
Practical, Dynamic and Efficient Integrity
Verification for Symmetric

Searchable Encryption

Lanxiang Chen(B) and Zhenchao Chen

College of Mathematics and Informatics, Fujian Normal University,
Fujian Provincial Key Laboratory of Network Security and Cryptology,

Fuzhou, China
lxiangchen@fjnu.edu.cn

Abstract. Symmetric searchable encryption (SSE) has been proposed
for years and widely used in cloud storage. It enables individuals and
enterprises to outsource their encrypted personal data to cloud server
and achieves efficient search. Currently most SSE schemes are working
in the semi-honest or curious cloud server model in which the search
results are not absolutely trustworthy. Thus, the verifiable SSE (VSSE)
schemes are proposed to enable data integrity verification. However, the
majority of existing VSSE schemes have their own limitations, such as
not supporting dynamics (data updates), working in single-user mode or
not practical etc. In this paper, we propose a practical, dynamic and effi-
cient integrity verification method for SSE construction that is decoupled
from original SSE schemes. This paper proposed a practical and general
SSE (PGSSE for short) scheme to achieve more efficient data integrity
verification in comparison with the state-of-the-art schemes. The pro-
posed PGSSE can be applied to any top-k ranked SSE scheme to achieve
integrity verification and efficient data updates. Security analysis and
experimental results demonstrate that the proposed PGSSE scheme is
secure and efficient.

Keywords: Symmetric searchable encryption · Shamir’s secret
sharing · Merkle Patricia Tree · Integrity verification · Data update

1 Introduction

Accompanying with the explosive growth of cloud computing, data security has
become the most important aspect that needs to be guaranteed. To preserve
data security and privacy, individuals and enterprises usually encrypt their data
before outsourcing them to the remote cloud computing or cloud storage server.

This work was supported by the National Natural Science Foundation of China under
Grant No. 61602118, No. 61572010 and No. U1805263, Natural Science Foundation of
Fujian Province under Grant No. 2019J01274 and No. 2017J01738.

c© Springer Nature Switzerland AG 2019
Y. Mu et al. (Eds.): CANS 2019, LNCS 11829, pp. 163–183, 2019.
https://doi.org/10.1007/978-3-030-31578-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31578-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-31578-8_9

164 L. Chen and Z. Chen

As a result, how to process and search on the encrypted data becomes the crit-
ical problem that needs to be resolved. Searchable encryption facilitates search
operations on the encrypted data meanwhile it preserves the privacy of users’
sensitive data, and thus it has attracted extensive attentions recently.

Since the first searchable encryption scheme [23] proposed in 2000, a large
number of related works have emerged in the literature during the last two
decades. According to the encryption algorithm adopted in searchable encryption
schemes, they can be classified into public key searchable encryption (PKSE) and
symmetric searchable encryption (SSE). As there are massive data in a cloud
storage, the data usually are encrypted by a symmetric encryption algorithm to
guarantee efficiency and data availability.

For a practical SSE scheme, it should satisfy at least the following prop-
erties: sublinear search time, compact indexes, supporting ranked search, effi-
cient updates, integrity verification and data security. Unfortunately, none of
the existing SSE constructions achieves all these properties at the same time,
which has limited their practicability. If an SSE scheme does not support top-k
ranked search, the cloud server will return all data files that contain the queried
keywords. As the user have no pre-knowledge of the encrypted files, he has to
decrypt all these files to further find the most matching files. These will result
in unnecessary computing overheads, time consumption and network traffics.
Hence, without it, SSE schemes are impractical in the pay-as-you-use cloud com-
puting era. By returning the most related files, ranked search schemes greatly
facilitate system practicability.

To enrich the functionalities of SSE, a variety of multi-keyword, multi-user
or multiple data owner, dynamic or verifiable SSE schemes have been proposed.
However, majority of existing SSE schemes have their own ways of index con-
struction, integrity verification and data updates. A general scheme with more
functionalities decoupling from any special constructions is lacking. Motivated by
this idea, in this paper, we propose a practical, dynamic and efficient integrity
verification method for SSE construction that is decoupled from original SSE
schemes. Our work is a one-step forward to the work due to Zhu et al. [31] in
terms of top-k ranked search and data update efficiency. The contributions of
this work can be summarized as follows.

– We proposed a practical and general integrity verification scheme (PGSSE)
with the aid of secret sharing scheme and Merkle Patricia Tree (MPT). Com-
pared with existing SSE schemes, the proposed scheme firstly introduces the
secret sharing scheme to SSE to make the general SSE scheme support top-k
ranked search.

– Thanks to the secret sharing scheme, users do not need to update the MPT
tree but just to update their keys when they update their data without key-
word addition. Thus the data updates of the proposed scheme are very effi-
cient.

This paper is arranged as follows. We will discuss related work in Sect. 2.
Section 3 gives the preliminaries. The system model and formal definition are

Practical, Dynamic and Efficient Integrity Verification for SSE 165

presented in Sect. 4. Section 5 describes the details of our PGSSE scheme con-
struction. Section 6 present security and performance evaluation of the proposed
scheme. We give a conclusion in Sect. 7.

2 Related Work

In 2000, Song et al. [23] proposed the first searchable encryption scheme which
needs to search all encrypted documents in a non-interactive way to check
whether a queried keyword is contained or not. For each queried keyword, it
has to scan all files and thus the search time was linear in the length of the
documents collection. In addition, the proposed scheme is only adapted to single
keyword search. In 2003, Goh [11] first proposed to construct index to achieve
search and a Bloom filter based index scheme is introduced. He gave a formal
security of IND-CKA for SSE and proved the proposed Bloom filter based SSE
scheme is IND-CKA secure. The drawback is that the Bloom filters based con-
struction had a possibility of false positives. In 2006, Curtmola et al. [8] proposed
two efficient SSE schemes, SSE-1 and SSE-2 with O(1) search time complexity.
They gave the formal security definitions for the proposed schemes and utilized
broadcast encryption to enable multi-user search in SSE-2. Both schemes only
support single-keyword search.

