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Abstract. Learning production rules from continuous data streams, e.g. sur-
gical videos, is a challenging problem. To learn production rules, we present a
novel framework consisting of deep learning models and inductive logic pro-
gramming (ILP) system for learning surgical workflow entities that are needed
in subsequent surgical tasks, e.g. “what kind of instruments will be needed in the
next step?” As a prototypical scenario, we analyzed the Robot-Assisted Partial
Nephrectomy (RAPN) workflow. To verify our framework, first consistent and
complete rules were learnt from the video annotations which can classify RAPN
surgical workflow and temporal sequence at high-granularity e.g. steps. After we
found that RAPN workflow is hierarchical, we used combination of learned
predicates, presenting workflow hierarchy, to predict the information on the next
step followed by a classification of step sequences with deep learning models.
The predicted rules on the RAPN workflow was verified by an expert urologist
and conforms with the standard workflow of RAPN.

Keywords: Production rules � Robot-Assisted Partial Nephrectomy �
Surgical workflow � Deep learning � Inductive logic programming

1 Introduction

Learning production rules from continuous data streams, e.g. surgical videos, is a
challenging problem. In our previous work [1, 2], we used production rules, i.e.
“if-then” rules, inside an ontology to define the surgical workflow and to discretize
surgical activities through symbol grounding by assigning semantic meaning to the
objects in the environment. However, pre-defining a fixed set of production rules limits
the scalability of expert systems in dynamic situations because it limits understanding
of the streaming data and the real-time reasoning on it. The production rules are
generally very discriminative and easily comprehensible by humans. The latter could
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be helpful to understand the surgical workflow, for example displaying information on
the consequent surgical activities which are automatically extracted from the rules.
Rules could also be helpful as constraints in automation of the surgery, e.g. verification
of step sequences for the safe task execution. A full surgical activity is expected to
consist of surgical entities, e.g., phases, steps, instruments, actions and anatomy.
Recognition of a surgical activity needs a large set of annotated data on these entities as
well as robust neural network architectures. On the contrary, scene recognition is still
outside the capabilities of symbolic systems which are good at recognizing relations
between entities in surgical activities. Integrating neural and symbol systems [3] for
analyzing surgical workflows may provide complementary benefits interpreting a
surgical activity.

Inductive Logic Programming (ILP) is formed at the intersection of machine
learning and logic programming. ILP systems learn predicate descriptions, first-order
causal theories, in the form of rules from the examples, e.g. real-world instances, and
background knowledge. Examples, e.g. surgical step sequences, background knowl-
edge, which are predicates describing relational information on surgical entities, and
final descriptions i.e. a hypothesis or a rule all are described as logic programs.
Recently, ILP has been extensively used in classification, data mining and information
extraction (IE) tasks [4]. In the medical field, ILP has been applied to diagnostics e.g. to
detect the breast cancer [5] and to do knowledge discovery from the mammography
reports [6]. As far as our knowledge allows, ILP is yet to be applied for the analysis of
surgical workflows which can be used to predict information about workflow steps. In
[7], ILP system is used with an instance detection system, using deep learning models,
for interpretation of the scene. In this manuscript, we present a preliminary analysis of a
use of ILP to analyze surgical workflow for learning complete and consistent rules for
classification of RAPN workflow as well as its use in a pipeline with an instance
detection system which was used to recognize surgical steps and sequences.

As a prototypical scenario, in this work, we automatically analyzed the surgical
workflow of Robot-Assisted Partial Nephrectomy (RAPN). RAPN is performed to
remove the kidney tumor. RAPN is associated with high complicate rates from 12.3 to
33% with different surgical approaches [8]. Learning production rules to classify
relations between the surgical entities, following a recognition of an instance e.g. a
sequence of surgical step, would be of great importance to surgical assistance, espe-
cially for novice surgeons, by providing information on a workflow which is expected
to improve surgical outcomes.

2 Methods

In our previous work [1], we extracted features from 9 videos (996,373 frames) rep-
resenting 10 RAPN steps and classified it using the deep learning models. As shown in
Fig. 1, the deep learning models were consisted of Convolutional Neural Network
(CNN) and Long Short-Term Memory (LSTM) cells to classify “Current step” and
“Next step” respectively. In this work, we combined predictions of these two networks
as predicates representing the current step and corresponding subsequent step, for
example “hasNextStep”(mobilization, dissection), and used correctly predicted step
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sequences, as positive examples, in an ILP system. We then applied ILP to classify a
dataset on RAPN workflow entities to find relational information between instances of
surgical entities, for example, instances of instruments needed in the next step.

Terminology
The first-order logic alphabet is composed of predicate symbol (e.g., “step”), function
symbols (e.g., “hasAction”), constant (e.g., “dissection”) and variables (e.g., x). A term
is any constant, variable, or function applied to a term (e.g., dissection, x, has Action
(x)). An atomic formula is a predicate symbol together with its arguments, each
argument being a “term”. A ground atom (or fact) is an atomic formula with no
variables (e.g., hasNextStep (mobilization, dissection)). The dataset created from video
annotations are ground atoms and they also constitute the background knowledge. A
literal is an atomic formula and a clause is a disjunction of literals whose values are
assumed to be universally quantified. “Horn clause” is a clause with exactly one
positive literal.

