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Preface

The 18th International Conference on Cryptology and Network Security (CANS 2019)
was held in Fuzhou, China, during October 25–27, 2019, and was organized and hosted
by Fujian Normal University, in corporation with the Fujian Provincial Key Laboratory
of Network Security and Cryptology, International Association for Cryptologic
Research, and Springer.

CANS is a recognized annual conference, focusing on cryptology, computer and
network security, and data security and privacy, attracting cutting-edge research find-
ings from world-renowned scientists in the area. Earlier editions were held in Taipei
(2001), San Francisco (2002), Miami (2003), Xiamen (2005), Suzhou (2006),
Singapore (2007), Hong Kong (2008), Kanazawa (2009), Kuala Lumpur (2010), Sanya
(2011), Darmstadt (2012), Parary (2013), Crete (2014), Marrakesh (2015), Milan
(2016), Hong Kong (2017), and Naples (2018).

This year the conference received 55 anonymous submissions. All the submissions
were reviewed on the basis of their significance, novelty, technical quality, and prac-
tical impact. The Program Committee (PC) consisted of 49 members with diverse
backgrounds and broad research interests. The review process was double-blind. After
careful reviews by at least three experts in the relevant areas for each paper, and
discussions by the PC members, 21 submissions were accepted as full papers
(an acceptance rate 38%) and 8 submissions as short papers for presentation in the
conference and inclusion in the conference proceedings. The accepted papers cover
multiple topics, from algorithms to systems and applications.

CANS 2019 was made possible by the joint efforts of many people and institutions.
There is a long list of people who volunteered their time and energy to put together the
conference and who deserve special thanks.

We would like to thank all the PC members for their great effort in reading, com-
menting, and finally selecting the papers. We also thank all the external reviewers for
assisting the PC in their particular areas of expertise.

We would like to emphasize our gratitude to the general chair Professor Changping
Wang, for his generous support and leadership to ensure the success of the conference.
We are deeply grateful for the tireless efforts of the local and Organizing Committee in
the capable hands of Professors Xinyi Huang and Li Xu. Thanks also go to publicity
chairs Wei Wu and Shangpeng Wang, and web chair Hong Zhao.

We sincerely thank the authors of all submitted papers and all the conference
attendees. Thanks are also due to the staff at Springer for their help with producing the
proceedings and to the developers and maintainers of the EasyChair software, which
greatly helped simplify the submission and review process.

October 2019 Robert H. Deng
Yi Mu
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Bi-homomorphic Lattice-Based PRFs
and Unidirectional Updatable Encryption

Vipin Singh Sehrawat1(B) and Yvo Desmedt1,2

1 Department of Computer Science, The University of Texas at Dallas,
Richardson, USA

vipin.sehrawat.cs@gmail.com
2 Department of Computer Science, University College London, London, UK

Abstract. We define a pseudorandom function (PRF) F : K × X → Y
to be bi-homomorphic when it is fully Key homomorphic and partially
Input Homomorphic (KIH), i.e., given F (k1, x1) and F (k2, x2), there
is an efficient algorithm to compute F (k1 ⊕ k2, x1 � x2), where ⊕ and
� are (binary) group operations. The homomorphism on the input is
restricted to a fixed subset of the input bits, i.e., � operates on some
pre-decided m-out-of-n bits, where |x1| = |x2| = n, m < n, and the
remaining n−m bits are identical in both inputs. In addition, the output
length, �, of the operator � is not fixed and is defined as n ≤ � ≤ 2n,
hence leading to Homomorphically induced Variable input Length (HVL)
as n ≤ |x1 � x2| ≤ 2n. We present a learning with errors (LWE) based
construction for a HVL-KIH-PRF family. Our construction is inspired
by the key homomorphic PRF construction due to Banerjee and Peikert
(Crypto 2014). We use our novel PRF family to construct an updatable
encryption scheme, named QPC-UE-UU, which is quantum-safe, post-
compromise secure and supports unidirectional ciphertext updates, i.e.,
the tokens can be used to perform ciphertext updates, but they cannot
be used to undo completed updates. Our PRF family also leads to the
first left/right key homomorphic constrained-PRF family with HVL.

Keywords: Bi-homomorphic PRFs · LWE · Lattice-based · Updatable
encryption · Unidirectional updates · Post-compromise security

1 Introduction

In a PRF family [1], each function is specified by a short, random key, and can be
easily computed given the key. Yet the function behaves like a random one, in the
sense that if you are not given the key, and are computationally bounded, then
the input-output behavior of the function looks like that of a random function.
Since their introduction, PRFs have been one of the most fundamental building
blocks in cryptography. For a PRF Fs, the index s is called its key or seed.
Many variants of PRFs with additional properties have been introduced and
have found a plethora of applications in cryptography.

c© Springer Nature Switzerland AG 2019
Y. Mu et al. (Eds.): CANS 2019, LNCS 11829, pp. 3–23, 2019.
https://doi.org/10.1007/978-3-030-31578-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31578-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-31578-8_1
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Key Homomorphic (KH) PRFs: A PRF family F is KH-PRF if the set
of keys has a group structure and if there is an efficient algorithm that, given
Fs(x) and Ft(x), outputs Fs+t(x) [2]. Multiple KH-PRF constructions have been
proposed via varying approaches [2–5]. These functions have many applications
in cryptography, such as, symmetric-key proxy re-encryption, updatable encryp-
tion, and securing PRFs against related-key attacks [3]. But, lack of input homo-
morphism limits the privacy preserving applications of KH-PRFs. For instance,
while designing solutions for searchable symmetric encryption [6], it is highly
desirable to hide the search patterns, which can be achieved by issuing random
queries for each search. But, this feature cannot be supported if the search index
is built by using a KH-PRF family, since it would require identical query (i.e.,
function input) to perform the same search.

Constrained PRFs (CPRFs): Constrained PRFs (also called delegatable
PRFs) are another extension of PRFs. They enable a proxy to evaluate a PRF
on a strict subset of its domain using a trapdoor derived from the CPRF secret
key. A trapdoor is constructed with respect to a certain policy predicate that
determines the subset of the input values for which the proxy is allowed to eval-
uate the PRF. Introduced independently by Kiayias et al. [7], Boneh et al. [8]
and Boyle et al. [9] (termed functional PRFs), CPRFs have multiple interest-
ing applications, including broadcast encryption, identify-based key exchange,
batch query supporting searchable symmetric encryption and RFID. Banerjee
et al. [10], and Brakerski and Vaikuntanathan [11] independently introduced
KH-CPRFs.

Variable Input Length (VIL) PRFs: VIL-PRFs [12] serve an important role
in constructing variable length block ciphers [13] and authentication codes [12],
and are employed in prevalent protocols like Internet Key Exchange (IKEv2).
No known CPRF or KH-CPRF construction supports variable input length.

Updatable Encryption (UE): In data storage, key rotation refers to the
process of (periodically) exchanging the cryptographic key material that is used
to protect the data. Key rotation is a desirable feature for cloud storage providers
as it can be used to revoke old keys, that might have been comprised, or to
enforce data access revocation. All major cloud storage providers (e.g. Amazon’s
Key Management Service [14], Google Cloud Platform [15]) implement some
variant of data-at-rest encryption and hybrid encryption techniques to perform
key rotation [16], which although efficient, do not support full key rotation as the
procedures are designed to only update the data encapsulation key but not the
long-term key. Symmetric updatable encryption, introduced by Boneh et al. [3]
(BLMR henceforth), supports full key rotation without performing decryption,
i.e., the ciphertexts created under one key can be securely updated to ciphertexts
created under another key with the help of a re-encryption/update token.

