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Abstract. For lattice-based group signatures (GS) with verifier-local
revocation (VLR), it only requires the verifiers to possess up-to-date
group information (i.e., a revocation list, RL, consists of a series of revo-
cation tokens for revoked members), but not the signers. The first such
scheme was introduced by Langlois et al. in 2014, and subsequently, a
full and corrected version (to fix a flaw in the original revocation mecha-
nism) was proposed by Ling et al. in 2018. However, both constructions
are within the structure of a Bonsai Tree, and thus features bit-sizes of
the group public-key and the member secret-key proportional to log N ,
where N is the maximum number of group members. On the other hand,
the tracing algorithm for both schemes runs in a linear time in N (i.e.,
one by one, until the real signer is traced). Therefore for a large group,
the tracing algorithm of conventional GS-VLR is not convenient and both
lattice-based constructions are not that efficient.

In this work, we propose a much more efficient lattice-based GS-
VLR, which is efficient by saving the O(log N) factor for both bit-sizes of
the group public-key and the member secret-key. Moreover, we achieve
this result in a relatively simple manner. Starting with Nguyen et al.’s
efficient and compact identity-encoding technique in 2015 - which only
needs a constant number of matrices to encode the member’s identity,
we develop an improved identity-encoding function, and introduce an
efficient Stern-type statistical zero-knowledge argument of knowledge
(ZKAoK) protocol corresponding to our improved identity-encoding func-
tion, which may be of independent cryptographic interest.

Furthermore, we demonstrate how to equip the obtained lattice-
based GS-VLR with explicit traceability (ET) in some simple way. This
attractive functionality, only satisfied in the non-VLR constructions, can
enable the tracing authority in lattice-based GS-VLR to determine the
signer’s real identity in a constant time, independent of N . In the whole
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process, we show that the proposed scheme is proven secure in the ran-
dom oracle model (ROM) based on the hardness of the Short Integer
Solution (SIS) problem, and the Learning With Errors (LWE) problem.

Keywords: Lattice-based group signatures · Verifier-local revocation ·
Stern-type zero-knowledge proofs · Identity-encoding technique ·
Explicit traceability

1 Introduction

Group signature (GS), put forward by Chaum and van Heyst [10], is a fundamen-
tal privacy-preserving primitive which allows any member to issue signatures on
behalf of the whole group without compromising his/her identity information,
and given a valid message-signature pair, the tracing authority (i.e., an opener)
can find out the signer’s real identity. These two properties, called anonymity
and traceability respectively, allow GS to find several real-life applications. To
construct such valid scheme is a interesting and challenging work for the research
community, and over the last quarter-century, various GS constructions with dif-
ferent security requirements, different levels of efficiency, and based on different
hardness assumptions have been proposed (e.g., [4–7,13,16] · · · ).
Lattice-based group signatures. Lattice-based cryptography, believed to be
the most promising candidate for post-quantum cryptography (PQC), possesses
several noticeable advantages over conventional number-theoretic cryptography:
conjectured resistance against quantum computers, faster arithmetic operations
and provable security under the worst-case hardness assumptions. Since the cre-
ative works of Ajtai [2], Regev [34], Micciancio and Regev [28], and Gentry et al.
[12], lattice-based cryptography has attracted significant interest by the research
community and become an exciting cryptographic research field. In recent ten
years, lattice-based GS has been paid greet attention along with other primitives.
The first construction was put forth by Gordon et al. [13], while their solution
only obtains a low running efficiency, due to the linear-size of public-key and
signature (i.e., linear in the security parameter n, and the maximum number of
group members N). Camenisch et al. [8] introduced a variant of [13] to achieve
the improvements with a shorter public-key and stronger anonymity while the
signature size is still linear in N . The linear-size barrier problem is eventually
overcome by Laguillaumie et al. [17], who provided the first logarithmic lattice-
based GS scheme with relatively large parameters. Ling et al. [24] and Nguyen
et al. [31] constructed more efficient schemes with O(log N) signature size respec-
tively. More recently, Libert et al. [20] developed a lattice-based accumulator
from Merkle trees and based on which they designed the first lattice-based GS
not requiring any GPV trapdoors. The first lattice-based GS realizations with
message-dependent opening (MDO), forward-secure (FS), and without NIZK in
the standard model (SM) were then proposed by Libert et al. [21], Ling et al.
[26], and Katsumata and Yamada [14], respectively. For the lattice-based GS
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schemes mentioned above, all are designed for the static groups and analyzed in
the security model of Bellare et al. [4], where no candidate member is allowed
to join or leave after the whole group’s preliminary setup.

For lattice-based GS schemes with dynamic features, member enrollment was
firstly token into account by Libert et al. [19] and a dynamic construction in the
model of Kiayias and Yong [16] and Bellare et al. [5] was introduced. Ling et al.
[27] added some dynamic ingredients into a static accumulator constructed in
[20] to construct the first lattice-based GS scheme with full dynamicity (i.e.,
candidate members can join and leave the group at will) in the model of Bootle
et al. [7]. Recently, Ling et al. [25] introduced a constant-size lattice-based GS
scheme (i.e., signature size is independent of N), meanwhile supporting dynamic
member enrollments.

As an orthogonal problem of member enrollment, the support for membership
revocation is also a desirable functionality of lattice-based GS. The verifier-local
revocation (VLR) mechanism, which only requires the verifiers to possess some
up-to-date group information (i.e., a revocation list, RL, consists of a series of
revocation tokens for the revoked members), but not the signers, is more efficient
than the accumulators, especially when considering a large group. The first such
scheme was introduced by Langlois et al. [18] in 2014, and subsequently, a full and
corrected version (to fix a flaw in original revocation mechanism) was proposed
by Ling et al. [22], and two more schemes achieving different security notions
were proposed by Perera and Koshiba [32,33] in 2018. However, all constructions
are within the structure of a Bonsai Tree of hard random lattices [9], and thus
features bit-sizes of the group public-key and the member secret-key proportional
to log N . The only two exceptions are [11,35] which adopt a identity-encoding
function as introduced in [31] to encode the member’s identity index and save
a O(log N) factor for both bit-sizes. However, the latter two constructions both
involve a series of sophisticated encryption operations and zero-knowledge proof
protocols in the signing phase, and on the other hand, the tracing algorithm for
[11,18,22,35] runs in a linear time in N (i.e., one by one for all members, until
the real signer is traced). For a large group, the tracing algorithm of conventional
GS-VLR is not so convenient and almost of all lattice-based constructions are not
that efficient. Thus these somewhat unsatisfactory state-of-affairs highlights the
challenge of designing a simpler and more efficient lattice-based GS scheme with
VLR, which can be more suitable for a large group.

Our results and main techniques. In this work, we reply positively to the
problems discussed above. Specifically, we propose a new lattice-based GS-VLR
achieving shorter key-sizes and explicit traceability. Here, by “shorter key-sizes”,
we mean saving a O(log N) factor for both bit-sizes of the group public-key and
the member secret-key; by “explicit traceability”, we mean the tracing authority
determining the signer’s real identity in a constant time, independent of N . The
proposed scheme is proven secure in the random oracle model (ROM) based on
the hardness of the Short Integer Solution (SIS) problem, and the Learning With
Errors (LWE) problem.
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The comparisons between our scheme and previous works, in terms of asymp-
totic efficiency (i.e., key-sizes, explicit traceability), functionality (i.e., static or
not) and anonymity, are shown in Table 1 (the security parameter is n, time
period T = 2d and group size N = 2� = poly(n)).

Our construction operates in the model of Boneh and Shacham [6] for VLR,
which enjoys the implicit traceability, and additionally, the explicit traceability is
also obtained. Furthermore, we declare that the “shorter key-sizes” and “explicit
traceability” can be obtained in a relatively simple manner, thanks to three main
techniques discussed below.