Aleph
ILP classifiers attempt to learn a set of rules (definite clauses), given a dataset of
positive and negative instances, that will correctly discriminate between the sets. These
rules cover most or all of the positive instances, and little or none of the negative
instances. The aim of ILP is to find a theory that is complete and consistent. More
formally, given a positive example pos xið Þ; e.g. a predicate representing surgical step
sequence, let ?i be the bottom clause, consisting of action, phase and instruments for
example i. ?i is the most specific hypothesis that together with the background
knowledge B, a procedural knowledge base, entail xi : B ^ ?i ^ xið Þ‘pos xið Þ. In this
work, we used “Aleph” (A learning engine for proposing hypotheses) [9], a type of ILP
classifier, to learn first-order rules in the form of Horn clauses. Aleph also uses bottom
clauses, i.e. the most specific hypothesis, to guide the search. Moreover, it runs also
without any negative examples. The predicate in the rule head is not in the background
knowledge. We followed the four basic steps in the Aleph greedy learning approach:

(1) Select a positive example. Each instance of the relation can be seen as pair of step
sequences, e.g. hasNextStep(mobilization, dissection).

(2) Build bottom clause. The bottom clause is conjunction of all the relations as pair
of action and step, step and instrument, phase and step and between the steps.

Fig. 1. A prototypical framework consisting of two components, i.e. (1) deep learning models –
CNN and LSTM, and (2) ILP. In the framework, outputs of the deep learning models, instances
of current and next step, are forwarded as relational predicates “Example” to an ILP system.
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For example, if (mobilization hasNextStep A) then (actionperformedinstep in A
are dissect and cut) and (A stephasinstrument monopolarCurvedScissors and
fenestratedBipolar and sucker and hemolokClipApplicator) and (hilumDissection
phasehasstep A) and (A haspreviousstep mobilization).

(3) Search. This step uses greedy best-first search to find a clause consistent with the
data.

(4) Removed covered positive examples. Coverage of each hypothesis is counted and
the positive examples from the training set are removed.

As a refinement operator, we only considered examples where we cannot find a
consistent generalization as exceptions. In those cases, we added the bottom clause as
the consistent rule.

Dataset From Video Annotation and Background Knowledge Construction
To extract the background knowledge, 9 videos at 24 Hz with an approximate length of
82:49� 37:54 min on RAPN were acquired using the da Vinci Xi surgical system and
the da Vinci Xi endoscope (Intuitive Surgical Inc., CA, USA) at European Institute of
Oncology (Milan, Italy). As mentioned in [1], we used Anvil annotation tool [10] to
annotate the videos, consisting the frame-by-frame annotations of “Phase”, “Step”,
“Instrument”, “Assistant-Instrument1”, “Assistant-Instrument2”, “Anatomy”, and
“Actions”. Each track specifies different surgical workflow entities in synchrony
without specifying any relations between them. Definitions of classes of annotations
and more details can be found in [1]. Video annotations were saved in a comma
separated values as a database, where the relational predicates were extracted consid-
ering the time-series in each video. To form a background knowledge, we extracted
tuples specifying relations between phase, step, action, instrument and anatomy and
temporal relations between step. Background knowledge is represented in Prolog
language. Each relational predicate is represented in the form: predicate (ModeType,
Modetype, ..), where ModeType is one of: (1) þ ModeType specifies the input, (2) �
ModeType specifies the output, and (3) # Modetype specifies a constant. Examples of
Prolog facts derived from video annotations are shown in Table 1.

Experimental Protocols
The goal of the experimental protocols is to assess the complete and consistent rules to
solve the problem of classification of surgical workflow and prediction of information
in the next step following a classification of steps and sequences from the videos.

1. As shown in Table 1, “Rule” i.e. hypotheses 1, 2 and 3 are evaluated if they are
consistent and complete over a set of 5 annotations. In “EP1”, all the datasets are
combined, and redundant examples are removed. Then, the dataset is divided into
65%, a total of 17 examples, as a training set and 35%, a total of 9 examples, as a
testing set to get the baseline results (a single split). Furthermore, in “EP2”, we did
fivefold LOOCV (Leave-one-out cross-validation) to learn the rules and to check
whether they are useful for classifying the workflow.

2. In “EP3”, predicted instances of steps predicates and sequences from deep learning
models are forwarded to Aleph, with background facts and hypothesis as shown in
“Rule-4” in Table 1, to predict workflow entities of the next step. The predictions
are qualitatively assessed by an expert urologist “MC”.
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3 Results and Discussion

Aleph’s learning is done by restricting the clause length from minimum of 2 literals to
maximum of 8 literals. The results are summarized as below:

Table 2. Induced rules, i.e. for hypothesis representing rule-4, from the instances recognized
from deep learning models. The rules are represented in horn clauses and show instances of
surgical entities that are required in the next step (“A”).

