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Life is too sweet and too short to express our affection with just
our thumbs. Touch is meant for more than a keyboard.
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Abstract Mood disorders can be difficult to diagnose, evaluate, and treat. They
involve affective and cognitive components, both of which need to be closely moni-
tored over the course of the illness. Current methods like interviews and rating scales
can be cumbersome, sometimes ineffective, and oftentimes infrequently adminis-
tered. Even ecological momentary assessments, when used alone, are susceptible to
many of the same limitations and still require active participation from the subject.
Passive, continuous, frictionless, and ubiquitous means of recording and analyzing
mood and cognition obviate the need for more frequent and lengthier doctor’s visits,
can help identify misdiagnoses, and would potentially serve as an early warning sys-
tem to better manage medication adherence and prevent hospitalizations. Activity
trackers and smartwatches have long provided exactly such a tool for evaluating phys-
ical fitness. What if smartphones, voice assistants, and eventually Internet of Things
devices and ambient computing systems could similarly serve as fitness trackers for
the brain, without imposing any additional burden on the user? In this chapter, we
explore two such early approaches—an in-depth analytical technique based on exam-
ining meta-features of virtual keyboard usage and corresponding typing kinematics,
and another method which analyzes the acoustic features of recorded speech—to
passively and unobtrusively understand mood and cognition in people with bipolar
disorder. We review innovative studies that have used these methods to build math-
ematical models and machine learning frameworks that can provide deep insights
into users’ mood and cognitive states. We then outline future research considerations
and close by discussing the opportunities and challenges afforded by these modes of
researching mood disorders and passive sensing approaches in general.

10.1 Introduction

Mood disorders take a sizable toll on the world’s population, affecting more than
1 in 20 people annually and nearly 1 out of every 10 people over the course of
their lifetime (Steel et al. 2014). Bipolar disorder, which alone accounts for at least
1% of years lived with disability globally (GBD 2017), is a mood disorder that
causes patients to alternate between manic episodes of abnormally elevated mood
and energy levels, and depressive episodesmarked by diminishedmood, interest, and
energy (APA2013). Compared tomajor depressive disorder (MDD), bipolar disorder
can be harder to diagnose, and even when an accurate diagnosis is made, it is often
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delayed. The depressive episodes in both disorders share the same diagnostic criteria,
and it is known that individuals suffering frombipolar disorder on average spendmore
time in the depressive phase than in mania. In particular, bipolar disorder type II, a
subtype which is differentiated by attenuated levels of mania-like symptoms (termed
hypomania) is difficult to diagnose by non-specialists as it can be challenging to
distinguish from recurring unipolar depression. The presence of mood episodes with
mixed features, i.e., those that exhibit characteristics of both mania and depression,
can further complicate the process of diagnosis (Phillips and Kupfer 2013).

10.1.1 Current State of Diagnosis and Monitoring of Bipolar
Disorder

Clinical approaches to diagnosing and monitoring bipolar disorder usually start with
careful history-taking by the clinician (detailed interviews with patients and their
family members as well as probing for a family history of the disorder), followed
by the frequent use of self- and clinician-administered rating scales that assess for
a history of possible mania or hypomania in patients with depression. Even with
these tools at their disposal, it is often difficult for clinicians to ascertain whether
any noted changes in mood, sleep, or energy are within normal ranges—or whether
they are evidence of, say, a manic/hypomanic episode (Wolkenstein et al. 2011).
Achieving inter-rater reliability between administered assessments and scales poses
its own challenges.

After a correct diagnosis has been made, monitoring of symptoms commonly
relies upon self-reports that may include mood charting and self-ratings or clinician-
rated scales. These scales can only assess the severity of symptoms experienced by
the patients and cannot actually screen for mania or hypomania; patients in manic
states also may not be cognizant of their manic symptoms, casting doubt on the
validity of some of these assessments (NCCMH 2018).

Ecological momentary assessments (EMA) have been used for supplementary
monitoring in mood disorders with varying degrees of success (Ebner-Priemer and
Trull 2009; Asselbergs et al. 2016; Kubiak and Smyth 2019). Asselbergs and col-
leagues reported that the clinical utility of self-report EMA is too often limited by the
heavy response burden that is imposed upon respondents—which can result in large
dropout rates after an initial period of activity—and furthermore, that the predictive
models constructed using unobtrusive EMAdata were inferior to existing benchmark
models.

