
Antonio Bucchiarone · Nicola Dragoni
Schahram Dustdar · Patricia Lago
Manuel Mazzara · Victor Rivera
Andrey Sadovykh Editors

Microservices
Science and Engineering

Microservices

Antonio Bucchiarone • Nicola Dragoni •
Schahram Dustdar • Patricia Lago •
Manuel Mazzara • Victor Rivera •
Andrey Sadovykh
Editors

Microservices
Science and Engineering

123

Editors
Antonio Bucchiarone
Distributed Adaptive Systems (DAS)
Research Unit
Fondazione Bruno Kessler
Trento, Italy

Nicola Dragoni
Department of Applied Mathematics
and Computer Science
Technical University of Denmark
Kongens Lyngby, Denmark

Schahram Dustdar
Distributed Systems Group
Vienna University of Technology
Vienna, Austria

Patricia Lago
Dept of Computer Science
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Manuel Mazzara
Institute of Technologies and Software
Development
Innopolis University
Innopolis, Russia

Victor Rivera
Institute of Technologies and Software
Development
Innopolis University
Innopolis, Russia

Andrey Sadovykh
Innopolis University
Innopolis, Russia

ISBN 978-3-030-31645-7 ISBN 978-3-030-31646-4 (eBook)
https://doi.org/10.1007/978-3-030-31646-4

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-31646-4

Preface

If the reader had ever looked in detail at the mainstream languages for development
of server-side applications, he will have noticed that they provide abstractions
to break down the complexity of programs into modules, but they are designed
for the creation of a single executable artifact. This artifact in literature is often
called a monolith. The modularization abstractions of these languages rely on
sharing resources such as memory, databases, and files within the same machine.
The modules of a monolith depend on these very shared resources and cannot be
therefore independently executed.

The consequence is that monoliths are difficult to use in distributed systems
without the addition of specific frameworks or ad hoc solutions. The reader will
remember the popularity of, for example, RMI or CORBA. However, even these
solutions suffer from the general issues affecting monoliths, such as difficult
maintainability, problem dependencies, and, in particular, issues with scalability.
Monoliths also represent a technology lock-in for developers, which are bound to
use the same language and frameworks of the original application.

The microservices architectural style has been proposed exactly to cope with
such problems. In its simplest definition “a microservice is a cohesive, independent
process interacting via messages.” The word “cohesive” here indicates that the
service implements only functionalities strongly related to the concern that it is
meant to model. This is the very idea of micro-services, which is not particularly
about the size, but the cohesiveness. Microservices are meant to be independent
components deployed in isolation and equipped with dedicated memory persistence
tools (e.g., databases). In a microservice architecture, all the components are
microservices. Here, the distinguishing behavior derives from the composition and
coordination of its components via messages.

Despite the broad and extensive research in the field, especially conducted
in recent years, many questions are still open, and this book tries to address
some of them. We consider microservice an evolutionary rather than revolutionary
architectural style, and we would like to assist the reader in sharing with us this
perspective while reading this book. In this way we organized and structured the
content. Our objective is to present the state of the art in the field and open the

v

vi Preface

discussion towards the next evolutionary step. The volume is organized in six parts,
each dedicated to a specific aspect of the topic.

Part I: Opening
The first chapter opens the dance by asking “Microservices: The Evolution and
Extinction of Web Services?” This is a particularly important question for the service
community, and for all the researchers and practitioners who worked in the field for
the last 15–20 years. The first chapter analyzes the new (and old) challenges, includ-
ing service design and specification, data integrity, and consistency management and
presents an evolutionary perspective that captures the fundamental understanding
of microservice architectures, encompassing their whole life cycle. This will help
the readers to have effective exploration, understanding, assessing, comparison,
and selection of microservice-based models, languages, techniques, platforms, and
tools. Chapter 2, “Size Matters: Microservices Research and Applications,” is a
summary of research performed in the field by some of the editors of this book. It
consists of an overview that provides the introductory information that one should
know before continuing reading.

Part II: Migration
Part II discusses the issue of migration from monoliths to microservices. Chapters 3
and 4 are indeed specifically on migration to a loosely coupled architecture.
Microservices have received and are still receiving increasing attention, both from
academia and industry. Migration to microservices is a sensitive matter for a
number of companies involved in a major refactoring of their back-end systems.
The chapters “Migrating to Microservices” and “Assessing Your Microservice
Migration Readiness” are exactly covering this aspect.

Part III: Modeling
Aspects of modelization are covered in Part III. Chapter 5 introduces a catalog and
a taxonomy of the most common microservices anti-patterns and identifies common
problems. Chapter 6 introduces the concept of RESTful conversation and Chap. 7
presents insights from studying and developing two approaches for employing
“Graphical and Textual Model-Driven Microservice Development.”

Part IV: Development and Deployment
Part IV is dedicated to aspects of development and deployment. Chapter 8 is the
perfect glue between Parts III and IV, presenting a formal model tailored for
reasoning on the deployment of microservice architectures. Chapter 9 addresses
the problem of autonomic and decentralized microservices management by using
GRU, a tool that adds an autonomic adaptation layer for microservice applications
focusing on Docker. Chapter 10 proposes a novel hybrid approach to microservices
load balancing.

Part V: Applications
Part IV covers applications of microservices. Chapter 11, “Towards the Digital
Factory: A Microservice-Based Middleware for Real-to-Digital Synchronization”,
shows the relevance of the topic in the increasingly important Industry 4.0.

Preface vii

Chapter 12, “Using Microservices to Customize Multi-tenant SaaS” presents a
novel approach to support customizing SaaS in a microservices architecture style.
Here each customization is encapsulated as a microservice, which is on-boarded to
the main service at runtime and replaces the standard functionality of the service.
Chapter 13, “You Are Not Netflix”, explains why the success of Netflix cannot just
be exported in any context with the same results.

Part VI: Education
The last Chap. 14 is dedicated to education, and opens to our new project: a series
of yearly workshops focusing on education and another book on the very same topic
as a result of this collaborative brainstorming.

Trento, Italy Antonio Bucchiarone
Kongens Lyngby, Denmark Nicola Dragoni
Vienna, Austria Schahram Dustdar
Amsterdam, The Netherlands Patricia Lago
Innopolis, Russia Manuel Mazzara
Innopolis, Russia Victor Rivera
Innopolis, Russia Andrey Sadovykh
June 11, 2019

Contents

Part I Opening

Microservices: The Evolution and Extinction of Web Services? 3
Luciano Baresi and Martin Garriga

Size Matters: Microservices Research and Applications . 29
Manuel Mazzara, Antonio Bucchiarone, Nicola Dragoni, and Victor Rivera

Part II Migration

Migrating to Microservices . 45
Alexis Henry and Youssef Ridene

Assessing Your Microservice Migration . 73
Alexis Henry and Youssef Ridene

Part III Modeling

Microservices Anti-patterns: A Taxonomy . 111
Davide Taibi, Valentina Lenarduzzi, and Claus Pahl

Modeling Microservice Conversations with RESTalk. 129
Ana Ivanchikj and Cesare Pautasso

Graphical and Textual Model-Driven Microservice Development 147
Florian Rademacher, Jonas Sorgalla, Philip Wizenty, Sabine Sachweh,
and Albert Zündorf

Part IV Development and Deployment

A Formal Approach to Microservice Architecture Deployment 183
Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, Iacopo Talevi,
and Gianluigi Zavattaro

ix

x Contents

Autonomic Decentralized Microservices: The Gru Approach
and Its Evaluation . 209
Elisabetta Di Nitto, Luca Florio, and Damian A. Tamburri

A Hybrid Approach to Microservices Load Balancing . 249
Marco Autili, Alexander Perucci, and Lorenzo De Lauretis

Part V Applications

Towards the Digital Factory: A Microservices-Based Middleware
for Real-to-Digital Synchronization . 273
Michele Ciavotta, Giovanni Dal Maso, Diego Rovere, Radosti Tsvetanov,
and Silvia Menato

Using Microservices to Customize Multi-tenant Software-as-a-Service . . . 299
Hui Song, Franck Chauvel, and Phu H. Nguyen

You Are Not Netflix . 333
Jakša Vučković

Part VI Education

DevOps and Its Philosophy: Education Matters! . 349
Evgeny Bobrov, Antonio Bucchiarone, Alfredo Capozucca,
Nicolas Guelfi, Manuel Mazzara, Alexandr Naumchev, and Larisa Safina

Author Index . 363

List of Reviewers

Marco Autili Università dell’Aquila

Luciano Baresi Politecnico di Milano

Mario Bravetti University of Bologna

Antonio Bucchiarone Distributed Adaptive Systems (DAS) Research Unit,
Fondazione Bruno Kessler

Franck Chauvel SINTEF ICT

Martina De Sanctis Gran Sasso Science Institute (GSSI)

Elisabetta Di Nitto Politecnico di Milano

Nicola Dragoni Technical University of Denmark

Schahram Dustdar Vienna University of Technology

Martin Garriga Universidad Nacional del Comahue

Alexis Henry Netfective technology

Patricia Lago Vrije Universiteit Amsterdam

Valentina Lenarduzzi Tampere University of Technology

Ivano Malavolta Vrije Universiteit Amsterdam

Jacopo Mauro University of Oslo

Manuel Mazzara Innopolis University

Phu H. Nguyen SINTEF

Cesare Pautasso University of Lugano

Florian Rademacher University of Applied Sciences and Arts Dortmund,
Institute for Digital Transformation of Application
and Living Domains

Victor Rivera Australian National University

Sabine Sachweh University of Applied Sciences and Arts Dortmund,
Institute for Digital Transformation of Application
and Living Domains

xi

xii List of Reviewers

Andrey Sadovykh Softeam

Jonas Sorgalla University of Applied Sciences and Arts Dortmund,
Institute for Digital Transformation of Application
and Living Domains

Davide Taibi Tampere University of Technology

Damian Andrew Tamburri Technical University of Eindhoven—Jeronimus
Academy of Data Science

Philip Wizenty University of Applied Sciences and Arts Dortmund,
Institute for Digital Transformation of Application
and Living Domains

Part I
Opening

Microservices: The Evolution
and Extinction of Web Services?

Luciano Baresi and Martin Garriga

Abstract In the early 2000s, service-oriented architectures (SOA) emerged as a
paradigm for distributed computing, e-business processing, and enterprise integra-
tion. Rapidly, SOA and web services became the subject of hype, and virtually
every organization tried to adopt them, no matter their actual suitability. Even
worse, there were nearly as many definitions of SOA as people adopting it.
This led to a big fail on many of those attempts, as they tried to change the
problem to fit the solution. Nowadays, microservices are the new weapon of
choice to achieve the same (and even more) goals posed to SOA years ago.
Microservices (“SOA done right”) describe a particular way of designing software
applications as suites of independently deployable services, bringing dynamism,
modularity, distributed development, and integration of heterogeneous systems.
However, nothing comes for free: new (and old) challenges appeared, including
service design and specification, data integrity, and consistency management. In
this chapter, we identify such challenges through an evolutionary view from the
early years of SOA to microservices, and beyond. Our findings are backed by a
literature review, comprising both academic and gray literature. Afterwards, we
analyze how such challenges are addressed in practice, and which challenges remain
open, by inspecting microservice-related projects on GitHub, the largest open-
source repository to date.

L. Baresi
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
e-mail: luciano.baresi@polimi.it

M. Garriga (�)
Faculty of Informatics, National University of Comahue, Neuquán, Argentina

CONICET, National Scientific and Technical Research Council, Buenos Aires, Argentina
e-mail: martin.garriga@fi.uncoma.edu.ar

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_1&domain=pdf
mailto:luciano.baresi@polimi.it
mailto:martin.garriga@fi.uncoma.edu.ar
https://doi.org/10.1007/978-3-030-31646-4_1

4 L. Baresi and M. Garriga

1 Introduction

Some 20 years ago, service-oriented architecture (SOA), web services, and service-
oriented computing (SOC) were the buzzwords of the day for many in the business
world [11]. Virtually every company adopted, or claimed to adopt, SOA and web
services as key enablers for the success of their projects. However, there were
nearly as many definitions of SOA as organizations adopting it. Furthermore, such
panorama obscured the value added from adopting the SOA paradigm. The many
proposed standards (e.g., WSDL and BPEL) were supposed to break the barriers
among proprietary systems and serve as common languages and technologies
to ease the integration of heterogeneous, distributed components, fostering the
cooperation among independent parties. However, these approaches often failed
when applied in practice, mainly because ever-changing business requirements, to
which they were not able to (nor designed to) react timely [25]. In other words, many
organizations applied SOA because of the hype and not given their actual needs.

Nowadays, we are witnessing the same hype for a new set of buzzwords:
microservices and microservice architectures [26]. Microservices describe a partic-
ular way of designing software applications as suites of independently deployable
services. One may also say that it is nothing but “SOA done right,” as they preach
for the same advantages, such as dynamism, modularity, distributed development,
and integration of heterogeneous systems. However, now the focus is not on reuse
and composition, as it is on independence, replaceability, and autonomy [28].
Services then become micro in terms of their contribution to the application,
not because of their lines of code. They must be entities that can be conceived,
implemented, and deployed independently. Different versions can even coexist and
the actual topology of the system can be changed at runtime as needed. Each single
component (microservice) must be changeable without impacting the operation and
performance of the others.

However, as happened with SOA, microservices are not a silver bullet. With
them, new challenges have appeared, as old ones regained attention. Just like any
incarnation of SOA, microservice architectures are confronted with a number of
nontrivial design challenges that are intrinsic to any distributed system—including
data integrity and consistency management, service interface specification and
version compatibility, and application and infrastructure security. Such design issues
transcend both style and technology debates [49].

This chapter attempts to provide an evolutionary view of what services have
been, are, and will be from the early times of SOA—with WSDL/SOAP-based
services—through RESTful services, and finally to the advent of microservices and
their possible evolution into functions-as-a-service (FaaS) [35]. By doing this, we
shed some light on what is novel about microservices, and which concepts and
principles of SOA still apply. Then, we complement this evolutionary view with
a literature review (including both academic and gray literature) to identify the new
(and the old) challenges still to be faced when adopting microservices. Finally, we
analyze how practitioners are addressing such challenges by diving into the current

Microservices: The Evolution and Extinction of Web Services? 5

microservices landscape in the biggest open-source repository to date: GitHub.1

Our preliminary study on mining microservices on GitHub helps us understand the
trending topics, challenges being addressed, as well as popular languages and tools.

To conclude, and summarize, the contributions of this chapter are threefold:

• An evolutionary view of SOA, from WSDL/SOAP to microservices and beyond
• A discussion regarding current challenges on microservices, based on a review

of academic and gray literature
• A panorama of the current landscape of microservices on GitHub, and how those

challenges are being addressed

The rest of this chapter is organized as follows. Section 2 presents the evolution-
ary view from first-generation SOA through REST to microservices and serverless.
Section 3 revisits old and new challenges of SOA in the era of microservices. Sec-
tion 4 discusses the microservices ecosystem on GitHub. Finally, Sect. 5 concludes
the chapter.

2 Web Services Then and Now

This section provides an evolutionary view from the early days of WSDL/SOAP-
based services (Sect. 2.1), to RESTful services (Sect. 2.2), then to microservices
(Sect. 2.3), and the possible evolution into the novel functions-as-a-service
(FaaS) [35] (Sect. 2.4).

2.1 SOA(P) Services

Service-oriented architectures (SOA) emerged as a paradigm for distributed com-
puting, e-business processing and enterprise integration. A service, and particularly
a web service, is a program with a well-defined interface (contract) and an id (URI),
which can be located, published, and invoked through standard Web protocols [29].
The web service contract (mostly specified in WSDL) exposes public capabilities
as operations without any ties to proprietary communication frameworks. Services
decouple their interfaces (i.e., how other services access their functionality) from
their implementation.

The benefits of SOA are multifaceted [10]. It provides dynamism, as new
instances of the same service can be launched to split the load on the system.
Modularity and reuse, as complex services are composed of simpler ones and the
same services can be (re)used by different systems. Distributed development, since
distinct teams can develop conversational services in parallel by agreeing on their

1https://github.com/.

https://github.com/

6 L. Baresi and M. Garriga

interfaces. Finally, integration of heterogeneous and legacy systems, given that
services merely have to implement standard protocols (typically SOAP—Simple
Object Access Protocol [7]) to communicate over existing logic.

On top of that, specific workflow languages are then defined to orchestrate several
services into complex compositions (e.g., WS-BPEL, BPEL4WS) [16]. As these
languages share ideas with concurrency theory, this aspect fostered the development
of formal models for better understanding and verifying service interactions (i.e.,
compositions), ranging from foundational process models of SOA to theories for
the correct composition of services [10]. In the early years of SOAP-based service
composition, according to different surveys [32, 40] the literature mainly focused
on two aspects: Definition of clear/standard steps (modeling, binding, executing,
and verifying) of Web Service composition, and classification of compositions into
workflow-based industry solutions (extending existing languages, e.g., WS-BPEL
and BPEL4WS) and semantics-based academic solutions, using planning/AI upon
semantic languages such as OWL-S.

2.2 RESTful Services

Years after SOA irruption, stakeholders still disagreed about its materialization, and
mostly failed to implement it [25]. First, the absence of widely accepted usage
standards led organizations to develop and/or describe web services and compo-
sitions using divergent specification practices and concept models [16, 17]. Besides,
daunting requirements regarding service discovery (e.g., UDDI registries [36]) or
service contracts agreements (WSLA) hindered the adoption of early SOA models.
Second, the claimed benefits and hype of SOA tempted organizations to adopt it
even when their particular context said the contrary [25]. Pursuing flexibility too
early, before creating stable and standardized business processes, plus the problems
of interoperability and data/process integration (through too smart communication
mechanisms such as the enterprise service bus), led traditional SOA to fail often.

In such a context, REST (REpresentational State Transfer) [13] appeared as
a simpler, lightweight, and cost-effective alternative to SOAP-based services.
Although the term was coined in 2000 by Roy Fielding, RESTful services gained
traction around one decade after [30]. RESTful services use the basic built-in HTTP
remote interaction methods (PUT, POST, GET, and DELETE) and apply their
intended semantics to access any URI-referenceable resource. HTTP methods then
became a standardized API for services, easier to publish and consume.

As the years passed, REST and HTTP (and JSON as data exchange format)
became ubiquitous in the industry, in detriment of WSDL/SOAP-based solu-
tions [36]. This dominance fits well with the characteristic of microservices being
built on top of lightweight communication mechanisms, as we will see in the next
section.

Still, reuse and composition issues were under discussion in the REST-
ful era. Humans being considered as the principal consumer/composer of

Microservices: The Evolution and Extinction of Web Services? 7

RESTful services explains the lack of machine-readable descriptions, and the
massification of user-driven composition approaches (mashups) [17]. We can keep
the aforementioned distinction between workflow- and semantic-based solutions;
process-oriented mashups and extended business composition languages (such as
BPEL4REST) belong to the first group, while semantic annotations, planning-based
solutions, and formalization efforts define the second class [17].

2.3 Microservices

Nowadays, most of the issues related to defining, classifying, and characterizing ser-
vices and composition solutions mentioned in the previous sections are overcome.
However, yet new challenges appeared, posed by the internet of services/things,
pervasive computing, and mobile applications.

The environment in which services are developed and executed has become more
open, dynamic, and ever changing. This raises several malleability issues, includ-
ing the ability of self-configuring, self-optimizing, self-healing, and self-adapting
services. This may involve devices with limited resources and computational
capabilities [6], and calls for novel algorithms for dynamically managing such
lightweight and simple services. Also, to manage services in current pervasive
environments, one must address context awareness, heterogeneity, contingencies
of devices, and personalization. A pervasive environment claims for appropriate
semantic technologies, shared standards, and mediation to assure interoperability
of heterogeneous entities, such as mobile devices, sensors, and networks. Finally, as
users are now becoming “prosumers” [22] (i.e., both producers and consumers), it is
still unclear how to combine the need for aggregating several services, maintaining
their QoS, and keeping the coupling level as low as possible.

In this context, microservices came to the scene as the weapon-of-choice to
address such challenges at the enterprise scale. Microservices are independently
deployable, bounded-scoped components that support interoperability by communi-
cating through lightweight messages (often a HTTP API) [27]. In turn, microservice
architecture is a style for engineering highly automated, evolvable software systems
made up of capability-aligned microservices [27]. Each service also provides a
physical module boundary, even allowing for different services to be written in
different programming languages and be managed by different teams [26].

However, most of this definition applies to traditional SOAP-based or REST-
ful services as well, which feeds the debate regarding microservices and SOA.
Although microservices can be seen as an evolution of SOA, they are inherently
different regarding sharing and reuse. SOA is built on the idea of fostering reuse:
a share-as-much-as-possible architecture style, whereas microservice architectures
seconds the idea of a share-as-little-as-possible architecture style [33]: the goal
became how to build systems that are replaceable while being maintainable [26].
Given that service reuse has often been less than expected [47], microservices
should be “micro” enough to allow for the rapid development of new versions that

8 L. Baresi and M. Garriga

can coexist, evolve, or even replace the previous one according to the business
needs [19]. This is also possible thanks to continuous deployment techniques [2],
such as canary deployment—pushing the new versions to a small number of end
users to test changes in a real-world environment; and version concurrency—
incrementally deploying new versions of a service, while both old and new versions
of the service contract are running simultaneously for different clients. Thus,
microservices fit well to scenarios with loose data integration and highly dynamic
processes, bringing the opportunity to innovate quickly [25].

Undoubtedly, also microservices will be replaced by the next technological
choice to implement the SOA architectural style. Thus, before moving to the
challenges being faced nowadays by microservices (Sect. 3), we discuss one of
the possible evolution paths for this architecture: functions-as-a-service (FaaS), also
known as serverless computing. One should note that FaaS conveys the same design
principles and benefits of microservices (isolation, interchangeability), but presents
substantial differences to support such design at the technical and technological
level, as we will see below.

2.4 Upcoming Faasification

A serverless architecture is a refined cloud computing model that processes
requested functionality without pre-allocating any computing capability. Provider-
managed containers are used to execute functions-as-a-service, which are event-
triggered and ephemeral (may only last for one invocation) [35]. This approach
allows one to write and deploy code without considering the runtime environment,
resource allocation, load balancing, and scalability; all these aspects are handled by
the provider.

Serverless represents a further evolution of the pay-per-use computing model: we
started allocating and managing virtual machines (e.g., Amazon EC2) by the hour,
then moved to containers (e.g., CS Docker Engine), and now we only allocate the
resources (a container shared by several functions) for the time needed to carry out
the computation—typically a few seconds or milliseconds.

The serverless architecture has many benefits with respect to more traditional,
server-based approaches. Functions share the runtime environment (typically a pool
of containers), and the code specific to a particular application is small and stateless
by design. Hence, the deployment of a pool of shared containers (workers) on a
machine (or a cluster of machines) and the execution of some code onto any of
them become inexpensive, efficient, and completely handled by the cloud provider.

Horizontal scaling is completely automatic, elastic, and quick, allowing one to
increase the number of workers against sudden spikes of traffic. The serverless
model is much more reactive than the typical solutions of scaling virtual machines
or spinning up containers against bursts in the workload [20]. Finally, the pay-
per-use cost model is fine-grained, down to a 100 ms execution granularity for all
the major vendors, in contrast to the “usual” hour/minute-based billing of virtual

Microservices: The Evolution and Extinction of Web Services? 9

machines and containers. This allows companies to drastically reduce the cost of
their infrastructures with respect to a typical monolithic architecture or even a
microservice architecture [46].

Several cloud providers have developed serverless solutions recently that share
those principles. AWS Lambda is the first and perhaps most popular one, followed
by Azure Functions, Google Firebase, and IBM/Apache Openwhisk (the only open-
source solution among the major vendors). A couple other promising open source
alternatives are OpenFaaS (multilanguage FaaS upon Docker or Kubernetes) and
Quarkus (heavily optimized for Java and Kubernetes).

Back to microservices, one of their main concerns is the effort required to deploy
and scale each microservice in the cloud [46]. Although one can use automation
tools such as Docker, Chef, Puppet, or cloud vendor-provided solutions, their
adoption consumes time and resources. To address this concern, FaaS appears as
a straightforward solution. Once deployed, functions can be scaled automatically,
hiding the deployment, operation, and monitoring of load balancers or web servers.
The per-request model helps reduce infrastructure costs because each function
can be executed in computing environments adjusted to its requirements, and
the customer pays only for each function execution, thus avoiding infrastructure
payment when there is nothing to execute [46].

Thus, the way to go for microservices could be to become even more fine-
grained, slayed into functions. For instance, given a RESTful microservice that
implements an API with basic CRUD operations (GET, POST, PUT, DELETE), one
might have a single function to represent each of these API methods and perform
one process [41]. Furthermore, when CRUD microservices are not desirable,2 event-
driven or message-based microservices could still be represented as functions,
tailored to the same events that the microservices listen(ed) to. Besides, serverless
computing is stateless and event-based, so serverless microservices should be
developed as such.

However, these new solutions bring together new challenges and opportunities.3

For example, we still need to determine the sweet spots where running code in a
FaaS environment can deliver economic benefits, automatically profile existing code
to offload computation to serverless functions [4], bring adequate isolation among
functions, determine the right granularity to exploit data and code locality, provide
methods to handle state (given that functions are stateless by definition) [39], and
finally increase the number of out-of-the-box tools to test and deploy functions
locally. Additionally, going serverless is not recommended when one wants to [41]:

• Control their own infrastructure (due to regulations or company-wide policies)
• Implement a long-running server application (transactional or synchronous calls

are the rule)

2https://www.ben-morris.com/entity-services-when-microservices-are-worse-than-monoliths/.
3https://blog.zhaw.ch/icclab/research-directions-for-faas/.

https://www.ben-morris.com/entity-services-when-microservices-are-worse-than-monoliths/
https://blog.zhaw.ch/icclab/research-directions-for-faas/

10 L. Baresi and M. Garriga

• Avoid vendor lock-in (given that each provider has its own set of serverless APIs
and SDKs)

• Implement a shared infrastructure (as multi-tenancy is managed by the provider).

3 Challenges

The evolutionary view from early SOA to the advent of microservices helped us
understand what is novel about microservices, and which concepts and principles
of SOA still apply. In this section, we complement this evolutionary view with a
discussion of the challenges still to face when adopting microservices.

The challenges presented throughout this section are the result of a literature
review, following the guidelines for systematic literature review (SLR) proposed
in [24]. Although a complete SLR is outside the scope of this work, this helped us
organize the process of finding and classifying relevant literature. We considered
research published up to the first quarter of 2017. This led us to a collection of 46
relevant works,4 both primary (28) and secondary studies (18). Interested readers
can refer to [15] for details on these studies.

Given the novelty of the topic, we enriched our results by comparing them with
those of a recent gray literature review [38], which includes materials and research
produced by organizations outside of the traditional academic publishing and
distribution channels—such as reports, white papers, and working documents from
industry [14]. Interestingly, academic and gray literature share common findings
regarding open challenges in the microservice era, as we will see throughout
this section. For the sake of organization, we divide such challenges regarding
the lifecycle stages: Design (Sect. 3.1), Development (Sect. 3.2), and Operations
(Sect. 3.3) and conclude with a discussion (Sect. 3.4).

3.1 Design Challenges

Despite the hype and the business push towards microservitization, there is still a
lack of academic efforts regarding the design practices and patterns [19]. Design
for failure and design patterns could allow to address challenges early as to
bring responsiveness (e.g., by adopting “let-it-crash” models), fault tolerance, self-
healing, and variability characteristics. Resilience patterns such as circuit-breaker
and bulkhead seem to be key enablers in this direction. It is also interesting
to understand whether the design using a stateless model based on serverless
functions [20] can affect elasticity and scalability as well [8].

4Due to the space limit, the full list can be found at: https://goo.gl/j5ec4A.

https://goo.gl/j5ec4A

Microservices: The Evolution and Extinction of Web Services? 11

Another problem at design time is dimensioning microservices—i.e., finding
the right granularity level [38]. This obviously implies a trade-off between size
and number of microservices [19]. Intuitively, the more microservices, the higher
the isolation among business features, but at the price of increased network
communications and distribution complexity. Additionally, the boundaries among
the business capabilities of an application are usually not sharp. Addressing this
trade-off systematically is essential for identifying the extent to which “splitting” is
beneficial regarding the potential value of microservitization [3].

Security by design is also an open challenge, given the proliferation of endpoints
in microservice ecosystems, which are only the surface of a myriad of small,
distributed and conversational components. The attack surface to be secured is hence
much larger with respect to classical SOA, as all the microservices are exposing
remotely accessible APIs [38]. In this direction, access control is crucial, as the
design of microservice-based applications should allow each component to quickly
and consistently ascertain the provenance and authenticity of a request, which is
challenging due to the high distribution [38].

3.2 Development Challenges

Most of today’s microservices exploit RESTful HTTP communication [36]. Mes-
sage queues are promising but not adopted as expected, in concordance with the lack
of proposals for asynchronous interaction models [15]. As such, communications
are purely based on remote invocations, where the API becomes a sort of contract
between a microservice and its consumers. This generates coupling and directly
impacts APIs’ versioning, as new versions must always be retro-compatible to avoid
violating the contracts among microservices, hence allowing them to continue to
intercommunicate [38].

This suggests not only that microservices are being used in-house, with contracts
negotiated between different teams/people inside the company, but also that their
reuse should support concurrent versions and incremental releases: new versions can
be (re)developed entirely to fulfill new requirements, while keeping old versions for
other clients. The recent efforts on standardizing RESTful APIs through OpenAPI
specifications5 seem interesting and also applicable to specify microservices [3].

Another challenge comes from data persistency issues. A database can be part
of the implementation of a microservice, so it cannot be accessed directly by
others [34]. In this scenario, data consistency becomes difficult to achieve. Eventual
consistency (the distributed database does not exhibit consistency immediately
after a write, but at some later point) is an option, even if not always acceptable
for any domain, and not easy to implement too. At the same time, this heavy
distribution complicates distributed transactions and query execution (also because

5https://www.openapis.org/.

https://www.openapis.org/

12 L. Baresi and M. Garriga

of the heterogeneity of the data stores to be queried). In this scenario, testing is also
complex, as the business logic is partitioned over independently evolving services.
Approaches that use/propose frameworks for resilience testing [21] or reusable
acceptance tests [31] are highly required.

3.3 Operation Challenges

The primary challenge during the operation of microservice-based applications is
given by their resource consumption. More services (with respect to traditional
SOA) imply more runtime environments to be distributed, and remote API invo-
cations. This increases consumption of computing and network resources [38].
However, there seems to be a mistrust regarding built-in solutions of cloud
providers, which sometimes become too rigid [5] or cumbersome to configure and
adjust [20]. In the meantime, cloud providers are growing in variety and usability
(e.g., AWS has offered around 1000 new features per year6), and we believe that
they will become the standard to deploy and manage cloud microservices in the
near future [15].

Operational complexity also comes along with the distributed and dynamic
nature of microservices. They could be flexibly scaled in and out, or migrated from
one host to another. Moreover, they could be switched from the cloud to the edge
of the network [6]. This, along with the huge number of microservices forming an
application, makes it challenging to locate and coordinate their concrete instances.
At the same time, distributed logging calls for aggregation approaches that help
track the reasons behind issues/errors [38].

3.4 Discussion

The challenges of microservice-based applications are mainly due to their novelty
and intrinsic complexity and distribution. Their design, development, and operation
is hampered by the fact that the business logic in such applications is heavily
distributed over many independent and asynchronously evolving microservices [38].
As a summary, Table 1 highlights the relationship among the usual steps of
the development process (design, development, operation), the principles behind
microservices (defined in the seminal book by Newman [28]), example features
related to each principle extracted from the (academic and grey) literature review,
and finally example tools or practices applicable to such a stage/principle. In this
way, we pave the ground to the analysis of the microservices ecosystem on GitHub,
presented in the next section.

6https://techcrunch.com/2016/12/02/aws-shoots-for-total-cloud-domination/.

https://techcrunch.com/2016/12/02/aws-shoots-for-total-cloud-domination/

Microservices: The Evolution and Extinction of Web Services? 13

Table 1 Relationship among microservices lifecycle stages, principles, features, and tools

Stage Principle Example features Tools/practices

Design Modeled
around business
domain

Contract, business, domain, functional,
interfaces, bounded context,
domain-driven design, single responsibility

Domain-driven
design (DDD),
bounded context

Design Hide
implementation
details

Bounded contexts, REST, RESTful, hide
databases, data pumps, event data pumps,
technology-agnostic

OpenAPI,
Swagger, Kafka,
RabbitMQ, Spring
Cloud Data Flow

Dev Culture of
automation

Automated, automatic,
continuous*(deployment, integration,
delivery), environment definitions, custom
images, immutable servers

Travis-CI, Chef,
Ansible, CI/CD

Dev Decentralize all DevOps, Governance, self-service,
choreography, smart endpoints, dumb
pipes, database-per-service, service
discovery

Zookeper, Netflix
Conductor

Dev/ Ops Isolate failure Design for failure, failure patterns,
circuit-breaker, bulkhead, timeouts,
availability, consistency, antifragility,

Hystrix, Simian
Army, Chaos
Monkey

Ops Deploy
independently

versioning, one-service-per-host,
containers

Docker,
Kubernetes,
canary|A/B|blue/
green testing

Ops Highly
observable

Monitoring, logging, analytics, statistics,
aggregation

ELK,
Elasticsearch,
Logstash, Kibana

Recent implementations of microservices take the SOA idea to new limits, driven
by the goals of rapid, interchangeable, easily adapted, and easily scaled components.
As a cloud-native architecture, they play well on the basic functional features of
cloud computing and its delivery capabilities [44]. The resulting factorization of
workloads and incrementally scalable features of microservices provide a path by
which SOA can be evolved from its previously rigid and overly formal implemen-
tation settings and be implemented in much less forbidding ways.

One consequence of this evolution is the development of new architectural pat-
terns and the corresponding emergence and use of standards [37]. In that direction,
we believe that open standard agreement is the basic prerequisite for achieving high
interoperability and compatibility, being a key issue to be addressed [17]. The most
clear example is a continued emphasis on the use and proper documentation of
RESTful APIs, by means of Swagger/OpenAPI specifications [37]. A standardized
service description and choreography approach can assure compatibility with any
service, and achieve greater evolvability. Finally, standardized services in the surface
can collaborate with partners for better data portability, collaborating to solve the
challenges around distributed storage in microservices [38].

14 L. Baresi and M. Garriga

Finally, a few words about the organizational aspects that surround microser-
vices. It is important to link more explicitly microservices with the DevOps
(development plus operations as a single team) movement. DevOps seems to be
a key factor in the success of this architectural style [1], by providing the necessary
organizational shift to minimize coordination among the teams responsible for
each component, and removing the barriers for an effective, reciprocal relationship
between teams. DevOps implies an organizational rewiring (equivalent to, e.g.,
the adoption of agile methodologies) and certain key practices (e.g., continuous
delivery, integration, management). As this organizational shift is not simple, the
literature reports different sociotechnical patterns [43] to enable the transition
towards microservices. For example, sociotechnical-risks engineering, where crit-
ical architecture elements remain tightly controlled by an organization and loosely
coupled with respect to outsiders, or shift left, where organizational and operational
concerns (e.g., DevOps team mixing) are addressed earlier (“left”) in the lifecycle
toward architecting and development, rather than implementation and runtime.

4 Microservices on GitHub

Given the open challenges discussed in the previous section, we are interested in
how practitioners are addressing them in practice. To answer this, we delve into
the current microservices landscape in the biggest source of software artifacts on
the Web to date: GitHub.7 Our main goal is to identify the actual incidence of
microservices and related tooling in practice. We stated the following research
questions (RQs):

• RQ1: What is the activity and relevance of microservices in open source public
repositories?

• RQ2: What are the characteristics of microservices-related repositories?
• RQ3: How are these projects addressing the aforementioned open challenges?

4.1 Dataset Creation

We followed the guidelines for mining GitHub defined in the literature [23, 48], and
considered the following information:

• Releases of a repository: Each release is a specially tagged push event, composed
of several commits (at least one) to a stable repository branch.

7https://GitHub.com/.

https://GitHub.com/

Microservices: The Evolution and Extinction of Web Services? 15

• Push events to the master branch of a repository, as an indicator of repository
activity (each push event is composed of one or more commits, and is triggered
when a repository branch is pushed to).

• Stars, as an indicator of repository relevance for the GitHub community (starring
a repository allows one to keep track of interesting projects).

• Topics, as an indicator of the repository topics (this allows one to describe, find,
and relate repositories).

Then, we used GitHub Archive8 as our datasource of GitHub events. GitHub
Archive provides a daily dump of GitHub activity (around 2.5 Gb of events per day).
Given its size, it is only accessible through Google Big Query,9 a web service that
allows one to perform SQL-like interactive analysis of massive datasets (billions of
rows).

We started by looking for active repositories—those with a Push event to their
master branch during the last month. The total amount of active projects during
2018 exceeds 1 million. Thus, we additionally filtered repositories corresponding
to our research—i.e., those using the topic “microservice” or “microservices” or
mentioning these terms in the repository description.

The total number of repositories related to microservices is around 36,000.
However, when analyzing sample repositories at random, we noticed that some
of them are personal or class projects that, although being active, are not relevant
for the community. These repositories have only one contributor, zero forks, and
low popularity. With this dataset as a starting point, we narrowed our scope
to active repositories related to microservices. Then, we defined an additional
criteria for relevant repositories as those with 10+ stars (equivalent to followers
or level of popularity). This information is accessed through the GraphQL-based
GitHubAPI.10 All in all, the number of 2018’s relevant and active microservices-
related repositories on GitHub is 651,11 roughly 2% of the total 36,000 repositories,
excluding forks and duplicated.

4.2 Quantitative Analysis

From the dataset of 651 repositories extracted in the previous step, we performed
an initial quantitative analysis with the goal of answering the research questions.
We started by identifying their topics, languages used, and other metadata such as
commits, stars, and forks. Table 2 presents a summary of the initial analysis and tries
to answer RQ1: (What is the activity and relevance of microservices in open source

8https://www.GitHubarchive.org/.
9https://bigquery.cloud.google.com/.
10https://developer.GitHub.com/v4/.
11The full list can be found at: http://cor.to/Gvyp.

https://www.GitHubarchive.org/
https://bigquery.cloud.google.com/
https://developer.GitHub.com/v4/
http://cor.to/Gvyp

16 L. Baresi and M. Garriga

Table 2 Summary of Microservice Projects on GitHub (RQ1)

Metric Total Average Median

Total microservices projects ∼36,000 – –

Active and relevant projects (+10 stars, PR in the last month) 651 – –

Pull requests per project – 128.7 17

Stars per project (average) – 730.6 77

Watchers per project (average) – 62.7 15

Fig. 1 Languages distribution of microservices projects (RQ2)

public repositories?). For brevity, raw data and the scripts and queries used to gather
and analyze repositories metadata are accessible within our replication package.12

Moving to RQ2 (What are the characteristics of the microservices-related
repositories?), Fig. 1 decomposes the use of programming languages in our dataset.
Interestingly, Java is the most common language (27.8%), followed by Go (18.4%)
and JavaScript (16.8%). Other languages show a narrower adoption, including
Python, PHP, Typescrypt, and C#, among others. Given the polyglot nature of
microservices, some of the repositories adopt various languages—we report the
main language for each. Our results suggest that Java is still widely used [36] and,

12http://www.GitHub.com/webocs/mining-GitHub-microservices.

http://www.GitHub.com/webocs/mining-GitHub-microservices

Microservices: The Evolution and Extinction of Web Services? 17

although it is perceived as an “old-fashioned” language, it can make microservices
easier to adopt by Java developers, and also easier to integrate with legacy
Java systems. Besides, microservices are commonly associated with lightweight,
scripting languages such as JavaScript, which is reflected in practice—although we
expected JavaScript to be the most popular language. Finally, Go is mostly a server-
side language (developed by Google), mainly adopted for projects that provide
support for microservices in the form of frameworks or middleware infrastructures.

As for RQ3, (How are these projects addressing the aforementioned open
challenges?), we performed a topic ranking to grasp the underlying types of
solutions and technologies used. Topics are labels that create subject-based con-
nections between GitHub repositories and let one explore projects by, e.g., type,
technology, or keyword.13 Our ranking is summarized in Table 3. Note that
microservices/microservice do not appear as a topic on all repositories, but it can
be part of the description. Apart from those, the most popular languages: java,
nodejs (javascript) and golang (go) appear among the top topics. The others are
several tools for deploying and operating microservices such as docker (containers),
kubernetes (a container orchestration tool) and spring-boot (spring “containers”),
and cloud-related topics (cloud, spring-cloud). There are a few topics regarding
specific solutions for microservices communication (rpc, grpc, REST, rabbitmq)
and/or API design (API, REST, rest-api). Other challenges are underrepresented
in the list of topics with quite small percentages.

Table 3 Main topics in microservices projects

Topic Times % Topic Times % Topic Times %

Microservices 270 41.47 API 31 4.76 Python 20 3.07

Microservice 222 34.10 Framework 30 4.61 Cloud 17 2.61

Java 88 13.52 Microservices-arch 28 4.30 Service-mesh 17 2.61

Docker 68 10.45 Distributed-systems 28 4.30 CQRS 16 2.46

Kubernetes 63 9.68 grpc 25 3.84 DevOps 16 2.46

Spring-boot 57 8.76 Rest 24 3.69 redis 16 2.46

Golang 52 7.99 API-gateway 23 3.53 http 16 2.46

Nodejs 51 7.83 Rest-API 21 3.23 Spring-cloud-
core

16 2.46

Cloud-native 46 7.07 Containers 21 3.23 mongodb 15 2.30

Go 41 6.30 Serverless 20 3.07 Kafka 15 2.30

Spring-cloud 41 6.30 Service-discovery 20 3.07 DDD 15 2.30

Spring 41 6.30 Javascript 20 3.07 Proxy 14 2.15

rpc 33 5.07 Rabbitmq 20 3.07 Consul 13 2.00

13https://blog.GitHub.com/2017-01-31-introducing-topics/.

https://blog.GitHub.com/2017-01-31-introducing-topics/

18 L. Baresi and M. Garriga

4.3 Qualitative Analysis

Continuing with RQ3, (How are these projects addressing the aforementioned
challenges?), we performed a Qualitative analysis divided into two parts. First,
we took a small sample (64 projects, 10% of the total) at random and analyzed
it, which led to some preliminary insights. Support for the microservices lifecycle
is the most common practice (44%), ranging from templates and boilerplate
code for development to operational support in the form of containerization
solutions, continuous integration, load-balancing, etc.—broadly speaking, DevOps
practices—followed by specific solutions for communication among microservices
(33%), implementing orchestration mechanisms, asynchronous communication, and
API gateways. The rest of the projects actually implement microservices (23%),
ranging from sample applications fully developed with several microservices to
single or few microservices—e.g., for authentication or cryptography.

Interestingly, the focus is on supporting microservice architectures rather than on
the development of microservices themselves. We believe that this is mainly due to
two factors:

• A complexity shift: The claimed simplicity of microservices moves the complex-
ity to their supporting systems [19].

• A different reuse perspective [33]: Instead of reusing existing microservices for
new tasks or use cases, they should be small and independent enough to allow
for rapidly developing a new one that can coexist, evolve, or replace the previous
one according to the business needs [19].

Afterwards, we performed qualitative analysis on the whole dataset, organized
around each stage of microservice lifecycle (recall Table 1). For doing this, we
assessed the documentation of the repositories, in particular the Readme documents
at the master branch. We crafted a dataset of 590 readme documents (90% of the
total), given that some of the projects did not present their documentation in such a
standard way.

We used the dataset (along with the metadata of repositories) to populate Apache
Solr,14 a search engine that features advanced matching capabilities including
phrases, wildcards, and clustering. Solr makes use of Apache Lucene,15 a well-
known search library based on the TF.IDF model. This scoring model involves a
number of scoring factors such as term frequency (the frequency with which a term
appears in a document), inverse document frequency (the rarer a term is across all
documents in the index, the higher its contribution to the score is) and other tuning
factors such as coordination factor (the more query terms are found in a document,
the higher its score is) and field length (the more words a field contains, the lower its
score is). The exact scoring formula that brings these factors together is outside the

14http://lucene.apache.org/solr/.
15https://lucene.apache.org/.

http://lucene.apache.org/solr/
https://lucene.apache.org/

Microservices: The Evolution and Extinction of Web Services? 19

scope of the present chapter, but a detailed explanation can be found in the Lucene
documentation.16

Then, we built the queries accounting the different features and tools/practices
presented in Table 1. The following discussion of obtained results is also organized
around lifecycle steps, namely: design, development, and operation.

Table 4 shows the three queries related to the design stage, together with the
total number of repositories found for each query, and the top 5 (most relevant)
results. Clearly, the least addressed topic in the design of microservices is their
modeling around the business domain, or domain-driven design, with only 29
repositories listed. As modeling is somewhat subjective, one may argue that tool
support or examples may be scarce or not extrapolable to different domains.
However, designing microservices and determining their granularity is still an open
challenge [38], thus this may be a call for further efforts. Note that the most relevant
repositories are sample applications and not supporting tools—with the exception
of #4 (boilerplate architecture) and #5 (an opinionated framework for .NET).

Conversely, RESTful interfaces (specified through Swagger/OpenAPI) seem to
be a widespread practice (208 repositories) in line with the perceived state-of-
practice in industry [36]—#1 bringing together the most popular communication
style (REST) with the most popular language (Java). Gaining traction, 147 reposi-
tories deal with asynchronous communication through messaging protocols such as
RabbitMQ or Spring Cloud Stream for Java (#3).

Entering development stage (Table 5), the most addressed topic is automa-
tion (275 repositories) through continuous integration and deployment techniques
(CI/CD), Travis being the weapon of choice, perhaps because of its easy integration
with GitHub [48]. One may highlight #1 as it provides an interesting approach for
managing multiple apps in a single (mono) repository.

Orchestration/choreography (41 repositories) are not so popular, as microservice
integration so far has been usually ad hoc and in-house. The salient example is
Netflix Conductor (#1), nowadays the most popular orchestrator for microservices.
Somewhat service discovery (101 repositories) is more popular, although from
a different perspective w.r.t. discovery in traditional SOA [18]. Nowadays, the
problem is to find the “alive” endpoints among the multiple copies of a microservice
at runtime [42], through tools such as Apache Zookeeper, etcd, Consul or VertX
(#2). However, for large-scale microservice architectures, orchestration and chore-
ography solutions are a must-have, although there is not a large number of these
cases on GitHub. Technologies such as NGINX, AWS API gateways, or Kubernetes
control plane are the alternatives for enterprise microservices management.

Finally, Table 6 summarizes results for the operation stage. Failure isolation
patterns are not so common (54 repositories). Circuit-breaker is the only pattern
that provides significant results, while others such as bulkheads or timeouts were
not mentioned throughout our dataset. The first four repositories in the results
are sample microservices applications that implement circuit-breakers: #5 is an

16http://lucene.apache.org/core/3_5_0/api/core/org/apache/lucene/search/Similarity.html.

http://lucene.apache.org/core/3_5_0/api/core/org/apache/lucene/search/Similarity.html

20 L. Baresi and M. Garriga

Table 4 Repository analysis by design principles and query (total repos and top 5 per query)

#repos Principle/repoId Query/description

29 Modeled around
business domain

“bounded context” OR ddd OR “domain driven design”

1st EdwinVW/pitstop This repo contains a sample application based on a garage
management system for PitStop—a fictitious garage. The
primary goal of this sample is to demonstrate several
Web-scale architecture concerns. . .

2nd banq/jdonframework Domain Events Pub/Sub framework for DDD

3rd idugalic/digital-
restaurant

DDD. Event sourcing. CQRS. REST. Modular.
Microservices. Kotlin. Spring. Axon platform. Apache
Kafka. RabbitMQ

4th ivanpaulovich/clean-
architecture-manga

Clean architecture service template for your microservice
with DDD, TDD and SOLID using .NET Core 2.0. The
components are independent and testable, the architecture
is evolutionary in multiple dimensions. . .

5th volak/Aggregates.NET .NET event sourced domain driven design model via
NServiceBus and GetEventStore

208 Hide implementation
details

rest OR restful OR swagger OR openapi OR “api
blueprint”

1st noboomu/proteus High-Performance RESTful Java web and microservice
framework

2nd mfornos/awesome-
microservices

A curated list of microservice architecture-related
principles and technologies

3rd banzaicloud/pipeline Pipeline enables developers to go from commit to scale in
minutes by turning Kubernetes into a feature-rich
application platform integrating CI/CD, centralized
logging, monitoring, enterprise-grade. . .

4th benc-uk/smilr Microservices reference app showcasing a range of
technologies, platforms and methodologies

5th rootsongjc/awesome-
cloud-native

A curated list for awesome cloud native tools, software,
and tutorials

147 Hide implementation
details

asynchronous OR “data pump” OR “event pump” OR
messaging OR RabbitMQ OR Kafka

1st mfornos/awesome-
microservices

A curated list of microservice architecture-related
principles and technologies

2nd binhnguyennus/
awesome-scalability

Scalable, available, stable, performant, and intelligent
system design patterns

3rd hipster-labs/generator-
jhipster-spring-cloud-
stream

JHipster module for messaging microservices with Spring
Cloud Stream

4th SaifRehman/ICP-
Airways

Cloud Native application based on microservice
architecture, IBM Middlewares and following 12 factor
practices

5th idugalic/digital-
restaurant

DDD. Event sourcing. CQRS. REST. Modular.
Microservices. Kotlin. Spring. Axon platform. Apache
Kafka. RabbitMQ

Microservices: The Evolution and Extinction of Web Services? 21

Table 5 Repository analysis by development principles and query (total repos and top 5 per
query)

#repos Principle/repoId Query/description

275 Culture of automation travis OR ci OR cd

1st MozillaSecurity/orion CI/CD pipeline for building and publishing multiple
containers as microservices within a mono-repository

2nd vietnam-devs/coolstore-
microservices

A containerized polyglot service mesh based on .NET
Core, Nodejs, Vuejs and more running on Istio

3rd rootsongjc/awesome-
cloud-native

A curated list for awesome cloud native tools, software,
and tutorials.

4th scalecube/scalecube-
services

ScaleCube services is a broker-less
reactive-microservices-mesh that features: API-gateways,
service-discovery, service-load-balancing, the
architecture supports plug-and-play service
communication. . .

5th banzaicloud/pipeline Pipeline enables developers to go from commit to scale
in minutes by turning Kubernetes into a feature-rich
application platform integrating CI/CD, centralized
logging, monitoring, enterprise-grade. . .

41 Decentralize all orchestration OR choreography OR “netflix conductor”

1st Netflix/conductor Conductor is a microservices orchestration engine

2nd rootsongjc/awesome-
cloud-native

A curated list for awesome cloud native tools, software,
and tutorials

3rd taimos/dvalin Taimos microservices framework.

4th InVisionApp/go-health Library for enabling asynchronous health checks in your
service

5th Sharding-
sphere/sharding-sphere

Distributed database middleware

101 Decentralize all “service discovery” OR zookeeper OR consul

1st smallnest/rpcx Faster multilanguage bidirectional RPC framework in
Go, like alibaba Dubbo and weibo Motan in Java, but
with more features, scale easily

2nd vert-x3/vertx-service-
discovery

Some tools one can use for doing microservices with
Vert.x

3rd rootsongjc/awesome-
cloud-native

A curated list for awesome cloud native tools, software,
and tutorials

4th senecajs/seneca-mesh Mesh your Seneca.js microservices together—no more
service discovery

5th containous/traefik The cloud native edge router

interesting framework that actually supports circuit-breakers out of the box (through
the Netflix Hystrix library).

Following the “deploy independently” principle, the most popular practice
overall, along with CI/CD (Table 5), is containerization, achieved mainly through
docker (274 repositories). An important number of sample microservices or sidecar
libraries is containerized. Interestingly, #5 combines microservices, mobile devices,
and blockchain.

22 L. Baresi and M. Garriga

Table 6 Repository analysis by operation principles and query (total repos and top 5 per query)

#repos Principle/repoId Query/description

54 Isolate failure “circuit breaker” OR hystrix

1st sqshq/PiggyMetrics Microservice architecture with Spring Boot, Spring
Cloud and Docker

2nd ERS-HCL/nxplorerjs-
microservice-starter

Node JS, Typescript, Express based reactive microservice
starter project for REST and GraphQL APIs

3rd raycad/go-microservices Golang Microservices Example

4th spring-petclinic/spring-
petclinic-microservices

Distributed version of Spring Petclinic built with Spring
Cloud

5th wso2/msf4j WSO2 Microservices Framework for Java (MSF4J)

274 Deploy independently docker OR containers OR kubernetes

1st rootsongjc/awesome-
cloud-native

A curated list for awesome cloud native tools, software,
and tutorials

2nd benc-uk/smilr Microservices reference app showcasing a range of
technologies, platforms, and methodologies

3rd dotnet-architecture/
eShopOnContainers

Easy to get started sample reference microservice- and
container-based application. Cross-platform on Linux
and Windows Docker Containers, powered by .NET Core
2.1, Docker engine and optionally Azure. . .

4th IF1007/if1007 Desenvolvimento de Aplicaes com Arquitetura Baseada
em Microservices

5th IBM/android-kubernetes-
blockchain

Build a blockchain-enabled health and fitness app with
Android and Kubernetes

81 Highly observable monitoring OR logging OR elk

1st slanatech/swagger-stats API telemetry and APM

2nd hootsuite/health-checks-
api

Standardize the way services and applications expose
their status in a distributed application

3rd banzaicloud/pipeline Pipeline enables developers to go from commit to scale
in minutes by turning Kubernetes into a feature-rich
application platform integrating CI/CD, centralized
logging, monitoring, enterprise-grade. . .

4th wso2/msf4j WSO2 Microservices Framework for Java (MSF4J)

5th mfornos/awesome-
microservices

A curated list of microservice architecture related
principles and technologies

The last principle (highly observable) is mainly represented by monitoring
and logging techniques (81 repositories), while other practices and technologies
(e.g., correlation IDs, analytics, and specific libraries) are not relevant. #1 is a
monitoring tool for RESTful APIs (i.e., for most microservices), while #2 and #3
are comprehensive frameworks that include monitoring facilities, among others.

To conclude, let us recap on RQ3, (How are these projects addressing the
aforementioned challenges?). From our analysis, it can be highlighted that both
containerization and CI/CD are the most widespread practices in the microservice
ecosystem, followed closely by RESTful specifications. Those correspond to three
principles: deploy independently, culture of automation, and hide implementation

Microservices: The Evolution and Extinction of Web Services? 23

details, respectively. Mild attention is put on asynchronous communication, ser-
vice discovery, and monitoring. Finally, the least discussed issues in the GitHub
microservice landscape are failure isolation patterns (mostly synonyms with circuit-
breakers), orchestration/choreography, and an alarming lack of modeling (DDD,
bounded context, etc.) support.

As threats to validity of our qualitative assessment, one may note that: (1)
queries are not representative of all the keywords and their combinations in Table 2
and (2) queries are constructed using terms related to each other (e.g., REST and
OpenAPI/Swagger). This was done to increase the accuracy of results according
to the Solr underlying matching mechanisms. We first excluded terms that are
not relevant for the queries—i.e., they return (almost) all of the documents as
a result, or the inverse (none). Then, we grouped only similar terms (according
to their topics) in the same query. This prevents retrieving only general-purpose
repositories (e.g., awesome lists17) and not the specific, relevant ones for the query
at hand—a bias introduced by the coordination factor of TF.IDF weighting [12].
We acknowledge the importance of such lists, but in our case they introduce
noise by biasing towards listed tools/frameworks/libraries. Additionally, we are not
taking into account historical data of repositories, which may help us track certain
behaviors—e.g., the periodicity of releases before/after implementing CI/CD tools,
or the impact of containerization in the popularity of a given repository. Besides,
this is an ongoing work and performing more comprehensive analysis through, e.g.,
clustering techniques or topic modeling is the subject of future work.

4.3.1 The Serverless Panorama

Finally, we discuss the current tendencies of serverless microservices (Table 7).
We found 35 repositories mentioning serverless (5% of the microservices-related
repositories), showing that this technology is still in the early stages of adoption.
Through a detailed analysis, one can find example apps using recent serverless
platforms—in this case IBM/Apache Openwhisk, but there are others for Google
Cloud and Azure functions. Two frameworks to handle the serverless functions’
lifecycle, with special focus on deployment, are the serverless framework and UP.
Finally, a representative of the event-oriented nature of functions: flogo, and the
usual awesome list of serverless solutions.

The most popular languages (when applicable) are JavaScript (mostly for exam-
ples, tutorials, and boilerplate applications) and Go (for deployment frameworks
such as UP). Popular topics are straightforward: serverless and its variety of vendor
flavors (Google functions, Azure functions, IBM Openwhisk, AWS Lambda). Apart
from that, other popular topics are: deployment, since functions involve yet more
moving parts than microservices, making deployment even more complex; Apis

17A common type of curated lists of entries within a given topic—https://GitHub.com/
sindresorhus/awesome.

https://GitHub.com/sindresorhus/awesome
https://GitHub.com/sindresorhus/awesome

24 L. Baresi and M. Garriga

Table 7 Serverless repositories analysis, total and top 5

#repos Principle/repoId Query/description

35 Serverless serverless OR faas

1st serverless/serverless Serverless framework—build web, mobile, and IoT
applications with serverless architectures using AWS
Lambda, Azure functions, Google CloudFunctions

2nd anaibol/awesome-serverless A curated list of awesome services, solutions, and
resources for serverless/no-backend applications

3rd apex/up Deploy infinitely scalable serverless apps, apis, and
sites in seconds to AWS

4th TIBCOSoftware/flogo An open source ecosystem of opinionated event-driven
capabilities to simplify building efficient and modern
serverless functions, microservices, and edge apps

5th IBM/spring-boot-
microservices-on-kubernetes

In this code we demonstrate how a simple Spring Boot
application can be deployed on top of Kubernetes

and integration, since functions are typically used to generate “entry points” for
systems and architectures, probably relying on traditional servers for more complex
processing, and finally events and messages platforms such as Kafka or Mqtt, as
functions are typically event driven.

From this analysis, we derive the following challenges and opportunities.
First, support for FaaSification [39] (i.e., splitting into functions) of legacy or
microservices code. Then, tool support for creating and managing complex func-
tions. Usually, functions are used for simple tasks, although they can encapsulate
complex microservices such as image recognition [4, 6] or model checking [45],
as demonstrated in our previous work. However, this involves trial and error and
significant effort, which implies an opportunity to develop supporting techniques,
frameworks, and tools. For example, to embed custom languages (e.g., OCAML),
improve long-running algorithms, or exploit opportunistic container reuse of the
underlying platform as a cache of sorts.

Additionally, some aspects that may not arise from the state of the art should
be mentioned here. Serverless is being pushed forward by major vendors, beyond
the traditional use cases of short computation as lambda functions.18 For example,
through AWS Fargate for long running functions, or AWS step functions to
define complex serverless workflows. Furthermore, solutions such as OpenFaaS
and Kubernetes as managed service are blurring the frontier between lightweight
containers and serverless functions. The industry tendency is that of starting with
containerized microservices (from scratch or from a monolith) and then migrate key
features to FaaS to exploit its unique capabilities.

18https://aws.amazon.com/en/serverless/serverlessrepo/.

https://aws.amazon.com/en/serverless/serverlessrepo/

Microservices: The Evolution and Extinction of Web Services? 25

5 Conclusions

This chapter presented an evolutionary perspective that captures the fundamental
understanding of microservice architectures, encompassing their whole lifecycle.
This is necessary to enable effective exploration, understanding, assessing, compar-
ison, and selection of microservice-based models, languages, techniques, platforms,
and tools.

Microservice architectures are fairly new, but their hype and success is unde-
niable, as big IT companies have chosen them to deliver their business, with
Amazon, Netflix, Spotify, and Twitter among those. Due to this traction, the
industrial state of practice on microservices has surpassed academic research efforts,
which are still at an earlier stage [38]. This resulted in a sort of gap between
academic state of the art and industrial state of practice, confirmed by our literature
review, which also provides a panorama of available solutions and current and
future challenges. Among them are the early use of resilience patterns to design
fault-tolerant microservice solutions, the standardization of their interfaces [37],
and the development of asynchronous microservices. Special attention should be
given to the latent use of the serverless model (FaaS) to design, deploy, and
manage microservices. FaaS has the potential to become the next evolution of
microservices [9] as event-driven, asynchronous functions, because the underlying
constraints have changed, costs have reduced, and radical improvements in time to
value are possible.

Finally, we present an analysis of microservices-related repositories on GitHub,
which confirmed our findings regarding open challenges, in particular those related
to microservices design and modeling (granularity, DDD, and bounded context).
This is an on-going work with the main goal of understanding how, and to which
degree, software developers are embracing microservice architectures in practice,
and which tools and practices are available to overcome their challenges. Our
current work encompasses automating the repository analysis through a mining
tool, capturing and processing additional metadata, mainly regarding the history of
releases, issues, etc. Then, applying natural language processing techniques to infer
information (features, topics) from repositories’ documentation. Finally we would
like to combine this analysis with developers’ feedback to understand their vision
regarding microservice architectures.

Acknowledgements This work has been partially supported by the GAUSS national research
project, which has been funded by the MIUR under the PRIN 2015 program (Contract 2015-
KWREMX); and by the grant ANPCyT PICT-2017-1725.

26 L. Baresi and M. Garriga

References

1. A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices architecture enables DevOps: migra-
tion to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. A. Balalaie, A. Heydarnoori, P. Jamshidi, D.A. Tamburri, T. Lynn, Microservices migration
patterns. Softw. Pract. Experience 48(11), 2019–2042 (2018)

3. L. Baresi, M. Garriga, A. De Renzis, Microservices identification through interface analysis, in
European Conference on Service-Oriented and Cloud Computing (ESOCC) (Springer, Berlin,
2017)

4. L. Baresi, D.F. Mendonça, M. Garriga, Empowering low-latency applications through a
serverless edge computing architecture, in European Conference on Service-Oriented and
Cloud Computing (Springer, Berlin, 2017), pp. 196–210

5. L. Baresi, S. Guinea, A. Leva, G. Quattrocchi, A discrete-time feedback controller for
containerized cloud applications, in ACM Sigsoft International Symposium on the Foundations
of Software Engineering (FSE) (ACM, New York, 2016)

6. L. Baresi, D.F. Mendonça, M. Garriga, S. Guinea, G. Quattrocchi, A unified model for
the mobile-edge-cloud continuum. ACM Trans. Internet Technol. 19(2), 29:1–29:21 (2019).
https://doi.org/10.1145/3226644

7. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F. Nielsen, S. Thatte, D.
Winer, Simple Object Access Protocol (SOAP) 1.1 (2000). W3C Recommendation

8. G. Casale, C. Chesta, P. Deussen, E. Di Nitto, P. Gouvas, S. Koussouris, V. Stankovski, A.
Symeonidis, V. Vlassiou, A. Zafeiropoulos, et al., Current and future challenges of software
engineering for services and applications. Proc. Comput. Sci. 97, 34–42 (2016)

9. A. Cockroft, Evolution of business logic from monoliths through microservices, to functions
(2017). https://goo.gl/H6zKMn

10. N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,
Microservices: yesterday, today, and tomorrow, in Present and Ulterior Software Engineering
(Springer, Cham 2017), pp. 195–216

11. J. Erickson, K. Siau, Web service, service-oriented computing, and service-oriented architec-
ture: separating hype from reality. J. BD Manage. 19(3), 42–54 (2008)

12. C. Fautsch, J. Savoy, Adapting the TF IDF vector-space model to domain specific information
retrieval, in Proceedings of the 2010 ACM Symposium on Applied Computing (ACM, New
York, 2010), pp. 1708–1712. https://doi.org/10.1145/1774088.1774454

13. R.T. Fielding, R.N. Taylor, Architectural styles and the design of network-based software
architectures, vol. 7. (University of California, Irvine, 2000)

14. V. Garousi, M. Felderer, M.V. Mäntylä, Guidelines for including grey literature and conducting
multivocal literature reviews in software engineering. Inf. Softw. Technol. 106, 101–121 (2019)

15. M. Garriga, Towards a taxonomy of microservices architectures, in International Conference
on Software Engineering and Formal Methods (Springer, Berlin, 2017), pp. 203–218

16. M. Garriga, A. Flores, A. Cechich, A. Zunino, Web services composition mechanisms: a
review. IETE Tech. Rev. 32(5), 376–383 (2015)

17. M. Garriga, C. Mateos, A. Flores, A. Cechich, A. Zunino, Restful service composition at a
glance: a survey. J. Netw. Comput. Appl. 60, 32–53 (2016)

18. M. Garriga, A.D. Renzis, I. Lizarralde, A. Flores, C. Mateos, A. Cechich, A. Zunino, A
structural-semantic web service selection approach to improve retrievability of web services.
Inf. Syst. Front. 20(6), 1319–1344 (2018). https://doi.org/10.1007/s10796-016-9731-1

19. S. Hassan, R. Bahsoon, Microservices and their design trade-offs: a self-adaptive roadmap, in
IEEE International Conference on Services Computing (SCC) (IEEE, Piscataway, 2016), pp.
813–818

20. S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A.C. Arpaci-Dusseau, R.H.
Arpaci-Dusseau, Serverless computation with openlambda. Elastic 60, 80 (2016)

https://doi.org/10.1145/3226644
https://goo.gl/H6zKMn
https://doi.org/10.1145/1774088.1774454
https://doi.org/10.1007/s10796-016-9731-1

Microservices: The Evolution and Extinction of Web Services? 27

21. V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M.K. Reiter, V. Sekar, Gremlin: systematic
resilience testing of microservices, in 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS) (IEEE, Piscataway, 2016), pp. 57–66

22. V. Issarny, N. Georgantas, S. Hachem, A. Zarras, P. Vassiliadist, M. Autili, M.A. Gerosa,
A.B. Hamida, Service-oriented middleware for the future internet: state of the art and research
directions. J. Internet Services Appl. 2(1), 23–45 (2011)

23. E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D.M. German, D. Damian, The promises
and perils of mining github, in Proceedings of the 11th Working Conference on Mining
Software Repositories (ACM, New York, 2014), pp. 92–101

24. B. Kitchenham, Guidelines for performing systematic literature reviews in software engineer-
ing. Technical report, ver. 2.3 EBSE Technical Report. EBSE. sn (2007)

25. P. Lemberger, M. Morel, Why Has SOA Failed So Often? (Wiley, London, 2013), pp. 207–218.
https://doi.org/10.1002/9781118562017.app3

26. J. Lewis, M. Fowler, Microservices (2014). http://martinfowler.com/articles/microservices.
html

27. I. Nadareishvili, R. Mitra, M. McLarty, M. Amundsen, Microservice Architecture: Aligning
Principles, Practices, and Culture (O’Reilly Media, Sebastopol, 2016)

28. S. Newman, Building Microservices (O’Reilly Media, Sebastopol, 2015)
29. M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented computing: a research

roadmap. Int. J. Coop. Inf. Syst. 17(02), 223–255 (2008)
30. C. Pautasso, O. Zimmermann, F. Leymann, Restful web services vs. “big” web services:

making the right architectural decision, in 17th International Conference on World Wide Web
(ACM Press, New York, 2008), pp. 805–814

31. M. Rahman, J. Gao, A reusable automated acceptance testing architecture for microservices
in behavior-driven development, in 2015 IEEE Symposium on Service-Oriented System
Engineering (SOSE) (IEEE, Piscataway, 2015), pp. 321–325

32. J. Rao, X. Su, A survey of automated web service composition methods, in International
Workshop on Semantic Web Services and Web Process Composition (Springer, Berlin, 2004),
pp. 43–54

33. M. Richards, Microservices vs. Service-Oriented Architecture (O’Reilly Media, Sebastopol,
2015)

34. C. Richardson, Microservices architecture (2014). http://microservices.io/
35. M. Roberts, Serverless architectures (2016). http://martinfowler.com/articles/serverless.html
36. G. Schermann, J. Cito, P. Leitner, All the services large and micro: revisiting industrial practice

in services computing, in International Conference on Service-Oriented Computing (ICSOC)
(Springer, Berlin, 2015), pp. 36–47

37. A. Sill, The design and architecture of microservices. IEEE Cloud Comput. 3(5), 76–80 (2016)
38. J. Soldani, D. Tamburri, W.J. Van Den Heuvel, The pains and gains of microservices: a

systematic grey literature review. J. Syst. Softw. 146, 215–232 (2018). https://doi.org/10.1016/
j.jss.2018.09.082

39. J. Spillner, C. Mateos, D.A. Monge, Faaster, better, cheaper: the prospect of serverless scientific
computing and HPC, in Latin American High Performance Computing Conference (Springer,
Berlin, 2017), pp. 154–168

40. B. Srivastava, J. Koehler, Web service composition-current solutions and open problems, in
ICAPS 2003 Workshop on Planning for Web Services, vol. 35 (2003), pp. 28–35

41. M. Stigler, Understanding serverless computing, in Beginning Serverless Computing (Springer,
Berlin, 2018), pp. 1–14

42. J. Stubbs, W. Moreira, R. Dooley, Distributed systems of microservices using docker and
serfnode, in International Workshop on Science Gateways (IWSG) (IEEE, Piscataway, 2015),
pp. 34–39

43. D.A. Tamburri, R. Kazman, H. Fahimi, The architect’s role in community shepherding. IEEE
Softw. 33(6), 70–79 (2016). https://doi.org/10.1109/MS.2016.144

https://doi.org/10.1002/9781118562017.app3
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://microservices.io/
http://martinfowler.com/articles/serverless.html
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1109/MS.2016.144

28 L. Baresi and M. Garriga

44. G. Toffetti, S. Brunner, S., M. Blöchlinger, J. Spillner, T.M. Bohnert, Self-managing cloud-
native applications: design, implementation, and experience. Futur. Gener. Comput. Syst. 72,
165–179 (2017). https://doi.org/10.1016/j.future.2016.09.002.

45. C. Tsigkanos, M. Garriga, L. Baresi, C. Ghezzi, Cloud deployment tradeoffs for the analysis
of spatially-distributed systems of internet-of-things. Technical Report, Politecnico di Milano
(2019)

46. M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casallas, S. Gil,
C. Valencia, A. Zambrano, et al., Infrastructure cost comparison of running web applications
in the cloud using AWS Lambda and monolithic and microservice architectures, in 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (IEEE,
Piscataway, 2016), pp. 179–182

47. N. Wilde, B. Gonen, E. El-Sheik, A. Zimmermann, Emerging Trends in the Evolution of
Service-Oriented and Enterprise Architectures, chap. Approaches to the Evolution of SOA
Systems. Intelligent Systems Reference Library (Springer, Berlin, 2016)

48. F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, M. Di Penta, How open source projects
use static code analysis tools in continuous integration pipelines, in 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR) (IEEE, Piscataway, 2017),
pp. 334–344

49. O. Zimmermann, Do microservices pass the same old architecture test? Or: SOA is not dead–
long live (micro-) services, in Microservices Workshop at SATURN Conference (Software
Engineering Institute SEI, Carnegie Mellon University, 2015)

https://doi.org/10.1016/j.future.2016.09.002

Size Matters: Microservices Research
and Applications

Manuel Mazzara, Antonio Bucchiarone, Nicola Dragoni, and Victor Rivera

Abstract In this chapter we offer an overview of microservices providing the
introductory information that a reader should know before continuing reading this
book. We introduce the idea of microservices and we discuss some of the current
research challenges and real-life software applications where the microservice
paradigm plays a key role. We have identified a set of areas where both researcher
and developer can propose new ideas and technical solutions.

1 The Shift Towards Distribution

History of programming languages, paradigms, and software architectures have
been characterized in the last few decades by a progressive shift towards distri-
bution, modularization, and loose coupling. The purpose is to increase code reuse
and robustness [13, 26], ultimately a necessity dictated by the need of increasing
software quality, not only in safety- and financial-critical applications [42], but
also in more common off-the-shelf software packages. The two directions of
modularization1 (code reuse and solid design) and robustness (software quality and
formal methods: verification/correctness-by-construction) advanced to some extent

1https://www.oreilly.com/ideas/modules-vs-microservices.

A. Bucchiarone
Distributed Adaptive Systems (DAS) Research Unit, Fondazione Bruno Kessler, Trento, Italy
e-mail: bucchiarone@fbk.eu

M. Mazzara (�) · V. Rivera
Innopolis University, Innopolis, Russian Federation
e-mail: m.mazzara@innopolis.ru; v.rivera@innopolis.ru

N. Dragoni
DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Centre for Applied Autonomous Sensor Systems, Orebro University, Orebro, Sweden
e-mail: ndra@dtu.dk

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_2

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_2&domain=pdf
https://www.oreilly.com/ideas/modules-vs-microservices
mailto:bucchiarone@fbk.eu
mailto:m.mazzara@innopolis.ru
mailto:v.rivera@innopolis.ru
mailto:ndra@dtu.dk
https://doi.org/10.1007/978-3-030-31646-4_2

30 M. Mazzara et al.

independently and pushed by different communities, although with a nonempty
overlap.

Object-oriented technologies are prominent in software development [52], with
specific instances of languages incorporating both the aspects aforementioned (mod-
ularity and correctness). A notable example is the Eiffel programming language
[44], incorporating solid principles of object-oriented-programming (OOP) within a
programming framework coordinated by the idea of design-by-contract, which aims
at correctness-by-construction. None of these technologies can nevertheless rule out
the need for testing, which robustly remains a pillar of the software development
lifecycle.

Other examples exist of languages having a strong emphasis on correctness, both
from the architectural viewpoint and in terms of meeting functional requirements
[37]. However, until recently, not much attention was dedicated to integrating these
principles into a distributed setting winning out properties such as easiness of
deployment, a lightweight design and development phase, and minimal need for
integration testing. The idea of microservices [16, 26] and DevOps [1, 2, 41] stem
out exactly from this widespread and recognized need.

Chapter Outline and Contribution The contribution of the chapter is twofold,
and thus organized in two main sections. Section 2 overviews the essential con-
cepts characterizing the microservices paradigm, thus serving as an introduction
for the entire book. Section 3 instead highlights some key research areas in
which microservices applications have gained particular interest and showed some
research progress. Conclusions and future works are summed up in Sect. 4.

2 Microservices

Microservices [16, 20, 26, 47] is an architectural style stemming from service-
oriented architectures (SOAs) [35, 54]. According to this architectural style, a
system is structured by small independent building blocks—the microservices—
communicating only via message passing. The main idea is to move in the small
(within an application) some of the concepts that worked in the large, i.e., for
cross-organization business-to-business workflow, which makes use of orchestration
engines such as WS-BPEL (in turn inheriting some of the functional principles
from concurrency theory [34]). The characteristic differentiating the new style from
monolithic architectures and classic service-oriented architectures is the emphasis
on scalability, independence, and semantic cohesiveness of each unit constituting
the system. In its fundamental essence, the microservices architecture [16] is built
on a few very simple principles:

• Bounded Context. First introduced in [18], this concept captures one of the key
properties of microservices architecture: focus on business capabilities. Related
functionalities are combined into a single business capability which is then
implemented as a service.

Size Matters: Microservices Research and Applications 31

• Size. Size is a crucial concept for microservices and brings major benefits in terms
of service maintainability and extendibility. The idiomatic use of microservices
architecture suggests that if a service is too large, it should be refined into two
or more services, thus preserving granularity and maintaining focus on providing
only a single business capability.

• Independency. This concept encourages loose coupling and high cohesion by
stating that each service in microservices architectures is operationally inde-
pendent from others, and the only form of communication between services is
through their published interfaces.

2.1 Microservices vs. Monolith

All the programming languages for development of server-side applications provide
abstractions to break down the complexity of programs into modules or components
[9, 23, 49]. However, these languages are designed for the creation of single
executable artifacts. In monolithic architectures, the modularization abstractions
rely on the sharing of resources such as memory, databases, and files of the same
machine. The components are therefore not independently executable. Figure 1
(reproduced from [43]) shows the classic monolithic organization: the different
layers of the system (interface/presentation, internal business logic, and persistence
tools) are here split in terms of responsibilities between different modules (the
vertical split with numbers from 1 to 4). In fact, each module may take part in

Fig. 1 Monolith architecture
1

Interface/Presentation

Internal logic

Persistence tools

2 3 4

32 M. Mazzara et al.

Presentation

Logic
Logic

Fig. 2 Microservices architecture

the implementation of functionalities related to each layer, the database is common,
and so the access to other resources, such as memory.

Figure 2 (reproduced from [43]) shows the componentization in a microservices
architecture. Each service has its own dedicated persistence tool and communication
with each other is through lightweight mechanisms without a need for centralized
control [56]. With this organization there is no vertical split through all the system
layers, and the deployment is independent. The complexity is moved to the level
of coordination of services (often called orchestration [38]). Moreover, a number
of additional problems need to be addressed due to the distributed nature of the
microservices approach (e.g., trust and certification [12, 14]).

2.2 Microservices vs. SOA

In SOA, services are not required to be self-contained with data and User Interface,
and their own persistence tools, e.g., database. SOA has no focus on independent
deployment units and related consequences, it is simply an approach for business-
to-business intercommunication. The idea of SOA was to enable business-level
programming through business processing engines and languages such as WS-
BPEL and BPMN that were built on top of the vast literature on business
modeling [60]. Furthermore, the emphasis was all on service composition [17, 33]
more than service development and deployment.

2.3 Size Matters: The Organization of Teams

A microservice is not just a very small service. There is no predefined size limit
that defines whether a service is a microservice or not. From this angle, the term
“microservice” can somehow be misleading. Each microservice is expected to
implement a single business capability, in fact a very limited system functionality,
bringing benefits in terms of service maintainability and extendibility. Since each

Size Matters: Microservices Research and Applications 33

microservice represents a single business capability, which is delivered and updated
independently, discovering bugs or adding minor improvements does not have any
impact on other services and on their releases. In common practice, it is also
expected that a single service can be developed and managed by a single team [16].

In order to build a system with a modular and loosely coupled design, it is
necessary to pay attention to the organization structure and the communication
patterns. These patterns directly impact the produced design (Conway’s law [10]).
If a structure is based on the idea that each team work on a single service, then the
communication will be more efficient at the team level and in the entire organization.
This will lead to an improved design in terms of modularity. Microservices’
approach is to keep teams small and communications efficient by creating small
cross-functional (DevOps) teams that are able to continuously work on the same
service and to be fully responsible for it (“you build it, you run it” principle [22]).

The teams are organized around services, which in turn are organized around
business capabilities [20]. The optimal team size for microservices is best described
by Jeff Bezos’ famous “two pizza team” rule, which suggests that the size of a
team should be no larger than what two pizzas can feed. The rule itself does
not give an exact number; however, it is possible to estimate it to be around 6–8
people. The drawback of such an approach is that it is not always practical from
the financial point of view to maintain a dedicated team of developers for a single
service as it may lead to high development/maintenance costs [27]. Furthermore,
one should be careful when designing the high-level structure of the organization
using microservices—increasing the number of services might negatively impact
the overall organization efficiency, if no further actions are taken.

3 Research and Applications

Microservices have recently seen a dramatic growth in popularity and in concrete
applications [47]. The shift towards microservices is seeing several companies
involved in a major refactoring of their back-end systems to accommodate the
new paradigm [7, 42]. Other companies just start their business model developing
software following the microservice paradigm since day one. We are in the middle
of a major change in the view in which software is intended, and in the way
in which capabilities are organized into components, and industrial systems are
conceived. In this section we describe recent research progress done in the context
of microservices-based applications [43]. We have identified the following research
areas that we analyse separately in the next sections:

• Programming languages
• Type checker
• Migration from monoliths
• Education in DevOps
• Modeling and self-adaptability
• Real-life software applications with microservices

34 M. Mazzara et al.

3.1 Programming Languages

Microservice systems are currently developed using mostly general-purpose pro-
gramming languages that do not provide dedicated abstractions for service composi-
tion. Current practice is indeed focused on the deployment aspects of microservices,
in particular by using containerization. We investigated this issue and made a case
for a language-based approach to the engineering of microservices architectures.
We believe that this approach is complementary to current practice. In [24], we
discussed the approach in general, and we instantiate it in terms of the Jolie
programming language; however, the concept is independent from the specific
technical solution adopted. Four important concepts have been identified to be first-
class entities in the programming language in order to address the microservices
architecture:

1. Interfaces: To support modular programming, services have to be deployed as
black boxes. In order to compose services in larger systems, interfaces have to
describe the provided functionalities and those required from the environment.

2. Ports: Since a microservice interacts with other services, a communication
port describes how its functionalities are made available to the network (inter-
face, communication technology, and data protocol). Ports should be specified
separately from the implementation of a service. Input ports describe the
functionalities that the service provides to the rest of the system, while output
ports describe the functionalities that the service requires from the rest of the
system.

3. Workflows: Structured protocols appear repeatedly in microservices and they are
not natively supported by mainstream languages. All possible operations are
always enabled (e.g., in object-oriented programming). Causal dependencies are
programmed using a book-keeping variable, which is error prone, and it does
not scale when the number of causality links increases. A microservice language
should provide abstractions for programming workflows.

4. Processes: Workflows define the blueprint of the behavior of a service. At
runtime a service may interact with multiple clients and other external services,
therefore there is a need to support multiple concurrent executions of its
workflow. A process is a running instance of a workflow, and a service may
include many processes executing concurrently. Each process runs independently
of the others, to avoid interference, and has its own private state.

3.2 Type Checker

Static type checking is generally desirable for programming languages improving
software quality, lowering the number of bugs, and preventing avoidable errors
[25, 31]. The idea is to allow compilers to identify as many issues as possible
before actually running the program, and therefore avoid a vast number of trivial

Size Matters: Microservices Research and Applications 35

bugs, catching them at a very early stage. Despite the fact that in the general case
interesting properties of programs are undecidable [51], static type checking, within
its limits, is an effective and well-established technique of program verification. If
a compiler can prove that a program is well typed, then it does not need to perform
dynamic safety checks, allowing the resulting compiled binary to run faster.

In [46] we described and prototyped the Jolie Static Type Checker (JSTC), a
static type checker for the Jolie programming language which natively supports
microservices. The static type system for the language was exhaustively and
formally defined on paper [48], but needed implementation. The type checker
prototype consists of a set of rules for the type system expressed in SMT Lib
language. The actual implementation covers operations such as assignments, logical
statements, conditions, literals, and comparisons.

In [57] we integrated dynamic and static type checking with the introduction of
refinement types, verified via an SMT solver. The integration of the two aspects
allows a scenario where the static verification of internal services and the dynamic
verification of (potentially malicious) external services cooperate in order to reduce
testing effort and enhance security.

3.3 Migration from Monoliths

Several companies are evaluating the pros and cons of migrating to microservices
(e.g., [55]). Financial institutions are positioned in a difficult situation due to the
economic climate and the appearance of small players that grew big fast in recent
times, such as alternative payment systems, that can also navigate in a more flexible
(and less regulated) legal framework and started their business since day one with
more agile architectures and without being bounded to outdated technological
standard. We worked closely with Danske Bank, the largest bank in Denmark and
one of the leading financial institutions in Northern Europe, to demonstrate how
scalability is positively affected by reimplementing a monolithic architecture into a
microservices one [7].

Evolution is necessary to stay competitive. When compared to companies (such
as PayPal) that started their activities using innovative technologies as a business
foundation, in order to scale and deliver value, old banking institutions appear
outdated with regards to technology standards. We worked on the FX Core system, a
mission-critical system of Danske Bank’s software. A key outcome of our research
has been the identification of a repeatable migration process that can be used to
convert a real-world monolithic architecture into a microservices one in the specific
setting of a financial system, which is typically characterized by legacy systems and
batch-based processing on heterogeneous data sources [42].

36 M. Mazzara et al.

3.4 Education in DevOps

DevOps is a natural evolution of the agile approaches [1, 30] from the software itself
to the overall infrastructure and operations. This evolution was made possible by
the spread of cloud-based technologies and the everything-as-a-service approaches.
Adopting the DevOps paradigm helps software teams to release applications faster
and with more quality. DevOps and microservice architecture appear to be an
indivisible pair for organizations aiming at delivering applications and services at
high velocity. Investing in DevOps is a good idea in general, and after migration to
microservices it is typically crucial.

As DevOps becomes a widespread philosophy, the necessity for education in the
field becomes increasingly important, from both the technical and organizational
points of view [8]. The DevOps philosophy may be introduced in companies with
adequate training, but only if certain technological, organizational, and cultural
prerequisites are present. If not, the prerequisites should be developed. We have
been deeply involved in recent years in teaching both undergraduate and graduate
students at university, and junior/senior professional developers in industry. We have
also been working often with management [2, 41].

3.5 Modeling and Self-Adaptability

Innovative engineering is always looking for adequate tools to model and verify
software systems, as well as support developers in deploying correct software.
Microservices is an effective paradigm to cope with scalability; however, the
paradigm still misses a conceptual model able to support engineers since the early
phases of development. To make the engineering process of a microservices-based
application efficient, we need a uniform way to model autonomous and heteroge-
neous microservices, at a level of abstraction that allows for easy interconnection
through dynamic relations. Each microservice must have a partial view on the
surrounding operational environment (i.e., system knowledge) and at the same time
must be able to be specialized/refined and adapted to face different requirements,
user needs, context-changes, and missing functionalities.

To be robust, each microservice must be able to dynamically adapt its behavior
and its goals to changes in the environment but also to collaborative interactions
with other microservices during their composition/orchestration. At the same time
the adaptation must not be controlled centrally and imposed by the system but must
be administrated in a decentralized fashion among the microservices.

An important feature of dynamic and context-aware service-based systems is the
possibility of handling at runtime extraordinary/improbable situations (e.g., context
changes, availability of functionalities, trust negotiation), instead of analyzing such
situations at design time and pre-embedding the corresponding recovery activities.
The intrinsic characteristics of microservice architectures make possible to nicely

Size Matters: Microservices Research and Applications 37

model runtime dependability concepts, such as “self-protecting” and “self-healing”
systems [14]. To make this feasible, we should enable microservices to monitor their
operational environment and trigger adaptation needs each time a specific system
property is violated. To cover the aforementioned research challenges, we already
started to define a roadmap [45] that includes an initial investigation on how domain
objects [5] could be an adequate formalism both to capture the peculiarity of MSA
and to support the software development since the early stages.

3.6 Real-Life Software Applications with Microservices

3.6.1 Smart Buildings

Smart buildings represent a key example of application domain where properties
like scalability, minimality, and cohesiveness play a key role. As a result, smart
buildings are an ideal application scenario for the microservices paradigm. This
domain has been investigated with an outlook on Internet-of-Things (IoT) technolo-
gies and smart cities [40]. In [53] and [28], it has been shown how rooms of a
building can be equipped with devices and sensors in order to capture the fundamen-
tal parameters determining well-being and livability of humans, such as temperature,
humidity, and illumination. This solution allows to monitor an equipped area and
therefore collect data that can be mined and analyzed for specific purposes. The
nodes used in this system consist of Raspberry Pi microcomputers [50], Texas
Instruments Sensor Tags [58], door sensor, and web camera. Currently, this system
is able to collect and analyze room temperature, pressure, and illumination level. It
is also able to distinguish and count people located in the covered area. The purpose
is to monitor and optimize working conditions. The software infrastructure, tightly
connected to the hardware, makes use of microservices to achieve the desired level
of scalability, minimality, and cohesiveness. Sensors and actuators are connected to
a central control panel that is responsible to manage them. At the same time, an
automatic personal assistant has been designed. It is capable to observe data, learn
about different users preferences, and adapt the room conditions accordingly for the
different phases of his/her work [29].

3.6.2 Smart Mobility

Organizing and managing the mobility services within a city, meeting traveler’s
expectations, and properly exploiting the available transport resources are becoming
more and more complex tasks. The inadequacy of traditional transportation models
is proven by the proliferation of alternative, social, and grassroots initiatives aiming
at a more flexible, customized, and collective way of organizing transport (e.g.,
carpooling, ride and park sharing services, flexi-buses) [11, 19, 21]. Some of these
attempts have been very successful (e.g., Uber), even if in most cases these are seen

38 M. Mazzara et al.

as isolated solutions targeting specific mobility target groups and are not part of the
city mobility ecosystem, mainly based on traditional public and private transport
facilities.

An attempt of rethinking the way mobility is managed and offered is represented
by the mobility as a service (MaaS) model. MaaS solutions (e.g., MaaS Global:
http://maas.global) aim at arranging the most suitable transport solution for their
customers thanks to cost-effective integrated offer of different multi-modal means
of transportation. MaaS also foresees radical changes in the business landscape,
with a new generation of mobility operators emerging as key actors to manage the
increased flexibility and dynamism offered by this new concept of mobility.

People need to travel quickly and conveniently between locations at different
scales, ranging from a trip of a few blocks to a journey across town or further.
Each trip has its set of requirements. Time may be of the essence. Cost may be
paramount, and the convenience of door-to-door travel may be important. In each
case, the transportation infrastructure should seamlessly provide the best option.
A modern city needs to flexibly integrate transportation options, including buses,
trains, taxis, autonomous vehicles, bicycles, and private cars.

Before changing communities to support what is believed the future trans-
portation will look like and behave, it is necessary to develop mechanisms that
allow planners of these localities to model, analyze, and present these possible
configurations in ways that the citizens of the communities can understand and
participate in.

Coordination for mobility as a service can be implemented on a spectrum,
ranging from independent services communicating exclusively through market
exchanges to hybrid market/hierarchy approaches for fixed hierarchical control
systems.

