
Legal Debugging in Propositional Legal
Representation

Wachara Fungwacharakorn(&) and Ken Satoh

National Institute of Informatics, Sokendai University, Tokyo, Japan
{wacharaf,ksatoh}@nii.ac.jp

Abstract. Literal interpretation on laws may produce unexpected conse-
quences. They are difficult to be recognized unless exceptional cases were taken
to the court. The court may decide a literal interpretation as exceptional, and
then they have to identify which rule is a source of exception.
To assist the court, we proposed an idea called legal debugging, to find out

which rule condition, called a culprit, causes unexpected consequences in such
exceptional cases. We adapt the algorithmic program debugging with consid-
eration of characteristics in reasoning in judgement, such as non-recursive
stratified structures and factual propositions in order to find a culprit at last.
This paper presents legal debugging in propositional Prolog as well as

PROLEG (PROlog based LEGal reasoning support system) specialized for legal
reasoning. An example of legal debugging that interacts with a user and finds a
culprit is also shown under the PROLEG representation of the case adapted from
the real Supreme Court case.

Keywords: Legal reasoning � Legal representation � Algorithmic debugging

1 Introduction

Researchers have long been interested in representing legal knowledge in computers.
Legal knowledge representation is usually divided into two types: rule-based and case-
based. In rule-based legal representation, which is usually used for statutory laws,
Legal rules are represented in logic programs such as Prolog [1, 2]. By formalizing the
statute rules into computational logic, it provides benefits such as detecting conflicts in
legal systems [3].

However, statute laws may be flawed. Even statute laws are cautiously drafted;
some issues might be missing. These missing issues lead to unexpected consequences
when we interpret the law literally. These issues are usually tacit, meaning that they are
hard to know until such exceptional cases happen. When the cases are taken to the
court, the court decided that the literal legal interpretation produces an unexpected
consequence. The court has to identify which rule is a source of unexpected conse-
quence and the court currently manually identifies such a rule so they might miss some
sources of the unexpected result since exhaustive consideration might not be
guaranteed.

Therefore, in this paper, we propose an idea of legal debugging, to find legal con-
ditions that cause unexpected consequence, by imitating computer program debugging.

© Springer Nature Switzerland AG 2019
K. Kojima et al. (Eds.): JSAI-isAI 2018 Workshops, LNAI 11717, pp. 146–159, 2019.
https://doi.org/10.1007/978-3-030-31605-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31605-1_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31605-1_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31605-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-31605-1_12

In contrast with legal conflicts that deal with other legal rules written explicitly, legal
debugging has to deal with tacit expectations from the courts or the legal experts. This
paper tries to identify the existence of unexpected consequences from those tacit
expectations and propose legal debugging as a potential way to realize and solve unex-
pected consequences from laws.

In this paper, we report legal debugging based on algorithmic debugging, which
originally proposed for tracing the difference between computation result from the
program and expectation result from the user. Our technique traces the difference
between a literal interpretation from the legal representation and an expected inter-
pretation from legal experts. At this preliminary step of legal debugging development,
we only focus on representation of statute laws which express the laws in written
forms. This paper considers legal representations under propositional logic which is the
basis of more advanced legal representations. We also take into account of charac-
teristics of reasoning in judgements. For example, the logic rules should be stratified
and not recursive so there would be only one interpretation which satisfies the rules.

This paper provides the means to find a legal bug, called a culprit, in two propo-
sitional based legal representations. The first representation in this paper is Prolog,
which is more familiar to logic programmers. Although Prolog is not designed
specifically for laws, a number of law formalizations have been tested in Prolog such as
British Nationality Act [1] and the Income Tax Act of Canada [2]. The second rep-
resentation this paper is PROLEG which stands for PROlog based LEGal reasoning
support system [4]. PROLEG uses the concept of exception instead of negation which
is more suitable to laws which usually separate between conditions and exceptions in
legal documents. PROLEG was implemented based on the Presupposed Ultimate Fact
Theory of Japanese Civil code, a legal reasoning scheme in real legal practice [5].

This paper is structured as follows. Section 2 describes propositional legal repre-
sentation in logic program with negation as failure and defines a legal debugging
process under the semantics. Section 3 extends the legal debugging process under the
PROLEG semantics. Section 4 demonstrates a legal debugging under PROLEG using
the Supreme Court case. Section 5 compares legal debugging and other related works
on debugging. The final section summarizes the idea of legal debugging and its
application in future works.