In recent years, other techniques including neuroimaging (Phillips et al. 2008;
Leow et al. 2013; Ajilore et al. 2015; Andreassen et al. 2018) and genomics (Hou
et al. 2016; Ikeda et al. 2017) have also been used in attempts to discover biomarkers
for bipolar disorder. Although they may not currently be feasible either for diagnosis
or for monitoring on an individual level, in the near future we may begin finding
immense value in these and related methods beyond their immediate research appli-
cations.
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In addition to its affective components, bipolar disorder also influences cognitive
ability (APA 2013). Among the most severely impaired domains of cognition are
attention, working memory, and response inhibition (Bourne et al. 2013). These
provide another avenue to further aid in distinguishing a possible diagnosis of bipolar
disorder from other mood disorders and assessing its course and treatment.

10.1.2 Passive Sensing in Physical Health

Smartwatches, fitness trackers, and associated physical health and fitness apps in
general have to a large extent enabled and encouraged users to self-manage chronic
medical conditions and attempt to take better care of their physical health (Anderson
et al. 2016; Canhoto and Arp 2017; Messner et al. 2019). The Apple Watch, for
instance—which uses photoplethysmography to passively sense atrial fibrillation—
and the associated Apple Heart Study (Turakhia 2018) have already been credited
with saving several lives by alerting enrolled users to the onset of life-threatening
conditions and directing them to seek immediate medical attention (Feng 2018;
Perlow 2018).

10.1.3 What About Passive Sensing for Mental Health?

Portable sensors to track the health of the rest of the body have so far proven eas-
ier to develop than those that can track brain health. As yet, there are no portable
functional magnetic resonance imaging (fMRI) scanners or brain-computer inter-
faces (BCI) that can be used to unobtrusively analyze brain functioning—although
science fiction has proposed examples of each in the form of, respectively, cowboy
hats that conduct brain scans to map wearers’ cognition in television shows such
as Westworld (Avunjian 2018) and biomechanical computer implants called neural
lace in author IainM. Banks’ series The Culture (Banks 2002, 2010)—which science
may in fact someday deliver instead in the shape of the startup Openwater’s fMRI-
replacing ski hats that are purportedly being designed to use infrared holography
to scan oxygen utilization by the wearer’s brain (Jepsen 2017; Clifford 2017) and
implantable electronic circuits capable of neural communication such as those being
developed by Neuralink and others (Fu et al. 2016; Chung et al. 2018; Sanford 2018).

Until these nascent technologies reach maturity, there is a need for passive sens-
ing tools that can bridge the divide and perhaps eliminate the need for more onerous
means of sensing altogether. Smartphones are already ubiquitous enough and offer a
wide array of sensors, which when used in concert with mHealth and digital pheno-
typing tools, offer a greater degree of precision medicine tools to users, researchers,
and healthcare providers than ever before. Indeed, the very use of smartphones, and
mobile social networking apps in particular, has been found to be associated with
structural and functional changes in the brain (Montag et al. 2017); the corollary
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that smartphone usage patterns can be used to quantify the presence of established
biomarkers has also been explored by Sariyska and colleagues (2018) in their prelim-
inary study examining the feasibility of probing molecular genetic variables corre-
sponding to individual differences in personality and linked social traits, in this case
a variant of the promoter gene coding for the oxytocin receptor, and simultaneously
surveying their real world behavior as reflected by the myriad different ways and
purposes for which they used their phones over the course of the day.

The proliferation of touchscreen smartphones with software keyboards has, at
least for the time being, tilted the balance of telecommunications in favor of typed
rather than spokenmessages (Shropshire 2015). Combined with the data provided by
a phone’s accelerometer, gyroscope, and screen pressure sensors, keystroke dynamics
can be used to build mathematical models of a person’s mood and cognition based
only on how, and not what, they type.