Every transportation mean does not need to be an individual competing across
multiple markets, but neither should there be only one rigid hierarchy. “Diversity”
and “distributed” selection of the appropriate mean (or a combination of means) is
the right compromise respect to say that if one is better than the other, we “kill” the
other.

To realize such a “dynamic” and “emergent” behavior in transportation systems
needs a new way for developing their supporting software systems. In the last
years, collective adaptive systems (CAS) have been introduced and studied by many
researchers in different application domains (i.e., Industry 4.0, logistics, smart cities
and mobility, energy, biology, etc.).2 CAS consists of diverse heterogeneous entities
composing a sociotechnical system. Individual entities “opportunistically” enter a
system and self-adapt in order to leverage other entities’ resources and services to
perform their task more efficiently and effectively. At the same time, also collections
of entities, called ensembles, must be able to self-adapt simultaneously to preserve
the collaboration and benefits of the system (or subsystem) they are within.

2http://www.focas.eu/focas-manifesto.pdf.

http://maas.global
http://www.focas.eu/focas-manifesto.pdf

Size Matters: Microservices Research and Applications 39

In this very dynamic and rapidly evolving setting, microservices have the
potential of offering the right concepts for modeling and for programming smart
mobility solutions. Coordination for mobility as a services (MaaS) is a mandatory
requirement to maintain a certain level of city sustainability (i.e., less CO2 emission,
more citizen participation and satisfaction, etc.). It can be implemented on a
spectrum, ranging from independent agents communicating exclusively through
market exchanges to hybrid market/hierarchy approaches fixed hierarchical control
systems. Our opinion is that instead of implementing a selfish mobility we see the
need to realize a collective and cooperative mobility where each MaaS provider
sees in every competitor a partner and not an enemy [4]. This domain opens new
challenges in how distributed microservices, provided by different mobility entities,
can be composed dynamically to provide real-time and continuous answers to
citizens in a smart city.

4 Conclusions

The microservice architecture is a style that is increasingly gaining popularity, both
in academia and in the industry. Even though it is likely to conduct to a paradigm
shift and a dramatic change in perception, it does not build on vacuum, and instead
relates to well-established paradigms such as OO and SOA. In [16] a comprehensive
survey on recent developments of microservices architecture is presented with focus
on the evolutionary aspects more than the revolutionary ones. The presentation there
is intended to help the reader in understanding the distinguishing characteristics of
microservices.

We have a long experience in the field of services and business processes [6,
32, 36, 59, 60], including workflows and their reconfiguration [3, 15, 39]. We built
on top of this expertise to focus on the active research field of microservices, and
summarized our work in this chapter.

The future will see a growing attention regarding the matters discussed in this
chapter, and the development of new programming languages intended to address
the microservice paradigm [24]. Object-oriented programming brought fresh ideas
in the last decades, and the expectation is that a comparable shift may be just
ahead of us. Holding onto optimism, the future is certainly not challenge free. The
security of the microservice paradigm is an issue almost completely untouched [16].
Commercial-level quality packages for development are still far to come, despite
the acceleration in the interest regarding the matter. Fully verified software is an
open problem the same way it is for more traditional development models. That
said, several research centers around the world have addressed and are addressing
all these issues in an attempt to ride the wave and make the new generation of
distributed systems a reality.

40 M. Mazzara et al.

References

1. L. Bass, I. Weber, L. Zhu, DevOps: A Software Architect’s Perspective, 1st edn. (Addison-
Wesley, Reading, 2015)

2. E. Bobrov, A. Bucchiarone, A. Capozucca, N. Guelfi, M. Mazzara, S. Masyagin, Teaching
DevOps in academia and industry: reflections and vision, in Software Engineering Aspects
of Continuous Development and New Paradigms of Software Production and Deployment—
Second International Workshop, DEVOPS 2019 (Chateau de Villebrumier, 2019)

3. A. Bucchiarone, A. Marconi, M. Pistore, H. Raik, Dynamic adaptation of fragment-based and
context-aware business processes, in ICWS (IEEE Computer Society, Silver Spring, 2012), pp.
33–41

4. A. Bucchiarone, M. De Sanctis, A. Marconi, Decentralized dynamic adaptation for service-
based collective adaptive systems, in ICSOC Workshops. Lecture Notes in Computer Science,
vol. 10380 (Springer, Berlin, 2016), pp. 5–20

5. A. Bucchiarone, M. De Sanctis, A. Marconi, M. Pistore, P. Traverso, Incremental composition
for adaptive by-design service based systems, in IEEE ICWS, 2016 (San Francisco, 2016), pp.
236–243

6. A. Bucchiarone, A. Marconi, M. Pistore, H. Raik, A context-aware framework for dynamic
composition of process fragments in the internet of services. J. Internet Services Appl. 8(1),
6:1–6:23 (2017)

7. A. Bucchiarone, N. Dragoni, S. Dustdar, S.T. Larsen, M. Mazzara, From monolithic to
microservices: an experience report from the banking domain. IEEE Softw. 35(3), 50–55
(2018)

8. I. Bucena, M. Kirikova, Simplifying the DevOps adoption process, in Joint Proceedings
of the BIR 2017 pre-BIR Forum, Workshops and Doctoral Consortium co-located with
16th International Conference on Perspectives in Business Informatics Research (BIR 2017)
(Copenhagen, 2017)

9. J. Clark, C. Clarke, S. De Panfilis, A. Sillitti, G. Succi, T. Vernazza, Selecting components in
large COTS repositories. J. Syst. Softw. 73(2), 323–331

10. M.E. Conway, How do committees invent. Datamation 14(4), 28–31 (1968)
11. O. Dakroub, C.M. Boukhater, F. Lahoud, M. Awad, H. Artail, An intelligent carpooling app

for a green social solution to traffic and parking congestions, in 16th International IEEE
Conference on Intelligent Transportation Systems, ITSC 2013 (The Hague, 2013), pp. 2401–
2408

12. E. Damiani, N. El Ioini, A. Sillitti, G. Succi, WS-certificate, in 2009 IEEE International
Workshop on Web Services Security Management (IEEE, Piscataway, 2009)

13. E.S. de Almeida, A. Alvaro, D. Lucrédio, V.C. Garcia, S.R. de Lemos Meira, Rise project:
towards a robust framework for software reuse. In Proceedings of the 2004 IEEE International
Conference on Information Reuse and Integration, IRI - 2004 (Las Vegas, 2004), pp. 48–53

14. N. Dragoni, F. Massacci, A. Saidane, A self-protecting and self-healing framework for
negotiating services and trust in autonomic communication systems. Comput. Netw. 53(10),
1628–1648 (2009)

15. N. Dragoni, M. Zhou, M. Mazzara, Dependable workflow reconfiguration in WS-BPEL, in
Proceedings of the 5th Nordic Workshop on Dependability and Security (2011)

16. N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,
Microservices: yesterday, today, and tomorrow, in Present and Ulterior Software Engineering
(Springer, Berlin, 2017), pp. 195–216

17. S. Dustdar, W. Schreiner, A survey on web services composition. IJWGS 1(1), 1–30 (2005)
18. E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-

Wesley, Reading, 2004)
19. D. Fagnant, K. Kockelman, Dynamic ride-sharing and fleet sizing for a system of shared

autonomous vehicles in Austin, Texas. Transportation 45, 28–46 (2016)
20. M. Fowler, J. Lewis, Microservices (ThoughtWorks, Chicago, 2014)

Size Matters: Microservices Research and Applications 41

21. M. Furuhata, M. Dessouky, F. Ordóñez, M.-E. Brunet, X. Wang, S. Koenig, Ridesharing: the
state-of-the-art and future directions. Transp. Res. B Methodol. 57, 28–46 (2013)

22. J. Gray, A conversation with Werner Vogels. ACM Queue 4(4), 14–22 (2006)
23. H.G. Gross, M. Melideo, A. Sillitti, Self-certification and trust in component procurement. J.

Sci. Comput. Program. 56(1–2), 141–156 (2005)
24. C. Guidi, I. Lanese, M. Mazzara, F. Montesi, Microservices: A Language-Based Approach

(Springer, Cham, 2017), pp. 217–225
25. S. Hanenberg, S. Kleinschmager, R. Robbes, É. Tanter, A. Stefik, An empirical study on the

impact of static typing on software maintainability. Empir. Softw. Eng. 19(5), 1335–1382
(2014)

26. P. Jamshidi, C. Pahl, N.C. Mendonça, J. Lewis, S. Tilkov, Microservices: the journey so far and
challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

27. S. Jones, Microservices is SOA, for those who know what SOA is (2014). http://service-
architecture.blogspot.co.uk/2014/03/microservices-is-soa-for-those-who-know.html

28. K. Khanda, D. Salikhov, K. Gusmanov, M. Mazzara, N. Mavridis, Microservice-based IoT for
smart buildings, in 2017 31st International Conference on Advanced Information Networking
and Applications Workshops (WAINA) (IEEE, Piscataway, 2017), pp. 302–308

29. A. Khusnutdinov, D. Usachev, M. Mazzara, A. Khan, I. Panchenko, Open source platform dig-
ital personal assistant, in 32nd International Conference on Advanced Information Networking
and Applications Workshops, AINA 2018 Workshops (Krakow, 2018), pp. 45–50

30. G. Kim, P. Debois, J. Willis, J. Humble, The DevOps Handbook: How to Create World-Class
Agility, Reliability, and Security in Technology Organizations (IT Revolution Press, Portland,
2016)

31. S. Kleinschmager, R. Robbes, A. Stefik, S. Hanenberg, E. Tanter, Do static type systems
improve the maintainability of software systems? An empirical study, in 2012 20th IEEE
International Conference on Program Comprehension (ICPC) (IEEE, Piscataway, 2012), pp.
153–162

32. S. Lane, A. Bucchiarone, I. Richardson, SOAdapt: a process reference model for developing
adaptable service-based applications. Inf. Softw. Technol. 54(3), 299–316 (2012)

33. A.L. Lemos, F. Daniel, B. Benatallah, Web service composition: a survey of techniques and
tools. ACM Comput. Surv. 48(3), 33:1–33:41 (2016)

34. R. Lucchi, M. Mazzara, A Pi-calculus based semantics for WS-BPEL. J. Log. Algebr. Program.
70(1), 96–118 (2007)

35. C.M. MacKenzie, K. Laskey, F. McCabe, P.F. Brown, R. Metz, B.A. Hamilton, Reference
model for service oriented architecture 1.0. OASIS Standard 12 (2006)

36. M. Mazzara, Towards abstractions for web services composition. Ph.D. thesis, University of
Bologna, 2006

37. M. Mazzara, Deriving specifications of dependable systems: toward a method (2010). arXiv
preprint arXiv:1009.3911

38. M. Mazzara, S. Govoni, A Case Study of Web Services Orchestration (Springer, Berlin, 2005),
pp. 1–16

39. M. Mazzara, F. Abouzaid, N. Dragoni, A. Bhattacharyya, Toward design, modelling and analy-
sis of dynamic workflow reconfigurations—a process algebra perspective, in 8th International
Workshop on Web Services and Formal Methods WS-FM (2011), pp. 64–78

40. M. Mazzara, I. Afanasyev, S.R. Sarangi, S. Distefano, V. Kumar, A reference architecture for
smart and software-defined buildings (2019). arXiv preprint arXiv:1902.09464

41. M. Mazzara, A. Naumchev, L. Safina, A. Sillitti, K. Urysov, Teaching DevOps in corporate
environments—an experience report, in First International Workshop on Software Engineer-
ing Aspects of Continuous Development and New Paradigms of Software Production and
Deployment, DEVOPS 2018, Revised selected papers (Chateau de Villebrumier, France, 2018),
pp. 100–111

42. M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S.T. Larsen, S. Dustdar, Microservices:
migration of a mission critical system. IEEE Trans. Services Comput. (2019). https://doi.org/
10.1109/TSC.2018.2889087

http://service-architecture.blogspot.co.uk/2014/03/microservices-is-soa-for-those-who-know.html
http://service-architecture.blogspot.co.uk/2014/03/microservices-is-soa-for-those-who-know.html
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087

42 M. Mazzara et al.

43. M. Mazzara, K. Khanda, R. Mustafin, V. Rivera, L. Safina, A. Sillitti, Microservices science
and engineering, in Proceedings of 5th International Conference in Software Engineering
for Defence Applications, ed. by P. Ciancarini, S. Litvinov, A. Messina, A. Sillitti, G. Succi
(Springer, Cham, 2018), pp. 11–20

44. B. Meyer, Object-Oriented Software Construction, 1st edn. (Prentice-Hall, Englewood Cliffs,
1988)

45. K. Mikhail, A. Bucchiarone, M. Mazzara, L. Safina, V. Rivera, Domain objects and microser-
vices for systems development: a roadmap, in Proceedings of 5th International Conference in
Software Engineering for Defence Applications (2017)

46. B. Mingela, L. Safina, A. Tchitchigin, N. Troshkov, D. de Carvalho, M. Mazzara, Jolie static
type checker: a prototype. Model. Anal. Inf. Syst. 24(6), 704–717 (2017)

47. S. Newman, Building Microservices (O’Reilly Media, Sebastopol, 2015)
48. J.M. Nielsen, A type system for the Jolie language. Master’s thesis, Technical University of

Denmark, 2013
49. P. Predonzani, A. Sillitti, T. Vernazza, Components and data-flow applied to the integration

of web services, in The 27th Annual Conference of the IEEE Industrial Electronics Society
(IECON01) (2001)

50. Raspberry PI foundation, Raspberri Pi official site. https://www.raspberrypi.org/. Accessed
June 2017

51. H.G. Rice, Classes of recursively enumerable sets and their decision problems. Trans. Am.
Math. Soc. 74, 358–366 (1953)

52. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.E. Lorensen, et al., Object-Oriented
Modeling and Design, vol. 199 (Prentice-Hall, Englewood Cliffs, 1991)

53. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Jolie good buildings: internet
of things for smart building infrastructure supporting concurrent apps utilizing distributed
microservices, in Proceedings of the 1st International conference on Convergent Cognitive
Information Technologies (2016), pp. 48–53

54. A. Sillitti, T. Vernazza, G. Succi, Service oriented programming: a new paradigm of software
reuse, in 7th International Conference on Software Reuse. Lecture Notes in Computer Science
vol. 2319 (Springer, Berlin, 2002), pp. 269–280

55. D. Taibi, V. Lenarduzzi, C. Pahl, Processes, motivations, and issues for migrating to microser-
vices architectures: an empirical investigation. IEEE Cloud Comput. 4(5), 22–32 (2017)

56. D. Taibi, V. Lenarduzzi, C. Pahl, Architectural patterns for microservices: a systematic
mapping study, in Proceedings of the 8th International Conference on Cloud Computing and
Services Science—volume 1, CLOSER, INSTICC (SciTePress, 2018), pp. 221–232

57. A. Tchitchigin, L. Safina, M. Mazzara, M. Elwakil, F. Montesi, V. Rivera, Refinement types in
Jolie. Proc. Inst. Syst. Program. 28, 33–44 (2016)

58. Texas Instruments, Texas instruments sensor tag official site. http://www.ti.com/tools-software/
sensortag.html. Accessed June 2017

59. Z. Yan, E. Cimpian, M. Zaremba, M. Mazzara, BPMO: semantic business process modeling
and WSMO extension, in 2007 IEEE International Conference on Web Services (ICWS 2007)
(Salt Lake City, 2007), pp. 1185–1186

60. Z. Yan, M. Mazzara, E. Cimpian, A. Urbanec, Business process modeling: classifications
and perspectives, in 1st International Working Conference on Business Process and Services
Computing, BPSC 2007 (Leipzig, 2007), p. 222

https://www.raspberrypi.org/
http://www.ti.com/tools-software/sensortag.html
http://www.ti.com/tools-software/sensortag.html

Part II
Migration

Migrating to Microservices

Alexis Henry and Youssef Ridene

Abstract Microservice is an architectural pattern which has risen based on the
success of Amazon, Netflix, and other digital-native companies. Designing such
architecture requires understanding your business goals and creating a balance
between microservices benefits and associated drawbacks. This trade-off is essential
in order to successfully migrate your business applications toward microservices. In
this chapter we aim to drive you through this journey by presenting a roadmap and
methodology which has been used successfully in several projects. We guide you
through the typical microservice migration project by using migration patterns for
managing service decomposition and data isolation and replication. Those patterns
may be used iteratively and in any order, therefore we will define a reference
architecture to sequence the building of your microservice architecture. Eventually
we conclude with a use case from the real world.

1 Modernization Challenges

Modernizing a monolith toward microservice architecture is not necessarily an easy
journey. This is due to multiple factors, not all of them being technical. First of all
there is no “one size fits all” microservice architecture; therefore each microservice
architecture should be designed specifically to the needs of the applications it
will support. As such, microservice architects in charge of migration must have
a broad understanding of what microservices are, well above the usual list of
expected benefits and key prerequisites. A deep understanding of key aspects such
as data consistency, dependency analysis, and continuous automation is required.
Eventually it must be clear that migration toward microservices is a decision to
take when other architecture styles do not help achieve the objectives (scalability
objectives, software distribution objective, partial deployment objectives, etc.).

A. Henry (�) · Y. Ridene
Blu Age R&D Department, Netfective Technology, Pessac, France
e-mail: a.henry@netfective.com; y.ridene@netfective.com
http://www.bluage.com

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_3

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_3&domain=pdf
mailto:a.henry@netfective.com
mailto:y.ridene@netfective.com
http://www.bluage.com
https://doi.org/10.1007/978-3-030-31646-4_3

46 A. Henry and Y. Ridene

Often, microservice architecture is compared to SOA, thus software architects could
believe it is SOA done right. But microservice architecture [1] is about designing
isolated services with a strong focus on data isolation. Microservice architecture
aims at isolating features so that they can be freely deployed, independently
from each other, onto a distributed architecture. Therefore, migrating an existing
application to such a “share as little as possible” [2] architecture is not about splitting
an application into pieces, it is about extracting features out of an existing code base
which is organized with a different design. In this first section we will go into some
analysis of the state of the art and return of experience from early adopters, then
based on their feedback we will dive into the transformation methodology. This step
is important to understand the key elements the code will use to resist change. For
more details refer to the “Assessing Your Migration” chapter in this book.

1.1 Reason for Change and Traps Along the Journey

Migrating to microservices is expected to provide benefits to your application life
cycle [3, 4]. Because not all decision-makers fully understand that microservice
architecture is a compromise—complexity never disappear—we analyzed microser-
vices adopters experience. The outcome of existing surveys [5] provide us with
interesting information. For instance, the main reasons why organizations choose
microservices are (Fig. 1):

– To make an application scalable
– To enable a fast partial deployment

Value Percent Responses

Management requested that we do so

To improve quality by having teams focus on just one piece of an app

To make applications easily scalable

To improve quality by narrowing down the source of failures to a
particular piece of an app

To enable faster deployments to just one part of an application

To experiment with the architecture

Flexibility to chose different tools or languages for each service

Other - Write in (click to view)

12.0%

50.1%

80.7%

40.9%

69.5%

24.4%

35.6%

3.9%

43

179

288

146

248

87

127

14

Fig. 1 Microservices: reasons for it [5]

Migrating to Microservices 47

Value

Finding where to break up monolithic components

Overcoming tight coupling

Incorporating other technologies (containerization, etc.)

Testing

Time investment

Other-Write In (click to view)

Not applicable

50.0%

49.7%

23.6%

30.8%

38.5%

2.9%

21.2%

313

311

148

193

241

18

133

Percent Responses

Fig. 2 Microservices migration: main difficulties [5]

– To improve quality by segmenting code
– To reduce cognitive load by having a dedicated programmers team per feature
– To use polyglot architecture [6, 7] (architecture may be different for each service)

However the focus on scalability (80% of answers) is double the interest for
isolating features (a rough 40%), and for partial availability (individual service
availability). This is a first evidence of a potential misunderstanding of microservice
architecture. This also shows that decoupling features may be underestimated both
in complexity and effort. Figure 2 confirms this and identifies two main reasons for
migration issues:

– Finding where to split monolith into pieces
– To do the split by creating loosely coupled services

Clearly the most complex task when migrating to a microservice architecture is
to overcome tight coupling. This task is difficult because traps may be hidden inside
every line of code. The required code refactoring is complex and global (scope
of refactoring may go beyond procedure scope) but must be achieved to perform
service decomposition and uncoupling. An additional cause for complexity comes
from isolation of distributed services. Services must be stateless (not depend on
shared memory) and each service must own its own data store and forbid direct
access to it from the outside (database per service pattern [8]) [9]. Furthermore
global transactions are no longer available and are replaced by eventual consistency
[10].

As such, service decomposition must focus on:

– Decouple code/data access: refactoring calls between procedures, removing
shared instances/variables, replacing transactions with raw persistence, and
synchronizing data across various data storage. . .

– Creating meaningful business services

48 A. Henry and Y. Ridene

The first task is significantly more complex than most would think. Indeed any
medium size software is made of millions of lines of code. That is more than the
number of gears from a disassembled Airbus plane. Many organizations underesti-
mate “Business” applications complexity, but they are large and complex engineered
systems. For this reason the analysis of an existing system is difficult to achieve and
will require both methodology and tooling. Furthermore most legacy systems which
candidate for microservice transformation are business-critical applications which
were built long ago. Many candidates are mainframe-based applications, written in
legacy languages such as Cobol or RPG. Therefore we designed a methodology that
suits either modern or legacy monolith applications.

The second task is difficult as well because most legacy software are not made
of business rules. While from a distance many decision-makers see applications as
a set of logical rules, this is not exactly true. Applications are made of programs
that work as expected at runtime, or more simply said they produce the expected
data with the right inputs. Unfortunately software are not designed like this. A
feature may and will be implemented through many programs. Those programs
most probably implement other features as well. Coding practices that were used to
design monoliths do not follow rules which allow to split business features apart in
a simple way. Therefore untangling an existing software to isolate business features
while removing technical dependencies is a real challenge.

The second reason for complexity is related to the difficulties of implementing
microservices. Figure 3 allows to group microservice implementation difficulties
into two distinct groups:

– Technical complexity: Microservice relies on service distribution and data
isolation. Operating such architecture is more difficult, because distribution
introduces new weaknesses and because debugging distributed API calls is

Value

Monitoring

Service discovery

App/service stability

App/service security

Deploying apps or services

Changing culture to be open to microservices

Not applicable

Other-Write In (click to view)

46.6%

21.7%

26.8%

27.2%

25.4%

38.2%

17.6%

5.1%

292

136

168

170

159

239

110

32

Percent Responses

Fig. 3 Microservices migration: main difficulties [5]

Migrating to Microservices 49

complex. Monitoring, deployment, and stability are clearly being identified
as more difficult compared with monolith. This comes from the fact that a
distributed system depends on underlying infrastructure and that any network
delay or outage will cause problems. And all distributed systems experience
networking issues at some point; it will happen whatever the quality of design
and operation excellence. So, those systems must be designed to be self-healing
and capable of working partially (meaning individual services may work, either
fully or partially, when other services are not available from their standpoint) to
avoid single point of failure. Typically a robust service discovery mechanism is
mandatory to achieve this. Unfortunately this is not a well-known design pattern
and most programmers do not design it properly when building a microservice
application. Creating a well-defined service discovery and a robust distributed
application using eventual consistency is something difficult and unknown to
most programmers in the industry. While this type of design is becoming more
popular as microservice architecture is growing, every organization planning to
migrate to microservice must take ensure good software practices for distributed
programming and database per service. Moreover such practices must cover
both the development side and the operational side. For instance, microservice
architecture must automatically manage its underlying infrastructure to detect
failure, react automatically, spawn new instances, reroute traffic, and inform the
monitoring system while your IP addresses have changed.

– Cultural change: Cultural change may be the most difficult part because it
can’t be solved technically; it’s all about people. Indeed, microservices are about
building teams which rule their business features with full autonomy. Not all
organizations are ready to reorganize themselves; not every manager is ready to
accept the new organization and give full autonomy to a team of programmers.
Organizations must adopt decentralized governance to be successful in their
microservice journey [11]. On the contrary, they must be careful to not make
microservice architecture a global solution to software engineering and must
resist the microservice envy [12]. Not every application has a fit for microservices
and not every block of code should become a business feature. For instance
nanoservices are an antipattern and must be avoided not to fall into the law of
the instrument [13, 14].

The last difficulty we will cover in this chapter is the fact that there is no
microservice reference architecture. Figure 4 highlights some of the suggested
design patterns used to build microservice applications. They are numerous and
not unique to each problem they solve, therefore deciding which one to use and
for what reason is a key principle before coding. Furthermore each part of the
architecture may be implemented using various architectural patterns. The reason
is that each pattern has its benefits and drawbacks. Thus designing microservice
architecture is always an opinioned trade-off. For instance, service discovery may
be done server side or client side. API composition [16] and CQRS [17] are both
valid options depending on the context, so are Saga [9] and Event Sourcing [9]. In
all these cases, the design is derived from the business features that must be enabled

50 A. Henry and Y. Ridene

F
ig

.4
M

ic
ro

se
rv

ic
es

pa
tte

rn
s:

bu
ild

yo
ur

ow
n

ar
ch

ite
ct

ur
e

[1
5]

.C
op

yr
ig

ht
©

20
18

.C
hr

is
R

ic
ha

rd
so

n
C

on
su

lti
ng

,I
nc

.A
ll

ri
gh

tr
es

er
ve

d.
ht

tp
://

m
ic

ro
se

rv
ic

es
.io

http://microservices.io

Migrating to Microservices 51

through microservice architecture. Of course not all patterns have the same technical
capabilities; for instance, Saga is not a valid option for batches due to associated
latency. The key is to come up with a strategy according to the business features to
enable and protect for failure.

For this reason we advise not to try building a long-lasting universal microservice
architecture. Instead, design an architecture with agility and changeability in
mind. The objective is to constantly react to changes, new feature requests, and
onboard game changing technology to promote change and control technical debt.
microservice architecture may vary per application in order to bring more benefits
for each. Furthermore new technology may unbalance choices, for instance, service
mesh, API gateway, and serverless frameworks may be considered and to enable
the architecture to evolve. Therefore the upcoming section will cover how to
incrementally make an architecture grow by choosing patterns and to benefit from
evolutionary architecture [18].

2 Transformation

2.1 Warm-Up and Scale Operations

The first step is to identify and migrate a first and easy microservice candidate. This
can be either a subsystem of a larger application or a smaller application to transform
into a single microservice. While doing so, the operational maturity is assessed.
Test automation, DevOps readiness, and continuous integration are evaluated and
improved to the right level. Because distributed systems are more difficult to manage
at scale it is essential to build up a strong infrastructure and application life cycle
automation [19, 20].

The burden of deploying services and managing scalability must be simplified
using abstraction level from regular infrastructure. If public cloud deployment is
the target then we will benefit from additional compute abstraction with managed
services, serverless computing, and all integrated container orchestration. Otherwise
containerization must be implemented as a prerequisite because virtual machines
do not bring required deployment capabilities [21]. Only lightweight execution
platform can deploy fast enough to support microservice architectures at scale. Con-
tainers, container orchestration, and serverless frameworks are de facto standards [5]
because they provide fast startup, without the need to manage operating system, and
are well suited to distribute application parts.

Because of this, the first step is to improve automation by building development
pipeline and implement a continuous deployment solution. Automation applies to
packaging, testing, versioning, tagging, and deployment of microservices. At this
stage new releases will not automatically be deployed to production. Instead the
focus is on producing container images that are ready to be deployed at will.
Releases should be tagged with versioning information and any metadata infor-

52 A. Henry and Y. Ridene

mation which helps manage deployment environment. For instance, the versioning
objective is to know which features are embedded in a release, while tagging is to
be used to add information to the benefit of monitoring and service location.

At this stage it is important not to rush out to use more complex and powerful
middleware such as API gateways and service mesh. Scaling and availability should
be guaranteed using application load balancers with autoscaling and/or container
orchestration. Only organizations with an established Kubernetes practice may be
more ambitious and anticipate API routing but we would recommend to scale
operations and application design approximately at the same pace. Operations must
be ready to receive applications based on powerful architecture design.

Microservice architecture is always distributed, therefore the use of log aggre-
gation framework and real time APIs monitoring solution is mandatory. Tracing
how APIs call each other is important to replicate bugs and solve potential issues.
Serializing input and output of stateless services may be a valid choice to replicate
real-life scenarios.

Once the infrastructure is in place, the first feature can be migrated. The first
candidate must be an easy one, the potential failure of which will not harm business
operations. Such a service is an edge service with limited or no user facing logic,
not using a datastore or only with isolated data at this stage. We will address data
dependencies later on.

For instance, an authentication service or a rewards service from an online shop
are good candidates because they are based exclusively on user information. We
recommend to select a service which does not perform updates on the database and
which does not call other services (Fig. 5).

For a while we will only migrate and operate edge services because at this stage
the biggest risk is failing to operate the microservices properly. Indeed each team is
fully responsible and autonomous of the infrastructure and associated management
technology. It is therefore crucial to let complexity increase only when teams are
ready to manage more complex distributed architectures. Once perfectly skilled with
container orchestration, autoscaling, and version tracking, then it is time for splitting
the monolith to remove deeply embedded features.

2.2 Release Data as Soon as Possible

The main driver for decoupling capabilities out of a monolith is to be able to release
them independently. To be fully autonomous we need to solve data dependencies
and make databases private to their micro services. Every time we will detach a
feature from a monolith to make it a microservice we will have to make sure we
isolate associated data and migrate them as well. This principle should guide every
decision to perform the decoupling.

Unfortunately this is not always programmers’ or decision-makers’ choice.
Because monolithic systems are made of tightly integrated layers—or multiple
subsystems that need to be released together—most microservice migration projects

Migrating to Microservices 53

Fig. 5 Candidate edge service: reward service

are initiated by removing technical layers and more often the user interface. The
typical monolith is similar to an online retail system. It is composed of one or
multiple customers facing applications relying on a back-end system implementing
many business capabilities and using a central data store to hold state for the entire
system.

Because of this, most decoupling attempts start with extracting user facing
components and by adding a few facade services to provide developer friendly
APIs for the modern UIs. When doing this the data remains locked in one schema
and storage system. It is not rare from then to see a data lake project be initiated
to expose data in a different way and to see a new project spawning to be built
using the data lake. Though this approach gives some quick wins when it comes
to core capabilities the delivery teams can only move as fast as the slowest part:
the monolith and its monolithic data store. Simply put, without decoupling the data,
the architecture is not microservices. Keeping all the data in the same data store is
counter to the decentralized data management characteristic of microservices. As
such it will not promote nor leverage decoupling between teams, and micro services
cannot evolve independently from each other.

To avoid this we will use the three following patterns to release data early
depending on the type of coupling and consistency we need to keep in your
individual services.

54 A. Henry and Y. Ridene

Fig. 6 Data-independent services [22]

Peel with Data-Independent Services This is a favorable pattern where the
extracted service and monolith have independent data dependencies. Programs are
grouped into a domain, forming boundaries of the microservice. Domain boundaries
are defined around low coupled interfaces, such as file transfer, message queuing,
reports, and business intelligence queries. The data model is strictly consistent
within each domain, within the remaining monolith data store, and within the
microservice data store. One data-independent microservice is extracted and moved
to the cloud or containerized environment (Fig. 6).

Peel with Data Eventual Consistency This is a pattern where there are data
dependencies between the extracted service and monolith. Data is replicated across
the former system and the new environment. Both environments may not be located
closely, which is typical for a migration from on premise toward cloud. Doing
so avoids network latency or jitter, which would be unmanageable for typical
I/O-intensive batch programs, or detrimental to high-throughput online backend
transactions. One data-dependent service is extracted and moved to the microservice
architecture, and dependent data is asynchronously replicated both ways in real
time. Because of the bidirectional asynchronous replication, there is data eventual
consistency. For conflict resolution, based on workload analysis and access types,
strategies such as mainframe-as-a-reference or Last Write Win can be adopted
(Fig. 7).

Group Then Peel with Strict Consistency When there are too many write depen-
dencies or strong transactionality requirements, eventual consistency can become
a challenge. In this pattern, groups of programs and their data dependencies are
moved altogether in order to preserve strict consistency. Data-dependent programs
are grouped into data-independent groups. One data-independent group is extracted
and moved to your microservice architecture with a shared data store. Eventually,
individual microservices may benefit from a separate deployment stack or data store
(Fig. 8).

The following table is an overview of the balance between patterns and consis-
tency model (Fig. 9):

Migrating to Microservices 55

Fig. 7 Eventual consistency with real-time replication [22]

Fig. 8 Group then peel with strict consistency [22]

Fig. 9 Consistency and transaction support per peeling pattern

2.3 Release Quick Win as Soon as Possible

Fortunately there are cases where splitting is easy, typically when a set of fea-
tures/programs/classes all rely on the same data and do not share those with other
services. Services using only transient data or those using a given set of tables
clearly go into this group.

In this case the group of services can instantly be removed from the monolith
and resulting computing can be sent back to caller in the monolith, and detached
services are fully independent from the remaining monolith and are a very good
candidates for (or multiple once further divided) microservices.

56 A. Henry and Y. Ridene

Furthermore the dependency is from the monolith toward the microservice. As
such there is no way by which a change to the monolith can impact the microservice
behavior and design.

2.4 Dig Vertically and Isolate Writes

The strategy is to move out capabilities vertically. To do so we clearly define which
business features we want to move out of the monolith. We identify associated
entry points, users, batches, and data exchange which implement the features in
the software. We use static analysis tools to dig vertically and go down call trees
until we reach data.

At this stage we have identified how capabilities are linked to data. We have
identified what other parts of the system use the same data, how they do so, and how
the data is stored.

Eventually we may run into complex decisions because too many components
writes to the same shared data. Furthermore the monolith may be very old, for
instance, a mainframe using VSAM file system, that taking the data away from
it will overcomplicate both the data migration and data synchronization that any
distributed system must manage.

The delivery teams need to incorporate a data migration strategy that suits their
environment depending on whether they are able to redirect and migrate all the data
readers/writers at the same time or not.

If the migration data is too much of a challenge you may decide to apply three
patterns:

– Stepped database per pattern: There are a few different ways to keep data
private. A simple one is to keep a relational database and to split table and schema
away from each other gradually. The following are a good way to simplify your
migration strategy and data synchronization between microservices:

• Private-tables-per-service—each service owns a set of tables that must only
be accessed by that service (Fig. 10).

• Schema-per-service—each service has a database schema that is private to that
service (Fig. 11).

• Database-server-per-service—each service has its own database server
(Fig. 12).

– Macro then micro:

• In this case the strategy is to split the monolith into coarse-grain services
which will later split into smaller piece. This approach does not target
optimized microservice definition at first, but brings early loose coupling
benefits. For instance, we can decompose a software into 6 large domains
which do not interfere by writing in the same data. In this case the data

Migrating to Microservices 57

Fig. 10 Tables duplication

migration is way easier and the synchronization less critical because using
distributed in memory caches is favorable for read only common data.

• When we are done with the first step we may decide to decompose to
finer grain to produce more specialized and independent microservices. One
advantage is that this strategy may only be applied to the most business-critical
and changing part of your system while other macro microservices will just
do well remaining ‘Big’ (Fig. 13).

– Merge then split:

• “Merge then split” aims at grouping microservice candidate prior to migrating
them to the new platform. Once migrated to that platform they will be
decomposed into fine-grained microservices. This happens when too many
data dependencies tie services. In order to avoid multiple data synchronization
across very different infrastructure we will migrate a bigger part and then
simplify data dependencies once in the new target architecture. This applies
well when migrating away from mainframe toward distributed systems. The
difference with “macro then micro” is that we apply “merge then split” only
on key microservices. For instance, we may decide to migrate “pricing” and
“promotion” services all together but without the “buy” microservice. Doing
so allows to automatically isolate data access, specifically for write accesses
which may create data consistency issues (Fig. 14).

58 A. Henry and Y. Ridene

Fig. 11 Collocated schemas

Fig. 12 Database server per domain

Migrating to Microservices 59

Fig. 13 Iteratively split the database

Fig. 14 Merge domains and split macro domains first

2.5 Domain Boundaries Are Not Data Access

Finding the domain boundaries in a legacy monolith is of course related to data. But
there are no established rules and we should not drive our strategy by analyzing the
data schema and individual data access within code. It is and will remain an art and
a science. Microservice architecture relies on bounded context, therefore defining
boundaries with domain-driven design [23] is a good start. However, we must resist
the urge to design really small services inspired by the current normalized view of
the data. This approach to identifying service boundaries almost always leads to an
explosion of a large number of CRUD microservices and nanoservices [24]. First of

60 A. Henry and Y. Ridene

all this does not isolate business nor bring it agility. Then your API composition will
become a nightmare and your system may become very slow. Service decomposition
must be based on business features isolation, starting with finding entry points and
then going down to find all the data. Then going bottom-up to see what other features
buried in the code share the same data allows for adjusting domain boundaries if
need be.

If boundaries are not properly defined then we will create a high friction
environment that ultimately fails release independence and correct execution of
services.

Furthermore there are other elements to consider than technical ones. Indeed
whatever the automation level that is reached with CI/CD microservice architecture
design must fit with team skill and size. There are some heuristics [25] on how
“micro” should be the microservice: the size of the team, the time to rewrite the
service, how much behavior it must encapsulate, etc. The size depends on how
many services the delivery and operation teams can independently release, monitor,
and operate. We will start with larger services around a logical domain concept,
and break the service down into multiple services when the teams are operationally
ready with macro-then-micro or merge-then-split.

2.6 Start with What Brings the Most Business Value

Decoupling capabilities from the monolith is not an easy task and it requires skills
and experience. Extracting a capability involves carefully extracting the data, logic,
and user facing components and redirecting them to the new service. Because this
is a nontrivial amount of work, the developers need to continuously evaluate the
cost of decoupling against the benefits (going faster or growing in scale). If there
is no payback because the cost for doing the migration is too high, then we must
think wisely. There is absolutely no need to migrate all of a monolith; we can keep a
core system as is. A good strategy is to identify the business features which are
under constant change and which bring the more value when isolated from the
monolith. You may identify the associated code by conducting workshop, static
code analysis, or by analyzing the log files of your change management system or
source repository. Jira and Git can easily be analyzed to identify what code changes
the most, what code is error prone or subject to change request. Doing so, the
delivery teams can analyze the code commit patterns to find out what has historically
changed the most. By comparing with the product roadmap it is possible to identify
the most desired capabilities which will require intensive code change in the near
future. Interacting with the business owners and product managers to understand
the differentiating capabilities is crucial. For instance, in Fig. 15 the monolith was
split in order to remove all data from customer profile in memory and have stateless
services to all features related to selling, shipping, and ordering services.

Migrating to Microservices 61

Fig. 15 Make important features stateless and make them microservices

2.7 Minimize Dependencies Back to the Monolith . . . If You
Can

As a founding principle, the delivery teams need to minimize the dependencies of
newly formed microservices to the monolith. A major benefit of microservices is to
have a fast and independent release cycle. Having dependencies to the monolith—
data, logic, APIs—couples the service to the monolith’s release cycle, prohibiting
this benefit.

The prime motivation for moving away from monoliths is the slow pace of
change of the current system. It is expected that uncoupling critical and changing
capabilities from the monolith allows for fast change due to data autonomy,
autonomous packaging, and automatic testing and deployment. This will be true
if the externalized microservice truly is autonomous, and as such the business logic
within the microservice shall not depend upon API calls back to the monolith.

While we recommend starting the migration process with edge services, there
may be little of those. Initially they are helpful because migrating those first allows
for getting ready for more critical and larger microservices.

62 A. Henry and Y. Ridene

Fig. 16 Inverse dependencies: from monolith to new microservices

However, it is not a valid option to peel a monolith like an onion because
the migration process will create dependencies in the reverse direction, from the
monolith to the services (Fig. 16).

Therefore, once we are ready and used to operate microservices, we will have to
dig vertically the core features out of the monolith. This is the desired dependency
direction as it does not slow down the pace of change for new services.

To illustrate this we will consider a retail online system, where buy and
promotions are core capabilities. Buy uses promotions during the checkout process
to offer the customers the best promotions that they qualify for, given the items
they are buying. If we need to decide which of these two capabilities to decouple
next, we suggest starting with decoupling promotions first and then “buy”. Because
in this order we reduce the dependencies back to the monolith. In this order buy
first remains locked in the monolith with a dependency out to the new promotions
microservice.

While this guideline is very efficient when modernizing a relatively young
monolith it may prove much more difficult when modernizing very old applications
coming from mid-range or mainframe. Indeed, programming language capabilities
and middleware/operating systems are not in favor of having the monolith depend
upon external capabilities. When facing such systems we will have to balance the
current guideline with merge-then-split and macro-then-micro, which may offer
better decentralized management and lesser complexity.

We may as well expose a new API from the monolith (if the monolith’s
underlying infrastructure and programing language allows for that) and to access
the API through an anticorruption layer [26] in the new service to make sure that
the monolith concepts do not leak out. We must strive to define the API that reflects
well-defined domain concepts and structures, even though the monolith’s internal

Migrating to Microservices 63

Fig. 17 The API tangle: use API gateways when coordination becomes a challenge

implementation may be otherwise. In this unfortunate case, we will be bearing the
cost and difficulty of changing the monolith, testing and releasing the new services
coupled with the monolith release.

An API’s first design becomes difficult to operate when too many inbound and
outbound dependencies exist. Figure 17 illustrates this by displaying API endpoints
and calls between deployed microservices at Amazon. In such a complex scenario
the use of external configuration to manage dependency complexity will be required.
For this current issue the use of API gateway will be required and API coordination
will make sense. However this feature is useful in an evolutionary architecture when
you are ready to use it (see below), based on the payback for the extra complexity
management.

64 A. Henry and Y. Ridene

3 Analysis Use Case: Blu Age Analyzer

A microservice architecture decomposes applications into loosely coupled business
domains. The idea is that any team responsible for a domain may change how
things are done inside the domain without impacting other application domains it
interacts with. When peeling a monolith, one must identify the various domains and
associated boundaries. Blu Age Analyzer relies on the preceding patterns to define
the microservices decomposition.

In this section, we will describe the steps taken with Blu Age Analyzer [27] to
identify microservice domains.

3.1 Step 1: Vertical Analysis

Blu Age Analyzer automatically identifies all entry points into the system and
organizes the dependencies into concentric rings. Microservices appear as local trees
starting from the outside. At this stage, there are still some coupling elements that
appear in the inner layers identified by the green zone in the figure. This analysis
stage is fully automated (Fig. 18).

3.2 Business Domains Definition

During this step, dependencies to core programs are solved and individual domain
boundaries are finalized. It leads to a starfish collaboration where few central
domains (programs with very little code) contain utility programs and satellite
domains contain the business logic. Satellite domains use central domains and
collaborate directly with other satellite domains as well (Fig. 19).

Domain decomposition and boundary detection is made by analyzing both
caller/callee relationships, data access type, and data formats. The example in
Fig. 20 shows for a given program tree the data dependencies according to their data
formats. It highlights the virtual storage access method (VSAM) and DB2 access
types.

At this stage, a Blu Age Analyzer user may choose to alter boundary definitions.
Typically, s/he can adjust a domain based on business enhancements or to optimize
API composition and data synchronization. This is common for microservices
definition where boundaries are optimized through iterations.

Migrating to Microservices 65

Fig. 18 Vertical analysis using Blu Age Analyzer

Blu Age Analyzer facilitates this task using tags annotation. Domain boundaries
adjustment effort is typically 1/2 man-day per million lines of code.

3.3 Utility Domains Definition

Users must then decide to include the central utility domains as libraries within
microservices or as real microservices of their own. These central domains usually

66 A. Henry and Y. Ridene

Fig. 19 Domain definition using Blu Age Analyzer

become libraries since they usually do no I/O and contain only utility programs,
which would likely be replaced by off-the-shelf frameworks when modernized.

Figure 21 shows the final decomposition with connections between domains with
a single orange arrow per domain collaboration.

Migrating to Microservices 67

Fig. 20 Data dependencies analysis using Blu Age Analyzer

4 Reference Roadmap

4.1 Step Your Architecture and Go the Right Pace

Any seasoned engineer can share stories of legacy migration and modernization
attempts that got planned and initiated with over-optimism of total completion, and
at best got abandoned at a good enough point in time.

Long-term plans of such endeavors get abandoned because the conditions
change: the program runs out of money, the organization pivots its focus to
something else, or leadership in support of it leaves.

So this reality should be designed to get regular valuable benefits. Do not try to
get directly to the perfect architecture nor to get huge savings and business agility
benefit in the long run.

It is essential to plan the journey to sell constant payback in a way which is clear
to upper management.

Our advice is to go fast, to define an architecture evolution roadmap and to
be ready to adapt it to changing conditions. Furthermore, a given microservice
architecture is not necessarily a global solution that can be used for all microservice
projects, and a business application may rely on different patterns per microservice.
Microservice decomposition must not be based once and then delivered with an
immutable plan because unexpected refactoring will be required and constantly
readjusting a global strategy will take too long. Each microservice is a unit of its
own and we must use this to our advantage to go fast and show results.

Within each microservice create a microservice roadmap which lets you go
through more advanced technology over time. Below is an example of an incre-
mental roadmap, prior to changing conditions. The roadmap is as follows:

68 A. Henry and Y. Ridene

Fig. 21 Final microservice decomposition

– Stage 1: Ready to operate The first stage is about being ready to operate
microservices by automating testing, release forging, and deployment. Data
becomes distributed, service discovery is in place and so is monitoring. Therefore
the following must be ready and well used:

• CI/CD to automate all the release management and deployment
• Database per service. This pattern should be stepped with the following

roadmap:

Tables per service: We keep a single database layer but isolate tables within
the same instance. This is a single schema but denormalized to split apart
data. Data are virtually disconnected.

Migrating to Microservices 69

Schema per service: We keep the same underlying technology but dedicate
schema and instances of databases per service. Each schema is private per
microservice.

Database per service: each microservice uses its own database technology
which may be relational, key/value, column based, graph based, etc.

• Service discovery: Doing API composition requires service discovery. A
modern microservice-based application usually runs in a virtualized or con-
tainerized environment where the number of instances of a service and their
locations change dynamically. As such we must rely on service discovery:
client side discovery [28], server side discovery [28], and service registry.

• Monitoring: we need to be able to track a minimum of elements:

Machines, virtual machines, containers are up and running and application
does respond to API request (health check API).

We must be able to track APIs versioning and where they are deployed to be
able to debug.

We have centralized log management.

– Stage 2: Scale and enhance

• Enhance release management: At this stage, automation allows to convert any
GIT commit into a machine image or a container image. Microservice images
are stored individually, versioned, and ready to deploy in seconds.

• Enhance deployment target: We no longer rely on host nor virtual machines.
We use only containers and container orchestration. Container images are
automatically built and stored ahead of time for on-demand deployment. Con-
tainer orchestration makes us ready for adaptive scaling and fast deployment.

• Load balancing and autoscaling: We have enough underlying infrastructure
to enable auto scaling. Containers will be deployed and removed based on
monitoring events, such as unavailability of service, poor response time,
or overconsumption of CPU/RAM. We enable load balancing to enforce
performance and availability, be free to deploy at various places, and to ease
service discovery.

• Canary deployment: Service discovery is used to manage deployment of
different versions of service and to route API request to incrementally roll
out to the newer versions. We will use load balancing and service registry to
route request per criteria like geolocation, user id, etc.

• Consider private versus public cloud in case of tremendous success of public
APIs. Indeed it may prove impossible to scale the physical infrastructure fast
enough to serve increasing traffic and API queries. Furthermore, services may
be required to be distributed all around the world to serve local users, which is
a significant challenge. Another challenge is to deal with services with varying
compute power which cannot be predicted (online bets, for instance). In which
case you will want to quit on premise architecture to go to public cloud and
go with on demand and pay as you go.

70 A. Henry and Y. Ridene

– Stage 3: Optimize and be an API provider

• API Gateway will allow to provide advance routing and service location
capabilities. They can be used to filter and secure traffic as well. Use API
gateway:

When APIs go public
To monetize APIs with usage control
To handle huge API request and to simplify load balancing, service location,

and API routing
To do API composition at the gateway level

• ServiceMesh [29]: This is a network communication infrastructure which
allows to decouple and offload most of the application network functions
from service code. Hence service-to-service communication does not need
to implement resilient communication patterns such as circuit breakers nor
timeouts in your services code. Similarly, service mesh provides other features
such as service discovery, observability, etc. There is a balance [30] to define
between API gateway and service mesh.

• Serverless is the next stage beyond containers. In this case, there is nothing to
provision and manage. Scalability is virtually without limits and brings extra
cost savings. Serverless is way faster than containers (typically an instance
is up and running in 120 ms) but requires more discipline because they must
be stateless or with minimal data serialization. However serverless, and more
specifically Function as a Service, is perfect for API first design and have a
natural fit with API gateways.

• Backend for front end [31, 32] will be used for multichannel APIs. For
instance, mobile devices will want to make different calls, fewer calls, and
will want to display different (and probably less) data than their desktop
counterparts. This means that we need to add additional functionality to our
API backend to support mobile interfaces.

5 Conclusions

This chapter presented a methodology for successfully migrating monolith appli-
cation toward microservice architecture. Based on survey [5] results and return of
experience from real projects, we identified key issues typically faced during migrat-
ing. Typically five main risk factors have been identified and solved, namely:

– Difficulties for doing microservice decomposition and getting rid of tight
coupling

– Underestimating the consequences of service isolation and database per service
– Difficulties in operating microservice architecture
– Assessing the readiness for change
– Focusing too much on technology and less on design and migration patterns.

Migrating to Microservices 71

Fig. 22 Evolutionary architecture

Furthermore we highlighted that most migration projects start by designing a
“perfect” microservice architecture while it is counterproductive. As explained,
microservice architecture is a trade-off between individual design patterns, therefore
the architecture design depends upon the application features to migrate. Moreover,
each pattern has operational consequences and a microservice architecture must be
built with operation excellence because distributed systems are more difficult to
manage.

Based on this analysis we detailed both a methodology and a roadmap to help
build microservice applications.

The key principle of the methodology is to build an evolutionary architecture.
This starts by learning how to do microservice decomposition while jointly creating
the basis for operation excellence and associated automation. Then we introduce
more migration patterns to manage data uncoupling, minimize dependencies, and
manage APIs.

Then we went through a service decomposition from a real large system. We
also went into differentiating between microservice candidates versus common
components which shall be deployed into all services. By doing this we will avoid
creating nanoservices and the consequences of the law of the instrument.

Finally we proposed a reference roadmap to build a microservice ecosystem
based on operational readiness (Fig. 22):

– Ready to operate
– Scale and enhance
– Optimize and become an API provider.

72 A. Henry and Y. Ridene

References

1. M. Fowler, Microservices, a definition of this new architectural term (2011), https://
martinfowler.com/articles/microservices.html

2. S. Tuli, Microservices vs SOA: what’s the difference? (2018), https://dzone.com/articles/
microservices-vs-soa-whats-the-difference

3. W.K. Loo W.Y. Tham Y.B. Leau, S.F. Tan, Software development life cycle agile vs traditional
approaches, in International Conference on Information and Network Technology (ICINT
2012), vol. 37 (ICINT, IACSIT Press, Singapore, 2012)

4. P.M. Clarke, R.V. O’Connor, P. Elger, Continuous Software Engineering: A Microservices
Architecture Perspective (Wiley, London, 2017)

5. A.M. Glen, Microservices priorities and trends (2018), https://dzone.com/articles/dzone-
research-microservices-priorities-and-trends

6. B.J. Evans, The Well-Grounded Java Developer: Vital Techniques of Java 7 and Polyglot
Programming (Manning Publications, Shelter Island, 2012)

7. R.V. Rajesh, Spring 5.0 Microservices, 2nd edn. (Packt, Birmingham, 2017)
8. C. Richardson, Database Per Service (2018)
9. C. Richardson, Microservice Patterns, with Examples in Java (Manning, Shelter Island, 2018)

10. W. Vogels, Eventually consistent. Commun. ACM 52(1), 40–44 (2009)
11. M. Conway, Conway’s law. https://en.wikipedia.org/wiki/conway%27s_law
12. ThoughtWorks, Microservice Envy (2018)
13. A. Maslow, The Psychology of Science (Harper & Row, New York, 1966)
14. A. Maslow, Law of the instrument. https://en.wikipedia.org/wiki/law_of_the_instrument
15. C. Richardson, Microservice architecture patterns (2018), https://microservices.io/patterns/

index.html
16. S. Newman, Building Microservices (O’Reilly, Sebastopol, 2015)
17. Martin Fowler. CQRS pattern (2011), https://martinfowler.com/bliki/cqrs.html
18. P. Kua, N. Ford, R. Parsons, Building Evolutionary Architectures (O’Reilly, Sebastopol, 2017)
19. P. Jamshidi, A. Balalaie, A. Heydarnoori, Microservices Architecture Enables DevOps:

Migration to a Cloud-Native Architecture, vol. 33 (IEEE Software, 2016)
20. J. Gao, M. Rahman, A Reusable Automated Acceptance Testing Architecture for Microservices

in Behavior-Driven Development (IEEE, Piscataway, 2015)
21. B. Golden, 3 reasons why you should always run microservices apps in containers. https://

techbeacon.com/app-dev-testing/3-reasons-why-you-should-always-run-microservices-
apps-containers.

22. A. Henry, How to peel mainframe monoliths for AWS microservices with Blu Age
(2018), https://aws.amazon.com/fr/blogs/apn/how-to-peel-mainframe-monoliths-for-aws-
microservices-with-blu-age/

23. E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison
Wesley, Reading, 2003)

24. gpestana, https://www.gpestana.com/blog/data-microservices/
25. M. Mclarty, M. Amundsen, Microservice Architecture: Aligning Principles, Practices, and

Culture (O’Reilly, Sebastopol, 2016)
26. E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison

Wesley, Reading, 2003)
27. A. Henry, https://www.bluage.com/products/blu-age-analyzer
28. C. Richardson, Server side discovery (2018), https://microservices.io/patterns/server-side-

discovery.html
29. R. Parsons, Servicemesh, 2019
30. K. Indrasiri, Service mesh vs API gateway, 2017
31. S. Newman, Monolith to Microservices (O’Reilly, Sebastopol, 2019)
32. S. Newman, Pattern: Backends for frontends (2015), https://samnewman.io/patterns/

architectural/bff/

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://dzone.com/articles/microservices-vs-soa-whats-the-difference
https://dzone.com/articles/microservices-vs-soa-whats-the-difference
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://en.wikipedia.org/wiki/conway%27s_law
https://en.wikipedia.org/wiki/law_of_the_instrument
https://microservices.io/patterns/index.html
https://microservices.io/patterns/index.html
https://martinfowler.com/bliki/cqrs.html
https://techbeacon.com/app-dev-testing/3-reasons-why-you-should-always-run-microservices-apps-containers
https://techbeacon.com/app-dev-testing/3-reasons-why-you-should-always-run-microservices-apps-containers
https://techbeacon.com/app-dev-testing/3-reasons-why-you-should-always-run-microservices-apps-containers
https://aws.amazon.com/fr/blogs/apn/how-to-peel-mainframe-monoliths-for-aws-microservices-with-blu-age/
https://aws.amazon.com/fr/blogs/apn/how-to-peel-mainframe-monoliths-for-aws-microservices-with-blu-age/
https://www.gpestana.com/blog/data-microservices/
https://www.bluage.com/products/blu-age-analyzer
https://microservices.io/patterns/server-side-discovery.html
https://microservices.io/patterns/server-side-discovery.html
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/

Assessing Your Microservice Migration

Alexis Henry and Youssef Ridene

Abstract Microservice is an architectural pattern that has risen based on the
success of Amazon, Netflix, and other digital-native companies. Designing such
an architecture requires understanding your business goals and creating a balance
between microservices benefits and associated drawbacks. This trade-off is essential
in order to successfully migrate your business applications to microservices. In
this chapter we aim to drive you through assessing your readiness to microservice
and migration to microservice. We will first start by highlighting key microservice
concepts and their impact on both your coding and operations practices and your
organization. Then we will investigate further to identify how to establish a trade-
off between microservices benefits and associated drawbacks. Database per service,
API first design, readiness to operate and NoOps on public cloud will be investigated
so that you can clearly establish your own design and strategy in adopting a
microservice architecture.

1 Principles

1.1 Mimicking Internet Giants and Unicorns

We are living in a digital world that is driven by data and software innovation. Every
day we hear stories of a start-up that turned into an industry giant. The reason of their
success is clear: direct access to consumers, innovation to enhance user experience,
quality, constant deployment of new features, scalability up to billions of users, and
an always-on architecture.

Technically speaking, the success of Netflix, Amazon, and most Unicorns [1] is
based on technology which allows scaling to serve millions and even billions of

A. Henry (�) · Y. Ridene
Blu Age R&D Department, Netfective Technology, Pessac, France
e-mail: a.henry@netfective.com; y.ridene@netfective.com
http://www.bluage.com

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_4

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_4&domain=pdf
mailto:a.henry@netfective.com
mailto:y.ridene@netfective.com
http://www.bluage.com
https://doi.org/10.1007/978-3-030-31646-4_4

74 A. Henry and Y. Ridene

Fig. 1 Microservices let you change things easily and fast

users at the same time. This was achieved by adopting microservice architecture,
in order to isolate individual business services and to organize their software
development department into autonomous units. Therefore, they can innovate faster
than any competitors, choosing the technology most appropriate for each service.
Consequently, they constantly release new features that keep consumers attracted to
them (Fig. 1).

We now see older organizations involved in migrating to a microservice archi-
tecture. They have been surveyed [2] about their microservice architecture strategy,
objectives, and return of experience:

– Only 24% have deployed microservices into their production environment
(Fig. 2).

– Four out five respondents stated microservice architecture makes their job
easier (Fig. 5). Surprisingly only 177 respondents are using microservices in

Fig. 2 Adoption of microservices [2]

Assessing Your Microservice Migration Readiness 75

Fig. 3 Reasons for adopting microservices [2]

Fig. 4 Reasons for not adopting microservices [2]

production, which is significantly less than the number of respondents benefiting
from microservice architecture (286).

– The two main reasons for adopting microservice architecture are faster partial
deployment (69.5%) and scalability (80%) (Fig. 3).

– The main reason for not adopting microservice architecture is the lack of
knowledge and know-how (68.9% when summing need for training, no time for
training, and lack of knowledge). Then more than one third of the respondents
consider they do not have applicable use case (Fig. 4).

An early conclusion would be that nearly all adopters do benefit from microser-
vice architecture, with a rather narrow focus on the performance of distributed
components. The reason for not adopting it is more a readiness assessment rather
than a lack of interest or a fear it would not work (Fig. 5).

76 A. Henry and Y. Ridene

Fig. 5 Are microservices beneficial to your organization? [2]

However many returns of experience [3–6] from the industry speak about
complexity of microservices architecture, and there are still many debates on
microservice design patterns. Is reality different or is microservice a complex topic
that needs deep technical expertise in order to bring benefits?

1.2 Where Is the Complexity?

Isolation is at the core of microservice architecture. While SOA was designed in
order to reuse existing services, microservice architecture was designed to create
loosely coupled services. However, this goes further: data are not shared between
services, each microservice is managed by only one team that is fully autonomous,
and service may be reused but implementation is stateless and hidden from
consumer services. Microservice architecture is polyglot; each microservice may be
implemented with a different programming language or database technology, there
is no global design or technical architecture. This is the reason it is often qualified
as the “share as little as possible” architecture.

But distributed systems are more difficult to manage, due to CAP theorem, and
complexity will arise because of decentralized data management. As a consequence
of isolation and distribution, trade-off needs to be established between benefits and
drawbacks of microservice architecture [7]. Microservice architecture pioneers still
describe it as both powerful and complex and do not consider it a general all-purpose
architecture principle [8].

Analyzing respondents’ answers highlight some of the drawbacks of migrating
to microservice architecture:

– Many adopters consider microservice architecture as a technical architecture,
thus limiting the design to include only microservice technology and tools.

– The complexity of uncoupling element is usually underestimated.
– Complexity never disappears, microservice requires DevOps maturity and sig-

nificant automation of application life cycle.

Indeed, most survey respondents have chosen the same technical architecture,
Java (80%) with either Java EE and/or SpringBoot (total is 77.1%), and most of
them deploy to containers [2] (Figs. 6 and 7).

Assessing Your Microservice Migration Readiness 77

Fig. 6 Microservices: preferred programming languages [2]

Fig. 7 Microservices: preferred frameworks [2]

Nevertheless, from Figs. 8 and 9 we clearly see monitoring is a problem for one
out of two adopters and that more than a third of adopters experience issues because
microservice architecture requires a culture change. Furthermore, when migrating
a monolith, half of the respondents were not able to identify where to break up the
original system. Finally half of the respondents were not able to decouple identify
services to peel off the monolith.

In fact, what is not well understood is that there is no such thing as a
reference microservice architecture. Microservice is not about selecting technology
nor deploying containers. Above all, microservice architecture is about business

78 A. Henry and Y. Ridene

Fig. 8 Microservices are difficult to identify and isolate [2]

Fig. 9 Deploying and managing is not that easy [2]

product and autonomous teams. Each team has full responsibility and autonomy to
manage technical choices, release cycles, deployment to production, and underlying
infrastructure. Each team is responsible for isolated business features that they make
available to other teams as black boxes via APIs. Each database is private to the
microservice it belongs to, which allows each microservice to make any change at
any time without affecting dependencies of other microservices.

Consequently, the design and the management of your architecture is very
different, and so is data consistency. Unfortunately, there is little chance that an
existing monolith complies to this prior to its migration toward the new architecture
model.

Assessing Your Microservice Migration Readiness 79

In order to be successful with the migration, the following changes must be
made:

– Focus on business and users: You must consider your microservices as business
parts. Your sole objective when creating/upgrading a microservice is to deliver a
business case.

– Autonomy, uncoupling, and API first design: Microservices are parts. Parts may
be replaced and upgraded at any time without affecting other services. As such,
all microservices are managed by dedicated teams that are black boxes to other
microservices. Each team has full autonomy over implementation choices. They
communicate with the outside world only with APIs.

– You build it, you run it: Each team is responsible for design, implementation,
maintenance, and operation of their microservices. You can’t delegate to another
team to operate your application and software infrastructure. This does not
mean you can’t share choices and design principles with other teams but no
external team shall have any impact on your choices. Furthermore keeping your
application scalable, available, and consistent is your duty.

– Local data consistency: Each microservice runs its own private datastore.
Data consistency exists only within a microservice. There is no such thing as
coordinated transaction among microservices. Data state is local to individual
microservices. When performing service composition you will not and can’t have
strict consistency. A data replication mechanism must be implemented so that
denormalized data is synchronized. As such, at API coordination level you have
only weak consistency, most probably eventual consistency.

The last item is very restrictive and is the one that is mostly demanding for a
balance between gains and drawbacks. Indeed you get benefits by isolating and
decoupling business components. Each may change for any reason, in any way,
without affecting other business processes. However, doing so with scalability,
performance, and individual availability of services forbid strict data consistency
(more details on this later in this chapter). Therefore, the balance is between the
consistency model, the business agility it brings, and the associated limits on the
coding style.

2 Why Microservice Architecture Is Different

2.1 A Zoom-In on Key Characteristics

In order to assess the capability of building and operating microservices, each
organization must have a deep understanding of the key characteristics of such an
architecture. Indeed local consistency, data isolation, and API first design signif-
icantly affect the life cycle of microservices with regards to other programming
styles.

80 A. Henry and Y. Ridene

Because the system is distributed [9–12], a balance must be established between
availability, performance, and consistency. For this reason, we will further investi-
gate microservice architecture characteristics.

2.1.1 Business Modules

Each microservice is a runnable unit that delivers a business service. Microservices
should not be technical components, common utilities, or shared services. Each
business module must be self-contained. Typically a stock management service
should not be responsible for pricing or promotion (Fig. 10).

Dependencies must be managed so that those other two services use “stock
management” in order to vary pricing by triggering specific promotions when stock
is too high or increase prices for rare items (Fig. 11).

Business modules must be considered as a product you could buy from a third
party without knowing its internals. They are applications of their own. They can
grow both in size of code and engineering team. Keeping this in mind is important
because microservice is an ambiguous name which could create an impression
that microservices must be small. However, microservice architecture is not about
cutting your monolith in small services, it is about slicing your software into
independent business parts that can be upgraded, extended, and replaced as long
as you preserve their public APIs (Fig. 12).

Over time, a successful microservice may grow big, implemented by 15–20
people. A significant microservice can grow bigger than many existing applications

Fig. 10 Collaboration of individual services within a user process

Assessing Your Microservice Migration Readiness 81

Fig. 11 Focus on customer promotion business use case, i.e., a microservice candidate

Fig. 12 Preferred dependencies when isolating microservices

82 A. Henry and Y. Ridene

within your organization and be perfectly designed, useful, and easy to maintain and
evolve. Only when a microservice is too big shall it be split into smaller services.

2.1.2 Database Per Service

This design pattern is at the core of microservice architecture [13] to uncouple
different services. An organization may have implemented the perfect software
with the most brilliant SOA design, using event bus and queuing, have perfect
loose coupling to manage calls between procedures and methods, and yet be tightly
coupled because of the application database.

Indeed if that software is fast changing it will require schema updates, a newer
configuration of its ORM (Object-Relational Mapping), or require new database
features. Once the data definition has been modified, all components using the
former structure are impacted and must be updated. Data structure change is
always cascading globally within an application if there is no data isolation design.
Furthermore, changing data structure may alter transaction management and will
require update of all components using shared data structure definition.

As a result, all of the software is impacted and because many different compo-
nents must be updated, each change cascades into more code adaptations.

To solve data coupling, each microservice owns privately its datastore [14]. Data
sharing is forbidden and data is exchanged only through API composition and
automatic data synchronization.

Distributed APIs are used to query and return application-level objects from
isolated components. Data is decentralized, denormalized, and replicated across
microservice boundaries.

For instance, when designing an online shop, there will be an “order” service
and a “customer profile” service. The customer profile service will be responsible
for managing customer record structure. Moreover, all updates on records attributes
will be done by that service. However, the order service does not know the structure
of that table and cannot access it directly.

So when creating an order for a given customer the customer-ID and other key
profile information are denormalized and duplicated into the order records. When
the customer records are updated in the “customer profile” database, the updates
must be replicated into denormalized records in the order service. This allows each
microservice team to make any required change to the data design and associated
technical choices without affecting external services as long as interfaces remain
stable and data synchronization is working fine (Fig. 13).

2.1.3 API First Design

Each microservice publishes APIs so that all use cases are done through API
Composition. Typically, when buying from an online store the buying service will

Assessing Your Microservice Migration Readiness 83

Fig. 13 Record duplication and denormalized schemas (customer and product) [13]

coordinate all actions by consuming the customer profile, promotions, payment,
stock management, and pricing modules.

This principle allows deployment and configuration of distributed elements at
will. Creating new services is done via service composition of autonomous services.
Implementation is hidden from other services and can evolve as often as needed with
no impact on API consumers.

Whenever an API is not available (due to an outage, unavailable network device,
unreliable network delay, etc.) the coordinating service can chose to deliver the most
important services while postponing other actions. Unreachable services will be
activated later on without blocking the entire process.

A typical scenario is buying from an online shop while the “stock management”
service is over-flooded and cannot serve all incoming requests. The Buying ser-
vice will perform all actions that are available—send order to Shipping, process
Payment—and will manage the stock update asynchronously.

This is an example of trade-off that must happen to make microservices efficient:
We must be ready to sacrifice stocks consistency to the benefit of the Buying
microservice. There is no global transaction, and global data consistency is not strict.
However, the most important services are always up and scalable even if the other
parts do not behave as expected. A monolith is a single part that is either doing well
or bad. Microservice architecture allows for splitting responsibilities and operational
states (Fig. 14).

For that reason, API first design makes real use of cloud capabilities. Indeed,
modules are distributed in various places. Different versions of the same service
may be deployed and active at the same time. This allows features to be seen as a

84 A. Henry and Y. Ridene

Fig. 14 Managing remote services availability and network latency

global application which cannot fail. Typically, API gateway and load balancer make
distributed architecture extremely reliable and resilient to varying load stresses and
unexpected failure scenarios.

2.1.4 Polyglot Architecture

Microservices do not expose their implementation, only their public API are visible.
This black box approach allows selecting the technical stack for each service
independently [13] of other services. For instance, a crime scene investigation
software (CSI system) that helps the police will require features such as (Fig. 15):

– A very good geolocation service to help spot and chase suspects
– Advanced analysis capabilities to establish connection between suspects
– A video recording service that streams and saves recordings of police action and

keeps track of evidence

A polyglot architecture allows choosing a different database system (a GIS
database for the first service, a graph database for the second, and a streaming
middleware for the last one) per microservice. Polyglot architecture is not limited to
database but extends to programming languages and associated frameworks as well.

Assessing Your Microservice Migration Readiness 85

Fig. 15 CSI software services

Fig. 16 Database choices may differ for each microservice

For instance, Groovy and Gremlin are good for doing graph transformation
on top of a graph database. Therefore, a geolocation service is probably best
implemented with angular for the frontend and Java and PostgreSQL for the
backend. This is one of the reasons loosely coupled distributed services allow
choosing the right technical stack according to required features and user experience
(Fig. 16).

As seen previously, microservices benefits come from isolation and uncoupling.
When doing greenfield development, this approach adds workload to the initial

86 A. Henry and Y. Ridene

development phase because establishing microservices boundaries is not that easy.
Furthermore, refactoring across microservices is complex. However, once bound-
aries are stable, microservice design is extremely beneficial.

Yet, this adds complexity when migrating. Indeed most existing monoliths rely
on transactions, rollback, and sharing data in memory. Refactoring data scope,
replacing transactions, and developing your own rollback services is complex.
Another constraint adds further complexity: Microservices must be business com-
ponents; therefore features must be identified within the code.

Unfortunately, it is very unlikely that the existing code base is made of isolated
code block per feature. Most classes/programs will be part of multiple features that
require to be distributed apart in the future. That issue is not limited to block of
code, and queries to database tables and shared objects in memory will have to be
refactored as well.

Because of this, each coupling type must be well understood and managed
specifically:

• Data coupling: Each microservice owns its datastore and does not share its data
schema nor allows direct access to persisted records. This allows decoupling at
the data definition level. Consequently, data is denormalized and the information
is distributed over multiple databases and partitions. Therefore data (records
or information stored into records) must be replicated. However, replication
takes time and may fail (due to outage, congestion, or availability issues) ACID
transactions and strong consistency is not guaranteed.

• Module/routine call coupling: Code is compiled/packaged per microservice,
deployed on multiple containers/machine instances and call are remote (not in
the same virtual machine, without memory sharing and most probably rely on
network infrastructure). Routines that were formerly running within the same
compute unit are now running in different remote environments. Data in memory
can no longer be shared, and networking makes routine communication slow and
error prone. This creates both development and operational consequences:

– Remote calls are slower, performance management, load balancing, and
automatic deployment are a must.

– Remote calls are not reliable, therefore monitoring, auto health check and
automatic redeployment is a must.

– Refactoring of code across microservices boundaries is much more difficult
than with a monolith. Testing and debugging become more difficult as well.

– Deployment of services is not predictive as it may be done automatically
to support automatic scaling and load balancing or because a newer service
version has been published and automatically deployed. As organization skill
increases, it will raise the automation level to get more agility. Eventually
every code commit may be automatically compiled, tested, versioned, and
deployed into a canary deployment with automatic load balancing config-
uration. Such an objective requires a strong discipline to enforce version
management and deployment management. A strong CI/CD (continuous
integration, continuous deployment) automation is necessary in this case,
otherwise the infrastructure will turn to chaos.

Assessing Your Microservice Migration Readiness 87

• Transaction coupling:

– This is one limitation not usually well understood at first. In monoliths, data
consistency is achieved using transactions. This allows for controlling the state
of data in the following two scenarios:

Service updating data in multiple databases simultaneously
Multiple services collaborate to update multiple tables in a database

– Monolith has safe transactions because they rely on the following:

ACID and rollback capabilities from RDBMS
Transaction at programming level to trigger global rollback or global commit
Two phase commit to coordinate the two above on distributed datastores

– Unfortunately, programmers must do without transactions when using
Microservice. Strong consistency is difficult to manage on distributed systems.
The more you split your monolith the more you distribute your system.
Transactions on such systems would become harder and harder to coordinate
and would involve significant delay (time for coordinating confirmation
between datastore) and multiple rollbacks (because one single point of failure
causes a complete rollback). This is the reason microservices are said to be
consistent only within themselves. Their private database can be consistent,
but the replication with the databases of other services is only eventually
consistent because of decentralized data and the need for synchronization.
Furthermore, there are technical issues coming from technology stack used in
microservices:

Database per design: Many modern NoSQL databases do not support two-
phase commit. Many are not ACID compliant.

API composition: REST is not compliant with distributed transactions and
prevents coordinated services to behave as a global transaction.

– As such when choosing a microservice architecture, it is key to have a
very good understanding of eventual consistency. BASE databases favor
availability and performance at the expense of consistency. If at least one
partition of the database is up and running then the system is considered
available. Furthermore there is no transaction atomicity (atomicity is at the
record level) which means that rollback must be managed at the application
level. Finally, data are in a soft state, meaning that they can change even
without new inputs. Data state can be guaranteed only if in no updates happen
during a long enough time, in order for the database to reach a stable state.
Managing all of this at the application level is complex, so this type of
consistency model should be chosen wisely.

• Temporal coupling: Temporal coupling comes from changes to code over time.
Indeed, it is not possible to predict how microservices will be deployed while
consumed by other services. Microservice architecture enables partial deploy-

88 A. Henry and Y. Ridene

ment and as such each microservice can be deployed with full autonomy. There
is no need, technically, to coordinate global release cycles as such microservices
are deployed automatically based on infrastructure events: performance threshold
alarm that triggers a new deployment to scale up, a GIT commit to deploy a code
update specific to the legislation of a given country, plus the configuration to route
incoming http requests from that country to that new version of the microservice.
Furthermore, microservices may be deployed on different technical architectures,
such as virtual machines, containers, and function as a service frameworks,
depending on the type of computation. Therefore, temporal coupling must be
managed by using automated service discovery mechanism with a strong deploy-
ment automation process in a CI/CD environment. Furthermore, the deployment
process must add metadata to deployed services so that monitoring may deliver
business-oriented information (hostname, IP addresses, and the like are of no
use to understand the impact of the failure of a running unit in microservice
architecture).

As already stated by Martin Fowler, microservice architecture is a trade-off [7].
On one side, we have loose coupling, ease of deployment, and technology diversity
per microservice. On the other, we have to deal with eventual consistency, failure
management, and operational complexity.

While microservice architecture is often qualified “0 dependency architecture” a
better name is “share as little as possible and optimize trade-off” architecture. The
core of microservice architecture relies on loose coupling with no cascading of data
structure changes. Data structure updates are defined at the microservice level and
is not known to other microservices because they do not consume the data schema.
Therefore, there is true data change isolation between microservices. Each microser-
vice owns its own copy of decentralized data and informs other microservice of
data updates. Other microservices subscribe to the data synchronization channel and
react to it with their own private method. However, call dependencies are still here
and they come with additional challenges that require a much stronger operational
discipline.

2.2 What Level of Microservice Design Do We Need ?

Assessing organization readiness or defining the path to be ready is the first and most
important step when migrating a monolith toward microservices. We must question
your teams to make sure we have the required skills to deal with microservices
drawbacks, needs for operational automation, and excellence. We must also make
sure microservice is the right architecture for the business application features.

Next chapter will illustrate tools and define a methodology that will help define
precisely the journey and the expected benefits.

Assessing Your Microservice Migration Readiness 89

2.3 Is a Monolith Too Complex and Too Big?

The following questions are assessment tools that should be used to qualify the
real needs of a microservice architecture. Answering these questions will help
define which characteristics will be beneficial, thus allowing to define the technical
architecture depending on each feature needs.

This is an important step to consider in order not to solve a problem that does not
exist. Again, it is important to keep in mind that most organizations can perfectly
do well with a monolith, and most applications that do well are monoliths and will
remain so. Moreover, you do not need to go to microservices to benefit from a
technology or to update your technical stack. It is important to resist the urge to
copy success stories if the use case is not the same.

Today when discussing with organizations considering migrating monoliths to
microservice architecture, the most common drivers for microservice migration
are going to API first design or to monetize APIs to generate revenue. However,
microservice architecture is not the only way to achieve this.

You should go to microservice when your overall system has become too big
and too complex and with components coupled so tightly that the pace of change
slows down your business. If splitting a system into independent subcomponents is
the best way to break complexity down to manageable units then microservice is
most probably a good solution.

If migrating some services outside the monolith brings more agility then
microservices is a valuable target. If we have a team of 50 people to manage an
application and that an update requires all 50 persons to coordinate for days and
weeks before releasing a version then microservice is a good choice. However, if a
10-person team manages a business-critical application and can deliver update and
release on a daily basis using CI/CD, then there is probably no need to migrate to
microservices.

2.3.1 Do We Need Five Releases Per Day?

Continuous integration and continuous deployment allow for building, testing, and
deploying software releases faster and better [15, 16].

Netflix gives full autonomy to developers [17] and they do automatically push
code commits to production. They potentially deploy microservices hundreds of
times per day. They get huge benefits in doing this. Indeed they have a very
resilient architecture, and customers always get access to their streaming in seconds.
Sometimes the streaming fails, starts with low quality, or we may have to wait for
our Netflix client to relaunch the video. This is perfectly fine from a user standpoint,
we are happy with the service level and we do prefer the movie to start fast rather
than waiting multiple minutes to have high quality.

However, not everybody is Netflix and the feature we deliver to our customers
may be too important to allow for reduced quality. A financial transaction can’t be

90 A. Henry and Y. Ridene

approximately correct, a stock exchange order must be on time, and a life-saving
system must preserve integrity at all times and always be available and consistent.
The release cycle must be defined according to the risk associated to push an
incorrect code or a code that is not fully battle tested. .

Microservice deployment is not about how many times you will deploy per
day. It is about deploying fast when needed and deploying well what is required.
Because not all of us work at Netflix or Amazon we have to choose a deployment
strategy which fits our business priorities and DevOps capabilities, including unit
testing automation, code coverage, and nonregression testing.

Microservice architecture was designed to control cost of failures and to be
capable of solving issues fast and well. Therefore, the main problem probably is
not deploying speed but the right trade-off between deployment speed, capacity
management, and data integrity.

For most organization, the main reason for a deployment to production is more
about releasing a new feature update or pushing a patch. Therefore, the key point
from that perspective is the capability to deploy on demand and within minutes.

It is important not to confuse test automation with test excellence. It is difficult
to reach 100% code coverage even with a CI/CD. However, unless this is achieved,
it is best to keep some control over automatic deployment.

Furthermore, a monolith usually relies on simple infrastructure, mostly physical
servers or virtual machines and dedicated centralized database. This architecture is
much more dynamic and heterogeneous with microservices. It is based on a variety
of containers being deployed automatically, new machines being spawned based on
performance threshold, need for managing concurrently multiple versions of APIs,
and routing traffic for canary [18]-based deployment. Deploying too fast and without
control may become a problem when there is a need for debugging in production.

Release deployment should scale based on DevOps maturity and on the cost
associated with potential production issues.

It is by scaling, in an iterative manner, the following capabilities will an
organization be able to constantly increase its ability to automatically deploy new
features directly from code to production environment:

– Continuous delivery
– Quick provisioning of virtual machines and containers
– Automatic scalability up and down
– Traceability of deployed services with versioning
– Monitoring capabilities
– Application level routing for Canary deployment
– DevOps culture [19]

There is no need to build all of this prior to any microservice migration. However,
microservice architecture grows by increasing automation of DevOps tasks.

Assessing Your Microservice Migration Readiness 91

2.3.2 Is Eventual Consistency a Problem?

Because microservice architecture relies on distribution, failure will happen. It can
be the unavailability of an API, a time out due to lack or performance, a slowdown
of data synchronization between microservices, or duplicated synchronization
messages that require data correction. In this case, the system operates with incorrect
data state until it is solved. Under such circumstances, data synchronization may
take time.

This is quite the opposite to how software have been designed and operated
for the last 20–40 years. Programmers have been using ACID databases [20],
transactions relying on a single central database (thus away from CAP theorem [9–
12]). Dealing with distributed data was not a problem, operations are not used to
solve related synchronization and rollback issues, and they did not have to consider
the business consequences of such a scenario.

Unfortunately, the now famous ”Starbucks does not do two-phase commit” [21,
22] and the success of Netflix microservice architecture have been doing too well at
showing good principles and success. Unfortunately such references do not clearly
state they are based on eventual consistency.

Starbucks does not mind replacing a coffee, associated cost is nothing compared
to customer satisfaction. Similarly, there is no real impact to Google if results are
not always the same on the first page. Netflix reduces streaming quality to favor
quick start time if need be. However, what is the use case we are interested in will
not do with approximate results, quality decrease, and refunding? Typically, a batch
processing millions of records, a stock exchange order with prices changing every
one tenth of a second do not fit into the Starbuck’s metaphor.

Internet giants’ main concern is to serve as much users as possible per second.
Their business model is based on having their number one service always up and
running, with limitless scalability, even if it means that a percentage of API calls
fail and that the system ends up with inconsistent data, which means incorrect and
partial results to the service consumer.

It is key to understand that microservice architecture means eventual consistency
and partial transactions. Not all monoliths benefit from microservice migration, not
as a whole at least. A safe decision can be to split between the core and satellites.
Satellites will be migrated as microservices while key transactional processes
remain in a reduced core with full consistency.

Some large organizations or historical businesses have been running extremely
critical and safe business software without many production issues for years. They
consider themselves IT leaders and are right to think so, as key players in their
business and very strong IT practitioners. They can consider that they are capable
performing as Netflix or Twitter, and of course, replicating is always less difficult
than creating a new architecture.

However, we must always make sure we do not lose more than a tweet or coffee
when things go wrong when we consider microservices and database per service.

92 A. Henry and Y. Ridene

3 Plan Your Journey

In the previous section, we identified why microservice architecture requires
specific design. Using this knowledge and real migration projects return of expe-
rience, we have built a methodology to help adopt microservice architecture
and migrate existing monoliths. In the upcoming paragraphs, we will go into
explaining a methodology to safely strangle your existing monolith and turn it into
a microservice-based application. We will highlight key elements by describing
microservice-related tools and frameworks when they are of interest.

Generally speaking, the methodology is based on a few key concepts:

– (R)Evolutionary architecture: Microservice architecture is a revolution to
application development practice, operational methods, and architecture design.
It affects the structure of organizations, the way people work, and how teams
work. The definition and implementation of a microservice architecture should
happen step by step as the number of microservices grow and based on return of
experience in order to improve and adjust the design over time. The architecture
must be designed to be flexible not to be perfect (evolutionary [23] architecture).
The objective must not be to start a project only when the architecture is perfectly
defined. Furthermore, the goal is not to make a technical revolution by designing
everything ahead. Always keep in mind that we are not looking for architectural
perfection, we are looking for a pragmatic constant enhancement to boost the
agility of our organization to support and favor constantly changing business.
The right architecture mutates to accommodate changes.

– Current and future architecture: There may be a significant gap between the
current technical architecture and the target architecture. Polyglot architecture
and Database per service make the new ecosystem protean and multidimensional.
The architecture must evolve step by step, each step defined as per the benefit
it brings. This can be new architectural features to be able to take a service
out of the monolith, better automation for testing and release management,
or increase scalability of a business features that will do well with eventual
consistency. While peeling the monolith the architecture must be able to manage
the communication between the old and the new components. Old platform,
such as mainframe, or old programming languages with limited interfaces can
prove difficult to interact with, data synchronization may prove difficult (VSAM
files, for instance, CODASYL database, CICS transactions). Therefore, the target
architecture must be clearly defined and its characteristics must be defined based
on the existing system technical limits and new platform capabilities. Fitness
function is a good tool to assess the required characteristics of an architecture.
By defining a fitness function, it is possible to control the convergence of an
architecture to the desired final state we want to reach.

Be sure to define your target architecture characteristics with a fitness function
you can assess in detail (scalability, rich user interface, consistency model, con-
figurability, automatic testing capability, monitorability, etc.) and a compliance
function to measure and fill the gap between old and new architecture. This will

Assessing Your Microservice Migration Readiness 93

be even truer if your monolith is a mainframe monolith, in which case you will
have to go through different scenario and intermediate architecture steps (partial
migration, data synchronization, specific data storage format and technologies,
programming languages barriers, etc.) to adapt to mainframe capabilities to
support data synchronization and to execute transactions with both external and
internal programs.

– Macro then micro: Defining boundaries in a business application is not an easy
task and is better done iteratively. Code of features is usually more tightly coupled
than expected and code/data dependencies within the monolith must be analyzed
and solved.

Going directly to a fine-grained definition may require post migration refactor-
ing of microservices. This could be a problem because it is always much simpler
to refactor within a module than across distributed modules. Indeed, distributed
modules do not execute in the same environment, thus former common variables
and shared memory must be removed. Method calls will be affected as well to
support remote call, transaction boundaries and new scope of objects.

When transforming a monolith we must take time to analyze dependencies
between the microservices boundaries to be. Anytime decomposition is too
complex, we advise to start with a macro microservice that will later be
decomposed into smaller parts.

Furthermore going macro-then-micro will allow restoring knowledge that
is buried into a 40-year-old code and technology. Which such strategy the
microservice definition is based on reliable knowledge, this simplify complex
refactoring which could unbalance the service decomposition.

– Automate, automate, automate: Microservices are more complex to operate
than regular applications. The more they are deployed the more the need for
operational maturity and automation. Specific testing practice and methodology
[24, 25] is required and some prerequisites are mandatory [26]:

• Automating product making with continuous integration and continuous
deployment in order to deploy any service update at any time while keeping
track of deployed services and versions.

• Automate infrastructure management to deploy hundreds and thousands of IT
components (code, containers, container orchestration, load balancers, API
gateways for traffic routing, monitoring, external partner entry points, and
ACL). Public cloud should be considered to benefit from on-demand and
self-service IaaS and PaaS for scalability reasons and automation capabilities.
Public cloud can’t be matched to provision machines and containers versus
on-premise infrastructure.

• Automate static code analysis to support domain definition from legacy
applications. Many older systems are gigantic (50 million lines of code,
10,000 tables), while knowledge is gone. Such systems were built 30–50 years
ago and people in charge long retired. It is therefore difficult to derive from
workshops and business information how the logic is distributed into the code
base and databases. Moreover, the monolith may rely on technologies which

94 A. Henry and Y. Ridene

operate differently from modern languages and you may make mistakes if you
do not use appropriate tools. This is typical to mainframe modernization when
modernizing stacks, such as CICS, VSAM, RPG 4000, and the like. Advanced
and accurate Static Analysis is a strong asset in such cases.

• Automate transformation when coming from Mainframe. Surprisingly, Cobol
applications have a natural fit for microservices on some topics. Indeed they
are made of run units, basically a group of programs compiled and bundled in
small runnable units. From a compilation standpoint, mainframe applications
are a collection of smaller executables. This gives room for automating
analysis, transformations, and automatic code migration [27].

– Eventually, it is all about organization readiness: Technology is important but
in the end the human factor is prime, and three criteria must be assessed. The
first one is the skill of the development and operation teams. The second one
is the organization capability to fully embrace DevOps culture. The third is to
accept to organize microservice teams as fully autonomous cross-functional units
(including the full range of skills required for the development: user-experience,
database, and project management) in order not to fall into Conwayss law [28].

Therefore, the migration strategy has to be planed and done as per the team
capabilities to make sure they can go through the appropriate learning curve to
reach operational excellence. Each team needs to fully embrace DevOps culture
and given more freedom. They must be fully responsible for their scope and be
ready to manage application and associated middleware from A to Z. In all cases,
the mantra must be ”You do it, you take it.”

4 Defining Your Architecture

4.1 Microservice Patterns

As said before there is nothing as the reference architecture for microservice.
Instead, many patterns can be used to build a microservice architecture. Further-
more, microservice architecture is still evolving, typically service mesh is emerging
as a pattern to consider when deploying many services. Service mesh makes splitting
control plane from data plane better. We will not go into the analysis of each pattern
in this chapter but we will go into illustrating some that are beneficial to migration
(Fig. 17).

4.2 Fitness Function and Architecture Definition

Fitness function was introduced by Neal Ford, Rebecca Parsons, Patrick Kua in
“Building Evolutionary Architecture” [23].

Assessing Your Microservice Migration Readiness 95

F
ig

.1
7

So
m

e
m

ic
ro

se
rv

ic
e

de
si

gn
pa

tte
rn

s
[2

9]
.C

op
yr

ig
ht

©
20

18
.C

hr
is

R
ic

ha
rd

so
n

C
on

su
lti

ng
,I

nc
.A

ll
ri

gh
tr

es
er

ve
d.

ht
tp

://
m

ic
ro

se
rv

ic
es

.io

http://microservices.io

96 A. Henry and Y. Ridene

The authors borrow a concept from evolutionary computing called “fitness
functions” used in genetic algorithm design to define success. Evolutionary com-
puting includes a number of mechanisms that allow a solution to gradually emerge
via small changes in each generation of the software. At each generation of
the solution, the engineer assesses the current state: Is it closer to or further
away from the ultimate goal? Architects define a fitness function to explain what
better is and to help measure when the goal is met. In software, fitness functions
check that developers preserve important architectural characteristics. By using
fitness functions, organizations can successfully describe their current architecture
characteristics, decide which to keep, and define the desired capability of the new
architecture. Fitness function must be defined for each microservice to benefit from
polyglot architecture and to ensure that each microservice relies on its own trade-off.