Everspaugh et al. [16] pointed out that the UE scheme from BLMR addresses
relatively weak confidentiality goals and does not even consider integrity. They
proposed a new security notion, named re-encryption indistinguishability, to
better capture the idea of fully refreshing the keys upon rotation. They also
presented an authenticated encryption based UE scheme, that satisfies the
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requirements of their new security model. Recently, Lehmann and Tackmann
[17] observed that the previous security models/definitions (from BLMR and
Everspaugh et al.) do not capture post-compromise security, i.e., the security
guarantees after a key compromise. They also proved that neither of the two
schemes is post-compromise secure under adaptive attacks. In the same paper,
they presented the first UE scheme with post-compromise security. However,
the security of that scheme is based on the Decisional Diffie Hellman (DDH)
assumption, rendering it vulnerable to quantum computers [18]. It is important
to note that all existing UE schemes only support bidirectional updates, i.e.,
the update token used to refresh the ciphertext for the current epoch can also
be used to revert back to the previous epoch’s ciphertext. Naturally, this is an
undesirable feature. Hence, unidirectional updates [17], where the update tokens
cannot be used to undo the ciphertext updates, is a highly desirable feature for
UE schemes. But as mentioned earlier, no existing UE scheme achieves unidi-
rectional updates.

1.1 Our Contributions

Our contributions can be classified into the following two broad classes.
1. Novel PRF Classes and Constructions. We introduce fully Key homo-
morphic and partially Input Homomorphic (KIH) PRFs with Homomorphically
induced Variable input Length (HVL). A PRF, F , from such function family sat-
isfies the condition that given F (k1, x1) and F (k2, x2), there exists an efficient
algorithm to compute F (k1 ⊕ k2, x1 � x2), where |x1 � x2| ≥ |x1| (= |x2|) and
the input homomorphism effects only some fixed m-out-of-n bits. We present a
Learning with Errors (LWE) [19] based construction for such a PRF family. Our
construction is inspired by the KH-PRF construction from Banerjee and Peikert
[4]. A restricted case of our PRF family leads to another novel PRF class, namely
left/right KH-CPRF with HVL.
2. Quantum-Safe Post-Compromise Secure UE Scheme with Unidi-
rectional Updates. We use our HVL-KIH-PRF family to construct the first
quantum-safe, post-compromise secure updatable encryption scheme with unidi-
rectional updates. We know that the KH-PRF based UE scheme from BLMR is
not post-compromise secure because it never updates the nonce [17]. Since our
HVL-KIH-PRF family supports input homomorphism, in addition to key homo-
morphism, it allows updates to the nonce (i.e., the PRF input). Hence, we turn
the BLMR UE scheme post-compromise secure by replacing their KH-PRF by
our HVL-KIH-PRF, and introducing randomly sampled nonces for the cipher-
text updates. The bi-homomorphism of our PRF family also allows us to enforce
unidirectional updates. Since our PRF construction is based on the learning with
errors (LWE) problem [19], our UE scheme is also quantum-safe.

1.2 Organization

Section 2 recalls the necessary background for the rest of the paper. Section 3
introduces and defines KIH-PRF, HVL-KIH-PRF and HVL-KH-CPRF. In
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Sect. 4, we present a LWE-based construction for a HVL-KIH-PRF family, pro-
vide its proof of correctness and discuss the different types of input homomor-
phisms that it supports. Section 5 gives the security proof for our HVL-KIH-PRF
construction, while Sect. 6 analyzes its time complexity. Section 7 presents the
construction of left/right HVL-KH-CPRF, that follows from a restricted case
of our HVL-KIH-PRF family. In Sect. 8, we use of our HVL-KIH-PRF family
to construct the first quantum-safe, post-compromise secure updatable encryp-
tion scheme with unidirectional updates. Section 9 discusses an interesting open
problem, solving which would lead to a novel searchable encryption scheme.

2 Background

This section recalls the necessary definitions required for the rest of the paper.

2.1 Learning with Errors (LWE)

The LWE problem requires to recover a secret s given a sequence of ‘approxi-
mate’ random linear equations on it. LWE is known to be hard based on cer-
tain assumptions regarding the worst-case hardness of standard lattice prob-
lems such as GapSVP (decision version of the Shortest Vector Problem) and
SIVP (Shortest Independent Vectors Problem) [19,20]. Many cryptosystems have
been constructed whose security can be proven under the LWE problem, includ-
ing (identity-based, leakage-resilient, fully homomorphic, functional) encryption
[19,21–26], PRFs [27], KH-PRFs [3,4], KH-CPRFs [10,11], etc.

Definition 1 [19]. (Decision-LWE) For positive integers n and q, such that
q = q(n) ≥ 2, and an error distribution χ = χ(n) over Zq, the decision-LWEn,q,χ

problem is to distinguish between the following pairs of distributions:

(A,AT s + e) and (A,u),

where m = poly(n),A $←− Z
n×m
q , s $←− Z

n
q , e $←− χm, and u $←− Z

m
q .

Definition 2 [19]. (Search-LWE) For positive integers n and q, such that
q = q(n) ≥ 2, and an error distribution χ = χ(n) over Zq, the search-LWEn,q,χ

problem is to recover s ∈ Z
n
q , given m(= poly(n)) independent samples of

(A,AT s + e), where A $←− Z
n×m
q , s $←− Z

n
q , and e $←− χm.

2.2 Learning with Rounding (LWR)

Banerjee et al. [27] introduced the LWR problem, in which instead of adding a
random small error as done in LWE, a deterministically rounded version of the
sample is released. In particular, for some p < q, the elements of Zq are divided
into p contiguous intervals of roughly q/p elements each. The rounding function
is defined as: �·�p : Zq → Zp, that maps x ∈ Zq into the index of the interval that
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x belongs to. Note that the error is introduced only when q > p, with “absolute”
error being roughly equal to q/p, resulting in the “error rate” (relative to q) to
be on the order of 1/p. The LWR problem was shown to be as hard as LWE
for a setting of parameters where the modulus and modulus-to-error ratio are
super-polynomial [27]. Following [27], Alwen et al. [28] gave a LWR to LWE
reduction that works for a larger range of parameters, allowing for a polynomial
modulus and modulus-to-error ratio. Bogdanov et al. [29] gave a more relaxed
and general version of the theorem proved in [28].

2.3 LWE-Based KH-PRFs

Due to small error being involved, LWE based KH-PRF constructions [3,4] only
achieve ‘almost homomorphism’, which is defined as:

Definition 3 [3]. Let F : K × X → Z
m
p be an efficiently computable function

such that (K,⊕) is a group. We say that the tuple (F,⊕) is a γ-almost key
homomorphic PRF if the following two properties hold:

1. F is a secure pseudorandom function.
2. For every k1, k2 ∈ K and every x ∈ X , there exists a vector e ∈ [0, γ]m such

that: Fk1(x) + Fk2(x) = Fk1⊕k2(x) + e (mod p).