Table 1. Comparisons of known lattice-based GS schemes.

Scheme Group
public-key size

Signer
secret-key size

Explicit
traceability

Functionality Anonymity

GKV [13] N · ˜O(n2) ˜O(n2) yes static CPA

CNR [8] ˜O(n2) ˜O(n2) yes static CCA

LLLS [17] � · ˜O(n2) ˜O(n2) yes static CPA

LLNW [18] � · ˜O(n2) � · ˜O(n) no VLR Selfless

LNW [24] � · ˜O(n2) ˜O(n) yes static CCA

NZZ [31] ˜O(n2) ˜O(n2) yes static CCA

LLNW [20] ˜O(n2 + n · �) � · ˜O(n) yes static CCA

LMN [21] � · ˜O(n2) ˜O(n) yes MDO CCA

LLMNW [19] � · ˜O(n2) ˜O(n) yes enrollment CCA

ZHGJ [35] ˜O(n2) ˜O(n) no VLR Selfless

LNWX [27] ˜O(n2 + n · �) ˜O(n) + � yes fully-dynamic CCA

GHZW [11] ˜O(n2) ˜O(n) no VLR Selfless

LNWX [26] (� + d) · ˜O(n2) (�+d)2 ·d· ˜O(n2) yes FS CCA

LNLW [22] � · ˜O(n2) � · ˜O(n) no VLR Selfless

KP [33] � · ˜O(n2) � · ˜O(n) yes VLR almost-CCA

KP [32] � · ˜O(n2) ˜O(n) yes fully-dynamic almost-CCA

LNWX [25] ˜O(n) ˜O(n) yes enrollment CCA

KY [14] N · ˜O(n2) N · ˜O(n2) yes static Selfless

Ours ˜O(n2) ˜O(n) yes VLR Selfless

Firstly, as we discussed earlier, adopting a Bonsai Tree structure to construct
lattice-based GS-VLR results in a larger bit-sizes of the group public-key and the
member secret-key. To realize a more efficient lattice-based GS-VLR with shorter
key-sizes, we further need an efficient mechanism to encode the member’s identity
information, and a simpler zero-knowledge protocol to prove the signer’s validity
as a certified group member.

Towards the goal described as above, we utilize a compact identity-encoding
technique introduced in [31] which only needs a constant number of matrices to
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encode the member’s identity index. We consider the group of N = 2� members
and each member is identified by a �-bits string id = (d1, d2, · · · , d�) ∈ {0, 1}�

which is a binary representation of his/her identity index i ∈ {1, · · · , N}, that
is, id = bin(i) ∈ {0, 1}�. Throughout this paper, let n be the security parameter,
and other parameters N,m, q, β, s are the function of n and will be determined
later (see Sect. 4). In our new VLR scheme, the group public-key only consists of
a random vector u ∈ Z

n
q and 4 random matrices A0, A1

1, A
2
2 (used for identity-

encoding) and A3
3 (only used for explicit traceability) over Z

n×m
q . For member

i, instead of generating a trapdoor basis matrix for a hard random lattice as the
signing secret-key for i as in [31], we sample some short 2m-dimensional vector
ei = (ei,1, ei,2) ∈ Z

2m satisfying 0 < ‖ei‖∞ ≤ β, and Ai · ei = u mod q, where
Ai = [A0|A1

1 + iA2
2] ∈ Z

n×2m
q . Furthermore, for the VLR feature, the revocation

token of i is constructed by A0 and ei,1 ∈ Z
m, that is, grti = A0 · ei,1 mod q.

Secondly, the implicit tracing algorithm of conventional lattice-based GS-VLR
runs in a linear time in N , and thus it is not so convenient, resulting in a low
efficiency. To realize an efficient construction with explicit traceability, we further
need an efficient mechanism to encrypt the identity index of member i (in our
actual construction, it’s to encrypt bin(i) ∈ {0, 1}�) to obtain a ciphertext c, and
design a zero-knowledge argument to prove: c is a correct encryption of bin(i),
namely, a lattice-based verifiable encryption protocol. Besides the public matrix
A0, A1

1, and A2
2 for identity-encoding, a fourth matrix A3

3 is required to encrypt
bin(i) using the dual LWE cryptosystem [12]. This relation can be expressed as
c = (c1 = A3�

3 s + e1 mod q, c2 = G�s + e2 + �q/2�bin(i) mod q) where G is a
random matrix, and s, e1, e2 are random vectors having certain specific norm.

Thirdly, the major challenge for our construction lies in how to design
a simpler and efficient zero-knowledge proof protocol to prove the following
relations: (a) [A0|A1

1 + iA2
2] · ei = u mod q; (b) grti = A0 · ei,1 mod q;

(c) c = (c1 = A3�
3 s + e1 mod q, c2 = G�s + e2 + �q/2�bin(i) mod q). For

relation (b), we utilize a creative idea introduced by Ling et al. [22] by draw-
ing a matrix B ∈ Z

n×m
q from a random oracle and a vector e0 ∈ Z

m from the
LWE error distribution, define b = B�grti + e0 = (B�A0) · ei,1 + e0 mod q,
thus the member i’s token grti is bound to a one-way and injective LWE func-
tion. For relation (c), we utilize a creative idea of Ling et al. [24] by construct-
ing a matrix P ∈ Z

(m+�)×(n+m+�)
q (obtained from the public matrices A3

3 and
G, see Sect. 3 for details), and a vector e = (s, e1, e2) ∈ Z

n+m+�, then let
c = Pe + (0m, �q/2�bin(i)) mod q, thus the identity index i is now bound to
this new form which is easy to construct a Stern-type statistical zero-knowledge
proof protocol.

For relation (a), since ei ∈ Z
2m is a valid short solution to the Inhomogeneous

Short Integer Solution (ISIS) instance (Ai,u) where Ai = [A0|A1
1+iA2

2], a direct
way for member i to prove his/her validity as a certified group member without
leaking ei just by performing a Stern-type statistical zero-knowledge argument
of knowledge (ZKAoK) as in [23]. However, in order to protect the anonymity of
i, the structure of Ai should not be given explicitly. How to realize a Stern-type
zero-knowledge proof without leaking Ai and ei simultaneously? To solve this
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open problem, we transform matrix Ai to A′ which enjoys a new form and is
independent of the identity index i, i.e., A′ = [A0|A1

1|g� ⊗ A2
2] ∈ Z

n×(�+2)m
q ,

where g� = (1, 2, 22, · · · , 2�−1) is a power-of-two vector, and the identity index i
can be rewritten as i = g�

� · bin(i), the notation ⊗ denotes a concatenation with
vectors or matrices, and the detailed definition will be given later (see Sect. 3).
As a corresponding change to the member i’s signing secret-key, ei = (ei,1, ei,2)
is now transformed to e′

i = (ei,1, ei,2, bin(i)⊗ei,2) ∈ Z
(�+2)m. Thus, to argue the

relation Ai · ei = u mod q, we instead show that A′ · e′
i = u mod q.

Putting the above transformations ideas and the versatility of the Stern-type
argument system introduced by Ling et al. [23] together, we can construct an
efficient Stern-type interactive protocol for the relations (a), (b) and (c).

To summarize, by incorporating the compact identity-encoding technique and
the corresponding efficient Stern-type statistical ZKAoK into a lattice-based GS,
we design a more efficient lattice-based GS-VLR. The proposed scheme obtains
the shorter bit-sizes for the group public-key and the group member secret-key,
furthermore, the explicit traceability, and thus, is more suitable for a large group.
In addition, we believe that the innovative ideas and design approaches in our
whole constructions may be of independent interest.

Organization. In the forthcoming sections, we first recall some background on
GS-VLR and lattice-based cryptography in Sect. 2. Section 3 turns to develop an
improved identity-encoding technique, an explicit traceability mechanism and
the corresponding new Stern-type statistical ZKAoK protocol that will be used
in our construction. Our scheme is constructed and analyzed in Sect. 4.