After that, a variety of functionally rich SSE schemes were proposed in the
last two decades, including multi-keyword search, top-k ranked search, dynamic
data update, verifiable SSE, fuzzy and similarity search etc. As described above,
if an SSE scheme does not support top-k ranked search, the cloud server will
return all data files containing the queried keywords, which will greatly reduce
the practicability of these schemes.

In 2010, Wang et al. [26,27] first proposed to use order-preserving symmetric
encryption (OPSE) to achieve a ranked keyword search scheme which protects
the privacy of relevance scores. The measure of relevance scores is based on a
TF×IDF model. To reduce the amount of information leakage, they proposed to
use a one-to-many OPSE scheme to obfuscate the original relevance score dis-
tribution. In 2011, Cao et al. [1,2] proposed a privacy-preserving multi-keyword
ranked searchable encryption (MRSE) scheme by using “coordinate matching”
and “inner product similarity”.

To improve the accuracy of search results, almost all multi-keyword SSE
schemes [5,9,18,29,30] support top-k ranked search since the ranked SSE scheme
has been proposed. However, the SSE constructions described above are static,
which means that they did not have the ability to add or delete documents
efficiently.

In 2010, Liesdonk et al. [19] proposed the first dynamic SSE scheme which
supports a limited number of updates and has a linear search time in the worst
case. In 2012, Kamara et al. [15] constructed a dynamic SSE scheme which is
an extension of SSE-1. They presented a formal security definition for dynamic
SSE. Their scheme is adaptively secure against chosen-keyword attacks (CKA2)
and it is also secure in the random oracle model. Then, in 2013, they presented

166 L. Chen and Z. Chen

a parallelizable and dynamic sub-linear SSE scheme with the help of multi-core
architectures [14]. The search time is about O(r/p)(r and p is the number of
documents and cores respectively) for searching a keyword with a logarithmic
number of cores. Compared to the SSE scheme in [15], this SSE scheme does not
leak the tokens of the keywords contained in an updated document. Their scheme
uses a keyword red-black tree (KRB) to construct index that makes updates
simple. However, this scheme focuses on the case of single-keyword equality
queries only. Since then, some dynamic SSE schemes are presented [3,6,10,12,
21,28].

As the cloud server is not trustable in some circumstances, verifiable SSE
(VSSE) [4,7,13,16,17,20,24,25] is proposed to check the integrity of search
results and data. In 2012, Kurosawa and Ohtaki [16] first formulate the security
of VSSE against active adversaries and proposed a UC-security (abbreviation of
Universal Composability) single-keyword VSSE scheme. Their scheme preserves
the search results correct even if the server is malicious. Later in 2013, they
gave a more efficient VSSE scheme [17] and extended the scheme to dynamic
VSSE scheme. In 2015, Sun et al. [24] proposed a dynamic conjunctive keyword
VSSE scheme by using bilinear-map accumulator tree. Recently, Jiang et al. [13]
proposed a multi-keyword ranked VSSE scheme and a special data structure
QSet based on an inverted index. The basic idea is to estimate the least frequent
keywords in the query to reduce the search times. The verification is based on a
keyword binary vector.

However, all the above works have their own ways of index construction,
integrity verification and data updates. A general scheme with more functionali-
ties decoupling from any special constructions is lacking. Recently, Zhu et al. [31]
proposed a generic and verifiable SSE scheme (GSSE). It can be adopted to any
SSE scheme to provide integrity verification and data updates. They proposed
to use the Merkle Patricia Tree (MPT) and incremental hash to construct proof
index and develop a timestamp chain to resist data freshness attacks. As MPT
is a kind of prefix tree, it is efficient to insert and delete nodes. Hence the GSSE
achieves data integrity verification efficiently.

But there is a shortcoming in the proposed GSSE scheme that the user has to
get all documents which contain the queried keyword in the document collection
to perform the integrity verification. If the queried keyword is common, there
could be quite a lot of documents containing the keyword. Many documents
returned may be not desired by the user while they will consume a lot of time to
search and verify. It also means that the GSSE scheme does not support top-k
ranked search.

Comparing to the GSSE scheme, the proposed PGSSE scheme supports top-k
ranked search which makes it more practical. As the incremental hash is utilized
for integrity verification in GSSE, users have to compute the hash of all queried
documents to verify the root of the MPT tree. Thus, the GSSE scheme can-
not support top-k ranked search. To overcome this disadvantage, we propose to
utilize a secret sharing scheme to replace incremental hash to perform integrity
verification. Comparing to GSSE, the PGSSE allows users to perform integrity

Practical, Dynamic and Efficient Integrity Verification for SSE 167

verification when they only get the top-k documents containing the queried key-
words. Meanwhile, we found that the proposed scheme can achieve data updates
efficiently.

3 Preliminary

In this section, the notations, MPT and Shamir’s secret sharing scheme are
revisited.

3.1 Notations

In the following sections, the pseudo-random functions h1, h2 and h3 are defined
as {0, 1}∗ × {0, 1}λ → {0, 1}∗. The other notations are described in Table 1.

