
Lecture Notes in Electrical Engineering 611

Tom J. Kazmierski
Sebastian Steinhorst
Daniel Große Editors

Languages,
Design Methods,
and Tools
for Electronic
System Design
Selected Contributions from FDL 2018

Lecture Notes in Electrical Engineering

Volume 611

Series Editors

Marco Arteaga, Departament de Control y Robótica, Universidad Nacional Autónoma de México, Coyoacán,
Mexico
Bijaya Ketan Panigrahi, Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, India

Jiming Chen, Zhejiang University, Hangzhou, Zhejiang, China
Shanben Chen, Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, China
Tan Kay Chen, Department of Electrical and Computer Engineering, National University of Singapore,
Singapore, Singapore
Rüdiger Dillmann, Humanoids and Intelligent Systems Lab, Karlsruhe Institute for Technology, Karlsruhe,
Baden-Württemberg, Germany
Haibin Duan, Beijing University of Aeronautics and Astronautics, Beijing, China
Gianluigi Ferrari, Università di Parma, Parma, Italy

Faryar Jabbari, Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA,
USA
Limin Jia, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
Alaa Khamis, German University in Egypt El Tagamoa El Khames, New Cairo City, Egypt
Torsten Kroeger, Stanford University, Stanford, CA, USA
Qilian Liang, Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, USA
Ferran Martin, Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra,
Barcelona, Spain
Tan Cher Ming, College of Engineering, Nanyang Technological University, Singapore, Singapore
Wolfgang Minker, Institute of Information Technology, University of Ulm, Ulm, Germany
Pradeep Misra, Department of Electrical Engineering, Wright State University, Dayton, OH, USA
Sebastian Möller, Quality and Usability Lab, TU Berlin, Berlin, Germany
Subhas Mukhopadhyay, School of Engineering & Advanced Technology, Massey University,
Palmerston North, Manawatu-Wanganui, New Zealand
Cun-Zheng Ning, Electrical Engineering, Arizona State University, Tempe, AZ, USA

Federica Pascucci, Dipartimento di Ingegneria, Università degli Studi “Roma Tre”, Rome, Italy
Yong Qin, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
Gan Woon Seng, School of Electrical & Electronic Engineering, Nanyang Technological University,
Singapore, Singapore
Joachim Speidel, Institute of Telecommunications, Universität Stuttgart, Stuttgart, Baden-Württemberg,
Germany
Germano Veiga, Campus da FEUP, INESC Porto, Porto, Portugal
Haitao Wu, Academy of Opto-electronics, Chinese Academy of Sciences, Beijing, China
Junjie James Zhang, Charlotte, NC, USA

Leopoldo Angrisani, Department of Electrical and Information Technologies Engineering, University of Napoli
Federico II, Naples, Italy

Samarjit Chakraborty, Fakultät für Elektrotechnik und Informationstechnik, TU München, Munich, Germany

Manuel Ferre, Centre for Automation and Robotics CAR (UPM-CSIC), Universidad Politécnica de Madrid,
Madrid, Spain
Sandra Hirche, Department of Electrical Engineering and Information Science, Technische Universität
München, Munich, Germany

Toyoaki Nishida, Graduate School of Informatics, Kyoto University, Kyoto, Japan

The book series Lecture Notes in Electrical Engineering (LNEE) publishes the latest developments in
Electrical Engineering - quickly, informally and in high quality. While original research reported in
proceedings and monographs has traditionally formed the core of LNEE, we also encourage authors to
submit books devoted to supporting student education and professional training in the various fields and
applications areas of electrical engineering. The series cover classical and emerging topics concerning:

• Communication Engineering, Information Theory and Networks

• Electronics Engineering and Microelectronics

• Signal, Image and Speech Processing

• Wireless and Mobile Communication

• Circuits and Systems

• Energy Systems, Power Electronics and Electrical Machines

• Electro-optical Engineering

• Instrumentation Engineering

• Avionics Engineering

• Control Systems

• Internet-of-Things and Cybersecurity

• Biomedical Devices, MEMS and NEMS

For general information about this book series, comments or suggestions, please contact leontina.
dicecco@springer.com.

To submit a proposal or request further information, please contact the Publishing Editor in your
country:

China
Jasmine Dou, Associate Editor (jasmine.dou@springer.com)

India
Swati Meherishi, Executive Editor (swati.meherishi@springer.com)
Aninda Bose, Senior Editor (aninda.bose@springer.com)

Japan
Takeyuki Yonezawa, Editorial Director (takeyuki.yonezawa@springer.com)

South Korea
Smith (Ahram) Chae, Editor (smith.chae@springer.com)

Southeast Asia
Ramesh Nath Premnath, Editor (ramesh.premnath@springer.com)

USA, Canada:
Michael Luby, Senior Editor (michael.luby@springer.com)

All other Countries:
Leontina Di Cecco, Senior Editor (leontina.dicecco@springer.com)
Christoph Baumann, Executive Editor (christoph.baumann@springer.com)

** Indexing: The books of this series are submitted to ISI Proceedings, EI-Compendex, SCOPUS,
MetaPress, Web of Science and Springerlink **

More information about this series at http://www.springer.com/series/7818

leontina.dicecco@springer.com
leontina.dicecco@springer.com
jasmine.dou@springer.com
swati.meherishi@springer.com
aninda.bose@springer.com
takeyuki.yonezawa@springer.com
smith.chae@springer.com
ramesh.premnath@springer.com
michael.luby@springer.com
leontina.dicecco@springer.com
christoph.baumann@springer.com
http://www.springer.com/series/7818

Tom J. Kazmierski • Sebastian Steinhorst
Daniel Große
Editors

Languages, Design Methods,
and Tools for Electronic
System Design
Selected Contributions from FDL 2018

Editors
Tom J. Kazmierski
University of Southampton
Southampton, UK

Sebastian Steinhorst
Technical University of Munich
München, Bayern, Germany

Daniel Große
University of Bremen and DFKI GmbH
Bremen, Bremen, Germany

ISSN 1876-1100 ISSN 1876-1119 (electronic)
Lecture Notes in Electrical Engineering
ISBN 978-3-030-31584-9 ISBN 978-3-030-31585-6 (eBook)
https://doi.org/10.1007/978-3-030-31585-6

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-31585-6

Preface

The increasing integration and complexity of electronic system design requires
a constant evolution of the languages used and its associated design methods
and tools. The Forum on Specification & Design Languages (FDL) is a well-
established international forum devoted to the dissemination of research results,
practical experiences, and new ideas in the application of specification, design,
and verification languages to the design, modeling, and verification of integrated
circuits, complex hardware/software embedded systems, and mixed-technology
systems.

FDL is the main platform to present and discuss new trends as well as recent
works in this domain. FDL 2018 was the twenty-first edition of the Forum and
was held in September 2018 in Munich, Germany. Thanks to the commitment of
the authors, presenters, and panelists, FDL 2018 was an extremely interesting and
lively event.

This book contains a selection of papers which were presented at FDL 2018
and considered to be the best by both members of the program committee and
participants of the Forum. The selection reflects the wide range of topics that were
covered at this event.

The selected contributions particularly highlight that new modeling, verification,
and implementation methodologies continue to extend the scope beyond advancing
the established SystemC paradigm towards symbolic simulation, synchronous
programming, and virtual prototyping, opening new cyber-physical application
areas such as microfluidic devices and the Internet of Things.

By this, the portfolio of papers in this book provides an in-depth view of the
current developments in our domain, which surely will have a significant impact in
the future.

We would like to thank all the authors for their contributions as well as the
members of the organizing and program committees and the external reviewers for
their hard work in evaluating the submissions.

v

vi Preface

Special thanks go to Franco Fummi and his team from the University of Verona,
who, together with the local team from Technical University of Munich, were
responsible for the splendid organization of FDL 2018.

Finally, we would like to thank Springer for making this book possible.

Southampton, UK Tom J. Kazmierski
Bayern, Germany Sebastian Steinhorst
Bremen, Germany Daniel Große
May 2019

Contents

Time in SCCharts . 1
Alexander Schulz-Rosengarten, Reinhard von Hanxleden,
Frédéric Mallet, Robert de Simone, and Julien Deantoni

Generation of Functional Mockup Units for Transactional
Cyber-Physical Virtual Platforms . 27
Stefano Centomo, Michele Lora, and Franco Fummi

Safe Interoperability for Web of Things Devices and Systems 47
Ege Korkan, Sebastian Kaebisch, Matthias Kovatsch,
and Sebastian Steinhorst

Automatic Design of Microfluidic Devices: An Overview
of Platforms and Corresponding Design Tasks . 71
Robert Wille, Bing Li, Rolf Drechsler, and Ulf Schlichtmann

A New Ageing-Aware Approach via Path Isolation . 89
Yue Lu, Shengyu Duan, and Tom J. Kazmierski

SystemC Coding Guideline for Faster Out-of-Order Parallel
Discrete Event Simulation . 99
Zhongqi Cheng, Tim Schmidt, and Rainer Dömer

Extensible and Configurable RISC-V Based Virtual Prototype 115
Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler

AADD-Based Symbolic Simulation of SystemC AMS . 135
Carna Zivkovic and Christoph Grimm

Blech, Imperative Synchronous Programming! . 161
Friedrich Gretz and Franz-Josef Grosch

Index . 187

vii

Time in SCCharts

Alexander Schulz-Rosengarten, Reinhard von Hanxleden,
Frédéric Mallet, Robert de Simone, and Julien Deantoni

1 Introduction

Cyber-physical/embedded systems are typically reactive, meaning that they have to
continuously react to their environment, and that these reactions must meet certain
timing constraints. Real-time aspects may be rather simple, such as “the system
must run at least at 10 KHz,” or it may be quite intricate, like “coil A must be
activated 27.3 ms after coil B.” A long-standing challenge in the design of such
real-time systems is to reconcile concurrency and determinacy. As it turns out,
time plays a rather adversarial role there in that standard mechanisms to handle
concurrency, such as Java/POSIX threads, are rather sensitive to how long individual
computations take; determinacy is easily compromised by race conditions [18].
Synchronous languages address this challenge by abstracting from execution time;
their semantics rests on the assumption that computations take zero time, and
that outputs are synchronous with their inputs [5]. The synchronous programming
paradigm has been explored since the 1980s, and, for example, SCADE (Safety-
Critical Application Development Environment) and its certified code generator are
routinely used for avionics control software [9].

The abstraction from time in synchronous languages typically comes at the
price that all references to physical time must somehow be resolved by the
environment. Unlike, for example, Harel’s statecharts [13], which already included a
mechanism to express timeouts, physical time is traditionally not a first-class citizen

A. Schulz-Rosengarten (�) · R. von Hanxleden
Department of Computer Science, Kiel University, Kiel, Germany
e-mail: als@informatik.uni-kiel.de; rvh@informatik.uni-kiel.de

F. Mallet · R. de Simone · J. Deantoni
INRIA Sophia Antipolis Méditerranée, Sophia Antipolis Cedex, France
e-mail: frederic.mallet@inria.fr; robert.de_simone@inria.fr; julien.deantoni@inria.fr

© Springer Nature Switzerland AG 2020
T. J. Kazmierski et al. (eds.), Languages, Design Methods, and Tools for
Electronic System Design, Lecture Notes in Electrical Engineering 611,
https://doi.org/10.1007/978-3-030-31585-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31585-6_1&domain=pdf
mailto:als@informatik.uni-kiel.de
mailto:rvh@informatik.uni-kiel.de
mailto:frederic.mallet@inria.fr
mailto:robert.de_simone@inria.fr
mailto:julien.deantoni@inria.fr
https://doi.org/10.1007/978-3-030-31585-6_1

2 A. Schulz-Rosengarten et al.

in synchronous languages; they instead build on a multiform notion of time, where
time is expressed by counting events (detailed further in Sect. 3.3). This is consistent
with the synchronous abstraction, but in practice does not help the programmer
much, who at the end of the day must express the required real-time behavior.

In this paper, we investigate how we can incorporate physical time into the
synchronous model of computation. We do so using the SCCharts language [26];
however, the concepts presented here can be applied to other synchronous languages
as well.

1.1 Contributions and Outline

• We show how timed automata, which model time with real-valued clocks,
can be expressed in a synchronous setting with discretized execution (Sect. 2).
Our proposal, which includes a new type clock for SCCharts, uses on-board
mechanisms of synchronous languages (in particular during actions) to faithfully
model clocks and imposes minimal requirements on the execution environment.

• We investigate the suitability of different execution regimes in a timed setting
(Sect. 3) and argue that dynamic ticks [25] are a natural fit for realizing timed
automata.

• We present an approach to implement dynamic ticks in a synchronous setting,
where the compiler deduces anticipated tick durations from timing constraints in
the model (Sect. 4).

• We propose a language extension of SCCharts (period) that allows to model
multiclocked systems based on periodical activation of different subsystems and
that maps naturally to real-valued clocks (Sect. 5).

• Finally, having clocks as first-class citizens we use them to map one abstract
clock constraint, expressed in the Clock Constraint Specification Language
(CCSL), to SCCharts (Sect. 6). This allows to not only relate the activation of
subsystems to physical time, but also to the activation of other subsystems.

We briefly discuss further related work in Sect. 7 and conclude in Sect. 8.

2 Timed Automata in SCCharts

Timed automata, proposed by Alur and Dill [3], are a formalism to model the behav-
ior of real-time systems over time. Timed automata consist of state-transition graphs
with timing constraints using real-valued clocks. A timed automaton accepts timed
words, which are (infinite) sequences in which a real-valued time of occurrence is
associated with each element of the timed word.

Timed automata and their variations have been extensively studied for verifica-
tion purposes [2, 3, 21]. We here want to use them for synthesis purposes as well.

Time in SCCharts 3

That is, we investigate how to model the behavior of real-time systems such that the
model can also be synthesized into a piece of software or hardware.

Timed automata have been extended in various ways, one example are multirate
timed automata (or multirate timed systems) [2], where each clock has its own speed,
possibly varying between a lower and an upper bound. Lee and Seshia [19] discuss
(multirate) timed automata in the context of cyber-physical system design. One of
their illustrating examples is the traffic light controller introduced in the next section.

2.1 The Traffic Light Controller Example

We use the traffic light controller shown in Fig. 1 as running example. The traffic
light has three lights green, yellow, and red to control the car traffic and a button
for a pedestrian to request secure crossing of the street, which should cause the
traffic light to switch temporarily to a red light to stop the traffic. The automaton
of the controller has a real-valued clock x, an input pedestrian indicating whether
a pedestrian requests crossing the street, and three outputs sigR, sigG, sigY. The
type pure denotes “pure signals” present or absent at each reaction and carrying no
further data. The outputs do not directly indicate the light states, but rather constitute
events that indicate color changes. It is assumed that initially the red light is turned
on; emitting the event sigG switches off red and switches on green, and so on.

As shown in this example, a clock is represented by a first-order differential
equation on a real number and can be explicitly set and used as transition guard.
While in state red, time progresses with a slope of one (ẋ(t) = 1), this is also the
case for all other states. Time is expressed in abstract time units; for simplicity, we
assume for this example that one time unit corresponds to 1 s. Each transition has a

Fig. 1 Traffic light controller modeled as timed automaton. From Lee and Seshia [19] (CC
BY-NC-ND 4.0)

https://creativecommons.org/licenses/by-nc-nd/4.0

4 A. Schulz-Rosengarten et al.

guard, which consists of a condition (such as pedestrian) and a timing constraint
(such as x ≥ 60), both of which are optional. When clock x has reached or surpassed
60, the automaton transitions to green emitting the green light and resetting the
time to zero. Now the system waits for a pedestrian to push the button. When the
pedestrian input is present, the reaction depends on the passed time. Case 1, if less
than 60 s passed since entering green, the automaton will transition to pending,
but x is not reset. It remains there until the time has reached at least 60, then the
yellow light is turned on, the timer is reset and the state is switched to yellow.
Case 2, if the pedestrian event occurs after at least 60 s in green, the automaton
transitions directly to yellow with the same output and reset. After at least 5 s, the
automaton leaves the yellow state for red and activates the red light and again resets
the time. Note, the model could be simplified by omitting the direct transition from
green to yellow and eliminate the second clause (x(t) < 60) from the condition of
the transition from green to pending. However, we leave the model as originally
proposed [19].

2.2 Requirements for Time in SCCharts

To find a sound semantics for timed automata in SCCharts we first want to present
the requirements that we consider sensible in this context.

Determinism The semantics should fit seamlessly into the synchronous paradigm
and provide deterministic behavior, e.g., outputs are fully determined by inputs.
For SCCharts that means there should be no changes to the underlying sequen-
tially constructive model of computation.

Approximation of an eager semantics A solution must cope with runtime varia-
tions and imperfections of physical timers.

Scalability The number of (concurrent) timers should not be restricted.
Fine granularity The specification of time constrains should not be restricted by

a specific granularity, e.g., one may have timeouts of 1 s and 3.1415926 ms in the
same model. The resulting reaction time may be arbitrarily small but causes no
performance penalty.

Time composability Time-based events should remain their intuitive semantics if
composed, e.g., waiting 1 s twice should mean the same as waiting 2 s once.

Preservation of temporal order and simultaneity Timers that started in the same
tick and run the same duration should expire in the same tick.

Minimal impact of physical timer variations It should be possible to avoid accu-
mulations of timer imperfections.

Access to physical time and tick computation time The model should be allowed
to access the physical time and tick computation time to compute time-related
behavior, such as load-dependent execution modes.

Time in SCCharts 5

Lean interface The inference between the model and its environment should be
independent from the application, e.g., the interface should not change, if the
number of timers changes.

Seamless compiler integration In the context of SCCharts any solution should fit
into the Single Language-Driven Incremental Compilation (SLIC) concept and
provide stand-alone features that are built on top of existing SCCharts, without
the need to change the compilation back-end.

2.3 From Specification to Behavior: The Eager Semantics

Even though this traffic light controller specification seems rather clear and
straightforward, it turns out that there is still some variation as to how the controller
may behave in a specific scenario. The original definition of timed automata [3]
is based on timed regular languages, where symbols in a word are associated
with a real-valued time stamp. Formally, a timed word is a pair (σ, τ), where
σ = σ1, σ2, . . . is an infinite word over some alphabet � of events, and a timed
sequence τ = τ1, τ2, . . . is an infinite sequence of time values τi ∈ R that satisfies
certain constraints (monotonicity and progress). Given a timed word, a run of a
timed automaton is an (infinite) sequence of state transitions, analogous to standard
regular languages defined by standard automata. For convenience, we extend the
concept of timed words such that the inputs σi do not have to consist of exactly one
event, but constitute arbitrary input valuations that assign a value and/or presence
status to each input variable.

To make things concrete, assume that in our traffic light controller the pedes-
trian button is triggered at times 40 and 122.2. We denote this as input trace
(〈pedestrian, 40〉, 〈pedestrian, 122.2〉); we thus allow input sequences (timed
words) to be finite, and we use a notation that associates each input valuation directly
with a time stamp. Given such an input sequence, our timed automaton performs a
sequence of reactions, or ticks, one for each time-stamped input valuation.

A first non-obvious question this raises is how system initialization should be
handled. In principle, there is nothing that requires that the first reaction of the
system must occur at time zero. Furthermore, the “initial transition” to state red
is not really a transition, but rather a convenient way to specify initial values for
variables, including clocks. However, it does seem reasonable to let the clock x
assume the initial value 0 at time zero, and to make this explicit by performing an
initial reaction with an empty input (denoted ε) at time zero. The resulting input
trace is (〈ε, 0〉, 〈pedestrian, 40〉, 〈pedestrian, 122.2〉).

As illustrated in Fig. 2a, the traffic light controller reacts to this input trace by
initializing itself at time 0, doing nothing at time 40, and then, at time 122.2,
transitioning to green and emitting sigG. Then there is no further reaction due
to the absence of further input events. However, this behavior is probably not what
the creator of the traffic light controller intended. For example, the output sigG
should probably not occur at time 122.2, even though 122.2 ≥ 60 certainly holds,

6 A. Schulz-Rosengarten et al.

0 t

Input:
Output:

40 122.2

pedestrian
sigG
pedestrian

(a)

0 t

Input:
Output:

40 60

pedestrian
sigY sigRsigG

187.2

pedestrian
sigG

122.2 127.2

(b)

0 t10

Input:
Output:

40 50 60 120 130

pedestrian
sigYsigRsigG

180 190

pedestrian
sigG

(c)Time-triggeredexecution,withrate5(seeSec.3.2)

0 t10

Input:
Output:

40 50 60 120 130

pedestrian
sigG

180 190

pedestrian
sigGsigY

sigR

(d)

0 t

Input:
Output:

40 60

pedestrian
sigG

deltaT:
122.2 127.2

sigY sigR

187.2

pedestrian
sigG

0 40 20 62.2 5 60
sleepT:60 20 1000 5 60 60

(e)

Fig. 2 Execution traces of the traffic light controller based on different semantics. Vertical strokes
denote reactions. (a) Pure event-triggered execution (see Sect. 2.3/Sect. 3.1). (b) Eager semantics
execution (see Sect. 2.3/Sect. 4.1). (c) Time-triggered execution, with rate 5 (see Sect. 3.2).
(d) Time-event-triggered execution, multiform notion of time (see Sect. 3.3). (e) Dynamic tick
execution (see Sect. 4.1)

but rather at time 60. Thus, we conclude that just the passage of time (without
further input events) should also be able to trigger a reaction, in particular if the
automaton contains transitions that are guarded solely by timing constraints. Lee
and Seshia [19] resolve this by assuming that a transition is taken as soon as it
is enabled; conceptually, the automaton reacts “continuously.” This assumption,
which we denote as eager semantics, leads to the trace in Fig. 2b, which augments
Fig. 2a by further reactions, all with empty input valuations, at times 60 (emission
of sigG, transition to green), 127.2 (emission of sigR), and 187.2 (sigG again).
The remaining traces are explained in Sect. 3, along with their execution concepts.

Time in SCCharts 7

2.4 Timed SCCharts

As it turns out, the synchronous model of execution fits quite naturally for timed
automata as well. We here illustrate this with the SCCharts language. SCCharts
provide many different language features; however, most of these are extended
features that can be mapped to a very small set of core features. These extended
features can be considered just as syntactical sugar, and the SCCharts compilation
consists largely of model-to-model transformations that replace extended SCChart
features by simpler features [26].

As we illustrate now, the timed-automata clocks can be added as an extended
SCChart feature [26] without too much difficulty. Figure 3a shows the SCChart
realization of the traffic light controller. Despite some minor syntactical differences,
the structure of the state machine itself and its transitions and their effects are the
same as in Fig. 1. The new SCChart keyword clock here declares a clock x, which
then, as in timed automata, can be set to arbitrary values and can be used to guard
transitions. We here use the float1 data type for clocks, other types would also be
possible. In fact, there are good arguments for using integral types, e.g., to preserve
the associative law for additions.

Figure 3b presents the compiled intermediate result of TimedTrafficLight,
revealing its actual internal implementation and behavior. In comparison to the
original model in Fig. 3a, x is now an ordinary floating point variable, and the
SCChart has an additional input deltaT. The only obligation on the runtime
environment is, at each tick, to set deltaT to the time passed since the last tick.
Based on these time increments, the SCChart itself keeps track of the progression
of clocks. Specifically, the progression of time for the clock x is represented by
during actions in each state, which increase the clock x by deltaT multiplied by
the slope, which we omit here since it is 1. A during executes its effect in every
tick its state is active, except for the tick the state is entered; this is important
since only the time passed inside the state should be considered. Note that x may
instantaneously assume up to three different values within a tick: the value at the
beginning of a tick, the incremented value computed by the during action, and the
reset value when a transition is taken that resets x to zero. This is no problem under
the sequentially constructive (SC) semantics of SCCharts [26]. Applying the same
idea to classical, non-SC synchronous languages would be a bit more involved, but
with, for example, SSA-like renamings a synchronous language such as Esterel can
also support multiple values per tick [22, 23].

1In SCCharts float is an abstract floating point number without actual precision limitations. We
consider the choice of an actual data type orthogonal to the general concept presented here.

8 A. Schulz-Rosengarten et al.

TimedTrafficLight
input signal pedestrian
output signal sigR, sigG, sigY
clock x = 0

red

green

pending

yellow

x >= 60
/ sigG;
 x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
 x = 0

x >= 60
/ sigY;
 x = 0

x >= 5
/ sigR;
 x = 0

-

(a)

TimedTrafficLight
input float deltaT
input signal pedestrian
output signal sigR, sigG, sigY
float x = 0.0

red
during / x += deltaT

green
during / x += deltaT

pending
during / x += deltaT

yellow
during / x += deltaT

x >= 60
/ sigG;
 x = 0.0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
 x = 0.0

x >= 60
/ sigY;
 x = 0.0

x >= 5
/ sigR;
 x = 0.0

-

(b)

TimedTrafficLight
input float deltaT
input signal pedestrian
output signal sigR, sigG, sigY
output float sleepT
float x = 0
immediate during / sleepT = 1000.0

red
during / x += deltaT
immediate during x < 60 / sleepT min= 60.0 - x

green
during / x += deltaT

pending
during / x += deltaT
immediate during x < 60 / sleepT min= 60.0 - x

yellow
during / x += deltaT
immediate during x < 5 / sleepT min= 5.0 - x

x >= 60
/ sigG;
 x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
x = 0

x >= 60
/ sigY;
 x = 0

x >= 5
/ sigR;
 x = 0

-

(c)

Fig. 3 Traffic light controller modeled as a timed automaton in SCCharts, with various compila-
tion/expansion stages. (a) Original SCChart, with clock declarations. (b) Transformed SCChart.
(c) Transformed SCChart with dynamic ticks

Time in SCCharts 9

3 When to React?

Timed automata allow to add timing constraints to transitions based on a real-valued
clock. It is clear that if the constraint is not met, the transition must not be taken.
When the constraint is satisfied, the automaton can react. As discussed in Sect. 2.1,
it seems advisable to tighten this by saying that we want to react as soon as possible,
which we denoted as the eager semantics. Still, the non-trivial question remains of
how to make sure in practice that reactions occur on time to implement an eager
semantics, or, in practice, how to at least approximate it in some reasonable manner.

As it turns out, the question of when an automaton should react is not restricted
to the “timed” setting presented here, but arises in synchronous programming in
general. There, time is separated into discrete instants at which the system performs
a reaction (tick). The synchrony hypothesis states that the reaction itself takes
conceptually no time and that the actual time passes between reactions. Figure 4a
illustrates this concept.

In practice, a synchronous program is synthesized into a tick function to perform
reactions. Executing a tick takes computation time and separates inputs from
outputs, as shown in Fig. 4b.

3.1 Event-Triggered Execution

In an entirely event-triggered execution, a reaction is triggered when an input
(signal) changes. Hence our traffic light example would only react if the pedestrian
input event occurs, as already illustrated in the trace in Fig. 2a. This execution
regime is obviously insufficient as, e.g., it does not trigger transitions with only
timing constraints, as discussed in Sect. 2.3. Consequently, a concept is needed
which performs reactions based on time while handling the continuous nature of
time.

Fig. 4 Different timing abstractions [25]. (a) Logical time: time is discretized into logical ticks 0,
1, etc. Input Ii is synchronous with output Oi , the reaction time is abstracted to be 0. (b) Physical
time: the computation of the i-th reaction, corresponding to logical tick i and the i-th call of the tick
function, begins at wake-up time wi . Inputs are read at the beginning of the computation, outputs
are written at the end of the computation

10 A. Schulz-Rosengarten et al.

3.2 Time-Triggered Execution

A common alternative to event-triggered execution is a periodical invocation of
the tick function. One fixed global period is determined by analyzing the timing
constraints of the model and its environment (i.e., poll rate of sensors), and
sometimes also its worst case reaction time, to allow on-time executions of ticks.
Figure 2c illustrates a trace with this execution semantics for our example in Fig. 3a.
The period is 5, which is the greatest common divisor of the two relevant timing
constants 5 and 60 in the model, and hence a sufficient sample rate for the systems
timing constraints if events are discretized to this rate as well. The system only
reacts every 5 s, which causes the pedestrian input occurring at time 122.2 to be
processed only in the next period at time 125, consequently the sigR signal is also
emitted at time 130. This behavior might be sufficient, especially when there are
corresponding hardware sample rates for hardware sensors such as the pedestrian
button.

Drawbacks of this execution regime are (1) the discretization of events (the
pedestrian event is processed 2.8 s after its occurrence) and (2) efficiency. For
example, for a delay of 60 as in red, there are always 12 ticks executed, even though
the transition can only be taken in the 12th tick. The previous invocations are wasted
processor time and energy, which is problematic especially in embedded use-cases.

3.3 The Multiform Notion of Time

When modeling temporal behavior, classical synchronous languages, such as
Esterel, consider time as an arbitrary discrete input event to the program. For
example, this could be a signal that is present in each tick a second has passed;
however, equivalently, one could choose a signal that represents that a traveled
distance has increased by one meter. The progression of time is measured by
counting occurrences of some signal. This is also referred to as the multiform
notion of time. This concept is quite flexible; however, in particular if multiple
input signals are used to model time, say one signal for milliseconds and one for
microseconds, this concept can easily lead to temporal inconsistencies, as discussed
further by Bourke and Sowmya [8]; e.g., waiting for the next event “millisec” does
not necessarily mean the same as waiting for 1000 events of “microsec.”

For our SCChart in Fig. 3a, the trace in Fig. 2d represents an execution semantics
using discrete timing events in combination with input event triggering. Since the
model has two timing-related guards, 5 in state yellow and 60 in the others, we
again opt for the greatest common divisor and use a timing event, let us denote it as
fivesec, that indicates that 5 s has passed since the last occurrence of fivesec. As
the trace illustrates, the system reacts every 5 s, always with fivesec present, and

Time in SCCharts 11

additionally at time 122.2 s, when pedestrian is present, but fivesec is absent. We
call this time-event-triggered execution, since a reaction is triggered when either the
timing event fivesec or some other event occurs.

Consider time 122.2, when the pedestrian input is processed and sigY is
emitted. Since time is measured by counting fivesec events, and the last such event
has occurred at time 120, the pedestrian event is effectively considered to have
taken place at time 120. Consequently, sigR is already emitted at time 125 instead
of 127.2; thus not 5 s has passed since sigY, but only 2.8 s, which is not compliant
with the original traffic controller specification. Similarly, sigG is emitted at time
185, which is also earlier than in the trace in Fig. 2b. For this input trace, one could
comply with the eager semantics by increasing the granularity of the discrete time
event, i.e., using an event for 0.1 s passed. However, this would increase the number
of reactions and load on the system significantly, while most of the reactions would
not actually affect the state of the automaton.

3.4 Dynamic Ticks

To circumvent the difficulties of the execution regimes discussed so far, we here
propose to not discretize time beforehand and to not model time by counting events,
but propose to model time as continuous entity. Note that we still perform discrete
reactions, only the time stamps are chosen from a real-valued domain, and in
practice, this domain is also approximated by discrete types such as float (or int
see Sect. 2.4).

This view of time as a continuous entity can be naturally combined with the
concept of dynamic ticks [25], where the program itself outputs a request for how
long the environment can wait or sleep until the tick function should be executed
again, the wake-up time. Dynamic ticks can be combined with event-triggered
execution; thus, one may again react to both the passage of time and external events.
Note that this concept preserves the determinism of the synchronous system [25].

This results in a dynamic and efficient execution, as illustrated in Fig. 4b. The
wake-up time w can either be set by an external global period or with dynamic
ticks by the preceding tick function, adapting to the actually enabled reactions.
Additionally, in situations where the reaction of the system depends on input events
rather than time, dynamic ticks should be combined with event-triggered ticks,
since no definite wake-up time can be determined. This is the case for the green
state of the traffic light controller where the pedestrian input primarily triggers
the transitions and the time constraints only separate which transition is taken. As
discussed in the next section, dynamic ticks in combination with event-triggered
execution allow the implementation of the eager semantics (trace in Fig. 2b).

12 A. Schulz-Rosengarten et al.

4 Dynamic Ticks in SCCharts

Figure 5 illustrates the general structure that we propose to incorporate physical
time into a reactive execution setting. As usual for an embedded system, a Tick
Function communicates with its Environment, reading inputs from Sensors
and conveying outputs to Actuators. Additionally, there is a Trigger Unit that
calls the tick function, i.e., triggers one reaction (a tick). This classical setup
is augmented by dynamic ticks, highlighted in red. Not only inputs trigger the
execution (event-triggered) but there is also a Time Manager for time-triggered
execution. This Time Manager is responsible for providing deltaT, the time
passed since the last execution of the tick function, and it performs the waiting
for the next time trigger based on sleepT. The new input and output extend the
environment of the tick function. Note that this structure is still fully within the
standard synchronous execution model, where the execution of a reactive system
is divided into logical ticks, and a tick function reads certain inputs and produces
certain outputs. Conceptually, deltaT is an input like any other input, and sleepT
is an output like any other output. We also uphold our general requirement of
determinacy: given a trace of inputs (including deltaT), the output trace (including
sleepT) is fully determined.

4.1 The Traffic Light Controller with Dynamic Ticks

Our SCCharts traffic light control example in Fig. 3b can easily be further extended
to use dynamic ticks, resulting in the SCChart shown in Fig. 3c. It has an additional
output sleepT for the time span until the next time-related wake-up. In the root
state there is an additional immediate during action, which executes its effect
at every tick the state is active, including the tick the state is entered, due to
the immediate modifier. It sets sleepT to an appropriate, presumably very large
default value (1000.0 in this example), which conceptually denotes that there
is no active timeout. sleepT is then updated in the states requesting an earlier

Fig. 5 Controller and environment of a dynamic tick function

Time in SCCharts 13

wake up. This is done by further immediate during actions which register the
remaining time until a guard of this state can be activated. The min= is an update
assignment that assigns the minimal value between the current value of sleepT
and the rhs expression. (As detailed further elsewhere [26], the SCChart semantics
deterministically schedules “updates” such as +=, *=, etc. after other assignments;
hence, there is no race condition between the assignment of the default sleep time
and the min= assignments.) The requested sleep time is calculated from the timing
constraints of the outgoing transitions, further discussed in Sect. 4.2.

The resulting behavior is illustrated in Fig. 2e. The dynamic reaction times
emulate the eager semantics (Fig. 2b), which, as argued in Sect. 2.3, we chose as
the preferable execution semantics for timed automata. The system reacts to the
pedestrian input at time 40, the state of the automaton does not change; however,
as illustrated by deltaT and sleepT presented under the time line, the dynamic ticks
adapt to the event-triggered invocation and correctly compute a new sleep time of
20. After the output of sigG at time 60, no wake-up time can be computed since
no transitions primarily depend on timing constraints, hence the default sleep time
of 1000 is taken. The trace also shows that the reaction to the pedestrian event
at 122.2 is also “on time,” and the output of sigR is exactly 5 s after this event.
Dynamic ticks use only a minimal number of reactions, to process all events and to
perform all transitions at their expected time.

4.2 How to Compute Sleep Times

The main task in computing the sleep time is to detect if and which passage of
time causes a transition to be enabled. Our SCChart compiler computes sleep
times based on a static analysis of the timing bounds in the outgoing transitions
of a state, with certain restrictions of timing constraint specifications to facilitate
their implementation. More specifically, we look for timing constraints of the form
c ≥ ltb, where c is a clock and ltb some expression that we refer to as lower timing
bound. We compute the corresponding sleep time as the difference between ltb and
the current clock value. For example, state red in Fig. 3c has an outgoing transition
with guard x ≥ 60; hence, red gets augmented with an immediate during action
that computes sleepT min = 60.0 - x. If a state has multiple outgoing transitions
with lower timing bounds, we assign the minimal positive sleep time. To simplify
the detection of lower timing bounds, our implementation rules out negations of
timing constraints, but that does not limit expressiveness; for example, !(x < 10)
should be written as x ≥ 10. Furthermore, constraints specifying an upper bound
do not contribute to the sleep time since they, considered separately, do not require
time to pass to be enabled and hence would result in a sleep time of zero.

Our example in Fig. 3c shows another case where no sleep time is requested
and the value of sleepT should fall back on the default value. In state green,
both outgoing transitions primarily depend on the pedestrian input, and x only
distinguishes the two paths. The two timing constraints are non-triggering in that

14 A. Schulz-Rosengarten et al.

just the passage of time does not make a difference in whether any outgoing
transition is enabled or not. If pedestrian is false, we do not take any transition,
and if it is true, we take a transition, no matter what time it is; the time indicated by
x solely decides which transition we take.

To detect such non-triggering timing constraints, assume that the i-th outgoing
transition of some state has a guard Gi = Ci ∧ Ti , where Ci is a condition that
does not depend on time and Ti is a timing constraint. Assume that no guard is
currently active, i.e.,

∨
i Gi = false. Furthermore, assume that T1 specifies a lower

timing bound ltb. This would usually require the computation of a corresponding
sleep time, unless T1 is non-triggering—which is the case if ∃i such that C1 implies
Ci and ¬T1 implies Ti (i.e., whenever the ltb has not been reached yet, Ti holds).
In our implementation, we further simplify the conditions and assume that C1 and
Ci are the same Boolean guard, and T1 and Ti are negations of each other. As it
turns out, the guards on the outgoing transitions from green fulfill that criterion,
taking pedestrian && x >= 60 for C1 and pedestrian && x < 60 for C2; thus, the
compiler classifies 60 to be a non-triggering ltb and does not compute a sleep time
for it.

The concept of computing sleep times based on lower bounds is closely tied to
the eager semantics. With a perfectly eager execution, it would be sufficient to write
x ≥ 60 as x = 60, but considering a real-valued time and a realistic implementation
with possible timer imperfections, the first option is more robust and thus preferable.
Similarly, we prefer closed timing intervals as specified with ≥ over open intervals
specified with >.

However, the behavior specified by timing constraints can change when using
a semantics other than the presented eager one or if the reactions are delayed. If,
for example, more time than the minimum of a specified lower bound passes, it is
possible that other transitions get also enabled or disabled, which may change the
expected behavior. Assume the example that a state is entered when at least 60 s
passed (x ≥ 60) and is immediately (in the same tick) left when at most 80 s have
passed (x < 80), without any reset of the clock. With eager semantics, the state will
be entered after a time of 60 and then left immediately. If the reaction is delayed
or another execution semantics is applied and the system is able to react after a
time of 80 for the first time, then the state is entered but can never be left, leaving
the system in that state forever. One could argue such system is designed badly,
but this is the reason why we prefer the eager semantics. Note that for dynamic
ticks we only trigger reactions on transitions that require time to pass, such as ≥
constraints, but when a < constraint is the only guard, then there is no wake up.
Otherwise such constraints with delayed transitions would cause a sleep time of zero
which contradicts the concept of a delayed reaction. Note that delayed transitions,
in contrast to immediate transmissions, require the state machine to stay for at least
one tick in the state before it can be left using a delayed transition. In the previous
example the transition x < 80 is not delayed and the state can be left in the same
reaction as entered.

Nevertheless, we also want to discuss the loosening of the eager semantics based
on dynamic ticks in the next section.

Time in SCCharts 15

4.3 Hard vs. Soft Bounds: The Greedy Semantics

Dynamic ticks can be further extended to introduce soft bounds, leading to a greedy
semantics that loosens the regime of the eager semantics. To motivate, consider the
minimal SCCharts example in Fig. 6a. There are two regions Fast and Slow, each
one uses a timed automaton to react. Assume that the time scale of this example
is microseconds; thus, Slow should react every millisecond and Fast three times
faster. Hence, starting at time zero, the third reaction of region Fast will be at time
999, leaving only 1 μs to invoke the reaction of Slow, which might be infeasible for
the environment.

To circumvent such short sleep times, we introduce soft bounds. States with
an outgoing transitions with a soft bound still compute their own sleep time,
but speculate to possibly “piggyback” on a somewhat earlier reaction invoked by
another state.

Specifically, the user may, in region Slow, replace the hard bound x ≥ 1000 by
the soft bound x ≥ 999 || x ≥ 1000, as illustrated in Fig. 6b. Our implementation
detects this pattern, as presented in Fig. 6c, and requests a sleep time of 1000 for this
state, as for the original hard bound specified with x ≥ 1000; however, at runtime
the transition may already be taken at time 999, thus subsuming the sleep time of
1000. This favors earlier reactions over late reactions, prevents very small sleep
times, and possibly reduces the total number of reactions.

4.4 Hard vs. Soft Resets: Managing Time

As a result of the eager semantics and its implementation using dynamic ticks,
which assumes that the system reacts immediately to the enabling of a transition,
the question arises: Can we react in time? The greedy semantics already allows to
specify a certain amount of slack in the sleep time, but here we want to focus on the
problem of possible deviation between the requested wake-up time and the actual
execution time and their effects of the system, relevant for both dynamic ticks and
execution with a fixed period. Since the system contains clocks, it requires a time
input from the Time Manager, in case of SCCharts deltaT, and there are different
options to provide this input.

The first option is an artificial simulation, where the passed time is always the
time that should have passed, in case of the dynamic ticks the sleep time or the fixed
period if used. This encapsulates the system in a perfect world, where the execution
is independent from the real physical time.

The other option is to pass the real time to the system. That has the effect that
the deviation between the requested wake-up time and deltaT that is passed to the
system depends on the environment. We favor this option as it allows the model to
react to timing overruns, for example, by entering a “degraded mode.” However, in
this case timer imperfections affect the clocks in SCCharts. Executing a tick before

16 A. Schulz-Rosengarten et al.

Fig. 6 Motivating example for using soft bounds in dynamic ticks. (a) SCChart motivating the
use of soft bounds. (b) SCChart using soft bounds in the trigger in region Slow. (c) Transformed
SCChart with soft bounds

Time in SCCharts 17

Fig. 7 Variant of
FastAndSlowGreedy
SCChart using soft reset in
both regions

the requested sleep duration has passed does not affect the behavior since the clocks
only increment by deltaT and the related time constraints do not trigger. When the
tick is executed after the requested sleep time, the additional delay time will be
present in all clocks.

We distinguish two approaches to handle this case, a hard reset sets the value
of the clock to an absolute value, as presented in Fig. 6, and a soft reset that takes
the additional delay into account. In Fig. 7 soft resets are used such that each region
resets its clock x to the amount of time that exceeds the expected wake up (x −
333 and x − 1000). Due to the soft bounds in region Slow, it is legal to take
this transition with 999 s, this would result in negative clock value and thus the
maximum of 0 and x − 1000 is assigned to x.

The consequence of hard resets is that clocks start to “drift” as soon as the tick
function invokes a slower than the expected wake up. For example, if region Fast
in Fig. 6 wakes up at 335 s, it would reset the clock to 0 and request a sleep time of
333 s, disregarding the 2 s that additionally passed. Hence the (earliest) next wake
up would be at 668 s and this drift increases as the delays accumulate over time. This
violates our requirement of temporal order and simultaneity; hence, we prefer a soft
reset that resists the accumulation of timer imperfections. In the SCChart in Fig. 7
the Fast region would reset its clock to 2 if it woke up after 335 s and consequently
would only request a sleep time of 331 s. The Slow region behaves similarly.

5 Multiclock SCCharts

Timed automata naturally support multiple clocks and so does its SCCharts
implementation. In synchronous languages, there is also the concept of multiclock-
ing [12], as in Multiclock Esterel by Berry and Sentovich [6]. In that context the
term “clock” does not relate to a real-valued time measurement but a hardware clock
that drives a hardware circuit or similarly designed software. In multiclock systems,
different parts of the program are activated by different clocks, which are additional
inputs to the program and effectively refine the base clock. Our concept presented
so far can be further adapted to allow such multiclocking.

18 A. Schulz-Rosengarten et al.

We have augmented SCCharts with an additional extended feature period, which
controls the activation of states and regions based on a real-time clock. The period
command ensures that the guarded state or region is only activated if the given
amount of time has passed since the entering/start of the state/region or its last
activation.

5.1 The Motor Example

To illustrate the usage and effect of the period feature, Fig. 8 presents the SCCharts
example Motor. This represents a controller for two rather simplified stepper
motors, for example, to drive a robot. There is a left (motorL) and right (motorR)

Fig. 8 Motor example modeled in SCCharts with periodic regions. (a) SCChart with period
annotation. (b) Transformed SCChart

Time in SCCharts 19

motor, which are run by toggling the corresponding Boolean output at a certain
frequency. The SCChart has two concurrent regions, each controlling one motor
with a simple state machine with two states. The transitions cycle between the states
and toggle the motor variable. In our example, assuming time units of ms, the left
motor must toggle every 4.2 ms, which is represented by the period annotation in
the region. The right motor is run with a period of 1 ms.

To inspect the internal implementation of the extended period feature, Fig. 8b
shows the compiled intermediate result of Motor. The periods are transformed into
timed automata, as introduced in Sect. 2, to control the timing of the regions. In
region Left, the inner states of the region are moved into a new super state that
declares a new clock variable x and a Boolean flag tick. The tick variable acts as
guard for all reactions in the original state machine, now present in the inner region
named Left. This prevents the inner SCChart from performing any action if the clock
is false. If any transition or action has its own guard, it would be conjuncted with
tick. Here tick is initialized to false, which means that no reaction takes place in
the initial tick; however, we might also initialize tick to true, which would cause an
initial reaction.

There is also a new region Period with a single-state timed automaton. At each
tick when the clock x reaches the period’s threshold, the tick variable is set to true
and enables the reaction in the other region. Otherwise, indicated by the transition
with the lower priority (2:), the variable is set to false. Analogously, the Right region
is affected by the period transformation. Note that one might also add the clock logic
directly within the existing Left and Right regions. However, we decided to add the
separate Period region and explicit tick guard, to reduce the number of timed guards
in the model and to have a clear separation between timing and the original SCChart.
In the process of compiling SCCharts, the next step would be to transform the clock
feature as conceptually presented in Fig. 3.

6 Extension with Clock Patterns

As we have introduced clocks and tick flags that represent activation conditions of
regions, we discuss here some possible use of those ticks. In particular, we want to
make explicit relationships between these ticks just as in polychronous systems [17]
and multiclock implementations [12]. The Clock Constraint Specification Language
(CCSL) [4] has been defined as a language to handle clocks and to specify pure
clock-related constraints independently of a specific programming language. CCSL
sees clocks as infinite sequences of ticks and can define when a tick (therefore a
region) should tick or cannot tick. We propose to annotate an SCChart with CCSL
constraints that make explicit the rate relationships amongst the various regions and
states. This can be done as a pure syntactic extension as long as such a specification
can be compiled (internally) into a valid SCChart.

20 A. Schulz-Rosengarten et al.

CCSL provides a concrete syntax to handle clocks, whether logical or physical, as
first-class citizens. It provides patterns of classical clock constraints (like periodic,
sporadic) that can be of three types: synchronous clocks are directly inspired from
primitive constructs of synchronous languages [5]; asynchronous clocks rely on
the relation “happens-before” from Lamport’s logical clocks [16]; and real-time
clocks represent physical time. Real-time constraints are usually a special case of
the logical ones. For instance, CCSL defines both a real-time and logical notion of
periodic behavior. A clock a is periodic on another clock b with period p if a ticks
synchronously at every pth tick of b. If b is a physical (real-time) clock (e.g., s),
then it is a classical periodic behavior; otherwise, it remains purely logical. The
semantics of each CCSL constraint is an automaton and a CCSL specification is the
synchronized parallel composition of those automata [20].

Synchronous constraints are encoded as pure finite-state automata. Asyn-
chronous constraints rely on state machines with unbounded integer coun-
ters. In TimeSquare [10], real-time constraints are encoded as a composition of log-
ical constraints. However, real-valued clocks can also be encoded as timed
automata [24], and the dynamic tick mechanism provides an efficient way to encode
them in SCCharts. The goal here is to annotate an SCChart with CCSL constraints.
This relies on the explicit tick flag introduced in Fig. 8b. CCSL annotations can
either force the tick to occur (and therefore the region to execute) or observe
unexpected behaviors and raise alarms. Both examples are illustrated in this section.

Figure 8a illustrated real-time clocks. In that model, the periodic behaviors of
both regions are relative to an absolute real-time reference, assumed to be ms in
that example. Alternatively, we can define the relative periodicity of the regions in
CCSL as some rational period p, as in repeat left every 4 right, where left is a clock
associated with the left region and right is a clock associated with the right region.
The semantics of this constraint is given as a simple finite-state automaton that can
be encoded as an SCChart in a straightforward way, as illustrated in Fig. 9. There
the guard “4 right” is a count delay that becomes enabled after four occurrences of
right.