2 Preliminaries

Notations. Assume that all vectors are in a column form. Sk denotes the set of
all permutations of k elements, and $←− denotes that sampling elements from a
given distribution uniformly at random. Let ‖·‖∞ denote the infinity norm (�∞)
of a vector. Given e = (e1, e2, · · · , en) ∈ R

n, Parse(e, k1, k2) denotes the vector
(ek1 , ek1+1, · · · , ek2) ∈ R

k2−k1+1 for 1 ≤ k1 ≤ k2 ≤ n. log a denotes the logarithm
of a with base 2. The acronym PPT stands for “probabilistic polynomial-time”.

2.1 Group Signatures with VLR

A conventional GS-VLR scheme involves two entities: a group manager (also is a
tracing authority) and a sets of group members. In order to support an explicit
traceability we add an Open algorithm to conventional GS-VLR.

Syntax of GS-VLR with Explicit Traceability. A GS-VLR with the explicit
traceability (GS-VLR-ET) consists of 4 polynomial-time algorithms: KeyGen,
Sign, Verify, Open. Because of the page limitation, we omit the detailed def-
inition, if any necessary, please contact the corresponding author for the full
version.
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Correctness and Security of GS-VLR-ET. As put forward by Boneh and
Shacham [6], A conventional GS-VLR scheme should satisfy correctness selfless-
anonymity, and traceability. Thus for GS-VLR-ET, these 3 requirements also
should be satisfied. Due to the limited space, the details are presented in the full
paper.

2.2 Background on Lattices

Ajtai [2] first introduced how to obtain a statistically close to uniform matrix A
together with a low Gram-Schmidt norm basis for Λ⊥

q (A) = {e ∈ Z
m | A · e =

0 mod q}, then two improved algorithms were investigated by [3,30].

Lemma 1 ([2,3,30]). Let integers n ≥ 1, q ≥ 2, and m = 2n
log q�. There
exists a PPT algorithm TrapGen(q, n,m) that outputs A and RA, such that A is
statistically close to a uniform matrix in Z

n×m
q and RA is a trapdoor for Λ⊥

q (A).

Lemma 2 ([12,30]). Let integers n ≥ 1, q ≥ 2, and m = 2n
log q�, given A ∈
Z

n×m
q , a trapdoor RA for Λ⊥

q (A), a parameter s = ω(
√

n log q log n) and a vector
u ∈ Z

n
q , there is a PPT algorithm SamplePre(A,RA,u, s) that returns a short

vector e ∈ Λu
q (A) sampled from a distribution statistically close to DΛu

q (A),s.

We recall 3 average-case lattices problems: ISIS, SIS (in the �∞ norm), LWE.

Definition 1. The (I)SIS∞
n,m,q,β problems are: Given a uniformly random matrix

A ∈ Z
n×m
q , a random syndrome vector u ∈ Z

n
q and a real β > 0,

– SIS∞
n,m,q,β: to find a non-zero e ∈ Z

m such that A · e = 0 mod q, ‖e‖∞ ≤ β.
– ISIS∞

n,m,q,β: to find a vector e ∈ Z
m such that A · e = u mod q, ‖e‖∞ ≤ β.

Lemma 3 ([12,29]). For m, β = poly(n), and q ≥ β · ˜O(
√

n), the average-case
(I)SIS∞

n,m,q,β problems are at least as hard as the SIVPγ problem in the worst-
case to within γ = β · ˜O(

√
nm) factor. In particular, if β = 1, q = ˜O(n) and

m = 2n
log q�, then the (I)SIS∞
n,m,q,1 problems are at least as hard as SIVP

˜O(n).

Definition 2. The LWEn,q,χ problem is: Given a random vector s ∈ Z
n
q , a prob-

ability distribution χ over Z, let As,χ be the distribution obtained by sampling a

matrix A $←− Z
n×m
q , a vector e $←− χm, and outputting a tuple (A,A�s + e),

to distinguish As,χ and a uniform distribution U over Z
n×m
q × Z

m
q .

Let β ≥ √
n·ω(log n), if q is a prime power, and χ is a β-bounded distribution

(e,g., χ = DZm,s), then the LWEn,q,χ problem is as least as hard as SIVP
˜O(nq/β).

Lemma 4 ([1]). Let R be an m×m-matrix chosen at random from {−1, 1}m×m,
for vectors e ∈ R

m, Pr[‖R · e‖∞ > ‖e‖∞ · ω(
√

log m)] < negl(m).

Lemma 5 ([1]). Let q ≥ 3, and m > n, A, B ∈ Z
n×m
q and a real s ≥ ‖˜RB‖ ·√

m · ω(log m). There is a PPT algorithm SampleRight(A,B,R,RB,u, s) that
given a trapdoor RB for Λ⊥

q (B), a low-norm matrix R ∈ {−1, 1}m×m, and a
vector u ∈ Z

n
q , outputs e ∈ Z

2m distributed statistically close to DΛu
q ([A|AR+B]),s.
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3 Preparations

3.1 The Improved of Identity-Encoding Technique

For an improved of identity-encoding technique, a public random vector u ∈ Z
n
q

is required, i.e., Gpk = (A0,A1
1,A

2
2,A

3
3,u), furthermore, the secret-key of i is

not yet a trapdoor basis matrix for Λ⊥
q (Ai), instead of a short 2m-dimensional

vector ei = (ei,1, ei,2) in the coset of Λ⊥
q (Ai), i.e., Λu

q (Ai) = {ei ∈ Z
2m | Ai ·ei =

u mod q}, and thus, the revocation token of i is constructed by A0 and the first
part of its secret-key, i.e., grti = A0 · ei,1 mod q.

In order to design an efficient Stern-type ZKAoK protocol corresponding to
the above new variant, we transform Ai = [A0|A1

1 + iA2
2] corresponding to i to

a new form. Before we do that, we first define 2 notations (we restate, in this
paper, the group is of N = 2� members):

– g� = (1, 2, · · · , 2�−1): a power-of-2 vector, for i ∈ {1, 2, · · · , N}, i = g�
� ·bin(i)

where bin(i) ∈ {0, 1}� denotes a binary representation of i.
– ⊗: a concatenation with vectors or matrices, given A ∈ Z

n×m
q , e′ ∈ Z

m
q , and

e = (e1, e2, · · · , e�) ∈ Z
�
q, define: e ⊗ e′ = (e1e′, e2e′, · · · , e�e′) ∈ Z

m�
q , e ⊗

A = [e1A|e2A| · · · |e�A] ∈ Z
n×m�
q .

Next, we transform Ai to a public matrix A′ that is independent of the index
i, where A′ = [A0|A1

1|A2
2|2A2

2| · · · |2�−1A2
2] = [A0|A1

1|g� ⊗ A2
2] ∈ Z

n×(�+2)m
q .

As a corresponding change to the group secret-key of member i, ei =
(ei,1, ei,2) is now transformed to e′

i, a vector with some special structure as
for ei, that is, e′

i = (ei,1, ei,2, bin(i) ⊗ ei,2) ∈ Z
(�+2)m.

Thus, from the above transformations, the relation Ai · ei = u mod q is now
transformed to a new form, (i) Ai · ei = A′ · e′

i = u mod q.
For the revocation mechanism, as it was stated in [22], due to a flaw in the

revocation mechanism of [18], a corrected technique which realizes revocation by
binding signer’s token grti to an LWE function was proposed, (ii) b = B�grti +
e0 = (B�A0) · ei,1 + e0 mod q, where B ∈ Z

n×m
q is a uniformly random matrix

from a random oracle, e0 ∈ Z
m is sampled from the LWE error χm.