Based on [27], BLMR gave the first standard-model constructions of KH-
PRFs using lattices/LWE. They proved their PRF to be secure under the m-
dimensional (over an m-dimensional lattice) LWE assumption, for error rates
(as defined in Sect. 2.2) α = m−Ω(l). Following [3], Banerjee and Peikert [4] gave
KH PRFs from substantially weaker LWE assumptions, e.g., error rates of only
α = m−Ω(log l), which yields better key sizes and runtimes.

3 Novel PRF Classes: Definitions

In this section, we formally define KIH-PRF, HVL-KIH-PRF and HVL-KH-
CPRF. For convenience, our definitions assume seed and error matrices instead
of vectors. Note that such interchange does not affect the hardness of LWE [30].

Notations. We begin by defining the important notations.

1. x = x�||xr, where 1 ≤ |x�| ≤ �|x|/2� and |xr| = |x| − |x�|.
2. xa = xa.�||xa.r, where 1 ≤ |xa.�| ≤ �|xa|/2� and |xa.r| = |xa| − |xa.�|.
Assumption. Since the new PRF classes exhibit partial input homomorphism,
without loss the generality, we assume xr to be the homomorphic portion of the
input x, with x� being the static/fixed portion. Obviously, the definitions remain
valid if these are swapped, i.e., if x� is taken to be the homomorphic portion of
the input with fixed/static xr.
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3.1 KIH-PRF

Definition 4. Let F : K × X ′ × X → Z
m×m
p be a PRF family, such that (K,⊕)

and (X ,�) are groups. We say that the tuple (F,�,⊕) is a γ-almost fully key
and partially input homomorphic PRF if the following condition holds:

– For every k1, k2 ∈ K, with x1.r, x2.r ∈ X and x1.�, x2.� ∈ X ′, such that
x1.� = x2.� = x�, there exists a vector E ∈ [0, γ]m×m such that:

Fk1(x1.�||x1.r) + Fk2(x2.�||x2.r) + E = Fk1⊕k2(x�||xr) (mod p),

where xr = x1.r � x2.r.

3.2 HVL-KIH-PRF

Definition 5. Let X ⊂ Y, with � defining the surjective mapping: X �X → Y.
Let F : K×X ′ ×X → Z

m×m
p and F ′ : K×X ′ ×Y → Z

m×m
p be two PRF families,

where (K,⊕) is a group. We say that the tuple (F,�,⊕) is a γ-almost fully key
and partially input homomorphic PRF with homomorphically induced variable
input length, if the following condition holds:

– For every k1, k2 ∈ K, and with x1.r, x2.r ∈ X and x1.�, x2.� ∈ X ′, such that
x1.� = x2.� = x�, there exists a vector E ∈ [0, γ]m×m such that:

Fk1(x1.�||x1.r) + Fk2(x2.�||x2.r) + E = F ′
k1⊕k2

(x�, y) (mod p),

where y = x1.r � x2.r.

3.3 Left/Right KH-CPRF with HVL

Definition 6. (Left KH-CPRF with HVL:) Let X ⊂ Y, with � defining the
surjective mapping: X �X → Y. Let F : K×W ×X → Z

m×m
p and F ′ : K×W ×

Y → Z
m×m
p be two PRF families, where (K,⊕) is a group. We say that the tuple

(F,�,⊕) is a left key homomorphic constrained-PRF with homomorphically
induced variable input length, if for any k0 ∈ K and a fixed w ∈ W, given
Fk0(w||x) ∈ F , where x ∈ X , there exists an efficient algorithm to compute
F ′

k0⊕k1
(w, y) ∈ F ′, for all k1 ∈ K and y ∈ Y.

(Right KH-CPRF with HVL:) Let X ⊂ Y, with � defining the surjective
mapping: X �X → Y. Let F : K×X ×W → Z

m×m
p and F ′ : K×Y×W → Z

m×m
p

be two PRF families, where (K,⊕) is a group. We say that the tuple (F,�,⊕)
is a right key homomorphic constrained-PRF with homomorphically induced
variable input length, if for any k0 ∈ K and a fixed w ∈ W, given Fk0(x||w) ∈ F ,
where x ∈ X , there exists an efficient algorithm to compute F ′

k0⊕k1
(y, w) ∈ F ′,

for all k1 ∈ K and y ∈ Y.

4 LWE-Based HVL-KIH-PRF Construction

In this section, we present the first construction for a HVL-KIH-PRF family. Our
construction is based on the LWE problem, and is inspired from the KH-PRF
construction by Banerjee and Peikert [4].
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4.1 Rounding Function

Let λ be the security parameter. Define a rounding function, �·� : Zq → Zp,
where q ≥ p ≥ 2, as:

�x�p =
⌊

p

q
· x

⌉

That is, if �x�p = i, then i · �q/p� is the integer multiple of �q/p� that is nearest
to x. So, x is deterministically rounded to the nearest element of a sufficiently
“coarse” public subset of p  q, well-separated values in Zq (e.g., a subgroup).
Thus, the “error term” comes solely from deterministically rounding x to a rela-
tively nearby value in Zp. As described in Sect. 2.2, the problem of distinguishing
such rounded products from uniform samples is called the decision-learning with
rounding (LWRn,q,p) problem. The rounding function is extended component
wise to vectors and matrices over Zq.

4.2 Definitions

Let l = �log q� and d = l + 1. Define a gadget vector as:

g = (0, 1, 2, 4, . . . , 2l−1) ∈ Z
d
q .

Define a deterministic decomposition function g−1 : Zq → {0, 1}d, such that
g−1(a) is a “short” vector and ∀a ∈ Zq, it holds that: 〈g,g−1(a)〉 = a, where 〈·〉
denotes the inner product. The function g−1 is defined as:

g−1(a) = (x′, x0, x1, . . . , xl−1) ∈ {0, 1}d,

where x′ = 0, and a =
l−1∑
i=0

xi2i is the binary representation of a. The gadget

vector is used to define the gadget matrix G as:

G = In ⊗ g = diag(g, . . . ,g) ∈ Z
n×nd
q ,

where In is the n × n identity matrix and ⊗ denotes the Kronecker product.
The binary decomposition function, g−1, is applied entry-wise to vectors and
matrices over Zq. Thus, g−1 is extended to get another deterministic decompo-
sition function G−1 : Zn×m

q → {0, 1}nd×m, such that, G · G−1(A) = A. The
addition operations inside the binary decomposition functions g−1 and G−1 are
performed as simple integer operations (over all integers Z), and not done in Zq.

4.3 Main Construction

We begin by going over the frequently used notations for this section.

1. x�h: left half of x, such that |x�h| = �|x/2|�.
2. xrh: right half of x, such that |xrh| = �|x/2|�.
3. x[i]: the ith bit of x.
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Let T be a full binary tree with at least one node, with T.r and T.� denoting
its right and left subtree, respectively. For random matrices A0,A1 ∈ Z

n×nd
q ,

define function AT : {0, 1}|T | → Z
n×nd
q recursively as:

AT (x) =
{
Ax if |T | = 1
AT.�(x�) + Ax[0]G

−1(AT.r(xr)) otherwise,

where x = x�||xr, x� ∈ {0, 1}|T.�|, xr ∈ {0, 1}|T.r|, and |T | denotes the number
of leaves in T . Based on the random seed S ∈ Z

n×nd
q , the KIH-PRF family,

F(A0,A1,T,p), is defined as:

F(A0,A1,T,p) =
{

FS : {0, 1}2|T | −→ Z
nd×nd
p

}
.