It is recommendable to describe a number of effective and helpful stacks and
architectural principles you either want or must have. You will have to balance
between what new architecture can bring to you (scalability, performance) and
how their drawback may prevent you from executing your business properly. As
illustrated before, sacrificing transactions in finance may not be a good idea even
though you want to execute faster and scale better. The below fitness function
highlights some key indicators to control when defining a target microservice
architecture and how to step its evolution over time (Fig. 18).

We will now describe three simplified use cases and create associated fitness
functions:

– Insurance: This type of business constantly adds new compute rules to promote
new contracts to attract customers; increasing agility and doing partial develop-
ment is clearly a valuable objective. Negotiating a contract takes time, this is not a

Fig. 18 Example of fitness function definition

Assessing Your Microservice Migration Readiness 97

real-time system. There is limited chance that concurrent update happens to your
records. Therefore, eventual consistency is not a problem. Usually, insurance
can easily be decomposed into business-oriented features: life insurance, non-
life insurance, risk analysis module, pricing module, and so on. Microservice
architecture is a good fit for this type of use case.

– Stock Exchange: This is a perfect example of a critical transactional system.
Business transactions may group different orders and you may need to execute
all or none. The cost for operational failure or partial transactions may be
extremely high (multiple millions of dollars) so savings on the development and
infrastructure may not be worth the risk of changing the architecture. However,
there may be a need for extreme scalability due to the amount of order to
be processed per day. Such a use case is more about scalability than isolation
and agility. A serverless approach or a regular distributed system with message
queuing is most probably a better solution than a microservice architecture.

– CIS: Crime Investigation Software: This is a use case which can easily
be decomposed into different features: geolocation of the person of interest,
video streaming while pursuing or arresting a criminal, DNA sequencing and
comparison, expert system to establish relationships based on cellphone infor-
mation. We can easily see how different technologies would help, for instance, a
postGIS database would be very helpful for geolocation, while a graph database
associated with the Gremlin programming language would allow for extremely
simple and powerful relationship graph analysis (Figs. 19 and 20).

Each fitness function helps analyze the business domain to be implemented
based on individual characteristics: data isolation, eventual consistency, real time
processing, scalability, streaming capability, cost for automation, cost for failure.
etc.

Nevertheless, in the end, your fitness function must be evaluated in order to
better your business and not to implement a technology you believe is valuable.
We strongly advise to share and look for architecture and frameworks feedback;
technology radar [30] exists to review and share return of experienced in a structured
manner. As the number of microservice grows so does the number of autonomous
teams; radars are good to promote feedback and advises as microservice architecture
becomes successful.

4.3 Static Analysis: Purpose and Key Features

Once fitness functions are defined, it is possible to guide the migration. Each
microservice candidate migration will be managed using this technique and grad-
ually its underlying architecture will converge to the final target. However, this
does not allow for analyzing with details how the current system is made. That
information is within the code base and there may be specific constructs in legacy
systems that make them difficult to migrate from a technical perspective.

98 A. Henry and Y. Ridene

FITNESS FUNCTION

Use case are well
isolated

Availability first

Usability

#of users

Cost for failure

Low latency

Changeability

Legal requirement

Internationalization

Data
throughput/batch

Data
throughput/user

Availability

Data encryption

Configurability

Transaction support

Auditability

Netflix Starbucks Amazon

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Fig. 19 Examples of fitness functions

Unfortunately, monoliths—and more specifically mainframe monoliths—have
grown over the years with overwhelming complexity. They often mix different
languages and datastores with various interfaces, evolving coding standards, online
and batch, and millions of lines of code.

A deep understanding of the legacy assets to transform is one of the key steps
for building a successful migration strategy. However, analyzing millions of lines of
code written in various legacy languages is a long and tedious task. Cobol, Pacbase,
PL1, and even Java are not point-and-click technologies. Software architects
have to identify the application architecture, entry points (start of transactions,
batch chains), direct and indirect dependencies through data calls, main programs,
isolated programs, dead code, static and dynamic calls, etc. Therefore, there is a
need for performing fine-grained code analysis to identify dependencies on large
heterogeneous software.

Assessing Your Microservice Migration Readiness 99

FITNESS FUNCTION
Auditability

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Internationalization

Data
throughput/batch

Data
throughput/user

Availability

Data encryption

Configurability

Transaction support

Stock exchange Insurance CIS

Use case are well
isolated

Availability first

Usability

#of users

Cost for failure

Low latency

Changeability

Legal requirement

Fig. 20 Examples of fitness functions

First, dependencies must be analyzed and solved. Only programs that satisfy
with all dependencies solving are grouped and then transformed into microservices.
However, satisfying all may create huge components. The following kinds of
dependencies must be solved:

– Method call dependencies
– Local data access dependencies (to files, for instance)
– In memory data dependencies (singleton in memory, for instance)
– Containment dependencies (encapsulation, association, aggregation, composi-

tion)
– Inheritance dependencies (plus interface dependencies)
– Type dependencies

In addition, dependencies may be direct (A depends on B) or indirect (B depends
on C, A depends on B, therefore A depends on C).

100 A. Henry and Y. Ridene

4.4 Analysis: Methodology for Managing Dependencies

One difficulty when performing service decomposition for a microservice archi-
tecture is the fact that each microservice is going to be executed on a distributed
network and will rely on a topology of middleware components, ecosystems,
and, in general, dependencies. This means that memory cannot be shared among
deployed services and that any resource access and method call is done over the
network. Because each microservice is deployed as a standalone product, packages
from other microservices cannot be included at deployment time. Therefore, all
dependencies between packages must be removed and remote resource access
must be implemented. This makes the slicing—the context boundary definition—a
complex task. Depending on the workload or monolith size and complexity, one or
multiple patterns can be combined to cover most situations. Therefore, the peeling
strategy must be derived from how groups of related programs share data.

4.4.1 Peel with Data-Independent Services

This is a favorable pattern where the extracted service and monolith have inde-
pendent data dependencies. Programs are grouped into a domain, forming the
boundaries of the microservice. Domain boundaries are defined around low coupling
interfaces, such as file transfer, message queuing, reports, and business intelligence
queries. The data model is strictly consistent within each domain, within the
remaining monolith data store, and within the microservice data store. One data-
independent microservice is extracted and moved to your cloud or containerized
environment (Fig. 21).

4.4.2 Peel with Data Eventual Consistency

This is a pattern where there are data dependencies between the extracted service
and monolith. Data is replicated across the mainframe and your selected cloud.

Fig. 21 Data-independent services

Assessing Your Microservice Migration Readiness 101

Fig. 22 Eventual consistency with real-time replication

It avoids network latency or jitter, which would be unmanageable for typical
I/O-intensive mainframe batch programs, or detrimental to high-throughput online
backend transactions. One data-dependent service is extracted and moved to your
selected cloud, and dependent data is asynchronously replicated both ways in real-
time. Because of the bidirectional asynchronous replication, there is data eventual
consistency. For conflict resolution, based on workload analysis and access types,
strategies such as mainframe-as-a-reference or Last Write Win can be adopted
(Fig. 22).

4.4.3 Group Then Peel with Strict Consistency

When there are too many write dependencies or strong transactionality require-
ments, eventual consistency can become a challenge. In this pattern, groups of
programs and their data dependencies are moved altogether in order to pre-
serve strict consistency. Data-dependent programs are grouped in data-independent
groups. One data-independent group is extracted and moved to AWS microservices
with a shared datastore. Eventually, individual microservices may benefit from a
separate deployment stack or datastore (Fig. 23).

Fig. 23 Group then peel with strict consistency

102 A. Henry and Y. Ridene

4.5 Domain Boundaries and Deployment Schedule

4.5.1 Guarantee Data Consistency

Data adds complexity because microservices are atomic only within themselves,
meaning that if an external service orchestrates using multiple microservices then
there is no global transaction atomicity. This can lead to data inconsistency.
Therefore, when splitting a monolith into individual microservices, one must decide
which strategies are valid with regard to the underlying use cases. The choice of
target design patterns impacts how a monolith splits into microservices and what
are the microservices data consistency capabilities. Here are the various options
concerning transaction atomicity and data consistency:

– At first we suggest not to use a database per domain pattern [31] and keep a
central database with ACID [20] capabilities. This decision can be made globally
or for collaborating services which require data consistency.

– At this stage keep technology which allows preserving 2PC [32–34] (two-phase
commit) when you must guarantee transactions atomicity.

– Favor availability over consistency for use cases which do well with a potential
delay for synchronization.

– When using a database per domain and eventual consistency, then rollback and
transactions scope no longer exists. Make sure the architecture relies on design
patterns that increase the robustness of data state across service boundaries. Try-
cancel/confirm (TCC) [35] patterns and message queuing with data retention
should be included in the underlying architecture to simplify service choreog-
raphy failure management.

– In all cases where BASE [36] is favored over 2PC (two-phase commit) and ACID,
the system must be designed for failure: Service choreography will occasionally
fail and data will be inconsistent. We suggest proceeding as follows to support
BASE systems:

• Spread the architecture with redundancy and canary/blue-green deployment.
• Test your production environment to see how it would react to failure. (Netflix

even stresses its live production by creating failure to ensure the live system
is designed for failure.)

• Build data fixing algorithms to detect discrepancies and fix it.

4.5.2 Address Configuration Management Issues

As microservices grow, more and more containers (or virtual instances or server
instances or serverless processes) will be deployed. Due to microservice design for
failure, multiple instances of microservices will be deployed: different versions as
per canary design pattern, different locations for redundancy, on the fly deployment
for performance, or last minute release push due to business reasons.

Assessing Your Microservice Migration Readiness 103

Software architects should consider that the microservice architecture is a hive,
it is a live thing, in perpetual change. Containers are spawned, retired, moved,
versioned, copied, changed, reconfigured, redeployed. All of this happens fast and
automatically to serve new connections. Very soon, the configuration management
may become a nightmare that results in loss of all benefits of microservice.
Therefore, all of the following must be automated with full traceability:

– What is deployed, from which code version, using which compile and packaging
scripts?

– Where are microservices deployed?
– Which compute configuration? Load balanced, clustered, serverless, container?

Which container configuration?
– Which middleware and service choreography? Using API gateway? Which

configuration of API gateway?
– We need to remove all 1.5 versions of microservice A, how do we do this? We

want to update 30% of version 2.0 of the same microservice to version 2.5, how
do we do this? How can we make sure that new connections are balanced so that
only 25% of new users connect to updated services?

– We have a failure, how can we make sure to what feature this component is
contributing?

When designing, building, compiling, and deploying microservices, all elements
must be tagged to enable traceability in order for configuration management and
monitoring tools to use tag information. Only full continuous integration and
automation may satisfy this constraint.

4.5.3 Database Patterns Pros and Cons

One key decision to make when designing microservices is to choose the database
pattern based on data consistency requirements. Financial systems or lifesaving
systems typically require the strongest consistency model. Other systems may
accept eventual consistency to favor performance, lower coupling, and promote
business efficiency.

The following table details what consistency support is associated with database
and peeling patterns (Fig. 24).

Strict consistency and ACID (atomicity, consistency, isolation, durability) trans-
action support provide automatic transaction rollback in case of failure. The
database and transaction servers of the application perform it transparently.

On the contrary, eventual consistency cannot use such transaction feature and
requires additional application code or mechanisms to manage failure. For example,
with API composition the try-cancel/confirm (TCC) [35] pattern or saga [37] pattern
may be implemented to remediate failures. With data synchronization, replication
retry and conflict resolution strategies may be implemented.

The shared database pattern preserves strict consistency and transaction support.
It is therefore appealing when transitioning from mainframe to AWS in hybrid

104 A. Henry and Y. Ridene

Fig. 24 Consistency and transaction support per peeling pattern

mode. This mitigates the need for manual code changes and advantages refactoring
automation well, which is the reason it often reduces risks to first use the shared
database pattern and then move on to using the database per domain pattern if
needed.

The database-per-domain patterns require explicit domain boundaries. These
are typically defined iteratively with complex manual refactoring until boundaries
are eventually stable. Usually, the data synchronization pattern is preferred over
API composition, as it provides better performance, agility, and accommodates
mainframe workload batches.

4.6 Operating Microservices

4.6.1 Ops, DevOps, NoOps

Operating microservices is different from operating monoliths. We have explained
the need for automation and autonomy. DevOps techniques have a natural fit with
microservice architecture but you should not consider this as the end of your
DevOps journey.

Indeed DevOps and automation still rely on system administrators and develop-
ers. For instance, if an organization is using Docker containers with Kafka (for the
communication layer), Cassandra (for the database), and Nginx (for load balancing),
it still requires a lot of configuration and most probably a lot of effort when
failure happens. Furthermore, this does not solve the communication problem when
debugging is required to solve a complex and critical failure in production.

In such cases, the next step is NoOps. NoOps is based on a self-service “infras-
tructure” and advanced cloud services such as managed services and serverless
frameworks. Doing so a microservice architecture relies on self-managed, auto-
scalable and autohealing software services which do not require developers to
manage the underlying infrastructure. Indeed the cloud provider manage all of this
and whatever the number of underlying devices we do not have to worry for this

Assessing Your Microservice Migration Readiness 105

and we do not even see them. Only coding the application is required. Scaling is
automatic and guaranteed. Unscaling as well and so do availability.

Managed databases such as Dynamo DB, distributed messaging such as KMS
and Kinesis, managed service mesh, and API gateway are standard services of public
cloud vendors. On top of this, serverless platforms allow complete disappearance
of the infrastructure. It is now possible to create technical architecture that do not
require a split between operations and developers.

This was clearly foreseen by Netflix as early as 2012: There is no ops organi-
zation involved in running our cloud, no need for the developers to interact with
ops people to get things done, and less time spent actually doing ops tasks than
developers would spend explaining what needed to be done to someone else [38].

4.6.2 Consider Public Cloud and Managed Services

Previous perspectives on NoOps led us to the role public cloud may play in your
microservices. For quite long, public cloud providers have been seen as IaaS only,
meaning providing raw infrastructure for an optimized price/performance ratio.

However, this is very far from what public cloud providers bring to the table
for your microservice architecture. Indeed be it AWS, Azure, or Google, they
all provide high-level managed services and serverless platforms. It is key to
understand what benefit this has for you. Typically Kafka Managed Service (AWS
MSk for instance) AWS Kinesis, Azure Functions, AWS Aurora make most, if not
all, of your operational goals disappear. All of availability, up/down scalability, pay
per use, and self-healing are automated and guaranteed by your providers.

Of course organization could decide to buy tons of servers, create their perfect
Kubernetes clusters, manage ten different Kafka and ZooKeeper services on their
own. But this is a very significant upfront investment and a perpetual cost (for human
resources, sourcing machines, etc.) and it will take time to create this. Moreover,
and more importantly, they will never reach the quality and operational excellence
provided by AWS, Azure, Google, and others.

This is key because microservice is about being prime and fast. If you are the
first to provide a new feature and if you continue to innovate faster you will attract
and keep customers to yourself. If you decide to copy Google or AWS, then by the
time you are ready the game is over and the new kids on the block have become the
true leaders.

In the past, most organizations were afraid of public cloud, considering them
proprietary. However, this is clearly not true. For instance, if we do not wish to rely
on AWS Kinesis then we can go for AWS MSK, which is a fully Kafka-compliant
service. We can always choose between the native Managed service and the open
source managed service; cloud vendors take care of this. Vendor native services
will give additional benefits and optimization, while open source managed services
allow to change provider or in-source at any time!

This is true for managed database, communication middleware, container orches-
trators, service mesh, and even serverless platforms.

106 A. Henry and Y. Ridene

Organizations that wish to get all benefits (first to innovate, faster to release new
services, best price/performance ratio) should consider to go direct to public cloud
providers.

5 Conclusion

In this chapter, we aimed at illustrating why assessing microservice readiness is
important and why it is not limited to choosing technology.

Because microservice architecture comes from isolation and shares as little con-
cepts as possible, we established the need to create a balance between microservice
architecture benefits and drawbacks.

Then we explained the need for automation and eventual consistency. With the
support of fitness function, we investigated theoretical use cases to establish when
Microservice architecture is a benefit and when it should be avoided.

Then we concluded with introducing NoOps model and the advantages of
deploying it to managed services provided by public cloud vendors.

This chapter can be read standalone but is also an introduction to “Migrating to
Microservice” chapter that specifically focuses on migration strategy.

References

1. A. Lee. Unicorn (finance) (2018). https://en.wikipedia.org/wiki/unicorn_(finance)
2. A.M. Glen, Microservices priorities and trends (2018), https://dzone.com/articles/dzone-

research-microservices-priorities-and-trends
3. M. Feathers, Microservice mistakes—complexity as a service (2015), https://iasaglobal.org/

microservice-mistakes-complexity-as-a-service/
4. N. Bohorquez, The complexity of scaling a microservices architecture (2018), https://

thenewstack.io/the-complexity-of-scaling-a-microservices-architecture/
5. D. Kerr, The death of microservice madness in 2018 (2018), https://dwmkerr.com/the-death-

of-microservice-madness-in-2018/
6. C. Posta, The hardest part about microservices: your data (2016), https://blog.christianposta.

com/microservices/the-hardest-part-about-microservices-data/
7. M. Fowler, Microservice trade-offs (2014), https://martinfowler.com/articles/microservice-

trade-offs.html
8. R. Parsons, Microservice in adopt, 2019
9. Cap Theorem, https://en.wikipedia.org/wiki/cap_theorem

10. L. Nicolas, The confusing cap and acid wording (2019), http://blog.thislongrun.com/2015/03/
the-confusing-cap-and-acid-wording.html

11. S. Gilbert, N. Lynch, Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services, vol. 33 (ACM SIGACT News, 2002)

12. E. Brewer, CAP Twelve Years Later: How the ‘rules’ Have Changed, vol. 45 (Computer 2012)
13. M. Fowler, Microservices, a definition of this new architectural term (2014), https://

martinfowler.com/articles/microservices.html
14. C. Richardson, Microservices Patterns (Manning, Shelter Island, 2018)
15. A. Maslow, The Psychology of Science (Harper & Row, New York, 1966)

https://en.wikipedia.org/wiki/unicorn_(finance)
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://iasaglobal.org/microservice-mistakes-complexity-as-a-service/
https://iasaglobal.org/microservice-mistakes-complexity-as-a-service/
https://thenewstack.io/the-complexity-of-scaling-a-microservices-architecture/
https://thenewstack.io/the-complexity-of-scaling-a-microservices-architecture/
https://dwmkerr.com/the-death-of-microservice-madness-in-2018/
https://dwmkerr.com/the-death-of-microservice-madness-in-2018/
https://blog.christianposta.com/microservices/the-hardest-part-about-microservices-data/
https://blog.christianposta.com/microservices/the-hardest-part-about-microservices-data/
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://en.wikipedia.org/wiki/cap_theorem
http://blog.thislongrun.com/2015/03/the-confusing-cap-and-acid-wording.html
http://blog.thislongrun.com/2015/03/the-confusing-cap-and-acid-wording.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

Assessing Your Microservice Migration Readiness 107

16. A. Maslow, The law of the instrument. https://en.wikipedia.org/wiki/law_of_the_instrument
17. M.M. Ed Bukoski, B. Moyles, How we build code at Netflix (2016), https://medium.com/

netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15
18. D. Sato, Canary release (2014), https://martinfowler.com/bliki
19. R. Wilsenach, DevOps culture (2015), https://martinfowler.com/bliki/devopsculture.html
20. A. Reuter, T. Haerder, Principles of transaction-oriented database recovery. ACM Comput.

Surv. 15(4), 287–317 (1983)
21. G. Hohpe, Your coffee shop doesn’t use two-phase commit (2015), https://www.

enterpriseintegrationpatterns.com/docs/ieee_software_design_2pc.pdf
22. W. Labaj, What starbucks can teach us about software scalability (2016), https://dzone.com/

articles/what-starbucks-can-teach-us-about-software-scalabi
23. P. Kua, N. Ford, R. Parsons, Building Evolutionary Architectures (O’Reilly, Sebastopol, 2017)
24. T. Clemson, Microservice testing (2014), https://martinfowler.com/articles/microservice-

testing/
25. S. Newman, Building Microservices (O’Reilly, Sebastopol, 2015)
26. M. Fowler, Microservice prerequesites, 2014
27. A. Henry, Mainframe batch to microservice (2018), https://aws.amazon.com/fr/blogs/apn/how-

to-migrate-mainframe-batch-to-cloud-microservices-with-blu-age-and-aws/
28. M. Conway, Conway’s law. https://en.wikipedia.org/wiki/conway%27s_law
29. C. Richardson, Micro service design patterns (2018), https://microservices.io/patterns/index.

html
30. Thoughtworks, Technology radar. https://www.thoughtworks.com/radar
31. C. Richardson, Database per service pattern (2018), https://microservices.io/patterns/data/

database-per-service.html
32. Two phase commit protocol. https://en.wikipedia.org/wiki/two-phase_commit_protocol
33. N. Goodman, P.A. Bernstein, V. Hadzilacos, Concurrency Control and Recovery in Database

Systems (Addison Wesley, Reading, 1987)
34. E. Newcomer, P.A. Bernstein, Principles of Transaction Processing, 2nd edn. (Morgan

Kaufmann, Los Altos, 2009)
35. G. Pardon, Transaction management for rest api (2014), https://www.atomikos.com/blog/

transactionmanagementapiforresttcc
36. Base vs. acid, https://www.johndcook.com/blog/2009/07/06/brewer-cap-theorem-base/
37. C. Richardson, Saga pattern. http://microservices.io/patterns/data/saga.html
38. A. Cockcroft, Ops and DevOps at Netflix (2012), http://perfcap.blogspot.com/2012/03/ops-

devops-and-noops-at-netflix.html

https://en.wikipedia.org/wiki/law_of_the_instrument
https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15
https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15
https://martinfowler.com/bliki
https://martinfowler.com/bliki/devopsculture.html
https://www.enterpriseintegrationpatterns.com/docs/ieee_software_design_2pc.pdf
https://www.enterpriseintegrationpatterns.com/docs/ieee_software_design_2pc.pdf
https://dzone.com/articles/what-starbucks-can-teach-us-about-software-scalabi
https://dzone.com/articles/what-starbucks-can-teach-us-about-software-scalabi
https://martinfowler.com/articles/microservice-testing/
https://martinfowler.com/articles/microservice-testing/
https://aws.amazon.com/fr/blogs/apn/how-to-migrate-mainframe-batch-to-cloud-microservices-with-blu-age-and-aws/
https://aws.amazon.com/fr/blogs/apn/how-to-migrate-mainframe-batch-to-cloud-microservices-with-blu-age-and-aws/
https://en.wikipedia.org/wiki/conway%27s_law
https://microservices.io/patterns/index.html
https://microservices.io/patterns/index.html
https://www.thoughtworks.com/radar
https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/data/database-per-service.html
https://en.wikipedia.org/wiki/two-phase_commit_protocol
https://www.atomikos.com/blog/transactionmanagementapiforresttcc
https://www.atomikos.com/blog/transactionmanagementapiforresttcc
https://www.johndcook.com/blog/2009/07/06/brewer-cap-theorem-base/
http://microservices.io/patterns/data/saga.html
http://perfcap.blogspot.com/2012/03/ops-devops-and-noops-at-netflix.html
http://perfcap.blogspot.com/2012/03/ops-devops-and-noops-at-netflix.html

Part III
Modeling

Microservices Anti-patterns: A
Taxonomy

Davide Taibi, Valentina Lenarduzzi, and Claus Pahl

Abstract Several companies are rearchitecting their monolithic information sys-
tems with microservices. However, many companies migrate to microservices
without experience, mainly learning how to migrate from books or from practi-
tioners’ blogs. Because of the novelty of the topic, practitioners and consultancies
are learning by doing how to migrate, thus facing several issues but also several
benefits. In this chapter, we introduce a catalog and a taxonomy of the most
common microservices anti-patterns in order to identify common problems. Our
anti-pattern catalog is based on the experience summarized by different practitioners
we interviewed in the last 3 years. We identified a taxonomy of 20 anti-patterns,
including organizational (team oriented and technology/tool oriented) anti-patterns
and technical (internal and communication) anti-patterns. The results can be useful
to practitioners to avoid experiencing the same difficult situations in the systems
they develop. Moreover, researchers can benefit from this catalog and further
validate the harmfulness of the anti-patterns identified.

1 Introduction

Microservices are increasing in popularity, being adopted by several companies,
including SMEs, but also big players such as Amazon, LinkedIn, Netflix, and
Spotify.

Microservices are small and autonomous services deployed independently, with
a single and clearly defined purpose [11, 14]. Microservices propose to vertically
decompose the applications into a subset of business-driven independent services.

D. Taibi (�) · V. Lenarduzzi
Tampere University, Tampere, Finland
e-mail: davide.taibi@tuni.fi; valentina.lenarduzzi@tuni.fi

C. Pahl
Free University of Bozen-Bolzano, Bolzano, Italy
e-mail: claus.pahl@unibz.it

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_5

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_5&domain=pdf
mailto:davide.taibi@tuni.fi
mailto:valentina.lenarduzzi@tuni.fi
mailto:claus.pahl@unibz.it
https://doi.org/10.1007/978-3-030-31646-4_5

112 D. Taibi et al.

Every service can be developed, deployed, and tested independently by different
development teams, and by means of different technology stacks. Microservices
have a lot of advantages. They can be developed in different programming lan-
guages, they can scale independently from other services, and they can be deployed
on the hardware that best suits their needs. Moreover, because of their size, they are
easier to maintain and more fault-tolerant since the failure of one service may not
break the whole system, which could happen in a monolithic system.

However, the migration to microservice is not an easy task [17, 19, 22, 27].
Companies commonly start the migration without experience with microservices,
only in a few cases hiring a consultant to support them during the migration [22, 27].
Therefore, companies often face common problems, which are mainly due to their
lack of knowledge regarding bad practices and patterns [4, 17, 22, 27].

In this chapter, we provide a taxonomy of architectural and organizational anti-
patterns specific to microservices-based systems, together with possible solutions
to overcome them. To produce this catalog, we adopted a mixed research method,
combining industrial survey, literature review, and interviews. We replicated and
extended our previous industrial surveys [24, 27] also considering the bad practices
proposed by practitioners (Table 7). We surveyed and interviewed 27 experienced
developers in 2018, focusing on bad practices they found during the development
of microservices-based systems and the solutions they adopted to overcame them.
The interviews were based on the same questionnaire we adopted in [27], with the
addition of a section where we asked the interviewees if they experienced some of
the anti-patterns proposed by practitioners (Table 7). We proposed a taxonomy of 20
microservices-specific anti-patterns, by applying an open and selective coding [23]
procedure to derive the anti-pattern catalog from the practitioners’ answers.

The goal of this work is to help practitioners avoid these bad practices altogether
or deal with them more efficiently when developing or migrating monoliths to
microservices-based systems.

The remainder of this chapter is structured as follows. Section 2 describes the
empirical study we carried out. Section 3 reports results. Section 4 describes the
background on microservices and related works, while Sect. 5 draws conclusions.

2 The Empirical Study

As reported in the introduction, the goal of this work is to provide a taxonomy of
anti-patterns specific for microservices.

We first collected the anti-patterns by means of a survey among experienced
developers, collecting bad practices in microservices architectures and how they

Microservices Anti-patterns: A Taxonomy 113

overcame them. Then, we classified the anti-patterns and proposed a taxonomy.
Therefore, we formulated our research questions as:

RQ1 What anti-patterns have been experienced by practitioners when using
microservices?

In this RQ, we aim at understanding if practitioners experienced some
anti-patterns, including these proposed in previous works (Table 7), which
problem the anti-pattern caused, and how they overcame the problem they
caused.

RQ2 What type of anti-patterns have been identified by practitioners?
In this RQ, we aim at classify the different anti-patterns identified by

means of a taxonomy.

2.1 Study Design

We designed the survey with semistructured interviews, both in a structured fashion,
via a questionnaire with closed answers, and in a less structured way, by asking
the interviewees open-answer questions to elicit additional relevant information
(such as possible issues when migrating to microservices). One of the most
important goals of the questionnaire was to understand which bad practices have
the greatest impact on system development and which solutions are being applied
by practitioners to overcome them.

Thus, we asked the interviewees to rank every bad practice on a scale from 0 to
10, where 0 meant “the bad practice is not harmful” and 10 meant “the bad practice
is exceedingly harmful.” Moreover, we clarified that only the ranking of the bad
practices has real meaning. As an example, a value of 7 for the “hardcoded IPs”
bad practice and 5 for “shared persistence” shows that hardcoded IPs is believed to
be more harmful than shared persistence, but the individual values of 7 and 5 have
no meaning in themselves. Harmful practice refers to a practice that has created
some issue for the practitioner, such as increasing maintenance effort, reducing code
understandability, increasing faultiness, or some other issue.

The interviews were based on a questionnaire organized into four sections,
according to the information we aimed to collect:

• Personal and company information: interviewee’s role and company’s applica-
tion domain.

• Experience in developing microservices-based systems: number of years of
experience in developing microservices. This question was asked to ensure that
data was collected only from experienced developers.

• Microservices bad practices harmfulness: List of the practices that created
some issues during the development and maintenance of microservices-based
applications ranked according to their harmfulness on a 10-point Likert scale.
Moreover, for each practice, we asked to report which problem was generated and
why they considered it harmful. For this answer, the interviewer did not provide

114 D. Taibi et al.

any hints, letting the participants report the bad practices they had faced while
developing or maintaining microservices-based systems. Moreover, in order to
avoid influencing the interviewees, we asked them to list their own bad practices,
without providing them with a list of pitfalls previously identified by practitioners
[1, 5, 20, 21, 27].

• Bad practices solutions: For each bad practice identified, we asked the partici-
pants to report how they overcame it.

• Rank the harmfulness of the bad practices previously identified in previous study
[27] and those identified by practitioners (Table 7): After the open questions,
for each of the bad practices reported we asked (1) if they ever experienced that
issue and (2) in case they did, to rank the harmfulness on a 10-point Likert scale.
We decided to ask interviewees to ranking the harmfulness of the bad practices
proposed in the literature after the open questions, to avoid bias based on results
of the previous questionnaire. While ranking the bad practices proposed in the
literature, practitioners also noted if some of the bad practices they specified in
the open questions had the same meaning as those reported in the literature, thus
reducing the risk of misinterpretation of their classification.

We are aware that the structure of this questionnaire increased the collection
time, but helped us to increase the quality of the answers, avoiding bias among
participants with a preselected set of answers.

2.2 Study Execution

All interviews were conducted in person. An online questionnaire might have
yielded a larger set of answers, but we believe that face-to-face interviews are
more reliable for collecting unstructured information, as they allow establishing a
more effective communication channel with the interviewees and make it easier to
interpret open answers.

The interviewees were asked to provide individual answers, even if they worked
in the same group. This allowed us to get a better understanding of different points
of view, and not only the company’s point of view.

We selected the participants from the attendees of two practitioner events. We
interviewed 14 participants of the O’Reilly Software Architecture Conference in
London (October 2018) and 13 participants of the international DevOps conference
in Helsinki (December 2018). During the interviews, we first introduced our goals
to the participants and then asked them if they had at least 2 years of experience
in developing microservices-based systems, so as to save time and avoid including
nonexperienced practitioners.

Microservices Anti-patterns: A Taxonomy 115

2.3 Data Analysis

We partitioned the responses into homogeneous subgroups based on demographic
information in order to compare the responses obtained from all the participants
with the different subgroups separately.

Ordinal data, such as 10-point Likert scales, were not converted into numerical
equivalents, since using a conversion from ordinal to numerical data entails the risk
that subsequent analysis will give misleading results if the equidistance between the
values cannot be guaranteed. Moreover, analyzing each value of the scale allows us
to better identify the possible distribution of the answers. The harmfulness of the
bad practices was analyzed calculating the medians, as customarily done for ordinal
ranges.

Open questions were analyzed via open and selective coding [23]. In addition,
practitioners were asked to report if some of the bad practices they reported in the
first section of the questionnaire were related to some of the anti-patterns reported
in Table 7, some practitioners proposed a set of bad practices not directly related
to the existing anti-patterns. Therefore, for these cases, we extracted codes from
the answers provided by the participants and answers were grouped into different
anti-patterns. Answers were interpreted extracting concrete sets of similar answers
and grouping them based on their perceived similarity. The qualitative data analysis
was conducted individually by two authors. Moreover, in order to get a fair/good
agreement on the first iteration of this process, pairwise inter-rater reliability was
measured across the three sets of decisions. Based on the disagreements, we clarified
possible discrepancies and different classifications. A second iteration resulted in
100% agreement among all the authors.

The taxonomy was then proposed by two of the authors that grouped different
set of anti-patterns into homogeneous categories and then was validated by the third
author.

3 The Study Results

We conducted 27 interviews with participants belonging to 27 different organiza-
tions. No unexperienced participants such as students, academics, or non-industrial
practitioners were considered for the interviews. Thirty-six percent of our partici-
pants were software architects, 19% project managers, 38% experienced developers,
and 7% agile coaches. All the interviewees had at least 4 years of experience in soft-
ware development. Of our interviewees 28.57% worked for software development
companies, 28.57% for companies that produce and sell only their own software
as a service (e.g., website builders, mobile app generators, and others), and 9.52%
in banks/insurances. Seventeen percent had adopted microservices for more than 5
years, 60% had adopted them for 3 to 4 years, and the remaining 23% for 2 to 3
years.

116 D. Taibi et al.

On top of the proposed bad practices identified in [27] and in (Table 7), the
practitioners reported a total of nine different bad practices together with the
solutions they had applied to overcome them. Two authors of this paper grouped
similar practices (considering both the description and the justification of the
harmfulness provided by the participants) by means of open and selective coding
[23]. In cases where they interpreted the descriptions differently, they discussed
incongruities so as to achieve agreement on similar issues.

3.1 Data Analysis and Interpretation

The answers were mainly analyzed using descriptive statistics. No noticeable
differences emerged among different roles or domains. As reported in Table 1, eight
anti-patterns proposed by practitioners have never been experienced by the inter-
viewees while four new ones were introduced. Wrong cuts, cyclic dependencies,
hardcoded endpoints, and shared persistency are still considered the most harmful
issues.

Different from our previous study, more organizational issues are now playing
an important role during migration to microservices. Participants considered very
important the alignment between the organization structure and the system archi-
tecture. Moreover, they also highlighted the importance of having a fully functional
DevOps tools pipeline, including continuous testing, integration, and delivery.

However, not all the anti-patterns proposed by practitioners turned out to be
harmful. For example, the shared ownership of several microservices from one time
is not considered as very important.

Table 1 lists the microservices anti-patterns together with the number and
percentage of practitioners who mentioned them (column Answer # and %) and
the median of the perceived harmfulness reported.

We identify the taxonomy classifying the anti-patterns experienced by our
interviewees into two groups: technical and organizational anti-patterns. Figure 1
depicts the proposed classification. For the purpose of completeness, we report
(underlined) the anti-patterns proposed by the practitioners (Table 7) but never
experienced by our interviewees. In Tables 2, 3, and 4 we describe the technical
anti-patterns that have been reported by our interviewees, and the solutions they
adopted to overcome the issues they generated. In Tables 5 and 6 we describe the
organizational anti-patterns identified. The results of this work are subject to some
threats to validity, mainly due to the selection of the survey participants and to the
data interpretation phase. Different respondents might have provided a different set
of answers. To mitigate this threat, we selected a relatively large set of participants

Microservices Anti-patterns: A Taxonomy 117

Table 1 The microservices anti-patterns identified in the survey

Answers

Microservices
anti-pattern Also proposed by # % Perceived harmfulness (0–10)

Hardcoded endpoints [20, 27] 10 37 8

Wrong cuts [27] 15 56 8

Cyclic dependency [27] 5 19 7

API versioning [16, 20] 6 22 6.05

Shared persistence [5, 21, 27] 10 37 6.05

ESB usage [27] 2 7 6

Legacy organization [18] 2 7 6

Local logging NEW 17 63 6

Megaservice [21] 5 19 6

Inappropriate service
intimacy

[27] 5 19 5

Lack of monitoring NEW 3 11 5

No API-gateway [1, 27] 4 15 5

Shared libraries [16, 27] 8 30 4

Too many
technologies

[7, 18, 27] 3 11 4

Lack of microservice
skeleton

NEW 9 33 3.05

Microservice greedy [7, 18, 27] 4 15 3

Focus on latest
technologies

[18] 2 7 2.05

Common ownership [7] 4 15 2

No DevOps tools NEW 2 7 2

Non-homogeneous
adoption

[18] 2 7 2

Lack of service
abstraction

[21] 0

Magic Pixie dust [18] 0

Microservices as the
goal

[18] 0

Pride [7] 0

Sloth [7] 0

Timeout [16, 20] 0

Try to fly before you
can walk

[18] 0

Harmfulness was measured on a 10-point Likert scale, 0 means “the bad practice is not harmful”
and 10 means “the bad practice is extremely harmful”

118 D. Taibi et al.

Fig. 1 The proposed microservice anti-pattern taxonomy. The anti-patterns underlined were
proposed by the practitioners (Table 7) but never experienced by our interviewees

working in different companies and different domains. During the survey, we did
not propose a predefined set of bad practices to the participants so as to not bias
their answers based on the results of previous works. However, as the surveys were
carried out during public events, we are aware that some participants may have
shared some opinions with others during breaks and therefore some answers might
have been partially influenced by previous discussions. Finally, the answers were
aggregated independently by the two authors by means of open and selective coding
[23].

Microservices Anti-patterns: A Taxonomy 119

Table 2 Internal anti-patterns

Microservices Description

anti-pattern (Desc)/Detection (Det) Problem it may cause (P)/Adopted solutions (S)

API versioning Desc: APIs are not
semantically versioned

P: In the case of new versions of
nonsemantically versioned APIs, API
consumers may face connection issues. For
example, the returning data might be different
or might need to be called differently

Det: Lack of semantic
versions in APIs (e.g., v1.1,
1.2)

S: APIs need to be semantically versioned to
allow services to know whether they are
communicating with the right version of the
service or whether they need to adapt their
communication to a new contract

Also proposed as “Static
Contract Pitfall” by
Richards [16] and Saleh
[20]

Hardcoded
endpoints

Desc/Det: Hardcoded IP
addresses and ports of the
services between
connected microservices

P: Microservices connected with hardcoded
endpoints lead to problems when their locations
need to be changed

Also proposed by Saleh
[20] as “Hardcoded IPs and
Ports”

S: Adoption of a service discovery approach

Inappropriate
service
intimacy

Desc: The microservice
keeps on connecting to
private data from other
services instead of dealing
with its own data

P: Connecting to private data of other
microservices increases coupling between
microservices. The problem could be related to
a mistake made while modeling the data

Det: Request of private
data of other microservices.
Direct connection to other
microservices databases

S: Consider merging the microservices

Megaservice Desc: A service that does a
lot of things. A monolith

P: The same problem of a monolithic system

Det: Several business
processes implemented in
the same service. Service
composed by several
modules, and developed by
several developers, or
several teams

S: Decompose the megaservice into smaller
microservices

Local Logging Desc/Det: Logs are stored
locally in each
microservice, instead of
using a distributed logging
system

P: Errors and microservices information are
hidden inside each microservice container. The
adoption of a distributed logging system eases
the monitoring of the overall system

120 D. Taibi et al.

Table 3 Communications anti-patterns

Microservices Description

anti-pattern (Desc)/detection (Det) Problem it may cause (P)/adopted solutions (S)

Cyclic
dependency

Desc: A cyclic chain of
calls between
microservices

P: Microservices involved in a cyclic dependency
can be hard to maintain or reuse in isolation

Det: Existence of cycles of
calls between
microservices. E.g., A calls
B, B calls C, and C calls
back A

S: Refinement of the cycles according to their
shape [15] and application of an API-Gateway
pattern [14]

ESB usage Desc/Det: The
microservices
communicate via an
enterprise service bus
(ESB)

P: ESB adds complexities for registering and
de-registering services on the ESB

Usage of ESB for
connecting microservices

S: Adopt a lightweight message bus instead of the
ESB

No API
gateway

Desc: Microservices
communicate directly with
each other. In the worst
case, the service consumers
also communicate directly
with each microservice,
increasing the complexity
of the system and
decreasing its ease of
maintenance

P: Our interviewees reported being able to work
with systems consisting of 50 interconnected
microservices; however, if the number was higher,
they started facing communication and
maintenance issues

Det: Direct communication
between microservices

S: Application of an API gateway pattern [14] to
reduce the communication complexity between
microservices

Also proposed by
Alagarasan [1] as “Not
having an API-Gateway.”

Shared
libraries

Desc/Det: Usage of shared
libraries between different
microservices

P: Tightly coupled microservices together,
leading to a loss of independence between them.
Moreover, teams need to coordinate with each
other when they need to modify the shared library

Also named “I was taught
to share” by Richards [16]

S: Two possible solutions: (1) accept the
redundancy to increase dependency among teams;
(2) extract the library to a new shared service that
can be deployed and developed independently by
the connected microservices

4 Background and Related Works

Microservices are relatively small and autonomous services deployed indepen-
dently, with a single and clearly defined purpose [11]. Because of their independent
deployment, they have a lot of advantages. They can be developed in different

Microservices Anti-patterns: A Taxonomy 121

Table 4 Other technical anti-patterns

Microservices Description

anti-pattern (Desc)/detection (Det) Problem it may cause (P)/adopted solutions (S)

Lack of
monitoring

Desc/Det: Lack of usage of
monitoring systems,
including systems to
monitor if a service is alive
or if it responds correctly

P: A service could be offline, and developers
could not realize it without continuous manual
checks

S: Adoption of a monitoring system

Shared
persistence

Desc/Det: Different
microservices access the
same relational database. In
the worst case, different
services access the same
entities of the same
relational database

P: This anti-pattern highly couples the
microservices connected to the same data,
reducing team and service independence

Also proposed by Bogard
as “data ownership” [5]

S: Three possible solutions for this anti-pattern
are: use (1) independent databases for each
service, (2) a shared database with a set of
private tables for each service that can be
accessed only by that service, and (3) a private
database schema for each service

Wrong cuts Desc: Microservices
should be split based on
business capabilities, not
on technical layers
(presentation, business,
data layers)

P: Wrong separation of concerns, increased
data-splitting complexity

S: Clear analysis of business processes and the
need for resources

programming languages, they can scale independently from other services, and they
can be deployed on the hardware that best suits their needs. Moreover, because of
their size, they are easier to maintain and more fault-tolerant since a failure of one
service will not break the whole system, which could happen in a monolithic system.
Since every microservice has its own context and set of code, each microservice can
change its entire logic from the inside, but from the outside it still does the same
thing, reducing the need for interaction between teams [30, 31].

Different microservice patterns have been proposed by practitioners [33] and
researchers [32]. Zimmerman et al. [33] proposed a joint collaboration between
academia and industry to collect microservices patterns. However, all these works
focus on patterns that companies should follow when implementing microservices-
based systems instead of anti-patterns and bad smells to avoid. Balalaie [4]
also conducted an industrial survey to understand how companies migrated to
microservices, obtaining 15 migration patterns.

As for anti-patterns, several generic architectural anti-pattern have been defined
in the last years in different research works [8, 12, 13, 26] and different tools

122 D. Taibi et al.

Table 5 Organizational (team-oriented) anti-patterns

Microservices
anti-pattern

Description
(Desc)/detection (Det)

Problem it may cause (P)/adopted solutions
(S)

Legacy
organization

Desc: The company still
work without changing
their processes and
policies. For example, with
independent Dev and Ops
teams, manual testing and
scheduling common
releases

P: Developers are bound to the traditional
process, they cannot benefit from most of the
outcomes of microservices

Also proposed as “Red
Flag” by Richardson [18]

Nonhomogeneous
adoption

Desc/Det: Only a few
teams migrated to
microservices, and the
decision to migrate or not
is delegated to the teams

P: Duplication of effort. E.g., effort for
building the infrastructure, deployment
pipelines...

Also defined as
“scattershot adoption” by
Richardson [18]

Common
ownership

Desc/Det: One team owns
all the microservices

P: Each microservice will be developed in
pipeline, and the company is not benefiting
from the development independency

Microservice
greedy

Desc: Teams tend to create
new microservices for each
feature, even when they are
not needed. Common
examples are microservices
created to serve only one or
two static HTML pages

P: This anti-pattern can generate an explosion
in the number of microservices composing a
system, resulting in a huge, useless system
that will easily become unmaintainable
because of its size. Companies should
carefully consider whether the new
microservice is needed

Det: Microservices with
very limited functionalities
(e.g., a microservice
serving only one static
HTML page)

have been proposed both from industry and from researchers to detect them
[2, 3, 9, 10, 29]. However, to the best of our knowledge, no peer-reviewed work and,
in particular, only few empirical studies have proposed bad practices, anti-patterns,
or smells specifically concerning microservices. On the other side, practitioners
proposed several anti-patterns, mainly by means of talks in technical events.

As for research works, Bogner et al. [6] reviewed microservices bad smells and
anti-patterns proposed in the literature, extracting 36 anti-patterns from 14 peer-
reviewed publications. Their survey includes the vast majority of anti-patterns and
bad smells highlighted also by practitioners. However, they did not report or classify
their harmfulness.

Microservices Anti-patterns: A Taxonomy 123

Table 6 Organizational (technology- and tool-oriented) anti-patterns

Microservices Description

anti-pattern (Desc)/detection (Det) Problem it may cause (P)/adopted solutions (S)

Focus on latest
technologies

Desc: The migration is
focused on the adoption of
the newest and coolest
technologies, instead of
based on real needs. The
decomposition is based on
the needs of the different
technologies aimed to
adopt

P: The development is not solving existing
problems but is mainly following the
technology vendor recommendations

Also proposed as
“Focusing on Technology”
by Richardson [18]

Lack of
microservice
skeleton

Desc/Det: Each team
develops microservices
from scratch, without the
benefit of a shared skeleton
that would speed up the
connection to the shared
infrastructure (e.g.,
connection to the API
Gateway)

P: Developers have to redevelop the skeleton
from scratch every time, wasting time and
increasing the risk of errors

S: Introduction of a common code boilerplate

No DevOps
tools

Desc: The company does
not employ CD/CI tools
and developers need to
manually test and deploy
the system

P: Slower productivity, possible deployment
errors due to lack of automation

Too many
technologies

Desc/Det: Usage of
different technologies,
including development
languages, protocols,
frameworks. . .

P: The company does not define a common
policy. Although microservices allow the use of
different technologies, adopting too many
different technologies can be a problem in
companies, especially in the event of developer
turnover

Also proposed by Bryant
[7] as “Lust” and
“Gluttony”

Companies should carefully consider the
adoption of different standards for different
microservices, without following new hypes

In our previous study [27], we performed an industrial survey investigating the
migration processes adopted by companies to migrate to microservice. One of the
side results was that practitioners are not aware of the patterns they should adopt and
anti-patterns to avoid. In another work we investigated the most used architectural
patterns [32], while finally in our latest work [24, 28] we investigated “bad smells”
of microservices, specific to systems developed using a microservice architectural
style, together with possible solutions to overcome these smells. We identified 20
microservice-specific organizational and technical anti-patterns, bad practices that

124 D. Taibi et al.

Table 7 The main pitfalls proposed in non-peer-reviewed literature and practitioner talks

Bad practice Description

Timeout (Richards [16])
Dogpiles (Saleh [20])

Management of remote process availability and responsiveness.
Richards recommends using a timeout value for service
responsiveness or sharing the availability and the unavailability
of each service through a message bus, so as to avoid useless
calls and potential timeout due to service unresponsiveness

I was taught to share
(Richards [16])

Sharing modules and custom libraries between microservices

Static contract pitfall
(Richards [16], Saleh [20])

Microservices API are not versioned and therefore service
consumers may connect to older versions of the services

Mega-service (Shoup [21]) A service that is responsible for many functionalities and
should be decomposed into separated microservices

Shared persistence (Shoup
[21]) Data ownership
(Bogard [5])

Usage of shared data among services that access the same
database. Microservices should own only the data they need
and possibly share them via APIs

Leak of service abstraction
(Shoup [21])

Service interfaces designed for generic purposes and not
specifically designed for each service

Hardcoded IPs and ports
(Saleh [20])

Hardcoding the IP address and ports of communicating
services, therefore making it harder to change the service
location afterwards

Not having an API-Gateway
(Alagarasan [1])

Exposing services through an API gateway layer and not
connecting them directly so as to simplify the connection,
supporting monitoring and delegating authorization issues to
the API gateway. Moreover, changes to the API contract can be
easily managed by the API gateway, which is responsible for
serving the content to different consumers, providing only the
data they need

Lust (Bryant [7]) Focus on
technology (Richardson
[15])

Usage of the latest technologies

Gluttony (Bryant [7]) Usage of too many different communication protocols such as
HTTP, ProtoBuffs, Thrift, etc.

Greed (Bryant [7]) All the services belong to the same team

Sloth (Bryant [7]) Creation of a distributed monolith due to the lack of
independence of microservices

Wrath (Bryant [7]) Magic
pixie dust (Richardson [15])

Believing a sprinkle of microservices will solve the
development problems

Microservices as the goal
(Richardson [15])

Migrating to microservices because everybody does it, and not
because the company needs it

Scattershot adoption
(Richardson [15])

Multiple teams independently adopting microservices without
coordination

Envy (Bryant [7]) The more
the merrier (Richardson [15])

Creating as many microservices as possible

Trying to fly before you can
walk (Richardson [15])

Migrating to microservices while lacking the key skills, e.g.,
clean code, object-oriented design, automated testing

Pride (Bryant [7]) Testing in the world of transience

Red flag law (Richardson
[15])

Adopting microservices without changing process, policies,
and organization

Microservices Anti-patterns: A Taxonomy 125

practitioners found during the development of microservice-based systems, and
we highlighted how practitioners overcame them by interviewing 72 experienced
developers. Our results [24] are also confirmed by a recent industrial survey
performed by Soldani et al. [22]. They identified, and taxonomically classified
and compared the existing gray literature on pains and gains of microservices,
from their design to their development, among 51 industrial studies. Based on
the results, they prepared a catalog of migration and rearchitecting patterns, in
order to facilitate rearchitecting non-cloud-native architectures during migration to
a cloud-native microservices-based architectures. In another study [25] we proposed
a decomposition framework to decompose monolithic systems into microservices,
where one of the most important steps is the investigation and removal of possible
microservices anti-patterns.

Balalaie [4] also performed an industrial survey proposing a set of 15 migration
patterns to understand how companies migrated to microservices. However, they did
not report bad practices or anti-patterns. Practitioners have started to discuss bad
practices in microservices in recent years. In his eBook [16], Richards introduced
three main pitfalls: “Timeout,” “I Was Taught to Share,” and “Static Contract
Pitfall.” Moreover, in the last 2 years, practitioners have given technical talks
about bad practices they experienced when building microservices. In Table 7,
we summarize the main bad practices presented in these works. Chris Richardson
recently gave a talk on microservices anti-patterns [18] proposing six organizational
anti-patterns based on his consultancy experience.

Unlike these works, we identified a set of microservices anti-patterns based on
bad practices reported by the 72 participants of our previous survey [27] and on
the 27 participants of this current study. In the Results Section, we map our set of
microservices anti-pattern to the bad practices identified in Table 7.

5 Conclusion

In this work, we identified a set of 20 microservices anti-patterns based on
bad practices experienced by practitioners while developing microservices-based
systems. This review, based partly on earlier work, has resulted as a consequence of
the additional surveys in a significantly more comprehensive and up-to-date catalog
of patterns. Furthermore, we identified change in perception over the years that the
microservice architectural style is in use.

The results show that splitting a monolith, including splitting the connected data
and libraries, is the most critical issue, resulting in potential maintenance issues
when the cuts are not done properly. Moreover, the complexity of a distributed
system increases the system complexity, especially when dealing with connected
services that need to be highly decoupled from any point of view, including com-

126 D. Taibi et al.

munication and architecture (hardcoded endpoints, No API gateway, inappropriate
service intimacy, cyclic dependency).

This work resulted in the following four lessons learned:

• Lesson learned 1: Besides traditional anti-patterns, microservices-specific anti-
patterns can also be problematic for the development and maintenance of
microservices-based systems. Developers can already benefit from our catalog
by learning how to avoid experiencing the related bad practices from an
organizational and an architectural point of view.

• Lesson learned 2: Splitting a monolith into microservices is about identifying
independent business processes that can be isolated from the monolith and not
only about extracting features in different web services.

• Lesson learned 3: The connections between microservices, including the con-
nections to private data and shared libraries, must be carefully analyzed.

• Lesson learned 4: As a general rule, developers should be alerted if they need to
have a deep knowledge of the internal details of other services or if changes in a
microservice require changes in another microservice.

The proposed taxonomy of anti-patterns can be used by practitioners as a
guideline to avoid the same problems happening to them as faced by our inter-
viewees. Moreover, the catalog is also a starting point for additional research on
microservices. It is important to note that, even though the identified anti-patterns
reflect the opinion of the interviewed developers, the rating of the harmfulness of
the reported anti-patterns is only based on the perception of the practitioners and
needs to be empirically validated.

Microservice is still a very recent technology and future, long-term investigation
will be needed to evaluate the harmfulness and the comprehensiveness of our
catalog. This, together with more in-depth empirical studies (such as controlled
experiments), will be part of our future work.

References

1. V. Alagarasan (Asurion), Microservices Antipatterns (Microservices-Summit, New York,
2016)

2. F. Arcelli Fontana, V. Lenarduzzi, R. Roveda, D. Taibi, Are architectural smells independent
from code smells? An empirical study. J. Syst. Softw. 154, 139–156 (2019)

3. U. Azadi, F. Arcelli Fontana, D. Taibi, Architectural smells detected by tools: a catalogue
proposal, in International Conference on Technical Debt (TechDebt 2019) (2019)

4. A. Balalaie, A. Heydarnoori, P. Jamshidi, D.A. Tamburri, T. Lynn Microservices migration
patterns. Softw. Pract. Exp. 48(11), 2019–2042 (2018)

5. J. Bogard, Avoiding microservices megadisaster, in NDC-Conference London (2017)
6. J. Bogner, T. Boceck, M. Popp, D. Tschechlov, S. Wagner, A. Zimmermann, Towards a

collaborative repository for the documentation of service-based antipatterns and bad smells.
IEEE International Conference on Software Architecture Companion (ICSA-C) (2019)

7. D. Bryant (SpectoLabs), The Seven (more) Deadly Sins of Microservices (O’Reilly OSCON,
London, 2016)

Microservices Anti-patterns: A Taxonomy 127

8. J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Identifying architectural bad smells, in
2009 13th European Conference on Software Maintenance and Reengineering, Kaiserslautern
(2009), pp. 255–258

9. V. Lenarduzzi, A. Sillitti, D. Taibi, Analyzing forty years of software maintenance models, in
International Conference on Software Engineering (ICSE) (2017)

10. V. Lenarduzzi, A. Sillitti, D. Taibi, A survey on code analysis tools for software maintenance
prediction, in International Conference in Software Engineering for Defence Applications
(SEDA) (2018)

11. J. Lewis, M. Fowler, Microservices (2014). www.martinfowler.com/articles/microservices.
html. Accessed July 2017

12. I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, A. von Staa, Are automatically-
detected code anomalies relevant to architectural modularity? an exploratory analysis of
evolving systems, in International Conference on Aspect-Oriented Software Development
(AOSD ’12) (2012), pp. 167–178

13. N. Moha, Y.G. Gueheneuc, L. Duchien, A.F. Le Meur, DECOR: a method for the specification
and detection of code and design smells. IEEE Trans. Softw. Eng. 36(1), 20–36 (2010)

14. S. Newman, Building Microservices (O’Reilly, Sebastopol, 2015)
15. C. Pahl, P. Jamshidi, Microservices: a systematic mapping study, in Proceedings of the 6th

International Conference on Cloud Computing and Services Science—CLOSER (2018)
16. M. Richards, Microservices AntiPatterns and Pitfalls (O’Reilly eBooks, Sebastopol, 2016)
17. C. Richardson, Microservice Patterns (Manning Publications, Shelter Island, 2017)
18. C. Richardson, Potholes in the road from monolithic hell: microservices adoption anti-patterns,

in O’Really Software Architecture Conference, London (2018)
19. N. Saarimäki, F. Lomio, V. Lenarduzzi, D. Taibi, Does migrate a monolithic system to

microservices decrease the technical debt? CoRR, abs/1902.06282, 2019. [Online]. http://arxiv.
org/abs/1902.06282

20. T. Saleh, Microservices Antipatterns (QCon, London, 2016)
21. R. Shoup, From the Monolith to Microservices: Lessons from Google and eBay. Craft-Con

April 24th, 2015.
22. J. Soldani, D.A.Tamburri, W. van den Heuvel. The pains and gains of microservices: a

systematic grey literature review. J. Syst. Softw. 146, 215–232 (2018)
23. A.L. Strauss, J. Corbin, Basics of Qualitative Research: Techniques and Procedures for

Developing Grounded Theory (SAGE Publications, Thousand Oaks, 2008)
24. D. Taibi, V. Lenarduzzi, On the definition of microservice bad smells. IEEE Softw. 35(3), 56–

62 (2018)
25. D. Taibi, K. Systa, From monolithic systems to microservices: a decomposition framework

based on process mining, in 8th International Conference on Cloud Computing and Services
Science, CLOSER 2019 (2019)

26. D. Taibi, A. Janes, V. Lenarduzzi, How developers perceive smells in source code: a replicated
study. Inf. Softw. Technol. 92, 223–235 (2017). https://doi.org/10.1016/j.infsof.2017.08.008

27. D. Taibi, V. Lenarduzzi, C. Pahl, Processes, motivations and issues for migrating to microser-
vices architectures: an empirical investigation. IEEE Cloud Comput. 4(5), 22–32 (2017).
https://doi.org/10.1109/MCC.2017.42509312017

28. D. Taibi, V. Lenarduzzi, C. Pahl, A. Janes, in Microservices in Agile Software Development:
A Workshop-Based Study into Issues, Advantages, and Disadvantages” XP ’17 Workshops,
Cologne (2017)

29. D. Taibi, V. Lenarduzzi, P. Diebold, I. Lunesu, Operationalizing the experience factory for
effort estimation in agile processes, in International Conference on Evaluation and Assessment
in Software Engineering (EASE2017) (2017)

30. D. Taibi, V. Lenarduzzi, M.O. Ahmad, K. Liukkunen, Comparing communication effort within
the scrum, scrum with kanban, XP, and banana development processes, in Proceedings of
the 21st International Conference on Evaluation and Assessment in Software Engineering,
EASE17 (2017)

www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
http://arxiv.org/abs/1902.06282
http://arxiv.org/abs/1902.06282
https://doi.org/10.1016/j.infsof.2017.08.008
https://doi.org/10.1109/MCC.2017.4250931 2017

128 D. Taibi et al.

31. D. Taibi, V. Lenarduzzi, A. Janes, K. Liukkunen, M.O. Ahmad, Comparing requirements
decomposition within the scrum, scrum with kanban, XP, and banana development processes,
in Agile Processes in Software Engineering and Extreme Programming (2017)

32. D. Taibi, V. Lenarduzzi, C. Pahl, Architectural patterns for microservices: a systematic
mapping study, in Proceedings of the 8th International Conference on Cloud Computing and
Services Science—CLOSER (2018)

33. O. Zimmermann, M. Stocker, U. Zdun, D. Lubke, C. Pautasso, Microservice API Patterns
(2018). https://microservice-api-patterns.org. Accessed 5 June 2019

https://microservice-api-patterns.org

Modeling Microservice Conversations
with RESTalk

Ana Ivanchikj and Cesare Pautasso

Abstract Microservices are characterized by their small size and low degree of
coupling. As a consequence, building microservice architectures requires compos-
ing multiple microservices and determine how they interact to achieve a given
client’s goal. In this chapter we introduce the concept of RESTful conversation,
whereby clients or API gateways perform multiple basic HTTP request/response
interactions with one or more microservice APIs. To represent possible sequences
of interactions, we introduce the RESTalk visual notation, as well as its textual DSL,
and the corresponding metamodel, and show how it can be used to complement
existing structural approaches to represent RESTful APIs, such as the OpenAPI
Specification. To reveal the degree of coupling between clients and microservices,
the language supports the concept of hyperlink flow, showing whether, within a
conversation, the links embedded into responses provided by a microservice are
used by the client/API gateway to form the subsequent requests.

1 Introduction

Splitting up a monolith into smaller scalable, loosely-coupled microservices [35]
requires defining an efficient way of communication between the newly created ser-
vices. This is because, microservices are required to be technically self-contained,
but not functionally self-contained, as they may interact with other microservices to
provide their business functions [23]. Different integration technologies between
microservices can be used [8], some supporting synchronous request-response
interactions, some asynchronous event-based interactions, and some using a mix
of both [6]. The best approach depends on the use case [25], but in this chapter
we will focus on the lightweight synchronous interactions built in accordance

A. Ivanchikj (�) · C. Pautasso
Software Institute, Università della Svizzera italiana (USI), Lugano, Switzerland
e-mail: Ana.Ivanchikj@usi.ch; Cesare.Pautasso@usi.ch

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_6

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_6&domain=pdf
mailto:Ana.Ivanchikj@usi.ch
mailto:Cesare.Pautasso@usi.ch
https://doi.org/10.1007/978-3-030-31646-4_6

130 A. Ivanchikj and C. Pautasso

with the representational state transfer (REST) architectural style [31]. Such syn-
chronous communication frequently requires an orchestrated approach for driving
the communication between the client and the microservices, seen as a conversation
composed of multiple basic HTTP request-response interactions. One such orches-
tration approach is implemented by using the API gateway pattern [28]. An API
gateway is a single entry point that provides access to different microservices [20].
It simplifies the client by moving the logic for calling multiple microservices from
the client to the API gateway [24]. Namely, the API gateway can be in charge,
among other things, for service discovery, and thus act as a router and decide which
resources of the microservices to access based on the nature of the client (e.g.,
mobile or desktop) and the received call (e.g., retrieving data, creating data, etc.) [6].
This decision can be rather simple when the microservices are independent from
each other and thus they can all be called at the same time upon the request of
the external client. So in this case the API gateway simply fans out the requests
to the related microservices. However, in real-world microservice architectures
this is rarely the case, as frequently data provided from one microservice is
needed to make the request to another microservice, thus requiring a predefined
sequence of interactions. This emphasizes the importance of knowledge gathering
and documentation of such sequences of calls to the microservices, which are
necessary to achieve a given client’s goal.

Big e-commerce companies are known for their microservice architecture [22,
28], and they do use tools to facilitate the design and documentation of that archi-
tecture. For instance, as eBay was restructuring its existing APIs into microservices,
it adopted the OpenAPI specification for documenting the structure of the RESTful
APIs.1 Namely, at the end of 2015 the OpenAPI initiative2 was launched to promote
the effort of standardizing the description of the structure of RESTful APIs. The
Swagger 2.0 specification has become the basis for the proposed standard Open
API specification (OAS). OAS is a vendor-neutral, portable and open specification
using a YAML/JSON-based format for the API description. The specification is both
human and machine readable.

However, while the OAS structural API documentation enumerates all possible
operations (combinations of resource path and method) provided to clients, it lacks
a description of which are the meaningful sequences of API interactions that can be
followed by clients to achieve their goals. Such behavioral aspects, i.e., the dynamic
interactions between the client and the API, or between the API gateway and the
microservices, are not always evident in large and complex systems. The latest
version of OAS, 3.0, has added a new component to the specification, called links,
which serves to describe how various parameter values returned by one operation
can be used as input for other operations. Thus, API description documents using
OAS 3.0 potentially can contain behavioral information; however, their format is

1https://www.openapis.org/blog/2018/08/14/ebay-provides-openapi-specification-oas-for-all-its-
restful-public-apis.
2https://www.openapis.org.

https://www.openapis.org/blog/2018/08/14/ebay-provides-openapi-specification-oas-for-all-its-restful-public-apis
https://www.openapis.org/blog/2018/08/14/ebay-provides-openapi-specification-oas-for-all-its-restful-public-apis
https://www.openapis.org

Modeling Microservice Conversations with RESTalk 131

not user friendly for those who need to traverse the links to get a general image of
the API behavior, as no visualization of the same is available as part of the standard.

A complete documentation integrating both the static structure and the dynamic
behavior of microservice APIs is crucial for the maintenance and extension of
such systems. While, as mentioned, documentation of the static structure is already
covered with the Open API standard, such standard is lacking for documentation
of the dynamic interactions and data exchanges between the microservices. To that
end we have designed RESTalk [15, 19], a Domain Specific Language (DSL) for
visualizing the behavior, i.e., the sequences of HTTP interactions between clients
and servers. In this chapter we show how RESTalk can be useful for understanding
and documenting the interactions between different microservices in the context of a
microservice architecture. We argue that visualizing the inter-dependencies between
the microservices requires the system designers to actively think about them,
both when designing and when extending the system, and empowers a discussion
regarding the same with the interested parties, for instance, the developers of the
individual microservices. Having a DSL for the visualization helps to capture all
relevant, REST-specific details about the interactions. These REST-specific details
supported by RESTalk are evident in its metamodel presented in this chapter. To fit
different preferences we envision two types of representation of the DSL, a graphical
representation and a textual log-like representation which allows mining user-
specified interactions to discover any divergence/convergence in the communication
flow.

The chapter is structured as follows. In Sect. 2 we define and discuss the
characteristics of RESTful conversations, so that we can continue with presenting
RESTalk, the DSL for modeling the RESTful conversations, and its metamodel
in Sect. 3, as well as the components of its visual and textual representations in
Sect. 4. In Sect. 5 we model an example of the possible interactions in a microservice
architecture of an e-commerce system using RESTalk, and discuss the benefits of
the same in Sect. 6. Before we conclude in Sect. 8, we present in Sect. 7 the work
related to what is presented in this chapter.

2 Modeling Microservice APIs and RESTful Conversations

Although microservice interfaces can be exposed using solutions different from
RESTful APIs, the loose coupling and lightweight communication promoted by
the REST architectural style [31] blends well with the microservices doctrine.
One of the main principles of REST is known as the Hypertext as the Engine of
Application State (HATEOAS), and it requires RESTful API clients to simply follow
hyperlinks [2] provided in server’s responses, without making any assumptions
about the URI’s structure [30]. URI stands for Uniform Resource Identifier, which
is a pointer used to globally address an API resource. In the microservices context,
each microservice can be considered a resource, as resources in general terms are
conceptual abstractions of any information or service that can be named. It is also

132 A. Ivanchikj and C. Pautasso

possible that a microservice is comprised of multiple resources. What is important is
that the server can create different representations of the same resource depending
on the received request [25] and thus serve different clients differently. The format of
the representation can be different, with JSON and XML being the most frequently
used ones. The server does not need to remember the session state of the request, as
each request contains all the necessary information in order to be processed by the
server. This REST principle is known as statelessness and as a consequence every
request can be treated independently from the previous ones. Last but not least,
REST as an architectural style provides for standardization of the communication
between the client and the server, due to the principle of uniform interface, i.e., the
calls to RESTful resources are made using HTTP standard methods applied to a
resource addressed by its URI. The semantics of each of the methods (GET, POST,
PUT, DELETE) is strictly defined in the HTTP protocol, as are the status codes that
can be sent as a response. As mentioned previously, hyperlinks are an important
REST tenet. Depending on the state of the requested resource, server’s responses
can contain from zero to many links. The server might also send parametrized
links based on which the client can dynamically construct the URI for the next
request by providing the required parameter(s)’ values. As the client is following
links, the RESTful API can be seen as a navigation graph-like structure of resources
connected by hyperlinks [13].

The term conversation [3, 14] has been long used in the field of web services
indicating richer forms of interactions [34]. In the context of the REST architectural
style, we define a RESTful conversation [17], i.e., a model of all possible sequences
of HTTP request-response interactions between clients and servers—or between
microservices in this book’s setting—which allow them to achieve different goals.
Different runtime instances of a given RESTful conversation can take different paths
in the conversation model as different clients might have different goals to achieve,
or may take different paths to reach the same goal. Due to the fine-grained nature
of RESTful APIs [29], a single client-server interaction is not always sufficient to
achieve the client’s goals, which leads us to the notion of a conversation which is
comprised of multiple interactions.

3 RESTalk Meta-Model

RESTalk is a domain-specific language for modeling and visualization of RESTful
conversations. Its constructs have been designed with the main REST architectural
style constraints in mind, while borrowing and adapting a subset of the visualization
elements from the BPMN standard [21]. Thus, the meta-model of RESTalk is
based on the meta-model of the OpenAPI Specification [9], which focuses on
the description of the structure of the API, and also on part of the BPMN meta-
model [21], used to depict the behavioral aspect of the API where different paths
can be taken. RESTalk’s meta-model is presented in Fig. 1. The classes colored in
green are the ones based on the BPMN meta-model, while the ones in blue are

Modeling Microservice Conversations with RESTalk 133

R
eq

ue
st

M
ul

tii
ns

ta
nc

e

R
es

p
o

n
se

S
ta

tu
s

co
de

 [1
]

P
ar

am
et

er

H
yp

er
lin

k
F

lo
w

C
ol

le
ct

io
n

1
1.

.*
ta

rg
et

R
ef

S
eq

ue
nc

e
F

lo
w

1

0.
.*

F
lo

w
 n

od
e

ta
rg

et
R

ef
so

ur
ce

R
ef

G
at

ew
ay

Ty
pe

: {
E

xc
lu

si
ve

, P
ar

al
le

l,
In

cl
us

iv
e}

E
ve

nt

Ti
m

er
 E

ve
nt

S
ta

rt
 E

ve
nt

C
on

ve
rs

at
io

n
E

nd
 E

ve
nt

1

0.
.1

at
ta

ch
ed

 to

ha
s

S
ub

C
on

ve
rs

at
io

n

L
in

k
O

p
er

at
io

n

M
et

ho
d

[1
]1

1
st

ar
ts

be
lo

ng
s

to

R
es

o
u

rc
e

P
at

h
[1

]

1

0.
.*

M
ul

tii
ns

ta
nc

e
lo

op

10.
.*

1
1.

.*

1 0.
.*

1
1.

.*

1 0.
.*

1
1.

.*

1 1.
.*

so
ur

ce
R

ef

F
ig

.1
R

E
ST

al
k

co
re

co
ns

tr
uc

ts
m

et
a-

m
od

el

134 A. Ivanchikj and C. Pautasso

based on the Open API Specification meta-model. The remaining white classes are
specific to RESTalk.

The semantical meaning of each class in the domain specific language meta-
model is the following:

1. The Conversation refers to the diagram representing all the possible sequences
of HTTP request-response interactions between one client and multiple microser-
vice APIs. As such, it can have multiple flow nodes, but each flow node belongs
to just one conversation.

2. Subconversations have the same characteristics as conversations, i.e., they can
also contain multiple flow nodes. The difference is that they are a flow node
themselves and as such are contained inside a conversation. A conversation can,
but does not have to, contain subconversations. A subconversation can be used
to delimit logical groups of interactions, e.g., groups of interactions executed in
a multi-instance loop iterating over a given array parameter found in a previous
response. For each element of the array the same subconversation is executed.

3. An event is something that happens that impacts the normal request-response
sequence of the conversation. A start event marks the beginning of the conversa-
tion. An end event marks the end of the conversation, when the API client or API
gateway stops sending further requests as it has achieved its goal. A timer event
shows alternative paths to be taken in case the server/microservice takes too long
to respond to the request. The alternative path can lead to resending the request,
if the response is crucial for the conversation, or it can simply continue to the
next request. The timer event element is used attached to the request element to
show its interrupting nature [21, pg.342] that breaks the normal request-response
sequence and introduces a request-timeout-request sequence.

4. In a normal conversation execution, without timeouts, each request is followed by
at least one response. The request corresponds to exactly one operation in OAS
terminology which contains the REST method (GET, POST, PUT, DELETE) that
can be called on the resource that the request refers to. The resource is identified
by its URI, i.e., its path. As resources can be called with different methods, each
resource can have one or more operations.

5. The hyperlink flow highlights the usage of resource identifiers discovered from
previous responses. It acts as an edge whose source reference is a link that is
found in a response. The link can be a hyperlink or a reference to a link parameter
defined in the OAS documentation. The parameter can have one value or can
provide a collection of values. The target reference of the hyperlink flow is a
parameter that needs to be added in the path of the next request to be made
or even multiple parameters, depending on the URI template [11]. If in the
previous response a full hyperlink was provided, then the target reference is the
full resource path. When the source reference of the hyperlink flow provides a
collection of parameter values, the request whose URI path contains the target
reference parameter has to be inside a loop or has to have the multi-instance
marker, as it will need to be executed for each of the parameter values provided
from the source reference.

Modeling Microservice Conversations with RESTalk 135

6. Gateways show control flow divergence or convergence [21, p.287] in the
conversation which can be due to client’s decisions, e.g., to navigate to a given
resource or to end the conversation, or due to different alternative responses
that can be sent by the server. Three types of gateways are used in RESTalk:
XOR—exclusive gateway that allows only one of the outgoing paths to be taken.
This is the gateway type that must be used when modeling alternative server
responses; OR—inclusive gateway that allows one, some or all of the outgoing
paths to be taken; AND—parallel gateway that requires all outgoing paths to be
taken. Similar logic is used when the gateways are used to converge the flow.
Namely, in order to continue the conversation after an XOR—exclusive join
gateway, the request from only one of the incoming flows has to be received; for
OR—inclusive join gateway, the requests from all paths that have been activated
with an inclusive split need to be received; for AND—parallel join gateway, the
requests from all concurrent paths need to be received.

7. Flow node is any node in the RESTalk graph and as such can be a source or
a target of a sequence flow which represents an edge in the RESTalk graph.
Some types of flow nodes, such as the start event, can only be a source reference
of a sequence flow, while the end event type of flow node on the other hand
can only be the target reference of a sequence flow. Requests, responses, and
subconversations are the source reference of exactly one sequence flow and the
target reference of a different sequence flow. Gateways are the only type of flow
nodes that can be the source or the target of multiple sequence flows depending
on whether they act as a split or a join.

4 RESTalk: Visual and Textual DSL

RESTalk supports both visual and textual modeling of RESTful APIs behavior. As
mentioned earlier, the visual constructs have been adopted from the BPMN standard
and are specified in [15, 19]. In Fig. 2 we present the core visual constructs of the
language, the semantics of which have been defined in Sect. 3.

The textual DSL on the other hand represents the possible conversation instances
between microservices in the form of logs, from which the visual conversation
diagram is meant to be obtained by using process mining techniques [18, 33]. Each

Request

Response

Request

Hyperlink URI
OAS Link:

Hyperlink URI

Alternative
Response

Alternative
Response

Exclusive XOR gateway

Inclusive OR gateway

Start event

End event

Sequence flow
Hyperlink flow

Client-Server
Interaction

Alternative Server Decisions
Multi-instance

RESTalk

Parallel AND gateway

Response timeout

Sub-conversation

Hyperlink flow with
multiple parameter values

*

Fig. 2 RESTalk core visual constructs

136 A. Ivanchikj and C. Pautasso

log entry represents a single request-response interaction, stating the method, the
resource URI, the name of the microservice acting as a server (optional), response
status code, and any links provided in the response.

As mentioned in Sect. 3, the response can contain a link to a parameter defined
in the OAS documentation, in which case the provided parameter is stated in square
brackets (e.g., [userId]). If the response provides a collection of values for the
parameter which are relevant for the rest of the flow, a range can be stated (e.g.,
[userIds=[1. . . 4]]) or a list of values can be stated (e.g., [userIds = [1,3,5]]). The
values of the parameter in the collection can then be used in the URI of subsequent
requests so that the mining algorithm can discover the hyperlink flows in the
conversation. The mining algorithm would recognize that the link is an OAS link if
it is included in square parenthesis (e.g., [x]), otherwise if it starts with a backslash
(e.g., /x) it will know that it is a hyperlink.

Unlike in real API access logs, no time-stamp is needed, but it is assumed that
the order in which the interactions are stated is the order in which they would
be executed. There is no need to explicitly state the control flow elements, such
as gateways and start and end events, as they are deduced based on the mining
of the log-like input provided by the user [16]. For instance, if two different
requests never appear together in the same conversation instance, the miner will
deduce that an exclusive gateway needs to be visualized before reaching these
requests; if they appear together in some conversation instances but not in others, an
inclusive gateway would be visualized; if they appear together in all conversation
instances, regardless of in which order, then parallelism will be deduced. Different
conversation instances are separated by an empty line. In order to produce a
complete diagram of the RESTful conversation, all the possible conversation
instances need to be stated. The advantage of using this approach in the textual DSL
is that it can help developers capture different user stories, an approach frequently
used to gather requirements during software design [5]. Each usage scenario of the
API is represented with a different sequence of interactions. The RESTalk visual
model for the whole API is obtained by merging all different scenarios together.

Different mining algorithms can be used on top of the above-described textual
DSL. They can be built from scratch for the RESTalk purposes or they can be
adapted from other fields, such as business process mining, where substantial work
has been done on the matter [33].

5 RESTalk Model Example in E-commerce

Due to the frequent use of microservices in e-commerce companies [22], we have
opted for this domain to provide an example of the use of RESTalk inspired by
Amazon. In our example we assume that the microservice architecture includes
an API gateway, which means that the client makes a call to the API Gateway

Modeling Microservice Conversations with RESTalk 137

API
Gateway

Search
Service

Shopping-Cart
Service

Order
Service

Profile
Service

Recommendation
Service

Authentication
Service

Prime Shipping
Service

Shipping
Service

Marketing
Service

Inventory
Service

Review
Service

Catalog
Service

API
Gateway

Search
Service

Shopping-Cart
Service

Order
Service

Profile
Service

Recommendation
Service

Authentication
Service

Prime Shipping
Service

Shipping
Service

Marketing
Service

Inventory
Service

Review
Service

Catalog
Service

Fig. 3 Microservice architecture of the example e-commerce company

which in turn makes different calls to all of the relevant microservices. In Fig. 3
we show a possible microservice architecture of an e-commerce solution. As users
can create their profiles for faster and more personalized shopping experience, the
profile service stores all the relevant user data, such as addresses, contact details,
the type of user, etc. User’s authentication, log-in credentials, and validity of the
access token are controlled by the authentication service. User’s orders are managed
by the order service, while draft orders, which have not been submitted yet, are
managed by the shopping cart service to which items can be added both by logged-
in and non-logged-in users. The shipping of ordered items is managed by a call to
an external provider noted as the shipping service for nonprime users and prime
shipping service for prime users. Frequent users may also receive special discounts
and promotions, which are managed by the marketing service. The search service
provides the searching functionality and stores session IDs and product IDs related
to the session to later be used by the recommendation service which provides the
business logic over recommending certain products over others. All the details
about a product, including its characteristics and price, are stored in the catalog
service, while the inventory service handles the up-to-date information about the
available quantity of a given product. Last but not least, the review service stores
and aggregates customer’s reviews about a given product.

In a microservice architecture using an API gateway there are two layers of
communication. In the first layer there is the communication between the client
and the API gateway, abstracting from the existence of microservices, as the client

138 A. Ivanchikj and C. Pautasso

would make the same calls also in the case of a monolith application. In the
e-commerce example, this would refer to a conversation between the client and the
server which includes searching the website, looking at the products, and adding
them to the shopping cart up until the placing and modification of an order. The
second layer of communication refers to the interactions between the API Gateway
and the RESTful APIs of the microservices, triggered by a specific client call in
the first layer of communication. RESTalk can be used to represent any of the
layers; however, given the focus of this book on microservices, we present a visual
diagram of the conversation occurring within the second layer of communication.
An example of conversations within the first layer of communication is presented
in [15].

In Fig. 4 we present the conversation that is triggered by the API Gateway as
soon as a call for rendering a specific product item’s web page is made, which in the
e-commerce context happens as soon as the user clicks on one of the items in the
search results. We assume that when entering the home page of the e-commerce
website, the system stores the session ID and performs a geolocation query to
determine the country based on the IP address. Thus, these two parameters, session
ID and country, are already known when making the call for rendering the product
item’s web page. The input provided by the user when making this call is the product
ID and optionally the access token. When there is no access token it means that the
user is not logged in, thus only the left part of the conversation diagram will be
executed.

Most of the microservices can be called in parallel, as they only require the
parameters that are already available at the start of the conversation. This is the
case with the catalog service, inventory service, and review service, which only
require the product ID. Note that these services will be executed even if the user
is logged in as they are on the outgoing path of the inclusive gateway split which
has a condition that is always true. The IDs of the best seller products provided
by the Recommendation service will also be retrieved in parallel with the above-
mentioned microservices as no parameter is required for the call. For each of the
best seller product IDs, the inventory service will need to be called to check whether
the product is available, and the catalog service to check its price, before they can be
rendered on the web page. The same sequence needs to be followed when generating
the recommendations based on the search chronology for the user who is not logged
in, or based on the order history, for the user who is logged in. This is why the
parallel calls to the catalog service and the inventory service are visually represented
as subconversations which are called for each product ID generated by any of the
resources of the recommendation service, as evident from the hyperlink flow visual
construct.

Modeling Microservice Conversations with RESTalk 139

GET /auth/{accessToken}
Authentication Service

200 OK
OAS Link:[userId]

401 Unauthorised

access token no access token

GET /product/{prodId}
Catalog Service

200 OK

GET /inventory/{prodId}
Inventory Service

200 OK

GET /review/{prodId}
Review Service

200 OK

GET /related/{prodId}
Recommendation Service

200 OK
OAS Link: [prodIds]

GET /bestSeller
Recommendation Service

200 OK
OAS Link: [prodIds]

GET /user/{user d}
Profile Service

GET /cart/{userId}
Shopping Cart Service

200 OK

GET /promo/{userId}/{memberType}
Marketing Service

200 OK

GET /order/{userId}
Order Service

200 OK
OAS Link: [prodIds]

GET /shipping/{prodId}/{IPcountry}
Shipping Service

200 OK

GET /chrono/{sessionId}
Search Service

200 OK
OAS Link: [prodIds]

forEach {prodId}

GET /product/{prodId}
Catalog Service

200 OK

GET /inventory/{prodId}
Inventory Service

200 OK

GET /{memberType}/{prodId}
Prime Shipping Service

200 OK

 no access token always true

 not prime

 prime

User input:
 access token
 prodId
Systen input:
 sessionId
 IPcoutry

pp// }}{

/// }{ ///

p

][

{ d}d{

{{{ }

/ // //{ /}{

{ }{

GET /cart/{sessionId}
Shopping Cart Service

200 OK

pyy{{{

200 OK
OAS Link:[member

pyy///

no
t
pr
im
e

*

*

*

*

Fig. 4 RESTful conversation for rendering a product item page

The timer event on all the calls to the different resources of the recommendation
service will ensure that at least all the page data, except for the recommended
products, is rendered in case the recommendation service is slow (or down), as the
recommendation service just provides added value for the users, but is not crucial
for the users to continue with their order.

140 A. Ivanchikj and C. Pautasso

The shopping cart service is called for both logged-in and non-logged-in users,
using different parameters: the session ID for a non-logged-in user, and the user
ID for a logged-in user. While the session ID is available from the start of the
conversation, the hyperlink flow visual construct shows that the user ID is obtained
from the response of the authentication service. This service, based on the validity
of the provided access token, can send the user ID or a 401 status code if the token
is no longer valid. As the profile service stores the durable user data, when provided
with the user ID it reveals whether the user is a prime member, and thus whether
the shipping microservice or the Prime shipping microservice should be invoked
to render the estimated shipping time and price on the web page. The marketing
service also uses the user ID and the membership type data to calculate different
promotions available to the user. As this microservice requires data obtained from
the authentication service and the Profile service, it cannot be called before receiving
the response from both of these microservices.

As evident from the diagram in Fig. 4 each time a client makes a call to the
API gateway for rendering the page of a product item, at least 5 calls to different
microservices are made to render all the data for a non-logged-in user, plus all the
optional calls needed for making the recommendations.

As mentioned in Sect. 4, for creating the diagram in Fig. 4, we currently envision
two possible approaches. One is using a visual modeler where the designer is able
to drag&drop the desired constructs and connect them as best seen fit. The other
approach is a textual editor to enumerate possible user stories, or conversation
instance examples, written by one or more API designers or developers which are
then aggregated using a process mining technique to create the diagram.

For our e-commerce example, in this section two of the user stories would look
like those in Listing 1. The two user stories, or conversation instances, are separated
by an empty line. The first one refers to the conversation instance when the user has
valid log-in credentials and is a prime user. The second conversation instance refers
to the user story of a non-logged-in user. The other possible conversation instances
that need to be stated in order to generate the diagram in Fig. 4, are not shown
due to their length. However, they would follow the same syntax as the examples
provided in Listing 1. The textual editor would run a mining algorithm in the
background which, e.g., would infer the existence of parallelism between the calls to
the catalog service and the inventory service, since in the first conversation instance
first the catalog service is called and then the inventory service, while in the second
conversation instance the inventory service is called before the catalog service. More
user stories would be needed to discover all of the different calls which can be
performed in parallel. The mining algorithm would use the parameter name, userId,
to discover the hyperlink flow between the response of the authentication service
and the request URI of the profile service. It would use the values of the collection
parameters in the response of the recommendation service to discover the loops to
gather the information regarding the recommended products.

Modeling Microservice Conversations with RESTalk 141

Listing 1 Example of a user story for the e-commerce use case in Fig. 4 written in RESTalk’s
textual DSL

1 GET /auth/{accessToken} Authentication Service 200 [userId]
2 GET /product/{prodId} Catalog Service 200
3 GET /user/{userId} Profile Service 200 [memberType=prime]
4 GET /promo/{userId}/{memberType=prime} Marketing Service 200
5 GET /{memberType=prime}/{prodId} Prime Shipping Service 200
6 GET /inventory/{prodId} Inventory Service 200
7 GET /order/{userId} Order Service 200 [prodIds=[a,b]]
8 GET /review/{prodId} Review Service 200
9 GET /cart/{userId} Shopping Cart Service 200

10 GET /bestSeller Recommendation Service 200 [prodIds=[1,2]]
11 GET /product/{prodId=1} Catalog Service 200
12 GET /inventory/{prodId=1} Inventory Service 200
13 GET /product/{prodId=2} Catalog Service 200
14 GET /inventory/{prodId=2} Inventory Service 200
15 GET /related/{prodId=a} Recommendation Service 200 [prodIds

=[3,4]]
16 GET /related/{prodId=b} Recommendation Service 200 [prodIds

=[5,6]]
17 GET /product/{prodId=3} Catalog Service 200
18 GET /product/{prodId=4} Catalog Service 200
19 GET /inventory/{prodId=3} Inventory Service 200
20 GET /inventory/{prodId=4} Inventory Service 200
21 GET /inventory/{prodId=5} Inventory Service 200
22 GET /product/{prodId=5} Catalog Service 200
23 GET /product/{prodId=6} Catalog Service 200
24 GET /inventory/{prodId=6} Inventory Service 200
25
26 GET /cart/{sessionId} Shopping Cart Service 200
27 GET /shipping/{prodId}/{IPcountry} Shipping Service 200
28 GET /inventory/{prodId} Inventory Service 200
29 GET /product/{prodId} Catalog Service 200
30 GET /chrono/{sessionId} Search Service 200 [prodIds=[x,y]]
31 GET /related/{prodId=x} Recommendation Service 200 [prodIds=[1]]
32 GET /review/{prodId} Review Service 200
33 GET /inventory/{prodId=1} Inventory Service 200
34 GET /product/{prodId=1} Catalog Service 200
35 GET /related/{prodId=y} Recommendation Service 200 [prodIds

=[2,3]]
36 GET /product/{prodId=2} Catalog Service 200
37 GET /product/{prodId=3} Catalog Service 200
38 GET /inventory/{prodId=2} Inventory Service 200
39 GET /inventory/{prodId=3} Inventory Service 200
40 GET /bestSeller Recommendation Service 200 [prodIds=[4,5]]
41 GET /inventory/{prodId=4} Inventory Service 200
42 GET /product/{prodId=4} Catalog Service 200
43 GET /product/{prodId=5} Catalog Service 200
44 GET /inventory/{prodId=5} Inventory Service 200

142 A. Ivanchikj and C. Pautasso

6 Discussion

In microservice architectures, it might be easy to reason about the behavior of
each individual component, but understanding the behavior of the entire system can
become rather complex [6]. That said, visualizing the communication flow between
the microservices makes it possible to explain their mutual dependencies and inter-
actions to newbie developers, and helps developers document the interactions in the
existing architecture from a behavioral viewpoint. While a RESTful conversation
model complements existing structural models, together they can be used to discuss
any possible extensions in terms of additional API usage scenarios. Furthermore,
structured knowledge about the interdependencies between microservices can help
identify patterns and anti-patterns in this relatively new architectural style which still
faces the issue of communication optimization [1]. On another note, having a precise
communication model is a needed step for building automatic testing frameworks
that test the communication behavior of microservices [8].

Although some existing general modeling languages, such as UML activity
or sequence diagrams or BPMN choreographies, could be used for modeling the
communication behavior, when the microservices expose RESTful APIs, having
a domain-specific language, such as RESTalk, facilitates capturing important
RESTful facets, such as the request-response behavior, the method and status codes
combinations and the use of hyperlinks. In standard languages, such as UML or
BPMN, these would need to be captured by adding domain-specific semantics to
model annotations and comments [12, 26], thus cluttering the readability of the
diagram and hindering the interoperation with other RESTful API modeling tools.

