Safe Interoperability for Web of Things)
Devices and Systems e

Ege Korkan, Sebastian Kaebisch, Matthias Kovatsch,
and Sebastian Steinhorst

1 Introduction

The Internet of Things (IoT) brings connectivity to electronic devices and allows
them to connect with each other. Due to the large variety of IoT devices and
application scenarios, they all bring their own properties such as different processing
speed or range of connectivity, desired run-time or energy consumption, safety
features, etc. This creates a fragmentation in IoT, with different standards to interact
with the devices and to represent them, each optimized for a specific application area
or device type. Consequently, such fragmentation hampers composing applications
beyond the functionality of the individual devices.

In the electronic design community, languages such as SystemVerilog have
proven to be an effective standardized representation for the entire development
cycle, from design to verification and for a very wide range of application areas.
However, in the IoT domain, companies introduce siloed 10T platforms that come
with proprietary standards even within similar application domains.

Consequently, there is a necessity that an IoT device can be represented with a
description of capabilities, which can be understood and interpreted by other devices
and standards. Here, a common ground can be created by enabling to describe an

E. Korkan (0<)
Technical University of Munich, Munich, Germany
e-mail: ege.korkan@tum.de

S. Kaebisch - M. Kovatsch
Siemens AG, Munich, Germany
e-mail: sebastian.kaebisch@siemens.com; matthias.kovatsch@siemens.com

S. Steinhorst
Technical University of Munich, Miinchen, Bayern, Germany
e-mail: sebastian.steinhorst@tum.de

© Springer Nature Switzerland AG 2020 47
T. J. Kazmierski et al. (eds.), Languages, Design Methods, and Tools for

Electronic System Design, Lecture Notes in Electrical Engineering 611,
https://doi.org/10.1007/978-3-030-31585-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31585-6_3&domain=pdf
mailto:ege.korkan@tum.de
mailto:sebastian.kaebisch@siemens.com
mailto:matthias.kovatsch@siemens.com
mailto:sebastian.steinhorst@tum.de
https://doi.org/10.1007/978-3-030-31585-6_3

48 E. Korkan et al.

interface to different standards in a well-defined representation. For this purpose, the
Thing Description (TD) [1] was introduced recently as an open description format
for devices with connectivity of any kind that is human-readable and machine-
understandable. The TD is not a standard to replace other IoT standards, but it
enables to describe them through syntactic and semantic information.

Consider a temperature sensor used with a cloud IoT platform and a local
ventilator. Between them, TDs enable to create a temperature-controlled ventilation
system directly composed of the capabilities of these two physical devices. The
advantage of such interoperability for machine-to-machine communication is to
enable system functionality without prior knowledge about the interfaces between
the devices.

Such a sensor’s functional capability, data structure, and access points will be
referenced in the TD of the sensor. Hence, the ventilator will be able to access the
sensor data due to the provided access points and will be able to understand the data
due to the data structure described in the TD.

The previous ventilation system example is abstracted in Fig. 1. This system has
three IoT devices, each possessing a TD. Within the system, each IoT device, to
which we will in the following refer to as a Thing,' can read the TD of another
Thing and interpret it to understand the information such as the Thing’s interactions,
supported protocols, data structure, how to access the data, etc., as described in the
column on the right of Fig. 1 (TD Contents). During the course of this paper, an
exposer Thing accepts requests provided in its TD, whereas the consumer Thing
reads a TD and interacts with the exposer Thing.

- -~ - -
- - -—— - -~ - ~
P - ~ < \
System S \\
(< — =
. DOiTa 4Tl
Thing A IR
|| TD Contents:
e ™0 ‘
K - Interaction List
- Property - Data Type
- Action - Data Access
- Event ’ﬁ - IS’rotoc‘ols
- Security

Fig. 1 An abstracted view of an IoT System with three IoT Devices each with an associated Thing
Description (TD). The arrows demonstrate composition of greater functionality than the devices
themselves, necessitating sequential behavior between devices

'When the word Thing is used with a capital letter, a Thing means an object, either virtual or
physical, that can be communicated with.

Safe Interoperability for Web of Things Devices and Systems 49

An interaction is the description of a specific capability of the Thing, representing
the data structure, access protocol, and access link. For example, reading the
temperature value is such an interaction with the Thing. Similarly, rotating the fan is
also an interaction that acts on the physical world. In a TD, one would find a list of
interactions and how to access them. Interactions are illustrated by numbered boxes
in Fig. 1 and they will be explained in Sect. 2 in more detail.

In Fig. 1, Thing A has three interactions and all these interactions can be used
by Thing B and C to interact with Thing A. Referring to the temperature-
controlled ventilation system example, interaction 1 of Thing A can be reading
the temperature value and the interaction 4 of Thing B can be rotating the fan.

Problem Statement With the current TD standard, it is possible to build the
system described in Fig. 1. However, the behavior represented by arrows has to
be programmed manually, which results in an implicit description of the device or
system.

An interaction can change the state of the Thing, making it accept only
certain interactions (state transitions). For example, the red (continuous) arrow is
a sequence describing such state transitions of Thing A. This can be requirements
of sequential behavior, such as initializing the motor driver of the ventilator before
setting a rotation speed. In order to execute this sequence of interactions, since such
a sequence is not described in the TD, the person who implements the compositional
system needs to have access to an operation manual of Thing A. This manual
should describe the internal workings of the Thing (e.g., with a state machine) and
give meaning to the causality between interactions.

Similarly, the green (dotted) and blue (dashed) arrows in Fig. 1 illustrate sequen-
tial behavior between multiple Things and are not expressed anywhere, thus need
to be implemented manually. For example, we would like to express that the green
(dotted) arrow represents the aforementioned temperature control functionality in
the correct order and with a causal relation: reading a temperature value and then
rotating the ventilator. This shows that executing multiple interactions can provide
another meaning that is not previously given in a single interaction. To solve this
problem, a new interaction can be implemented that provides the same meaning of
executing multiple interactions. This is possible during the development phase of
Things, but for non-reprogrammable, legacy devices there is no such option.

