the operation stage. Failure isolation
patterns are not so common (54 repositories). Circuit-breaker is the only pattern
that provides significant results, while others such as bulkheads or timeouts were
not mentioned throughout our dataset. The first four repositories in the results
are sample microservices applications that implement circuit-breakers: #5 is an

16http://lucene.apache.org/core/3_5_0/api/core/org/apache/lucene/search/Similarity.html.

http://lucene.apache.org/core/3_5_0/api/core/org/apache/lucene/search/Similarity.html

20 L. Baresi and M. Garriga

Table 4 Repository analysis by design principles and query (total repos and top 5 per query)

#repos Principle/repoId Query/description

29 Modeled around
business domain

“bounded context” OR ddd OR “domain driven design”

1st EdwinVW/pitstop This repo contains a sample application based on a garage
management system for PitStop—a fictitious garage. The
primary goal of this sample is to demonstrate several
Web-scale architecture concerns. . .

2nd banq/jdonframework Domain Events Pub/Sub framework for DDD

3rd idugalic/digital-
restaurant

DDD. Event sourcing. CQRS. REST. Modular.
Microservices. Kotlin. Spring. Axon platform. Apache
Kafka. RabbitMQ

4th ivanpaulovich/clean-
architecture-manga

Clean architecture service template for your microservice
with DDD, TDD and SOLID using .NET Core 2.0. The
components are independent and testable, the architecture
is evolutionary in multiple dimensions. . .

5th volak/Aggregates.NET .NET event sourced domain driven design model via
NServiceBus and GetEventStore

208 Hide implementation
details

rest OR restful OR swagger OR openapi OR “api
blueprint”

1st noboomu/proteus High-Performance RESTful Java web and microservice
framework

2nd mfornos/awesome-
microservices

A curated list of microservice architecture-related
principles and technologies

3rd banzaicloud/pipeline Pipeline enables developers to go from commit to scale in
minutes by turning Kubernetes into a feature-rich
application platform integrating CI/CD, centralized
logging, monitoring, enterprise-grade. . .

4th benc-uk/smilr Microservices reference app showcasing a range of
technologies, platforms and methodologies

5th rootsongjc/awesome-
cloud-native

A curated list for awesome cloud native tools, software,
and tutorials

147 Hide implementation
details

asynchronous OR “data pump” OR “event pump” OR
messaging OR RabbitMQ OR Kafka

1st mfornos/awesome-
microservices

A curated list of microservice architecture-related
principles and technologies

2nd binhnguyennus/
awesome-scalability

Scalable, available, stable, performant, and intelligent
system design patterns

3rd hipster-labs/generator-
jhipster-spring-cloud-
stream

JHipster module for messaging microservices with Spring
Cloud Stream

4th SaifRehman/ICP-
Airways

Cloud Native application based on microservice
architecture, IBM Middlewares and following 12 factor
practices

5th idugalic/digital-
restaurant

DDD. Event sourcing. CQRS. REST. Modular.
Microservices. Kotlin. Spring. Axon platform. Apache
Kafka. RabbitMQ

Microservices: The Evolution and Extinction of Web Services? 21

Table 5 Repository analysis by development principles and query (total repos and top 5 per
query)

#repos Principle/repoId Query/description

275 Culture of automation travis OR ci OR cd

1st MozillaSecurity/orion CI/CD pipeline for building and publishing multiple
containers as microservices within a mono-repository

2nd vietnam-devs/coolstore-
microservices

A containerized polyglot service mesh based on .NET
Core, Nodejs, Vuejs and more running on Istio

3rd rootsongjc/awesome-
cloud-native

A curated list for awesome cloud native tools, software,
and tutorials.

4th scalecube/scalecube-
services

ScaleCube services is a broker-less
reactive-microservices-mesh that features: API-gateways,
service-discovery, service-load-balancing, the
architecture supports plug-and-play service
communication. . .

5th banzaicloud/pipeline Pipeline enables developers to go from commit to scale
in minutes by turning Kubernetes into a feature-rich
application platform integrating CI/CD, centralized
logging, monitoring, enterprise-grade. . .

41 Decentralize all orchestration OR choreography OR “netflix conductor”

1st Netflix/conductor Conductor is a microservices orchestration engine

2nd rootsongjc/awesome-
cloud-native

A curated list for awesome cloud native tools, software,
and tutorials

3rd taimos/dvalin Taimos microservices framework.

