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Abstract. In recent years, network representation learning on complex infor-
mation networks attracts more and more attention. Scholars usually use matrix
factorization or deep learning methods to learn network representation auto-
matically. However, existing methods only preserve single feature of networks.
How to effectively integrate multiple features of network is a challenge. To
tackle this challenge, we propose an unsupervised learning algorithm named
Multi-View Learning of Network Embedding. The algorithm preserves multiple
features that including vertex attribute, network global and local topology
structure. Features are treated as network views. We use a variant of convolu-
tional neural networks to learn features from these views. The algorithm max-
imizes the correlation between different views by canonical correlation analysis,
and learns the embedding that preserve multiple features of networks. Com-
prehensive experiments are conducted on five real networks. We demonstrate
that our method can better preserve multiple features and outperform baseline
algorithms in community detection, network reconstruction and visualization.

Keywords: Network representation learning - Multi-view fusion -
Convolutional neural networks * Canonical Correlation Analysis

1 Introduction

Large-scale information networks are common information carriers in real world.
Mining knowledge from complex information networks can help people to understand
network structure [1] or information dissemination patterns [2]. Network representation
learning (NRL) [3] is a basic issue in network mining area which mainly studies how to
map features of vertex in a network to a low-dimensional, continuous real-valued
embedding, and the process of mapping is not only try to preserve the structural feature
s, but also try to preserve the properties of the vertex. Embedding learned by NRL can
be used as input feature for machine learning methods, and has important applications
in the real world, such as network visualization [5], network reconfiguration [4, 6],
community detection [7], link prediction [8], etc.

The traditional NRL method is similar to dimensionality reduction, such as Graph
Factorization (GF) [9], Local Linear Embedding (LLE) [10] Large-scale Information
Network Embedding (LINE) [11] and HOPE algorithm [12], etc. These methods use
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single matrix to present the similarity graph structure of networks, and obtain low-
dimensional embedding for networks by factorize this matrix. Matrix Factorization
based Methods is unstable and incomplete because they have strong dependence on
constructing single feature matrix. Our task selects multiple features from networks,
and design an unsupervised fusion algorithm based on deep neural networks.

2 Related Work

With the advent of the era of big data, deep learning (DL) technology are developing
rapidly. DL can discover complex structures in big data via multiple processing layers.
DL brings significant results in many areas, such as computer vision, language mod-
eling, etc. In recent years, scholars have done a lot of research on applying DL models
to represent graphs or networks. Deepwalk [13] and node2vec [14] use random walk to
generate sequence of nodes and adopt an unsupervised neural language model (Skip-
Gram) [15] for networks embedding. SDNE [5] uses an unsupervised deep self-encoder
to model the second-order proximity, the hidden layer of the deep self-encoder is the
embedding of networks. In addition, convolutional neural networks (CNN) and its
variants have been widely adopted in representation learning. PATCHY-SAN [16]
selects fixed-length node sequence to assemble the neighborhood of nodes and directly
use the original CNN model designed for Euclidean domains. GCN [17] defines the
convolution in the spectral domain, and constructs a semi-supervised model for node
classification task. However, networks usually contains multiple types of information,
such as node attribute information, structure information, text information, etc. Existing
method is incomplete because it only learns single types of information. In addition,
existing method lack universality because each representation learning model is
designed with a specific optimization goals.

Unlike previous approaches, we propose an unsupervised learning algorithm named
multi-view of network embedding, also known as MVNE. MVNE uses multiple vertex
attribute (text information, geographic location, user tags, etc.), network global
topology, and local topology features as input features, and they are treated as network
views. The views express the characteristics of different aspects of the network. We
consider multiple localized first-order approximation spectral graph convolutions to
extract features from views, and fuse features by analyzing correlation between them.
The model can be applied to various network tasks because it learns representations in
a fully unsupervised setting.

3 Multi-View Learning of Network Embedding

3.1 A Subsection Sample

We define a network G = (V,E), V = {v,...,vi,...,vn} is the collection of network
vertices, where N is the number of vertices. E is the collection of network edges.
ejj = (vi7 vj) € E represents an edge between v; and v;. A is the adjacency matrix. If
there is an edge between v; and v;, then A;; = 1, otherwise A;; = 0. The vertices feature
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matrix X corresponding to G is a highly sparse matrix. Dimension of X is usually
expressed as |V| x m, where m is the feature space size of the attribute. Vertices
usually have multiple attributes, such as geographic location, age, hobbies, etc. Let
Attr = {X Ly no Xp} denote the feature matrices set of network G which are treated as
views of networks. In this paper, we assume that the input to our algorithm is an
undirected network G and its feature matrices Aftr. The goal of our algorithm is
mapping each vertex to a low-dimensional vector z € R? by fusing the information
contained in A and A#ir, where d < |V|.