For the explicit traceability mechanism, as it was shown in [24], the lattice-
based dual LWE cryptosystem [12] can be used to encrypt the identity index of
signer i. In our construction, the string bin(i) ∈ {0, 1}� is treated as the plaintext
and the ciphertext can be expressed as c = (c1, c2), where c1 = A3�

3 s+e1 mod q,
c2 = G�s+e2 +�q/2�bin(i) mod q). Here, G ∈ Z

n×�
q is a random matrix, and s,

e1, e2 are random vectors sampled from the LWE error χn, χm, χ�, respectively.
Thus, the above relation can be expressed as (iii) c = P · e + (0m, �q/2�bin(i)),

where P =

⎛

⎝

A3�
3

· · · · · · Im+�

G�

⎞

⎠ ∈ Z
(m+�)×(n+m+�)
q and e = (s, e1, e2) ∈ Z

n+m+�.

Putting all the above transformations ideas and the versatility of the Stern-
extension argument system introduced by Ling et al. [23] together, we can con-
struct an efficient Stern-type statistical ZKAoK protocol to prove the above new
relations (i), (ii) and (iii).
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3.2 A New Stern-Type Zero-Knowledge Proof Protocol

An efficient Stern-type ZKAoK protocol which allows P to convince any verifier
V that P is a group member who signed M will be introduced, namely, P owns
a valid secret-key, his/her token is correctly embedded into an LWE instance and
the identity information is correctly hidden with the dual LWE cryptosystem.

Firstly, we recall some specific sets and techniques as in [17,18,22] that will
be used in our VLR-ET construction. Due to the limited space, we give them in
the full version and the readers can also refer to [17,18,22].

Secondly, we introduce the main building block, a new Stern-type interactive
statistical zero-knowledge proof protocol, and we consider the group of N = 2�

members and each member is identified by id = (d1, d2, · · · , d�) ∈ {0, 1}� which
is a binary representation of the index i ∈ {1, 2, · · · , N}, namely, id = bin(i) ∈
{0, 1}�. The underlying new Stern-type statistical ZKAoK protocol between P
and V can be summarized as follows:

1. The public inputs include A′ = [A0|A1
1|g� ⊗ A2

2] ∈ Z
n×(�+2)m
q , B ∈ Z

n×m
q ,

P =

⎛

⎝

A3�
3

· · · · · · Im+�

G�

⎞

⎠ ∈ Z
(m+�)×(n+m+�)
q , u ∈ Z

n
q , b ∈ Z

m
q , c = (c1, c2).

2. P’s witnesses include e′ = (e′
1, e

′
2, bin(i) ⊗ e′

2) ∈ Secβ(id) corresponding to a
secret index i ∈ {1, · · · , N} and 4 short vectors e0, s, e1, e2, the LWE errors.

3. P’s goal is to convince V in zero-knowledge that:
a. A′ · e′ = u mod q where e′ ∈ Secβ(id), while keeping id secret.
b. b = (B�A0) · e′

1 + e0 mod q where 0 < ‖e′
1‖∞, ‖e0‖∞ ≤ β.

c. c = Pe+(0m, �q/2�bin(i)) mod q, where e = (s, e1, e2), 0 < ‖e‖∞ ≤ β,
while keeping bin(i) ∈ {0, 1}� secret.

Firstly, we sketch Group Membership Mechanism, i.e., P is a certified member
and its goal is shown in a. P does as follows:

1. Parse A′ = [A0|A1
1|A2

2| · · · |2�−1A2
2], use Matrix-Ext technique to extend it to

A∗ = [A0|0n×2m|A1
1|0n×2m| · · · |2�−1A2

2|0n×2m|0n×3m�].
2. Parse id = bin(i) = (d1, d2, · · · , d�), extend it to id∗ = (d1, d2, · · · , d2�) ∈ B2�.
3. Parse e′ = (e′

1, e
′
2, bin(i) ⊗ e′

2) = (e′
1, e

′
2, d1e′

2, d2e′
2, · · · , d�e′

2), use Dec, Ext
techniques extending e′

1 and e′
2 to k vectors e′

1,1, e
′
1,2, · · · , e′

1,k ∈ B3m, and k
vectors e′

2,1, e
′
2,2, · · · , e′

2,k ∈ B3m. For each j ∈ {1, 2, · · · , k}, we define e′
j =

(e′
1,j , e

′
2,j , d1e′

2,j , d2e′
2,j , · · · , d2�e′

2,j), it can be checked that e′
j ∈ SecExt(id∗).

So P’s goal in a is transformed to: A∗(
∑k

j=1 βje′
j) = u mod q, e′

j ∈
SecExt(id∗). To prove this new structure in zero-knowledge, we take 2 steps
as follows:

1. Pick k random vectors r′
1, · · · , r′

k
$←− Z

(2�+2)3m
q to mask e′

1, · · · , e′
k, then it

can be checked that, A∗ · (∑k
j=1 βj(e′

j + r′
j)) − u = A∗ · (∑k

j=1 βjr′
j) mod q.

2. Pick two permutations π, ϕ ∈ S3m, one permutation τ ∈ S2�, then it can be
checked that, ∀j ∈ {1, 2, · · · , k}, Tπ,ϕ,τ (e′

j) ∈ SecExt(τ(id∗)), where id∗ ∈ B2�

is an extension of id = bin(i) ∈ {0, 1}�.
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Secondly, we sketch Revocation Mechanism, i.e., P’s revocation token is cor-
rectly embedded in an LWE instance and its goal is shown in b. P does as follows:

1. Let B′ = B�A0 mod q ∈ Z
m×m
q , and e′

j,0 = Parse(e′
j , 1,m).

2. Parse e0 = (e1, e2, · · · , em) ∈ Z
m, use Dec, Ext techniques to extend e0 to k

vectors e0
1, e

0
2, · · · , e0

k ∈ B3m.
3. Let B∗ = [B′|I∗] where I∗ = [Im|0n×2m], Im is identity matrix of order m.

So P’s goal in b is transformed to: b = B′(
∑k

j=1 βje′
j,0) + I∗(

∑k
j=1 βje0

j ) =

B∗ · (
∑k

j=1 βj(e′
j,0, e

0
j )) mod q, e0

j ∈ B3m. To prove this new structure in zero-
knowledge, we take 2 steps as follows:

1. Let r′
j,0 = Parse(r′

j , 1,m), pick k random vectors r1, · · · , rk
$←− Z

3m
q to mask

e0
1, · · · , e0

k, it can be checked that,

B∗ · (
∑k

j=1 βj(e′
j,0 + r′

j,0, e
0
j + rj)) − b = B∗ · (

∑k
j=1 βj(r′

j,0, rj)) mod q

2. Pick φ ∈ S3m, then it can be checked that, ∀j ∈ {1, 2, · · · , k}, φ(e0
j ) ∈ B3m.

Thirdly, we sketch Explicit Traceability Mechanism, i.e., P’s index is correctly
embedded in a LWE cryptosystem and its goal is shown in c. P does as follows:

1. Let P∗ = [P|0(m+�)×2(n+m+�)] and Q =

⎛

⎝

0m×� 0m×�

· · · · · · · · · · · ·
�q/2�I� 0�×�

⎞

⎠, where I� is an

identity matrix of order �.
2. Parse e = (s, e1, e2) ∈ Z

n+m+�, use Dec, Ext techniques to extend e to k
vectors e(1), e(2), · · · , e(k) ∈ B3(n+m+�).