Contributions In order to avoid that each interaction is executable at any given
time or multiple interactions can be executed in any given order, in this paper,
we propose the specification of sequential behavior within TDs. The ability to
represent valid sequences of interactions, which we call paths, in the TD of a device
enables the designer of this device to restrict interactions and hence simplify the
interaction of other devices with this device. Without such paths, arbitrary sequences
of interactions could be triggered, which would either require knowledge about the
inner workings of the device or create an unsafe and erroneous behavior.

50 E. Korkan et al.

Consequently, in the context of TDs introduced in Sect. 2, this paper has the
following contributions:

e We extend our initial path vocabulary? contribution of [2] in Sect.3.1 that
uses the JSON Pointers instead of hrefs. This enables stronger semantics for
describing how to interact with Things.

* We show that a system can be composed through sequential interactions of
multiple Things by using the same path logic, presented in Sect. 3.2.

* We demonstrate a case study with sequential behavior in an industrial automation
system composed of an industrial fan, a temperature sensor, and a system
controller in Sect. 4.

Related work is discussed in Sect.5, a discussion on an application of our
methodology is provided in Sect. 6, and Sect. 7 concludes.

As the applications of TDs diversified, two new observations motivated us to
improve our path vocabulary:

* Some Web of Things (WoT) devices use the same Uniform Resource Identifier
(URI) as hrefs for multiple interactions where the interactions are differentiated
via the method they require. For example, the Philips HUE [3] lights specify
that sending an HTTP GET request to /api/<username>/lights would return all
the light states and information, like a Property Interaction of a TD. However,
sending an HTTP POST request to the same URI would start a search for new
lights.

e In some cases, one interaction can have multiple forms that serve different
purposes, such as one for observing possible updates of a sensor’s measurement
and one to get the current value. These forms can use the same href value or
even use different protocols.

These new discoveries motivated us to abstract how the path vocabulary is
serialized and not use URIs of hrefs in the path serialization. We have opted for
the JSON Pointers standard as specified in [4] which is still in the URI format. JSON
Pointers point to a specific place in a JSON document and in our contribution we
use them to point to a specific form in the TD document.

2 Thing Description

The TD approach has been introduced in September 2017 (First public draft) by
the WoT Working Group of World Wide Web Consortium (W3C). This section
will explain the TD approach, but most importantly, its shortcomings and why our
contribution is necessary to enable TDs to describe more complex cyber-physical

2The term vocabulary is used here since the TD standard [1] refers to actions, properties, etc. as a
vocabulary.

http://api/<username>/lights

Safe Interoperability for Web of Things Devices and Systems 51

systems. In the following, we will mainly focus on the relevant details of TDs for
the context of our contribution, the proposed path vocabulary.

The path vocabulary that will be introduced in Sect. 3 describes a series of inter-
actions. Further information on the characteristics of interactions is thus required
before introducing this vocabulary. In this section, we will define interactions in
order to argument the need for describing sequential behavior.

An interaction / can represent two types of messaging patterns: request—response
(Definition 1) and publish—subscribe (Definition 2).

Definition 1 (Request—Response) For a request p € client and a g € server, the
pair is defined as follows:

P=q (D

Definition 2 (Publish—Subscribe) Notifying an event only in matching subscrip-
tion intervals is defined by Baldoni et al. [5] as follows:

Ve € nfy(x) € hj = nfy(x) € S;{(C) s.t. C(x) =T)

with

e ¢, the event the subscriber subscribed to;

* x, the information generated from the process;

* nfy, the notification of the information;

* h, alocal computation that generated x;

* S, the interval between subscription and unsubscription;

e (, the subscription request by the subscriber;

e T, the pattern of the event to subscribe to at the server side.

These formal definitions for interactions are mentioned in the TD standard [1] in
three groups:

* Properties: A value provided by the Thing, such as sensor data, or values provided
to the Thing, such as a desired temperature. This matches the request-response
pattern.

* Actions: Requesting the Thing to do something that interacts with the physical
world or with other Things that also takes some time, such as turning on a fan or
LED. This matches the request-response pattern.

e Events: A message triggered due to a change in the Thing and sent to the
consumer Things that have subscribed to it, such as an overflow alarm. This
matches the publish—subscribe pattern.

In order to illustrate the different types of interactions in a practical example, we
are showing a simplified TD of a ventilator in Listing 1. This ventilation Thing, as
described by its TD, can rotate the motor of the ventilator at a given speed provided
by the consumer Thing. It also has safety features such as requiring initialization by

52 E. Korkan et al.

the consumer Thing. In addition, in case of an overheating of the motor, it can notify
the consuming Things who are subscribed to this notification.

Other than interactions, the TD provides identification information. In the order
of appearance in Listing 1, the title provides a human-readable reference
(identification) for this Thing, whereas id provides a unique identification for the
Thing that stays unchanged through different networks or IP addresses. Similarly,
the base (line 3) describes the protocol and the URI needed to communicate with
this Thing.

By using the default protocol bindings described in [6], one can interact with the
previously introduced ventilator in the following sequence:

e Read or write the rotation speed of the ventilator by reading/writing the
rotation property (lines 6-10). Here, it is specified that the data structure
should be an integer.

* Rotate the ventilator by invoking the rotate action (lines 13—15). This action
can be invoked without sending any specific data and the response will not
contain an integer as in the previous property.

* Initialize the motor driver by invoking the initialize action (lines 16-19).
Here, it is specified that the data structure of the response should be a string.

» Subscribe to the overheat ing event (lines 22-25) and get notified if the motor
heats up too much. The structure of the data received will be a string data
structure.