Such synchronous constraints specify a fully determined behavior. When using
asynchronous constraints, we may get a partially undetermined behavior. Consider,
e.g., a periodic behavior with jitter as in repeat left every [4,5] right . This constraint
expands as the following primitive CCSL constraints:

Fig. 9 Expansion of logical
periodic constraint

Time in SCCharts 21

1 lower = pLeft delayedBy 4 right
2 upper = pLeft delayedBy 5 right
3 lower < left ≤ upper

where pLeft is defined by the constraint left = pLeft $ 1. The $ is used for unit-delay
as in Signal, it defines pLeft as the same clock as left preceded by one more tick,
like a pre operator.

lower represents the lower bound for left to tick, while upper is the upper
bound. The last equation forces left to tick strictly after lower and before upper.
Each of these constraints can be encoded as concurrent SCChart (see Fig. 10a).
TimeSquare builds the synchronized product of these automata to compute a finite-
state automaton that can be encoded as a simpler SCChart, see Fig. 10b; note
that the dashed transition leaving s0 is immediate, meaning that it could be taken
immediately in the tick when s0 is present.

The behavior exposed in Fig. 10 describes clock relations between the two
regions left and right. At the same time, it observes whether or not the regions
behave as expected. Clocks left and right are inputs and a wrong sequence of inputs
would lead into the error state, like an assertion. It also enables or disables the code
in regions. In state enabled_left, the region left is enabled and its code is executed
as expected. In other states, the region is disabled and its code should be ignored.

7 Related Work

Timed automata [3] introduce real-valued clocks to describe the temporal behavior
of systems using a continuous notion of time. Usually some progress conditions
are required [14] to avoid time divergence and to guarantee that the system does
not remain idle forever. While timed automata and their multiple extensions are
originally defined with an asynchronous semantics, we here propose to harness them
in the synchronous settings of SCCharts.

As presented here, the clock feature models single-rate clocks, as initially
proposed by Alur and Dill [3], since it relieves the modeler of explicitly handling
time. However, note that the clock type is only a convenience feature, and a user can
always model SCCharts directly as presented in Fig. 3b and implement multirate
clocks by scaling the change of x in the during actions.

Altisein and Tripakis [1] implement timed automata by wrapping them into
a global execution model that captures the real time and handles the timers in
the original model. This approach allows to keep the original semantics of timed
automata and capture the influence of the execution platform on timers to enable
verification. With clocks in SCCharts we do not address the topic of verification but
follow the same approach, as we process the raw real time from the environment
and allow the model to handle any timer imperfections, for example, by performing
a soft reset (Sect. 4.4).

22 A. Schulz-Rosengarten et al.

Fig. 10 Periodic behavior with jitter. (a) Automatically generated SCChart for jitter. (b) Simpli-
fied SCChart for jitter

Time in SCCharts 23

As discussed by Sifakis et al., multirate timed automata can be mapped to
timed automata [21], and in the traffic light example, that transformation is rather
straightforward as the only clock x always moves at the same speed.

Harel [13] also proposes time extensions to statecharts where a time t is
associated with every transition and t refers to a global notion of discrete time steps.
We consider here both discrete and real-valued models of time.

Zelus [7] is a synchronous language that mixes both discrete-time and
continuous-time behaviors. Continuous behaviors are described through ordinary
differential equations. We are not describing continuous behaviors here but provide
an extension to SCCharts to make explicit the activation conditions of regions under
the form of clocks that serve to express both real-valued and logical constraints.

As explained, this work builds on the concept of dynamic ticks proposed by
von Hanxleden et al. [25]. Thus most of the related work discussed by them is
also relevant for this work. This includes, for example, the work by Jourdan et
al. on extending ARGOS with timing constructs [15], or PTIDES (Programming
Temporally Integrated Distributed Embedded Systems), which addresses the design
and implementation of distributed real-time embedded systems [11].

The dynamic ticks are akin to the agenda of timed events used in discrete event
system specification (DEVS) [27] to always pick the most urgent event without
relying on a timed-triggered strategy. However, the sequentially constructive seman-
tics of SCCharts, which permits instantaneous modifications of variables under
consideration of data dependencies, reduces the need for the so-called delta-cycles.

8 Conclusions and Outlook

We have investigated how to incorporate physical time into the synchronous
model of execution. As it turns out, timed automata can be mapped naturally to
the synchronous setting, requiring only minimal support from the environment.
However, to achieve a concrete implementation also requires to settle for a concrete,
unambiguous semantics that specifies not only when a system may react but also
when it actually does react; to that end, we have settled for the eager semantics, as
also suggested by Lee and Seshia [19].

We have proposed two extensions to SCCharts, namely clocks and periods,
that can be mapped directly to standard SCCharts. We have implemented these
extensions as part of an open-source compiler.2 We expect that similar extensions
could be implemented in other synchronous languages, such as Esterel, Lustre, or
also SCADE, as they, for example, also facilitate the “during actions” required for
tracking clocks.

2http://rtsys.informatik.uni-kiel.de/kieler.

http://rtsys.informatik.uni-kiel.de/kieler

24 A. Schulz-Rosengarten et al.

With this concept we fulfilled our own requirements, presented in Sect. 2.2, by
providing a semantics that is based on the (synchronous) sequentially constructive
model of computation and ensures deterministic behavior (Sect. 2.4). With dynamic
ticks we implemented the eager semantics with a lean interface (Sect. 4) and
allow timing constraints (clocks) with fine granularity, preserved simultaneity, and
good composability and scalability. Soft resets allow to minimize the impact of
physical timer variations (Sect. 4.4) and the implementation of clocks is seamlessly
integrated into the SCCharts complier as an extended feature (Sect. 2.4).

We have cast the concept of clocks and time in the context of physical time and
durations. However, for us the only practical requirements on clocks are the ones
that timed automata cast on clocks, namely monotonicity and progress. Thus, one
might also consider other (at least conceptually) continuous entities as clocks, such
as distance traveled. In other words, the multiform notion of time could also be
applied to time as proposed here, all within a synchronous setting.

There are several directions to proceed from here. First, we would like to get
more practical experience with the language constructs proposed here. The clock
and period extensions already promise to be quite useful, but other, more high-level
language extensions would be feasible as well, as suggested, for example, by the
features already present in CCSL. Then, while the way these features are mapped
to standard SCCharts seems natural and straightforward, more efficient mappings
might be possible. Similarly, in the context of dynamic ticks, we currently have
a rather simple heuristics to compute sleep times from timing constraints; more
powerful static analyses might again lead to a more efficient implementation.

References

1. Altisen, K., & Tripakis, S. (2005). Implementation of timed automata: An issue of semantics or
modeling? In Formal Modeling and Analysis of Timed Systems (pp. 273–288). Berlin: Springer.

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P.-H., Nicollin, X., et al.
(1995). The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1),
3–34.

3. Alur, R., & Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126,
183–235.

4. André, C. (2009). Syntax and semantics of the clock constraint specification language (CCSL).
Research Report RR-6925, INRIA.

5. Benveniste, A., Caspi, P., Edwards, S. A., Halbwachs, N., Le Guernic, P., & de Simone, R.
(2003, January). The synchronous languages twelve years later. In Proceedings of the IEEE,
Special Issue on Embedded Systems (Vol. 91, pp. 64–83), Piscataway, NJ: IEEE.

6. Berry, G., & Sentovich, E. (2001). Multiclock Esterel. In CHARME ’01: Proceedings of the
11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and
Verification Methods (pp. 110–125), London: Springer.

7. Bourke, T., & Pouzet, M. (2013, April). Zélus: A synchronous language with odes. In
Proceedings of the 16th international Conference on Hybrid Systems: Computation and
Control, HSCC 2013, Philadelphia, PA (pp. 113–118).

Time in SCCharts 25

8. Bourke, T., & Sowmya, A. (2009, November). Delays in Esterel. In SYNCHRON’09—
Proceedings of Dagstuhl Seminar 09481, number 09481 in Dagstuhl Seminar Proceedings.
Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl (pp. 22–27).

9. Colaço, J.-L., Pagano, B., & Pouzet, M. (2017, September). SCADE 6: A formal language for
embedded critical software development (invited paper). In 11th International Symposium on
Theoretical Aspects of Software Engineering TASE, Sophia Antipolis (pp. 1–11).

10. Deantoni, J., & Mallet, F. (2012). Timesquare: Treat your models with logical time. In 50th
International Conference on Objects, Models, Components, Patterns (TOOLS). Lecture Notes
in Computer Science (Vol. 7304, pp. 34–41). Berlin: Springer.

11. Eidson, J., Lee, E. A., Matic, S., Seshia, S., & Zou, J. (2012, January). Distributed real-time
software for cyber-physical systems. Proceedings of the IEEE, 100(1), 45–59.

12. Gamatié, A., & Gautier, T. (2010). The Signal synchronous multiclock approach to the design
of distributed embedded systems. IEEE Transactions on Parallel and Distributed Systems,
21(5), 641–657.

13. Harel, D. (1987, June). Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3), 231–274.

14. Henzinger, T. A., Nicollin, X., Sifakis, J., & Yovine, S. (1994). Symbolic model checking for
real-time systems. Information and Computation, 111(2), 193–244.

15. Jourdan, M., Maraninchi, F., & Olivero, A. (1993, June/July). Verifying quantitative real-time
properties of synchronous programs. In Proceedings of Computer Aided Verification (CAV’93).
LNCS (Vol. 697, pp. 347–358).

16. Lamport, L. (1978, July). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), 558–565.

17. Le Guernic, P., Talpin, J.-P., & Le Lann, J.-C. (2003). POLYCHRONY for system design.
Journal of Circuits, Systems, and Computers, 12(3), 261–304.

18. Lee, E. A. (2006). The problem with threads. IEEE Computer, 39(5), 33–42.
19. Lee, E. A., & Seshia, S. A. (2017). Introduction to Embedded Systems, A Cyber-Physical

Systems Approach (2nd ed.). Cambridge: MIT Press.
20. Mallet, F., & de Simone, R. (2015). Correctness issues on MARTE/CCSL constraints. Science

of Computer Programming, 106, 78–92.
21. Olivero, A., Sifakis, J., & Yovine, S. (1994). Using abstractions for the verification of linear

hybrid systems. In Proceedings of the 6th Annual Conference on Computer-Aided Verification,
Lecture Notes in Computer Science 818 (pp. 81–94). Berlin: Springer.

22. Schulz-Rosengarten, A., Smyth, S., von Hanxleden, R., & Mendler, M. (2018, June). On
reconciling concurrency, sequentiality and determinacy for reactive systems — A sequentially
constructive circuit semantics for Esterel. In 2018 18th International Conference on Applica-
tion of Concurrency to System Design (ACSD) (pp. 95–104).

23. Schulz-Rosengarten, A., Smyth, S., von Hanxleden, R., & Mendler, M. (2018, February).
A sequentially constructive circuit semantics for Esterel. Technical Report 1801, Christian-
Albrechts-Universität zu Kiel, Department of Computer Science. ISSN 2192-6247.

24. Suryadevara, J., Seceleanu, C. C., Mallet, F., & Pettersson, P. (2013, September). Verifying
MARTE/CCSL mode behaviors using UPPAAL. In Software Engineering and Formal Meth-
ods. Lecture Notes in Computer Science (Vol. 8137, pp. 1–15). Berlin: Springer.

25. von Hanxleden, R., Bourke, T., & Girault, A. (2017, September). Real-time ticks for syn-
chronous programming. In Proceedings of the Forum on Specification and Design Languages
(FDL ’17), Verona.

26. von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S., Mendler, M., Aguado, J., et al.
(2014, June). SCCharts: Sequentially Constructive Statecharts for safety-critical applications.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’14), Edinburgh (pp. 372–383). New York: ACM.

27. Zeigler, B. P. (1976). Theory of Modeling and Simulation. New York: Wiley.

Generation of Functional Mockup Units
for Transactional Cyber-Physical Virtual
Platforms

Stefano Centomo, Michele Lora, and Franco Fummi

1 Introduction

Cyber-Physical Systems (CPSs) are shaping today’s world. They are an enabling
technology for many different ongoing technological disruptions, such as smart
manufacturing, autonomous driving, etc. As such, improving design methodologies
for CPSs is crucial to advance a wide set of system engineering sub-disciplines [18].

System design requires models to be simulated providing designers with the
feedback necessary to evaluate the quality of their ideas [12]. The heterogeneity
of CPSs makes modeling and simulation pretty intricate tasks [13]. To achieve
holistic simulation of such heterogeneous systems, designers must either rely on
complex co-simulation environment aggregating specialized simulators for the
many design domains involved in the system or produce a single holistic model of
the system [16]. However, the latter solution requires to access, often unavailable,
open specifications for every component of the system. On the other hand, co-
simulation requires interfacing different simulation tools. Such tools often provide
incompatible interfaces, thus requiring time-consuming adapters [11].

In this scenario, the FMI standard for co-simulation emerged as one of the
most promising technologies to interface heterogeneous simulators [1]. It defines
an Application Programming Interface (API) that must be implemented by the

S. Centomo (�) · F. Fummi
Department of Computer Science, University of Verona, Verona, Italy
e-mail: stefano.centomo@univr.it; franco.fummi@univr.it

M. Lora
Singapore University of Technology and Design, Singapore, Singapore
e-mail: michele_lora@sutd.edu.sg

© Springer Nature Switzerland AG 2020
T. J. Kazmierski et al. (eds.), Languages, Design Methods, and Tools for
Electronic System Design, Lecture Notes in Electrical Engineering 611,
https://doi.org/10.1007/978-3-030-31585-6_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31585-6_2&domain=pdf
mailto:stefano.centomo@univr.it
mailto:franco.fummi@univr.it
mailto:michele_lora@sutd.edu.sg
https://doi.org/10.1007/978-3-030-31585-6_2

28 S. Centomo et al.

simulator. As such, FMI is well suited to build Cyber-Physical Virtual Platforms
emulating both the “cyber” and “physical” parts of a CPS [15].

Even though the FMI standard proved to be a powerful tool to build such
Cyber-Physical Virtual Platform, its focus is still strongly oriented to the simulation
of continuous dynamic systems [19]. Thus, simulation of digital components
still requires adapting the use of the standard to replicate the semantics of HW
simulators [15]. Improvements to support Hardware Description Language (HDL)
models in FMI have been addressed [8, 15]. However, the advantages in terms of
simulation speed of higher-level models, such as Transaction-level models [6], have
not been exploited so far due to some limitations of the standard. This chapter aims
at analyzing and discussing such limitations. Then, it proposes a set of adjustments
in the use of FMI constructs defined in the current standard for co-simulation (i.e.,
version 2.0). Furthermore, it presents a simulation coordination scheme that exploits
such adjustments. These contributions together allow generating Transaction-level
FMUs for Cyber-Physical Virtual Platforms.

In the last few months, the FMI Steering Committee announced a new interface
(version 3.0) that aims to introduce the hybrid co-simulation concept [10]. However,
it is still in alpha release and, as highlighted by the analysis presented in this chapter
(Sect. 6), it still require many improvements to effectively enhance the support of
digital components into FMI-based simulation environments. On top of the time that
will be necessary to develop the new standard, any new version of the standard will
also require time to be accepted from all the tools supporting the previous standard.
Meanwhile, using the current version 2.0, as we do in the approach presented by
this chapter, guarantees compatibility with the current version of the tools.

Figure 1 summarizes the contributions of this work. On the left, the CPS to be
designed is simulated by using a Cycle-accurate Cyber-Physical Virtual Platform.
The virtual platform is composed by exploiting the FMI standard. It is composed
of both the models of the “cyber” and the “physical” sub-systems of the model.
In this work we focus on the “cyber” part of the system modeled by aggregating
different FMUs, each of them representing a digital components of the system.
The simulation is managed by a Master Algorithm coordinating the FMUs. The
time evolution of the virtual platform on the left side is accurate with respect
to the clock cycle of the system: each simulation step simulates a single clock
cycle, synchronizing at each step. This work improves the left side configuration
by proposing two modifications to the platform and its components:

• The functionality within the FMUs composing the digital part of the system
is abstracted to transaction-level. Their interfaces are modified to make them
communicate their internal local time backward to the master algorithm.

• The master algorithm is improved to exploit the information about the local
time of the FMUs in the model.

These modifications allow to produce the Transaction-level accurate Cyber-
Physical Virtual Platform on the right-hand side of the figure. The platform
synchronizes at each transaction defined by the communication protocol. Thus, it
benefits the lighter synchronization for improving the simulation speed.

Generation of Functional Mockup Units for Transactional Cyber-Physical. . . 29

Fig. 1 Overview of the contribution

This chapter is organized as follows: Sect. 2 gives the necessary background
about FMI, and summarizes the state of the art. Section 3 discusses the advantages
and the limitations in the current version of the FMI standard and discusses a set of
possible improvements. Section 4 presents the methodology proposed by this paper.
The presented approach is implemented by building an automatic tool-chain and
then experimentally evaluated in Sect. 5. Then, Sect. 6 updates the discussion we
previously presented [9] about the current support for digital models within FMI-
based simulation environment. It presents the current efforts being made by the FMI
Steering Committee to develop a novel version of the standard, and it discusses
the improvements necessary to improve the support of discrete models into hybrid
systems. Finally, in Sect. 7 we draw some conclusions.

2 Background and Related Work

FMI is a tool-independent standard aiming to enhance the interoperability between
tools of different vendors in the field of systems design [1, 17]. It supports both
model exchange and co-simulation of dynamic models produced by using different
tools and languages. The standard has been originally developed by Daimler AG,
and maintained initially by the MODELISAR Consortium, and by The Modelica
Association after the MODELISAR European Project ended. The latest version of
the standard is the 2.0 of 2014. Currently, the version 3.0 is under development.
The basic blocks of any FMI-based simulation environment are called FMUs.
Multiple FMUs can be imported within a simulation tool to be executed. Each

30 S. Centomo et al.

FMU may implement only one of the two variations of the current standard: Model
Exchange or Co-Simulation. Model exchange FMUs describe functionalities by
using differential, algebraic, and discrete equations with time-, state-, and step-
events [17]. The equations must be solved by an external solver that is required
to simulate model exchange FMUs. Meanwhile, Co-simulation FMUs must model
the functionality and implement the solver as well. As such, the model described
within a co-simulation FMU does not require any external solver.

At its current state, the standard for model exchange does not suit well for
describing discrete-event models [15]. Thus, this chapter focuses on co-simulation
whose main features and structure are described hereby.

2.1 FMI Standard 2.0 for Co-simulation

Practically, an FMU is an archive containing an XML file describing the component
interface and a dynamic library providing its implementation. Furthermore, the
dynamic library contained in any FMU for co-simulation must implement also the
solver necessary to execute the functionality. The XML file must specify all the
variables of the FMU visible to the simulation environment [1]. Each variable is
characterized by a name, causality (e.g., input, output, parameter, etc.), a type, and
a value reference. The value reference of a variable must be unique among the
variables of each type. Each variable is uniquely identified by the pair made of
its type and value reference. The dynamic library must implement the functionality
by implementing a set of functions defined by the standard. The most important,
among the many defined in the current version of the standard, are:

• fmi2SetupExperiment: initializes the internal variables of the FMU.
• fmi2Set: sets the value of an internal variable of the FMU, i.e., it assigns a

value to an input.
• fmi2Get: gets the value of an internal variable of the FMU, i.e., it returns the

value of an output.
• fmi2DoStep: advances the simulation time of the component executing the

behavior defined by the model.

The dynamic library must be generated using C-like linking [8], as such the
functionality is usually expressed by using either C or C++. The standard defines
the signature for all the C functions to be implemented by the dynamic library.
However, it does not impose how they should be used, as it rather defines only some
limitations on the possible combinations.

Generation of Functional Mockup Units for Transactional Cyber-Physical. . . 31

2.2 Simulation Coordination in the FMI Standard

Any model having one or more FMUs requires a coordination mechanism compliant
with the FMI standard. Version 2.0 of the standard [1, 17] defines the concept of
master algorithm as the module of managing communication and synchronization
for sets of FMUs. Communication is managed by the master algorithm by invoking
the fmi2Get and fmi2Set functions of the co-simulation API. Meanwhile,
synchronization and simulation advancement is implemented by carrying on the
components execution by invoking the fmi2DoStep functions of the FMUs
composing the model being simulated. The standard defines some rules about how
the master algorithm should be. However, the exact definition of the algorithm is not
part of the standard. In fact, the rules explicitly defined are mostly imposing some
limitations on the structure.

Figure 2 reports a statechart simplified version of the master algorithm. It shows
the functions that the algorithm must invoke for each FMU in the model. The
figure reports only the execution of an initialized FMU that already successfully
went through the FMU setup state. Once a FMU has been initialized, its execution
reaches the Step Completed atomic state within the State Initialized sub-machine.
The master algorithm may invoke the fmi2Get or the fmi2Set functions,
respectively, reading or writing values of the FMU external variables. Otherwise,
the algorithm may invoke the fmi2DoStep function by passing as a parameter
the amount of time that must be simulated. Then, the machine moves to the Step
in Progress state. The FMU simulates by executing its functionality: if the step is

Fig. 2 Statechart representation of the coordinator algorithm for a FMU

32 S. Centomo et al.

not canceled or discarded, and no errors are caught during the FMU execution, the
fmi2DoStep returns and the machine goes back to the Step Completed state, and
the FMU advances its own local time according to the one previously passed as a
parameter. These steps iterate until no fmi2Terminate function is invoked. A
simulation tool may implement the simplest coordinator for FMI by iterating this
process for each FMU, or it may implement some more complex mechanism, still
adhering to the statechart in Fig. 2. Finally, the standard explicitly states that it is
not legal to call a fmi2Get function after fmi2Set functions without calling the
fmi2DoStep in between.

Listing 1 Sketch of the C implementation of a basic master algorithm compliant with the FMI
standard. The algorithm executes a thousand iteration, each of those advances the local and global
time of 10 time units

1 int main(int ac, char * av[]){
2 fmi2Component component_1 = load_fmu("./component_1.fmu");
3 fmi2Component component_2 = load_fmu("./component_2.fmu");
4 ...
5 fmi2Status st;
6 ...
7 st = fmi2SetupExperiment(component_1);
8 st = fmi2SetupExperiment(component_2);
9 ...

10 time = 0; step = 10;
11 ...
12 fmi2Integer in_1, in_2, out_1, out_2;
13 // Simulation starts here.
14 for(int i = 0; i < 1000; ++i) {
15 st = fmi2GetInteger(component_1, 0, &out_1);
16 st = fmi2GetInteger(component_2, 0, &out_2);
17 in_1 = out_2; in_2 = out_1;
18 st = fmi2SetInteger(component_1, 1, in_1);
19 st = fmi2SetInteger(component_2, 1, in_2);
20 st = fmi2DoStep(component_1, time, step);
21 st = fmi2DoStep(component_2, time, step);
22 time = time + step;
23 }
24 }

Listing 1 shows a C implementation of a trivial master algorithm using the
functions defined by the FMI standard for co-simulation. The procedure loads the
FMUs instantiating two variable of type fmi2Component that will point to the
FMU implementations (Lines 3–6). The status variable is declared (Line 8): every
function defined in the standard returns a status. The master algorithm initializes
the FMUs, the timing variables, and defines four integer variables (Lines 10–15).
Then, a thousand simulation cycles are executed: the algorithm reads the output
from the FMUs and assigns it to the input variables (Lines 18–20). Then, it sets
the input variables of the FMUs (Lines 21–22). Finally, the algorithm executes the
functionalities, advancing the global time of the FMUs and updates the global time
(Lines 23–25).

Generation of Functional Mockup Units for Transactional Cyber-Physical. . . 33

2.3 Related Work

Some of the FMI standard weaknesses have been first identified in [5]. The main
issues concern the managing of hybrid and discrete-event systems. The analysis
highlights how FMI is more suited for physical, continuous-time (or discretized)
systems, rather than discrete-event systems. Thus, it is tricky to use FMI when
models require discrete events.

The semantic gap between continuous-time models and discrete-event models
in FMI has been addressed [19] by proposing to use tokens synchronizing the
FMUs in the model when discrete events happen. However, such a mechanism
introduce many synchronization points in the execution, thus slowing down the
simulation. This may be particularly inconvenient when simulating models coming
from HDL descriptions, as we showed in [15]. In the same work we proposed an
ad hoc synchronization methodology to reproduce the cycle-accurate behavior of
HDL descriptions. It manages the synchronization locally to each FMU, while the
data are exchanged by an additional FMU acting as a communication hub for the
data in the system. The approach relies on automatic code generation to generate
the FMUs implementing such mechanism. Automatic code generation of FMUs for
co-simulation from HDL descriptions has been presented in [8]: it relies on a state-
of-the-art abstraction technique [20] to translate HDL models into C descriptions.
The generated descriptions are finally wrapped by an interface using the FMI co-
simulation API.

While none of the approaches described above is proposing modifications to
the standard, a number of papers do it. Cremona et al. [10] propose an additional
mechanism to add to the FMI standard, aside from the model exchange and the
co-simulation mechanisms. The novel mechanism is called Hybrid Co-simulation,
and it is thought to manage hybrid models. The authors of [14] proposed some
modifications to the API specified by the FMI standard for co-simulation. In
particular, they proposed adding an interrupt and preempt mechanism to the
fmi2DoStep. It allows the execution of an FMU to be interrupted when events
must be managed.

To the best of our knowledge, none of the previous work proposed to raise the
abstraction level of FMUs to the transactional level. This is due to the fact that the
master algorithm must always know in advance the next step size for each FMU [4,
5]. This chapter shows how we overcame this limitation, enabling transactional level
Cyber-Physical Virtual Platforms assembled relying on more abstract FMUs.

3 FMI Standard Advantages and Limitations

As a first contribution of this paper, we discuss the standard’s features useful to
create cyber-physical virtual platform. Then we will discuss some limitations that
make integration of virtual platforms difficult. Our discussion will be from a “cyber”

34 S. Centomo et al.

point of view, as we aim at highlighting the weaknesses of the standard when dealing
with discrete-event and cycle-accurate components.

Indeed the standard allows to ease the integration of different tools. It simplifies
the interfacing of heterogeneous description. It allows the designer to care only
marginally about communication and synchronization between simulators. Further-
more, it is reasonable to assume that complex CPSs are designed by multiple teams
of designers. For instance, a team might be in charge of the physical part, while the
other designs the computational infrastructure. The FMI standard allows to easily
integrate the models produced by different teams, to build a holistic simulation of
the system.

However, as hinted in Sect. 2.3, the standard has been strongly oriented to con-
tinuous systems and dynamics. We can identify different drawbacks when modeling
discrete components, and in particular when simulating digital components.

The set of data types provided by the standard is limited. When modeling digital
HW it happens to use multi-valued logic values or signals that use an arbitrary
number of bits. Meanwhile, FMI allows only integer, real, string, and Boolean. Thus,
HDL data types must be mapped on the provided types. Different mappings have
been already proposed in the past. Multi-valued logics and arbitrary long bit vectors
have been mapped onto strings [7], and (more efficiently) abstracted to unsigned
integer [8]. Still, none of the previous mapping is ideal even though they partially
solve the problem.

The data types provided by FMI are even more insufficient when modeling digital
HW models at higher levels of abstraction or when modeling SW. In such case,
models may require aggregate data types, e.g., to represent sockets’ payloads in
transaction-level description, or classes of SW models. In this case, FMI does not
provide any other solution than breaking down any aggregated type into its basic
components.

The standard does not provide any mechanism to specify the Model of Computa-
tion employed by the FMU to implement the functionality. In the case of a digital
HW description assignments are concurrent. However, simulators usually rely on
sequential models of computation (e.g., data-flows). When aggregating digital HW
components using FMI, complex synchronization structures must be built [15, 19]
to guarantee the functional equivalence of the aggregated model of the system.

It is not possible to retrieve the internal time of an FMU. The master algorithm
“imposes” to each FMU its internal timing. The main issue is related to the
fmi2DoStep function behavior: it is called by the master algorithm and it carries
on the simulation time while executing an FMU functionality. The execution of
an FMU cannot be preempted by external events. Neither the FMU is allowed to
simulate an amount of time different with respect to the one imposed by the master
algorithm, since the FMU cannot communicate back to the master algorithm its
effective internal timing. For this reason, the master algorithm must always be able
to know exactly the length of the next time step of each FMU. This forces the master
algorithm to call the fmi2DoStep function of an FMI using the shortest time
step available or to perform multiple step revisions. Thus, this limitation leads to
a higher number of synchronization points in the simulation and makes impossible

Generation of Functional Mockup Units for Transactional Cyber-Physical. . . 35

to use advanced synchronization techniques, such as temporal decoupling. Thus, it
is not well suited to manage discrete events that might be generated by system’s
components. In the case of HW description, this usually forces to simulate each
FMU with a time granularity equal to the clock cycle [15].

4 Methodology

Figure 3 summarizes the proposed methodology. It starts from a set of HDL Intel-
lectual Propertiess (IPs) models. An approach we precedently presented [8] (i.e., red
box in Fig. 3) was simply translating the IPs into C models then wrapped into FMUs.
Here we present a more advanced approach where HDL IPs undergo an abstraction
and manipulation process (colored arrows in Fig. 3). The produced models rely on
a transaction-level synchronization mechanism. Finally, these FMUs are inserted
within the Cyber-Physical Virtual Platform, where they will be coordinated by a
master algorithm that is aware of the shifting in synchronization and communication
granularity achieved by applying the transformations.

4.1 FMUs Generation and Timing Backward Propagation

As identified in Sect. 3 FMUs cannot propagate their local time back to the
coordinator. This is a major issue that must be tackled to achieve an efficient

Fig. 3 Overview of the proposed approach, and comparison with the state-of-the-art methodology
presented in [8]

36 S. Centomo et al.

discrete-event simulation. In fact, solving such issue will allow the master algorithm
to decide the next simulation step length more efficiently. Furthermore, it will allow
each FMU to simulate in a decoupled way, without defining the simulation step size.
As such, when the Master Algorithm calls the fmi2DoStep, a FMU can simulate
until it does not need to synchronize or communicate with other system components.

Listing 2 modelDescription.xml file of the component_1 with time port

1 ...
2 <ModelVariables>
3
4 <!-- Input Ports -->
5 <ScalarVariable name="in_1"
6 causality="input" \
7 valueReference="0">
8 <Boolean start="false"/>
9 </ScalarVariable>

10
11 <ScalarVariable name="in_2"
12 causality="input"
13 valueReference="1">
14 <Boolean start="false"/>
15 </ScalarVariable>
16
17 <!-- Output Ports -->
18 <ScalarVariable name="fmi2TLifaceTime"
19 causality="output"
20 valueReference="-1">
21 <Integer start="0"/>
22 </ScalarVariable>
23
24 <ScalarVariable name="out_1"
25 causality="output"
26 valueReference="0">
27 <Integer start="0"/>
28 </ScalarVariable>
29
30 <ScalarVariable name="out_2"
31 causality="output"
32 vr="1">
33 <Integer start="0"/>
34 </ScalarVariable>
35
36 </ModelVariables>
37 ...

The proposed methodology starts by generating Transaction-Level models start-
ing from HW descriptions. This is achieved by using the methodology defined
in [3]. It takes as input a HDL model described at the Register Transfer Level
(RTL) together with its communication protocol, and it generates a functionally
equivalent Transactional Level Modeling (TLM) description. The HW descriptions
can be provided by using the most common HDLs (i.e., VHDL or Verilog). The
protocol of a component can be specified in different ways. The state-of-the-
art implementations of the RTL-to-TLM abstraction methodology rely on ad hoc
protocol specification languages [20]. The resulting description is a C++ class
representing a Transaction-Level model of the original component. Each transaction
of the system is executed by invoking its simulate function, and it emulates one
transaction of the specified protocol. The internal time of the model is annotated as

Generation of Functional Mockup Units for Transactional Cyber-Physical. . . 37

Integer data type, which represents the number of clock cycles executed in the
last transaction. The abstraction procedure computes the number of clock cycles for
each transaction, and annotates it within the generated model.

The interface of the model is isolated in a structure embedded inside the C++
class. The structure contains a set of fields representing the original ports of the HW
models. The data types of these fields are abstracted into C native data types. For
instance, a 32-bit logic_vector data type is abstracted into uint32_t C data
type. The methodology relies on automatic abstraction of HDL data type [20] to
perform this transformation. Furthermore, the interface structure also contains the
time annotation of the model.

Our methodology goes on by wrapping the generated C++ class within the FMI
functions. Thus, it generates the set of fmi2Set and fmi2Get necessary to write
and read, respectively, input and output variables from and to the components. It also
generates the fmi2DoStep function that calls the generated simulate function
emulating a component transaction. The fmi2DoStep function still accepts the
step length to stay compliant with the standard. However, it ignores it as the actual
internal time of the FMU is computed by the simulate function.

The methodology generates also the XML file for the FMU. The original ports
of the HW model are mapped in the FMI data types: the Boolean and Integer
FMI types are used to represent, respectively, single bit (or logic) and bit (or logic)
vectors. The value reference is assigned to each port starting from 0 for each data
type. Listing 2 depicts the definitions of the ports in the XML file for a component
originally having two input and two output ports.

The methodology enriches the interface of the FMU with the internal time
annotation of the transaction-level model that is exposed as a new Integer port of
the FMUs (see Listing 2, Lines 18–22). The value reference -1 is reserved for the
timing port. This assures that it can be uniquely identified once the FMU is loaded
by a simulator. Furthermore, the timing port is called fmi2TLifaceTime in order
to decrease the chances of name clashing with the other ports of the FMU. This last
solution is helpful to increase also the readability of the produced FMUs.

4.2 A Better Coordinator for Discrete Systems

Listing 1 depicts a trivial Master Algorithm able to execute cycle-accurate FMUs. It
must synchronize the components of the system at each clock cycle. Thus, the time
step of each fmi2doStep is set to be equal to the clock period of the system being
modeled. Such a solution is indeed precise; however, it uses an unnecessarily high
number of synchronization points. The backward propagation of the FMUs internal
time can be exploited to reduce the number of synchronization points.

Figure 4 shows the execution scheme of the proposed Smart Master Algorithm.
Its core is the FMU Coordinator: it is in charge of storing the internal time values of
the FMUs in the system, and it decides at each simulation step which components
must be executed. Initially, the Smart Master Algorithm simulates all the FMUs,

38 S. Centomo et al.

Fig. 4 Scheme of the Smart Master Algorithm with the FMU Coordinator of Transaction-Level
FMUs

without defining a step size. All the FMUs return to the coordinator their internal
time after their first execution. Then, the Smart Master Algorithm iterates the
following steps (as in Fig. 4):

• 1© Time-Data Storing: the internal time and the new data of each FMUs are
retrieved from the master algorithm and passed to the FMU Coordinator that
stores them.

• 2© Global Time Elaboration: the FMU Coordinator elaborates the new Global
Time of the simulation as the minimum value among all the internal times of the
FMUs.

• 3© Synchronization: any FMU having the internal time equal to the Global Time
is inserted into the list of runnable FMUs. Data read after the last execution of
each runnable FMU, and previously stored by the coordinator, are shared with
the system (i.e., the values become valid for the entire system).

• 4© Data Propagation: the Smart Master Algorithm propagates the data and
simulates the FMUs present in the list of runnable FMUs.

Listing 3 Sketch of the C++ implementation of the Smart Master Algorithm exploiting backward
timing propagation

1 ...
2 fmi2Status st;
3 unsigned int global_time=0;
4

5 fmi2Component components[num];
6 components[0]=load_fmu("./component_1.fmu");
7 components[1]=load_fmu("./component_2.fmu");
8

Generation of Functional Mockup Units for Transactional Cyber-Physical. . . 39

9 unsigned int local_time_vector[num];
10

11 for(int i=0; i < num; i++) {
12 st=fmi2DoStep(components[i], global_time, 0);
13 st=fmi2GetInteger(component[i], -1, &local_time);
14 local_time_vector[i]=local_time;
15 retrieve_and_store_output(component[i]);
16 }
17

18 while(global_time < 1000) {
19 set< fmi2Component > runnable_FMUs;
20 global_time=find_minimum(local_time_vector[0]);
21

22 for(int i=0; i < num; i++) {
23 if(local_time_vector[i] == global_time)
24 runnable_FMUs.insert(components[i]);
25 }
26

27 propagate_data(runnable_FMUs);
28 set< fmi2Component >::iterator it;
29 for(it=runnable_FMUs.begin;
30 it != runnable_FMUs.end; it++)
31 {
32 fmi2Component * component=*it;
33 st=writeInputs(component);
34 st=fmi2DoStep(component, global_time, 0);
35 st=fmi2GetInteger(component[i], -1, &local_time);
36 local_time_vector[i]=local_time;
37 retrieve_and_store_output(component[i]);
38 }
39 }
40 ...

Listing 3 shows a sketch of the proposed Smart Master Algorithm. It reports
only the most important parts of a possible C++ implementation of the coordination
mechanism. Initially (Lines 2–9) it declares a status variable, an integer variable
tracking the global time, and an array of components. The FMUs composing the
system are stored in the array after being loaded. Furthermore, an array is declared
to store the local times of each FMU. The same position in the two arrays refers
always to the same FMU. Then, the coordinator initializes the simulation (Lines
11–16) by executing all the components once without advancing the global time.
This step allows to generate the first set of events of the system, thus firing the
event-based simulation mechanism and populating the set of runnable FMUs. For
each execution, the local time is retrieved (Lines 13) and stored (Line 14). Then,
all the output values written by the FMU are retrieved and stored (Line 15). Then,
the system is simulated (Lines 18–39). At each simulation cycle a set containing
the runnable FMUs is created empty and populated after the global time has been
updated (Lines 19–25). Then, data previously produced by the runnable FMUs are
propagated (Line 27). Finally, each runnable FMU is executed (Lines 28–37).

40 S. Centomo et al.

5 Methodology Application

We implemented the methodology by assembling a tool-chain performing the
abstraction, manipulation, and translation steps. We relied on the API provided
by the HIFSuite framework [2] to extend the automatic code generation presented
in [8]. The automatic abstraction of HDL descriptions is performed by specifying
the components’ protocols to generate the corresponding transaction-level C++
descriptions as defined in [3]. The models produced by the abstraction are enriched
with the timing backward propagation mechanism. Finally, a tool wraps the model
within the FMI APIs for co-simulation. We applied the tool-chain to a set of
benchmarks varying with respect to two dimensions: the protocol latency and the
number of FMUs composing the system. We aim at estimating the scalability of the
proposed approach with respect to these two dimensions. We implemented the same
functionality within each HW component of the system, since this paper focuses on
the interfaces of the components, rather than on their internal functionalities. The
internal functionality is kept extremely simple in order to let the communication and
synchronization overhead to be predominant in the simulation. Each component is
simply counting the number of clock cycles until its pre-defined latency is reached.
For each experiment, we have considered components with different latencies. In the
experiments we refer to the base latency of an experiment as the minimum latency
of the component in that experiment.

We generate two FMUs of different types for the same HW model: the cycle-
accurate FMU and the transaction-level FMU with backward timing propagation.
All the experiments have been performed on a 64-bit machine running Ubuntu Linux
16.04, equipped with 16 GB of memory and an Intel(R) Core(TM) i7-3770 CPU @
3.40 GHz.

Table 1 reports the execution time by using the Trivial Master Algorithm, with
different cycle-accurate FMUs and different numbers of iterations. The protocol
latency dimension is not considered in this table because the Trivial Master
Algorithm simulates only cycle-accurate FMUs. Using the Trivial Master Algorithm
the protocol latency does not affect the coordination overhead in the simulation. The
results show that moving in both the dimensions (number of FMUs or iterations) the
execution time increases almost linearly.

Table 1 Execution time of FMUs simulation using trivial Master Algorithm, with different
number of iterations

Execution of FMUs (s)

iterations (clock cycles) 2 5 10 20 40

100 K 4.76 10.75 21.89 43.34 82.46

1 M 41.87 104.13 198.74 405.25 834.34

10 M 421.93 1021.64 2015.55 4129.17 8322.22

20 M 886.78 2062.32 4267.29 8219.65 16,466.54

Generation of Functional Mockup Units for Transactional Cyber-Physical. . . 41

Table 2 Execution time comparison of normal master algorithm and smart master algorithm with
different protocol latencies

Base latency
(clock
cycles)

Execution of FMUs (s)

2 5 10 20 40

Trivial Smart Trivial Smart Trivial Smart Trivial Smart Trivial Smart

20 421.93 115.54 1021.64 250.23 2015.55 465.48 4129.17 889.39 8322.22 1752.71

Speed-up 3.65× 4.08× 4.33× 4.64× 4.75×
50 421.93 60.28 1021.64 135.65 2015.55 253.43 4129.17 481.36 8322.22 964.92

Speed-up 7.00× 7.53× 7.95× 8.58× 8.62×
100 421.93 44.71 1021.64 95.57 2015.55 179.34 4129.17 344.25 8322.22 702.17

Speed-up 9.44× 10.69× 11.24× 11.99× 11.85×
In all the scenarios, 10 million clock cycles of the system have been simulated

Table 2 compares the simulation speed achievable by using the Trivial and the
Smart Master Algorithm. The performance obtained by using the Smart Master
Algorithm depends on the protocol latency. On the contrary, the Trivial Master
Algorithm performance is not influenced by such dimension. The Smart Master
algorithm with the transaction-level FMUs achieves up to 11× speed-up when
using the largest protocol latencies considered. Reducing the protocol latencies of
the transaction-level FMUs, the Smart Master Algorithm is less beneficial because
of the increasing number of synchronization points. Of course, when the protocol
latency is equal to one clock cycle (e.g., when modeling combinatorial circuits) we
have a degenerate case: the transaction-level and the cycle-accurate implementations
will have the same amount of synchronization points. As such, only in that case, the
Smarter Master Algorithm is slightly outperformed by the trivial one, due to the
higher amount of computation required by the coordinator.

Figures 5 and 6 give a graphical representation of how the simulation overhead
changes when changing the protocol base latencies and the number of FMUs,
respectively. The vertical axes of both table report the simulation time, while the
horizontal axes report the two considered dimensions. The trends in Fig. 5 show how
performance improves by increasing the latency. This is because a longer latency
allows for more temporal decoupling, thus less synchronization and communication
overhead. Figure 6 shows that the simulation time increases linearly with the number
of involved FMUs. Thus, it shows the minimal impact of the more sophisticated
master algorithm proposed in this paper.

6 Recent Development and Discussion

In 2018 the FMI Steering Committee has announced a new version of the standard,
called FMI 3.0. The committee also published the list of new standard intended

42 S. Centomo et al.

Fig. 5 Trend of the simulation overhead using the Smart Master Algorithm with respect to the
protocol latency

Fig. 6 Scalability of the Smart Master Algorithm with respect to the number of FMUs

Generation of Functional Mockup Units for Transactional Cyber-Physical. . . 43

additional features.1 In our opinion, among the proposed features, the most interest-
ing aiming at providing a better support for digital components are:

• new data types;
• structured ports and multi-dimensional variable;
• intermediate output values and support for hybrid co-simulation.

The Steering Committee also underlines that not all the mentioned features might
be introduced in the final version of the new standard. Still, the entire project is
now stored in a public repository,2 it is thus possible to monitor the status of
the development for the new standard. Currently, only new data types have been
added to the features list. In details, it is now possible to specify integer values
spanning from a single byte Integer (fmi3Uint8,fmi3Int8) to 64 bits Integer
(fmi3Uint64, fmi3Int64).

Listing 4 Data types comparison between FMI Standard 2.0 and the new 3.0 versions

1 //FMI 2.0 DataTypes
2 typedef double fmi2Real;
3 typedef int fmi2Integer;
4 typedef int fmi2Boolean;
5 typedef char fmi2Char;
6 typedef const fmi2Char* fmi2String;
7 typedef char fmi2Byte;
8

9 // FMI 3.0 Datatypes
10 typedef float fmi3Float32;
11 typedef double fmi3Float64;
12 typedef int8_t fmi3Int8;
13 typedef uint8_t fmi3UInt8;
14 typedef int16_t fmi3Int16;
15 typedef uint16_t fmi3UInt16;
16 typedef int32_t fmi3Int32;
17 typedef uint32_t fmi3UInt32;
18 typedef int64_t fmi3Int64;
19 typedef uint64_t fmi3UInt64;
20 typedef int fmi3Boolean;
21 typedef char fmi3Char;
22 typedef const fmi3Char* fmi3String;
23 typedef char fmi3Byte;
24 typedef const fmi3Byte* fmi3Binary;

Listing 4 shows a comparison between the data types provided by the standard
2.0 and the new standard 3.0. Only Lines 2–7 were present already in the previous
standard. The new 3.0 standard extends the previously existing data types by
adding the definitions reported in Lines 10–24. It is important to notice that
some of the new definitions replace those of the former standard. For instance,

1https://fmi-standard.org/news/2018/05/30/fmi-3-0-alpha-feature-list.html.
2https://github.com/modelica/fmi-standard/.

https://fmi-standard.org/news/2018/05/30/fmi-3-0-alpha-feature-list.html
https://github.com/modelica/fmi-standard/

44 S. Centomo et al.

fmi2Integer (Line 3) has been replaced with all the primitive C types that allow
addressing specific amount of bytes (Lines 12–19). These new data types allow
choosing between Signed or Unsigned and from a single byte to 64 bits Integer.
fmi2Real (Line 2) has been splitted into fmi3Float32 and fmi3Float64
(Lines 10–11), where 32–64 represent the size of the data type (Floating-Point single
precision or Double precision). Moreover, the introduction of these new data types
implies consequentially the introduction of new methods for data-exchange (i.e.,
fmi3GetUint8, fmi3SetUint8, etc.). On the other hand, it is not clear if the
new standard will provide compatibility with FMUs written by using the previous
standards. One of the main purposes of the FMI standard is to support exchange of
models among different teams, organizations, and tools. As such, it is our opinion
that it will be necessary to provide interoperability between models produced by
different organizations, or by the same in different times, and that may thus rely
on different versions of the standard. Furthermore, we also think that keeping the
possibility of using more generic types, such as generic integer or generic real, may
help designers in the initial phases of the modeling process when some details may
still be unknown. Moreover, it is our opinion that providing the possibility of using
generic integer and real types may make the standard more attractive to users whose
background is not in computer science. Another novel addition is the fmi3Binary
data type. It is an opaque binary data type that may be useful to carry the information
from complex sensors data to computational components, to model complex binary
streams, or to model communication of closed-source components.

Structured ports and multi-dimensional variables are listed in the intended
features list. Of course, supporting multi-dimensional variables will drastically
move forward the standard toward the possibility of representing communication
mechanisms typical of computing systems. In fact, it should provide the possibility
of representing arrays, records, and other software typical data structures. The
same will be true for hardware bus-based communication that can be represented
by structured ports, similarly to what happens with the payload structures used
in transactional models. For instance, structured ports will allow to simplify the
approach presented in this chapter by using a single port representing the entire
payload of the component modeled in a transactional FMU. However, at the current
state of the work, the development of structured ports and multi-dimensional
variables has been only announced, and any further detail has not been presented
yet.

The possibility of accessing internal data in the middle of the doStep function
is an extremely promising feature to enable hybrid co-simulation. In fact, accessing
internal events of module being simulated enables the possibility of modeling mech-
anisms similar to interrupt that are crucial to model reactive systems. Furthermore,
such a feature will enable a better managing of events and time. Since important
events may be visible to the master algorithm even before the termination of a
FMU execution, the master algorithm can speculate by increasing the length of the
FMU execution. This feature will also make obsolete the solution proposed in this
chapter: here, an FMU simulates until the first interesting event, and then the master
algorithm must retrieve the internal FMU time by the additional port proposed in

Generation of Functional Mockup Units for Transactional Cyber-Physical. . . 45

Sect. 4. With the new feature, the master algorithm may impose a longer FMU
execution while monitoring eventual internal events of interest, thus decreasing
the number of required synchronization and communication points. Then, better
mechanisms of handling the co-existence of FMUs governed by different models
of computation, as well as mixed continuous- and discrete-time dynamics must be
incorporated. However, even though some extensions have been proposed in the
literature [10, 14], and at its current state, the implementation does not clarify if
such extensions will be integrated into the new standard. Integrating such features
will be crucial to support digital models within FMI-based simulation frameworks.
Otherwise, users will continue to be forced performing sophisticated manipulations
to models, such as those proposed in this chapter.