4th InVisionApp/go-health Library for enabling asynchronous health checks in your
service

5th Sharding-
sphere/sharding-sphere

Distributed database middleware

101 Decentralize all “service discovery” OR zookeeper OR consul

1st smallnest/rpcx Faster multilanguage bidirectional RPC framework in
Go, like alibaba Dubbo and weibo Motan in Java, but
with more features, scale easily

2nd vert-x3/vertx-service-
discovery

Some tools one can use for doing microservices with
Vert.x

3rd rootsongjc/awesome-
cloud-native

A curated list for awesome cloud native tools, software,
and tutorials

4th senecajs/seneca-mesh Mesh your Seneca.js microservices together—no more
service discovery

5th containous/traefik The cloud native edge router

interesting framework that actually supports circuit-breakers out of the box (through
the Netflix Hystrix library).

Following the “deploy independently” principle, the most popular practice
overall, along with CI/CD (Table 5), is containerization, achieved mainly through
docker (274 repositories). An important number of sample microservices or sidecar
libraries is containerized. Interestingly, #5 combines microservices, mobile devices,
and blockchain.

22 L. Baresi and M. Garriga

Table 6 Repository analysis by operation principles and query (total repos and top 5 per query)

#repos Principle/repoId Query/description

54 Isolate failure “circuit breaker” OR hystrix

1st sqshq/PiggyMetrics Microservice architecture with Spring Boot, Spring
Cloud and Docker

2nd ERS-HCL/nxplorerjs-
microservice-starter

Node JS, Typescript, Express based reactive microservice
starter project for REST and GraphQL APIs

3rd raycad/go-microservices Golang Microservices Example

4th spring-petclinic/spring-
petclinic-microservices

Distributed version of Spring Petclinic built with Spring
Cloud

5th wso2/msf4j WSO2 Microservices Framework for Java (MSF4J)

274 Deploy independently docker OR containers OR kubernetes

1st rootsongjc/awesome-
cloud-native

A curated list for awesome cloud native tools, software,
and tutorials

2nd benc-uk/smilr Microservices reference app showcasing a range of
technologies, platforms, and methodologies

3rd dotnet-architecture/
eShopOnContainers

Easy to get started sample reference microservice- and
container-based application. Cross-platform on Linux
and Windows Docker Containers, powered by .NET Core
2.1, Docker engine and optionally Azure. . .

4th IF1007/if1007 Desenvolvimento de Aplicaes com Arquitetura Baseada
em Microservices

5th IBM/android-kubernetes-
blockchain

Build a blockchain-enabled health and fitness app with
Android and Kubernetes

81 Highly observable monitoring OR logging OR elk

1st slanatech/swagger-stats API telemetry and APM

2nd hootsuite/health-checks-
api

Standardize the way services and applications expose
their status in a distributed application

3rd banzaicloud/pipeline Pipeline enables developers to go from commit to scale
in minutes by turning Kubernetes into a feature-rich
application platform integrating CI/CD, centralized
logging, monitoring, enterprise-grade. . .

4th wso2/msf4j WSO2 Microservices Framework for Java (MSF4J)

5th mfornos/awesome-
microservices

A curated list of microservice architecture related
principles and technologies

The last principle (highly observable) is mainly represented by monitoring
and logging techniques (81 repositories), while other practices and technologies
(e.g., correlation IDs, analytics, and specific libraries) are not relevant. #1 is a
monitoring tool for RESTful APIs (i.e., for most microservices), while #2 and #3
are comprehensive frameworks that include monitoring facilities, among others.

To conclude, let us recap on RQ3, (How are these projects addressing the
aforementioned challenges?). From our analysis, it can be highlighted that both
containerization and CI/CD are the most widespread practices in the microservice
ecosystem, followed closely by RESTful specifications. Those correspond to three
principles: deploy independently, culture of automation, and hide implementation

Microservices: The Evolution and Extinction of Web Services? 23

details, respectively. Mild attention is put on asynchronous communication, ser-
vice discovery, and monitoring. Finally, the least discussed issues in the GitHub
microservice landscape are failure isolation patterns (mostly synonyms with circuit-
breakers), orchestration/choreography, and an alarming lack of modeling (DDD,
bounded context, etc.) support.