This ventilation Thing represents a sequential behavior that is not explicitly
described. If one reads and learns the internal workings of the Thing, it is specified
that in order to rotate the motor, one needs to invoke the initialize action (lines
16-19). This problem is commonly encountered in cyber-physical systems and is
illustrated in an abstracted fashion in Fig.2. Generally, a consumer Thing reads
a TD, understands what can be done with the associated Thing, sends a chosen
request to execute the interaction, and waits for the response from the Thing. The
orange (dashed) arrow Choose Interaction is thus handled implicitly by the
Thing Y (consumer) and there is no vocabulary provided by Thing X that tells the
consumer to execute interactions in a specific order. Without the contribution of this

[«——Get TD
Send TD

v

£
-

Choose Interaction
Send request Construct Request

<— to execute
interaction C

DProcess Request
——Send Response >

—]
I
—1

h
Thing X Thing Y

—]
HH
—1

Fig. 2 Request—Response sequence abstraction that can be used for interacting with a Thing. The
orange (dashed) arrow demonstrates the missing part of the TDs, which is the problem addressed
in this paper

Safe Interoperability for Web of Things Devices and Systems 53

paper, Thing Y’s developer had to know the internal workings of Thing X. With our
contribution, presented in the following section, this becomes a more systematic and
guided process.

1

{

> "title": "MyVentilator",

3 "@context": "https://www.w3.org/2019/wot/td/v1",
4 "id": "urn:dev:ops:32473-ventilator-1234",

5 "securityDefinitions": ({

6 "basic_sc": {"scheme": "basic", "in":"header"}
7},

8 "security": ["basic sc"],

9 "base":"coaps://vent.example.com:5683",

10 "properties":({
1 "rotation": {

12 "type": "integer",

13 "forms": [{"href": "/rotation"}]
14 }

5},

16 "actions":({

17 "rotate":{

18 "forms": [{"href": "/rotate"}]
19 },

20 "initialize":{

21 "output":{"type": "string"},
2 "forms": [{"href": "/init"}]

23 }

u),

5 "events":

2% "overheating": {

27 "data":{"type":"string"},

28 "forms": [{"href": "/oh"}]

29 }

0}

31}

Listing 1 Simple Thing Description of a ventilator that exposes the rotation speed, motor
initialization, and rotating actions and an overheat alarm that can be obtained from
coaps://vent.example.com:5683/td

3 Describing Sequential Behavior

The contribution of this paper is the new path vocabulary that allows to describe
sequential behavior. We start this section by listing some requirements of such a
vocabulary in the context of TDs. The following subsections start by introducing
the vocabulary for single devices and then extend it for systems composed from
devices.

http://coaps://vent.example.com:5683/td

54 E. Korkan et al.

Many models for system representation are measured by their expressiveness. In
the field of automata theory, there are different levels of expressiveness, from finite
automata to Turing Machines.

For cheap and not powerful IoT devices, exhaustive modeling of the inner
workings is too tedious. On the other hand, a behavior described in a TD needs
to be parsed and understood by such resource-constrained devices. Hence, even
if the device providing this representation has enough resources to provide it, the
description will not be usable by other IoT devices that are resource-constrained.
Furthermore, obliging interacting devices to understand such behavior is contradic-
tory to the design philosophy that internet and web technology enabled in the last
decades, which is also applied for IoT.

Often, web pages, services, or Application Programming Interfaces (APIs) are
self-descriptive and the user does not need to understand the complete system to
start using them. For example, in a simple web page, the user can simply understand
the link that he/she is interested in and not look at the rest (e.g., a site-map), i.e., not
understand the complete state machine to execute one interaction. Inspired by the
success of this logic, it is primordial to follow the same logic for IoT systems and
hence for TD, in order to enable easy adoptability and usability.

3.1 Describing Sequential Behavior in a Single Thing

The path vocabulary is based on describing sequential behavior for a single Thing.
For this reason, we will formally define the path vocabulary in this section. The
formal definition will be then embedded into the TD format and later on used in a
system. In order to illustrate the problem and guide this paper, we will be using a
state machine of a legacy motor driver of a ventilator, as shown in Fig. 3.

This device cannot be reprogrammed,’ but requires strict sequential behavior in
order to operate safely. A sequence of interactions is needed to make it ready for
accepting speed commands or to bring it back to a safe stop.

We can see that the initialize action needs to be invoked to initialize the
motor. This sets the rotation per minute (rpm) of the motor to 0. However, as a safety
feature, the rotate action must be explicitly invoked before setting the rotation
speed with the rotation property. At this point, we can write to the speed value
and rotate the motor in a direction. For example, to rotate the motor at 1300 rpm,
the following specific order of interactions is needed:

1. Initialize
2. Rotate
3. Write (1300 rpm as value)

A consumer Thing that will interact with this motor driver and that does not
know this sequential behavior cannot control the machine the way it is designed.

3TDs allow precise description of the capabilities of a device even if the device cannot provide its
own TD. In this case, we can use a gateway that stores and provides the TD.

Safe Interoperability for Web of Things Devices and Systems 55

l

Failure —Reset—>| Idle

Initialize Sleep
\4 I

Quick

Ready Stop

| A
) Rotate Stop
Rotation v |
T Write T

Rotation

Speed Rotating

Fig. 3 State machine representation of a legacy motor driver. In order to enable setting the rotation
speed to the desired value, Initialize, Rotate interactions have to be executed in this order

Furthermore, if the consumer Thing has access to this specific state machine in
a machine-readable format (such as SCXML [7]), understanding the entire state
machine for every application should not be necessary. For example, if the motor
driver, i.e., the exposer Thing, chooses to expose only a safe stop sequence, the entire
state machine that also describes the sequence to rotate the motor would contain
unnecessary information.

By contrast, in our path vocabulary, we describe the behavior we want to expose
with simple sequential interactions with interaction data that already exist in the
TD. The aforementioned path of interactions, named RotateMotor, is shown in
Fig. 4 along with the state machine from Fig. 3 that was used to generate the paths.
We have given other valid path examples from the state machine for illustration.

In order to properly define the path vocabulary we need to introduce four
definitions this vocabulary is composed of: path, name, @type, and paths.

Definition 3 (Path) From an ordered sequence of interactions / of sequence length
Iwith 1 <i </, apath 7 with name ¢ is defined as:

m=I0,....0;,...,1; 3)

Definition 4 (Name) The name of the path is used within the TD to reference the
JSON [8] object that contains the path information. Within the TD, the name allows
the path to be referenced in the following fashion:

7, = derivePath(¢) 4)

with derivePath being a function that finds the path ¢ by parsing the TD.

