l‘)

Check for
updates

Applicatives for Anaphora
and Presupposition

Patrick D. Elliott®)

ZAS, Berlin, Germany
patrick.d.elliott@gmail.com

Abstract. In this paper, we construct an effectful semantic fragment
using the applicative abstraction. Empirically, we focus primarily on the
dynamics of anaphora, and secondarily on presupposition projection. We
aim to show that a dynamic semantics can be constructed in a fully
modular fashion with applicative functors; we don’t need the full power
of a monad (c.f. [4]). We take advantage of the fact that, unlike mon-
ads, applicative functors compose — and the result is guaranteed to be
an applicative functor. Once we introduce the applicative abstraction,
it turns out that the machinery necessary for dealing with the dynam-
ics of anaphora and presupposition projection is already implicit in the
machinery used in an orthodox static setting for dealing with assignment
sensitivity, scope, and partiality.

Keywords: Applicative functors - Dynamic semantics -
Presupposition projection - Continuation semantics

1 Overview

Applicative functors are an abstraction for dealing with effectful computation
that emerged relatively recently in the functional programming literature [10].
Given some effectful domain defined by a type constructor F, an applicative
provides a way of embedding pure computations into a pure fragment of F’s
effectful domain, and the peculiar way in which application is interpreted within
that domain.

Monads are a related, and more established abstraction for dealing with
effectful computation [15], and there has already been a great deal of work in
the linguistics literature motivating an approach to semantic computation using
monadic machinery (see, e.g., [1,4,12]). Monads are more powerful than applica-
tives — this is because the bind operator = associated with a given monad allows
the result of an effectful computation to influence the choice of subsequent com-
putations. Applicative functors don’t allow this — effects don’t influence the
structure of computation, they just get sequenced. To quote Mcbride and Pater-
son [10, p. 8] “if you need a Monad, that is fine; if you need only an Applicative
functor, that is even better!”. It is still an open question whether or not, in order

© Springer Nature Switzerland AG 2019
K. Kojima et al. (Eds.): JSAI-isAI 2018 Workshops, LNAI 11717, pp. 256-269, 2019.
https://doi.org/10.1007/978-3-030-31605-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31605-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-31605-1_19

Applicatives for Anaphora and Presupposition 257

to model natural language semantics, we require the full power of monads, or if
applicative functors suffice.

In the present work, we construct a effectful semantic fragment using the
applicative abstraction. Empirically, we focus on the dynamics of anaphora, with
presupposition projection as a secondary concern. We aim to show that dynamics
can be modelled with applicatives in a fully modular fashion; we don’t need
the full power of a monad. We take advantage of the fact that, unlike monads,
applicatives compose — and the result is guaranteed to be an applicative. Once we
introduce the applicative abstraction, it turns out that the machinery necessary
for dealing with the dynamics of anaphora and presupposition projection are
already implicit in the machinery used in an orthodox static setting for dealing
with assignment sensitivity, scope, and partiality. In this sense, the present work
bears directly on debate surrounding the explanatory power of dynamics for
anaphora and presupposition projection (see, e.g., [11]).

Many of the ideas here are inspired by de Groote [6] and Charlow [4]. de
Groote [6] pioneered the approach to dynamic semantics in terms of continua-
tions, which will also be a necessary ingredient in the present account. Charlow’s
(2014) work is foundational for understanding natural language semantics, and
specifically dynamics, as effectful computation. Unlike the present work, Char-
low makes use of monadic machinery — specifically the State.Set monad — a
technique which provides strictly more expressive power than the applicative
abstraction. We’ll offer an explicit comparison between the present approach
and Charlow’s monadic grammar in Sect. 4.