Table 1. Notations and descriptions

Symbol Denote

DC The document collection, including N documents and denoted as DC = (D1, D2, · · · , DN)

C The encrypted document collection C = (C1, C2, · · · , CN) stored in the cloud server

I The encrypted index

W The keyword dictionary W = (w1, w2, · · · , wm)

m The number of keywords in W

DC(wi) The collection of documents that contain keyword wi

WDi The keyword set in the document Di

Au The authenticator

Enc/Dec(·) Symmetric encryption/decryption algorithm

Key The secret key stored by the data owner Key = {k1, k2, k3, k4, (spk, ssk), S, P}

For the secret key stored by the data owner, k1, k2 and k3 are used for
pseudo-random functions h1, h2 and h3 respectively, k4 is used for the symmetric
encryption algorithm Enc(), (spk, ssk) is the public/private key pair, S is a
matrix in which each row represents one polynomial’s coefficients, P is a set of
m arrays.

3.2 Merkle Patricia Tree

Merkle Patricia Tree (MPT) proposed in Ethereum is a mixture of Merkle tree
and Patricia tree. It is a kind of prefix tree that has high efficiency in insert and
delete operations. There are four kinds of nodes in the MPT, namely null node,
leaf node, extension node and branch node. The null node is simple and we use
a blank string to represent it. Leaf node (LN) and extension node (EN) are both
represented as one key-value pair and those keys are encoded in Hex-Prefix.
The keys in extension nodes indicate their descendant nodes’ common prefix
and their values are their children nodes’ hash values. The keys in leaf nodes
indicate the rest part except for the common prefix and the values are their own

168 L. Chen and Z. Chen

values. Differing from LN and EN, the branch nodes’ keys consist of 17 elements
in which 16 elements correspond to Hex-Prefix codes. The last element is used
only when the search route terminates here in which the value in BN plays the
same role as that in LN.

The construction of a MPT is through the “insert” operation which will be
demonstrated according to different situations.

(1) Insert to branch node (the current key is empty)

The initial MPT is empty as Fig. 1(a) and a new node with value ‘223’ will be
inserted to the MPT. The insert operation directly set the value of the MPT to
‘223’ and get the MPT as Fig. 1(b).

Fig. 1. Insert to branch node (the current key is empty).

(2) Insert to branch node (the current key is not empty)

Assume the initial MPT is Fig. 2(a) and a new node with key-value pair [‘a2912’,
‘22’] will be inserted to the branch node. As the descendant of the element ‘a’ is
empty, the “insert” algorithm will create a new leaf node (LN2) to store the rest
key ‘2912’ and the value ‘22’. The new MPT is illustrated as Fig. 2(b).

Fig. 2. Insert to branch node (the current key is not empty).

(3) Insert to Extension node

Assume the initial MPT is Fig. 2(b) and a new node with key-value pair [‘a2535’,
‘57’] will be inserted to the MPT. As the key ‘a2535’ has a common prefix ‘a2’
with LN2, the “insert” algorithm will create an extension node (EN1) whose key
is the rest common prefix ‘2’ and a branch node (BN2) whose key ‘5’ and key ‘9’
are linked to newly created leaf nodes with key ‘35’ and ‘12’ respectively. The
insertion is completed as Fig. 3.

When searching for a node in the MPT, the “Search” algorithm will start
from the root to bottom to check the nodes’ key at each level. For example, the
user wants to search the node with key ‘a2535’. The “search” algorithm will first
find the BN1 and then go on to EN1, and finally the path from BN1 to LN2 will
be found.

Practical, Dynamic and Efficient Integrity Verification for SSE 169

Fig. 3. Insert to extension node.

3.3 Shamir’s Secret Sharing Scheme

As pointed out that the incremental hash needs to compute the hash of all
queried documents to check the integrity of search results, it is unsuitable for
ranked search. With a secret sharing scheme, the pre-defined number of partici-
pants can compute the secret without the involvement of all participants. This
property can be applied to the ranked search. For the sake of generality, the
Shamir’s secret sharing scheme is chosen in the proposed PGSSE scheme.

Shamir’s secret sharing scheme [22] is a threshold scheme to share a secret in
a distributed way. For a (k, n) threshold scheme, a secret is split into n pieces for
n participants and any more than k − 1 participants can reconstruct the secret
(k is the threshold), but the secret cannot be reconstructed with fewer than k
pieces. With the feature of dynamics, it can be applied to the ranked search with
efficient data updates.

With the dynamics of Shamir’s secret sharing scheme, the security can be
easily enhanced without changing the secret, and only need to change the poly-
nomial coefficients and construct new shares to the participants.

To construct a (k, n) Shamir’s secret sharing scheme, it needs to construct a k-
1 degree polynomial f(x) in the finite field GF(q) and the polynomial’s constant
term is the secret s, where q is a big prime number (q > n). Firstly, it randomly
generates a k-1 degree polynomial based on GF(q) and set f(0) = a0 = s. Then,
it randomly selects n different non-zero numbers (x1, x2, ... , xn) and allocates
(xi, f(xi)) to each participant pi(0 < i < n), where xi is public and f(xi) is kept
secret.

Then to recover the secret s, it randomly selects k pairs (xj , f(xj))(0 < j < k)
and utilizes the Lagrange’s polynomial interpolation algorithm as Eq. (1) to
reconstruct the secret as Eq. (2).

f(x) =
k∑

j=1

f(xj)
k∏

l=1

x − xl

xj − xl
mod q (1)

170 L. Chen and Z. Chen

s = (−1)k−1
k∑

j=1

f(xj)
k∏

l=1

xl

xj − xl
mod q (2)

4 System Model and Formal Definition

The system model and formal definition are described in this section.