Researchers have been working on textual support for general modeling lan-
guages in order to facilitate the adoption of those languages, as developers seem to
be more inclined to use textual editors as opposed to graphical editors. The reason
behind that is the long tradition of using textual, general-purpose programming
languages, which reduce the learning curve [4] for the textual DSLs. There are
different textual editors for UML, such as ZenUML,3 PlantUML,4 WebsequenceDi-
agrams,5 etc. However, they use either natural language like syntax or programming
language like syntax. In our approach for the textual DSL for RESTalk, we have
decided to let the user describe the user story, a common practice in software
engineering [5]. The goal of classical user stories is for the software user to describe
the desired functionalities of the software to be developed. Classical user stories
have a predefined content structure to facilitate understanding, but are written in
natural language. In the case of microservices and RESTalk, the purpose of the
user stories is to describe how the functionality of the system (i.e., the goal of
the conversation) is mapped to interdependencies and sequences of interactions

3https://app.zenuml.com/.
4https://www.planttext.com/.
5https://www.websequencediagrams.com.

https://app.zenuml.com/
https://www.planttext.com/
https://www.websequencediagrams.com

Modeling Microservice Conversations with RESTalk 143

between microservices (i.e., the conversation instance). It can be challenging for
one person to know all the different data that needs to be exchanged between the
microservices and the order in which it has to be done. This can be facilitated by
having the possibility for all the involved developers to simply state the logic and
communication that they have been implementing or designing in the form of logs,
which can then be mined to generate the RESTalk diagram aggregating all usage
scenarios.

7 Related Work

Most of the works which mention the challenge of microservice communication
and integration focus on microservice architecture in general and only touch upon
the communication challenge as evident from the literature survey conducted by
Alshuqayran et al. in [1]. The authors in the same work also provide a survey
of the different approaches used to model different aspects of the microservice
architecture. They have discovered that the most frequently used diagrams are
component diagrams to show the static interdependencies between microservices.
Some researchers have also used UML sequence diagrams, use case diagrams,
or class diagrams to depict different viewpoints of the microservice architecture.
Srikanta et al. [27] use UML sequence diagrams to describe the communication flow
in the microservice architecture that they propose for dynamic rating, charging, and
billing for cloud service providers. The microservices in their reference architecture
are RESTful; however, their use case is more simplistic then ours as it uses just
three microservices which communicate among each other in a sequential flow, with
no control flow divergence. Toffetti et al. [32], in the context of cloud resources
deployment, use a type graph to represent the needed cloud resources and the
connections between them together with their cardinality, and an instance graph
to show the actual deployment of the resources, visualized by square nodes and
undirected edges. They propose using the same type of graphs for microservice-
based applications as well. De Lange et al. [7], in their Community Application
Editor, built to support model driven web engineering, include the modeling
of microservices as part of the server-side modeling view. They have RESTful
resources as the central entity of their microservice view meta-model, together with
their HTTP methods and responses. The communication dependencies between the
microservices, or between a microservice and the front-end components, are drawn
automatically by the tool in the communications view based on the data entered
in the other views. In the communications view, the microservice is visualized
as a node, but the microservice call is also visualized as a node. Contrary to our
approach, no control flow divergence/convergence constructs are available, and the
hyperlink flow is also not visualized.

Granchelli et al. [10] use a model reverse engineering approach in their tool
MicroART to recover the microservice architecture of a system which is available on
Github. They use the communication logs to discover the interdependencies between

144 A. Ivanchikj and C. Pautasso

the microservices. The automatically generated links between the microservices can
be edited and refined by a knowledgeable human using the graphical editor of the
tool. One refinement that they propose is to resolve the interfaces referring to what
they call the service discovery service (e.g., an API gateway), which masks the
real resource dependencies. Thus, the human should remove the API gateway from
the microservice architecture visual diagram, and reestablish the links (the calls)
directly between the microservices. Contrary to our approach, where we only focus
on the communication aspect, in their visual model, they also include information
about the teams and the developers working on each of the microservices. As
they group together all the resources belonging to a discovered microservice, their
approach only reveals the resource URI and the microservice it belongs to, but not
the method calls and the hyperlinks flow, i.e., the diagram contains directed edges to
show the static dependencies between the different resources, but they do not show
the dynamic interaction behavior that can be followed at execution time.

8 Conclusion

In this chapter we have shown how to use RESTalk, a domain-specific language
for modeling RESTful conversations and to visualize RESTful conversations, i.e.,
models of all possible HTTP interaction sequences between a client and a RESTful
API, in the context of a microservice architecture where different microservices
need to communicate in order to achieve client’s goal. To describe RESTalk, we have
presented its meta-model and the two types of editing modalities that we envision for
the language, a graphical editor using the drag&drop functionality to add constructs
to the diagram, and a textual editor using a mining algorithm to deduce the RESTalk
diagram from a log-like user input. As microservice architecture is frequently found
in e-commerce application, we showcase a RESTalk model which visualizes what
happens behind the scenes when a human user clicks on a shop item to see its
details. The goal of the example is to show the expressiveness of RESTalk and its
semantics, but also to facilitate the discussion of the potential benefits of visualizing
the dynamic microservice communication. Namely, in the name of achieving
better scalability, performance, and maintainability, the microservice architecture
introduces complexity in terms of microservices communication compared to
a monolith architecture. Encoding the knowledge about such—unavoidable by
design—interactions between the microservices helps in sharing that knowledge and
leveraging it to induce the discussion and application of best practices. Although
this knowledge could be visualized and encoded also in existing general-purpose
languages, such as UML, using a domain-specific language, such as RESTalk, helps
to emphasize important facets of REST and the underlying HTTP protocol in the
visualization.

Modeling Microservice Conversations with RESTalk 145

References

1. N. Alshuqayran, N. Ali, R. Evans, A systematic mapping study in microservice architecture,
in 2016 IEEE 9th International Conference on Service-Oriented Computing and Applications
(SOCA) (IEEE, Piscataway, 2016), pp. 44–51

2. M. Amundsen, Building Hypermedia APIs with HTML5 and Node (O’Reilly, Beijing, 2011)
3. B. Benatallah, F. Casati, F. Toumani, Web service conversation modeling: a cornerstone for

e-business automation. IEEE Internet Comput. 8(1), 46–54 (2004)
4. M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in Practice (Morgan

& Claypool Publishers, San Rafael, 2017)
5. M. Cohn, User Stories Applied: For Agile Software Development (Addison-Wesley Profes-

sional, Boston, 2004)
6. S. Daya, N. Van Duy, K. Eati, C.M. Ferreira, D. Glozic, V. Gucer, M. Gupta, S. Joshi, V.

Lampkin, M. Martins, et al. Microservices from Theory to Practice: Creating Applications in
IBM Bluemix Using the Microservices Approach (IBM Redbooks, Poughkeepsie, 2016)

7. P. de Lange, P. Nicolaescu, R. Klamma, M. Jarke, Engineering web applications using real-time
collaborative modeling, in CYTED-RITOS International Workshop on Groupware (Springer,
Berlin, 2017), pp. 213–228

8. N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,
Microservices: yesterday, today, and tomorrow, in Present and Ulterior Software Engineering
(Springer, Berlin, 2017), pp. 195–216

9. H. Ed-Douibi, J.L. Cánovas Izquierdo, J. Cabot, Example-driven web api specification
discovery, in European Conference on Modelling Foundations and Applications (Springer,
Berlin, 2017), pp. 267–284

10. G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, A. Di Salle, Towards
recovering the software architecture of microservice-based systems, in 2017 IEEE Interna-
tional Conference on Software Architecture Workshops (ICSAW) (IEEE, Piscataway, 2017),
pp. 46–53

11. J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, D. Orchard, URI Template (2012).
Request for Comments: 6570

12. F. Haupt, F. Leymann, C. Pautasso, A conversation based approach for modeling REST APIs,
in Proceeding of the 12th Working IEEE/IFIP Conference on Software Architecture (WICSA
2015), Montreal, Canada (2015)

13. F. Haupt, F. Leymann, K. Vukojevic-Haupt, API governance support through the structural
analysis of rest APIS. Comput. Sci. Res. Dev. 33(3), 291–303 (2018)

14. G. Hohpe, Let’s have a conversation. IEEE Internet Comput. 11(3), 78–81 (2007)
15. A. Ivanchikj, RESTful conversation with RESTalk -the use case of doodle-, in Proceedings

of the International Conference on Web Engineering (ICWE’16) (Springer, Berlin, 2016), pp.
583–587

16. A. Ivanchikj, C. Pautasso, Sketching process models by mining participant stories, in Interna-
tional Conference on Business Process Management (Springer, Berlin, 2019), pp. 3–19

17. A. Ivanchikj, C. Pautasso, S. Schreier, Visual modeling of restful conversations with restalk. J.
Softw. Syst. Model. 17, 1–21 (2016)

18. A. Ivanchikj, I. Gjorgjiev, C. Pautasso, Restalk miner: mining restful conversations, pattern dis-
covery and matching, in International Conference on Service-Oriented Computing (Springer,
Berlin, 2018), pp. 470–475

19. A. Ivanchikj, C. Pautasso, S. Schreier, Visual modeling of RESTful conversations with
RESTalk. Softw. Syst. Model. 17(3), 1031–1051 (2018)

20. P. Jamshidi, C. Pahl, N.C. Mendonça, J. Lewis, S. Tilkov, Microservices: the journey so far and
challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

21. D. Jordan, J. Evdemon, Business Process Model and Notation Version 2.0 (OMG, Needham,
2011). http://www.omg.org/spec/BPMN/2.0/

http://www.omg.org/spec/BPMN/2.0/

146 A. Ivanchikj and C. Pautasso

22. P. Karwatka, M. Gil, M. Grabowski, A. Graf, P. Jedrzejewski, M. Kurzeja, A. Orfin,
B. Picho, Microsevice Architecture for eCommerce (2017). https://divante.co/books/PDFy/
microservices-architecture-for-ecommerce.pdf

23. H. Knoche, W. Hasselbring, Drivers and barriers for microservice adoption–a survey among
professionals in germany. Enterp. Model. Inf. Syst. Archit. (EMISAJ) 14, 1–1 (2019)

24. D. Malavalli, S. Sathappan, Scalable microservice based architecture for enabling DMTF
profiles, in 2015 11th International Conference on Network and Service Management (CNSM)
(IEEE, Piscataway, 2015), pp. 428–432

25. S. Newman, Building Microservices (O’Reilly, Sebastopol, 2015)
26. A. Nikaj, S. Mandal, C. Pautasso, M. Weske, From choreography diagrams to RESTful

interactions, in Proceeding of the 11th International Workshop on Engineering Service-
Oriented Applications (WESOA) (2015), pp. 3–14

27. S. Patanjali, B. Truninger, P. Harsh, T.M. Bohnert, Cyclops: a micro service based approach
for dynamic rating, charging & billing for cloud, in 2015 13th International Conference on
Telecommunications (ConTEL) (IEEE, Piscataway, 2015), pp. 1–8

28. C. Richardson, Microservices Patterns: With Examples in Java (Manning, Shelter Island, 2018)
29. L. Richardson, M. Amundsen, S. Ruby, RESTful Web APIs (O’Reilly, Sebastopol, 2013)
30. T. Steiner, J. Algermissen, Fulfilling the Hypermedia constraint via HTTP OPTIONS, the

HTTP vocabulary in RDF, and link headers, in Proceedings of the Second International
Workshop on RESTful Design (ACM, New York, 2011), pp. 11–14

31. R. Thomas Fielding, Architectural Styles and the Design of Network-based Software Architec-
tures, PhD thesis, University of California, Irvine, 2000

32. G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, A. Edmonds, An architecture for self-
managing microservices, in Proceedings of the 1st International Workshop on Automated
Incident Management in Cloud (ACM, New York, 2015), pp. 19–24

33. W. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of Business
Processes (Springer, Berlin, 2011)

34. M. Völter, M. Kircher, U. Zdun, Remoting Patterns: Foundations of Enterprise, Internet and
Realtime Distributed Object Middleware (Wiley, Hoboken, 2013)

35. O. Zimmermann, Microservices tenets. Comput. Sci. Res. Dev. 32(3), 301–310 (2017)

https://divante.co/books/PDFy/microservices-architecture-for-ecommerce.pdf
https://divante.co/books/PDFy/microservices-architecture-for-ecommerce.pdf

Graphical and Textual Model-Driven
Microservice Development

Florian Rademacher, Jonas Sorgalla, Philip Wizenty, Sabine Sachweh,
and Albert Zündorf

Abstract Model-driven development (MDD) is an approach to software engineer-
ing that aims to enable analysis, validation, and code generation of software on the
basis of models expressed with dedicated modeling languages. MDD is particularly
useful in the engineering of complex, possibly distributed software systems. It is
therefore sensible to investigate the adoption of MDD to support and facilitate
the engineering of distributed software systems based on microservice architecture
(MSA).

This chapter presents recent insights from studying and developing two
approaches for employing MDD in MSA engineering. The first approach uses
a graphical notation to model the topology and interactions of MSA-based software
systems. The second approach emerged from the first one and exploits viewpoint-
based modeling to better cope with MSA’s inherent complexity. It also considers the
distributed nature of MSA teams, as well as the technology heterogeneity introduced
by MSA adoption. Both approaches are illustrated and discussed in the context of
a case study. Moreover, we present a catalog of research questions for subsequent
investigation of employing MDD to support and facilitate MSA engineering.

1 Introduction

Microservice architecture (MSA) is a novel approach towards developing and
deploying distributed software systems [23]. It relies on services as architectural
building blocks, i.e., software components that (1) are loosely coupled to minimize

F. Rademacher (�) · J. Sorgalla · P. Wizenty · S. Sachweh
IDiAL Institute, University of Applied Sciences and Arts Dortmund, Dortmund, Germany
e-mail: florian.rademacher@fh-dortmund.de; jonas.sorgalla@fh-dortmund.de;
philipnils.wizenty@fh-dortmund.de; sabine.sachweh@fh-dortmund.de

A. Zündorf
Department of Computer Science and Electrical Engineering, University of Kassel,
Kassel, Germany
e-mail: zuendorf@uni-kassel.de

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_7

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_7&domain=pdf
mailto:florian.rademacher@fh-dortmund.de
mailto:jonas.sorgalla@fh-dortmund.de
mailto:philipnils.wizenty@fh-dortmund.de
mailto:sabine.sachweh@fh-dortmund.de
mailto:zuendorf@uni-kassel.de
https://doi.org/10.1007/978-3-030-31646-4_7

148 F. Rademacher et al.

dependencies on other components, (2) agree on contracts as predefined specifi-
cations of communication relationships and interact via interfaces, (3) encapsulate
reusable business or infrastructure logic, and (4) can be composed to coordinately
accomplish coarse-grained tasks [9]. MSA promotes tailoring of services along
domain-specific functional and technical infrastructure capabilities [23]. Each
microservice is responsible for providing exactly one, distinct capability to the
architecture. It is owned by a single team that accounts for the service’s design,
development, deployment, operation, and maintenance [22].

The adoption of MSA increases the degree of service-specific independence
which is considered to result in several benefits. First, the system’s scalability is
expected to increase. A microservice can be deployed and scaled separately [23].
Second, the system’s resilience is expected to increase, because failures need to be
expected at any point in runtime [16]. Thus, each service needs to be as robust
as possible to prevent failure cascades [2]. Third, team productivity is expected
to increase. MSA favors small team sizes and directed, efficient communication
along service boundaries [22]. Moreover, MSA teams are free to choose arbitrary
technologies for service implementation, provided that service interfaces comply
with consumers’ expectations. For instance, teams can align technology choices to
(1) performance requirements [17]; (2) implementation requirements [7]; and (3)
further technical requirements related to, e.g., the deployment infrastructure [2].

Model-Driven Development (MDD) [6] is a supportive approach for engineering
complex, distributed architectures like those of MSA-based software systems. MDD
leverages models as means of abstraction throughout the software engineering
process, which is expected to (1) facilitate reasoning about a software’s architecture
by omitting technical details, (2) enable analysis by formalizing specific parts
of a software system, and (3) increase development productivity by generating
code from models [6]. This chapter explores the applicability of MDD to MSA
for a graphical and a textual modeling approach. It discusses the strengths and
weaknesses of each approach in the light of a case study from the electromobility
domain and derives research questions to further investigate the usage of MDD in
MSA engineering.

The remainder of the chapter is organized as follows. Section 2 presents
background information on MDD in general and in the context of MSA. Section 3
introduces the case study. Section 4 presents and discusses AjiL [36], a graphical
approach towards model-driven MSA engineering. Section 5 presents and discusses
a textual modeling approach for MSA. It was developed based on our experiences
with using AjiL in complex modeling scenarios and is centered around a workflow
for model-driven MSA engineering that considers the different stakeholder roles
of distributed, DevOps-based MSA teams. Section 5 also comprises a catalog of
research questions on enabling MDD of MSA. Section 6 gives an overview of
related work and Sect. 7 concludes the chapter with an outlook on future works.

Graphical and Textual Model-Driven Microservice Development 149

2 Background

This section provides background information on MDD in general (cf. Sect. 2.1)
and presents benefits of employing MDD in MSA engineering (cf. Sect. 2.2).

2.1 Model-Driven Development

MDD is an approach to software engineering that uses models as first-class citizens
throughout the engineering process [6]. A model can be distinguished from other
software engineering artifacts on the basis of three model criteria [19]. First, there
must be an original that is mapped to the model (mapping criterion). Second, a
model is a reduction of the original that intentionally drops selected properties of the
original (reduction criterion). Third, a model must be able to replace the original for
a given purpose (pragmatic criterion). A model is thus a means to capture certain
parts and aspects of a software system at an appropriate level of abstraction [6].

Employing models in software engineering yields several benefits [6]. Basically,
reasoning about a software architecture is facilitated when details at lower levels
of abstraction are omitted in models (mapping and reduction criteria). Such details
may be components’ inner structures or behaviors in order to only show the overall
topology of the architecture [3]. A second benefit of MDD is the enabling of an
architecture’s analysis, simulation, and testing prior to its implementation [6].

Furthermore, models may be (semi)automatically transformed to other models
or source code (pragmatic criterion) [6]. Code generation is one of the key enablers
for adopting MDD in software engineering practice as it may increase developer
productivity by up to 30% [40]. Additionally, model-to-model transformations
contribute to increasing models’ value by deriving further artifacts from them [18].
For example, submodels may be automatically extracted from larger models to
facilitate reasoning about isolated system parts. Another use case for model-to-
model transformations is model refinement, where a generic model is transformed
into more concrete models. In the context of MSA, the derivation of service models
from underspecified domain models can be considered a refinement action [29].

Next to model transformation, modeling languages are a pivotal element of MDD
pragmatics [6]. A modeling language’s syntax imposes structural and semantic
constraints on models. It restricts the set of expressible models to those that adhere
to the constraints and can thus be considered correct. A modeling language’s syntax
consists of the abstract syntax and one or more concrete syntaxes [6]. The abstract
syntax defines the available modeling concepts, their structures, and relationships. It
may be enriched with semantic constraints, e.g., in the form of OCL invariants [25].
The abstract syntax is captured in metamodels and typically expressed in object-
oriented representations, e.g., UML class diagrams [6]. Each class then corresponds
to a modeling concept, and its attributes and associations represent the concept’s

150 F. Rademacher et al.

structure and relationships. A modeling language’s concrete syntax specifies a
notation for modelers to construct models. It may be, e.g., graphical or textual [6].

The development of a modeling language may follow an iterative process. It
starts with the definition or refinement of the metamodel [6]. Next, a concrete
syntax for the metamodel is derived or refined. Finally, the language semantics
are integrated or refined. When following such a “metamodel-first approach” to
language development, the metamodel typically also defines the Abstract Syntax
Tree (AST). That is, a bidirectional mapping between metamodel concepts and
grammar rules of the concrete syntax is specified, which also enables the automatic
derivation of language-specific editors and parsers [6]. A model that conforms to a
metamodel and is expressed in a concrete syntax for the metamodel is then parsed
to an AST instance which also conforms to the metamodel. One benefit of this
approach is that the metamodel is reusable across concrete syntaxes.

Figure 1 illustrates the relationship between metamodel and modeling language
with an example of a trivial modeling language for specifying microservices.

Figure 1a shows the metamodel in an object-oriented notation based on UML
class diagrams [6]. It specifies the Microservice concept for modeling microser-
vices. Each microservice has at least one Interface, which comprises at least one
Operation. An operation may be composed of a set of named and primitively
typed Parameters. Moreover, an operation may have a returnType or no
return type at all when voidReturnType is set to “true.”

Figure 1b shows the metamodel from Fig. 1a in Xcore,1 a textual language for
metamodel specification from the Eclipse Modeling Framework (EMF) [37]. The
metamodel contains all concepts from Fig. 1a and an additional concept Service-
Model to cluster all Microservice instances.

Figure 1c contains the grammar of the modeling language. It is expressed in
the grammar language of Xtext,2 an EMF-based framework for developing textual
languages. The grammar defines a rule for each metamodel concept in Fig. 1b. The
bidirectional mappings between grammar rules and metamodel concepts (see above)
are established by the returns keyword.

Figure 1d shows an example model that is expressed in the concrete syntax
defined in Fig. 1c. Because the grammar is based on the metamodel in Fig. 1b, the
model adheres to the structure and hence constitutes an instance of the metamodel.

2.2 Model-Driven Development for Microservice Architecture

Employing MDD is particularly beneficial in the engineering of complex software
systems, because of the problem-oriented abstractions provided by models and
modeling languages [11]. Sophisticated MDD techniques like model checking,

1https://wiki.eclipse.org/Xcore.
2https://www.eclipse.org/Xtext.

https://wiki.eclipse.org/Xcore
https://www.eclipse.org/Xtext

Graphical and Textual Model-Driven Microservice Development 151

enum PrimitiveType { BOOL, INTEGER,
FLOAT, STRING }

class ServiceModel {
contains Microservice[] microservices

}
class Microservice {

String name
contains Interface[1..*] interfaces }

class Interface {
String name
contains Operation[1..*] operations }

class Operation {
String name
PrimitiveType returnType
boolean voidReturnType
contains Parameter[] parameters }

class Parameter {
String name
PrimitiveType primitiveType }

enum PrimitiveType
returns PrimitiveType:
BOOL=’bool’ | INTEGER =’int’ |
FLOAT=’float’ | STRING = ’string’;

ServiceModel returns ServiceModel:
microservices+=Microservice+;

Microservice returns Microservice:
’microservice’ name=ID ’{’
interfaces+=Interface+ ’}’;

Interface returns Interface:
’interface’ name=ID ’{’
operations+=Operation+’}’;

Operation returns Operation:
(returnType=PrimitiveType |
voidReturnType?=’void’)
name=ID ’(’
(parameters+=Parameter
(’,’ parameters+=Parameter)*)?’)’;

Parameter returns Parameter:
primitiveType=PrimitiveType name=ID;

microservice AddressBookService {
interface AddressBook {

int addEntry(
int addressBookId,
string name,
string address

)
string getFormattedEntry(

int addressBookId,
int entryId

)
void deleteEntry(

int addressBookId,
int entryId

)
float getQuota(

int addressBookId
)

}
}

Fig. 1 Example of a metamodel-first approach to modeling language development. (a) and (b)
show the metamodel of the modeling language. (c) depicts the grammar of a textual concrete
syntax for the metamodel. (d) comprises an example model expressed in the concrete syntax

simulation, and transformation additionally increase models’ value. Given their
distributed nature, service-based software systems are inherently complex [27].
Thus, we consider it sensible in general to investigate the application of MDD in
MSA engineering.

In addition, MSA exhibits certain characteristics, which further strengthen our
conviction that reasoning about MDD approaches for MSA engineering will be
worthwhile. Table 1 lists such characteristics according to Newman [23] and
correlates them with MDD means that are likely to be supportive in their context

152 F. Rademacher et al.

Table 1 Overview of MSA characteristics and supportive MDD means [30]

MSA
characteristic

Supportive
MDD means

Summary of means
application Expected benefits

Service
identification

Model trans-
formation

Refinement of domain models
towards implementation

Increase of efficiency and
domain models’ value

Technology
heterogeneity

Abstraction Concise, viewpoint-specific
documentation of the
software architecture

Cost reduction of architecture
definition and enabling of
model reuse

Technology
heterogeneity

Code
generation

Transformation of
architecture models to, e.g.,
microservice implementation
stubs

Increase of developer
productivity and reduction of
service migration costs

Organizational
alignment

Modeling
languages

Provisioning of modeling
languages with, e.g.,
DevOps-aware modeling
viewpoints

Concise MSA modeling with
reduced conceptual clutter
and reuse of viewpoint
models

[30]. The MDD approaches described in Sects. 4 and 5 particularly address the listed
MSA characteristics.

In the following, we describe the application of the supportive MDD means listed
in Table 1 as well as the potential benefits per MSA characteristic.

2.2.1 Service Identification

Domain-driven design (DDD) [10] is a methodology to capture domain knowledge
in domain models. They result from collaborative modeling of domain experts and
software engineers. Newman proposes to use DDD to determine the boundaries
of microservice candidates [23]. However, DDD-based domain models are, by
intent, expressed as underspecified UML class diagrams [29]. Thus, they commonly
only serve as documentation artifacts and “implementation templates” [10]. While
documentation is a benefit of models that pays off in the long run [40], refinement
model transformations (cf. Sect. 2.1) could help to directly increase domain models’
value. Therefore, they could automatically be transformed to more implementation-
specific models for subsequent modeling steps [29] (cf. Sect. 5.6.1).

2.2.2 Technology Heterogeneity

Technology heterogeneity [23] results from MSA teams being free in their technol-
ogy choices. It leads to additional costs when new members join a team and also
need to learn its technologies, or when services are migrated to other technologies
[38].

As models abstract from selected details (cf. Sect. 2.1), they can support the
induction of new team members, e.g., by presenting the microservice architecture’s

Graphical and Textual Model-Driven Microservice Development 153

topology in a technology-agnostic way [3]. In addition, code generation helps
to decrease costs that emerge when migrating a service to another technology.
Technology-agnostic architecture models can be reused across technology-specific
code generators to produce, e.g., boilerplate code (cf. Sect. 5.1).

2.2.3 Organizational Alignment

MSA promotes to align software architecture and team structure to increase
communication efficiency, and also fosters DevOps [22]. Thus, a microservice may
be maintained by a team whose members have heterogeneous technical backgrounds
and roles. While service developers are responsible for the implementation of
microservices, service operators focus on their deployment and operation (cf.
Sect. 5.1).

MDD supports collaboration of different stakeholder roles with modeling view-
points [24]. A viewpoint model captures only those parts of a system that concern
certain stakeholder roles. This approach is particularly useful when engineering
complex systems with many cross-cutting concerns, because modeling viewpoints
decompose the overall system’s complexity into specialized concern-specific mod-
eling tasks [11]. Models of different viewpoints can then be composed to reason
about coherent system parts or reuse modeled elements across model transforma-
tions.

In the following, we present two approaches for graphical and textual model-
driven MSA engineering. They are discussed w.r.t. the described MSA characteris-
tics and their supportive MDD means (cf. Table 1). Furthermore, we reason about
open questions concerning the limitations and constraints of employing MDD to
MSA.

However, before we present the modeling approaches in detail in Sects. 4 and 5,
we first introduce the case study of an MSA-based software system in Sect. 3. It
will be used as a running example throughout Sects. 4 and 5 in order to facilitate the
understanding of the underlying principles of the presented modeling approaches.

3 Case Study

This section introduces an MSA-based software system that will act as a case study
for Sects. 4 and 5. Sections 3.1 and 3.2 describe its context and architecture.

3.1 Context

The case study application is located in the electromobility domain. It constitutes an
MSA-based software system that enables its users to rent their electric vehicles’

154 F. Rademacher et al.

Table 2 Selected functionalities of the case study application

Title Category Description

F1 Point sharing Charging point
management

Users must be able to offer their charging point to
drivers of electric vehicles and configure a price for
its usage

F2 Status query Charging point
management

The application allows for querying a charging
point’s status, e.g., if it is in use and how long a
vehicle parks in front of it

F3 Parking space
search

Charging point
management

The application provides users with a function to
search for free parking spaces with charging points in
a given quarter

F4 Point booking Payment Users can book shared charging points. The
application also handles the related payment
processes

F5 Environmental
data query

Environment
monitoring

Charging points integrate sensors for environmental
data like fine dust concentration. Authorized users
can query that data

charging points to other electric vehicle drivers. Moreover, the application aims
to foster the reuse of parking spaces and the reduction of fine dust emissions in
populous city quarters. Therefore, it facilitates the finding of free parking spaces
for electric vehicles and gathers environmental data from sensors built into charging
points.

The application provides its users with capabilities to offer, search, and book
private charging stations, pay for their usage, and monitor environmental data. It also
communicates with charging points to activate and deactivate charging processes,
and determines if a vehicle arrived at or left a parking space with a charging
point. Table 2 shows an overview of selected functionalities of the case study
application. They are structured in three categories, depending on whether they
address the management of charging points, payment processes, or the monitoring
of environmental data. Each functional category is then mapped to a microservice
in Sect. 3.2.

3.2 Case Study Architecture

Figure 2 shows the architecture of the case study application. Each category from
Table 2 is realized by a specific functional microservice.

The “ChargingService” implements functionalities F1 to F3 (cf. Table 2). The
payment processing for functionality F4 is realized by the “PaymentService.” It is
isolated from the “ChargingService” due to security requirements. The “Environ-
mentService” provides functionality F5, i.e., the querying of environmental data.
Functionalities related to user interaction are realized in a specialized “UIService.”

Graphical and Textual Model-Driven Microservice Development 155

Fig. 2 Architecture overview of the case study

Next to functional microservices, the application consists of microservices that
provide the architecture with infrastructure capabilities (cf. Fig. 2). The “Ser-
viceDiscovery” is an architecture-internal registry for every microservice instance
[2]. The “APIGateway” provides external service consumers with a uniform inter-
face to exposed functionalities. For instance, it receives sensor data from charging
points and forwards them to the services. Together with the “SecurityService,” the
“APIGateway” realizes a Single-Sign-On gateway, i.e., consumers do not need to
reauthenticate for every service interaction. Instead, the “SecurityService” issues a
unique security token to identify consumers and their access rights based on the
authentication credentials they sent to the “APIGateway.”

Each microservice encapsulates a circuit breaker (CB) and load balancer (LB)
[2] (cf. Fig. 2). The CB prevents failure cascades in that it blocks periodically failing
service interactions. The LB realizes client-side load balancing within services.

The case study application was realized with Spring Cloud.3 Most services
interact synchronously (cf. Fig. 2) and therefore employ REST with JSON as
data format. However, interactions between “Charging Points,” “APIGateway,” and
“EnvironmentService” instances happen asynchronously via MQTT.4 Environmen-
tal data can thus efficiently be processed as a continuous stream of measuring points.

4 AjiL—A Graphical Approach Towards Model-Driven
Microservice Development

AjiL [36] is a graphical language and toolkit for model-driven MSA engineering.
It comprises concepts to specify functional microservices, REST-based interfaces,
service security, and deployment. Moreover, it allows for declaring API gateways

3http://www.spring.io/projects/spring-cloud.
4http://www.mqtt.org.

http://www.spring.io/projects/spring-cloud
http://www.mqtt.org

156 F. Rademacher et al.

and service discoveries (cf. Sect. 3). An integrated code generator produces stubs
for service logic implementation (cf. Sect. 2). Section 4.1 briefly introduces AjiL,
and Sect. 4.2 discusses its benefits and drawbacks.

4.1 A Brief Introduction to AjiL

We developed AjiL as an approach to graphical MDD of MSA. Therefore, it
comprises an Eclipse-based editor that enables developers to construct diagrams
of an intended microservice architecture. From the diagrams, an integrated code
generator produces boilerplate code for subsequent service implementation. To this
end, we chose Java and Spring Cloud as target technologies, because they are widely
used in MSA practice due to their maturity, good developer availability, and tool
support [5].

AjiL’s abstract syntax (cf. Sect. 2.1) was derived in a bottom-up approach from
the target technologies. That is, we analyzed several MSA implementations relying
on Java and Spring Cloud, and designed the metamodel accordingly [36]. However,
basic modeling concepts, e.g., for services and interfaces, are kept technology-
agnostic by decomposing the metamodel into two hierarchical packages. The
first package contains the basic concepts. The second package extends them with
technology-specific information for code generation.

AjiL’s concrete syntax (cf. Sect. 2.1) consists of two types of box-and-line
diagrams [6, 36]. The overview diagram focuses on expressing the architecture’s
topology. Figure 3a shows the AjiL overview diagram for the case study (cf. Fig. 2).

Microservices are displayed as cubes and a cube’s color identifies the respective
service’s type (cf. Fig. 3a). For instance, yellow cubes represent security services
and blue cubes correspond to functional microservices like the “PaymentService”
from the case study (cf. Sect. 3). The interface of a microservice is modeled as a
bordered circle next to the service cube. Outgoing service interactions are expressed
in the form of edges that start at the outgoing service’s interface circle and end at
the receiving service’s cube. Service-specific properties like endpoints or interface
names are specified textually in the properties tab below the diagram editor.

AjiL’s second diagram type is the detailed diagram [36]. It exists for every
functional microservice in an overview diagram and defines a service’s integral
components, i.e., its interface and data entities. Figure 3b shows a detailed AjiL
diagram for the case study’s “PaymentService” (cf. Fig. 2). Data entities are depicted
as blue boxes with two compartments. The first compartment stores the entity’s
name and the second compartment clusters its attributes. Black arrows represent
associations between entities. Entities can be assigned to a data model (displayed as
a gray circle) to reflect semantic coherence. Detailed diagrams also model service
interfaces. An interface is depicted as a green box that holds a set of operations
(displayed as gray boxes). An operation processes instances of the data entities being
assigned to it via black arrows. For example, in Fig. 3b the “getInvoice” operation of
the “InvoiceInterface” processes the “Invoice” entity of the “Payment” data model.

Graphical and Textual Model-Driven Microservice Development 157

a

b

Fig. 3 (a) AjiL overview diagram for the case study (cf. Sect. 3) in Eclipse. (b) AjiL detailed
diagram for the “PaymentService” (cf. Sect. 3) in Eclipse

158 F. Rademacher et al.

AjiL was realized with EMF (cf. Sect. 2.1). More specifically, we used Sirius5 as
the graphical modeling framework and Acceleo6 to implement the template-based
code generation [6]. AjiL is available on GitHub7 as an Eclipse plugin.

4.2 Benefits and Drawbacks of AjiL

We employed AjiL in teaching and application-oriented research projects. In
the teaching case, our main focus was on explaining the building blocks and
topology of MSA-based software systems to undergraduates. In this context, AjiL’s
graphical notation facilitated the students’ structural understanding of microservice
architectures. Moreover, the relationship between models and derived code was
directly obvious, because AjiL allows for selective generation of microservices’
boilerplate code.

In general, graphical notations for the programming of computer systems are
considered to be more accessible than textual notations, because they map better
with the way people think [28]. Also, they tend to have a higher level of abstraction.
AjiL reflects these characteristics in the form that it clearly shows the functional
decomposition and topology of an MSA-based software architecture via box-and-
line diagrams (cf. Sect. 4.1). This fosters the understanding of MSA’s underlying
principle of autonomous, loosely coupled services and makes AjiL particularly
suitable to get started with the MSA approach as such.

However, when applying AjiL in research projects, which are usually more
complex than students’ projects, we encountered several drawbacks related to the
graphical notation. First, the graphical representations need a lot of on-screen space
as illustrated in Fig. 3a. Ten or more services already exacerbate the overview
diagrams’ clarity significantly. Moreover, the graphical arrangement of a bigger
amount of microservices is too slow for experienced programmers who are used to
textual programming languages [13]. Additionally, the high degree of abstraction
is limiting AjiL’s expressiveness and forces a lot of assumptions regarding the
underlying code generator [6]. While this is not a problem for comparatively small
projects where only a few technologies are present, we noticed that this becomes
an issue for larger MSA projects in which the same modeling concepts need
to be realized with different technologies depending on services and teams (cf.
Sect. 2.2.2). AjiL lacks the possibility to express this heterogeneity in the realization.
Finally, AjiL does not support MSA’s organizational alignment characteristic (cf.
Sect. 2.2.3). Instead, it focuses on providing a coherently accessible view on an
MSA-based software system. The distribution of diagram parts over MSA teams
and their subsequent consolidation is out of AjiL’s scope [36].

5https://www.eclipse.org/sirius.
6https://www.eclipse.org/acceleo.
7https://www.github.com/SeelabFhdo/AjiL.

https://www.eclipse.org/sirius
https://www.eclipse.org/acceleo
https://www.github.com/SeelabFhdo/AjiL

Graphical and Textual Model-Driven Microservice Development 159

In summary, based on the successful application of AjiL in teaching as well as
for designing MSA-based software systems that are small in both the number of
services and teams, we are certain that graphical notations are a promising way to
explain and understand MSA. However, while graphical representations tend to be
attractive to the human reader, they may lack the necessary precision and expressive-
ness [20]. In particular, we experienced this issue with AjiL when modeling complex
microservice architectures and their organizational environments. Thus, we shifted
our focus on developing a more efficient MDD approach for the engineering of real-
world MSA-based software systems, which exhibit a significant number of services,
distributed teams, and technologies being used.

5 Viewpoint-Specific Model-Driven Microservice
Development with Textual Modeling Languages

This section presents our second approach towards model-driven MSA engineering
[33]. It differs from AjiL (cf. Sect. 4) in that it aims to (1) consider technology
heterogeneity of microservices (cf. Sect. 2.2.2), (2) reduce modeling complexity
via viewpoints (cf. Sect. 2.2.3), (3) scale with team distribution, and (4) increase
modeling conciseness and efficiency by employing a textual notation.

The section first introduces a workflow for distributed, viewpoint-specific MSA
modeling (cf. Sect. 5.1). Sections 5.2–5.4 present the modeling languages for each
viewpoint in the workflow. Section 5.5 outlines their implementation. Section 5.6
discusses the approach and derives subsequent research questions.

5.1 Modeling Viewpoints and Workflow

The viewpoint-specific modeling approach addresses DevOps-based MSA teams
and involves domain experts to cope with MSA’s domain-driven “Service Identifi-
cation” characteristic (cf. Sect. 2.2.1). Table 3 lists the considered stakeholder roles.

The viewpoint-specific MSA modeling approach is based on a workflow for
model-driven MSA engineering [32], which involves the stakeholder roles in
Table 3. Figure 4 presents a methodological overview of the workflow.

The workflow in Fig. 4 considers MSA’s technology heterogeneity (cf.
Sect. 2.2.2) twofoldly. First, teams are free to employ MDD for their services’
implementation and operation. Second, teams can independently decide upon the
used technologies. In Fig. 4, each model-driven team uses a different technology
for their services’ implementation, i.e., “T1” and “T3.” These could, for instance,
refer to different programming languages. Both teams, however, employ the same

160 F. Rademacher et al.

Table 3 Considered stakeholder roles in the viewpoint-specific MSA modeling approach

Role Description

Domain
expert

Domain experts have a deep knowledge of the domain being addressed by an
MSA-based software system. Their primary interest is to obtain a system that
sufficiently fits their needs and expectations. They collaborate with service
developers to iteratively capture relevant domain knowledge (cf. Sect. 5.2)

Service
developer

Service developers are concerned with building a software system that fulfills
the functional, quality, and technical requirements of domain experts and other
stakeholders. Service developers have the technical knowledge for this task.
They are familiar with, e.g., programming and specification languages, and can
support domain experts in expressing their domain knowledge in a modeling
language. Additionally, they are aware of the conceptual and technical building
blocks of MSA (cf. Sect. 5.3)

Service
operator

Service operators are familiar with languages used to construct software
systems. Moreover, they are aware of the concerns related to microservice
deployment and operation. Therefore, they can coordinate with service
developers on a technical level (cf. Sect. 5.4). The distinction between service
developers and operators allows for flexibility regarding the composition of
MSA teams. It supports DevOps strategies in which developers and operators
are different persons, as well as strategies in which developers are also
responsible for operation concerns

Fig. 4 Workflow for distributed, model-driven MSA engineering [32]

Graphical and Textual Model-Driven Microservice Development 161

technology “T2” for service operation. In practice, this could be a container platform
like Docker.8 The workflow’s methodology consists of seven steps (cf. Fig. 4)9:

S.1 Domain Data Modeling
In the first step, domain experts and service developers collaboratively

construct and maintain a domain model (DM; cf. Sect. 2.2.1). It comprises the
domain concepts, their structures, and relationships.

S.2 Service Modeling
From the DM, a service model (SM) is derived by a service developer. It

clusters microservices, their interfaces, and operations.
S.3 Operation Modeling

Based on the SM, an operation model (OM) is constructed and maintained
by the service operator. It specifies deployments and other operation-related
information for the microservices in the SM.

S.4 Model Transformation Retrieval
After creation or refinement of an SM and OM, service developers and

operators apply model transformations to derive artifacts from the models (cf.
Sect. 2.1). The transformations are retrieved as executable applications from
the shared repository that also hosts the shared libraries [23]. Separate service
and operation model transformations (SMT and OMT) exist for different
technologies, e.g., an SMT for “T1” and an OMT for “T2” (cf. Fig. 4).

S.5 Model Transformation Execution
The retrieved model transformations are now executed on input models.

SMTs transform input SMs together with the DMs they refer to (cf. Sect. 5.3)
into service stubs, interface specifications, and shared SMs. Service stubs
comprise generated boilerplate code for subsequent service implementation.
Interface specifications encapsulate the description of service interfaces in a
technology-agnostic format, e.g., OpenAPI.10 They can be shared with teams
that do not employ MDD (cf. Fig. 4). Shared SMs, on the other hand, can
directly be used by model-driven teams. A shared SM contains information
extracted from SMT input models, which were specified as being visible to
other MSA teams or service consumers (cf. Sect. 5.3). Shared models enable
model-driven teams to also use their MDD tools to express dependencies to
services of other teams.

OMTs work analogously to SMTs. They use operation and referred service
models as inputs (cf. Sect. 5.4). The produced artifacts comprise deployment
descriptors, e.g., Dockerfiles, and shared OMs.

8https://www.docker.com.
9The steps are sequentially described, but may be continuously executed, e.g., domain models
could be refined iteratively. Furthermore, there is only one entity shown per model type and
stakeholder representative, but teams are free to construct more models per type as deemed
sensible.
10https://www.github.com/OAI/OpenAPI-Specification.

https://www.docker.com
https://www.github.com/OAI/OpenAPI-Specification

162 F. Rademacher et al.

A central requirement for SMTs and OMTs is that they do not overwrite
custom, service-specific code in repeated executions on evolved input models.
In combination with a versioning shared repository this supports iterative model
refinement [6], continuous delivery, and agile DevOps [22].

S.6 Propagation of Shared Artifacts
This step comprises the transmission of shared artifacts to the shared

repository.
S.7 Shared Artifact Retrieval and Application

From the shared repository, the shared artifacts are available to other teams.
Nonmodeling teams retrieve, e.g., interface specifications from it (cf. Fig. 4) to
develop microservices that can interact with those of other teams. Conversely,
model-driven teams can also acquire shared models from the repository to refer
to the services of other model-driven teams directly in their own models. Thus
they can, e.g., execute SMTs to generate artifacts that automatically reflect the
dependencies of their microservices to those of other model-driven teams.

For each stakeholder role in Table 3 and Fig. 4, a dedicated modeling language
was derived to enable the construction of models from the respective modeling view-
point. Figure 5 details the relationships between the viewpoint-specific model types
depicted in Fig. 4. Additionally, Fig. 5 shows on which elements the relationship is
based. For instance, a service model refers to domain concepts in a domain model.

Sections 5.2–5.4 present the modeling languages with which each stakeholder
role can construct the viewpoint-specific model types depicted in Fig. 5.

5.2 Domain Data Modeling Language

The domain data modeling language enables domain experts and service developers
to express static domain knowledge about an MSA-based software system [29, 33]
(cf. Sect. 5.1). Figure 6 shows the metamodel of the language (cf. Sect. 2.1).

The domain data modeling language defines the type system for the modeling
languages of the viewpoint-specific modeling approach (cf. Fig. 5). The central
modeling concept of the built-in type system is PrimitiveType (cf. Fig. 6)
and each concrete primitive type is a specialization of it. The specializations are,

Fig. 5 Overview of relationships between viewpoint-specific model types. Arrows correspond to
the semantics of UML dependency associations. The modeling concepts being shared between
model types are depicted as association stereotypes

Graphical and Textual Model-Driven Microservice Development 163

Fig. 6 Metamodel of the domain data modeling language

however, omitted in Fig. 6 for brevity. The primitive types of the type system
comprise the eight primitive types of Java, i.e., boolean, byte, character, double,
float, integer, long, and short [14]. Furthermore, Date and String primitive types
exist to natively express points in time and character sequences, respectively. The
PrimitiveValue concept (cf. Fig. 6) provides the modeling languages with a
means to express instances of primitive types (cf. Sect. 5.4). The conversion rules of
the type system observe Java’s widening primitive conversion mechanism [14], i.e.,
smaller types can be converted to greater types without losing information.

The metamodel supports the definition of DataStructures and ListTypes
(cf. Fig. 6). A data structure is a named ComplexType that is composed of Da-
taFields. A data field has a name and a primitive or complex type. The latter
type may be defined in the same domain model as the data field or be imported
from another domain model. The ComplexTypeImport concept enables such
imports by referring to the model file that contains the domain model to import
(importURI property) and assigning an alias (name) to it. The alias acts as a
shorthand reference for the imported file. Basically, the import mechanism is pivotal
for establishing relationships between viewpoint models of the same or different
types (cf. Fig. 5).

The domain data modeling language supports inheritance of data fields between
data structures (super property of DataStructure in Fig. 6). All data fields
that are not marked as being hidden are inherited. The derived property effec-
tiveFields of DataStructure determines local as well as inherited fields
of a data structure. Moreover, the ListType concept enables domain modelers to
express sequences of primitive values or data fields.

The conversion rules for complex types build upon the conversion rules for prim-
itive types. A data structure is convertible to another if all of its primitively typed
effective fields are convertible. Complex typed effective fields are then recursively
checked for convertibility. In the process of checking the conversion compatibility
of two data structures, the ordering of their data fields is ignored. This follows the
tolerant reader pattern [23], which is common in MSA, i.e., a microservice that
receives data structure instances is responsible for their restructuring if necessary.
List types also follow this logic in case they encapsulate data fields (cf. Fig. 6). For
lists of primitive values, Java’s widening primitive conversion is applied.

164 F. Rademacher et al.

Listing 1 Example of a domain model expressed with the domain data modeling language

1 /* Excerpt of domain model file "payment.data" */
2 import datatypes from "common.data" as commonData
3 import datatypes from "charging.data" as chargingData
4 version v01 { context Payment { structure Invoice {
5 int invoiceNumber,
6 float invoiceAmount,
7 date invoiceDate,
8 commonData::v01.Common.User invoiceReceiver,
9 chargingData::v01.Charging.ChargingPoint chargingPoint } } }

The domain data modeling language also defines concepts for namespaces. Ver-
sions (cf. Fig. 6) can be used to organize evolving domain models. Contexts
provide a means to organize parts of a domain model that share a semantic domain.
Conceptually, they correspond to DDD’s bounded context pattern [10].

To demonstrate the usage of the domain data modeling language, Listing 1 shows
an excerpt of the domain model of the case study’s “PaymentService” (cf. Sect. 3).
The model is expressed in the language’s concrete textual syntax (cf. Sect. 2.1).

Lines 2 and 3 comprise two instances of the ComplexTypeImport modeling
concept (cf. Fig. 6). The domain models with the importURIs “common.data”
and “charging.data” are imported under the aliases “commonData” and “charging-
Data”. In line 4, a Version (cf. Fig. 6) with name “v01” is created. It clusters a
Context called “Payment”, which itself defines a DataStructure “Invoice”.
This data structure models invoices that are created by the “PaymentService” (cf.
Sects. 3 and 4.1). In lines 5 to 7, three DataFields that represent an invoice’s
number, amount, and date are defined for the structure (cf. Fig. 6). They exhibit
the built-in, concrete PrimitiveTypes “int”, “float”, and “date”. Furthermore,
the structure encapsulates two data fields that are typed with imported complex
types (lines 8 and 9). The first field, “invoiceReceiver”, identifies the user to whom
the invoice was issued. The corresponding “User” data structure is defined in the
imported domain model with the alias “commonData”. The second complex typed
field “chargingPoint” represents the charging point, which the user activated to
charge her electric vehicle (cf. Sect. 3). The referenced data structure “Charging-
Point” originates from the imported domain model with the alias “chargingData”.

5.3 Service Modeling Language

The service modeling language addresses the modeling needs of service developers
(cf. Sect. 5.1) with concepts to express microservices, their interfaces, and opera-
tions [33]. It allows for importing domain models which were constructed with the
domain data modeling language (cf. Sect. 5.2). Figure 7 shows the metamodel of the

Graphical and Textual Model-Driven Microservice Development 165

Fig. 7 Metamodel of the service modeling language. Coherent concept structures are colored
uniformly

service modeling language, which, due to its complexity, has been divided into two
parts. Coherent concept structures are colored uniformly.

The metamodel is centered around the Microservice concept (cf. Fig. 7a). A
microservice has a name and a version. It may be of a functional, infrastructure,
or utility type. A functional microservice realizes a business function and an
infrastructure microservice provides technical capabilities to other services [34].
Utility microservices cluster generic functions, e.g., the resolution of geolocations.

A microservice exhibits a visibility (cf. Fig. 7a). The default ARCHI-
TECTURE visibility makes the service discoverable for all microservices of the
architecture. With a PUBLIC visibility, a service is additionally invokable by
architecture-external consumers. An INTERNAL visibility prevents access to the
microservice from other teams’ services, e.g., to restrict the invocation of team-
internal utility services.

A microservice has at least one ProtocolSpec that determines its
default protocol and possibly data format for a given communication type
(Protocol_Format concept and CType enumeration in Fig. 7b). If a
Protocol_Format instance lacks a DataFormat, the default format of the
Protocol is implicitly considered.

A microservice may have several Endpoints (cf. Fig. 7a). An endpoint asso-
ciates addresses with protocols and data formats (Protocol_Format concept in
Fig. 7b). Endpoint addresses are logical, e.g., they represent the path segments of a
URI. Physical address parts, e.g., scheme and authority of a URI, are determined in
operation models (cf. Sect. 5.4).

166 F. Rademacher et al.

A microservice may depend on other services, their interfaces, or operations
(see below). To specify such dependencies, a microservice is associated with
a PossiblyImportedMicroservice (cf. Fig. 7a), PossiblyImported-
Interface (cf. Fig. 7b), or PossiblyImportedOperation (cf. Fig. 7b).
The required element can be defined either in the same or an imported service
model. The Import concept depicted in Fig. 7a enables the import of other service
models into a service model.

A microservice comprises at least one Interface (cf. Fig. 7a). Interfaces
may have a visibility, whereby the semantics of ARCHITECTURE and
PUBLIC visibility are the same as for microservices. An INTERNAL interface,
however, is only visible within its defining microservice and cannot be required
by other microservices. If no visibility is specified for an interface, it inherits the
visibility of its microservice. In case the microservice has an internal visibility,
the interface implicitly has an IN_MODEL visibility and can be referenced by
microservices being contained in the same service model. This enables the modeling
of internal interfaces of, e.g., utility services. An interface can be marked as being
notImplemented and hence not invokable, which provides the possibility to
iteratively design APIs until they are stable, or to subsequently deactivate deprecated
interfaces. Like microservices, interfaces may have explicit endpoints and protocol
specifications assigned (cf. Fig. 7a, b).

An interface clusters at least one Operation or ReferredOperation (cf.
Fig. 7a, b). Operations have a name, a visibility, and may be notImple-
mented like interfaces. Operations can have several named, possibly optional
Parameters (cf. Fig. 7b). A parameter has a built-in primitive type (cf. Sect. 5.2)
or a complex type being imported from a domain model (ImportedType concept
in Fig. 7a). The import of domain-specific types realizes the relationship between
domain and service models (cf. Fig. 5), and hence between the domain and service
viewpoint.

A parameter may be incoming, outgoing, or both (ExPattern enumeration in
Fig. 7b). If an operation has several outgoing parameters, they are returned to the
service consumer as fields of a consolidating data structure. Outgoing parameters
may also be used to signal failures to callers (fault property of Parameter). For
each parameter, its communication type (ctype) must be specified. In combination
with the optional flag and exchange pattern, the communication type determines
the parameter’s and thus the operation’s calling behavior. Operations may only
be invoked, if all their nonoptional, synchronously incoming parameters receive
a value. During processing, an operation may expect incoming asynchronous
parameters and yield results in the form of outgoing asynchronous parameters.
Callers can expect to receive nonoptional outgoing synchronous parameters after
processing. A parameter may be modeled as being initializedBy a required
operation (see above). If an initialization relationship between a parameter and
an operation exists, type checking is performed on all outgoing parameters of
the operation and the modeler is warned if none of them is compatible with the
parameter (cf. Sect. 5.2).

Graphical and Textual Model-Driven Microservice Development 167

Listing 2 Example of a service model expressed with the service modeling language

1 /* Excerpt of service model file "payment.services" */
2 import datatypes from "payment.data" as paymentData
3 protocols {
4 sync rest data formats json default with format json;
5 async mqtt data formats json default with format json; }
6 @sync(protocols.rest) @async(protocols.mqtt)
7 functional microservice org.example.PaymentService {
8 @endpoints(protocols.rest : "/invoice";)
9 public interface InvoiceInterface {

10 @endpoints(protocols.rest : "/{invoiceNumber}";)
11 getInvoice(sync in invoiceNumber : int,
12 sync out invoice : paymentData::v01.Payment.Invoice); } }

Interfaces can comprise ReferredOperations (cf. Fig. 7b). They enable
compositions of interfaces in that invocations of referred operations are forwarded
to their actual implementations in their defining interfaces.

Listing 2 shows an excerpt of the service model for the case study’s “PaymentSer-
vice” (cf. Sects. 3 and 4.1) in the service modeling language.

Line 2 comprises an instance of the Import modeling concept for the
DATATYPES import type (cf. Fig. 7a). It results in the data structures and list
types that are defined in the domain model of the case study’s “PaymentService”
(cf. Listing 1), to be available in the service model under the alias “paymentData”. In
lines 3 to 5, two ProtocolSpec instances are declared (cf. Fig. 7b). They define
the Protocol and DataFormat combinations “rest/json” and “mqtt/json” for
synchronous and asynchronous communication within the case study (cf. Sect. 3).
Both protocol specifications are assigned to the “PaymentService” in line 6, which
results in all instances of the Parameter modeling concept to implicitly rely on
them for the respective communication type (cf. Fig. 7b). The “PaymentService”
is modeled as a Microservice instance (cf. Fig. 7a) in lines 7 to 12. It
comprises the Interface “InvoiceInterface” with a dedicated Endpoint for
the “rest” Protocol. The interface defines the “getInvoice” Operation to
enable consumers to retrieve a created invoice. Therefore, the operation has to be
invoked synchronously with the “invoiceNumber” Parameter (cf. Fig. 7b). The
corresponding invoice is then returned via REST in the JSON data format within the
outgoing synchronous parameter “invoice”. Its type is the “Invoice” data structure
being imported from Listing 1.

5.4 Operation Modeling Language

The operation modeling language is used by service operators to specify the
deployment and operation of microservices being imported from service models

168 F. Rademacher et al.

Fig. 8 Metamodel of the operation modeling language

[33] (cf. Sects. 5.1 and 5.3). Figure 8 shows the metamodel of the operation
modeling language (cf. Sect. 2.1).

The central concept of the metamodel is OperationNode (cf. Fig. 8). It
represents a computing node to which microservices can be assigned. Therefore,
microservices are imported from service models with the ImportedMicroser-
vice concept. An operation node may be associated with an OperationEnv to
specify the technology that runs on the node, e.g., a Docker image. In the case a node
does not refer to an operation environment, the default environment is used.

Containers and InfrastructureNodes refine the semantics of an oper-
ation node (cf. Fig. 8). Containers model microservice deployments, while infras-
tructure nodes provide technical capabilities to assigned microservices, e.g., for
service discovery [2]. The technology of a container or infrastructure node, e.g.,
Docker or Eureka,11 is specified with an instance of the OperationTechnology
modeling concept. Operation technologies may also predefine a ServiceProp-
erty set. A service property can, for instance, refer to a configuration parameter
of a Dockerfile. The ServicePropertyValue concept allows for assigning
a concrete, primitive value to a predefined property, either as default value on an
operation node or specifically per deployed service (see below).

The assignment of a microservice to an operation node may be substantiated
via ServiceDeploymentSpecifications (cf. Fig. 8). They enable the
specification of physical BasicEndpoints for services, e.g., the scheme and
authority of a URI (cf. Sect. 5.3). The association between ServiceDeploy-
mentSpecification and ServicePropertyValue (cf. Fig. 8) provides a
means to assign a value to a predefined operation technology’s property for a specific
service.

Listing 3 shows an excerpt of the operation model for the case study’s “Pay-
mentService” (cf. Sect. 3) in the concrete syntax of the Operation Modeling
Language.

11https://www.github.com/Netflix/eureka.

https://www.github.com/Netflix/eureka

Graphical and Textual Model-Driven Microservice Development 169

Listing 3 Example of an operation model expressed with the operation modeling language

1 /* Excerpt of operation model file "payment.operation" */
2 import microservices from "payment.services" as paymentserv
3 deployment technologies { docker { operation environments = "

openjdk" } }
4 container PaymentContainer deployment technology docker
5 deploys paymentserv::org.example.PaymentService {
6 default values { basic endpoints {
7 protocols.rest, protocols.mqtt : "http://www.example.com

:8080"; } } }

Line 2 imports the service model from Listing 2. In line 3, the Deploy-
mentTechnology “docker” is defined together with its default OperationEnv
“openjdk” (cf. Fig. 8). Lines 4 to 7 model a Container called “Payment-
Container”. It exhibits a ServiceDeploymentSpecification for the Im-
portedMicroservice “PaymentService” (cf. Fig. 8). Additionally, lines 6
and 7 specify the BasicEndpoints for the “rest” and “mqtt” Protocol
(cf. Fig. 7b) instances being imported from Listing 2. This results in the “Pay-
mentService” to be reachable under the URI “http://www.example.com:8080”.
Thus, the service’s “getInvoice” operation is invokable with REST via “http://www.
example.com:8080/invoice/{invoiceNumber}”, i.e., the logical REST Endpoints
of the interface and operation (cf. Listing 2) are preceded by the basic endpoint
URI.

5.5 Implementation

The viewpoint-specific modeling languages were implemented on the basis of
EMF and the metamodel-first approach described in Sect. 2.1. The metamod-
els shown in Figs. 6, 7, and 8 were realized with Xcore (cf. Fig. 1b). Based
on the Xcore metamodels, we developed the modeling languages’ grammars
and editors with Xtext. Therefore, each concept of the modeling languages’
metamodels was expressed as an Xtext grammar rule (cf. Fig. 1c). From the
Xtext grammars, Eclipse-based editors were derived. They implement syntax
highlighting, model validation, and scoping. The import mechanism of the mod-
eling languages exploits Xtext’s adapter for Eclipse’s global scoping mechanism
[37] in order to define which model elements are exported to the global scope
and can thus be imported into other models. For example, DataStructure
instances are exported from domain models (cf. Sect. 5.2) to the global scope,
so that service models can refer to them (cf. Sect. 5.3). The modeling languages,

http://www.example.com:8080
http://www.example.com:8080/invoice/
http://www.example.com:8080/invoice/

170 F. Rademacher et al.

editors, and case study models from Sects. 5.2, 5.3, and 5.4 are available on
GitHub.12

5.6 Discussion and Subsequent Research Questions

In the following, we discuss characteristics of the presented viewpoint-specific
MSA modeling approach. Furthermore, we identify initial research questions (RQs)
related to MDD of MSA, which might form a starting point for the subsequent
development of a rigorous research roadmap. We align our discussion to the steps
of the workflow for model-driven MSA engineering (cf. Sect. 5.1).

5.6.1 Workflow Step 1: Domain Data Modeling

The domain data modeling language enables domain experts and service developers
to express the structures and relationships of domain concepts (cf. Sect. 5.2). The
modeling language’s concepts correspond to a subset of UML package and class
diagrams. Like UML packages, versions and contexts provide basic namespace
definition mechanisms, while data structures exhibit semantics of UML classes,
including inheritance. We decided to integrate a UML subset in the domain data
modeling language, because Evans made the experience that in DDD a reduced
set of UML’s static modeling concepts is sufficient for domain experts to express
domain coherences [10]. Moreover, it is commonly assumed that DDD is a
practicable methodology to identify and tailor microservices [23]. We are, however,
not aware of a recent study that confirms the perception that DDD fosters the
collaboration of domain and technical experts in the context of MSA engineering.

Furthermore, DDD-based domain models are, by intent, underspecified [29],
while the domain data modeling language does not allow renouncing, e.g., data
types or field names, because these information are pivotal for microservice imple-
mentation. In addition, the language is, as opposed to static DDD-based domain
models [10], text-based. Given that DDD is a good fit for microservice identification
and tailoring, a solution that involves graphical modeling of underspecified domain
models would need to precede the Domain Data Modeling workflow step with a
DDD-based modeling step. The resulting underspecified UML class diagrams could
then be transformed into domain models as expected by the Domain Data Modeling
Language (cf. Sect. 2.2.1). Service developers would then have to complete the
models with missing technical details that were omitted in the underspecified UML
diagrams. Table 4 lists RQs in the context of Domain Data Modeling for MSA that
arise from the described issues.

12https://github.com/SeelabFhdo/ddmm.

https://github.com/SeelabFhdo/ddmm

Graphical and Textual Model-Driven Microservice Development 171

Table 4 Research questions related to domain data modeling

Description

RQ.1 To what extent is DDD a good fit for collaborative microservice design by domain
experts and service developers in terms of architectural correctness, consistency, and
modeling efficiency?

RQ.2 What are alternative approaches for microservice design? What are their strengths and
weaknesses compared to DDD?

RQ.3 On what minimal set of UML modeling concepts can domain experts and service
developers agree to balance underspecification and technical rigor?

5.6.2 Workflow Steps 2 and 3: Service and Operation Modeling

These workflow steps involve the construction of service and operation models
via the service and operation modeling languages (cf. Sects. 5.3 and 5.4). To
this end, both languages share the same primitive type system provided by the
domain data modeling language (cf. Sect. 5.2). However, the type system is aligned
to Java. While Java has a comparatively mature technical ecosystem for MSA
engineering and is one of the most popular languages in this field [5], alternatives
like JavaScript, Python, and Go exist [35]. One of the benefits of MDD is abstraction
via models and code generation (cf. Sect. 2.1). Thus, MDD could cope with MSA’s
programming language heterogeneity by providing code generators for different
service implementation languages (cf. Sect. 2.2.2) to, e.g., increase the efficiency
of service migrations. A shortcoming of this approach is that type-checking within
service models is still constrained to Java.

Furthermore, the service modeling language only considers the specification
of static service aspects, e.g., interfaces and operations’ type signatures. The
modeling of behavior of service operations or compositions is not yet possible. The
operation modeling language, on the other hand, currently only allows for specifying
infrastructure nodes for several microservices. However, infrastructure components
exist that solely concern a single service, e.g., load balancers and circuit breakers
(cf. Sect. 3). Table 5 lists RQs derived from the described issues.

Table 5 Research questions related to service and operation modeling

Description

RQ.4 How can conversions between different MSA programming languages be specified on
the model-level to ensure correct type-checking between microservices of different
languages?

RQ.5 Which existing modeling languages for behavior specification could be leveraged to
express the behavior of microservice operations and compositions?

RQ.6 Which modeling concepts for service-specific infrastructure need to be integrated in
the languages without introducing an extensive degree of technology dependency?

172 F. Rademacher et al.

5.6.3 Workflow Steps 4 and 5: Retrieval and Execution
of Model Transformations

Model transformations can be characterized by OMG’s model-driven architecture
(MDA) [24]. In MDA, a platform-independent model (PIM) is transformed to
a platform-specific model (PSM) from which code is generated. However, the
distinction between PIM and PSM is not that strict within the languages of
the presented viewpoint-specific modeling approach. The Domain Data Modeling
Language relies on Java’s type system and can be considered platform specific to
a certain degree (cf. Sect. 5.2). The service modeling language comprises concepts
for the specification of protocol technologies, which may be platform specific for
proprietary protocols (cf. Sect. 5.3). The operation modeling language requires to
model specific operation technologies (cf. Sect. 5.4).

The degree of platform dependency hence varies across modeling languages.
This makes the implementation of reusable code generators harder and code
generation more opaque. First, it is not directly obvious to service developers in
which primitive types of the target language the modeling languages’ primitive types
will result upon code generation. For instance, a code generator for Go can currently
decide how to treat modeled float data fields, i.e., whether they result in float32
or float64 variables (cf. RQ.4 in Sect. 5.6.2). Second, it is not guaranteed that a
code generator is capable of interpreting and producing protocols and data formats
in service models. While REST/JSON and MQTT/JSON are quite common in MSA,
proprietary or special-purpose protocols such as CoAP13 are probably not. This
is also true for container technologies and infrastructure nodes being expressed in
operation models. Table 6 comprises RQs derived from the described issues.

Table 6 Research questions related to model transformations

Description

RQ.7 How can modelers cope with technology heterogeneity on the model level by
considering different type systems, protocols, and operation technologies employed in
MSA engineering?

RQ.8 How can the implementation of code generators be simplified for technical MSA
experts that are not aware of the principles of MDD to encourage MSA teams to
develop and share code generators for new technologies with other teams (cf.
Sect. 5.1)?

RQ.9 How can code generation be integrated into continuous delivery pipelines [23]?

13http://www.coap.technology.

http://www.coap.technology

Graphical and Textual Model-Driven Microservice Development 173

5.6.4 Workflow Steps 6 and 7: Propagation, Retrieval, and Application
of Shared Artifacts

The workflow considers the propagation and integration of generated shared models
and interface specifications between MSA teams (cf. Sect. 5.1). Interface specifica-
tions may be used by nonmodeling teams to enable their services to conformably
interact with those of model-driven teams. However, the service modeling language
currently only allows for importing (possibly shared) service models (cf. Sect. 5.3).
Model-driven MSA teams are thus not able to import interface specifications, e.g.,
in the OpenAPI format (cf. Sect. 5.1), into their service models.

The propagation of shared service and operation models provides a foundation
for extending the application of sophisticated MDD techniques from the intra-
team to the extra-team level. Particularly, all shared models are stored in a shared
repository (cf. Sect. 5.1). This allows for performing automatic model validations
that concern the overall architecture, e.g., during continuous delivery (cf. RQ. 9 in
Sect. 5.6.3). For example, it could be determined, prior to runtime, if all microser-
vices being required by one team are actually deployed to a container, associated to
a service discovery, and are hence discoverable at runtime (cf. Sects. 5.3 and 5.4).
Furthermore, it could be checked if a microservice uses the latest version of another
microservice or if a service is a candidate for investigating its possible deprecation,
because it is not required by any other service. Moreover, the domain models of
different teams could be compared based on similarity measures to, e.g., identify
teams that probably use the same domain concepts but with different peculiarities.
For example, two teams could define the domain concept of a person but with
different properties. However, the validation of microservices, for which no models
exist, would yet not be possible.

Additionally, we envision MSA to be a predestined area of application for Col-
laborative Model-Driven Software Engineering (CMDSE) [12]. CMDSE enables
stakeholders to collaboratively construct and manage shared models. Moreover, it
provides stakeholders with communication means to share information related to
collaborative modeling activities. For example, domain models could be collabo-
ratively constructed by domain experts that are not in the same place. Service and
operation models could be stored in dedicated model repositories and imported into

Table 7 Research questions related to shared artifacts

Description

RQ.10 How can shared artifacts that do not represent models as expected by the
viewpoint-specific modeling languages be imported into models constructed with
them?

RQ.11 What model validations across team boundaries are possible and beneficial in
model-driven MSA engineering?

RQ.12 How can such validations be integrated into automated continuous delivery pipelines?

RQ.13 To what extent is CMDSE a sensible area of application for MSA and what CMDSE
means are beneficial to be employed for model-driven MSA engineering?

174 F. Rademacher et al.

the languages’ editors (cf. Sect. 5.5) without having to retrieve their files from a
shared repository. Table 7 presents RQs that were inferred from the described issues.

6 Related Work

In the following, we present work related to employing specialized programming
languages and MDD techniques in MSA engineering.

Jolie [21] is a programming language for the implementation of service-based
software systems. A Jolie program represents a single microservice and consists
of two parts. The first part specifies the behavior and business functionality of the
service. It relates input data, logic, and output data. The second part focuses on the
service’s deployment and operation. It defines, among others, ports and interfaces.
Jolie provides language primitives for, e.g., services’ logic execution modalities,
messaging patterns, port locations, and protocols. While Jolie represents a specific
technology for microservice implementation, our modeling languages (cf. Sects. 4
and 5) are basically technology agnostic. The models can be translated via code
generators to different implementation and deployment technologies like Jolie. Fur-
thermore, our languages only provide modeling concepts for structural components
of microservice architectures, e.g., data structures, service interfaces, and operation
nodes. Behavioral modeling is currently not supported (cf. Sect. 5.6.2).

Bogner and Zimmermann introduce the concept of EA-mini-descriptions (EA-
MDs) [4] with the aim to integrate microservices into enterprise architectures
(EAs) via MDD. An EA-MD clusters service-specific information like runtime
data and models of service endpoints and communication channels. Similar to
our viewpoint-specific modeling approach (cf. Sect. 5), EA-MDs separate domain-
specific information from service models. However, EA-MDs do not comprise
models for service operation. Moreover, MDD techniques for specifying EA-MDs
are not presented in [4]. One goal of EA-MDs is to derive an EA’s topology
from microservice compositions. In our viewpoint-specific modeling approach, an
architectural model is likely to be deducible from shared service models leveraging
CMDSE (cf. Sect. 5.6.4).

Düllmann and van Hoorn present a metamodel for performance and resilience
benchmarking of MSA-based software systems [8]. Therefore, they generate
microservice stubs, including benchmark code from models. The metamodel shares
commonalities with our languages’ metamodels (cf. Sects. 4 and 5). In particular,
it comprises modeling concepts for operations, endpoints, and service deployment.
However, it lacks concepts for interfaces, operation parameters, protocols, and data
formats. Neither a workflow on how to integrate the metamodel in MSA engineering
processes nor domain modeling (cf. Sects. 5.1 and 5.2) are covered.

Granchelli et al. employ MDD to recover the architecture of an MSA-based
software system [15]. The recovery process comprises a static analysis of the
system’s source code repository in order to extract information such as service and
container names, input and output ports, and the system’s developers’ identities.

Graphical and Textual Model-Driven Microservice Development 175

Additionally, a dynamic analysis is conducted at system runtime to collect data
like physical container addresses and network interfaces. From the results of both
analysis steps, an architecture model is derived. It can be refined via a specialized
modeling language, e.g., to specify dependencies between microservices. The lan-
guage’s metamodel shares certain commonalities with our languages’ metamodels
(cf. Sects. 4 and 5). For instance, it defines concepts for microservices of functional
and infrastructure type, interfaces, and endpoints. However, the metamodel lacks
concepts to express service operations and domain concepts. Instead, it covers the
modeling of team structures and products, which could be a sensible extension to our
viewpoint-specific modeling approach, possibly realized as an import relationship
between our service modeling language and the language defined in [15].

MicroBuilder [39] is a tool for modeling REST-based microservice architectures.
It comprises a textual modeling language and a code generator that derives
microservice code based on Java and the Spring Cloud framework. MicroBuilder’s
modeling language allows for specifying microservices and their endpoints in
the form of ports. Conversely to our modeling languages, it does not comprise
modeling concepts for interfaces and operations (cf. Sects. 4 and 5.3). Instead,
MicroBuilder organizes REST request methods in entities, which may also have
domain-specific attributes. Conceptually, entities and attributes correspond to data
structures and fields in the domain data modeling language (cf. Sect. 5.2). However,
MicroBuilder’s entity concept mixes domain and service modeling. Moreover, there
exist no dedicated modeling concepts for list types, asynchronous communication,
and service deployment in the MicroBuilder language. In addition, it does not con-
sider distributed microservice modeling (cf. Sect. 5.1). Instead, each MicroBuilder
model clusters all microservices of a single MSA-based software system.

Artač et al. present DICER, an Eclipse-based MDD approach for the develop-
ment of Infrastructure-as-Code (IaC) solutions [1]. While being originally designed
for Data-Intensive Architectures (DIA), DICER can be extended to model deploy-
ment aspects of MSA-based software systems [1]. DICER exploits UML’s profile
mechanism [24] to define a modeling language that abstracts from IaC-related
programming languages and approaches for infrastructure creation, configuration,
and management. UML deployment diagrams can be augmented with elements
from DICER’s UML profile and be transformed into TOSCA blueprints [26]. These
blueprints specify the deployment nodes and their relationships according to the
input diagram. DICER also comprises a library of predefined TOSCA types for
several big data frameworks. It is utilized throughout the transformation process
to generate the technology-specific parts of the modeled DIA. DICER exhibits
similarities to our operation modeling language (cf. Sect. 5.4). Both modeling
approaches allow for expressing different types of deployment nodes and their oper-
ation environments. While our language is more focused on modeling deployment
characteristics of a microservice, i.e., the deployed artifact, DICER also covers
a variety of aspects of the physical deployment infrastructure. It could therefore
be beneficial to combine both approaches by transforming operation models in
our operation modeling language into DICER models to derive a TOSCA-based
description for service deployment.

176 F. Rademacher et al.

7 Conclusion and Future Work

This chapter presented and discussed approaches and open challenges to applying
model-driven development (MDD) in the engineering of software systems based
on microservice architecture (MSA). To this end, we briefly introduced MDD
and discussed its general applicability to MSA (cf. Sect. 2). Next, we described
a case study from the electromobility domain, which was used throughout the
chapter to illustrate and discuss the presented MSA modeling approaches (cf.
Sect. 3). Section 4 introduced AjiL, a graphical modeling language and toolkit for
model-driven MSA engineering. Due to the accessibility provided by graphical
modeling approaches, we experienced AjiL to foster the understanding of basic
MSA concepts. However, it is not well suited for modeling large and complex MSA-
based software systems.

This insight led us to develop a textual, viewpoint-specific approach for model-
driven MSA engineering (cf. Sect. 5). It provides language primitives for funda-
mental MSA concepts and supports a workflow for distributed, model-driven MSA
engineering based on DevOps (cf. Sect. 5.1). The textual approach considers the
different stakeholder roles in the workflow with dedicated modeling languages. The
domain data modeling language enables domain experts and service developers
to collaboratively capture relevant domain concepts (cf. Sect. 5.2). The service
modeling language is used by service developers to construct microservice models
(cf. Sect. 5.3). The operation modeling language is employed by service operators
to specify service deployments (cf. Sect. 5.4). Models expressed with the languages
are integrated on the basis of an import mechanism. Sections 5.5 and 5.6 elucidated
the languages’ implementation and discussed their characteristics in light of the
presented workflow. From the discussion, a catalog of 13 research questions (RQs)
was derived. It may provide a foundation for a rigorous research roadmap towards
model-driven MSA engineering.

In our current and future works, we investigate certain RQs in the context of
our viewpoint-specific MSA modeling approach. Currently, we are working on a
code generation framework that eases the implementation of code generators for
MSA experts who are not familiar with MDD (cf. RQ. 8 in Sect. 5.6.3). It involves
a technology modeling language [31] that supports the specification and modular-
ization of technology-related MSA information. Such information comprises, e.g.,
primitive types of implementation languages, protocols, and operation technologies
(cf. RQs. 4 and 6 in Sect. 5.6.2, and RQ. 7 in Sect. 5.6.3). Technology models
constructed with the technology modeling language can be imported into service
and operation models to assign technology-specific aspects to microservices and
operation nodes. Consequently, they determine the code generators to be employed
to produce technology-specific artifacts for modeled services and nodes. With the
code generation framework and technology modeling language we aim at providing
an efficient solution to cope with the fast pace at which new MSA technologies
arise. That is, technology-specific aspects are decoupled from technology-agnostic

Graphical and Textual Model-Driven Microservice Development 177

modeling concepts. As a result, service and operation models can largely remain
stable when new technologies are to be used for their eventual realization.

However, certain assumptions were made in the design of the viewpoint-specific
modeling approach, e.g., the selection of modeling concepts and the constraints
for their interplay. Hence, it is possible that the modeling languages are not fully
applicable yet to specific use cases of MSA. Therefore, to identify such use cases
and extend the languages to cope with their specific requirements, we plan to
evaluate the languages by employing them to more complex MSA-based software
systems than the case study presented in Sect. 3. We are also particularly interested
in the applicability of the approach when the number of services and teams, and thus
the number of modeling artifacts to be maintained, increases. Moreover, we plan to
explore model-driven MSA engineering on the extra-team level with holistic model
validations and CMDSE (cf. RQs. 11 to 13 in Sect. 5.6.4).

References

1. M. Artač, T. Borovšak, E. Di Nitto, M. Guerriero, D. Perez-Palacin, D.A. Tamburri,
Infrastructure-as-code for data-intensive architectures: A model-driven development approach,
in 2018 IEEE International Conference on Software Architecture (ICSA) (IEEE, Piscataway,
2018), pp. 156–165

2. A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices architecture enables DevOps: migra-
tion to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

3. L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 3 edn. (Addison-Wesley,
Upper Saddle River, 2013)

4. J. Bogner, A. Zimmermann, Towards integrating microservices with adaptable enterprise
architecture, in 2016 IEEE 20th International Enterprise Distributed Object Computing
Workshop (EDOCW) (IEEE, Piscataway, 2016), pp. 1–6

5. J. Bogner, J. Fritzsch, S. Wagner, A. Zimmermann, Microservices in industry: insights into
technologies, characteristics, and software quality, in 2019 IEEE International Conference on
Software Architecture Companion (ICSA-C) (IEEE, Piscataway, 2019), pp. 187–195

6. B. Combemale, R.B. France, J.M. Jézéquel, B. Rumpe, J. Steel, D. Vojtisek, Engineering
Modeling Languages (CRC Press, Boca Raton, 2017)

7. N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,
Microservices: Yesterday, Today, and Tomorrow (Springer, Berlin, 2017), pp. 195–216

8. T.F. Düllmann, A. van Hoorn, Model-driven generation of microservice architectures for
benchmarking performance and resilience engineering approaches, in Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering Companion, ICPE ’17
Companion (ACM, New York, 2017), pp. 171–172

9. T. Erl, Service-Oriented Architecture (SOA) Concepts, Technology and Design (Prentice Hall,
Upper Saddle River, 2005)

10. E. Evans, Domain-Driven Design (Addison-Wesley, Boston, 2004)
11. R. France, B. Rumpe, Model-driven development of complex software: a research roadmap, in

Future of Software Engineering (FOSE ’07) (IEEE, Piscataway, 2007), pp. 37–54
12. M. Franzago, D.D. Ruscio, I. Malavolta, H. Muccini, Collaborative model-driven software

engineering: a classification framework and a research map. IEEE Trans. Softw. Eng. 44(12),
1146–1175 (2018)

13. T. Goldschmidt, S. Becker, A. Uhl, Classification of concrete textual syntax mapping
approaches, in Model Driven Architecture—Foundations and Applications, eds. by I. Schiefer-
decker, A. Hartman (Springer, Berlin, 2008), pp. 169–184

178 F. Rademacher et al.

14. J. Gosling, B. Joy, G.L. Steele, G. Bracha, A. Buckley, The Java Language Specification, Java
SE, 8 edn. (Addison-Wesley, Boston, 2014)

15. G. Granchelli, M. Cardarelli, P.D. Francesco, I. Malavolta, L. Iovino, A.D. Salle, Towards
recovering the software architecture of microservice-based systems, in 2017 IEEE Interna-
tional Conference on Software Architecture Workshops (ICSAW) (IEEE, Piscataway, 2017),
pp. 46–53

16. T. Killalea, The hidden dividends of microservices. Queue 14(3), 10:25–10:34 (2016)
17. N. Kratzke, P.C. Quint, Investigation of impacts on network performance in the advance

of a microservice design, in Cloud Computing and Services Science, ed. by M. Helfert,
D. Ferguson, V. Méndez Muñoz, J. Cardoso (Springer, Berlin, 2017), pp. 187–208

18. L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G.M.K. Selim, E. Syriani, M. Wimmer,
Model transformation intents and their properties. Softw. Syst. Model. 15(3), 647–684 (2016)

19. J. Ludewig, Models in software engineering—an introduction. Softw. Syst. Model. 2(1), 5–14
(2003)

20. S. Meliá, C. Cachero, J.M. Hermida, E. Aparicio, Comparison of a textual versus a graphical
notation for the maintainability of MDE domain models: an empirical pilot study. Softw. Qual.
J. 24(3), 709–735 (2016)

21. F. Montesi, C. Guidi, G. Zavattaro, Service-Oriented Programming with Jolie (Springer, Berlin,
2014), pp. 81–107

22. I. Nadareishvili, R. Mitra, M. McLarty, M. Amundsen, Microservice Architecture (O’Reilly
Media, Sebastopol, 2016)

23. S. Newman, Building Microservices (O’Reilly Media, Sebastopol, 2015)
24. Object Management Group, Model Driven Architecture (MDA) Guide (OMG, Needham,

2014), Version 2.0
25. Object Management Group, Object Constraint Language (OCL) (OMG, Needham, 2014),

Version 2.4
26. D. Palma, T. Spatzier, Topology and Orchestration Specification for Cloud Applications Version

1.0 (OASIS, Manchester, 2013)
27. M.P. Papazoglou, Web Services and SOA: Principles and Technology, vol. 2 (Pearson Educa-

tion, Harlow, 2012)
28. M. Petre, Why looking isn’t always seeing: Readership skills and graphical programming.

Commun. Assoc. Comput. Mach. 38(6), 33–44 (1995)
29. F. Rademacher, J. Sorgalla, S. Sachweh, Challenges of domain-driven microservice design: a

model-driven perspective. IEEE Softw. 35(3), 36–43 (2018)
30. F. Rademacher, J. Sorgalla, P. Wizenty, S. Sachweh, A. Zündorf, Microservice architecture

and model-driven development: Yet singles, soon married (?), in Proceedings of the 19th
International Conference on Agile Software Development: Companion, XP ’18 (ACM, New
York, 2018), pp. 23:1–23:5

31. F. Rademacher, S. Sachweh, A. Zündorf, Aspect-oriented modeling of technology hetero-
geneity in microservice architecture, in 2019 IEEE International Conference on Software
Architecture (ICSA), pp. 21–30 (IEEE, Piscataway, 2019)

32. F. Rademacher, J. Sorgalla, S. Sachweh, A. Zündorf, A model-driven workflow for distributed
microservice development, in Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, SAC ’19 (ACM, New York, 2019), pp. 1260–1262

33. F. Rademacher, J. Sorgalla, S. Sachweh, A. Zündorf, Viewpoint-specific model-driven
microservice development with interlinked modeling languages, in 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE) (IEEE, Piscataway, 2019),
pp. 57–66

34. M. Richards, Microservices vs. Service-Oriented Architecture (O’Reilly Media, Sebastopol,
2015)

35. G. Schermann, J. Cito, P. Leitner, All the services large and micro: revisiting industrial practice
in services computing, in Service-Oriented Computing—ICSOC 2015 Workshops, eds. by
A. Norta, W. Gaaloul, G.R. Gangadharan, H.K. Dam (Springer, Berlin, 2016), pp. 36–47

Graphical and Textual Model-Driven Microservice Development 179

36. J. Sorgalla, P. Wizenty, F. Rademacher, S. Sachweh, A. Zündorf, Ajil: enabling model-driven
microservice development, in Proceedings of the 12th European Conference on Software
Architecture: Companion Proceedings, ECSA ’18 (ACM, New York, 2018), pp. 1:1–1:4

37. D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF–Eclipse Modeling Framework, 2
edn. (Pearson Education, Harlow, 2011)

38. D. Taibi, V. Lenarduzzi, On the definition of microservice bad smells. IEEE Softw. 35(3), 56–
62 (2018)

39. B. Terzić, V. Dimitrieski, S. Kordić, G. Milosavljević, I. Luković, Development and Evaluation
of Microbuilder: A Model-Driven Tool for the Specification of Rest Microservice Software
Architectures (Taylor and Francis, Milton Park, 2018), pp. 1034–1057

40. J. Whittle, J. Hutchinson, M. Rouncefield, The state of practice in model-driven engineering.
IEEE Softw. 31(3), 79–85 (2014)

Part IV
Development and Deployment

A Formal Approach to Microservice
Architecture Deployment

Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, Iacopo Talevi,
and Gianluigi Zavattaro

Abstract Following previous work on the automated deployment of component-
based applications, we present a formal model specifically tailored for reasoning
on the deployment of microservice architectures. The first result that we present is
a formal proof of decidability of the problem of synthesizing optimal deployment
plans for microservice architectures, a problem which was proved to be undecidable
for generic component-based applications. Then, given that such proof translates
the deployment problem into a constraint satisfaction problem, we present the
implementation of a tool that, by exploiting state-of-the-art constraint solvers, can be
used to actually synthesize optimal deployment plans. We evaluate the applicability
of our tool on a realistic microservice architecture taken from the literature.

1 Introduction

Inspired by service-oriented computing, microservices structure software applica-
tions as highly modular and scalable compositions of fine-grained and loosely
coupled services [30]. These features support modern software engineering prac-
tices, like continuous delivery/deployment [40] and application autoscaling [3].
A relevant problem in these practices consists of the automated deployment of the
microservice application, i.e., the distribution of the fine-grained components over
the available computing nodes, and its dynamic modification to cope, e.g., with
positive or negative peaks of user requests.

In this chapter, we address the problem of planning the deployment, and
redeployment, of microservice architectures in a formal manner, by presenting
an approach for modeling microservice architectures that allows us to both prove

M. Bravetti (�) · I. Talevi · G. Zavattaro
Università di Bologna, Bologna, Italy
e-mail: mario.bravetti@unibo.it; iacopo.talevi@studio.unibo.it; gianluigi.zavattaro@unibo.it

S. Giallorenzo · J. Mauro
University of Southern Denmark, Odense, Denmark
e-mail: saverio@sdu.dk; mauro@sdu.dk

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_8

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_8&domain=pdf
mailto:mario.bravetti@unibo.it
mailto:iacopo.talevi@studio.unibo.it
mailto:gianluigi.zavattaro@unibo.it
mailto:saverio@sdu.dk
mailto:mauro@sdu.dk
https://doi.org/10.1007/978-3-030-31646-4_8

184 M. Bravetti et al.

formal properties and realize an implemented solution. We follow the approach
taken by the Aeolus component model [24, 26, 27], which was used to formally
define the problem of deploying component-based software systems and to prove
that, in the general case, such problems are undecidable [24]. The basic idea of
Aeolus is to enrich the specification of components with a finite state automaton that
describes their deployment life cycle. Previous work identified decidable fragments
of the Aeolus model: removing from Aeolus replication constraints used, e.g., to
specify a minimal amount of services connected to a load balancer makes the
deployment problem decidable, but nonprimitive recursive [26]; removing also con-
flicts used, e.g., to express the impossibility to deploy in the same system two types
of components makes the problem PSpace-complete [44] or even poly-time [24],
but under the assumption that every required component can be (re)deployed from
scratch.

In a recent paper [17], we adapted the Aeolus model to formally reason on
the deployment of microservices. To achieve our goal, we significantly revisited
the formalization of the deployment problem, replacing Aeolus components with a
model of microservices. The main difference between our model of microservices
and Aeolus components lies in the specification of their deployment life cycle.
Instead of using the full power of finite state automata, like in Aeolus and
other TOSCA-compliant deployment models [19], we assume microservices to
have two states: (1) creation and (2) binding/unbinding. Concerning creation, we
use strong dependencies to express which microservices must be immediately
connected to newly created ones. After creation, we use weak dependencies to
indicate additional microservices that can be bound/unbound. The principle that
guided this modification comes from state-of-the-art microservice deployment
technologies like Docker [45] and Kubernetes [39]. In particular, the weak and
strong dependencies have been inspired by Docker Compose [28], a language
for defining multi-container Docker applications, where it is possible to specify
different relationships among microservices using, e.g., the depends_on (resp.
external_links) modalities that force (resp. do not force) a specific startup order
similar to our strong (resp. weak) dependencies. Weak dependencies are also useful
to model horizontal scaling, e.g., a load balancer that is bound to/unbound from
many microservice instances during its life cycle.

In addition, w.r.t. the Aeolus model, we also consider resource/cost-aware
deployments, taking inspiration from the memory and CPU resources found in
Kubernetes. Microservice specifications are enriched with the amount of resources
they need to run. In a deployment, a system of microservices runs within a set of
computation nodes. Nodes represent computational units, e.g., virtual machines in
an infrastructure-as-a-service cloud deployment. Each node has a cost and a set of
resources available to the microservices it hosts.

In the model above, it is possible to define the optimal deployment problem
as follows: given an initial microservice system, a set of available nodes, and a
new target microservice to be deployed, find a sequence of reconfiguration actions
that, once applied to the initial system, lead to a new deployment that includes the
target microservice. Such a deployment is expected to be optimal, meaning that the

A Formal Approach to Microservice Architecture Deployment 185

total cost, i.e., the sum of the costs, of the nodes used is minimal. This problem
was proved to be decidable [17] by presenting an algorithm working in three
phases: (1) Generate a set of constraints whose solution indicates the microservices
to be deployed and their distribution over the nodes (2) Generate another set of
constraints whose solution indicates the connections to be established (3) Synthesize
the corresponding deployment plan The set of constraints includes optimization
metrics that minimize the overall cost of the computed deployment.