3.2 Feature Extraction Based on Graph Convolution

Convolutional neural networks (CNN) has achieved good results in areas. CNN can
process Euclidean data (e.g. image data) efficiently. However, network data belongs to
Graph-structured Data. In order to learn the features in Graph-structured Data, this
paper use a variant of CNN which called spectral convolution to extract feature map
from views in networks. The definition of spectral convolution is as shown in Eq. (1).

goxX = UgoU'X (1)

X € RVI*™ s a feature matrix, g, = diag() is a filter. Spectral convolution gy is
generated by decomposing the normalized graph Laplacian matrix shown as Eq. (2).

L=Iy—D7AD = U'AU 2)

D is the degree matrix, U is the matrix of eigenvectors of L, A is the diagonal matrix of
eigenvalues of L. According to Egs. (1) and (2), it can be seen that filter gy is a function
of eigenvalues A. We can obtain the filter gy via the eigenvalue decomposition of L.
However, in large-scale networks, eigenvalue decomposition of L is computationally
expensive. So we use K"-order Chebyshev polynomial to approximate gy(A) in

Eq. (3).
T K AT K v
g0+ X = UgyU'X = >0 0T (UAUT)X = 370 01T(L)X 3)

InEq. 3), A = ﬁ/\ — 1IN, Amax is the largest eigenvalue of L. ' € R is a vector
of Chebyshev coefficients. Ty (I:) =2LTy, (I:) — Ty (I:), with T, (I:) =1 and
T, (I:) =L.IfK=2and Amax = 2, we can obtain

gy * X = O)X + 0, (L — Iy)X ~ e(b—%AD—%)X (4)

where A =A+Ix, D is the degree matrix of A. The equation has parameter
6 = 6, = —0], and it is a matrix of filter parameters in graph convolution network. As
an example, we use two-layer convolution network with different W to learn multiple
views in networks. The graph convolution network can be expressed as follows:
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2(6) = ReLU (AReLU (AXWO) Wl) (5)

In Eq. (5), 6 to denote the vector of all filter parameters W. A=D éAf)i% is a
symmetric and sparse adjacency matrix which converges the weight information of the
nodes in the first-order domain of the target node. z(0) is the feature map learned from
feature X. We will obtain multiple feature maps by multiple convolution operations.
This process is shown in Fig. 1. We consider three views in network.

Fig. 1. A schematic of MVNE

3.3 MVNE Algorithm

Canonical Correlation Analysis (CCA) is used to mine complex relation mappings
between two views (X;,X3) € R™ x R™ by finding pairs of projections wy, w, that are
maximize the correlation between views. The goal of CCA is shown in Eq. (6), where
211 and X4, are covariance, X1, iS cross-covariance.

argmax Wi Z W)

Wi, W2 \/W/1211W1W/2222W2

(w*{,w;) = iflgTijcorr(W’IXl,wlzXz) =

(6)

Inspired by CCA, we fuse multi-view by finding a canonical coordinate space that
maximizes correlations between the projections of views. We use X =
(X1,X2, .-, Xn) € RY™ and Y = (y;, s, .., y,) € RN™ obtained from network as
an example to explain the principle of view fusion. my and my are dimensions of views.

The goal of our task is learning the parameters 6 in Eq. (7) for every network views,
this is express as

e com(c(:00). (¥ 02) )

Let Zx = z(X;0,) and Z, = z(Y;0,) be the matrix produced by the graph con-
volutional layer on two views. Xy = ZXZQ( +rl Zyy = ZYZg{ + 1,1 are covariance
matrices of (ZX7 Zy), and X, = Z’yx = ZXZ/Y is the cross-covariance matrices of

(Zx, Zy). 11,12 > 0 s the regularization constant to reduce over-fitting in training data.
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_1 _1
We define O = XX,y Xyy according to the objection in Eq. (6), then we use the traces
of O to simplify the calculation of the objective function in Eq. (7)

1
aglgrrgzlx corr(Zx,Zy) = maxtr(0'0) 2 (8)
In order to find 0,0, such that Eq. (8) is as high as possible, we calculate the
gradient of corr(Zx,Zy) with respect to 0y, 0,, then use back propagation. Algorithm
describes the multi-view fusing and embedding generation process.