2 An Applicative for Anaphora

In this section, we begin by introducing some basic building blocks; in Sect. 2.1
we introduce applicative functors and the applicative functor laws. In Sect. 2.2,
we introduce Charlow’s (2018) account of assignment-sensitivity in terms of the
applicative instance of Reader. In Sect. 2.2, we introduce the applicative instance
of Cont (more frequently presented in its monadic guise), and following, e.g.,
Barker and Shan [2], show how it can be marshalled in order to provide a general
theory of scope in natural language. Finally, in Sect.2.4 we bring these pieces
together in order to account for the dynamics of anaphora. Taking advantage of
the fact that, unlike monads, applicatives compose, we show how the resources
necessary for handling the dynamics of anaphora are already implicit in our
fragment, once assignment-sensitivity and scope are brought into the picture.

2.1 Applicative Functors

Formally, an applicative functor is a tuple, consisting of a type constructor F,
a function pure (which we’ll write as 7) of type a — Fa, and a function apply
(which we’ll write as ®) of type F(a — b) — Fa — Fb. Applicative functors must
obey the following laws:

258 P. D. Elliott

(1) Applicative laws
a. Identity: id™ ® a=a
b. Composition: To®a® b® c= a® (b ® ¢)
c. Homomorphism: f™ & z™ = (f =)™

d. Interchange: a®b™ = (A\f . f b)" ®a

Applicative functors are strictly less powerful than monads; a monad is an
applicative functor together with an additional unary operation join of type
F(F a) — F a, where the applicative’s pure function corresponds to the monad’s
return, and apply corresponds to the monad’s ap [14,15].! The additional power
afforded by join means that monads can be used to effectively reason about
effectful computation, where the results of a previous computation can be used
to affect the choice of another. Applicatives, on the other hand, keep the structure
of computation fixed, and just sequence effects [10].

Monads have been used to great effect in the linguistic-semantics literature
— see, e.g., Shan’s [12] pioneering paper, although we note that almost all of
the cases discussed by Shan can be recast in terms of applicative functors, and
thus the additional power provided by the monadic abstraction isn’t strictly
speaking motivated. Charlow [4] on the other hand makes crucial use of monadic
bind (>=) to account for the exceptional scope of indefinites, and therefore
goes some way towards motivating a monadic approach to natural language
semantics. We’ll explicitly compare the fragment outlined here to Charlow’s
monadic grammar in Sect. 4.

2.2 Assignment Sensitivity

Charlow [3] provides an elegant compositional semantics for pronouns in a static
setting via an applicative functor G, defined in (3). G is the type-constructor for
the assignment-sensitive type space; g is the type of assignment functions. It
is associated with two functions — 7 and ®, defined in (4a) and (4b) respec-
tively.2:3. 7 serves to lift a value to a trivially assignment-sensitive value.

! The monad laws are also distinct from the applicative laws, and are generally stated
in terms of monadic bind (>>=), which can be decomposed into (®) and join. The
details are orthogonal to our purposes here.

2 Note that (4b) is defined in terms of overloaded function application A.

(2) a. Afz:=fzx (a—b)—a—b
b. Axf:= fz a—(a—b)—b

3 At various points, it will be important to disambiguate between, e.g., the pure
functions associated with two different applicative functors. In this case we use a
subscript, e.g., the pure function associated with G can be written m¢g.

Applicatives for Anaphora and Presupposition 259

® specifies how application is interpreted within the assignment-sensitive
domain. Pronouns are interpreted as inherently assignment-sensitive individuals,
as defined in (5). Figure 1 provides a sample derivation, for the sentence Sally
hugs her, illustrating how m and ® facilitate assignment-sensitive composition.

(3) Gau=g—a

(4) a. a™:=MXg.a a—Ga
G(a—b) — Ga
b. = MAg.A —Gb
n®m:=Ag.A(n g)(m g) GaHG(aHb)}
(5) pro,, =Ag.gn Ge
Ag . hugs g, Sally Ag . 3hlh[1]g A arrive h4]

® /\
T~ 3, Ag.arriveg,

Ag.Sally Ag.Ay.hugsg,y ®

Sally” ® /\
/\ Ag.gy Ag.Ax.arrivex
Ag.Ax . Ay.hugszy Ag. g, pro, arrived™
hugs™ her,,

Fig. 1. Assignment-sensitive composition via 7 and ®.