56 E. Korkan et al.

Failure Reset-» Idle
|ni«i€\izes‘€ep Proposed Paths
Quick
Ready | ‘giop Initialize | > | Rotate | > | Write
fate A
Rotation Roéa(e St|op .
Rotation [Name: RotateMotor]
‘ - Rotating
Stop Sleep

&{> [Name: SafeStop |

Reset | > | Initialize | | Rotate | [Write

[Name: ForceRotateMotor]

Reset

[Name: Reset]

Fig. 4 Illustration of Thing Description paths based on the state machine of a legacy motor driver
for an industrial fan. The paths are composed of interactions that execute state transitions. Note
that even if the path just contains a single interaction, it is still a valid representation

Definition 5 (@type) The @type optionally allows to annotating semantics with
the path. It uses the JSON-LD [9] format to reference to another resource on the
Web that gives a meaning to the path, making it machine-readable. In a TD, this
semantic annotation is given in a compacted form. The value written in @t ype will
be combined with a URI in the @context field of the TD, exactly the same way
as it is combined in the TD standard [1]. Currently used semantic annotations can
be found in the iot.schema.org library* and used for linking the data.

Definition 6 (Paths) The set of paths offered by the Thing is denoted by IT and
defined as follows:

H:U]Tk | 7 € TD)

These formal definitions translate to a path description in a TD as shown in
Listing 2. Paths are an extension of the TD in Listing 1, with . . . symbolizing the
interactions of this TD. This specific TD offers only two paths: rotateMotor to
rotate the motor from an initial state by executing initialize, rotate, and
rotation, as well as safeStop that brings the motor to the initial state by
executing stop and sleep, in these respective orders.

“http://iot.schema.org/.

http://iot.schema.org/

Safe Interoperability for Web of Things Devices and Systems 57

The paths in the TD are serialized using the JSON Pointers standard [4]. JSON
Pointers are URIs, so they can be easily parsed by Things. In Listing 2, the paths
have relative JSON Pointers, where the # sign points to the root of the TD document.
After this sign, the path points hierarchically to the form that is a member of the path.

Dealing with Legacy Devices TDs are envisioned for any device that needs to be
connected to an IoT system. As we have mentioned before, the motor driver of the
ventilator is a legacy device. During the course of this paper, we have used modern
protocols such as CoAP [10] in the TD listings. However, the advantage of TDs is
the capability to describe also older protocols such as Modbus [11], widely used
in industrial automation. Such devices might be also non-reprogrammable, which
means that they cannot provide a TD themselves. In this case, the TD of such a
device has to be retrieved from a database. Thus, the TD of the ventilator has been
retrieved from a local database and used by a gateway.

The use of a gateway is necessary to provide access to the functionalities of the
legacy device to devices that do not have direct access to the legacy device, such as
not supporting the protocol of the legacy device or not having a physical connection.
Such a configuration is illustrated in Fig. 5 with Thing C as the device that does
not have direct access to Thing A, the legacy device.

The gateway can then proceed on making the paths of the legacy device simple to
use for consumer Things, such as Thing C. In the context of IoT, path descriptions
should not be imposed to consumer Things that are not part of the system.

We are expecting to see our path vocabulary to be used inside the system and
not in the TD of a device such as a gateway. Hence, the TD of the gateway should
present simple interactions that should be executable without any causality. In Fig. 5,
the path RotateMotor becomes an interaction with the same name that will be
executed as a normal TD interaction by Thing C.

[Initialize]
[Rotate [[>{] Rotation | SafeStop

’A\RotateMot;I Thing A
| RotateMotor |

Gateway

Thing C

Fig. 5 Using a gateway brings IoT connectivity to a legacy motor driver (Thing A). The gateway
can execute a path offered by this device and offer a simple Thing Description action to be executed
by Things that do not have physical access to Thing A, such as Thing C

58 E. Korkan et al.

1

2 "name": "MyVentilator",

3 PRI

4+ "paths":{

5 "rotateMotor" : {

6 "@type":"iot:rotate",

7 "path": [

8 "#/actions/initialize/forms/0",
9 "#/actions/rotate/forms/0",

10 "#/properties/rotation/forms/0"
1]

12 },

13 "safeStop" : {

14 "@type":"iot:stop",

15 "path": [

16 "#/actions/stop/forms/0",

17 "#/actions/sleep/forms/0"

19 }
0}
21 }

Listing 2 Thing Description of the motor driver with the paths that represent the interaction
sequences

3.2 Composing a System

In the context of IoT, we are considering resource-constrained devices that are not
able to offer a lot of functionality on their own. This is why composing a system
by bringing multiple devices together to orchestrate more functionalities is highly
relevant. Consider the system illustrated in Fig. 6, witha Thing B that can measure
room temperature and another Thing A, which is a ventilator, to reduce room
temperature. We will illustrate the composition of a system by using the two devices
that can control the temperature of a room, bringing additional functionality just by
combining their abilities.

We will be using the same path vocabulary introduced in the previous section
for this system composition. The path vocabulary is not limited to describe a single
Thing, but can be used for a system of Things and the causality between interactions
of multiple Things. By using the same vocabulary, we will enable a scalable design
approach.

The aforementioned temperature control system can be described by simply
using the JSON Pointer URIs from different TDs to describe a system level
functionality in a path. Such a path can be executed through a system controller
or a Thing of the system. Figure 6 illustrates this system with a system controller
where the gateway device takes the responsibility of describing the system behavior
and executing system level functionalities.

Safe Interoperability for Web of Things Devices and Systems 59

-~

@ Temperature
¥ <> Control]
‘ A
[Temperature || © ["RotateMotor |
Control

| Gateway |

[Initialize |

[[Rotate [[3{] Rotation || SafeStop

\ RotateMotor Thing A / Thing C

Fig. 6 A gateway can compose a system with the use of the path vocabulary. Here, the system is
a temperature control system with a temperature sensor and an industrial ventilator. Things, such
as Thing C, that do not have physical access to the system components can execute simple Thing
Description interactions to interact with the system through the gateway

The dashed orange arrows in Fig. 6 demonstrate a path executed by the system
controller. The system controller is thus able to execute paths or interactions of other
devices due to its system controller TD.