2 Legal Debugging Under Prolog

Prolog is a well-known logic programming based on a logic program with negation as
failure. Generally, a logic program with negation as failure consists of rules in the form
described as follows.

2.1 Basic Definitions

Definition 1. [Rule] A logic program with negation as failure is a finite set of rules P
which each element of P is a rule R in the form h ← b1,…,bn, not c1,…, not cm where
h, bi (1 � i � n), and cj (1 � j � m) are propositions.

Legal Debugging in Propositional Legal Representation 147

We denote h as head(R), {b1,…,bn} as pos_body(R), {c1,…,cm} as neg_body(R), and
body(R) as pos_body(R) [neg_body(R). We call a rule without a body a fact.

Definition 2. [Active rules] Let M be a set of propositions and P be a logic program
with negation as failure. A set of active rules of P w.r.t. M denoted as PM is a set of
{head(R) ← pos_body(R) | for all R 2 P such that neg_body(R) \ M = ∅}.

Definition 3. [Satisfaction] LetM be a set of propositions and R be a rule. M satisfies R
if the following condition is satisfied: if pos_body(R) � M then head(R) 2 M.

Definition 4. [Stable Model] Let P be a logic program and M be a set of propositions.
M is a stable model of P if M is a minimum model of PM.

IfM satisfies every rule inPM,M is a model ofPM. The minimum model ofPM is a
model of PM which is the minimum in the sense of set inclusion.

Example 1. The following example shows a logic program with negation as failure P.

p not q:
p not f :
q not r:
r f :
f :

Let M be {f, r, p}, a set of active rules of P w.r.t. M or PM is

p :
r f :
f :

Which M satisfies every rules in PM and M is the minimum set that can do such
things according to PM. Therefore, M is a stable model of P.

Two assumptions from legal reasoning are introduced to distinguish the proposi-
tional legal representation from general logic programs. First assumption is that,
generally, legal rules are not recursive. Recursive rules are those rules whose depen-
dency graph contains a loop (see details in [6]). For example {p ← p.}, {p ← not p.},
{p ← q. q ← p.} are recursive, but the program in Example 1 is not recursive. It is
proved in [7] that a non-recursive program consists of only one stable model.

Definition 5. [Non-recursive program] A logic program P is non-recursive when there
is a partition P = P0 [P1 [… [Pn (Pi and Pj disjoint for all i 6¼ j) such that, for
a predicate p appears in a body of rule in Pi then a rule with p in the head is only
contained within P0 [P1 [… [Pj where j < i.

Second assumption is that some legal propositions are factual. Their truth values
are usually evidence based so the court will finalize their truth values in a phase of fact
finding and shall not reverse their truth values after that. Hence, such propositions are
true only when given. From Example 1, f is factual because there is no rule that implies
f (except a fact f ← .) so its truth value cannot be changed by altering other propo-
sitions. factual is defined as follows.

Definition 6. [Factual] A proposition a is factual w.r.t. a program P if there is no rule
that implies a except a fact a ← ., in other words, a shall be true only when given.

148 W. Fungwacharakorn and K. Satoh

However, some propositions could not be true concurrently. From Example 1, if
r was true, q could not be true. We could say that {r} (or any sets that contain r) does
not support q. To determine this relation between rules and a set of propositions, the
idea of support is defined as follows.

Definition 7. [Support] A set of propositions S supports a proposition a w.r.t. a logic
program P if there is a rule R 2 P such that a is the head of the rule (a = head(R)),
pos_body(R) � S, and neg_body(R) \ S = ∅. R is called a supporting rule of a w.r.t. S.

Theorem 1. [Relation between model and support] Given P as a non-recursive logic
and M is a stable model of P, a 2 M if and only if M supports a w.r.t. P. (This relation
is common. For further details, please see [8].

Proof
Suppose M supports a but a 62 M, there is a supporting rule R of a in P.

Hence a = head(R), pos_body(R) � M and neg_body(R) \ M = ∅.
But since a 62 M, M does not satisfy head(R) ← pos_body(R) which exists in PM.
It leads to contradiction with the definition of model.

Suppose M does not support a but a 2 M, then no rules are supporting a.

Thus, M - {a} must be a model because it satisfies every rule in PM.
It leads to contradiction with the definition of the minimum model.