Two seed dependent matrices, B0,B1 ∈ Z
n×nd
q , are defined as:

B0 = A0 + S B1 = A1 + S,

Using the seed dependent matrices, a function BS
T (x) is defined recursively as:

BS
T (x) =

{
Bx if |T | = 1
BS

T.�(x�) + Ax[0]G
−1(BS

T.r(xr)) otherwise,

Let R : {0, 1}|T | → Z
nd×n
q be a pseudorandom generator. Let y = y�h||yrh,

where y�h, yrh ∈ {0, 1}|T |. In order to keep the length the equations in check, we
represent the product R(y�h) · Ay[0] by the notation: R0(y�h). A member of the
KIH-PRF family is indexed by the seed S as:

FS(y) := �ST · AT (y�h) + R0(y�h) · G−1(BS
T (yrh))�p. (1)

Let 0̄ = 00, i.e., it represents two consecutive 0 bits. We define the following
function family:

F ′
(A,T,p) =

{
F ′
S : {0, 1}|T | × {0, 1, 0̄}|T | −→ Z

nd×nd
p

}
,

where A = {A0,A1,B0,B1,C0,C1,C0}, and the matrices C1,C0,C0 are
defined by the seed S ∈ Z

n×nd
q as:

C1 = A0 + B1; C0 = A0 + B0; C0 = A1 + B1.

Define a function CT : {0, 1}|T | × {0, 1, 0̄}|T | → Z
n×nd
q recursively as:

CS
T (x) =

⎧⎨
⎩

Cx if |T | = 1
C0 if |T | > 1

∧
x[i] = x[i + 1] = 0

CS
T.�(x�) + Ax[0]G

−1(CS
T.r(xr)) otherwise,

i.e., C0 denotes two bits. Hence, during the evaluation of CS
T (x), a leaf in T

may represent one bit or two bits. Let z = z0||z1, where z0 ∈ {0, 1}|T | and
z1 ∈ {0, 1, 0̄}|T |. A member of the function family F ′

(A,T,p) is defined as:

F ′
S(z0, z1) := �ST · AT (z0) + R0(z0) · G−1(CS

T (z1))�p, (2)
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where R0(z0) = R(z0)·Az0[0]. Similar to the KH-PRF construction from [4], bulk
of the computation performed while evaluating the PRFs, FS(x) and F ′

S(x0, x1),
is in computing the functions AT (x),BS

T (x),CS
T (x). While computing these

functions on an input x, if all the intermediate matrices are saved, then AT (x′),
BS

T (x′),CS
T (x′) can be incrementally computed for a x′ that differs from x in

a single bit. Specifically, one only needs to recompute the matrices for those
internal nodes of T which appear on the path from the leaf representing the
changed bit to the root. Hence, saving the intermediate matrices, that are gen-
erated while evaluating the functions on an input x can significantly speed up
successive evaluations on the related inputs x′.

4.4 Proof of Correctness

The homomorphically induced variable length (HVL) for our function family
follows from the fact that {0, 1}|T | ⊂ {0, 1, 0̄}|T |. So, we move on to defining and
proving the fully key and partially input homomorphic property for our function
family. We begin by introducing a commutative binary operation, called ‘almost
XOR’, which is denoted by ⊕̄ and defined by the truth table given in Table 1.

Table 1. Truth table for ‘almost XOR’ operation, ⊕̄

1⊕̄1 = 0

0⊕̄0 = 00

0⊕̄1 = 1

Theorem 1. For any inputs x, y ∈ {0, 1}|T | and a full binary tree |T | such that:
xlh = ylh = z0 and xrh⊕̄yrh = z1, where z0 ∈ {0, 1}|T |, and z1 ∈ {0, 1, 0̄}|T |, the
following holds:

F ′
(S1+S2)

(z0, z1) = FS1(x) + FS2(y) + E, (3)

where ||E||∞ ≤ 1.

Proof. We begin by making an important observation, and arguing about its
correctness.

Observation 1. The HVL-KIH-PRF family, defined in Eq. 1, requires both
addition and multiplication operations for each function evaluation. Hence,
adding the outputs of two functions, FS1 and FS2 , from the function family
F translates into adding the outputs per node of the tree T . As a result, the
decomposition function G−1 for each node in T takes one of the following three
forms:

1. G−1(Ab + Ax[0] · G−1(·)),
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2. G−1(Ab + Ax[0] · G−1(·) + · · · + Ax0 · G−1(·)),
3. G−1(Ab), b ∈ {0, 1},

where G−1(·) denotes possibly nested G−1. Note that each term Ax[0] ·G−1(·) or
a summation of such terms, i.e., Ax[0] ·G−1(·)+ · · ·+Ax[0] ·G−1(·), yields some
matrix Ă ∈ Z

n×nd
q . Hence, each decomposition function G−1 in the recursively

unwound function F ′
(s1+s2)

(z0, z1) has at most two “direct” inputs/arguments

(i.e., Ab and Ă). ��
Recall from Sect. 4.2 that for the “direct” arguments of G−1, addition oper-

ations are performed as simple integer operations (over all integers Z) instead
of being done in Zq. We know from Observation 1, that unwinding of the recur-
sive function F ′

S(z0, z1) yields each binary decomposition function G−1 with at
most two “direct” inputs. We also know that binary decomposition functions
(g−1 and G−1) are linear, provided there is no carry bit or there is an addi-
tional bit to accommodate the possible carry. Hence, by virtue of the extra bit,
d − l (where l = �log q�, and d = l + 1), each G−1 behaves as a linear function
during the evaluation of our function families, i.e., the following holds:

G−1(Ai + Aj) = G−1(Ai) + G−1(Aj), (4)

where G−1(Ai) + G−1(Aj) is component-wise vector addition of the n, d bits
long bit vectors of the columns, [v1, . . . ,vnd] ∈ Z

1×nd, of G−1(Ai) with the n,
d bits long bit vectors of the columns, [w1, . . . ,wnd] ∈ Z

1×nd
q , of G−1(Aj).

We are now ready to prove Eq. 3. Since ylh = xlh, we use xlh to represent
both, as that helps clarity. Let S = S1 + S2, then by using Eq. 2, we can write
the LHS of Eq. 3 as: �ST · AT (z0) + R0(z0) · G−1(CS

T (z1))�p.
Similarly, from Eq. 1, we get RHS of Eq. 3 equal to:

�ST
1 · AT (xlh) + R0(xlh) · G−1(BS1

T (xrh))�p

+ �ST
2 · AT (xlh) + R0(xlh) · G−1(BS2

T (yrh))�p + E.

We know that �a + b�p = �a�p + �b�p + e. We further know that xlh = z0,
and R0(xlh) = R0(z0). Thus, from Eq. 4, the RHS can be written as:

�(S1 + S2)T · AT (z0) + R0(z0) · G−1(BS1
T (xrh) + BS2

T (yrh))�p

= �ST · AT (z0) + R0(z0) · G−1(CS
T (xrh⊕̄yrh))�p

= �ST · AT (z0) + R0(z0) · G−1(CS
T (z1)�p = LHS.