Since a path can be also referenced, like an interaction form, with a JSON
Pointer, a path and an interaction can be mixed into another path. This is illustrated
in Fig. 6 by the control path that has the temperature interaction and the
rotateMotor path combined. This means that our path vocabulary can scale
well and create a compositional design flow for IoT systems. Listing 3 shows the
TD of the gateway illustrated in Fig. 6. The path called control can either be
offered as an interaction to the consumers of the gateway or directly used, just as
the gateway is using the path of the ventilator. As a result, based on thoroughly
tested simple interactions and paths, more complex behavior can be described and
offered to higher level system controllers.

Note that the URIs have to be absolute URIs in a system controller, since relative
URISs lose their uniqueness outside the TD.

SA path URI in a TD such as #/actions/initialize/forms/0 can be combined with
the URI of the TD to create a URI that is valid also outside a TD. In this case, it would be
coaps://vent.example.com:5683/td#/actions/initialize/forms/0.

http://coaps://vent.example.com:5683/td#/actions/initialize/forms/0

60 E. Korkan et al.

"id": "urn:dev:ops:32473-controller-1234",
"title": "SystemController",
"@context": [

"https://www.w3.0rg/2019/wot/td/v1",

1
2
3
4
B}
6 {
7
8
9

"iot": "http://iot.schema.org/iot"
"paths": {
10 "control":
11 "@type" :"iot:temperatureControl",
12 "path": [

13"http://fdlSensor.com:5683/td#/properties/temperature/forms/0",
1u"coaps://vent.example.com:5683/td#/actions/initialize/forms/0",
15s"coaps://vent.example.com:5683/td#/actions/rotate/forms/0",
16"coaps://vent .example.com:5683/td#/properties/rotation/forms/0"
17]

18 }

v}

2 }

Listing 3 Thing Description of a system controller/gateway of the temperature control system
with a path composed of URIs of interactions of system components

3.3 Worldwide Scalability

As seen in Listing 3 the path URIs can contain domain names that are globally
available. These domain names resolve to a particular IP address of a device
belonging to the system. However, this device can belong to any network in the
world since it is an Internet connected device.

This illustrates that the TD can be used to represent any device in the world; thus,
paths can describe behavior of a system composed of devices anywhere in the world.
In Fig. 7, we illustrate such a system where a central controller can interact with
single Things like Thing C (bottom right), systems like in Fig. 6 (top right), or
with virtual Things in the cloud like Thing X (top left). In this scenario, the central
component is able to compose a water level monitoring service that gets weather
predictions from a virtual Thing in the cloud in another location, can combine with
controlled temperature from a third location, and finally control the water level by
pumping water in a fourth and final location.

4 Case Study: Testing with Path Semantics

Ideally, a TD describes what a Thing can do, but it is up to the developer of the
Thing to properly implement the capabilities. It is even more difficult to implement
everything correctly when designing and implementing a system because of the

Safe Interoperability for Web of Things Devices and Systems 61

[wesver |

J

[weather]|
—=
Temperature Water
Monitor ‘ Gateway‘
_ W,
e .
(Thing C
I Pump Water I

\

Fig. 7 Another IoT system using other systems, devices, and cloud to compose itself. The ubiquity
of Internet and World Wide Web allows Thing Descriptions and the path annotations to be scalable
on a worldwide scale

interlinked behavior of devices that compose the system. During both development
processes for single Things as well as for systems of Things, testing becomes helpful
to detect any errors in the implementation. However, manual testing is a tedious
process and for this reason, automatic testing methods are widely used in many
application domains.

In a case study, we will show how to apply TDs with the new path vocabulary
to facilitate automated testing. In order to show the advantages of our contribution,
we will compare the test coverage of our new path-enabled approach to the state-
of-the-art testing without paths through an example. Similar to the previous section,
we will first present this for a single Thing and then for a system. In the end, an
algorithm that is applicable to test both single Things and systems will be shown.

TDs, with or without the path vocabulary, describe exposer Things that the
consumer Things will interact with. Since a TD is human-readable, it can be used
for specifying a Thing to develop (product), read by the developers who are not
familiar with the internal workings of the device during implementation and more
importantly, since it is machine-understandable, it can be used for automatic testing
to generate test scenarios.

In the following, for automatic testing, we will use the black-box testing
approach. In black-box testing, inputs are given to a device under test and the outputs
are observed. This type of interaction is equal to a consumer Thing interacting
with an exposer Thing. Since the consumer interacts with the exposer based on

62 E. Korkan et al.

the information obtained from its TD, black-box testing of an exposer Thing
implementation can be automatized by using its TD.

4.1 Single Thing Testing

We will demonstrate testing a single device with the ventilation Thing introduced
earlier in Listing 1. The first case will be without using paths to illustrate the state-
of-the-art approach and the second case will apply the path vocabulary.

Testing Without Paths Before adding the path vocabulary, one can automatically
test a Thing by sending requests described in its TD in a random order, called a test
scenario. Combined with the data structure represented in the TD, it is possible to
cover every interaction described in the TD of the Thing under test.

We have developed the test architecture in Fig. 8 to test each of the three interac-
tion patterns introduced in Sect. 2. This architecture allows us to systematically test
a Thing by using its TD. We run the corresponding interaction pattern’s test method
(the vertically aligned boxes) for each interaction in the test scenario as follows:

(@) (b) ()

Subscribe to
Event

Read Property Invoke Action

Verify Data ?

Structure v
|
If writable Receive .
Response W.a.'t fqr
1y Notification
Verify Data ?
Write Property Structure
l Receive
Response
Read Property Verify Data ?
Structure

Verify Data ?
Structure

Compare with i
Written Value

Fig. 8 Architecture of the proposed testing methodology of any interaction of a Thing with a
given Thing Description. The yellow boxes (with a ?) symbolize a test that can find either a faulty
or correct behavior. The data needed to invoke an action or write to a property is generated using
data generation tools

Safe Interoperability for Web of Things Devices and Systems 63

e Property (Fig.8a): The property value is read and then compared with the
structure given in the TD. If the property is writable, a value is generated
according to the described data structure and sent to the Thing. The same property
is read again to check whether the write request has been successful.

e Action (Fig.8b): If the action needs input data to execute, the input data is
generated and sent to the Thing to invoke the action. Then the response value
is compared with the structure given in the TD.