2.2 Formalizing Unexpected Consequences and Culprits

When the literal interpretation gives unexpected consequences, it means that we do not
agree with the current stable model. However, the intended interpretation is not known
explicitly in the first place but it rather reveals proposition by proposition when we
consider the truth value of each proposition together with the debugger until we find a
culprit defined to be a root cause of unexpected consequences.

However, because truth values of factual propositions are already finalized, the true
factual proposition would not be possible to be excluded from the stable model and the
false factual proposition would not be possible to be included in the stable model.

From Example 1, we could not intend {p, r} to be a stable model because f is
already given and we could not change its truth value. In contrast, we could intend
{p, f} to be the stable model because r is not factual so we allow changing the truth
value of r. Therefore, we define an intended interpretation denoted as IM with fol-
lowing definitions.

Definition 8. [Intended interpretation] An intended interpretation IM of a non-
recursive logic program P is a set of propositions such that a set of factual propositions
in the stable model of P and a set of factual propositions in IM are equal.

Consequently, if IM is different from the stable model, there must be a non-factual a
that is not currently derived but intended to be derived or currently derived but intended
not to be derived. We call such propositions as unexpected which is defined as follows.

Legal Debugging in Propositional Legal Representation 149

Definition 9. [Unexpected proposition] A proposition a is unexpected w.r.t. an
intended interpretation IM and a non-recursive logic program P with a stable model
M if (1) a 62 M but a 2 IM or (2) a 2 M but a 62 IM. Factual propositions could not be
unexpected due to constraints in Definition 8.

To modify the program so its stable model would become what we intend, we must
work on a non-factual proposition called culprit defined as follows.

Definition 10. [Culprit] a non-factual proposition a will be a culprit w.r.t. an intended
interpretation IM and a logic program P if

• a 2 IM but IM does not support a w.r.t. P or
• a 62 IM but IM supports a w.r.t. P.

Then, we get the following theorem.

Theorem 2. [Finding a culprit] Given P as a non-recursive logic program with a
stable model M and IM as an intended interpretation that not equal to M. If a is
unexpected w.r.t. IM and P and a is not a culprit w.r.t. IM and P, then there is another
unexpected proposition b 6¼ a in a body of a rule that implies a.

Proof
If a 2 IM and a is not a culprit

Then there is a rule R supporting a w.r.t. IM.
Hence, pos_body(R) � IM and neg_body(R) \ IM = ∅.
But a 62 M so R is not a supporting rule of a w.r.t. M.
Thus, pos_body(R) 6� min(P) or neg_body(R) \ min(P) 6¼ ∅.
Because P is non-recursive, a 62 body(R)
Hence, there is another proposition b1 2 pos_body(R) such that b1 2 IM and b1 62
M or another proposition b2 2 neg_body(R) such that b2 62 IM and b2 2 M that
could be found in a body of a rule R that implies a.

If a 62 IM and a 2 M, there is a rule R supporting a w.r.t. M.

Hence, pos_body(R) � M and neg_body(R) \ M = ∅.
And if a is not a culprit, R is not a supporting rule of a w.r.t. IM.
Thus, pos_body(R) 6� IM or neg_body(R) \ IM 6¼ ∅.
Because P is non-recursive, a 62 body(R)
Hence, there is another proposition b1 2 pos_body(R) such that b1 62 IM and
b1 2 M or another proposition b2 2 neg_body(R) such that b2 2 IM and b2 62
M that could be found in a body of a rule R that implies a.

From Example 1, the stable model is {p, r, f}. Let the intended interpretation IM be
{q, f}, p, q, and r will become unexpected, and r is a culprit according to Theorem 2
(Table 1).

From Theorem 2, if we query from any unexpected proposition and find another
unexpected proposition recursively, as long as the query sequence is finite and does not
loop (e.g. a finite non-recursive logic program), the query finally succeeds by finding a
culprit. Therefore, we could design the finding culprit algorithm as in Table 2.

150 W. Fungwacharakorn and K. Satoh

The algorithm is only for finding one culprit. In case there are two culprits or more,
the user has to repeat the same procedure again. Actually, it is safe to check that the
stable model from the revised program is equal to the intended interpretation. For
example, from a program {p ← q, not r. q ← f1. r ← f2} with an empty set as the
stable model, if an intended interpretation was {q}, we can see that only q would be
unexpected hence it would be a culprit. If we resolved by just adding q as a fact, {p, q}
would become a stable model, which is not same as what we intended. In another
round, p would become unexpected w.r.t. {q} and hence p would be a culprit. If we
resolved by removing the rule p ← q, not r from the program, {q} would finally
become the stable model as we expected.