It will be useful for subsequent sections to illustrate how we can define first-
order quantification in terms of the machinery outlined here. First-order exis-
tential quantification is defined standardly as in (6), and first-order universal
quantification in (7). Note that h[n]g means that h differs at most from g in the
value h assigns to n, which we write h,,. See Fig.1 for a sample derivation of
an existential statement such as someone arrived. For ease of exposition, at this
stage we assume that first-order quantifiers bind silent pronominal traces.

(6) 3, = Ap.Ag.3h[hin|g A ph] Gt — Gt

(7) Vo= Ap.Ag.VYq'[¢'[n]g — pg’] Gt — Gt

260 P. D. Elliott

2.3 Continuations and Scope

In this section, we will provide a basic overview of continuation semantics
through the lens of the applicative functor Ky, defined in (8).* Note that, unlike
our previous type-constructor G, K comes with an additional type parameter b.
The definitions of the pure and apply operators associated with K are given in
(9a) and (9b) respectively. pure lifts a value a to a trivially scope-taking value —
in fact it is essentially a polymorphic formulation of Montague Lift. Again, apply
specifies how function application is interpreted within the scopal domain.

(8) Kpau=(a—b)—b
(9) a. a":=M\k.ka a—Ka

b. n®m:=\k.n(An.m(O\m.k(Anm))) E(::Eza—;Kb?} — Kb

We can equivalently write the functions associated with Ky, using Barker and
Shan’s tower notation, as in Fig.2. We'll often take advantage of the relative
succinctness of the tower notation, although bear in mind that a tower can always
be expanded to a representation in the lambda calculus (see [2] for details). pure
takes a value and returns a trivial tower; apply takes two towers, sequences
scopal side-effects from left-to-right, and applies the inner values.

o n[] mf] nlm]]
a” = — —®— =
a n m Anm

Fig. 2. The operations associated with the continuation applicative in tower notation

Within continuation semantics, quantificational DPs such as everyone are
continuized individuals of type Kie, as in (10). In order to get back from the
scopal tier to an ordinary value, we’ll need one final piece of machinery: a lowering
function |, which applies a trivially continuized value of type t (since here, b = t)
to the identity function id, as in (11). Figure 3 illustrates composition of a scopal
value via K.

(10) everyone := \%H Kie

(11) | t:=tid Kyb — b

4 Out of necessity, our presentation of continuation semantics will presuppose a certain
degree of familiarity with the framework, but see Barker and Shan [2] for a thorough
introduction.

5 It is easy to see that if we compose more than one scopal value, the resulting value
will correspond to the surface scope reading of a given sentence. In order to derive
inverse scope readings we need an additional operation — internal lift. This won’t be
relevant for our purposes, but see [2] for details.

Applicatives for Anaphora and Presupposition 261

Vx[Sally hugs]

Sally hugs
®
I val
Sally Ay . yhugsz
Sally™ ®
i va |
Az . Ay .yhugsz T
hugs™ everyone

Fig. 3. Composition with a quantificational DP via K

2.4 The Dynamics of Anaphora

In the previous section, we parameterized our continuation type-constructor K to
t, the type of truth values. We did this in order to account for the composition
of quantificational DPs such as everyone. Let’s shift perspective, and instead
parameterize K to Gt, the type of assignment-sensitive truth values. Due to the
equivalence between characteristic functions of type a — t and sets of type {a },
we can also think of Gt as the type of a set of assignment functions. In the fol-
lowing, it will be helpful to switch back and forth between characteristic function
and set perspectives, although bear in mind that the underlying compositional
apparatus uses functions exclusively. The pure operator associated with Kgy lifts
a value a to a scopal value of type (a — Gt) — Gt (Fig.4).