��

5 Security Proof

The security proofs as well as the time complexity analysis of our construction
depend on the tree T . Left and right depth of T are respectively defined as
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the maximum left and right depths over all leaves in T . The modulus q, the
underlying LWE error rate, and the dimension n needed to obtain a desired
level of provable security, are largely determined by two parameters of T . The
first one, called expansion e(T) [4], is defined as:

e(T ) =
{

0 if |T | = 1
max{e(T.�) + 1, e(T.r)} otherwise,

For our construction, e(T ) is the maximum number of terms of the form G−1(·)
that get consecutively added together when we unwind the recursive definition
of the function AT . The second parameter is called sequentiality [4], which gives
the maximum number of nested G−1 functions, and is defined as:

s(T ) =
{

0 if |T | = 1
max{s(T.�), s(T.r) + 1} otherwise,

For our function families, over the uniformly random and independent choice
of A0,A1,S ∈ Z

n×nd
q , and with the secret key chosen uniformly from Z

n
q , the

modulus-to-noise ratio for the underlying LWE problem is: q/r ≈ (n log q)e(T ).
Known reductions [19,20,31] (for r ≥ 3

√
n) guarantee that such a LWE instan-

tiation is at least as hard as approximating hard lattice problems like GapSVP
and SIVP, in the worst case to within ≈ q/r factors on n-dimensional lat-
tices. Known algorithms for achieving such factors take time exponential in
n/ log(q/r) = Ω̃(n/e(T )). Hence, in order to obtain provable 2λ (where λ is
the input length) security against the best known lattice algorithms, the best
parameter values are the same as defined for the KH-PRF construction from [4],
which are:

n = e(T ) · Θ̃(λ) and log q = e(T ) · Θ̃(1). (5)

5.1 Overview of KH-PRF from [4]

As mentioned earlier, our construction is inspired by the KH-PRF construction
from [4]. Our security proofs rely on the security of that construction. There-
fore, before moving to the security proofs, it is necessary that we briefly recall
the KH-PRF construction from [4]. Although that scheme differs from our KIH
PRF construction, certain parameters and their properties are identical. The
rounding function �·�p, binary tree T , gadget vector/matrix g/G, the binary
decomposition functions g−1/G−1 and the base matrices D0,D1 in that scheme
are defined similarly to our construction. There is a difference in the definitions
of the decomposition functions, which for our construction are defined as (see
Sect. 4.2): g−1 : Zq → {0, 1}d and G−1 : Zn×m

q → {0, 1}nd×m, i.e., the dimen-
sions of the output space for our decomposition functions has d(= l + 1) instead
of l = �log q� as in [4]. Recall that the extra (carry) bit ensures that Eq. 4 holds.

KH-PRF Construction from [4]. Given two uniformly selected matrices,
D0,D1 ∈ Z

n×nl
q , define function DT (x) : {0, 1}|T | → Z

n×nl
q as:

DT (x) =
{
Dx if |T | = 1
DT.�(xlt) · G−1(DT.r(xrt)) otherwise,

(6)
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where x = xlt||xrt, for xlt ∈ {0, 1}|T.�|, xrt ∈ {0, 1}|T.r|. The KH-PRF function
family is defined as:

HD0,D1,T,p =
{

Hs : {0, 1}|T | → Z
nl
p

}
.

where p ≤ q is the modulus. A member of the function family H is indexed by
the seed s ∈ Z

n
q as: Hs(x) = �s · DT (x)�p.

Main Security Theorem [4]. For the sake of completeness, we recall the main
security theorem from [4].

Theorem 2. [4] Let T be any full binary tree, χ be some distribution over Z

that is subgaussian with parameter r > 0 (e.g., a bounded or discrete Gaussian
distribution with expectation zero), and

q ≥ p · r
√

|T | · (nl)e(T ) · λω(1),

where λ is the input size. Then over the uniformly random and indepen-
dent choice of D0,D1 ∈ Z

n×nl
q , the family HD0,D1,T,p with secret key chosen

uniformly from Z
n
q is a secure PRF family, under the decision-LWEn,q,χ

assumption.

5.2 Security Proof of Our Construction

The dimensions and bounds for the parameters r, q, p, n,m and χ in our con-
struction are the same as in [4]. We begin by defining the necessary terminology.

1. Reverse-LWE: is an LWE instance STA + E with secret lattice-basis A and
public seed matrix S.

2. Reverse-LWR: is defined similarly, i.e., �STA�p with secret A and public S.
3. If H represents the binary entropy function, then we know that for uniformly

random A ∈ Z
n×nd
q and a random seed S ∈ Z

n×nd
q , it holds that: H(A) =

H(S). Hence, it follows from elementary linear algebra that reverse-LWRn,q,p

and reverse-LWEn,q,χ are at least as hard as decision-LWRn,q,p and decision-
LWEn,q,χ, respectively.

Observation 2. Consider the function family F(A0,A1,T,p). We know that a
member of the function family is defined by a random seed S ∈ Z

n×nd
q as:

FS(x) = �ST · AT (xlh) + R0(xlh) · G−1(BS
T (xrh))�p,

= �ST · AT (xlh)�p︸ ︷︷ ︸
LT (xlh)

+ �R0(xlh) · G−1(BS
T (xrh))�p︸ ︷︷ ︸

RT (xrh)

+E.

Observation 3. For |T | ≥ 1 and x ∈ {0, 1}2|T |, each LT (xlh) is the sum of the
following three types of terms:

1. Exactly one term of the form: �ST · Ax[0]�p, corresponding to the leftmost
child of the full binary tree T and the most significant bit, x[0], of x.
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2. At least one term of the following form:

�ST · Ax[0] · G−1(Ax[i])�p; (1 ≤ i ≤ 2|T |),

corresponding to the right child at level 1 of the full binary tree T .
3. Zero or more terms with nested G−1 functions of the form:

�ST · Ax[0] · G−1(Ax[i] + Ax[0] · G−1(·) + . . . )�p; (1 ≤ i ≤ 2|T |).

We prove that for appropriate parameters and input length, each one of the
aforementioned terms is a pseudorandom function on its own.

Lemma 1. Let n be a positive integer, q ≥ 2 be the modulus, χ be a proba-
bility distribution over Z, and m be polynomially bounded (i.e. m = poly(n)).
For a uniformly random and independent choice of A0,A1 ∈ Z

n×nd
q and a ran-

dom seed vector S ∈ Z
n×nd
q , the function family �ST · Ax[i]�p for the single bit

input x[i] (1 ≤ i ≤ 2|T |) is a secure PRF family under the decision-LWEn,q,χ

assumption.

Proof. We know from [27] that �ST ·Ax[i]�p is a secure PRF under the decision-
LWRn,q,p assumption, which is at least as hard as solving the decision-LWEn,q,χ

problem. ��
Corollary 1 (To Theorem2). Let n be a positive integer, q ≥ 2 be the modulus,
χ be a probability distribution over Z, and m = poly(n). For uniformly random
and independent matrices A0,A1 ∈ Z

n×nd
q with a random seed S ∈ Z

n×nd
q , the

function �ST · Ax[0] · G−1(Ax[i])�p for the two bit input: x[0]||x[i], is a secure
PRF family, under the decision-LWEn,q,χ assumption.

Proof. For the two bit input x[0]||x[i], the expression �ST · Ax[0] · G−1(Ax[i])�p

is an instance of the function HA0,A1,T,p (see Sect. 5.1). Hence, it follows from
Theorem 2 that �ST · Ax[0] · G−1(Ax[i])�p is a secure PRF family under the
decision-LWEn,q,χ assumption. ��
Corollary 2 (To Theorem2). Let n be a positive integer, q ≥ 2 be the modulus,
χ be a probability distribution over Z, and m = poly(n). Given uniformly random
and independent A0,A1 ∈ Z

n×nd
q , and a random seed S ∈ Z

n×nd
q , the function:

�ST · Ax[0] · G−1(Ax[i] + Ax[0] · G−1(·) + . . . )�p is a secure PRF family under
the decision-LWEn,q,χ assumption.