* Event (Fig.8c): First the event subscription is performed. Once the event is
triggered, the value is received and it is compared to the structure given in the
TD.

Figure 9 shows an execution trace extract of a test scenario that includes the
test of the rotation property and the rotate action. Here, the Thing under
test has interactions that require sequential execution to properly function, but the
testing was performed in random order, as the sequence could not be expressed in
the TD without paths. This lack of expressiveness makes the test results unreliable.
As illustrated in Fig. 9, invoking the rotate action and writing to the rotation
property does not change anything in the system since the initialize action has
not been invoked before. This is shown as an error because the write operation was
not successful, but the real problem is in the order of interactions. This is a problem

Test Flow According to Test Scena{b

Get rotation Invoke
property rotate action

Value <
Received: 0

Single
Interaction
Testing

Y
Write rotation
property to
1300

Y

Get rotation
property

Fig. 9 Illustration of a test path generated from the Thing Description of the industrial ventilator
that does not support the path vocabulary. The red boxes (with an X) should symbolize a fault in
the ventilator. However, these are the correct responses if the sequential behavior is not respected.
The lack of expressiveness in the Thing Description causes this misinterpretation error

64 E. Korkan et al.

found while testing, but the same problem can occur when a consumer Thing (e.g.,
gateway) is trying to interact with the exposer Thing.

Figure 9 shows two problems originating from the lack of expressiveness
regarding sequential behavior:

* The Rotate action will probably not be used as it is meant to. The only way to
do it systematically would be to read a document such as an operation manual
and manually write the test scenario.

* Errors in the implementation of the Rotate action will never be detected in a
systematic way. The Rotate action will be used the way it is designed only if
the random order of interactions during testing matches the sequential behavior.

Testing with Paths By using the path vocabulary, the randomness of the order
of requests can be mitigated. Test scenarios can be generated in a systematic way
instead of a random way and thus the actual behavior of the system can be tested.
The testing method with vertically ordered boxes of Fig.8 for testing a single
interaction stays the same and only the ordering of the test scenario changes.

By using the path vocabulary, one can automatically generate a test scenario that
tests the described sequential behavior. This is illustrated in Fig. 10 where the last
testGet rotation property isshown to have two outcomes. Normally, there
would be only one response. For demonstration purposes, we have illustrated one
faulty and one correct response. Compared to the red results (with an X) in Fig. 9,
this red result (with an X) in Fig. 10 detects an actual error of the device. In the
case of the error outcome, we see a value smaller than the intended one, which
can be because of the developer not properly implementing the rotation function
of the motor driver. We can conclude that following the correct path allowed us to
systematically test the desired behavior of the write functionality of the Thing.

There are two advantages of the added expressiveness for testing single
Things:

» Test scenarios test the actual behavior of the Thing and show real faults of the
Thing under test with respect to its intended behavior.

* More features of the Thing can be tested since following a path describes
additional functionality compared to the single interactions alone.

4.2 System Level Testing

In this use case, we will illustrate the testing of the previously introduced tempera-
ture controlling system during its development cycle.

As mentioned in Sect. 3.2, it is possible to describe an IoT system in a TD with
the path vocabulary. For this specific use case, our gateway/system controller device
does not bring any extra functionality and is used only for composing the system.
Thus, in its TD, there is no interaction but only paths. It is still the same Thing as
described by Listing 3.

Safe Interoperability for Web of Things Devices and Systems 65

| TD Path

| Test Flow According to Test Scenario

. >
generates
\ >

Invoke initiate Invoke rotate Get rotation
action action property

< 4 <
Value Received: OK Code Value Received:
“initialized" Received 0

Single l
Interaction Write rotation
Testing property to
1300

Y

Get rotation
property

<
Value Received:
1300

Fig. 10 Tllustration of a test path generated from the Thing Description of the industrial ventilator
that supports the path vocabulary. Differently from Fig. 9, the correct sequential behavior can be
tested and real faults in the system can be identified. The last test case is shown with two possible
outcomes, depending on whether the Thing has faults or not, which are both valid test results

All the URISs (lines 10—13) are absolute and they refer to interactions of Things in
the system. By following the path named control (starting at line 7), the gateway
can regulate the temperature of the system. To do so, it gets the temperature value
from the temperature sensor, then initializes, and rotates the motor of the ventilator.

Note that paths are composed of interactions as per Definition 3. This means that
even though we can use URIs of JSON Pointers that point to paths in a TD, we will
decompose a path to its interactions and then include these interactions in a new
path. This allows us to keep the same testing logic and not require to modify the
definition of a path. The logic stays the same but the system controller will need to
fetch the TD that contains the path by using the absolute URI found in the path.

To generalize the testing approach in order to adapt to any TD of a system, and
thus to be able to test the complete system, we propose Algorithm 1.

This algorithm allows us to cover the whole system that has arbitrarily many
Thing or inter-Thing sequential behaviors. To do so, for every TD of the system
(including system controllers) (line 1), it iterates through each path (line 2). In a
path, with the listed URIs (line 3), it finds the interaction from every TD using the
findInteraction function (line 4) and tests the interaction depending on its

66 E. Korkan et al.

Algorithm 1 Algorithm for testing a system of Things based on their TDs that
support the path vocabulary

i: for TD € System do
for path € TD do
for uri € path do
interactionUnderTest <— findInteraction(uri)
switch (interactionType)
case property:
result <— testProperty (interactionUnderTest)
case action:
result <— testAction(interactionUnderTest)

2
3
4
5
6
7
8
9.

10: case event:

11 result < testEvent(interactionUnderTest)
12: end switch

13: store TD.path.uri.result

14: end for

15: end for

16: end for

type (lines 5-12). In the end, the test results are stored to allow diagnostics of the
system (line 13).