Recall that one property of applicative functors is that they compose, and the
result is guaranteed to be an applicative functor. The next step in the analysis is
to compose Kgt and our type-constructor for assignment-sensitivity G, yielding
a new applicative functor, which we’ll call C, defined in (12). C essentially is
our analysis of the dynamics of anaphora, so it’s worth paying attention at this
point. The pure and apply operators associated with C are just the composition

Fig. 4. The m and ® operators associated with C.

262 P. D. Elliott

of those associated with Kg; and G.5 We've provided the partially de-sugared
definition in (13) for ease of exposition.

(12) Cu=KgioG
(13) Ca:=(Ga— Gt) — Gt

We’ll be using C as our type-constructor for the domain of contextually
dynamic values. In order to get started, let’s define a function (1) that lifts
assignment-sensitive values to trivially dynamic values.

(14) ol =L Ga—Ca

We'll use 1 to lift pronouns into the contextually dynamic space, as illustrated
below. It turns out that in our new dynamic setting, the fundamental semantic
contribution of a pronominal is no different.

|
(15) pro), == oo

As a first attempt at a genuinely dynamic semantics for anaphora, we’ll define
a function 1, the role of which is to dynamize first-order operators such as 3.
M-lifting first-order existential quantification yields dynamic existential quantifi-
cation.

(16) fM:=Xp.Me.(fop)k (Gt— Gt) — (Ct— Ct)
(17) 3% := A\p. \k.\g.3n[h[n]g A (pk)h] Ct— Ct

Once we generalize {} to binary operations (details suppressed), and apply
it to type-lifted static conjunction, we can derive dynamic conjunction. The
definition of dynamic conjunction will probably look quite unfamiliar to dynamic
semanticists used to theories such as Dynamic Predicate Logic [8] and Predicate
Logic with Anaphora [7], but it bears some similarities to the definition given in
Chierchia [5].

(18) (AY) =Aqg.A\p. k. (po(Ag) o @)k Ct—-Ct—Ct

For completeness, we define two more useful operators: dynamic negation,
and discourse referent introduction (dref-intro), as in (19) and (20) respectively.
Dynamic negation is defined in a reasonably standard way — the closure operator
| closes off the anaphoric potential of its prejacent. The dref-intro operator shifts
an individual denoting expression into a dynamic binder.

5 For the unary operation associated with each applicative functor this is straightfor-
ward: mk., 0T = mc. In order to compose two curried binary operators however, we
compose the composition operator with itself, i.e., ((0) o (0))(®k¢,)(®c) = (®¢).

Applicatives for Anaphora and Presupposition 263

19 (=) =1 (= p) Ct— Ct
(20) A, =Xz Ap. k. Ag.(g""" op)k Ay =e—Ct—Ct

We’re now in a position to derive a simple case of cross-sentential anaphora:
someone arrived and they sat down. The full computation is illustrated in Fig. 5.
Intuitively, the continuation variable k represents the future of the discourse.
The way that dynamic conjunction passes the continuation variable from one
conjunct to the next means that the scope of dynamic existential quantification
extends from left-to-right automatically — the continuation variable always ends
up taking scope over the right-most conjunct. In the sample derivation, the
resulting continuized value is closed off via (), returning a familiar assignment-
sensitive value.

Ah . 3g’[[h[0]g’] A arrive gj A satDown gg]

/\

L Ak AR 3G[[R[0]g’] A ((Ag . arrive gg) Ag k(Ag . satDown g4))g’]

/\

Ak . Xh . 3¢ [[R[0]g’] A (k(Ag . arrive gg)) '] Ap. Ak.p ((Ag) (k(Ag .satDown g,)))

T~ T~

3¢ Ak.k(\g.arrive gy) and® Ak.k(\g.satDown g,)
® ®
Ak.k(Ag.go) Ak.k(\g.arrive) pro, satDown,
pro, arrive _

Fig. 5. Example of simple cross-sentential dynamic binding via C

One nice feature of this system is that static existential quantification and
conjunction can be dynamicized in a regular way. Inherently assignment-sensitive
expressions such as pronominals can be lifted into the contextually dynamic
space via a simple lifter function, and every other aspect of composition is
handled by the pure and apply operations associated with C. As such, this
framework addresses some of the worries raised about dynamic approaches to
anaphora and other phenomena, namely that they must stipulate the dynamic
flow of information as part of the lexical entry of each individual expression (see,
e.g., [11]).

