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Abstract. Pituitary adenomas are rare intracranial tumors that are often found
incidentally in MR images. On the other hand, radiomics is a new field whose
aim is converting images in mineable data; particularly, texture analysis is a
postprocessing technique extracting quantitative parameters from the hetero-
geneity of pixel grey level. In this scenario, machine learning can be applied in
order to classify these adenomas into functional and non-functional starting from
features extracted through texture analysis on MRI images acquired through a
protocol including a coronal T2-weighted Turbo Spin Echo sequence. The
boosting of J48, a multinomial logistic regression and K nearest neighbour are
implemented employing Knime analytics platform. Excluding J48 whose
accuracy was 83.0%, multinomial logistic regression and K nearest neighbour
achieved accuracies beyond 92.0% and the Area Under the Curve Receiving
Characteristic Operator till 98.4%. Diagnosing correctly this delicate disease is
crucial in order to achieve the best management as well as the most appropriate
cure for patients. The novelty of this paper lies in proving the ability of the
combination of radiomics and machine learning to pre-operatively predict
tumoral behavior. Prior to this analysis it was believed that only blood tests or
histopathological analysis could provide this information.
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1 Introduction

Pituitary adenomas are rare intracranial tumors, presenting with a prevalence of 1/1500
in the general population. In most cases, they are benign lesions, whose clinical
manifestations are related to mass effect signs - depending on tumor size and/or to
hormone hypersecretion syndromes. On the other hand, low dimension intrasellar
adenomas may be clinically silent and their diagnosis often comes as an incidental
finding on MR scans [1–5].

Radiomics, consisting in the conversion of images into mineable data and subse-
quent analysis for decision support, is an emerging field allowing tumor classification
[6]. In particular, texture analysis is a postprocessing technique for quantitative
parameter extraction from pixel grey level heterogeneity. It consists of statistical
analysis based on both simple intensity value distribution histograms and more com-
plex gray level distribution matrix analyses which also retain information on spatial
distribution of voxel intensities [7].

In this setting, machine learning can be applied in order to predict the outcome of
patients and help clinicians in decision-making [8–11]. There is a wide range of
applications of machine learning in different areas of medicine, from cardiology to
radiology [12, 13]. In particular, studies applying machine learning on texture analysis
according to the “radiomic process” were described by Kumar et al. [14]: Zacharaki
et al. classified brain tumor type and grade using MRI texture and shape through Linear
Discriminant Analysis with Fisher’s discriminant rule, k-nearest neighbour (KNN),
nonlinear Support Vector Machine (SVM) and employing leave one out cross-
validation [15]; Juntu et al. differentiated benign from malignant soft‐tissue tumours in
T1‐MRI images testing three classifiers (neural networks, decision tree and SVM) [16];
Romeo et al. characterized adrenal lesions on unenhanced MRI images [17]; finally,
Stanzione and colleagues have recently demonstrated the potential of this approach in
prostate cancer local staging [18]. Moreover, recent studies investigated the relevance
of first and second order histogram features obtained by diffusion-weighted imaging
magnetic resonance in differentiating functional from non-functional pituitary macro-
adenoma through a classic statistical analysis [19].

Therefore, the aim of this study is to apply machine learning algorithms on
parameters obtained by texture analysis on MRI images in order to distinguish func-
tional from non-functional pituitary macroadenomas.

2 Materials and Methods

2.1 Subjects

We retrospectively reviewed data of 50 patients, who received so-called standard
endoscopic endonasal approach for the removal of a pituitary adenoma, between
January 2013 and December 2017, at the Division of Neurosurgery of the University of
Naples ‘Federico II’ in Italy. All of them underwent preoperative MRI at our Institution
prior to the surgical procedure. Demographic data, preoperative assessment - i.e.
endocrinological and visual status and presenting signs - tumor features, prior
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treatments, surgical results and complications, were retrieved from our electronic
database (Filemaker Pro 11 - File Maker Inc, Santa Clara, CA, USA).

2.2 MRI Acquisition and Texture Analysis

All exams were acquired on a 1.5-Tesla scanner (Gyroscan Intera, Philips, Eindhoven,
The Netherlands). The imaging protocol always included a coronal T2-weighted Turbo
Spin Echo sequence (TR/TE: 2600/89 ms, FOV: 180 � 180 mm; matrix: 288 � 288;
thk: 3 mm) used for the following radiomic feature extraction.