Predicted step sequence Generated rules

hasnextstep
(mobilization, dissection)

hasnextstep(mobilization, A):- actionperformedinstep(dissect,
A), actionperformedinstep(cut, A), stephasinstrument(A,
monopolarCurvedScissors), stephasinstrument(A,
fenestratedBipolar), stephasinstrument(A, sucker),
stephasinstrument(A, hemolokClipApplicator), phasehasstep
(hilumDissection, A), haspreviousstep(A, mobilization)

hasnextstep(dissection,
ultrasound)

hasnextstep(dissection, A):- actionperformedinstep(detect, A),
stephasinstrument(A, fenestratedGraspingForcep),
stephasinstrument(A, monopolarCurvedScissors),
stephasinstrument(A, fenestratedBipolar), stephasinstrument(A,
laparoscopicUltrasoundProbe), phasehasstep(tumorExposure,
A), haspreviousstep(A, identificaion)

hasnextstep(marking,
clamping)

hasnextstep(marking, A):- actionperformedinstep(clamp, A),
actionperformedinstep(dissect, A), stephasinstrument(A,
monopolarCurvedScissors), stephasinstrument(A,
fenestratedBipolar), stephasinstrument(A, laparoscopicBulldog),
phasehasstep(tumorResection, A), haspreviousstep(A, marking)

hasnextstep(clamping,
resection)

hasnextstep(clamping, A):- actionperformedinstep(resect, A),
stephasinstrument(A, monopolarCurvedScissors),
stephasinstrument(A, fenestratedBipolar), stephasinstrument(A,
fenestratedGraspingForcep), stephasinstrument(A, sucker),
stephasinstrument(A, metalClipApplicator), phasehasstep
(tumorResection, A), haspreviousstep(A, clamping)

hasnextstep(resection,
suturing).

hasnextstep(resection, A):- actionperformedinstep(suture, A),
stephasinstrument(A, roboticLargeNeedleDriver),
stephasinstrument(A, monopolarCurvedScissors),
stephasinstrument(A, hemolokClipApplicator), phasehasstep
(renorraphy, A), haspreviousstep(A, resection)

hasnextstep(suturing,
unclamping).

hasnextstep(suturing, A):- actionperformedinstep(unclamp, A),
stephasinstrument(A, monopolarCurvedScissors),
stephasinstrument(A, roboticLargeNeedleDriver),
stephasinstrument(A, laparoscopicBulldog), phasehasstep
(renorraphy, A), haspreviousstep(A, suturing)

hasnextstep
(reconstruction,
drainage)

hasnextstep(reconstruction, A):- actionperformedinstep(put, A),
stephasinstrument(A, fenestratedGraspingForcep),
stephasinstrument(A, roboticLargeNeedleDriver),
stephasinstrument(A, monopolarCurvedScissors), phasehasstep
(closure, A), haspreviousstep(A, reconstruction)
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Quantitative Evaluation: Rule 1 and 2 represent hypothesized relations between the
workflow entities, while rule-3 verifies the temporal relations at higher-granularity
level, i.e. steps. With both experiments, we obtained 100% accuracy, precision and
recall predicting hypotheses with rule-2 and rule-3. In “EP-1”, with rule-1, we obtained
71% accuracy, 33% sensitivity, and 100% specificity. However, in “EP-2”, for the Rule
1, we obtained 100% accuracy, precision, and recall. While doing these experiments,
we excluded other 4 video annotations considering some missing data. The results
present that the relations between surgical entities can be used to classify the hierar-
chical RAPN surgical workflow. The latter is also supported by the Discrete-Time
Markov Chain (DTMC) constructed for RAPN step transitions from the similar set of
video annotations in our previous work [1].

Qualitative Evaluation: In “EP3”, since we extracted constants in “Rule-4”, i.e.
relations between the instances of workflow entities, we inputted prediction of deep
learning models as examples to check the hypothesis whether Aleph can predict
consistent and complete information of the subsequent step. As shown in Table 2, the
generated rules represent surgical resources, e.g. instruments, needed in the next step
and information on actions and phases. Generated rules on the workflow were verified
by an expert urologist (“MC”) and found it to be true for the sequence of steps in
RAPN workflow.

4 Conclusions

In this feasibility study, we have shown that implementation of ILP with an instance
detection system can be useful to learn explanatory rules on the RAPN surgical
workflow. We have tested four different types of hypotheses: (1) relations between
surgical workflow entities; (2) temporal relations; (3) relations between instances of
workflow entities and (4) relations for verifying the step sequences. The system was be
able to learn rules for RAPN workflow representing all these hypotheses. The learned
predicates represent workflow decomposition from higher-granularity e.g. phases to
lower-granularity e.g. actions. Instruments can be considered as task resources to
execute actions in steps. The relational information between surgical entities can be
useful to predict information on the next step.

In future, we will find the exact temporal sequence especially at lower granularity,
e.g. prediction of sequences of actions in the next predicted step. We will consider rules
as constraints while training the deep learning networks [3] for recognizing surgical
entities and ontology to learn the strict-order. Moreover, we will also compare it with
the performance of other rule learners, such as associative rule learning [11].
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