7 Concluding Remarks

This chapter discussed the current version of the FMI standard, and proposed a
methodology to extend it to simulate FMUs representing digital components at
transaction-level. The approach adds some information to the FMUs interface. Then,
it adopts an ad hoc master algorithm that is still conformed to the standard.

The experimental results showed the positive impact of the methodology. How-
ever, the approach requires design effort to explicitly force the standard to accept the
transaction-level FMUs we defined. The analysis of the current effort to extend the
standard shows both the importance of the proposed extensions and the necessity
to better target such extensions to support discrete-event models. Meanwhile, the
proposed methodology will allow to cover where the current standard is still lacking.

References

1. Blochwitz, T., et al. (2012). Functional Mockup Interface 2.0: The standard for tool indepen-
dent exchange of simulation models. In Proceedings of MODELICA Conference 2012 (pp.
173–184).

2. Bombieri, N., Di Guglielmo, G., Ferrari, M., Fummi, F., Pravadelli, G., Stefanni, F., et al.
(2010). HIFSuite: Tools for HDL code conversion and manipulation. EURASIP Journal on
Embedded Systems, 2010(1), 1–20.

3. Bombieri, N., Fummi, F., & Pravadelli, G. (2011). Automatic abstraction of RTL IPs into
equivalent TLM descriptions. IEEE Transactions on Computers, 60(12), 1730–1743.

4. Broman, D., Brooks, C., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., et al. (2013).
Determinate composition of FMUs for co-simulation. In Proceedings of the Eleventh ACM
International Conference on Embedded Software (p. 2).

5. Broman, D., Greenberg, L., Lee, E. A., Masin, M., Tripakis, S., & Wetter, M. (2015).
Requirements for Hybrid Cosimulation Standards. In Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control (pp. 179–188). New York: ACM.

6. Cai, L., & Gajski, D. (2003). Transaction level modeling: An overview. In Proceedings of the
1st IEEE/ACM/IFIP CODES-ISSS (pp. 19–24). New York: ACM.

46 S. Centomo et al.

7. Centomo, S., Deantoni, J., & De Simone, R. (2016). Using SystemC cyber models in an
FMI co-simulation environment: Results and proposed FMI enhancements. In Proceedings
of Euromicro Conference on Digital System Design (DSD) (pp. 318–325). Piscataway: IEEE.

8. Centomo, S., Lora, M., Portaluri, A., Stefanni, F., & Fummi, F. (2017). Automatic generation
of cycle-accurate Simulink blocks from HDL IPs. In Proceedings of ECSI/IEEE Forum on
Specification & Design Languages 2017 (FDL 17) (pp. 1–8).

9. Centomo, S., Lora, M., & Fummi, F. (2018). Transaction-level functional mockup units for
cyber-physical virtual platforms. In 2018 Forum on Specification & Design Languages (FDL)
(pp. 1–8). Piscataway: IEEE.

10. Cremona, F., Lohstroh, M., Broman, D., Lee, E. A., Masin, M., & Tripakis, S. (2017). Hybrid
co-simulation: It’s about time. Software & Systems Modeling. https://doi.org/10.1007/s10270-
017-0633-6.

11. Fummi, F., Lora, M., Stefanni, F., Trachanis, D., Vanhese, J., & Vinco, S. (2014). Moving
from co-simulation to simulation for effective smart systems design. In Proceedings of the
conference on Design, Automation & Test in Europe (p. 286). Leuven: European Design and
Automation Association.

12. Golomb, S. W. (1971). Mathematical models: Uses and limitations. IEEE Transactions on
Reliability, 20(3), 130–131.

13. Lee, E. A.: Fundamental limits of cyber-physical systems modeling. ACM Transactions on
Cyber-Physical Systems, 1(1), 3 (2017).

14. Liboni, G., Deantoni, J., Portaluri, A., Quaglia, D., & De Simone, R. (2018). Beyond
time-triggered co-simulation of cyber-physical systems for performance and accuracy improve-
ments. In Proceedings of workshop on rapid simulation and performance evaluation: Methods
and tools.

15. Lora, M., Centomo, S., Quaglia, D., & Fummi, F. (2018). Automatic integration of cycle-
accurate descriptions with continuous-time models for cyber-physical virtual platforms. In
Proceedings of ACM/IEEE Design Automation & Testing in Europe 2018 (pp. 1–6).

16. Lora, M., Vinco, S., & Fummi, F. (2019). Translation, abstraction and integration for effective
smart system design. IEEE Transactions on Computers.

17. MODELISAR Consortium, Modelica Association, et al.: Functional Mock-up Interface for
Model Exchange and Co-Simulation – Version 2.0. Available from https://www.fmi-standard.
org.

18. Rajkumar, R. R., Lee, I., Sha, L., & Stankovic, J. (2010). Cyber-physical systems: The next
computing revolution. In Proceedings of the 47th Design Automation Conference (pp. 731–
736). New York: ACM.

19. Tripakis, S. (2015). Bridging the semantic gap between heterogeneous modeling formalisms
and FMI. In Proceedings of International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS) (pp. 60–69). Piscataway: IEEE.

20. Vinco, S., Guarnieri, V., & Fummi, F. (2016). Code manipulation for virtual platform
integration. IEEE Transactions on Computers, 65(9), 2694–2708.

https://doi.org/10.1007/s10270-017-0633-6
https://doi.org/10.1007/s10270-017-0633-6
https://www.fmi-standard.org
https://www.fmi-standard.org

Safe Interoperability for Web of Things
Devices and Systems

Ege Korkan, Sebastian Kaebisch, Matthias Kovatsch,
and Sebastian Steinhorst

1 Introduction

The Internet of Things (IoT) brings connectivity to electronic devices and allows
them to connect with each other. Due to the large variety of IoT devices and
application scenarios, they all bring their own properties such as different processing
speed or range of connectivity, desired run-time or energy consumption, safety
features, etc. This creates a fragmentation in IoT, with different standards to interact
with the devices and to represent them, each optimized for a specific application area
or device type. Consequently, such fragmentation hampers composing applications
beyond the functionality of the individual devices.

In the electronic design community, languages such as SystemVerilog have
proven to be an effective standardized representation for the entire development
cycle, from design to verification and for a very wide range of application areas.
However, in the IoT domain, companies introduce siloed IoT platforms that come
with proprietary standards even within similar application domains.

Consequently, there is a necessity that an IoT device can be represented with a
description of capabilities, which can be understood and interpreted by other devices
and standards. Here, a common ground can be created by enabling to describe an

E. Korkan (�)
Technical University of Munich, Munich, Germany
e-mail: ege.korkan@tum.de

S. Kaebisch · M. Kovatsch
Siemens AG, Munich, Germany
e-mail: sebastian.kaebisch@siemens.com; matthias.kovatsch@siemens.com

S. Steinhorst
Technical University of Munich, München, Bayern, Germany
e-mail: sebastian.steinhorst@tum.de

© Springer Nature Switzerland AG 2020
T. J. Kazmierski et al. (eds.), Languages, Design Methods, and Tools for
Electronic System Design, Lecture Notes in Electrical Engineering 611,
https://doi.org/10.1007/978-3-030-31585-6_3

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31585-6_3&domain=pdf
mailto:ege.korkan@tum.de
mailto:sebastian.kaebisch@siemens.com
mailto:matthias.kovatsch@siemens.com
mailto:sebastian.steinhorst@tum.de
https://doi.org/10.1007/978-3-030-31585-6_3

48 E. Korkan et al.

interface to different standards in a well-defined representation. For this purpose, the
Thing Description (TD) [1] was introduced recently as an open description format
for devices with connectivity of any kind that is human-readable and machine-
understandable. The TD is not a standard to replace other IoT standards, but it
enables to describe them through syntactic and semantic information.

Consider a temperature sensor used with a cloud IoT platform and a local
ventilator. Between them, TDs enable to create a temperature-controlled ventilation
system directly composed of the capabilities of these two physical devices. The
advantage of such interoperability for machine-to-machine communication is to
enable system functionality without prior knowledge about the interfaces between
the devices.

Such a sensor’s functional capability, data structure, and access points will be
referenced in the TD of the sensor. Hence, the ventilator will be able to access the
sensor data due to the provided access points and will be able to understand the data
due to the data structure described in the TD.

The previous ventilation system example is abstracted in Fig. 1. This system has
three IoT devices, each possessing a TD. Within the system, each IoT device, to
which we will in the following refer to as a Thing,1 can read the TD of another
Thing and interpret it to understand the information such as the Thing’s interactions,
supported protocols, data structure, how to access the data, etc., as described in the
column on the right of Fig. 1 (TD Contents). During the course of this paper, an
exposer Thing accepts requests provided in its TD, whereas the consumer Thing
reads a TD and interacts with the exposer Thing.

Thing A Thing B

TD

1

2

3

X

Possible TD
Interaction:
asda
- Property
- Action
- Event

Thing C

TD
1

TD

1 3

2 4

TD Contents:
asd
- Identification
- Interaction List
- Data Type
- Data Access
- Protocols
- Security

System

Fig. 1 An abstracted view of an IoT System with three IoT Devices each with an associated Thing
Description (TD). The arrows demonstrate composition of greater functionality than the devices
themselves, necessitating sequential behavior between devices

1When the word Thing is used with a capital letter, a Thing means an object, either virtual or
physical, that can be communicated with.

Safe Interoperability for Web of Things Devices and Systems 49

An interaction is the description of a specific capability of the Thing, representing
the data structure, access protocol, and access link. For example, reading the
temperature value is such an interaction with the Thing. Similarly, rotating the fan is
also an interaction that acts on the physical world. In a TD, one would find a list of
interactions and how to access them. Interactions are illustrated by numbered boxes
in Fig. 1 and they will be explained in Sect. 2 in more detail.

In Fig. 1, Thing A has three interactions and all these interactions can be used
by Thing B and C to interact with Thing A. Referring to the temperature-
controlled ventilation system example, interaction 1 of Thing A can be reading
the temperature value and the interaction 4 of Thing B can be rotating the fan.

Problem Statement With the current TD standard, it is possible to build the
system described in Fig. 1. However, the behavior represented by arrows has to
be programmed manually, which results in an implicit description of the device or
system.

An interaction can change the state of the Thing, making it accept only
certain interactions (state transitions). For example, the red (continuous) arrow is
a sequence describing such state transitions of Thing A. This can be requirements
of sequential behavior, such as initializing the motor driver of the ventilator before
setting a rotation speed. In order to execute this sequence of interactions, since such
a sequence is not described in the TD, the person who implements the compositional
system needs to have access to an operation manual of Thing A. This manual
should describe the internal workings of the Thing (e.g., with a state machine) and
give meaning to the causality between interactions.

Similarly, the green (dotted) and blue (dashed) arrows in Fig. 1 illustrate sequen-
tial behavior between multiple Things and are not expressed anywhere, thus need
to be implemented manually. For example, we would like to express that the green
(dotted) arrow represents the aforementioned temperature control functionality in
the correct order and with a causal relation: reading a temperature value and then
rotating the ventilator. This shows that executing multiple interactions can provide
another meaning that is not previously given in a single interaction. To solve this
problem, a new interaction can be implemented that provides the same meaning of
executing multiple interactions. This is possible during the development phase of
Things, but for non-reprogrammable, legacy devices there is no such option.

Contributions In order to avoid that each interaction is executable at any given
time or multiple interactions can be executed in any given order, in this paper,
we propose the specification of sequential behavior within TDs. The ability to
represent valid sequences of interactions, which we call paths, in the TD of a device
enables the designer of this device to restrict interactions and hence simplify the
interaction of other devices with this device. Without such paths, arbitrary sequences
of interactions could be triggered, which would either require knowledge about the
inner workings of the device or create an unsafe and erroneous behavior.

50 E. Korkan et al.

Consequently, in the context of TDs introduced in Sect. 2, this paper has the
following contributions:

• We extend our initial path vocabulary2 contribution of [2] in Sect. 3.1 that
uses the JSON Pointers instead of hrefs. This enables stronger semantics for
describing how to interact with Things.

• We show that a system can be composed through sequential interactions of
multiple Things by using the same path logic, presented in Sect. 3.2.

• We demonstrate a case study with sequential behavior in an industrial automation
system composed of an industrial fan, a temperature sensor, and a system
controller in Sect. 4.

Related work is discussed in Sect. 5, a discussion on an application of our
methodology is provided in Sect. 6, and Sect. 7 concludes.

As the applications of TDs diversified, two new observations motivated us to
improve our path vocabulary:

• Some Web of Things (WoT) devices use the same Uniform Resource Identifier
(URI) as hrefs for multiple interactions where the interactions are differentiated
via the method they require. For example, the Philips HUE [3] lights specify
that sending an HTTP GET request to /api/<username>/lights would return all
the light states and information, like a Property Interaction of a TD. However,
sending an HTTP POST request to the same URI would start a search for new
lights.

• In some cases, one interaction can have multiple forms that serve different
purposes, such as one for observing possible updates of a sensor’s measurement
and one to get the current value. These forms can use the same href value or
even use different protocols.

These new discoveries motivated us to abstract how the path vocabulary is
serialized and not use URIs of hrefs in the path serialization. We have opted for
the JSON Pointers standard as specified in [4] which is still in the URI format. JSON
Pointers point to a specific place in a JSON document and in our contribution we
use them to point to a specific form in the TD document.

2 Thing Description

The TD approach has been introduced in September 2017 (First public draft) by
the WoT Working Group of World Wide Web Consortium (W3C). This section
will explain the TD approach, but most importantly, its shortcomings and why our
contribution is necessary to enable TDs to describe more complex cyber-physical

2The term vocabulary is used here since the TD standard [1] refers to actions, properties, etc. as a
vocabulary.

http://api/<username>/lights

Safe Interoperability for Web of Things Devices and Systems 51

systems. In the following, we will mainly focus on the relevant details of TDs for
the context of our contribution, the proposed path vocabulary.

The path vocabulary that will be introduced in Sect. 3 describes a series of inter-
actions. Further information on the characteristics of interactions is thus required
before introducing this vocabulary. In this section, we will define interactions in
order to argument the need for describing sequential behavior.

An interaction I can represent two types of messaging patterns: request–response
(Definition 1) and publish–subscribe (Definition 2).

Definition 1 (Request–Response) For a request p ∈ client and a q ∈ server, the
pair is defined as follows:

p ⇒ q (1)

Definition 2 (Publish–Subscribe) Notifying an event only in matching subscrip-
tion intervals is defined by Baldoni et al. [5] as follows:

∀e ∈ nfy(x) ∈ hi ⇒ nfy(x) ∈ Si(C) s.t. C(x) = � (2)

with

• e, the event the subscriber subscribed to;
• x, the information generated from the process;
• nfy, the notification of the information;
• h, a local computation that generated x;
• S, the interval between subscription and unsubscription;
• C, the subscription request by the subscriber;
• �, the pattern of the event to subscribe to at the server side.

These formal definitions for interactions are mentioned in the TD standard [1] in
three groups:

• Properties: A value provided by the Thing, such as sensor data, or values provided
to the Thing, such as a desired temperature. This matches the request–response
pattern.

• Actions: Requesting the Thing to do something that interacts with the physical
world or with other Things that also takes some time, such as turning on a fan or
LED. This matches the request–response pattern.

• Events: A message triggered due to a change in the Thing and sent to the
consumer Things that have subscribed to it, such as an overflow alarm. This
matches the publish–subscribe pattern.

In order to illustrate the different types of interactions in a practical example, we
are showing a simplified TD of a ventilator in Listing 1. This ventilation Thing, as
described by its TD, can rotate the motor of the ventilator at a given speed provided
by the consumer Thing. It also has safety features such as requiring initialization by

52 E. Korkan et al.

the consumer Thing. In addition, in case of an overheating of the motor, it can notify
the consuming Things who are subscribed to this notification.

Other than interactions, the TD provides identification information. In the order
of appearance in Listing 1, the title provides a human-readable reference
(identification) for this Thing, whereas id provides a unique identification for the
Thing that stays unchanged through different networks or IP addresses. Similarly,
the base (line 3) describes the protocol and the URI needed to communicate with
this Thing.

By using the default protocol bindings described in [6], one can interact with the
previously introduced ventilator in the following sequence:

• Read or write the rotation speed of the ventilator by reading/writing the
rotation property (lines 6–10). Here, it is specified that the data structure
should be an integer.

• Rotate the ventilator by invoking the rotate action (lines 13–15). This action
can be invoked without sending any specific data and the response will not
contain an integer as in the previous property.

• Initialize the motor driver by invoking the initialize action (lines 16–19).
Here, it is specified that the data structure of the response should be a string.

• Subscribe to the overheating event (lines 22–25) and get notified if the motor
heats up too much. The structure of the data received will be a string data
structure.

This ventilation Thing represents a sequential behavior that is not explicitly
described. If one reads and learns the internal workings of the Thing, it is specified
that in order to rotate the motor, one needs to invoke the initialize action (lines
16–19). This problem is commonly encountered in cyber-physical systems and is
illustrated in an abstracted fashion in Fig. 2. Generally, a consumer Thing reads
a TD, understands what can be done with the associated Thing, sends a chosen
request to execute the interaction, and waits for the response from the Thing. The
orange (dashed) arrow Choose Interaction is thus handled implicitly by the
Thing Y (consumer) and there is no vocabulary provided by Thing X that tells the
consumer to execute interactions in a specific order. Without the contribution of this

C

X

F

Y
Thing X

Get TD
Send TD

Send Response

Thing Y

Send request
to execute

interaction C

Process Request

Construct Request
Choose Interaction

Fig. 2 Request–Response sequence abstraction that can be used for interacting with a Thing. The
orange (dashed) arrow demonstrates the missing part of the TDs, which is the problem addressed
in this paper

Safe Interoperability for Web of Things Devices and Systems 53

paper, Thing Y’s developer had to know the internal workings of Thing X. With our
contribution, presented in the following section, this becomes a more systematic and
guided process.

1{
2 "title": "MyVentilator",
3 "@context": "https://www.w3.org/2019/wot/td/v1",
4 "id": "urn:dev:ops:32473-ventilator-1234",
5 "securityDefinitions": {
6 "basic_sc": {"scheme": "basic", "in":"header"}
7 },
8 "security": ["basic_sc"],
9 "base":"coaps://vent.example.com:5683",

10 "properties":{
11 "rotation":{
12 "type": "integer",
13 "forms":[{"href": "/rotation"}]
14 }
15 },
16 "actions":{
17 "rotate":{
18 "forms":[{"href": "/rotate"}]
19 },
20 "initialize":{
21 "output":{"type": "string"},
22 "forms":[{"href": "/init"}]
23 }
24 },
25 "events":{
26 "overheating":{
27 "data":{"type":"string"},
28 "forms":[{"href": "/oh"}]
29 }
30 }
31}

Listing 1 Simple Thing Description of a ventilator that exposes the rotation speed, motor
initialization, and rotating actions and an overheat alarm that can be obtained from
coaps://vent.example.com:5683/td

3 Describing Sequential Behavior

The contribution of this paper is the new path vocabulary that allows to describe
sequential behavior. We start this section by listing some requirements of such a
vocabulary in the context of TDs. The following subsections start by introducing
the vocabulary for single devices and then extend it for systems composed from
devices.

http://coaps://vent.example.com:5683/td

54 E. Korkan et al.

Many models for system representation are measured by their expressiveness. In
the field of automata theory, there are different levels of expressiveness, from finite
automata to Turing Machines.

For cheap and not powerful IoT devices, exhaustive modeling of the inner
workings is too tedious. On the other hand, a behavior described in a TD needs
to be parsed and understood by such resource-constrained devices. Hence, even
if the device providing this representation has enough resources to provide it, the
description will not be usable by other IoT devices that are resource-constrained.
Furthermore, obliging interacting devices to understand such behavior is contradic-
tory to the design philosophy that internet and web technology enabled in the last
decades, which is also applied for IoT.

Often, web pages, services, or Application Programming Interfaces (APIs) are
self-descriptive and the user does not need to understand the complete system to
start using them. For example, in a simple web page, the user can simply understand
the link that he/she is interested in and not look at the rest (e.g., a site-map), i.e., not
understand the complete state machine to execute one interaction. Inspired by the
success of this logic, it is primordial to follow the same logic for IoT systems and
hence for TD, in order to enable easy adoptability and usability.

3.1 Describing Sequential Behavior in a Single Thing

The path vocabulary is based on describing sequential behavior for a single Thing.
For this reason, we will formally define the path vocabulary in this section. The
formal definition will be then embedded into the TD format and later on used in a
system. In order to illustrate the problem and guide this paper, we will be using a
state machine of a legacy motor driver of a ventilator, as shown in Fig. 3.

This device cannot be reprogrammed,3 but requires strict sequential behavior in
order to operate safely. A sequence of interactions is needed to make it ready for
accepting speed commands or to bring it back to a safe stop.

We can see that the initialize action needs to be invoked to initialize the
motor. This sets the rotation per minute (rpm) of the motor to 0. However, as a safety
feature, the rotate action must be explicitly invoked before setting the rotation
speed with the rotation property. At this point, we can write to the speed value
and rotate the motor in a direction. For example, to rotate the motor at 1300 rpm,
the following specific order of interactions is needed:

1. Initialize
2. Rotate
3. Write (1300 rpm as value)

A consumer Thing that will interact with this motor driver and that does not
know this sequential behavior cannot control the machine the way it is designed.

3TDs allow precise description of the capabilities of a device even if the device cannot provide its
own TD. In this case, we can use a gateway that stores and provides the TD.

Safe Interoperability for Web of Things Devices and Systems 55

Idle

Ready

Rotating

Failure Reset

Rotation
Speed

Initialize

Rotate

Sleep

Stop

Quick
Stop

Rotation
Write

Fig. 3 State machine representation of a legacy motor driver. In order to enable setting the rotation
speed to the desired value, Initialize, Rotate interactions have to be executed in this order

Furthermore, if the consumer Thing has access to this specific state machine in
a machine-readable format (such as SCXML [7]), understanding the entire state
machine for every application should not be necessary. For example, if the motor
driver, i.e., the exposer Thing, chooses to expose only a safe stop sequence, the entire
state machine that also describes the sequence to rotate the motor would contain
unnecessary information.

By contrast, in our path vocabulary, we describe the behavior we want to expose
with simple sequential interactions with interaction data that already exist in the
TD. The aforementioned path of interactions, named RotateMotor, is shown in
Fig. 4 along with the state machine from Fig. 3 that was used to generate the paths.
We have given other valid path examples from the state machine for illustration.

In order to properly define the path vocabulary we need to introduce four
definitions this vocabulary is composed of: path, name, @type, and paths.

Definition 3 (Path) From an ordered sequence of interactions I of sequence length
l with 1 ≤ i ≤ l, a path π with name t is defined as:

πt = I1, . . . , Ii , . . . , Il (3)

Definition 4 (Name) The name of the path is used within the TD to reference the
JSON [8] object that contains the path information. Within the TD, the name allows
the path to be referenced in the following fashion:

πt = derivePath(t) (4)

with derivePath being a function that finds the path t by parsing the TD.

56 E. Korkan et al.

Initialize Rotate Write

Proposed Paths

Name: RotateMotor

Stop Sleep

Name: SafeStop

Reset Initialize Rotate Write

Name: ForceRotateMotor

Reset

Name: Reset

Idle

Ready

Rotating

Failure Reset

Rotation
Speed

Initialize

Rotate

Sleep

Stop

Quick
Stop

Rotation
Write

Fig. 4 Illustration of Thing Description paths based on the state machine of a legacy motor driver
for an industrial fan. The paths are composed of interactions that execute state transitions. Note
that even if the path just contains a single interaction, it is still a valid representation

Definition 5 (@type) The @type optionally allows to annotating semantics with
the path. It uses the JSON-LD [9] format to reference to another resource on the
Web that gives a meaning to the path, making it machine-readable. In a TD, this
semantic annotation is given in a compacted form. The value written in @type will
be combined with a URI in the @context field of the TD, exactly the same way
as it is combined in the TD standard [1]. Currently used semantic annotations can
be found in the iot.schema.org library4 and used for linking the data.

Definition 6 (Paths) The set of paths offered by the Thing is denoted by � and
defined as follows:

� =
⋃

πk | πk ∈ TD (5)

These formal definitions translate to a path description in a TD as shown in
Listing 2. Paths are an extension of the TD in Listing 1, with ... symbolizing the
interactions of this TD. This specific TD offers only two paths: rotateMotor to
rotate the motor from an initial state by executing initialize, rotate, and
rotation, as well as safeStop that brings the motor to the initial state by
executing stop and sleep, in these respective orders.

4http://iot.schema.org/.

http://iot.schema.org/

Safe Interoperability for Web of Things Devices and Systems 57

The paths in the TD are serialized using the JSON Pointers standard [4]. JSON
Pointers are URIs, so they can be easily parsed by Things. In Listing 2, the paths
have relative JSON Pointers, where the # sign points to the root of the TD document.
After this sign, the path points hierarchically to the form that is a member of the path.

Dealing with Legacy Devices TDs are envisioned for any device that needs to be
connected to an IoT system. As we have mentioned before, the motor driver of the
ventilator is a legacy device. During the course of this paper, we have used modern
protocols such as CoAP [10] in the TD listings. However, the advantage of TDs is
the capability to describe also older protocols such as Modbus [11], widely used
in industrial automation. Such devices might be also non-reprogrammable, which
means that they cannot provide a TD themselves. In this case, the TD of such a
device has to be retrieved from a database. Thus, the TD of the ventilator has been
retrieved from a local database and used by a gateway.

The use of a gateway is necessary to provide access to the functionalities of the
legacy device to devices that do not have direct access to the legacy device, such as
not supporting the protocol of the legacy device or not having a physical connection.
Such a configuration is illustrated in Fig. 5 with Thing C as the device that does
not have direct access to Thing A, the legacy device.

The gateway can then proceed on making the paths of the legacy device simple to
use for consumer Things, such as Thing C. In the context of IoT, path descriptions
should not be imposed to consumer Things that are not part of the system.

We are expecting to see our path vocabulary to be used inside the system and
not in the TD of a device such as a gateway. Hence, the TD of the gateway should
present simple interactions that should be executable without any causality. In Fig. 5,
the path RotateMotor becomes an interaction with the same name that will be
executed as a normal TD interaction by Thing C.

Thing A

Initialize

Rotate Rotation

RotateMotor

SafeStop

...

Gateway
Thing C

RotateMotor

Fig. 5 Using a gateway brings IoT connectivity to a legacy motor driver (Thing A). The gateway
can execute a path offered by this device and offer a simple Thing Description action to be executed
by Things that do not have physical access to Thing A, such as Thing C

58 E. Korkan et al.

1{
2 "name": "MyVentilator",
3 ...
4 "paths":{
5 "rotateMotor":{
6 "@type":"iot:rotate",
7 "path":[
8 "#/actions/initialize/forms/0",
9 "#/actions/rotate/forms/0",

10 "#/properties/rotation/forms/0"
11]
12 },
13 "safeStop":{
14 "@type":"iot:stop",
15 "path":[
16 "#/actions/stop/forms/0",
17 "#/actions/sleep/forms/0"
18]
19 }
20 }
21}

Listing 2 Thing Description of the motor driver with the paths that represent the interaction
sequences

3.2 Composing a System

In the context of IoT, we are considering resource-constrained devices that are not
able to offer a lot of functionality on their own. This is why composing a system
by bringing multiple devices together to orchestrate more functionalities is highly
relevant. Consider the system illustrated in Fig. 6, with a Thing B that can measure
room temperature and another Thing A, which is a ventilator, to reduce room
temperature. We will illustrate the composition of a system by using the two devices
that can control the temperature of a room, bringing additional functionality just by
combining their abilities.

We will be using the same path vocabulary introduced in the previous section
for this system composition. The path vocabulary is not limited to describe a single
Thing, but can be used for a system of Things and the causality between interactions
of multiple Things. By using the same vocabulary, we will enable a scalable design
approach.

The aforementioned temperature control system can be described by simply
using the JSON Pointer URIs from different TDs to describe a system level
functionality in a path. Such a path can be executed through a system controller
or a Thing of the system. Figure 6 illustrates this system with a system controller
where the gateway device takes the responsibility of describing the system behavior
and executing system level functionalities.

Safe Interoperability for Web of Things Devices and Systems 59

Gateway

Thing A Thing C

Initialize

Rotate Rotation

RotateMotor

Thing B

Temperature

Control

Temperature

RotateMotor
... Control

SafeStop

...

1

2

Fig. 6 A gateway can compose a system with the use of the path vocabulary. Here, the system is
a temperature control system with a temperature sensor and an industrial ventilator. Things, such
as Thing C, that do not have physical access to the system components can execute simple Thing
Description interactions to interact with the system through the gateway

The dashed orange arrows in Fig. 6 demonstrate a path executed by the system
controller. The system controller is thus able to execute paths or interactions of other
devices due to its system controller TD.

Since a path can be also referenced, like an interaction form, with a JSON
Pointer, a path and an interaction can be mixed into another path. This is illustrated
in Fig. 6 by the control path that has the temperature interaction and the
rotateMotor path combined. This means that our path vocabulary can scale
well and create a compositional design flow for IoT systems. Listing 3 shows the
TD of the gateway illustrated in Fig. 6. The path called control can either be
offered as an interaction to the consumers of the gateway or directly used, just as
the gateway is using the path of the ventilator. As a result, based on thoroughly
tested simple interactions and paths, more complex behavior can be described and
offered to higher level system controllers.

Note that the URIs have to be absolute URIs in a system controller, since relative
URIs lose their uniqueness outside the TD.5

5A path URI in a TD such as #/actions/initialize/forms/0 can be combined with
the URI of the TD to create a URI that is valid also outside a TD. In this case, it would be
coaps://vent.example.com:5683/td#/actions/initialize/forms/0.

http://coaps://vent.example.com:5683/td#/actions/initialize/forms/0

60 E. Korkan et al.

1{
2 "id": "urn:dev:ops:32473-controller-1234",
3 "title": "SystemController",
4 "@context": [
5 "https://www.w3.org/2019/wot/td/v1",
6 {
7 "iot": "http://iot.schema.org/iot"
8 }
9 "paths":{

10 "control":{
11 "@type":"iot:temperatureControl",
12 "path":[
13"http://fdlSensor.com:5683/td#/properties/temperature/forms/0",
14"coaps://vent.example.com:5683/td#/actions/initialize/forms/0",
15"coaps://vent.example.com:5683/td#/actions/rotate/forms/0",
16"coaps://vent.example.com:5683/td#/properties/rotation/forms/0"
17]
18 }
19 }
20}

Listing 3 Thing Description of a system controller/gateway of the temperature control system
with a path composed of URIs of interactions of system components

3.3 Worldwide Scalability

As seen in Listing 3 the path URIs can contain domain names that are globally
available. These domain names resolve to a particular IP address of a device
belonging to the system. However, this device can belong to any network in the
world since it is an Internet connected device.

This illustrates that the TD can be used to represent any device in the world; thus,
paths can describe behavior of a system composed of devices anywhere in the world.
In Fig. 7, we illustrate such a system where a central controller can interact with
single Things like Thing C (bottom right), systems like in Fig. 6 (top right), or
with virtual Things in the cloud like Thing X (top left). In this scenario, the central
component is able to compose a water level monitoring service that gets weather
predictions from a virtual Thing in the cloud in another location, can combine with
controlled temperature from a third location, and finally control the water level by
pumping water in a fourth and final location.

4 Case Study: Testing with Path Semantics

Ideally, a TD describes what a Thing can do, but it is up to the developer of the
Thing to properly implement the capabilities. It is even more difficult to implement
everything correctly when designing and implementing a system because of the

Safe Interoperability for Web of Things Devices and Systems 61

Monitor
Water

Monitor

Weather

Temperature

Gateway

Thing C

Pump Water

Thing X

Weather

Rotate Rotation

RotateMotor

Thing B

Temperature

Control
RotateMotor

...
1

2

Gateway

Control

...

SafeStop

Thing A

Temperature

Fig. 7 Another IoT system using other systems, devices, and cloud to compose itself. The ubiquity
of Internet and World Wide Web allows Thing Descriptions and the path annotations to be scalable
on a worldwide scale

interlinked behavior of devices that compose the system. During both development
processes for single Things as well as for systems of Things, testing becomes helpful
to detect any errors in the implementation. However, manual testing is a tedious
process and for this reason, automatic testing methods are widely used in many
application domains.

In a case study, we will show how to apply TDs with the new path vocabulary
to facilitate automated testing. In order to show the advantages of our contribution,
we will compare the test coverage of our new path-enabled approach to the state-
of-the-art testing without paths through an example. Similar to the previous section,
we will first present this for a single Thing and then for a system. In the end, an
algorithm that is applicable to test both single Things and systems will be shown.

TDs, with or without the path vocabulary, describe exposer Things that the
consumer Things will interact with. Since a TD is human-readable, it can be used
for specifying a Thing to develop (product), read by the developers who are not
familiar with the internal workings of the device during implementation and more
importantly, since it is machine-understandable, it can be used for automatic testing
to generate test scenarios.

In the following, for automatic testing, we will use the black-box testing
approach. In black-box testing, inputs are given to a device under test and the outputs
are observed. This type of interaction is equal to a consumer Thing interacting
with an exposer Thing. Since the consumer interacts with the exposer based on

62 E. Korkan et al.

the information obtained from its TD, black-box testing of an exposer Thing
implementation can be automatized by using its TD.

4.1 Single Thing Testing

We will demonstrate testing a single device with the ventilation Thing introduced
earlier in Listing 1. The first case will be without using paths to illustrate the state-
of-the-art approach and the second case will apply the path vocabulary.

Testing Without Paths Before adding the path vocabulary, one can automatically
test a Thing by sending requests described in its TD in a random order, called a test
scenario. Combined with the data structure represented in the TD, it is possible to
cover every interaction described in the TD of the Thing under test.

We have developed the test architecture in Fig. 8 to test each of the three interac-
tion patterns introduced in Sect. 2. This architecture allows us to systematically test
a Thing by using its TD. We run the corresponding interaction pattern’s test method
(the vertically aligned boxes) for each interaction in the test scenario as follows:

Write Property

Verify Data
Structure

Verify Data
Structure

Compare with
Written Value

Read Property

Read Property Invoke Action

Verify Data
Structure

Receive
Response

Subscribe to
Event

Wait for
Notification

Verify Data
Structure

Receive
Response

(a) (b) (c)

If writable

Fig. 8 Architecture of the proposed testing methodology of any interaction of a Thing with a
given Thing Description. The yellow boxes (with a ?) symbolize a test that can find either a faulty
or correct behavior. The data needed to invoke an action or write to a property is generated using
data generation tools

Safe Interoperability for Web of Things Devices and Systems 63

• Property (Fig. 8a): The property value is read and then compared with the
structure given in the TD. If the property is writable, a value is generated
according to the described data structure and sent to the Thing. The same property
is read again to check whether the write request has been successful.

• Action (Fig. 8b): If the action needs input data to execute, the input data is
generated and sent to the Thing to invoke the action. Then the response value
is compared with the structure given in the TD.

• Event (Fig. 8c): First the event subscription is performed. Once the event is
triggered, the value is received and it is compared to the structure given in the
TD.

Figure 9 shows an execution trace extract of a test scenario that includes the
test of the rotation property and the rotate action. Here, the Thing under
test has interactions that require sequential execution to properly function, but the
testing was performed in random order, as the sequence could not be expressed in
the TD without paths. This lack of expressiveness makes the test results unreliable.
As illustrated in Fig. 9, invoking the rotate action and writing to the rotation
property does not change anything in the system since the initialize action has
not been invoked before. This is shown as an error because the write operation was
not successful, but the real problem is in the order of interactions. This is a problem

Get rotation
property

Value
Received: 0

Write rotation
property to

1300

Get rotation
property

Value
Received: 0

Invoke
rotate action

Error Code
Received

Test Flow According to Test Scenario

Single
Interaction

Testing

Fig. 9 Illustration of a test path generated from the Thing Description of the industrial ventilator
that does not support the path vocabulary. The red boxes (with an X) should symbolize a fault in
the ventilator. However, these are the correct responses if the sequential behavior is not respected.
The lack of expressiveness in the Thing Description causes this misinterpretation error

64 E. Korkan et al.

found while testing, but the same problem can occur when a consumer Thing (e.g.,
gateway) is trying to interact with the exposer Thing.

Figure 9 shows two problems originating from the lack of expressiveness
regarding sequential behavior:

• The Rotate action will probably not be used as it is meant to. The only way to
do it systematically would be to read a document such as an operation manual
and manually write the test scenario.

• Errors in the implementation of the Rotate action will never be detected in a
systematic way. The Rotate action will be used the way it is designed only if
the random order of interactions during testing matches the sequential behavior.

Testing with Paths By using the path vocabulary, the randomness of the order
of requests can be mitigated. Test scenarios can be generated in a systematic way
instead of a random way and thus the actual behavior of the system can be tested.
The testing method with vertically ordered boxes of Fig. 8 for testing a single
interaction stays the same and only the ordering of the test scenario changes.

By using the path vocabulary, one can automatically generate a test scenario that
tests the described sequential behavior. This is illustrated in Fig. 10 where the last
test Get rotation property is shown to have two outcomes. Normally, there
would be only one response. For demonstration purposes, we have illustrated one
faulty and one correct response. Compared to the red results (with an X) in Fig. 9,
this red result (with an X) in Fig. 10 detects an actual error of the device. In the
case of the error outcome, we see a value smaller than the intended one, which
can be because of the developer not properly implementing the rotation function
of the motor driver. We can conclude that following the correct path allowed us to
systematically test the desired behavior of the write functionality of the Thing.

There are two advantages of the added expressiveness for testing single
Things:

• Test scenarios test the actual behavior of the Thing and show real faults of the
Thing under test with respect to its intended behavior.

• More features of the Thing can be tested since following a path describes
additional functionality compared to the single interactions alone.

4.2 System Level Testing

In this use case, we will illustrate the testing of the previously introduced tempera-
ture controlling system during its development cycle.

As mentioned in Sect. 3.2, it is possible to describe an IoT system in a TD with
the path vocabulary. For this specific use case, our gateway/system controller device
does not bring any extra functionality and is used only for composing the system.
Thus, in its TD, there is no interaction but only paths. It is still the same Thing as
described by Listing 3.

Safe Interoperability for Web of Things Devices and Systems 65

Test Flow According to Test Scenario

 Invoke initiate
action

Value Received:
"initialized"

Invoke rotate
action

OK Code
Received

Get rotation
property

Value Received:
0

Write rotation
property to

1300

Get rotation
property

Value Received:
1300

Value Received:
50

TD Path

generates

Single
Interaction

Testing

Fig. 10 Illustration of a test path generated from the Thing Description of the industrial ventilator
that supports the path vocabulary. Differently from Fig. 9, the correct sequential behavior can be
tested and real faults in the system can be identified. The last test case is shown with two possible
outcomes, depending on whether the Thing has faults or not, which are both valid test results

All the URIs (lines 10–13) are absolute and they refer to interactions of Things in
the system. By following the path named control (starting at line 7), the gateway
can regulate the temperature of the system. To do so, it gets the temperature value
from the temperature sensor, then initializes, and rotates the motor of the ventilator.

Note that paths are composed of interactions as per Definition 3. This means that
even though we can use URIs of JSON Pointers that point to paths in a TD, we will
decompose a path to its interactions and then include these interactions in a new
path. This allows us to keep the same testing logic and not require to modify the
definition of a path. The logic stays the same but the system controller will need to
fetch the TD that contains the path by using the absolute URI found in the path.

To generalize the testing approach in order to adapt to any TD of a system, and
thus to be able to test the complete system, we propose Algorithm 1.

This algorithm allows us to cover the whole system that has arbitrarily many
Thing or inter-Thing sequential behaviors. To do so, for every TD of the system
(including system controllers) (line 1), it iterates through each path (line 2). In a
path, with the listed URIs (line 3), it finds the interaction from every TD using the
findInteraction function (line 4) and tests the interaction depending on its

66 E. Korkan et al.

Algorithm 1 Algorithm for testing a system of Things based on their TDs that
support the path vocabulary

1: for TD ∈ System do
2: for path ∈ TD do
3: for uri ∈ path do
4: interactionUnderTest ← findInteraction(uri)
5: switch (interactionType)
6: case property:
7: result ← testProperty(interactionUnderTest)
8: case action:
9: result ← testAction(interactionUnderTest)

10: case event:
11: result ← testEvent(interactionUnderTest)
12: end switch
13: store TD.path.uri.result
14: end for
15: end for
16: end for

type (lines 5–12). In the end, the test results are stored to allow diagnostics of the
system (line 13).

The test scenario in Fig. 10 can be generated by using Algorithm 1, even if the
initiate, rotate, and rotation interactions are in different TDs. Hence,
we can automatically generate test scenarios composed of interactions of different
Things and test the system composed of several Things.

In this case study, we have demonstrated that paths allow increasing the meaning
of test results as well as the quality of tests and hence contribute to improve the
testability of IoT systems.

5 Related Work

Thing Description (TD) is a new standard that has resulted from research on Web of
Things and Semantic Web technologies, all trying to address the interoperability
problem in IoT. As discussed in [12], Web of Things has found application in
industry, resulting in its wide adoption and [13] defined the Thing Description
standard by using Semantic Web technologies.

For composing an interoperable IoT system, there have been approaches based
on marketplaces for IoT devices, such as in [14, 15]. These marketplaces would
offer device descriptions for other devices to search for and consequently to use the
devices based on their description. For automatically composing a system, a system
controller would look for devices it needs, referred to as recipes in [14], from the
marketplace and compose the desired system with the devices it finds. However,
there is no description of sequential behavior that can link the capabilities of Things
in a sequential order.

Safe Interoperability for Web of Things Devices and Systems 67

Mayer et al. [16] introduce a more generic approach where a goal is set using the
RESTdec format, such as controlling the temperature, and the system is composed
based on this goal. However, the RESTdec format is not human-readable. In
addition, Thuluva et al. [14] and Mayer et al. [16] present top-down approaches
and the core technology they are using is not standardized as it is with TDs.

In our approach, however, our first contribution is solving the ambiguity of
sequential behavior in TDs in a human-readable format on device level by adding
the path vocabulary. As a further contribution, we can use it for composing system
behavior in a sequential fashion.

Moreover, the path vocabulary is very similar to formal property specification.
Hence, in the future, it might enable the application of formal verification methods.

6 Discussion

The black-box testing approach that we have shown in this paper will be used
to automate the testing during the standardization activities of the W3C Thing
Description standard. As with any W3C standard, the TD standard document
has assertions to describe what devices should do and how their TD should be
represented. Chapter 8 “Behavioral Assertions” of [1] provides very clear assertions
on how a Thing should behave regarding data types of payload and what are the
assumptions on protocols.

The existing WoT implementations provided by the community are used to
generate a W3C Implementation Report. Together with assertions in other chapters,
this report is a mandatory step for the TD standard to be published. The path
vocabulary is not yet part of the TD standard, but our testing methodology is equally
valid for TDs without paths.

In the current state, the Web of Things Thing Description Implementation Report
as seen in Fig. 11 contains 14 implementations that are tested manually for their
conformance to the standard. With the increasing number of implementations,
applying an automated testing methodology as presented in this paper will be
inevitable.

7 Conclusion

In this paper, we introduced a new vocabulary called paths for the Thing Description
standard. Using the path vocabulary, we have described sequential behavior of
Things in TDs and made it possible to test such behavior automatically, which
was not possible in the current standard. We have shown that the same vocabulary
can be used for describing a system composed of individual Things without
preprogrammed interfaces. Hence, the methodology to test a single Thing was
generalized to test systems composed of individual Things. In a case study, we have

68 E. Korkan et al.

bindings-
requirements-
scheme

ID Category Context Assertion

Every form in a WoT Thing Description MUST
follow the requirements of theProtocol Binding
indicated by the URI scheme of its href member.

Every form in a WoT Thing Description MUST
accurately describe requests (including request headers,
if present) accepted by the Thing in an interaction.

A Thing acting as a Consumer when interacting
with another target Thing desciibed in a WoT Thing
Description MUST generate data organized
according to the data schemas given in the
corresponding interactions.

Results
P F N T

Behavior

Behavior

Behavior

Behavior

Behavior

Form

bindings-server-
accept

client-data-schema

client-data-
schema-accept-
extras

client-data-
schema-no-extras

client-uri-template Behavior (TD Consumer) A Thing acting asa Consumer when interacting with
another Thing MUST generate URIs according to
the URI Templates, base URIs, and form href
parameters given in the Thing Description of the
target Thing.

A Thing acting asa Consumer when interacting with
another Thing MUST NOT generate data not
described in the data schemas given in the Thing
Description of that Thing.

3 0 12 15

5 1 9 15

5 1 9 15

6 0 9 15

14 0 3 17

13 0 3 16

iana-security-alter IANA (TD Consumer) For this reason, Consumer again SHOULD vet and
cache remote contexts before allowing the system
to use it.

1 0 6 7

iana-security-
execution

IANA (TD Consumer) Since WoT Thing Description is intended to be a
pure data exchange format for Thing metadata, the
serialization SHOULD NOT be passed through a
code execution mechanism such as JavaScript's eval()
function to be parsed.

5 0 2 7

iana-security-
expansion

IANA (TD Consumer) Consumers SHOULD treat any TD metadata with
due skepticism.

1 0 4 5

iana-security-
remote

IANA (TD Consumer) While implementations on resource-constrained
devices are expected to perform raw JSON
processing (as opposed to JSON-LD processing),
implementations in general SHOULD statically
cache vetted versions of their supported context
extensions and not to follow links to remote contexts.

3 0 5 8

server-data-
schema

Behavior (TD Producer) A WoT Thing Description MUST accurately
describe the data returned and accepted by each
interaction.

17 1 3 21

server-data-
schema-extras

Behavior (TD Producer) A Thing MAY return additional data from an
interaction even when such data is not described in
the data schemas given in its WoT Thing
Description.

7 1 13 21

server-uri-template Behavior (TD Producer) URI Templates, base URIs, and href members in a
WoT Thing Description MUST accurately describe
the WoT Interface of the Thing.

10 0 11 21

(TDConsumer)

(TDConsumer)

(TDConsumer)

(TDConsumer)

A Thing acting as a Consumer when interacting
with another Thing MUST accept without error any
additional data not described in the data schemas
given in the Thing Description of the target
Thing.

Fig. 11 A snapshot of the Web of Things Thing Description Implementation Report as of 06
May 2019. This is a small section of the report that contains the behavioral assertions. The
implementation report is constantly updated with new implementations and it can be found on the
official GitHub repository of W3C at https://github.com/w3c/wot-thing-description/blob/master/
testing/report.html

https://github.com/w3c/wot-thing-description/blob/master/testing/report.html
https://github.com/w3c/wot-thing-description/blob/master/testing/report.html

Safe Interoperability for Web of Things Devices and Systems 69

shown how testing benefits from the enhanced expressiveness in TDs. Thus, this
contribution allows us for the first time using Thing Descriptions to systematically
compose and test cyber-physical systems.

References

1. Kaebisch, S., Kamiya, T., McCool, M., & Charpenay, V. (2019). Web of Things (WoT) Thing
Description. Candidate recommendation, W3C, https://www.w3.org/TR/2019/CR-wot-thing-
description-20190516/.

2. Korkan, E., Kaebisch, S., Kovatsch, M., & Steinhorst, S. (2018). Sequential behavioral
modeling for scalable iot devices and systems. In 2018 Forum on Specification Design
Languages (FDL) (pp. 5–16). https://doi.org/10.1109/FDL.2018.8524065.

3. Philips Lighting B.V. (2019). Hue API. https://developers.meethue.com/develop/hue-api/.
4. Bryan, P. C., Zyp, K., & Nottingham, M. (2013). JavaScript Object Notation (JSON) Pointer.

RFC 6901. https://doi.org/10.17487/RFC6901. https://rfc-editor.org/rfc/rfc6901.txt.
5. Baldoni, R., Contenti, M., Piergiovanni, S. T., & Virgillito, A. (2003). Modeling publish/-

subscribe communication systems: Towards a formal approach. In Proceedings of the Eighth
International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS). https://
doi.org/10.1109/WORDS.2003.1218097.