First of all, lesions were detected by an expert neuroradiologist who then performed
their manual contouring by means of a bidimensional polygonal ROI after selection of
the slice where it showed maximum extension (Fig. 1). Further editing with a brush
tool was performed, when needed. This process was carried on using a freely available
segmentation software (ITKSnap v3.6.0) [20].

Image pre-processing and feature extraction were performed on an open-source
Python radiomics software (Pyradiomics v2.1.2) [21]. The first step consisted of image
gray level normalization with a scale of 100). This step was mandatory since T2-
weighted images are not quantitative and intensity values are not absolute in contrast to
T2 maps. The latter were not available as only routine clinical scans were selected for
the analysis, also in order to guarantee reproducibility of the results in the clinical
setting. Subsequently, all volumes and corresponding lesion masks were resampled to a
2 � 2 � 2 mm voxel resolution. The next pre-processing step consisted of intensity
value discretization. For this task, a fixed bin width approach was chosen, obtaining an
ideal bin count between 16 and 128, as suggested in previous studies [22].

The use of wavelet decomposition, yielding all possible combinations of High and
Low pass filtering in the x, y and z dimensions, and edge enhancement Laplacian of
Gaussian (LoG) filters, emphasizing gray level change at different texture coarseness,
allowed additional feature extraction from the derived images.

Fig. 1. Coronal T2-weighted MRI exam showing the maximum extension slice of a functioning
pituitary macroadenoma (A). Image B depicts the result of the image annotation of the region of
interest to be employed for subsequent texture feature extraction
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Finally, in relation to texture parameter extraction, together with bidimensional
shape and first order statistics, we also obtained higher order class parameters. In detail,
these were derived from the symmetrical Gray Level Co-occurrence Matrix (GLCM),
Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM,
Neighboring Gray Tone Difference Matrix (NGTDM) and Gray Level Dependence
Matrix (GLDM).

2.3 Tool

Knime analytics platform (v. 3.7.1) was chosen to conduct this machine learning study,
as it is a well-known open source platform implementing a wide range of machine
learning algorithms and integrated with Weka, Python and other software; moreover, it
was already employed in literature for other studies [23, 24]. The algorithms used in
this paper are briefly presented in the next section.

2.4 Algorithms and Evaluation Metrics

J48 is the Java implementation of a C4.5 decision tree [25], which consists of the
evolution of the ID3 algorithm. It is an easy structure made up of leaves, representing
classes, and nodes, representing test phases over an attribute. Multinomial Logistic
Regression (MLR) with ridge estimator is applied through the “Logistic” node of Weka
that follows the implementation of Le Cessie, and van Houwelingen [26, 27].
K Nearest Neighbour (KNN) is an easy instance-based classifier that assigns a label
basing its choice on the dominance of a class in the nearest neighbours [28]. For all
these algorithms, “smote” (Synthetic Minority Over-sampling Technique) was applied
[29]. Smote generates artificial data by extrapolating between a real object of a given
class and one of its nearest neighbours (of the same class). Boosting was implemented
for J48, it converts weak learners into strong learners that predict with higher accuracy;
it selects only the parameters that can improve the predictive ability of algorithms
during the training phase, making the complexity in terms of dimension decrease and
improving execution time [30]. The evaluation metrics employed in this study are:

• Accuracy: correct classifications over the total;
• Error: misclassifications over the total;
• Recall: the ratio of positives correctly classified;
• Precision: the ratio of positives correctly predicted in the positive class;
• Sensitivity: capacity to detect true positives;
• Specificity: capacity to detect true negatives.

Moreover, Area Under the Curve Receiving Characteristic Operator (AUCROC)
was computed for each algorithm and for both bagging and boosting groups.
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3 Results

Of the included lesions, 25 were functioning adenomas (5 Adreno Cortico Tropic
Hormone, 8 Growth Hormone, 5 Growth Hormone/Prolactin, 6 Prolactin and 1
Thyroid-Stimulating Hormone secreting) and 25 non-functioning. A total of 1128
features was extracted from each patient.

Due to the small number of patients, smote technique was applied to make the
number of records rise from 50 to 100. Then, a procedure of feature selection was
applied to reduce the number of features extracted by the images: the matrix of cor-
relation was computed among all variables and a threshold of correlation of 0.4 was
chosen: all the variables with a correlation higher than the threshold were excluded
because they did not add information to the classifiers. It allowed us to reduce the
number of features from more than one thousand to 28. As the number of patients was
not so high, leave one out was applied for all the implemented algorithms. J48, MLR
and KNN were implemented together with the boosting node of Knime. Results are
summarized in Table 1 while Table 2 shows the features used to build the models.