As threats to validity of our qualitative assessment, one may note that: (1)
queries are not representative of all the keywords and their combinations in Table 2
and (2) queries are constructed using terms related to each other (e.g., REST and
OpenAPI/Swagger). This was done to increase the accuracy of results according
to the Solr underlying matching mechanisms. We first excluded terms that are
not relevant for the queries—i.e., they return (almost) all of the documents as
a result, or the inverse (none). Then, we grouped only similar terms (according
to their topics) in the same query. This prevents retrieving only general-purpose
repositories (e.g., awesome lists17) and not the specific, relevant ones for the query
at hand—a bias introduced by the coordination factor of TF.IDF weighting [12].
We acknowledge the importance of such lists, but in our case they introduce
noise by biasing towards listed tools/frameworks/libraries. Additionally, we are not
taking into account historical data of repositories, which may help us track certain
behaviors—e.g., the periodicity of releases before/after implementing CI/CD tools,
or the impact of containerization in the popularity of a given repository. Besides,
this is an ongoing work and performing more comprehensive analysis through, e.g.,
clustering techniques or topic modeling is the subject of future work.

4.3.1 The Serverless Panorama

Finally, we discuss the current tendencies of serverless microservices (Table 7).
We found 35 repositories mentioning serverless (5% of the microservices-related
repositories), showing that this technology is still in the early stages of adoption.
Through a detailed analysis, one can find example apps using recent serverless
platforms—in this case IBM/Apache Openwhisk, but there are others for Google
Cloud and Azure functions. Two frameworks to handle the serverless functions’
lifecycle, with special focus on deployment, are the serverless framework and UP.
Finally, a representative of the event-oriented nature of functions: flogo, and the
usual awesome list of serverless solutions.

The most popular languages (when applicable) are JavaScript (mostly for exam-
ples, tutorials, and boilerplate applications) and Go (for deployment frameworks
such as UP). Popular topics are straightforward: serverless and its variety of vendor
flavors (Google functions, Azure functions, IBM Openwhisk, AWS Lambda). Apart
from that, other popular topics are: deployment, since functions involve yet more
moving parts than microservices, making deployment even more complex; Apis

17A common type of curated lists of entries within a given topic—https://GitHub.com/
sindresorhus/awesome.

https://GitHub.com/sindresorhus/awesome
https://GitHub.com/sindresorhus/awesome

24 L. Baresi and M. Garriga

Table 7 Serverless repositories analysis, total and top 5

#repos Principle/repoId Query/description

35 Serverless serverless OR faas

1st serverless/serverless Serverless framework—build web, mobile, and IoT
applications with serverless architectures using AWS
Lambda, Azure functions, Google CloudFunctions

2nd anaibol/awesome-serverless A curated list of awesome services, solutions, and
resources for serverless/no-backend applications

3rd apex/up Deploy infinitely scalable serverless apps, apis, and
sites in seconds to AWS

4th TIBCOSoftware/flogo An open source ecosystem of opinionated event-driven
capabilities to simplify building efficient and modern
serverless functions, microservices, and edge apps

5th IBM/spring-boot-
microservices-on-kubernetes

In this code we demonstrate how a simple Spring Boot
application can be deployed on top of Kubernetes

and integration, since functions are typically used to generate “entry points” for
systems and architectures, probably relying on traditional servers for more complex
processing, and finally events and messages platforms such as Kafka or Mqtt, as
functions are typically event driven.

From this analysis, we derive the following challenges and opportunities.
First, support for FaaSification [39] (i.e., splitting into functions) of legacy or
microservices code. Then, tool support for creating and managing complex func-
tions. Usually, functions are used for simple tasks, although they can encapsulate
complex microservices such as image recognition [4, 6] or model checking [45],
as demonstrated in our previous work. However, this involves trial and error and
significant effort, which implies an opportunity to develop supporting techniques,
frameworks, and tools. For example, to embed custom languages (e.g., OCAML),
improve long-running algorithms, or exploit opportunistic container reuse of the
underlying platform as a cache of sorts.

Additionally, some aspects that may not arise from the state of the art should
be mentioned here. Serverless is being pushed forward by major vendors, beyond
the traditional use cases of short computation as lambda functions.18 For example,
through AWS Fargate for long running functions, or AWS step functions to
define complex serverless workflows. Furthermore, solutions such as OpenFaaS
and Kubernetes as managed service are blurring the frontier between lightweight
containers and serverless functions. The industry tendency is that of starting with
containerized microservices (from scratch or from a monolith) and then migrate key
features to FaaS to exploit its unique capabilities.