The algorithm has NEXPTIME complexity because, in the worst case, the length
of the deployment plan could be exponential in the size of the input. However,
since in practice the number of microservices deployable on one node is limited
by the available resources, if each node can host at most a polynomial amount of
microservices the deployment problem is NP-complete and the problem of deploy-
ing a system minimizing its total cost is an NP-optimization problem. Moreover,
having reduced the deployment problem in terms of constraints, it is possible
to exploit state-of-the-art constraint solvers [21, 35, 36], which are frequently
used in practice to cope with NP-hard problems. In particular, we investigate the
possibility to actually solve the deployment problem for microservices by exploiting
Zephyrus2 [1], a configurator optimizer that was originally envisaged for the Aeolus
model [25] but later extended and improved to support a new specification language
and the possibility to have preferences on the metrics to optimize, e.g., minimize not
only the cost but also the number of microservices. We have selected and customized
Zephyrus2 because it can easily support the solution of the optimization problems
to which we reduce the optimal deployment problem for microservices.

We have evaluated the actual exploitability of our implemented solution by
computing the initial optimal deployment, and some possible reconfigurations, for
a real-world microservice architecture, inspired by the reference email processing
pipeline from Iron.io [34]. That architecture is modeled in the abstract behavioral
specification (ABS) language, a high-level object-oriented language that supports
deployment modeling [41]. Our technique is then used to compute two types of
deployments: an initial one, with one instance for each microservice, and a set of
deployments to horizontally scale the system depending on small, medium, or large
increments in the number of emails to be processed. The experimental results are
encouraging in that we were able to compute deployment plans that add more than
30 new microservice instances, assuming availability of hundreds of machines of
three different types, and guaranteeing optimality.

Structure of the Chapter In Sect. 2 we formally study the microservice deployment
problem. In Sect. 3 we discuss Zephyrus2, the tool used to solve such a problem,
while in Sect. 4 we report the experimental results obtained by applying it to a real-
world case study. Finally, Sect. 5 discusses related work and draws some concluding
remarks.

Note that this chapter mainly reports and extends results published in [17] with
an additional section, namely, Sect. 3, to provide more details on the Zephyrus2 tool
and the extensions we implemented.

186 M. Bravetti et al.

2 The Microservice Optimal Deployment Problem

In this section we present our model for representing microservice systems and
their deployment. We start from an informal presentation of the model and then we
move to define microservice deployment configurations, reconfiguration plans and
the optimal deployment problem, providing its decidability proof and an analysis of
its complexity.

2.1 Representing Microservice Systems and Their Deployment

We model microservice systems as aggregations of components with ports. Each
port instantiates either a provided or a required interface. Interfaces describe offered
and required functionalities. Microservices are connected by means of bindings
indicating which port provides the functionality required by another port. As dis-
cussed in Sect. 1, we consider two kinds of requirements: strong required interfaces,
that need to be already fulfilled when the microservice is created, and weak required
interfaces, that must be fulfilled at the end of a deployment, or reconfiguration,
plan. Microservices are enriched with the specification of the resources they need
to properly run. Such resources are provided to the microservices by nodes. Nodes
can be seen as the unit of computation executing the tasks associated with each
microservice.

As an example, in Fig. 1 we report the representation of the deployment of a
microservice system where a Message Receiver microservice handles inbound
requests, passing them to a Message Analyzer that checks the email content
and sends the attachments for inspection to an Attachment Analyzer. The
Message Receiver has a port with a weak required interface that can be fulfilled
by Message Analyzer instances. This requirement is weak, meaning that the
Message Receiver can be initially deployed without any connection to instances

Legend

Message
Receiver

Cost: CPU: 2 RAM: 4

Node1_large - CPU: 2, RAM: 4, cost: 100

Message
Analyzer

Cost: CPU: 2 RAM: 3

Attachment
Analyzer

Cost: CPU: 2 RAM: 3

Node2_xlarge - CPU: 4, RAM: 8, cost: 199

 3

 2

Message
Analyzer

Cost: CPU: 2 RAM: 3

Node4_large - CPU: 2, RAM: 4, cost: 100

Message
Analyzer

Cost: CPU: 2 RAM: 3

Attachment
Analyzer

Cost: CPU: 2 RAM: 3

Node3_xlarge - CPU: 4, RAM: 8, cost: 199

provided interface

strong required interface

weak required interface

MR MA

AA

AA

AA

AA

AAMA

MA

MA

 1

 1

 2 1

8

8
8

8

Fig. 1 Example of microservice deployment (blue boxes: nodes; green boxes: microservices;
continuous lines: the initial configuration; dashed lines: full configuration)

A Formal Approach to Microservice Architecture Deployment 187

of Message Analyzer. These connections can be established afterwards and reflect
the possibility to horizontally scale the application by adding/removing instances of
Message Analyzer. This last microservice has instead a port with a strong required
interface that can be fulfilled by Attachment Analyzer instances. This requirement
is strong to reflect the need to immediately connect a Message Analyzer to its
Attachment Analyzer.

Figure 1 presents a reconfiguration that, starting from the initial deployment
depicted in continuous lines, adds the elements depicted with dashed lines. Namely,
a couple of new instances of Message Analyzer and a new instance of Attachment
Analyzer are deployed. This is done in order to satisfy numerical constraints
associated with both required and provided interfaces. For required interfaces, the
numerical constraints indicate lower bounds to the outgoing bindings, while for
provided interfaces they specify upper bounds to the incoming connections. Notice
that the constraint ≥3 associated with the weak required interface of Message
Receiver is not initially satisfied; this is not problematic because constraints on
weak interfaces are relevant only at the end of a reconfiguration. In the final
deployment, such a constraint is satisfied thanks to the two new instances of
Message Analyzer. These two instances need to be immediately connected to an
Attachment Analyzer: only one of them can use the initially available Attachment
Analyzer, because of the constraint ≤2 associated with the corresponding provided
interface. Hence, a new instance of Attachment Analyzer is added.

We also model resources: each microservice has associated resources that it
consumes; see the CPU and RAM quantities associated with the microservices in
Fig. 1. Resources are provided by nodes, which we represent as containers for the
microservice instances, providing them the resources they require. Notice that nodes
also have costs: the total cost of a deployment is the sum of the costs of the used
nodes, e.g., in the example the total cost is 598 cents per hour, corresponding to the
cost of 4 nodes: 2 C4 large and 2 C4 xlarge virtual machine instances of the Amazon
public cloud.

2.2 Microservices, Nodes, and Deployment Configurations

We now move to formal definitions. Here we will introduce microservices (includ-
ing their required/provided/conflicting interfaces and consumed resources), nodes,
and deployment configurations.

We start from the definition of the types of microservices, i.e., Attachment
Analyzer, Message Receiver, and Message Analyzer, in the example of Fig. 1,
which can be instantiated when deploying microservice systems. In the following,
we assume I to denote the set of all possible interfaces and R to be a finite set of
kinds of resources. Moreover, we use N to denote natural numbers, N+ for N \ {0},
and N

+∞ for N+ ∪ {∞}.

188 M. Bravetti et al.

Definition 1 (Microservice Type) The set Γ of microservice types, ranged over by
T1,T2, . . ., contains 5-ples 〈P,Ds,Dw,C,R〉 where:

• P = (I 	→ N
+∞) are the provided interfaces, defined as a partial function

from interfaces to corresponding numerical constraints, indicating the maximum
number of connected microservices.

• Ds = (I 	→ N
+) are the strong required interfaces, defined as a partial function

from interfaces to corresponding numerical constraints, indicating the minimum
number of connected microservices.

• Dw = (I 	→ N) are the weak required interfaces, defined as the strong ones,
with the difference that the constraint 0 can also be used, indicating that it is not
strictly necessary to connect microservices.

• C ⊆ I are the conflicting interfaces.
• R = (R → N) specifies resource consumption, defined as a total function

from resources to corresponding quantities indicating the amount of required
resources.

We assume sets dom(Ds), dom(Dw), and C to be pairwise disjoint.1

Notation In the remainder of the chapter, we denote the name of a microservice
interface with the upper-case acronym of the name of its microservice, e.g., the
interface of the Message Analyzer is denoted MA.

Given a microservice type T = 〈P,Ds,Dw,C,R〉, we use the following postfix
projections .prov, .reqs, .reqw, .conf, and .res to decompose it:

• .prov returns the partial function associating arities to provided interfaces, e.g.,
in Fig. 1, Message Receiver.prov(MR) = ∞.

• .reqs returns the partial function associating arities to strong required interfaces,
e.g., in Fig. 1, Message Analyzer.reqs(AA) = 1.

• .reqw returns the partial function associating arities to weak required interfaces,
e.g., in Fig. 1, Message Receiver.reqw(MA) = 3.

• .conf returns the conflicting interfaces.
• .res returns the total function from resources to their required quantities, e.g., in

Fig. 1, Message Receiver.res(RAM) = 4.

When the numerical constraints are not explicitly indicated, we assume as default
value ∞ for the provided interfaces, i.e., they can satisfy an unlimited amount of
ports requiring the same interface, and 1 for required interfaces, i.e., one connection
with a port providing the same interface is sufficient.

Inspired by [26], we allow a microservice to specify a conflicting interface that,
intuitively, forbids the deployment of other microservices providing the same inter-
face. Conflicting interfaces can be used to express conflicts among microservices,
preventing both of them to be present at the same time, or cases in which only one

1Given a partial function f , we use dom(f) to denote the domain of f , i.e., the set {e | ∃e′ :
(e, e′) ∈ f }.

A Formal Approach to Microservice Architecture Deployment 189

microservice instance can be deployed, e.g., a consistent and available microservice
that cannot be replicated.

Definition 2 (Nodes) The set N of nodes is ranged over by o1, o2, . . . We assume
the following information to be associated with each node o in N .

• A function R = (R → N) that specifies node resource availability: We use o.res

to denote such a function.
• A value in N that specifies node cost: We use o.cost to denote such a value.

As example, in Fig. 1, the node Node1_large is such that Node1_large.res(RAM)

= 4 and Node1_large.cost = 100.
Notice that, both in Definitions 1 and 2, we use the same symbol R to denote

the resource function: In the former case it quantifies resources consumed by
microservice instances, in the latter it quantifies resources made available by nodes.

We now define configurations that describe systems composed of microservice
instances and bindings that interconnect them. We use Z to denote the set of all
possible microservice instances. A configuration, ranged over by C1,C2, . . ., is
given by a set of deployed microservice instances, with their associated type and
node hosting them, and a set of bindings. Formally:

Definition 3 (Configuration) A configuration C is a 4-ple 〈Z, T ,N,B〉 where:

• Z ⊆ Z is the set of the currently deployed microservices.
• T = (Z → T) are the microservice types, defined as a function from deployed

microservices to microservice types.
• N = (Z → N) are the microservice nodes, defined as a function from deployed

microservices to nodes that host them.
• B ⊆ I × Z × Z is the set of bindings, namely 3-ples composed of an interface,

the microservice that requires that interface, and the microservice that provides it;
we assume that, for (p, z1, z2) ∈ B, the two microservices z1 and z2 are distinct
and p ∈ (dom(T (z1).reqs) ∪ dom(T (z1).reqw)) ∩ dom(T (z2).prov).

In our example, we have the binding (MA, instmr, instma) where instmr and
instma are the two initial instances in continuous lines of Message Receiver and
Message Analyzer type, respectively. Notice that the interface MA satisfies the
inclusion constraint at the end of Definition 3 in that MA is a required interface
of the Message Receiver type, while it is a provided interface of the Message
Analyzer type. Moreover, concerning the microservice placement function N , we
have N(instmr) = Node1_large and N(instma) = Node2_xlarge.

2.3 Microservice Deployment Plans

We are now ready to formalize the notion of a microservice deployment plan, which
represents a sequence of deployment configurations, with the aim of reaching a final
configuration as in the example of Fig. 1, by means of reconfiguration actions.

190 M. Bravetti et al.

The configurations traversed during a microservice deployment plan must satisfy
a correctness constraint related to the intended meaning of strong and weak required
interfaces and conflicts (see Definition 1). We first define provisional correctness,
considering only constraints on strong required and provided interfaces, and then we
define a general notion of configuration correctness, considering also weak required
interfaces and conflicts. The former is intended for transient configurations traversed
during the execution of a sequence of reconfigurations, while the latter is intended
for the final configuration.

Definition 4 (Provisionally Correct Configuration) A configuration C =
〈Z, T ,N,B〉 is provisionally correct if, for each node o∈ran(N), it holds2

∀ r ∈R. o.res(r) ≥
∑

z∈Z,N(z)=o

T (z).res(r)

and, for each microservice z ∈ Z, both the following conditions hold:

• (p 	→ n)∈T (z).reqs implies that there exist n distinct microservices z1, . . . , zn

∈Z\{z} such that for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B;
• (p 	→ n) ∈ T (z).prov implies that there exist no m distinct microservices

z1, . . . , zm ∈ Z \ {z}, with m > n, such that for every 1 ≤ i ≤ m, we have
〈p, zi, z〉 ∈ B.

In the above definition, the initial inequality guarantees that the amount of
resources provided by the nodes are sufficient to satisfy the requests of all the hosted
microservices. The first item means that the strong requirements of all components
are all satisfied because there are at least as many bindings on those ports as the
associated lower bounds. The second item, on the other hand, guarantees that there
are no extra connections on provided interfaces, because all the ports exposing a
provided interface have no more bindings than the associated upper bound.

Definition 5 (Correct Configuration) A configuration C=〈Z, T ,N,B〉 is correct
if C is provisionally correct and, for each microservice z ∈ Z, both the following
conditions hold:

• (p 	→ n)∈T (z).reqw implies that there exist n distinct microservices z1, . . . , zn

∈Z\{z} such that for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B.
• p∈T (z).conf implies that for each z′ ∈ Z\{z}, we have p /∈ dom(T (z′).prov).

In the definition above, besides the guarantees already given by Definition 4,
we have that also weak requirements are satisfied (first item), as well as conflicts
(second item): i.e., if an instantiated microservice has a conflict with an interface,
such an interface cannot be provided by any other microservice in the configuration.

2Given a (partial) function f , we use ran(f) to denote the range of f , i.e., the function image set
{f (e) | e ∈ dom(f)}.

A Formal Approach to Microservice Architecture Deployment 191

Notice that, in the example in Fig. 1, the initial configuration in continuous lines
is only provisionally correct in that the weak required interface MA, with arity 3, of
the Message Receiver is not satisfied, because there is only one outgoing binding.
The full configuration—including the elements in dotted lines—is instead correct:
all the constraints associated with the interfaces are satisfied.

We now formalize how configurations evolve by means of atomic actions: we
have bind/unbind actions to create/destroy bindings on ports with weak required
interfaces; new to instantiate a new microservice instance and the necessary bindings
on ports with strong required interface; and del to destroy a microservice and,
implicitly, its bindings.

Definition 6 (Actions) The set A contains the following actions:

• bind(p, z1, z2) where z1, z2 ∈Z, with z1 �=z2, and p∈I: add a binding between
z1 and z2 on interface p, which is supposed to be a weak required interface of z1
and a provide interface of z2.

• unbind(p, z1, z2) where z1, z2 ∈Z, with z1 �=z2, and p∈I: remove the specified
binding on p, which is supposed to be a weak required interface of z1 and a
provide interface of z2.

• new(z,T , o, Bs) where z∈Z, T ∈Γ , o∈N and Bs =(dom(T .reqs)→2Z−{z});
with Bs representing bindings from strong required interfaces in T to sets
of microservices, such that for each p ∈ dom(T .reqs), it holds |Bs(p)| ≥
T .reqs(p): add a new microservice z of type T hosted in o and bind each of
its strong required interfaces to a set of microservices as described by Bs .3

• del(z) where z ∈ Z: remove the microservice z from the configuration and all
bindings involving it.

In our example, assuming that the initially available Attachment Analyzer is
named instaa, we have that the action to create the initial instance of Message
Analyzer is new(instma, Message Analyzer, Node2_xlarge, (AA 	→ {instaa})).
Notice that it is necessary to establish the binding with the Attachment Analyzer
because of the corresponding strong required interface.

The execution of actions can now be formalized using a labeled transition system
on configurations, which uses actions as labels.

Definition 7 (Reconfigurations) Reconfigurations are denoted by transitions C α−→
C′ meaning that the execution of α ∈ A on the configuration C produces a new

3Given sets S and S′ we use: 2S to denote the power set of S, i.e., the set {S′ | S′ ⊆ S}; S − S′ to
denote set difference; and |S| to denote the cardinality of S.

192 M. Bravetti et al.

configuration C′. The transitions from a configuration C = 〈Z, T ,N,B〉 are defined
as follows:

C bind(p,z1,z2)−−−−−−−→ 〈Z, T , N,B ∪ 〈p, z1, z2〉〉
if 〈p, z1, z2〉 �∈ B and
p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C unbind(p,z1,z2)−−−−−−−−−→ 〈Z, T ,N,B\〈p, z1, z2〉〉
if 〈p, z1, z2〉 ∈ B and
p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C new(z,T ,o,Bs)−−−−−−−−→ 〈Z ∪ {z}, T ′, N ′, B ′〉
if z �∈ Z and
∀ p ∈ dom(T .reqs). ∀z′ ∈ Bs(p).

p ∈ dom(T (z′).prov) and
T ′ = T ∪ {(z 	→ T)} and
N ′ = N ∪ {(z 	→ o)} and
B ′ = B ∪ {〈p, z, z′〉 | z′ ∈ Bs(p)}

C del(z)−−−→ 〈Z\{z}, T ′, N ′, B ′〉
if T ′ = {(z′ 	→ T) ∈ T | z �= z′} and
N ′ = {(z′ 	→ o) ∈ N | z �= z′} and
B ′ = {〈p, z1, z2〉 ∈ B | z �∈ {z1, z2}}

A deployment plan is simply a sequence of actions that transform a provisionally
correct configuration without violating provisional correctness along the way and,
finally, reach a correct configuration.

Definition 8 (Deployment Plan) A deployment plan P from a provisionally cor-
rect configuration C0 is a sequence of actions α1, . . . , αm such that:

• There exist C1, . . . ,Cm provisionally correct configurations, with Ci−1
αi−→ Ci

for 1 ≤ i ≤ m.
• Cm is a correct configuration.

Deployment plans are also denoted with C0
α1−→ C1

α2−→ · · · αm−→ Cm.

In our example, a deployment plan that reconfigures the initial provisionally
correct configuration into the final correct one is as follows: a new action to create
the new instance of Attachment Analyzer, followed by two new actions for the
new Message Analyzers4 and finally two bind actions to connect the Message
Receiver to the two new instances of Message Analyzer.

Notice that since in deployment plans the requirements associated with strong
interfaces must be satisfied immediately after each reconfiguration action, which
must yield a provisionally correct configuration, it is possible to deploy a config-
uration with circular dependencies only if at least one weak required interface is
involved in the cycle. In fact, having a cycle with only strong required interfaces
would require to deploy all the microservices involved in the cycle simultaneously.
We now formalize a well-formedness condition on microservice types to guarantee
the absence of such configurations.

4Notice that the connection between the Message Analyzers and the corresponding Attachment
Analyzers is part of these new actions.

A Formal Approach to Microservice Architecture Deployment 193

Definition 9 (Well-Formed Universe) Given a finite set of microservice types
U , that we also call universe, the strong dependency graph of U is as follows:
G(U) = (U, V) with V = {(T ,T ′) |T ,T ′ ∈ U ∧ ∃p ∈ I.p ∈ dom(T .reqs) ∩
dom(T ′.prov)}. The universe U is well-formed if G(U) is acyclic.

In the following, we always assume universes to be well-formed. Well-formedness
does not prevent the specification of microservice systems with circular dependen-
cies, which are captured by cycles with at least one weak required interface.

2.4 Microservice Optimal Deployment Problem

We now have all the ingredients to define the optimal deployment problem, which is
our main concern: given a universe of microservice types, a set of available nodes
and an initial configuration, we want to know whether and how it is possible to
deploy at least one microservice of a given microservice type T by optimizing the
overall cost of nodes hosting the deployed microservices.

Definition 10 (Optimal Deployment Problem) The optimal deployment problem
has, as input, a finite well-formed universe U of microservice types, a finite set
of available nodes O, an initial provisionally correct configuration C0, and a
microservice type Tt ∈ U . The output is:

• A deployment plan P = C0
α1−→ C1

α2−→ · · · αm−→ Cm such that

– For all Ci = 〈Zi, Ti, Ni, Bi〉, with 1 ≤ i ≤ m, it holds ∀z ∈ Zi. Ti(z) ∈
U ∧ Ni(z) ∈ O.

– Cm = 〈Zm, Tm,Nm,Bm〉 satisfies ∃z ∈ Zm : Ti(z) = Tt .

if there exists one. In particular, among all deployment plans satisfying the
constraints above, one that minimizes

∑
o∈O.(∃z.Nm(z)=o) o.cost, i.e., the overall

cost of nodes in the last configuration Cm, is outputted.
• no (stating that no such plan exists); otherwise.

In the remainder of this section we present an algorithm for solving the optimal
deployment problem. This will allow us to complete the section by stating our main
result on the decidability of such a problem.

We assume that the input to the problem to be solved is given by U (the
microservice types), O (the set of available nodes), C0 (the initial provisionally
correct configuration), and Tt ∈ U (the target microservice type). We use I(U)

to denote the set of interfaces used in the considered microservice types, namely,
I(U) = ⋃

T∈U dom(T .reqs) ∪ dom(T .reqw) ∪ dom(T .prov) ∪ T .conf.
The algorithm is based on three phases.

Phase 1 The first phase consists of the generation of a set of constraints that,
once solved, indicates how many instances should be created for each microservice
type T (denoted with inst(T)), and how many of them should be deployed on

194 M. Bravetti et al.

node o (denoted with inst(T , o)). We denote with bind(p,T ,T ′) the number
of bindings that should be established for each interface p from instances of type
T—considering both weak and strong required interfaces—to instances of type
T ′. We also generate an optimization function that guarantees that the generated
configuration is minimal w.r.t. its total cost.

We now incrementally report the generated constraints. The first group of
constraints deals with the number of bindings:

∧

p∈I(U)

∧

T∈U, p∈dom(T .reqs)

T .reqs(p) · inst(T) ≤
∑

T ′∈U

bind(p,T ,T ′)

(1a)
∧

p∈I(U)

∧

T∈U, p∈dom(T .reqw)

T .reqw(p) · inst(T) ≤
∑

T ′∈U

bind(p,T ,T ′)

(1b)
∧

p∈I(U)

∧

T∈U, T .prov(p)<∞
T .prov(p) · inst(T) ≥

∑

T ′∈U

bind(p,T ′,T)

(1c)
∧

p∈I(U)

∧

T∈U, T .prov(p)=∞
inst(T) = 0 ⇒

∑

T ′∈U

bind(p,T ′,T) = 0

(1d)
∧

p∈I(U)

∧

T∈U, p/∈dom(T .prov)

∑

T ′∈U

bind(p,T ′,T) = 0 (1e)

Constraints (1a) and (1b) guarantee that there are enough bindings to satisfy all
the required interfaces, considering both strong and weak requirements. Symmet-
rically, constraint (1c) guarantees that the number of bindings is not greater than
the total available capacity, computed as the sum of the single capacities of each
provided interface. In case the capacity is unbounded (i.e., ∞), it is sufficient to have
at least one instance that activates such a port to support any possible requirement,
see Constraint (1d). Finally, constraint (1e) guarantees that no binding is established
connected to provided interfaces of microservice types that are not deployed.

The second group of constraints deals with the number of instances of microser-
vices to be deployed.

inst(Tt) ≥ 1 (2a)
∧

p∈I(U)

∧

T∈U,
p∈T .conf

∧

T ′∈U−{T },
p∈dom(T ′.prov)

inst(T) > 0 ⇒ inst(T ′) = 0 (2b)

A Formal Approach to Microservice Architecture Deployment 195

∧

p∈I(U)

∧

T∈U, p∈T .conf ∧
p∈dom(T .prov)

inst(T) ≤ 1 (2c)

∧

p∈I(U)

∧

T∈U

∧

T ′∈U−{T }
bind(p,T ,T ′) ≤ inst(T) · inst(T ′) (2d)

∧

p∈I(U)

∧

T∈U

bind(p,T ,T) ≤ inst(T) · (inst(T) − 1) (2e)

The first constraint (2a) guarantees the presence of at least one instance of the
target microservice. Constraint (2b) guarantees that no two instances of different
types will be created if one activates a conflict on an interface provided by the other
one. Constraint (2c) is the other case in which a type activates the same interface
both in conflicting and provided modality: in this case, at most one instance of
such type can be created. Finally, constraints (2d) and (2e) guarantee that there
are enough pairs of distinct instances to establish all the necessary bindings. Two
distinct constraints are used: the first one deals with bindings between microservices
of two different types, the second one with bindings between microservices of the
same type.

The last group of constraints deals with the distribution of microservice instances
over the available nodes O.

inst(T) =
∑

o∈O

inst(T , o) (3a)

∧

r∈R

∧

o∈O

∑

T∈U

inst(T , o) · T .res(r) ≤ o.res(r) (3b)

∧

o∈O

(∑

T∈U

inst(T , o) > 0
) ⇔ used(o) (3c)

min
∑

o∈O,used(o)

o.cost (3d)

Constraint (3a) simply formalizes the relationship among the variables inst(T)

and inst(T , o): the total amount of all instances of a microservice type should cor-
respond to the sum of the instances locally deployed on each node. Constraint (3b)
checks that each node has enough resources to satisfy the requirements of all the
hosted microservices. The last two constraints define the optimization function used
to minimize the total cost: constraint (3c) introduces the Boolean variable used(o)

which is true if and only if node o contains at least one microservice instance;
constraint (3d) is the function to be minimized, i.e., the sum of the costs of the
used nodes.

All the constraints of Phase 1, and the optimization function, are expected to be
given in input to a constraint/optimization solver. If a solution is not foundit is not

196 M. Bravetti et al.

possible to deploy the required microservice system; otherwise, the next phases of
the algorithm are executed to synthesize the optimal deployment plan.

Phase 2 The second phase consists of the generation of another set of con-
straints that, once solved, indicate the bindings to be established between any
pair of microservices to be deployed. More precisely, for each type T such
that inst(T) > 0, we use sTi , with 1 ≤ i ≤ inst(T), to identify the
microservices of type T to be deployed. We also assume a function N that
associates microservices to available nodes O, which is compliant with the values
inst(T , o) already computed in Phase 1, i.e., given a type T and a node o, the
number of sTi , with 1 ≤ i ≤ inst(T), such that N(sTi) = o coincides with
inst(T , o).

In the constraints below we use the variable b(p, sTi , sT
′

j), with i �= j , if T = T ′:
its value is 1 if there is a connection between the required interface p of sTi and the

provided interface p of sT
′

j , 0 otherwise. We use n and m to denote inst(T) and
inst(T ′), respectively, and an auxiliary total function limProv(T ′, p) that extends
T ′.prov associating 0 to interfaces outside its domain.

∧

T∈U

∧

p∈I(U)

∧

i∈1...n

∑

j∈(1...m)\{i|T=T ′}
b(p, sTi , sT

′
j) ≤ limProv(T ′, p) (4a)

∧

T∈U

∧

p∈dom(T .reqs)

∧

i∈1...n

∑

j∈(1...m)\{i|T=T ′}
b(p, sTi , sT

′
j) ≥ T .reqs(p) (4b)

∧

T∈U

∧

p∈dom(T .reqw)

∧

i∈1...n

∑

j∈(1...m)\{i|T=T ′}
b(p, sTi , sT

′
j) ≥ T .reqw(p) (4c)

∧

T∈U

∧

p/∈dom(T .reqs)∪dom(T .reqw)

∧

i∈1...n

∑

j∈(1...m)\{i|T=T ′}
b(p, sTi , sT

′
j) = 0

(4d)

Constraint (4a) considers the provided interface capacities to fix upper bounds
to the bindings to be established, while constraints (4b) and (4c) fix lower
bounds based on the required interface capacities, considering both the weak
(constraint (4b)) and the strong (constraint (4c)) ones. Finally, constraint (4d)
indicates that it is not possible to establish connections on interfaces that are not
required.

A solution for these constraints exists because, as also shown in [27], the con-
straints (1a)–(2e), already solved during Phase 1, guarantee that the configuration
to be synthesized contains enough capacity on the provided interfaces to satisfy all
the required interfaces.

Phase 3 In this last phase we synthesize the deployment plan that, when applied to
the initial configuration C0, reaches a new configuration Ct with nodes, microser-
vices, and bindings as computed in the first two phases of the algorithm. Without

A Formal Approach to Microservice Architecture Deployment 197

loss of generality, in this decidability proof we show the existence of a simple plan
that first removes the elements in the initial configuration and then deploys the target
configuration from scratch. However, as also discussed in constraint (4), in practice
it is possible to define more complex planning mechanisms that reuse microservices
already deployed.

Reaching an empty configuration is a trivial task since it is always possible to
perform in the initial configuration unbind actions for all the bindings connected
to weak required interfaces. Then, the microservices can be safely deleted. Thanks
to the well-formedness assumption (Definition 9) and using a topological sort, it
is possible to order the microservices to be removed without violating any strong
required interface, e.g., first remove the microservice not requiring anything and
repeat until all the microservices have been deleted.

The deployment of the target configuration follows a similar pattern. Given
the distribution of microservices over nodes, computed in Phase 1, and the
corresponding bindings, computed in Phase 2, the microservices can be created by
following a topological sort considering the microservices dependencies following
from the strong required interfaces. When all the microservices are deployed on the
corresponding nodes, the remaining bindings, on weak required ports, may be added
in any possible order.

Given the existence of the above algorithm for solving the optimal deployment
problem, we can now formally state our main result.

Theorem 1 The optimal deployment problem is decidable.

From the complexity point of view, it is possible to show that the decision
versions of the optimization problem solved in Phase 1 is NP-complete, in Phase
2 it is in NP, while the planning in Phase 3 is synthesized in polynomial time.
Unfortunately, due to the fact that numeric constraints can be represented in log
space, the output of Phase 2 requiring the enumeration of all the microservices to
deploy can be exponential in the size of the output of Phase 1, indicating only the
total number of instances for each type. For this reason, the optimal deployment
problem is in NEXPTIME. However, we would like to note that this applies only
when an exponential number of microservices is required to be installed in a node.
In practice, this does not happen since every node provides some resources that are
enough to deploy only a small number of microservices. If at most a polynomial
number of microservices can be deployed on each node, we have that the optimal
deployment problem becomes an NP-optimization problem and its decision version
is NP-complete. See the technical report [18] for the formal proofs of complexity.

3 Zephyrus

In this section we describe the Zephyrus2 tool and how it can be used to actually
solve the optimal deployment problem as formalized in the previous section.
Zephyrus2 is a configurator optimizer that was originally envisaged for the Aeolus

198 M. Bravetti et al.

model [25] but later extended and improved to support a new specification language
and the possibility to have preferences on the metrics to optimize, e.g., minimize
not only the cost but, for instance, also the number of microservices [1].

Zephyrus2 in particular can be used to solve the optimization problems of the
first two phases described before, namely, the distribution of the microservices on
the nodes, and the instantiation of the bindings between the different microservices.

3.1 Optimal Distribution of Microservices

Different from what was formally described before, for usability sake, Zephyrus2
allows a far richer way of defining what the deployment constraints of the users
are. Indeed, while in the previous section the goal was to deploy at least a given
microservice (see constraint (2a)),5 Zephyrus2 natively supports a richer language
powerful enough to express, e.g., the presence of a given number of microservices
and their co-installation requirements or conflicts. For example, the user might
require the presence of at least one Message Receiver and 3 Message Analyzer

and that, for fault tolerance reasons, no two Message Analyzer instances should
be installed on the same node.

For microservice and nodes specifications, Zephyrus2 supports the JavaScript
Object Notation (JSON) format.6 As an example, the following JSON snippet
defines the Message Receiver microservice in Fig. 1.

"MessageReceiver": {
"resources": { "CPU": 2, "RAM": 4 },
"requires": { "MA": 3 },
"provides": [{ "ports": ["MR"], "num": -1 }]

}

In the first line the name of the microservice is defined. Microservice names allow
for the usage of only letters, numbers, the underscore character, and they should
start with a letter. For this reason, here and in the following examples, in the
Zephyrus2 snippets we will rename the services removing the trailing spaces (e.g.,
Message Receiver becomes MessageReceiver).

In the second line, with the keyword resources, it is declared that
Message Receiver consumes 2 vCPUs and 4 units of RAM. The keyword
requires defines that the microservice has a requirement on interface MA with

5Note that despite this formal limitation, the possibility to install one microservice is enough to
encode far more elaborate constraints. Indeed, by using the strong requirements, it is possible to
create, e.g., a dummy target microservice that forces other microservices to be present in a certain
amount.
6The formal JSON Schema of Zephyrus2 input is available at [43]. JSON was used since it is
one of the most common data formats for information exchange, thus easing a possible support of
external tools and standards.

A Formal Approach to Microservice Architecture Deployment 199

1 b_expr : b_term (bool_binary_op b_term)* ;
2 b_term : (not)? b_factor ;
3 b_factor : true | relation ;
4 relation : expr (comparison_op expr)? ;
5 expr : term (arith_binary_op term)* ;
6 term : INT |
7 (exists | forall) VARIABLE in type : b_expr |
8 sum VARIABLE in type : expr |
9 ((ID | VARIABLE | ID [INT]) .)? microservice |
10 arith_unary_op expr |
11 (b_expr) ;
12 microservice : ID | VARIABLE ;
13 type : components | locations | RE ;
14 bool_binary_op : and | or | impl | iff ;
15 arith_binary_op : + | - | * ;
16 comparison_op : <= | = | >= | < | > | != ;
17 preferences: (cost | expr) (; cost | expr)*
18 VARIABLE : ? [a-zA-Z_][a-zA -Z0-9_]*;
19 ID : [a-zA-Z_][a-zA-Z0-9_]* ;
20 INT : [0-9]+ ;

Fig. 2 User desiderata specification language grammar

a capacity constraint “≥ 3”. Similarly, the provides keyword declares that
the microservice provides the interface MR to a possibly unbounded number of
microservices, represented by −1. Note that here Zephyrus2 does not distinguish
between strong and weak requirements since this notion becomes relevant only
later, namely, in Phase 2.

The definition of nodes is also done in JSON. For instance, the JSON input to
define 10 xlarge Amazon virtual machines is the following:

"xlarge": {
"num": 10,
"resources": { "CPU": 4, "RAM": 8 },
"cost": 199

}

For specifying the target configuration, Zephyrus2 introduces a new specification
language for expressing the deployment constraints to allow DevOps teams to
express more complex cloud- and application-specific constraints.

As shown in Fig. 2 that reports the grammar of the specification language defined
using the ANTLR tool [5], a deployment constraint is a logical combination of
comparisons between arithmetic expressions. Besides integers, expressions may
refer to microservice names representing the total number of deployed instances of
a microservice. Location instances are identified by a location name followed by the
instance index, starting at zero, in square brackets. A microservice name prefixed by
a node stays for the number of microservice instances deployed on the given node.

200 M. Bravetti et al.

For example, the following formula requires the presence of at least one
Message Receiver on the second large node, and exactly 3 Message Analyzer

in the entire system.

large[1].MessageReceiver > 0 and MessageAnalyzer = 3

For quantification and for building sum expressions, Zephyrus2 uses identifiers
prefixed with a question mark as variables. Quantification and sum constructs can
range over microservices—when the ’components’ keyword is used; nodes—
when the ’locations’ keyword is used; or over microservices/nodes whose
names match a given regular expression (RE). Using such constraints, it is possible
to express more elaborate properties such as the co-location or distribution of
microservices, or limit the amount of microservices deployed on a given location.
For example, the constraint

forall ?x in locations: (?x.MessageReceiver > 0 impl
?x.MessageAnalyzer = 0)

states that the presence of an instance of a Message Receiver deployed on any
node x implies that no Message Analyzer can be deployed on the same node.
As another example, requiring the Message Receiver to be installed alone on a
virtual machine can be done by requiring that if a Message Receiver is installed
on a given node then the sum of the microservices installed on that node should be
exactly 1. This can be done by stating the following constraint.

forall ?x in locations: (?x.MessageReceiver > 0 impl
(sum ?y in components: ?x.?y) = 1)

For defining the optimization metrics, Zephyrus2 extends what has been formally
presented in the previous section by allowing the user to express her preferences
over valid configurations in the form of a list of arithmetic expressions whose values
should be minimized in the given priority order (see preferences in Line 17 of
Fig. 2). While in the formalization in Sect. 2 the metric to optimize was only the
cost, Zephyrus2 solves instead a multi optimization problem taking into account
different metrics. For example, since the keyword cost (line 17 of Fig. 2) can be
used to require the minimization of the total cost of the used nodes, the following
listing specifies in the Zephyrus2 syntax the metric to minimize first the total cost
of the application and then the total number of microservices.

cost; (sum ?x in components: ?x)

This is also the default metric used if the user does not specify her own preferences.

3.2 Bindings Optimization

As described in Sect. 2, the second phase of the approach consists of the instantiation
of the bindings among the microservices. In particular, the constraints (4a)–(4d)

A Formal Approach to Microservice Architecture Deployment 201

1 preference: local | expr ;
2 term : INT |
3 bind (VARIABLE , VARIABLE , var_or_port) |
4 (exists | forall) VARIABLE (of type RE)?
5 in typeV : b_expr |
6 sum VARIABLE (of type RE)?
7 in typeV : expr |
8 (b_expr) ;
9 microservice : ID | ID [ID] | ID [RE] ;
10 typeV : ports | locations | RE ;
11 var_or_port : ID | VARIABLE ;

Fig. 3 Grammar to express binding preferences (missing nonterminals are as defined in Fig. 2)

enforce the satisfaction of the capacity constraints of the interfaces. However, in a
real application, a user often has preferences on how microservices are connected.
For instance, usually public clouds are composed of different data centers available
in different regions, and load balancers deployed in a region are connected only with
the backend services deployed in the same region.

To capture this kind of preferences, one can easily enrich the constraints (4a)–
(4d) with new metrics to optimize. For example, to maximize the local bindings
(i.e., give a preference to the connections among microservices hosted in the same
node) the following metric can be added.

min
∑

T ,T ′∈U,i∈1...inst(T),j∈1...inst(T ′),p∈I(U),N(sTi) �=N(sT
′

j)

b(p, sTi , sT
′

j)

Another example, used in the case study discussed in Sect. 4, is the following
metric that maximizes the number of bindings7:

max
∑

sTi ,sT
′

j ,p∈I(U)

b(p, sTi , sT
′

j)

Zephyrus2 supports the possibility to specify these binding preferences. The
grammar to express a preference is defined in Fig. 3. A preference may be either
the string local or an arithmetic expression (Line 1). The local preference is
used to maximize the number of bindings among the microservices deployed in
the same node. Arithmetic expressions are used instead to capture more advanced
preferences. These expressions are built by using as basic atoms integers (Line

7We model a load balancer as a microservice having a weak required interface, with arity 0, that can
be provided by its backend service. By adopting the above maximization metric, the synthesized
configuration connects all possible services to such required interfaces, thus allowing the load
balancer to forward requests to all of them.

202 M. Bravetti et al.

2) and the predicate bind(?x,?y,z), which is assumed to be evaluated to one if
the microservice referenced by the variable x is connected to the microservice y

using interface z, 0 otherwise. Notice that in this case z can be a concrete interface
name or an interface variable. In order to instantiate the variables of the term bind,
quantifiers (Line 4–8) and sum expressions (Line 6–7) may be used.

As an example, assume that we have two kinds of nodes: those available in
region A and those available in region B. The first nodes can be distinguished from
the second ones thanks to their name. Node names from region A end with ’_A’

while the other node names end with ’_B’. If we would like a Message Analyzer

deployed in region A to be connected with all the Message Receivers in the same
Region, we can add the following preference:

sum ?x of type MessageAnalyzer in '.*_A' :
forall ?y of type MessageReceiver in '.*_A' :
bind(?x,?y,MA)

In the first line we use the sum expression to match to the variable ?x all the
Message Analyzer instances hosted by a node whose name matches the regular
expression ’.*_A’. Similarly, in the second line we use the forall expression to
match to the variable ?y all the Message Receiver deployed in a node having
a name ending with ’_A’. The forall expression is evaluated to 1 if, fixing
the possible assignments of the variable ?y, the predicate bind(?x,?y,MA) is
true (MA is the name of the interface required by a Message Receiver and
provided by a Message Analyzer, see Fig. 1). If instead there is an instance of a
Message Receiver in region A that is not connected to the Message Analyzer ?x

then the forall expression returns 0. Due to the fact that the first expression is a
sum expression, the final behaviors of the preference is to maximize the number
of instances of Message Analyzer deployed in region A that are connected to all
the instances of Message Analyzer deployed in the same region. Note that, if the
Message Receiver is seen as a kind of loadbalancer for the Message Analyzer

instances, what we have achieved is to state the preference that all the backend
services in a region should be connected with all their loadbalancers deployed in the
same region.

Zephyrus2 solves the previously described multioptimization problems, by
translating them into constraint optimization problems (COP) encoded in MiniZ-
inc [46] and using state-of-the-art solvers such as Chuffed [21], Or-Tools [36], or
Gecode [35]. In particular, preferences are given in a list based on user priority.
The earlier the preference comes in the list, the higher is its priority. Zephyrus2
optimizes the preference with the highest priority first, and then proceeds with the
other preferences sequentially based on their priority.

A Formal Approach to Microservice Architecture Deployment 203

4 Application of the Technique to the Case Study

In this section, we evaluate the applicability of our solution by modeling several
deployment configurations of a real-world microservice architecture, namely, the
email processing pipeline described in [34].

The considered architecture separates and routes the components found in
an email (headers, links, text, attachments) into distinct, parallel subpipelines
with specific tasks, e.g., check the format of the email, tag its content, detect
malicious attachments. We report in Fig. 4 a depiction of the architecture. The
Message Receiver microservice is the entry-point of the architecture and acts
as a proxy by receiving and triggering the analysis of incoming emails. The
Message Receiver forwards an inbound email to the Message Parser, which
performs some preliminary validity checks. If the message is well formatted, the
Message Parser first stores a pending-analysis task under a unique identifier
for the current email in a companion database (DB) service. The DB maintains
the status of all pending analyses in the system and it is an element external to
the architecture—this is represented by the faded part at the top in Fig. 4. After
storing the pending task, the Message Parser (i) splits the parsed email into four
components: header, links, text, and attachments; (ii) tags them with the unique
identifier of the pending-analysis task; and (iii) sends the four components to their
corresponding subpipelines. The first two subpipelines from the top in Fig. 4 include
just one microservice, which respectively analyze the headers (Header Analyzer)
and the links (Link Analyzer) contained in the mail. The third subpipeline includes
a Text Analyzer that synchronously invokes a Sentiment Analyzer, to add tags
to the body of the message. The last subpipeline handles attachments and it is the
most complex in the system. The first microservice in the subpipeline is a Virus
Scanner, which checks each attachment for the presence of malicious software.
If an attachment results malicious, it is deleted and signaled as dangerous to the
Message Analyzer, as described later. Safe attachments are forwarded to an
Attachment Manager for further analyses. The Attachment Manager inspects

Message Parseremail

Header Analyzer

Link Analyzer

Text Analyzer

Sentiment Analyzer

Attachment
Manager

Virus
Scanner Image Analyzer

Image Recognizer

NSFW Detector

headers

links

text

attachment

Message Analyzer

header analysis

link analysis

tags

tagged
image

image

processed
email

Legend

Microservicemessage content

Message Receiver

email

DB

email analysis id and attachment number

pending
task update

attachment

virus scan
report

async. comm. synch. comm.

Fig. 4 Microservice architecture for email processing pipeline

204 M. Bravetti et al.

each attachment to identify its content type (image, audio, archive) and route it
to the appropriate part of the subpipeline. In Fig. 4 we just exemplify the concept
with an Image Analyzer which synchronously calls two microservices to tag
the content of each image (Image Recognizer) and whether it does not include
explicit content (NSFW Detector). All subpipelines forward the result of their
(asynchronous) analysis to the Message Analyzer, which collects them in the DB.
After all analyses belonging to the same pending task are completed, the Message
Analyzer combines them and reports the result of the processing.

To model the system above, we use the Abstract Behavioral Specification
(ABS) language, a high-level object-oriented language that supports deployment
modeling [41]. ABS is agnostic w.r.t. deployment platforms (Amazon AWS,
Microsoft Azure) and technologies (e.g., Docker or Kubernetes) and it offers high-
level deployment primitives for the creation of new deployment components and the
instantiation of objects inside them. Here, we use ABS deployment components
as computation nodes, ABS objects as microservice instances, and ABS object
references as bindings. Strong required interfaces are modeled as class annotations
indicating mandatory parameters for the class constructor: such parameters contain
the references to the objects corresponding to the microservices providing the
strongly required interfaces. Weak required interfaces are expressed as annotations
concerning specific methods used to pass, to an already instantiated object, the
references to the objects providing the weakly required interfaces. We define a class
for each microservice type, plus one load balancer class for each microservice type.
A load balancer distributes requests over a set of instances that can scale horizon-
tally. Finally, we model nodes corresponding to Amazon EC2 instances: c4_large,
c4_xlarge, and c4_2xlarge, with the corresponding provided resources and costs.

Finally, to compute deployment plans for our case study, we exploit SmartDepl
[23], an extension of ABS that supports the possibility to include into ABS
additional deployment annotations that, besides the other annotations describing
strong and weak required interfaces and the available computing nodes, are used
as input for Zephyrus2. In this way, Zephyrus2 can compute optimal deployment
plans, which are then translated into corresponding ABS code.

Each microservice in the architecture has a given resource consumption,
expressed in terms of CPU and memory. As expected, the processing of each email
component entails a specific load. Some microservices can handle large inputs, e.g.,
in the range of 40 K simultaneous requests like the Header Analyzer that processes
short and uniform inputs. Other microservices sustain heavier computations, like
the Image Recognizer, and can handle smaller simultaneous inputs, e.g., in the
range of 10 K requests.

In Table 1, we report the result of our algorithm w.r.t. four incremental deploy-
ments: the initial in column 2 and under incremental loads in 3–5. We also consider
an availability of 40 nodes for each of the three node types. In the first column
of Table 1, next to a microservice type, we report its corresponding maximum
computational load, expressed as the maximal number of simultaneous requests
that a microservice can manage. In the column, we use the standard suffix K to

A Formal Approach to Microservice Architecture Deployment 205

Table 1 Description of different scaling scenarios

Microservice (max computational load) Initial (10 K) +20 K +50 K +80 K

MessageReceiver(∞) 1 – – –

MessageParser(40 K) 1 – +1 –

HeaderAnalyzer(40 K) 1 – +1 –

LinkAnalyzer(40 K) 1 – +1 –

TextAnalyzer(15 K) 1 +1 +2 +2

SentimentAnalyzer(15 K) 1 +3 +4 +6

VirusScanner(13 K) 1 +3 +4 +6

AttachmentsManager(30 K) 1 +1 +2 +2

ImageAnalyzer(30 K) 1 +1 +2 +2

NSFWDetector(13 K) 1 +3 +4 +6

ImageRecognizer(13 K) 1 +3 +4 +6

MessageAnalyzer(70 K) 1 +1 +2 +2

represent numbers in thousands, e.g., 30 K corresponds to 30,000 simultaneous
requests. In our example, the maximal computational load of each microservice
comes from an educated guess drawn from the experience of the authors. Concretely,
those estimations are straightforward to obtain through e.g., a measurement of
the performance like the response times of each microservice, under increasing
simulated traffic loads. As visible in columns 2–5, different maximal computational
loads imply different scaling factors w.r.t. a given number of simultaneous requests.
In the initial configuration we consider 10 K simultaneous requests and we have one
instance of each microservice type and of the corresponding load balancer. The
other deployment configurations deal with three scenarios of horizontal scaling,
assuming three increasing increments of inbound messages: +20 K, +50 K, and
+80 K. Concerning the deployment plan synthesis, in the three scaling scenarios,
we do not implement the planning algorithm described in Phase 3 of the proof of
Theorem 1. We take advantage of the presence of the load balancers: instead of
emptying the current configuration and deploying the new one from scratch, we
keep the load balancers in the configuration and simply connect to them the newly
deployed microservice instances. This is achieved, as described in Sect. 3, with an
optimization function that maximizes the number of bindings of the load balancers.

For every scenario, we use SmartDepl to generate the ABS code for the
plan that deploys an optimal configuration, setting a timeout of 30 min for the
computation of every deployment scenario.8 The ABS code modeling the system

8Here, 30 min is a reasonable timeout since we predict different system loads and we compute
in advance a different deployment plan for each of them. An interesting future work would aim
at shortening the computation to a few minutes (e.g., around the average startup time of a virtual
machine in a public cloud) to obtain on-the-fly deployment plans tailored to unpredictable system
loads.

206 M. Bravetti et al.

and the generated code are publicly available at [16]. A graphical representation of
the initial configuration is available in the technical report [18].

5 Related Work and Conclusion

In this work, we consider a fundamental building block of modern cloud systems,
microservices, and prove that the generation of a deployment plan for an architecture
of microservices is decidable and fully automatable; spanning from the synthesis of
the optimal configuration to the generation of the deployment actions. To illustrate
our technique, we model a real-world microservice architecture in the ABS [41]
language and we compute a set of deployment plans.

The context of our work regards automating cloud application deployment,
for which there exist many specification languages [8, 20], reconfiguration proto-
cols [9, 31], and system management tools [37, 42, 47, 48]. Those tools support the
specification of deployment plans but they do not support the automatic distribution
of software instances over the available machines. The proposals closest to ours are
those by Feinerer [32] and by Fischer et al. [33]. Both proposals rely on a solver to
plan deployments. The first is based on the UML component model, which includes
conflicts and dependencies, but lacks the modeling of nodes. The second does
not support conflicts in the specification language. Neither proposals support the
computation of optimal deployments. Notice that our work focuses on architectural
aspects of (deployed) microservices and not on their low-level invocation flow,
which regards issues of service behavioral compliance (see, e.g., [4, 13–15] where
process algebra [7] related techniques are adopted) or deadlock/termination analysis
(see, e.g., [11, 22]) that are not a concern of this chapter.

Three projects inspire our proposal: Aeolus [26, 27], Zephyrus [1], and Con-
fSolve [38]. The Aeolus model paved the way to reason on deployment and
reconfiguration, proving some decidability results. Zephyrus is a configuration tool
based on Aeolus and it constitutes the first phase of our approach. ConfSolve is a
tool for the optimal allocation of virtual machines to servers and of applications to
virtual machines. Both tools do not synthesize deployment plans.

Regarding autoscaling, existing solutions [2, 6, 29, 39] support the automatic
increase or decrease of the number of instances of a service/container, when some
conditions, e.g., CPU average load greater than 80, are met. Our work is an example
of how we can go beyond single-component horizontal scaling policies, as analyzed,
e.g.„ in [12] by using Markovian process algebras [10].

As future work, we want to investigate local search approaches to speed up the
solution of the optimization problems behind the computation of a deployment
plan. Shorter computation times would open our approach to contexts where it is
unfeasible to compute plans ahead of time, e.g., due to unpredictable loads.

Acknowledgement The research was partly supported by the H2020-MSCA-RISE project ID
778233 “Behavioural Application Program Interfaces (BEHAPI).”

A Formal Approach to Microservice Architecture Deployment 207

References

1. E. Ábrahám, F. Corzilius, E.B. Johnsen, G. Kremer, J. Mauro, Zephyrus2: on the fly
deployment optimization using SMT and CP technologies, in SETTA. LNCS, vol. 9984, pp.
229–245 (2016)

2. Amazon: Amazon Cloudwatch. https://aws.amazon.com/cloudwatch/. Accessed January 2019
3. Amazon: AWS Auto Scaling. https://aws.amazon.com/autoscaling/. Accessed January 2019
4. D. Ancona, V. Bono, M. Bravetti, J. Campos, G. Castagna, P. Deniélou, S.J. Gay, N. Gesbert,

E. Giachino, R. Hu, E.B. Johnsen, F. Martins, V. Mascardi, F. Montesi, R. Neykova, N. Ng, L.
Padovani, V.T. Vasconcelos, N. Yoshida, Behavioral types in programming languages. Found.
Trends Program. Lang. 3(2–3), 95–230 (2016)

5. ANTLR (ANother Tool for Language Recognition). http://www.antlr.org/. Accessed January
2019

6. Apache: Apache MESOS. http://mesos.apache.org/. Accessed January 2019
7. J.C.M. Baeten, M. Bravetti, A ground-complete axiomatisation of finite-state processes in a

generic process algebra. Math. Struct. Comput. Sci. 18(6), 1057–1089 (2008)
8. A. Bergmayr, U. Breitenbücher, N. Ferry, A. Rossini, A. Solberg, M. Wimmer, G. Kappel, F.

Leymann, A systematic review of cloud modeling languages. Assoc. Comput. Mach. Comput.
Surv. 51(1), 22:1–22:38 (2018)

9. F. Boyer, O. Gruber, D. Pous, Robust reconfigurations of component assemblies, in ICSE (IEEE
Computer Society, Piscataway, 2013), pp. 13–22

10. M. Bravetti, Reduction semantics in Markovian process algebra. J. Log. Algebr. Meth.
Program. 96, 41–64 (2018)

11. M. Bravetti, G. Zavattaro, On the expressive power of process interruption and compensation.
Math. Struct. Comput. Sci. 19(3), 565–599 (2009)

12. M. Bravetti, S. Gilmore, C. Guidi, M. Tribastone, Replicating web services for scalability, in
TGC. LNCS, vol. 4912 (Springer, Berlin, 2008), pp. 204–221

13. M. Bravetti, I. Lanese, G. Zavattaro, Contract-driven implementation of choreographies, in
Trustworthy Global Computing, 4th International Symposium, TGC 2008, Barcelona, Spain,
November 3–4, 2008, Revised Selected Papers. Lecture Notes in Computer Science, eds. by
Kaklamanis, C., Nielson, F., vol. 5474 (Springer, Berlin, 2009), pp. 1–18

14. M. Bravetti, M. Carbone, G. Zavattaro, Undecidability of asynchronous session subtyping. Inf.
Comput. 256, 300–320 (2017)

15. M. Bravetti, M. Carbone, G. Zavattaro, On the boundary between decidability and undecid-
ability of asynchronous session subtyping. Theor. Comput. Sci. 722, 19–51 (2018)

16. M. Bravetti, S. Giallorenzo, J. Mauro, I. Talevi, G. Zavattaro, Code repository for the
email processing example. https://github.com/IacopoTalevi/SmartDeploy-ABS-ExampleCode.
Accessed January 2019

17. M. Bravetti, S. Giallorenzo, J. Mauro, I. Talevi, G. Zavattaro, Optimal and Automated
Deployment for Microservices, in FASE (2019)

18. M. Bravetti, S. Giallorenzo, J. Mauro, I. Talevi, G. Zavattaro, Optimal and automated
deployment for microservices (2019). https://arxiv.org/abs/1901.09782. Technical Report

19. A. Brogi, A. Canciani, J. Soldani, Modelling and analysing cloud application management, in
ESOCC. LNCS, vol. 9306 (Springer, Berlin, 2015), pp. 19–33

20. M. Chardet, H. Coullon, D. Pertin, C. Pérez, Madeus: a formal deployment model, in HPCS
(IEEE, Piscataway, 2018), pp. 724–731

21. Chuffed Team: The CP Solver. https://github.com/geoffchu/chuffed. Accessed January 2019
22. F.S. de Boer, M. Bravetti, M.D. Lee, G. Zavattaro, A petri net based modeling of active objects

and futures. Fund. Inform. 159(3), 197–256 (2018)
23. S. de Gouw, J. Mauro, B. Nobakht, G. Zavattaro, Declarative elasticity in ABS, in ESOCC.

LNCS, vol. 9846 (Springer, Berlin, 2016), pp. 118–134
24. R. Di Cosmo, S. Zacchiroli, G. Zavattaro, Towards a formal component model for the cloud,

in SEFM 2012. LNCS, vol. 7504 (2012)

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/autoscaling/
http://www.antlr.org/
http://mesos.apache.org/
https://github.com/IacopoTalevi/SmartDeploy-ABS-ExampleCode
https://arxiv.org/abs/1901.09782
https://github.com/geoffchu/chuffed

208 M. Bravetti et al.

25. R. Di Cosmo, M. Lienhardt, R. Treinen, S. Zacchiroli, J. Zwolakowski, A. Eiche, A. Agahi,
Automated synthesis and deployment of cloud applications, in ASE (2014)

26. R. Di Cosmo, J. Mauro, S. Zacchiroli, G. Zavattaro, Aeolus: a component model for the cloud.
Inf. Comput. 239, 100–121 (2014)

27. R. Di Cosmo, M. Lienhardt, J. Mauro, S. Zacchiroli, G. Zavattaro, J. Zwolakowski, Automatic
application deployment in the cloud: from practice to theory and back (invited paper), in
CONCUR. LIPIcs, vol. 42, (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015), pp.
1–16

28. Docker: Docker Compose Documentation. https://docs.docker.com/compose/. Accessed Jan-
uary 2019

29. Docker: Docker Swarm. https://docs.docker.com/engine/swarm/. Accessed January 2019
30. N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,

Microservices: yesterday, today, and tomorrow, in PAUSE (Springer, Berlin, 2017), pp. 195–
216

31. F. Durán, G. Salaün, Robust and reliable reconfiguration of cloud applications. J. Syst. Softw.
122, 524–537 (2016)

32. I. Feinerer, Efficient large-scale configuration via integer linear programming. AI EDAM 27(1),
37–49 (2013)

33. J. Fischer, R. Majumdar, S. Esmaeilsabzali, Engage: a deployment management system, in:
PLDI (2012)

34. K. Fromm, Thinking Serverless! How New Approaches Address Modern Data Pro-
cessing Needs. https://read.acloud.guru/thinking-serverless-how-new-approaches-address-
modern-data-processing-needs-part-1-af6a158a3af1. Accessed January 2019

35. GECODE: An Open, Free, Efficient Constraint Solving Toolkit. http://www.gecode.org.
Accessed January 2019

36. Google: Optimization Tools. https://developers.google.com/optimization/. Accessed January
2019

37. R. Hat, Ansible. https://www.ansible.com/. Accessed January 2019
38. J.A. Hewson, P. Anderson, A.D. Gordon, A declarative approach to automated configuration,

in LISA (2012)
39. K. Hightower, B.Burns, J. Beda, Kubernetes: Up and Running Dive into the Future of

Infrastructure, 1st edn. (O’Reilly Media, Inc., Sebastopol, 2017)
40. J. Humble, D. Farley, Continuous Delivery: Reliable Software Releases Through Build, Test,

and Deployment Automation (Addison-Wesley Professional, Upper Saddle River, 2010)
41. E.B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen, ABS: a core language for abstract

behavioral specification, in FMCO (2010)
42. L. Kanies, Puppet: Next-generation configuration management. ;login: the USENIX

Magazine 31(1) (2006)
43. J. Mauro, Zephyrus2 code repository. https://bitbucket.org/jacopomauro/zephyrus2
44. J. Mauro, G. Zavattaro, On the complexity of reconfiguration in systems with legacy compo-

nents, in MFCS. LNCS, vol. 9234 (Springer, Berlin, 2015), pp. 382–393
45. D. Merkel, Docker: lightweight Linux containers for consistent development and deployment.

Linux J. 2014(239), 2 (2014)
46. N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, G. Tack, MiniZinc: towards a

standard CP modelling language, in CP (2007), pp. 529–543. http://dl.acm.org/citation.cfm?
id=1771668.1771709

47. Opscode: Chef. https://www.chef.io/chef/. Accessed January 2019
48. Puppet Labs: Marionette Collective. http://docs.puppetlabs.com/mcollective/. Accessed Jan-

uary 2019

https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://read.acloud.guru/thinking-serverless-how-new-approaches-address-modern-data-processing-needs-part-1-af6a158a3af1
https://read.acloud.guru/thinking-serverless-how-new-approaches-address-modern-data-processing-needs-part-1-af6a158a3af1
http://www.gecode.org
https://developers.google.com/optimization/
https://www.ansible.com/
https://bitbucket.org/jacopomauro/zephyrus2
http://dl.acm.org/citation.cfm?id=1771668.1771709
http://dl.acm.org/citation.cfm?id=1771668.1771709
https://www.chef.io/chef/
http://docs.puppetlabs.com/mcollective/

Autonomic Decentralized Microservices:
The Gru Approach and Its Evaluation

Elisabetta Di Nitto, Luca Florio, and Damian A. Tamburri

Abstract Cloud applications are more and more featuring microservices as a
design pattern, using related technologies (containerization, orchestration, contin-
uous deployment, integration, and more) to speed up design, development, and
operation. However, microservices are not bullet-proof: they increase design and
management issues in the cloud adding to the mix all the intrinsic complexities
of highly distributed systems. This addition can render ineffective all centralized
management technologies like Docker or clustering systems like Swarm and
Kubernetes. Conversely, autonomic and decentralized microservices management
is still largely unexplored. We address this problem with Gru, an approach based
on multiagent systems that adds an autonomic adaptation layer for microservice
applications focusing on Docker, the de facto market leader in container technology.
Gru is designed to support fully decentralized microservices management, and
can be integrated with ease in dockerized applications, managing them with
autonomic actions to satisfy application quality requirements. We evaluate Gru
with a concrete case study showing autoscaling dockerized microservices matching
variating and bursty workloads. Evaluation shows encouraging results for Gru
autonomic management.

1 Introduction

The adoption of microservices to design, develop, and operate cloud applications
enables an improved exploitation of cloud computing [25, 30], structuring applica-
tions into a flexible design of small, independent, intercommunicating architecture

E. Di Nitto · L. Florio
Politecnico di Milano, Milan, Italy
e-mail: elisabetta.dinitto@polimi.it; luca.florio@polimi.it

D. A. Tamburri (�)
Technical University of Eindhoven, Eindhoven, Netherlands

The Jheronimus Academy of Data Science, ’s-Hertogenbosch, Netherlands
e-mail: d.a.tamburri@tue.nl

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_9

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_9&domain=pdf
mailto:elisabetta.dinitto@polimi.it
mailto:luca.florio@polimi.it
mailto:d.a.tamburri@tue.nl
https://doi.org/10.1007/978-3-030-31646-4_9

210 E. Di Nitto et al.

elements. In the resulting architecture, every element is a microservice, i.e., a self-
contained service which is totally independent from the others and is available in
its own architectural building block (i.e., a microservice container such as Docker
and managed by technologies such as Docker-Swarm1 or Kubernetes2). On the
one hand, the resulting architecture pattern presents several advantages, making
it more and more popular (e.g., immediate support for continuous integration,
continuous architecting, continuous testing, etc.). For example, most of the leading
IT companies have adopted microservices as the basis for their applications (e.g.,
Netflix is completely based on microservices [27] but so are Groupon, SoundCloud,
and more [15, 28]). On the other hand, microservices are not a “free lunch” [26]:
they make the application more difficult to design and develop. Hundreds, often
thousands, of pieces need to be run and coordinated, thus making management
and service governance even more difficult [2, 29]. To address this gap, we
introduce Gru, an approach that allows autonomic, decentralized, and collaborative
(self-)management of microservice applications. In comparison to technologies
such as Swarm or Kubernetes, Gru reasons locally from within the microservice
and using the sole assumptions that can be made upon containerization technology
(e.g., the APIs existing between container managers and containers). Gru introduces
automations that help handling microservices autonomously, actuating the proper
adaptation or autoscaling actions according to the status of the system. The goal of
autonomic actions is to meet pre-specified requirements such as a specific level of
availability or quality of service [22]. Gru features a totally decentralized approach
based on agents organized according to a peer-to-peer multiagent system (MAS)
[33]; each agent actuates management actions on the basis of partial knowledge
acquired through the interaction with its direct peers; this feature makes Gru well
suited for the management of a large-scale, highly distributed cloud applications,
since no centralized authority of governance is needed. What is more, Gru is
designed to be noninvasive and can be easily integrated into preexisting microser-
vice solutions. In this chapter we present and evaluate the architecture of Gru,
outlining the main algorithms that govern its behavior. We evaluate the approach
using case study research: we considered the video-on-demand domain and prepared
a video-stream processing microservice application running on an OpenStack cloud
computing infrastructure. The current chapter extends our previous work [18],
where a preliminary definition of the Gru framework was presented from an
architectural and conceptual perspective. The extensions we offer in this manuscript
are detailed as follows:

• A working implementation of the Gru approach
• An outline of the operational details and algorithms behind this implementation

1https://docs.docker.com/engine/swarm/.
2https://platform9.com/blog/kubernetes-docker-swarm-compared/.

https://docs.docker.com/engine/swarm/
https://platform9.com/blog/kubernetes-docker-swarm-compared/

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 211

• A validated set of metrics that Gru uses for autonomic decentralized
management—these stand out as a contribution on their own and could be
used in technologies similar to Gru

• An experimental evaluation of Gru, its operational details, and metrics, using a
realistic cloud infrastructure and sample case study application.

We conclude that Gru successfully supports autonomic adaptation dynamics in the
complex and costly context of microservices applications.

Chapter Structure The rest of the chapter is organized as follows. Section 2
provides a short overview of background information on autonomic systems and
Docker. Section 3 gives a global view of Gru, describing architecture and main
features. Then, we show the evaluation of Gru in Sect. 4, while in Sect. 5 we
compare it to relevant works from the state of the art. The chapter concludes with
Sect. 6 where we outline future evolution of our work.

2 Background and Design Motivations

2.1 Microservices Background

Quoting from “microservices.io", microservices are an architectural style structur-
ing an application as a collection of services that are: (1) sufficiently decoupled to
be highly maintainable and testable; (2) loosely coupled from the application glue
logic (e.g., orchestration, monitoring, etc.); (3) independently deployable; and (4)
organized around single business capabilities.

Since the key enabler for microservices is the containerization technology, the
microservice architecture style enables the continuous delivery/deployment of large,
complex applications at a large scale. With the term containerization, we indicate
the practice of operating system (OS) virtualization as opposed to the adoption of
virtual machines (VMs), which is, conversely, hardware virtualization. In the scope
of this work, we focus on Docker as a containerization technology; the choice is
sound since Docker is practically the de facto standard in containerization but this
is merely one of many (up to 40+) possible choices for containerization technology
in practice.

From an organizational perspective, combining microservices and containeriza-
tion enables the microservice architecture style to allow an organization to evolve its
technology and organizational stack in conjunction with its architectural structures.

212 E. Di Nitto et al.

2.2 Autonomic Microservices

In a highly distributed context such as the one introduced by microservices, under-
standing if the application is running properly is not trivial, and, if a problem arises,
it is even more difficult to cope with it tempestively. Autonomic and self-adaptive
infrastructures are being developed to address such situations and the literature
shows a number of different approaches [23]. The limitation of most approaches
is that either they perform simple operations (e.g., drive the autoscaling offered by
many clouds such as AWS) or they require a reimplementation of the system to be
adapted using specifically proposed frameworks and paradigms (see, for instance,
the work by Chen et al. or Rajagopalan et al. [12, 32]). Conversely, Gru aims at
reducing to zero the assumptions made on the contributions by both operators and
developers in the process of driving large-scale microservice solutions.

Gru was designed to be less invasive as possible relying exclusively on the
microservice architectural style and on containerization features offered by infras-
tructure management technologies and languages such as Docker [6, 16, 35]. Docker
containers can share resources and are lightweight: it is possible to run multiple
containers on the same machine starting them in seconds. Services deployed in a
Docker container can be scaled or replaced just starting or stopping the container
running that specific service. This is accomplished through the REST API or the
Command Line Interface (CLI) offered by Docker itself. Thanks to these interfaces,
an external observer can also inspect the state of the container and of the resources
it is using.

Gru tries to offer intelligent adaptation mechanisms that take into account various
aspects of the system to be kept under control. This key design principle makes the
design and development of cloud applications substantially easier: developers can
focus on application microservices behavior, later exploiting Gru to employ and
configure the desired adaptation features.

From the point of view of its users, Gru is an adaptation enabler. It associates
with each Docker Daemon a Gru-Agent that controls it and exploits it to operate
on microservice instances. In the following section we present an overview of the
approach and of its architecture.

3 Gru: Architecture and Behavior

Gru operates in a noninvasive fashion on enhancing microservice-based systems
with autonomic capabilities. Gru focuses on Docker as the de facto market leader in
microservices implementation. The full Gru codebase is freely available on GitHub3

with read-me and installation notes.

3https://github.com/elleFlorio/gru.

https://github.com/elleFlorio/gru

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 213

µ S3µ S1 µ S2

CLUSTER 1

GRU-Enabled Application

NODE n

...

µ S3 µ S2

µ S2 µ S1

Docker Daemon

GRU-Agent_n

NODE 1

µ S3 µ S2

µ S2 µ S1

Docker Daemon

GRU-Agent_1

Local Analytics
Loop

Analytics Data
Exchange

Shared
Repository

Deployed
Onto

Fig. 1 Gru, General overview. Cluster 1 with ‘n’ nodes featuring GRU-agents that: (a) self-
register, self-discover, and share through joint repos; (b) gather local analytics; (c) enact local
adaptation actions

The Gru operational framework (i.e., its operational architecture, policies, and
procedures) features a set of Gru-Agents deployed in clusters of nodes. As an
example, Fig. 1 outlines a simple cloud application controlled by Gru. This simple
application is composed of three microservices running in multiple instances, each
encapsulated in a Docker container, in a cluster of n nodes; each node is running its
own Docker Daemon as well as the corresponding Gru-Agent.

Nodes are the hosts where Gru-Agents and microservices are running. Each node
has a unique name and ID and it is characterized by a base-services property, which
represents the set of microservices that should be running in that specific node—
Gru ensures that at least one instance of these microservices will be running on that
node. At the same time, clusters are set of nodes, with each cluster presenting a
unique name and ID. Each Gru-Agent should register the node where it is running

214 E. Di Nitto et al.

into a cluster in order to be visible to other agents and to exchange information with
them. Nodes can belong to one cluster only. Clusters are initially defined randomly
and self-arranged following the autonomic behavior of each Gru-agent.

Figure 1 also highlights a Shared Repository that has a dual role: (1) it stores
configuration information required by Gru-Agents to interact with the others and
with Docker Daemons and (2) it acts as an agent registry.

Gru-Agents are in charge of controlling the execution of microservices under
their direct responsibility, i.e., those that are running on the same node of the agent.
In doing so, they can decide to enact adaptation policies. For instance, in the case
a node features two instances of microservice μS1 and two of microservice μS2,
and μS1 receives significantly less requests than μS2, then the Gru-Agent for the
node may decide to apply a switch policy to replace one of the two μS1 instances
with one of type μS2. The decisions taken by agents can also depend on the state of
other nodes acquired through their peer agents. In the example above, the agent may
even decide not to apply the switch policy if it knows that another node is available
to get requests for its μS2 service instance. The decision of which policy to apply
is taken by each Gru-Agent based on a specified strategy. This last one essentially
establishes the criteria to be applied to choose the application of a policy rather than
the others. In all cases, the final decision of every Gru-Agent is made according to
two insights: (1) the internal status of the agent node, i.e., the data gathered from
the Docker containers running the microservices of the application in the same host
of the Gru-Agent; (2) the data coming from a randomly selected subset of the total
number of peers.

In the next sections we provide an overview of the way the framework can be
configured, on the internals of the Gru-Agents and on the policies and strategies
that have been implemented in the current version of the Gru framework.

3.1 Gru Configuration

The agent configuration defines all important parameters that govern the way all
Gru-Agents work. It includes the following information: (a) parameters needed to
connect to Docker Daemons—these are laid out once and are general for all agents
at work; (b) Gru-Agent-specific parameters that influence agents internal behavior,
such as the strategy to use for selecting adaptation policies; and (c) communication
parameters that influence the frequency of interaction between peer agents and the
number of agents that interact with each other. It should be noted that the Gru-
Agents configuration is defined by Gru users and is the only feature that necessitates
specific user input. On the one hand, there is no single centralized controller as an
architecture element of the Gru approach. On the other hand, Gru users need only
specify how to arrange nodes in a cluster and how each such cluster should behave
with the specified Gru configuration.

This configuration is loaded by Gru-Agents as soon as they register to the
Repository, together with μService-Descriptors. These are models for the microser-

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 215

vices of the application; these are needed by Gru-Agents to understand how to
properly manage each microservice. μService-Descriptors convey the following
information:

• Service Meta-data. The general meta-data about the service, such as its name,
its type and the associated Docker Image. This last one is a description of what a
Docker container should run and is used to create multiple instances of the same
container. Despite the information about the type of the microservice is not used
at this stage of development, it could be exploited to reason about the composition
of the application, applying specific actions for specific microservice types.

• Docker configuration. This contains all the parameters needed to properly create
a Docker container running the microservice, such as the resources needed
(number of CPUs, amount of memory), any environmental variables, and the
parameters that should be passed to the microservice when it is started.

• Microservice Adaptation Constraints. The set of application-specific con-
straints to impose on the microservice (e.g., the maximum response time of
the service) along with any analytics that should be computed to instrument
adaptation, e.g., CPU usage to be used for adaptation for the purpose of lossless
CPU usage.

More in particular, Gru-Agents interact with the Docker containers in their home
node through the Docker Daemon running in background. Gru-Agents exploit
the API provided by Docker to query the Docker Daemon about the status of the
containers: it is possible to retrieve low-level information about the consumption
of resources (CPU and memory usage, storage, I/O operations, etc.), as well as
the specific properties of each container, such as the number of CPU assigned, the
memory limit, the network interface, etc. Gru-Agents can also read the logs of the
microservices that are exposed by the container, accessing higher-level information.
This information is used to understand the status of a container and the total
consumption of resources of the node, as well as the status of the microservices
inside the container.

3.2 Gru-Agents

Gru-Agents are deployed in each node of the cluster and interact with the Docker
Daemon to manage the containers running the microservices of the application. In
the following we describe how they work.

3.2.1 Gru-Agent Lifecycle

The lifecycle of Gru-Agents is outlined in Fig. 2. Essentially, when a Gru-Agent
starts, it automatically discovers and registers itself to the shared repository with
its ID and address. The record of each agent has a predefined Time-to-Live (TTL),

216 E. Di Nitto et al.

GRU-Agent

RESTful API

Local Storage
Communications

Manager

Autonomic Loop Feature

Monitor PlannerAnalyser Executor

Docker Daemon

GRU-Agent 2

...

GRU-Agent X

PEERS

Shared
Repository

Legenda

...

Directed
Communications

Components

a.

b.

c.

d.

e.

g.

h.

i.

Fig. 2 Internal schematics of a Gru-Agent: (a) docker-daemon to GRU-agent communication for
gathering local monitoring data and executing adaptations (e); (b) a local storage provides for data
retention and forwarding upon REST requests (c and i); (d) an intercom manager retrieves and
forwards data to peers (g) intercommunicating with a shared repo as needed (h)

so if an agent fails and cannot confirm that it is active at every regular poll4 by the
shared repository, it is removed from the repository itself. Gru-Agents are organized
according to the classical MAPE-K feedback-loop design pattern [14], i.e., they are
composed of four main architecture elements: a monitor, an analyzer, a planner,
and an executor, along with an Internal Storage that represents the knowledge base
of each Gru-Agent (see Fig. 2). Other components that complement the agents
architecture are the RESTful API that is used to offer services to other agents,
and the communication manager. This last component is in charge of ensuring that
each agent communicates with the shared repository and the other agents in order
to acquire information useful to support the adaptation process. More specifically,
the communication manager queries the shared repository to get the references to
a number of active peers. Such a number is a configuration parameter of Gru. In
the case it is as large as the size of the system, all agents will acquire a global
knowledge exchanging their information; in the case it is equal to zero, each agent

4Poll intervals are specifically hardcoded in the repository service by can be configured at will.

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 217

will be isolated and will have to take decisions without any knowledge of the
surroundings. Usually, this value is set to 3; that is a reasonable one considering that
microservices triads are emerging as a best practice for human-based management
of microservices according to the 12-factor app development guide for practitioners
[37]. The specific peers a Gru-Agent enters in contact with are determined randomly
by the Shared Repository. Such a randomness guarantees that each agent is aware
of a different subset of the whole system. Once the subset of peers is chosen, the
Communication Manager periodically polls the peers getting the necessary data
through the REST APIs, storing it in the Internal Storage. Such data includes:
(a) the information on the CPU and memory usage—these are used by Gru for
standard adaptation and control; (b) the value of any user-specific metric defined
when the framework is configured; (c) last chosen policy, i.e., the action that Gru
undertook to control and adapt microservice. Gru currently supports four policies,
namely, “scale-in", “scale-out", “switch, and “no-action”; these are all computed
locally to each microservice (more details on policies in Sect. 3.3). These data
are stored in the Internal Storage as cluster data. Cluster data represents a partial
view, i.e., as previously explained, limited by the number of active peers selected
for neighborhood size, where 3 is the default number. This partial view is less
computationally expensive and equally effective, according to our experimentation.
Consequently, this feature reflects a powerful benefit behind our research solution.

In summary, the use of customizable partial views over the entire microservice
application allows Gru and Gru-agents to make locally informed decisions which
are still effective.

3.2.2 Gru: MAPE-K Autonomic Adaptation

Gru-Agents come with built-in monitoring facilities that gather and report the
necessary low-level analytics needed to compute the necessary adaptation metrics
and, ultimately, adopt opportunistic adaptation policies based on measured data. The
Monitor component interacts with the local Docker Daemon through its standard
API to get information about the status of the controlled containers: it is possible
to retrieve low-level information about the consumption of resources (CPU and
memory usage, storage, I/O operations, etc.), as well as the specific properties
of each container, such as the number of CPU assigned, the memory limit, the
network interface, etc. Gru-agents can also read the logs of the microservices that
are exposed by the container, accessing higher-level information. This information
is used to understand the status of a container and the total consumption of resources
of the node, as well as the status of the microservices inside the container

The monitor presents two major components: (1) a “live” component that is
constantly running and monitoring the containers—this component is entrusted
with eliciting the necessary metrics to evaluate adaptation policies; (2) a “passive"
component, activated at every iteration of the feedback loop—this component
formats, packages, and sends the data to the analyzer component for further
processing.

218 E. Di Nitto et al.

In turn, the analyzer component receives the data coming from the monitors’
passive components of neighboring peers and elaborates them to obtain percentage-
scores that dictate to the planner component the actions to be taken. The analytics
currently supported by Gru focus on all CPU- and memory-specific metrics
(e.g., usage, saturation, leftover quantity, etc.), as well as additional user-defined
analytics—more details on analytics and how they are used to decide how to adapt
microservices are available in Sect. 3.3.

The planner component actuates adaptation policies based on the results of the
analysis and on the strategy it is currently configured to address—for further details
on strategies and their relation to strategies in the context of Gru, see Sects. 3.3
and 3.4.

Finally, the executor component actuates the appropriate actions on the target
microservices. Before executing an action, the executor chooses the resources to
allocate, automatically creating the resource’s configuration file if needed, e.g., a
Docker config for a container to be mounted up by the Docker Daemon. It is critical
to remember that *all actions are executed locally*, on the node that runs the Gru-
Agent.

On one hand, the executor listens to its peers, receiving their current adaptation
information and, based on that input, the executor can trigger adaptation actions
in a reactive way, without waiting for its typical feedback loop iteration to be
executed. On the other hand, this feature is experimental, and is currently used
only to start and stop specific microservices on the node manually from remote.
Further research could address the investigation, design, and implementation of fault
tolerance mechanisms specific to the above, more advanced and reactive container
management strategy. This approach could be valuable in cases where a high-
availability is needed—in those instances, managers may require that, at the precise
instant in which a container running a specific microservice fails, an autonomic
management instrument such as Gru start a new microservice immediately, rather
than wait for the feedback-loop latency time.

3.3 Policies

Policies are rules that trigger some actions that are actuated on the containers, while
strategies are algorithms that choose a policy from among a set of weighted ones.

Policies have a name that identifies the policy, a list of actions that need to be
actuated to satisfy the policy, a target service for the actions and a weight. The
weight is a value between 0 and 1 that is computed according to an equation
that is different for each policy. Policies can be enabled or disabled in the policy
configuration. The planner creates a weighted policy for every microservice to
manage, resulting in a list of PxM weighted policies, where P is the number of
enabled policies and M is the number of microservices to manage. Currently there
are four implemented policies to be enacted by Gru-Agents: the scale-in policy,
the scale-out policy, the switch policy, and the no-action policy. Beyond this set of

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 219

policies, Gru was also designed to welcome the usage of user-defined policies and
connected analytics but this facility is made available as is and was never tested nor
evaluated. Here follows an outline of the policies currently implemented in Gru.

3.3.1 Gru: Scale-In

The scale-in policy triggers the stop and remove actions that stop a container
running the target microservice and remove it from the node freeing the resources,
respectively. The weight of the policy is an average defined according to Eq. (1):

wpolicy,ms =

nanalytic∑
i=0

wanalytic,i

nanalytic

(1)

where nanalytic is the number of the analytics the policy should consider in the
computation of its weight, and wanalytic,i is the weight of every analytic that is
computed according to Eq. (2):

wanalytic = 1 − min(vanalytic, thrscale−in)

thrscale−in

(2)

where vanalytic is the value of the analytic, and thrscale−in is the threshold
for scale-in defined in the policy configuration. To savor the resulting average,
imagine that a Gru is set to weigh the scale-in policy using two metrics only,
“microservice-lifetime-in-s” and “average-CPU-usage.” For both metrics, Gru first
evaluates Eq. (2): Gru elaborates the minimum value between the current measure
and compares that measurement to a predefined threshold (which depends on the
specific microservice’s service-level agreement), returning that minimum, dividing
it by the specified threshold (i.e., a ratio), and evaluating the complement to 1 of
this number. The sum of both results divided by 2 (i.e., the number of metrics
currently considered) constitutes the Gru policy weight. For example, in the same
example, imagine that the exact values in a certain moment X are as follows:
[microserviceLif etimeInSec = 41, averageCpcuUsage = 67, thresholdCPU =
75, thresholdLif etime = 35]; Gru performs two applications of Eq. (2) to obtain
min (67.75) and min (41.35). Subsequently, Gru divides and complements these
minimums, 1-67/75 and 1-35/35, obtaining “0,107” for metrics 1 and “0” for the
second metric, which exceeded the threshold in this loop. At this point Gru will
average the resulting values for a total weight of the scale-in policy of “0,053.”

In the case that a microservice has only one running instance and is in the base-
services set of the node, the scale-in policy is not evaluated and its weight is set
to 0.

Using Eqs. (1) and (2), we see the weight of the policy is proportional to how
much load of the microservice is below a user-defined threshold: The analytics used
to compute the weight of this policy are related to the load that the microservice is
facing (e.g., the response time of the service, the resource consumption, etc.).

220 E. Di Nitto et al.

3.3.2 Gru: Scale-Out

The scale-out policy triggers the start action, which starts a new instance of a
container running the target microservice. The start action starts a container if it
is in a stop status, or creates and starts a new one otherwise. The weight of the
scale-out policy in computed according to the same equation of the scale-in (see
Eq. (1)). However, the wanalytic,i value is computed as follows:

Equation (3)

wanalytic = 1 − max(vanalytic, thrscale−out) − thranalytic

1 − thrscale−out

(3)

where thrscale−out is the threshold for scale-out defined in the policy configuration.
In case there are not enough resources (CPU and memory-space, defined as part of
Gru configuration) to start a new instance of a microservice, the scale-out policy is
not evaluated and its weight is set to 0.

This policy is the dual equivalent of the scale-in one, so Eqs. (1) and (3) have
been chosen to compute a weight that is proportional to how much a service is
overloaded, taking as a reference a threshold defined by the user. For this reason,
the analytics involved in the computation of the weight of this policy should be
related to the load that the microservice is facing, as in the scale-in policy.

3.3.3 Gru: Switch

The switch policy allows to switch a running microservice with another one that
is not running in a single iteration. This policy triggers first the stop and remove
actions on a running container of a microservice, then triggers the Start action on a
container of a different microservice. This policy is actuated only if the node does
not have the resources needed to start a new microservice, but needs to stop another
one in order to obtain such resources. The switch policy is computed on pairs of
microservices, in order to understand if one service should be replaced by another.

The equations used to compute the weight of the switch policy have been studied
to express the difference on the load that two microservices are facing: the weight
of this policy computed between two microservices is proportional to a maximum
distance that the user imposes between the load of the two microservices.

First, microservices are divided into running ones and inactive ones, then a switch
policy is created for each pair running-inactive, assigning a weight. The weight of
this policy is computed according to the following equation:

wpolicy,pair = Max(0,

nanalytic∑
i=0

wanalytic,i

nanalytic

) (4)

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 221

where wanalytic,i is computed according to Eq. (5)

wanalytic = Min(1,
ratioanalytic

ratiomax

) (5)

The value ratiomax is the maximum ratio that can occur between the value of
two analytics and it is defined in the policy configuration. Equation (6) is used to
compute the ratio between two metrics, i.e., ratioanalytic:

ratioanalytic = vanalytic,inactive − vanalytic,running (6)

where vanalytic,inactive and vanalytic,running are the values of the same analytic for
the inactive and the running microservices, respectively. Obviously, the computation
of the switch policy is evaluated only between microservices that share the same
analytics.

3.3.4 Gru: No-Action

The no-action policy simply does not trigger any action. It is weighted according to
Eq. (7).

wnoaction = 1 − max(policiesWeights) (7)

The value policiesWeights is the set of weights of all the other computed policies,
so the weight wnoaction is computed as the difference between one and the maximum
value computed for the other policies.

The no-action policy should be actuated as an alternative to other policies when
they are not required. Using Eq. (7) we can assign to this policy a weight that
depends on the ones computed for the other policies, and that expresses that the
system does not require any adaptation action.

3.4 Gru: Operational Strategies

Once a weight is assigned to each policy for each service, policies are analyzed
according to a specific strategy. Strategies are algorithms used to choose the right
policy to actuate among the list of the available ones taking into account their
weight. The relation between strategies and policies is analogous to the relation
between strategic decisions at the high level and tactical decisions at the lower
level of abstraction. Gru allows the customization of both levels, but in the scope
of this chapter, we concentrate on the single strategy we implemented in the current
version, namely, a probabilistic strategy, which relies on a probabilistic computation

222 E. Di Nitto et al.

Algorithm 1 Probabilistic strategy algorithm
1: policies ←− Shuff le(policies)

2: totalWeight ←− ∑
p∈policies p.weight

3: threshold ←− rand(0, 1)

4: delta ←− 1
5: index ←− 0
6: for p ∈ policies do
7: if p.weight

totalWeight
> threshold then

8: return p

9: else
10: if (threshold − p.weight

totalWeight
) < delta then

11: delta ←− threshold − p.weight
totalWeight

12: index ←− indexp

13: end if
14: end if
15: end for
16: return policies[index]

to choose the policy to be actuated, based on local and peer knowledge over the
currently active context and constraints.

Using a probabilistic approach, the Planner can avoid local optima in the selec-
tion of the policy to actuate, and concentrate on generating an optimal configuration
which is valid in the currently observable circumstances. Algorithm 1 implements
the probabilistic strategy in Gru.

The strategy acquires as input an array of weighted policies policies and shuffles
it. It computes the totalWeight as the sum of the weights of all the policies and
uses this in the next steps to normalize all policy weights. Moreover, it chooses
randomly a threshold. It then checks for each policy in policies if its normalized
weight is greater than the threshold. If this is the case, it then selects that specific
policy for execution. Otherwise it looks for the remaining policies in the array. In
the search, to address the case in which none of the policy normalized weights
passes the threshold, it keeps track of the difference between such weights and the
threshold, storing the index of the policy that is closest to the threshold in index.
Thus structured, the adaptation strategy is always eventually able to select the policy
with a weight closest to the threshold. The probabilistic approach was tested in
previous work, proving its effectiveness in a scenario with a high (>25) number of
nodes [7].

The policies and the strategies discussed previously are currently the only ones
available to Gru and hard-coded inside the prototype. This is a limitation of our
research solution. We plan to expand the available policies and strategies allowing
the user to define its own equations and algorithms using specific configuration files
that will be read by Gru-Agents.

Once the policy has been chosen, the Planner component creates a plan that
contains the policy to execute and the target service. The plan is then sent to the
Executor component.

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 223

4 Experimental Evaluation

The objectives of our evaluation are as follows:

• OBJ1: Show that the system provides the requested services limiting the
violations of the maximum response time defined by the user

• OBJ2: Show that the system self-adapts according to the workload while limiting
under- or over-provisioning of resources

• OBJ3: Evaluate the use of a dynamically computed adaptation loop times
• OBJ4: Evaluate the probabilistic strategy used for the decision-making process

We evaluated Gru by controlling the adaptation of an application featuring video
streaming and manipulation. We performed two experiments: (experimentation I—
resilience) evaluate the capability of Gru to adapt the application to a sudden
increase in the workload with either a fixed or dynamic adaptation loop time
interval; (experimentation II—reality-check) evaluate if Gru is able to manage the
application facing a realistic workload.

Table 1 provides a summary of the objectives of the evaluation with the
contributions we describe in this section.