Table 1. An illustrated example of Theorem 2

Rules Unexpected
found in a head

Supporting Rule w.r.t.
the stable model

Supporting
Rule w.r.t. IM

Unexpected
found in a body

p← not q. p Supporting - q
p← not f. p - - -
q← not r. q - Supporting r
r← f. r Supporting Supporting - (thus r is a culprit w.r.t.

IM)
f. - - - -

Table 2. Finding culprit algorithm (a - They follow directly by the definition of a culprit,
Definition 10. b - These conditions are actually determined when finding a supporting rule. They
are mentioned to emphasize that they are unexpected.)

Input: a finite non-recursive logic program with a stable model
M,an intended interpretation IM, an unexpected proposition p

Find_culprit(p)
begin

Find R as a supporting rule of p w.r.t. IM
 if p IM

ifa there is no such R return p;
 else

Find q ∈ pos_body(R) s.t. q ∈ IM b and q ∉ M
if there is such q return Find_culprit(q)

 Find r ∈ neg_body(R) s.t. r ∉ IM b and r ∈ M
 if there is such r return Find_culprit(r)

 if p IM
ifa there is such R return p;

 else
 Find R’ as a supporting rule of p w.r.t. M

Find q ∈ pos_body(R’) s.t. q ∉ IM and q ∈ M b

if there is such q return Find_culprit(q)
Find r ∈ neg_body(R’) s.t. r ∈ IM and r ∉ M b

 if there is such r return Find_culprit(r)
end

Legal Debugging in Propositional Legal Representation 151

3 Legal Debugging Under PROLEG

PROLEG (PROlog based LEGal reasoning support system) [4] is a logic programming
adapted from Prolog. It reflects the legal reasoning procedures called The Japanese
Presupposed Ultimate Fact Theory practiced in Japanese law schools. PROLEG is
different from Prolog in manipulation of negative conditions but the representation
power of PROLEG is the same as Prolog [9]. In this section, we provide definitions for
PROLEG and extend the legal debugging under PROLEG. First, these are basic def-
initions of PROLEG.

Definition 11. [PROLEG] A PROLEG program P is a pair H;Eh i where
• H is a set of rules R of the from h ← b1,…,bn. where h and bi (1 � i � n) are

propositions (note that there are no negations in the rule). We denote h as head
(R) and {b1,…,bn} as body(R).

• E is a set of exceptions of the form exception(h, e) where h and e be propositions
(note that e is a proposition, not a set of propositions).

Definition 12. [Applicable rule] Let M be a set of propositions and H;Eh i be a
PROLEG program. We denote a set of applicable rules w.r.t. M by
HM = {R 2 H | ¬9exception(head(R), e) 2 E such that e 2 M}.

So if an exception of rule exists in M (e 2 M) then the rule is inapplicable.

Definition 13. [Extension] A set of propositions M is an extension of a PROLEG
program H;Eh i if M is the minimum model of HM (M = min(HM)).

Example 2. P′ is a PROLEG program.

p q:

q f1:

r f2:

exception p; rð Þ:

Let M = {r}, HM = {q ← f1, r ← f2 } (p ← q is inapplicable here because there is
an exception (p, r) and r 2 M). Since min(HM) = ∅. M is not an extension of P′.

Let M = ∅, HM = {p ← q, q ← f1, r ← f2 }. Since min(HM) = ∅. M is an
extension of P′.

PROLEG representation is actually aligned with the logic program with negation as
failure but using exception instead of negation. However, one particular different point
is that if we add an exception to a condition, it applies to all rules on that condition
unlike a logic program with negation as failure whose negations must be added to the
rule one by one as illustrated in Table 3.

Because the representation power of PROLEG is same as the logic program with
negation as failure, we can extend the same idea of supports, culprits, and finding
culprit theorem by using an extension of P instead of the stable model. For example,
these are definition of support (Definition 7), definition of intended interpretation
(Definition 8), and definition of unexpected proposition (Definition 9) in PROLEG.