18https://aws.amazon.com/en/serverless/serverlessrepo/.

https://aws.amazon.com/en/serverless/serverlessrepo/

Microservices: The Evolution and Extinction of Web Services? 25

5 Conclusions

This chapter presented an evolutionary perspective that captures the fundamental
understanding of microservice architectures, encompassing their whole lifecycle.
This is necessary to enable effective exploration, understanding, assessing, compar-
ison, and selection of microservice-based models, languages, techniques, platforms,
and tools.

Microservice architectures are fairly new, but their hype and success is unde-
niable, as big IT companies have chosen them to deliver their business, with
Amazon, Netflix, Spotify, and Twitter among those. Due to this traction, the
industrial state of practice on microservices has surpassed academic research efforts,
which are still at an earlier stage [38]. This resulted in a sort of gap between
academic state of the art and industrial state of practice, confirmed by our literature
review, which also provides a panorama of available solutions and current and
future challenges. Among them are the early use of resilience patterns to design
fault-tolerant microservice solutions, the standardization of their interfaces [37],
and the development of asynchronous microservices. Special attention should be
given to the latent use of the serverless model (FaaS) to design, deploy, and
manage microservices. FaaS has the potential to become the next evolution of
microservices [9] as event-driven, asynchronous functions, because the underlying
constraints have changed, costs have reduced, and radical improvements in time to
value are possible.

Finally, we present an analysis of microservices-related repositories on GitHub,
which confirmed our findings regarding open challenges, in particular those related
to microservices design and modeling (granularity, DDD, and bounded context).
This is an on-going work with the main goal of understanding how, and to which
degree, software developers are embracing microservice architectures in practice,
and which tools and practices are available to overcome their challenges. Our
current work encompasses automating the repository analysis through a mining
tool, capturing and processing additional metadata, mainly regarding the history of
releases, issues, etc. Then, applying natural language processing techniques to infer
information (features, topics) from repositories’ documentation. Finally we would
like to combine this analysis with developers’ feedback to understand their vision
regarding microservice architectures.

Acknowledgements This work has been partially supported by the GAUSS national research
project, which has been funded by the MIUR under the PRIN 2015 program (Contract 2015-
KWREMX); and by the grant ANPCyT PICT-2017-1725.

26 L. Baresi and M. Garriga

References

1. A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices architecture enables DevOps: migra-
tion to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. A. Balalaie, A. Heydarnoori, P. Jamshidi, D.A. Tamburri, T. Lynn, Microservices migration
patterns. Softw. Pract. Experience 48(11), 2019–2042 (2018)

3. L. Baresi, M. Garriga, A. De Renzis, Microservices identification through interface analysis, in
European Conference on Service-Oriented and Cloud Computing (ESOCC) (Springer, Berlin,
2017)

4. L. Baresi, D.F. Mendonça, M. Garriga, Empowering low-latency applications through a
serverless edge computing architecture, in European Conference on Service-Oriented and
Cloud Computing (Springer, Berlin, 2017), pp. 196–210

5. L. Baresi, S. Guinea, A. Leva, G. Quattrocchi, A discrete-time feedback controller for
containerized cloud applications, in ACM Sigsoft International Symposium on the Foundations
of Software Engineering (FSE) (ACM, New York, 2016)

6. L. Baresi, D.F. Mendonça, M. Garriga, S. Guinea, G. Quattrocchi, A unified model for
the mobile-edge-cloud continuum. ACM Trans. Internet Technol. 19(2), 29:1–29:21 (2019).
https://doi.org/10.1145/3226644

7. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F. Nielsen, S. Thatte, D.
Winer, Simple Object Access Protocol (SOAP) 1.1 (2000). W3C Recommendation

8. G. Casale, C. Chesta, P. Deussen, E. Di Nitto, P. Gouvas, S. Koussouris, V. Stankovski, A.
Symeonidis, V. Vlassiou, A. Zafeiropoulos, et al., Current and future challenges of software
engineering for services and applications. Proc. Comput. Sci. 97, 34–42 (2016)

9. A. Cockroft, Evolution of business logic from monoliths through microservices, to functions
(2017). https://goo.gl/H6zKMn

10. N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,
Microservices: yesterday, today, and tomorrow, in Present and Ulterior Software Engineering
(Springer, Cham 2017), pp. 195–216