3. Let id∗ = bin(i)∗ ∈ B2� be an extension of id = bin(i) ∈ {0, 1}�.

So P’s goal in c is transformed to: c = P∗·(∑k
j=1 βje(j))+Q·id∗ mod q, e(j) ∈

B3(n+m+�), bin(i)∗ ∈ B2�. To prove this new structure in zero-knowledge, we take
2 steps as follows:

1. Pick a random vector rid∗
$←− Z

2�
q to mask id∗ = bin(i)∗, k random vectors

r′′
1 , · · · , r′′

k
$←− Z

3(n+m+�)
q to mask e(1), · · · , e(k), it can be checked that,

P∗ ·(∑k
j=1 βj(e(j) + r′′

j ))+Q·(id∗+rid∗)−c = P∗ ·(∑k
j=1 βjr′′

j )+Q·rid∗ mod q

2. Pick ρ ∈ S3(n+m+�), then it can be checked that, ∀j ∈ {1, 2, · · · , k}, ρ(e(j)) ∈
B3(n+m+�) and τ(id∗) ∈ B2�, where τ has been picked in the proof of group
membership mechanism.

Putting the above techniques together, we can obtain a new Stern-type inter-
active statistical zero-knowledge proof protocol, the details will be given bellow.

In our VLR-ET construction, we utilize a statistically hiding, computationally
blinding commitment scheme (COM) as proposed in [15]. For simplicity, we omit
the randomness of COM. P and V interact as follows:
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1. Commitments: P randomly samples the following random objects:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

r′
1, · · · , r′

k
$←− Z

(2�+2)3m
q ; r1, · · · , rk

$←− Z
3m
q ; r′′

1 , · · · , r′′
k

$←− Z
3(n+m+�)
q ;

π1, · · · , πk
$←− S3m; ϕ1, · · · , ϕk

$←− S3m; φ1, · · · , φk
$←− S3m;

ρ1, · · · , ρk
$←− S3(n+m+�); τ

$←− S2�; rid∗
$←− Z

2�
q .

Let r′
j,0 = Parse(r′

j , 1,m), j ∈ {1, · · · , k}, P sends CMT = (c1, c2, c3) to V,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

c1 = COM({πj , ϕj , φj , ρj}k
j=1, τ,A

∗ · (
∑k

j=1 βjr′
j),B

∗ · (
∑k

j=1 βj(r′
j,0, rj)),

P∗ · (
∑k

j=1 βjr′′
j ) + Q · rid∗),

c2 = COM({Tπj ,ϕj ,τ (r′
j), φj(rj), ρj(r′′

j )}k
j=1, τ(rid∗)),

c3 = COM({Tπj ,ϕj ,τ (e′
j + r′

j), φj(e0
j + rj), ρj(e(j) + r′′

j )}k
j=1, τ(id∗ + rid∗)).

2. Challenge: V chooses a challenge CH
$←− {1, 2, 3} and sends it to P.

3. Response: Depending on CH, P replies as follows:
◦ CH = 1. For j ∈ {1, 2, · · · , k}, let v′

j = Tπj ,ϕj ,τ (e′
j), w

′
j = Tπj ,ϕj ,τ (r′

j),
vj = φj(e0

j ), wj = φj(rj), v(j) = ρj(e(j)), w′′
j = ρj(r′′

j ), tid = τ(id∗) and
vid = τ(rid∗), define RSP = ({v′

j ,w
′
j ,vj ,wj ,v(j),w′′

j }k
j=1, tid,vid).

◦ CH = 2. For j ∈ {1, 2, · · · , k}, let π̂j = πj , ϕ̂j = ϕj , φ̂j = φj , ρ̂j = ρj ,
τ̂ = τ , x′

j = e′
j + r′

j , xj = e0
j + rj , x′′

j = e(j) + r′′
j and xid = id∗ + rid∗ ,

define RSP = ({π̂j , ϕ̂j , φ̂j , ρ̂j ,x′
j ,xj ,x′′

j }k
j=1, τ̂ ,xid).

◦ CH = 3. For j ∈ {1, 2, · · · , k}, let π̃j = πj , ϕ̃j = ϕj , φ̃j = φj , ρ̃j =
ρj , τ̃ = τ , h′

j = r′
j , hj = rj , h′′

j = r′′
j and hid = rid∗ , define RSP =

({π̃j , ϕ̃j , φ̃j , ρ̃j ,h′
j ,hj ,h′′

j }k
j=1, τ̃ ,hid).

4. Verification: Receiving RSP, V checks as follows:
◦ CH = 1. Check that tid ∈ B2�, for each j ∈ {1, 2, · · · , k}, v′

j ∈ SecExt(tid),
vj ∈ B3m, v(j) ∈ B3(n+m+�), and that,

{

c2 = COM({w′
j ,wj ,w′′

j }k
j=1, tid),

c3 = COM({v′
j + w′

j ,vj + wj ,v(j) + w′′
j }k

j=1, tid + vid).

◦ CH = 2. For j ∈ {1, 2, · · · , k}, let x′
j,0 = Parse(x′

j , 1,m), and check that,
⎧

⎪

⎨

⎪

⎩

c1 = COM({π̂j , ϕ̂j , φ̂j , ρ̂j}k
j=1, τ̂ ,A∗ · (

∑k
j=1 βjx′

j) − u,

B∗ · (
∑k

j=1 βj(x′
j,0,xj) − b),P∗ · (

∑k
j=1 βjx′′

j ) + Q∗ · xid − c),
c3 = COM({Tπ̂j ,ϕ̂j ,τ̂ (x′

j), φ̂j(xj), ρ̂j(x′′
j )}k

j=1, τ̂(xid)).

◦ CH = 3. For j ∈ {1, 2, · · · , k}, let h′
j,0 = Parse(h′

j , 1,m), and check that,
⎧

⎪

⎨

⎪

⎩

c1 = COM({π̃j , ϕ̃j , φ̃j , ρ̃j}k
j=1, τ̃ ,A∗ · (

∑k
j=1 βjh′

j),
B∗ · (

∑k
j=1 βj(h′

j,0,hj)),P
∗ · (

∑k
j=1 βjh′′

j ) + Q∗ · hid),
c2 = COM({Tπ̃j ,ϕ̃j ,τ̃ (h′

j), φ̃j(hj), ρ̃j(h′′
j )}k

j=1, τ̃(hid)).
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The verifier V outputs 1 iff all the above conditions hold, otherwise 0.

The associated relation R(n, k, �, q,m, β) in the above protocol is defined as:

R =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A0,A1
1,A

2
2,B ∈ Z

n×m
q ,P ∈ Z

(m+�)×(n+m+�)
q ,u ∈ Z

n
q ,b ∈ Z

m
q ,

c = (c1, c2) ∈ Z
m
q × Z

�
q, id = bin(i) ∈ {0, 1}�, e0 ∈ Z

m,

e′ = (e′
1, e

′
2, bin(i) ⊗ e′

2) ∈ Secβ(id), e ∈ Z
n+m+�; s.t.

0 < ‖e′‖∞, ‖e0‖∞, ‖e‖∞ ≤ β, c = Pe + (0m, �q/2�id) mod q,

b = (B�A0) · e′
1 + e0 mod q, [A0|A1

1|g� ⊗ A2
2] · e′ = u mod q.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

3.3 Analysis of the Protocol

The following theorem gives a detailed analysis of the above interactive
protocol.

Theorem 1. Let COM (as proposed in [15]) be a statistically hiding and com-
putationally binding commitment scheme, for a given commitment CMT, 3 valid
responses RSP1, RSP2 and RSP3 with respect to 3 different challenges CH1, CH2

and CH3, the proposed protocol is a statistical zero-knowledge argument of knowl-
edge for R(n, k, �, q,m, β), where each round has perfect completeness, soundness
error 2/3, argument of knowledge property and communication cost ˜O(�n log β).

Proof. The proof employs a list of standard techniques for Stern-type protocol as
in [15,18,23]. Due to the limited space, the proof is presented in the full version.