6. Koster, M. (2018), Web of Things (WoT) Protocol Binding Templates. Tech. rep., W3C. https://
www.w3.org/TR/2018/NOTE-wot-binding-templates-20180405/.

7. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett, D. C., Carter, J., et al. (2015). State
Chart XML (SCXML): State Machine Notation for Control Abstraction. W3C Recommenda-
tion, W3C. https://www.w3.org/TR/2015/REC-scxml-20150901/.

8. Bray, T. (2014). The JavaScript Object Notation (JSON) Data Interchange Format. https://rfc-
editor.org/rfc/rfc7159.txt. https://doi.org/10.17487/RFC7159.

9. Sporny, M., Lanthaler, M., & Kellogg, G. (2014). JSON-LD 1.0. W3C Recommendation, W3C.
http://www.w3.org/TR/2014/REC-json-ld-20140116/.

10. Shelby, Z., Hartke, K., & Bormann, C. (2014). The Constrained Application Protocol (CoAP).
https://rfc-editor.org/rfc/rfc7252.txt. https://doi.org/10.17487/RFC7252.

11. The Modbus Organization. (2012). Modbus application protocol specification v1.1b3. http://
www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf.

12. Guinard, D. (2011). http://www.vs.inf.ethz.ch/publ/papers/dguinard-awebof-2011.pdf. PhD
thesis, ETH Zurich, Zurich, Switzerland.

13. Charpenay, V., Käbisch, S., & Kosch, H. (2016). Introducing Thing Descriptions and Interac-
tions: An Ontology for the Web of Things. In Stream Reasoning + Semantic Web technologies
for the Internet of Things @Int. Semantic Web Conference.

14. Thuluva, A., Bröring, A., Medagoda, G., Don, H., Anicic, D., & Seeger, J. (2017). Recipes for
IoT Applications. In Proceedings of the Seventh International Conference on the Internet of
Things. New York: ACM. https://doi.org/10.1145/3131542.3131553.

15. Bröring, A., Schmid, S., Schindhelm, C. K., Khelil, A., Käbisch, S., Kramer, D., et al. (2017).
Enabling IoT Ecosystems through Platform Interoperability. IEEE Software, 34(1), https://doi.
org/10.1109/MS.2017.2.

16. Mayer, S., Verborgh, R., Kovatsch, M., & Mattern, F. (2016). Smart configuration of smart
environments. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.
1109/TASE.2016.2533321.

https://www.w3.org/TR/2019/CR-wot-thing-description-20190516/
https://www.w3.org/TR/2019/CR-wot-thing-description-20190516/
https://doi.org/10.1109/FDL.2018.8524065
https://developers.meethue.com/develop/hue-api/
https://doi.org/10.17487/RFC6901
https://rfc-editor.org/rfc/rfc6901.txt
https://doi.org/10.1109/WORDS.2003.1218097
https://doi.org/10.1109/WORDS.2003.1218097
https://www.w3.org/TR/2018/NOTE-wot-binding-templates-20180405/
https://www.w3.org/TR/2018/NOTE-wot-binding-templates-20180405/
https://www.w3.org/TR/2015/REC-scxml-20150901/
https://rfc-editor.org/rfc/rfc7159.txt
https://rfc-editor.org/rfc/rfc7159.txt
https://doi.org/10.17487/RFC7159
http://www.w3.org/TR/2014/REC-json-ld-20140116/
https://rfc-editor.org/rfc/rfc7252.txt
https://doi.org/10.17487/RFC7252
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.vs.inf.ethz.ch/publ/papers/dguinard-awebof-2011.pdf
https://doi.org/10.1145/3131542.3131553
https://doi.org/10.1109/MS.2017.2
https://doi.org/10.1109/MS.2017.2
https://doi.org/10.1109/TASE.2016.2533321
https://doi.org/10.1109/TASE.2016.2533321

Automatic Design of Microfluidic
Devices: An Overview of Platforms
and Corresponding Design Tasks

Robert Wille, Bing Li, Rolf Drechsler, and Ulf Schlichtmann

1 Introduction

Microfluidic devices provide a more convenient and cost-effective way to conduct
biochemical, biological, or medical experiments [29, 58]. Instead of conducting
tests manually in a fully equipped lab using expensive lab equipment and human
resources, these devices allow to conduct biochemical and medical experiments on
a small chip—yielding the so-called Labs-on-Chips (LoCs). This requires much
smaller sample/reagent volumes and leads to a significantly higher throughput.
Examples in which microfluidic devices have successfully been applied include,
e.g., PCR [28], protein crystallization [89], sample preparation [3], nanoparticle
synthesis [42], drug screening [31], or encapsulation [32, 67].

However, designing the corresponding chips has become a considerably com-
plex task. Depending on the respective platform thousands—or even tens of
thousands—of entities and features have to be put together and/or dedicated physical
characteristics (e.g., the flow of fluids or the resistance of channels) have to be
considered. Despite these challenges, most of the microfluidic devices are still
designed manually thus far. This frequently leads to designs that often do not

R. Wille (�)
Johannes Kepler University Linz, Linz, Austria
e-mail: robert.wille@jku.at

B. Li · U. Schlichtmann
Technical University of Munich, Munich, Germany
e-mail: b.li@tum.de; ulf.schlichtmann@tum.de

R. Drechsler
University of Bremen and DFKI GmbH, Bremen, Germany
e-mail: drechsler@uni-bremen.de

© Springer Nature Switzerland AG 2020
T. J. Kazmierski et al. (eds.), Languages, Design Methods, and Tools for
Electronic System Design, Lecture Notes in Electrical Engineering 611,
https://doi.org/10.1007/978-3-030-31585-6_4

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31585-6_4&domain=pdf
mailto:robert.wille@jku.at
mailto:b.li@tum.de
mailto:ulf.schlichtmann@tum.de
mailto:drechsler@uni-bremen.de
https://doi.org/10.1007/978-3-030-31585-6_4

72 R. Wille et al.

perfectly work as desired after the first try, but require frequent (costly and time-
consuming) iterations.

At the same time, several methods and solutions for the design automation of
microfluidic devices have been proposed in the past years. Although they are not
that heavily used by the actual stakeholders yet, they provide a starting point for
introducing and exploiting EDA methods in the microfluidic domain. However,
in order to truly introduce design automation to the microfluidic community, the
respective methods need to be much more focused on the actual needs of these
stakeholders. Besides other issues, this also requires the resulting tools to be much
more accessible and significantly simpler to use.

This requires experts from the design automation community to be familiar
with the respective platforms as well as the corresponding design challenges. In
this tutorial, we aim for providing an introduction to both issues. To this end, we
provide an overview on different microfluidic platforms (including devices based
on electrowetting and continuous flows as well as solutions based on a passive
routing concept) and the corresponding design tasks. Afterwards, we sketch how
to automatically address these design tasks. References are provided to equip the
interested reader with comprehensive descriptions for a more in-depth treatment.
Overall, this shall provide a starting point for researchers and engineers interested
in getting involved in this area.

2 Electrowetting-Based Microfluidic Devices

The first platform considered in this tutorial relies on a discretization of the
considered fluids into the so-called droplets of picoliter or nanoliter size. This is
accomplished by a technique called electrowetting [29, 62] and eventually yields
microfluidic devices usually referred to as Digital Microfluidic Biochips (DMFBs).

2.1 The Platform

A DMFB is a two-dimensional electrical grid controlled by underlying electrodes
and their electrical actuations. Using those, an electric field is generated which
allows to “hold” discretized portions of fluids, the droplets, on a particular cell
within the grid. By assigning time-varying voltage values to turn electrodes on and
off, droplets can be moved around the grid. This technique, called electrowetting-
on-dielectric [62], eventually provides a platform on which droplets derived from
laboratory fluids such as blood, urine, or corresponding reagents can be exposed to
several operations such as mixing, heating, or analyzing.

These operations are realized by the so-called modules which may be physically
built onto the chip or are virtually realized through electrowetting. More precisely,
physical modules include:

• Dispensers: Fluids to be used in the experiment are kept in the so-called
reservoirs. Whenever required, a sample, i.e., a droplet of the corresponding

Automatic Design of Microfluidic Devices 73

fluids, is taken from this reservoir and placed onto the grid. For this purpose,
dispensers for each fluid are physically added next to the outer cells of the grid.
For each type of fluid considered in the experiment (e.g., blood, urine, reagents),
a separate reservoir and, hence, a separate dispenser has to be provided.

• Sinks: If droplets are not needed anymore during the execution of an experiment,
they shall be removed from the grid (e.g., in order to make room for other droplets
and/or operations). For this purpose, similar to dispensers, sinks are added to
the outer cells of the grid. Since sinks are used for waste disposal only, no
differentiation between types is necessary.

• Heaters: Heating samples may be an integral part of an experiment. To provide
this operation, heaters can be added to the chip. For this purpose, heating devices
are placed below selective cells. Then, droplets occupying this cell can be heated
if desired.

• Detectors: At the end of an experiment, the properties of the resulting droplet
shall usually be examined. For this purpose, respective sensor devices are placed
below selective cells. Then, droplets occupying this cell can be analyzed with
respect to different characteristics such as color, volume, etc.

While physical modules always require corresponding devices built-in onto
the chip, some of the operations can implicitly be realized by the movements of
droplets (which in turn is realized through electrowetting as described above). In
the following, these modules are called virtual modules. Examples include:

• Mixers: Mixing fluids (represented by droplets) is an integral part of almost every
experiment. Using electrowetting, this can be realized by simply routing the
respective droplets to be mixed to the same cell. In order to accelerate diffusion,
the newly formed droplet is moved back and forth between several cells.

• Splitters: Droplets resulting from mixing operations have twice the size than the
input droplets. To reduce them to normal size, they are split up. This can be
realized by simultaneously activating cells of the grid that are on the opposite
sides of the droplet. Then, the resulting forces split the droplet into two parts.

Overall, modules allow for the realization of various operations to be performed
in laboratory experiments. Some of them are available in different fashions with
respect to the number of occupied cells and the number of timesteps required for
their execution. A list of all available modules (including their implementations) is
provided in a module library.

Example Figure 1 illustrates the realization of an experiment on a 5 × 5 grid. In
the first timestep, the droplets d1, d2, and d3 are dispensed onto the chip. While the
droplets d1 and d2 are mixed for 4 timesteps in mixer m1, droplet d3 is heated to
its desired temperature for 3 timesteps. The heated droplet d3 and the result of the
mixing operation are then mixed for another 7 timesteps. The resulting droplet is
eventually analyzed by the detector in timesteps 15–21. As can be seen, different
fashions of modules are applied for the mixing operation. The first mixer required a
2 × 2 subgrid and 5 timesteps, while the second one occupied a 1 × 3 subgrid over
7 timesteps. ��

74 R. Wille et al.

Fig. 1 An experiment
conducted on a DMFB

Fig. 2 Specification of an experiment. (a) Sequencing graph. (b) Module library. (c) Constraints

2.2 The Design Process

To design DMFBs, several automatic synthesis methods have been proposed in the
recent past. These methods require a specification of the experiment to be realized
as well as the resources available for this purpose. More precisely, the following
input is usually provided:

• A sequencing graph which specifies the experiment to be realized by the involved
fluids (in terms of droplets) as well as the respective steps (in terms of operations)
and their dependencies of execution,

• A module library providing the available modules which can be used in order to
realize the respective operations given in the sequencing graph, and

• Additional constraints, e.g., on the size of the grid on which the experiment shall
be conducted or the maximal duration of the experiment.

Example Figure 2 provides a specification of an experiment to be realized on a
DMFB. The sequencing graph in Fig. 2a defines the dispensing operations (v1 to
v5) and their successors. The module library in Fig. 2b lists the modules available to
realize those operations. Additionally, constraints as shown in Fig. 2c state that the
entire experiment is to be conducted onto a 5 × 5 grid taking at most 50 timesteps.

��

Automatic Design of Microfluidic Devices 75

Having these inputs, the following design questions need to be addressed:

• Which modules shall be applied in order to realize an operation?
• When (at what timesteps) shall each operation be conducted?
• Where (on which cells or subgrid) shall each operation be conducted?
• How shall the respective droplets be routed towards their destination?
• What pins/cells need to be actuated in order to realize the respective operations

and routings onto the grid?

All these questions eventually represent typical system design tasks such as
binding, scheduling [27, 64], placement [1, 7, 63, 88], and routing [41, 46, 65, 85,
87], respectively, for which dedicated DMFB-related solutions have been proposed
as given in the references. In addition, the pin-actuation problem is addressed in
works such as [34, 45]. Finally, initial approaches for a one-pass design flow have
been introduced in [47, 84]—aiming for conducting all these tasks in a single and
integrated process.

Recently, also extensions of DMFBs are considered in which droplets are
not actuated by single electrodes but a sea-of-micro-electrodes—yielding the so-
called micro-electrode-dot-array biochips (MEDA biochips, see, e.g., [50, 78, 79]).
This additionally allows for a much greater flexibility, e.g., through allowing
droplets of rather arbitrary sizes, diagonal movements, etc. With the emerge of
this extended platform, also correspondingly adjusted design methods have been
proposed, e.g., in [43, 44, 52].

3 Flow-Based Microfluidic Devices

The second platform covered by this tutorial is composed of microchannels and
microvalves, which are, respectively, called channels and valves for simplicity. A
channel is etched on a substrate to conduct fluid samples between devices. The
movement of fluid samples is coordinated by valves, whose states are controlled
by air pressure patterns [57, 70, 77]. Since fluid segments instead of droplets are
manipulated on such a platform, it is thus referred to as flow-based microfluidic
biochips.

3.1 The Platform

A flow-based microfluidic biochip has a structure with two layers. Flow channels
are itched on silicon/glass substrates or made from dimethylsiloxane using soft
lithography [59] to transport fluid samples and reagents between devices. Above
flow channels, control channels are used to deliver air pressure to the crossing points
between flow channels and control channels. Both, flow and control channels, are
made from elastic materials, so that air pressure in a control channel extends it

76 R. Wille et al.

Fig. 3 Components in flow-based microfluidic devices. (a) Valve structure. (b) Switch. (c) Mixer

and, thus, squeezes the flow channel underneath. Consequently, the movement of
the fluid sample or reagent in the flow channel is blocked. After the pressure in
the control channel is removed, fluid transportation in the flow channel can be
resumed. Consequently, valves are constructed at these crossing points, as illustrated
in Fig. 3a.

Valves are the basic flow control components in a flow-based microfluidic
biochip. When multiple transportation channels intersect with each other, only one
channel can be used simultaneously. To avoid fluid contamination, valves need to
be built at the intersections of flow channels to direct the flow transportation, in
fact forming switching as shown in Fig. 3b. At a given moment, only two of the
four valves in the switch open to allow fluid to pass. This transportation control
can be configured dynamically by changing the states of these valves with respect
to the requirements of the application, so that complex biochemical assays can be
executed by simple biochips with time multiplexing.

Using valves, more complex devices such as mixers can also be implemented.
For example, in Fig. 3c, three valves are constructed along a circular channel at the
top. If these valves are switched alternately with a pattern 101, 100, 110, 010, 011,
001, where 1 means the valve is open and 0 means the valve is closed, a flow along
the circular channel can be generated—emulating the peristaltic effect for mixing
fluid samples and reagents [59].

In a flow-based biochip, channels are used to transport fluid samples. If a fluid
sample resides in a channel segment instead of being moved, this sample can be
considered as stored inside this channel segment. This feature is very useful since
it is easy to implement the storage function anywhere inside a flow-based biochip.
When multiple channels are arranged side-by-side and multiplexing is implemented
at the input and the output of these channels, a dedicated storage unit can also be
implemented.

Example Figure 4 shows a flow-based microfluidic biochip with a mixer at the top
and a dedicated storage unit at the bottom. At a given moment, the valves at the
input and the output of the storage unit only allow one fluid sample to be moved
into or out of the storage unit—similar to memory blocks in electronic systems. The
mixer can be used to mix fluid samples entering the chip from the two input ports.
Intermediate results can be saved in the storage unit temporarily and fetched later
for further processing. Through the oil port, a flow path can be constructed to push

Automatic Design of Microfluidic Devices 77

Fig. 4 Flow-based biochip
w/ mixer and storage unit [2]

fluid samples between devices. The waste ports are used to discard fluid samples
that are of no use anymore. ��

Similar to DMFBs, further dedicated devices such as heaters, filters, and detec-
tors can also be constructed in a flow-based biochip to provide specific functions.
As a result, a flow-based biochip can be considered as a channel network connecting
dedicated devices. Unlike in DMFBs, all these devices are dedicated and operations
must be executed by the corresponding devices at given locations. Intermediate
result must be transported between these devices through the channel network to
execute complex biochemical applications.

3.2 The Design Process

Designing flow-based microfluidic biochips is similar to designing DMFBs. A
sequencing graph describing the experiment protocol as shown in Fig. 2a is used
to define what operations need to be executed and how their results need to be
transported. Furthermore, the devices available to a flow-based biochip can also
be described as a module library, similar to Fig. 2b. The difference is that the areas
of these devices do not matter so much as in DMFBs, because these devices are
pre-built on the chip instead of being formed on the chip on-the-fly.

Since devices in flow-based biochips are fixed at given locations, the results from
these devices should be moved between them through the channel network that
connects the devices. This is the major difference between a flow-based biochip
and a DMFB, because the latter allows the locations of devices to be moved so that
fluid transportation is more flexible. When multiple fluid samples are moved across
a channel network in a flow-based biochip, fluid transportation needs to be arranged

78 R. Wille et al.

carefully to avoid conflicts. In addition, washing operations need to be performed to
remove the residue of fluid samples to avoid contamination. Consequently, design-
ing a flow-based biochip is more transportation-centered compared to designing a
DMFBs.

The major challenges of designing flow-based microfluidic biochips are listed as
follows:

• When should a fluid transportation be conducted and when should it be stopped
to avoid conflicts with other fluid samples?

• Where should storage units be implemented and how large should they be?
• When and how should flow channels and devices be washed?
• How should flow and control channels be developed together to reduce design

complexity.

In the recent years, synthesis methods for flow-based microfluidic biochips
have started to be introduced. For high-level synthesis, the workflows in [60,
71] minimize the execution time of bioassays and valve switching activities,
respectively. In addition, a distributed storage system is proposed in [56, 74] to
improve transportation efficiency. Moreover, washing is implemented in [38, 39]
to avoid contamination. For physical design, the placement of devices and routing
of channels in flow-based biochips are dealt with simultaneously in [80] and
formulated as an SAT problem in [26] to achieve a close-to-optimal result.

Control logic synthesis is investigated in [61] and the method in [35] minimizes
pressure propagation delay to reduce the response time of valves. Switching patterns
of valves are examined in [81, 82] to reduce the largest number of valve switching
activities to improve the reliability of valves, and length-matching is incorporated in
control channel routing in [86]. Flow-layer, control-layer, and valve switching are
considered together in [75, 76] to simplify the overall design complexity.

Fault models and an ATPG-based test strategy for flow-based biochips are
proposed in [36, 40] to deal with manufacturing defects. Design-for-testability and
defect diagnosis are further addressed in [33, 37, 55].

To provide better reliability and flexibility, Programmable Microfluidic Devices
(PMDs) [14] have been explored in [72, 73]. Channel crossing on a general array
architecture is avoided in [49] and valve control sequences are arranged carefully for
such a chip in [25]. Test generation is introduced in [54] to improve test efficiency.

4 Passive Routing Concepts for Microfluidic Devices

Both platforms reviewed above rely on an active control method realized either by
actuations of electrodes or dedicated valves—resulting in rather costly and error-
prone solutions. As an alternative to that, another platform recently got investigated
which entirely relies on a passive routing concept. This concept has been applied,
e.g., in Networked Labs-on-Chips [10] and Hydrodynamic Controlled Microfluidic
Networks [9].

Automatic Design of Microfluidic Devices 79

Fig. 5 Bifurcation Header blocks

of length 175
the default channel

µmof length 200
the non−default channelµm
Payload will enter

Flow

FlowFlow

Bypass Channel

4.1 The Platform

Passive routing concepts can be realized on top of two-phase flow microfluidics,
where the, respectively, considered droplets flow in an immiscible continuous flow
inside closed channels. Pumps generating the continuous flow eventually distribute
this flow among the network, which may consist of a set of modules executing
unit operations. By this, the, respectively, injected droplets will be passed through
a particular path of modules—executing operations such as mixing, splitting,
delaying, incubating, detecting, or heating [48, 53, 66, 68, 83] and, hence, realizing
the desired medical/biochemical experiment.

In order to explicitly route droplets along the desired paths (without using active
controls based on electrodes or valves), the so-called bifurcations and corresponding
hydrodynamic forces are exploited. More precisely, a bifurcation as shown in Fig. 5
yields different volumetric flow rates in its successor channels which depend on
the respective geometries of those channels. For example, the smaller the diameter
and/or the longer the channel, the higher the resistance and viscosity of the
continuous phase.1 Because of that, a single droplet arriving at a bifurcation will
always flow along the successor with the lower fluidic resistance (called the default
successor) [8, 16]. However, since droplets themselves increase the resistance of
a channel (e.g., through their viscosities, droplet size, and geometry as studied,
e.g., in [4, 15, 17]), they temporarily block the default successor for the following
droplets—allowing a following droplet to take a different path (as observed and/or
simulated, e.g., in [9–13, 51]).

These concepts of default successors at bifurcations and the possibility to block
them with other droplets allow to realize arbitrary paths through a microfluidic
network. More precisely, if the actually considered droplet (called payload droplet)
is supposed to take a non-default successor at any bifurcation in the network, it
has to make sure that another droplet (called header droplet) arrives before and
blocks the default successor. This is accordingly sketched in Fig. 5, where the blue
droplet (the header) blocks the path so that the green droplet (the payload) takes
the intended path. Overall, this allows to passively route payloads through different

1Note that a bypass channel [8] connects the endpoints of the two successor channels. This bypass
cannot be entered by any droplet and is used to make the droplet routing only dependent on the
resistances of the successors (and not the entire network).

80 R. Wille et al.

paths and, hence, different sequences of modules can be executed without any
additional hardware or control logic on the device.

Example Consider the network shown in Fig. 6. Here, a pump produces a continu-
ous flow in which payload and header droplets are injected. Then, the droplets can
take different paths and, by this, realize different experiments. For example, if just
a single payload droplet is injected, only default paths are taken, i.e., the modules
mixing, heating, and incubating are executed. If additionally a header is injected at
a particular time so that the channel c4 is blocked when the payload arrives at the
second bifurcation, a path of the payload is realized in which the heating step is
skipped. ��

In order to avoid that operations of modules are executed on headers, the modules
are shielded by a droplet by size sorter [69]. A sorter steers payloads towards
the module and forwards headers. Therefore, the sorter uses the different droplet
sizes (i.e., droplet volumes) of headers and payloads. Finally, the network contains
bifurcations allowing droplets to take multiple paths and, by this, to realize different
experiments on a payload. Whether a path is implemented by the default or by the
non-default successor channel is also defined by the network.

4.2 The Design Process

Exploiting this routing concept requires a very dedicated and sensitive design as
just small differences, e.g., in some channel lengths may change the hydrodynamic
forces within the network and, hence, change the behavior of the microfluidic
device. Accordingly, the following steps shall be conducted in order to guarantee
a correct design.

First, a proper architecture needs to be defined. This strongly depends on the
given set of operations to be executed and their corresponding order. In order
to allow for a cost-effective architecture, operations can be re-used for different
experiments. For example, the experiments shown in Fig. 7a–c can all be realized by
an architecture sketched in Fig. 7d. A method automatically determining a suitable
method has been proposed in [23].

The resulting architecture can directly be mapped to a structure as shown
before in Fig. 6. However, it remains to be defined how to properly dimension the
used channels. This constitutes a significant challenge since the dimensions of the
channels significantly affect the flow of the droplets. In order to aid designers in this
task, methods proposed in [24] allow for automatically determining and validating
corresponding dimensions.

Then, payload and header droplets need to be injected into the network at
dedicated times. This requires the determination of dedicated droplet injection
sequences which make sure that the header droplets arrive in bifurcations at exactly
the time when they are supposed to block a default channel. For ring networks as,
e.g., proposed in [6, 9, 11, 30, 51], the injection time of the header and payload

Automatic Design of Microfluidic Devices 81

S

c 1
8

c 1
7

c 1
4

c 1
5

c 1
6

c 1
3

c 1
m

c 3

c4c5

c 6

c 7

c 8

c 2
c 9

c 1
0

c12c11

hS
te

ps
(c

1
)=

2
pS

te
ps

(c
1

)=
2

pSteps(c4)=3
hSteps(c4)=3

hS
te

ps
(c

6
)=

2

hS
te

ps
(c

3
)=

2
pS

te
ps

(c
3

)=
2

pS
te

ps
(c

6
)=

2

hSteps(c5)=4
pSteps(c5)=4

hS
te

ps
(c

8
)=

32

pS
te

ps
(c

9
)=

2
hS

te
ps

(c
9

)=
2pSteps(c11)=3

hSteps(c18)=26

pS
te

ps
(c

10
)=

2
hS

te
ps

(c
10

)=
2

hS
te

ps
(c

19
)=

2
pS

te
ps

(c
19

)=
2

pS
te

ps
(c

7
)=

17
0

hS
te

ps
(c

7
)=

17
1

c19

pS
te

ps
(c

14
)=

17
0

hS
te

ps
(c

14
)=

17
1pSteps(c12)=4

pSteps(d)=14

Incubating Module

S

W
as

te
 C

ha
m

be
r

i

d

S

H
ea

tin
g

M
od

ul
e

h

S

M
ix

in
g

M
od

ul
e

pS
te

ps
(m

)=
14

pS
te

ps
(h

)=
18

Detecting Module

Bypass Channel

Bypass Channel

hS
te

ps
(c

2
)=

26

pS
te

ps
(c

13
)=

2
hS

te
ps

(c
13

)=
2

pSteps(i)=175

hS
te

ps
(c

15
)=

32

hS
te

ps
(c

16
)=

2
pS

te
ps

(c
16

)=
2

hS
te

ps
(c

17
)=

2
pS

te
ps

(c
17

)=
2

hSteps(c11)=3

Pu
m

p

Payloads
on Demand

H
ea

de
rs

on
 D

em
an

d

hSteps(c12)=4

F
ig

.6
M

ic
ro

flu
id

ic
ne

tw
or

k
su

pp
or

tin
g

pa
ss

iv
e

dr
op

le
tr

ou
tin

g

82 R. Wille et al.

Fig. 7 Given experiments and resulting architecture. (a) Experiment 1. (b) Experiment 2. (c)
Experiment 3. (d) Res. Arch.

droplets can be calculated by a formula. However, if dedicated architectures are
employed as shown in Fig. 7d, more elaborated methods are required. To this
end, a discrete model as proposed in [21] as well as corresponding automatic
search methods as proposed in [22] can be utilized. This may even unveil that a
corresponding droplet sequences cannot be determined for a given architecture and
dimensioning which makes verification of the corresponding devices an important
design step [22].

Finally, the resulting design as well as the determined droplet sequences shall be
simulated prior to its fabrication. This allows to validate the correct execution of the
design and pin-points designers to possible problems before physically realizing the
obtained designs. To this end, initial methods for simulation are available, e.g., in [5,
18–20].

5 Conclusions

This tutorial summary provided an overview on different microfluidic devices as
well as corresponding challenges researchers and engineers have to tackle when
designing them. This shall provide a starting point for researchers and engineers
interested in getting involved in this area. For a more in-depth treatment of the
respective issues, we are referring to the references provided below.

Acknowledgements We sincerely thank all co-authors and collaborators who worked with us in
the past in this exciting area.

Automatic Design of Microfluidic Devices 83

References

1. Alistar, M., Pop, P., & Madsen, J. (2013). Operation placement for application-specific digital
microfluidic biochips. In 2013 Symposium on Design, Test, Integration and Packaging of
MEMS/MOEMS (DTIP) (pp. 1–6). Piscataway: IEEE.

2. Amin, N., Thies, W., & Amarasinghe, S. P. (2009). Computer-aided design for microfluidic
chips based on multilayer soft lithography. In Proceedings of the International Conference on
Computer Design (pp. 2–9)

3. Bhattacharjee, S., Wille, R., Huang, J. D., & Bhattacharya, B. B. (2018). Storage-aware sample
preparation using flow-based microfluidic labs-on-chip. In Design, Automation and Test in
Europe (pp. 1399–1404).

4. Biral, A., & Zanella, A. (2013). Introducing purely hydrodynamic networking functionalities
into microfluidic systems. Journal of Nano Communication Networks, 4(4), 205–215.

5. Biral, A., Zordan, D., & Zanella, A. (2015). Modeling, simulation and experimentation of
droplet-based microfluidic networks. IEEE Transactions on Molecular, Biological, and Multi-
scale Communications, 1(2), 122–134.

6. Castorina, G., Reno, M., Galluccio, L., & Lombardo, A. (2017). Microfluidic networking:
Switching multidroplet frames to improve signaling overhead. Journal of Nano Communica-
tion Networks, 14, 48–59.

7. Chen, Y. H., Hsu, C. L., Tsai, L. C., Huang, T. W., & Ho, T. Y. (2013). A reliability-oriented
placement algorithm for reconfigurable digital microfluidic biochips using 3-D deferred
decision making technique. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 32(8), 1151–1162.

8. Cristobal, G., Benoit, J. P., Joanicot, M., & Ajdari, A. (2006). Microfluidic bypass for efficient
passive regulation of droplet traffic at a junction. Applied Physics Letters, 89(3), 34104–34104.

9. De Leo, E., Donvito, L., Galluccio, L., Lombardo, A., Morabito, G., & Zanoli, L. M.
(2013). Communications and switching in microfluidic systems: Pure hydrodynamic control
for networking Labs-on-a-Chip. IEEE Transactions on Communications, 61(11), 4663–4677.

10. De Leo, E., Galluccio, L., Lombardo, A., & Morabito, G. (2012). Networked labs-on-a-
chip (NLoC): Introducing networking technologies in microfluidic systems. Journal of Nano
Communication Networks, 3(4), 217–228.

11. Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2013). Microfluidic networks:
Design and simulation of pure hydrodynamic switching and medium access control. Journal
of Nano Communication Networks, 4(4), 164–171.

12. Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2014). On the assessment
of microfluidic switching capabilities in NLoC networks. In International Conference on
Nanoscale Computing and Communication (p. 19).

13. Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2015). μ-NET: A network for
molecular biology applications in microfluidic chips. IEEE/ACM Transactions on Networking,
24(4), 2525–2538.

14. Fidalgo, L. M., & Maerkl, S. J. (2011). A software-programmable microfluidic device for
automated biology. Lab on a Chip, 11, 1612–1619.

15. Fuerstman, M. J., Lai, A., Thurlow, M. E., Shevkoplyas, S. S., Stone, H. A., & Whitesides,
G. M. (2007). The pressure drop along rectangular microchannels containing bubbles. Journal
on Lab on a Chip, 7(11), 1479–1489.

16. Glawdel, T., Elbuken, C., & Ren, C. (2011). Passive droplet trafficking at microfluidic junctions
under geometric and flow asymmetries. Journal on Lab on a Chip, 11(22), 3774–3784.

17. Glawdel, T., & Ren, C. L. (2012). Global network design for robust operation of microfluidic
droplet generators with pressure-driven flow. Journal of Microfluidics and Nanofluidics, 13(3),
469–480.

18. Gleichmann, N., Malsch, D., Horbert, P., & Henkel, T. (2015). Toward microfluidic design
automation: A new system simulation toolkit for the in silico evaluation of droplet-based lab-
on-a-chip systems. Journal of Microfluidics and Nanofluidics, 18(5–6), 1095–1105.

84 R. Wille et al.

19. Grimmer, A., Chen, X., Hamidovic, M., Haselmayr, W., Ren, C. L., & Wille, R. (2018).
Simulation before fabrication: A case study on the utilization of simulators for the design of
droplet microfluidic networks. RSC Advances, 8(60), 34733–34742.

20. Grimmer, A., Hamidovic, M., Haselmayr, W., & Wille, R. (2018). Advanced simulation of
droplet microfluidics. Journal on Emerging Technologies in Computing Systems, 15(3), Article
no. 26.

21. Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2017). A discrete model for Networked
Labs-on-Chips: Linking the physical world to design automation. In Design Automation
Conference (pp. 50:1–50:6).

22. Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2017). Verification of Networked
Labs-on-Chip architectures. In Design, Automation and Test in Europe (pp. 1679–1684).

23. Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2018). Design of application-specific
architectures for Networked Labs-on-Chips. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(1), 193–202.

24. Grimmer, A., Haselmayr, W., & Wille, R. (2018). Automated dimensioning of networked labs-
on-chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
38(7), 1216–1225.

25. Grimmer, A., Klepic, B., Ho, T. Y., & Wille, R. (2018). Sound valve-control for programmable
microfluidic devices. In Proceedings of the Asia and South Pacific Design and Automation
Conference.

26. Grimmer, A., Wang, Q., Yao, H., Ho, T. Y., & Wille, R. (2017). Close-to-optimal placement
and routing for continuous-flow microfluidic biochips. In Proceedings of the Asia and South
Pacific Design and Automation Conference (pp. 530–535).

27. Grissom, D., & Brisk, P. (2012). Path scheduling on digital microfluidic biochips. In Proceed-
ings of the 49th Annual Design Automation Conference (pp. 26–35). New York: ACM.

28. Guttenberg, Z., Müller, H., Habermüller, H., Geisbauer, A., Pipper, J., Felbel, J., et al. (2005).
Planar chip device for PCR and hybridization with surface acoustic wave pump. Journal on
Lab on a Chip, 5(3), 308–317.

29. Haeberle, S., & Zengerle, R. (2007). Microfluidic platforms for Lab-on-a-Chip applications.
Journal on Lab on a Chip, 7, 1094–1110.

30. Haselmayr, W., Biral, A., Grimmer, A., Zanella, A., Springer, A., & Wille, R. (2017).
Addressing multiple nodes in Networked Labs-on-Chips without payload re-injection. In
International Conference on Communications.

31. Haselmayr, W., Hamidović, M., Grimmer, A., & Wille, R. (2018). Fast and flexible drug screen-
ing using a pure hydrodynamic droplet control. In European Conference on Microfluidics.

32. He, M., Edgar, J. S., Jeffries, G. D., Lorenz, R. M., Shelby, J. P., & Chiu, D. T. (2005). Selective
encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume
droplets. Journal of Analytical Chemistry, 77(6), 1539–1544.

33. Hu, K., Bhattacharya, B. B., & Chakrabarty, K. (2015). Fault diagnosis for flow-based
microfluidic biochips. In Proceedings of the VLSI Test Symposium (pp. 1–6).

34. Hu, K., Dinh, T., Ho, T. Y., & Chakrabarty, K. (2016). Control-layer routing and control-
pin minimization for flow-based microfluidic biochips. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(1), 55–68.

35. Hu, K., Dinh, T. A., Ho, T. Y., & Chakrabarty, K. (2017). Control-layer routing and control-
pin minimization for flow-based microfluidic biochips. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(1), 55–68.

36. Hu, K., Ho, T. Y., & Chakrabarty, K. (2013). Testing of flow-based microfluidic biochips. In
Proceedings of the VLSI Test Symposium (pp. 1–6).

37. Hu, K., Ho, T. Y., & Chakrabarty, K. (2014). Test generation and design-for-testability for flow-
based mVLSI microfluidic biochips. In Proceedings of the VLSI Test Symposium (pp. 97–102).

38. Hu, K., Ho, T. Y., & Chakrabarty, K. (2014). Wash optimization for cross-contamination
removal in flow-based microfluidic biochips. In Proceedings of the Asia and South Pacific
Design and Automation Conference (pp. 244–249).

Automatic Design of Microfluidic Devices 85

39. Hu, K., Ho, T. Y., & Chakrabarty, K. (2016). Wash optimization and analysis for cross-
contamination removal under physical constraints in flow-based microfluidic biochips. IEEE
Transactions on CAD of Integrated Circuits and Systems, 35(4), 559–572.

40. Hu, K., Yu, F., Ho, T. Y., & Chakrabarty, K. (2014). Testing of flow-based microfluidic
biochips: Fault modeling, test generation, and experimental demonstration. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 33(10), 1463–1475.

41. Huang, T. W., & Ho, T. Y. (2009). A fast routability- and performance-driven droplet routing
algorithm for digital microfluidic biochips. In International Conference on Computer Design
(pp. 445–450). Piscataway: IEEE.

42. Hung, L. H., Choi, K. M., Tseng, W. Y., Tan, Y. C., Shea, K. J., & Lee, A. P. (2006).
Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device
for CdS nanoparticle synthesis. Journal on Lab on a Chip, 6(2), 174–178.

43. Keszocze, O., Ibrahim, M., Wille, R., Chakrabarty, K., & Drechsler, R. (2018). Exact synthesis
of biomolecular protocols for multiple sample pathways on digital microfluidic biochips. In
Conference on VLSI Design (pp. 121–126).

44. Keszocze, O., Li, Z., Grimmer, A., Wille, R., Chakrabarty, K., & Drechsler, R. (2017). Exact
routing for micro-electrode-dot-array digital microfluidic biochips. In Asia and South Pacific
Design Automation Conference.

45. Keszocze, O., Wille, R., Chakrabarty, K., & Drechsler, R. (2015). A general and exact routing
methodology for digital microfluidic biochips. In International Conference on Computer-Aided
Design (pp. 874–881).

46. Keszocze, O., Wille, R., & Drechsler, R. (2014). Exact routing for digital microfluidic biochips
with temporary blockages. In International Conference on Computer-Aided Design (pp. 405–
410).

47. Keszocze, O., Wille, R., Ho, T. Y., & Drechsler, R. (2014). Exact one-pass synthesis of digital
microfluidic biochips. In Design Automation Conference (pp. 1–6).

48. Köhler, J., Henkel, T., Grodrian, A., Kirner, T., Roth, M., Martin, K., et al. (2004). Digital
reaction technology by micro segmented flow-components, concepts and applications. Chemi-
cal Engineering Journal, 101(1), 201–216.

49. Lai, G. R., Lin, C. Y., & Ho, T. Y. (2018). Pump-aware flow routing algorithm for pro-
grammable microfluidic devices. In Proceedings of the Design, Automation, and Test Europe
Conference.

50. Lai, K., Yang, Y.-T., Lee, C.-Y. (2015). An intelligent digital microfluidic processor for
biomedical detection. Journal of Signal Processing Systems, 78, 85–93.

51. Leo, E. D., Donvito, L., Galluccio, L., Lombardo, A., Morabito, G., & Zanoli, L. M.
(2013). Design and assessment of a pure hydrodynamic microfluidic switch. In International
Conference on Communications (pp. 3165–3169).

52. Li, Z., Lai, K. Y. T., Yu, P. H., Ho, T. Y., Chakrabarty, K., & Lee, C. Y. (2016). High-level
synthesis for micro-electrode-dot-array digital microfluidic biochips. In Design Automation
Conference (p. 146).

53. Link, D., Anna, S. L., Weitz, D., & Stone, H. (2004). Geometrically mediated breakup of drops
in microfluidic devices. Physical Review Letters, 92(5), 054503.

54. Liu, C., Li, B., Bhattacharya, B. B., Chakrabarty, K., Ho, T. Y., & Schlichtmann, U. (2017).
Testing microfluidic fully programmable valve arrays (FPVAs). In Proceedings of the Design,
Automation, and Test Europe Conference (pp. 91–96).

55. Liu, C., Li, B., Ho, T. Y., Chakrabarty, K., & Schlichtmann, U. (2018). Design-for-testability
for continuous-flow microfluidic biochips. In Proceedings of the Design Automation Confer-
ence.

56. Liu, C., Li, B., Yao, H., Pop, P., Ho, T. Y., & Schlichtmann, U. (2017). Transport or
store? Synthesizing flow-based microfluidic biochips using distributed channel storage. In
Proceedings of the Design Automation Conference (pp. 49:1–49:6).

57. Manz, A., Graber, N., & Widmer, H. M. (1990). Miniaturized total chemical analysis systems:
A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1(1–6), 244–248.

86 R. Wille et al.

58. Mark, D., Haeberle, S., Roth, G., von Stetten, F., & Zengerle, R. (2010). Microfluidic Lab-on-
a-Chip platforms: Requirements, characteristics and applications. Journal of Chemical Society
Reviews, 39(3), 1153–1182.

59. Melin, J., & Quake, S. (2007). Microfluidic large-scale integration: the evolution of design
rules for biological automation. Annual Review of Biophysics and Biomolecular Structure, 36,
213–231.

60. Minhass, W. H., Pop, P., Madsen, J., & Blaga, F. S. (2012). Architectural synthesis of
flow-based microfluidic large-scale integration biochips. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems (pp. 181–190).

61. Minhass, W. H., Pop, P., Madsen, J., & Ho, T. Y. (2013). Control synthesis for the flow-based
microfluidic large-scale integration biochips. In Proceedings of the Asia and South Pacific
Design and Automation Conference (pp. 205–212).

62. Pollack, M. G., Shenderov, A. D., & Fair, R. B. (2002). Electrowetting-based actuation of
droplets for integrated microfluidics. Journal on Lab on a Chip, 2(2), 96–101.

63. Su, F., & Chakrabarty, K. (2006). Module placement for fault-tolerant microfluidics-based
biochips. ACM TODAES, 11(3), 682–710.

64. Su, F., & Chakrabarty, K. (2008). High-level synthesis of digital microfluidic biochips. ACM
JETC, 3(4), 1:1–1:32. https://doi.org/10.1145/1324177.1324178.

65. Su, F., Hwang, W., & Chakrabarty, K. (2006). Droplet routing in the synthesis of digital
microfluidic biochips. In Design, Automation and Test in Europe (Vol. 1, pp. 1–6). Piscataway:
IEEE.

66. Tan, Y. C., Fisher, J. S., Lee, A. I., Cristini, V., & Lee, A. P. (2004). Design of microfluidic
channel geometries for the control of droplet volume, chemical concentration, and sorting.
Journal on Lab on a Chip, 4(4), 292–298.

67. Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. R., & Lee, A. P. (2006). Controlled microfluidic
encapsulation of cells, proteins, and microbeads in lipid vesicles. Journal of the American
Chemical Society, 128(17), 5656–5658.

68. Tan, Y. C., Ho, Y. L., & Lee, A. P. (2007). Droplet coalescence by geometrically mediated flow
in microfluidic channels. Journal of Microfluidics and Nanofluidics, 3(4), 495–499.

69. Tan, Y. C., Ho, Y. L., & Lee, A. (2008). Microfluidic sorting of droplets by size. Journal of
Microfluidics and Nanofluidics, 4(4), 343–348.

70. Thorsen, T., Maerkl, S. J., & Quake, S. R. (2002). Microfluidic large-scale integration. Science,
298(5593), 580–584.

71. Tseng, K. H., You, S. C., Liou, J. Y., & Ho, T. Y. (2013). A top-down synthesis methodology for
flow-based microfluidic biochips considering valve-switching minimization. In Proceedings of
the International symposium on Physical Design (pp. 123–129).

72. Tseng, T. M., Li, B., Ho, T. Y., & Schlichtmann, U. (2015). Reliability-aware synthesis for
flow-based microfluidic biochips by dynamic-device mapping. In Proceedings of the Design
Automation Conference (pp. 141:1–141:6).

73. Tseng, T. M., Li, B., Li, M., Ho, T. Y., & Schlichtmann, U. (2016). Reliability-aware synthesis
with dynamic device mapping and fluid routing for flow-based microfluidic biochips. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(12), 1981–
1994.

74. Tseng, T. M., Li, B., Schlichtmann, U., & Ho, T. Y. (2015). Storage and caching: Synthesis of
flow-based microfluidic biochips. IEEE Design and Test, 32(6), 69–75.

75. Tseng, T. M., Li, M., Freitas, D. N., McAuley, T., Li, B., Ho, T. Y., et al. (2018). Columba 2.0:
A co-layout synthesis tool for continuous-flow microfluidic biochips. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(8), 1588–1601.

76. Tseng, T. M., Li, M., Li, B., Ho, T. Y., & Schlichtmann, U. (2016). Columba: Co-layout
synthesis for continuous-flow microfluidic biochips. In Proceedings of the Design Automation
Conference (pp. 147:1–147:6).

77. Verpoorte, E., & Rooij, N. F. D. (2003). Microfluidics meets MEMS. Proceedings of the IEEE,
91(6), 930–953.

https://doi.org/10.1145/1324177.1324178

Automatic Design of Microfluidic Devices 87

78. Wang, G., Teng, D., & Fan, S. K.: Digital microfluidic operations on micro-electrode dot array
architecture. IET Nanobiotechnology, 5(4), 152–160 (2011).

79. Wang, G., Teng, D., Lai, Y. T., Lu, Y. W., Ho, Y., & Lee, C. Y. (2013). Field-programmable
lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnology, 8, 163–
171.

80. Wang, Q., Ru, Y., Yao, H., Ho, T. Y., & Cai, Y. (2016). Sequence-pair-based placement and
routing for flow-based microfluidic biochips. In Proceedings of the Asia and South Pacific
Design and Automation Conference (pp. 587–592).

81. Wang, Q., Xu, Y., Zuo, S., Yao, H., Ho, T. Y., Li, B., et al. (2017). Pressure-aware control layer
optimization for flow-based microfluidic biochips. IEEE Transactions on Biomedical Circuits
and Systems, 11(6), 1488–1499.

82. Wang, Q., Zuo, S., Yao, H., Ho, T. Y., Li, B., Schlichtmann, U., et al. (2017). Hamming-
distance-based valve-switching optimization for control-layer multiplexing in flow-based
microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation
Conference (pp. 524–529).

83. Wang, W., Yang, C., & Li, C. M. (2009). On-demand microfluidic droplet trapping and fusion
for on-chip static droplet assays. Journal on Lab on a Chip, 9(11), 1504–1506.

84. Wille, R., Keszocze, O., Drechsler, R., Boehnisch, T., & Kroker, A. (2015). Scalable one-pass
synthesis for digital microfluidic biochips. Journal on Design and Test, 32(6), 41–50.

85. Xu, T., & Chakrabarty, K. (2007). Integrated droplet routing in the synthesis of microfluidic
biochips. In Design Automation Conference (pp. 948–953).

86. Yao, H., Ho, T. Y., & Cai, Y. (2015). PACOR: Practical control-layer routing flow with
length-matching constraint for flow-based microfluidic biochips. In Proceedings of the Design
Automation Conference (pp. 142:1–142:6).

87. Yuh, P. H., Yang, C. L., & Chang, Y. W. (2007). BioRoute: A network-flow based routing
algorithm for digital microfluidic biochips. In International Conference on CAD (pp. 752–
757). Piscataway: IEEE Press.

88. Yuh, P. H., Yang, C. L., & Chang, Y. W. (2007). Placement of defect-tolerant digital
microfluidic biochips using the T-tree formulation. ACM JETC, 3(3), 13.

89. Zheng, B., Roach, L. S., & Ismagilov, R. F. (2003). Screening of protein crystallization
conditions on a microfluidic chip using nanoliter-size droplets. Journal of the American
Chemical Society, 125(37), 11170–11171.

A New Ageing-Aware Approach via Path
Isolation

Yue Lu, Shengyu Duan, and Tom J. Kazmierski

1 Introduction

With the drastic scaling of CMOS technology, design of robust system is becoming
a major challenge. Among various reliability threats, Bias Temperature Instability
(BTI) is emerging as one of the main reliability concerns in nano-scale technologies.
Bias Temperature Instability (BTI) manifests itself as an increase in transistor
threshold voltage (Vth) [1]. It degrades NMOS and PMOS transistors in the form
of Positive BTI (PBTI) and Negative BTI (NBTI), respectively, but PBTI is only
considered to be crucial for the CMOS technology beyond 45-nm due to the
adoption of high-k materials [2]. For logic circuits, BTI-induced Vth shift results
in path delay increase, eventually causing timing violations [3].