4.1 Case Study Application: Online Video-on-Demand

Video-on-demand cloud applications account for over 70% of the total internet
traffic in 2016, with Netflix traffic accounting for more than 1/3 of that traffic.
Cisco Systems predict that by 2020 82% of the world’s internet traffic will be
video streaming [13]. Starting from these considerations, we developed a case study
demonstrator that simulates a video-on-demand cloud application. Its usage is

Table 1 Evaluation objectives and analyses

Objective Description Evaluation analysis

OBJ1 Show that the system provides the
requested services limiting the
violations of the maximum response
time defined by the user

Analysis of the response time of the
application with two different
workloads

OBJ2 Show that the system self-adapts
according to the workload and limiting
under- or over-provisioning of
resources

Analysis of the active instances of the
microservices with two different
workloads

OBJ3 Validate the use of a dynamically
computed adaptation loop time

Comparison between the fixed time
adaptation loop and the dynamic
computed one

OBJ4 Validate the probabilistic strategy used
for the decision-making process

Comparison between the probabilistic
selection strategy and a random
selection strategy used as baseline

224 E. Di Nitto et al.

Fig. 3 Execution flow of video provisioner case study: all probabilities in the figure are conditional
probabilities subject to the execution flow of the algorithm

simple: users request a video and can operate modifications on it (e.g., scaling the
video) or add subtitles. The application is composed of 11 microservices, each of
them executing a specific task part of the above scenario. (e.g., video request, video
trimming, etc.)

The application starts with the videoprovisioner microservice,
which receives the requests and manages the session for the user. The
application first checks if the video is available locally, otherwise downloads
it (checkiflocallyavailable, downloadvideo). Once the video is
available, the application can operate modifications on it according to the
user’s choices (from scalevideo to bitdepthreduction). The last step
are the operations on subtitles (from checkifsubtitlesavailable to
applysubtitle), that are executed if requested by the user. Once the video
is ready, the user is notified and can download it from the application.

The execution flow of the application is depicted in Fig. 3. In order to simulate
the possible choices of the user, each microservice has a specific probability (P) to
send a message to another one, represented as the value next to each arrow.

From a technical perspective, all microservices in our sample application are
implemented using the Go programming language and deployed in a Docker con-
tainer. The execution of a request is simulated keeping busy the CPU for an amount
of time (job-time) that is computed according to an exponential distribution with λ

representing the expected demand (D) of the microservice (see Table 2). The value
of the λ has been chosen taking into account the type of microservice to simulate

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 225

Table 2 Microservices parameters

Service name D P MRT MRPM

applySubtitles 600 0.2 1200 110

bitDepthReduction 1300 1.0 3900 50

checkIfAvailable 1200 1.0 2400 55

checkIfSubtitlesAvailable 700 0.2 2100 95

checkIfSubtitlesExists 1500 0.95 3000 45

downloadVideo 1500 0.95 4500 45

getDefaultSubtitle 1200 0.9 2400 55

scaleVideo 28,500 1.0 85,500 3

transcodeVideo 900 1.0 1800 75

translateSubtitleToLanguage 500 0.3 1500 135

videoProvisioner 500 1.0 1000 135

Application 34,100 – 102,302 –

D is the demand of a microservice, while P is the probability to be executed; MRPM stands for
the mean requests per minute that the service receives while MRT stands for the mean response
time accounted for the service

and referencing similar online video manipulation applications such as YouTube.5

The only exception is the scalevideo microservice, whose demand is derived from
statistical data on video scaling is inherited from previous research [31]. All requests
are processed in series to keep the application relatively simple but realistic.

Following the above design principle, each microservice has a destination, that
is, the next microservice in the execution flow, along with a probability to send a
message to that destination. With this technical device we can randomly simulate
the possible choices made by the user about the operations to actuate on the
requested video. In case more than one instance of the destination is available, the
microservice balances the load among the available instances using a round-robin
policy.

The requests coming to the system are registered with a unique ID in an external
key-value store. This enables a microservice B to respond to any active instances
of any microservice A who may have sent a request to B, bringing more flexibility
to the application where instances are turned on and off dynamically.

The microservices of the application log the job time of every request and the
number of requests that they received every minute (RPM). This information is
exploited by Gru to manage the application. The microservices communicate with
an external monitoring service sending statistical data about their job time, the RPM.
The microservice videoprovisioner also sends the response time corresponding to
every request to the monitoring service. The monitoring system is used only for
debugging purposes and to check the status of the system during the experiments.

5http://youtube.com/.

http://youtube.com/

226 E. Di Nitto et al.

4.2 Cluster Configuration and Experimental Setup

The cluster we used for our experiments was set up on PoliCloud,6 a private cloud
infrastructure at Politecnico di Milano. The cluster in question consists of 29 nodes,
each of which is to be considered a Gru-node, in the scope of this evaluation and all
of which are therefore running Gru-Agents along with their respective microservice
targets. Concluding the aforementioned set, one additional node (main-node) is used
for the deployment of the external repository and our own experimental monitoring
and observation infrastructure.

Every Gru-node has 2 CPUs and 1 GB of memory, while the main-node is
powered by 4 CPUs and 8 GB of memory. Despite this experimental configuration,
it should be noted that Gru is able to handle the dynamic creation of nodes that may
join or leave the cluster; for the sake of simplicity all the nodes are preallocated here,
for evaluation purposes. We deployed one active instance of every microservice
belonging to the application in one different server, except for the scalevideo
microservice that has five active instances by default, following guidelines from
previous research and practice [31]. Gru-Agents run inside a Docker container with
limited resource access—i.e., CPU-shares set to 256 and maximum memory set to
512 Mb—this reduces their impact on the available resources for the microservices.

The main-node features an instance of the etcd server7 as the external repository
used by Gru, along with Apache Jmeter8 for traffic generation and InfluxDB9

(a time-series data storage) to store the statistical data about the status of the
system. Finally, the Grafana web service was used for real-time visualization of
the InfluxDB data.

4.3 Gru Experimental Configuration

Agent Configuration To account for best, worst, and average usage scenarios,
the time interval for the feedback loop of every agent was set to 120 and 90 s
for experimentations with a fixed adaptation time interval, while the interval was
computed dynamically for the experimentation with the dynamic adaptation time
interval.

The maximum number of peers to communicate with has been set to 5. This
value has been chosen according to the number of nodes in the cluster to avoid the
communication with all the peers and to create a useful partial view of the system.

The strategy used in the cluster is probabilistic, as described in Sect. 3.3.

6http://policloud.polimi.it.
7https://github.com/coreos/etcd.
8http://jmeter.apache.org.
9https://influxdata.com/time-series-platform/influxdb/.

http://policloud.polimi.it
https://github.com/coreos/etcd
http://jmeter.apache.org
https://influxdata.com/time-series-platform/influxdb/

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 227

μService-Descriptors μService-Descriptors are created for every microservice
composing the application. Every μService-Descriptor has the information about
the microservice and the parameters needed to create a new instance of the specific
microservice.

The analytics to compute for every service are the response-time-ratio and the
utilization (described in the following paragraph).

The constraints imposed on every service are the maximum response time (MRT)
and the maximum number of requests per minute (MRPM) the microservice can
handle. The MRT has been defined as two to three times the demand of the
microservice, while the MRPM value has been chosen according to the number
of requests the service can satisfy in a minute considering the demand plus 10%
of that value. The MRT and MRPM values for every microservices can be seen in
Table 2 The demand of the entire application is obtained as the sum of the demand
of each microservice multiplied by its probability of execution (Eq. (8)), while the
MRT of the application is computed as three times its demand:

Dapp =
∑

Dms ∗ P (8)

Analytics The analytics we defined are the response-time ratio and the utilization.
The response-time ratio is defined as the ratio between the average job time of
a microservice and its MRT defined in the μService-Descriptor, so it is computed
with Eq. (9), where jobtimeavg is the average job time monitored for all the known
instances of the microservice.

valuertr = jobtimeavg

MRT
(9)

The utilization is computed as the ratio between the average number of requests
arrived at the microservice in a minute and the MRPM defined in the μService-
Descriptor. Equation (10) is used for the computation of the value of the utilization,
where rpmavg is the average requests per minute for all the known instances of the
microservice.

valueutil = rpmavg

MRPM
(10)

Policies The three available policies, i.e., scale-in, scale-out, and switch, are all
enabled. The scale-in policy has a threshold of 0.35 and takes into consideration
only utilization for the computation of the weight. This choice is based on the
consideration that the demand of the microservices has been manually set and
the MRT is imposed according to this value as two to three times the demand.
This would keep the response-time ratio over the scale-in threshold, reducing the
probability of scale-in even if the microservices is underused.

228 E. Di Nitto et al.

The scale-out policy has a threshold of 1 and the analytics used for the
computation of the weight are both the utilization and the response-time ratio.

The switch policy has a delta of 0.6 and uses both utilization and response-time
ratio analytics for weight computation.

The values chosen for the above adaptation loops and thresholds are consistent
with industrial standards [1].

4.3.1 Experimentation I: Reactive Gru

Our objective is to verify whether Gru is able to adapt the application to a sudden
increase in the workload. The traffic sent to the application is depicted in Fig. 4a.
We start sending to the application 0.1 requests per second (RPS), then, after a time
interval, the RPS are doubled; this happens thrice, reaching a maximum of 0.8 RPS.
After every step, the RPS are kept stable for a time interval in order to let the system
stabilize, the load last for 3 h and 45 min.

4.3.2 Experimentation II: Bimodal Gru

The second experimentation is based on a workload extracted from the data obtained
monitoring the traffic of a real website for several days. The original workload was
shrunk from 48 to 6 h and the number of requests was scaled to peak at 0.8 RPS. The
scaling in the number of RPS has been done to adapt the workload to the resources
available for the experimentation. The resulting workload presents a bimodal shape
and is depicted in Fig. 4b. Our objective is to understand whether Gru is able to scale
the number of active instances of the microservices in order to follow the traffic
shape and, at the same time, to keep the response time of the application under its
intended MRP.

4.4 Fixed Adaptation Time Interval Tests

The time interval for the feedback loop of every agent is set to 120 s and then any
substantial variations are controlled with a setting of 90 s. These values were chosen
taking into account the job-time and the constraints about the Maximum Response
Time of the microservices composing the application. To elicit experimental data,
we collected the results of 10 runs, representing and evaluating their statistical
average.

First, we present the results obtained with experimentation I (see Fig. 5). The
response time of the application (averaged every 5 min) is depicted in Fig. 5a. When
there is a step in the RPS, the response time goes over the MRP but quickly returns
in the desired range of values. This is the effect of the adaptation that scales the
number of instances to handle RPS changes (OBJ1).

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 229

Fig. 4 Requests sent to the application. (a) Workload reactive. (b) Workload bimodal

The number of active instances of the microservices is depicted in Fig. 5b.
After every step in the RPS, the number of active instances of the microservices
is incremented to handle the new workload. There is an initial overscaling after
every step that is due to the fact that the requests in the queue should be completed,
so the response time of the microservice is over the threshold for an adaptation
period. Once the adaptation is finished, the number of instances are decreased
and it is stabilized in order to keep the utilization in the correct range. The

230 E. Di Nitto et al.

Fig. 5 Experimentation I: results using a 120 s adaptation time interval. (a) Response time of the
application. (b) Active instances over time

scalevideo microservice is the main target of scaling out, being the most
demanding microservice of the application. Other services are scaled only for few
periods to handle a sudden increase in their response time (OBJ2).

The results obtained with experimentation II are depicted in Fig. 6 The response
time of the application, depicted in Fig. 6a, show that Gru can adapt effectively the
application to the workload, ensuring only a few violations in the MRT (OBJ1).

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 231

Fig. 6 Experimentation II: results using a 120 s adaptation time interval. (a) Response time of the
application. (b) Active instances over time

The number of active instances for every microservice is depicted in Fig. 6b. The
application is adapted by Gru scaling the microservices to follow the traffic shape
(OBJ2). Since the system is reactive, there is an adaptation time needed by Gru to
understand the change in the workload and to actuate the needed adaptation actions.

Resource Consumption The CPU usage of the microservices and the cluster is
depicted in Fig. 7 for both our experimentations. The charts clearly show that
CPU usage of the microservices remains constant for the entire duration of the

232 E. Di Nitto et al.

Fig. 7 CPU usage of the microservices. (a) Reactive CPU usage. (b) Bimodal CPU usage

experimentations, without it being affected by the increase or decrease in the number
of active instances (OBJ2) managed by Gru.

However, the charts show that the cluster is underused in some time slots. This
is due to the design of the application itself: the scalevideo microservice has a
demand that is several times higher than the other services. The consequence of
this higher demand is that the workload is created taking into consideration mainly
that microservice, while the others result underused. The use of a system based on

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 233

affinity between microservices may lead to a better usage of the resources of a node,
favoring the scaling out of microservices on the same Node that can better use all
of its resources. This can be implemented as a future Gru extension, exploiting
the information about the type of the microservices contained in the μService-
Descriptors.

Design of Analytics The design of the analytics of the system is fundamental
to obtain an effective adaptation. The values of the analytics used during the
evaluation—i.e., Response Time Ratio and Utilization—are depicted in Figs. 8
and 9.

The response-time ratio follows the variation in the performance of the applica-
tion and can trigger the scaling of the system to adapt to an increase in the workload
for every microservice. We conclude that this analytic represents a good choice for
the adaptation of the application under study. The Utilization analytic is effective
with the scaleVideo microservice, but other microservices presents very low
values for the entire duration of both the experimentations. This is again due to the
considerable difference between the demand of the scaleVideo and one of the other
microservices composing the application.

Controlling Adaptation-Loop Times: An Alternative 90 s Setting Our objective
is to understand how the variation of the time interval for the adaptation loop can
influence the behavior of the system. Figures 10 and 11 show the results with a time
interval for the adaptation loop set to 90 s instead of 120 s. The charts represent the
mean of five runs.

We can see that the system can respond quickly to the changes in the workload,
scaling the instances faster to follow the traffic coming to the application. This
generally also improves the response time of the application. The drawback is the
introduction of system instability, which does not ensure to keep the response time
under the defined threshold when the traffic stabilizes after an adaptation step.

This result highlights the importance of the time interval for the adaptation loop.
To evaluate this importance in action and understand its evolution we studied sets
whereby adaptation time interval values are generated dynamically.

4.5 Dynamic Adaptation Time Interval Tests

To test for time-interval dynamicity and its efficiency, we implemented an algorithm
to set dynamically the time interval of the autonomic loop, based on information
available to the microservices running in the Gru-Agent node (see Algorithm 2).

The algorithm iterates over all the running microservices on the node
(servicesrun), and stores in the variable tloop the maximum response time MRT of
the current service s, only if it is bigger than the previous one. In this way, at the end
of the iteration, tloop is set to the maximum MRT value among the microservices

234 E. Di Nitto et al.

Fig. 8 Experimentation I: analytics values. (a) Response-time ratio. (b) Utilization

running in the node. The algorithm is triggered every time a running microservice
is stopped, or a new one is started.

As a result, each Gru-agent has its own adaptation loop time interval, according
to the microservices currently running in its node—this value is inherent to that node
and independent from the other agents in all ways. We chose to set it dynamically
to the highest MRT to create a time window suitable to collect the data needed to
understand the state of the slowest microservice running in the node.

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 235

Fig. 9 Experimentation II: analytics values. (a) Response-time ratio. (b) Utilization

We executed five experimentations for each workload, presenting the mean of the
results (OBJ3). The response time of the application is greatly improved compared
to the system using a fixed time autonomic loop (both 120 and 90 s), as shown in
Figs. 12a and 13a. The system can respond quickly to the spikes in the workload,
both in the reactive (Fig. 12a) and bimodal (Fig. 13a) experimentations, and is able
to keep it under the MRT of the application when the workload is stable. The use
of a dynamic time interval lets the system avoid the over-provisioning of resources,
starting the amount of microservices best suited to handle the current workload (see

236 E. Di Nitto et al.

Fig. 10 Experimentation I: results using a 90 s adaptation time interval. (a) Response time of the
application. (b) Active instances over time

Figs. 12b and 13b). This is evident especially with the reactive workload, as depicted
in Fig. 12b, where the over-provisioning is avoided even when there are spikes in
the workload. The dynamic approach to the autonomic loop time interval proved to
bring advantages compared to the fixed one. The response time is improved, as well
as the usage of resources. This emphasizes the importance of the algorithm used to
set it, so it will require a deeper study and new techniques to tune it the best way.

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 237

Fig. 11 Experimentation II: results using a 90 s adaptation time interval. (a) Response time of the
application. (b) Active instances over time

238 E. Di Nitto et al.

Algorithm 2 Dynamic time loop algorithm
1: tloop ←− 0
2: for s ∈ servicesrun do
3: if s.MRT > tloop then
4: tloop ←− s.MRT

5: end if
6: end for
7: return tloop

4.6 Controlling Policy Selection: Experimenting
with a Random Null Model

Up to this point, we reported on our experimentation of Gru using a probabilistic
policy selection. We now use these reported experimental results as a baseline to
evaluate the effectiveness against random null-model approach (OBJ4).

Gru settings are the same we illustrated in Sect. 4.3, and the adaptation loop time
interval is again set to 120 s. However, the selection of the policy to execute at every
iteration of the adaptation loop is done randomly, that is, without taking into account
the weight of the policies and considering only policies that are applicable given the
context information available. In particular:

• For the scale-in policy, we discard the adaptation actions that would violate
constraints on the services of the node.

• For the scale-out policy, we discard the adaptation actions related to services that
have not enough resources to be started.

• For the swap policy, we discard actions that would violate constraints on the
services of the node, the actions related to services that have not enough resources
to be started, and the actions related to services that are not idempotent (i.e.,
mutually equivalent) and cannot be substituted.

The response time of the application using the policy selection schema outlined
above is depicted in Figs. 14a and 15a, while the active instances during time are
depicted in Figs. 14b and 15b.

Services are scaled without following the changes in the workload, and the
system cannot reach a stable state. As a consequence, the response time quickly
goes over the maximum one imposed as a constraint. We can conclude that the
random selection of a valid policy cannot guarantee the constraints imposed on the
application, and the probabilistic approach with which we originally experimented
outperforms a random null-model counterpart.

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 239

Fig. 12 Experimentation I: results using a dynamic adaptation time interval. (a) Response time of
the application. (b) Active instances over time

4.7 Discussion and Experimental Limitations

The results of the experimentations show that Gru can successfully manage
autonomically and in a fully distributed fashion any application developed using
microservices and deployed in Docker containers. Gru can make that application

240 E. Di Nitto et al.

Fig. 13 Experimentation II: results using a dynamic adaptation time interval. (a) Response time
of the application. (b) Active instances over time

autonomic though the interaction with the containers, actuating autonomic actions
on the basis of a partial knowledge to adapt the application to the variation of
the environment where it is running. The autonomic actions are still limited to the
scaling of the microservices; however, this is enough to ensure that the application
is adapted to the changing workload in order to respect the constraints imposed by

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 241

Fig. 14 Experimentation I: results using random policy selection. (a) Response time of the
application. (b) Active instances over time

the user (i.e., the MRT). The results show also that even if the application is not
monitored by Gru in its totality, it is sufficient to monitor and respect the constraints
imposed on the single microservices to obtain the effective adaptation of the entire
application.

242 E. Di Nitto et al.

Fig. 15 Experimentation II: results using random policy selection. (a) Response time of the
application. (b) Active instances over time

Despite the good results obtained in the experimentations, we discuss threats to
validity for solution and its current evaluation—these can be improved in future
work.

Adaptation Reactiveness Gru is by design a reactive system that actuates auto-
nomic adaptation actions when certain conditions are met. The results of our
experimentations show that this can be enough to adapt the application; however,
the use of a proactive system could lead to even better results. This could be

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 243

implemented as a component between the analyzer and the planner, that exploits
a Machine Learning algorithm based on the partial view of the system build by the
Analyzer to predict the adaptation needed.

Autonomic Capability Gru implements only policies that involve the scaling of
the containers running the microservices. This is enough to adapt the application
to variations in the workload. However, the implementation of new policies based
on different actions can lead to more interesting and sophisticated autonomic
capabilities, such as the migration or reconfiguration of microservices. The policies
and strategies creation could be left to the user, who can customize the autonomic
actions and the decision-making process according to their needs. The purpose of
our experimentations was to show the exercise of Gru in action using an application
which is not explicitly designed to be autonomic, so the interaction between Gru and
the application is transparent and happens exploiting the containers. The elaboration
of a design pattern consistent with Gru or the experimentation of an application
that is designed to be integrated with Gru, maybe exposing in every microservice
an endpoint to receive some commands by Gru itself, can further improve the
autonomic capabilities of our research solution.

5 Related Work

The idea to use a multiagent systemic approach like Gru for self-adaptation is not
novel per se, and has been already described thoroughly in the literature [36] with
limited experimentation.

On the one hand, the concept of autoscaling for web applications deployed
in containers was previously addressed by Baresi et al. [3]. Here, the traditional
MAPE loop is enriched with a new planner that consists of a discrete-time feedback
controller. The proposed self-adaptive framework is applied to multitier cloud-based
web applications, managing virtual machines and containers to provide a better
granularity in the resource management of the application. This lets the system
enable a coordinated infrastructure and platform adaptation. The self-adaptive
framework has been evaluated with two different applications deployed in the
Amazon Web Services cloud infrastructure, showing the improvement in the usage
of resources using containers and in comparison with the autoscaling mechanism
provided by Amazon itself. However, the evaluation has been done using a very
limited resource pool, i.e., 10 VMs with 1 core in one case and 1 VM with 8 cores in
the other one, so it does not represent a realistic setting for large-scale microservices
applications. More advanced results along the same path concern the extensibility
of the approach to TOSCA-based applications and workflows [5] or following a
control-theoretical and container-based approach [4].

On the other hand, architectures for self-managing microservices have been
proposed previously in order to enable the scalable and resilient self-management

244 E. Di Nitto et al.

of microservices [34]. The authors propose a distributed architecture based on
self-managing atomic services and on the election of a cluster leader that takes
the decisions and actuates the actions. The management logic is present in each
service, so if the leader fails, another one can be elected to manage the other
nodes. The system is composed of two layers: the local cluster that contains the
microservices and one leader, and a composition cluster composed of all the leaders
for endpoint discovery across microservices and for leader election. This solution
is totally different from the one we propose: the management logic is inside the
microservices (internal approach), while we propose a totally external approach,
and the system presents a hierarchical structure, while we adopt a fully decentralized
one. Moreover, in [34] there is no experimental evaluation of the proposed approach,
which is defined purely theoretically.

Similar critiques arise for application frameworks such as App-Bisect. This latter
option defines a self-healing mechanism and policy of cloud applications based
on the typical microservices architecture pattern adopted in large-scale production
environments [32]. App-Bisect operates like a versioning system for deployed
microservices. If there is a loss in performance of the application after an update,
App-Bisect is able to revert a specific microservice to a version that originally
ensured the desired performance specifics.

Beyond the aforementioned limitations, technologies such as DoCloud [21] offer
an elastic cloud platform that exploits Docker to adapt the web application to the
changing workload scaling the Docker containers composing the app [21]. DoCloud
integrates a load balancer (HAProxy) and a private Docker registry to store the
containers images. The platform uses a hybrid elastic controller that incorporates
a proactive and reactive model for the scaling of the containers. Subsequently,
proactive and reactive models are used for scale-out policy enactment, while for
the scale-in only proactive models are used. Despite the good adaptability results
of the proposed solution, the experimental evaluation is limited to a few number
of active containers (i.e., up to nine containers). The experimental evaluation that
we propose is far more complex and reflecting the realistic scenarios behind online
large-scale video streaming applications.

From an open-source infrastructure quality of service perspective, the state of the
art offers technologies such as Swarm and Kubernetes intended as solutions for the
clustering of containers [6, 17, 24].

First, Swarm is the native solution for the clustering of Docker containers. Once
a Swarm agent is installed in every node of the cluster, the user can control them
through the manager. The user can start and stop containers letting Swarm decide
where to place them according to different strategies (random, bin-packing, spread)
that take into account the resources available in the nodes. The user can also specify
some affinities between containers, so Swarm can try to place together containers
that have an affinity. The implementation of Gru has been inspired by that of Swarm
but based on Docker. Docker containers themselves have already been exploited to
obtain the elastic scaling of the application [20]. Using a multiobjective optimization
model to allocate containers on top of Virtual Machines, the application can be
scaled elastically, reducing the consumption of resources. The optimization model

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 245

works both at the level of virtual machines and Docker containers, actuating vertical
and horizontal scaling. The evaluation has been done using only three different types
of containers in a simple experimental setting.

The advantage of having Gru with respect to both the above solutions (i.e.,
Docker swarming and refinements by Hoenisch et al. [20]) is that Gru offers no
single point of failure configuration and is not only focused on elasticity; rather,
elasticity is the property that we focus upon in the scope of this work but the
autonomic and local-knowledge approach featured in Gru could be extended to any
operational property featured in large-scale infrastructures.

On the other side, Kubernetes is a solution provided by Google for containers
orchestration and clustering. Kubernetes handles scheduling of containers on the
nodes and managing workloads to ensure that the system meets some user con-
straints. Containers are grouped into pods and using labels to create logical units
for easy management and discovery. Kubernetes offers also a system for failure
recovery: using a replication controller a container or machine that fails can be
restarted automatically. These are commercial solutions used in production systems
and greatly simplify the management of the application. However, they do not
provide autonomic capabilities and the management of the application still depends
on a user’s manual intervention. Gru aims to make the application autonomic and as
independent as possible from user intervention, and therefore makes no assumption
with respect to the ability to centrally control every microservice and its operational
parameters; rather, Gru offers a distributed swarming mechanism which acts locally
to achieve global stability.

Furthermore, an external but centralized approach is the one adopted by Rain-
bow [19]. Rainbow exploits the Architecture-Based Self-Adaptation and imple-
ments an autonomic manager composed of the system layer infrastructure, the
architecture layer, the translation infrastructure, and a system-specific adaptation
knowledge. Through a distributed set of probes and gauges data are gathered from
the application. The centralized architecture evaluator analyze the data to detect
problems and the adaptation manager decides the best action to actuate, which is
then executed by the effectors. Rainbow has been applied to an industrial system
to improve its self-adaptive capabilities [8, 9]. The industrial system, a middleware
used to monitor and manage networks of devices, had already self-adaptive capa-
bilities but has been improved making it more flexible and maintainable. Despite a
centralized approach being easier to implement and manage, it can be a bottleneck
in very large distributed systems like the ones we are considering, so we decided
to study and apply a fully decentralized approach. Moreover, the integration of
Rainbow requires an upfront effort in terms of specifications and development,
while Gru is designed to be integrated in a very straightforward way.

Finally, GoPRIME is a middleware for the autonomic service assembly based
on PRIME, a previous work of the same author [10, 11]. GoPRIME is fully
decentralized and is designed for the adaptive self-assembly of distributed pervasive
systems. In general, GoPRIME operates on distributed systems composed of set
of peers that cooperate between them to accomplish a task. Services are able to
perform a specific task, but each service could depend on services provided by

246 E. Di Nitto et al.

another one. GoPRIME is able to manage the system in order to select the correct
assembly that fulfills global nonfunctional requirements. The core of GoPRIME
is a gossip protocol for information dissemination and decentralized decision-
making. This system is based on a fully decentralized approach like Gru; however,
it is a middleware and it is designed specifically for adaptive self-assembly of
distributed services. Gru aims to be a more complete autonomic solution that
operates dynamically on the application it has to manage.

6 Conclusion and Future Work

In this chapter we presented Gru, an approach that brings autonomic capabilities to
cloud applications developed as microservices featuring Docker containers. Gru can
be applied with ease to any microservices application already deployed, simplifying
its management in a decentralized fashion. In fact, Gru is based on a decentralized
multiagent approach where every agent is able to decide the best action to actuate
according to a partial knowledge of the status of the entire application. The results
we obtained in our experiments show that Gru is able to actuate autonomic actions
on the managed application to uphold constraints imposed by the user, thus showing
the effectiveness of our approach. As such, we can conclude that Gru represents
a promising approach that applies autonomic and decentralized computing to
industrial-grade, highly distributed, microservice-based cloud applications.

Gru is still subject to a number of extensions and improvements that we hope
to develop in the future. These concern: the creation of new adaptation policies
that go beyond the current scaling capabilities, the possibility to integrate in the
framework a proactive adaptation process able to predict the need for an adaptation,
and an improvement in the way resources are used for allocating the application
microservices.

Acknowledgements The research reported in this chapter is partially supported by the European
Commission grant no. FP7-ICT-2011-8-318484 (MODAClouds). Also, Damian and Elisabetta’s
work is partially supported by the European Commission grant no. 644869 (H2020 - Call 1), DICE,
and grant no. 779656 (H2020), SODALITE.

References

1. Auto Scaling in the Amazon Cloud, http://techblog.netflix.com/2012/01/auto-scaling-in-
amazon-cloud.html. Accessed 18 Jan 2017

2. A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices architecture enables DevOps: migra-
tion to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

3. L. Baresi, S. Guinea, A. Leva, G. Quattrocchi, A discrete-time feedback controller for
containerized cloud applications, in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ACM, New York, 2016), pp. 217–228

http://techblog.netflix.com/2012/01/auto-scaling-in-amazon-cloud.html
http://techblog.netflix.com/2012/01/auto-scaling-in-amazon-cloud.html

Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation 247

4. L. Baresi, S. Guinea, A. Leva, G. Quattrocchi, A discrete-time feedback controller for con-
tainerized cloud applications, in ed. by T. Zimmermann, J. Cleland-Huang, Z. Su. Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ACM, New York, 2016), pp. 217–228. http://dblp.uni-trier.de/db/conf/sigsoft/
fse2016.html#BaresiGLQ16

5. L. Baresi, S. Guinea, G. Quattrocchi, D.A. Tamburri, Microcloud: a container-based solution
for efficient resource management in the cloud, in SmartCloud (IEEE Computer Society,
Washington, 2016), pp. 218–223. http://dblp.uni-trier.de/db/conf/smartcloud/smartcloud2016.
html#BaresiGQT16

6. D. Bernstein, Containers and cloud: from LXC to docker to kubernetes. IEEE Cloud Comput.
1(3), 81–84 (2014)

7. N. Calcavecchia, B. Caprarescu, E. Di Nitto, D. Dubois, D. Petcu, DEPAS: a decentralized
probabilistic algorithm for auto-scaling. Computing 94, 701–730 (2012). http://dx.doi.org/10.
1007/s00607-012-0198-8

8. J. Cámara, P. Correia, R. De Lemos, D. Garlan, P. Gomes, B. Schmerl, R. Ventura, Evolving
an adaptive industrial software system to use architecture-based self-adaptation, in 2013 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS) (IEEE,
Piscataway, 2013), pp. 13–22

9. J. Cámara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. Schmerl, R. Ventura, Incorporating
architecture-based self-adaptation into an adaptive industrial software system. J. Syst. Softw.
122, 507–523 (2016)

10. M. Caporuscio, C. Ghezzi, Engineering future internet applications: the prime approach.
J. Syst. Softw. 106, 9–27 (2015). http://dx.doi.org/10.1016/j.jss.2015.03.102. http://www.
sciencedirect.com/science/article/pii/S0164121215000783

11. M. Caporuscio, V. Grassi, M. Marzolla, R. Mirandola, GoPrime: a fully decentralized
middleware for utility-aware service assembly. IEEE Trans. Softw. Eng. 42(2), 136–152
(2016). https://doi.org/10.1109/TSE.2015.2476797

12. Y. Chen, Y. Kakuda, Autonomous decentralised systems in web computing environment. Int. J.
Crit. Comput.-Based Syst. 2(1), 1–5 (2011). http://dblp.uni-trier.de/db/journals/ijccbs/ijccbs2.
html#ChenK11

13. Cisco: Cisco visual networking index: forecast and methodology, 2015–2020 (2016), http://
www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html

14. Dar, MAPE-k adaptation p control loop p (2012), https://www.bibsonomy.org/bibtex/
2d3cd41f1bc9f09286bc73b1a3456827b/olemeyer

15. Dismantling the monoliths, https://engineering.groupon.com/2013/misc/i-tier-dismantling-
the-monoliths/. Accessed 26 Aug 2016

16. Docker, https://www.docker.com/. Accessed 26 Aug 2016
17. Docker Swarm, https://docs.docker.com/swarm/. Accessed 26 Aug 2016
18. L. Florio, E. Di Nitto, Gru: an approach to introduce decentralized autonomic behavior in

microservices architectures, in 2016 IEEE International Conference on Autonomic Computing
(ICAC) (2016), pp. 357–362. https://doi.org/10.1109/ICAC.2016.25

19. D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, P. Steenkiste, Rainbow: architecture-based
self-adaptation with reusable infrastructure. Computer 37(10), 46–54 (2004)

20. P. Hoenisch, I. Weber, S. Schulte, L. Zhu, A. Fekete, Four-fold auto-scaling on a contemporary
deployment platform using docker containers, in International Conference on Service-Oriented
Computing (Springer, Berlin, 2015)

21. C. Kan, Docloud: an elastic cloud platform for web applications based on docker, in 2016
18th International Conference on Advanced Communication Technology (ICACT) (IEEE,
Piscataway, 2016), pp. 478–483

22. J.O. Kephart, D.M. Chess, The vision of autonomic computing. Computer 36(1), 41–50 (2003)
23. C. Klein, R. Schmid, C. Leuxner, W. Sitou, B. Spanfelner, A survey of context adaptation

in autonomic computing, in Fourth International Conference on Autonomic and Autonomous
Systems (2008)

http://dblp.uni-trier.de/db/conf/sigsoft/fse2016.html#BaresiGLQ16
http://dblp.uni-trier.de/db/conf/sigsoft/fse2016.html#BaresiGLQ16
http://dblp.uni-trier.de/db/conf/smartcloud/smartcloud2016.html#BaresiGQT16
http://dblp.uni-trier.de/db/conf/smartcloud/smartcloud2016.html#BaresiGQT16
http://dx.doi.org/10.1007/s00607-012-0198-8
http://dx.doi.org/10.1007/s00607-012-0198-8
http://dx.doi.org/10.1016/j.jss.2015.03.102
http://www.sciencedirect.com/science/article/pii/S0164121215000783
http://www.sciencedirect.com/science/article/pii/S0164121215000783
https://doi.org/10.1109/TSE.2015.2476797
http://dblp.uni-trier.de/db/journals/ijccbs/ijccbs2.html#ChenK11
http://dblp.uni-trier.de/db/journals/ijccbs/ijccbs2.html#ChenK11
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.bibsonomy.org/bibtex/2d3cd41f1bc9f09286bc73b1a3456827b/olemeyer
https://www.bibsonomy.org/bibtex/2d3cd41f1bc9f09286bc73b1a3456827b/olemeyer
https://engineering.groupon.com/2013/misc/i-tier-dismantling-the-monoliths/
https://engineering.groupon.com/2013/misc/i-tier-dismantling-the-monoliths/
https://www.docker.com/
https://docs.docker.com/swarm/
https://doi.org/10.1109/ICAC.2016.25

248 E. Di Nitto et al.

24. Kubernetes, http://kubernetes.io/. Accessed 26 Aug 2016
25. Microservices, http://martinfowler.com/articles/microservices.html. Accessed 26 Aug 2016
26. Microservices Are not a Free Lunch!, http://highscalability.com/blog/2014/4/8/microservices-

not-a-free-lunch.html. Accessed 14 June 2017
27. Microservices at Netflix, http://www.slideshare.net/stonse/microservices-at-netflix. Accessed

26 Aug 2016
28. Microservices Evolution at SoundCloud, https://www.infoq.com/articles/microservices-

evolution-soundcloud. Accessed 26 Aug 2016
29. Microservices Trade-Offs, http://martinfowler.com/articles/microservice-trade-offs.html.

Accessed 27 July 2016
30. S. Newman, Building Microservices (O’Reilly Media, Newton, 2015)
31. M. Premoli, C.F. Riva, Analisi delle prestazioni per la conversione di video distribuita con

mapreduce. Master’s Thesis, Politecnico di Milano (2013)
32. S. Rajagopalan, H. Jamjoom, App–bisect: autonomous healing for microservice-based apps, in

7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’15) (2015)
33. L. Steels, The origins of ontologies and communication conventions in multi-agent systems. J.

Agents Multi-Agent Syst. 1(2), 169–194 (1998)
34. G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, F. Edmonds, An architecture for self-

managing microservices, in Proceedings of the 1st International Workshop on Automated
Incident Management in Cloud, AIMC’15 (ACM, New York, 2015), pp. 19–24. https://doi.
org/10.1145/2747470.2747474

35. J. Turnbull, The Docker Book: Containerization Is the New Virtualization (2014), https://
dockerbook.com/

36. D. Weyns, M. Georgeff, Self-adaptation using multiagent systems. IEEE Softw. 27(1), 86–91
(2010)

37. A. Wiggins, The twelve-factor app (2012), http://12factor.net/. Accessed 29 June 2016

http://kubernetes.io/
http://martinfowler.com/articles/microservices.html
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html
http://www.slideshare.net/stonse/microservices-at-netflix
https://www.infoq.com/articles/microservices-evolution-soundcloud
https://www.infoq.com/articles/microservices-evolution-soundcloud
http://martinfowler.com/articles/microservice-trade-offs.html
https://doi.org/10.1145/2747470.2747474
https://doi.org/10.1145/2747470.2747474
https://dockerbook.com/
https://dockerbook.com/
http://12factor.net/

A Hybrid Approach to Microservices
Load Balancing

Marco Autili, Alexander Perucci, and Lorenzo De Lauretis

Abstract During the past few years, microservices have been becoming a common
architectural pattern increasingly used to realize flexible and scalable service-based
applications. Microservices have grown in popularity as a mainstay in the business
environment, allowing companies to increase development and maintenance speed,
predict performance and scale, with scalability being one of the most important
nonfunctional requirements to be fulfilled. Load balancing is the most prominent
approach in support of scalability. In the realm of microservices, one usually
distinguishes between two types of load balancers, namely, client-side and server-
side load balancers. This work proposes a novel hybrid approach to microservices
load balancing that combines the benefits of client-side and server-side load
balancing.

1 Introduction

Microservices can be seen as a technique for developing software applications that,
inheriting all the principles and concepts from the service-oriented architecture
(SOA) style, permit to structure a service-based application as a collection of very
small, loosely coupled software services. Services are very small (micro) as for their
contribution to the application, not because of their lines of code [10]. In [18], James
Lewis and Martin Fowler introduce microservices as:

an approach to developing a single application as a suite of small services, each running in
its own process and communicating with lightweight mechanisms, often an HTTP resource
API. These services are built around business capabilities and independently deployable
by fully automated deployment machinery. There is a bare minimum of centralized

M. Autili (�) · A. Perucci · L. De Lauretis
Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, L’Aquila, Italy
e-mail: marco.autili@univaq.it; alexander.perucci@univaq.it;
lorenzo.delauretis@graduate.univaq.it

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_10

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_10&domain=pdf
mailto:marco.autili@univaq.it
mailto:alexander.perucci@univaq.it
mailto:lorenzo.delauretis@graduate.univaq.it
https://doi.org/10.1007/978-3-030-31646-4_10

250 M. Autili et al.

management of these services, which may be written in different programming languages
and use different data storage technologies.

For what concerns the relationship between SOA and microservices, we can say
that microservices are an architectural style competing with SOA in that they can
be seen as (1) a synonym for “SOA done right” [29] and (2) an implementation
approach to SOA [25]. In this sense, microservices can be seen as a substyle refining
SOA with additional constraints [27].1 Thus, as any SOA-based design technique,
microservices describe a particular way of designing software applications as
suites of independently deployable (micro)services, yet with stronger attention
to isolation and autonomy. Microservices are independently scalable and can be
replaced and upgraded independently, with the objective to support scalability.
For this reason, microservices are becoming a common architectural pattern being
increasingly used to realize flexible and scalable applications [1, 8, 27, 31, 34]. In
particular, in the business environment, microservices have grown in popularity as
a mainstay, allowing companies to increase their development and maintenance
speed, predict performance and scale, with scalability being one of the most
important nonfunctional requirements to be fulfilled.

Load balancing is the most prominent approach in support of scalability in a
microservices architecture (MSA) [1, 4, 22]. The concept of load balancing spans
many different application fields. Broadly speaking, in computing, a load balancer
permits to distribute workloads across multiple computing resources, spanning
from different server computers, through different network layers down to network
links, from different processing units to disk drives. In a service-oriented setting,
load balancing is the act of distributing service requests from clients to multiple
servers that offer services, e.g., running in different containers distributed among
physical or virtual machines. Containers allow the explicit specification of resource
requirements, which makes it easy to distribute containers across different hosts so
as to improve resource usage.

In the realm of microservices, load balancing concerns the arrival rates or
concurrent number of requests [3]. The load balancer then attempts at distributing
the workload of requests across multiple microservice instances with the aim to,
e.g., optimize resource use, maximize throughput, minimize response time, and
avoid bottlenecks (i.e., overload of any single instance). Moreover, characterizing
and managing the workload of microservices is also beneficial in terms of cost for
both cloud vendors and developers [33].

In the literature, there are many valuable works that, in different forms and for
different purposes, concern load balancing. As also reported in [12, 30], a number
of architectural patterns based on load balancing have also been proposed [7, 22,
23, 28, 35] (just to mention a few). Strictly focusing on microservices, state-of-the-
art approaches, which are more closely related to our approach (Sect. 6), principally
distinguish between two types of load balancing, namely, server-side and client-side

1A detailed analysis and comparison of microservices characteristics and principles can be found
in [36].

A Hybrid Approach to Microservices Load Balancing 251

load balancing. However, despite this interest and the fact that from an architectural
point of view the two approaches can be easily understood and recognized as
different, it is not always easy to make a clear distinction of the pros and cons of
the two approaches at runtime, nor is it easy to grasp trade-offs between the two
when considering the many factors that may influence the load balancing efficacy
and efficiency during system execution. In both types, the load balancer distributes
the workload of requests among available microservice instances, proxyfing the
incoming requests and forwarding them to the correct instance. In the server-side
approach, load balancing is centralized, in a way that a load balancer is interposed
among available instances or each type of microservice has its own central load
balancer. In the client-side approach, instead, the load balancer is fully distributed,
in a way that each client is assigned a local load balancer. Both approaches have
pros and cons.

This work makes an effort to understand and build upon architectural and runtime
trade-offs between client-side and server-side load balancing, and proposes a hybrid
approach to microservices load balancing that combines the benefits of the two
approaches. A microservice-based application is then used to describe the hybrid
load balancer at work on it. The application, called Sock Shop, is the user-facing
part of an online shop that sells socks. It is intended to aid the demonstration and
testing of microservice.2

The chapter is structured as follows. Section 2 compares the server-side and
client-side load balancing approaches. Section 3 draws interesting conclusions from
previous sections and forms the basis for our hybrid approach, which will be then
presented in Sect. 4. Section 5 describes the Sock Shop application, highlights the
scalability issues it may have, and describes our hybrid load balancer at work on it.
Section 6 discusses related work, and Sect. 7 concludes the chapter and plans future
work.

2 Server-Side Versus Client-Side Load Balancing

As already introduced, the concept of load balancing spans different areas. In com-
puting, a load balancer permits distribution of workloads across multiple computing
resources, spanning from different server computers to network links, from different
processing units to disk drives. As far as we are concerned, this section compares
server-side load balancing (Sect. 2.1) with client-side load balancing (Sect. 2.2) for
microservice-based applications. The comparison will create the case for a hybrid
approach to microservice load balancing, which will be discussed in Sect. 3. Our
hybrid approach will be then presented in Sect. 4.

2https://github.com/microservices-demo/microservices-demo.

https://github.com/microservices-demo/microservices-demo

252 M. Autili et al.

Fig. 1 Single server-side load balancing

2.1 Server-Side Load Balancing

Server-side load balancing is a centralized approach for distributing requests among
available microservice instances. In its basic form, a single load balancer is
interposed among all the microservices and listens on the port(s) where external
clients connect to access the available instances.

Figure 1 depicts a sample microservices-based system with a central load
balancer LB for the microservices μs1, μs2, and μs3. In the figure, the labels μs

[1..k]
1 ,

μs
[1..x]
2 , and μs

[1..y]
3 indicate that the examples considers k, x, and y instances for

the microservice types μs1, μs2, and μs3, respectively.
The load balancer LB receives requests through the request channels (solid lines)

from both the n client instances c[1..n] and the k + x microservice instances for μs1
and μs2. It distributes the corresponding workload towards the forwarding channels
(dashed lines) to the k + x + y microservice instances for μs1, μs2, and μs3.
Note that the microservices μs1 and μs2 are prosumer microservices meaning that,
beyond receiving requests, they also make requests to other microservices (i.e., they
are both providers through provided interfaces, and consumers through required
interfaces). Also note that the microservice μs3 is provider only, since it does not
perform requests to any other microservices and, as such, it does not have a request
channel associated.

Since all traffic to every microservice has to pass through the load balancer, the
two main drawbacks of this kind of fully centralized load balancing approach are:
(1) it introduces a single point of failure in the entire system; (2) it can slowdown or
it may even fail to handle the traffic due to a large number of simultaneous requests,
thus becoming a bottleneck for the whole system [15, 19].

A Hybrid Approach to Microservices Load Balancing 253

Fig. 2 Separate server-side load balancers per microservice type

A possible improvement for the fully centralized architecture style adopted in
Fig. 1 is to have more than one central load balancer, one for each microservice type.
In Fig. 2, the notation LBi:[1..j] indicates that the load balancer LB is in charge of
balancing the requests for the microservice μsi by distributing the corresponding
workload to the j instances μs1

i ,. . . ,μs
j
i . Accordingly, the microservice instances

μs
[1..k]
1 , μs

[1..x]
2 , and μs

[1..y]
3 are “proxified” by the three load balancers LB1:[1..k],

LB2:[1..x], and LB3:[1..y], respectively. Thus, the sample system in Fig. 2 adopts a
partially centralized solution to load balancing, where each load balancer handles
only the requests of a specific type of microservice.

When compared with the fully centralized solution in Fig. 1, in this solution
the distribution of requests is certainly more balanced among the (per-type) load
balancers. However, similar to the fully centralized case, the load balancers still
introduce multiple points of failure for the entire system, i.e., a point of failure
for each load balancer. That is, if one of the load balancers fails in some way, all
the instances of the controlled type of microservice becomes entirely unavailable
which may, in fact, render the whole system unusable if the affected microservice is
vital and, as such, it is indispensable to the continuance of the system’s functioning.
Moreover, on the basis of similar considerations, each load balancer can still become
a bottleneck for the whole system.

Another issue of considerable concern is scalability. In general terms, scalability
is the capability of a system, network, or process to handle a growing amount
of work, or its potential to be enlarged to accommodate that growth [1, 5, 6,
13, 26]. Microservice scalability covers many aspects, including understanding
the qualitative and quantitative growth scales, hardware efficiency, identification
of resource requirements, capacity awareness and planning, scalable handling of
traffic, the scaling of dependencies, task handling and processing, and scalable data

254 M. Autili et al.

storage [8, 11, 17, 21, 23, 24, 27, 32]. When concerned with load balancing, the term
scalability refers to the scalable handling of traffic.

Two main approaches can be distinguished when dealing with scalability: vertical
scaling and horizontal scaling. Vertical scaling concerns increasing/reducing the
computational resources available for the load balancer(s) or microservice instances.
Horizontal scaling, on the other hand, is about augmenting/diminishing the number
of microservice instances, hence augmenting/diminishing concurrency and possible
partitioning. Indeed, the term elasticity would also be somehow appropriate here.
In cloud computing, it is defined as “the degree to which a system is able to
adapt to workload changes by provisioning and de-provisioning resources in an
autonomic manner, such that at each point in time the available resources match
the current demand as closely as possible” [14]. Hereafter, we will make use of the
term scalability, leaving the usage of the term elasticity in contexts where cloud
computing is more strictly concerned.

The server-side load balancing approach permits to naturally support horizontal
scaling. In fact, since all traffic passes through the load balancer(s), it is basically
effortless to be constantly aware of the workload of each microservice instance. As a
direct consequence, it is also easy to understand when to add or remove microservice
instances according to the traffic going up or down, respectively, in a transparent
way to clients. Then, depending on the scaling requirements of the system, any of
the scaling mechanisms/algorithms proposed in literature can in principle be used
to perform the actual scaling decision.

Horizontal scaling alone does not solve, nor mitigate, possible bottlenecks caused
by server-side load balancers. Indeed, vertical scaling can be performed on the load
balancer machine(s) to mitigate the problem, not to solve it however, due to physical
limitations in terms of available computational resources. Further considerations on
scalability will be discussed in Sect. 4.

On the positive side, the server-side load balancing approach may have security
benefits. It prevents clients from directly contacting the microservice instances,
without them ever knowing about the internal structure of the application. It also
permits to hide the structure of the internal network, by preventing clients from
contacting backend servers directly, hence also preventing attacks on other unrelated
services listening on other ports.

2.2 Client-Side Load Balancing

Client-side load balancing is a fully distributed approach according to which each
client instance (and each prosumer microservice instance) is assigned a local load
balancer.

Figure 3 shows a sample microservice-based system that makes use of client-
side load balancers, each one of them directly responsible for routing only the
requests coming from either the client application or the prosumer microservice it is
assigned to. Note that, following the examples for the server-side case in Sect. 2.1,

A Hybrid Approach to Microservices Load Balancing 255

Fig. 3 Client-side load balancing

the y instances μs
[1..y]
3 do not need any load balancer, since the microservice μs3 is

provider only.
Thanks to its fully distributed nature the client-side load balancing approach does

not introduce single points of failure in the system. Each local load balancer, in fact,
handles all traffic for its local (client or prosumer) instance regardless of which or
how many other microservices it communicates with. This differs significantly from
central load balancing where all the requests go to the load balancer, which in turn
sends them to the target (type of) microservice.

Moreover, by using a client-side load balancing approach, the balanced system
is bottleneck free. Using a series of fully distributed client-side load balancers
working in concert with each other enables, in fact, automatic scaling in accordance
with the growing or diminishing traffic. That is, client-side load balancing supports
horizontal scaling by naturally adding new load balancing capacity to the system
each time a new instance comes into play, hence exhibiting linear scalability.
Basically, the client side obtains a list of possible microservice instances it may use,
and it implements the logic to decide how to distribute its own requests among the
list of available instances. A simple round-robin logic is such an example. According
to a round-robin algorithm, clients are given availability and workload information
following a circular pattern. Thus, by storing availability and workload information
locally to each load balancer instance, the client-side approach ensures that all active
microservice instances can still route traffic, even if some instances of the same
microservice have gone down.

256 M. Autili et al.

As per the above discussion, an overall point in favor of the client-side load bal-
ancing approach is that it can be employed with very little additional infrastructure
in favor of cost benefits. Contrariwise, server-side load balancing usually requires
heavier infrastructure investment.

Last but not least, local load balancers permit clients to directly contact the
microservice instances they communicate with. Thus, the security benefits that
naturally come with server-side load balancing are set aside in client-side load
balancing.

3 The Case for a Hybrid Approach to Load Balancing

Our hybrid approach to load balancing results from a suitable combination of
the server-side approach with the client-side approach. The hybrid approach is
designed to find the balance between pros and cons of the server-side and client-side
approaches. For this purpose, in this section, we leverage trade-offs from previous
sections and draw some interesting conclusions that will form the bases for our
hybrid approach, which will be then presented in Sect. 4.

As well as can be expected, both server-side and client-side load balancers
introduce latency, although for different reasons. The client-side load balancer
introduces latency because it does not have direct and ready-to-use global visibility
on the availability of servers and the load of the microservice instances running
on them. If a client-side load balancer is attempting to forward a client request
when the receiving server is offline or the target microservice is overloaded, then
the client-side load balancer may have to wait for a timeout before trying with other
microservice instances running on another server.

Propagating the load status among all the client-side load balancers does not even
improve latency because the propagation delay itself (especially during a pending
request) would only contribute to increase the overall overhead.

The availability degree of servers is also a highly dynamic dimension that
measures the proportion of time the system is in a functioning condition. As such,
the client-side load balancers cannot reuse this information for an extended period
of time; rather, frequents updates should be propagated to all the load balancers,
once again increasing the overall overhead.

On the other hand, as already said in Sect. 2.1, for a server-side load balancer, it
is basically effortless to be constantly aware of the workload of each microservice
instances, and the cost for querying server availability can also be amortized over
many requests.

Summing up, during normal traffic conditions, with server availability up and in
the absence of microservice instances overload, client-side load balancing exploits
direct connection with backend servers (no proxy extra hops), and no latency
is experienced by clients. Under high traffic conditions, with no availability or
overload, client-side load balancing tends to suffer worse latency with respect to
server-side load balancing. Server-side load balancing, therefore, incurs no latency

A Hybrid Approach to Microservices Load Balancing 257

penalty to the clients due to workload or availability propagation, although it always
suffers the unavoidable latency due to the load-balancer proxy extra hop.

For what concerns throughput, a server-side load balancer always becomes a
unique destination for many clients, and its uplink can be easily saturated. As
already said in Sect. 2.1, employing a separate load balancer for each different
microservice type can only mitigate the problem. Still, in the case of requests
smaller than responses (which is often the case, not always however), direct routing
could further alleviate the problem of load-balancer throughput bottleneck(s). Direct
routing [20] would, in fact, permit the backend microservices to return responses
directly to clients. In any case, this solution would not scale as naturally as client-
side load balancing, which usually tends to offer higher throughput than server-side
load balancing. The reason is that there can possibly be different network paths to
be taken for each client-server communication, potentially one different path for
each client or prosumer instance distributed over the network. Although this can
easily lead to a saturation of the affected backend microservice instances, more
microservice instances can be easily added. Clearly, if a client application (or a
prosumer microservice) attempts to communicate with many other microservices in
the system, it would saturate its own uplink first.

Table 1 summarizes pros and cons of the server-side and client-side approaches.
From the comparison in Sect. 2 and the considerations above, it emerges that the

differences between the two approaches are quite large, although the boundaries of
the balancing effects on the system in term of pros and cons are not always easily
and clearly discernible. The reason is that, most often, load balancing requirements
can be fulfilled only by employing trade-offs, and the best approach lies somewhere
in the middle.

An intuitive consideration that inspired our hybrid approach to load balancing
is as follows: a cluster of server-side load balancers can make a specific type of
microservice highly available, which naturally guarantees no latency penalty, as well
as less setup time and service consumption time with respect to the varying number
of clients. In turn, client-side load balancing can be used to direct clients towards
such multiple clusters for higher throughput. Clearly, that makes matters a bit more
complicated, but having gotten this far, a little price must be paid.

Table 1 Pros and cons of server-side and client-side load balancing

Server-side load balancing Client-side load balancing

Security benefits ✓ ✗

No point(s) of failure ✗ ✓

No bottleneck(s) ✗ ✓

Automatic scaling ✗ ✓

Lighter infrastructure investment ✗ ✓

Lower status propagation latency ✓ ✗

Higher throughput ✗ ✓

258 M. Autili et al.

4 Hybrid Load Balancing

In this section, we present our hybrid approach to load balancing. Figure 4 shows a
snapshot of a sample microservice-based system that adopts the hybrid approach.

One thing that leaps to the eye when looking at the hybrid approach is that a
client-side load balancer can also be connected to more than one instance of the
same server-side load balancer, e.g., the client-side load balancers LB

[1..x]
2 are all

connected to both the server-side load balancer instances LB1
1:[1..k] and LB2

1:[k+1..z].
In turn, a server-side load balancer, for a given microservice type, can even proxify
only a subset of instances, and not all as in the case of separate server-side load
balancers per microservice type in Fig. 2. In Fig. 4, this is in fact the case of the
server-side load balancer LB1

1:[1..k], which is in charge of balancing the requests

for the microservice instances μs1
1 to μsk

1 , only. Instead, a second instance of the
same load balancer LB2

1:[k+1..z] is in charge of balancing the microservice instances

μsk+1
1 to μsz

1, only.
A profitable consequence here is that additional server-side load balancer

instances (and hence additional instances of the proxyfied microservice types) can
be more flexibly activated when the instances already in place are close to saturation,
and are no more able to properly handle the incoming traffic. For instance, in the
sample system in Fig. 4, this happened because the load balancer instance LB1

1:[1..k]
(before the activation of the second instance LB2

1:[k+1..z]) was a unique destination

Fig. 4 Hybrid load balancing

A Hybrid Approach to Microservices Load Balancing 259

for all the instances of the microservice type μs1, hence acting as a bottleneck
for the system. As it is evident, a significant difference with the server-side load
balancing approach is that, while the server-side approach permits to support a
limited form of horizontal scaling by adding or removing microservice instances
only, the hybrid approach permits to support a more flexible and more powerful
form of horizontal scaling by adding or removing both microservice instances and
load balancer instances. As a result, the hybrid approach offers higher throughput
compared to the pure server-side load balancing.

The considerations above lead to another dimension of scaling, named z-axis
scaling. The notion of z-axis scaling is commonly used to scale databases where,
based on specific attributes, data can be partitioned across a set of servers [1]. In
our setting, this translates into profitably partitioning microservice instances in a
way that each server-side load balancers only deals with a subset of them, suitably
dimensioned according to available resources, costs or service-level agreements
(SLAs). For example, in the snapshot of the microservice-based system in Fig. 4,
operating the appropriate partitioning at a given time during execution might
account for suitably choosing the numbers k and z for the microservice μs1, as
well as the number y for the microservice μs3. This flexibility enables dedicated
“routing” criteria based on, e.g., the customer type. In a pay-per-use setting, the
hybrid approach might naturally provide paying clients with a higher SLA than free
customers by redirecting their requests to a dedicated set of microservice instances
through dedicated server-side load balancer instances, e.g., running on servers with
more capacity.

Dedicated premium access policies, where certain clients are afforded higher
performance guarantees, can also be supported without any particular effort.
Selected microservice instances might be prioritized and scaled out faster to improve
performance. Then, only premium clients are allowed to access this sort of “gold”
microservice instances.

Another point in favor of the hybrid approach is that it also improves fault
isolation. If one server-side load balancer fails in some way (e.g., LB1

1:[1..k]), only
the controlled subset of μs1 instances becomes unavailable and, even if these
instances were indispensable to the continuance of the system life, z-axis scaling
avoids rendering the whole system unusable.

Concerning latency, the hybrid approach can reduce the time delay experienced
by clients during high traffic conditions, when compared with the client-side
approach. In fact, as anticipated in Sect. 3, when routing requests to a server that
is offline or to microservice instances that are overloaded, the client-side load
balancer may have to wait for a timeout before trying with other microservice
instances running on other servers. In the hybrid approach, client-side load balancers
can reroute requests directly to the available server-side load balancers, which in
turn have direct global visibility on the availability of the (up-to-date at all times)
proxyfied servers and the load of the microservice instances running on them.
Basically, the client-side load balancers ask the server-side load-balancers for which
servers, and hence which microservice instances, they should connect to. Thus,
although the hybrid approach still suffers latency due to the presence of server-

260 M. Autili et al.

side load balancer(s) proxy extra hop(s), the overhead due to server availability and
overload propagation is reduced if the system resources are correctly dimensioned
and the number of microservices instances per server-side load balancer instance is
properly calculated (again, k, z and y in Fig. 4).

The hybrid approach does not want to be a substitutive alternative to the client-
side or server-side approaches; rather, it must be considered as a complementary
(more flexible, although more complex) alternative that, when the benefits outweigh
the price to be paid, can be put in place to reduce the cons of the client-side and
server-side approaches, if employed in isolation. That is, the hybrid nature of our
approach, beyond the mixed arrangement, permits to architect the system so as to
include either pure client-side or server-side load balancers for specific subsets of
microservices or microservice clusters. According to system requirements, and in
favor of simplicity and costs, this is surely the case when the cons of the client-side
or server-side approaches do not negatively impact the user experience related to the
affected subsets of microservices.

5 Hybrid Load Balancing at Work

In this section, we introduce a microservice-based application and then describe the
hybrid load balancer approach at work on it.

We use Sock Shop, a microservice-based application which is open source and
freely available on GitHub.3 Sock Shop simulates the user-facing part of an e-
commerce website that sells socks. It is intended to aid the demonstration and
testing of microservice and cloud-native technologies. The application is maintained
by WeaveWorks4 and Container Solutions.5 The Sock Shop microservices are
designed to have minimal expectations, using DNS to find other services. This
means that it is possible to insert load-balancers as required or desired. There are
pre-built configuration scripts for various platforms that aim to make running the
whole application simple. The application also includes a load test, which can be
used to measure the load of each computational resources for each microservice
instance by benchmarking a live demo.6 Moreover, Sock Shop has been found to
be a representative microservice application regarding several aspects [2]. For our
purpose, the main criteria for selecting the Sock Shop were: the usage of well-
known microservice architectural patterns to support the creation of scalable and
robust microservices applications; the support of automated load test tools; and the
use of container orchestration tools to address some key challenges of deploying
microservices applications, such as service discovery and load balancing.

3https://github.com/microservices-demo/microservices-demo.
4https://www.weave.works/.
5https://container-solutions.com/.
6https://cloud.weave.works/demo/.

https://github.com/microservices-demo/microservices-demo
https://www.weave.works/
https://container-solutions.com/
https://cloud.weave.works/demo/

A Hybrid Approach to Microservices Load Balancing 261

Fig. 5 Sock Shop architecture

As depicted in Fig. 5, the Sock Shop application involves five prosumer7

microservices (order, front-end, shipping, queue, and queue-master), and four
provider microservices (payment, user, catalogue, and cart). Clients can interact
with the system through a web application or a dedicated mobile app; only the front-
end and order microservices are contacted directly.

By featuring a graphical user interface for clients performing their orders, the
front-end forwards orders from clients to the order microservice, which in turn
communicates with shipping to get specific shipping information. In order to simu-
late the actual shipping of orders, the shipping requests are consumed by the queue
and then by the queue-master microservices. The user and payment microservices
manage user-related information and payment transaction, respectively. Finally, the
catalog of socks is managed by the catalog microservice, and socks can be added to
the cart through the cart microservice.

We consider an extension of the Sock Shop that allows clients to make requests
also to the order microservice directly. As it is the case for many existing e-
commerce applications, this extension allows clients (e.g., by using dedicated
applications or by accessing a URL generated after the payment) for checking the
status of their orders and shipping information directly, without passing through the
front end.

It is worth anticipating that the hybrid solution to load balancing that we propose
hereafter for the Sock Shop system represents only one configuration (among the all
possible ones) that we devised in order to fulfill the hypothetical requirements we
supposed. Depending on the most varied requirements that may apply just as well
to a system such as the Sock Shop system, many other solutions could have been
proposed.

7With reference to Sect. 2.1, we recall that prosumer microservices are both providers and
consumers.

262 M. Autili et al.

Fig. 6 Hybrid load balancer for Sock Shop (a possible configuration)

Figure 6 shows a snapshot of a generic instance of the Sock Shop application in
which each client instance and each prosumer microservice instance is assigned a
local (client-side) load balancer. The instances of the front-end prosumer are further
proxified by two instances of the same server-side load balancer LBf , in a way that
LB1

f :[1..k] proxifies the provider side of the instances front-end1 to front-endk , and

LB2
f :[k+1..z] proxifies the provider side of the instances front-endk+1 to front-endz.

Instead, the provider side of all the instances of the shipping prosumer are proxified
by LB1

s:[1..y], only.
Rather frequently, Sock Shop reduces the price of socks for a short period of

time, and it is subject to a large number of requests. According to the incoming
traffic, the number of instances for the involved microservices should be scaled up
and down. This would permit to avoid rejections without wasting resources.

Two kinds of clients can be distinguished: occasional buyers and frequent buyers.
The former spend most of the time browsing catalogs and rarely buy something.
The latter, instead, know what they want and frequently access the Sock Shop for
buying products at the best price. Different client behavior patterns can generate
different workloads across the available microservices: occasional buyers mainly
make requests to the instances of the front end and the catalog; frequent buyers make

A Hybrid Approach to Microservices Load Balancing 263

requests also to the other instances for adding products into the cart, for paying the
selected products, and for checking the status of their orders.

Sock Shop also offers clients the possibility of choosing the right plan for them.
For example, frequent buyers can choose to pay for a monthly or annual subscription
plan; whereas, occasional buyers might opt for a free subscription plan. Paying
clients are afforded a higher SLA than free customers, as well as unlimited, free
and fast delivery, with no restrictions on the minimum order threshold.

The considerations above led us to introduce two instances of the server-side load
balancer, i.e., LB1

f :[1..k] and LB2
f :[k+1..z], in the initial deployment configuration of

the system. The former instance is in charge of routing the requests of occasional
buyers, the latter those of frequent buyers. It is then reasonable to offer the instances
front-end[k+1..z] from servers with more capacity. As described in Sect. 4, this
diversification permits to activate additional server-side load balancer instances,
e.g., LB3

f :[z+1..z+i] (together with additional instances of the front-end microservice

front-end[z+1..z+i]) when the instances already in place LB2
f :[k+1..z] are close to

saturation and are no more able to properly handle the increased traffic generated by
a large numbers of frequent buyers purchasing socks at a reduced price.

Another interesting consideration is that the front-end microservice is the main,
yet most sensible, access point to the Sock Shop application and would benefit from
insulation and security. In this respect, the server-side load balancers LB1

f :[1..k] and

LB2
f :[k+1..z] (and the additional instances that are activated during discounts) are

also beneficial in that they hide the structure of both the application and the internal
network, by preventing clients from directly contacting the front-end instances. This
helps preventing malicious clients from getting sensitive information, such as user-
related information, payment transaction, and shipping information.

Another advantage for both occasional and frequent buyers is that fault isolation
is also ensured for the front-end microservice, which is indeed a vital microservice
for the entire system.

Concerning the connection between the clients and the order microservice,
no server-side load balancer is introduced. One reason is that, according to our
hypothetical requirements, this connection is less sensible in terms of security
since clients can access information strictly related to the order only. That is, the
configuration in Fig. 6 is enough to guarantee a high throughput to clients that want
to simply visualize the tag associated with their order, such as “under process,”
“processed,” “under delivery,” “delivered.” In fact, for the order microservice to
reply, it is enough to perform a rapid task by accessing its own database, without the
need for accessing shipping information (hence, consuming very few computational
resources). Instead, if clients want to also access shipping information, the order
microservice forwards the incoming requests to the server-side load balancer
LB1

s:[1..y], which in turn contacts the shipping microservice. This means that security
benefits are reintroduced at the price of a slightly more latency during normal traffic
condition due to the introduction of an extra hop. However, still concerning latency,
this is beneficial during high traffic conditions when routing requests to instances
of the shipping microservice that are overloaded or to servers running them that are
offline.

264 M. Autili et al.

6 Related Work

In this section, we limit the focus on and compare with those state-of-the-
art approaches that are more closely related to our work by either proposing
an approach to microservices load balancing or treating some dimensions that
somehow relate to our load balancing approach or by providing useful insights into
the issues we have worked out.

As already introduced, load balancing spans many different application fields.
It is a relatively simple concept that can easily be grasped. However, in practice,
it requires a broad spectrum of technologies and procedures which, at different
layers, may differ greatly from one another depending on the specific application
purpose. For example, with reference to the OSI model, layer 4 load balancing
is in charge of directing traffic based on data from network and transport layer
protocols, such as IP address and TCP port; layer 7 load balancing, together with
content switching, makes routing decisions based on application layer data and
attributes, such as HTTP header, uniform resource identifier, SSL session ID, and
HTML form data; global server load balancing extends the core layer 4 and layer 7
capabilities and applies them across geographically distributed server farms. That
said, it can be argued that there might be different-purpose approaches to load
balancing that we are not considering here and that could perform/work better when
applied to microservices. A full-coverage assessment in this direction would require
a dedicated systematic study to deeply review the whole literature. Such a study is
out of the scope of this work, and it is left for future work.

In [19], Richard Li describes a client-side approach to avoid bottlenecks in
microservice-based systems. After arguing against server-side approach, the work
focuses on client-side load balancing. Each local load balancer handles all traf-
fic for its local microservice instance, regardless of which or how many other
microservices it communicates with. The approach needs to track the availability
and location of all instances of the involved microservices, and this is done using
(1) a routing system running locally with each microservice instance so as to
determine where requests from that instance should go, (2) a health checker with
each local instance to register when it goes live and sends a notification message,
(3) a lightweight, global service discovery mechanism that receives availability
information from each checker instance, and propagates changes in availability to
local router instances as needed. As stated by the author, one possible argument
against using the proposed client-side load balancer is the effectiveness of actually
balancing the usage of a service across the entire global network of instances. The
odds of this happening are low, especially in large distributed systems. It is, however,
enough to design the service discovery used by the local load balancers so that
the load balancers give a slight bias to nearby instances. As described in Sect. 4,
during high traffic conditions, our hybrid approach offers a reduced latency when
propagating the system status, i.e., server availability changes and microservice
workloads.

A Hybrid Approach to Microservices Load Balancing 265

In [7], Butzin et al. describe patterns and best practices that are used in MSA-
oriented approaches and how they can be used in the Internet of Things (IoT). The
work discusses self-containment of services, monitoring and prevention of fault
cascading, choreography and orchestration, container technologies, and handling
different service versions. Although the focus is on IoT applications and on design
decisions that might be adopted to improve the ability to create value-added
applications from a multitude of services, the authors also describe how a circuit
breaker pattern can be used in conjunction with a load balancer to enable the routing
of traffic only to services with good health status. The circuit breaker can be used
to check the health status of microservice instances by monitoring for failures,
evaluating failures threshold, and remembering the number of unsuccessful calls. A
circuit breaker pattern could be employed in the server side of our hybrid approach
to “protect” those non-healthy (subset of) microservice instances from being called
so as to avoid wasting critical resources and cascading failures.

In their preliminary work [21], Malavalli et al. propose a microservices-based
architecture to implement dual tone multi-frequency (DTMF) management profiles
in the middle tier of commercial management consoles. A specific web layer
provides an HTTP interface that also acts as a load balancer for the business layer,
which in turn implements the domain logic of the management consoles. Depending
on the request, the console sends requests to the target microservice types. On
the positive side, the web layer insulates clients from how the application works
internally and from how it is partitioned, hence gaining security benefits. On the
other hand, the proposed web layer is a fully centralized server-side stratum and, as
such, it inherits all the advantages and disadvantages of server-side load balancing
(in the case a single central load balancer is employed). Indeed, since the proposed
approach distinguishes three types of microservices, the adoption of three separated
load balancers would have mitigated the suffered disadvantages. These aspects are
described in Sect. 2.1.

In [22], Antonio Messina et al. describe some of the patterns related to
microservices architecture, used to solve the drawbacks related to maintenance,
upgrade, and scale of monolith systems. Two important patterns related to load
balancing are considered: the client-side discovery and the server-side one. In the
client-side discovery pattern the clients obtain the location of a service instance
querying a service registry; in the server-side one, the client makes requests using a
router (that basically works as a load balancer). The router queries a service registry
and forwards the requests to an available service instance. This work helped us
understand some interesting issues related to discovery and routing. It would have
been interesting if the authors had discussed possible intermixes of the client-side
with the server-side discovery pattern.

In [32], Toffetti et al. propose a novel architecture that helps to enable scalable
and resilient self-management microservices-based applications. A load balancer
is used to balance the load between the servers. The load balancer uses internal

266 M. Autili et al.

metrics in combination with a tool called LogStash8 to provide statistics and health
data, such as the average request rate, response time, and queue length (for the last
seconds and minutes). These metrics are enough for an autoscaling logic to take
decisions on the number of the needed servers. The same kind of metrics could be
used in our hybrid approach to perform autoscaling logic.

In the remainder of this section, we briefly discuss other works that, although
not closely related to our work, provided us with useful insights and contributed to
complete the overall picture.

In [34], Villamizar et al. evaluate the monolithic and the microservices archi-
tecture pattern, and describe how cloud computing aids the deployment of web
applications capable of scaling the requested resources on demand. The authors
developed and experimented with a case study that allowed them to identify some
of the benefits and challenges that microservice architectures provide to businesses
that want to offer applications to thousands or millions of users. In order to
scale the system, the authors used a separated server-side load balancer for each
microservice type and several web servers (with some of them using a database to
store information).

In [16], Kookarinrat et al. propose a decentralized message bus that facilitates
communication among microservices and increases decoupling. The message bus
is distributed among different nodes, with each node comprising four main com-
ponents: public API, messaging, load balancer, and service discovery. In particular,
each load balancer uses a round-robin logic to circularly distribute the load among
available service instances, grouped through namespaces. The approach basically
uses a client-side approach to load balancing, in that each load balancer stays along
with the service (namespace) it controls.

In [5], Baresi et al. present a serverless edge computing architecture that enables
the offloading of computation in favor of low latency and high throughput. In the
mobile and IoT domain, the purpose is to enable low-latency mobile applications
by minimizing the impact on resource-constrained devices. As a refinement of the
cloud computing model, serverless architecture allows one to write and deploy code
without the need for considering the execution environment, resource allocation,
load balancing and scalability issues, all these aspects being handled by the provider.
Amazon Lambda9 is a concrete example of a serverless architecture, also known as
Function as a Service (FaaS). Developers just need to upload code using dedicated
services and Lambda will take care of everything else, from resource allocation to
scalability. As clearly stated in [5], these advantages allow companies to drastically
reduce the cost of their infrastructures with regard to typical monolithic architectures
or even microservice architectures. At the granularity of functions, serverless
architectures naturally offer a form of load balancing having as a pro its simplicity
of use, efficiency, and automatism.

8https://www.elastic.co/products/logstash.
9https://aws.amazon.com/lambda/.

https://www.elastic.co/products/logstash
https://aws.amazon.com/lambda/

A Hybrid Approach to Microservices Load Balancing 267

In [9], the author briefly discusses different load balancing strategies. Beyond
discussing the server-side and the client-side strategies, the author proposes an
“external” load balancing strategy. According to the proposed strategy, clients
communicate with the external load balancer in order to request the URLs of the
servers to be contacted (in this sense, the load balancer basically acts as a discovery
service). Once the URls are received, the clients communicate with the servers
directly, without being proxyfied by the load balancer itself. There are two main
advantages of this strategy: absence of proxy extra hops and no bottlenecks, with
scalability depending on the number of available servers. On the cons side: some
complexity must be handled by the clients, complex maintenance (libraries update,
etc.) as the implementation is language specific, and the clients must be trusted.

7 Conclusions and Future Work

The notion of load balancing concerns many aspects of scalability, it covers many
different areas and spans a wide range of application fields. In the realm of
microservices, load balancing concerns the arrival rates or the concurrent number
of requests. In the literature, two main approaches to load balancing can be
distinguished, namely, server-side and client-side load balancing. Although from
an architectural point of view the two approaches can be easily understood and
differences can be easily recognized, it is not always easy to clearly distinguish the
pros and cons at runtime and grasp trade-offs between the two.

This chapter proposed a hybrid approach to microservices load balancing that
combines the benefits of client-side and server-side load balancing. More than a sub-
stitutive alternative to the client-side or server-side approaches, the hybrid approach
proposed in this chapter must be considered as a complementary alternative that can
be put in place to reduce the cons of the client-side and server-side approaches.

As future work, we plan to perform a dedicated systematic study to deeply
review the whole literature also on multi-purpose approaches to load balancing (not
specifically targeted to microservices) that we did not consider in this work and that
could perform/work better when applied to microservices. Then, we plan to formally
characterize our hybrid load balancer in order to enable a rigorous assessment of
the stated advantages against a broader range of approaches in the literature. In
particular, a formal reasoning will help us precisely determine and weigh up the
negative consequences of possible conflicting situations that may tamper with the
claimed efficiency of the approach in the most general application scenarios.

We also plan to fully implement the approach and validate it against the
set of microservice-based applications identified in [2] as good candidates for
benchmarking requirements for microservices architecture, namely, Sock Shop (i.e.,
the one we already used in Sect. 5), Acme Air, Spring Cloud Demo Apps, and
MusicStore.

268 M. Autili et al.

References

1. M.L. Abbott, M.T. Fisher, The Art of Scalability: Scalable Web Architecture, Processes, and
Organizations for the Modern Enterprise (Addison-Wesley, Boston, 2015)

2. C.M. Aderaldo, N.C. Mendonça, C. Pahl, P. Jamshidi, Benchmark requirements for microser-
vices architecture research, in Proceedings of the 1st International Workshop on Establishing
the Community-Wide Infrastructure for Architecture-Based Software (ECASE) (IEEE, Piscat-
away, 2017), pp. 8–13

3. A. Avritzer, V. Ferme, A. Janes, B. Russo, H. Schulz, A. van Hoorn, A quantitative approach for
the assessment of microservice architecture deployment alternatives by automated performance
testing, in Software Architecture, ed. by C.E. Cuesta, D. Garlan, J. Pérez (Springer, Cham,
2018), pp. 159–174

4. A. Balalaie, A. Heydarnoori, P. Jamshidi, Migrating to cloud-native architectures using
microservices: an experience report, in Advances in Service-Oriented and Cloud Computing,
ed. by A. Celesti, P. Leitner (Springer, Cham, 2016)

5. L. Baresi, D.F. Mendonça, M. Garriga, Empowering low-latency applications through a
serverless edge computing architecture, in Service-Oriented and Cloud Computing, F. De Paoli,
S. Schulte, E.B. Johnsen (Springer, Berlin, 2017), pp. 196–210

6. A.B. Bondi, Characteristics of scalability and their impact on performance, in Proceedings of
the 2nd International Workshop on Software and Performance (ACM, New York, 2000), pp.
195–203

7. B. Butzin, F. Golatowski, D. Timmermann, Microservices approach for the internet of things, in
2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation
(ETFA) (2016), pp. 1–6

8. A. Christoforou, M. Garriga, A.S. Andreou, L. Baresi, Supporting the decision of migrating to
microservices through multi-layer fuzzy cognitive maps, in Service-Oriented Computing, ed.
by M. Maximilien, A. Vallecillo, J. Wang, M. Oriol (Springer, Berlin, 2017), pp. 471–480

9. Damien, Load balancing strategies, in Beyond the Lines (2018). http://www.beyondthelines.
net/computing/load-balancing-strategies/. Accessed Feb 2019

10. N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,
Microservices: Yesterday, Today, and Tomorrow (Springer, Cham, 2017), pp. 195–216

11. S.J. Fowler, Production-Ready Microservices: Building Standardized Systems Across an
Engineering Organization, 1st edn. (O’Reilly Media, Newton 2016)

12. P.D. Francesco, I. Malavolta, P. Lago, Research on architecting microservices: trends, focus,
and potential for industrial adoption, in 2017 IEEE International Conference on Software
Architecture (ICSA) (2017), pp. 21–30

13. A. Gandhi, M. Harchol-Balter, R. Raghunathan, M.A. Kozuch, Autoscale: dynamic, robust
capacity management for multi-tier data centers. ACM Trans. Comput. Syst. 30(4), 14:1–14:26
(2012)

14. N.R. Herbst, S. Kounev, R. Reussner, Elasticity in cloud computing: what it is, and what it is
not, in Proceedings of the 10th International Conference on Autonomic Computing (ICAC13)
(USENIX, Berkeley, 2013), pp. 23–27

15. N. Jackson, Building Microservices with Go: Develop Seamless, Efficient, and Robust
Microservices with Go (Packt Publishing, Birmingham, 2017)

16. P. Kookarinrat, Y. Temtanapat, Design and implementation of a decentralized message bus for
microservices, in 2016 13th International Joint Conference on Computer Science and Software
Engineering (JCSSE) (2016), pp. 1–6

17. A. Krylovskiy, M. Jahn, E. Patti, Designing a smart city internet of things platform with
microservice architecture, in 2015 3rd International Conference on Future Internet of Things
and Cloud (2015), pp. 25–30

18. J. Lewis, M. Fowler, Microservices: a definition of this new architectural term (2014), https://
martinfowler.com/articles/microservices.html. Accessed May 2019

http://www.beyondthelines.net/computing/load-balancing-strategies/
http://www.beyondthelines.net/computing/load-balancing-strategies/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

A Hybrid Approach to Microservices Load Balancing 269

19. R. Li, Baker street: avoiding bottlenecks with a client-side load balancer for microservices
(2015), https://thenewstack.io/baker-street-avoiding-bottlenecks-with-a-client-side-load-
balancer-for-microservices/. Accessed Feb 2019

20. H. Liu, R. Zhang-Shen, On direct routing in the valiant load-balancing architecture, in
Proceedings of the Global Telecommunications Conference (GLOBECOM), vol. 2 (2005), p. 6

21. D. Malavalli, S. Sathappan, Scalable microservice based architecture for enabling DMTF
profiles, in 2015 11th International Conference on Network and Service Management (CNSM)
(2015), pp. 428–432

22. A. Messina, R. Rizzo, P. Storniolo, M. Tripiciano, A. Urso, The database-is-the-service pattern
for microservice architectures, in International Conference on Information Technology in Bio-
and Medical Informatics, vol. 9832 (2016), pp. 223–233

23. A. Messina, R. Rizzo, P. Storniolo, A. Urso, A simplified database pattern for the microservice
architecture, in DBKDA 2016: The Eighth International Conference on Advances in Databases,
Knowledge, and Data Applications (2016)

24. D. Namiot, M. Sneps-Sneppe, On micro-services architecture. Int. J. Open Inf. Technol. 2(9),
24–27 (2014)

25. S. Newman, Building Microservices: Designing Fine-Grained Systems, 1st edn. (O’Reilly
Media, Newton, 2015)

26. H. Nguyen, Z. Shen, X. Gu, S. Subbiah, J. Wilkes, AGILE: elastic distributed resource
scaling for infrastructure-as-a-service, in Proceedings of the 10th International Conference
on Autonomic Computing (ICAC13), San Jose (USENIX, Berkeley, 2013), pp. 69–82

27. C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, N. Josuttis, Microservices in practice,
part 1: reality check and service design. IEEE Softw. 34(1), 91–98 (2017)

28. P. Potvin, M. Nabaee, F. Labeau, K.K. Nguyen, M. Cheriet, Micro service cloud computing
pattern for next generation networks. CoRR, abs/1507.06858 (2015)

29. M. Stiefel, What is so special about microservices? An interview with Mark Little (2015),
https://www.infoq.com/news/2015/02/special-microservices-mark-litle/. Accessed June 2019

30. D. Taibi, V. Lenarduzzi, C. Pahl, Architectural patterns for microservices: a systematic
mapping study, in Proceedings of the 8th International Conference on Cloud Computing and
Services Science, CLOSER 2018, Funchal, Madeira, Portugal, March 19–21, 2018 (2018), pp.
221–232

31. J. Thönes, Microservices. IEEE Softw. 32(1), 116–116 (2015)
32. G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, A. Edmonds, An architecture for self-

managing microservices, in Proceedings of the 1st International Workshop on Automated
Incident Management in Cloud, AIMC’15 (ACM, New York, 2015), pp. 19–24

33. T. Ueda, T. Nakaike, M. Ohara, Workload characterization for microservices, in 2016 IEEE
International Symposium on Workload Characterization IISWC (2016), pp. 85–94

34. M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casallas, S. Gil, Evaluating
the monolithic and the microservice architecture pattern to deploy web applications in the
cloud, in 2015 10th Computing Colombian Conference (10CCC) (2015), pp. 583–590

35. H. Zeiner, M. Goller, V.J.E. Jiménez, F. Salmhofer, W. Haas, SeCoS: Web of things platform
based on a microservices architecture and support of time-awareness. e & i Elektrotechnik und
Informationstechnik 133(3), 158–162 (2016)

36. O. Zimmermann, Microservices tenets. Comput. Sci. Res. Dev. 32(3), 301–310 (2017)

https://thenewstack.io/baker-street-avoiding-bottlenecks-with-a-client-side-load-balancer-for-microservices/
https://thenewstack.io/baker-street-avoiding-bottlenecks-with-a-client-side-load-balancer-for-microservices/
https://www.infoq.com/news/2015/02/special-microservices-mark-litle/

Part V
Applications

Towards the Digital Factory: A
Microservices-Based Middleware
for Real-to-Digital Synchronization

Michele Ciavotta, Giovanni Dal Maso, Diego Rovere, Radostin Tsvetanov,
and Silvia Menato

Abstract In the last few years, research and industrial communities have spent a
considerable effort in the designing and early commissioning of digitalized manu-
facturing environments with the primary objective of achieving a new automation
paradigm, more flexible, responsive to changes, and safe. This work presents
the architecture and discusses the applications through a real-life case study,
of a microservices-based middleware supporting the next generation of smart-
factory applications with particular attention paid to simulation tools. The proposed
platform aims at being among the first solutions capable of empowering industrial
cyber-physical systems (CPSs), providing an environment that streamlines the
management of digital twins along the whole plant life cycle. The platform features
a distributed architecture based on microservices and big data best practices; it
supports the definition of CPS digital representations and the handling of data
conveyed from the shop floor for real-to-digital synchronization.

1 Introduction

Manufacturing has always been an extremely competitive field wherein the players
strive to build increasingly more efficient and flexible solutions in order to take on
challenges dictated by a global economy. In particular, the worldwide competition
carries on the necessity for mass-customization to meet volatile customers’ trends
and consequent unpredictable workloads. Such a scenario calls for scalable and

M. Ciavotta (�)
University of Milano-Bicocca, Milano, Italy
e-mail: michele.ciavotta@unimib.it

G. D. Maso · D. Rovere
Technology Transfer System S.r.l., Milano, Italy
e-mail: dalmaso@ttsnetwork.com; rovere@ttsnetwork.com

R. Tsvetanov · S. Menato
University of Applied Sciences of Southern Switzerland, Manno, Switzerland
e-mail: radostin.tsvetanov@supsi.ch; silvia.menato@supsi.ch

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_11

273

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_11&domain=pdf
mailto:michele.ciavotta@unimib.it
mailto:dalmaso@ttsnetwork.com
mailto:rovere@ttsnetwork.com
mailto:radostin.tsvetanov@supsi.ch
mailto:silvia.menato@supsi.ch
https://doi.org/10.1007/978-3-030-31646-4_11

274 M. Ciavotta et al.

fast reconfigurable automation platforms, as much as possible integrated into the
enterprise information systems (EIS).

The industrial internet, that is, the convergence of industrial manufacturing and
information and communication technologies (ICT), is generally considered the
core of the fourth industrial revolution (Industrie 4.0) [22]. ICT trends as machine
learning, cloud computing, big data, Internet of Things (IoT) [3, 38, 39], and cyber-
physical systems (CPSs) [18] are the innovation drivers towards this paradigm
shift, aka the Smart Factory [15, 20], that merges at various levels of automation
and computation. In recent years, an ever-growing number of industrial devices
came with embedded computational capacity; they are usually referred to as cyber-
physical systems. Gartner reports that in 2016 around 1.2 billion CPSs were active,
estimating a steady growth up to 2.9 billion devices by 2020. It is noteworthy that
those numbers, accounting for an annual turnover of $991 billion, do not include
consumer (tablets, smartphone, and computers) or cross-industry devices (such
as light bulbs or sensors). In the mass-production context, CPSs are increasingly
replacing classical programmable logic controllers (PLCs) since atop their flexible
and ubiquitous paradigm, more intelligent and automated manufacturing processes
can be built. Furthermore, CPSs are able to communicate (via closed industrial
networks and protocols but often also over the Internet) with other CPSs and with
enterprise software (like ERP, SCADA, MES, and simulators). In this way, they
can implement that modularity, service orientation, and decentralized automation,
theorized by Industrie 4.0 and predicted to flatten the automation pyramid and lead
to large scale distributed and decentralized automation solutions.

The integration between automation and information systems entails the creation
of a heterogeneous ecosystem where industrial CPSs, software middleware, and
enterprise applications seamlessly interact using the protocols of the Internet of
Things (IoT). In this context, CPSs assume a digital (virtual) nature in addition
to the cyber-physical one. Specifically, if on the one hand a CPS is equipped with
computational onboard capabilities (cyber nature), able to sense, control, and react
to changes in the shop floor (physical nature), on the other it also provides a digital
interface to allow the integration within the EIS (Virtual nature).

In the manufacturing domain, the term digital twin has gained importance in
the last decade as a comprehensive physical and functional description of a real
asset. A digital twin consists of a computerized description of the physical asset
(through, for instance, rigid body dynamics and electric consumption models), its
virtual counterpart, the data that tie these two parts together, and the algorithms
that describe the real counterpart behavior and decide on actions to be taken in
the production environment based on the processed data [14, 30]. This concept
has been primarily associated with simulation in the industry 4.0 manufacturing
systems, since the digital twin can reproduce the status of (up to) a whole factory
and its interactions in a virtual environment [14]: it is a digital avatar encompassing
CPS data and intelligence, and representing structure, semantics, and behavior of
the associated CPS, providing services to mesh the virtual and physical worlds. In
order to exploit the digital twin in simulation practices, supporting manufacturing
and production processes, continuous synchronization with the physical world is

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 275

essential. This is achieved using existing data in highly automated equipment or
taking advantage of the widespread usage of IoT sensing. Moreover, to guarantee
semantic-preserving information exchange among heterogeneous platforms, a high
level of interoperability is also required. In this sense, communication middleware
technology can provide a flat communication environment for exchanging infor-
mation between independent environments in a real-time manner, such as DDS,
HLA/RTI, MQTT, RT-CORBA [41].

This work significantly extends [6] presenting, evaluating, and discussing the
lessons learned from the implementation of a distributed middleware developed
within the frame of MAYA,1 an H2020 European project, tailored to enable scalable
interoperability between enterprise applications, especially simulators, and CPSs.
The proposed platform aims at being the solution that joins microservices [9, 10, 29],
digital twin [27], and big data [23] paradigms to empower shop floor CPSs along
the whole plant life cycle, and realize the real-digital synchronization, ensuring at
the same time security and confidentiality of sensible factory data.

The remainder of this chapter is organized as follows. In Sect. 2 the literature on
microservices platform implementations for digital twins management is reviewed.
The real-to-digital synchronization challenge is presented in Sect. 3 whereas the
overall MAYA ecosystem is introduced and discussed in Sect. 4. Then, in Sect. 5
the architecture of our solution is detailed and the design choices discussed. A case
study in which our middleware has been deployed is reported in Sect. 6 while Sect. 7
presents and discusses the lessons learned. Finally, conclusions and future steps are
drawn in Sect. 8.