4 The Lattice-Based GS-VLR-ET Scheme

4.1 Description of the Scheme

− KeyGen(1n, N): On input security parameter n, group size N = 2� = poly(n).
The prime modulus q = ω(n2 log n) > N , dimension m = 2n
log q�, Gaus-
sian parameter s = ω(

√
n log q log n), and the norm bound β = 
s · log m�

such that (4β + 1)2 ≤ q. This algorithm specifies the following steps:

1. Run TrapGen(q, n,m) to generate A0 ∈ Z
n×m
q and a trapdoor RA0 .

2. Sample two matrices A1
1,A

2
2

$←− Z
n×m
q and a vector u $←− Z

n
q .

3. Run TrapGen(q, n,m) to generate A3
3 ∈ Z

n×m
q and a trapdoor RA3

3
.

4. As in [31], for group member with index i ∈ {1, 2, · · · , N}, define a matrix
Ai = [A0|A1

1 + iA2
2] ∈ Z

n×2m
q , and do the followings:

4.1. Sample ei,2
$←− DZm,s and let ui = (A1

1 + iA2
2) · ei,2 mod q. Then run

SamplePre(A0,RA0 ,u − ui, s) to obtain ei,1 ∈ Z
m.

4.2. Let ei = (ei,1, ei,2) ∈ Z
2m. Thus Ai · ei = u mod q, 0 < ‖ei‖∞ ≤ β.

4.3. Let the member i’s group secret-key be gski = ei, and its revocation token
be grti = A0 · ei,1 mod q.
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5. Output (Gpk,Gmsk,Gsk,Grt) where Gpk = (A0,A1
1,A

2
2,A

3
3,u), Gmsk = RA3

3
,

Gsk = (gsk1, gsk2, · · · , gskN ), Grt = (grt1, grt2, · · · , grtN ).

− Sign(Gpk, gski,M): Let H : {0, 1}∗ → {1, 2, 3}κ=ω(log n), G : {0, 1}∗ → Z
n×m
q

be two hash functions, modeled as random oracles. Let χ be a β-bounded
distribution as in Definition 2. On input Gpk and a message M ∈ {0, 1}∗,
the member i with secret-key gski = ei specifies the following steps:

1. Sample v $←− {0, 1}n and define B = G(A0,A1
1,A

2
2,u,M, v) ∈ Z

n×m
q .

2. Sample e0
$←− χm and define b = B�grti + e0 = (B�A0) · ei,1 + e0 mod q.

3. Sample G $←− Z
n×�
q , s $←− χn, e1

$←− χm, e2
$←− χ�, define c = (c1, c2) ∈

Z
m
q × Z

�
q where c1 = A3�

3 s + e1 mod q, c2 = G�s + e2 + �q/2�bin(i) mod q,
4. Generate a zero-knowledge proof that the signer is indeed a group mem-

ber who owns a valid secret-key, and has signed the message M ∈ {0, 1}∗,
and its revocation token is correctly embedded in b, and its identity is cor-
rectly embedded in c = (c1, c2) constructed as above. This can be achieved
by repeating κ = ω(log n) times the Stern-type interactive protocol as in
Sect. 3.3 with the public tuple (A0,A1

1,A
2
2,P,u,B,b, c = (c1, c2)) and a

witness (id, gski, e0, e), then making it non-interactive via the Fiat-Shamir
heuristic as a triple Π = ({CMTj}j∈{1,··· ,κ},CH, {RSPj}j∈{1,··· ,κ}) where
CH = {CHj}j∈{1,··· ,κ} = H(M,A0,A1

1,A
2
2,P,u,B,b, c, {CMTj}j∈{1,··· ,κ}).

5. Output the signature Σ = (M,Π,v,b,G, c).

− Verify(Gpk,RL,M,Σ): On input Gpk, a signature Σ on M ∈ {0, 1}∗, a set of
tokens RL = {grti′}i′≤N ⊆ Grt, the verifier specifies the following steps:

1. Parse the signature Σ = (M,Π,v,b,G, c).

2. Let P =

⎛

⎝

A3�
3

· · · · · · Im+�

G�

⎞

⎠, and check that if CH = {CH1,CH2, · · · ,CHκ} =

H(M,A0,A1
1,A

2
2,P,u,B,b, c, {CMTj}j∈{1,2,··· ,κ}).

3. For j ∈ {1, 2, · · · , κ}, run the verification steps of the protocol from Sect. 3.3
to check the validity of RSPj with respect to CMTj and CHj .

4. Let B = G(A0,A1
1,A

2
2,u,M,v) ∈ Z

n×m
q , and for each grti′ ∈ RL, compute

ei′ = b − B�grti′ mod q, and check that if ‖ei′‖∞ > β.
5. If the above are all satisfied, output 1 and accept Σ, otherwise reject it.

− Open(Gpk,Gmsk,M,Σ): On input Gpk, Gmsk = RA3
3
, a group signature Σ on

M ∈ {0, 1}∗, the tracing authority specifies the following steps:

1. Parse Σ = (M,Π,v,b,G, c), in particular, G = [g1,g2, · · · ,g�].
2. For i ∈ {1, 2, · · · , �}, run SamplePre(A3,RA3

3
,gi, s) to obtain fi ∈ Z

m, and
define F = [f1, f2, · · · , f�] ∈ Z

m×�
q .

3. Compute id′ = (d′
1, d

′
2, · · · , d′

�) = c2 −F�c1 mod q. For i ∈ {1, 2, · · · , �}, if d′
i

is closer to 0 than to �q/2�, define di = 1; otherwise, di = 0.
4. Let id = (d1, d2, · · · , d�) and output i = g�

� · id.



Lattice-Based Group Signatures with Verifier-Local Revocation 133

4.2 Analysis of the Scheme

Efficiency and Correctness: For our lattice-based GS-VLR-ET, it only needs 3 pub-
lic matrices for identity-encoding, and one more matrix for explicit traceability,
thus the group public-key has bit-size ˜O(n2), the member secret-key has bit-size
˜O(n) and the signature has bit-size � · ˜O(n) = log N · ˜O(n). Compared with the
existing lattice-based GS-VLR constructions, our scheme saves a O(log N) factor
for both bit-sizes of the group public-key and the member secret-key, meanwhile,
supporting the explicit traceability, thus is more suitable for a large group.

Theorem 2. The proposed scheme is correct with overwhelming probability.

Proof. To prove that for all Gpk, Gsk, Gmsk, Grt generated by KeyGen, all indexes
i ∈ {1, 2, · · · , N}, and all messages M ∈ {0, 1}∗, the following holds true:

Verify(Gpk,RL,Sign(Gpk, gski,M),M) = 1 ⇔grti /∈ RL.

Open(Gpk,Gmsk,Sign(Gpk, gski,M),M) = i.

For the first 3 steps of Verify, a member i owning (e′, e0) ∈ Secβ(id) × χm

can always generate a signature satisfying them. For step 4, ei′ can be expressed
as ei′ = b − B�grti′ = B�grti + e0 − B�grti′ = B�(grti − grti′) + e0 mod q.

1. To prove that, grti /∈ RL ⇒ Verify(Gpk,RL,Sign(Gpk, gski,M),M) = 1.
Assume that grti /∈ RL, we prove that, the step 4 is satisfied with overwhelm-
ing probability, namely, the infinity norm of vector ei′ is lager than β, and
Verify(Gpk,RL,Sign(Gpk, gski,M),M) = 1. For all grti′ ∈ RL, we have that
B� · (grti − grti′) = ei′ − e0 mod q.
Let si′ = grti −grti′ , we have that ‖B�si′‖∞ ≤ ‖ei′‖∞ +‖e0‖∞ ≤ ‖ei′‖∞ +β.
According to Lemma 4 of [22], ‖B�si′‖∞ > 2β with overwhelming probabil-
ity, thus ‖e′

i‖∞ > 2β − β = β.
2. To prove that, Verify(Gpk,RL,Sign(Gpk, gski,M),M) = 1 ⇒ grti /∈ RL.