152 W. Fungwacharakorn and K. Satoh

Definition 14. [Support in PROLEG] A set of proposition S supports a proposition
p w.r.t. a PROLEG program P if there is a rule R such that p = head(R), body(R) � S,
and there is no exception(p, e) 2 E such that e 2 S We call that R is a supporting rule
of p w.r.t. S and P.

Definition 15. [Intended interpretation in PROLEG] A set of propositions IM can be
an intended interpretation of a PROLEG program P if and only if a set of factual
propositions in an extension of P and a set of factual propositions in IM are equal.

Definition 16. [Unexpected in PROLEG] A proposition p is unexpected w.r.t. an
intended interpretation IM and a PROLEG program P if p is not in an extension of
P but in IM or if p is in an extension of P but not in IM.

We design a finding culprit algorithm in PROLEG as shown in Table 4. It is still
based on recursion from an unexpected proposition according to Theorem 2. Because
the input PROLEG program P is not recursive, it can be deduced that there is only one
extension of P.

Table 3. An equivalent representation between PROLEG (left) and Prolog (right)

 p q.
p r.

exception(p, e).

p q, not e.
p r, not e.

Table 4. Finding culprit algorithm in PROLEG

Input: a finite non-recursive PROLEG logic program P = H,E ,
an intended interpretation IM, an unexpected proposition p

Find_culprit(p)
begin

Find R as a supporting rule of p w.r.t. IM
if p IM

if there is no such R return p;
else

Find q ∈ body(R) s.t. q is not in an extension of P
if there is such q return Find_culprit(q)
Find e s.t. exception(p,e) ∈ E and e is in an extension of P
if there is such e return Find_culprit(e)

if p IM
if there is such R return p;
else

Find R’ as a supporting rule of p w.r.t. an extension of P
Find q ∈ body(R’) s.t. q ∉ IM
if there is such q return Find_culprit(q)
Find e s.t. exception(p,e) ∈ E and e ∈ IM
if there is such e return Find_culprit(e)

end

Legal Debugging in Propositional Legal Representation 153

4 Legal Debugging Example

In this section, we use an example of unexpected consequences adapted from this
following case [10]:

1. A plaintiff made a lease contract for his house between him and the defendant.
2. When the defendant returned home for a while, he let his son use the room.
3. Then, the plaintiff claimed that the contract was ended by his cancellation for the

reason that the defendant subleases without permission by literal interpretation of
Japanese Civil Code Article 612 as follows.

Phrase 1: A lessee may not assign the lessee’s rights or sublease a leased thing
without obtaining the approval of the lessor.
Phrase 2: If the lessee allows any third party to make use of or take profits from
a leased thing in violation of the provisions of the preceding paragraph, the
lessor may cancel the contract.

When the case was taken to the court, the court decided that the literal interpretation
produces an unexpected consequence. Although the cancellation is valid if we interpret
the related piece of law literally, the court decided that the literal interpretation is too
strict because “the third party” who makes use of the room temporally was the
defendant’s son and he did not harm the confidence between a lessee and a lessor, as
the court mentioned the following:

Phrase 2 is not applicable in exceptional situations where the sublease does not
harm the confidence between a lessee and a lessor, and therefore the lessor cannot
cancel the contract unless they prove the lessee’s destructing of confidence.

The Japanese Civil Code Article 612 and the facts from the case can be represented
in propositional PROLEG as in Table 5.

From this representation, cancellation_due_to_sublease, effec-
tive_lease _contract, and effective_sublease_contract are non-
factual predicates in the extension of the program due to the given facts entailing these
proposition and no exception is executed. This reflects when we interpret the law
literally. However, since the court decided that the validity of cancellation_-
due_to_sublease is too harsh. It becomes an unexpected proposition. The legal
debugger would help clarifying which legal conditions cause the unexpected conse-
quence as well as finding the intended interpretation that supports the court reasoning.
We could initiate debugging by using cancellation_due_to_sublease as an
unexpected proposition as shown in Fig. 1.