2 Microservices for Digital Twins Management: Overview

In the last decade, different industry demands and production paradigms have influ-
enced the way software is created and operated. In particular, the service-oriented
architecture (SOA) [29] appeared to be the answer to multiple requirements of large
enterprises. SOA is a design approach where multiple services collaborate to provide
separate operating system processes, promoting the reusability, maintenance, and
rewriting of software, as long as the semantics of the service don’t change too much.
According to [29], SOA suffers from problems in the communication protocols,
vendor middleware, weak guidance about service granularity, and on picking
places to split the system, and requires significant upfront commitment from the
entire company IT. A few years ago, the microservices architecture gained greater
interest in this context [9], as opposite to monolithic (and coarse-grained SOA)
systems. Both SOA and microservices rely on the decomposition of systems into
services accessible over a network to be integrated and shared across heterogeneous
platforms. Differently from SOA, however, microservices manage smart services in

1www.maya-euproject.com.

www.maya-euproject.com

276 M. Ciavotta et al.

a more decentralized way, bringing higher autonomy and decoupling, and involve
light and heterogeneous protocols for service interaction [5]. Such an approach has
been adopted by various large companies recently and has already attracted the
interest of the research community in the domain of manufacturing systems [37].

The manufacturing domain is in turmoil under the influence of the Indus-
try 4.0 revolution and IoT technologies, cloud computing, data analytics and
CPSs [3, 38, 39]. Modern production ecosystems should be able to scale and
evolve over time to satisfy the changing requirements of the market adopting
innovative technologies and designs [2]. The microservices architecture has been
recently adopted by various large companies and is becoming popular, appearing
in some cases as the only feasible solution for reducing the growing complexity
of systems [35]. Microservices enable, to a certain extent, easiness of components
management, reduce development and maintenance costs, and support distributed
deployments [19]. These characteristics make this approach a promising technology
for manufacturing systems. Benefits include increase in agility, developer produc-
tivity, resilience, scalability, reliability, maintainability, separation of concerns, and
ease of deployment [1]. In this context, we are thus proposing a microservices-
big data architecture providing a simulation-oriented environment for digital twins
along the plant life cycle, supporting the management of data streams coming from
the shop floor for real-digital synchronization and the publication of multidisci-
plinary simulation models.

In [17], a collaborative Industry 4.0 platform has been proposed, which enables
IoT-based real-time monitoring, optimization, and negotiation in manufacturing
supply chains, integrating microservices. Similar to our proposal, as a service
communication channel, the HTTP or the Apache Kafka messaging service have
been adopted. An IoT component has also been introduced to support com-
munication among IoT devices and the microservices of the proposed platform
using MQTT [36]. An infrastructure for automated deployment of microservices
collaborating for monitoring purposes is presented in [8], based on the open cloud
computing interface and relying on long-exploited classical communication patterns
(pipes, TCP Sockets, RMI). Thramboulidis et al. [37] proposes a framework for
the exploitation of both IoT technologies and microservices architecture in the
manufacturing domain, using LwM2M IoT protocol implemented over CoAP [36]:
traditional technologies can be used for the implementation of smart machinery in
the form of cyber-physical microservices and expose its functionality through IoT.
In [27], the authors propose a design framework for synchronizing the digital twin
and the microservices architecture. The use of digital twins can be considered as
one of the enablers of decentralization of production systems control and, therefore,
key to achieving a new level of flexibility in automation systems, leading also to
large-scale distributed automation solutions. However, to the best of our knowledge
the support infrastructure proposed in Sect. 4 is the first microservices infrastructure
ever built that manages digital twins and real-to-digital synchronization. Thanks
to decentralized management insisting on microservices architecture this software
development technique can be adopted in the development of digital twins. More-
over, irrespective of whether the digital twin has been designed in a modular way,

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 277

products parts can be directly available to the production units, enabling the latter
to orchestrate the part flow autonomously [33].

3 Melding Real and Digital in the Factory of the Future

In the vision fostered by Industrie 4.0, the shop floor ceases to be a rigid
environment, firmly regulated by clock-based automation systems; the approach to
manufacturing has to be entirely redesigned to be composed of intelligent elements
(from simple sensors to production machines and robots) that are often identified
with the acronym CPS [18]. These elements are capable of interacting with each
other, with the environment, and with products by sharing information on their
state, making the entire production environment highly flexible. In order for this
vision to be achievable, the elements of the digital factory need to be smart [15, 20],
that is, programmable and with sufficient computational capacity to react to events
in the appropriate time frame; moreover, they must also be connected through
communication channels that guarantee a reduced latency.

The role of communication in smart manufacturing environments is twofold. On
the one hand, it guarantees that the actors at the shop floor level can interact, by
exchanging valuable information, and orchestrate production in a distributed way.
On the other hand, it enables the almost real-time monitoring, paving the way for
the creation of digital twins, which are the CPS digital doppelgangers meant as live
faithful digital copies of environments and processes. The information collected in
large quantities from CPSs can serve both to refine/learn their behavior to obtain
always-accurate simulation models (Real-to-Digital Synchronization) and to feed
the simulation with events and data coming from the factory in real time (Mirroring).
Both features prelude the integration of simulation in the heart of the production
process to exploit its potential not only in the factory design and planning phase but
also in the operative one with a multitude of possible applications (Simulation-in-
the-loop).

Achieving such an ambitious objective confronts us with a plethora of challenges,
including the creation of a flexible, modular, and extensible middleware that is a
bridge between the elements of the shop floor, their digital twins, and the control and
simulation software of the digital factory. Figure 1 displays at a high level the pivot
elements of the digital twin management middleware, which is the subject of this
work. In our view, the digital twins are created and managed via an API/UI, which
can be used both by modelers to create the digital representation of the factory at
issue and by the simulator (and by the MES and the ERP as well). The digital twins
are saved in a repository and continuously updated through a module in charge of
implementing real-to-digital synchronization. As regards the API for virtualization,
it is structured in two levels. The lower level allows the management of core meta-
model elements [7] while the upper level features higher endpoints, specific for each
factory software. This second level maps the particular concepts of the domain using

278 M. Ciavotta et al.

Fig. 1 Real-to-digital synchronization: overview

the underlying API. In this level all the logic that enforces a semantic coherence of
the domain (e.g., integrity check, validation) is implemented.

The real-to-digital synchronization can be defined as the process of continuously
updating CPS models stored in the repository, tracking the evolution of the shop
floor. Having up-to-date models is especially important in simulation since CPSs
along their life cycle are subject to aging, straining, and reconfiguration processes,
which can change their behavior and performance; in this situation the simulation
outcomes may be substantially different from reality and, therefore, of very limited
utility. In order to be able to make decisions based on reliable simulation models,
it is of paramount importance to detect changes in the CPSs automatically and
continuously, and to adapt parameters and scenarios accordingly.

4 A Vision of the Future of Manufacturing

In order to fully understand the objectives and the role played by the middleware
targeted by this study in the framework of the factory of the future, it is necessary to
provide a brief introduction to the overall simulation-oriented workflow envisioned
by the project MAYA.

4.1 MAYA

MAYA is an H2020 EU funded project aiming at flattening the traditional hierar-
chical view of automation by developing simulation-oriented methodologies and
tools for the design, engineering, and management of CPS-based factories along all
the phases of the factory life cycle. The concurrence and the cross-combination of
the cyber and the physical dimensions with the Simulation domain are considered

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 279

Fig. 2 Infographic on MAYA’s principal objectives

a cornerstone in MAYA innovations, to successfully address a new generation of
smart factories for future industry responsiveness.

In order to realize such a vision, the following three main objectives are
addressed (see Fig. 2): (1) digital continuity, that is, the ability to maintain
digital information availability throughout the factory life cycle, despite changes
in purpose and tools; (2) real-to-digital synchronization, that is, the convergence
of physical and virtual worlds, where the latter must closely mirror the first to

280 M. Ciavotta et al.

achieve an ever-updated digital representation of the factory (3) multidisciplinary
integrated simulation and modeling, that is, the virtual validation of manufac-
turing equipment and systems prior to/during the actual manufacturing, thanks to
integration of digital twins and simulators from different domains. To this end,
a distributed platform is proposed wherein three main subsystems are involved in
various capacities. They are:

MAYA Support Infrastructure (MSI), the system this piece of research hinges
on; it is a microservices/large-scale data processing middleware in charge of
managing digital twins throughout the factory life cycle, enabling definition,
synchronization, and enrichment via data processing and dismissal. Importantly,
it provides functionalities for the publication of multidisciplinary simulation
models (as part of the digital twins), enforcing security and confidentiality of
sensitive data. It is noteworthy that, to support multidisciplinary simulation and
real-to-digital synchronization of CPSs, digital twins features two types of assets,
namely, simulation and functional models (FMs). Whereas the former are a
host of files representing the CPS behavior in a certain domain (e.g., electricity
consumption and rigid body dynamics models), the latter are microservices used
to process data streams collected at the shop floor level to update the state of the
digital twins.

MAYA Simulation Framework (MSF), a dedicated run-time for the concurrent
execution and orchestration of multidisciplinary simulators. Supporting this
approach requires that any suitable simulation tools be able to use in process
the outcomes of other engines, activating in real-time models already published
by other tools and synchronizing the execution. To fulfill such objectives, suitable
mechanisms are required for concurrent orchestration of the models and the
publishing/dispatching of results with a careful management of time constraints.
Through MSF, each tool is enabled to query the MSI to look up and retrieve
digital twins to integrate with their execution [4].

MAYA Communication Layer (MCL), a middleware consisting of a runtime
environment for the execution of distributed automation software. Its main
role in the platform is to enable aggregation, discovery, orchestration, and
communication among CPSs, at the shop floor level and with the rest of the
smart factory appliances.

A graphical representation of platform macrocomponents and their relationships
is presented in Fig. 3. The image shows a direct link between MSI and MSF meaning
that the former provides a set of services to the latter. Examples of those services are:
services that store, retrieve, and return digital twins, simulation models, endpoints
to save the results of the simulation along with the related configuration files, and
services for authentication and privacy enforcement.

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 281

Fig. 3 Overview of the MAYA platform

4.2 MAYA Support Infrastructure

As discussed above, the main objectives of the MSI are: managing the life cycle of
digital twins to support simulation and provide suitable mechanisms for the CPS-to-
DT synchronization. Essentially, the MSI implements the following functionalities:

Digital twin management. The platform provides an API and a UI enabling
the definition of new digital twins and the management of their life cycles. In
particular, a RESTful API for manipulating the set of digital twins is provided,
which has been designed to allow trusted actors the execution of CRUD (Create,
Read, Update, Delete) operations to search, filter, and manipulate digital-twin-
related information.

Interaction with shop floor CPSs. The MSI implements a machine-to-machine
(M2M) protocol for CPS authentication and authorization employing modern
encryption mechanisms. Once the CPS is set up and logged in (authenticated
and authorized) it may require to push data to the platform for online/offline
processing in a secure way; consequently, a suitable mechanism to create a
secured WebSocket channel [13] is provided.

Real-to-digital synchronization. In order to support simulation in all phases of
the factory life cycle, it is critical to ensure that digital twins mirror steadily
and faithfully the state of CPSs. For this reason, as introduced earlier, digital
twins may come with one (or more) functional models, which are microservices

282 M. Ciavotta et al.

that analyze the data sent by the CPSs. Such routines can regularly update
CPS reference values, estimate indirect metrics, or train predictive maintenance
models [26]. FMs are fully managed (registered, executed, and monitored) by the
MSI middleware itself (more details are provided in Sect. 4.3).

Several usage scenarios are possible; nonetheless, the following is proposed as a
reference use case, as it involves all the components of the overall platform, touching
a large part of the MSI functionalities. The objective is to use it as a reading key to
better understand the relationships among the subsystems and how they are reflected
in the architecture of the MSI.

1. A human operator registers a new digital twin. This action can be performed via
the graphical UI or employing convenient REST endpoints.

2. The CPS logs in on the MSI, its digital identity is verified, and the digital twin is
activated.

3. The functional model microservice featured by the digital twin (if any) is set up,
scheduled, and executed.

4. WebSocket channel is established between the CPS and the MSI. The CPS starts
streaming data to the platform.

5. The functional model periodically generates updates for a subset of attributes of
the corresponding digital twin.

6. The MSF accesses CPS digital twin and the related simulation models and
performs the simulation.

4.3 Real-to-Digital Synchronization with Functional Models

The core of the digital-to-real synchronization grounds in the processing of large
amounts of data collected at the shop floor level. Such a general approach, based on
data analysis, enables not only the tracking of CPS parameters but it also unlocks
scenarios in which, for instance, digital twins can be enriched with information that
cannot be directly measured from the field. This can be even the case of predictive
maintenance information. The other side of the coin is that, with this approach,
the definition of the synchronization procedure must be implemented as part of the
digital twin data model. This is because each digital twin might require a different
data processing procedure (i.e., functional model) to be synchronized with its real
counterpart, which has to be managed by the MSI.

Functional models (presented in detail in [25] and here recalled for the sake
of completeness) describe the logic for processing shop data to update the digital
twins attributes or to estimate indirect values and create new attributes. Specific
components will be in charge of managing the life cycle of functional models, which
include:

1. Checking the execution schedule: Depending on the synchronization scenario
the functional model can be continuously executed against streams of raw data,

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 283

Fig. 4 Graphical representation of the digital twin synchronization process

or it is scheduled to run periodically, say, for instance, once a day over historical
data.

2. Fetching the model: The functional model, persisted in a suitable repository, is
looked up and retrieved.

3. Running the model: The functional model is executed exploiting the large-scale
processing subarchitecture of the MSI (see Sect. 5).

4. Generation and application of the updates: The functional model generates
values that are used to update the attributes of the digital twin to which the model
refers.

5. Dismissing the model: Once the dismissal condition is met (e.g., the CPS dis-
connects or the synchronization process ends) the functional model is released.

Figure 4 describes graphically a typical scenario where a CPS, registered and
connected to the platform, is activated. The platform checks the CPS account and
permissions via a user account and authentication (UAA) server. A data flow is
spawned via the communication layer. The MSI is notified and, if a functional model
is associated with the digital twin in the repository, it will be retrieved and executed.
In such a scenario, the functional model will process the input data flow and generate
in output a new stream containing for each time interval the updates to be applied to
the digital twin. A specific service of the MSI is in charge of carrying out the model
update process.

284 M. Ciavotta et al.

5 Under the Hood of the MSI

We have seen how the functionalities of the MSI primarily refer to the management
of digital twins, to the interaction with CPSs and, thirdly, to the realization of
real-digital synchronization. Within the middleware presented in this work, two
groups of services can be identified, and this should be apparent from Fig. 5: a
relevant part of the platform consists of a microservices-based infrastructure devoted
mainly to the management of digital twins’ life cycle and the interaction with
CPSs, as described in Sect. 4.2. The remainder is a large-scale data processing
ecosystem accountable for managing the functional models (another embodiment
of the microservices pattern) to treat shop floor data. Since these two subsystems
have different requirements, thus grounded on different technological solutions, in
what follows they are discussed separately.

5.1 The Digital Twins and CPS Management Ecosystem

In a nutshell, the core features a microservices-based architecturein which the
application is seen as a suite of small services devoted to as single activity [29].
Within the MSI, each service, following the single responsibility principle (SRP),
exposes a small set of functionalities and runs in its own process, communicating
with other services mainly via HTTP resource API or messages [5, 10]. The MSI
features five groups of microservices, which are discussed below.

Front-end services: they are designed to provide the MSI with a single and secure
interface to the outer world. Therefore, any other service can be accessed only

Fig. 5 MSI service diagram

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 285

through the front-end and only by trusted entities. The main services in this group
are the UI (that is a single page web application) and the API gateway [28]. The
former is a web application for the human-machine interaction; it provides a
graphical user interface to register new DTs or to execute manipulation queries
over them. Administration functionalities such as security management and
platform monitoring are available as well via the web application. The API
Gateway, instead, is a service designed to provide dynamically configurable
and secure API routing, acting as a front door for the requests coming from
authorized players, namely, users via the web UI and devices/CPSs executing
REST/WebSocket calls. The gateway service is based on Netflix Ribbon,2 a
multiprotocol interprocess communication library that, in collaboration with
service registry (see the SOA enabling services), dispatches incoming requests
applying a customizable load-balance policy. The API gateway, finally, offers
an implementation of the Circuit Breaker [28] pattern impeding the system to
get stuck in case the target backend service fails to answer within a certain
time.

Security services: Two services belong to this group, the user account and authenti-
cation (UAA) service, which are in charge of the authenticating and authorization
operations; they check users’ (human operators, CPSs or microservices) creden-
tials to verify the identity and issue a time-limited token to authorize a subset of
possible permitted actions that depends on the particular role to which the user
has been assigned. Security assumes paramount importance in Industrial IoT [31,
34]; in the MSI those aspects are taken care and enforced since the earliest stages
of design, focusing on suitable privacy-enhancing technologies (PETs) that
encompass authentication, authorization, and encryption mechanisms. Specifi-
cally, seeking for more flexibility we adopted an extension of SecureUML [21]
role-based access control model that permits the authentication process to depend
on the actor’s role. Suitable authentication/authorization mechanisms (based on
the Oauth23 protocol) have been developed. Securing communication is the
third piece of this security and privacy puzzle, as no trustworthy authentication
and authorization mechanism can be built without the previous establishment of
a secure channel. For this reason, the platform committed to employ trusted
encryption mechanisms (SSL and TLS) for the communication and data
storage.

SOA enabling services: This group of services represents the backbone of the
platform facilitating the correct implementation of the microservices paradigm;
it features (1) the service registry [28], which provides the functionality of
service discovering. This service is meant to allow transparent and agnostic
service communication and load balancing. Based on Netflix Eureka,4 it exposes
APIs for service registration and querying, allowing the services to communicate

2https://github.com/Netflix/ribbon.
3https://oauth.net/2/.
4https://github.com/Netflix/eureka.

https://github.com/Netflix/ribbon
https://oauth.net/2/
https://github.com/Netflix/eureka

286 M. Ciavotta et al.

without referring to their specific IPs. Streamlining the platform management
in the scenario in which services are replicated to handle a high workload. (2)
Configuration server [32], the main task of which is to store properties files in
a centralized way for all the microservices involved in the MSI. Among the
benefits of having a configuration server we mention here the ability to change
the service runtime behavior in order to, for example, perform debugging and
monitoring.

Monitoring console: This macrocomponent with three services is in charge of
log gathering and ingesting, analyzing and indexing, and monitoring services.
In other words, logs from every microservices are continuously collected,
stored, processed, and presented in graphical form to users with administra-
tor rights. A query language is also provided to enable the administrator to
interactively analyze the information coming from the platform. The moni-
toring console is implemented via the ElasticSearch-Logstash-kibana (ELK5)
service stack, which is an extremely common battle-tested cloud-ready solu-
tion.

Back-end services: To this group belong those services that expose the functional
endpoints for the creation, update, deletion, storage, retrieval, and query of
the digital twins. In particular, the orchestrator and scheduler microservices
coordinate and organize the other services to create high-level composite
business processes. On the other hand, models and assets services handle the
persistence of digital-twins-related information (their internal representation and
assets, respectively) providing CRUD operations. Finally, the FM server and the
updater service interact with the data processing environment to submit, monitor
the execution, apply the updates generated, and release the functional models.

5.2 Data Processing Environment

One of the principal innovation drivers of the fourth industrial revolution is the
capability of processing massive volumes of data generated by the physical factory
empowered by the CPS technology [40]. Since one of the objectives of the MSI is
to track the state of the real factory in order to update responsively the digital one
to achieve simulation reliable over time, a distributed platform for data processing
featuring the Lambda architecture [24] has been designed and put in place. In
layman’s terms, the Lambda architecture encompasses a batch and a speed layer.
The batch layer is appointed to the analysis of large volumes of data whereas the
speed layer is in charge of timely processing of infinite streams of information. In
our implementation, both layers have been implemented using a single distributed
data processing engine (namely, Apache Spark6). This engine is responsible for

5https://www.elastic.co/elk-stack.
6https://spark.apache.org/.

https://www.elastic.co/elk-stack
https://spark.apache.org/

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 287

running functional models on a cluster of resources. A fast, scalable, and persistent
queue solution (namely, Apache Kafka7) has been used to canalize the streams of
data produced by CPSs (towards the functional models to be processed) and by
the functional models alike (which can generate streams of updates for the digital
twins). Finally, in case the CPS data do not come in the form of a continuous
stream (i.e., they can be accessed periodically and downloaded in bulk) or in the
case the functional model for a specific CPS does not operate on information flows,
it is necessary to include a storage area where the information will be stashed
and then analyzed in batches. To do this we used a columnar NoSQL database,
Apache Cassandra,8 which is decentralized, scalable, and particularly suitable for
fast updates.

It is worth to be noticed that the data processing platform employs a reduced
number of tools; all of them are considered state of the art, are reliable, used
in production by hundreds of companies worldwide, and are backed by large
communities and big ICT players. Furthermore, it is a multi-paradigm and general-
purpose platform; that is, batch and stream processing as well as ad hoc queries are
supported and can run concurrently. Moreover, the unified execution model, coupled
with a large set of libraries, permits the execution of complex and heterogeneous
tasks (as machine learning, data cleaning, ETL, etc.). Lastly, several functional
models can run in parallel sharing computational resources (multitenancy and
scalability).

6 Use Case: Plant Design

The MSI middleware, together with the other systems of the MAYA platform,
has been deployed and validated in a real scenario against the needs of a small
and medium enterprise (SME) company that manufactures punching and bending
machines. Particularly, the case study presented in this section focuses on the
division that designs, produces, and sells a fully integrated turn-key solution based
on such machines together with additional devices (such as automatic storage,
transfer conveyors, and buffers) and the related software.

It is worth noting that the introduction of a microservices architecture in the
manufacturing software stack and the adaptation of the current hardware and
software to exploit the new functionalities provided by such a new deployment is a
disruptive action in a mostly conservative environment like the industrial automation
one. Unexpected downtimes or failed safety policies for the operators can have very
damaging consequences for the company. Moreover, even if the new architecture
does not introduce new failure points, there are supplementary costs due to the re-
training needed for engineers and operators.

7https://kafka.apache.org/.
8http://cassandra.apache.org/.

https://kafka.apache.org/
http://cassandra.apache.org/

288 M. Ciavotta et al.

For those reasons, the return on investment must be substantial to justify such an
effort. Under these circumstances, although the ultimate goal is to demonstrate the
feasibility of a new manufacturing paradigm that integrates CPS, digital twins, and
microservices along the whole factory life cycle, the case study is limited to the early
design stage. In this phase, sales agents and engineers must promptly and reliably
formulate a proposal for the buyer (namely, product design based on digital twins
and commissioning of the assembly line and the software platform). Nevertheless,
the steps of the workflow for this scenario can cover many of the aspects of the
factory life cycle.

In these contexts, there are the three areas of interest that represent different
aspects of the same early design scenario, in which a computation and analysis
of data on the system performance and the process cost are achieved. In order to
obtain a faithful model, those three areas are explored as they constitute connected
elements of the same simulation scenario:

1. Demonstration and visualization of machines and systems to customers
2. Production system performance analysis and optimization
3. Time studies for punching, cutting, and bending

6.1 Plant and Software Setup

The use case factory line is capable of machining metal sheets executing operations
of punching, shearing, forming, and bending. For the scenario, a physical device
(CPS) and the related digital twin have been created for each machine in the line,
as shown in Fig. 6. In the upper part of the figure, the material flow of the line is
depicted, which represents a nontrivial emblematic configuration of the plants built
by the considered SME, as it features multiple input and output bays and buffers.

In the scenario under consideration, many software applications have to interact,
some of them have been created ad hoc or modified to communicate directly with
the MSI through its API. Others (such as Matlab, for example) require the user
to interact with the web interface to upload the assets of the digital twins. To
summarize, as shown in Fig. 7, it is possible to identify three types of interactions:

Client-server connection (red): These connections are initiated by the client con-
necting to the server (as shown by the arrow direction) and are based on a
client-server protocol (i.e., REST, WebSocket [13]).

Direct invocation (blue): The client (master) directly starts the server (slave)
process executable and communicated through the gRPC9 protocol.

9https://www.grpc.io/.

https://www.grpc.io/

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 289

Fig. 6 The material flow, machines, and devices of the factory line

Fig. 7 The software components and their connections

290 M. Ciavotta et al.

Manual (green): The end user utilizes the web user interface to upload the data
produced by third party commercial tools.

6.2 Use Case Workflow

As stated before, the case study focuses on the early design phase where the sales
agent and the engineering team must collaborate to prepare a proposal (backed by
simulation) for the customer. Within this process, it is possible to identify multiple
phases that are discussed below:

1. Requirements gathering. The first step to define a new factory line is the meet-
ing between the sales agents and the customer; this is where the requirements are
elicited. They are, therefore, passed as input to the technical engineering team
to prepare a draft layout of the plant. In this phase only the digital model of the
plant exists: exploiting the MSI, the digital entities are created together with all
the needed assets. A typical production plan is modeled as well. To this purpose,
a custom-built tool called requirements gathering tool (Rg) has been developed
to connect to the MSI REST API. The tool can retrieve digital twin prototypes
and use them to create the actual digital twins and the production plan. The sales
agent can directly operate the tool at the customer premises. On the SME side,
since all information is immediately available in the MSI, the engineering team
can retrieve it and start building the draft plant layout.

2. Creation of the line digital twin. In this phase, the digital twins are refined.
To carry out this task, it is necessary to develop a plug-in for the DDD Model
Editor [12], the commercial modeling application that is used to interact with
the MSI. The plug-in extends the editor to make it connect and create the digital
twin prototype for the CPSs and upload functional models and simulation assets.
In an ideal scenario, the producer of the CPS would also provide the related
digital twins (for instance, via a URI), and the editor would have an ever-updated
library featuring a broad set of devices; however, new devices, or those that do
not already have a corresponding digital twin, can be modeled using the editor.

3. Creation of the plant layout and simulation model. Based on the list of
machines and the production plan prepared in the first step, the simulation
engineering team creates the digital version of the factory layout, which is
composed of two parts: the first is the simulation model containing the instances
of the digital twins corresponding to the chosen machines (Fig. 8), whereas the
second is the 3D representation in a graphical environment that can be animated
based on the real behavior of the machines (Fig. 9). The output of this phase is a
complete simulation model with a 3D environment, representing the digital twin
of the whole factory line.

4. Time studies with CAM systems. Before a simulation can be performed, it is
needed to convert the production plan into executable tasks for the machines and
to estimate the time required to complete those tasks. For most of the operations,

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 291

Fig. 8 Simulation model of the factory line containing the CPS instances inside the DDD Model
Editor logic view

Fig. 9 3D representation of the factory line inside the DDD Model Editor environment viewer

this time study can be performed with a computer-aided manufacturing (CAM)
tool that converts the CAD design of the product into instruction code for the
machine PLCs.

5. Time studies with physical line. Sometimes it is required to execute some
sample production on the real machines in order to collect timings and other
parameters, and to compare them with the simulated ones. For this step, the
connection between the real machine and the MSI is exploited so that a CPS
interacts directly with its digital twin and updates it with the values generated
by the PLC. The parameters can be updated from values read directly from the
PLC but most commonly by values processed by the CPS monitoring and data
analysis algorithms that are able to process the data and provide higher value
outputs.

6. Layout simulation and optimization. The previous three phases deal with
the preparation of the actual layout simulation, where all the digital twins are

292 M. Ciavotta et al.

created and updated to reflect the real behavior of the corresponding devices. A
simulation of the production plant assesses the timings and, hopefully, achieves
the KPIs expected from the draft layout and following time studies. Notice that
the simulation models is often simplified with respect to the actual factory;
however, it is beneficial for commercial purposes as it is possible to visualize to
the customer how the factory line will ultimately work. The most important value
added by this step is the possibility to simulate different production plans in order
to validate that the expected performances are met under various conditions.
While it is essential to design a factory line that meets the minimum expected
performances, it is also important not to sell a line that is oversized for the
purpose as this would probably make the offer less competitive than that of
possible competitors. In this regard, it is of utmost importance to better scale
the different layout characteristics, such as machine performance, input storage
capacity, number and size of buffers, for the possibility of optimizing the virtual
plant. The plant layout can be shared with the sales personnel by uploading the
simulation on the MSI directly from the DDD Model Editor. Lastly, the proposed
line is iteratively validated and adjusted against the customer’s requirements.
Notice that it is possible that some changes in the requirements would require
a new time study and simulation model.

7. Feedback to the customer. The last phase is the feedback to the customer
after the proposed factory line has been modeled and simulated based on the
customer requirements gathered during the first phase. The sales manager can
run the requirements gathering tool again to show the simulation to the customer
and validate the requirements. The tool connects to the MSI to download
the simulation model and then runs the simulation viewer. At the end of the
simulation the tool generates a report with KPIs to be, eventually, discussed with
the customer (Fig. 10).

Fig. 10 Simulation report showing some KPIs and machine saturation

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 293

6.3 Achievements and Benefits

The microservices architecture has enabled the development of a complex software
platform needed to satisfy the main project goals. In the architecture design phase
it was determined that the best way to implement a solution for the three main
objectives (described below) was to use different architectural solutions as needed.

Digital Continuity. To ensure that all the tools interacting together share and
understand the data in the same way, the data is accessed through a common
middleware (MSI) using a service that exploits a REST API to manage the
entities. The typical REST pattern of POST/PUT/GET was the best fit for this
type of service an ensured an easy integration with tools a the web frontend.

Synchronization of the Digital and Real Factory. The synchronization of the dig-
ital and real factory is achieved by processing the data stream produced by the
CPSs, which are fed to the digital twin of the plant. In this case the service is
exposed through a websocket protocol for efficiently streaming input and output
values. It is still a solution that allowed easy integration in industrial PLC/IoT
devices. Furthermore the stream data can be processed in the data processing
environment to transform raw signal into meaningful information or to aggregate
multiple data sources into higher-level output.

Multidisciplinary Integrated Simulation and Modeling. The integration of mul-
tidisciplinary simulation, like the energy consumption model of the factory
digital twin, exploits the MSI service to store and retrieve the behavioral model
associated with the digital twin and the gRPC protocol to control the simulation
execution.

7 Discussion and Lessons Learned

This section reviews briefly and discusses the lessons learned on applying the
microservices paradigm in the smart manufacturing industry. Doubtless, the adop-
tion of such a paradigm has provided several benefits but also has presented
inconveniences and challenges. The principal benefits and challenges are discussed
below:

Agility. The microservices paradigm is fully implemented and yields its soundest
results within an Agile/DevOps framework [16] wherein it should enable busi-
nesses to start small and innovate fast by iterating on a core solution without
affording substantial downtimes and upfront investment costs. A minimal version
of our middleware, in fact, has been developed in a short time (about 2 months);
this has meant for us to be able to experiment faster and provide our partners
with an initial solution atop of which implement the MAYA platform. The
subsequent versions of the MSI have been realized by (almost) seamlessly adding
new microservices. However, since with every blessing comes a burden, we

294 M. Ciavotta et al.

experienced how the management of a large number of services can be really
cumbersome as it requires a disciplined team and an automated infrastructure to
streamline the development-testing-deployment pipeline. Although such require-
ments are relatively common in the commodity software world with a broad
audience of customers, as for SaaS available through the web, the manufacturing
industry is substantially different and requires a distinct approach, often in
contrast to the dictates of DevOps. First, users, that is, manufacturing companies,
are considerably less and are more interested in usability and integration (soft-
ware they use is somehow tailored if not custom-made) than in the continuous
inclusion of features; moreover, having to comply with strict timelines, they
are reluctant to accept incremental software evolution with short release cycles
that could potentially require them to halt production. For such companies,
downtime means enormous economic and credibility losses. Ultimately, we must
mention that, while in a web environment it is now standard practice to have a
pipeline of continuous delivery, in an industrial environment where the software
is almost exclusively installed on premises for issues of privacy, competitive
advantage, and integration with the shop floor, the deployment and management
of releasing tools often appears as a fancy and unnecessarily, if not deleterious,
superstructure.

Isolation and Resilience. A failure in a monolithic software can be a catas-
trophic event, as the platform must recover as a whole. In a microservices
solution, instead, each service can fail and heal independently with a possibly
reduced impact on the exposed functionalities. Resilience strongly dependents
on compartmentalization and containment of failure (isolation). Microservices
can be easily containerized and deployed as single processes, reducing the
probability of cascade-fail of the overall application. Isolation is a trait that
is particularly appreciated by industrial customers as it enables unbundling of
the most critical processes, such as those that control the production plant and
can, therefore, be deployed in high availability, from nonessential services. The
main lesson we have learned in this area is as follows: to achieve resilience, it
is also imperative to put in place proper monitoring and testing environments,
together with mechanisms to respond in case of failure. Containerization, for
its part, in an enterprise environment involves the setting up and operation of
complex orchestration infrastructures such as Kubernetes.10 It also makes the
development and debugging processes more complex. Needless to add that,
although resource virtualization, in the form of private cloud, is increasingly
found also in manufacturers, this is fundamentally still taking its first steps.
Thus, in most cases, it is not possible to encounter, even in large businesses,
the necessary competencies not only to manage but often also to understand the
potential of these technologies.

Elasticity. A platform can be subject to variable workloads especially on seasonal
basis. This is usually mitigated via the scaling up and down of services. This

10https://kubernetes.io/.

https://kubernetes.io/

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 295

process can be particularly painful and costly in case of on-premise software,
and easier and automated in case of cloud-based applications. Nonetheless,
microservices allows for a finer grained approach in which services in distress
(e.g., those not meeting their quality of service) can be identified and singularly
scaled with provisioning of just the right amount of resources. In order to obtain
elasticity, it is necessary to have a pervasive and precise monitoring system,
also to avoid the long queues of response times should be able to predict the
variations of the load rather than react to them. Moreover, the services involved
need to be stateless and the mechanisms for distributed transitions carefully
designed. Notice, however, that the environment of a plant is usually confined,
so it is quite unlikely that the workload varies enough to put some processes
under pressure and consequently to require scaling out. Elasticity is arguably
the least appealing feature of microservices in this context. Notwithstanding,
together with statelessness and the insulation, it indeed enables to cope with
possible shifting requirements throughout the factory life cycle. An example
of this evolution is the expansion of the shop floor with the addition of new
machines and new CPS, which would necessitate the software to manage an
increased load of data and requests.

8 Conclusions and Future Work

In this work, the MAYA support infrastructure has been presented and discussed;
it is a microservices-based middleware designed to support simulation in smart
factories, providing a centralized environment where other industrial software tools
can share information in the form of the factory digital twin. The MSI, moreover,
also provides a sound mechanism to implement the real-to-digital synchronization
between shop floor level CPS and their digital counterparts. To the best of
our knowledge, it represents the first example of a microservices platform for
manufacturing to manage digital twins. The proposed platform has been described in
detail in connection to CPSs and simulators, discussing as well the lessons learned in
terms of benefits and challenges. Finally, the platform has been deployed and tested
in a real-world scenario involving the definition, simulation, and synchronization of
a complex digital twin representing a full-fledged manufacturing line.

Future work will include the deployment of the middleware on an existing plant
(brown field) in order to validate the scalability of the platform under different
workload conditions. Furthermore, we plan to refine and formalize the interaction
protocol with CPSs, including other protocols like XMPP and MQTT. The reason
behind this choice is facilitating the integration with third-party solutions. Finally,
we intend to support enterprise applications other than simulation. To ease the pro-
cess, we are studying the possibility of basing the interapplication communications
on a standard data exchange format, such as AutomationML [11].

296 M. Ciavotta et al.

Acknowledgement This work has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreements Nos 678556 and 723094.

References

1. N. Alshuqayran, N. Ali, R. Evans, A systematic mapping study in microservice architecture,
in 2016 IEEE 9th International Conference on Service-Oriented Computing and Applications
(SOCA) (2016), pp. 44–51

2. A. Barni, A. Fontana, S. Menato, M. Sorlini, L. Canetta, Exploiting the digital twin in the
assessment and optimization of sustainability performances, in 2018 International Conference
on Intelligent Systems (IS) (2018), pp. 706–713

3. Z. Bi, L.D. Xu, C. Wang, Internet of things for enterprise systems of modern manufacturing.
IEEE Trans. Ind. Inf. 10(2), 1537–1546 (2014)

4. V. Brandstetter, J.C. Wehrstedt, A framework for multidisciplinary simulation of cyber-
physical production systems. IFAC-PapersOnLine 51(11), 809–814 (2018)

5. T. Cerny, M.J. Donahoo, M. Trnka, Contextual understanding of microservice architecture:
current and future directions. ACM SIGAPP Appl. Comput. Rev. 17(4), 29–45 (2018)

6. M. Ciavotta, M. Alge, S. Menato, D. Rovere, P. Pedrazzoli, A microservice-based middleware
for the digital factory. Proc. Manuf. 11, 931–938 (2017)

7. M. Ciavotta, A. Bettoni, G. Izzo, Interoperable meta model for simulation-in-the-loop, in 2018
IEEE Industrial Cyber-Physical Systems (ICPS) (2018), pp. 702–707

8. A. Ciuffoletti, Automated deployment of a microservice-based monitoring infrastructure. Proc.
Comput. Sci. 68, 163–172 (2015)

9. N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,
Microservices: yesterday, today, and tomorrow, in Present and Ulterior Software Engineering
(Springer, Berlin, 2017), pp. 195–216

10. N. Dragoni, I. Lanese, S.T. Larsen, M. Mazzara, R. Mustafin, L. Safina, Microservices: how to
make your application scale, in Perspectives of System Informatics - 11th International Andrei
P. Ershov Informatics Conference, PSI 2017, Moscow, Russia, June 27–29, 2017, Revised
Selected Papers (2017), pp. 95–104

11. R. Drath, A. Luder, J. Peschke, L. Hundt, AutomationML-the glue for seamless automation
engineering, in IEEE International Conference on Emerging Technologies and Factory
Automation, 2008. ETFA 2008 (2008), pp. 616–623

12. L. Ferrarini, C. Veber, 3d graphic simulation of flexible manufacturing systems with day dream
daemon and 3dcreate, in 2008 6th IEEE International Conference on Industrial Informatics
(2008), pp. 1401–1406

13. I. Fette, A. Melnikov, The websocket protocol. Technical Report (2011)
14. M. Grieves, J. Vickers, Digital twin: mitigating unpredictable, undesirable emergent behavior

in complex systems, in Transdisciplinary Perspectives on Complex Systems (Springer, Berlin,
2017), pp. 85–113

15. E. Hozdić, Smart factory for industry 4.0: a review. Int. J. Mod. Manuf. Technol. 7(1), 28–35
(2015)

16. M. Httermann, DevOps for Developers (Apress, New York, 2012)
17. J. Innerbichler, S. Gonul, V. Damjanovic-Behrendt, B. Mandler, F. Strohmeier, Nimble

collaborative platform: microservice architectural approach to federated IoT, in 2017 Global
Internet of Things Summit (GIoTS) (2017), pp. 1–6

18. N. Jazdi, Cyber physical systems in the context of Industry 4.0. 2014 IEEE Automation, Quality
and Testing, Robotics (2014), pp. 2–4

19. K. Khanda, D. Salikhov, K. Gusmanov, M. Mazzara, N. Mavridis, Microservice-based IoT for
smart buildings, in 2017 31st International Conference on Advanced Information Networking
and Applications Workshops (WAINA) (2017), pp. 302–308

Towards the Digital Factory: A Microservices-Based Middleware for Real-to-. . . 297

20. J. Lee, Smart factory systems. Informatik-Spektrum 38(3), 230–235 (2015)
21. T. Lodderstedt, D. Basin, J. Doser, SecureUML: a UML-based modeling language for model-

driven security, in International Conference on the Unified Modeling Language (Springer,
Berlin, 2002), pp. 426–441

22. Y. Lu, Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inf.
Integr. 6, 1–10 (2017)

23. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A.H. Byers, Big Data: The
Next Frontier for Innovation, Competition, and Productivity (McKinsey Global Institute, New
York, 2011)

24. N. Marz, J. Warren, Big Data: Principles and Best Practices of Scalable Realtime Data Systems
(Manning Publications, Shelter Island, 2015)

25. G.D. Maso, D. Rovere, M. Ciavotta, M. Alge, D2.2 MAYA functional models frame-
work. H2020 MAYA Project Deliverable (2018). https://ec.europa.eu/research/participants/
documents/downloadPublic?documentIds=080166e5b573e49c&appId=PPGMS

26. R.K. Mobley, An introduction to Predictive Maintenance (Elsevier, Amsterdam, 2002)
27. G.E. Modoni, E.G. Caldarola, M. Sacco, W. Terkaj, Synchronizing physical and digital factory:

benefits and technical challenges. Proc. CIRP 79, 472–477 (2019)
28. F. Montesi, J. Weber, Circuit breakers, discovery, and API gateways in microservices. arXiv

preprint arXiv:1609.05830 (2016)
29. S. Newman, Building Microservices: Designing Fine-Grained Systems (O’Reilly Media,

Newton, 2015)
30. A. Parrott, L. Warshaw, Industry 4.0 and the Digital Twin (Deloitte University Press, New

York, 2017), pp. 1–17
31. A. Razzaq, A. Hur, H.F. Ahmad, M. Masood, Cyber security: threats, reasons, challenges,

methodologies and state of the art solutions for industrial applications. 2013 IEEE Eleventh
International Symposium on Autonomous Decentralized Systems (ISADS) (2013), pp. 1–6

32. C. Richardson, Microservices Patterns (Manning Publications, Shelter Island, 2018)
33. R. Rosen, G. Von Wichert, G. Lo, K.D. Bettenhausen, About the importance of autonomy and

digital twins for the future of manufacturing. IFAC-PapersOnLine 48(3), 567–572 (2015)
34. A.-R. Sadeghi, C. Wachsmann, M. Waidner, Security and privacy challenges in industrial

internet of things. Proceedings of the 52nd Annual Design Automation Conference - DAC 15,
vol. 17 (2015), 1–6

35. D. Taibi, V. Lenarduzzi, C. Pahl, Processes, motivations, and issues for migrating to microser-
vices architectures: an empirical investigation. IEEE Cloud Comput. 4(5), 22–32 (2017)

36. D. Thangavel, X. Ma, A. Valera, H.-X. Tan, C. Keng-Yan Tan, Performance evaluation of
MQTT and CoAP via a common middleware, in 2014 IEEE Ninth International Conference
on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (2014), pp. 1–6

37. K. Thramboulidis, D.C. Vachtsevanou, A. Solanos, Cyber-physical microservices: an IoT-
based framework for manufacturing systems, in 2018 IEEE Industrial Cyber-Physical Systems
(ICPS) (2018), pp. 232–239

38. K. Witkowski, Internet of Things, big data, industry 4.0 - innovative solutions in logistics and
supply chains management. Proc. Eng. 182, 763–769 (2017)

39. L.D. Xu, W. He, S. Li, Internet of Things in industries: a survey. IEEE Trans. Ind. Inf. 10(4),
2233–2243 (2014)

40. C. Yang, W. Shen, X. Wang, Applications of Internet of Things in manufacturing, in Proceed-
ings of the 2016 IEEE 20th International Conference on Computer Supported Cooperative
Work in Design, CSCWD 2016 (2016), pp. 670–675

41. S. Yun, J.-H. Park, W.-T. Kim, Data-centric middleware based digital twin platform for
dependable cyber-physical systems, in 2017 Ninth International Conference on Ubiquitous
and Future Networks (ICUFN) (2017), pp. 922–926

https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b573e49c&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b573e49c&appId=PPGMS

Using Microservices to Customize
Multi-tenant Software-as-a-Service

Hui Song, Franck Chauvel, and Phu H. Nguyen

Abstract Enterprise resource planning (ERP), customer relationship management
(CRM), and other enterprise solutions are not used out of the box: Companies hire
consultants to customize these software solutions that are deployed “on premises”
to fit their specific business processes. When software vendors move to multitenant
software-as-a-service (SaaS), they cannot onboard their customers who heavily
customized their “on-premises” installation. In SaaS, all customers share the same
source code and computing resources to ensure economies of scale. We present here
a novel approach to support SaaS customization using microservices architectures:
Each customization is encapsulated as a microservice that replaces the standard
functionality. We evaluated the feasibility of our approach on two industrial studies
of ERP and CRM service vendors and discussed different design choices. The
results of our experiments show that our approach can achieve both the isolation
required by multitenancy and the assimilation required by deep customization.

1 Introduction

All businesses rely on enterprise resource planning (ERP), customer relationship
management (CRM), or other enterprise systems to support their day-to-day
activities, such as sales, human resources, financial, etc. Since every company has its
unique organization, processes, and culture, no off-the-shelf software directly fits.
Companies eventually customize these software to meet their specific requirements.
For simple scenarios, software vendors predict where and how their applications
may be customized, and provide their customers with application programming
interfaces (API), extension points, or configuration choices. Customization is
then performed either by the customer’s developers or by third-party consultants.
However, there are always customers whose requirements overstep the embedded

H. Song · F. Chauvel (�) · P. H. Nguyen
SINTEF, Oslo, Norway
e-mail: hui.song@sintef.no; franck.chauvel@sintef.no; phu.nguyen@sintef.no

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_12

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_12&domain=pdf
mailto:hui.song@sintef.no
mailto:franck.chauvel@sintef.no
mailto:phu.nguyen@sintef.no
https://doi.org/10.1007/978-3-030-31646-4_12

300 H. Song et al.

customization capacity. These customers need the vendors to provide mechanisms
for performing deep customization, which goes beyond the vendor’s prediction.

Traditionally, software vendors support deep customization by allowing the
customers to directly modify the source code of their software products. The
customers acquire a special license, directly modify the original source code, and
then deploy the customized product on their own premises. In an empirical study
on eight companies deploying ERP systems [20], most ERP adopters ended up
implementing heavy customizations involving code modifications. The two software
vendors that commissioned our research also have customers who made deep
customizations to their products [22]. In addition to the flexibility, “on-premises”
deep customization also has benefited from retaining the customized product as an
integral piece. Moreover, vendors do not need to invest a lot of resources to design
and implement the sophisticated API or extension points.

However, as the industry moves from single-tenant, on-premises applications
to cloud-based, multitenant software as a service (SaaS), “on-premises” deep
customization is no longer feasible. In a multitenant SaaS, all customers, so-called
“tenants,” share the same code base of the software application. No customer can
thus modify its source code without directly impacting all other tenants. This
motivates the mainstream multitenant SaaS vendors such as Salesforce and Oracle
NetSuite to only support limited customizations.

In this chapter, we first discuss different strategies for customizing multitenant
SaaS. Then, we present a novel approach to implement deep customization on multi-
tenant SaaS, using intrusive custom microservices. Customers have the “read-only”
access to the source code of the main service, and can choose fine-grained pieces in
the code base, such as a C# method, to customize. Instead of directly modifying the
code, they redevelop the code and wrap it as a self-contained microservice, called
“custom microservice.” The execution to the original pieces will be redirected to
this custom microservice at runtime. These custom microservices are intrusive to the
main service, because they return callback code, which the main service executes to
provide any necessary data. In this way, the custom code is theoretically capable of
doing anything the original code can do. This approach achieves both the isolation
required by multitenancy and the assimilation required by deep customization. On
the one hand, the custom code is running separately from the main service, and
can be deployed dynamically without rebooting the main service. On the other
hand, the custom code has the same expression power as the original source code.
Therefore, customers can implement the customization in the same way as if they
are the vendor’s developers.

In the remainder of this chapter, Sect. 2 gives a sample online shopping system
to explain the requirements for deep customization and summarizes these require-
ments. We present in Sect. 3 the strategies for deep customization that we know of,
including an overview of the microservices-based approach, and Sect. 4 elaborates
it with key techniques. Section 5 evaluates the microservices-based approach by
applying it on the sample open-source shopping application. We discuss the different
aspects of the microservices-based approach in Sect. 6. After that, we give in Sect. 7

Using Microservices to Customize Multi-tenant Software-as-a-Service 301

a direction for using microservices for customization in a nonintrusive way. Finally,
Sect. 8 discusses related approaches and Sect. 9 concludes the chapter.

2 Motivations and Requirements for Deep Customization

We describe below the customization scenarios, which illustrate on an open-
source shopping application named MusicStore [11]. We use this application as a
running example to demonstrate the challenges that obstruct the support of deep
customization on multitenant SaaS. Then, we summarize the generic requirements
of deep customization for multitenant SaaS.

2.1 The Customization Process

As shown in Fig. 1, the customization of an enterprise solution involves three main
actors (or roles): the software vendor, a third-party consultant, and a customer. The
software vendor builds a generic solution, say a CRM product, hereafter called “the
product.” The vendor anticipates the most common features in the initial design—
to the extent it is possible. As every business is unique, this product necessarily
misses some of the customer’s requirements, and the customer thus hires third-party
consultants (in most cases) to develop an ad hoc customization.

Until the advent of cloud computing, customized products were deployed on
the customer’s premises. Each customer runs a fully isolated customized version.

En
te

rp
ris

e
C

us
to

m
iz

at
io

n
Pr

oc
es

s

So
ftw

ar
e

Ve
nd

or
3r

d
Pa

rty
 C

on
su

lta
nt

C
us

to
m

er

Use Custom
Extension

Develop
Custom

Extension

Develop
Enterprise

Prodcut

Develop
Customisation
Mechanisms

Fig. 1 Interaction between the software vendor, the third-party consultant, and the customer
during the customization of the enterprise software, shown as a BPMN process

302 H. Song et al.

Because the software vendors now offer their product as SaaS, customization is no
longer straightforward.

2.2 The MusicStore, a Running Example

The Microsoft MusicStore [11] is an official test application for ASP.NET Core,
the next-generation web development framework of Microsoft. MusicStore pro-
vides many of the essential features of an online shopping system, such as user
management, catalogue, shopping cart, and checkout, using music albums as a
commodity. We use MusicStore to build a multitenant SaaS: The owner of a small
music shop can then become a tenant and start selling its albums without deploying
and maintaining a separate MusicStore instance on its own premises. There could
be many shops (i.e., many tenants) using the same MusicStore SaaS. Shops could
have different needs that would require different customizations. This accurately
portrays the transition that the two companies that commissioned this research are
undertaking.

A major challenge is to ensure tenant-isolation while enabling tenant-specific
customization, which means that no customization specific to a tenant shall ever
affect any other tenants. Consider a tenant A who partners with a charity organi-
zation and wants to introduce a donation feature into her own shop. When an end
user buys an album, the system must now ask what fraction of the album’s price she
would like to donate. The final price shall automatically account for her donation.
This scenario comprises three use cases:

1. Add donation. When the user adds an item to the shopping cart, a new page
should pop up to let her choose what percentage of the album’s price she would
like to donate.

2. Display donations. In the shopping cart overview page, the amount of donations
should be shown for each shopping cart item.

3. Get total price. When the system calculates the total price of a shopping cart, the
donations should be accounted for.

These use cases imply changes across three layers. In the user interface layer, we
need to create a new page and change the component in an existing page (adding
a “donation” column in a table). In the business logic layer, we need to change
the logic of total price calculation. In the data layer, we need to store the donation
amount for each shopping cart item. These changes are beyond what the Microsoft
engineers have anticipated, and require “deep customization.” As we are offering
MusicStore as a multitenant SaaS, direct code modification is not feasible because
the same MusicStore instance will be shared by multiple tenants. The software
vendors of multitenant SaaS must provide mechanisms that enable each tenant to
customize the main product without directly modifying the source code of the main
product that is shared by multiple tenants. Moreover, no customization specific to a
tenant shall ever affect any other tenant. In case of the MusicStore multitenant SaaS,

Using Microservices to Customize Multi-tenant Software-as-a-Service 303

the three use cases described above will only apply for the end users of tenant A.
The end users of the other tenants will only have the main functions of the main
product MusicStore, and their own customized features, if any, applied for them.

We detail in the remainder of this section what the main requirements are for
enabling deep customization of multitenant SaaS.

2.3 Deep Customization Requirements for Multitenant SaaS

We discuss below the main requirements for customization of multitenant SaaS. We
distinguish between first functional requirements (Sect. 2.3.1) and then extrafunc-
tional requirements (Sect. 2.3.2).

2.3.1 Functional Requirements

The main functional requirement is that consultants should be able to customize
anything in the SaaS, just as they were able to do with on-premises customization.
They can customize user interface (UI), database (DB)schema, and business logic
(BL) as needed.

• As for the UI, consultants should be able to modify existing screens, that is,
reorder UI elements (labels, text fields, etc.), but also add new UI elements (or
remove existing), as well as modify the related validation code. They should also
be able to add new screens or remove existing ones.

• As for the BL, consultants should be able to override existing logic (i.e., code) but
also remove or add new logic. In addition, they should be able to trigger events
and create new types of events (or delete existing ones). Finally, they should be
able to call external services for integration purposes.

• As for the DB, consultants should be able to add new columns to tables (or delete
existing ones), or create new tables including foreign keys (or delete existing
ones). In addition, they should also be able to override the whole data source,
with a new dedicated one.

The key point here is that in a multitenant environment (as opposed to previous
on-premises deployments) all the above customizations of a specific tenant shall
only affect that single tenant. We shall return to these functional requirements in the
Evaluation sections (see Table 2).

2.3.2 Isolation/Security, Assimilation, Multitenancy

During the development of a new customization, the main extrafunctional require-
ment is assimilation, that is, the degree to which the development of the cus-
tomization’s code is integrated with the code of the product—as it would have

304 H. Song et al.

been if we had modified the product’s code directly. During the deployment of new
customizations, the multitenant system should be able to deploy new versions of
customizations and to decommission older ones.

During execution, the main extrafunctional requirement is to maintain a proper
multitenant environment despite the existence of multiple customizations, which
unfolds into performance and security concerns. As for performance, each tenant
should have enough computing resources (CPU, memory, storage, and network)
to carry out its custom processes, but should not however consume additional
resources that may affect its neighbor tenants (e.g., from erroneous CPU-consuming
customizations). As for security, each tenant must only be able to access its own data
space.

3 Deep Customization Approaches

We define “deep-customization” as any customization of the product code that
goes beyond what preferences, settings, and integration standard API can realize.
A deep customization goes beyond the natural “seams” [2] of the product, be
they instructions, functions, or classes (Sect. 3.1); components (Sect. 3.2); services
(Sect. 3.3); or languages (Sect. 3.4). Therefore, deep customization here involves
an extra software development process on top of the main software product. This
extra software development process is to develop custom code to customize the
main software product. Ideally, deep customization for multitenant SaaS should
be as powerful as “on-premises” deep customization, i.e., the main product can be
customized in UI, BL, and DB.

The need for customization as deep as possible conflicts with the need to protect
the vendor’s product from malicious changes. Customization at the instruction
level thus seems irrelevant as there is no direct relationship between programs’
instructions and business concepts. Customization is eventually about deciding
which business concepts vendors must open for changes, and making these changes
possible in the technology. In that sense, all other seams are viable customization
approaches for enterprise systems. Regardless of the approach chosen, the system
must be multitenant in the first place, and this leads to the development of dedicated
function, class, component, or service that manages tenants, the so-called tenant
manager.

3.1 At the Functions/Classes Level

One approach is to offer the tenants a dedicated source-code-level extension
points they can use to implement customizations. This implies that the vendors
have anticipated “customization points” (i.e., those function, class, components, or

Using Microservices to Customize Multi-tenant Software-as-a-Service 305

services that match relevant business concepts) and designed relevant mechanisms
to integrate tenants’ code fragment.

Design patterns [3] such as strategy, decorator, and factory can address some
customization requirements at function or class levels. We briefly summarize these
patterns below, but we refer the reader to [3] for a comprehensive treatment.

• The strategy pattern helps dynamically change the implementation of a given
method. We encapsulate the foreseen variations, so-called “strategies,” into
separate classes that adhere to a common interface. The client object can now
switch strategy dynamically, by delegating to another strategy object. This
strategy pattern facilitates, for instance, the use of alternative compression
algorithms such as LZ or LZW [8].

• The decorator pattern helps extend the behavior of a given function or group
of functions. To do so, we first create a “decorator” class that offers the same
interface as the original object. Within this decorator, we are then free to perform
additional actions before and after to delegate the execution to the original object.
We can, for instance, log invocations without modifying the original method’s
code. The decorator pattern works on the class level. To extend a particular
method, the decorator class will reimplement this method, and invoke the original
method in the middle.

• The factory pattern helps control what classes we instantiate. Factories are
methods that we call instead of using the “new” keyword (in C++, C#, Java,
and the like) to create class instances. In these factory methods, we are free
to dynamically select the class we want to instantiate. Factory methods enable
loading a user-defined class to perform a predefined activity.

3.2 At the Component Level

The above code-level approach falls short because custom classes and objects cannot
be loaded directly. Classes and objects are not units of deployment, but rather units
of abstraction and execution. Classes capture domain concepts and specify how
their instances (i.e., the objects) will interact during execution. Classes and objects
are oblivious to their deployment, which requires dedicated and platform-specific
mechanisms, such as deployment bundles, class loaders, etc. These limitations
have led to the development of component-based software engineering [23], where
a component is a unit of both composition and deployment that often contains
class definitions. Applications thus connect together so-called “components,” whose
life cycle is managed by a dedicated execution platform. The platform controls
this “architecture” and enables replacing and rewiring the component assembly,
dynamically. Various technologies have flourished throughout the 1990s, such
as CORBA promoted by the OMG, DCOM/ActiveX on Microsoft technologies,
or JavaBeans from Sun Microsystems. While these technologies have already
faded away in favor of service-oriented architectures, the concepts and ideas they

306 H. Song et al.

promoted are now embodied in various frameworks such as the Open Service
Gateway (OSGi), which the Glassfish1 application server and the Eclipse IDE2 use.

3.3 At the Service Level

Beyond the object level, other design patterns exist at the architecture level such
as microkernels, layered architectures, service-oriented architectures, and microser-
vices, to name a few. We will focus here on service-oriented architecture and
microservices and explain how they help support the customization of multitenant
SaaS.

3.3.1 Service Orchestrations

A service-oriented architecture is made of independent units of functionality, so-
called “services,” which have well-defined interface communication protocols.
In principle, services interact following the publish-discover-invoke principle: A
service provider first publishes in a public repository its service interface, together
with the endpoint of its implementation. The client later obtains this endpoint when
it searches the repository for a compatible interface. A client can now invoke any
of the endpoints it knows, as all adhere to the same known interface. While the
use of such repositories may have fallen out of favor, it yet offers some interesting
advantages to support multitenant customization. One may dynamically register new
end points in the repository that will be picked up at runtime.

Service orchestrations are one means to aggregate multiple services in order
to support business processes. Languages such as the business process execution
languages (BPEL) capture the workflow underlying a business process: each activity
maps to a service, and an orchestration engine coordinates these services, discov-
ering endpoints, sending requests, and collecting responses. A business process is
a program that the orchestration engine executes every time someone invokes this
process. In a multitenant setting, each tenant may register a different orchestration
and therefore run its own business process on the same orchestration engine.

3.3.2 Microservices Architectures

While the idea of centralization surfaces in service-oriented architectures, the
trend is now opposite: decentralization towards many smaller services, so-called
“microservices.” The core idea of microservices [13] is independence: “less depen-

1See https://javaee.github.io/glassfish/.
2https://www.eclipse.org/ide/.

https://javaee.github.io/glassfish/
https://www.eclipse.org/ide/

Using Microservices to Customize Multi-tenant Software-as-a-Service 307

dency, more isolation.” A microservice realizes only one small and autonomous
unit of business functionality, often following a bounded context or the context
map advocated by domain-driven design (DDD) [1]. Each service thus has a very
limited set of responsibilities and must be deployable independently of any other
services. Such independent services are indeed designed, developed, deployed, and
scaled independently. To foster independence, each service gets its own private data
store. From an organization standpoint, microservices therefore advocates smaller
autonomous teams responsible for the whole life cycle of a single service, ideally
fed on only “two pizza.”

Figure 2 illustrates such an architecture. Our example includes three bounded
contexts, projects, sales, and notifications. A separate service realizes each of
these bounded contexts. Mobile or desktop client applications access these ser-
vices through a single API gateway. Behind this gateway, microservices interact
asynchronously, using a message queue. Using microservices is a promising way
to customize multitenant cloud software because microservices architectures offer
several benefits. First, a microservice encapsulates a customization, it can be
packaged and deployed in isolation from the main product, which is an important
requirement in the multitenant context. Moreover, independent development and
deployment ease the adoption of continuous integration and delivery, and reduce,
in turn, the time to market for each service. Independence also allows engineers
to choose the technology that best suits the service, while other services may
use different programming languages, database, etc. Each service can be operated
independently, including upgrades, scaling, etc.

Projects
API

Gateway
Sales

Notifications

Message Queue

Desktop
Client

Mobile
Application

Microservice Architecture

Fig. 2 Blueprint of a microservice architecture

308 H. Song et al.

3.4 DSL/Script-Based Approaches

Finally, all the above approaches deal with the implementation of the business logic
in the application. This way hence requires dedicated developers familiar with the
underlying technologies. Domain-specific languages (DSL) alleviate this: They hide
technical details (e.g., API, ad hoc datastructure) behind a syntax that focuses on
business-level concepts.

SalesForce3 and its APEX language4 is one prominent example of DSL used
to support multitenant customization. APEX is a strongly typed, object-oriented
language whose syntax is very similar to Java. The language has direct access to
the Salesforce database through the Salesforce API, and can be used to develop
controllers or triggers. Controllers define new business logic, and are attached to
various UI elements such as button click, or Visualforce pages. Triggers define
new actions to database events, such as the validation of new data before they are
inserted into the database. Beyond classical conditional and loops constructs, APEX
also permits in-lining other DSL, namely, querying databases using the Salesforce
Object Query Language (SOQL) and manipulating data using the data manipulation
language (DML).

Another example of a DSL is CRMScript5 for in-product customization. Cus-
tomers use CRMScript to write database queries, event handlers, etc. The script
code is executed by a dedicated engine within the product. Isolation is achieved on
a language level, where only white-listed methods and operations are allowed. The
execution is governed by a basic monitoring and throttling algorithm, preventing the
script to do too much harm.

3.5 Comparison of Deep Customization Approaches and the
Use of Intrusive Microservices

In this section, we compare the main approaches presented above (Sect. 3.5.1)
and initially present our customization approach using intrusive microservices
(Sect. 3.5.2).

3https://www.salesforce.com/eu/.
4https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
apex_intro_what_is_apex.htm.
5https://github.com/SuperOffice/CRMScripts.

https://www.salesforce.com/eu/
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_intro_what_is_apex.htm
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_intro_what_is_apex.htm
https://github.com/SuperOffice/CRMScripts

Using Microservices to Customize Multi-tenant Software-as-a-Service 309

Table 1 Possible approaches to deep customization and how they address assimilation, isolation,
and multitenancy

Granularity Approach Isolation Assimilation Multi-tenancy

Class/Function Factory pattern Thread Language No

Decorator pattern Thread Language No

Strategy pattern Thread Language No

Components Bundles Process Language No

Services Orchestrations Network Architecture Yes

Microservices Network Architecture Yes

Languages DSL Process Language Yes

3.5.1 A Comparison of the Main Approaches

Table 1 summarizes how the main deep customization approaches tackle the require-
ments of isolation, assimilation, and multitenancy described in Sect. 2.3.2. Isolation
increases as we move from thread-based isolation, to process-based isolation and
then to network-based isolation. Assimilation decreases when customizations are
not written in the same language than the main product. Multitenancy is always
possible but we marked “No” when any approach requires ad hoc mechanisms
that are not provided by programming languages out of the box. Aspect-oriented
programming (AoP) may be a means to carry out customizations. AoP [7] injects
cross-cutting concerns such as logging by weaving new behavior (advice) at specific
places (specified by a point-cut). As opposed to AoP, which addresses cross-cutting
concerns, in our experience, customizations are not cross-cutting concerns. They
are large-scale developments that heavily affect the main product in multiple places
(UI, BL, and database). Besides, AoP does not provide any direct support for either
multitenancy or isolation.

Among the approaches that are marked “Yes” for multitenancy, service orches-
trations offer means to aggregate multiple services to support business processes.
Therefore, the customization by service orchestrations is not really “deep,” which
is at a high-level modification and relies on the vendors to provide the adequate
“atomic services” as the building blocks for customized composite services (as
discussed later in Sect. 8). The big vendors such as Salesforce6 and Oracle Net-
Suite,7 choose a heavyweight direction, transforming themselves from a product
into a development platform for customers to implement their own applications
using provided DSLs.8 In this way, such solutions require huge investment from the
vendors and strong solution-specific expertise from the customization developers.
Table 1 shows how isolation and assimilation conflicts with each other. As we move
customization on separate nodes, we gain in isolation but we lose in assimilation

6https://www.salesforce.com.
7https://netsuite.com.
8https://developer.salesforce.com.

https://www.salesforce.com
https://netsuite.com
https://developer.salesforce.com

310 H. Song et al.

Fig. 3 The structural overview of intrusive custom microservices

because the customization and the main product become completely separate
software systems. The microservices-based approach with its benefits as discussed
in Sect. 3.3.2 is promising because it does not require huge investment from the
vendors or strong solution-specific expertise from the customization developers like
in the DSL approaches. Moreover, it can enable customization at a lower level of
granularity than in the service orchestrations approach.

The authors of this chapter propose to leverage microservices to enable deep
customization of multitenant SaaS. In the remainder we propose an architecture to
reconcile isolation, assimilation, and customization.

3.5.2 Deep Customization Using Intrusive Microservices

We combined the function/class level and microservices level presented above
into an architectural pattern we called intrusive microservices. In a nutshell, we
override local class methods with separate microservices. Figure 3 illustrates its
basic structure. We will fully elaborate on this architecture in Sect. 4.

The main service is a running instance of the standard product, provided by the
service vendor. This service is hosted in a public or private cloud, managed by the
service vendor.

A customization by each tenant is running as one or more microservices. Each
custom microservice reimplements a small number of fine-grained structures within
the main service source code, such as class methods in the business logic, or
HTML templates in the UI level. The custom microservice may maintain a separate
database if it needs to. Following the microservice ideas, the main service and the
custom microservices do not share databases or storage directly.

A tenant manager registers which microservice supersedes which part of the
main product and for which tenant, so that when a tenant request arrives, the product

Using Microservices to Customize Multi-tenant Software-as-a-Service 311

will forward it to the registered microservice, instead of executing the original
standard code.

These custom microservices are intrusive to the main product through callback
code, which are small code snippets sent by the custom microservice that are
executed by the latter under the same execution context as the to-be-replaced
standard code. The microservices use callback code to query data from the main
service and to possibly modify the behavior of the service.

4 Supporting Intrusive Custom Microservices

We detail here our intrusive microservices approach according to the .NET Core
stack, but the challenges and solutions are generic to other stacks.

Following the common practice of microservices, we made the following high-
level design decisions.

1. The main service and the custom code unit communicate with each other only
via REST invocations.

2. The data exchanged between the product and custom code unit are JSON
documents, and should be small in size.

3. The main service does not make any assumption on what the custom code will
need and what it will do.

Deep customization must provide ultimate flexibility to custom code developers,
which means that if a custom code unit is to replace a standard method, then
the custom code should be able to query or manipulate any data that the original
method body can query or manipulate. In other words, the custom code is exposed
to the same context as the standard source code. However, the design decisions we
identified above determine that the custom code cannot directly query or manipulate
the context, as it is not practical to transfer the entire C# objects in the context
through JSON. We address this issue by employing a callback code mechanism and
a multistep communication that transfers data on demand.

In this section, we first give an overview of the interactions between the product
and custom code in Sect. 4.1. After that, we detail in Sect. 4.2 the syntax and
execution of callback code and how it works on the context. Then, we define
the concrete REST API of a custom code unit in Sect. 4.3. The UI customization
is presented in Sect. 4.4. Finally, we describe the deployment and life cycle of
microservices in Sect. 4.5.

312 H. Song et al.

4.1 Communication Between Main Service and Custom Code

The original behavior of a method is overridden by a custom code unit through
a sequence of REST communications between the main product and the custom
microservice.

The communications are initiated and driven by the interceptor, which is injected
into every method in the main product. Whenever a method is invoked, the
interceptor will pause the execution of the original method body, and first check
with the tenant manager if the current tenant has registered a customization for
this method. If so, the tenant manager will return the associated endpoint. The
interceptor then starts the communication with the customization by invoking this
endpoint with a POST request. This first request carries no payload, because the
product does not know what data the customization needs. When the customization
receives this request, it executes and replies with changes to apply onto the context
of the original method, the next steps,9 and what data the customization service
will need in the next step. The interceptor then operates the context as indicated,
prepares the required data, and uses them as parameters to invoke the given next
step. The communication terminates when the custom code responds without a
subsequent step. Moreover, as the response of the last step, the customization can
provide a preemptive return value. If so, the interceptor will return this value without
executing the original method body. On the other hand, if the last response does not
have a return value, the interceptor will continue to execute the original method
body, under the manipulated context.

We present the customization mechanism based on a sample customization, i.e.,
Step 3 in Sect. 2.2, to compute the total price of the shopping cart. Figure 4 illustrates
the communication based on the “get total price” use case. When an end user checks
out, the vendor’s product processes the request and finally invokes the GetTotal
method defined in the product to calculate the total price. This method invocation is
intercepted, and by consulting the TenantManager it receives an endpoint to the
Donation ShoppingCart microservice. The interceptor invokes this endpoint
with an empty POST request. In the first step, the custom code does nothing but
directly sends back a response with callback code to ask the main product what
items are in the current shopping cart. It also provides the endpoint to the second
step. The interceptor executes the callback code to query the items, and sends them
as JSON objects to the customization microservice by invoking the endpoint for the
second step.

In the second step, the customization microservice receives the request and
obtains the current items and their prices. Then it queries its own database to get
the donation amount recorded for each item, and sums them up into a total price
for the shopping cart. As the second response, the custom microservice instructs the

9This is a “continuation” in functional programming parlance.

Using Microservices to Customize Multi-tenant Software-as-a-Service 313

Fig. 4 Communication between main service and custom code

interceptor to use the new total price as the return value. The interceptor returns this
value to its caller without executing the original method body.

4.2 Intrusive Callback Code

This section explains the callback code mechanism which enables a remote cus-
tomization service to query and manipulate the data and state of the main product.
In summary, a callback code is an instruction that is created by the custom code
and executed by the interceptor in the main product under the same context of
the original method body. The fact that the callback code and the original method
body are exposed to the same context is essential to the requirement of deep
customization. In the rest of this section, we first define the execution context of
the callback code, and then introduce the language to write callback code and how
they are executed by the interceptor.

314 H. Song et al.

4.2.1 Execution Context of Callback Code

The execution context is the environment in which the callback code is executed,
i.e., a set of objects that the callback code can refer to. In the .NET stack, this
context is identical to the context of the to-be-replaced C# method.

When a method in the main service is invoked, the context needed to evaluate the
original method body includes all the parameters passed through the invocation. If
the method is not static, the host object is also passed as an implicit parameter. The
method body refers to the parameters using the corresponding argument names, or
the this identifier for the host object, in order to read or change the internal state
of these objects. After the method body is executed, it may extend the context by
a return value, which is passed to the caller. In addition, the method body is also
exposed to a global context which consists of all the classes under the current class
loader, together with all the static methods and fields defined in these classes.

When the interceptor of a standard method receives a callback code, it inherits
the context of the original method, and uses it to execute the callback code. This
means that the callback code can refer to the parameters, the host object, and all the
visible classes. In this way, the callback code is able to obtain and modify the data
and state of the main service, just in the same way as the original method body. For
example, in the get total price use case, after the first step, the callback code can
query out the current shopping cart items by calling the GetItems method on the
host object. In the second step, the callback code adds the new total price value into
the context, which will be used as the return value.

4.2.2 Callback Code Language

A callback code snippet is sent from the custom service to the main product as plain
text, and then in the product it is compiled into an executable code and evaluated at
runtime. We design and implement a simple language to write callback code, based
on the DynamicLinq library [6]. DynamicLinq is a .NET library that dynamically
compiles a piece of C# query from plain text into an executable function (a Delegate
in .NET). The C# query supported by DynamicLinq is essentially a reference to an
object or a chain of method invocations from an object. We make simple extension
to DynamicLinq to extend its expression power, and Fig. 5 summarizes the syntax.

Query is a piece of code that returns a value. A query can be simply a reference
to a context variable, starting with a $ symbol and followed by the variable name.
From a query, we can invoke a method that is defined on the type of its returned
object. As long as the method has a return value, the invocation is still a query.
Similarly, we can access the field of an object or do operations of two objects. A
conditional branch returns one of the alternative queries, and list comprehension
iterates a collection and uses its items to make a new collection.

A query must always return a value, and if we invoke Void-typed methods,
DynamicLinq will raise an exception. To address this issue, we introduce a new
concept called “Instructions.” We can use a CALL keyword to invoke a Void-typed

Using Microservices to Customize Multi-tenant Software-as-a-Service 315

1 Query ::= ’$’ContextVar | Query’.’Method Params
2 | Query’.’Field | Query (+|-|==|>|...) Query
3 | ’IF’ Query ’THEN’ Query ’ELSE’ Query
4 | [Query FOR ’$’Id OF Query]
5 Params ::= ’()’ | ’(’ Query (, Query)* ’)’
6 Instr ::= ’CALL’ Query’.’Method Params
7 | ’SET’ Query.Field ’=’ Query

Fig. 5 Syntax

context_op1 = {
"rawItems": "$this.GetCartItems().Result",
"items": "$rawItems.Select(i => \

new{id=i.CartItemId, price=i.Album.Price})" }
context_op2 ={ "total": "_VAL_number 25.99",
"msg": "_VAL_string New total price is 25.99",
"void": "CALL System.Console.WriteLine($msg)",
"returnx": "$total" }

Fig. 6 Sample context operations

method on the returned object of a query, or use a SET keyword to assign value to a
field of this object.

4.2.3 Context Operation

The callback code language can be used to write a single instruction. After each
step, the custom code sends back a group of instructions, which we call the context
operation. A context operation is a dictionary, and each of its items comprises a
key in the form of a string and a value which is either an instruction or a text. We
support the following types of items. When the key is the name of a context variable,
the value could be either a query or a string starting with _VAL_ followed by a type
(string, number, date, boolean) and a value of this type. The query result or the direct
value will be assigned to the key variable. If the specified variable does not exist in
the current context, we create the variable first. The value can be an instruction; then
we will only evaluate the instruction (which has an effect on the context) without
assigning a value to any context variable. When the key is a keyword “returnx,” we
will use the resulted value of the query as the return value of the original method.

Figure 6 shows two sample context operations, returned by the two steps of the
GetTotal example, respectively. We present the two dictionaries in JSON format, as
it is in the actual REST communication.

The first context operation is to query the items in the current shopping cart. In the
first line, we query all the items and assign the list of items to a temporary context
variable named rawItems. The query uses an existing context variable, this,
which represents the current Shopping Cart, and invokes the GetCartItems

316 H. Song et al.

method on the object. In the second line, we extract only the identifier and the price
from each item, because these are the only information useful to the custom code.

The second context operation prints a log about the new total price, and modifies
the original return value. The first two lines transfer the total price and the log
message from the custom code to the main product. The two values are in types
of number and string, respectively. The third line invokes a static method to print
the message to the console. It utilizes both a context variable ($msg) and a static
class (System.Console). Finally, the last line instructs the main service to use
the value in the total variable as the new return value.

4.3 Customization Protocol

Each custom code unit replaces one method in the main product, using several steps.
Each step is triggered by the POST request to a unique URL. The customization
protocol defines the input and output of these steps.

The input to each custom code step is a POST request, with an optional JSON
document as the request body. The JSON document is a key-value map that contains
data obtained from the main product. What data is carried by a request body is
defined by the output of the previous step.

The output of each step is also a JSON document, in a predefined format.
The whole JSON document is called a “Manual” (which means that the main
service needs to work accordingly), and it contains three optional properties. The
context property contains a context operation, as defined in the previous section.
The nextcall property defines the next step, where function is the URL of
the subsequent step, and body provides an additional context operation, where the
variables and their values will be passed to the POST request for the subsequent
step. The data type of the output is extensible. We will add new properties later on
to introduce more functionalities into the customization.

Figure 7 shows a sample custom code unit developed in TypeScript under this
protocol, which implements the GetTotal customization. The custom code unit
is implemented as a TypeScript object called gettotalcc. In the object, the
endpoint and mainhandler defines the first step. In this step, the custom
code asks the main product to query out the current shopping cart items (see
context_op1 in Fig. 6). After that, it sets up the next step as compute, and
the request body contains one parameter, that is, the queried items. In this example,
we only have one subsequent step. In this step, we first get the items from the request
body, which has been automatically decoded into an array of objects in JavaScript.
For each object (a shoppingcart item) in the array, we get the item identifier and
price, query the custom database to get the donation amount, and add it into the
total value. When all the items have been counted, we return a new manual, whose
context operator is the one defined as context_op2 in Fig. 6.

Using Microservices to Customize Multi-tenant Software-as-a-Service 317

var gettotalcc = new cirrusapi.CustomCode()
gettotalcc.endpoint = "/shoppingcartx/gettotal";
gettotalcc.mainhandler = (req, res) => {
res.json({
context: ... //context_op1
nextcall: {
body: {items: ’$items’},
function: ’compute’,

}}); }
gettotalcc.steps["compute"] = (req, res) =>{
var items = req.body.items;
var total = 0;
items.forEach(item => {
var id = item.id
... //query own db and compute total
if (/*all items handled*/)
res.json({
context: ...#context_op2

}); }

Fig. 7 Sample custom code unit for GetTotal price

4.4 UI Customization

Our customization mechanism is focused on the business logic, i.e., how to replace
a method in the main product. The customization of UI is driven by the business
logic, based on the MVC structure in ASP.NET.

In ASP.NET, every browser request is received and handled by a specific method
in a controller class (within the Business Logic layer). If the request leads to a UI,
i.e., an HTML page, the method will call the View method of the controller class
with an identifier to an HTML template that is preloaded from a local file. The
controller will then interpret the embedded C# code in the template to generate the
HTML file, and return it to the browser.

We extend the ASP.NET Core behavior to allow the load of HTML templates
from a remote file, which can be obtained from the custom microservice through an
HTTP GET request. After a remote custom template is loaded, it can be used in the
same way as the original templates. After that, we can use the normal business logic
customization mechanism to make a controller method use the custom template.

The custom view templates are evaluated by the same generation engine as the
standard template. Therefore, the custom view template shares all the resources
with the standard templates, such as the reusable view components, the CSS styles,
and the scripts. This saves customers from reimplementing the common parts and
also guarantees that the custom views have the consistent style with the standard
ones. With our customization approach at the UI level, a tenant can override
any UI component from the main product by the UI component provided by the
custom microservice, for example, HTML code, CSS styles, or scripts. Note that

318 H. Song et al.

for assimilation, the tenant should follow the same UI styles as the main product
even though it is up to the tenant to decide. Moreover, the custom templates are
also interpreted under the same context as the standard views, and have access
to the controller object. This allows the view to exchange data with the business
logic using the standard way in ASP.NET, i.e., through the model and the view data
carried by the controller.

4.5 Custom Microservice Life Cycle and Development Support

One side effect of building customizations as separate microservices is that it opens
the architecture for variations of the life cycle and its development. We describe
below the life cycle of the microservices for customization and some microservices
development support, including some we experimented with.

4.5.1 Custom Microservice Life Cycle

The first variation is to decide who hosts and operates the customization microser-
vices. Whereas during the “on-premises” era, software vendors did not take any
responsibility for hosting and operating customized products, it now becomes an
alternative business model (see Sect. 6.5). Microservices can be hosted either by the
customer, by the vendor, or even possibly by the third-party consultancy company.

In our experiments, the customization microservices were hosted and managed
by the same cloud vendor as the main product is hosted for the sake of performance
and manageability.

The deployment of custom code relies on container technologies (Docker in
our case) and follows a “serverless” style. Customers or their consultants deliver
to the vendor the source code and the deployment descriptors (e.g., Docker
file, Kubernetes pods). These descriptors specify the underlying software stacks
such as Node.js, Python, Java, and the auxiliary components (such as databases),
as well as the libraries used by the custom code. Then the vendor’s container
engine provisions and manages containers enclosing the customization services, and
possibly additional containers for the related storages.

Once a custom microservice is up and running, the vendor registers it in the
running SaaS product as an alternative customization endpoint for the customized
methods.

Choosing where to host the customization microservices also drives their mon-
itoring and maintenance, because monitoring, reporting, and issues fixing depends
on one another. In our experiment, the product vendor is in charge of the entire
operation of customization microservices (as opposed to their development). The
vendor monitors and controls the resource consumption of each container, pausing
or scaling out the containers when necessary to meet the service-level agreement.
It also restarts the failed containers and reports the errors to the customers. Within

Using Microservices to Customize Multi-tenant Software-as-a-Service 319

the main service, the callback code engine monitors the execution of each context
operator and terminates the ones that spend too much resources, or those that raise
unexpected exceptions.

4.5.2 Development Support for Writing Microservices for Customization

On top of Visual Studio Code,10 we developed some specific support for the
development of microservices for customization, such as the source code editor,
code generator, and the deployment facility. These are some extensions in the IDE
to support the development and deployment of microservices for customization. Our
IDE eases the development of custom code by providing the “create custom code”
command for generating custom code snippets and templates. The IDE also provides
a set of simple commands to achieve the one-key deployment of the custom code.
For example, the developers only need to launch a VS Code command (selected
from the Command Palette) to deploy the custom code as a docker container and
register it as a customization into the main product. We implement this through the
configuration feature of VS Code together with predefined Docker specifications.

5 Evaluation

To evaluate our approach, we implemented the generic mechanisms of Sect. 4 on
the MusicStore, transforming it into a deeply customizable SaaS. We then tested
its customization capability by developing a custom microservice, implementing
the three customization use cases from Sect. 2.2. The results confirm the feasibility
of our approach, but also show that it supports most customization types without
dedicated APIs or extension points.

5.1 Implementation of the Customizable SaaS

We adapted the source code of MusicStore in two steps: we first added a generic
library and then went through a simple and automated code rewriting.

The generic library implements the mechanisms in Sect. 4, and includes the
following components. A simple tenant manager maps the standard MusicStore’s
methods to specific customization endpoints. A generic interceptor drives the
communication between the main product and the customizations. An callback code
interpreter executes the callback code on the local context. Finally, a remote RAZOR

10https://code.visualstudio.com/.

https://code.visualstudio.com/

320 H. Song et al.

file provider loads custom HTML templates that can be obtained through REST
requests. The entire library is implemented in 800 lines of C# code.

We perform an automatic code rewriting on MusicStore, adding three lines of
code in the beginning of each method. The first line initializes a local context as a
Dictionary object and fills it with the method parameters. The second line invokes
the generic interceptor with the context and the method name. The third line checks
if a return value is available in order to decide whether to skip the original method
body. We choose source code rewriting rather than binary instrumentation for the
sake of simplicity.

All the effort is focused on generic mechanisms, without specific consideration
of the actual customization requirements or features.

5.2 Sample Custom Code

On top of the customizable MusicStore, we performed three customization use
cases.

• UC1: Donation is the one described in Sect. 2.2, with three sub-use cases:
choosing donations, listing the donations, and computing the total price.

• UC2: Visit Counting records how many times each album has been visited. It
has two sub-use cases: recording a visit and showing global statistics.

• UC3: Real Cover uses the album title to search the cover picture from Bing
Image and replaces the original place-holder picture.

We design these use cases deliberately, in order to achieve a good coverage of
the general requirements of customization on web-based enterprise services.

The two companies that commissioned this research have summarized the
changes that their customers require when customizing their web-based ERP and
CRM systems. We list these general requirements in the first column of Table 2, in
three different tiers, namely, the user interface, the business logic and the database.
The requirements are in a high abstraction level, and each item represents a category
of required changes.

The rest of Table 2 shows how the three use cases cover the general requirement
items. The effect of the customized MusicStore can be seen by a screenshot video.11

In the video, we are using a MusicStore service through a fictional tenant named
foo@bar.com. We first see the standard way to buy a music album through the
MusicStore, i.e., browsing the album detail, add it to the shopping cart, and check
the overview of the shopping cart items. After that, we deploy the custom code as
a microservice and register it into the MusicStore via the REST API. The effect of
the customization is immediate: When we repeat the same shopping process, we
will first see a new cover image of the album (UC3) obtained from Bing.com. The

11https://www.youtube.com/watch?v=IIuCeTHbcxc.

https://www.youtube.com/watch?v=IIuCeTHbcxc

Using Microservices to Customize Multi-tenant Software-as-a-Service 321

Table 2 Coverage of general
requirements for
customization

Requirements UC1 UC2 UC3 #

User interface

Move original control � �
Remove original control � �
Add control � �
Add new page � �
Replace page � �
Add scripts � �
Override scripts

Business logic

Override logic � �
Add new logic � �
React to events � �
Trigger events

Link control to data � �
Execute external service � �
Database

Override datasource

Add field to table � �
Add new table � �
Update database � � �
Query database � �

layout is altered to fit the big image, and a remark pops on when the cursor is on the
image, which is driven by a new JavaScript code snippet added to the page. When
we add the album to shopping cart, we are led to a new page to select the donation
amount, and then shown a shopping cart overview with additional columns showing
donations and a different total price (UC1). Finally, we open a new page to check
the statistics about the album visits (UC2). Such visits are recorded in a table with
album ID and visit time stamp, and counted afterwards by a new function in the
business logic layer. At the end of the video, we log off the tenant foo@bar.com,
and the service immediately goes back to the standard behavior, which shows that
the customization only affects one tenant.

The custom code is deployed and registered to the MusicStore dynamically, with-
out rebooting the main service. The customized behavior is seamlessly integrated
into the main service: The new pages and the modified ones all keep the same UI
style as the original MusicStore, and are accessed through the standard MusicStore
address.

We implemented the three customization scenarios in TypeScript, using the
Node.js HTTP server to host the custom microservice. The first two scenarios
request data storage, and we used MongoDB as the customer database. The entire
custom code includes 384 LoC in 5 TypeScript files (one file for each scenario,
plus two common files to configure and launch the HTTP server) and 175 LoC in

322 H. Song et al.

4 Razor HTML templates (of which, two templates are new and the other two are
copy-pasted from MusicStore, with 176 LoC that are not changed).

5.3 Performance

The intrusive customization microservices does not cause significant performance
penalty to the main service.

We carried out a set of experiments to compare the latency of the user requests
for the original service and the customized ones. The latency, measured by the
browser, captures the time spent between the emission of an HTTP request (such
as clicking on a link) and the rendering of a new page. The latency comprises
roughly two parts: loading the page source from the server and rendering the page
in the browser. Customization only affects the first part. The loading time of original
services ranges from 5 to 100 ms, and the longest ones happen when a page is
first requested. The additional latency caused by customization ranges from 10 to
300 ms. Customization without UI (the “get total price” example) causes in average
11 ms latency. The ones that need a new page can cause up to 300 ms of additional
latency when the page is first accessed, after that the additional latency is normally
between 50 and 90 ms. We believe the additional latency is hardly noticeable to end
users, as the time to render the page is in average 2 s, be it customized or not.

The memory consumption of this sample microservice remains stable around
50 MB. A further experiment reveals that a 16 GB RAM laptop can easily host 100
instances of the same microservice.

While such overhead remains reasonable, we certainly need additional experi-
ments to make this claim general, and especially to understand how performances
scale with customization complexity. We believe, however, that more complicated
interactions must be carefully designed (by the third party consultant). Customiza-
tion should adhere to the well-known best practices [18] such as avoiding chatty
communications and restricting data exchange to the minimum to name a few.

As for reliability, calling a remote service requires more work than calling
local methods. To maintain the same level of reliability, each remote calls to a
customization must therefore as well as adhere to performance best practices [16]
such as using appropriate timeout and retry policies, circuit breakers, default
answers, etc.

6 Discussion

We discuss below additional aspects of microservices-based customization, that
is, database customization (Sect. 6.1), triggering customization (Sect. 6.2), security
(Sect. 6.3), and implications for business models (Sect. 6.5).

Using Microservices to Customize Multi-tenant Software-as-a-Service 323

6.1 Database Customization

Customization often requires extending the standard data schema. Two types of
extension on the data schema must be supported: adding a new entity and adding
a field to an existing entity. Removing an entity or a field is not necessary for
customization, since the customization service can simply ignore them. Changing
the type of a field can be achieved by adding a new field and ignoring the original
one. Since the customization service is not allowed to change the data schema of
the product database, all data under the extended entity of field have to be stored
in a separate custom database. A new data entity can be implemented as a table in
the custom database. A new field can also be implemented as a table in the custom
database, as a mapping from the primary key of the original table to the extended
field. In our example, we extend the shopping cart items with a new field to record
the amount of donation. This is achieved by a table with two fields, the shopping
cart item ID and the amount of donation.

The customization service registers to the tenant manager how it extends the stan-
dard data schema. In this way, the product service knows how each tenant extends
its database, so that it can utilize the extended data. For example, MusicStore has
a page listing all the shopping cart items, originally with price and quantity. When
rendering this page, MusicStore checks the tenant manager and gets the information
that the customization extends shopping cart items with a new field of donation
amount. Therefore, it adds a new column in the shopping cart information table for
this field and queries the customization service to fill in this column.

Custom databases usually have simple schema and relatively small amount of
data. Therefore, it is reasonable to use lightweight technologies such as PostgreSQL
or MySQL. NoSQL database is also a good choice.