4.1 System Model

The system model is illustrated in Fig. 4. There are three entities, namely data
owner, data user and cloud server. Data owner is in charge of constructing index
and authenticator. He receives the request from data user and authenticates
the data user. After being authenticated, the data user can access cloud server
to obtain some search results and he will perform an integrity verification for
the search results and the corresponding document data. The cloud server is
responsible for storing users’ indexes, authenticator and document data. When
receiving the token from a data user, the cloud server will make the corresponding
proof and authenticator to the data user.

Fig. 4. System model.

4.2 Formal Definition

The proposed PGSSE scheme has seven polynomial-time algorithms.

(1) Setup(1λ) → Key: It is run by the data owner to setup the scheme. The
algorithm takes as input the security parameter λ and outputs the secret
Key.

(2) MPTBuild(Key,W,DC) → {I,Au}: It is run by the data owner. It takes
as input the Key and keyword dictionary W , and outputs the index and
authenticator.

Practical, Dynamic and Efficient Integrity Verification for SSE 171

(3) TokenGen(k3, Q) → {Token}: It is run by the data user. It takes as input
k3 and queried keywords, and outputs the token.

(4) ProofBuild(I, Token, tq) → {Proof,Aut
q, Auc}: It is run by the cloud

server. It takes as input index I, the token and the query time tq, and
outputs the corresponding proof and two authenticators Aut

q and Auc.
(5) CheckAu(k4, Aut

q, Auc) → {result}: It is run by the data user. It takes as
input the key k4 and two authenticators Aut

q, Auc, and outputs a result to
indicate whether the root of MPT has been tampered.

(6) V erify(k2, k4, S, P, CQ, P roof, TokenQ, Aut
q) → {result}: It is run by the

data user. It takes as input the k2 and k4, the search result C, the authen-
ticator Aut

q and P , and outputs a result to indicate whether the queried
documents have been tampered.

(7) Update(P,Dj , I) → {P ′, I ′}: It is run by the data owner. It takes as input
the set P , update document Dj and index I, and outputs the new P ′ and
new I ′.

5 Scheme Construction

In this section, the seven polynomial-time algorithms of the proposed PGSSE
are detailed respectively. The authenticator of the “CheckAu” algorithm is used
to make this scheme to resist the freshness attack on the root of MPT. As it is
the same as the scheme in [31] and we will not elaborate on it here.

5.1 Initialization

The “Setup” algorithm will initiate the system parameters and generate all keys.
It is executed by data owner and the detailed process is illustrated in Algorithm
1. There are m polynomials and each keyword corresponds to a polynomial.
Meanwhile each keyword corresponds to the secret Swi

of the polynomial which
is also called node secret. All the node secrets are stored in the MPT. When a
data user receives the top-k documents, he/she would try to recover the node
secret and execute the integrity verification. The set of P consists of m arrays
and each array is in form of [‘key’ → ‘value’]. This array could help user recover
the node secret.

5.2 MPT Building

The MPT building algorithm is performed by the data owner and the detailed
procedure is illustrated in Algorithm 2. The index I is the MPT and the “insert”
algorithm can refer to Sect. 3.2. When |DC(wi)| ≥ k, the node secret will be
computed and inserted into MPT, and there will be more than k key-value pairs
and the node secret can be recovered through the secret sharing scheme. How-
ever, when |DC(wi)| < k, there are less than k key-value pairs in the keyword

172 L. Chen and Z. Chen

Algorithm 1. Setup Algorithm
Input: Parameter λ;
Output: Key = {k1, k2, k3, k4, (spk, ssk), S, P}.

1 Randomly generates k1, k2, k3, k4 and q;
2 Generates the public/private key pair (spk, ssk);
3 Compute node secret:
4 for wi ∈ W do
5 compute Swi = h1(k1, wi);
6 end
7 Generate the matrix S : S is an m × k matrix, the i-th row is

{ai1 , ai2 , · · · , ai,k−1, Swi}(i ∈ [1, m]) where {ai1 , ai2 , · · · , ai,k−1} are the
coefficients of the Shamir’s secret sharing polynomials fi(x), Swi is the secret of
fi(x);

8 Generate the set P which consists of m arrays. Each array corresponds to a
keyword and the keyword wi’s array (arrayi) is generated as follows:

9 for wi ∈ W do
10 for Dj ∈ DC(wi) do
11 Calculate keyDj = h2(k2, Dj);
12 Encrypt the keyDj with k4 and vxDj = Enc(k4, keyDj);
13 Extract the wi’s coefficients in S and build the k-1 degree polynomials

fi(x);
14 Calculate value = fi(keyDj);
15 Set the arrayi[vxDj] = value;

16 end

17 end

arrays and the node secret cannot be reconstructed by the secret sharing scheme.
Hence, the sum of document hash values that can be used to check the integrity
of all returned documents is calculated in this situation.

The authenticator Au is used to ensure the freshness of the MPT’s root rt
that is proposed in [31] and it is generated in Eq. (3), where tp is the timestamp,
upi is the i-th update time point, Sig(ssk, ∗) is a signature with the private key
ssk,Aui,j represents the j-th authenticator in the i-th update interval.

Between a fixed update time point and a query time, more than one data
update may happen. Under such circumstances, the cloud server may return
the old Au in which tp is after the latest fixed update time point but before
the query time. Namely there is at least one data update during this period.
To resist this type of freshness attack, Zhu et al. introduce a timestamp-chain
mechanism in [31]. In each update interval, it generates a timestamp-chain which
is constructed according to Eq. (3) and the last authenticator in the chain also
locates at the beginning of the next update interval.

Practical, Dynamic and Efficient Integrity Verification for SSE 173

Algorithm 2. MPT Building Algorithm
Input: Key, W, DC;
Output: Index I and authenticator Au.