For completeness, in Fig. 6 we show how dynamic negation roofs the scope of
a dynamic existential quantifier by closing off the continuation variable before
re-opening it. This directly captures the fact nobody arrived and they sat down
is unacceptable under the intended reading.

Ultimately, we would like to extend this framework to a full compositional
semantics for determiners and generalized quantification. We will leave this

264 P. D. Elliott

Ah . —3¢’[[h[0]g" A arrive g{]] A satDown hg
/\
L Ap. k. (Ah.—3¢'[[R]0]g" A arrive g(]]) Ag (k (Mg . satDown gg))
/\
Al .1 (AR . —=3g’[[R]0]g’] A arrive g}]) Ap . Ak .p((Ag) (k(Ag . satDown gg)))
T /N
neg Ak.\h.3¢'[[h[0]g'] A (k(Mg .arrive gy)) g’] and?
N

3, .. pro satDown,

N

1 n
proj arrive

Fig. 6. Dynamic negation blocks dynamic binding

Ak .3g’.g”[R[1]g’ A h[0]g” A boy g7 A friend g} gg A likes g} g§

h[1]g’
A h[0]g”
L Ak.Ah.34,g" Ag . boy g}
A | Ag Ag . friend g7 g, qg”
Ng k (Ag . likes g1 gg)

h[1]g’
A h[0]g”
Ak . Ah.3g",g” Ag . boy g} Ak . k(Ag. My . likes g, y)
A Ag Ag.friend gl go | 97 PN
Ne k(NG . go) likes him
ad Ak.Ah.3g'[R[1]g’ A (Ag.boyg, Ag (k(Ag. Ay .friend g, v))) ¢’]
Ak . k(Ag. vy .friendzy) Ak.Ah.3g'[h[1]g’ A (Ag.boy g, A (k(Ag.g1))) 9]
friend /\
ad Mk.k(Ag.Az.boyx)
boy

Fig. 7. Dynamic binding from out of a nominal restrictor

mostly for future work, but we do offer a sketch of an analysis of a case involving
dynamic binding from out of a nominal restrictor, which relies on the dynamic
denotation for the indefinite article given in (21). The computation for the sen-
tence a friend of a boy likes him, where a boy binds him, is given in Fig. 7.

Applicatives for Anaphora and Presupposition 265

(21) ad = Ap. A\k. 35 ((pprol,)((Ag)(k pro,)) Cle—1t) — Ce

3 An Applicative for Presupposition Projection

In this section, we argue that the same technique we used to model the dynamics
of anaphora can be used to model the dynamics of presupposition projection. This
will be even more of a proof of concept than the previous section.

3.1 Back to Assignment Sensitivity

The first component we will need in order to get our analysis off the ground is
a way of modelling world-sensitivity / intensionality. Here we follow Shan [12] in
treating intensionality as assignment-sensitivity; We define a type-constructor
S for world-sensitive meanings. The applicative operations for S are identical to
those of G. Predicates are taken to be inherently world-sensitive. World-sensitive
computation can be modelled as effectful computation via applicative machinery
in exactly the same way as assignment-sensitivity. If we assume that predicates
take an inner world argument, we don’t even particularly need = and ® to aid
in composition.

(22) a. Saz=s—a
a” =M. a
c. n®m = w.A(nw)(mw)
(23) a. arrivei:=e — St

arrive := Ax . \w . arrive, x

3.2 Partiality

In a static setting, presuppositions are typically modelled via partial-
ity /trivalence [9]. Unsurprisingly, there’s an applicative for that: Maybe (here:
P), which defines a trivalent value-space consisting of defined values (a) and an
undefined value #.