Voice itself, of course, remains a valuable instrument for gaining insight into the
speaker’s mood state, andwill only continue to becomemore so as the tide eventually
turns toward speech-based interactionswith both intelligent voice assistants and other
human users of connected devices. Using similar statistical modeling and machine
learning techniques, the acoustic features of speech are just aswell-suited for analysis
as typing kinematics (Cummings and Schuller 2019).

As more and more computing comes to be offloaded from personal devices to
Internet of Things (IoT) devices and the cloud, and ambient computing becomes
the norm, we expect that techniques like keystroke analysis will be supplanted by
speech meta-feature analysis, facial emotional recognition (for more information on
FER software, see Chapter 3 by Geiger and Wilhelm in this book), and altogether
novel passive mood sensing tools. For the present time, being aware of the increasing
ubiquity of algorithms and their influence on data analytics, digital architectures and
digital societies (Dixon-Román 2016), as well as mindful of the absence of a codified
analog for the Hippocratic Oath in the current practice of artificial intelligence in
medicine as well as other applications (Balthazar et al. 2018), we nevertheless stand
to learn a great deal from leveraging currently used input methods to derive models
for sensing users’ inner states.

10.2 Mobile Typing Kinematics

In the first known study of its kind, researchers from the University of Illinois at
Chicago (UIC), the University of Michigan, the Politecnico di Milano, Tsinghua
University and Sun Yat-sen University used passively obtained mobile keyboard
usage metadata to predict changes in mood state with significant degrees of accu-
racy. The team recruited subjects from the Prechter Longitudinal Study of Bipolar
Disorder at the University of Michigan as part of the BiAffect-PRIORI consortium
for its pilot study based on an Android mobile keyboard and associated app. After
winning the grand prize in the Mood Challenge supported by Apple and sponsored
by the New Venture Fund of Robert Wood Johnson Foundation, UIC is currently
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conducting a full-scale study on the iOS platform using an app based on the open
source ResearchKit mobile framework, enrolling both people with bipolar disorder
as well as healthy controls from the general population.

TheBiAffect study (https://www.biaffect.com/) involves the installation of a com-
panion app containing a custom keyboard that is cosmetically similar to the stock
system keyboard. The app includes mood surveys; self-rating scales; and active tasks
such as a the go/no-go task and the trail-making test (part B) to measure reaction
time, response inhibition, and set-shifting as part of executive functioning—all over-
lapping domains of cognition identified by Bourne and colleagues (2013) to be the
most affected in bipolar disorder.

All data collected by the app and keyboard are first encrypted and then transmitted
and stored on secure study servers; these were hosted at UIC for the Android pilot
app, whereas study management services are being supported by Sage Bionetworks
for the ongoing iOS study with the data being hosted on their Synapse platform.
The Android pilot phase, which has concluded data collection, involved the key-
board, trail making test, Hamilton Depression Rating Scale (HDRS), Young Mania
Rating Scale (YMRS), and slider-based daily self-rating scales for mood, energy,
impulsiveness, and speed of thoughts; the main iOS study included each of these
[with the notable substitution of the clinician-rated HDRS and YMRS with the self-
reported Patient Health Questionnaire (PHQ) and the Altman Mania Rating Scale,
respectively] as well as a daily self-rating scale querying ability to focus, and the
aforementioned reaction time task. Metadata collected for keyboard usage include
timestamps associated with each keystroke, residence time on each key, intervals
between successive keystrokes, and accelerometer readings over the course of all
active typing sessions. The actual character corresponding to any given keypress is
not recorded, apart from noting whether it was a backspace, alphanumeric, or symbol
key. In addition to backspace usage, instances of autocorrection and autosuggestion
invocations are also logged.

Table 10.1 summarizes the literature that has been published thus far based on
analyses of data collected during the pilot phase of the study, which included 40
participants—between 9 and 20 ofwhose datawere used for any given one depending
on the number of days of metadata logged, diagnosis of the participant, and other
requirements; up to 1,374,547 keystrokes and 14,237,503 accelerometer readings
across 37,647 sessions were incorporated into some of the resulting models. Data
collection for the main arm of the study is ongoing and has already resulted in over
8,000 cumulative hours of active typing sessions culled from across hundreds of
users.