Proof. Since, A0,A1 ∈ Z
n×nd
q are random and independent, Ax[0] ·G−1(·) is sta-

tistically indistinguishable from Ax[i] ·G−1(·), as defined by the function BT (x)
(see Eq. 6), where G−1(·) represents possibly nested G−1. Hence, it follows from
Theorem 2 that for the “right spine” (with leaves for all the left children) full
binary tree T, �ST · Ax[0] · G−1(Ax[i] + Ax[0] · G−1(·) + . . . )�p defines a secure
PRF family under the decision-LWEn,q,χ assumption. ��
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Corollary 3 (To Theorem2). Let n be a positive integer, q ≥ 2 be the modulus,
χ be a probability distribution over Z, and m = poly(n). For uniformly random
and independent matrices A0,A1 ∈ Z

n×nd
q , and a random seed S ∈ Z

n×nd
q , the

function RT (xrh) = �R0(xlh) · G−1(BS
T (xrh))�p is a secure PRF family under

the decision-LWEn,q,χ assumption.

Proof. We know that A0,A1,S ∈ Z
n×nd
q are generated uniformly and indepen-

dently. Therefore, the secret matrices, B0,B1, defined as: B0 = A0 + S and
B1 = A1 + S, have the same distribution as A0,A1. As R : {0, 1}|T | → Z

nd×n
q

is a PRG, R(xlh) is a valid seed matrix for decision-LWE, making RT (xrh) an
instance of reverse-LWRn,q,p, which we know is as hard as the decision-LWRn,q,p

problem. Hence, it follows from Theorem 2 that RT (xrh) defines a secure PRF
family for secret R(xlh). ��
Theorem 3. Let T be any full binary tree, χ be some distribution over Z that
is subgaussian with parameter r > 0 (e.g., a bounded or discrete Gaussian dis-
tribution with expectation zero), R : {0, 1}|T | → Z

nd×n
q be a PRG, and

q ≥ p · r
√

|T | · (nd)e(T ) · λω(1).

Then over the uniformly random and independent choice of A0,A1 ∈ Z
n×nd
q and

a random seed S ∈ Z
n×nd
q , the family F(A0,A1,T,p) is a secure PRF under the

decision-LWEn,q,χ assumption.

Proof. From Observations 2 and 3, we know that each member FS of the function
family F(A0,A1,T,p) is defined by the random seed S, and can be written as:

FS(x) = �ST · Ax[0]�p + d1 · �ST · Ax[0] · G−1(Ax[i])�p+

d2 · �ST · Ax[0] · G−1(Ax[i] + Ax[0] · G−1(·) + . . . )�p+

d3 · �R(xlh) · Ax[0] · G−1(BS
T (xrh))�p + E,

where d1, d2, d3 ∈ Z, such that, 1 ≤ d1, d3 ≤ |T | and 0 ≤ d2 ≤ |T |. From
Lemma 1, and Corollaries 1, 2 and 3, we know that the following are secure
PRFs under the decision-LWEn,q,χ assumption:

1. �ST · Ax[0]�p, �ST · Ax[0] · G−1(Ax[i])�p,
2. �ST · Ax[0] · G−1(Ax[i] + Ax[0] · G−1(·) + . . . )�p,
3. �R(xlh) · Ax[0] · G−1(BS

T (xrh))�p.

Hence, it follows that the function family F(A0,A1,T,p) is a secure PRF under the
decision-LWEn,q,χ assumption.

Corollary 4. Let T be any full binary tree, χ be some distribution over Z that
is subgaussian with parameter r > 0 (e.g., a bounded or discrete Gaussian dis-
tribution with expectation zero), R : {0, 1}|T | → Z

nd×n
q be a PRG, and

q ≥ p · r
√

|T | · (nd)e(T ) · λω(1).

Then over the uniformly random and independent choice of A0,A1 ∈ Z
n×nd
q

and a random seed S ∈ Z
n×nd
q , the family F ′

(A,T,p) is a secure PRF under the
decision-LWEn,q,χ assumption.
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6 Time Complexity Analysis

In this section, we analyze the time complexity of our HVL-KIH-PRF construc-
tion. The asymptotic time complexity of our construction is similar to that of
the KH-PRF family from [4]. We know that the time complexity of the binary
decomposition function g−1 is O(log q), and that G−1 is simply g−1 applied
entry-wise. The size of the public matrices, A0,A1 ∈ Z

n×nd
q , is Θ(n2 log q),

which by Eq. 5 is e(T )4 · Θ̃(λ2) bits. The secret matrix, S ∈ Z
n×nd
q , also has the

same size, i.e., e(T )4 · Θ̃(λ2). Computing AT (x),BT (x) or CT (x) requires one
decomposition with G−1, one (n × nd)-by-(nd × nd) matrix multiplication and
one (n×nd)-by-(n×nd) matrix addition over Zq, per internal node of T . Hence,
the total time complexity comes out to be Ω(|T | · nω log2 q) operations in Zq,
where ω ≥ 2 is the exponent of matrix multiplication.

7 Left/Right HVL-KH-CPRFs

In this section, we present the construction of another novel PRF class, namely
left/right HVL-KH-CPRFs, as a special case of our HVL-KIH-PRF family. Let
F ′ : K × X × Y → Z be the PRF defined by Eq. 2. The goal is to derive a
constrained key PRF, kx,left or kx,right for every x ∈ X and k0 ∈ K, such that
kx,left = Fk0(x||·) (where F : K×X ×X → Z is the PRF family defined by Eq. 1)
enables the evaluation of the PRF function F ′

k(x, y) for the key k = k0⊕k1, where
k1 ∈ K, and the subset of points {(x, y) : y ∈ Y}, i.e., all the points where the
left portion of the input is x. Similarly, the constrained key kx,right = Fk0(·||x)
enables the evaluation of the PRF function F ′

k(x, y) for the key k = k0 ⊕ k1,
where k1 ∈ K, and the subset of points {(y, x) : y ∈ Y}, i.e., all the points where
the right side of the input is x.

KH-CPRF Construction. We begin by giving a construction for left KH-
CPRF, without HVL, and then turn it into a HVL-KH-CPRF construction.
Our HVL-KIH-PRF function, defined in Eq. 1, is itself a left KH-CPRF when
evaluated as: Fk0(x0||1), i.e., the key is k0 ∈ K, the left side of the input is
x0 ∈ X , and the right half is an all one vector, 1 = {1}log |X |. Now, to evaluate
F ′

k(x0, x1) at a key k = k0 + k1, and any right input x1 ∈ Y, first evaluate
Fk1(x0||x′

1) and add its output with that of the given constrained function,
Fk0(x0||1), i.e., compute: F ′

k(x0, x1) = Fk1(x0||x′
1) + Fk0(x0||1), where x′

1 ∈ X ,
and x1 = x′

1⊕̄1, with k = k0 + k1. Recall from Table 1 that ‘almost XOR’, ⊕̄,
differs from XOR only for the case when both inputs are zero. Hence, having 1
as the right half effectively turns ⊕̄ into ⊕, and ensures that all possible right
halves x1 ∈ X can be realized via x′

1 ∈ X .
Similarly, right KH-CPRF can be realized by provisioning the constrained

function Fk0(1||x0), where 1 = {1}| log X| is an all ones vector and x0 ∈ X .
This interchange allows one to evaluate a different version of our HVL-KIH-PRF
function, where the left portion of the input exhibits homomorphism (see Sect. 3).
Hence, for all k1 ∈ K and x1 ∈ Y, it supports evaluation of F ′

k0+k1
(x1||x0).
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Achieving HVL. In order to achieve HVL for the left/right KH-CPRF given
above, simply replace the all ones vector, 1, with an all zeros vector, 0, of the
same dimensions. Hence, the new constrained functions are kright = Fk0(x0||0)
and kleft = Fk0(0||x0). This enables us to evaluate F ′ at any input x1 ∈ Y via
x1 = x′

1⊕̄0, where x′
1 ∈ X . The pseudorandomness and security follow from that

of our HVL-KIH-PRF family.