Assume that Verify(Gpk,RL,Sign(Gpk, gski,M),M) = 1. Thus for all grti′ ∈
RL, we have ‖ei′‖∞ > β. Therefore, if there is an index i′ satisfying grti =
grti′ , then we have ei′ = e0, thus ‖ei′‖∞ = ‖e0‖∞ ≤ β, the signature cannot
pass the verification of step 4, therefore, a contradiction appears.

3. To prove that, Open(Gpk,Gmsk,Sign(Gpk, gski,M),M) = i with overwhelm-
ing probability.
We set the parameters so that the lattice-based dual LWE cyrptosystem is
correct and a tracing authority owning the trapdoor for Λ⊥

q (A3
3) can compute

an identity index belonging to the collection {1, 2, · · · , N} effectively, or a
special symbol ⊥ denoting the opening failure, which implies that our Open
algorithm is also correct. This concludes the correctness proof.

Theorem 3. If COM (as proposed in [15]) is a statistically hiding commitment
scheme, then the proposed scheme is selfless-anonymous in ROM.

Proof. To proof this theorem, we define a list of games as follows:
Game 0. It is the original selfless-anonymity game. C honestly does as follows:
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1. Run KeyGen to obtain Gpk, Gmsk, Gsk, Grt. Set RL = ∅, Corr = ∅, and send
Gpk to adversary A.

2. If A queries the group secret-key of member i, C sets Corr = Corr ∪ {i} and
returns gski; if A queries the group signature on M ∈ {0, 1}∗ of member i, C
returns Σ ← Sign(Gpk, gski,M); if A queries the revocation token of member
i, C sets RL = RL ∪ {grti} and returns it to A.

3. A outputs a message M∗ ∈ {0, 1}∗, two members i0 and i1, and for each
b ∈ {0, 1}, ib /∈ Corr and grtib /∈ RL.

4. C chooses b
$←− {0, 1}, and generates a valid VLR-ET group signature, Σ∗ =

Sign(Gpk, gskib ,M
∗) = (M∗,Π,v,b,G, c) and returns it to A.

5. A can make queries as before, but it is not allowed to ask for gskib or grtib
for each b ∈ {0, 1}.

6. Finally, A outputs a bit b′ ∈ {0, 1}.

Game 1: C does the same as that in Game 0, except that it simulates the signature
generation in step 4 of Game 0 by programming the random oracle:

1. For the first 2 steps of algorithm Sign, work in the honest process, namely,
sample v $←− {0, 1}n, e0, e1

$←− χm, G $←− Z
n×�
q , s $←− χn, e2

$←− χ�. Let
B = G(A0,A1

1,A
2
2,u,M,v), b = B�grtib +e0 mod q, and c = (c1, c2), where

c1 = A3�
3 s + e1 mod q, c2 = G�s + e2 + �q/2�bin(i) mod q.

2. The simulation algorithm does as in the proof of Theorem 1 and will be
repeated κ = ω(log n) times. C programs the random oracle
H(M∗,A0,A1

1,A
2
2,P,u,B,b, c,CMT1, · · · ,CMTκ) = (CH1, · · · ,CHκ) and

due to the statistically zero-knowledge of underlying argument of knowledge,
the distribution of Π∗ is statistically close to Π.

3. Finally, C outputs the simulated signature ̂Σ∗ = (M∗,Π∗,v,b,G, c).

Game 2: C does the same as that in Game 1, except that it computes the vector
b = B�r+e0 mod q. In Game 1, b is generated by the revocation token grtib ,
which is unknown to A and statistically close to a uniform vector r ∈ Z

n
q .

Thus the distribution of b is statistically close to that in Game 1, and Game
2 and 1 are statistically indistinguishable.

Game 3: C does the same as that in Game 2, except that it generates (B,b) $←− U .
In Game 2, (B,b) is generated by an LWEn,q,χ instance, and according to Def-
inition 2, this distribution is computationally close to a uniform distribution
U over Z

n×m
q ×Z

m
q . Thus Game 3 and 2 are computationally indistinguishable.

Game 4: C does the same as that in Game 3, except that it obtains A3
3

$←− Z
n×m
q .

According to Lemma 1, A3
3 is statistically close to a uniform matrix in Z

n×m
q .

Thus Game 4 and 3 are statistically indistinguishable.
Game 5: C does the same as that in Game 4, except that it generates c = (c∗

1, c
∗
2),

where c∗
1 = z1, c∗

2 = z2 + �q/2�bin(i), here z1
$←− Z

m
q , z2

$←− Z
�
q. According

to Definition 2, the hardness of LWEn,q,χ problem implies that Game 5 and
4 are computationally indistinguishable.
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Game 6: C does the same as that in Game 5, except that it generates c = (c∗
1, c

∗
2),

where c∗
1 = z′

1, c
∗
2 = z′

2, where z′
1

$←− Z
m
q and z′

2
$←− Z

�
q. Thus it is easy to

see Game 6 and 5 are statistically indistinguishable. Furthermore, Game 6 is
independent of the bit b, thus the advantage Advself-anonA of A in Game 6 is 0.

According to a series of Games 1 to 6 defined as above, the advantage
Advself-anonA in Game 1 is negligible, namely, the proposed scheme is selfless-
anonymous.

Theorem 4. If the SIS∞
n,m,q,2β·(1+ω(

√
log m)) problem is hard, then the proposed

scheme is traceable in ROM.

Proof. Without loss of generality (WLOG), we first assume that the commitment
COM, mentioned in [15], is computationally binding.

Assume that there is a PPT forger F against our construction with advantage
ε, we can use F to construct an algorithm A to solve the SIS∞

n,m,q,2β·(1+ω(
√

log m))

problem with non-negligible probability.
Given a SIS instance Â ∈ Z

n×m
q , A is required to output a shorter non-zero

vector ê ∈ Z
m satisfying Â · ê = 0 mod q, and 0 < ‖ê‖∞ ≤ poly(m).

Setup: A does as follows:

1. Sample e1∗
1 , e2∗

2
$←− DZm,s, R

$←− {−1, 1}m×m, an index i∗ ∈ {1, 2, · · · , N}.
2. Run TrapGen(q, n,m) to generate A2

2 ∈ Z
n×m
q and a trapdoor RA2

2
.

3. Define A0 = Â, A1
1 = A0 · R − i∗A2

2 mod q.
4. Run TrapGen(q, n,m) to generate A3

3 ∈ Z
n×m
q and a trapdoor RA3

3
.

5. Define u = A0 · (e1∗
1 + R0 · e2∗

2 ) mod q.
6. For i = i∗, let gski∗ = (e1∗

1 , e2∗
2 ), grti∗ = A0 · e1∗

1 mod q.
7. For i ∈ {1, 2, · · · , N} \ {i∗}, define Ai = [A0|A1

1 + iA2
2] ∈ Z

n×2m
q , and run

SampleRight(A0, (i − i∗)A2
2,R,RA2

2
,u, s) to obtain ei = (ei,1, ei,2) ∈ Z

2m

and let gski = ei, grti = A0 · ei,1 mod q.
8. Let Gpk = (A0,A1

1,A
2
2,A

3
3,u), Gmsk = RA3

3
, Gsk = (gsk1, gsk2, · · · , gskN ),

Grt = (grt1, grt2, · · · , grtN ), then send (Gpk,Gmsk,Grt) to F .

Queries: F can make a polynomially bounded number of queries as follows:

1. Corruption: Request for secret-key of i, A adds i to Corr, and returns gski.
2. Signing: Request for a signature on M ∈ {0, 1}∗ of member i. A returns

Σ ← Sign(Gpk, gski,M). For queries to oracle H, uniformly random values in
{1, 2, 3}κ=ω(log n) are returned. Assume that qH is the number of queries to
H, for any d ≤ qH, let rd denote the answer to the d-th query.