1 Extract keyword dictionary W from DC ;
2 for wi ∈ W do
3 if |DC(wi)| ≥ k then
4 Compute Twi = h3(k3, wi) ;
5 Compute Swi = h1(k1, wi) ;
6 Execute I = I.insert(Twi , Swi) ;
7 else
8 Compute Twi = h3(k3, wi) ;
9 for Dj ∈ DC(wi) do

10 Compute Swi =
∑

h1(k1, Dj) ;
11 Execute I = I.insert(Twi , Swi) ;

12 end

13 end

14 end

15 end
16 Generate the authenticator Au as Eq. (3) with k4 and ssk ;
17 Send the index I and authenticator Au to the cloud server.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xconi,0 = Enc(k4, rti,0‖tpi,0), upi ≤ tpi,0 ≤ upi+1

Aui,0 =
(
xconi,0, Sig(ssk, xconi,0)

)

...
xconi,j = Enc(k4, rti,j‖tpi,j‖xconi,j−1), upi,j−1 ≤ tpi,j ≤ upi+1

Aui,j =
(
xconi,j , Sig(ssk, xconi,j)

)

...
xconi,n = Enc(k4, rti,n‖tpi,n‖xconi,n−1), tpi,n = upi+1

Aui,n =
(
xconi,n, Sig(ssk, xconi,n)

)

(3)

If no data update, the data owner just needs to generate the authenticator
with a new timestamp at the fixed update time point. If data update happens,
the data owner will generate the new authenticator with a new rt and tp. To
check whether the rt is the latest one, the data user just needs to compare
whether the tp in Au is before the latest update time.

5.3 Token Generation

This algorithm is run by data user and the procedure is described in Algorithm 3.
The Token can be regarded as the path from the root of the MPT to the node
corresponding to the keyword. The cloud server could find the corresponding
keyword in the MPT according to the Token.

174 L. Chen and Z. Chen

Algorithm 3. Token Generation Algorithm
Input: k3;
Output: Token.

1 for wi ∈ Q do
2 Compute Twi = h3(k3, wi);
3 end
4 Send the TokenQ = {Tw1 , Tw2 , · · · , Twc} to the cloud server.

5.4 Proof Generation

Proof generation algorithm is run by the cloud server and the detailed description
is illustrated in Algorithm 4. The checkpoint is the update time point which is
closest to the user’s query time.

The proof is used to provide necessary information for user to reconstruct
the root of MPT. If the Token sent by data user exists in MPT, the cloud
server will generate corresponding proof to provide necessary information for
user to reconstruct the root of MPT. If the Token is not existing in MPT, the
server could also generate the proof . Namely the server would return proof to
user no matter whether the keyword exists or not. It will help user to detect
whether the server deliberately omits all documents and returns an empty result
to evade the integrity verification. In addition, as PGSSE is designed for the
multi-keyword SSE scheme, the proof is not only a search path but also in the
form of a sub-tree.

5.5 Integrity Verification

The integrity verification algorithm is used to check the integrity of search results
and the procedure is described in Algorithm 5. According to the value of k, there
are corresponding operations to calculate the node secret. According to whether
the returned ciphertext and ‘remain’ are null for the queried keyword wi, it
performs different operations.

(1) If both the ciphertext and ‘remain’ are not null, the data user would look
up the arrayi and recover the node secret with the help of the returned
documents. Then he reconstructs the MPT’s root and compare it with rttq
decrypted from Aut

q.
(2) If both the ciphertext and ‘remain’ are null, the data user directly recon-

structs the MPT’s root, and compare it with rttq decrypted from Aut
q. Only

if they are matched, the data user will think that there is no search result
for this keyword. Otherwise, the search results must be tampered.

(3) If one of the ciphertext and ‘remain’ is null, the search results must be
tampered and the verification algorithm return 0.

Practical, Dynamic and Efficient Integrity Verification for SSE 175

Algorithm 4. Proof Generation Algorithm
Input: Index I, Token and tq;
Output: Proof , authenticator Aut

q and Auc.
1 for wi ∈ Q do
2 Find the search path routewi = {n1, n2, · · · , ns} according to the Token,

where ni ∈ {EN, BN, LN}, i ∈ [1, s], and n1 is the root. The sequence of
route is the nodes from top to bottom of the MPT. Find the longest search
path routewl ;

3 end
4 if Twl exists then
5 for l = s − 1 to 0 do
6 if nl = BN then
7 Proof = Proof ∪ Vnl , where Vnl includes all key-value pairs of the

descendant nodes of the BN ;

8 end
9 else if nl = EN then

10 Proof = Proof ∪ Vnl , where Vnl is the key which is on the search
path;

11 end
12 else
13 Proof = Proof ∪ Vnl , where Vnl is key-value pair of node nl;
14 end

15 end

16 end
17 else
18 for l = s to 0 do
19 Repeat steps from 6-14;
20 end

21 end
22 Get the Proof generated based on the keyword wl;
23 for wj ∈ Q (except for wl) do
24 Scan the Proof and find the position of wj and shade the node secret in the

corresponding position;

25 end
26 Get the latest authenticator Aut

q according to the query time and Auc at the
checkpoint;

27 Send Proof, Aut
q and Auc to the data user.

5.6 Update Algorithm

The update operations include document addition, modification and deletion.
According to whether there is addition or deletion of keywords, there are corre-
sponding operations and it is described in Algorithm 6. If a keyword is newly
added, it will insert a new node for this keyword. If there is no keyword addition,
the MPT would remain unchanged and it only update the set P . For document
deletion, it just needs to refresh the set P and keeps the MPT unchanged.