The debugger firstly traced into the supporting rule of cancellation_-
due_to_sublease (the first rule) to determine two conditions in the body ef-
fective_lease_contract and effective_sublease_contract. The
debugger asked user whether both conditions were intended to be fulfilled or not. If one
of them was intended to be not fulfilled, it became a culprit because the intended
interpretation would support it (situation 1 and 2). If both of them were intended to be
fulfilled, the debugger retraced on approval_of_sublease which is an exception
of cancellation_due_to_sublease. Then, the debugger asked user that

154 W. Fungwacharakorn and K. Satoh

Fig. 1. Legal debugging steps from the rule base

Table 5. Propositional PROLEG representation of Japanese Civil Code Article 612

cancellation_due_to_sublease <=
 effective_lease_contract,
 effective_sublease_contract,
 using_leased_thing,
 manifestation_cancellation.

effective_lease_contract <=
 agreement_of_lease_contract,
 handover_based_on_the_lease_contract.

effective_sublease_contract <=
 agreement_of_sublease_contract,
 handover_based_on_the_sublease_contract.

exception(cancellation_due_to_sublease,approval_of_sublease).

approval_of_sublease <=
 approval_of_sublease_before_the_day.

// Given Facts
agreement_of_lease_contract.
handover_based_on_the_lease_contract.
agreement_of_sublease_contract.
handover_based_on_the_sublease_contract.
using_leased_thing.
manifestation_cancellation.
nonabuse_of_confidence.

Legal Debugging in Propositional Legal Representation 155

approval_of_sublease was intended to be fulfilled or not. If it was intended to
be fulfilled, it became a culprit because the intended interpretation would not support it
(situation 3). If approval_of_sublease was intended to be not fulfilled, then
there was no unexpected condition for cancellation_due_to_sublease,
hence cancellation_due_to_sublease became a culprit itself (situation 4).
The intended interpretations of each situation are illustrated in Table 6.

A culprit is considered in top-down left-to-right manner. Although the user does not
consider all non-factual propositions, the debugger would return a first encountered
culprit as soon as the debugger could not find any unexpected propositions. A culprit
would be useful for considered rather in its resolution. Generally, the court would give
an exception from extra facts of the case, such as in this case exception (can-
cellation_due_to_sublease, nonabuse_of_confidence) may be intro-
duced to correspond to the Supreme Court decision. However, there are other
possibilities to resolve one culprit so the resolution of culprits should be investigated
further.

5 Discussion and Related Works

5.1 Legal Debugging in Statute Legal Practice

Statute rules are usually constructed in a top-down approach, from abstract to concrete
concept. Each condition must be proved and presented to the court in the order of the
list written in the procedure. For example, the case in Sect. 4 of this paper involves an

Table 6. Culprit and Intended Interpretation for Each Situation

Non-factual propositions in the current extension of the program:
cancellation_due_to_sublease, effective_lease_contract, effective_sublease_contract
Situation Status of non-factual propositions given by

the user (IM stands for an intended interpre-
tation)

Found culprit

1 cancellation_due_to_sublease ∉ IM
effective_lease_contract ∉ IM

effective_lease_contract
(because it is not in IM but IM
supports it w.r.t. the program)

2 cancellation_due_to_sublease ∉ IM
effective_lease_contract ∈ IM
effective_sublease_contract ∉ IM

effective_sublease_contract
(because it is not in IM but IM
supports it w.r.t. the program)

3 cancellation_due_to_sublease ∉ IM
effective_lease_contract ∈ IM
effective_sublease_contract ∈ IM
approval_of_sublease ∈ IM

approval_of_sublease
(because it is in IM but IM does
not support it w.r.t. the program)

4 cancellation_due_to_sublease ∉ IM
effective_lease_contract ∈ IM
effective_sublease_contract ∈ IM
approval_of_sublease ∉ IM

cancellation_due_to_sublease
(because it is not in IM but IM
supports it w.r.t. the program)

156 W. Fungwacharakorn and K. Satoh

issue of cancellation of a lease contract due to sublease. To claim the issue, four
conditions (effective lease contract, effective sublease contract must be effective, using
the less thing, and manifesting cancellation) must be proved and presented to the court
in order. However, when the court decided that the case produces an unexpected
consequence. The court usually identifies the top concept to be unexpected. Therefore,
the legal debugging helps the court to trace in a top-down manner from the abstract
concept identified by the court to the culprit that causes unexpected consequences, as
well as to trace in a left-to-right manner in order of the list written in the procedure.