A great many techniques have been proposed to overcome BTI-induced timing
errors at the design phase. Kumar et al. proposed to synthesize a circuit by using a re-
characterized library that includes post-ageing information [4]. Wu and Marculescu
exhaustively swap the input signals of a logic to find the minimum degradation
circuit structure [5]. A gate-level approach is presented in [6], where a Lagrangian
Relaxation algorithm is used to find the optimal size for each device, considering the
BTI effect. These techniques may significantly improve circuit lifetime reliability,
but require very high complexity. For this reason, they cannot be incorporated
in a logic synthesis process. In practice, an over-design method is often used at
the synthesis stage, typically by up-sizing the circuit to put in pessimistic timing

Y. Lu · S. Duan
School of Electronic and Computer Engineering, University of Southampton, Southampton, UK
e-mail: yl15g13@ecs.soton.ac.uk; yl15g13@ecs.soton.ac.uk

T. J. Kazmierski (�)
University of Southampton, Southampton, UK
e-mail: tjk@ecs.soton.ac.uk

© Springer Nature Switzerland AG 2020
T. J. Kazmierski et al. (eds.), Languages, Design Methods, and Tools for
Electronic System Design, Lecture Notes in Electrical Engineering 611,
https://doi.org/10.1007/978-3-030-31585-6_5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31585-6_5&domain=pdf
mailto:yl15g13@ecs.soton.ac.uk
mailto:yl15g13@ecs.soton.ac.uk
mailto:tjk@ecs.soton.ac.uk
https://doi.org/10.1007/978-3-030-31585-6_5

90 Y. Lu et al.

margins. The additional margin compensates for the delay increase caused by the
BTI effect, improving the lifetime reliability. Although the over-design method
is easy to implement, it usually induces larger-than-necessary overheads [7]. For
sub-45-nm technologies, larger timing margins are needed due to the co-action of
NBTI and PBTI, causing even greater costs. Therefore, it is necessary to develop
alternative approaches for conventional over-design to ensure the circuit lifetime
reliability with less overheads.

In this design, we propose an ageing-aware approach via path isolation to
mitigate BTI degradation for given constraints. Specifically, we exploit all the
suspicious paths that may lead to timing violations with the presence of ageing,
and then insert the FFs (flip-flops) into these paths to realize isolation. With the
guidance of our proposed synthesis algorithm, the area overhead can be significantly
reduced by carefully gate sizing. This proposed approach is demonstrated on a 16-
tap FIR filter design, simulation results show that, with the same given constraints,
our design outperforms the conventional over-design techniques in terms of area
saving.

The rest of the paper is organized as follows. Section 2 shows a brief review
about ageing effects. Section 3 describes the principle of the proposed ageing
aware approach. A case study of FIR filter and corresponding simulation results
are analysed in Sect. 4 and Sect. 5 summarizes and concludes the paper.

2 BTI Effect and Delay Degradation

2.1 Transistor-Level BTI Modelling

The BTI effect is physically described as the consequence of charge generation
on the transistor oxide interface [1]. The charges are produced when a transistor
is turned on, and will be partially neutralized in the OFF state. These charges
accumulate over time, resulting in a threshold voltage shift (�Vth). A simplified
analytical model for BTI is presented in a previous paper [8], shown in Eq. 1.

�Vth(t) = b.αn.tn (1)

where t is the operational time; b is a constant parameter determined by the tech-
nology node and the environmental conditions like supply voltage and temperature;
α is the BTI stress duty cycle, given by the ratio of transistor ON time to the total;
n is the time exponential constant, equal to 0.16, according to [9].

A New Ageing-Aware Approach via Path Isolation 91

2.2 Circuit-Level BTI Degradations

For a logic gate, BTI-induced �Vth causes a linear increase to the signal propagation
delay [10]. Thus, BTI-induced delay shift for a gate (Dgate) can be modelled by an
equation, shown in Eq. 2, where K is dependent on technology node, supply voltage,
temperature, etc., and D0 is the intrinsic gate delay.

�Dgate(t) = K.D0.α
n.tn (2)

A logic circuit is constructed by plenty of logic gates, each suffering from the
BTI degradation. The overall degradation for a signal path of a circuit is therefore
determined by the sum of delay shifts for all gates of the path. Based on Eq. 2, we
give BTI-induced path degradation (�Dpath) in Eq. 3, where D0(i) and αi are the
intrinsic delay and stress duty cycle for the gate i, respectively, and N indicates the
total number of gates of the path.

�Dpath(t) = K.tn.

N∑

i=1

D0(i).α
n
i (3)

According to [11], the BTI effect causes 20% delay degradation after 10 years
for a 65-nm circuit. This empirical data can be used to predict the delay increase
after a specific operational time, by fitting the data into Eq. 3. While the stress duty
cycle of each gate is highly dependent on the circuit workload, which may be hardly
predicted at the design phase, accurate design-time ageing prediction is believed
to be nearly impossible. One can only estimate the range of degradations based
on the given conditions. According to [12], the difference of delay degradation is
around 16% with different circuit workloads. Therefore, the minimum, typical and
maximum percentage delay shifts for different operational times can be computed,
shown in Table 1, for a 65-nm circuit.

In order to promise an expected lifetime considering different circuit workloads,
a timing margin larger than the maximum delay degradation may be applied. For
instance, a 25% guardband may be used to ensure a circuit working properly in
10 years. The pessimistic timing margin can be realized, causing great overhead
if applying conventional over-design method. This motivates us to explore a less
costly guardbanding method, as will be described in the following section.

Table 1 Minimum, typical
and maximum percentage
delay shifts due to BTI for
65-nm technology

Delay degradation (%)

Operational time (year) Min. Typ. Max.

2 12.99 15.46 17.93

4 14.51 17.27 20.03

6 15.48 18.43 21.38

8 16.21 19.3 22.39

10 16.8 20 23.2

92 Y. Lu et al.

3 Proposed Ageing-Aware Approach

In this section, a novel approach is proposed to efficiently increase circuit robustness
against ageing with negligible area and delay overheads. The basic idea is to isolate
potential timing-violated paths with the presence of ageing into two cycles, thereby
providing more guardband to mitigate ageing-issued timing violations. Depending
on different design requirements about ageing, the circuit guardband can be adjusted
ranging from 10% to 25%. Compared with standard two-cycle pipeline operation,
the proposed approach inserts D-flip-flops as checkpoints into less number of circuit
paths while acceptable timing margin is acquired to prevent ageing-issued problems.

3.1 Motivational Example

For the sake of simplicity, we choose a 8-bit ripple carry adder as an example,
the path delay distribution across sum bits is showed in Fig. 1. The green bars
represent the original path delay without ageing effects and the red bars denote
the increased circuit delay due to circuit ageing, respectively. It can be clearly seen
that the path delay of MSB violates timing constraints with the presence of ageing
firstly. Once the MSB paths start to fail, it would lead to a rapid decline in the
computation accuracy. With the adoption of proposed approach, this concern can
be significantly eliminated. For a certain amount of guardband these violated paths
would be separated into two parts to extend the circuit lifetime. In other words,
the previous one-cycle operation is modified as two-cycle pipeline computation. In
terms of performance loss, only one extra clock cycle is required without any effects
on system sampling or throughput rate.

Fig. 1 Design time and post-ageing data arrival times before and after ageing-aware optimization
for a 8-bit adder. (a) Path delay distribution after ageing. (b) Path delay distribution using critical
path isolation

A New Ageing-Aware Approach via Path Isolation 93

3.2 Algorithm for Path Isolation

In the proposed approach, our main objective is to assign ageing-aware timing
constraints to the circuit via path isolation method during the synthesis stage to
extend the circuit lifetime according to a certain amount of guardband. In order
to realize the path isolations, a large number of flip-flops are inserted to cover all
potential circuit paths. Taking the circuit’s cost-efficiency into consideration, we
propose a synthesis method via gate sizing to reduce the number of inserted flip-
flops while maintaining the same path coverage. Specifically, for the circuit paths
with the same end-point, the number of their shared path nodes grows with the
increase of circuit depth while that of the total path node is reduced. Therefore,
once a certain amount of guardband is given, we can move the path isolation nodes
forward to the deeper circuit paths by upsizing and downsizing the different part of
gates. Accordingly, the required insertion nodes can be significantly reduced, while
the totalarea overhead is very small.

We propose Algorithm 1 to isolate some paths and put in a specific timing margin,
compensating for the delay shift caused by the BTI effect. Specifically, the required
intrinsic circuit delay Dt0 is first computed based on the maximum delay allowed by
the system and the percentage timing margin. In each iteration of the optimization,
we focus on the most critical path, which has the largest delay and thus requires the
greatest delay reduction. To isolate the path, the gates of the path are divided into a
lower-depth group (Gl) and a greater-depth group (Gg) based on the signal arrival
time on their output nodes: a gate with the output signal arrival time smaller/larger
than Dt0 is considered to be at the lower-/greater-depth and is categorized into
Gl /Gg . One flip-flop (FF) is then inserted in the path to isolate the gates of Gl and
Gg . In this way, the most critical path is broken down into two paths, both having
the path delay smaller than Dt0. In order to ensure the correct function, other paths
also need to be changed to support a two-cycle operation: FFs are inserted at the
specific internal nodes of all paths that end at the same output as the most critical
one, while one FF is required to be put in the each of the rest outputs, delaying
the output signals for one clock cycle. We then use an algorithm to reduce the area
overhead, as will be explained later. The above steps are repeated until the intrinsic
circuit delay is not greater than Dt0, indicating that all paths have the required timing
margin.

As has been described, the number of the required FFs may be reduced, by
moving the FFs to a greater circuit depth. This can be realized by resizing the
gates of a signal path. In specific, the FFs are inserted at the internal node of the
critical path, where the signal arrival time is just smaller than Dt0, according to
Algorithm 1. Therefore, by up-sizing some logic gates, the signal arrival times at
the specific internal nodes may become smaller, moving the two-cycle operation
point to a greater circuit depth. While the up-sizing process introduces more area on
the combinational logic, it also potentially reduces the number of FFs required to
isolate the paths, reducing the area of the sequential part (i.e. the FFs). Therefore, the
overall circuit area needs to be evaluated to ensure a smaller area cost. We present

94 Y. Lu et al.

Algorithm 1 Path isolations for lifetime extension
Require: all paths have required timing margin;
1: procedure PATHISO()
2: Dt0 = max delay/(1+margin%);
3: critP ath = path with the largest delay;
4: while DcritP ath > Dt0 do
5: for each gate ∈ critP ath do
6: if arrival time < Dt0 then
7: Gl = Gl ∪ gate;
8: else
9: Gg = Gg ∪ gate;

10: Insert FFs based on Gl and Gg ;
11: AREAMIN();
12: Identify new critP ath;
13: return optCircuit

Algorithm 2 Area cost minimization
1: procedure AREAMIN()
2: Timing constraint = DcritP ath;
3: repeat
4: Reduce timing constraint;
5: upSize(Gl) to meet timing constraint;
6: Re-insert FFs;
7: Cost = AreaInc(comb) - AreaDec(seq);
8: until Cost > 0;

Algorithm 2 to minimize the area cost. This algorithm iteratively tightens the timing
constraint to up-size the gates of the critical path. Only the gates of Gl can be up-
sized. This is because up-sizing the gates of Gg would not change the signal arrival
time of any gates of Gl and thus, the FFs would be inserted at the same nodes as
before the circuit is up-sized, causing more area cost. The FFs are re-inserted on
the up-sized circuit according to the signal arrival time, similar to Algorithm 1. We
compute the cost based on the area increase of the combinational logic and the area
decrease of the sequential part. The optimization ends when the area cost becomes
larger than 0, indicating the current design has the minimum area and any further
change would induce more area cost.

Figure 2 shows a simple circuit to demonstrate the difference between the
selections of D-flip-flop insertion nodes before and after gate sizing. It can be seen
clearly, before circuit optimization, there are 4 two cycle D-flip-flop insertion nodes.
After careful gate sizing the number of inserted registers is reduced twice while
the guardband margin is maintained. In general, for the proposed ageing-aware
synthesis approach, these constraints provide almost the same result as offered by
conventional techniques, however, with a much less D-flip-flop insertion nodes.

A New Ageing-Aware Approach via Path Isolation 95

Fig. 2 An example of proposed synthesis approach

4 Case Study of a FIR Filter

To investigate the proposed ageing aware approach, we implemented a 16-tap digital
filer datapath, which is an important application in hardware accelerations. With
respect to different amount of guardband against ageing (5%–25%), the ageing-
aware FIR circuit is modified respectively and the relevant simulation results are
analysed in this section.

4.1 VLSI Implementation

For the sake of simplicity, we choose a FIR architecture with a 15% guardband
as an example. Figure 3 shows a modified datapath of a 16-tap FIR filter with N -
bit computation accuracy, where the red highlighted parts represent the auxiliary
circuits used to realize path isolation. The optimal isolation nodes are found around
the third adder stags, the particular amount of 15% guardband can be acquired by
carefully gate sizing.

In this design, 2 × M FFs are inserted to store the intermediate results, where
the value of M is defined by the total number of timing violated paths affected by
ageing. Since FIR filtering computation is based on multiplication and addition.
Similar to the case of the 8-bit adder mentioned in Sect. 3, the critical paths are
in the MSB of results and the path delay distribution for each individual end-point
of all paths shows a degrade trend across result bits (from MSB to LSB groups).
Therefore, in terms of an n-bit FIR filtering operation, fewer circuit paths would be
seriously affected by ageing and lead to timing errors. If we assume all the circuit
paths have 15% delay shift resulted from ageing problem. The results show that
around M + 2-bit result would suffer from timing errors.

As seen in Fig. 3, 2*N+4-bit results are generated in an N-bit FIR filter operation
to avoid overflows. The whole computation is implemented in a pipeline way. The
2*N+2-bit LSB group results are initially computed in the first clock cycle while
some immediate results of MSB computation are stored to prevent timing errors.
Until the next clock cycle, the complete results could be generated. It should be

96 Y. Lu et al.

Fig. 3 An example of FIR datapath with 15% guardband

mentioned that during the second clock cycle, the MSB in 2*N+2-bit LSB group
results would be sent to realize uncompleted operation as a carry bit.

4.2 Experimental Results

The proposed approach has been validated by applying it to a 16-tap digital FIR
filter. We used Synopsys Design Compiler for logic-level optimization and our
ageing-aware approach can provide guardband against ageing ranging from 5% to
25%.

Figure 4 shows the benefits of our proposed synthesis approach. As can be
seen, the number of inserted FFs is significantly saved after circuit optimisation.
In addition, these savings are kept rising with the increase of provided guardband.
Compared with the conventional method, the number of FFs can be reduced by 17%.

As mentioned, practical approaches to improve circuit lifetime at the design
stage is to leave enough timing margins against ageing effects, which increases the
overheads of area and power. Thus, the circuit is over-designed. Here, we compare
our proposed design with the ones that are over-designed for the same amount of
guardband in terms of area overhead. The simulation results in Fig. 5 show that, with
the increase of provided timing margin, our proposed design is more advantageous

A New Ageing-Aware Approach via Path Isolation 97

Fig. 4 Number of inserted flip-flop with increase of guardband for both before and after proposed
synthesis approach

Fig. 5 Increased area cost with increase of guardband for both proposed and over designs

in area saving. As can be noted, our approach can save 35.3% area on average to
guarantee the same lifetime reliability. When the timing guardband increase to 25%,
the area saving can reach to 67.7%.

98 Y. Lu et al.

5 Conclusion

This paper proposes a novel ageing-aware approach via path isolation. Unlike the
state-of-the-art techniques, the additional timing margin does not exclusively rely
on gate sizing. We isolate these paths vulnerable to ageing effects by FFs insertion.
Through careful gate-level optimisation, we can reduce the number of inserted FFs
while maintaining the same guardband. The simulation results based on the FIR
filter design show that our approach is more cost-efficient. The area cost of our
approach is at most 67.7% less compared with a conventional over-design technique.

References

1. Sutaria, K., Ramkumar, A., Zhu, R., Rajveev, R., Ma, Y., & Cao, Y. (2014). BTI-induced
aging under random stress waveforms: Modeling, simulation and silicon validation. In 51st
ACM/EDAC/IEEE Design Automation Conference (DAC) (pp. 1–6). IEEE.

2. Duhan, P., Rao, V. R., & Mohapatra, N. R. (2017). PBTI in HKMG nMOS transistors—effect
of width, layout, and other technological parameters. IEEE Transactions on Electron Devices,
64(10), 4018–4024.

3. Fang, J., & Sapatnekar, S. S. (2013). The impact of BTI variations on timing in digital logic
circuits. IEEE Transactions on Device and Materials Reliability 13(1), 277–286.

4. Kumar, S. V., Kim, C. H., & Sapatnekar, S. S. (2007). NBTI-aware synthesis of digital circuits.
In Proceedings of the 44th Annual Design Automation Conference (pp 370–375). ACM.

5. Wu, K. C., & Marculescu, D. (2009). Joint logic restructuring and pin reordering against NBTI-
induced performance degradation. In Proceedings of the Conference on Design, Automation
and Test in Europe (pp. 75–80). European Design and Automation Association.

6. Paul, B. C., Kang, K., Kufluoglu, H., Alam, M. A., & Roy, K. (2007). Negative bias
temperature instability: Estimation and design for improved reliability of nanoscale circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(4), 743–
751.

7. Kang, K., Gangwal, S., Park, S. P., & Roy, K. (2008). NBTI induced performance degradation
in logic and memory circuits: How effectively can we approach a reliability solution? In
Proceedings of the 2008 Asia and South Pacific Design Automation Conference (pp. 726–731).
IEEE Computer Society Press.

8. Wang, W., Wei, Z., Yang, S., & Cao, Y. (2007). An efficient method to identify critical gates
under circuit aging. In IEEE/ACM International Conference on Computer-Aided Design (pp.
735–740). ICCAD 2007. IEEE.

9. Wu, K. C., & Marculescu, D. (2011). Aging-aware timing analysis and optimization consid-
ering path sensitization. In Design, Automation & Test in Europe Conference & Exhibition
(DATE) (pp. 1–6). IEEE.

10. Chen, X., Wang, Y., Yang, H., Xie, Y., & Cao, Y. (2013). Assessment of circuit optimization
techniques under NBTI. IEEE Design & Test 30(6), 40–49.

11. Ebrahimi, M., Oboril, F., Kiamehr, S., & Tahoori, M. B. (2013). Aging-aware logic synthesis.
In Proceedings of the International Conference on Computer-Aided Design (pp. 61–68). IEEE
Press.

12. Duan, S., Halak, B., & Zwolinski, M. (2017). An ageing-aware digital synthesis approach. In
14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and
Applications to Circuit Design (SMACD) (pp. 1–4). IEEE.

SystemC Coding Guideline for Faster
Out-of-Order Parallel Discrete Event
Simulation

Zhongqi Cheng, Tim Schmidt, and Rainer Dömer

1 Introduction

The IEEE SystemC standard [1] is widely used as a system level design language
for specification, validation, and verification of complex system-on-chip models.
With the rapidly growing complexity of embedded systems, a faster simulation of
SystemC models is of high demand to shorten the design cycle.

The official proof-of-concept Accellera SystemC simulator [2] is based on
Discrete Event Simulation (DES), which executes the SystemC model sequentially.
This means that only one thread is allowed to run at any time during the simulation.
Consequently, when running the Accellera SystemC simulator on a modern multi-
or many-core processor, all but one cores remain idle and the parallel computation
capabilities are largely wasted.

Parallel Discrete Event Simulation (PDES) [3] has gained significant attention
because it can exploit the parallel computation power of modern processors
and provide faster simulation. However, regular PDES is synchronous. Earlier
completed simulation threads need to wait until all the other threads have reached
the same simulation cycle barrier to continue their simulation. This strict total order
still imposes a limitation on high performance parallel simulation.

Out-of-Order Parallel Discrete Event Simulation (OoO PDES) [4] was proposed
for a better utilization of the parallel computation power. In OoO PDES, the
simulation time is local to each thread, and thus, the global simulation cycle barrier
is removed. Independent threads can execute in parallel even if they are in different
time cycles.

Z. Cheng (�) · T. Schmidt · R. Dömer
Center for Embedded and Cyber-Physical Systems, University of California, Irvine, CA, USA
e-mail: zhongqc@uci.edu; schmidtt@uci.edu; doemer@uci.edu

© Springer Nature Switzerland AG 2020
T. J. Kazmierski et al. (eds.), Languages, Design Methods, and Tools for
Electronic System Design, Lecture Notes in Electrical Engineering 611,
https://doi.org/10.1007/978-3-030-31585-6_6

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31585-6_6&domain=pdf
mailto:zhongqc@uci.edu
mailto:schmidtt@uci.edu
mailto:doemer@uci.edu
https://doi.org/10.1007/978-3-030-31585-6_6

100 Z. Cheng et al.

Fig. 1 RISC compiler and simulator for OoO PDES of SystemC [5]

The Recoding Infrastructure for SystemC (RISC) [5] provides a dedicated
SystemC compiler and an advanced OoO PDES simulator for SystemC. RISC is
available as an open-source project and can be downloaded freely from the official
website [6]. Figure 1 shows the tool flow of RISC. The RISC compiler is used as
a frontend to process the input SystemC file. It statically analyzes and derives a
Segment Graph (SG) representation of the model. Based on the SG, the compiler
is able to analyze data conflicts and event notifications among segments, and it
instruments the information as multiple lookup tables into an intermediate model.
This model is then linked against the OoO PDES library to generate an executable.
During the simulation, every thread executes a sequence of segments along a path
over the segment graph. The simulator dynamically checks the instrumented tables
to make correct thread dispatching decisions, preserving the simulation semantics
and timing accuracy.

1.1 Related Work

Various approaches have been proposed to further improve the simulation speed
of OoO PDES. A segment-aware thread dispatching algorithm is studied in [7]. It
takes into account the execution time for a specific segment as a prediction of the
next run time, so that the dispatcher more accurately predicts the run time of the
thread segments ahead and makes better dispatching decisions.

In [8], the authors extended the RISC compiler with the Port Call Path (PCP)
technique, which reduces false positive conflicts in the channel analysis and
significantly increases the simulation speed.

PDES was also studied in [9]. The authors proposed a conservative synchronous
parallel simulation approach and a SystemC framework to speed up tightly coupled
MPSoC simulations on multi-core hosts.

In [10], the authors proposed an open-source framework called systemc-clang for
analyzing SystemC models with a mixture of register-transfer level and transaction-
level components.

In this paper, we propose a coding guideline for SystemC users to build
models with higher parallel potential that can be executed faster by the OoO
PDES simulator. Specifically, the guideline suggests for users to insert extra wait

SystemC Coding Guideline for Faster Out-of-Order Parallel Discrete Event Simulation 101

statements into the model, so as to increase the granularity of the SG. With the
finer granularity SG, variable and event conflicts can be constrained into shorter
segments, thereby reducing the time of sequential execution, which is necessary, for
example, during communication between modules in the system.

Our contributions in this work are summarized as follows:

1. We propose a formal metric ψ to estimate the level of parallelism of the model
under OoO PDES.

2. We propose a coding guideline for the SystemC model designers to optimize the
model for faster simulation.

3. We demonstrate that the proposed coding guideline enables significant speedup
of OoO PDES.

2 SG Granularity and Simulation Speed

In OoO PDES, models are simulated at segment level. SG is described in details in
Sect. 3.1. As shown in Fig. 2, module M has two sc_threads th1 and th2, and a
member variable a. f() and g() are data crunching functions which work on local
variables. The corresponding SG is shown in Fig. 3. Due to the data hazard over a,
the two segments are not allowed to run in parallel. Figure 4 shows the scheduling
of execution of the two sc_threads.

By inserting two new wait statements into the sc_threads, as shown in Fig. 5,
the SG becomes Fig. 6. In this model, functions f() and g() are no longer in the
same segment of the statements that access the shared variable a. Because f() and
g() are conflict-free, they can now be executed in parallel as shown in Fig. 7, which
significantly speeds up the simulation.

Fig. 2 Coarse grained source
code

102 Z. Cheng et al.

Fig. 3 SG of Fig. 2

Fig. 4 Scheduling of Fig. 2

Fig. 5 Fine grained source
code

Fig. 6 SG of Fig. 5

Fig. 7 Scheduling of Fig. 5

SystemC Coding Guideline for Faster Out-of-Order Parallel Discrete Event Simulation 103

This leads to the conclusion that by increasing the granularity of SG, more code
statements can run in parallel, and consequently increase the level of parallelism of
a model and further speed up the simulation.

In the following section, we will show more details to confirm this idea and
propose a coding guideline for the model designer to increase the parallel potential
of the SystemC models under OoO PDES.

3 Recoding Infrastructure for SystemC

The fundamentals about RISC [6] are reviewed in this section for a better compre-
hension of the proposed coding guideline.

3.1 Segment Graph

The SG is the foundation for both static analysis by the RISC compiler and OoO
PDES by the RISC simulator. It is built on top of the Abstract Syntax Tree (AST)
of the input SystemC model.

A SG is a directed graph. Each node is called a segment, which represents the
code statements executed during the simulation between two scheduling steps, i.e.,
the entry into the simulator kernel due to a wait statement in SystemC. The edges
in SG represent the transition between segments. An example of SystemC source
code and corresponding SG is shown in Figs. 8 and 9.

Fig. 8 Example source code

104 Z. Cheng et al.

Fig. 9 SG of Fig. 8

Fig. 10 Data conflict table
for Fig. 8

In this example, line 8 y++ and line 12 s=s*s could be possibly executed in the
same simulation cycle by a thread, so they are put both into segment2. One statement
may also belong to multiple segments as it may occur on different simulation cycles.
Both segment 1 and 2 have s=s*s in the above example. Note that a new segment
starts only on wait statements except for the first one. The first segment is the entry
point of a thread.

3.2 Data and Event Conflicts

The data conflict analysis takes place after the construction of the SG. It is
automatically performed by the RISC compiler. Data conflicts between segments
are caused by data hazards, i.e., parallel or out-of-order accesses to shared variables.
There are three types of data hazards: read-after-write (RAW), write-after-write
(WAW), and write-after-read (WAR). In the example in Fig. 3, segment 1 and 2
have data conflict due to the data hazard over the variable s. The RISC compiler
checks the data conflicts between every pair of segments, and stores the result in a
Data Conflict Table (DCT). Figure 10 shows the DCT for the example in Fig. 8. The
red box indicates a conflict, and the blank ones mean conflict-free.

During the simulation, the OoO PDES simulator looks up the data conflict table
to make safe thread dispatching decisions. If the segments of two ready-to-run

SystemC Coding Guideline for Faster Out-of-Order Parallel Discrete Event Simulation 105

threads have data conflicts, the thread with an earlier timestamp is dispatched by
the scheduler. In general, segments with data conflicts are not allowed to execute in
parallel.

Event and timing conflicts are two other kinds of conflicts that are taken care of
in OoO PDES. They are analyzed in a similar fashion as the data conflict. Details
are described in depth in [4], but omitted here for brevity.

4 Proposed Coding Guideline

In this section, we propose a new coding guideline for the SystemC model
designers to write SystemC models with higher parallel simulation potential. Before
describing the guideline, we first define a metric to estimate the level of parallelism
of a SystemC model under OoO PDES.

4.1 Estimation for Level of Parallelism

The level of parallelism ψ is estimated as the amount of code statement pairs that
can potentially execute in parallel. In OoO PDES, only code statements that belong
to conflict-free segments can run in parallel, and hence, our estimation is expressed
as:

ψ =
∑

i

∑

j>i
thi �=thj

HASNOCONFLICT(segi , segj) (1)

where i and j are the index of code statements in the model. segn is the
segment that includes the nth code statement. And similarly, thi is the thread that
executes the nth code statement. Each single thread executes sequentially, and code
statement i and j cannot execute in parallel if they belong to the same thread.
HASNOCONFLICT(segi ,segj) returns 1 if segi and segj are conflict-free; otherwise,
it returns 0.

If two segments are in conflict, then any pair of code statements that belong to the
two segments are not allowed to execute in parallel, which would reduce ψ . Thus,
the larger ψ is, the higher is the parallelism level of the input model.

4.2 Motivation

Our idea is motivated by the following observation:

106 Z. Cheng et al.

Consider we have two segments: seg1 and seg2, which are executed by two
different threads. There are, respectively, p and q statements in seg1 and seg2. ψ

for this model is simply ψ1 = p × q × HASNOCONFLICT(seg1, seg2).
Now, if a wait statement is inserted into seg1, such that seg1 is partitioned

into two non-overlapping segments: seg11 and seg12. After the partitioning, seg11
includes the first p1 statements of seg1, and seg12 includes the other p2 =
p − p1 statements of seg1. ψ for the new model becomes ψ2 = p1 × q ×
HASNOCONFLICT(seg11, seg2) + p2 × q × HASNOCONFLICT(seg12, seg2). seg11
and seg12 are executed by the same thread, and hence, they must run sequentially
and ψ2 does not increase.

When comparing ψ1 and ψ2, we get four different scenarios:

1. The conflict between seg1 and seg2 is only incurred by certain state-
ments in the first p1 statements of seg1, and the last p2 statements are
conflict-free. This indicates that HASNOCONFLICT(seg11, seg2) = 0,
HASNOCONFLICT(seg12, seg2) = 1, and HASNOCONFLICT(seg1, seg2) = 0.
Under this scenario, ψ1 = 0 and ψ2 = p2 × q. ψ2 is larger than ψ1.

2. The conflict between seg1 and seg2 is only incurred by certain statements
in the last p2 statements of seg1, and the other p1 statements are
conflict-free. This indicates that HASNOCONFLICT(seg11, seg2) = 1,
HASNOCONFLICT(seg12, seg2) = 0, and HASNOCONFLICT(seg1, seg2) = 0.
Under this scenario, ψ1 = 0 and ψ2 = p1 × q. ψ2 is larger than ψ1.

3. The conflict between seg1 and seg2 is incurred both by certain statements in
the first p1 statements and the other p2 statements of seg1. This indicates that
HASNOCONFLICT(seg11, seg2) = 0, HASNOCONFLICT(seg12, seg2) = 0, and
HASNOCONFLICT(seg1, seg2) = 0. Under this scenario, ψ1 = 0 and ψ2 = 0. ψ2
is equal to ψ1.

4. seg1 and seg2 are conflict-free. This indicates that HASNOCONFLICT(seg11, seg2) =
1, HASNOCONFLICT(seg12, seg2) = 1, and HASNOCONFLICT(seg1, seg2) = 1.
Under this scenario, ψ1 = p × q and ψ2 = p1 × q + p2 × q = p × q. ψ2 is equal
to ψ1.

The four scenarios suggest that

1. Partitioning a segment does not decrease the parallel potential of a model.
2. If the user carefully selects the place to insert the extra segment boundary, i.e.,

wait statement, ψ can be increased significantly and results in a model with
higher parallelism level.

4.3 Overhead Consideration

One may deduce that it is always beneficial to insert as many extra wait statements
as possible, because by doing this the ψ of the model keeps increasing. Although
the deduction is correct, it is not a good practice.

SystemC Coding Guideline for Faster Out-of-Order Parallel Discrete Event Simulation 107

Each extra wait statement will increase the number of segments in the segment
graph by one. And the size of conflict tables is to the square of the segment count.
Thus, if too many extra wait statements are inserted, the time cost for static
analysis and dynamic checking will grow dramatically, which would rather decrease
the simulation performance. Besides, too many extra wait statements may also
make the model incomprehensible.

Last but not least, each new wait statement creates an extra scheduler entry
point into the simulator kernel which incurs high overhead.

4.4 Suggestions

Motivated by the above observations and considerations, we propose the following
suggestions for the SystemC model designers to properly place extra wait
statements in the source code, so as to increase the parallel potential of the model
under OoO PDES.

4.4.1 Use the Wait-for-Delta-Cycle Primitive as the Extra Segment
Boundary

There are six different kinds of wait primitives in the SystemC standard [1]:

1. wait() : Wait for the sensitivity list event to occur.
2. wait(int) : Wait for n clock cycles in SC_CTHREAD.
3. wait(event) : Wait for the event mentioned as parameter to occur.
4. wait(double,sc_time_unit) : Wait for specified time.
5. wait(double,sc_time_unit, event) : Wait for specified time or event to occur.
6. wait(SC_ZERO_TIME): Wait for one delta cycle.

The event related wait primitives shall not be used because they require proper
events to be notified. For the wait-for-time primitive, it is likely to change the
simulation time cycle, which is not desirable. Thus, in order to maintain the
semantics and timing accuracy of the original SystemC model, we suggest to the
designers to use wait-for-delta-cycle primitive, i.e., wait(SC_ZERO_TIME) as
extra segment boundaries.1

4.4.2 Partition the Heavy Segments

As mentioned in Sect. 4.3, the cost for one extra wait statement is independent
of where it is inserted. Thus, in order to maximize the gain of ψ of the model, we

1Note that the timing accuracy of a robust model will not be affected by extra delta cycles.

108 Z. Cheng et al.

suggest the users to partition computational intensive segments, which we refer to
as heavy segments.

Unfortunately, it is not obvious to identify heavy segments directly from the
model code. However, the RISC compiler is able to dump the statically generated
SG and the DCT into files by turning on the -risc:dump command line option.
The SG is then dumped into a .dot file which can be viewed graphically using the
xdot.py tool. Also, the DCT is dumped into an HTML file which the designer can
easily view in any browser. An example SystemC source code is shown in Fig. 11.
The dumped SG and DCT are shown in Figs. 12 and 13. The level of parallelism ψ

for this model is ψ1 = 6 + 5 = 11.

Fig. 11 Source code for
module M

Fig. 12 SG for Fig. 11

SystemC Coding Guideline for Faster Out-of-Order Parallel Discrete Event Simulation 109

Fig. 13 DCT for Fig. 11

Fig. 14 Source code for
module M after partitioning

From the SG, it is apparent that segment 1 and segment 3 are heavy segments
which both contain loops. In order to increase the parallelism level of the model,
we wish to partition the conflict-free statements from the conflicting ones in the
segment, as described in the first and second scenarios in the previous section. To
locate the conflicting statement, the user can refer to the dumped Data Conflict
Table. In the ((1,0),(3,0)) entry of the table, it shows that the data conflict is over the
variable M::c, and so the conflict is between statement lines 8 and 17 in Fig. 11.2 In
this example, the conflicting statements are not inside the computationally intensive
code pieces, that are, the for loops. So we can partition the segments by inserting
wait statements after lines 9 and 18. The optimized model is shown in Fig. 14. The
dumped SG and DCT are shown in Figs. 15 and 16. Now, the level of parallelism
ψ becomes ψ2 = 6 + 5 + 4 × 6 = 35. The parallel potential is further intensified
during the simulation due to the two conflict-free for loops.

2The instance id is shown here, which is not of interest in this paper.

110 Z. Cheng et al.

Fig. 15 SG for Fig. 14

Fig. 16 DCT for Fig. 14

5 Experiments and Results

We have applied the proposed coding guideline to several SystemC model examples.
We first tested it on the synthetic benchmarks generated by the TGFF tool to validate
the effectiveness of our coding guideline. Then, we evaluate the guideline with two
real world designs, Canny Edge Detector and Audio/Video Decoder, to demonstrate
the performance. The experiments are performed on an Intel E3-1240 host machine,
which has a total of 8 cores (4 cores with 2-way hyperthreading each). The CPU
frequency scaling is turned off so as to obtain repeatable results.

5.1 TGFF Benchmarks

We first examine the performance of the proposed coding guideline on a synthetic
benchmark, which is automatically generated by the TGFF tool with SystemC
extension [7]. Figure 17 shows the data flow block diagram of the generated model.
It has a source and a sink, and multiple parallel lanes of nodes in between. Figure 18
shows the source code for each node. Each node module first gets an input from

SystemC Coding Guideline for Faster Out-of-Order Parallel Discrete Event Simulation 111

Fig. 17 Block diagram of
TGFF models

Fig. 18 Original source code
of generated Testbench model

Fig. 19 Optimized source
code of generated Testbench
model

a channel, and then does data crunching which is computationally intensive. The
data crunching accesses only local variables and thus is conflict-free. After the
computation the module outputs the result to another channel. In such model, data
conflicts are incurred only by channel communications, which are caused by the
parallel accesses to the shared variables in the channels. To optimize the model, we
apply the proposed coding guideline and put wait(SC_ZERO_TIME) statements
around the data crunching parts. The source code for the optimized module is shown
in Fig. 19.

Through a parameter to the TGFF generator, we are able to control the total
number of lanes as well as nodes per lane, and each lane may consist of various
number of nodes. The data crunching workload of each node is controlled by the
number of iterations of the for loop.

112 Z. Cheng et al.

Table 1 Performance of TGFF benchmarks, simulator run times [sec], and CPU utilization

Benchmark SEQ PAR GDL

1 63.55 (99%) 17.85 (377%) 10.48 (690%)

2 63.54 (99%) 17.63 (379%) 10.91 (663%)

3 134.41 (99%) 88.41 (155%) 81.55 (172%)

4 349.86 (99%) 165.41 (214%) 93.44 (400%)

5 493.02 (99%) 169.12 (301%) 99.17 (552%)

6 134.40 (99%) 92.00 (155%) 81.10 (173%)

Average 206.46 (99%) 91.74 (263.5%) 62.77 (441%)

We studied 6 test cases with different data flow configurations in this experiment.
Table 1 shows the performance of the simulations before and after applying the
coding guideline. The first column SEQ refers to the sequential simulation with
the reference Accellera SystemC simulator. Under the sequential simulation, the
CPU utilization is always below 100% because only one thread is running at any
time during the simulation. The second column PAR refers to the OoO PDES
before applying the coding guideline. It shows that on average, the simulation of
the original models is 2.3x faster than SEQ. The third column GDL refers to the
OoO PDES after applying the coding guideline. It is 3.2x faster than SEQ, and
1.4x faster than PAR. For the first benchmark, GDL achieved a maximum speedup
of 1.7x over PAR, and the latter one is 3.5x faster than SEQ. Note that the CPU
utilization is larger than the speedup over SEQ. This is because in OoO PDES there
is some overhead for checking conflict tables. The results confirm that our coding
guideline can be very effective in achieving higher speedup under OoO PDES.

5.2 Real World Examples

We then evaluate the proposed coding guideline with two real world examples,
namely Canny Edge Detector and Audio/Video Decoder modeled similarly to the
benchmarks used in [7] and [8].

5.2.1 Canny Edge Detector

Our first real world example is the Canny edge detector, which filters edges in
an image. The edge detector is a structurally five-stage pipeline, and each stage
has a communication-computation-communication code structure. Communication
between two pipeline stages is via a user-defined channel in which the read and
write functions access the shared channel variable. In this experiment, a sequence
of 20 images is fed into the pipeline and correspondingly generates 20 outputs. The
outputs are verified to ensure a correct simulation.

SystemC Coding Guideline for Faster Out-of-Order Parallel Discrete Event Simulation 113

Table 2 Performance of
Canny edge detector

SEQ PAR GDL

Simulation time (s) 24.85 19.96 17.23

CPU utilization 100% 127% 149%

Speedup 1.00 1.24 1.44

Fig. 20 Block diagram of
Audio/Video decoder

Table 3 Performance of
Audio/Video decoder

SEQ PAR GDL

Simulation time (s) 73.41 48.24 26.67

CPU utilization 100% 152% 247%

Speedup 1.00 1.52 2.75

Table 2 shows the simulation time and CPU utilization before and after applying
the coding guideline. By using the original model, a CPU utilization of 127% is
achieved, which is due to the conflicts among communications. With the optimized
model, the CPU utilization is increased to 149%, and the OoO PDES speed is
increased by 1.2x. The speedup is not as impressive as in the TGFF test cases. This
is because the workload of each pipeline stage varies greatly, and the bottleneck of
the simulation speed is determined by the longest stage. However, this experiment
still confirms the effectiveness of the proposed coding guideline.

5.3 A/V Decoder

The second real world test case is an Audio/Video decoder. The model structure is
shown in Fig. 20. The stimulus sends the encoded stream to one video decoder and
the left and right audio decoders. Then, the video decoder outputs the result to a
monitor, and the audio decoders output the results to two speakers. The results for
this test case are shown in Table 3. The execution times cost for OoO PDES before
and after applying the coding guideline are 48.24 s and 26.67 s, which suggest
the optimized model executes 1.8x faster. The speedup is reasonable because the
encoding and decoding stages have similar computation loads. The result again
confirms the effectiveness of the proposed coding guideline.

114 Z. Cheng et al.

6 Conclusion

In this paper, we proposed a coding guideline for the SystemC model designers
who use OoO PDES parallel execution enabled by the Recoding Infrastructure for
SystemC. By applying the coding guideline, the granularity of the Segment Graph
becomes larger, and thus results in a faster execution speed. Our experiments show
that by applying the proposed coding guideline, the optimized SystemC model is
able to achieve a speedup of up to 1.7x on an 8 core machine, on top of the 3.5x
speedup due to PDES.

References

1. IEEE Standard 1666–2011 for Standard SystemC R© Language Reference Manual. (2012).
IEEE Computer Society, January 2012.

2. SystemC Language Working Group. (2014). SystemC 2.3.1, Core SystemC Language and
Examples, Accellera Systems Initiative. [Online]. Available: http://accellera.org/downloads/
standards/systemc, 2014.

3. Fujimoto, R. (1990). Parallel discrete event simulation. Commun. ACM, 33, 3053.
4. Chen, W., Han, X., Chang, C. W., Liu, G., & Dömer, R. (2014). Out-of-order parallel discrete

event simulation for transaction level models. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 33(12), 1859–1872.

5. Dömer, R., Liu, G., & Schmidt, T. (2016). Parallel simulation. In S. Ha, & J. Teich (Eds.),
Handbook of Hardware/Software Codesign. Dordrecht: Springer.

6. Lab for Embedded Computer Systems (LECS). Recoding Infrastructure for SystemC [Online].
Available: www.cecs.uci.edu/~doemer/risc.html#RISC050.

7. Liu, G., Schmidt, T., & Dömer, R. (2016). A segment-aware multi-core scheduler for systemC
PDES. In Proceedings of the International High Level Design Validation and Test Workshop,
Santa Cruz, California, October 2016.

8. Schmidt, T., Cheng, Z., & Dömer, R. (2018). Port call path sensitive conflict analysis for
instance-aware parallel systemc simulation. In Proceedings of Design, Automation and Test
in Europe, Dresden, Germany, March 2018.

9. Schumacher, C., Leupers, R., Petras, D., & Hoffmann, A. (2010). parSC: synchronous parallel
systemc simulation on multi-core host architectures. In Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis (pp. 241–246).

10. Kaushik, A., & Patel, H. D. (2013). SystemC-clang: an open-source framework for analyzing
mixed-abstraction SystemC models. In Proceedings of the Forum on Specification and Design
Languages (FDL), Paris, 2013.

http://accellera.org/downloads/standards/systemc
http://accellera.org/downloads/standards/systemc
www.cecs.uci.edu/~doemer/risc.html#RISC050

Extensible and Configurable RISC-V
Based Virtual Prototype

Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler

1 Introduction

Enormous innovations are enabled by the Internet-of-Things (IoT) since every
device is connected to the Internet. Forecasts see additional economic impact
resulting from Industrial IoT. In the last years the complexity of IoT devices has
been increasing steadily with various conflicting requirements. On the one hand, IoT
devices need to provide smart functions with a high performance including real-time
computing capabilities, connectivity, and remote access as well as safety, security,
and high reliability. At the same time they have to be cheap, work efficiently with
an extremely small amount of memory and limited resources, and should further
consume only a minimal amount of power to ensure a very long lifetime.

To meet the requirements of a specific IoT system, a crucial component is the
processor. Stimulated from the enormous momentum of open source software, a
counterpart on the hardware side recently emerged: RISC-V [17, 18]. RISC-V is an
open source Instruction Set Architecture (ISA) which is license-free and royalty-
free. The ISA standard is maintained by the non-profit RISC-V foundation and
is appropriate for all levels of computing systems, i.e., from micro-controllers to
supercomputers. The RISC-V ecosystem is rapidly growing, ranging from HW,
e.g., various HW implementations (free as well as commercial) to high-speed
Instruction Set Simulators (ISSs). These ISSs facilitate functional verification of

V. Herdt (�) · H. M. Le
Institute of Computer Science, University of Bremen, Bremen, Germany
e-mail: vherdt@informatik.uni-bremen.de; hle@informatik.uni-bremen.de

D. Große · R. Drechsler
Institute of Computer Science, University of Bremen and Cyber-Physical Systems, DFKI GmbH,
Bremen, Germany
e-mail: grosse@informatik.uni-bremen.de; drechsle@informatik.uni-bremen.de

© Springer Nature Switzerland AG 2020
T. J. Kazmierski et al. (eds.), Languages, Design Methods, and Tools for
Electronic System Design, Lecture Notes in Electrical Engineering 611,
https://doi.org/10.1007/978-3-030-31585-6_7

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31585-6_7&domain=pdf
mailto:vherdt@informatik.uni-bremen.de
mailto:hle@informatik.uni-bremen.de
mailto:grosse@informatik.uni-bremen.de
mailto:drechsle@informatik.uni-bremen.de
https://doi.org/10.1007/978-3-030-31585-6_7

116 V. Herdt et al.

RTL implementations as well as early SW development to some extent. However,
being designed predominantly for speed, they can hardly be extended to support
further system-level use cases such as design space exploration, power/timing/per-
formance validation, or analysis of complex HW/SW interactions.

A major industry-proven approach to deal with these use cases in earlier phases
of the design flow is to employ Virtual Prototypes (VPs) [10] at the abstraction
of Electronic System Level (ESL) [1]. In industrial practice, the standardized
C++-based modeling language SystemC and Transaction Level Modeling (TLM)
techniques [4, 9] are being heavily used together to create VPs. Depending on
the specific use case, advanced state-of-the-art SystemC-based techniques beyond
functional modeling (see e.g. [5–7, 11, 16]) are to be applied on top of the basic VPs.
The much earlier availability as well as the significantly faster simulation speed in
comparison to RTL are among the main benefits of SystemC-based VPs.

In this paper, we propose and implement the first RISC-V based VP to further
expand and bring the benefits of VPs to the RISC-V ecosystem. With the goal of
filling the mentioned gap in supporting further system-level use cases, SystemC is
necessarily the language of choice. The VP is therefore implemented in standard-
compliant SystemC and TLM-2.0 and designed as extensible and configurable
platform with a generic bus system. We provide a RISC-V RV32IM core and a
PLIC-based interrupt controller with an essential set of peripherals. We demonstrate
the extensibility of our VP by two examples: addition of a sensor peripheral and
extension by GDB debug functionality from the application SW perspective. In the
experimental evaluation we show the high simulation performance of our VP based
on several optimizations. Our RISC-V VP is fully open source1 to stimulate further
research and development.

Related Work

As mentioned earlier, the RISC-V ecosystem already has various high-speed ISSs
such as the reference simulator Spike [15], RISCV-QEMU [12], or RV8 [13]. They
are mainly designed to simulate as fast as possible and predominantly employ
dynamic binary translation (to x86_64) techniques. This is however a trade-off as
accurately modeling power or timing information for instructions becomes much
more challenging. The full-system simulator gem5 [2], at the time of writing also
has initial support for RISC-V. gem5 provides more detailed models of processors
and memories and can in principle also be extended for accurate modeling of
extra-functional properties. However, it employs a different modeling style and
thus hinders the integration of advanced SystemC-based techniques. The project
SoCRocket [14] that develops an open source SystemC-based VP for the SPARC

1Available at https://github.com/agra-uni-bremen/riscv-vp, for more information and updates also
visit www.systemc-verification.org/riscv-vp.

https://github.com/agra-uni-bremen/riscv-vp
www.systemc-verification.org/riscv-vp

Extensible and Configurable RISC-V Based Virtual Prototype 117

V8 architecture can be considered comparable to our effort. Finally, commercial VP
tools such as Synopsys Virtualizer or Mentor Vista might also support RISC-V but
their implementation is proprietary.

2 Preliminaries

2.1 RISC-V

RISC-V is an open and free instruction set architecture (ISA). The ISA consists
of a mandatory base integer instruction set and various optional extensions. The
integer set is available in three different configurations with 32, 64, and 128 bit
width registers, respectively: RV32I, RV64I, and RV128I. Additionally, the RV32E
configuration, which is essentially a lightweight RV32I with a reduced number of
registers, is available and intended for (very) small embedded devices. Extensions
are denoted with a single letter, e.g., M (integer multiplication and division), A
(atomic instructions), C (compressed instructions), etc. A comprehensive descrip-
tion of the RISC-V instruction set is available in the specification [17].