Forgery: F outputs a message M∗ ∈ {0, 1}∗, a set of revocation tokens RL∗ ⊆ Grt
and a non-trivial forged group signature Σ∗ = (M∗,Π∗,v∗,b∗,G∗, c∗), where
Π∗ = ({CMTj ,CHj ,RSPj}j∈{1,2,··· ,κ}), which satisfies the followings:

1. Verify(Gpk,RL∗, Σ∗,M∗) = 1.
2. The tracing algorithm (no matter the implicit or explicit tracing) fails, or

traces to a member outside of the coalition Corr\RL∗.
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A exploits the above forgery as follows:

1. Let B∗ = G(A0,A1
1,A

2
2,u,M∗,v∗) ∈ Z

n×m
q .

2. A must queried H on (M∗,A0,A1
1,A

2
2,P,u,B∗,b∗, c∗, {CMTj}j∈{1,··· ,κ}),

since otherwise, the probability that
(CH1, · · · ,CHκ) = H(M∗,A0,A1

1,A
2
2,P,u,B∗,b∗, c∗, {CMTj}j∈{1,··· ,κ}) is

at most 3−κ. Thus, there exists d′ ≤ qH such that the d′-th hash query involves
(M∗,A0,A1

1,A
2
2,P,u,B∗,b∗, c∗, {CMTj}j∈{1,··· ,κ}) with probability at least

ε − 3−κ.
3. Let d′ be the target point. A replays F many times with the same random

tape and input as in the original execution. F is given the same answers to
the first d′ − 1 queries as in the original execution. From the d′-th query, A
chooses fresh random values r′

d′ , · · · , r′
qH ∈ {1, 2, 3}κ as replies.

According to the Improved Forking Lemma of Pointcheval and Vaudenay, with a
probability larger than 1/2, algorithm A can obtain a 3-fork involving the tuple
(M∗,A0,A1

1,A
2
2,P,u,B∗,b∗, c∗, {CMTj}j∈{1,2,··· ,κ}) after at most 32 · qH/(ε −

3−κ) executions of F . Let the answers of A corresponding to this 3-fork be r1
d′ =

(CH1
1,CH1

2, · · · ,CH1
κ), r2

d′ = (CH2
1,CH2

2, · · · ,CH2
κ), r3

d′ = (CH3
1,CH3

2, · · · ,CH3
κ),

then Pr[∃i ∈ {1, 2, · · · , κ} s.t. {CH1
i ,CH2

i ,CH3
i } = {1, 2, 3}] = 1 − (7/9)κ.

Thus, according to the existence of such i, one can parse these 3 forg-
eries corresponding to the fork to obtain (RSP1

i ,RSP2
i ,RSP3

i ) which are 3 valid
responses corresponding to 3 different challenges for the same commitment
CMTi. Further, COM is computationally binding, using the knowledge extrac-
tor K as described in the proof of Theorem 1, one can extract a witness
(id = bin(i) ∈ {0, 1}�, ei = (ei,1, ei,2) ∈ Z

2m, e∗
0, e

∗
1 ∈ Z

m, s∗ ∈ Z
n, e∗

2 ∈ Z
�)

such that,

1. [A0|A1
1 + iA2

2] · ei = u mod q, and ei ∈ Secβ(id).
2. b∗ = (B∗�A0) · ei,1 + e∗

0 mod q, and 0 < ‖e∗
0‖∞ ≤ β.

3. c∗ = (c∗
1, c

∗
2) = (A3�

3 s∗ + e∗
1 mod q,G∗�s∗ + e∗

2 + �q/2�bin(i) mod q).

Now, we consider the following 2 cases:

1. If i �= i∗, this event happens with a probability at most 1 − 1/N , then A
outputs ⊥ and aborts.

2. If i = i∗, A returns ê = (e1∗
1 − ei∗,1) + R · (e2∗

2 − ei∗,2) as a solution of the
given SIS problem. By construction, we have

Â · ê = A0 · (e1∗
1 − ei∗,1 + R · (e2∗

2 − ei∗,2))

= A0 · (e1∗
1 + R · e2∗

2 ) − A0 · (ei∗,1 + R · ei∗,2) = 0 mod q.

Next, we show that ê is with high probability a short non-zero preimage of
0 under Â.

1. ‖ê‖∞ ≤ poly(m). For j ∈ {1, 2}, ‖ej∗
j ‖∞, ‖ei∗,j‖∞ ≤ β, R is a low-norm

matrix with coefficients ±1, thus according to Lemma 4, with overwhelming
probability, we have ‖ê‖∞ ≤ (1 + ω(

√
log m)) · 2β = poly(m).
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2. ê �= 0. Σ∗ = (M∗,Π∗,v∗,b∗,G∗, c∗) is a valid forged signature, thus the
tracing algorithm (no matter the implicit or explicit tracing) either fails, or
traces to a member outside of the coalition Corr\RL∗.
(2.1). If the tracing algorithm fails. Verify(Gpk, grti∗ , Σ∗,M∗) = 1 implies that

A0 · ei∗,1 �= grti∗ = A0 · e1∗
1 mod q, thus ei∗,1 �= e1∗

1 .
(2.2). If the tracing algorithm traces to j∗ /∈ Corr\RL∗. Clearly, we have 2

facts: Verify(Gpk, grtj∗ , Σ∗,M∗) = 0, Verify(Gpk,RL∗, Σ∗,M∗) = 1.
Thus, we have the following conclusions:

a1. grtj∗ /∈ RL∗, thus j∗ /∈ Corr.
a2. Since ‖b∗ − B∗�grtj∗‖∞ = ‖B∗� · (A0 · ei∗,1 − grtj∗) + e∗

0‖∞ ≤ β,
‖e∗

0‖∞ ≤ β, thus ‖B∗� · (A0 · ei∗,1 − grtj∗)‖∞ ≤ 2β, furthermore,
according to Lemma 4 of [22], we have that grtj∗ = A0 · ei∗,1 mod q
with overwhelming probability.
Now, considering the following 2 cases:

b1. If F has never requested gski∗ , then (e1∗
1 , e2∗

2 ) cannot be known to F ,
and thus (e1∗

1 , e2∗
2 ) �= (ei∗,1, ei∗,2) with overwhelming probability.

b2. If F has requested gski∗ , then i∗ ∈ Corr, thus i∗ �= j∗, so grti∗ �= grtj∗ ,
which means ei∗,1 �= e1∗

1 .

Based on the above analysis, for an easy case, in (2.1) and b2, suppose that
e2∗
2 = ei∗,2, then we must have ê = e1∗

1 − ei∗,1 �= 0. On the contrary, in (2.1), b1

and b2, e2∗
2 �= ei∗,2, define ê2 = e2∗

2 − ei∗,2, in this case, we have 0 �= ‖ê2‖∞ ≤
2β � q, and thus there must be at least one coordinate of ê2 that is non-zero
modulo q. WLOG, let this coordinate be the last one in ê2, and call it ê. Let r be
the last column of R, the expression of ê can be rewritten as ê = r · ê+ ê′ where
ê′ does not depends on r. The only information about r available to F is just
contained in the last column of A1 = A0 · R. According to the leftover hash or
pigeonhole principle, there are expO(m−n log q)= ˜O(n) admissible and equally likely
vectors r that are compatible with the view of F , F cannot know the value of
r · ê with probability exceeding exp− ˜O(n), and at most one such value can result
in a cancelation of ê. Thus, ê is non-zero with a high probability 1 − exp− ˜O(n).

Therefore, we deduce that ê is with a probability larger than 1/(2N) · (1 −
(7/9)κ) · (1 − exp− ˜O(n)) · ε a short non-zero preimage of 0 under Â, i.e., Â · ê =
0 modq, 0 �= ‖ê‖∞ ≤ 2β · (1 + ω(

√
log m)) = poly(m). This concludes the proof.
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