Zulueta and colleagues (2018) built mixed-effects linear models to correlate key-
board activity metadata during the week preceding when each pair of mood rating
scales was administered to the corresponding HDRS and YMRS scores. A represen-
tative sampling of these metadata over several weeks from one study participant is
illustrated in Fig. 10.1, while Fig. 10.2 compares the scores predicted by thesemodels
against actual scores for both mood scales. Autocorrect rates were positively corre-
lated with depression scores, probably because error-awareness becomes impaired

https://www.biaffect.com/
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Fig. 10.1 An example of the deep personalized sensing possible with BiAffect showing the number
of keystrokes, corresponding accelerometer readings, and the time between successive keypresses
logged for an individual participant over the duration of the pilot study phase. Adapted from Zulueta
et al. (2018)

when depressed (Fig. 10.3a). Backspace usage rate was found to be negatively cor-
related with higher mania scores, possibly because it is reflective of decreased self-
monitoring and impaired response inhibition (Fig. 10.3b). Accelerometer activity
was positively correlated with both depression and mania scores, possibly because
study subjects were experiencing depression with mixed features or agitated/irritable
depression. The trail making test is a standard neuropsychological assessment that
measures processing speed and task-switching, which are both good indicators of
cognitive functioning; Fig. 10.4 shows how typing kinematics data were just as pre-
dictive as trail making test results at establishing cognitive ability.
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(a) (b)

Fig. 10.2 Mixed effects modeling accounted for 63% of the variability of Hamilton Depression
Rating Scale scores (Conditional R2 = 0.63, Marginal R2 = 0.41, χ2

7 = 17.6, P= 0.014). Ordinary
least squares modeling accounted for 34% of the natural log of Young Mania Rating Scale scores
(Multiple R2 = 0.34, Adjusted R2 = 0.26, F7,56 = 4.1, P = 0.0011). Adapted from Zulueta et al.
(2018)

Fig. 10.3 Significant predictors for Hamilton Depression Rating Scale scores included accelerom-
eter displacement (P = 0.0017), interkey delay (P = 0.022), autocorrect rate (P = 0.0036), and
session count (P = 0.0025). Significant predictors for the natural log of the Young Mania Rating
Scale scores include accelerometer displacement (P = 0.003) and backspace rate (P = 0.014).
Adapted from Zulueta et al. (2018)

Stange et al. (2018) took a different approach by constructing multilevel mod-
els based on instability metrics calculated for EMA ratings and daily typing speeds
(Fig. 10.5) using the root mean square of the successive differences (rMSSD)—a
time-domain measure that takes into account the magnitude, frequency, and tempo-
ral order of intra-user fluctuations (Ebner-Priemer et al. 2009). Greater instability in
baselinemood EMA ratings was significantly predictive of elevated future symptoms
of both depression (Fig. 10.6a) and mania, whereas instability in energy ratings was
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Fig. 10.4 Comparison of the predictiveness of keystroke data with that of trail making test results
for assessing cognitive ability. Processing speed, as measured by trail taking test (part A) scores,
was significantly correlated with average interkey delay (i.e., time since last key, r= 0.5, p < 0.001)
and keys/second (r=−0.54, p < 0.001). Set shifting, as measured by trail taking test (part B) scores,
was highly associated with average time since last key (r = 0.68, p < 0.00001) and keys/second (r
= −0.62, p < 0.00001). Adapted from Zulueta et al. (2018)

predictive of future mania but not depression; other affective EMA ratings were not
found to be significantly predictive of either. Typing speed instability was predictive
of elevated prospective symptoms of depression (Fig. 10.6b) but not of mania. Inter-
estingly, as little as one week of data provided levels of predictiveness comparable
to data collected over durations of time longer than 5–7 days, perhaps because this
time period is a representative enough snapshot to capture day-to-day typing vari-
ability (Fig. 10.7). Turakhia and colleagues (2019) have subsequently gone on to
demonstrate the feasibility of exploiting variability in similar irregular noncontinu-
ous datastreams to identify, predict, and prevent potential serious episodes—atrial
flutters and fibrillations in the case of their app- and wearable-based study on cardiac
arrhythmia.