11. J. Erickson, K. Siau, Web service, service-oriented computing, and service-oriented architec-
ture: separating hype from reality. J. BD Manage. 19(3), 42–54 (2008)

12. C. Fautsch, J. Savoy, Adapting the TF IDF vector-space model to domain specific information
retrieval, in Proceedings of the 2010 ACM Symposium on Applied Computing (ACM, New
York, 2010), pp. 1708–1712. https://doi.org/10.1145/1774088.1774454

13. R.T. Fielding, R.N. Taylor, Architectural styles and the design of network-based software
architectures, vol. 7. (University of California, Irvine, 2000)

14. V. Garousi, M. Felderer, M.V. Mäntylä, Guidelines for including grey literature and conducting
multivocal literature reviews in software engineering. Inf. Softw. Technol. 106, 101–121 (2019)

15. M. Garriga, Towards a taxonomy of microservices architectures, in International Conference
on Software Engineering and Formal Methods (Springer, Berlin, 2017), pp. 203–218

16. M. Garriga, A. Flores, A. Cechich, A. Zunino, Web services composition mechanisms: a
review. IETE Tech. Rev. 32(5), 376–383 (2015)

17. M. Garriga, C. Mateos, A. Flores, A. Cechich, A. Zunino, Restful service composition at a
glance: a survey. J. Netw. Comput. Appl. 60, 32–53 (2016)

18. M. Garriga, A.D. Renzis, I. Lizarralde, A. Flores, C. Mateos, A. Cechich, A. Zunino, A
structural-semantic web service selection approach to improve retrievability of web services.
Inf. Syst. Front. 20(6), 1319–1344 (2018). https://doi.org/10.1007/s10796-016-9731-1

19. S. Hassan, R. Bahsoon, Microservices and their design trade-offs: a self-adaptive roadmap, in
IEEE International Conference on Services Computing (SCC) (IEEE, Piscataway, 2016), pp.
813–818

20. S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A.C. Arpaci-Dusseau, R.H.
Arpaci-Dusseau, Serverless computation with openlambda. Elastic 60, 80 (2016)

https://doi.org/10.1145/3226644
https://goo.gl/H6zKMn
https://doi.org/10.1145/1774088.1774454
https://doi.org/10.1007/s10796-016-9731-1

Microservices: The Evolution and Extinction of Web Services? 27

21. V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M.K. Reiter, V. Sekar, Gremlin: systematic
resilience testing of microservices, in 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS) (IEEE, Piscataway, 2016), pp. 57–66

22. V. Issarny, N. Georgantas, S. Hachem, A. Zarras, P. Vassiliadist, M. Autili, M.A. Gerosa,
A.B. Hamida, Service-oriented middleware for the future internet: state of the art and research
directions. J. Internet Services Appl. 2(1), 23–45 (2011)

23. E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D.M. German, D. Damian, The promises
and perils of mining github, in Proceedings of the 11th Working Conference on Mining
Software Repositories (ACM, New York, 2014), pp. 92–101

24. B. Kitchenham, Guidelines for performing systematic literature reviews in software engineer-
ing. Technical report, ver. 2.3 EBSE Technical Report. EBSE. sn (2007)

25. P. Lemberger, M. Morel, Why Has SOA Failed So Often? (Wiley, London, 2013), pp. 207–218.
https://doi.org/10.1002/9781118562017.app3

26. J. Lewis, M. Fowler, Microservices (2014). http://martinfowler.com/articles/microservices.
html

27. I. Nadareishvili, R. Mitra, M. McLarty, M. Amundsen, Microservice Architecture: Aligning
Principles, Practices, and Culture (O’Reilly Media, Sebastopol, 2016)

28. S. Newman, Building Microservices (O’Reilly Media, Sebastopol, 2015)
29. M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented computing: a research

roadmap. Int. J. Coop. Inf. Syst. 17(02), 223–255 (2008)
30. C. Pautasso, O. Zimmermann, F. Leymann, Restful web services vs. “big” web services:

making the right architectural decision, in 17th International Conference on World Wide Web
(ACM Press, New York, 2008), pp. 805–814

31. M. Rahman, J. Gao, A reusable automated acceptance testing architecture for microservices
in behavior-driven development, in 2015 IEEE Symposium on Service-Oriented System
Engineering (SOSE) (IEEE, Piscataway, 2015), pp. 321–325