The second volume of the RISC-V ISA specification defines a privileged
architecture description [18]. It defines control and status registers (CSRs), which
are registers serving a special purpose. For example the misa (Machine ISA)
register is a read-only CSR that contains information about the supported ISA.
Another example is the mtvec (Machine Trap-Vector Base-Address) CSR that stores
the address of the trap/interrupt handler. The privileged architecture description
provides a small set of instructions for interrupt handling (wfi, mret) and interacting
with the system environment (ecall, ebreak).

2.2 SystemC and TLM

SystemC is a C++ class library that includes an event-driven simulation kernel. The
structure of a SystemC design is described with ports and modules, whereas the
behavior is described in processes which are triggered by events. The execution of
a process is non-preemptive, i.e., the kernel receives the control back if the process
has finished its execution or suspends itself by calling wait(). SystemC provides
three types of processes with SC_THREAD being the most general type, i.e., the
other two can be modeled by using SC_THREAD. For event-based synchronization,
SystemC offers many variants of wait() and notify() such as wait(time), wait(event),
event.notify(delay), event.notify(), etc.

Communication between modules is implemented through (TLM) transactions.
A transaction object essentially consists of the command (e.g., read/write), the start
address, the data length, and the data pointer. It allows to implement various memory

118 V. Herdt et al.

access operations. Optionally, a transaction can be associated with a delay (modeled
as sc_time data structure), which denotes the execution time of the transaction and
allows to obtain a more accurate overall simulation time estimation.

Figure 6 shows a basic sensor model implementation in SystemC that communi-
cates through TLM transactions (the transport method) to demonstrate the modeling
principles. We will describe the example in more detail later in Sect. 6.1.

3 RISC-V Based VP Architecture

The VP is implemented in SystemC and designed as extensible and configurable
platform around a RISC-V RV32IM CPU core with a generic bus system employing
TLM 2.0 communication and support for the GCC toolchain—including coverage
tracking with GCOV and debugging with GDB, of the software applications
executed on our VP. Overall, the VP consists of around 3000 lines of C++ code with
all extensions. Figure 1 shows an overview of the VP architecture. In the following
we present more details.

RV32IM
CPU Core (Main)

Memory

PLIC-based
Interrupt Contr.

CLINT

Simple
Sensor

DMA
Controller Terminal

Other Peripherals/
Controllers

Memory Interface
T

T

T

T T

C/C++
Standard Library

C/C++
Program

(Cross-)Compile
and Link

Executable
RISC-V ELF File

Virtual Prototype
Architecture

TLM 2.0
Transactions

Interrupt Notifications

Load into
Memory

GCC Toolchain

Legend: TLM 2.0 Transaction Interrupt Notification T SystemC Thread

(start=0x00000000,

TLM 2.0
Bus

end=0x20000000)

Fig. 1 Virtual prototype architecture overview

Extensible and Configurable RISC-V Based Virtual Prototype 119

3.1 Core

The CPU core loads, decodes, and executes one instruction after another. We
provide support for the RISC-V RV32IM instruction set in the CPU core and target
the current version of the RISC-V machine level ISA as defined in the RISC-V
privileged architecture specification [18]. This includes the machine level control
and status register (CSRs) as well as instructions for interrupt handling (wfi, mret)
and environment interaction (ecall, ebreak). We will provide more details on the
implementation of interrupt handling and system calls (environment interaction) in
the following sections.

3.2 Bus

The TLM bus is responsible for routing transactions from an initiator, i.e., (bus)
master, to a target. Therefore, all target components are attached to the TLM bus
at specific non-overlapping address ranges. The bus will match the transaction
address with the address ranges and dispatch the transaction accordingly to the
matching target. Please note, in this process the bus performs a global-to-local
address translation in the transaction. For example, assume that a sensor component
is mapped to the address range (start=0x50000000, end=0x50001000) and the
transaction address is 0x50000010, then the bus will route the transaction to the
sensor and change the transaction address to 0x00000010 before passing it on to
the sensor. Thus the sensor works on local address ranges. The TLM bus supports
multiple masters initiating transactions. Currently, the CPU core as well as the DMA
controller are configured as bus masters. Please note that a single component can be
both a master and a target, as for example the DMA controller receives transactions
initiated by the CPU core to configure the source and destination address ranges and
also initiates transactions by itself to perform the memory access operations without
the CPU core.

3.3 Interrupts

Two sources of interrupts are available: (1) local and (2) external. Essentially, there
are two sources of local interrupts: software and timer interrupts. Both are generated
by the RISC-V specific Core Local INTerruptor (CLINT), which is configured
through memory mapped I/O. External interrupts are processed with higher priority
than local interrupts. External interrupts are all remaining interrupts triggered by
the various components in the system. To handle external interrupts, we provide a
PLIC-based Interrupt Controller (IC), based on the description from [18]. The IC

120 V. Herdt et al.

will collect and prioritize all external interrupts and then route them to the CPU core
one by one. We will describe the interrupt handling process in more details later.

3.4 VP Initialization

The main function in the VP is responsible to instantiate, initialize, and connect all
components, i.e., set up the architecture. An ELF loader is provided to parse and load
an executable RISC-V ELF file into the memory and set up the program counter in
the CPU core accordingly. Finally, the SystemC simulation is started. The ELF file
is produced by the GCC toolchain by (cross-)compiling the application program and
optionally linking it with the C/C++ standard library (we also support a bare-metal
execution environment without C/C++ library).

4 VP Interaction with SW and Environment

In this section we present more details on the HW/SW interaction, in particular on
interrupt handling, and environment interaction via system calls in our VP.

4.1 Interrupt Handling and HW/SW Interaction

In the following we present an example application that periodically accesses a
sensor to demonstrate the interaction between hardware (VP side) and software with
a particular focus on interrupt handling. We first describe the software application
running on the VP and then present a minimal assembler bootstrap code to initialize
interrupt handling and describe how interrupts are processed in more details. Later
in Sect. 6.1 we present the corresponding SystemC-based sensor implementation in
our VP.

4.1.1 Software Side

Figure 2 shows an example application that reads data from a sensor and copies
the data to a terminal component. The sensor and terminal are accessed through
memory mapped I/O. Their addresses are defined at the top of the program. They
need to match with the configuration in the VP. The sensor periodically triggers an
interrupt, denoting that new data is available. The main function starts by registering
an interrupt handler for the sensor interrupt (Line 27). Again, the interrupt number
specified in SW has to match the configuration in the VP. Next, the sensor is
configured in Line 29–30 using memory mapped I/O. The scaler denotes how

Extensible and Configurable RISC-V Based Virtual Prototype 121

Fig. 2 Example application running on the VP to demonstrate the hardware/software interaction

fast sensor data is generated and the filter setting what kind of post-processing is
performed on the data. Finally, the copy process is iterated for three times (Line 32–
33) before the program terminates. Each iteration starts by waiting for sensor data
(Line 16–18). The global boolean flag has_sensor_data is used for synchronization.
It is set in the interrupt handler (Line 12) and unset again immediately after the

122 V. Herdt et al.

waiting loop (Line 19). Please note, the wfi instruction will power down the CPU
core until the next interrupt occurs.

4.1.2 Bootstrap Code and Interrupt Handling

Figure 3 shows the essential parts of a bare-metal bootstrap code, which is written
in assembler and linked with the application code, to handle interrupts.2 The _start
label is the entry point of the whole program. The registers mtvec, mie, and mcause
are CSRs that essentially store the interrupt handler address, enabled interrupts, and
interrupt source, respectively. The instructions csrr and csrw read and write a CSR
into and from a normal CPU register, respectively. Before the main function is called
(Line 10), the interrupt handler base address (level-0) is stored in mtvec (Line 6–7)
and all interrupts are enabled (Line 8–9). After the main function returns, the VP
simulation terminates, because a loop is detected which does not contain any further
instructions (Line 13).

In general, an interrupt can occur at any time during execution of the application
SW. All interrupts propagate to the interrupt controller (IC) first and are prioritized
there. The CPU core only receives a notification that some interrupt is pending and
needs to be processed. The CPU will first store the execution context, i.e., program
counter and register values, and then read the base address from the mtvec CSR
and set the program counter to that address, i.e., effectively directly jumping to the
level-0 interrupt handler (first instruction at Line 16). The interrupt handler (level-

Fig. 3 Bare-metal bootstrap
code demonstrating interrupt
handling

2Support for integration with the C/C++ library is also available, e.g., by executing the instructions
at the beginning of the main function or integrating them directly into the crt0.S file, which is the
entry point of the C library and similarly to the bare-metal code also calls the main function after
performing some basic initialization tasks.

Extensible and Configurable RISC-V Based Virtual Prototype 123

0) first in Line 16 reads the reason (i.e., local or external interrupt) for the interrupt
into the a0 CPU register, which according to the RISC-V calling convention [3]
stores the first argument of a function call. Then in Line 17 an interrupt handler
implemented in C is called (level-1, not shown in this example). Essentially, this
level-1 handler deals with a local timer interrupt by resetting the timer and with
an external interrupt by asking the IC for the actual interrupt number with the
currently highest priority (through a memory mapped register access) and then calls
the application provided interrupt handler function (Line 11–13 in Fig. 2, this step
is ignored if none has been registered for the interrupt number). Finally, the mret
instruction restores the previously stored execution context. Please note that storing
and re-storing the register values can also be implemented in SW, by pushing and
popping them to/from the stack before/after calling the level-1 handler, respectively.

4.2 Environment Interaction: Syscalls and C/C++ Library

System calls (syscalls) are executed by redirecting them to the host system running
the VP simulation. This requires to pass arguments from the guest application into
the host system and integrate the return values back into the guest application
(i.e., memory of the VP). Implementing syscalls enables support for the C/C++
standard library. Furthermore, we can directly use GCOV to track the coverage of
the applications simulated on our VP (the GCOV instrumentation requires syscall
support to open and write to files).

For example consider the printf function provided by the C standard library.
Most of its functionality is implemented as portable C code independent of the
execution environment. Essentially, the printf function will apply all formatting
rules and create a simple char buffer, which is then passed to the write system call.
At this point interaction with the execution environment is required. Figure 4 shows
the relevant part of a stub that is provided in the RISC-V port of the C library.3

Essentially, the arguments of the system call are stored in the CPU registers a0 to
a3 and the syscall number in a7. Then the ecall instruction is executed. The VP
simulator will detect the ecall instruction and directly execute the syscall on the
host system as shown in Fig. 5.4 In case of the write syscall a pointer argument buf
is passed. This is a pointer value from the guest system, i.e., an index in the VP byte
memory array mem, and has to be translated to a host memory pointer in order to
execute the write syscall on the host system. Therefore, the guest_to_host_pointer
function (Line 5) adds the base address of the VP byte memory array, i.e., mem +

3Example based on the newlib port https://github.com/riscv/riscv-newlib.
4It is also possible to execute a trap handler, similar to the interrupt handler described in the
previous section (e.g., essentially, jump to the level-0 interrupt handler with the mcause CSR being
set to a syscall number), and then redirect the write to e.g. a terminal component.

https://github.com/riscv/riscv-newlib

124 V. Herdt et al.

Fig. 4 System call handling stub linked with the C library (guest side, executed on the VP host
system)

Fig. 5 System call execution on the VP by redirecting to the host system

Extensible and Configurable RISC-V Based Virtual Prototype 125

buf. The result of the syscall is stored in the a0 register and passed back to the C
library. We have implemented other syscalls in a similar way to the write syscall.

In general the guest and host system have a different architecture with different
word sizes, e.g., in our case the guest system (which is simulated in the VP) is a
32 bit and the host system (which runs the VP) is a 64 bit system. Therefore, one
has to be careful when data is passed between the guest and the host. Primitive
types, e.g., int and bool, can be passed directly from the guest to the host, because
our host system running the VP uses data types with equal or larger sizes, thus no
information is lost when passing the arguments. When passing values back from the
host a check can be performed, if necessary, to ensure that no relevant information
is truncated, e.g., due to casting a 64 bit value into a 32 bit one. Pointer arguments
need to be translated to host addresses, as described above, before accessing them
on the host system. A write access is thus directly propagated back to the guest
application. Structs can be accessed and copied recursively, considering the rules
for accessing primitive and pointer types.

5 VP Performance Optimizations

In this section we discuss two performance optimizations for our VP that result in
significant simulation speed-ups. The first optimization is a direct memory interface
to fetch instructions and perform load/store operations from/to the (main) memory
more efficiently. The second is a temporal decoupling technique with local time
quantums to reduce the number of costly context switches, especially, in the CPU
core simulation. We describe both techniques in the following.

5.1 Direct Memory Interface

The CPU core translates every load and store operation into a transaction which
is routed through the bus to the target. Most of the time the main memory is the
target of the access. Always accessing the memory through a bus transaction can
be very costly. Even more so, because fetching the next instruction requires to load
it from the memory too. Thus, at least one bus transaction is executed for every
instruction. To optimize the access of the main memory and in particular instruction
fetching, we provide two proxy classes with a direct memory interface. The direct
memory interface stores the address offset where the memory is mapped in the
overall address space as well as the size and pointer to the start of the memory.
We have a proxy class for fetching instructions and one to access the memory
in general, i.e., to perform load/store byte/half/word instructions. With the proxy
classes enabled, the CPU core will first query the proxy class. It will match in case

126 V. Herdt et al.

the main memory is accessed (for the instruction proxy class we only allow to fetch
instructions from main memory) and otherwise convert the access into a transaction
and normally route it through the bus.

5.2 Local Time Quantums

A SystemC-based simulation is orchestrated by the SystemC simulation kernel that
switches execution between the various threads. While this is not a performance
problem for most components, since they become runnable on very specific events,
context switching can become a major bottleneck in simulating the CPU core. The
reason is that a direct implementation will perform a context switch after executing
every instruction, because simulation time has passed and the SystemC kernel needs
to check for other runnable threads to perform synchronization. However, most of
the time no other thread becomes runnable and the CPU thread is resumed again.
Even if some other thread would become runnable, it is still fine to keep running
the CPU thread for some time (ahead of the global simulation time of the system).
For example, even if the sensor thread would be runnable and trigger an interrupt
once executed, delaying the sensor thread execution for a small amount of time
and keeping the CPU thread running should not have influence on the functional
behavior of the system. In general the software does have no knowledge of the exact
timing behavior and thus is written in such a way, e.g., by employing locks and flags,
to always wait for certain conditions.

6 VP Extension and Configuration

Our VP is designed as a configurable and in particular extensible platform. It
is very easy to add additional components (i.e., peripherals/controllers including
bus masters) and attach them to the bus system at a new address range, or
change the address mapping of the existing components. This allows for an easy
(re-)configuration of the VP. By following the TLM 2.0 communication standard,
transactions can be annotated with optional timing informations to obtain a more
accurate timing model of the executed software. Support for additional RISC-V ISA
extensions (beyond I and M) can be added inside the CPU core by extending the
decode and execute functions accordingly. In general the compact implementation
size (around 3000 lines of C++ code with all extensions) makes the VP very
manageable and thus suitable as foundation for different application areas. In the
following, we demonstrate the extensibility of our VP by two concrete examples:
addition of a sensor peripheral and extension by GDB debug functionality from the
application SW perspective.

Extensible and Configurable RISC-V Based Virtual Prototype 127

6.1 Extending the VP with a Sensor Peripheral

This section presents the SystemC-based implementation of the VP sensor periph-
eral, which is used by the SW example presented in Sect. 4.1. It shows the
principles on modeling peripherals and extending our VP as well as demonstrates
the TLM communication and basic SystemC-based modeling and synchronization.
The sensor is instantiated in the main function of the VP alongside the other
components and attached to the TLM bus.

The sensor implementation is shown in Figs. 6 and 7. The sensor model has a data
frame of 64 bytes that is periodically updated (overwritten with new data, Line 34–
43) and two 32 bit configuration registers scaler and filter. The update happens in the
run thread (the run function is registered as SystemC thread inside the constructor
in Line 23). Based on the scaler register value this thread is periodically unblocked
(Line 30) by calling the notify function on the internal SystemC synchronization
event. Thus, scaler defines the speed at which new sensor data is generated. The
filter register allows to select some kind of post-processing on the data. After every
update an interrupt is triggered, which will propagate through the interrupt controller
to the CPU core up to the interrupt handler in the application SW. Therefore, the
sensor has a reference to the interrupt controller (IC, Line 4) and an interrupt number
provided during initialization (Line 20 and Line 21).

Access to the data frame and configuration registers is provided through TLM
transactions. These transactions are routed by the bus to the transport function
(Line 1). The routing happens as follows: (1) The sensor has a TLM target socket
field, which is bound in the main function (i.e., VP simulation entry point) to an
initiator socket of the TLM bus. (2) The transport function is bound as destination
for the target socket in the constructor (Line 22).

Based on the address and operation mode, as stored in the generic payload
(Line 2–3), the action is selected. It will either read (part of) the data frame
(Line 13) or read/write one of the configuration registers (Line 28–34). In case of a
register access a pre-read/write validation and post-read/write action can defined as
necessary. In this example, the sensor will ignore invalid scaler values (Line 21–25)
and reset the data generation thread on a scaler update (Line 37–40). Please note
that the transaction object (generic payload) is passed by reference and provides
a pointer to the data, thus a write access is propagated back to the initiator of
the transaction. Optionally, an additional delay can be added to the sc_time delay
parameter (also passed by reference) for a more accurate timing model.

6.2 Debugging Support Extension

We have implemented the GDB RSP (Remote Serial Protocol) interface to provide
direct debugging support of applications running on our VP with the GDB debugger
(in particular the freely available RISC-V port of the GDB, which knows about the

128 V. Herdt et al.

Fig. 6 SystemC-based configurable sensor model that is periodically filled with random data—
demonstrates the basic principles on modeling peripherals

Extensible and Configurable RISC-V Based Virtual Prototype 129

Fig. 7 Transport function for the SystemC-based sensor peripheral class (see Fig. 6)

130 V. Herdt et al.

available register set and the CSRs). Our VP acts as server and the GDB as client.
They communicate through a TCP connection and send text based messages. A
message is either a packet or a notification (a simple single char “+”) that a packet
has been successfully processed. Each packet starts with a “$” char and ends with
a “#” char followed by a two digit hex checksum (the sum over the content chars
modulo 256). For example the packet $m111c4,4#f7 has the content m111c4,4
and checksum f7. The m command denotes a memory read, in this case read 0x4
bytes starting from address 0x111c4. Our server might then for example return
+$05000000#85, i.e., acknowledge the packet and return the value 5 (two chars
per byte). To handle the packet processing and TCP communication we added a
gdb-stub component to our VP. The whole debugging extension is only about 500
additional lines of C++ code, most of them to implement the gdb-stub. On the VP
side, only the CPU core has been modified to lift the SystemC thread into the gdb-
stub, to allow the CPU to interrupt and exit the execution loop in case of a breakpoint
and thus effectively transfer execution control to the gdb-stub.

Debugging works as follows: Start our VP in debug-mode (command line
argument), this will transfer control to the gdb-stub implementing the RSP interface,
waiting for a connection from the GDB debugger. In another terminal start the GDB
debugger. Load the same executable ELF file into the GDB (command “file main-
elf”) as in our VP. Connect to the TCP server of the VP (command “target remote
:5005”, i.e., to connect to localhost using port 5005). Now the GDB debugger can be
used as usual to set breakpoints, continue, and step through the execution. It is also
possible to directly use a visual debugging interface, e.g., ddd or gdb-dashboard
or even the Eclipse IDE. Figure 8 shows a screenshot of debugging the sensor
application in Eclipse.

Please note, the ELF file contains information about the addresses and sizes of
the various variables in memory. Thus, a print(x) command with an int variable x
is already translated into a memory read command (e.g., m11080,4). Therefore, on
the server side, i.e., our VP, an extensive parsing of ELF files is not necessary to add
comprehensive debugging support. In total we have only implemented 24 different
commands of which 9 can simply return an empty packet and a few more some
pre-defined answer. Relevant packets are for example: read a register (p), read all
registers (g), read memory range (m), set/remove breakpoint (Z0/z0), step (s), and
continue (c).

7 Experiments

In this section we present a performance comparison of our RISC-V based VP
implementation with the RISC-V based PULPino platform (RTL implementation).
For this comparison, the PULPino platform is simulated in a commercial RTL
simulator. The PULPino platform is configured to use the RISCY core, which similar
to our core also supports the RV32IM instruction set. We also demonstrate the

Extensible and Configurable RISC-V Based Virtual Prototype 131

Fig. 8 Debugging the sensor application with Eclipse (screenshot showing relevant part of the
debug view inside the Eclipse IDE)

132 V. Herdt et al.

effectiveness of our presented VP simulation performance optimization techniques.
All experiments are performed on a Linux system with an AMD Opteron 2220 SE
processor with 2.8 GHz and 32 GB RAM.

For the evaluation we use the following benchmarks from the RV8 benchmark
set: (1) primes computes prime numbers up to a limit of 33,333,333; (2) qsort sorts
an array with 50 million elements; (3) sha512 applies the sha512 cryptographic
hash function on a 60 MB data set (1 million iterations). The RV8 benchmark set
contains some additional benchmarks, which we have omitted from the comparison
due to problems on executing them on the PULPino platform in the commercial
RTL simulator. In addition to the RV8 benchmarks, we have added a bubblesort
(sorting 50,000 elements) and a recursive mergesort (sorting 1 million elements)
benchmark to the comparison. Due to timeouts (set to 4 h, denoted T.O.) in the RTL
simulation we also added down-scaled versions of the benchmarks (/s appended) to
the comparison: primes/s has a limit of 33,333; qsort/s sorts 5000 elements; sha512
operates on a 0.6 MB data set (1000 iterations); mergesort/s and bubblesort/s sort
1000 elements, respectively.

Table 1 shows the results of the experiments. The table is divided in two halves:
the upper half shows the down-scaled benchmark versions, while the lower half
shows the longer running versions. All execution times are reported in seconds.
The first column shows the benchmark name. The second and third columns
show the number of executed instructions (measured on our VP) and LOC of
the benchmark, respectively. The fourth column (PULPino) shows the execution
time for running the benchmark on the PULPino platform (RTL implementation)
in the commercial RTL simulator. The remaining columns show the execution
time for running the benchmark on our VP with various optimization techniques
enabled: no optimization (column: basic), with an instruction proxy using direct
memory interface (dmi) for instruction fetching (column: +i_dmi), additionally with
a data access proxy using dmi for loading/storing data from/to the (main) memory

Table 1 Experiment results: all execution times are reported in seconds, timeout (T.O.) set to 4 h
(14,400 s)

PULPino Our RISC-V VP

Benchmark #instr-exec. LOC RTL Sim. basic +i_dmi +d_dmi +q10 +q100 +q1000

Bubblesort/s 2022052 20 787.49 0.97 0.71 0.58 0.43 0.41 0.40

Mergesort/s 297226 41 56.70 0.39 0.35 0.35 0.32 0.29 0.29

Primes/s 4341572 24 823.11 1.73 1.01 0.96 0.59 0.49 0.48

Qsort/s 290765 146 64.50 0.40 0.35 0.34 0.31 0.30 0.27

Sha512/s 8120416 154 1307.23 3.23 1.87 1.57 0.90 0.71 0.68

Bubblesort 200197558 20 T.O. 69.21 44.16 30.71 16.31 11.97 11.35

Mergesort 535918604 41 T.O. 197.32 107.89 86.48 41.17 27.77 26.15

Primes 7114988801 24 T.O. 2400.34 1214.71 1089.36 542.46 387.09 374.33

Qsort 3061611834 146 T.O. 1204.98 698.50 510.70 262.93 162.73 154.93

Sha512 8071548963 154 T.O. 2773.60 1556.02 1302.75 616.10 432.52 406.34

Extensible and Configurable RISC-V Based Virtual Prototype 133

(column: +d_dmi), additionally with a local time quantum of 10 (column: +q10),
100 (column: +q100) and 1000 (column: +q1000) instruction cycles, respectively.

It can be observed that every optimization technique significantly improves the
simulation performance on our VP. We observed a factor of improvement between
6.1x and 7.8x on this benchmark set with all optimization techniques enabled on
the longer running benchmarks. Increasing the time quantum further beyond 1000
instruction cycles has only a minor effect on the simulation performance, because
the impact of the SystemC thread context switch becomes marginal on the overall
execution time. It can be observed that our VP is multiple orders of magnitude
faster than the RTL simulation, especially, with optimizations enabled. Our VP
executes up to 20 million instructions per second on the longer running benchmarks
(between 17.6 and 20.5 million, depending on the benchmark) on our evaluation
system (AMD 2.8 GHz).

8 Conclusion

In this paper, we have proposed and implemented the first RISC-V based VP to
further expand the RISC-V ecosystem. The VP has been implemented in SystemC
and designed as extensible and configurable platform around a RISC-V RV32IM
core with a generic bus system employing TLM 2.0 communication. Our VP
is very compact, with around 3000 lines of C++ code including all extensions,
making it very manageable and thus suitable as foundation for various application
areas, including early SW development and analysis of interactions at the HW/SW
interface of RISC-V based systems. Finally, our RISC-V VP is fully open source to
stimulate further research and development of ESL methodologies.

For future work we consider two different directions: (1) further extend our VP
with additional components and RISC-V ISA extensions, and (2) verify our VP
using verification techniques for SystemC, e.g., [8].

Acknowledgements This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project CONFIRM under contract no. 16ES0565
and by the University of Bremen’s Central Research Development Fund and by the University
of Bremen’s graduate school SyDe, funded by the German Excellence Initiative.

References

1. Bailey, B., Martin, G., & Piziali, A. (2007). ESL design and verification: A prescription for
electronic system level methodology. Morgan Kaufmann/Elsevier

2. Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., et al. (2011). The
gem5 simulator. SIGARCH Comput. Archit. News, 39(2), 1–7. DOI: https://doi.org/10.1145/
2024716.2024718. URL http://doi.acm.org/10.1145/2024716.2024718.

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718

134 V. Herdt et al.

3. Calling convention. https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf. Accessed:
2018-05-13.

4. Große, D. & Drechsler, R. (2010). Quality-driven SystemC design. Springer
5. Grüttner, K., Görgen, R., Schreiner, S., Herrera, F., Peñil, P., Medina, J., et al. (2017).

CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of
extra-functional properties. Microprocessors and Microsystems, 51, 39–55.

6. Herdt, V., Le, H. M., Große, D. & Drechsler, R. (2016). On the application of formal fault
localization to automated RTL-to-TLM fault correspondence analysis for fast and accurate
VP-based error effect simulation - a case study. In FDL (pp. 1–8).

7. Herdt, V., Le, H. M., Große, D., & Drechsler, R. (2017). Towards early validation of firmware-
based power management using virtual prototypes: A constrained random approach. In FDL
(pp. 1–8).

8. Herdt, V., Le, H. M., Große, D., & Drechsler, R. (2018). Verifying SystemC using intermediate
verification language and stateful symbolic simulation. TCAD. DOI: https://doi.org/10.1109/
TCAD.2018.2846638.

9. IEEE Std. 1666. (2011). IEEE Standard SystemC Language Reference Manual.
10. Leupers, R., Schirrmeister, F., Martin, G., Kogel, T., Plyaskin, R., Herkersdorf, A., & Vaupel,

M. (2012). Virtual platforms: Breaking new grounds. In DATE (pp. 685–690).
11. Onnebrink, G., Leupers, R., Ascheid, G., & Schürmans, S. (2016). Black box ESL power

estimation for loosely-timed TLM models. In SAMOS (pp. 366–371). DOI: https://doi.org/
10.1109/SAMOS.2016.7818374.

12. RISCV-QEMU. https://github.com/riscv/riscv-qemu. Accessed: 2018-05-13.
13. RV8. https://rv8.io. Accessed: 2018-05-13.
14. Schuster, T., Meyer, R., Buchty, R., Fossati, L., & Berekovic, M. (2014). Socrocket - A virtual

platform for the European Space Agency’s SoC development. In ReCoSoC (pp. 1–7).
15. Spike. https://github.com/riscv/riscv-isa-sim. Accessed: 2018-05-13.
16. Streubühr, M., Rosales, R., Hasholzner, R., Haubelt, C., & Teich, J. (2011). ESL power and

performance estimation for heterogeneous MPSoCs using SystemC. In FDL (pp. 1–8)
17. Waterman, A., & Asanović, K. (2017). The RISC-V Instruction Set Manual; Volume I: User-

Level ISA. SiFive Inc. and CS Division, EECS Department, University of California, Berkeley.
18. Waterman, A., & Asanović, K. (2017). The RISC-V Instruction Set Manual; Volume II:

Privileged Architecture. SiFive Inc. and CS Division, EECS Department, University of
California, Berkeley.

https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf
https://doi.org/10.1109/TCAD.2018.2846638
https://doi.org/10.1109/TCAD.2018.2846638
https://doi.org/10.1109/SAMOS.2016.7818374
https://doi.org/10.1109/SAMOS.2016.7818374
https://github.com/riscv/riscv-qemu
https://rv8.io
https://github.com/riscv/riscv-isa-sim

AADD-Based Symbolic Simulation
of SystemC AMS

Carna Zivkovic and Christoph Grimm

1 Introduction

Electronic design automation is based on modeling languages that allow designers
to describe models of hardware or software. Examples are VHDL, Verilog, and
SystemC (based on C++), just to name a few. The main purpose of such modeling
languages is simulation.

However, other use cases such as synthesis and formal verification require
formal models like automata or binary decision diagrams (BDDs) that represent
the complete behavior of a model. The straightforward way to get such models is
to write yet another compiler. Besides the huge effort for writing a compiler for
languages such as C++ or VHDL, this is likely to introduce limitations to subsets,
and maybe inconsistencies to the simulation results. The most significant disadvan-
tage of two separate compilers or tools is that close integration of simulation with
other use-cases can provide them with useful information, e.g. for concolic (mixed
concrete/symbolic) verification or synthesis based on simulation-in-the-loop.

In this paper we show a way to use the existing proof-of-concept implementation
of SystemC (AMS) for concolic simulation, based on polymorphism and operator
overloading. In particular we show how a formal model can be created with a simple
code-instrumentation without using an additional compiler. This paper extends the
paper [18] with a more comprehensive description of the AADD formal model used
for concolic simulation.

The concrete use-case is symbolic simulation of SystemC (AMS). In the
following, we first give an overview of related approaches to generate formal models
from modeling or programming languages with a focus on SystemC. In Sect. 2, a

C. Zivkovic (�) · C. Grimm
TU Kaiserslautern, Kaiserslautern, Germany
e-mail: zivkovic@cs.uni-kl.de; grimm@cs.uni-kl.de

© Springer Nature Switzerland AG 2020
T. J. Kazmierski et al. (eds.), Languages, Design Methods, and Tools for
Electronic System Design, Lecture Notes in Electrical Engineering 611,
https://doi.org/10.1007/978-3-030-31585-6_8

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31585-6_8&domain=pdf
mailto:zivkovic@cs.uni-kl.de
mailto:grimm@cs.uni-kl.de
https://doi.org/10.1007/978-3-030-31585-6_8

136 C. Zivkovic and C. Grimm

detailed description of AADD incl. its definition and operations is given. Section 3
explains code instrumentation to permit symbolic execution of C++ and symbolic
simulation of SystemC (AMS). Section 4 introduce the methods for generating
AADD using the method based on block condition tracking. In Sect. 5, we discuss
the integration of the approach in different models of computation of SystemC
(AMS). In Sect. 6, we give two SystemC AMS examples. In Sect. 7, we close the
paper with a summary and conclusion.

1.1 State of the Art and Related Work

The straightforward way to translate a modeling language into a formal model is to
write a compiler. For example, SystemC is translated by a compiler into intermediate
representations like IVL [9], UPPAAL’s timed automata [7], or simple sequential
C [6]. A comprehensive overview including the particular challenges and limitations
is given in [12].

The need of a separate compiler can be overcome by frameworks such as Java or
the Clang C++ compiler that offer well-specified, open intermediate representations:
the Java virtual machine, or the LLVM. This approach is taken by SystemC-clang [8]
and PINAVM [11]. However, still a number of limitations remain. This includes e.g.
the use of C++ pointers and loops (see [11, 12] for details).

In particular for testing and verification it is very useful to combine concrete and
symbolic techniques (concolic testing [16]) in a single framework. Object-oriented
features of modern languages permit e.g. [1, 4, 13] the symbolic execution within
a regular compiler or simulator. In PyExZ3 [1], Python programs are translated
to the input language of the automated theorem prover Z3. For this purpose,
Python’s integer objects, operators and functions are replaced by a symbolic type
that produces the Z3 input language. In [4, 13], SystemC operators and functions
are overloaded to permit symbolic simulation.

The approach taken in PyExZ3 [1] supports control flow by overloading func-
tions that implement conditional statements. Compared with [1], we introduce a
method that also handles the non-functional control-flow statements of procedural
languages: block condition tracking. This allows us to generate AADD in a simple
yet efficient way.

2 Symbolic Simulation of SystemC with AADD

2.1 Overview of Tool Flow

This work describes the language-related part of a toolkit for verification of
mixed-signal systems. The toolkit targets the concolic (mixed concrete/symbolic)

AADD-Based Symbolic Simulation of SystemC AMS 137

verification based on SystemC. To increase verification coverage, simulation of
critical parts is done in a symbolic way. To improve interoperability with existing
SystemC models and verification infrastructure, and to allow designers to deal with
scalability issues, we permit the concrete simulation of the other parts. The tool flow
is shown in Fig. 1.

The tool flow consists of the following steps:

1. Modeling: Models are specified in regular SystemC (AMS and/or TLM). By
code-instrumentation a designer specifies which parts of a model are simulated
symbolically, and which in a concrete way.

2. Compile & link: The model is compiled with a C++ compiler. After that, it must
be linked with libSystemC (the SystemC simulator) and libAADD that provides
symbolic extensions.

3. Execute: The resulting executable file is executed which starts a concrete
simulation run. Where instrumented, the simulator will do a symbolic simulation
run that

(a) Follows all feasible paths in a comprehensive way,
(b) Generates an AADD [5, 13] as formal model.

4. Check assertions: within (symbolic/concrete) simulation, assertions as described
in [14] are checked, and reports are generated.

We use AADD (Affine Arithmetic Decision Diagrams) as a formal model because
AADD are an extremely efficient representation of reachability for the given use
case. However, the same approach can also be used to generate other internal
representations such as control/data-flow graphs for the purpose of high-level
synthesis.

Fig. 1 Tool flow in which libAADD is applied

138 C. Zivkovic and C. Grimm

The libAADD is available on GitHub under https://github.com/TUK-CPS/
AADD. Some of the examples from this article are also provided there.

2.2 Internal Representation: AADDs

Affine Arithmetic Decision Diagrams (AADDs) combine two representations:
Affine forms that represent the reachability in continuous variables, and binary
decision diagrams that represent discrete (path) conditions.

The intuition behind AADD is illustrated by the short C++ program below. We
will use it as a didactic example throughout the paper.

C++ Program with AADD

1: #include "aadd.h" // symbolic types
2: doubleS a(0,2); // a is from [0,2]
3:
4: int main() {
5: ifS(a > 1)
6: a = a + 1;
7: elseS
8: a = a - 1;
9 endS
10: } // a is now an AADD.

To distinguish symbolic and concrete semantics, we denote types and keywords
that take symbolic values by a capital S at the end. The variable a, in the example,
is a symbol for an unknown value from the range [0, 2]. Depending on the path
condition (a > 1), the then- or the else-part is executed. As a is from [0, 2], both
the then- and the else-part are feasible. After termination, a is from either [−1, 0]
or (2, 3], depending on the path condition (a > 1).

An AADD represents this information in a (reduced, ordered) binary decision
diagram [2] whose internal nodes are labeled with the path conditions, and whose
leaf nodes are affine forms that model the ranges and dependencies.

2.3 Affine Forms

An affine form x̃ represents an unknown value x from a range by a linear model of
its dependency:

x̃ ::= x0 +
n∑

i=1

xiεi .

https://github.com/TUK-CPS/AADD
https://github.com/TUK-CPS/AADD

AADD-Based Symbolic Simulation of SystemC AMS 139

The coefficient x0 is the center value, the coefficients x1 . . . xn are the partial
deviations. The noise symbols εi are symbolic variables that are restricted to [−1, 1].
Different affine forms (e.g. x̃ = x0 +x1ε1, ỹ = y0 +y1ε1) can share noise symbols.
This represents the dependencies between them. Geometrically, the joint range of k

affine forms is a zonotope in a k-dimensional space that is generated by the vectors
of shared noise symbols, and centered around the vector of the center values.

Linear operations on affine forms and constants c ∈ R are defined as:

z̃ ← c(x̃ ± ỹ) ::= c(x0 ± y0) +
n∑

i=1

c(xi ± yi)εi .

Non-linear operations z̃ ← f (x̃, ỹ) are over-approximated by an affine form
f a(ε1, . . . , εn) that reasonably well models f , and a new term zkεk that guarantees
inclusion of the “real” value of z represented by z̃:

z̃ ← f (x̃, ỹ) ⊆ f a(ε1, . . . , εn) + zkεk.

For the non-linear operations, Chebychev approximations compute the coefficients
while minimizing zk (see [17] for details and other approximations).

The fundamental invariant of affine arithmetic [17] states that, at any instant
between affine arithmetic operations, there is a single assignment of values from
[−1, 1] to each of the noise variables in use that makes the value of every affine
form x̃ equal to the true value of the corresponding ideal quantity x.

2.4 Affine Arithmetic Decision Diagrams

Definition 1 (AADD) An AADD x̂ represents the dependency of an unknown
quantity x ∈ R from n noise variables ε1, . . . , εn by a directed acyclic graph
(Q, T ,E,X) with internal nodes Q, leaf nodes T , edges E, conditions X, and it
holds:

• Conditions χi ∈ X are of the type χi ::= f a(ε1, . . . , εn) � 0, where � is a
relational operation.

• Internal nodes v ∈ Q

– have two leaving edges e0, e1 ∈ E that lead to child nodes 0(v), 1(v) ∈ T ∪Q,
respectively.

– are labeled with index(v); each index(v) = i corresponds to a condition
χi ∈ X.

• AADDs are ordered: for all edges (vi, vj) from vi ∈ Q to vj ∈ Q: index(vi) <

index(vj)

• Leaf nodes v ∈ T are labeled with an affine form aaf (v) = x̃ = x0 + ∑n
i=1 xiεi

with n ∈ N.

140 C. Zivkovic and C. Grimm

To define the function that represents the true value of an AADD, we use the ITE
(if-then-else) function. The ITE function takes three parameters: a condition χ ∈ X,
and two AADDs. If χ is true, the result is the first AADD, otherwise the second.

Definition 2 (Value of an AADD) The value of the quantity x ∈ R represented by
an AADD x̂ with root v ∈ Q ∪ T is:

value(v) ::=
{

v ∈ T : x̃ = x0 + ∑n
i=1 xiεi

v ∈ Q with i = index(v) : IT E(χi, value(1(v)), value(0(v))).

Remarks

• Both affine forms and BDDs can be considered as special cases of AADDs.
Affine forms are AADDs that consist of just a leaf node. BDDs are AADDs
whose leaves take only values from {0, 1}, or any other subset of the reals chosen
to encode the Boolean values true and f alse. Furthermore, internal nodes of
BDDs are labeled with binary inputs instead of the more general conditions X of
AADD.

• Similar to affine forms, AADDs represent dependencies by sharing noise vari-
ables. In AADDs, noise variables also represent dependencies between the affine
forms at the leaves and the conditions X, because all of them (can) use the same
noise variables ε1, . . . , εn. Even more, two AADDs can also share conditions by
using internal nodes with the same index.

• Geometrically, an AADD with z leaves represent a set of z polytopes that are
defined by:

– z zonotopes that are generated by the affine forms at the leaves (linear
dependencies).

– The linear constraints introduced by the conditions (dependencies of condi-
tions).

In the following, we describe operations on AADDs that ensure that, before and
after each operation, there is a single assignment of values from [−1, 1] to each of
the noise symbolic variables that makes the value of each AADD x̂ equal to the true
value of the quantity x ∈ R. This property is analog to the fundamental invariant of
affine arithmetic.

2.5 Arithmetic and Relational Operations on AADDs

We describe arithmetic operations on AADDs in a recursive way, starting from the
root nodes of the operands. Internal nodes of the result get the union of all conditions
of both operands’ internal nodes. Leaf nodes take the result of an affine operation
on the respective leaf nodes of the operands.

AADD-Based Symbolic Simulation of SystemC AMS 141

Definition 3 (Arithmetic Operations on AADDs) Let x̂, ŷ be two AADDs with
root nodes vx, vy ∈ T ∪ Q, respectively. Arithmetic operations x̂ � ŷ with � :
AADD × AADD → AADD are recursively defined:

1. For vx, vy ∈ T , the result is an AADD that is a leaf node v with aaf (v) =
aaf (vx) � aaf (vy).

2. For vx ∈ T , vy ∈ Q, the result is an AADD with root v and
index(v) = index(vy) and 0(v) = vx � 0(vy) and 1(v) = vx � 1(vy).

3. For vx, vy ∈ Q the result is an AADD with root v and, depending on the indices:
If index(vx) = index(vy): index(v) = index(vx), 0(v) = 0(vx) � 0(vy),
1(v) = 1(vx) � 1(vy)

If index(vx) < index(vy): index(v) = index(vx), 0(v) = 0(vx) � vy ,
1(v) = 1(vx) � vy

If index(vx) > index(vy): index(v) = index(vy), 0(v) = vx � 0(vy),
1(v) = vx � 1(vy).

In the following, we describe the relational operations on AADDs. We define
relational operations with 0 as the right operand. Other relations can easily be
transformed into this representation. We first define relations of affine forms of the
form x̃�0 with � ∈ {<,>,≤,≥,=, �=}. If 0 /∈ [lb(x̃), ub(x̃)] we get a certain result
from {true, f alse}. Table 1 shows these cases, and the equalities. Otherwise, the
result of the comparison is uncertain and depends on the noise variables ε1, . . . , εn.
In this case, we add the condition χk to X, where k is an index that is not in use by
any AADD.

For relational operations on AADDs, we have to consider that AADDs may have
multiple leaves. The result of a relational operation is a binary decision diagram
(BDD).

Table 1 Relational operations on affine forms of type x̃ � 0

Cases for Boolean results Otherwise: condition symbol

x̃ < 0
true : ub(x̃) < 0

f alse : lb(x̃) ≥ 0
χk ← x̃ < 0

x̃ ≤ 0
true : ub(x̃) ≤ 0

f alse : lb(x̃) > 0
χk ← x̃ ≤ 0

x̃ > 0
true : lb(x̃) > 0

f alse : ub(x̃) ≤ 0
χk ← x̃ > 0

x̃ ≥ 0
true : lb(x̃) ≥ 0

f alse : ub(x̃) < 0
χk ← x̃ ≥ 0

x̃ = 0
true : ub(x̃) = lb(x̃) = 0

f alse : (ub(x̃) < 0) ∨ (lb(x̃) > 0)
χk ← x̃ = 0

x̃ �= 0
true : (ub(x̃) < 0) ∨ (lb(x̃) > 0)

f alse : ub(x̃) = lb(x̃) = 0
χk ← x̃ �= 0

142 C. Zivkovic and C. Grimm

Definition 4 (Relational Operations on AADD) Let x̂ be an AADD with root
v ∈ T ∪ Q, and m the highest index in use. Relational operations x̂ � 0 with
� ∈ {<,>,≤,≥,=, �=} and � : AADD ×{0} → BDD are defined as follows:

• For v ∈ T with aaf (v) = x̃, the result is given by Table 1:
Boolean results: a BDD that is a leaf node with value true or f alse

Otherwise: a BDD with root vB and index(vB) = m + 1, 0(vB) = f alse, and
1(vB) = true; χm+1 = aaf (v) � 0 is added to the conditions’ set X.

• For v ∈ Q the result is a BDD with root vB and index(vB) = index(v), 0(vB) =
0(v), 1(vB) = 1(v) and χindex(vB) = χindex(v).

Remarks

• BDD result of relational operations on affine forms is of the height 1: the root
node vB is labeled with a condition χindex(vB) ∈ X, and two leaves with the
values true and f alse.

• Relational operations on an AADD â result in a BDD b̂ and for each v ∈ Q of â

with index(v), there is at least one vb of b̂ with the same index.
• The result of arithmetic operations on AADDs ẑ ← x̂�ŷ has for each vx, vy ∈ Q

of x̂, ŷ with index(vx) and index(vy), resp. at least one vr ∈ Q of ẑ with the
same index.

2.6 Path Conditions as Linear Constraints on the Noise
Variables

Leaf nodes v ∈ T of AADDs are labeled with affine forms aaf (v) that model the
linear dependency from the noise variables. However, the range of the affine forms
is further restricted by some conditions χ ∈ X that also depend from the noise
variables. The computation of upper and lower bounds that consider the conditions
is an LP problem: Let XP ⊆ X be a set of the conditions χi ∈ X on the path from the
root node of an AADD to a leaf node with an affine form x̃. Then, the computation
of accurate bounds of x̃ is an LP problem. For the upper bound ub(x̃):

max(x0 + x1ε1 + . . . + xnεn) subject to

XP and − 1 ≤ εi ≤ 1 ∀i ∈ {1 . . . n}.

For the lower bound lb(x̃):

min(x0 + x1ε1 + . . . + xnεn) subject to

XP and − 1 ≤ εi ≤ 1 ∀i ∈ {1 . . . n}.

AADD-Based Symbolic Simulation of SystemC AMS 143

Fig. 2 Program (left) and the AADD â after the program run (right)

Example Figure 2 left shows the pseudo code of the short C++ program of the
example given in Sect. 2.2, and right the AADD â after its execution. The condition
â > 1 ⇔ ε1 > 0 depends on the unknown noise variable ε1. We use the index 1
for this condition, hence χ1 = (ε1 > 0). χ1 is represented by a BDD as shown in
Fig. 2.

After line 6, for true value of the condition χ1 the AADD â has a leave with an
affine form 2 + ε1 ∈ [1, 3] for ε1 ∈ [−1, 1]. However, the condition χ1 = (ε1 > 0)

restricts the range of ε1 to (0, 1] and hence, we get a tighter interval of â ((2, 3] ⊆
[1, 3]) for χ1 = true after line 6. Same holds for χ1 = f alse.

2.7 Can AADD Be Reduced?

The advantage of AADD formal representation is that the size of the decision
diagram can, in many cases, be reduced. The rules for reduction of AADD are
similar to those applied on BDD [2], with some subtle differences:

Reduction of AADD Reduced AADDs can be obtained from AADDs by recursively
applying the following reduction rules until none of them can be applied anymore:

1. Merge duplicate internal nodes with same indexes and same children; v1, v2 ∈ Q

with index(v1) = index(v2), 1(v1) = 1(v2), 0(v1) = 0(v2) can be replaced
with v ∈ Q : index(v) = index(v1), 1(v) = 1(v1), 0(v) = 0(v1).

2. Merge duplicate leaf nodes; v1, v2 ∈ T with same values aaf (v1) = aaf (v2)

can be replaced with one leaf node v ∈ T : aaf (v) = aaf (v1).
3. Remove node with two identical children; v ∈ Q with 1(v) = 0(v) can be

replaced with 1(v).

The transformations (1) and (3) are done in the same way as for BDDs. In BDDs
the transformation (2) is applied comparing Boolean values of leaf nodes. Leaf
nodes with equal Boolean values are merged in one leaf node. For AADDs affine
forms in leaf nodes are compared and two nodes are merged if affine forms are
equal.

144 C. Zivkovic and C. Grimm

Definition 5 (Equality of Two Affine Forms) Let x̃ = x0 + ∑n
i=1 xiεi and ỹ =

y0 +∑n
i=1 yiεi be two affine forms. Two affine forms are equal if their center values

are equal x0 = y0 and it holds that ∀i ∈ {1, . . . , n}xi = yi .

3 Symbolic Execution of C++

3.1 Operator Overloading and Polymorphism

C++ and many other object-oriented languages support polymorphism and the
overloading of operators and functions. For symbolic execution of C++ or symbolic
simulation of SystemC, we provide a class AADD. This class can be used mostly like
the C++ types double, float, and int. Furthermore, we provide the class BDD
that can be used like the C++ type bool.