Cao and colleagues (2017) were among the first to model keystroke dynamics
data using deep learning. Their method, DeepMood, consisted of comparing the pre-
dictive performance of a multi-view machine layer architecture (Fig. 10.8) to that of
other late fusion approaches such as factorization and conventional fully connected
layers as well as early fusion strategies like tree boosting systems, linear support vec-
tor machines, and logistic ridge regression models. For the uninitiated, a review on
current applications of deep neural networks in the field of psychiatry by Durstewitz
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Fig. 10.5 An individual participant’s a self-rated ecological momentary assessment scores, b pas-
sively collected daily typing speeds and c baseline and future course of depression symptom severity.
Adapted from Stange et al. (2018) and reproduced with permission from the publisher

Fig. 10.6 Comparison of actual scores with those predicted by multilevel instability models for
an individual participant’s. a Hamilton Depression Rating Scale and b Young Mania Rating Scale.
Adapted from Stange et al. (2018) and reproduced with permission from the publisher

et al. (2019) may serve as a primer. DeepMood’s early fusion approaches align each
of the data views—alphanumeric characters, special characters, and accelerometer
values—with their associated timestamps (Fig. 10.9), and then immediately con-
catenate the multi-view time series per session. However, this does not take into
proper account unaligned features in certain views, such as special characters, that
do not have corresponding data points from other views like acceleration or inter-key
distance. This shortcoming is addressed by the late fusion approach, in which each
of the multi-view series is first modeled separately by a recurrent neural network
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Fig. 10.7 a Reliability of active and passive assessments of instability depending on number of
days of assessment. b Predictive utility of active and passive assessments of instability depending on
number of days of assessment. Adapted from Stange et al. (2018) and reproduced with permission
from the publisher

Fig. 10.8 DeepMood machine learning architecture with a multi-view machine layer for late data
fusion. Adapted from Cao et al. (2017)
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10:13:00 10:13:01 10:13:02 10:13:03 10:13:04 10:13:05

alphanumeric characters special characters accelerometer values

Fig. 10.9 A representative sample of the multi-view metadata collected in a time series. Adapted
from Cao et al. (2017) and reproduced with permission from the publisher

Fig. 10.10 Comparison of
the improvements in
accuracy of different
DeepMood architectural
approaches over the course
of successive training
epochs. Adapted from Cao
et al. (2017) and reproduced
with permission from the
publisher

(RNN), and then fused in the next stage by analyzing first-, second-, and third-order
interactions between each view’s output vectors. Cao and colleagues established that
their late fusion approach significantly outperformed early fusion in the ability to pre-
dict mood disturbances and their severity (Fig. 10.10), with the multi-view machines
demonstrating the highest rate of accuracy at 90.31% followed by the factorization
machines at 90.21%.

In a subsequent analysis, Huang et al. (2018) found that an early fusion approach
integrating both convolutional and recurrent deep architectures and incorporating
users’ circadian rhythms allowed their model, dpMood, to attain even greater pre-
dictive performance as well as make more precise personalized mood predictions
that took into fuller account an individual’s biological clock and unique typing pat-
terns. Their approach consisted of using convolutional neural networks (CNNs) that
focused on temporal dynamics to analyze local features in typing kinematics over
small periods of time, in conjunction with a special type of RNN called a gated recur-
rent unit (GRU) to model longer-term time-related dynamics (Fig. 10.11). GRUs
address the vanishing gradient problem—the inherent inability of simpler RNNs to
effectively learn those parameters that only cause very small changes in the neural
network’s output—and moreover have fewer parameters than comparable ameliora-
tive approaches, allowing them to perform better on smaller datasets (Cho et al. 2014)
such as the keystroke kinematics collected by BiAffect. This early fusion approach
allowed for the alignment of features frommultiple views to include additional infor-
mation about temporal relationships between these data points that would otherwise
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Fig. 10.11 dpMood machine learning architecture based on early data fusion stacked CNNs and
GRUs, and time-based calibrations. Adapted from Huang et al. (2018) and reproduced with per-
mission from the publisher