8 QPC-UE-UU

In this section, we present the first quantum-safe (Q) post-compromise (PC)
secure updatable encryption (UE) scheme with unidirectional updates (UU) as
an example application of our KIH-HVL-PRF family. An updatable encryption
scheme, UE, contains algorithms for a data owner and a host. We begin by recall-
ing the definitions of these algorithms.

Definition 7 [17]. An updatable encryption scheme UE for message space M
consists of a set of polynomial-time algorithms UE.setup, UE.next, UE.enc,
UE.dec, and UE.upd satisfying the following conditions:
UE.setup: The algorithm UE:setup is a probabilistic algorithm run by the owner.
On input a security parameter λ, it returns a secret key k0

$←− UE.setup(λ).
UE.next: This probabilistic algorithm is also run by the owner. On input a secret
key ke for epoch e, it outputs the secret key, ke+1, and an update token, Δe+1,

for epoch e + 1. That is, (ke+1,Δe+1)
$←− UE.next(ke).

UE.enc: This probabilistic algorithm is run by the owner, on input a message
m ∈ M and key ke of some epoch e returns a ciphertext Ce ← $ UE.enc(ke,m).
UE.dec: This deterministic algorithm is run by the owner, on input a ciphertext
Ce and key ke of some epoch e returns {m′,⊥} ← UE.dec(ke, Ce).
UE.upd: This probabilistic algorithm is run by the host. Given ciphertext Ce from
epoch e and the update token Δe+1, it returns the updated ciphertext Ce+1 ←
UE.upd(Δe+1, Ce). After receiving Δe+1, the host first deletes Δe. Hence, during
some epoch e + 1, the update token Δe+1 is available at the host, but the tokens
from earlier epochs have been deleted.

8.1 Settings and Notations

Let i
$←− X be the identifier for data block di. Let F : K × X × X → Z and

F ′ : K × X × Y → Z be the functions defined in Eqs. 1 and 2, respectively.
Let KeyGen(λ) be the key generation algorithm for F , where λ is the security
parameter. As described in Fig. 1, QPC-UE-UU generates a random nonce per key
rotation, hence ensuring that the encryption remains probabilistic, despite our
PRF family being deterministic.
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• QPC-UE-UU.setup(λ): Generate a random encryption key k0
$

F.KeyGen(λ), and

sample a random nonce N0
$ X . Set e ← 0, and return the key for epoch e = 0

as: ki0 = (k0, N0).

• QPC-UE-UU.enc(kie, m): Let i
$ X be randomly sampled element that is shared by

the host and the owner. Parse kie = (ke, Ne), and return the ciphertext for epoch e
as: Ce = (F ′

ke
(i, Ne) +m). Note that the random nonce ensures that the encryption

is not deterministic.

• QPC-UE-UU.dec(kie, Ce): Parse kie = (ke, Ne). Return m Ce − F ′
ke
(i, Ne).

• QPC-UE-UU.next(kie):

1. Sample a random nonce Ne+1
$ X . Parse kie as (ke, Ne).

2. For epoch e + 1, generate a random encryption key ke+1
$

F.KeyGen(λ), and
return Δe+1 = (Δk

e+1, Δ
N
e+1), where ΔN

e+1 = Ne⊕̄Ne+1 is the nonce update token,
and Δk

e+1 = ke+1 −ke is the encryption key update token. The key for epoch e+1
is kie+1 = (2ke − ke+1, Ne+1), where 2ke − ke+1 is the encryption key.

• QPC-UE-UU.upd(Δe+1, Ce): Update the ciphertext as: Ce+1 = Ce − F ′
Δk

e+1
(i, ΔN

e+1)

= F ′
ke
(i, Ne) + m − F ′

ke+1−ke
(i, Ne⊕̄Ne+1)

= F ′
−ke+1+2ke

(i, Ne − (Ne⊕̄Ne+1)) + m = F ′
2ke−ke+1

(i, Ne+1) + m.

Fig. 1. Quantum-safe, post-compromise secure updatable encryption scheme with uni-
directional updates, (QPC-UE-UU).

8.2 Proof of Unidirectional Updates

As explained in Sect. 8.1, the random nonce ensures that the encryption in our
scheme is probabilistic. Hence, the security of our QPC-UE-UU scheme fol-
lows from the pseudorandomness of our KIH-HVL-PRF family. We defer the
detailed security proof to the full version of the paper. We move on to proving
that the ciphertext updates performed by our scheme are indeed unidirectional.
In schemes with unidirectional updates, an update token Δe+1 can only move
ciphertexts from epoch e into epoch e+1, but not vice versa. The notations used
in the proof are the same as in Fig. 1.

Lemma 2. For the HVL-KIH-PRF family, F ′ : X × Y → Z, as defined in
Corollary 4 with X = {0, 1}|T |,Y = {0, 1, 0̄}|T | and Z = Z

nd×nd
p : given cipher-

text, Ce+1 and the update token Δe+1 = (ke+1 − ke, Ne⊕̄Ne+1) for epoch e + 1,

the following holds for a polynomial adversary A, all randomly sampled Q
$←− Z

and security parameter λ:

Pr[Ce] = Pr[Q] ± ε(λ),

where ε(λ) is a negligible function.

Proof. The main idea of the proof is that due to the bi-homomorphic property of
our HVL-KIH-PRF family, F ′, the adversary, A, can only revert back to either
the key ke or the nonce Ne, but not both. In other words, A cannot recover
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Ce = F ′
ke

(i,Ne) + m. We split the proof into two portions, one concentrating on
reverting back to ke as the function key, and the other one focusing on moving
back to Ne as the function input. We prove that these two goals are mutually
exclusive for our scheme, i.e., both of them cannot be achieved together.

Case 1: Reverting to ke. Recall from Table 1 that the only well-defined opera-
tion for the operand 0̄ is 0̄ = 0+0. We know that the ciphertext update for epoch
e + 1 is performed as: Ce+1 = Ce − F ′

Δk
e+1

(i,ΔN
e+1). Since F ′ is a PRF family,

the only way to revert back to F ′
ke

∈ F ′ via Ce+1 and Δe+1 is by computing:

Ce+1 + F ′
Δk

e+1
(i,ΔN

e+1) = F ′
2ke−ke+1

(i,Ne+1) + m + F ′
ke+1−ke

(i,Ne⊕̄Ne+1)

= F ′
ke

(i,Ne+1⊕̄(Ne⊕̄Ne+1)).