176 L. Chen and Z. Chen

Algorithm 5. Integrity Verification Algorithm
Input: k2, k4, S, P, CQ, P roof, TokenQ, Aut

q ;

Output: result.

1 for wi ∈ Q do

2 Compute remainwi = String.match(Tokenwi , P roof);

3 end

4 Let (rttq, tp
t
q, xcon) = Dec(k4, xcontq);

5 if CQ �= null ∧ remainwi �= null then

6 Decrypt the CQ, and get document collection DQ;

7 if |DQ| > k then

8 for Dj ∈ DC(wi) do

9 Compute hashDj
= h2(k2, Dj), and insert it into set M ;

10 Get vxDj
= Enc(k4, hashDj

);

11 end

12 for hashDj
∈ M do

13 if arrayi[vxDj
] = null then

14 return result=0;

15 end

16 else

17 According to valuej = arrayi[vxDj
], there are k (hashDj

, valuej)

pairs. Thus utilizing Shamir’s secret sharing scheme with S to recover

the node secret;

18 end

19 end

20 end

21 else if |DQ| < k then

22 for Dj ∈ DQ do

23 Compute Swi =
∑

h1(k1, Dj);

24 end

25 Calculate the root rt′ according to the LN and proof from bottom to the root;

26 if rt′ = rtq then

27 return result=1;

28 end

29 else

30 return result=0;

31 end

32 end

33 end

34 else if CQ = null and at least one remainwi doesn’t exist(wi ∈ Q) then

35 Calculate the root rt′ according to the proof from bottom to the root;

36 if rt′ = rtq then

37 return result=1;

38 end

39 else

40 return result=0;

41 end

42 end

43 else

44 return result=0.

45 end

Practical, Dynamic and Efficient Integrity Verification for SSE 177

Algorithm 6. Update Algorithm
Input: The set P , update document Dj and I;
Output: New set P ′ and new MPT I ′.

1 if the document Dj is added into the DC then
2 for wi ∈ Dj do
3 if wi ∈ W then
4 Calculate keyDj = h2(k2, Dj) and vxDj = Enc(k4, keyDj);
5 Extract the wi’s coefficients in S and rebuild the k-1 degree

polynomials fi(x);
6 Calculate value = fi(keyDj) and set arrayi[vxDj] = value in the set

P ′;
7 end
8 if wi �∈ W then
9 Compute Twi = h3(k3, wi) and Swi = h1(k1, wi);

10 Execute I ′ = I.insert(Twi , Swi);
11 Randomly generate the coefficients (ai1 , ai2 , · · · , ai,k−1) for wi and

then insert into S;
12 Generate keyword wi’s array (arrayi) for the set P ′ according to

Setup algorithm;

13 end

14 end

15 end
16 if the document Dj is removed from DC then
17 for wi ∈ Dj do
18 Calculate keyDj = h2(k2, Dj) and vxDj = Enc(k4, keyDj);
19 Delete the arrayi[vxDj] in the set P ′.
20 end

21 end

6 Security and Performance Evaluation

The proposed PGSSE scheme acts as a general method for any SSE scheme for
integrity verification. We needs to guarantee that PGSSE can preserve the data
confidentiality and results verifiability for SSE schemes. It means that it does not
leaks any useful information about documents and keywords in the verification
process and it can be detected if the search results are tampered. The security
proof of PGSSE is similar to that of Ref. [31]. To achieve top-k ranked search, we
utilize Shamir’s secret sharing scheme in PGSSE to replace incremental hash in
GSSE of [31]. It will not bring more security risks. Because of space limitation,
we omitted the formal security proof.

The performance of PGSSE includes storage overhead, the time overhead of
index building, integrity verification and data updates. We compared the perfor-
mance of PGSSE with GSSE to better evaluate its efficiency. The configuration
of a PC used in experiments is core i5-M480 2.67 GHz CPU, 8 GB memory, and
Win10 (64 bit) operation system. The SHA-1, 256-bit AES and 1024-bit RSA
is used as the hash function, symmetric encryption/decryption algorithm and

178 L. Chen and Z. Chen

signature algorithm respectively. The construction of the MPT is implemented
in Java with about 800 lines code.

As the basic index structure of PGSSE is MPT that is same as GSSE, the
storage overhead of PGSSE and GSSE is close to each other. As the size of
MPT largely depends on the number of keywords in the dictionary, the storage
overhead of both PGSSE and GSSE grows linearly with the growth of keywords
when set the depth of MPT to be fixed. For 5000 documents in the document
collection, the storage overhead is about 17 MB and 15 MB for PGSSE and GSSE
respectively. As the PGSSE scheme has to store the coefficients of the Shamir’s
secret sharing polynomials and the set P of m arrays, the storage overhead of
PGSSE is slightly more than that of GSSE.

6.1 MPT Construction

The time overhead of MPT construction in the PGSSE scheme largely depends
on the number of document-keyword pairs in the inverted index. When set
the depth of MPT and the number of documents to be 5 and 3000 respec-
tively, Fig. 5(a) shows the time of MPT construction of both PGSSE and GSSE
grows linearly with the growth of document-keyword pairs. For 30000 document-
keyword pairs, the time of MPT construction is about 243 ms and 221 ms for
PGSSE and GSSE respectively. When set the depth of MPT and the number of
document-keyword pairs to be 5 and 5000 respectively, Fig. 5(b) shows the time
of MPT construction of both PGSSE and GSSE grows also with the growth of
the number of documents. For 3000 documents, the time of MPT construction
is about 142 ms and 126 ms for PGSSE and GSSE respectively. It demonstrates
that the time overhead of MPT construction for both schemes is positively corre-
lated with the number of document-keyword pairs and documents. As the more
the number of document-keyword pairs, the more the dimension of the Shamir’s

Fig. 5. (a) The time cost of MPT construction with variable number of document-
keyword pairs (MPT depth = 5 and the number of documents is n = 3000); (b) the
time cost of MPT construction with variable number of documents (MPT depth = 5
and the number of document-keyword pairs is 5000).