(24) a. Pau={(a) | #

¢ meni- {<Aw> (@) = mi () =
otherwise

266 P. D. Elliott

Once we compose S with P (Sx), we end up with the resources we need to
model presuppositional, world-sensitive predicates in a static way, as illustrated
by the lexical entry for the presuppositional predicate stop smoking, given in
(26), which is modelled as a function from individuals to partial propositions.

(25) a. Sy:=SoP

af :=dw. {(a)

_ (gy) fw={(g)ANrxw=(y)
c. f®z:=Nw. {else 4

(26) a. stopSmoking:=e — Syt

didSmokez w (notSmoke x w)

b. stopSmoking = Az . Aw .
else #

3.3 The Dynamics of Presupposition Projection

Famously, a static trivalent theory of presuppositions can’t provide a satisfactory
account of presupposition projection in complex sentences — when the presup-
position of the second conjunct is entailed by the first, it fails to project [13].

(27) a. If Sally used to smoke, then she stopped smoking.
b. Sally used to smoke, and she stopped smoking.

Here, we demonstrate that we can upgrade our existing fragment to one
that accounts for the dynamics of presupposition projection by using the same
technique as we used to get dynamics for anaphora - we’re going to parameterize
our continuation type constructor to partial propositions, i.e., Ks , t, and compose
the result with our type constructor for presuppositional meanings Sy, giving us
the type constructor U, defined in (28). Again, a partially de-sugared definition
is given in (29).

Just as before, we can define a lifter T to dynamicize meanings. When we
apply generalized T to A6 we get the Stalnakerian update function +.

(28) U:=Ks, 0S54

Applicatives for Anaphora and Presupposition 267

(29) Ua:= (S#a—>5#t)—>5#t

(30) a. (f)=(St—=St)—»(Ut—=Ut)
b. fT=Xp.Me.(fop)k

(31) (+)=Ag.Ap.Xk.(po(A)oq)k

In Fig.8 we demonstrate how this system derives a simple case of local sat-
isfaction. Since the first conjunct entails the presupposition of the second, the
complex sentence is effectively presuppositionless.

L Ak. (Aw. (didSmokejw)) A?S k | Aw .
else #

= Aw . (didSmoke jw A notSmoke j w)

/\didSmokej w (notSmoke j w)))

Al I(Aw . (didSmokejw)) Ap.Xk.p ((/\”5) k (Aw . {
else #
T

John did smoke' /\
T oakk [didSmoke jw (notSmoke j w)
else #

N

John stopSmoking

didSmokejw (notSmoke w})

Fig. 8. Local satisfaction via U

4 Comparison to Charlow (2014)

Charlow’s monadic grammar has a far broader empirical remit than out fairly
modest goal — to decompose dynamics into scope-taking and assignment-
sensitivity — allowed for. Therefore, it is difficult to compare the two directly.
Nevertheless, we will attempt here to give a flavour of Charlow’s approach, and
point out some respects in which it differs from the applicative grammar outlined
here.

One of Charlow’s main goals is to provide a semantics for indefinites which
accounts both (a) for their ability to take exceptional scope, and (b) their
dynamic properties. At the core of Charlow’s account is the State.Set monad,
defined in (32) in terms of its return (32b) and bind (32c) functions. State.Set
combines the State monad and the Set monad via the StateT monad trans-
former, in order to capture state-sensitivity (i.e., dynamics), and nondetermin-
ism (i.e., indefiniteness) respectively. Indefinites are given a different semantic
treatment to truly quantificational DPs — they treated as individuals with non-
deterministic side-effects, as in (33). Quantificational DPs, on the other kind,
must be assigned inherently scopal denotations, as in (34).