be lost in late fusion models. In the final analysis, the proposed dpMood architec-
ture with the best predictive performance and the lowest regression error rate was
the one that made combined use of both CNNs and RNNs to learn local patterns
as well as temporal dependencies, learned each user’s individual circadian rhythm,
and retained accelerometer values that had no contemporaneous alphanumeric key-
presses by filling the unaligned alphanumeric features with zero values instead of
dropping unaligned accelerometer values altogether. Accelerometric and time-based
analyses elucidated both daily (Figs. 10.12 and 10.13) and hourly (Fig. 10.14) vari-
ations in keyboard use, with the notably smaller Z-axis accelerations that help pin-
point when a phone is being typed on from a supine position having been observed
more predominantly in the evenings (Fig. 10.14c) and on weekends (Fig. 10.13d).
Modeling individuals’ circadian rhythms as a sine function with parameters automat-
ically learned by gradient descent algorithms and backpropagation resulted in one
of these parameters conspicuously clustering based on the subjects’ diagnoses, per-
mitting dpMood to successfully classify users as participants with bipolar I disorder,
those with bipolar II disorder, or healthy controls (Fig. 10.15). These sophisticated

Fig. 10.12 Distribution of
daily typing hours visualized
as a 7 day × 24 h matrix.
Adapted from Huang et al.
(2018) and reproduced with
permission from the
publisher
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(b)(a)

(d)(c)

Fig. 10.13 Day-to-day fluctuations over the course of a week in a duration of a keypress, b time
between successive keypresses, c acceleration along Y-axis, and d acceleration along Z-axis.
Adapted from Huang et al. (2018) and reproduced with permission from the publisher

techniques can combine to provide extraordinarily insightful mood-sensing tools to
users and precision medicine practitioners alike.

Preliminary analysis of study participants’ performance on the go/no-go task has
indicated that reaction times vary both within and between individuals (Fig. 10.16a)
as well as continue to change over time (Fig. 10.16b); variations in daily typing
patterns in BiAffect users have been found to correlate with their performance on the
go/no-go task, and concurrent analyses of both data streams are now under way to
examine their interrelationships and interactions with mood and cognition as well.
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(a) (b)

(c)

Fig. 10.14 Circadian rhythm mediated fluctuations in a duration of a keypress, b time between
successive keypresses, and c acceleration along Y- and Z-axes. Adapted from Huang et al. (2018)
and reproduced with permission from the publisher

(b)(a)

Fig. 10.15 Visualizations of each individuals’ calibration sine functions for a HamiltonDepression
Rating Scale scores and b Young Mania Rating Scale scores. Adapted from Huang et al. (2018)
and reproduced with permission from the publisher
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Fig. 10.16 a Go/no-go reaction time varies between and within individuals. b Average reaction
time changes over the course of time
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10.3 Speech Dynamics

Research on keystroke kinematics was inspired by the work of colleagues at the Uni-
versity of Michigan’s Heinz C. Prechter Bipolar Research Program on the Predicting
Individual Outcomes for Rapid Intervention (PRIORI) project, which is based on
analyzing voice patterns in participants enrolled in the longest longitudinal research
study of bipolar disorder; BiAffect aims to infer mood from typing metadata just as
PRIORI does from the acoustic meta-features of speech. Participants were enrolled
in the PRIORI study for an average of 16 to 48 weeks and were provided a rooted
Android smartphone with a preinstalled secure recording application that captured
audio of the participant’s end of every phone call. Study staff called participants
weekly to administer HDRS and YMRS mood assessments; these calls were labeled
separately from personal calls. The dataset has accumulated over 52,000 recorded
calls totaling above 4,000 h of speech from 51 participants with bipolar disorder and
9 healthy controls.