Practical, Dynamic and Efficient Integrity Verification for SSE 179

secret sharing matrix and the more keyword arrays in the set P will be gener-
ated in PGSSE, hence the time overhead of PGSSE is a little more than that of
GSSE.

6.2 Integrity Verification

The time cost of integrity verification in PGSSE largely depends on the threshold
k and the number of queried keywords. The bigger the threshold k is, the more
documents will be returned. As a result, the more time will be consumed to
construct node secret in the “Verify” algorithm.

Fig. 6. (a) The time cost of integrity verification with variable k and fixed number of
documents n = 3000; (b) the time cost of integrity verification with variable number
of queried keywords (n = 3000 and k = 30); (c) the time cost of integrity verification
with variable number of documents (k = 30); (d) the time cost of integrity verification
with variable number of matched documents (k = 30).

Assume the number of documents n = 3000, Fig. 6(a) shows the time cost of
integrity verification of both PGSSE and GSSE grow linearly with k. To return
15 documents, the time of verification is about 81.1 ms and 62.8 ms for PGSSE
and GSSE respectively. Assume the number of documents n = 3000 and k = 30,
Fig. 6(b) shows the time cost of integrity verification of both PGSSE and GSSE

180 L. Chen and Z. Chen

grow linearly with the number of queried keywords. For 7 queried keywords,
the time of verification is about 204.2 ms and 174.6 ms for PGSSE and GSSE
respectively. As the time cost of integrity verification is related to the number
of returned documents, for k = 30, Fig. 6(c) shows the time cost of both PGSSE
and GSSE keeps stable with the growth of the number of documents.

The above experimental results show that the efficiency of integrity verifica-
tion of PGSSE is a bit lower than that of GSSE. In fact, as PGSSE is proposed to
improve the practicability of GSSE to enable the ranked top-k search, Fig. 6(d)
shows that the efficiency of integrity verification of PGSSE is superior to that
of GSSE when the number of matched documents increases sharply. For k = 30,
if the number of matched documents is 200, the time cost is about 136 ms and
612 ms for PGSSE and GSSE respectively. If the number of matched documents
is 1000, the time cost is about 140 ms and 3045 ms for PGSSE and GSSE respec-
tively. This is because of that GSSE has to get all documents which contain
the queried keyword in DC to perform the integrity verification. While PGSSE
just needs to get the top-k documents to perform the integrity verification, and
thus the verification time keeps stable in PGSSE with the growth of matched
documents.

6.3 Data Updates

Differing from GSSE, PGSSE only updates the keyword array and the MPT
remains unchanged if there is no keyword addition or deletion. Assume the num-
ber of documents n = 3000, Fig. 7(a) shows that the time cost of data updates of
PGSSE keeps stable with the growth of the number of added documents, while
it grows linearly with the growth of the number of added documents for that of
GSSE. For adding 400 documents, the time cost is about 77 ms and 355 ms for
PGSSE and GSSE respectively.

Fig. 7. (a) The update time cost with no keyword insertion and deletion (the number
of documents n = 3000); (b) the update time cost with keyword insertion (n = 3000);
(c) the update time cost with keyword deletion (n = 3000).

If there is new keywords addition in data updates, it will insert new nodes
to the MPT for the new keywords and update the keyword array for PGSSE.
While it will also insert new nodes to the MPT for the new keywords and update

Practical, Dynamic and Efficient Integrity Verification for SSE 181

the incremental hashes of these nodes for GSSE. Figure 7(b) shows that the time
cost of data updates of both PGSSE and GSSE grows linearly with the number
of added keywords and the time cost is similar. If there is keywords deletion in
data updates, it will delete the corresponding nodes of MPT for both PGSSE
and GSSE. Figure 7(c) shows that the time cost of data updates of both PGSSE
and GSSE grows linearly with the number of deleted keywords and the time cost
is also similar.

7 Conclusion

To improve the practicability of existing SSE schemes, we proposed a general
and efficient method that provides dynamic and efficient integrity verification
for SSE construction that is decoupled from original SSE schemes. The pro-
posed PGSSE overcomes the disadvantages of the GSSE on ranked search. The
experimental results demonstrate that PGSSE is greatly superior to GSSE in
integrity verification and data updates for top-k ranked search.

References

1. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In: 30th IEEE International Conference
on Computer Communications, Joint Conference of the IEEE Computer and Com-
munications Societies, INFOCOM 2011, Shanghai, China, 10–15 April 2011, pp.
829–837 (2011)

2. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1),
222–233 (2014)

3. Cash, D., et al.: Dynamic searchable encryption in very-large databases: Data
structures and implementation. In: 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA, 23–26 February
2014

4. Chai, Q., Gong, G.: Verifiable symmetric searchable encryption for semi-honest-
but-curious cloud servers. In: Proceedings of IEEE International Conference on
Communications, ICC 2012, Ottawa, ON, Canada, 10–15 June 2012, pp. 917–922
(2012)

5. Chen, C., et al.: An efficient privacy-preserving ranked keyword search method.
IEEE Trans. Parallel Distrib. Syst. 27(4), 951–963 (2016)

6. Chen, L., Qiu, L., Li, K., Shi, W., Zhang, N.: DMRS: an efficient dynamic multi-
keyword ranked search over encrypted cloud data. Soft Comput. 21(16), 4829–4841
(2017)