The test scenario in Fig. 10 can be generated by using Algorithm 1, even if the
initiate, rotate, and rotation interactions are in different TDs. Hence,
we can automatically generate test scenarios composed of interactions of different
Things and test the system composed of several Things.

In this case study, we have demonstrated that paths allow increasing the meaning
of test results as well as the quality of tests and hence contribute to improve the
testability of IoT systems.

5 Related Work

Thing Description (TD) is a new standard that has resulted from research on Web of
Things and Semantic Web technologies, all trying to address the interoperability
problem in IoT. As discussed in [12], Web of Things has found application in
industry, resulting in its wide adoption and [13] defined the Thing Description
standard by using Semantic Web technologies.

For composing an interoperable IoT system, there have been approaches based
on marketplaces for IoT devices, such as in [14, 15]. These marketplaces would
offer device descriptions for other devices to search for and consequently to use the
devices based on their description. For automatically composing a system, a system
controller would look for devices it needs, referred to as recipes in [14], from the
marketplace and compose the desired system with the devices it finds. However,
there is no description of sequential behavior that can link the capabilities of Things
in a sequential order.

Safe Interoperability for Web of Things Devices and Systems 67

Mayer et al. [16] introduce a more generic approach where a goal is set using the
RESTdec format, such as controlling the temperature, and the system is composed
based on this goal. However, the RESTdec format is not human-readable. In
addition, Thuluva et al. [14] and Mayer et al. [16] present top-down approaches
and the core technology they are using is not standardized as it is with TDs.

In our approach, however, our first contribution is solving the ambiguity of
sequential behavior in TDs in a human-readable format on device level by adding
the path vocabulary. As a further contribution, we can use it for composing system
behavior in a sequential fashion.

Moreover, the path vocabulary is very similar to formal property specification.
Hence, in the future, it might enable the application of formal verification methods.

6 Discussion

The black-box testing approach that we have shown in this paper will be used
to automate the testing during the standardization activities of the W3C Thing
Description standard. As with any W3C standard, the TD standard document
has assertions to describe what devices should do and how their TD should be
represented. Chapter 8 “Behavioral Assertions” of [1] provides very clear assertions
on how a Thing should behave regarding data types of payload and what are the
assumptions on protocols.

The existing WoT implementations provided by the community are used to
generate a W3C Implementation Report. Together with assertions in other chapters,
this report is a mandatory step for the TD standard to be published. The path
vocabulary is not yet part of the TD standard, but our testing methodology is equally
valid for TDs without paths.

In the current state, the Web of Things Thing Description Implementation Report
as seen in Fig. 11 contains 14 implementations that are tested manually for their
conformance to the standard. With the increasing number of implementations,
applying an automated testing methodology as presented in this paper will be
inevitable.

7 Conclusion

In this paper, we introduced a new vocabulary called paths for the Thing Description
standard. Using the path vocabulary, we have described sequential behavior of
Things in TDs and made it possible to test such behavior automatically, which
was not possible in the current standard. We have shown that the same vocabulary
can be used for describing a system composed of individual Things without
preprogrammed interfaces. Hence, the methodology to test a single Thing was
generalized to test systems composed of individual Things. In a case study, we have

68

ID Category
bindings- Behavior
requirements-

scheme

bindings-server- Behavior
accept

client-data-schema Behavior

client-data- Behavior
schema-accept-

extras

client-data- Behavior

schema-no-extras

client-uri-template Behavior

iana-security-alter IANA

iana-security- IANA
execution

iana-security- TANA
expansion

iana-security- TANA
remote

server-data- Behavior
schema

server-data- Behavior
schema-extras

server-uri-template Behavior

Context

Form

(TDConsumer)

(TDConsumer)

(TDConsumer)

(TDConsumer)

(TD Consumer)

(TD Consumer)

(TD Consumer)

(TD Consumer)

(TD Consumer)

(TD Producer)

(TD Producer)

(TD Producer)

E. Korkan et al.

Assertion

Results

PFNT
Every form in a WoT Thing Description MUST 130 3 16

follow the requirements of theProtocol Binding
indicated by the URI scheme of its href member.

Every form in a WoT Thing Description MUST 14
accurately describe requests (including request headers,
if present) accepted by the Thing in an interaction.

A Thing acting as a Consumer when interacting 6
with another target Thing desciibed in a WoT Thing
Description MUST generate data organized

according to the data schemas given in the
corresponding interactions.

A Thing acting as a Consumer when interacting 5
with another Thing MUST accept without error any
additional data not described in the data schemas

given in the Thing Description of the target

Thing.

A Thing acting asa Consumer when interacting with 5
another Thing MUST NOT generate data not
described in the data schemas given in the Thing
Description of that Thing.

A Thing acting asa Consumer when interacting with 3
another Thing MUST generate URIs according to

the URI Templates, base URIs, and form href
parameters given in the Thing Description of the

target Thing.

For this reason, Consumer again SHOULD vet and 1
cache remote contexts before allowing the system
to use it.

Since WoT Thing Description is intended to be a 5
pure data exchange format for Thing metadata, the
serialization SHOULD NOT be passed through a

code execution mechanism such as JavaScript's eval()
function to be parsed.

Consumers SHOULD treat any TD metadata with 1
due skepticism.

While implementations on resource-constrained 3
devices are expected to perform raw JSON

processing (as opposed to JSON-LD processing),
implementations in general SHOULD statically

cache vetted versions of their supported context
extensions and not to follow links to remote contexts.

A WoT Thing Description MUST accurately 17
describe the data returned and accepted by each
interaction.

A Thing MAY return additional data from an 7
interaction even when such data is not described in

the data schemas given in its WoT Thing

Description.

URI Templates, base URIs, and href membersina 10
WoT Thing Description MUST accurately describe
the WoT Interface of the Thing.