6.2 Triggering of Microservices

The customization service registers itself to one of the predefined extension points in
the product service. When the control flow reaches this extension point, the product
service picks the registered customization service, and invokes it. There are two
types of invocations, i.e., synchronous triggering, when the product service awaits
the customization service to finish the triggered logic, and asynchronous triggering
when it does not.

Synchronous triggering can be implemented as a direct REST invocation from
the product service to the customization service. In the product service, the
implementation of an extension point can be simplified as a if-then-else structure:
if the product service finds a customization service registered for this point, then
it invokes this service and continues with the returned value, else it executes
the standard logic. The more extension points the product service has, the more
customization it supports. As an extreme case, the vendor can inject an extension

324 H. Song et al.

point before each method in the product, using the Aspect-Oriented Programming
(AOP) technology. Synchronous triggering applies to the customization scenarios
when the behavior of the product service has to be influenced by the customization
immediately.

Asynchronous triggering can be implemented by the event technology. At an
extension point, the product service ejects an event indicating that it has reached this
point, together with some context information. The event is published to a message
queue. If a customization service subscribes this message queue at the right topic, it
will be notified by the message queue and triggered to handle this event. The product
usually has its internal event mechanism, and therefore to support asynchronous
triggering of customization service, the vendor just needs to publish a part of these
internal events to the public message queue. Although asynchronous triggering is
easier to implement, the customization cannot immediately influence the behavior
of the product service, because the control flow of the product service is not blocked
by the customization service.

A customization service usually needs both synchronous and asynchronous
triggering. Consider the visit counting scenario, for instance: Each time an album is
visited, the customization service needs to be triggered asynchronously to increase
the number of visits in its database. Later on, in the overview page, the product
service needs to synchronously trigger the customization service to get the numbers
of visits for all the albums. This time it needs to wait for those numbers to be
returned from the customization service in order to show them on the overview
page.

6.3 Security

The main SaaS and customization microservices are executed on the servers inside
the public cloud hosting environment, which is a multitenant environment. Security
is a critical requirement for customization in a multitenant environment, e.g., how
to prevent a custom code from accessing data and resource that the tenant has
authority over. We must ensure that the custom code that one tenant provides
does not access or damage—accidentally or intentionally—the custom code and the
data of other tenants. There can be different ways of performing tenant separation,
but the tenant manager is responsible for isolation of tenant isolation. The tenant
manager facilitates access to custom code that replaces standard functionality or
inject custom functionality. It is responsible for isolation of customization, i.e.,
ensuring the correct customizations are applied to the correct tenants, and only
those. The runtime environment executes customization and depends on the tenant
manager to get hold of custom codes. The custom code repository ensures isolation
between custom code provided by different partners. The tenant manager owns
the access and authentication requirements to be able to access the custom code
repository.

Using Microservices to Customize Multi-tenant Software-as-a-Service 325

In intrusive customization, the dynamic loading is not a problem as the services
are always running and are not maintained by the main product. However, the
product still needs a way to switch between services to serve different tenants, even
if the switch is as simple as changing the endpoint to call services. Resource sharing
will be handled outside the main product, by the environment provider, such as
Docker, virtual machine, or cloud providers. For security, we need to guarantee that
the API between the main product and the external services are safe. For multitenant
SaaS, the drawbacks of deep customization are tight coupling and security issues.
On the one hand, the custom code is tightly coupled with the main service, and
therefore updates of the main service will eventually break some customization. On
the other hand, deep (intrusive) customization in theory allows customers to make
any change to the services shared among tenants, which may cause severe security
issues. Our approach at this stage does not solve these two problems. Vendors that
allow deep customization have to introduce supporting facilities, such as sandbox,
continuous automatic testing, vendor-involved code review, customer certification,
etc. As a future plan, we will also investigate potential automatic support to mitigate
these two problems, e.g., the generation of test cases to check the compatibility of
custom code after main service updates, the static code analysis across main service
and custom code for security purpose, etc.

6.4 Migration from On-Premises to SaaS

The migration of a legacy system to the microservice architecture style we advocate
remains difficult, both for the product vendor and for the customer. Migration
procedures form one of our ongoing research topic but we highlight below what
could be the main steps.

From the vendor’s standpoint, the minimal change (provided the product is
a so-called “monolith”) is to develop a means to intercept any method call.
This depends on the underlying technology and some application servers have
appropriate features, such as Glassfish, for instance. Next, the vendor must expose
the tenants’ information to the interceptor, so that it can retrieve the target endpoint
based on the activated tenant and the intercepted method.

Provided the vendor’s product is a customizable multitenant SaaS, the customer
(or a third-party consultant) must then collect every change they have implemented
on their on-premises version and reformulate them into meaningful microservices.
This is a critical and yet manual process that requires an in-depth knowledge of
both the vendor’s product internals as well as the custom code already deployed on
premises.

Finally, once the customization microservices are tested and operational, they
must be integrated to the vendor product. This requires the collaboration of the
vendors and the customer to run integration tests and become confident that the new
changes remain concealed to other tenants. We envision that sandbox mechanisms
are one possible solution to these integrations.

326 H. Song et al.

6.5 Implications for Business Models

To open a multitenant service for customization implies a change in the Business
model. The more software vendors allow their clients to customize, the more they
transfer ownership to their clients. A highly customizable multitenant SaaS therefore
falls somewhere between a SaaS and a platform-as-a-service (PaaS). Regular SaaS
does not run custom code whereas PaaS is a dedicated solution for that.

This change of business model surfaces in the responsibilities that vendors
accept regarding deployment, monitoring, and maintenance of customizations. Our
intrusive microservice approach remains open to both approaches. Excluding the
code that is dynamically interpreted within the vendors’ product, the rest lies
outside, in separate microservices. On the one hand vendors may decide to take as
little responsibilities as possible and hence will demand that their clients run their
customized microservices on their own. On the other hand, the vendors may accept
to run the custom microservices on their clients’ behalf. As the vendors take on the
responsibility of operating custom code, they must set up a development process to
help integrate the life cycles of both their products and their users’ customization.

We believe a transition from SaaS to PaaS is a big leap that has to be carefully
considered. In this transition, our approach allows vendors to gradually open their
system to customization. One of the partners that commissioned this research has
only made customization available for two important partners that they trusted. Only
one “big partner” really needed many deep customizations. The rest of their clients
did not need that many deep customizations.

7 Towards Nonintrusive Customization

We discuss here the need for nonintrusive customization strategy and provide an
outline of a nonintrusive customization solution. While intrusive microservices
are technically sound, its practical adoption by industry may be hindered by the
intrusive way of custom code, which would be developed by “third parties” that
cannot be trusted by software vendors to be dynamically compiled and executed
within the execution context of the main service.

We are working towards a microservice-based nonintrusive customization frame-
work for multitenant Cloud applications, called MiSC-Cloud [15]. Figure 8 shows
an overview of the MiSC-Cloud framework. In this architecture, the nonintrusive
MiSC-Cloud solution avoids using call-back code for customization and rather
orchestrates customization using the API gateway(s) to which the API of the main
software product (developed by vendor) and the APIs of the microservices (owned
by tenants) implementing the customizations for different tenants are exposed. The
WebApp UI service provides support for traditional MVC web application, which
has business logic implemented in the main product application accessible via the
API Gateway. The microservices of each tenant, the main product application,

Using Microservices to Customize Multi-tenant Software-as-a-Service 327

Fig. 8 An overview of the MiSC-Cloud framework

WepApp UI, API gateways, and other supporting services are deployed in separate
Docker containers.

After being tested and approved, the microservices of “tenants” are deployed
and controlled by the software vendors for customizing the main product. Figure 8
shows microservices specific for tenant X and tenant Y to customize the main
product according to the tenants’ needs. Only the end users of tenant X after having
logged in the system will have access to the customized features specific for tenant
X. Via web browsers (or mobile apps), end users can interact with the main product
and the corresponding microservices for customization via the API Gateways (e.g.,
Ocelot12). If end user has not logged in, the API Gateway(s) redirects them to
the Identity and Access Management (IAM) service (e.g., Auth0). After the end
user has logged in successfully via the IAM service, their identity, tenant ID, and
access tokens to the main product and the related customization codes will be used
by the API Gateway(s) to orchestrate the interactions of the end user with the
main product and the specific microservices available to them. The API gateway
leverages a naming service (e.g., Netflix Eureka13) to get the instances of the
provided microservices. The API gateway also leverages a message queue server
such as RabbitMQ14 to support for its orchestration tasks among the main product
and the microservices.

12http://threemammals.com/ocelot.
13https://github.com/Netflix/eureka.
14https://www.rabbitmq.com.

http://threemammals.com/ocelot
https://github.com/Netflix/eureka
https://www.rabbitmq.com

328 H. Song et al.

8 Related Work

There are many technical approaches to customize enterprise software, such
as design patterns, dependency injection (DI), software product lines (SPL), or
API. To the best of our knowledge, while these approaches help to predefined
customizations at design time, they fail to address the requirements of unforeseen
deep customization.

Software product line (SPL) [19] captures the variety of usages in a global
variability model, and actual products are generated based on the configuration
of the variability model. Traditional SPL approaches target all the potential user
requirements by the software vendor, and thus does not apply to our definition of
customization. Dynamic SPL [5] is closer to customization, and some approaches,
such as [10], propose the usage of variability models for customization. However,
such model-based configuration is in a much higher abstraction level than program-
ming [20], and does not fit the deep customization definition, as the customization
points have to be predefined by the vendors.

There are many approaches to SaaS customization in the context of service-
oriented computing. However, most approaches focus on a high-level modification
of the service composition. Mietzner and Leymann [12] present a customization
approach based on the automatic transformation from a variability model to BPEL
process. Here customization is a recomposition of services provided by vendors.
Tsai and Sun [24] follow the same assumption, but propose multiple layers of
compositions. All the composite services (defined by processes) are customizable
until reaching atomic services, which are, again, assumed to be provided by the
vendors. Nguyen et al. [14] develop the same idea, and introduce a service container
to manage the life cycle of composite services and reduce the time to switch between
tenants at runtime. These service composition approaches all support customization
in a coarse-grained way, and rely on the vendors to provide the adequate “atomic
services” as the building blocks for customized composite services.

As market leading SaaS for CRM and ERP, the Salesforce platform and Oracle
NetSuite provide built-in scripting languages [9, 17, 21] for fine-grained, code-
level customization. Since these scripting languages are not exposed to the same
execution context as the main service, the customization capability is defined by
the underlying APIs of the main service. In order to maximize the customization
capability, both vendors provide very extensive and sophisticated APIs, which is
costly and not affordable by smaller vendors. In contrary, intrusive microservices
does not require the vendors to spend much time on designing and implementing
such APIs.

Middleware techniques can also support the customization of SaaS. Guo et
al. [4] discuss, in a high abstraction level, a middleware-based framework for the
development and operation of customization, and highlight the key challenges.
Walraven et al. [25] implemented such a customization enabling middleware. In
particular, they allow customers to develop custom code using the same language
as the main product, and use Dependency Injection to dynamically inject these

Using Microservices to Customize Multi-tenant Software-as-a-Service 329

custom Java class into the main service, depending on the current tenant. Later
work from the same group [26] develop this idea and focus on the challenges
of performance isolation and latency of custom code switching. The dependency
injection way for customization is close to our work, in terms of the assimilation
between custom code and the main service. However, operating the custom code as
an external microservice eases performance isolation, a misbehavior of the custom
code only fails the underlying container, and the main product only perceives a
network error, which will not affect other tenants. Besides, external microservices
ease management: scaling independently resource-consuming customization and
eventually billing tenants accordingly.

9 Conclusion

This chapter described an approach to use microservices for deep customizations of
multitenant SaaS. We presented the key techniques to implement this architecture
style based on the .NET platform, and evaluated it by enabling deep customization
in an open-source shopping application. The results of our experiments showed that
deep customization using intrusive microservices is indeed feasible for multitenant
SaaS. This approach achieves both the isolation required by multitenancy and the
assimilation required by deep customization. Even though it is technically sound,
using intrusive microservices is not the silver bullet to solve all customization
requirements. Its practical adoption by industry suffers from its lack of security as it
executes code developed by “third parties” that cannot be trusted by the software
vendor. But, it still provides a feasible option when customization beyond the
vendor’s prediction is a must, and only for a few trusted partners of the vendor. We
are working on a nonintrusive approach and will also investigate potential automatic
support to mitigate this security issue, e.g., the generation of test cases to check the
compatibility of custom code after main service updates, the static code analysis
across main service, and custom code for security purposes.

Acknowledgements The research leading to these results has received funding from the Research
Council of Norway under the grant agreement number 256594 (the Cirrus project). We want to
thank our colleagues at Supper Office and Visma for the fruitful collaboration in the Cirrus project.
This chapter is an extension of [1] presented at the 11th International Conference on the Quality of
Information and Communications Technology (QUATIC 2018).

References

1. E. Evans, M. Fowler, Domain-driven Design: Tackling Complexity in the Heart of Software
(Addison-Wesley, Boston, 2004). https://books.google.no/books?id=xColAAPGubgC

2. M. Feathers, Working Effectively with Legacy Code. (Martin, Robert C. Prentice Hall PTR,
New Delhi, 2004). https://books.google.no/books?id=CQlRAAAAMAAJ

https://books.google.no/books?id=xColAAPGubgC
https://books.google.no/books?id=CQlRAAAAMAAJ

330 H. Song et al.

3. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional Computing Series (Pearson Education, New
Delhi, 1994). https://books.google.no/books?id=6oHuKQe3TjQC

4. C.J. Guo, W. Sun, Y. Huang, Z.H. Wang, B. Gao, A framework for native multi-tenancy
application development and management, in The 9th IEEE International Conference on E-
commerce Technology and the 4th IEEE International Conference on Enterprise Computing,
E-commerce, and E-Services, 2007. CEC/EEE 2007 (IEEE, Piscataway, 2007), pp. 551–558

5. S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic software product lines. Computer
41(4), 93–95 (2008)

6. S. Heyenrath, The .NET Standard/.NET Core version from the System Linq Dynamic
functionality (2018). https://github.com/StefH/System.Linq.Dynamic.Core

7. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier, J. Irwin, Aspect-
oriented programming, in European Conference on Object-oriented Programming (Springer,
Berlin, 1997), pp. 220–242

8. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, S. Arikawa, Multiple pattern matching
in LZW compressed text, in Proceedings DCC’98 Data Compression Conference (IEEE,
Piscataway, 1998), pp. 103–112

9. T. Kwok, A. Mohindra, Resource calculations with constraints, and placement of tenants and
instances for multi-tenant SaaS applications, in International Conference on Service-Oriented
Computing (Springer, Berlin, 2008), pp. 633–648

10. J. Lee, G. Kotonya, Combining service-orientation with product line engineering. IEEE Softw.
27(3), 35–41 (2010)

11. Microsoft: MusicStore test application that uses ASP.NET/EF Core (2018). https://github.com/
aspnet/MusicStore

12. R. Mietzner, F. Leymann, Generation of BPEL customization processes for SaaS applications
from variability descriptors, in IEEE International Conference on Services Computing,
SCC’08, vol. 2 (IEEE, Piscataway, 2008), pp. 359–366

13. S. Newman, Building microservices: designing fine-grained systems. O’Reilly Media (2015).
https://books.google.no/books?id=jjl4BgAAQBAJ

14. T. Nguyen, A. Colman, J. Han, Enabling the delivery of customizable web services, in 2012
IEEE 19th International Conference on Web Services (ICWS) (IEEE, Piscataway, 2012), pp.
138–145

15. P.H. Nguyen, Nguyen, H. Song, F. Chauvel, E. Levin, Towards customizing multi-tenant
Cloud applications using non-intrusive microservices, in The 2nd International Conference
on Microservices, Dortmund (2019)

16. M.T. Nygard, Release it!: Design and Deploy Production-Ready Software, 2nd edn. (Pragmatic
Bookshelf, Raleigh, 2018)

17. Oracle, Application Development SuiteScript (2018). http://www.netsuite.com/portal/
platform/developer/suitescript.shtml

18. T. Parsons, J. Murphy et al., Detecting performance antipatterns in component based enterprise
systems. J. Object Technol. 7(3), 55–91 (2008)

19. K. Pohl, G. Böckle, F.J. van Der Linden, Software Product Line Engineering: Foundations,
Principles and Techniques (Springer Science & Business Media, Berlin, 2005)

20. M.A. Rothenberger, M. Srite, An investigation of customization in ERP system implementa-
tions. IEEE Trans. Eng. Manag. 56(4), 663–676 (2009)

21. Salesforce, Apex Developer Guide (2018). https://developer.salesforce.com/docs/atlas.en-us.
apexcode.meta/apexcode/

22. H. Song, F. Chauvel, A. Solberg, B. Foyn, T. Yates, How to support customisation on SaaS:
a grounded theory from customisation consultants, in Proceedings of the 39th International
Conference on Software Engineering Companion (IEEE, Piscataway, 2017), pp. 247–249

23. C. Szyperski, D. Gruntz, S. Murer, Component Software: Beyond Object-oriented Program-
ming. ACM Press Series. (ACM, New York, 2002). https://books.google.no/books?id=
U896iwmtiagC

https://books.google.no/books?id=6oHuKQe3TjQC
https://github.com/StefH/System.Linq.Dynamic.Core
https://github.com/aspnet/MusicStore
https://github.com/aspnet/MusicStore
https://books.google.no/books?id=jjl4BgAAQBAJ
http://www.netsuite.com/portal/platform/developer/suitescript.shtml
http://www.netsuite.com/portal/platform/developer/suitescript.shtml
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
https://books.google.no/books?id=U896iwmtiagC
https://books.google.no/books?id=U896iwmtiagC

Using Microservices to Customize Multi-tenant Software-as-a-Service 331

24. W.T. Tsai, X. Sun, SaaS multi-tenant application customization, in 2013 IEEE 7th Interna-
tional Symposium on Service Oriented System Engineering (SOSE) (2013), pp. 1–12

25. S. Walraven, E. Truyen, W. Joosen, A middleware layer for flexible and cost-efficient
multi-tenant applications, in Proceedings of the 12th International Middleware Conference
(International Federation for Information Processing, Amsterdam, 2011), pp. 360–379

26. S. Walraven, D. Van Landuyt, E. Truyen, K. Handekyn, W. Joosen, Efficient customization of
multi-tenant software-as-a-service applications with service lines. J. Syst. Softw. 91, 48–62
(2014)

You Are Not Netflix

Jakša Vučković

Abstract Microservices promise to solve scalability problems, streamline deploy-
ment, reduce time to market, and improve the reliability of enterprise systems. While
for certain projects and corporations switching to microservices was a major success
factor, the harsh reality that many projects which went down this road needed to face
is often very different. In this chapter we will explore what are the costs and pitfalls
of a microservice-based architecture and how to avoid them.

1 Introduction

This chapter provides some guidance on when to adopt a microservice-based
architecture [7] and how to gain the most benefits out of it while avoiding pitfalls
and keeping the costs under control. The approach taken starts with a skeptical point
of view challenging some of the notions brought up by the microservices hype, then
afterwards it refines the positive and negative implications of this architectural style
in order to present a better understanding on how to mitigate common problems of
distributed systems introduced by the use of microservices.

More specifically in Sect. 2 the case is made for not using microservices by
analyzing the peculiar nonfunctional requirements that lead to the rise of the
microservice-based architecture in order to understand what makes a system suitable
for a microservice-based architecture. In Sect. 3 some common assumptions are
examined in more detail in order to better define the extent of the benefits gained by
the adoption of microservices. Furthermore this section analyses the less obvious
costs introduced by microservices. Subsequently in Sect. 4 criteria are defined on
how to decompose a system into microservices taking into consideration all the
aspects analyzed in the previous sections combined with common approaches used

J. Vučković (�)
Zühlke Engineering, Belgrade, Serbia
e-mail: jaksa.vuckovic@zuhlke.com

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_13

333

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_13&domain=pdf
mailto:jaksa.vuckovic@zuhlke.com
https://doi.org/10.1007/978-3-030-31646-4_13

334 J. Vučković

by the distributed systems research community in the past decades. Finally in Sect. 5
all of the conclusions are summarized from a less skeptical point of view.

2 Suitability for a Microservice Architecture

One of the factors that mostly contributed to the widespread adoption [7] of
microservices was the series of blog posts from Netflix about how they achieved
a breakthrough by dividing their monolith application into microservices. Their
backend system reached a size and complexity that required subdivision into more
manageable chunks. For Netflix this resulted in immediate benefits when it came to
providing scalability and deployment.

In the following years many medium and large projects transitioned towards a
microservices-based architecture [3, 12, 20] with the hope of achieving scalability,
simplifying development, and reducing time-to-market. However, in many cases the
results were mixed at best [6].

A false assumption is that if a project is as big as the Netflix backend, or has as
many users, it will indubitably benefit from microservices. The subtle difference
lies, not in the size, but in the type of application that may benefit most from
microservices.

2.1 Types of Operations

For the most part the operations executed on the Netflix servers are read only.
Read only operations pose much less of a problem when it comes to scalability.
Replicating data that does not change often and does not need to be up to date,
does not require any complex replication algorithms like distributed locks [22] or
consensus [18]. The only significant cost is storage space.

In terms of scalability, read operations are followed by write operations that
involve user private data. For these kinds of operations partitioning techniques like
database sharding work very well. Since each data instance is updated only by one
user, conflicts are rare and tend not to be a problem.

The most difficult kind of operations to scale are write operations on same shared
data (e.g., seat reservations). These operations require coordination of the different
replicas and are the most complex to scale [17] especially when multiple entities are
involved in the updates.

The type of operations does not itself affect the suitability of a system for a
microservice architecture directly, it is rather the uneven scalability requirements for
each type of operation. In the case of Netflix, video streaming heavily exceeds all the
other types of operations in terms of server load. By separating video streaming into
its own microservice, Netflix managed to guarantee an independent level of service
for the other operations that were previously being starved of system resources.

You Are Not Netflix 335

The usage profile was comprised of many read operations, which required a lot
of scalability, and few write operations, which required less scalability. That was
an ideal scenario for separating the system into two parts with different scalability
requirements using different solutions. From one point of view, it could be argued
that microservices were a generalization of that decision.

2.2 Complexity of Updates

Systems that have a lot of independent operations that do updates to a small
part of the data tend to be much easier to subdivide into microservices. On the
contrary, operations that involve many updates in several parts of the system tend to
have major costs once split into microservices. A particularly difficult category of
problems arise when these update operations need to preserve consistency criteria.
There are many solutions [4, 11] that address maintaining distributed data to various
levels of consistency, however they all come with significant costs in terms of
performance and especially maintenance, which make the benefits of a microservice
architecture less appealing.

2.3 Separation of Concerns

Another important prerequisite that had been fulfilled by Netflix is the rather clean
separation of data according to functionality. Systems that have a lot of functionality
that pertains the same data tend to be much more difficult to split into microservices
particularly if the data is subject to frequent changes. On the other hand, systems that
have a lot of functionality involving separate, even if correlated, data, such as “video
content,” “thumbnails,” “watch history,” “rating,” “payment information,” etc., tend
to be much easier subdividing the system into microservices.

All these factors combined made the Netflix backend a perfect candidate for
breaking down into microservices. Understanding whether and why a system fits
this profile is the first step for deciding whether and how to make the transition to a
microservice-based architecture.

3 Myths and Misconceptions

As every popular technology, microservices are followed by a vast amount of
articles, blog posts, videos, and marketing material. Some of that content comes
from experimental research and direct experience, but for highly popular trends such
as microservices, a lot of it is repetition with a slight amount of distortion based

336 J. Vučković

on assumptions. We will try to demystify some common misconceptions around
microservices.

3.1 Freedom of Choice

One of the selling points of microservices especially appreciated by developers
is that microservice-based systems allow individual microservices to be built
using different languages and platforms. While this can solve some particular
requirements where part of the application needs to be highly specialized it comes
at a significant cost.

A heterogeneous microservice-based system is one where all the microservices
are developed using different languages, and a homogeneous one is developed using
just a few languages. In reality there is no precise boundary between these two
categories because there always tends to be a technology for frontend development
(JavaScript/Typescript) [9, 25], one for the middle tier (Java/C#) [13, 23], and a
database query language (SQL/JPQL/LINQ) [1, 5, 21].

The most important factor driving up the cost is knowledge management. For
each programming language in the project, there have to be several developers
that are experienced in that language. Having only one expert per language causes
problems with absences, code reviews, and introduces bottlenecks in the software
development process. Despite being undesirable, it is a common situation that a
change to the software behavior requires modifications to several microservices.
In a heterogeneous system, we can either have different developers coordinating
the changes across microservices, which requires additional management overhead,
or a single developer having to work with various programming languages, which
requires more experienced developers. Keeping the developers up to date with
technology is more expensive in a heterogeneous system. On the other hand, a
homogeneous system provides more flexibility in assigning developers to microser-
vices, better continuity in the software development process, allows for shared
code ownership and introduces synergy in the knowledge management of adopted
techniques for the various microservices.

Another factor that inflates the cost of heterogeneous microservices is the
complexity of writing multiple clients in different languages. It is common practice
for the developers of a microservice to provide client libraries for that microservice.
The more heterogeneous the system, the more client libraries need to be written
each with a certain degree of impedance mismatch. This cost is often mitigated by
defining service APIs in some interface definition language [24] and automatically
generating various clients from this specification. This approach is less expensive
but limits the control developers have over the client interface.

For all these reasons, in microservices-based projects, the balance between
freedom of choice and standardization often begins closer to the former but then
converges towards the latter, up to the point that significant effort has been made to
develop languages specifically for microservices [15].

You Are Not Netflix 337

3.2 Scalability

A term often associated with microservices is scalability [8]. It is a common
misconception that microservices provide scalability out of the box or at least
that microservices are more scalable than a monolith. Scalability is something that
needs to be implemented by every microservice. Architectural solutions to scaling
a microservice are exactly the same solutions to scaling a monolith and provide
the same level of scalability. These solutions can range from a combination of
a stateless middle tier backed by a distributed database across application level
sharding to high degrees of replication for read-mostly systems. Even a monolith
system can use several of these solutions for the various parts of the application. N
instances of a monolith will be able to handle as much load as N instances of various
microservices; the only difference will be the memory footprint of the application
running on those instances, which compared to the data tends to be negligible.

The real benefit microservices provide when it comes to scalability is the ability
to independently scale each microservice. As seen in the Netflix example, if some
functionality is used very often and can generate significant load on the hardware
resources it can be separated from the functionality which is not used that often
but which is nonetheless important and requires reasonable response times. So we
could have hundreds of active instances of a microservice providing functionality
A, but only a few instances of a microservice providing functionality B. In this way,
microservices prevent load in one part of the application from affecting performance
of another part and allow allocation of hardware resources selectively for each bit
of functionality.

4 Dividing a System into Microservices

A careful analysis and understanding of the costs and benefits of microservices is
a good starting point for deciding how to partition the functionality of a system
in microservices. After that initial analysis, there are many other aspects that need
to be taken into considerations that will drive the architecture, sometimes even in
opposite directions.

4.1 The Right Size of a Microservice

In the early days of microservices one of the most common questions and a common
topic of debate, was the right size of a microservice. The spectrum of answers
ranged wildly from a single table in the database to the entire domain of a company
department.

338 J. Vučković

Domain-driven design [10] proved to be a popular methodology on how to reason
about these decisions. Translated to DDD terms, the answer for the microservice
size problem varied from having a microservice per entity to a microservice per
bounded context. Most often a microservice would contain an aggregate.

With time architects converged on the idea that there is no single “right” size of
a microservice, but rather a number of aspects that need to be considered to decide
whether to keep functions together, separate them, or even replicate them in different
microservices.

4.2 Subdivision According to Update Operations

While domain-driven design encourages a data-oriented approach, it is primarily
focused on software design and less on architectural decisions in a distributed
system setting. Another way to look at the subdivision problem would be by
analyzing the consistency requirements of operations that update data in the system.

Some systems have operations that require updating a lot of data as a con-
sequence of a single user action (or external invocation). For example placing
an order in an online shop requires emptying the shopping cart, updating the
inventory, starting an order fulfillment business process, updating the data that
suggest products to customers, updating the business intelligence data used for
internal reports, performing the money transfer, sending the financial data to the
accounting department, etc. In a microservice scenario this data might be distributed
over several services. An operation can be broken down into multiple updates on the
system and each of these updates can be categorized in the following levels:

Atomic core contains all updates that can fail and the whole operation should be
aborted if the update cannot be performed. From the previous example,
updating the inventory and making the money transfer are part of the
atomic core, i.e., if any of those updates cannot be performed, the whole
operation should be aborted.

Consistency support layer contains the updates that cannot fail, or can be retried
until they succeed, but are required in order to make a part of the system
appear consistent to external clients [16]. An example of this would be
emptying the shopping cart and updating the list of pending orders after
the placing of the order. These updates are required for a consistent
customer experience, but cannot cause the whole operation to be aborted.

Eventual consequences layer contains all the updates that, like in the consistency
support layer, cannot fail, and affect parts of the system that do not need
to appear consistent to external clients (e.g., sending financial data to the
accounting department, updating the business intelligence data, etc.).

Many systems will not have all three types of updates and this is perfectly normal.
The important thing to keep in mind is that the level of consistency is not just an

You Are Not Netflix 339

implementation technicality. It is a business decision because it directly impacts user
experience [2].

Distributing the data affected by updates belonging to the atomic core of
operations across several microservices poses significant problems. In those cases
some mechanism must be introduced to ensure atomicity in a distributed scenario.
In simple scenarios this mechanism can be a relatively straightforward, two-phase
commit [14, 19], but in an evolving system this can easily turn into full distributed
transactions. One of the pitfalls of this natural evolution is that iterations of custom
solutions are implemented and distributed transactions systems are written from
scratch instead of reusing existing ones. Other times, systems remain in a limbo
where the business logic is not separated from the mechanism ensuring the atomicity
and a business process is created that mimics a two-phase commit.

If the data belonging to the atomic core is hosted by a single microservice, it is
possible to use local transactions which are much cheaper in terms of performance
than any distributed atomic commit algorithm.

The updates in the consistency support layer need to be performed in a
synchronous way. Due to the noncritical nature of the operations, mechanisms like
a two-phase commit are not needed. However, transactions can still be required to
maintain isolation in case there is a lot of contention for updates over the same data.
Like for the atomic core of a system, keeping the data belonging to the consistency
support layer in a single microservice avoids a lot of problems. In the case the
data is split across several microservices, due to the unreliable nature of distributed
systems, additional measures must be taken to ensure exactly-once semantics.

Finally the data that belongs to the eventual consequences layer can be hosted by
separate microservices and updated asynchronously. Among various asynchronous
solutions, the publish/subscribe mechanisms guarantees loose coupling and tends to
be the most future proof for evolving complex systems.

4.3 Serial vs. Parallel Arrangement

Another important aspect to consider when subdividing a system into microservices
is managing the dependencies and arrangement of microservices. Architectural
patterns can vary a lot, from having a client directly accessing a number of
independent microservices to orchestration microservices providing a layer of
indirection to chains of microservices invoking each other. All these choices have
several implications that are often realized after the system has been in production
for months.

One of the fundamental laws from reliability theory is that serially arranged
components are less reliable than parallel components. Furthermore a system of
serially arranged components is less reliable than a single component.

When several microservices invoke each other in a chain, several servers can
be involved that can have hardware failures, there are more configurations to
maintain in order to ensure that the right downstream service is invoked and there

340 J. Vučković

are network connections to cross which could potentially fail and require some
complex distributed algorithms in order to maintain consistency of the system.
While distributed systems have the potential to make an application more reliable
through techniques such as replication, if implemented naively they tend to be less
reliable than a monolithic system.

If services are arranged in a parallel fashion, a viable fault tolerance technique
is to separate functionality that can be allowed to fail independently. For example,
in the previous online shop scenario, separating the order placement from the seller
rating and product comments can make the system usable even if not all of the
functionality is available.

Another downside of chains of microservices invoking each other is the increased
latency. Instead of a single remote invocation from the frontend to the backend and
potentially a database, chains of microservices perform multiple remote invocations,
each with its own marshalling, unmarshalling, network latency, and security and/or
transactional context propagation. The impact of this is especially evident when
using web standards like HTTP+XML or JSON to do interservice communication
which can introduce delays of tens of milliseconds. This inefficiency can be
compensated to some degree by switching to more efficient protocols like gRPC
and Thrift, but is still not comparable to a local invocation.

In a microservice scenario, latency can be either extrinsic—caused by the
current load of the system, or intrinsic—caused by the architectural choices.
Extrinsic latency is affected by intrinsic latency and with long chains of invocations
becomes very difficult to understand, model, and manage. Intrinsic latency cannot
be mitigated by adding more nodes to the system, thus it is of utmost importance
take it into account when arranging microservices.

Perhaps the most important impact of microservices is the time required to
develop features. In an ideal scenario, implementing a feature would involve
changing one microservice and performing a release of just that microservice.
Chains of microservices invoking each other often come with a poor separation
of concerns. As a consequence, developing features requires changing several
microservices and several APIs. The longer the chain, the more overhead work there
is. Sometimes this can be further aggravated by independent release cycles. If each
microservice is released according to its own schedule, all changes in microservices
involved in the feature will need to be released starting from the bottom to the top.

Mitigations include setting up a release train process which means releasing
all microservices together in reverse order of dependency. One advantage of this
approach is that backward compatibility between intermicroservice APIs is not
needed.

Another option is to have continuous deployment on all microservices. In
this way, microservices can be released on demand as soon as a new feature is
implemented. This approach requires careful planning of the API changes in order to
preserve backward compatibility. Continuous deployment is sometimes difficult to
achieve without introducing the risk of releasing buggy software. Certain categories
of software require various stages of lengthy testing before release regardless of the
level of test automation.

You Are Not Netflix 341

4.4 Microservice Interaction Styles

Historically, the term API (application programming interface) has been used to
describe the set of functions offered by an operating system that provided some
handy abstractions to application developers. With time this became the interface
of any library or framework, and in recent years it has been predominantly used to
refer to remote APIs (typically REST) that are invoked remotely.

A common scenario in projects where a monolith is being broken down into
microservices is that microservice interaction keeps being treated as local invoca-
tions without too much consideration about introduced latency and possible message
losses and crashes. As a consequence, the interfaces of microservices resemble APIs
of libraries. A better approach is to treat interaction between microservices for what
it is: a protocol. Designing a protocol is somewhat different from designing the API
of a library. Additional aspects have to be taken into consideration and some design
driving factors are fundamentally different.

First of all, when designing a protocol we have to take into consideration the
statefulness of that protocol. A stateful protocol is one where the semantics of
every operation (or message) depend on the previous messages exchanged by the
parties. A stateless protocol instead has independent invocations which will produce
the same result regardless of any previous operations. Stateful protocols are more
difficult to implement on the client and server side, they require more complex fault
tolerance mechanisms and additional synchronization in case of replication.

An example of a stateful protocol is a shopping cart whose state is managed
by the server. Whenever a user adds an item to the shopping cart, the client must
make a remote invocation to the server. Once the user is ready to pay, the client just
sends a request to the server saying that whatever is in the shopping cart should be
purchased.

On the other hand, with a stateless protocol the state of the shopping cart would
be kept entirely on the client and the server would not even have the notion of the
shopping cart. As the user adds items to the cart, there are no invocations towards
the server. Only when the user is ready to pay, the entire order with the contents of
the shopping cart are sent to the server.

While the solution with the stateful protocol would allow users to see the same
contents of the shopping cart across different devices, implementing this solution
would require many more interactions with the server, which means a more complex
API and more load. Server restarts need to be handled appropriately to avoid
purchasing an empty shopping cart. In case that the server is replicated, the replicas
would need to share the state either through a shared database or through some
shared data structure.

In practice, most protocols are stateful to varying degrees, at least for the simple
reason that they rely on TCP. More often than not, the best that can be done is to
minimize the state shared between the client and the server.

Statefulness is a design aspect that is very important when designing a protocol,
but is close to insignificant when designing a local API.

342 J. Vučković

There are many communication paradigms used in distributed systems. One way
of categorizing them is according to whether the client awaits for the server to
process the request. This is called synchronous communication. The simplest form
of synchronous communication is the remote invocation. The client sends a request
and the server responds. Many internet protocols follow this paradigm.

More complex forms of synchronous communication can be two-phase commits,
consensus, or full blown distributed transactions. For all these protocols, a client
will send one or more requests to a group of servers and will wait till all or at least
a quorum of the servers have processed the request.

In asynchronous communication the client sends a message and continues with
the computation without waiting for any response. The request will eventually be
processed by the server. This interaction can be direct, like in actor-based systems
or it can go through a message queue for additional resilience. For the highest
decoupling, an event-based approach can be achieved through a publish subscribe
mechanism.

Synchronous communication has the advantage that operations can return results
thus making it easier to combine several operations. This will also make it easier to
write end-to-end tests and preserve consistency. Synchronous invocations will also
block the calling thread. Blocking significantly impacts latency and while it does not
actively consume hardware resources it may still reduce the throughput of a service
by exhausting software resources such as thread pools, connection pools, or simply
keeping locks longer than necessary.

Asynchronous communication allows for significantly lower latency and easier
identification of performance bottlenecks in the distributed system. Chains of
operations that are dependent on each other can be implemented using asyn-
chronous invocations, but the resulting code will be very difficult to understand
and maintain. Asynchronous operations are also more difficult to test, and ensuring
consistency across a system requires developers skilled in distributed algorithms.
While asynchronous communication can be simulated using synchronous primitives
and threads, asynchronous primitives are more low level, efficient, and flexible, but
require more know-how in the area of distributed algorithms in order to be used
correctly.

The decision on which form of interaction to use should be done on a case-
by-case basis. According to what we said in the “Subdivision According to
Update Operations” paragraph, we provide some guidelines on how to choose the
appropriate interaction paradigm.

For updates that belong to the atomic core (i.e., updates that need to be performed
all or none) the preferred option is to use synchronous communication from the
frontend to the backend, have all the corresponding data in the same microservice,
and use a cheap consistency mechanism such as database transactions. If it is
not possible to keep all data required for the atomic core updates in the same
microservice, an atomic commit protocol can be used. There are several libraries
that provide some help in implementing a two-phase commit protocol, but the
participants have to be adapted.

You Are Not Netflix 343

Notice that there is a subtle difference between a consensus and an atomic
commit. For a consensus, any participant must be able to accept the chosen outcome.
On the other side in an atomic commit any participant can abort the entire operation.

If the individual updates are independent, a two-phase commit should be enough,
but if there are dependencies between the individual updates, such as one update
requiring the outputs of another update, distributed transactions may be necessary.
There are several implementations of distributed transactions that make it very easy
to connect several microservices in a single transaction. Distributed transactions
are more than just an implementation of the atomic commit. They propagate the
transactional context, which is also used to provide isolation at the database level
and typically involves an external transaction manager. A two-phase commit is
typically used just at the end of a distributed transaction. Distributed transactions
have performance implications and pose restrictions on the underlying technologies.

For updates belonging to the consistency support layer, remote invocations can be
performed synchronously after the atomic core has been performed. Given that the
client needs to observe a consistent system for this subset of updates, asynchronous
communication is not an option.

Updates that need to be performed as a consequence of the user-triggered
operation (or some other external event) but are not required for keeping any form
of strong consistency can be invoked using some asynchronous communication
mechanism. Using a publish-subscribe mechanism decouples the downstream
microservices. A good practice is to publish events using the data model of the
producer including all possible data about the event and let each consumer transform
the data according to its needs. This way it is easy to add consumers without having
to modify the producers. Legacy consumers may need a bridge to transform the
events. Sometimes it is a sensible choice even to publish events for which there are
no consumers yet.

When publishing events, it is important to take into consideration the granularity
of the events. Fine-grained events may be missing context and some aggregator may
be needed to correlate different types of events together. On the other hand, coarse-
grained events may simply not be detailed enough for some use cases.

Regardless of the synchronicity of communication, and even with eventual
consistency requirements, it is necessary to ensure that operations are performed
exactly once. Guaranteeing delivery semantics is one of the fundamental challenges
of distributed systems. There are three common delivery guarantees in the order of
increasing difficulty: At most once—this is the default, the operation will be invoked
if everything goes smoothly, but there are no guarantees. This is the typical delivery
semantics for asynchronous communication. At least once—this usually involves a
retry mechanism if no response is received from the server. It may end up invoking
the server multiple times in case the response gets lost. Exactly once—this is usually
achieved with the combination of a retry mechanism along with some idempotence
mechanism. Sometimes operations are idempotent by business logic, at other times,
request ids and response caching can be used in the communication layer to achieve
the same effect.

344 J. Vučković

Delivery semantics may apply to both, synchronous and asynchronous commu-
nication. In the synchronous case by the time the remote invocation or another
protocol is finished, it is guaranteed that the invoked services has been invoked
exactly once. In the asynchronous case, it is guaranteed that the recipient of the
message will eventually consume the message exactly once, regardless of process
crashes and network partitions. One mechanism that ensures asynchronous exactly
once delivery are transactional message queues.

Just like the subdivision of a system into microservices, interaction styles are
crucial for determining whether a microservice architecture becomes a solution
or a burden. There is no single correct answer when it comes to communication
paradigms and the appropriate paradigm has to be chosen and regularly revised in
any distributed system.

5 Summary

The important lesson to learn here is that microservices, while being an effective
answer to the growing complexity problem, are a not a silver bullet and are a costly
solution. They require more sophisticated tools, a mature development process,
and a sound understanding of distributed system problems. Microservices have the
potential to either drastically improve or degrade the time to market, reliability,
and maintainability of a system depending on the context where they are being
applied and the way they are being used. In this chapter a number of factors have
been presented that have to be carefully taken into consideration before deciding
whether to switch to a microservice-based architecture. These factors are far from
being exhaustive and provide just a starting point, but are enough to identify certain
categories of systems that will particularly benefit from microservices and certain
ones that will not.

Going beyond the hype and marketing is fundamental for a thorough under-
standing of the problems solved and problems introduced by microservices. They
do not improve the scalability of a system but rather allow applying independent
scalability solutions for different parts of the system. They also do not guarantee
a higher reliability out of the box, but rather need to be carefully planned in order
to allow system functionality to be unavailable independently. The time to market
is reduced only if certain prerequisites are fulfilled by the project development
process. A microservice-based architecture does not simplify a system, but rather
makes individual microservices easier to manage by shifting the cognitive load from
developers to architects.

Finally dividing a system into microservices is far from straightforward and
introduces all the problems typical for distributed systems, such as keeping con-
sistency in case of failures and managing reliability. Splitting functionality across
different microservices makes it more difficult to maintain consistency. This prob-
lem can be mitigated by meticulously analyzing the consistency requirements of
the system operations and adopting appropriate communication paradigms between

You Are Not Netflix 345

microservices. Layering microservices can hide implementation complexity, but
also negatively affects reliability if overused. Distributed systems have been a
research area for several decades and combining the knowledge and techniques from
it with the latest trends in software engineering allow us to take full advantage of
microservice-based architectures.

References

1. ANSI: Information technology – database languages – SQL multimedia and application
packages. Technical report, ANSI (2003). http://webstore.ansi.org/RecordDetail.aspx?sku=
ISO%2fIEC+13249-2%3a2003

2. J. Bogart, Busting some CQRS myths. https://lostechies.com/jimmybogard/2012/08/22/
busting-some-cqrs-myths/

3. A. Bucchiarone, N. Dragoni, S. Dustdar, S.T. Larsen, M. Mazzara, From monolithic to
microservices: an experience report from the banking domain. IEEE Softw. 35, 50–55 (2018)

4. A. Buchman, M.T. Ozsu, M. Hornick, D. Georgakopulos, F.A. Manola. A transaction model for
active distributed object systems, in Database Transaction Models for Advanced Applications,
ed. by A.K. Elmagarmid (Morgan Kaufmann, San Mateo, 1992)

5. L. DeMichiel, M. Keith, JSR 220: Enterprise JavaBeansTM, Version 3.0 - Java Persistence API
(2006)

6. Dimensional Research, Global microservices trends: a survey of development professionals
(2018), https://cdn2.hubspot.net/hubfs/2720296/White%20Papers/GlobalMicroservicesTrends-
April2018.pdf?submissionGuid=6e8151d1-6ff7-4ce9-940b-997e1cfb10d4

7. N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,
Microservices: yesterday, today, and tomorrow, in Present and Ulterior Software Engineering
(2017), pp. 195–216

8. N. Dragoni, I. Lanese, S.T. Larsen, M. Mazzara, R. Mustafin, L. Safina, Microservices: how to
make your application scale perspectives of system informatics, in 11th International Andrei
P. Ershov Informatics Conference, PSI 2017, Moscow, Russia, June 27–29, 2017, Revised
Selected Papers (2017), pp 95–216

9. ECMAScript Language Specification. Edition 5.1. http://www.ecma-international.org/
publications/standards/Ecma-262.htm

10. E. Evans, Domain-driven Design (Addison-Wesley, Boston, 2004)
11. H. Garcia-Molina, K. Salem, Sagas. SIGMOD ’87 Proceedings of the 1987 ACM SIGMOD

International Conference on Management of Data (1987)
12. A.M. Glen, Microservices priorities and trends, in dzone.com. (2018), https://dzone.com/

articles/dzone-research-microservices-priorities-and-trends
13. J. Gosling, B. Joy, G. Steele, G. Brache, The Java Language Specification, 2nd edn. (Addison-

Wesley, Boston, 2000)
14. J. Gray, Notes on database systems. IBM Hesearch Report RJ2188 (1978)
15. C. Guidi, I. Lanese, M. Mazzara, F. Montesi, Microservices: a language-based approach, in

Present and Ulterior Software Engineering (2017), pp. 217–225
16. M. Herlihy, J. Wing, Linerizability: a correctness condition for concurrent objects. ACM Trans.

Program. Lang. Syst. 12(3), 463–491 (1990)
17. A.M. Kermarrec, A. Rowstron, M. Shapiro, P. Druschel, The IceCube approach to the

reconciliation of divergent replicas, in Symposium On Principles of Distributed Computing
(PODC) (2001)

18. L. Lamport, R.E. Shostak, M.C. Pease, The Byzantine generals problem. ACM Trans. Program.
Lang. Syst. 4(3), 382–401 (1982)

http://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2fIEC+13249-2%3a2003
http://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2fIEC+13249-2%3a2003
https://lostechies.com/jimmybogard/2012/08/22/busting-some-cqrs-myths/
https://lostechies.com/jimmybogard/2012/08/22/busting-some-cqrs-myths/
https://cdn2.hubspot.net/hubfs/2720296/White%20Papers/GlobalMicroservicesTrends-April2018.pdf?submissionGuid=6e8151d1-6ff7-4ce9-940b-997e1cfb10d4
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends

346 J. Vučković

19. B. Lampson, H. Sturgis, Crash recovery in a distributed system. Xerox PARC Research Report
(1976)

20. N. Dragoni, S. Dustdar, S.T. Larsens, M. Mazzara, Microservices: migration of a mission
critical system (2017). https://arxiv.org/abs/1704.04173

21. E. Meijer, B. Beckman, G. Bierman, LINQ: reconciling object, relations and XML in the .NET
framework (2006)

22. D.A. Menasce, R.R. Muntz, Locking and deadlock detection in distributed data bases. IEEE
Trans. Softw. Eng. 5, 195–202 (1979)

23. C# Language Specification. Standard ECMA-334 (2001). http://www.ecma-international.org/
24. Swagger Codegen. https://swagger.io/tools/swagger-codegen/
25. TypeScript Language Specification (2016), https://github.com/Microsoft/TypeScript/blob/

master/doc/spec.md

https://arxiv.org/abs/1704.04173
http://www.ecma-international.org/
https://swagger.io/tools/swagger-codegen/
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md

Part VI
Education

DevOps and Its Philosophy: Education
Matters!

Evgeny Bobrov, Antonio Bucchiarone, Alfredo Capozucca, Nicolas Guelfi,
Manuel Mazzara, Alexandr Naumchev, and Larisa Safina

Abstract DevOps processes comply with principles and offer practices with the
main objective of efficiently supporting the evolution of IT systems. To be efficient,
a DevOps process relies on a set of integrated tools. DevOps is among the first
competencies, together with agile method, required by the industry. As a new
approach it is necessary to develop and offer to the academy and to the industry
training programs to prepare engineers in the best possible way. In this chapter
we present the main aspects of the educational effort made in recent years to
educate engineers on the concepts and values of the DevOps philosophy. This
includes principles, practices, tools, and architectures, primarily the microservices
architectural style, which shares many aspects of DevOps approaches, especially
modularity and flexibility, which enable continuous change and delivery. Two
experiments have been carried out, one at the academic level as a master program
course and the other as an industrial training. Based on those two, we provide a
comparative analysis and some proposals in order to develop and improve DevOps
education for the future.

E. Bobrov · M. Mazzara · A. Naumchev · L. Safina (�)
Innopolis University, Innopolis, Russian Federation
e-mail: e.bobrov@innopolis.ru; m.mazzara@innopolis.ru; a.naumchev@innopolis.ru;
l.safina@innopolis.ru

A. Bucchiarone
Distributed Adaptive Systems (DAS) Research Unit, Fondazione Bruno Kessler, Trento, Italy
e-mail: bucchiarone@fbk.eu

A. Capozucca · N. Guelfi
University of Luxembourg, Luxembourg, Luxembourg
e-mail: alfredo.capozucca@uni.lu; nicolas.guelfi@uni.lu

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4_14

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31646-4_14&domain=pdf
mailto:e.bobrov@innopolis.ru
mailto:m.mazzara@innopolis.ru
mailto:a.naumchev@innopolis.ru
mailto:l.safina@innopolis.ru
mailto:bucchiarone@fbk.eu
mailto:alfredo.capozucca@uni.lu
mailto:nicolas.guelfi@uni.lu
https://doi.org/10.1007/978-3-030-31646-4_14

350 E. Bobrov et al.

1 Introduction

In a world of rapid technological development and full automation trend, tech-
nological progress is often identified in a new model of a digital device or a
new release of a software package. In the full spectrum of technological progress,
there are developments that cannot be immediately perceived or purchased by the
final user, among them process innovation. In a competitive world, and in order
to offer better prices, companies have the need to optimize their operations [1].
Innovative business models appear everywhere from the game industry to the mobile
application domain, and the distinction between what is Information Technology
and what is not becomes less and less obvious. Is Uber a taxi or an IT company?
Is Airbnb a realtor? Software development techniques and operations need to also
catch up with this trend and with the new business context.

Until now, it was clear when the next release of Windows would come out,
but what about a web service (e.g., Google, Yandex search)? Agile Methods deal
with this problem only from the software development point of view focusing on
customer value and managing volatile requirements. However, the current effective
scenario practice in industry requires much more than that, and involves the entire
life cycle of a software system, including its operation. Thus, it is not surprising that
today the industry is desperately looking for qualified people with competences in
DevOps[2].

DevOps is a natural evolution of the agile approaches [3, 4] from the software
itself to the overall infrastructure and operations. This evolution was made pos-
sible by the spread of cloud-based technologies and the everything-as-a-service
approaches. Adopting DevOps is however more complex than adopting Agile [5]
since changes at the organizational level are required. Furthermore, a completely
new skill set has to be developed in the teams [6]. The educational process is
therefore of major importance for students, developers, and managers. As long as
DevOps became a widespread philosophy, the necessity of education in the field
becomes more and more important, both from the technical and organizational
points of view [6].

Chapter Outline and Contribution This chapter describes parallel experiences of
teaching DevOps to both undergraduate and graduate students at university, and
junior professional developers with their management in industry. We proceed to a
comparative analysis to identify similarities, differences, and how these experiences
can benefit from each other. After this introduction, Sect. 2 discusses the experience
of teaching DevOps in a university context while Sect. 3 reports on the industrial
sessions we have been delivering. Comparative analysis, conclusions, and future
work on education are summed up in Sect. 4.

DevOps and Its Philosophy: Education Matters! 351

2 Teaching in Academia

The success of software development project is very often (not to say always)
aligned with the skills of the development team. This means that having a skillful
team is not only a prerequisite to have a chance to be successful in the software
industry, but also to adopt new techniques aimed at simplifying the burden
associated with the production of software in current times: i.e., remain competitive
by continuously optimizing the production process. It is acknowledged that agile
methods and DevOps principles and practices are nowadays among the most
relevant new techniques wished to be fully mastered by team members. Therefore,
we, as part of the academia are responsible of forming students with a set of skills
able to cope not only with today’s needs, but also those of tomorrow.

For this purpose, we have recently developed a new DevOps course offered at
the master’s level in our academic institution [7]. Despite the fact that the course
is part of an academic program in computer sciences, it has been designed to make
a pragmatic presentation of the addressed topics. This is achieved by applying the
Problem-Based Learning (PBL) method as pedagogical approach. Thus, lectures
are interleaved with hands-on, practical sessions and stand-up meetings where
students (working in groups), along with guidance of the teaching staff, work out the
solution to the assigned problem. This problem, common to every groups, consists
of the implementation of a deployment pipeline. The objective then not only to
engineer the deployment pipeline and demonstrate its functioning, but also justify
the choices made in its design. Each group relies on a software product of its choice
to demonstrate the functioning of the pipeline. Thus, it is the chosen product that
makes each group’s work unique.

2.1 Experience

Here we summarize the relevant information about the course (i.e., organization,
structure, execution, and assessment), along with the lessons learnt and some
reflections to be considered into its following editions.

The PBL method allows students to focus on finding one (of the many possible)
solutions for the given complex problem. The problem to be solved consists of
implementing a deployment pipeline, which needs to satisfy certain functional and
nonfunctional requirements. As students work in groups to find out the expected
solution, they will experiment in first person the problems that arise in collaborative
environments. The creation of such environments is intentionally done to let
students either acquire or improve (with the guidance of the teaching staff) the
required soft-skills capacities needed to deal with people- and processes-related
issues. Notice that it is acknowledged that DevOps culture is aimed at increasing
inter- and intrateam collaboration. Therefore, soft-skills capabilities are as important
as operational tools meant for automation.

352 E. Bobrov et al.

The knowledge is transferred to students through lectures, project follow-up
sessions (kind of stand-up meetings) aimed at having a close monitoring of the work
done for each group member and helping solve any encountered impediments, and
assessment talks (where each group presents the advances regarding the project’s
objectives). This structure favors both the cohesion of groups and the exchange of
ideas among every course participant. The topics presented during the lectures are
those closely related to the project’s goal. They are configuration, build, test, and
deployment management. Such topics are presented in the mentioned order, after a
brief general introduction to the DevOps movement. It is worth mentioning that the
course opens with a high frequency of lecture sessions, but soon they leave place to
hands-on and stand-up meetings. Thus, a significant time of the course is spent in
practices and discussions of different alternatives to achieve the targeted solution. It
is during such sessions that groups soon realize the impact of the product1 on the
deployment pipeline aimed at supporting its development. It is worth remembering
that one of the objectives in setting up a deployment pipeline (and of DevOps in
general) is to reduce the time since a modification made by a developer is committed
and pushed into the main branch of a repository until it appears in production ready
to be used by the end-user, but without sacrificing quality (the development team
wants to have some certainty that the modification would work as required without
introducing flaws into the product). Therefore, for a product that belongs to those
known as monolithic the deployment pipeline’s throughput would be higher than for
those architected according the microservices style [8, 9]. Notice that we (teaching
staff) also advise in the selection of the product to be used during the execution of
the course, despite not being part of the course objectives to assess the quality of
such a product. The point of doing so is twofold: first, to raise the concerns related
to the constraints imposed by the product over its deployment pipeline and, second,
to avoid groups struggle with technical issues out of the project’s scope, which
could lead to frustration, and eventually dropouts (although these risks are always
present). However, regardless the selected product, we drive students towards the
implementation of the pipeline. This means that, eventually, they need to show us
the functioning of the pipeline along with arguments that explain why the chosen
pipeline is the most suitable for the product required to handle.

The experience until now has been very positive: students have provided
good feedback about the course, no dropouts, and high quality project outcomes.
Feedback from students was gathered through a survey filled out anonymously
once the course was over: 100% agreed on the statement the course was well
organized and ran smoothly, 75% (25%) agreed (strongly agreed) on the statement
the technologies used in the course were interesting, and 75% agreed with the
statement I am satisfied with the quality of the course. Therefore, based on the
obtained results, we can conclude that we have a good course baseline, which can
be used to derive alternative variations of the course, depending on the context

1This product is chosen to demonstrate the functioning of the pipeline. Each group is requested to
select an open-source product for which there already exist implemented test cases.

DevOps and Its Philosophy: Education Matters! 353

and attained learning outcomes. More about these alternatives is explained in the
following section.

2.2 Reflections

Definitively, the implementation of a deployment pipeline covers some of the
DevOps aspects, but not all of them. However, we can argue that the backbone of
DevOps is covered through the use of the pipeline as enabler to continuous product
improvement. Thus, we are very happy with covering such DevOps aspects in a
weekly course of 1.5 h. lasting for 14 weeks. It is also important not to forget that
people-related aspects are also covered as, through the project, students need to
perform in a collaborative manner developer- and maintainer-oriented tasks that
have common concerns (e.g., develop provisioning scripts that need to be well
structured and configurable).

If time permits, then monitoring is a worthy topic to be covered. This topic
includes practices aimed at easing the detection of issues on the product once it has
been released, but before they are noticed by end users. Being able to incorporate
such practices will let students understand how developers and maintainers can
work together to define new requirements on the product meant to solve the issues
detected through product monitoring.

Yet another alternative could be to move the focus on the product rather than the
deployment pipeline when the attained objective emphasize on the microservices
style. In this case, both a deployment pipeline and a monolithic product are given at
the beginning of the course, and then the project would be to refactor the product to
adopt a microservices architecture. Working on such a project would make students
aware of the important role played by the pipeline when doing refactoring. However,
this idea has to be taken with caution as it addresses too many concerns at once. The
most logical option would be to make this course a continuation of the one described
in the previous section.

3 Teaching in Industry

We have developed extensive experience in recent years in several domains of
software and service engineering, from service-related technologies and business
processes [10–12] to workflows and their dynamic reconfiguration [13, 14] to
formal methodologies for deriving specifications [15]. On top of this, we delivered
training in corporate environments, both to a technical and a managerial audience,
sometimes mixed. In particular, we had multiple interactions with Eastern and
Western European companies operating in various business domains, from banking
to phone service providers and others [16]. In 2018 we delivered more than 400 h of

354 E. Bobrov et al.

training involving more than 500 employees in 4 international companies of medium
to large size, employing more than 10k people.

The delivered sessions typically last one or two full days, which can be reiterated,
at the premises of the customer and cover (as general topics):

• Agile methods and their application [5]
• DevOps philosophy, approach, and tools [17]
• Microservices and applications [18–21]

The course on DevOps we offer for industry was, of course, not the first attempt
ever made. DevOps, being a trend, has created a demand for proper sources of
information on the topic. There are numerous courses at various levels of proficiency
offered by educational platforms such as coursera, EdX, Udemy, and others [22–24],
and there are also many practitioners offering their consultancy on site. DevOps
courses often go along with the courses on microservices architecture style, as
both were formulated to support the same quality attributes, such as deployability,
scalability, etc.—in a nutshell, to work in a world of perpetual integration and
deployment [25, 26].

In order for the companies to effectively absorb the DevOps theory and practice,
the action has to focus not only on tools, but on people and processes as well. The
target group of the sessions is generally a team (or multiple teams combined) of
developers and testers, often with the presence of mid-management. Before our
training we typically suggest customers to include also businesses and technical
analysts, and when possible marketing and security department representatives.
These participants also benefit from participating in the training and from learning
the DevOps culture. The nature of the delivery depends on the target group:
sessions for management focus more on effective team building and establishment
of processes. When the audience is a technical team, the focus is more on tools and
effective collaboration within and across teams.

For the purpose of this chapter we will summarize the experience with a
particular company, an Eastern European phone service provider. Some details
have to be omitted, but we describe the general structure of the training and
some reflections. The detailed experience and some retrospective have been fully
presented in [16].

3.1 Training Sessions

Here we describe our experience of training a team of developers of an Eastern
European phone service provider which we have to keep anonymous. The training
experience was structured in two sessions of 2 days, each conducted in different
weeks with a gap of about 15 days. The first session was dedicated to the Continuous
Integration Delivery Pipeline and the second on Agile methods.

DevOps and Its Philosophy: Education Matters! 355

3.1.1 Session I: DevOps

The first session was conducted over two full days at the office of our customer. Due
to circumstances related to company organization, previous direct communication
with the audience was not possible, and we could rely only on the information
shared by the remote line manager. Our target group was expected to be a team
of developers (around 30) reporting to a line manager located in a different city
(reachable only by flight). There was no precise information on the team’s prior level
of knowledge or the usual tool chain. Therefore, the original agenda, communicated
in advance to the team, had to be fine-tuned on site. However, we were given an
opportunity to interview the audience through the survey.

While developing the survey, we were interested in general information about the
team and the project, like

– Team size
– Roles (e.g., developer, tester, configuration manager)
– Responsibility (e.g., backend/frontend, mobile)
– Development methodology used (e.g., agile, waterfall)
– Architecture of the project (e.g., monolithic, SOA, microservices)

As in how well DevOps-related activities are spread:

– Which processes are automated (e.g., deployment, change management, migra-
tion, testing, etc.)

– How much time does it typically take to deploy changes? How often the team
deploys?

– Is the team using containerization?

Also, there are question on any critical problems with quality of the project:

– How often does the deployment process lead to service disruption?
– How long does service recovery take place?
– How often are critical issues found by people (not by tools)?

We decided to divide the training into 2 days, planning to cover the theoretical
aspects of the topics and soft technologies on the first day and practical aspects
on the second day. The learning objectives for the first day included the following
topics, each representing subsessions:

• Trends in IT and impact on software architectures and development
• Requirements volatility and agile development
• Challenges of distributed development
• Microservices

The second day was dedicated to the tool chains used in DevOps. Based on
the survey results, we expected low prior knowledge on the topic and the original

356 E. Bobrov et al.

agenda was built with the idea to be more introductory rather than going into specific
corners. The learning objectives were:

• Tools for supporting specific phases (emerged before DevOps)

– Coding (e.g., Eclipse, Git)
– Building (e.g., Maven, Apache Ant)
– Testing (e.g., JUnit, xUnit, TestNG)

• Tools for connecting adjacent phases (make difference to DevOps)

– From code to build to test (e.g., Bamboo, Jenkins)
– From test to delivery to deploy (e.g., Bitbucket Pipelines)

Another huge part of the agenda, which we found to be extremely productive,
was discussing the survey results. During this discussion we updated our previous
knowledge on the teams and projects and were able to tune our agenda for the
second day. Since the teams appeared to be more heterogeneous and some were
more advanced in DevOps practices than we expected, we added the part on blue-
green deployment and Kubernetes.

Having the right questions on quality and processes helped people to fire the
discussion and reveal the potential problems in the project, as a result we were also
asked to give a lecture on quality assurance. We have included to this lecture the
general material on quality activities and artifacts as well as more specific topics
like code coverage and mutation testing [27] in particular.

In general, this particular training was emphasizing the difference between hard
technologies and soft technologies. Hard technologies is the large-scale industrial
production of commercial items of technological nature, while soft technologies
is the continuous improvement and agilization of development process. Agile
methods were discussed in terms of requirements volatility. The final part covered
distributed team development and microservices, which, as we mentioned earlier,
are considered to be the privileged architecture for DevOps with their scalability
features [19]. The key difference between monolithic service updates and microser-
vice deployment was presented in order to motivate the need for migration to
microservices. The audience therefore understood the vicinity between DevOps and
microservices.

3.1.2 Session II: Agile

The second session was held for two full days at the same office. The objectives
of the session according to plan were to cover agile software development, in
particular Scrum. On site the customer required to move the focus to Kanban, which
appeared to be something that could be useful in the future. At some point it become
obvious that the team itself did not have a clear idea on the actual process they
intended to follow, therefore we started working on identifying a methodology that
could work for their development teams. The framework described in “Choose your

DevOps and Its Philosophy: Education Matters! 357

weapon wisely” [28] turned out to be useful. This document provides information
on different popular development processes:

• Rational Unified Process (RUP) [29]
• Microsoft’s Sync-and-Stabilize Process (MSS) [30]
• Team Software Process (TSP) [31]
• Extreme Programming (XP) [32]
• Scrum [33]

Following this approach the information about processes was delivered according
to four blocks:

1. Overview: short description of the process
2. Roles: information about positions for the process
3. Artifacts: to be produced, including documentation
4. Tool support: tools available on the market for using the process

3.2 Lessons Learnt: Who Should Attend the Sessions

Here we will summarize some reflections that we derived from our professional
experience. In retrospect, the most effective training sessions were those in which
the audience consisted of a mix of management and developers. The biggest
challenges our customers encountered typically were not on how to automatize the
existing processes, but in fact how to set up from scratch the DevOps approach itself.
Generally, technical people understand how to set up the automation, but they may
have only a partial understanding of the importance and the benefits for the whole
company, for other departments, for the customer, and ultimately for themselves.
During training sessions it is therefore important to show the bigger picture and help
them understand how their work affects other groups, and how this in turn affects
themselves in a feedback loop. The presence of management is very useful in such
cases, while the technical perspective can be often left for self-study or additional
future sessions.

4 Comparative Analysis, Conclusions, and Future Work

The last few years of experience on the field of DevOps education helped us in
understanding the key aspects, and what the differences between an academic and
an industrial context are. In this section we summarize our understanding of these
two realities in order to help offer a better pedagogical program in the future. Each
of the two domains can indeed be cross-fertilized by the ideas taken by the other.
The lessons that we have learnt in the DevOps education can certainly be extended

358 E. Bobrov et al.

to other fields; however, we do not cover any generalization within the boundaries
of this chapter.

The shared aspects between the two domains can be synthesized as follows:

• Relevance: The DevOps topics raises interests both in academia and industry. It
is very actual and relevant.

• Practice: Theory is always welcome; however, students and developers mostly
appreciate hands-on sessions, which should not be forgotten in the educational
process.

• Dev vs. Ops: Classic academic education and developers training typically
dedicates more time and puts more emphasis on development than operations.
Sessions which present both can strengthen the understanding of the whole
matter and increase efficacy of the delivery.

Given the described common aspects, certain features of the education process
can and should be kept on the same line (e.g., pragmatism and synergy of Dev with
ops). However, the difference between the two domains and their objectives requires
some attention. The major differences we identified can be categorized as follows:

• Entry Knowledge: Details on the academic curriculum and specific syllabus
allow a university teacher to make assumptions on the entry knowledge of the
students. In a corporate environment, it is very difficult to have this complete
information in advance. In these cases, the audience can be composed of people
with different profiles and backgrounds about which you know very little.

• Incentives: For students, the major incentive is grade, which could be linked
to a scholarship. This is a very short-term handle. Developers have different
incentives and can look more at the mid-run in order to improve their working
conditions, not only financially. Managers typically have incentives in terms of
cost savings, and should be able to see things in the longer run.

• Delivery mode: An academic course can last 15 weeks with projects and
assignments. In a corporate environment, everything has to be compressed into a
few days, and there is hardly time to do anything in between. This requires and
adaptation of the delivery.

• Assessment: At the university there is a classic exam-based system. In a
corporate environment the audience is not required to be assessed at the end
of the sessions, instead the success of the delivery can only be observed in the
long period when it is clear whether the adopted practices bring benefit to the
company or not.

• Expectation: Generally, a corporate audience is more demanding. This is due to
the level of experience on one side and direct costs on the other. While students
see the teacher as an authority, the corporate audience does not. This has to be
taken into account before and during the delivery.

In terms of pedagogical innovation, the authors of this chapter have exper-
imented for long with novel approaches under different forms [34]. However,
DevOps represents a newer and significant challenge. Despite the fact that current
educational approaches in academia and industry show some similarities, they are

DevOps and Its Philosophy: Education Matters! 359

indeed significantly different in terms of attitude of the learners, their expectation,
delivery pace, and measure of success. Similarities lay more on the perceived hype
of the topic, its typical pragmatic and applicative nature, and the minor relevance
that education classically reserves to “Operations.” While similarities can help
in defining a common content for the courses, the differences clearly suggest a
completely different nature of the modalities of delivery.

Our current experience suggests some changes to the approach. For what
concerns university teaching, the idea is to reduce the emphasis on final grade
and to insist on the cultural aspect. Probably the relevance of practical assignments
should be increased and that of final exam decreased. The understood importance of
hands-on sessions should also suggest changes in the delivery. The ultimate plan is
to build a Software Engineering curricula fully based on the DevOps philosophy. In
future, corporate training is important to avoid basing everything on a university-
like frontal session. As seen in our experience, customer’s request can change even
during the session itself, and the agenda should be kept open and flexible.

References

1. A. Bucchiarone, N. Dragoni, S. Dustdar, S.T. Larsen, M. Mazzara, From monolithic to
microservices: an experience report from the banking domain. IEEE Softw. 35(3), 50–55
(2018)

2. Preventing the AI crisis: the AISE Academy proposal for Luxembourg. http://www.itone.lu/
pdf/AISE-academy.pdf. Accessed 03 Apr 2019

3. L. Bass, I. Weber, L. Zhu, DevOps: A Software Architect’s Perspective, 1st edn. (Addison-
Wesley Professional, Boston, 2015)

4. G. Kim, P. Debois, J. Willis, J. Humble, The DevOps Handbook: How to Create World-Class
Agility, Reliability, and Security in Technology Organizations (IT Revolution Press, Portland,
2016)

5. Agile and DevOps: friends or foes? https://www.atlassian.com/agile/devops. Accessed 01 July
2018

6. I. Bucena, M. Kirikova, Simplifying the DevOps adoption process, in Joint Proceedings
of the BIR 2017 Pre-BIR Forum, Workshops and Doctoral Consortium Co-located with
16th International Conference on Perspectives in Business Informatics Research (BIR 2017),
Copenhagen, Denmark, August 28–30 (2017)

7. A. Capozucca, N. Guelfi, B. Ries, Design of a (yet another?) DevOps course, in Software
Engineering Aspects of Continuous Development and New Paradigms of Software Production
and Deployment – First International Workshop, DEVOPS 2018, Chateau de Villebrumier,
France, March 5–6, 2018, Revised Selected Papers (2018), pp. 1–18

8. H. Kang, M. Le, S. Tao, Container and microservice driven design for cloud infrastructure
DevOps, in 2016 IEEE International Conference on Cloud Engineering (IC2E) (April 2016),
pp. 202–211

9. J. Sorgalla, F. Rademacher, S. Sachweh, A. Zündorf, On collaborative model-driven develop-
ment of microservices (2018). CoRR, abs/1805.01176

10. M. Mazzara, Towards abstractions for web services composition, PhD thesis, University of
Bologna, 2006

11. Z. Yan, E. Cimpian, M. Zaremba, M. Mazzara, BPMO: semantic business process modeling
and WSMO extension, in 2007 IEEE International Conference on Web Services (ICWS 2007),
July 9–13, 2007, Salt Lake City, Utah, USA (2007), pp. 1185–1186

http://www.itone.lu/pdf/AISE-academy.pdf
http://www.itone.lu/pdf/AISE-academy.pdf
https://www.atlassian.com/agile/devops

360 E. Bobrov et al.

12. Z. Yan, M. Mazzara, E. Cimpian, A. Urbanec, Business process modeling: classifications
and perspectives, in Business Process and Services Computing: 1st International Working
Conference on Business Process and Services Computing, BPSC 2007, September 25–26,
2007, Leipzig, Germany (2007), p. 222

13. D. Nicola, Z. Mu, M. Manuel, Dependable workflow reconfiguration in WS-BPEL, in
Proceedings of the 5th Nordic Workshop on Dependability and Security (2011)

14. M. Mazzara, F. Abouzaid, N. Dragoni, A. Bhattacharyya, Toward design, modelling and
analysis of dynamic workflow reconfigurations – a process algebra perspective, in Web Services
and Formal Methods – 8th International Workshop, WS-FM (2011), pp. 64–78

15. M. Mazzara, Deriving specifications of dependable systems: toward a method (2010). CoRR,
abs/1009.3911

16. M. Mazzara, A. Naumchev, L. Safina, A. Sillitti, K. Urysov, Teaching DevOps in corporate
environments – an experience report, in Software Engineering Aspects of Continuous Devel-
opment and New Paradigms of Software Production and Deployment – First International
Workshop, DEVOPS 2018, Chateau de Villebrumier, France, March 5–6, 2018, Revised
Selected Papers (2018), pp. 100–111

17. R. Jabbari, N. bin Ali, K. Petersen, B. Tanveer, What is DevOps?: a systematic mapping study
on definitions and practices, in Proceedings of the Scientific Workshop Proceedings of XP2016,
XP ’16 Workshops (ACM, New York, 2016), pp. 12:1–12:11

18. N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,
Microservices: yesterday, today, and tomorrow, in Present and Ulterior Software Engineering
(Springer, Cham, 2017)

19. N. Dragoni, I. Lanese, S.T. Larsen, M. Mazzara, R. Mustafin, L. Safina, Microservices: how to
make your application scale, in Perspectives of System Informatics – 11th International Andrei
P. Ershov Informatics Conference, PSI 2017, Moscow, Russia, June 27–29, 2017, Revised
Selected Papers (2017), pp. 95–104

20. K. Khanda, D. Salikhov, K. Gusmanov, M. Mazzara, N. Mavridis. Microservice-based IoT for
smart buildings, in 2017 31st International Conference on Advanced Information Networking
and Applications Workshops (WAINA) (March 2017), pp. 302–308

21. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Jolie good buildings:
Internet of Things for smart building infrastructure supporting concurrent apps utilizing
distributed microservices, in Proceedings of the 1st International conference on Convergent
Cognitive Information Technologies (2016), pp. 48–53

22. J. Willis, Introduction to DevOps: transforming and improving operations (2019). https://www.
edx.org/course/introduction-to-devops-transforming-and-improving

23. S. Lindsey-Ahmed, E. Kelly. DevOps practices and principles (2019). https://skillsonline.
arrow.com/courses/course-v1:Microsoft+DEVOPS200.1x+2019_T1/about

24. A. Cowan, Continuous delivery & DevOps (2019). https://www.coursera.org/learn/uva-
darden-continous-delivery-devops

25. MuleSoft, Microservices and DevOps: better together (2019). https://www.mulesoft.com/
resources/api/microservices-devops-better-together

26. A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices architecture enables DevOps:
migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

27. P.R. Mateo, M. Polo, J. Fernández-Alemán, A. Toval, M. Piattini, Mutation testing. IEEE
Softw. 31, 30–35 (2014)

28. J. Rockwood, Choose your weapon wisely (2014). http://gsl-archive.mit.edu/media/programs/
mexico-summer-2014/materials/j._rockwood_choose_your_weapon_wisely.pdf

29. Rational unified process: overview. http://sce.uhcl.edu/helm/rationalunifiedprocess/. Accessed
01 July 2018

30. M.A. Cusumano, R.W. Selby, How microsoft builds software. Commun. ACM 40(6), 53–61
(1997)

31. W. Humphrey, J. Over, Introduction to the Team Software Process(Sm), 1st edn. (Addison-
Wesley Professional, Boston, 1999)

https://www.edx.org/course/introduction-to-devops-transforming-and-improving
https://www.edx.org/course/introduction-to-devops-transforming-and-improving
https://skillsonline.arrow.com/courses/course-v1:Microsoft+DEVOPS200.1x+2019_T1/about
https://skillsonline.arrow.com/courses/course-v1:Microsoft+DEVOPS200.1x+2019_T1/about
https://www.coursera.org/learn/uva-darden-continous-delivery-devops
https://www.coursera.org/learn/uva-darden-continous-delivery-devops
https://www.mulesoft.com/resources/api/microservices-devops-better-together
https://www.mulesoft.com/resources/api/microservices-devops-better-together
http://gsl-archive.mit.edu/media/programs/mexico-summer-2014/materials/j._rockwood_choose_your_weapon_wisely.pdf
http://gsl-archive.mit.edu/media/programs/mexico-summer-2014/materials/j._rockwood_choose_your_weapon_wisely.pdf
http://sce.uhcl.edu/helm/rationalunifiedprocess/

DevOps and Its Philosophy: Education Matters! 361

32. Extreme programming: A gentle introduction. http://www.extremeprogramming.org/.
Accessed 01 July 2018

33. K. Schwaber, J. Sutherland, The Scrum guide (2017). https://www.scrumguides.org/docs/
scrumguide/v2017/2017-Scrum-Guide-US.pdf

34. D. de Carvalho, R. Hussain, A. Khan, M. Khazeev, J. Lee, S. Masiagin, M. Mazzara, R.
Mustafin, A. Naumchev, V. Rivera, Teaching programming and design-by-contract, in 21th
International Conference on Interactive Collaborative Learning – ICL 2018, Kos, Greece
(2018)

http://www.extremeprogramming.org/
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf

Author Index

A
Autili, Marco, 249–267

B
Baresi, Luciano, 3–25, 243, 266
Bobrov, Evgeny, 349–359
Bravetti, Mario, 183–206
Bucchiarone, Antonio, 29–39, 349–359

C
Capozucca, Alfredo, 349–359
Chauvel, Franck, 299–329
Ciavotta, Michele, 273–295

D
Dal Maso, Giovanni, 273–295
De Lauretis, Lorenzo, 249–267
Di Nitto, Elisabetta, 209–246
Dragoni, Nicola, 29–39

F
Florio, Luca, 209–246

G
Garriga, Martin, 3–25
Giallorenzo, Saverio, 183–206
Guelfi, Nicolas, 349–359

H
Henry, Alexis, 45–71, 73–106

I
Ivanchikj, Ana, 129–144

L
Lenarduzzi, Valentina, 111–126

M
Mauro, Jacopo, 183–206
Mazzara, Manuel, 29–39, 349–359
Menato, Silvia, 273–295

N
Naumchev, Alexandr, 349–359
Nguyen, Phu H., 299–329

P
Pahl, Claus, 111–126
Pautasso, Cesare, 129–144
Perucci, Alexander, 249–267

R
Rademacher, Florian, 147–177
Ridene, Youssef, 45–71, 73–106
Rivera, Victor, 29–39
Rovere, Diego, 273–295

S
Sachweh, Sabine, 147–177
Safina, Larisa, 349–359
Song, Hui, 299–329
Sorgalla, Jonas, 147–177

© Springer Nature Switzerland AG 2020
A. Bucchiarone et al. (eds.), Microservices,
https://doi.org/10.1007/978-3-030-31646-4

363

https://doi.org/10.1007/978-3-030-31646-4

364 Author Index

T
Taibi, Davide, 111–126
Talevi, Iacopo, 183–206
Tamburri, Damian Andrew, 209–246
Tsvetanov, Radostin, 273–295

V
Vučković, Jakša, 333–345

W
Wizenty, Philip, 147–177

Z
Zavattaro, Gianluigi, 183–206
Zündorf, Albert, 147–177

	Preface
	Contents
	List of Reviewers
	Part I Opening
	Microservices: The Evolution and Extinction of Web Services?
	1 Introduction
	2 Web Services Then and Now
	2.1 SOA(P) Services
	2.2 RESTful Services
	2.3 Microservices
	2.4 Upcoming Faasification

	3 Challenges
	3.1 Design Challenges
	3.2 Development Challenges
	3.3 Operation Challenges
	3.4 Discussion

	4 Microservices on GitHub
	4.1 Dataset Creation
	4.2 Quantitative Analysis
	4.3 Qualitative Analysis
	4.3.1 The Serverless Panorama

	5 Conclusions
	References

	Size Matters: Microservices Research and Applications
	1 The Shift Towards Distribution
	2 Microservices
	2.1 Microservices vs. Monolith
	2.2 Microservices vs. SOA
	2.3 Size Matters: The Organization of Teams

	3 Research and Applications
	3.1 Programming Languages
	3.2 Type Checker
	3.3 Migration from Monoliths
	3.4 Education in DevOps
	3.5 Modeling and Self-Adaptability
	3.6 Real-Life Software Applications with Microservices
	3.6.1 Smart Buildings
	3.6.2 Smart Mobility

	4 Conclusions
	References

	Part II Migration
	Migrating to Microservices
	1 Modernization Challenges
	1.1 Reason for Change and Traps Along the Journey

	2 Transformation
	2.1 Warm-Up and Scale Operations
	2.2 Release Data as Soon as Possible
	2.3 Release Quick Win as Soon as Possible
	2.4 Dig Vertically and Isolate Writes
	2.5 Domain Boundaries Are Not Data Access
	2.6 Start with What Brings the Most Business Value
	2.7 Minimize Dependencies Back to the Monolith …If You Can

	3 Analysis Use Case: Blu Age Analyzer
	3.1 Step 1: Vertical Analysis
	3.2 Business Domains Definition
	3.3 Utility Domains Definition

	4 Reference Roadmap
	4.1 Step Your Architecture and Go the Right Pace

	5 Conclusions
	References

	Assessing Your Microservice Migration
	1 Principles
	1.1 Mimicking Internet Giants and Unicorns
	1.2 Where Is the Complexity?

	2 Why Microservice Architecture Is Different
	2.1 A Zoom-In on Key Characteristics
	2.1.1 Business Modules
	2.1.2 Database Per Service
	2.1.3 API First Design
	2.1.4 Polyglot Architecture

	2.2 What Level of Microservice Design Do We Need ?
	2.3 Is a Monolith Too Complex and Too Big?
	2.3.1 Do We Need Five Releases Per Day?
	2.3.2 Is Eventual Consistency a Problem?

	3 Plan Your Journey
	4 Defining Your Architecture
	4.1 Microservice Patterns
	4.2 Fitness Function and Architecture Definition
	4.3 Static Analysis: Purpose and Key Features
	4.4 Analysis: Methodology for Managing Dependencies
	4.4.1 Peel with Data-Independent Services
	4.4.2 Peel with Data Eventual Consistency
	4.4.3 Group Then Peel with Strict Consistency

	4.5 Domain Boundaries and Deployment Schedule
	4.5.1 Guarantee Data Consistency
	4.5.2 Address Configuration Management Issues
	4.5.3 Database Patterns Pros and Cons

	4.6 Operating Microservices
	4.6.1 Ops, DevOps, NoOps
	4.6.2 Consider Public Cloud and Managed Services

	5 Conclusion
	References

	Part III Modeling
	Microservices Anti-patterns: A Taxonomy
	1 Introduction
	2 The Empirical Study
	2.1 Study Design
	2.2 Study Execution
	2.3 Data Analysis

	3 The Study Results
	3.1 Data Analysis and Interpretation

	4 Background and Related Works
	5 Conclusion
	References

	Modeling Microservice Conversations with RESTalk
	1 Introduction
	2 Modeling Microservice APIs and RESTful Conversations
	3 RESTalk Meta-Model
	4 RESTalk: Visual and Textual DSL
	5 RESTalk Model Example in E-commerce
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Graphical and Textual Model-Driven Microservice Development
	1 Introduction
	2 Background
	2.1 Model-Driven Development
	2.2 Model-Driven Development for Microservice Architecture
	2.2.1 Service Identification
	2.2.2 Technology Heterogeneity
	2.2.3 Organizational Alignment

	3 Case Study
	3.1 Context
	3.2 Case Study Architecture

	4 AjiL—A Graphical Approach Towards Model-Driven Microservice Development
	4.1 A Brief Introduction to AjiL
	4.2 Benefits and Drawbacks of AjiL

	5 Viewpoint-Specific Model-Driven Microservice Development with Textual Modeling Languages
	5.1 Modeling Viewpoints and Workflow
	5.2 Domain Data Modeling Language
	5.3 Service Modeling Language
	5.4 Operation Modeling Language
	5.5 Implementation
	5.6 Discussion and Subsequent Research Questions
	5.6.1 Workflow Step 1: Domain Data Modeling
	5.6.2 Workflow Steps 2 and 3: Service and Operation Modeling
	5.6.3 Workflow Steps 4 and 5: Retrieval and Execution of Model Transformations
	5.6.4 Workflow Steps 6 and 7: Propagation, Retrieval, and Application of Shared Artifacts

	6 Related Work
	7 Conclusion and Future Work
	References

	Part IV Development and Deployment
	A Formal Approach to Microservice Architecture Deployment
	1 Introduction
	2 The Microservice Optimal Deployment Problem
	2.1 Representing Microservice Systems and Their Deployment
	2.2 Microservices, Nodes, and Deployment Configurations
	2.3 Microservice Deployment Plans
	2.4 Microservice Optimal Deployment Problem

	3 Zephyrus
	3.1 Optimal Distribution of Microservices
	3.2 Bindings Optimization

	4 Application of the Technique to the Case Study
	5 Related Work and Conclusion
	References

	Autonomic Decentralized Microservices: The Gru Approach and Its Evaluation
	1 Introduction
	2 Background and Design Motivations
	2.1 Microservices Background
	2.2 Autonomic Microservices

	3 Gru: Architecture and Behavior
	3.1 Gru Configuration
	3.2 Gru-Agents
	3.2.1 Gru-Agent Lifecycle
	3.2.2 Gru: MAPE-K Autonomic Adaptation

	3.3 Policies
	3.3.1 Gru: Scale-In
	3.3.2 Gru: Scale-Out
	3.3.3 Gru: Switch
	3.3.4 Gru: No-Action

	3.4 Gru: Operational Strategies

	4 Experimental Evaluation
	4.1 Case Study Application: Online Video-on-Demand
	4.2 Cluster Configuration and Experimental Setup
	4.3 Gru Experimental Configuration
	4.3.1 Experimentation I: Reactive Gru
	4.3.2 Experimentation II: Bimodal Gru

	4.4 Fixed Adaptation Time Interval Tests
	4.5 Dynamic Adaptation Time Interval Tests
	4.6 Controlling Policy Selection: Experimenting with a Random Null Model
	4.7 Discussion and Experimental Limitations

	5 Related Work
	6 Conclusion and Future Work
	References

	A Hybrid Approach to Microservices Load Balancing
	1 Introduction
	2 Server-Side Versus Client-Side Load Balancing
	2.1 Server-Side Load Balancing
	2.2 Client-Side Load Balancing

	3 The Case for a Hybrid Approach to Load Balancing
	4 Hybrid Load Balancing
	5 Hybrid Load Balancing at Work
	6 Related Work
	7 Conclusions and Future Work
	References

	Part V Applications
	Towards the Digital Factory: A Microservices-Based Middleware for Real-to-Digital Synchronization
	1 Introduction
	2 Microservices for Digital Twins Management: Overview
	3 Melding Real and Digital in the Factory of the Future
	4 A Vision of the Future of Manufacturing
	4.1 MAYA
	4.2 MAYA Support Infrastructure
	4.3 Real-to-Digital Synchronization with Functional Models

	5 Under the Hood of the MSI
	5.1 The Digital Twins and CPS Management Ecosystem
	5.2 Data Processing Environment

	6 Use Case: Plant Design
	6.1 Plant and Software Setup
	6.2 Use Case Workflow
	6.3 Achievements and Benefits

	7 Discussion and Lessons Learned
	8 Conclusions and Future Work
	References

	Using Microservices to Customize Multi-tenant Software-as-a-Service
	1 Introduction
	2 Motivations and Requirements for Deep Customization
	2.1 The Customization Process
	2.2 The MusicStore, a Running Example
	2.3 Deep Customization Requirements for Multitenant SaaS
	2.3.1 Functional Requirements
	2.3.2 Isolation/Security, Assimilation, Multitenancy

	3 Deep Customization Approaches
	3.1 At the Functions/Classes Level
	3.2 At the Component Level
	3.3 At the Service Level
	3.3.1 Service Orchestrations
	3.3.2 Microservices Architectures

	3.4 DSL/Script-Based Approaches
	3.5 Comparison of Deep Customization Approaches and the Use of Intrusive Microservices
	3.5.1 A Comparison of the Main Approaches
	3.5.2 Deep Customization Using Intrusive Microservices

	4 Supporting Intrusive Custom Microservices
	4.1 Communication Between Main Service and Custom Code
	4.2 Intrusive Callback Code
	4.2.1 Execution Context of Callback Code
	4.2.2 Callback Code Language
	4.2.3 Context Operation

	4.3 Customization Protocol
	4.4 UI Customization
	4.5 Custom Microservice Life Cycle and Development Support
	4.5.1 Custom Microservice Life Cycle
	4.5.2 Development Support for Writing Microservices for Customization

	5 Evaluation
	5.1 Implementation of the Customizable SaaS
	5.2 Sample Custom Code
	5.3 Performance

	6 Discussion
	6.1 Database Customization
	6.2 Triggering of Microservices
	6.3 Security
	6.4 Migration from On-Premises to SaaS
	6.5 Implications for Business Models

	7 Towards Nonintrusive Customization
	8 Related Work
	9 Conclusion
	References

	You Are Not Netflix
	1 Introduction
	2 Suitability for a Microservice Architecture
	2.1 Types of Operations
	2.2 Complexity of Updates
	2.3 Separation of Concerns

	3 Myths and Misconceptions
	3.1 Freedom of Choice
	3.2 Scalability

	4 Dividing a System into Microservices
	4.1 The Right Size of a Microservice
	4.2 Subdivision According to Update Operations
	4.3 Serial vs. Parallel Arrangement
	4.4 Microservice Interaction Styles

	5 Summary
	References

	Part VI Education
	DevOps and Its Philosophy: Education Matters!
	1 Introduction
	2 Teaching in Academia
	2.1 Experience
	2.2 Reflections

	3 Teaching in Industry
	3.1 Training Sessions
	3.1.1 Session I: DevOps
	3.1.2 Session II: Agile

	3.2 Lessons Learnt: Who Should Attend the Sessions

	4 Comparative Analysis, Conclusions, and Future Work
	References

	Author Index