268 P. D. Elliott

(32) a SSan=g— {(a,g)}

b. a?:=Xg. {{a,g9)}

c. m>=k:=X. U kas

(a,s"yem s
(33) someone = A\g. {z,gz | personz } SSe
SSt
(34) everyone = & (il[]) —
e

Charlow [4] argues for a theory of scope islands inspired by the concept of
delimited control in the computer science literature (see, e.g., [14]). The idea, in
a nutshell, is that a scope-island is a constituent that must be completely evalu-
ated — in other words, every continuation argument must be saturated. This cap-
tures the sensitivity of inherently scopal expressions, such as universals, to scope
islands — the scopal side effects associated with (34) must be evaluated inside
of a given scope island. Indefinites, on the other hand, trigger non-deterministic
side-effects that may survive evaluation, thus capturing the ability of indefinites
to take apparently exceptional scope. We suppress the details of the analysis
here out of necessity.

The applicative grammar outlined here fails to make a distinction between
indefinites and quantificational DPs in this respect. In fact, there is nothing to
stop us from applying our dynamicization operator to a universal quantifier in
order to yield a “dynamic” universal, as below. This must be blocked as a lexical
stipulation. The exceptional status of indefinites can be considered an argument
in favour of the monadic approach of Charlow [4].

(35) V4 :=Ap. M. \g.Vh[h[n]g — (pk)h]

5 Conclusion

In this paper, we’'ve attempted to provide a dynamic theory of anaphora and
presupposition projection that is fully modular in nature — in fact, the expres-
sivity we needed to capture these phenomena was already implicit in our most
basic applicative functors for dealing with assignment-sensitivity, scope, world-
sensitivity, and partiality. We leave an elaboration of this framework to future
work.

Acknowledgments. Thanks to audiences at LENLS15 and an internal ZAS workshop
for their attentiveness and feedback, as well as to Simon Charlow for much useful
discussion.

Applicatives for Anaphora and Presupposition 269

References
1. Asudeh, A., Giorgolo, G.: Perspectives. Semant. Pragmat. 9, 1-57 (2016)
2. Barker, C., Shan, C.-c.: Continuations and Natural Language. Oxford University
Press, Oxford (2014)
3. Charlow, S.: A modular theory of pronouns and binding
4. Charlow, S.: On the semantics of exceptional scope (2014)
5. Chierchia, G.: Dynamics of Meaning. University of Chicago Press, Chicago (1995)
6. de Groote, P.: Proceedings of SALT 16. Linguistic Society of America, pp. 1-16.
Cornell University, Ithaca, NY (2006)
7. Dekker, P.: Predicate logic with anaphora. Semant. Linguist. Theory 4, 79-95
(1994)
8. Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguist. Philos. 14(1),
39-100 (1991)
9. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell, Malden (1998)
10. Mcbride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1-13 (2008)
11. Schlenker, P.: Local contexts. Semant. Pragm. 2, 1-78 (2009)
12. Shan, C.-c.: Monads for natural language semantics. arXiv:cs/0205026 (2002)
13. Stalnaker, R.: Propositions. In: MacKay, A.F., Merrill, D.D. (eds.) Issues in the
Philosophy of Language, pp. 79-91. Yale University Press, New Haven (1976)
14. Wadler, P.: Monads and composable continuations. LISP Symb. Comput. 7(1),
39-55 (1994)
15. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)

AFP 1995. LNCS, vol. 925, pp. 24-52. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-59451-5_2

http://arxiv.org/abs/cs/0205026
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2

	Applicatives for Anaphora and Presupposition
	1 Overview
	2 An Applicative for Anaphora
	2.1 Applicative Functors
	2.2 Assignment Sensitivity
	2.3 Continuations and Scope
	2.4 The Dynamics of Anaphora

	3 An Applicative for Presupposition Projection
	3.1 Back to Assignment Sensitivity
	3.2 Partiality
	3.3 The Dynamics of Presupposition Projection

	4 Comparison to Charlow (2014)
	5 Conclusion
	References