32. J. Rao, X. Su, A survey of automated web service composition methods, in International
Workshop on Semantic Web Services and Web Process Composition (Springer, Berlin, 2004),
pp. 43–54

33. M. Richards, Microservices vs. Service-Oriented Architecture (O’Reilly Media, Sebastopol,
2015)

34. C. Richardson, Microservices architecture (2014). http://microservices.io/
35. M. Roberts, Serverless architectures (2016). http://martinfowler.com/articles/serverless.html
36. G. Schermann, J. Cito, P. Leitner, All the services large and micro: revisiting industrial practice

in services computing, in International Conference on Service-Oriented Computing (ICSOC)
(Springer, Berlin, 2015), pp. 36–47

37. A. Sill, The design and architecture of microservices. IEEE Cloud Comput. 3(5), 76–80 (2016)
38. J. Soldani, D. Tamburri, W.J. Van Den Heuvel, The pains and gains of microservices: a

systematic grey literature review. J. Syst. Softw. 146, 215–232 (2018). https://doi.org/10.1016/
j.jss.2018.09.082

39. J. Spillner, C. Mateos, D.A. Monge, Faaster, better, cheaper: the prospect of serverless scientific
computing and HPC, in Latin American High Performance Computing Conference (Springer,
Berlin, 2017), pp. 154–168

40. B. Srivastava, J. Koehler, Web service composition-current solutions and open problems, in
ICAPS 2003 Workshop on Planning for Web Services, vol. 35 (2003), pp. 28–35

41. M. Stigler, Understanding serverless computing, in Beginning Serverless Computing (Springer,
Berlin, 2018), pp. 1–14

42. J. Stubbs, W. Moreira, R. Dooley, Distributed systems of microservices using docker and
serfnode, in International Workshop on Science Gateways (IWSG) (IEEE, Piscataway, 2015),
pp. 34–39

43. D.A. Tamburri, R. Kazman, H. Fahimi, The architect’s role in community shepherding. IEEE
Softw. 33(6), 70–79 (2016). https://doi.org/10.1109/MS.2016.144

https://doi.org/10.1002/9781118562017.app3
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://microservices.io/
http://martinfowler.com/articles/serverless.html
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1109/MS.2016.144

28 L. Baresi and M. Garriga

44. G. Toffetti, S. Brunner, S., M. Blöchlinger, J. Spillner, T.M. Bohnert, Self-managing cloud-
native applications: design, implementation, and experience. Futur. Gener. Comput. Syst. 72,
165–179 (2017). https://doi.org/10.1016/j.future.2016.09.002.

45. C. Tsigkanos, M. Garriga, L. Baresi, C. Ghezzi, Cloud deployment tradeoffs for the analysis
of spatially-distributed systems of internet-of-things. Technical Report, Politecnico di Milano
(2019)

46. M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casallas, S. Gil,
C. Valencia, A. Zambrano, et al., Infrastructure cost comparison of running web applications
in the cloud using AWS Lambda and monolithic and microservice architectures, in 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (IEEE,
Piscataway, 2016), pp. 179–182

47. N. Wilde, B. Gonen, E. El-Sheik, A. Zimmermann, Emerging Trends in the Evolution of
Service-Oriented and Enterprise Architectures, chap. Approaches to the Evolution of SOA
Systems. Intelligent Systems Reference Library (Springer, Berlin, 2016)

48. F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, M. Di Penta, How open source projects
use static code analysis tools in continuous integration pipelines, in 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR) (IEEE, Piscataway, 2017),
pp. 334–344

49. O. Zimmermann, Do microservices pass the same old architecture test? Or: SOA is not dead–
long live (micro-) services, in Microservices Workshop at SATURN Conference (Software
Engineering Institute SEI, Carnegie Mellon University, 2015)

https://doi.org/10.1016/j.future.2016.09.002

	Microservices: The Evolution and Extinction of Web Services?
	1 Introduction
	2 Web Services Then and Now
	2.1 SOA(P) Services
	2.2 RESTful Services
	2.3 Microservices
	2.4 Upcoming Faasification

	3 Challenges
	3.1 Design Challenges
	3.2 Development Challenges
	3.3 Operation Challenges
	3.4 Discussion

	4 Microservices on GitHub
	4.1 Dataset Creation
	4.2 Quantitative Analysis
	4.3 Qualitative Analysis
	4.3.1 The Serverless Panorama

	5 Conclusions
	References