The class BDD implements an ROBDD [2]. In a symbolic execution run, an object
of the class BDD holds all possible Boolean values of a variable of the type bool
at its leaves, and the path condition in the internal nodes. The class BDD provides,
among others, the following methods:

• Constructors from values of types bool and BDD,
• Logic operators and functions as defined on bool, but with BDD as parameters

and result.
• Overloaded assignment operators, see Sect. 4.

The operators implement the known semantics of reduced ordered BDD.
The class AADD implements an AADD. An object of the class AADD holds a

sound abstraction of values of a variable of the types int, float, or double in
a symbolic execution. It provides among others the following methods:

• Constructors from values of int, float, double, AADD, and from inter-
val bounds.

• Constructors from values of type bool and BDD; they convert bool and BDD to
AADD replacing Boolean values f alse and true with 0 and 1.

• Arithmetic operators and functions as defined for int, float, and double.
• Relational operations with result of type BDD.
• Overloaded assignment operators, see Sect. 4.

In addition, the class implements methods for printing by overloaded stream
operators, and an interface to the GLPK solver that is used to compute accurate
interval bounds within symbolic execution, as explained in Sect. 2.6. The overloaded
assignment operator is important for the handling of conditional statements. We
describe it in Sect. 4. To hide the implementation, and to permit a more readable
code we define:

AADD-Based Symbolic Simulation of SystemC AMS 145

Definition of Symbolic Data Types

typedef class AADD doubleS;
typedef class AADD floatS;
typedef class AADD intsS;
typedef class BDD boolS;

The definitions above allow us to compute symbolically within a simulation run
of an untouched SystemC simulator. We only have to include the header file that
provides operators, functions, and methods with the appropriate signatures. Then,
we can instantiate symbolic classes for symbolic execution, and use the expression-
and compound-statements [10] of C++. This is shown by the didactic example given
in Sect. 2.2.

3.2 Concrete and Symbolic Execution

We allow the designer to select parts that are executed with concrete values, and
parts that are executed with symbolic values. This is useful as symbolic execution
by principle suffers from the path explosion problem. To deal with this issue, one
must carefully select critical parts for which symbolic execution is done. Switching
semantics to concrete execution is also useful for debugging and in case of limited
support for symbolic semantics (e.g. pointer arithmetic, etc.).

Selection between concrete and symbolic execution is done globally by the
type of variables, e.g. double for concrete and doubleS for symbolic execution.
Furthermore, we provide the macros CONCRETE and SYMBOLIC. These macros
give the designer a more fine-grain control:

• CONCRETE(s, c) assigns a symbolic variable s a concrete value c ∈ s.
• SYMBOLIC(s, a) assigns a symbolic variable s a safe abstraction a ⊇ s.

Refinements resp. abstractions can either be chosen by specifying a value resp. a
range, or by giving it constrained random values. The above macros also do the
following checks:

• The macro CONCRETE checks if a given concrete value is a valid refinement of an
AADD.

• The macro SYMBOLIC checks if a given symbolic AADD is a safe abstraction of
a concrete value.

This mechanism allows us to combine symbolic and concrete execution.
For illustration, we use the didactic example. As we have not yet introduced

the symbolic execution of selection statements, we may use the SYMBOLIC and
CONCRETE macros in lines 4b and 6b. With these macros, we can model the
didactic example as follows:

146 C. Zivkovic and C. Grimm

Use of CONCRETE and SYMBOLIC Macros

1: #include "aadd.h" // symbolic extensions
2: doubleS a(0,2); // a is from [0,2];
3:
4: int main() {
4b: CONCRETE(a, 1.5); // concrete test
5: if(a > 1) a = a + 1; // is executed a is 2.5
6: else a = a - 1; // this not.
6b: SYMBOLIC(a, doubleS(1,3));
7: } //continues with [1,3] if a in [1,3]

4 Block Condition Tracking

4.1 Code Instrumentation

The challenge with control flow statements is that for symbolic simulation we have
to execute all feasible paths, while the concrete C++ control flow statements execute
exactly one path. For example, in a selection statement (if-then-else), C++ will
execute either the if or the then part, but not both.

In functional languages, where selection is a function, we can overload it by a
function that

• Computes the condition (1st parameter)
• Computes the then-part (2nd parameter)
• Computes the else-part (3rd parameter)
• Returns an AADD or a BDD that has a new level with the 1st parameter as

condition of a new internal node, and the 2nd and 3rd parameters as its child
nodes.

However, procedural languages like C++ don’t allow us to overload selection
or iteration statements. Even worse, selection statements and iterations are no
functions, which requires additional precautions to consider possible side effects. In
the following, we overcome this limitation with a method we call “block condition
tracking”.

4.1.1 Selection Statements with Symbolic Semantics

Selection statements in C++ have the following syntax [10]:

Selection Statement

1: if (condition)
2: statement // then-part, arbitrary stmt.

AADD-Based Symbolic Simulation of SystemC AMS 147

3: [else // optional:
4: statement] // else-part

For block condition tracking, we instrument this statement. The instrumentation
can be done manually or by a simple pre-processor provided with the AADD toolkit.
An instrumented selection statement has the following syntax:

Instrumented Selection Statement

1: ifS (condition)
2: statement
3: [elseS
4: statement] endS

where

• condition is a C++ expression of type BDD.
• ifS(condition) is a macro that is executed at the beginning of a selection

statement,
• elseS before the start of the else-part, and
• endS after the end of a selection statement.

We explain the function of the macros in the next section.

4.1.2 Iterations with Symbolic Semantics

Iteration statements are instrumented in a similar way as selection statements. In
C++, a (while) iteration statement has the following syntax [10]:

Iteration Statement

1: while (condition)
2: statement // arbitrary stmt.

By manual instrumentation, or by a preprocessor we translate it to an instru-
mented iteration statement that uses the macros whileS and endS. Again, these
macros introduce code-fragments for symbolic execution of the iteration:

Instrumented Selection Statement

1: whileS (condition)
2: statement; endS

148 C. Zivkovic and C. Grimm

4.2 Block Condition Tracking

In order to generate AADDs and BDDs by the instrumented selection and iteration
statements, we track block conditions that are a subset to the path conditions.

A path condition is the conjunction of all conditions in a program run’s
conditional statements and iterations, from the program start to the current point of
execution. In symbolic execution, we represent the path conditions by the decision
tree in BDD or AADD. The tree is reduced immediately, if a path condition can be
evaluated to either true or f alse.

A block condition is the conjunction of all conditions in nested selection or
iteration statements. After an assignment, a block condition becomes part of the
path condition of a variable.

We compute block conditions by pushing all conditions from selection and
iteration conditions on a stack (stack of BDDs). Statements in a block are feasible
(reachable) if the conjunction of block conditions is not false.

The instrumentations ifS, elseS, and endS track the block conditions:

• ifS pushes its parameter cond on a stack.
• elseS negates the condition on top of this stack, and
• endS pops the condition from the stack.

The block condition is then always the conjuction of all conditions on the stack.
Note, that the instrumentation does not implement a selection statement. It only
tracks the block condition. In consequence, both the statements in the if-part and in
the else-part will be executed sequentially.

As an example, consider the selection statement of the didactic example from
Sect. 2.2, with instrumentation:

Selection Statement in the Didactic Example

5: ifS(a > 1)
6: a = a + 1;
7: elseS
8: a = a - 1;
9: endS

With the macro ifS in line 5, the condition a > 1 is put on the stack. The macro
does nothing else; it does not start an if-statement. Line 6 is therefore executed,
independent from the condition. The macro elseS in line 7 negates the condition
on top of the stack to !(a > 1). Then, line 8 is executed, independent from the
condition, and endS pops the condition from the stack. After line 8, a is an AADD
that has the condition a > 1, a true-leaf a + 1, and a false-leaf a − 1, as shown in
Fig. 2.

AADD-Based Symbolic Simulation of SystemC AMS 149

4.3 Building AADD and BDD by Overloaded Assignments

To build AADDs and BDDs we use the ITE function. The function ITE(cond,
t, e) adds new levels to the decision diagrams. It has the following parameters:

• cond of type BDD,
• t , an AADD or BDD; the result for cond == true,
• e, an AADD or BDD; the result for cond == f alse.

The ITE function is implemented as follows (pseudo-code):

Implementation of ITE Function for BDD

1: FUNCTION: ITE(cond, t, e: BDD) returns BDD
2: if (cond == true) then return t;
3: if (cond == false) then return e;
4: return (cond & t) | (!cond & e);

Note, that the parameters t and e, are AADDs or BDDs. The conjunction and
disjunction functions for BDDs [2] merge the conditions for all tree parameters.
The resulting BDD has all levels of the parameters and a new level for the
condition cond. The algorithm is similar for AADD. However, we use (arithmetic)
multiplication with 0 for false and 1 for true instead of conjunction, and addition
instead of disjunction. Replacements of true and f alse values with resp. 1 and 0,
are done by AADD constructor from BDD value.

We are now in a situation where we globally know all block and path conditions.
Block conditions are on a stack of all possible “branches”: so far, conditions in
selection and iteration statements; later we handle symbolic process activations in
the same way. Path conditions are represented in the decision diagrams of BDDs
and AADDs.

We use this information in overloaded assignment operators. For an assignment
lval := rval, concrete execution semantics will create a clone of rval and
assign it to lval. In symbolic execution semantics, we have to merge the block
conditions to the path conditions. This is done by the following method (in
pseudocode):

Assign Method for AADD and BDD

0: global: stack of conditions of type BDD.
1: METHOD assign (rval, lval: AADD, BDD):
2: bc := AND(all conditions on stack);
3: rval := ITE(bc, rval, lval);
4: return rval;

For illustration, we come back to the didactic example from Sect. 2.2. Lines 5–9,
after expansion by the preprocessor become:

150 C. Zivkovic and C. Grimm

Expansion of Lines 5–9 in the Didactic Example

5:{ blkConds().thenBlock(a > 1);
6: a = a + 1; // calls a=ITE(a>1,a+1, a);
7: blkConds().elseBlock(__LINE__,__FILE__);
8: a = a - 1; // calls a=ITE(!a>1,a-1, a);
9: blkConds().endBlock(__LINE__,__FILE__);}

Instead of an ifS-keyword in line 5, the condition (a > 1) is put on the stack
for the block condition. As there is no if-statement anymore, no matter which result
the condition has, all following statements line 6–8 are executed and an AADD is
generated.

Iteration statements are handled in a mostly similar way. However, a real iteration
is executed, and hence the block condition cond in the previous iteration is popped
from the stack and the block condition cond in the new iteration is put on the stack
of block conditions by the whileBlock method. Note, that for termination of the
loop we explicitly compare the condition of type BDD with false. When leaving the
iteration statement, the block condition in the last iteration is popped from the stack.
The code executed by the macros whileS-endS is then:

Execution of Loop Statement for AADD and BDD

while ((cond)!=false) {
blkConds().whileBlock(cond);
statement;

} blkConds().endBlock(); // pops the last condition.

Limitations

We have implemented and tested the selection statement and the iteration statement
as described above. The above approach is not limited to these control-flow
statements. Implementations of other syntactic forms of iteration and selection like
do.. while, case.. select, for (...) are straightforward.

A bit ugly is the following issue: The transformations if → if S, else → elseS

and while → whileS can be done easily e.g. by the C-preprocessor. However,
inserting of endS at the end of selection statements requires a parser that recognizes
selection statements. We implemented such a preprocessor based on ANTLR by
adding approx. ten lines to a listener class of its CPP14 grammar.

A more fundamental issue is that AADD use safe abstractions that are meaning-
less for e.g. pointer arithmetic and representation of bit-vectors.

AADD-Based Symbolic Simulation of SystemC AMS 151

5 Symbolic Simulation of SystemC (AMS)

5.1 Symbolic Signals and Process Activation

For symbolic simulation of SystemC (AMS), we have to consider the impact of
symbolic representations on the signal representations, and on the activation of
processes. Therefore, we first formalize some aspects of signals and the underlying
models of computation (MoC).

Signals Let a signal be a sequence of samples 〈v(t1), v(t2), . . . , v(tn)〉, where the
ti , i ∈ N are elements of the simulated time, and v(ti) is the value of the sample at
time ti .

Concrete and Symbolic Signals We call a signal concrete (or deterministic), if each
v(ti) is a concrete value. We call a signal symbolic (or uncertain [5]) if at least one
sample is symbolic, e.g. a BDD or an AADD, and represents more than one value.

A symbolic signal represents all possible signal trajectories. As consequence
of the fundamental invariant of affine arithmetic, it holds that there is a single
assignment of values from [−1, 1] to each of the noise variables that makes the
trajectory of the symbolic signal equal to the trajectory of a ‘real’, concrete signal.
This is a fundamental difference to the flow-pipe representation of signals that only
represents an enclosing hull.

Processes Let a process be specified by P = (I,O, proc, a) with

• input signals I and output signals O,
• proc, a processing method,
• a, an activation condition.

proc uses samples from the input signals I to compute samples of the output signals
O, maybe using internal states. The execution of proc is done at points in simulated
time, when a is true.

Activation Conditions An activation condition is concrete (deterministic), if its
values are either true or f alse. An activation condition is symbolic (uncertain),
if at least one of its values is a symbol, i.e. represented by a BDD or an AADD.

5.2 Symbolic Simulation with Concrete Activation Conditions

In many relevant cases, we have concrete activation conditions. This depends on the
models of computation, and is the case for:

• Timed data flow (TDF). The TDF model of computation of SystemC AMS is
based on the static data flow MoC. TDF/Static data flow defines a static schedule

152 C. Zivkovic and C. Grimm

before start of simulation. It depends only on the rates of ports and modules, but
not on other values. If rates are concrete, TDF have static activation conditions.

• Continuous-time models (CT). The selection of analog solution points depends
on the simulator. The objective of CT models is to minimize the quantization
error between the unreachable ideal of infinitely many analog solution points,
and a discrete number thereof. Hence, from a functional point of view, CT has a
static activation condition.

• Discrete-event (DE). The activation condition in DE MoC is the sensitivity list
of SC_METHOD or wait statements of SC_THREAD. The activation condition
is concrete, if the respective signals or events are based on concrete values (e.g.
a concrete clock).

For concrete activation conditions, the process activation mechanism is not
influenced by symbolic simulation results. For SystemC AMS, symbolic simulation
requires hence no further modifications. For the SystemC DE MoC, we have
concrete activation conditions if the sensitivity list consists of concrete signals.
As an example, consider a counter that counts if a symbolic input th is above a
threshold:

Counter Example

1: sc_in<bool> clk; // concrete signal
2: sc_in<doubleS> th; // symbolic signal
3: sc_out<intS> cnt; // symbolic signal
4:
5: void count() {
6: if (th>2) cnt += 1;
7: }
8:
9: SC_METHOD(count) sensitive << clk;

The above example has a concrete activation by the concrete signal clk. Unfortu-
nately, SystemC’s event detection mechanism is part of all DE signals, even if they
are not part of the sensitivity list. We handle this by overloading a direct template
instantiation.

5.3 Symbolic Simulation with Symbolic Activation Conditions

In the DE MoC, we can have the general case of a symbolic activation condition.
The work in [19], presented at DATE 2019, shows the approach to handle activation
conditions depending on symbolic signal values. Symbolic values of time are not
considered and they are subject of future research. In [19] it is shown that in
principle symbolic activation conditions can be treated like those for selection
statements. We activate the process, but all assignments are made only under the

AADD-Based Symbolic Simulation of SystemC AMS 153

true value of the activation condition a using ITE function. The process activation
condition is a block condition of type BDD. The proposed implementation is as:

• Push a on the stack of block conditions.
• Execute the process; use ITE function for all assignments.

For more details we refer readers to [19].

6 Examples

6.1 Simple Example: Water Level Monitor

As a simple toy example, we model a water level monitor in SystemC AMS. We use
the TDF model of computation. We model the water level by a variable wlevel
of type doubleS. The water tank has two sensors that signal whether the water
level is lower than 5 (port l5 of type boolS) or greater than 10 (port g10 of
type boolS). The processing method called in each time step is for the water tank
model:

Processing Method of the Water Level Tank Model

void processing() {
if(pump) // dynamics of water level
wlevel+=(1.+uncertainty1)*timestep;

else
wlevel+=(-2.+uncertainty2)*timestep;

if(wlevel < 5) l5 = true; // sensors
else l5 = false;

if(wlevel > 10) g10 = true;
else g10 = false;

}

The controller’s processing method switches a pump on, depending on the
sensor’s values (in-ports of type boolS):

Processing Method of the Controller

void processing() {
if(l5) pump = true;
if(g10) pump = false;

}

The SystemC model with its instrumentations for symbolic simulation is com-
piled by the regular C++ compiler (on OS X, LLVM), and linked against the

154 C. Zivkovic and C. Grimm

SystemC, SystemC AMS and AADD libraries. After running the executable, we
get the well-known outputs, and in addition some reporting from libAADD:

Output of Executable File

AADD lib -- Symbolic execution is enabled.
AADD library (c) TU Kaiserslautern,

C. Zivkovic, C. Grimm.

SystemC 2.3.0-ASI --- Apr 27 2017 16:27:00
Copyright (c) 1996--2012 by all Contributors,

ALL RIGHTS RESERVED

SystemC AMS extensions 2.0 Version: 1.0
Copyright (c) 2010--2013 by
Fraunhofer-Gesellschaft

Institut Integrated Circuits / EAS
Licensed under the Apache License, Version 2.0

Info: SystemC-AMS:
3 SystemC-AMS modules instantiated
1 SystemC-AMS views created
3 SystemC-AMS synchronization

objects/solvers instantiated

Info: SystemC-AMS:
1 dataflow clusters instantiated
cluster 0:

3 dataflow modules/solver, contains e.g. module: wtank
3 elements in schedule list, 100\,ms cluster period,
ratio to lowest: 1 e.g.module: wtank
ratio to highest: 1 sample time e.g. module: wtank

0 connections to SystemC de,
0 connections from SystemC de

Symbolic simulation took: 3.17225\,s.

The result of symbolic simulation is a sequence of AADD/BBD that represent all
possible trajectories of the signals. To get a result that can be plotted and reasonably
well understood we plotted the minimum and maximum values in a file. This is
shown by Fig. 3.

6.2 Analog/Mixed-Signal Example: Delta-Sigma Modulator

As a more complex example we model a 3rd-order delta-sigma modulator. Like
in the first example we use the timed data flow model of computation in SystemC
AMS. The block diagram of the modulator is shown in Fig. 4.

AADD-Based Symbolic Simulation of SystemC AMS 155

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

W
at

er
 le

ve
l [

in
]

Time [s]

Water level

lower border
upper border

lower limit (spec)
upper limit (spec)

Fig. 3 Minimum and maximum of water level trajectories over time

x3

+

+

+

+ v[n]y[n]x2x1 +

3a

3c2c1c

b4

2a

b 3b1 2

1a

b

u[n]

Quantizer

+

+

z−1
1

z−1
1 1

z−1

Fig. 4 Block diagram of 3rd order Delta-Sigma modulator [15]

The values of the coefficients are taken from [15]:

b1 = 0.0444; b2 = 0.2881; b3 = 0.7997

a1 = −0.0444; a2 = −0.2881; a3 = −0.7997

c1 = c2 = c3 = 1; b4 = 1.

The integrator outputs x1, x2, x3 are computed by discrete-time integration of the
integrator input signals.

156 C. Zivkovic and C. Grimm

The SystemC AMS model consists of a timed data flow cluster that implements
the 3rd order integrator part and the quantizer. For example, the processing method
of the SystemC AMS model of a single discrete-time integrator stage is:

Processing Method of a Single Discrete-Time Integrator

void processing() {
x_1=x_1+0.0444*(u-v);

}

Implementation of the other integrators is straight-forward.
The output signal of the third integrator x3[n] is added to the modulator input

signal u[n] and forwarded to the input of the one-bit quantizer y[n]. The quantizer
sets all positive values of y to 1 and negative values and 0 to −1.

SystemC AMS Module of the One-bit Quantizer

SCA_TDF_MODULE(quantizer) {
sca_tdf::sca_in<doubleS> y;
sca_tdf::sca_out<doubleS> v;
void processing() {
if(y>0) v=1;
else v=-1;

}
quantizer(sc_module_name nm){}

}

By symbolic simulation and assertion checking we check the model for all inputs
u[n] in the range [−0.5, 0.5], and all initial states x1[0], x2[0], x3[0] in [−0.1, 0.1].
To guarantee accurate function of the modulator, integrator saturation, and quantizer
overload are checked. This means that the respective outputs of the integrators, and
inputs of the quantizer must be in a range [−2, 2]. We verify this by symbolic
simulations, where we assign the inputs a range (doubleS(-0.5, 0.5) and
initial states resp. doubleS(-0.1, 0.1).

After the symbolic simulation values of all signals are a sequence of AADD.
Figure 5 plots minimum and maximum values of the integrator output x3 for 20
time steps in one symbolic simulation run. The symbolic simulation for the given
example took around 10.3 s. This includes the time for writing the results into a file
which requires a solver call to compute upper/lower bounds for each point to be
plotted.

For comparison, a single, concrete simulation run takes 2 ms. However, using
random inputs, and given strongly nonlinear dynamic behavior of a quantizer, it is
extremely unlikely to find the unknown corner cases.

AADD-Based Symbolic Simulation of SystemC AMS 157

0 5 10 15 20
2

1

0

1

2

time steps

minimum
maximum

in
te

gr
at

or
 o

ut
pu

t x
3

Fig. 5 Worst case signal values for x3 at 20 time steps

7 Summary and Conclusion

7.1 Symbolic Simulation, Without Another Compiler?

The objective of the work was to avoid the implementation of a C++/SystemC
compiler, and to permit a close interaction of concrete simulation with symbolic
simulation.

By polymorphism and operator overloading, we can completely go without
another C++ compiler for expression statements including function and method
calls, and compound statements. For these kinds of statements the classes
doubleS, floatS, intS, boolS provide sufficient functionality. The
instrumentation of these types is necessary to distinguish concrete and symbolic
semantics, e.g. by giving variables ranges of possible values.

Iteration and selection statements require macros that modify the control flow and
track conditions. This has no semantic need. However, it is easy to introduce these
macros via the keywords if, else, while by the preprocessor. Unfortunately,
adding the macro endS at the end of an iteration or selection statement requires
a simple compiler. We implemented it with 10 lines of code and ANTLR. Table 2
gives an overview.

158 C. Zivkovic and C. Grimm

Table 2 C++: what is needed without another compiler

C++ construct Requires

Expression (statement), compound statement,
declarations

Operator overloading, polymorphism

Selection statement, iteration statement Instrumentation or own preprocessor adding
ENDS, block condition tracking

Goto statement try statement (exceptions) Likely as above, still not done

Table 3 SystemC: what is needed without another compiler?

SystemC MoC Requires

AMS extensions: TDF ./.

DE with process activation on concrete time/value event ./.

AMS extensions: CT or LSF Modified solver, e.g. [3]

DE with process activation on symbolic value event (Proposed in [19])

DE with process activation on symbolic time event (Future work)

Regarding simulation semantics of SystemC (AMS), concrete process activations
are supported without any limitations. This is sufficient for the TDF MoC, and
DE processes activated by a deterministic clock. Symbolic process activations
are not supported in this work. The recent work [19] presented one possible
solution for handling symbolic activation conditions with symbolic signal values.
For this purpose, we combined the block condition tracking proposed in this paper
with instrumentation of SystemC processes and overloading update() and write()
methods of SystemC signals for handling symbolic signal values of types AADD,
BDD. Symbolic values for points in time are still subject of future research. Table 3
gives an overview of required changes.

7.2 Only for Symbolic Simulation?

Although we worked with SystemC (AMS) and AADD in this paper, the approach
is not limited to this particular use case at all. Just for example, control-data-flow
graphs are a good starting point for high-level synthesis, or for timing analysis.
The central idea of block condition tracking and overloaded assignments as a
rather abstract method can easily be modified to generate control-data-flow graphs.
For this purpose, the code that creates the internal representations has to be
rewritten.

AADD-Based Symbolic Simulation of SystemC AMS 159

References

1. Ball, T., & Daniel, J. (2014). Deconstructing dynamic symbolic execution. In Proceedings of
the 2014 Marktoberdorf Summer School on Dependable Software Systems Engineering. https://
www.microsoft.com/en-us/research/wp-content/uploads/2016/02/dse.pdf.

2. Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Communications, 35(8), 677–691. http://dx.doi.org/10.1109/TC.1986.1676819.

3. Grabowski, D., Grimm, C., & Barke, E. (2006). Semi-symbolic modeling and simulation of
circuits and systems. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp.
983–986). Washington: IEEE. https://doi.org/10.1109/ISCAS.2006.1692752. http://ieeexplore.
ieee.org/xpl/freeabs_all.jsp?arnumber=1692752.

4. Grimm, C., Heupke, W., & Waldschmidt, K. (2005). Analysis of mixed-signal systems
with affine arithmetic. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 24(1), 118–123. https://doi.org/10.1109/TCAD.2004.839469(410)24. https://
ieeexplore.ieee.org/document/1372667/.

5. Grimm, C., & Rathmair, M. (2017). Dealing with uncertainties in analog/mixed-signal systems:
Invited. In Proceedings of the 54th Annual Design Automation Conference, DAC 2017, Austin,
18–22 June 2017 (pp. 35:1–35:6). https://doi.org/10.1145/3061639.3072949. http://doi.acm.
org/10.1145/3061639.3072949.

6. Große, D., Le, H. M., & Drechsler, R. (2010). Proving transaction and system-level properties
of untimed SystemC TLM designs. In Proceedings of the Eighth ACM/IEEE International
Conference on Formal Methods and Models for Codesign, MEMOCODE ’10 (pp. 113–122).
Washington: IEEE Computer Society. https://doi.org/10.1109/MEMCOD.2010.5558643.

7. Herber, P., Fellmuth, J., & Glesner, S. (2008). Model checking SystemC designs using
timed automata. In Proceedings of the 6th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, CODES+ISSS ’08 (pp. 131–136). New
York: ACM. http://doi.acm.org/10.1145/1450135.1450166.

8. Kaushik, A., & Patel, H. D. (2013). Systemc-clang: An open-source framework for analyzing
mixed-abstraction SystemC models. In Proceedings of the 2013 Forum on Specification and
Design Languages, FDL 2013, Paris, 24–26 September 2013 (pp. 1–8). http://ieeexplore.ieee.
org/document/6646649/.

9. Le, H. M., Große, D., Herdt, V., & Drechsler, R. (2013). Verifying SystemC using an
intermediate verification language and symbolic simulation. In 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC) (pp. 1–6). https://doi.org/10.1145/2463209.2488877.
http://ieeexplore.ieee.org/document/6560709/.

10. Marchetti, A. Hyperlinked c++ BNF grammar. http://www.nongnu.org/hcb.
11. Marquet, K., & Moy, M. (2010). Pinavm: A systemc front-end based on an executable

intermediate representation. In Proceedings of the Tenth ACM International Conference on
Embedded Software, EMSOFT ’10 (pp. 79–88). New York: ACM. http://doi.acm.org/10.1145/
1879021.1879032.

12. Marquet, K., Moy, M., & Karkar, B. (2009). A theoretical and experimental review of systemc
front-ends. In Forum on Specification and Design Languages 2009. https://doi.org/10.1049/ic.
2010.0140. https://hal.archives-ouvertes.fr/hal-00495886.

13. Radojicic, C., Grimm, C., Jantsch, A., & Rathmair, M. (2017). Towards verification of
Uncertain Cyber-Physical systems. Electronic Proceedings in Theoretical Computer Science,
247, 1–17. https://doi.org/10.4204/eptcs.247.1. https://doi.org/10.4204.

14. Radojicic, C., Grimm, C., Schupfer, F., & Rathmair, M. (2013). Verification of mixed-signal
systems with affine arithmetic assertions. VLSI Design, 2013, 14. http://dx.doi.org/10.1155/
2013/239064.

15. Sammane, G. A., Zaki, M. H., Tahar, S., & Bois, G. (2007). Constraint-Based verification of
delta-sigma modulators using interval analysis. In 50th Midwest Symposium on Circuits and
Systems (pp. 726–729).

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/dse.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/dse.pdf
http://dx.doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/ISCAS.2006.1692752
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1692752
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1692752
https://doi.org/10.1109/TCAD.2004.839469(410) 24
https://ieeexplore.ieee.org/document/1372667/
https://ieeexplore.ieee.org/document/1372667/
https://doi.org/10.1145/3061639.3072949
http://doi.acm.org/10.1145/3061639.3072949
http://doi.acm.org/10.1145/3061639.3072949
https://doi.org/10.1109/MEMCOD.2010.5558643
http://doi.acm.org/10.1145/1450135.1450166
http://ieeexplore.ieee.org/document/6646649/
http://ieeexplore.ieee.org/document/6646649/
https://doi.org/10.1145/2463209.2488877
http://ieeexplore.ieee.org/document/6560709/
http://www.nongnu.org/hcb
http://doi.acm.org/10.1145/1879021.1879032
http://doi.acm.org/10.1145/1879021.1879032
https://doi.org/10.1049/ic.2010.0140
https://doi.org/10.1049/ic.2010.0140
https://hal.archives-ouvertes.fr/hal-00495886
https://doi.org/10.4204/eptcs.247.1
https://doi.org/10.4204
http://dx.doi.org/10.1155/2013/239064
http://dx.doi.org/10.1155/2013/239064

160 C. Zivkovic and C. Grimm

16. Sen, K., Marinov, D., & Agha, G. (2005). Cute: A concolic unit testing engine for C.
In Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pp. 263–272. New York: ACM. http://doi.acm.org/10.1145/1081706.1081750.

17. Stolfi, J., & de Figueiredo, L. H. (2003). An introduction to affine arithmetic. TEMA
Tendências em Matemática Aplicada e Computacional, 4, 297–312. https://tema.sbmac.org.
br/tema/article/view/352.

18. Zivkovic, C., & Grimm, C. (2018). Symbolic simulation of SystemC AMS without yet another
compiler. In Forum on Specification and Design Languages 2018, pp. 5–16.

19. Zivkovic, C., & Grimm, C. (2019). Nubolic simulation of AMS systems with data flow and
discrete event models. In DATE 2019, Accepted for a Long Presentation; To be Presented in
March 2019

http://doi.acm.org/10.1145/1081706.1081750
https://tema.sbmac.org.br/tema/article/view/352
https://tema.sbmac.org.br/tema/article/view/352

Blech, Imperative Synchronous
Programming!

Friedrich Gretz and Franz-Josef Grosch

1 Introduction

Synchronous languages have in certain cases been successfully used for embedded
software programming in industrial projects in the past [4] but they remain an
exotic tool known only to experts. They are neither part of a general embedded
programming curriculum nor are they used outside special, safety-critical embedded
applications in industry. This is particularly regrettable because the key features of
these languages, such as reactive, concurrent programming and the guarantee of
causality, could mean a conceptual leap forward in the programming of most of
today’s embedded applications. Esterel [12] mostly targeted hardware design, not
application-level software development. As of today its development has ceased
and no up-to-date compiler is available. Quartz [14] can be regarded as a successor
to Esterel but has the same hardware focus, limiting its applicability in software
development. SCCharts [15] uses a graphical notation of hierarchical state charts
and may be regarded as another successor to Esterel. It overcomes certain limitations
of Esterel but its focus on graphical programming does not suit our needs as we
briefly explain in Sect. 9. Scade [8] is an industrial-grade tool but it is tailored to
safety-critical applications in particular industrial domains. Its dataflow orientation
caters to its special target audience but may not be the best choice for many other
embedded software programmers. Céu [13], a recently developed imperative lan-
guage, aims at the programming of reactive embedded applications but it provides
no causality guarantees. We therefore propose a new, imperative, synchronous, and

F. Gretz (�) · F.-J. Grosch
Robert Bosch GmbH, Corporate Research, Renningen, Germany
e-mail: Friedrich.Gretz@de.bosch.com; Franz-Josef.Grosch@de.bosch.com

© Springer Nature Switzerland AG 2020
T. J. Kazmierski et al. (eds.), Languages, Design Methods, and Tools for
Electronic System Design, Lecture Notes in Electrical Engineering 611,
https://doi.org/10.1007/978-3-030-31585-6_9

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31585-6_9&domain=pdf
mailto:Friedrich.Gretz@de.bosch.com
mailto:Franz-Josef.Grosch@de.bosch.com
https://doi.org/10.1007/978-3-030-31585-6_9

162 F. Gretz and F.-J. Grosch

purely software-development oriented programming language called Blech.1 From
our point of view, the main benefit of synchronous programming is the automatic,
causally correct composition of concurrent subprograms. At the same time, this
is the single most challenging feature to accommodate for when designing the
semantics and implementing compilers for such languages.

In the next section, we familiarise the reader with our language Blech. After that,
we turn our focus on some key aspects regarding causality. We discuss prior work in
Sect. 3. Subsequent sections describe our design choices and their consequences.
Section 9 discusses a synchronous programming example in detail. We use the
stopwatch example from [1] to reiterate several typical requirements of software
engineering, stress the points we make about causality and separate compilation,
and demonstrate how we imagine programming an embedded application.

2 Blech

The following listing shows a sample program written in Blech. It simply runs a
PID controller2 and toggles between two modes of operation depending on the
user input. Despite its modest functionality, this program demonstrates different
language features that may give an impression of what can be expressed in Blech.
Below, we explain the relevant details.

enum Button
Left default
Right

end
5

struct PID
var KI: float32 = 0.0
var KD: float32 = 0.0
var KP: float32 = 1.0

10var dt: float32 = 1.0
with
function this:calc (pv: float32, sp: float32)

(priErr: float32,
intl: float32, cmd: int32)

15let error = sp - pv
let der = (error - priErr) / this.dt
intl = intl + (error * this.dt)
cmd = this.KP * error + this.KI * intl + this.KD * der
priErr = error

20end

1Blech is German and colloquially translates to “bare metal” highlighting our focus on deeply
embedded architectures.
2For a quick overview see [16].

Blech, Imperative Synchronous Programming! 163

activity this:control (pv: float32, sp: float32)
(cmd: int32)

var priErr: float32 = 0.0
25var intl: float32 = 0.0

repeat
this:calc(pv, sp)(priErr, intl, cmd)
await true

end
30end

end

@[EntryPoint]
activity main ()()

35extern let sensor: float32
extern var output: float32
extern let pressed: event(Button)
var pid: PID
let sp: float32 = 42.17

40
repeat
cobegin

await let b = pressed, b == .Left
with weak

45pid.KP = 0.9; pid.KI = 0.0
run pid:control(sensor, sp)(output)

end

cobegin
50await let b = pressed, b == .Right

with weak
pid.KP = 0.5; pid.KI = 0.5
run pid:control(sensor, sp)(output)

end
55end

end

2.1 Reactions

A Blech program is triggered by the runtime environment at every tick of some
external clock. The program responds to a tick by performing a reaction step
which usually will read input data and compute output data from it. Following the
synchrony assumption, the runtime environment must ensure that all input variables
are sampled at the beginning of the reaction and remain unchanged while the
reaction executes. The reaction starts in the entry-point activity main in line 34.
Activities are one kind of subprograms in Blech. We also use functions and will
explain the difference later. An activity will usually declare some local variables.

164 F. Gretz and F.-J. Grosch

2.2 Declarations

Declarations are indicated by the var and let keywords. The former means that
the variable is indeed mutable whereas the latter declares immutable (or read-only)
data.3 Additionally, extern tells the compiler that the variable is defined outside
this program and we can simply expect it to be in our scope after linking. This is
necessary whenever we receive data from the runtime environment or write data to
it as is the case with sensor readings and controller commands. Every declaration
must either provide a data type explicitly (as in lines 35–39) or it may be deduced if
the right-hand side of the declaration uniquely determines the data type. Also, every
declaration will automatically initialise a variable to the type’s default value. This is
0 for numerical types, and in case of the PID structure the default value is given in
the type declaration (lines 7–10).

2.3 Events

A special, built-in generic data type is the event type. Events are a special form
of an optional data type wherein the event either is absent or it is present and
carries some payload. In order to become present during a reaction, an event must
be emitted either by the runtime environment if it is an external event, or by using a
special emit keyword for internal events. In any case, the runtime clears all events
at the end of a reaction so that an event does not persist from one reaction to another
unless it is re-emitted again for the next reaction. In line 37, we define an external
event which indicates that a user has pressed a button. The payload is of type Button,
defined by the enumeration in lines 1–4, and tells us which of the two buttons has
been pressed. The use of events will be explained in the next paragraph.

2.4 Statements

The main activity consists of an infinite repeat..end loop. In the body of that
loop, the control flow is forked into two branches using the cobegin..with..end

statement. Conceptually, i.e. from the programmer’s point of view, the two branches
are executed concurrently. The compiler, however, will sequentialise these branches
into one sequence of instructions after an automated causality analysis, which
ensures that such a sequentialisation exists. Generally, the branches of a cobegin

statement will join when each of them has terminated. The weak keyword may be
used to indicate branches which may be aborted. Let us see how this works out in
lines 42–47. In line 43, the branch consists solely of an await statement. When the

3Here let should not be confused with the same keyword in functional languages where it binds
a free variable in a subsequent subexpression.

Blech, Imperative Synchronous Programming! 165

control flow reaches an await statement, the execution along that branch is stopped.
A reaction is finished when every branch has hit an await statement. Upon the
next tick, a new reaction starts and all branches resume execution from the await

statements that they have ended in previously. Every await statement is equipped
with some condition. Often this condition is simply true which means that the
program just waits for a new trigger to continue (e.g. in line 28). The condition in
line 43 is more complex. Remember that pressed is an event which may or may not
be present, so the first part checks for presence and in such case copies the payload
to the local immutable variable b. Then we check whether the payload’s value is
Button.Left.4 If both the presence test and the comparison succeed, the execution
continues beyond the await statement and in this case the branch terminates. If
either fails, the control flow remains at the await statement and waits for the next
reaction to start. Concurrently, in lines 45–46, some fields of the pid struct are
reinitialised and then the control activity is started that operates on pid and some
given arguments. The effect of making the with branch weak is that in the reaction
where the user has pressed the left button, the concurrently running control activity
is executed until it finishes its current reaction step and then completely terminated,
the branches are joined and the control flow proceeds to the next statement in
line 49. Essentially, this is a simple way to guard a repetitive, possibly infinite,
behaviour with some abortion condition. Note that the same behaviour could have
been expressed using a (non-immediate) abort statement. There exists a variety of
synchronous preemptions, cf. [14, p. 34]. In Blech we support a selection of those
and we will use them in the running example of Sect. 9. In general, cobegin allows
any number of with blocks and any block can be made weak. Summing up, the main
activity defines two modes of operation given by the setting of the PID controller in
lines 45 and 52 and toggles between these states whenever the user presses the right
or the left button.

2.5 Subprograms

Let us look in more detail at the different kinds of subprograms in Blech, namely
functions and activities. Generally, subprograms will have a list of read-only
parameters (inputs) and a list of read-write parameters (outputs). When calling a
subprogram, all arguments are passed by reference. The difference to activities is
that functions are instantaneous. This means that a function must run to completion
during a reaction step. It may not use await statements or call activities. Functions
in Blech will usually encapsulate computation instructions (as in lines 12–20)
or complex expressions. Another use case for functions is to access or modify
structured data in a consistent way. Activities, on the other hand, typically maintain
some state information either in their local variables or in their control flow and

4By default enumerations are opened and hence their tags may be accessed without specifying the
type name.

166 F. Gretz and F.-J. Grosch

carry this state from one reaction step to another. This is useful when programming
the mode switching logic of an application component.

2.6 Type Extensions

Finally, let us turn our attention to the structure type defined in lines 6–31. In Blech,
any data type may be extended by additional static code artefacts such as constants
or methods. This example shows an extension with two methods: a function and an
activity. The subtle difference between top-level activities or functions and extension
methods is that methods always must be given a reference to an instance of the
data type that they extend. For example, in line 12 the identifier5 this is used
to reference a given instance of the PID struct. A field of this instance can be
accessed as in this.KP. If we were to allow a method to not only read but also
modify the contents of an instance, then the method needs to be declared as a
mutating function or mutating activity. This informs the causality analysis
about the intended use of the passed instance reference. Code generation of methods
is rather simple because they can be rewritten as normal functions or activities that
simply receive an extra input or (when they are mutating) an extra output parameter.
The PID structure shows how we can organise data and code in an object-based
way. Currently we do not support features of object-oriented programming such as
inheritance, polymorphism through interface abstractions, or generics. The first two,
in their full generality, require the program to look up the correct implementation of
a method at run time. This is known as dynamic dispatch and imposes too large a
runtime penalty in an embedded real-time program. Generics would either require
a runtime representation with the aforementioned drawbacks or we would have to
generate monomorphic code for every instance of a generic data type (much in the
fashion of C++ templates). The latter solution then raises questions regarding the
intermediate representation of generic code to allow for separate compilation and
also how to globally analyse and minimise the number of monomorphic instances.
For the time being, we restrict the language to a set of built-in special container data
types which are frequently needed, such as arrays, optionals and events. Meanwhile,
we collect requirements for more general object-oriented features.

Generally, note that in Blech all data is allocated statically except for stack-
allocated local variables in functions. By design, there is no way to dynamically
allocate memory on the heap and then deallocate or garbage collect it. In the same
fashion, cobegin allows you to create an arbitrary but statically fixed number
of concurrent branches. It is not possible to create “worker threads” based on
some dynamic input. The reasons behind these decisions are that dynamic memory
management is error prone and in the case of garbage collection unpredictable in
terms of runtime. Moreover, in a safety-critical application one would expect to
have a guaranteed memory bound after compilation. In practice, even with this

5It is not a predefined keyword as in Java but an arbitrary identifier as in F#.

Blech, Imperative Synchronous Programming! 167

memory bound, it is already challenging to ensure that the application meets its
timing constraints. Finally, we believe that these features are not required by the
control-oriented, embedded real-time applications that we are targeting with Blech.

2.7 Causality

The PID example above uses concurrent composition of statements. However, in
that particular example, the statements are unrelated in terms of data flow. One
branch is observing whether a particular button has been pressed while the other
branch deals with the calculation of controller commands from sensor readings.
In general, it may be the case that the concurrent branches access shared data,
which raises the question: in what order do they access that data and do they
have a consistent view? In the next sections, we answer this question and discuss
implications.

3 Key Questions and Related Work

Generally speaking, a program is causal if during a reaction step all concurrently
running threads have a consistent view on shared data. A detailed definition of
causally correct programs turns out to be non-trivial and gives rise to various notions
of “constructive semantics”—a concise overview can be found in [9, Sect. 9]. Once
a causality notion is fixed, related questions arise.

3.1 How Can Concurrent Calls to Subprograms Be Composed
in a Causally Correct Way?

Consider the typical example taken from [5] with two programs which are repre-
sented as sets of equations:

P : ∀n ∈ N

{
xn = f (un)

yn = g(vn)

Q : ∀n ∈ N vn = h(xn)

The problem is whether P and Q can be composed concurrently. Alternatively, the
program could be directly specified as

R : ∀n ∈ N

⎧
⎨

⎩

xn = f (un)

vn = h(xn)

yn = g(vn)

168 F. Gretz and F.-J. Grosch

The difference is that in R all assignments happen concurrently and obviously a
causally correct scheduling can be found. However, the concurrent composition of P

and Q is not possible if P is sequentialised and compiled prior to composition with
Q because then no causal order exists. Different approaches to separate compilation
have been explored in literature:

Lublinerman et al. [11] propose a best-effort approach that “clusters” a sub-
program into non-overlapping, concurrent parts. Thus, the intermediate compiled
code of a subprogram consists of precompiled parts and scheduling constraints
among these parts. This allows the composition of precompiled subprograms by
interleaving those precompiled parts while respecting the scheduling constraints
and causality constraints. In this way, the problem above is solved; however, the
decomposition is not transparent to the programmer—changing the implementation
may alter the compiler-generated decomposition and break existing software.
Furthermore, the decomposition strategy requires the compiler to make trade-offs,
e.g. between the amount of code duplication and reusability, which are beyond the
programmer’s control.

Benveniste et al. [5] propose the extraction of an interface out of the code of a
given subprogram. This interface is represented as an automaton with different kinds
of relations between its states. Based on such interface descriptions it can be decided
whether two subprograms are concurrently composable and how their individual
actions need to be scheduled to maintain causal order. Thus, the problem in the
example above is solved in a similar manner as in [11] but with similar problems
from a software-engineering point of view.

In Quartz, compilation is the transformation of code to an intermediate format:
the so-called synchronous guarded actions. Scheduling and causality analysis are
not part of the compilation [7]. Calling subprograms in Quartz amounts to copying
the corresponding code wherein all names (formal parameters) are substituted by
the supplied arguments. Hence, there is no difference between R and the concurrent
composition of P and Q from the example above. The drawback, however, is
that causality is a global property and is only decided in a final code synthesis
stage. Modular software development is impossible because there is no interface
to program against.

3.2 How Can Structured Data Types Be Used Concurrently?

Any program will usually make use of data structures commonly known as “structs”
and “arrays”. However, in synchronous programming these structures become
problematic when passed into concurrent subprograms.

Looking at the C code generator for Quartz, we see that arrays are decomposed
into individual variables that represent the cells of an array. The causality analysis
is then straightforward but it also means that all array accesses must be evaluated at
compile time. In other words: a for-loop running over an array is not implementable
in Quartz.

Blech, Imperative Synchronous Programming! 169

In Scade [8], arrays permit only special, side-effect-free operations such map and
fold known from functional languages. Other operations are outside the language
and have to be implemented in the host language. This raises the issue of dealing
with foreign function code in the causality analysis.

Recently, Aguado et al. [2] proposed the use of a variant of interface automata
to define admissible operations on an encapsulated data object. Their theory could
allow a programmer to wrap, for example, arrays in an object that provides getters
and setters and a policy that ensures a causally correct usage. From a language
designer’s point of view, however, we may ask whether this approach permits too
much. If everyone may define an arbitrarily complex usage policy for any object, is
it feasible to use third-party code and understand the potential error messages when
used incorrectly?

4 Causality

We choose acyclic schedulability as the causality notion that fits software needs.
This results in simple programming rules:

• every variable is declared in the scope of a thread (which may read and write this
variable arbitrarily once it is visible)

• upon a fork, such a variable may be shared between the subthreads of which at
most one may read and write it; the others may only read the variable and only
after the last writing operation of the writer has finished in the current reaction
step

• upon joining, the original (parent) thread reclaims all its access rights

This is a special case of the sequentially constructive semantics for synchronous
languages [10] and can also be seen as a synchronous implementation of a causal
memory model [3]. Our notion of a statically determined writer and potential readers
aligns well with recent developments in actor-based languages such as Rust.6 or
Pony7 In today’s embedded software, the lack of clearly determined reaction steps,
and writers and readers within such steps, is one of the main pain points in embedded
software development. To our knowledge, Scade also only implements acyclic
schedulers [8] but, being a functional or dataflow-oriented language, it does not
permit sequential read-write operations as we do.

Let us exemplify the programming rules for Blech using the PID controller
example from Sect. 2. Assume we have two controller objects pid1 and pid2. For
the sake of argument, say that in each reaction the output of pid1 is used as one of
the inputs of pid2. This can be written in Blech as follows:

6www.rust-lang.org.
7www.ponylang.org.

www.rust-lang.org
www.ponylang.org

170 F. Gretz and F.-J. Grosch

// assuming variables in1, in2, sp, out1, out2 are in scope ...
cobegin
run pid1:control(in1, sp)(out1)

with
run pid2:control(in2, out1)(out2)

end

Our compiler will automatically deduce from the data flow of variable out1 that in
every reaction of this program, a control step of pid1 has to be performed first, and
only then a step of pid2 is done. The lexicographic order of the cobegin branches
is irrelevant for this sequentialisation, which means the following program behaves
exactly the same:

cobegin
run pid2:control(in2, out1)(out2)

with
run pid1:control(in1, sp)(out1)

end

Using shared variables opens the door for two kinds of programming mistakes which
both are automatically detected by the compiler. First, write-write conflicts:

cobegin
run pid1:control(in1, sp)(out2)

with
run pid2:control(in2, sp)(out2)

end

In the above example, both branches try to concurrently write to the same variable
out2 by mistake. This is forbidden. Compilation will stop and indicate the error
to the programmer. Another possible mistake is introducing circular read-write
dependencies as in the next example.

cobegin
run pid1:control(in1, out2)(out1)

with
run pid2:control(in2, out1)(out2)

end

It is impossible to execute this program because pid2 needs the output of pid1 which
in turn requires the output of pid2. Again, our compiler stops with a corresponding
error message. Sometimes control algorithms do have such feedback loops but they
are never instantaneous. There must be a known value, usually a value from the
previous reaction, that can be used to start the current reaction. In Blech, this is
expressed using the prev operator.8

cobegin
run pid1:control(in1, out2)(out1)

with
run pid2:control(in2, prev out1)(out2)

end

8In Simulink, delays are used in the same fashion to resolve algebraic loops.