7. Chen, X., Li, J., Weng, J., Ma, J., Lou, W.: Verifiable computation over large
database with incremental updates. IEEE Trans. Comput. 65(10), 3184–3195
(2016)

8. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proceedings of the 13th
ACM Conference on Computer and Communications Security, CCS 2006, Alexan-
dria, VA, USA, 30 October–3 November 2006, pp. 79–88 (2006)

182 L. Chen and Z. Chen

9. Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over
encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Dis-
trib. Syst. 27(9), 2546–2559 (2016)

10. Gajek, S.: Dynamic symmetric searchable encryption from constrained functional
encryption. In: Proceedings of Topics in Cryptology - CT-RSA 2016 - The Cryptog-
raphers’ Track at the RSA Conference 2016, San Francisco, CA, USA, 29 February–
4 March 2016, pp. 75–89 (2016)

11. Goh, E.: Secure indexes. IACR Cryptology ePrint Archive 2003, p. 216 (2003)
12. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.

In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, Scottsdale, AZ, USA, 3–7 November 2014, pp. 310–320 (2014)

13. Jiang, X., Yu, J., Yan, J., Hao, R.: Enabling efficient and verifiable multi-keyword
ranked search over encrypted cloud data. Inf. Sci. 403, 22–41 (2017)

14. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Financial Cryptography and Data Security - 17th International Confer-
ence, FC 2013, Okinawa, Japan, 1–5 April 2013, Revised Selected Papers, pp.
258–274 (2013)

15. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: The ACM Conference on Computer and Communications Security, CCS
2012, Raleigh, NC, USA, 16–18 October 2012, pp. 965–976 (2012)

16. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In: Finan-
cial Cryptography and Data Security - 16th International Conference, FC 2012,
Kralendijk, Bonaire, 27 Februray–2 March 2012, Revised Selected Papers, pp. 285–
298 (2012)

17. Kurosawa, K., Ohtaki, Y.: How to update documents verifiably in searchable sym-
metric encryption. In: Proceedings of Cryptology and Network Security - 12th
International Conference, CANS 2013, Paraty, Brazil, 20–22 November 2013, pp.
309–328 (2013)

18. Li, R., Xu, Z., Kang, W., Yow, K., Xu, C.: Efficient multi-keyword ranked query
over encrypted data in cloud computing. Future Gener. Comp. Syst. 30, 179–190
(2014)

19. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P.H., Jonker, W.: Computa-
tionally efficient searchable symmetric encryption. In: Proceedings of Secure Data
Management, 7th VLDB Workshop, SDM 2010, Singapore, 17 September 2010,
pp. 87–100 (2010)

20. Liu, Z., Li, T., Li, P., Jia, C., Li, J.: Verifiable searchable encryption with aggregate
keys for data sharing system. Future Gener. Comp. Syst. 78, 778–788 (2018)

21. Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via
blind storage. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, Berke-
ley, CA, USA, 18–21 May 2014, pp. 639–654 (2014)

22. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
23. Song, D.X., David A. Wagner, Perrig, A.: Practical techniques for searches on

encrypted data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley,
California, USA, 14–17 May 2000, pp. 44–55 (2000)

24. Sun, W., Liu, X., Lou, W., Hou, Y.T., Li, H.: Catch you if you lie to me: efficient
verifiable conjunctive keyword search over large dynamic encrypted cloud data. In:
2015 IEEE Conference on Computer Communications, INFOCOM 2015, Kowloon,
Hong Kong, 26 April–1 May 2015, pp. 2110–2118 (2015)

25. Sun, W., et al.: Verifiable privacy-preserving multi-keyword text search in the cloud
supporting similarity-based ranking. IEEE Trans. Parallel Distrib. Syst. 25(11),
3025–3035 (2014)

Practical, Dynamic and Efficient Integrity Verification for SSE 183

26. Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over
encrypted cloud data. In: 2010 International Conference on Distributed Computing
Systems, ICDCS 2010, Genova, Italy, 21–25 June 2010, pp. 253–262 (2010)

27. Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword
search over outsourced cloud data. IEEE Trans. Parallel Distrib. Syst. 23(8), 1467–
1479 (2012)

28. Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked
search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2),
340–352 (2016)

29. Yu, J., Lu, P., Zhu, Y., Xue, G., Li, M.: Toward secure multikeyword top-k retrieval
over encrypted cloud data. IEEE Trans. Dependable Sec. Comput. 10(4), 239–250
(2013)

30. Zhang, W., Lin, Y., Xiao, S., Wu, J., Zhou, S.: Privacy preserving ranked multi-
keyword search for multiple data owners in cloud computing. IEEE Trans. Comput.
65(5), 1566–1577 (2016)

31. Zhu, J., Li, Q., Wang, C., Yuan, X., Wang, Q., Ren, K.: Enabling generic, verifiable,
and secure data search in cloud services. IEEE Trans. Parallel Distrib. Syst. 29(8),
1721–1735 (2018)

	Practical, Dynamic and Efficient Integrity Verification for Symmetric Searchable Encryption
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Notations
	3.2 Merkle Patricia Tree
	3.3 Shamir's Secret Sharing Scheme

	4 System Model and Formal Definition
	4.1 System Model
	4.2 Formal Definition

	5 Scheme Construction
	5.1 Initialization
	5.2 MPT Building
	5.3 Token Generation
	5.4 Proof Generation
	5.5 Integrity Verification
	5.6 Update Algorithm

	6 Security and Performance Evaluation
	6.1 MPT Construction
	6.2 Integrity Verification
	6.3 Data Updates

	7 Conclusion
	References