Algorithm: MVNE

Input: Network G = (V,E), feature views Attr = {Xl, ...,Xp} ,weight matrices Wik,k €

{1..K}ie{l..p}
Output: node embedding

GenerateFM(X;)
h; = X;
fork =1..K do:
Bt = o RREWE)
z; = h{(
return z;
Z = GenerateFM(X;)
fori € {2...p} do:
z{ = GenerateFM (X;)
for e in range(epoch) do:
wk =wk - aaiw{carr(Z,zi’) +§||Wik||}
z; = GenerateFM (X;)
Z = concat(Z,z;)

4 Experiments

4.1 Dataset

In order to evaluate the effectiveness of MVNE, we use community detection, network
reconstruction and network visualization to evaluate different embedding generated by
different methods. Table 1 gives a properties list of all real network in our experiment.
We construct random walk matrix Xz € RIV*IVI based on network to preserve local
topology structure, and Xg, denote the frequency of node v; appearing in random walk
sequence of node v;. Xp can preserve node centrality and higher-order proximity
between nodes. In addition, some networks in Table 1 contain rich information, such as
region, hobbies, etc. We construct feature matrices base on attributes by one-hot
coding, and use 5 layers MVNE to generate embedding.
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Table 1. Experimental network basic properties.

Network |V E Average clustering coefficient | Label | External attribute
Karate 34 781 0.5706 \ y
Football 115 616 |0.4032 y y
Email 1133 5451 |0.2202 X X
Facebook | 4039 88234 | 0.6005 \ Y
Pokec 1632803 | 30622564 | 0.1094 X y

4.2 Community Detection

Community detection is a basic task of network analysis. The interaction between
nodes in same community is more frequent than the interaction among other com-
munities in networks. We use K-means to classify and assign community label for
every node base on embedding. Modularity can be used to evaluate the quality of
community detection. Embedding with high modularity is high-quality. We report
performance of eight models including our model. The result is shown in Table 2.

Table 2. Modularity result of community detection.

Model Karate | Football | Email | Facebook | Pokec
GF 0.439 |0.215 0.232 10.401 0.083
LLE 0.442 |0.307 |0.150 | 0.419 0.071
LINE 0.485 |0.375 0.305 |0.520 0.109
HOPE 0.497 |0.412 0.320 | 0.546 0.103
Deepwalk | 0.532 | 0.367 |0.372 | 0.558 0.097
Node2vec | 0.593 | 0.390 | 0.496 | 0.602 0.115
GCN 0.569 |0.448 0.641 | 0.654 0.196
MVNE 0.661 |0.452 0.673 |0.713 0.279

We can see that MVNE has higher modularity than other benchmark algorithms.
The results show that the embedding learned by MVNE is more effective because it
contains multiple network information.

4.3 Network Reconstruction

The purpose of network reconstruction is to rebuild the links between nodes based on
similarity of node pairs. The similarity between nodes is evaluated by the distance of
their embedding. The experiment randomly selects 20% node pairs from whole pairs as
a sub-network sample. We take k pairs of nodes with the highest similarity as predicted
links and calculate actual link ratio to evaluate the accuracy of network reconstruction.
If node embedding is effective, the accuracy will be high.
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Figure 2 shows the mean and standard deviation of corresponding accuracy.
Accuracy of network reconstruction decreases with increasing of k value. MVNE
achieves better network reconstruction with different k values. The reconstruction
precision can reach about 80% while k = 2.
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Fig. 2. Reconstruction accuracy of networks

4.4 Visualization

We can visualize embedding to make better understanding for topology and charac-
teristics of networks intuitively. Embedding learned by different methods are different
in the ability of visualization and interpretation. We compare visualization ability of
embedding learned by different algorithms in Football network. Each algorithm learns
64-D embedding for nodes, and use t-SNE [4] to reduce dimension to 2-D. We color
nodes to observe the basic community structure of networks. The results are shown in
Fig. 3. Some nodes belonging to different communities are mixed up in HOPE, LINE
and GF. The embedding generated by DeepWalk and Node2Vec can represent clear
community structure, but there are still a few nodes belonging to different communities
mixed. MVNE is more effective than other benchmark algorithms because nodes
belonging to same communities are separated clearly.
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Fig. 3. Visualization of Football network
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Future Work

In this paper, we propose a Multi-View Learning algorithm to generate embedding of
networks. It fuses multiple features of networks by an unsupervised learning process. In
the future, how to improve the learning efficiency of MVNE on large-scale network is a
very important problem. In addition, introducing dynamic interaction information as a
feature into NRL process is also worthwhile to study.
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