17

15

15

21

21

21

Fig. 11 A snapshot of the Web of Things Thing Description Implementation Report as of 06
May 2019. This is a small section of the report that contains the behavioral assertions. The
implementation report is constantly updated with new implementations and it can be found on the
official GitHub repository of W3C at https://github.com/w3c/wot-thing-description/blob/master/

testing/report.html

https://github.com/w3c/wot-thing-description/blob/master/testing/report.html
https://github.com/w3c/wot-thing-description/blob/master/testing/report.html

Safe Interoperability for Web of Things Devices and Systems 69

shown how testing benefits from the enhanced expressiveness in TDs. Thus, this
contribution allows us for the first time using Thing Descriptions to systematically
compose and test cyber-physical systems.

References

—

(98}

10.

11.

12.

13.

14.

15

16.

. Kaebisch, S., Kamiya, T., McCool, M., & Charpenay, V. (2019). Web of Things (WoT) Thing

Description. Candidate recommendation, W3C, https://www.w3.0org/TR/2019/CR-wot-thing-
description-20190516/.

. Korkan, E., Kaebisch, S., Kovatsch, M., & Steinhorst, S. (2018). Sequential behavioral

modeling for scalable iot devices and systems. In 2018 Forum on Specification Design
Languages (FDL) (pp. 5-16). https://doi.org/10.1109/FDL.2018.8524065.

. Philips Lighting B.V. (2019). Hue API. https://developers.meethue.com/develop/hue-api/.
. Bryan, P. C., Zyp, K., & Nottingham, M. (2013). JavaScript Object Notation (JSON) Pointer.

RFC 6901. https://doi.org/10.17487/RFC6901. https://rfc-editor.org/rfc/rfc6901.txt.

. Baldoni, R., Contenti, M., Piergiovanni, S. T., & Virgillito, A. (2003). Modeling publish/-

subscribe communication systems: Towards a formal approach. In Proceedings of the Eighth
International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS). https://
doi.org/10.1109/WORDS.2003.1218097.

. Koster, M. (2018), Web of Things (WoT) Protocol Binding Templates. Tech. rep., W3C. https://

www.w3.0rg/TR/2018/NOTE-wot-binding-templates-20180405/.

. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett, D. C., Carter, J., et al. (2015). State

Chart XML (SCXML): State Machine Notation for Control Abstraction. W3C Recommenda-
tion, W3C. https://www.w3.org/TR/2015/REC-scxml-20150901/.

. Bray, T. (2014). The JavaScript Object Notation (JSON) Data Interchange Format. https://rfc-

editor.org/rfc/rfc7159.txt. https://doi.org/10.17487/RFC7159.

. Sporny, M., Lanthaler, M., & Kellogg, G. (2014). JSON-LD 1.0. W3C Recommendation, W3C.

http://www.w3.0rg/TR/2014/REC-json-1d-20140116/.

Shelby, Z., Hartke, K., & Bormann, C. (2014). The Constrained Application Protocol (CoAP).
https://rfc-editor.org/rfc/rfc7252.txt. https://doi.org/10.17487/RFC7252.

The Modbus Organization. (2012). Modbus application protocol specification v1.1b3. http://
www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf.

Guinard, D. (2011). http://www.vs.inf.ethz.ch/publ/papers/dguinard-awebof-2011.pdf. PhD
thesis, ETH Zurich, Zurich, Switzerland.

Charpenay, V., Kibisch, S., & Kosch, H. (2016). Introducing Thing Descriptions and Interac-
tions: An Ontology for the Web of Things. In Stream Reasoning + Semantic Web technologies
for the Internet of Things @Int. Semantic Web Conference.

Thuluva, A., Broring, A., Medagoda, G., Don, H., Anicic, D., & Seeger, J. (2017). Recipes for
IoT Applications. In Proceedings of the Seventh International Conference on the Internet of
Things. New York: ACM. https://doi.org/10.1145/3131542.3131553.

. Broring, A., Schmid, S., Schindhelm, C. K., Khelil, A., Kibisch, S., Kramer, D., et al. (2017).

Enabling IoT Ecosystems through Platform Interoperability. I[EEE Software, 34(1), https://doi.
org/10.1109/MS.2017.2.

Mayer, S., Verborgh, R., Kovatsch, M., & Mattern, F. (2016). Smart configuration of smart
environments. /[EEE Transactions on Automation Science and Engineering. https://doi.org/10.
1109/TASE.2016.2533321.

https://www.w3.org/TR/2019/CR-wot-thing-description-20190516/
https://www.w3.org/TR/2019/CR-wot-thing-description-20190516/
https://doi.org/10.1109/FDL.2018.8524065
https://developers.meethue.com/develop/hue-api/
https://doi.org/10.17487/RFC6901
https://rfc-editor.org/rfc/rfc6901.txt
https://doi.org/10.1109/WORDS.2003.1218097
https://doi.org/10.1109/WORDS.2003.1218097
https://www.w3.org/TR/2018/NOTE-wot-binding-templates-20180405/
https://www.w3.org/TR/2018/NOTE-wot-binding-templates-20180405/
https://www.w3.org/TR/2015/REC-scxml-20150901/
https://rfc-editor.org/rfc/rfc7159.txt
https://rfc-editor.org/rfc/rfc7159.txt
https://doi.org/10.17487/RFC7159
http://www.w3.org/TR/2014/REC-json-ld-20140116/
https://rfc-editor.org/rfc/rfc7252.txt
https://doi.org/10.17487/RFC7252
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.vs.inf.ethz.ch/publ/papers/dguinard-awebof-2011.pdf
https://doi.org/10.1145/3131542.3131553
https://doi.org/10.1109/MS.2017.2
https://doi.org/10.1109/MS.2017.2
https://doi.org/10.1109/TASE.2016.2533321
https://doi.org/10.1109/TASE.2016.2533321

	Safe Interoperability for Web of Things Devices and Systems
	1 Introduction
	2 Thing Description
	3 Describing Sequential Behavior
	3.1 Describing Sequential Behavior in a Single Thing
	3.2 Composing a System
	3.3 Worldwide Scalability

	4 Case Study: Testing with Path Semantics
	4.1 Single Thing Testing
	4.2 System Level Testing

	5 Related Work
	6 Discussion
	7 Conclusion
	References