Karam et al. (2014) used a support vector machine (SVM) classifier to perform
participant-independent modeling of segment- and low-level features extracted by
the openSMILE audio signal processing toolkit, and were able to separate euthymic
speech from hypomanic and depressed speech using an average of 5–8 judiciously
selected features. In a later study, Gideon et al. (2016) used a declipping algorithm
to approximate the original audio signal, and performed noise-robust segmentation
to improve inter-device audio recording comparability. Rhythm features were clas-
sified using multi-task SVM analysis, then transformed into call-level features, and
finally Z-normalized either globally or individually by subject. Declipping and SVM
classification was found to increase the performance of manic but not depressive pre-
dictiveness, whereas segmentation and normalization significantly increased both.
Khorram et al. (2016) captured subject-specific mood variations using i-vectors, and
utilized a speaker-dependent SVM to classify both these i-vectors as well as rhythm
features. Fusion of the subject-specificmodel—using unlabeled personal calls—with
a population-general system enabled significantly improved predictive performance
for depressive symptoms compared to the earlier approach used by Gideon and col-
leagues (2016). Khorram et al. (2018) went on to develop an ‘in the wild’ emotion
dataset collating valence and activation annotations made by human raters drawing
only upon the acoustic characteristics, and not the spoken content, of recordings from
both personal and assessment calls.

Ongoing analyses, confounding challenges, and proposed solutions related to
voice analysis have been outlined in a concise review by the PRIORI team (McInnis
et al. 2017); their current focus is to isolate elements in the speech signal that aremost
strongly correlated with incipient disturbances in mood, enabling the development
of on-device analytical systems without compromising limited mobile phone battery
life.
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10.4 Future Directions

The eventual goal of these projects is to be able to generate an early warning signal
when changes in users’ patterns of typing, speech, and behavior identify them to be
at risk for an imminent manic or depressive episode. This would allow for just-in-
time adaptive interventions that can circumvent or at least minimize the acuteness
of the episode and any resulting cases of hospitalization, medication adjustment, or
self-harm (Rabbi et al. 2019).

It has not escaped our attention that these passive sensing techniques can have
applications in conditions other than bipolar disorder and indeed beyond just mood
disorders; we have been investigating the use of a voice-enabled intelligent agent that
are responsive to users’ mood in order to provide emotionally aware education and
guidance to patients with comorbid diabetes and depression (Ajilore 2018), as well as
exploring the effectiveness of keystroke dynamics modeling in disparate conditions
ranging from neurodegenerative processes such as Alzheimer’s disease to cirrhotic
sequelae such as hepatic encephalopathy.

The BiAffect keyboard has not only proven extremely adept at enabling digital
phenotyping of its users’ affective and cognitive states, but is also sensitive enough to
their unique typing patterns that it can serve as an effective behavior-based biometric
user identification and authentication tool. Sun et al. (2017) created DeepService,
a multi-view multi-class deep learning method which is able to use data collected
by the BiAffect keyboard to identify users with an accuracy rate of over 93% with-
out using any cookies or account information. Until recently, the use of keystroke
kinematics in hardware personal computer keyboards had been limited to similar
continuous authentication applications, but physical keyboard sensing techniques
are now expanding in scope to include identifying and measuring digital biomarkers
as well (Samzelius 2016).

Mindful of the myriad potential concerns related to user privacy, data security
and ethical implications inherent in the mass development and deployment of such
applications, as well as in drawing conclusions based on findings generated using a
relatively small number of smartphone users from a handful of geographic regions
(Lovatt and Holmes 2017;Martinez-Martin and Kreitmair 2018), and remaining par-
ticularly cognizant of the clinical imperative to only use those methods informed by
established transtheoretical frameworks—the overarching lack of which may have
led to the current replication crisis in psychology and themedical sciences (Muthukr-
ishna and Henrich 2019)—the research teams investigating BiAffect data streams
have endeavored to adopt a deliberately paced approach that harmonizes the latest
developments in cognitive science, psychological theory, nosology, and treatment
with state-of-the-art deep learning techniques and statistical methods. By paying
close attention to safeguarding the individual privacy and protected health informa-
tion of its users, and by adopting the most transparent possible model of sharing
research techniques and findings in order to prioritize the use of digital phenotyping
data for ethical medical applications, the BiAffect platform has been built on the twin
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paradigms of open source and open science as an invitation to collaborators from
around the world to replicate, validate, amend or correct our hypotheses.

Perhaps one day we will all sport brain scanning ski caps that tell us how we
feel, and install BCI implants to communicate wordlessly with our gadgets and with
one another, while our IoT devices infer our emotions by analyzing our behavior
at a distance; in the meantime, there is already no dearth of data streams readily
available for passively mining users’ mood, cognition, and much more with greater
preservation of privacy and potential for predictiveness.
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