MLR obtained the highest accuracy, recall, precision, sensitivity, specificity and
AUCROC among the three implemented algorithms. Despite getting the lowest
accuracy (83.0%), J48 reached an AUCROC comparable to the KNN’s one.

Table 1. Scores for each algorithm

Accuracy
[%]

Error
[%]

Recall
[%]

Precision
[%]

Sensitivity
[%]

Specificity
[%]

AUCROC
[%]

Boosting
J48

83.0 17.0 82.0 83.7 82.0 84.0 89.8

MLR 97.0 3.0 96.0 98.0 96.0 98.0 98.4
KNN 90.0 10.0 90.0 90.0 90.0 90.0 90.0

Table 2. Features used to build the predictive models

log-sigma-2-0-mm-
3D_gldm_LargeDependenceLowGrayLevelEmphasis

wavelet-
LHH_firstorder_Skewness

log-sigma-2-5-mm-3D_glcm_InverseVariance wavelet-
LHH_firstorder_Entropy

log-sigma-2-5-mm-3D_firstorder_Range wavelet-
LLH_glcm_ClusterShade

log-sigma-3-0-mm-
3D_gldm_LargeDependenceLowGrayLevelEmphasis

wavelet-
LLH_glcm_Contrast

log-sigma-3-5-mm-
3D_gldm_LargeDependenceLowGrayLevelEmphasis

wavelet-
LLH_firstorder_Kurtosis

log-sigma-3-5-mm-
3D_gldm_LargeDependenceHighGrayLevelEmphasis

wavelet-HLH_glcm_Id

(continued)
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4 Discussion

First, the MRI acquisition of 50 patients was performed at the department of Advanced
Biomedical Sciences of the University Hospital “Federico II” of Naples. Furthermore, a
texture analysis was conducted to extract more than one thousand quantitative features
from the MRI images. The machine learning analysis was finally performed in order to
carry out some evaluation metrics as regards the algorithms.

Mentioning other studies that employed radiomics and machine learning, Romeo
et al. [17] characterized adrenal lesions with a diagnostic accuracy of 80%, while Juntu
et al. [16] distinguished benign from malignant tumors with an accuracy of 93%;
Zacharaki et al. [15] obtained 85% of accuracy classifying type and grade of brain
tumours. Although a direct comparison with other studies would not be completely fair
(due to the use of different datasets), this study shows greater capacity to correctly
make classifications (functional and non-functional pituitary macroadenomas),
exploiting features extracted through texture analysis. A comparison may be done with
the study of Sanei et al. [19] who distinguished functional from non-functional pituitary
macroadenomas with lower scores than those obtained through a machine learning
analysis.

The functional status of pituitary lesions has a significant influence on the clinical
manifestations of disease: the correct diagnosis and management is crucial for the
selection of the correct therapeutic strategy and therefore cure this multifaceted disease.
Although a previous study has shown the promise of Apparent Diffusion Coefficient
values of pituitary lesions in this assessment [20], Diffusion Weighted Imaging is not
routinely performed in the imaging of the sellar region. It is known that this area is
potentially more prone to artefacts on echo-planar imaging and this technique is time
consuming. For these reasons, an approach that obtains similar results while employing
routine MRI sequences has more potential for its application in the current clinical
setting.

Table 2. (continued)

log-sigma-3-5-mm-3D_firstorder_Maximum wavelet-
HLH_firstorder_Skewness

wavelet-HLL_glcm_ClusterProminence wavelet-
HLH_firstorder_Median

wavelet-HLL_firstorder_Skewness wavelet-
HHH_firstorder_Skewness

wavelet-HLL_firstorder_Maximum wavelet-
LLL_glcm_ClusterShade

wavelet-LHL_glcm_Correlation wavelet-
LLL_firstorder_Kurtosis

wavelet-LHL_firstorder_Skewness original_glcm_Correlation
wavelet-LHL_firstorder_Mean original_firstorder_Skewness
wavelet-LHH_gldm_DependenceVariance original_firstorder_Kurtosis
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Of course, this study is affected by some limitations: the dataset was augmented
with artificial data in order to improve its size allowing us to perform the analysis.
Major dataset could be studied, and machine learning analysis could be performed to
reach 100% accuracy in this classification. Nevertheless, machine learning proved to be
the best way to distinguish functional from non-functional pituitary macroadenomas
using texture analysis on MRI images.

This paper proved that the combination of radiomics and machine learning can be
used to predict tumoral behaviour pre-operatively while only blood tests or
histopathological analysis were known as providers of this information.

Conflict of Interests. The authors have no conflict of interests.
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