5.2 Application of Debugging Besides Software

“Legal debugging” is proposed for tacit expectations unlike inconsistencies [11–14]
that deals with conflicts between explicit written rules. Several paradigms have been
proposed to find bugs such as online-offline justifications [15] and meta-programming
[16] but most debugging technique are based on algorithmic debugging [17]. Besides
software, algorithmic debugging has been proposed for navigating users in a few
applications [18]. Zinn [19] has applied algorithmic debugging in tutoring systems. The
papers view a program as a knowledge corpus and an intended interpretation as a
student expectation. A student misconception can be viewed as a bug and a wrong
answer can be viewed as an unexpected answer. Algorithmic debugging has also been
applied in hardware design and verification. Kuchcinski et al. [20] has worked on using
algorithmic debugging in hardware design by viewing circuits as auxiliary functions
and logic programs respectively to detect faulty components.

Our paper is the first work proposing legal debugging. Legal debugging has to deal
with tacit expectations from legal experts and different structures of representation, such
as non-stratified structure and exception separation in PROLEG, and different resolution
for preventing unexpected consequences, such as using exceptions instead of adding
conditions. This paper views a representation of literal interpretation as a program and a
culprit, a rule condition which causes unexpected consequences, as a bug.

5.3 Semantics of Legal Representation on Debugging

Program semantics may affect debugging schemes [18]. For example, in answer set
programming, a debugger has to treat multiple situations due to the allowance of
multiple answers [21–24]. In Datalog, a debugger has to deal with non-stratified pro-
grams differently because the semantics sometimes gives an empty set instead of non-
termination for some types of non-stratified programs [25].

Since this paper is the first step on legal debugging, we have focused only a
stratified and non-recursive representation. This representation often reflects the
structure of statutory law that expects only one interpretation. Since a stratified and
non-recursive program exists only one interpretation, we can eliminate the problems
mentioned above. However, it is important to consider semantics used in legal repre-
sentation because they still have some effects on legal debugging. For example, sep-
aration of conditions and exceptions in PROLEG affects resolution of legal culprits due
to the border scope of exceptions.

Legal Debugging in Propositional Legal Representation 157

6 Conclusion and Future Works

In this paper, we have proposed the idea of legal debugging in legal knowledge
represented by logic programming. The idea has been presented in non-recursive
program which we assume that some propositions’ truth values shall not be changed
(called factual proposition). Then, we have proposed the idea of culprit, a rule con-
dition that causes unexpected consequences. We begin the debugging process from an
initial unexpected proposition. The debugger follows a sequence of unexpected
propositions until it meets a culprit otherwise the initial unexpected proposition is a
culprit itself. We prove the correctness of algorithm under non-recursive logic pro-
graming with negation as failure, and then we extend the algorithm to PROLEG
system. In future, we will extend the algorithm for first-order logic programs with
arguments and develop an interactive debugger in PROLEG system which asks user
intention and steps into rule base to find culprits similarly to computer program
debugging.

Acknowledgement. We appreciate Randy Goebel, Oliver Ray, and Tiago Oliveira for their
comments on the paper. This research is partially supported by JSPS KAKENHI Grant
No. 17H06103.

References

1. Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.: The
British Nationality Act as a logic program. Commun. ACM 29, 370–386 (1986)

2. Sherman, D.M.: A Prolog model of the income tax act of Canada. In: Proceedings of the 1st
International Conference on Artificial Intelligence and Law, pp. 127–136. ACM, New York
(1987)

3. Li, T., Balke, T., De Vos, M., Satoh, K., Padget, J.: Detecting conflicts in legal systems. In:
Motomura, Y., Butler, A., Bekki, D. (eds.) JSAI-isAI 2012. LNCS (LNAI), vol. 7856,
pp. 174–189. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39931-2_13

4. Satoh, K., et al.: PROLEG: an implementation of the presupposed ultimate fact theory of
Japanese civil code by PROLOG technology. In: Onada, T., Bekki, D., McCready, E. (eds.)
JSAI-isAI 2010. LNCS (LNAI), vol. 6797, pp. 153–164. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25655-4_14

5. Ito, S.: Lecture Series on Ultimate Facts. Shojihomu (2008). (in Japanese)
6. Ullman, J.: Principles of Database and Knowledge-Base Systems. Computer Science Press,

Rockville (1988)
7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:

International Conference on Logic Programming/Joint International Conference and
Symposium on Logic Programming, pp. 1070–1080 (1988)

8. Fages, F.: A new fixpoint semantics for general logic programs compared with the well-
founded and the stable model semantics. New Gener. Comput. 9, 425–443 (1991)