Blech, Imperative Synchronous Programming! 171

This program tells the compiler to take the previous value for out1. Thereby, the
causality cycle is broken and sequential code can be successfully generated.

Automated causality analysis not only is a useful feature but also a guiding
principle in Blech’s design. In the rest of the paper we focus on several of those
design choices and explain them in more detail.

5 Separate Compilation

A common theme to all papers mentioned in the introduction is that the causality
interface of a subprogram is the result of some static analysis. Our approach goes
in the opposite direction: we ban global variables entirely and use two parameter
lists for our functions and activities: a list of input (read-only) parameters and a list
of output (read-write) parameters. In this way, it is the programmer who defines a
simple causality interface for his subprograms. Thus, any program can be composed
of precompiled subprograms which act as black-boxes and only declare a set of
read-only and a set of read-write variables. On the basis of these interfaces alone,
the compiler can check if a causally correct composition exists. This black-box
approach enables us to treat causality interfaces as contracts in the same way as
classical function interfaces: the programmer may alter the implementation as long
as the new one abides by the same interface. The calling code never sees the change
of the implementation. This is a crucial decision to allow for programming modular,
maintainable and separately testable applications.

Reconsider the example from page 167: In Blech, P and Q would be activities.
Variables u and v are input variables, x and y are output variables for P . Thereby, it
is explicitly stated that in every reaction step both u and v are read to produce new
values for x and y. Based on this information, our causality analysis will not allow
the concurrent composition of P and Q. Indeed, if it really was the programmers
intention to perform the two completely unrelated operations from P , he would be
better off writing two activities: P1 that computes x from u and P2 that computes y

from v. Then, P1, P2 and Q could be composed—or the programmer implements
R directly. Based on our experience so far, we believe that this simple, explicit, no-
compiler-magic approach to subprogram interfaces is the most viable in the long
run, especially for large projects.

6 Structured Data

We distinguish two kinds of data types: primitive (or atomic) and structured.
Examples of atomic types are all numeric types or enumerations. They all represent
a piece of memory that contains one value. Structured data types, on the other hand,
represent a chunk of memory that is subdivided into smaller partitions. For example,
structs are divided into fields that are accessible by name while arrays are subdivided

172 F. Gretz and F.-J. Grosch

into cells that are accessible by indices. Causality analysis is clearly defined for
atomic types but structured types require us to make a decision: how fine grained
should the causality analysis be? Consider the following (toy) example where the
control flow is forked into two concurrent branches which both try to write into
shared memory:

struct Complex
var real: float32
var img: float32

end

function setReal (val: float32)(c: Complex)
c.real = val

end

function setImg (val: float32)(c: Complex)
c.img = val

end

// ... in main activity ...
var a: Complex
cobegin
setReal(-17.0)(a)

with
setImg(42.0)(a)

end

We know from the interface of the functions setReal and setImg that the struct c
may be modified. Hence, calling these functions concurrently with the same output
argument a results in a potential write-write conflict (and is hence forbidden). This is
despite the fact that the two functions would write into disjoint memory locations.
As with subprograms, we take a black-box approach to causality analysis of data
structures. So, by design, the causality interface does not specify which parts of
a structured data type are read or written—it is always considered as a whole by
the causality analysis. This ensures that the implementation does not “leak” into the
interface. If we really want to concurrently write to disjoint parts of a structured data
type, then the caller has the responsibility of determining these parts. This means the
callee must be designed to receive only the part it is writing to. We can rewrite the
above example in this manner:

// Complex as before
function setValue (val: float32)(loc: float32)
loc = val

end

// ... in main activity ...
var a: Complex
cobegin
setValue(-17.0)(a.real)

with
setValue(42.0)(a.img)

end

Blech, Imperative Synchronous Programming! 173

This is a valid program. Admittedly, the function setValue is not very interesting in
this example but in practice it could encapsulate some validation logic which we do
not want to repeat twice.

While our semantics may be regarded as a trivial special case of the framework
in [2], we believe this simplicity is a great advantage. Structured data can always be
shared among any number of readers but is owned by only one writer as a whole.
If different parts need to be written in reactions to different events, then either the
writer needs to know about all these events and react to all of them accordingly,
or the data structure needs to be disassembled into disjoint parts that are given to
different writers where each reacts to one event only.

7 References

Orthogonally to the notion of data being atomic or structured, we also discern
between value- and reference-types. Note that this has nothing to do with the way
the data is handled in the generated C code. For instance, value-typed arrays will
nonetheless be passed around functions using pointers; the distinction between
reference- and value-types is a semantic one—not an implementation-specific one.
Primitive types, structs as well as fixed-sized arrays are value-types in Blech by
default. Sometimes, however, references to data are needed. Typical use cases
include

• Every formal parameter of a subprogram is a reference to a given argument.
• Aliasing of individual locations in a complex data structure, e.g.

let ref rpm = wheels[3].rpm
let ref rad = wheels[3].radius
var ref speed = wheels[3].speed
run rpmAsKmh(rpm, rad)(speed) // update the wheel’s speed in

every reaction given its rpm and radius

• Building data types that point to other data

struct ValueStruct
var a: int32
var b: bool

end

ref struct RefStruct
var x: float32
var ref l: ValueStruct

end

RefStruct contains a reference to a location that contains a value-typed ValueStruct.
As such, RefStruct itself is a reference-type, indicated by the ref keyword in its
declaration. These reference-types are necessary to structure code in an object-based
way. References (i.e. aliases of other locations) as well as reference-type variables

174 F. Gretz and F.-J. Grosch

(i.e. instances of reference-typed data structures) must be assigned directly at their
declaration and cannot be subsequently mutated. Note that their contents, however,
may change throughout their lifetime—only the address is immutable.

var x: int8 = 5
var ref r = x
x = 17 // now also: r = 17
r = 42 // now also: x = 42

Immutability of references ensures that causality analysis remains decidable: we can
statically determine the location that any given name points to. If we were to allow
mutation, we would run into the undecidable problem of aliasing. The keywords let
ref declare an immutable reference that may only read its contents while var ref

declare an immutable reference that allows its contents to be changed. Our semantics
require that ref is idempotent, i.e. a reference to a reference directly points to the
original value, however, the access capabilities may change. Continuing the example
above:

let ref s = r // s points to x, but read-only
var ref t = s // compiler error: cannot grant write access to

read-only location

A particular feature is that we have no dereference and, accordingly, no address
operator. Depending on the context that a reference is used in, the compiler
automatically generates the correct code that either accesses the contents of a
reference type or passes the address it is pointing to. Consequently, whenever a
reference is expected (say as a function parameter) in Blech we can pass a value-
typed variable or even a literal and the compiler will take care of finding the address
or creating a temporary location.

Remember that in Sect. 2 we have introduced the prev operator to resolve
causality cycles. It is important to note that this operator may only be used on
value-typed data. The reason is that value-typed data (even structs or arrays) may
efficiently be copied to store the previous value. References, on the other hand, will
usually define a tree of objects which we would have to walk over to create a deep
copy. In order to exclude this performance pitfall, we generally have the rule: “no
prevs on refs!”

8 Sharing Data

So far, we have always assumed that an output parameter of a subprogram is distinct
from any other formal parameter, i.e. the two names never point to the same memory
location. This permits concurrent access to those parameters within the subprogram
and also guarantees the programmer that writing an output parameter does not alter
other parameters. On the calling side, this assumption restricts the caller since any
two arguments must represent completely disjoint memory locations (unless they
are both inputs). Consider the following activity which sums two numbers in every

Blech, Imperative Synchronous Programming! 175

reaction and concurrently checks its second parameter for some threshold. When
the threshold is exceeded, the weak branch is aborted and the whole cobegin block
terminates.

activity add (a: int32, b: int32)(s: int32)
cobegin
await b > 10

with weak
repeat

s = a + b
await true

end
end

end

// ... in main activity ...
var sum: int32
var x: int32; var y: int32

run add(x, y)(sum) // OK, all distinct
run add(x, x)(sum) // OK, overlapping inputs
run add(x, sum)(sum) // error

The last call uses sum in both the input and output lists. This is not possible in
general, because our separate compilation will compile the activity without knowing
how it will be used. Thus, the chosen sequentialisation of the cobegin-block may
be fixed arbitrarily, in particular the check b > 10 may be done before an iteration
of the loop. This is not a problem as long as b and s are pointing to disjoint memory
locations. If they do not, as in the last call, the threshold check is done on sum before
a new value for sum is computed, which is not causally correct.

Sometimes, however, the programs are less restrictive. For example, consider an
activity that just adds two numbers.

activity add (a: int32, b: int32)(s shares a, b: int32)
repeat
s = a + b
await true

end
end

Here, it does not matter whether a, b and s represent the same location or
not. The programmer explicitly declares this using the shares keyword. It is
thereby guaranteed that these locations are not used concurrently inside the activity.
Consequently, the call

run add(x, sum)(sum)

is allowed now. Sharing between parameters restricts how they can be accessed
(concurrently) but it allows the passing of “overlapping” arguments. Extending
causality analysis to respect the sharing annotations is straightforward.

176 F. Gretz and F.-J. Grosch

9 Implementing Mode Progressions as Synchronous
Control Flow

In the previous sections, we have introduced the Blech language by means of a
PID controller example and subsequently discussed the language’s design regarding
causality and separate compilation. Now, we turn our attention to how a typical
application may be developed using Blech. Starting with a rough sketch of the
intended behaviour, we design the application step by step while separating concerns
and arrive at a concrete implementation. We point out how causality and separate
compilation—as defined for Blech—help to write easily modifiable components,
which can be independently compiled, tested, integrated and refined. We hope
to show, how the expressiveness of synchronous control flow is a suitable and
maintainable way of implementing the modes of a system that changes its behaviour
with the progress of time. The stopwatch example in this section is based on the
description by Aguado et al. [1, p. 9ff.]. Subsequently, we modify it and add features
bringing it closer to the original presentation in Berry’s early work [6].

Imagine a simple stopwatch for counting seconds and minutes. It has two buttons:
StartStop and Reset. The Reset always stops the stopwatch and resets it to zero.
Pressing StartStop the first time starts the stopwatch. Pressing StartStop again stops
the stopwatch. To resume the measurement, StartStop is pressed once again. If both
buttons are pressed simultaneously, the stopwatch stops, resets to zero and starts
a new measurement all at once. We assume that the stopwatch is running as a
timetriggered system where the system tick triggers a reaction step every second.

This mode behaviour can roughly be sketched in a simple state diagram (ignoring
the possible simultaneous events).

We only use the state diagram as a means of visualisation to assist the problem
analysis and to guide the implementation. All the details of the implementation,
however, are in the Blech code and take advantage of the language’s structuring
and abstraction mechanisms. This is unlike tools and languages oriented towards
graphical, model-based development, which promise graphical programming and

Blech, Imperative Synchronous Programming! 177

code generation as a relief from actual programming. We believe our approach out-
matches the annotation of implementation details in purely graphical programming
or—even worse—the completion of code in generated code stubs.

Here, the diagram only sketches the modes and the events that trigger a mode
change. It does not correctly capture events that happen simultaneously and does
not describe how the stopwatch behaves in every mode. Furthermore, the diagram
is cyclic and does not naturally imply a sequential flow of mode successions.

Separating concerns, we start by considering the most straightforward use case
of a stopwatch: a simple measurement. This brings a natural order to the modes.
From the initial mode, we can start the stopwatch, and, after it ran for some time,
stop it.

A corresponding sequential synchronous control flow is rather simple. We
initialize a counter for the display and wait until StartStop has been pressed. While
the stopwatch is running, we react to system ticks by incrementing a counter.
According to the synchronous semantics, StartStop can only be pressed once in
every time step, which implies an await between every mode change.

activity StopWatchController (isPressedStartStop: bool)
(display: Display)

// init
4display:resetToZero()

await isPressedStartStop
// run
repeat

await true
9display:increment()

until isPressedStartStop end
// stop

end

The careful reader may object that isPressedStartStop could more naturally be
declared as a (possibly void) event. However, this is an implementation detail that
is up to the designer of the runtime environment which triggers our program and we
assume simple boolean flags are used in this case.

Building upon the previous use case, we add the next requirement, namely that
the stopwatch may resume measurement. Thus, we allow to alternate between the
modes run and stop by pressing StartStop.

In order to implement this, we add a loop around modes run and stop. This
corresponds to the transition back to run. The additional await statement in line
13 is the transition guard.

178 F. Gretz and F.-J. Grosch

activity StopWatchController (isPressedStartStop: bool)
(display: Display)

// init
display:resetToZero()

5await isPressedStartStop
repeat

// run
repeat

await true
10display:increment()

until isPressedStartStop end
// stop
await isPressedStartStop

end
15end

Finally, let us add the remaining requirement that the stopwatch may be reset in
every mode. We add the corresponding Reset events in the diagram and essentially
arrive at the diagram we have shown in the beginning. However, this time we need
to clarify what happens when both buttons are pressed at the same time. From the
description above, we understand that the reset takes precedence over the starting
or stopping of the stopwatch. This is indicated using the priorities in the diagram:
in every reaction step, first, if there is a Reset event present, take the corresponding
transition and then, if the StartStop event is present, take that transition too.

Reinitialising the stopwatch on a Reset event can easily be added to our skeleton
by using a synchronous preemption. Intuitively, the semantics is as follows: The
reset statement marks a position where the control flow restarts when the given
condition becomes true before anything else happens at any enclosed await
statement. Here, we restart the sequential control flow when a Reset event occurs
before the current enclosed await is evaluated. We wait for a StartStop event or we
directly start the stopwatch if the StartStop event occurred simultaneously (lines
7–9).

activity StopWatchController (isPressedStartStop: bool,
isPressedReset: bool)

(display: Display)
reset when isPressedReset before

5// init
display:resetToZero()

Blech, Imperative Synchronous Programming! 179

if not isPressedStartStop then
await isPressedStartStop

end
10repeat

// run
repeat

await true
display:increment()

15until isPressedStartStop end
// stop
await isPressedStartStop

end
end

20end

Finally, consider the complete program that includes the type definition of the
Display type including its helper functions and the main program that composes the
controller with the viewer.

/// Display
struct Display

var seconds: int32
var minutes: int32

5with
mutating function this:resetToZero ()

this.seconds = 0
this.minutes = 0

end
10

mutating function this:increment ()
this.seconds = this.seconds + 1
if 60 == this.seconds then

this.minutes = this.minutes + 1
15this.seconds = 0

end
end

/// implemented in C
20@[CFunction(source="display.c")]

extern function this:show ()
end

/// Mode progression
25activity StopWatchController (isPressedStartStop: bool,

isPressedReset: bool)
(display: Display)

reset when isPressedReset before
// init

30display:resetToZero()
if not isPressedStartStop then

await isPressedStartStop
end
repeat

35// run

180 F. Gretz and F.-J. Grosch

repeat
await true
display:increment()

until isPressedStartStop end
40// stop

await isPressedStartStop
end

end
end

45
/// Main Program
@[EntryPoint]
activity Main (isPressedStartStop: bool, isPressedReset: bool)

var display: Display
50cobegin

run StopWatchController(isPressedStartStop,
isPressedReset)

(display)
with

55// render
repeat

display:show()
await true

end
60end

end

Our Display structure is designed to match the data structure in [1]. It therefore
has two fields that represent minutes and seconds, respectively. Three methods are
attached to the Display type: resetToZero, increment and show. The meaning of the
first two should be obvious. The last one binds to a platform-specific function which,
given a Display instance, will actually render the digits on a screen. An annotation
gives a hint to the build system where the implementation of show can be found. The
extern keyword indicates that the Blech program will invoke this C function via
the foreign function interface. The Main activity receives the boolean flags from the
calling runtime environment. Additionally, it maintains an instance of the Display.
In every tick, Main will trigger a step in the StopWatchController and invoke the
show function to display the currently measured time.

Note that this simple program exhibits some of the main features that we have
discussed in this article. The platform code that runs the application, the controller
which we designed in this section, and the platform-specific functionality such as the
show implementation can all be developed and tested independently as long as they
respect fixed APIs. The integration of these separately compilable units happens in
Main. Causality analysis checks the data flow of the concurrent branches in Main
and ensures that a reaction of StopWatchController is scheduled before the call to
show.

Also note that unlike the Esterel code in [6], there is no need to externalise all
data manipulation to host code. Furthermore, as explained before, our activities,
unlike Esterel modules, are composed as black-boxes and causality does not require

Blech, Imperative Synchronous Programming! 181

a global analysis. The programmer reasons locally at the level of one cobegin

statement and, if any causality issues occur, understands and fixes such issues at
this local level.

We have clearly separated concerns within our application. The data management
is encapsulated in the Display structure, the mode switching is implemented in
StopWatchController and, finally, Main integrates these parts into one runnable app.
During implementation we used state transition diagrams as a means to design and
document our implementation, without the need for capturing every implementation
detail graphically.

Clearly, software is never finished and as such needs to be adapted as customer
requirements change or the platform evolves. We discuss two foreseeable changes
that go beyond the presentation in [1] but which are taken into account by the
original implementation in [6].

First, a stopwatch that runs with a period of 1 s will hardly be useful. Assume
we are given an updated platform that ticks every 10 ms which allows us to measure
time up to a hundredth of a second. This platform comes with a different screen
and an apt implementation of show that now consumes a Display instance of the
following form:9

struct Display
var hundredth: int32
var seconds: int32
var minutes: int32

with
mutating function this:resetToZero ()

this.hundredth = 0
this.seconds = 0
this.minutes = 0

end

mutating function this:increment ()
this.hundredth = this.hundredth + 1
if 100 == this.hundredth then

this.seconds = this.seconds + 1
this.hundredth = 0

end
if 60 == this.seconds then

this.minutes = this.minutes + 1
this.seconds = 0

end
end

@[CFunction(source="display.c")]
extern function this:show ()

end

9With the need for creating a software library for different platforms, it is obvious that support for
interface-based programming is clearly a requirement for Blech.

182 F. Gretz and F.-J. Grosch

Nothing in the mode-control or top-level composition changes. With this little
change to the data model and its management code, the stopwatch can now run at a
higher resolution. It behaves as before.

Now assume the manufacturer wants to use the Reset button in the run mode to
measure lap time. Thus, we rename the button to ResetLap and the behaviour is now
as follows: Pressing StartStop initially starts the stopwatch. Pressing StartStop again
stops the stopwatch. To resume the measurement, StartStop is pressed once again.
Pressing ResetLap while the stopwatch is idling resets it to zero. Pressing ResetLap
while a measurement is running displays the lap time while the stopwatch continues
to count ticks in the background. Pressing ResetLap again switches the display to the
currently running total time measurement. The lap time is the interval between time
point 0 and the first time ResetLap is pressed during measurement or subsequently
the interval between two successive laps. We now deliberately ignore the case that
both buttons may be pressed simultaneously. The likelihood to accomplish this
within a hundredth of a second is very little and hence this feature could hardly
be used reliably. Technically, of course, we could again assign priorities in both the
running and idling modes.

The above description leads us to a new state transition diagram where we add a
new mode to distinguish whether we need to show the total or the lap time.

The diagram helps us not only in structuring our modes but also helps us to
uncover cases that remain unclear from the textual description above. What happens
if the user presses StartStop while the lap time is displayed? We choose to transition
to the idling mode where the total time is always shown.

For the implementation, we need to observe that our app has to maintain two
timings: the running total time and the point in time where the last lap has been
measured to compute the next lap time when needed. Our representation of time is
too much oriented towards the human-readable view of a point in time but is not
convenient for calculation. Yet, we do not want to break the integration with our
show function which expects a structure with three fields. Hence, in the following

Blech, Imperative Synchronous Programming! 183

implementation we choose to maintain time in two tick counters totalTime and
lastLap internally in our controller. The function writeTicksToDisplay will update
the display object to the time given by a number of ticks.

function writeTicksToDisplay (ticks: int32)(display: Display)
let seconds = ticks / 100
display.minutes = seconds / 60

4display.seconds = seconds - 60 * display.minutes
display.hundredth = ticks - 100 * seconds

end

activity Measurement (isPressedResetLap: bool)
9(totalTime: int32, lastLap: int32,

display: Display)
// run / lap
cobegin

repeat
14await true

totalTime = totalTime + 1
end

with
repeat

19// show total time every tick
repeat

writeTicksToDisplay(totalTime)(display)
await true

until isPressedResetLap end
24

// calculate lap and update display once
let lapTime = totalTime - lastLap
lastLap = totalTime
writeTicksToDisplay(lapTime)(display)

29await isPressedResetLap
// back to total time

end
end

end
34

activity StopWatchController (isPressedStartStop: bool,
isPressedResetLap: bool)

(display: Display)
var totalTime: int32

39var lastLap: int32
repeat

//init
totalTime = 0
lastLap = 0

44writeTicksToDisplay(totalTime)(display)
await isPressedStartStop // transition init -> run
repeat

abort when isPressedStartStop after
run Measurement(isPressedResetLap)

49(totalTime, lastLap, display)
end

184 F. Gretz and F.-J. Grosch

// stop, show total time and wait
writeTicksToDisplay(totalTime)(display)
await isPressedStartStop or isPressedResetLap

54// back to run if only StartStop was pressed
until isPressedResetLap end
// back to init if ResetLap was pressed

end
end

When developing the above code, we essentially follow the same steps as before.
We consider the sequence of mode switches init to run to stop and the jump back
to run. This gives rise to lines 41–45 and 51–52. The toggling between run and lap
is factored out into a new activity: Measurement. With every reaction, it increments
its totalTime counter while it concurrently may switch between displaying the total
time or calculating and displaying the lap time. Note that the Measurement activity
only reacts to the isPressedResetLap flag. With the synchronous preemption abort

in lines 47–50, we mark the end of the block as the position where the control flow
continues when the given condition becomes true after any computation in a time
step inside the called activity has been executed. That means, it is the calling code
that stops the measurement if the StartStop button is pressed and proceeds to the
next mode stop. There, in lines 51–53, the display is set to the total time and the
program awaits that either button is pressed. The exit condition in line 55 decides
whether we follow the transition to run or init.

We have shown two possible modifications to our stopwatch implementation.
The modifications addressed separate concerns: the first changed the representation
of the display and its rendering, the second changed the control logic. Our code
reflects this separation and no global changes were necessary. We were able to
maintain the APIs and make local changes only.

This example illustrated our approach starting with a specification and arriving
at production code as well as subsequent modifications. We believe Blech is well
suited for embedded application development. It facilitates writing separate units
of code which are testable and reusable. Integration and, in particular, concurrent
composition is made easy because the reasoning is always done locally. The
synchronous control flow of activities enables the programmer to express mode
switching logic more intuitively than handcrafted state machines in C which we
see in today’s production code.

10 Ongoing and Future Work

The Blech to C compiler we are currently working on is able to translate all
the shown control flow structures and value-types including structs and arrays.
Completing the remaining features is an ongoing process. Some of the work
presented here forms the necessary prerequisite for an integration of Blech and C.
It should be possible to call e.g. external C library functions directly from a Blech
program. This will be a crucial step to enable the use of Blech in an industrial
context.

Blech, Imperative Synchronous Programming! 185

Acknowledgements The original version of this article appeared at the FDL 2018 and we thank
Prof. Michael Mendler for his invitation to contribute. We also thank the anonymous reviewers as
well as Mark Andrew, Jens Brandt, Stephan Scheele, Matthias Terber and Simon Wegendt for their
valuable feedback. Finally, we thank Daniel Große, Tom Kazmierski and Sebastian Steinhorst for
their invitation to extend and contribute our article to this book.

References

1. Aguado, J., Mendler, M., Pouzet, M., Roop, P. S., & von Hanxleden, R. (2017). Clock-
synchronised shared objects for determinisitic concurrency. In Research Report Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik, p. 102. Bamberg: Otto-
Friedrich-Universität.

2. Aguado, J., Mendler, M., Pouzet, M., Roop, P. S., & von Hanxleden, R. (2018). Deterministic
concurrency: A clock-synchronised shared memory approach. In A. Ahmed (Ed.), Proceedings
of Programming Languages and Systems—27th European Symposium on Programming, ESOP
2018, Held As Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki 14–20 April 2018. Lecture notes in computer science (Vol. 10801,
pp. 86–113). Berlin: Springer.

3. Ahamad, M., Neiger, G., Burns, J. E., Kohli, P., & Hutto, P. W. (1995). Causal memory:
Definitions, implementation, and programming. Distributed Computing, 9(1), 37–49.

4. Benveniste, A., Caspi, P., Edwards, S. A., Halbwachs, N., Le Guernic, P., & De Simone, R.
(2003). The synchronous languages 12 years later. Proceedings of the IEEE, 91(1), 64–83.

5. Benveniste, A., Caillaud, B., & Raclet, J. B. (2012). Application of interface theories to the
separate compilation of synchronous programs. In Proceedings of the 51th IEEE Conference on
Decision and Control, CDC 2012, Maui, 10–13 December 2012 (pp. 7252–7258). Piscataway:
IEEE.

6. Berry, G. (1989). Programming a digital watch in Esterel v3. Le Chesnay: INRIA. Research
Report RR-1032.

7. Brandt, J., & Schneider, K. (2009). Separate compilation for synchronous programs. In Falk,
H. (Ed.), 12th International Workshop on Software and Compilers for Embedded Systems,
SCOPES ’09, Nice, 23–24 April 2009 (pp. 1–10). New York: ACM.

8. Colaço, J. L., Pagano, B., & Pouzet, M. (2017). SCADE 6: A formal language for embedded
critical software development (invited paper). In Mallet, F., Zhang, M., & Madelaine, E. (Eds.),
11th International Symposium on Theoretical Aspects of Software Engineering, TASE 2017,
Sophia Antipolis, 13–15 September 2017 (pp. 1–11). Piscataway: IEEE.

9. Hanxleden, R. V., Mendler, M., Aguado, J., Duderstadt, B., Fuhrmann, I., Motika, C., et al.
(2013). Sequentially constructive concurrency—A conservative extension of the synchronous
model of computation. Kiel: Christian-Albrechts-Universität zu Kiel, Department of Computer
Science. Technical Report 1308. ISSN 2192-6247.

10. Hanxleden, R. V., Mendler, M., Aguado, J., Duderstadt, B., Fuhrmann, I., Motika, C., et al.
(2014). Sequentially constructive concurrency—A conservative extension of the synchronous
model of computation. ACM Transactions on Embedded Computing Systems, 13(4s), 144:1–
144:26.

11. Lublinerman, R., Szegedy, C., & Tripakis, S. (2009). Modular code generation from syn-
chronous block diagrams: Modularity vs. code size. In Shao, Z., & Pierce, B. C. (Eds.),
Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, Savannah, 21–23 January 2009, pp. 78–89. New York: ACM.

12. Potop-Butucaru, D., Edwards, S. A., & Berry, G. (2007). Compiling esterel. Berlin: Springer.
13. Sant’Anna, F., Ierusalimschy, R., Rodriguez, N., Rossetto, S., & Branco, A. (2017). The design

and implementation of the synchronous language CÉU. ACM Transactions on Embedded
Computing Systems, 16(4), 98:1–98:26.

186 F. Gretz and F.-J. Grosch

14. Schneider, K., & Brandt, J. (2017). Quartz: A synchronous language for model-based design
of reactive embedded systems (pp. 29–58). Dordrecht: Springer.

15. Von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S., Mendler, M., Aguado, J., Mercer,
S., & O’Brien, O. (2014). Sccharts: Sequentially constructive statecharts for safety-critical
applications: Hw/sw-synthesis for a conservative extension of synchronous statecharts. In
O’Boyle, M. F. P., & Pingali, K. (Eds.), ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, 09–11 June 2014 (pp. 372–383).
New York: ACM.

16. Wikipedia contributors (2019). Pid controller—Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/PID_controller. Accessed 2 May 2019.

https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/PID_controller

Index

A
Activation conditions, 19, 23, 151–153, 158
Affine arithmetic decision diagrams (AADDs)

BDD, 146, 149–150
formal model, 135
internal representation, 138
reduction, 143–144
relational operations, 140–142
symbolic

signal values, 158
simulation (see Symbolic simulation)

Ageing-aware approach
BTI degradation (see Bias temperature

instability (BTI))
motivation, 92
path isolation, 93–95, 98

Assertions, 21, 67, 68, 137, 156
Audio/video (A/V) decoder, 110, 111, 113–114
Automatic abstraction, 37, 40

B
Bias temperature instability (BTI)

ageing-aware approach, 90
circuit-level degradations, 91
nano-scale technologies, 89
over-design method, 90
PBTI, 89
transistor-level modelling, 90

Bifurcations, 79, 80
Binary decision diagrams (BDDs), 135, 140,

143, 148, 149
Binding, 52, 68, 75
Biochips with passive routing concept

bifurcation, 79
design process, 80–82
experiments, 82
microfluidic network, 80, 81
resulting architecture, 82
two-phase flow microfluidics, 79

Black box testing, 61, 62, 67, 171, 172, 180
Blech programming language

causality, 167
declarations, 164
events, 164
mode progressions, 176–184
reactions, 163
references, 173–174
sample program, 162–163
SCCharts (see SCCharts)
separate compilation, 171
sharing data, 174–175
statements, 164–165
structured data, 171–173
subprograms, 165–166
type extensions, 166–167

Block condition tracking
code instrumentation, 146–147
path condition, 148
selection and iteration, 148

Bounded execution-time, 1, 15, 78, 100, 132,
133

C
Canny edge detector, 110, 112–113
Causality analysis, 167–168

error message, 170
programming rules, 169

© Springer Nature Switzerland AG 2020
T. J. Kazmierski et al. (eds.), Languages, Design Methods, and Tools for
Electronic System Design, Lecture Notes in Electrical Engineering 611,
https://doi.org/10.1007/978-3-030-31585-6

187

https://doi.org/10.1007/978-3-030-31585-6

188 Index

Checkpoints, 92
Clock constraint specification language

(CCSL), 2, 19–22
Clocks

cycles, 37, 92, 96
declarations, 8
multiclock SCCharts, 17–19
patterns, 19–21
real-valued, 2, 3
timed-automata, 7

CMOS ageing
BTI degradation, 89, 90
gate-level approach, 89

Cobegin, 164–166, 170, 172, 175, 181, 183
Code instrumentation

iterations, 147
selection statements, 146–147

Code manipulation, 35, 40, 45
Coding guideline

level of parallelism, 105
motivation, 105–106

Compiler
C++, 136, 137, 153
compiler-magic approach, 171
OoO PDES of SystemC, 100
open-source, 23
RISC, 103
SCCharts (see SCCharts)
symbolic simulation, 157–158
timing constraints, 2

Concolic simulation, 135
Control flows, 136, 146, 150, 157, 164, 165,

172, 176–184
Control logic synthesis, 78
Co-simulation, 27–31, 33, 40, 43, 44
Cyber-physical system (CPS), 3, 27, 28, 34,

52, 138
Cyber-physical virtual platform (CPVP), 28,

33, 35

D
Data hazard, 101, 104
Data models, 182
Decision Diagrams

AADDs (see Affine arithmetic decision
diagrams (AADDs))

BDDs (see Binary decision diagrams
(BDDs))

Delta-cycles, 23, 107
Delta-sigma modulator, 154–157
Design automation, 72, 135
Design space exploration, 116
Determinism, 4, 11

Digital microfluidic biochips (DMFBs), 72, 74,
75, 77, 78

Direct memory interface, 125–126
Discrete event simulation (DES)

PDES (see Parallel discrete event
simulation (PDES))

SystemC model, 99
Discrete event system specification (DEVS),

23
Discrete systems, 37–39
Dynamic ticks, 11

controller and environment, 12
DEVS, 23
execution, 6
hard vs. soft

bounds, 15, 16
resets, 15, 17

sleep times, 13–14
soft bounds, 16
traffic light controller, 12–13

E
Electrowetting

design process, 74–75
DMFB, 72, 74
physical modules, 72–73
virtual modules, 73

Embedded software engineering, 168
Embedded system, 1, 12, 23, 99
Error correction, 32, 61, 64, 166
Event-based simulation, 39
Event-triggered, 6, 9–13
Execution path

bioassays, 78
dynamic ticks, 2
FMU, 31, 40
global model, 21
reactive system, 12
simulation time, 118
smart master algorithm, 37
time-triggered, 6, 10
traffic light controller, 6
valve switching activities, 78

F
FIR filter

design, 90
experimental results, 96–97
VLSI implementation, 95–96

Flip-flops (FF), 90, 93, 97
Flow-based microfluidic biochips

component, 76
design process, 77–78

Index 189

silicon/glass substrates, 75
valves, 76
w/mixer and storage unit, 76, 77

FMUs generation, 35–37
Foreign function interface, 169, 180
Formal models, 135–137
Formal verification, 67, 135
Functional Mockup Interface (FMI)

advantages and limitations, 33–35
automatic tool-chain, 29
co-simulation, 30
CPSs and API, 27–28
development and discussion, 41, 43–45
HDL, 28
methodology application, 40–42
related work, 33
simulation coordination, 31–32
transaction-level, 28

G
Global execution model, 21

H
Hardware description languages (HDL), 28,

33–37, 40
High-level synthesis, 78, 158
HW/SW interactions, 116, 120–123
Hybrid co-simulation, 28, 33, 43, 44
Hydrodynamic controlled microfluidic

networks, 78

I
Instruction set simulator (ISSs), 115, 116
Internet, 60, 61, 115
Internet of Things (IoT)

compositional design flow, 59
description of capabilities, 47
devices and applications, 47
gateway, 57
platforms, 47, 48
resource-constrained, 54
TDs, 48, 64

Interrupt handling
bootstrap code, 122–123
software side, 120–122

L
Labs-on-chips (LOCs), 71, 78
Languages

Blech, 176
built-in special container data, 166
CCSL, 19

electronic design automation, 135
execution time, 1
object-oriented, 144
protocol specification, 36
SCCharts (see SCCharts)

M
Master algorithm, 41, 44, 45

C implementation, 32
communication, 31
FMU, 34, 38, 40
simulation, 28, 42

Memory mapped I/O, 119, 120, 123
Micro-controllers, 115
Micro-electrode-dot-array biochips (MEDA),

75
Microfluidic networks, 81

EDA methods, 72
sample/reagent volumes, 71
two-phase flow, 79

Mixed-signal systems, 136
Model-based engineering, 176
Modeling

combinatorial circuits, 41
CPSs, 27
electronic design automation, 135
IoT devices, 54
SystemC-based configurable sensor model,

128
TLM transactions, 118

Models of computation (MoC), 34, 136, 151,
152, 158

Multiclock SCCharts, 17–19
Multiform notion of time, 2, 6, 10–11, 24
Multiplexing, 76
Multirate timed automata, 3, 23
Mutability, 164

N
Networked labs-on-chips, 78

O
Object-based programming, 166, 173
Out-of-order parallel discrete event simulation

(OoO PDES)
CPU utilization, 113
IEEE SystemC standard, 99
PAR, 112
parallel execution, 114
related work, 100–101
RISC compiler, 100
SG granularity, 101–103

190 Index

Out-of-order parallel discrete event simulation
(OoO PDES) (cont.)

simulation speed, 101–103
SystemC models, 103

Overloaded assignments
AADDs, 149
BDDs, 149
iteration statements, 150
limitations, 150

P
Parallel discrete event simulation (PDES),

99–105, 112–114
Parallel simulation, 99, 100, 105
Performance optimizations

direct memory interface, 125–126
local time quantums, 126
VP simulation, 132

Peripherals, 116, 1267–129
Periodic executions, 2, 20, 22
PID controller, 162, 165, 169, 176
Pipelines, 92, 95, 112, 113
Placement, 75, 78
Preemption, 165, 178, 184
Programmable microfluidic devices (PMDs),

78

R
Reachability, 137, 138
Reactive systems, 12, 44
Real-time systems, 1–3
Recoding infrastructure for SystemC (RISC)

data and event conflicts, 104–105
SG, 103–104

RISC-V
environment interaction, 123–125
IoT, 115
ISA, 115, 117
ISSs, 115
related work, 116–117
SystemC, 117–118
TLM, 117–118
VPs, 116

S
Safe concurrency, 1
Safety, 1, 47, 51, 54, 115, 161, 166
Safety-critical systems, 161, 166
SCCharts

contributions, 2
dynamic ticks (see Dynamic ticks)
multiclock, 17–19

multiform notion of time, 2
race conditions, 1
synchronous programming paradigm, 1
timed automata (see Timed automata)

Scheduling, 75, 101, 102, 103, 168
Segment graph (SG)

granularity, 101–103, 114
RISC, 103–104
simulation speed, 101–103
SystemC file, 100

Separate compilation, 162, 166, 168, 171, 176
Sequential behavior

composing a system, 58–60
single thing description, 54–58
worldwide scalability, 60

Sequential constructiveness (SC), 7, 23, 24,
169

Server-client architecture, 68
Simulation

AADD-based (see Affine arithmetic
decision diagrams (AADD))

CPSs, 27
dynamic models, 29
FMI standard, 31–32
FMUs, 30
heterogeneous systems, 27
HW simulators, 28
smart master algorithm, 42
symbolic (see Symbolic simulation)
SystemC, 120
VP (see Virtual prototype (VP))

Simulator
Accellera SystemC, 99
communication and synchronization, 34
co-simulation environment, 27
CT models, 152
OoO PDES of SystemC, 100
PULPino platform, 130, 132
RISC, 103
RISC-V ecosystem, 116
semantics of HW, 28
TGFF benchmarks, 112

Smart master algorithm, 37–39, 41, 42
Software development, 161, 162, 168, 169
Standards

advantages and limitations, 33–35
automata, 5
co-simulation, 30
execution model, 12
FMI, 28, 33
ISA, 115
SCCharts (see SCCharts)
TD (see Thing descriptions (TDs))
tool-independent, 29

Index 191

Structured data, 168–169, 171–173
Symbolic execution of C++

and concrete, 145–146
operator overloading, 144–145
polymorphism, 144–145

Symbolic signals
activation conditions, 158
concrete, 151
and process activation, 151
SystemC, 158

Symbolic simulation
AADDs, 136, 139–140
affine forms, 138–139
arithmetic and relational operations,

140–142
compiler, 157–158
concrete activation conditions, 151–152
internal representation, 138
non-functional control-flow statements,

136
path conditions, 142–143
reduction of AADD, 143–144
symbolic activation conditions, 152–153
SystemC (AMS), 135
testing and verification, 136
tool flow, 136–138

Synchronous languages, 161
discrete-time and continuous-time

behaviors, 23
execution time, 1
multiform notion of time, 2

Synchronous stopwatch, 176–178, 181, 182,
184

Synchrony assumption, 163
SystemC

data and event conflicts, 104–105
heavy segments partition, 107–110
SG, 103–104
wait-for-delta-cycle primitive, 107

System calls (syscalls), 119, 120, 123, 124
SystemC AMS

AADDs (see Affine arithmetic decision
diagrams (AADD))

data flow cluster, 156
one-bit quantizer, 156
symbolic simulation (see Symbolic

simulation)
Systemc-clang, 100, 136
System level simulation, 58, 64, 99, 116

T
Testing

automatic, 61

single thing, 62–64
system level, 64–66
TDs (see Thing descriptions (TDs))

Temporal decoupling, 35, 41, 125
TGFF, 110–113
Thing descriptions (TDs)

abstracted view, IoT system, 48
contributions, 49
definitions, 51–52
IoT standards, 48
problem statement, 49
protocol bindings, 52
request–response sequence abstraction,

52
WoT, 68

Timed automata
requirements for time, 4–5
SCCharts, 7–8
specification to behavior, 5–6
traffic light controller, 3–4

Time-event-triggered execution, 6, 11
Timeouts, 1, 4, 12, 132
Time-triggered, 6, 10, 12, 176
Timing

ageing-issued, 92
backward propagation, 35–37, 40
constraints, 1, 2, 4, 9, 13, 167
errors, 95
RISC-V ISA extensions, 126
in SCCharts (see SCCharts)

Timing constraints
automaton contains transitions, 6
non-triggering, 13, 14
real-valued clocks, 2, 9
specifications, 13

Transactional level modeling (TLM), 36,
116–119, 127, 133, 137

digital part, 28
FMU, 37
higher-level models, 28
SW models, 34
synchronization mechanism, 35

Type extension, 166–167

V
Validation, 99, 116, 127
Verification

application areas, 47
BDDs, 135
execution platform, 21
formal property specification, 67
system level design language, 99
toolkit, 136

192 Index

Virtual prototype (VP)
CPU core, 119
CPVP (see Cyber-physical virtual platform

(CPVP))
debugging support extension, 127–130
direct memory interface, 125–126
experiments, 130–133
initialization, 120
integration, 33
interrupt handling (see Interrupt handling)
local time quantums, 126
sensor peripheral, 127
TLM bus, 119

VLSI implementation, 95–96

W
Water level monitor, 153–154
Web

internet, 54
pages, 54
technologies, 66
WoT (see Web of things (WoT))

Web of things (WoT)
IoT, 47
path semantics, 60–66
sequential behavior, 53–60
TD (see Thing descriptions (TDs))
ventilation system, 48

World Wide Web Consortium (W3C), 50, 67

	Preface
	Contents
	Time in SCCharts
	1 Introduction
	1.1 Contributions and Outline

	2 Timed Automata in SCCharts
	2.1 The Traffic Light Controller Example
	2.2 Requirements for Time in SCCharts
	2.3 From Specification to Behavior: The Eager Semantics
	2.4 Timed SCCharts

	3 When to React?
	3.1 Event-Triggered Execution
	3.2 Time-Triggered Execution
	3.3 The Multiform Notion of Time
	3.4 Dynamic Ticks

	4 Dynamic Ticks in SCCharts
	4.1 The Traffic Light Controller with Dynamic Ticks
	4.2 How to Compute Sleep Times
	4.3 Hard vs. Soft Bounds: The Greedy Semantics
	4.4 Hard vs. Soft Resets: Managing Time

	5 Multiclock SCCharts
	5.1 The Motor Example

	6 Extension with Clock Patterns
	7 Related Work
	8 Conclusions and Outlook
	References

	Generation of Functional Mockup Units for Transactional Cyber-Physical Virtual Platforms
	1 Introduction
	2 Background and Related Work
	2.1 fmi Standard 2.0 for Co-simulation
	2.2 Simulation Coordination in the fmi Standard
	2.3 Related Work

	3 FMI Standard Advantages and Limitations
	4 Methodology
	4.1 fmu Generation and Timing Backward Propagation
	4.2 A Better Coordinator for Discrete Systems

	5 Methodology Application
	6 Recent Development and Discussion
	7 Concluding Remarks
	References

	Safe Interoperability for Web of Things Devices and Systems
	1 Introduction
	2 Thing Description
	3 Describing Sequential Behavior
	3.1 Describing Sequential Behavior in a Single Thing
	3.2 Composing a System
	3.3 Worldwide Scalability

	4 Case Study: Testing with Path Semantics
	4.1 Single Thing Testing
	4.2 System Level Testing

	5 Related Work
	6 Discussion
	7 Conclusion
	References

	Automatic Design of Microfluidic Devices: An Overview of Platforms and Corresponding Design Tasks
	1 Introduction
	2 Electrowetting-Based Microfluidic Devices
	2.1 The Platform
	2.2 The Design Process

	3 Flow-Based Microfluidic Devices
	3.1 The Platform
	3.2 The Design Process

	4 Passive Routing Concepts for Microfluidic Devices
	4.1 The Platform
	4.2 The Design Process

	5 Conclusions
	References

	A New Ageing-Aware Approach via Path Isolation
	1 Introduction
	2 BTI Effect and Delay Degradation
	2.1 Transistor-Level BTI Modelling
	2.2 Circuit-Level BTI Degradations

	3 Proposed Ageing-Aware Approach
	3.1 Motivational Example
	3.2 Algorithm for Path Isolation

	4 Case Study of a FIR Filter
	4.1 VLSI Implementation
	4.2 Experimental Results

	5 Conclusion
	References

	SystemC Coding Guideline for Faster Out-of-Order Parallel Discrete Event Simulation
	1 Introduction
	1.1 Related Work

	2 SG Granularity and Simulation Speed
	3 Recoding Infrastructure for SystemC
	3.1 Segment Graph
	3.2 Data and Event Conflicts

	4 Proposed Coding Guideline
	4.1 Estimation for Level of Parallelism
	4.2 Motivation
	4.3 Overhead Consideration
	4.4 Suggestions
	4.4.1 Use the Wait-for-Delta-Cycle Primitive as the Extra Segment Boundary
	4.4.2 Partition the Heavy Segments

	5 Experiments and Results
	5.1 TGFF Benchmarks
	5.2 Real World Examples
	5.2.1 Canny Edge Detector

	5.3 A/V Decoder

	6 Conclusion
	References

	Extensible and Configurable RISC-V Based Virtual Prototype
	1 Introduction
	Related Work

	2 Preliminaries
	2.1 RISC-V
	2.2 SystemC and TLM

	3 RISC-V Based VP Architecture
	3.1 Core
	3.2 Bus
	3.3 Interrupts
	3.4 VP Initialization

	4 VP Interaction with SW and Environment
	4.1 Interrupt Handling and HW/SW Interaction
	4.1.1 Software Side
	4.1.2 Bootstrap Code and Interrupt Handling

	4.2 Environment Interaction: Syscalls and C/C++ Library

	5 VP Performance Optimizations
	5.1 Direct Memory Interface
	5.2 Local Time Quantums

	6 VP Extension and Configuration
	6.1 Extending the VP with a Sensor Peripheral
	6.2 Debugging Support Extension

	7 Experiments
	8 Conclusion
	References

	AADD-Based Symbolic Simulation of SystemC AMS
	1 Introduction
	1.1 State of the Art and Related Work

	2 Symbolic Simulation of SystemC with AADD
	2.1 Overview of Tool Flow
	2.2 Internal Representation: AADDs
	2.3 Affine Forms
	2.4 Affine Arithmetic Decision Diagrams
	2.5 Arithmetic and Relational Operations on AADDs
	2.6 Path Conditions as Linear Constraints on the Noise Variables
	2.7 Can AADD Be Reduced?

	3 Symbolic Execution of C++
	3.1 Operator Overloading and Polymorphism
	3.2 Concrete and Symbolic Execution

	4 Block Condition Tracking
	4.1 Code Instrumentation
	4.1.1 Selection Statements with Symbolic Semantics
	4.1.2 Iterations with Symbolic Semantics

	4.2 Block Condition Tracking
	4.3 Building AADD and BDD by Overloaded Assignments
	Limitations

	5 Symbolic Simulation of SystemC (AMS)
	5.1 Symbolic Signals and Process Activation
	5.2 Symbolic Simulation with Concrete Activation Conditions
	5.3 Symbolic Simulation with Symbolic Activation Conditions

	6 Examples
	6.1 Simple Example: Water Level Monitor
	6.2 Analog/Mixed-Signal Example: Delta-Sigma Modulator

	7 Summary and Conclusion
	7.1 Symbolic Simulation, Without Another Compiler?
	7.2 Only for Symbolic Simulation?

	References

	Blech, Imperative Synchronous Programming!
	1 Introduction
	2 Blech
	2.1 Reactions
	2.2 Declarations
	2.3 Events
	2.4 Statements
	2.5 Subprograms
	2.6 Type Extensions
	2.7 Causality

	3 Key Questions and Related Work
	3.1 How Can Concurrent Calls to Subprograms Be Composed in a Causally Correct Way?
	3.2 How Can Structured Data Types Be Used Concurrently?

	4 Causality
	5 Separate Compilation
	6 Structured Data
	7 References
	8 Sharing Data
	9 Implementing Mode Progressions as Synchronous Control Flow
	10 Ongoing and Future Work
	References

	Index