9. Satoh, K., Kogawa, T., Okada, N., Omori, K., Omura, S., Tsuchiya, K.: On generality of
PROLEG knowledge representation. In: Proceedings of the 6th International Workshop on
Juris-informatics (JURISIN 2012), Miyazaki, Japan, pp. 115–128 (2012)

10. Tokyo High Court: Case to seek removal of a building and surrender of lands. 1994 (O) 693.
Minshu, vol. 50, no. 9 (1996)

158 W. Fungwacharakorn and K. Satoh

http://dx.doi.org/10.1007/978-3-642-39931-2_13
http://dx.doi.org/10.1007/978-3-642-25655-4_14

11. Syrjänen, T.: Debugging inconsistent answer set programs. In: Proceedings of the 11th
International Workshop on Nonmonotonic Reasoning, pp. 77–83 (2006)

12. Caminada, M., Sakama, C.: On the existence of answer sets in normal extended logic
programs. In: Proceedings of the 2006 Conference on ECAI 2006: 17th European
Conference on Artificial Intelligence, Riva Del Garda, Italy, pp. 743–744. IOS Press,
Amsterdam (2006)

13. Schulz, C., Satoh, K., Toni, F.: Characterising and explaining inconsistency in logic
programs. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI),
vol. 9345, pp. 467–479. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-
5_39

14. Ulbricht, M., Thimm, M., Brewka, G.: Measuring inconsistency in answer set programs. In:
Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 577–583.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_42

15. Pontelli, E., Son, T.C., Elkhatib, O.: Justifications for logic programs under answer set
semantics. Theor. Pr. Log. Program. 9, 1–56 (2009)

16. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for
debugging answer-set programs. In: Proceedings of the 23rd National Conference on
Artificial Intelligence – vol. 1, pp. 448–453. AAAI Press (2008)

17. Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)
18. Caballero, R., Riesco, A., Silva, J.: A survey of algorithmic debugging. ACM Comput. Surv.

50, 60:1–60:35 (2017)
19. Zinn, C.: Algorithmic debugging for intelligent tutoring: How to use multiple models and

improve diagnosis. In: Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS (LNAI), vol. 8077,
pp. 272–283. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40942-4_24

20. Kuchcinski, K., Drabent, W., Maluszynski, J.: Automatic diagnosis of VLSI digital circuits
using algorithmic debugging. In: Fritzson, P.A. (ed.) AADEBUG 1993. LNCS, vol. 749,
pp. 350–367. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0019419

21. Fandinno, J., Schulz, C.: Answering the “why” in answer set programming – a survey of
explanation approaches. Theor. Pract. Log. Program. 19, 114–203 (2019)

22. Brain, M., De Vos, M.: Debugging logic programs under the answer set semantics. In:
Answer Set Programming (2005)

23. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: on debugging non-ground
answer-set programs. Theor. Pract. Log. Program. 10, 513–529 (2010)

24. Oetsch, J., Pührer, J., Tompits, H.: Stepping through an answer-set program. In: Delgrande,
J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 134–147. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_13

25. Caballero, R., García-Ruiz, Y., Sáenz-Pérez, F.: A theoretical framework for the declarative
debugging of datalog programs. In: Schewe, K.D., Thalheim, B. (eds.) SDKB 2008. LNCS,
vol. 4925, pp. 143–159. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88594-8_8

Legal Debugging in Propositional Legal Representation 159

http://dx.doi.org/10.1007/978-3-319-23264-5_39
http://dx.doi.org/10.1007/978-3-319-23264-5_39
http://dx.doi.org/10.1007/978-3-319-48758-8_42
http://dx.doi.org/10.1007/978-3-642-40942-4_24
http://dx.doi.org/10.1007/BFb0019419
http://dx.doi.org/10.1007/978-3-642-20895-9_13
http://dx.doi.org/10.1007/978-3-540-88594-8_8
http://dx.doi.org/10.1007/978-3-540-88594-8_8

	Legal Debugging in Propositional Legal Representation
	Abstract
	1 Introduction
	2 Legal Debugging Under Prolog
	2.1 Basic Definitions
	2.2 Formalizing Unexpected Consequences and Culprits

	3 Legal Debugging Under PROLEG
	4 Legal Debugging Example
	5 Discussion and Related Works
	5.1 Legal Debugging in Statute Legal Practice
	5.2 Application of Debugging Besides Software
	5.3 Semantics of Legal Representation on Debugging

	6 Conclusion and Future Works
	Acknowledgement
	References