Due to the key homomorphism exhibited by F ′, no other computations would
lead to the target key ke. We know that ΔN

e+1(= Ne⊕̄Ne+1) ∈ Y, and that
Ne+1, Ne ∈ X . Therefore, the output of the above computation is not well-
defined since it leads to ΔN

e ⊕̄Ne+1 /∈ Y as being the input to F ′
ke

(i, ·) ∈ F ′.
Hence, when A successfully reverts back to the target key ke, the nonce deviates
from Ne (and the domain Y itself).

Case 2: Reverting to Ne. Given Ce+1 and Δe+1, A can revert back to (i,Ne) as
the function input by computing: Ce+1−F ′

Δk
e+1

(i,ΔN
e+1) = F ′

3ke−2ke+1
(i,Ne)+m.

By virtue of the almost XOR operation and the operand 0̄, the only way to revert
back to Ne ∈ X from ΔN

e+1(= Ne⊕̄Ne+1) ∈ Y is via subtraction. But, as shown
above, subtraction leads to F ′

3ke−2ke+1
(i,Ne) instead of F ′

ke
(i,Ne). Hence, the

computation that allows A to successfully revert back to Ne as the function
input, also leads the function’s key to deviate from ke.

Considering the aforementioned arguments, it follows from Corollary 4 that
∀Q

$←− Z, it holds that: Pr[Ce] = Pr[Q] ± ε(λ). ��

9 Open Problem: Novel Searchable Encryption Schemes

Searchable symmetric encryption (SSE) [6] allows one to store data at an
untrusted server, and later search the data for records (or documents) matching
a given keyword. A search pattern [6] is defined as any information that can be
derived or inferred about the keywords being searched from the issued search
queries. In a setting with multiple servers hosting unique shares of the data
(generated via threshold secret sharing [32]), our HVL-KIH-PRF family may
be useful in realizing SSE scheme that hides search patterns. For instance, if
there are n servers S1, S2, . . . , Sn, then n random keys k1, k2, . . . , kn can be dis-
tributed among them in a manner such that any t-out-of-n servers can combine
their respective keys to generate k =

∑n
j=1 kj .

If the search index is generated via our HVL-KIH-PRF function F ′
k(i, ·) ∈ F ′,

where i is a fixed database identifier, then to search for a keyword x, the data
owner can generate a unique, random query xj for each server Sj (1 ≤ j ≤ n).
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Similar to the key distribution, the data owner sends the queries to the servers

such that any t of them can compute x =
n⊕

j=1

xj . On receiving search query xj ,

server Sj uses its key kj to evaluate F ′
kj

(i, xj). If at least t servers reply, the

data owner can compute
t∑

j=1

F ′
kj

(i, xj) = F ′
k(i, x). Designing a compact search

index that does not leak any more information than what is revealed by the
PRF evaluation is an interesting open problem, solving which would complete
this SSE solution.
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Abstract. Machine learning applications are spreading in many fields
and more often than not manipulate private data in order to derive
classifications impacting the lives of many individuals. In this context, it
becomes important to work on privacy preserving mechanisms associated
to different privacy scenarios: protecting the training data, the classifi-
cation data, the weights of a neural network. In this paper, we study the
possibility of using FHE techniques to address the above issues. In par-
ticular, we are able to evaluate a neural network where both its topology
and its weights as well as the user data it operates on remain sealed in
the encrypted domain. We do so by relying on Hopfield neural networks
which are much more “FHE friendly” than their feed-forward counter-
parts. In doing so, we thus also argue the case of considering different
(yet existing) Neural Network models better adapted to FHE, in order to
more efficiently address real-world applications.The paper is concluded
by experimental results on a face recognition application demonstrat-
ing the ability of the approach to provide reasonable recognition timings
(≈0.6 s) on a single standard processor core.

Keywords: Fully Homomorphic Encryption · LWE · GSW ·
Hopfield neural networks · Face recognition · FHE performances

1 Introduction

A Fully Homomorphic Encryption (FHE) scheme is, ideally, an encryption
scheme permeable to any kind of operation on its encrypted data. With any
input x and function f , with E the encryption function, we can obtain E (f(x))
non interactively from E(x). This property is particularly valuable when privacy-
preserving computations on remote servers are required. Unfortunately, all FHE
known today still imply high computation overheads and tackling real applica-
tions euphemistically remain a challenge. Nevertheless, since Gentry’s theoret-
ical breakthrough around 2010, there has been steady progress towards more
and more efficient (or less and less inefficient) FHE cryptosystems. In recent
years, machine learning applications have been wider spread than ever in var-
ious domains. In this context, a growing concern is put on data privacy and
confidentiality for both sensitive personal information and valuable intellectual
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property (e.g. models). In this context, Fully Homomorphic Encryption has the
potential to provide an interesting counter-measure but its state of the art does
not (yet?) allow to directly apply existing FHE schemes to the highly complex
real-world machine learning-based systems. While looking for faster and more
efficient FHE schemes is of paramount importance, our paper fall into a line of
work which addresses the needs of finding new FHE-friendly Machine Learn-
ing methods possibly by revisiting old or less conventional tools from that field
and to tune existing FHE specifically to running these methods as efficiently as
possible in the encrypted domain.

Prior Work. Most of the existing works on the subject have done so with arti-
ficial feed-forward neural networks. These kind of neural networks are the most
popular in the Machine Learning field and successfully applying FHE on them in
an efficient manner remains a challenging task. There have been different ways
this has been tried and not always through the use of HE. For instance, in [2,17]
and [13] the authors restrict themselves to a set-up in which the training data
is shared between two parties and never fully revealed to any one of them, yet
allowing the network to be trained with the whole data-set. Feed-forward net-
works require to have non-linear activation functions, such as a sigmoid, which
are challenging to implement efficiently (and exactly) over FHE. Previous works
have handled this by either using the sign function instead (as with [3]) or a
polynomial function (as with [16]). Another issue with neural networks that pre-
vious work has grappled with is how to deal with its (multiplicative) depth. With
that respect, [16] provides a leveled scheme that has its parameters grow with
the depth of the network. It was improved most recently in [4]. Alternatively,
using an efficient bootstrapping algorithm from [5] which was then refined in
[3,6] proposes a scheme where the size of the parameters does not depend on
the depth of the network hence demonstrating the practical relevance of this
new breed of FHE schemes in the context of Machine Learning applications. To
the best of our knowledge, what all the previous works on the subject have in
common is the fact the network itself is always in the clear domain and that only
the data that are aimed to be classified reside in the encrypted domain. What
this paper aims for is to encrypt both the weights of a neural network as well as
the data to be classified. Yet, doing this for feed forward networks appears very
difficult as building on previous works - for instance the most recent work by [3]
- to fit these constraints would lead to unreasonable timings. What we choose
to do in the face of this difficulty is to solve the same problem by switching to
a different kind of neural network: Hopfield networks.

Our Contribution. In this paper, we present a method to classify encrypted
objects by means of a fully encrypted neural network with practically relevant
timings and accuracy. We specifically present different approaches to homo-
morphic face recognition using neural networks. It is worth emphasizing that,
because of the nature of the network used (it is discrete and uses a sign function
as an activation function), no approximations are made in any of the homomor-
phic computations. Our main contributions are twofold. First, we provide results
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in the case where encrypted data are classified by a clear network. This method
is both quite fast and lightweight as it takes less than ≈0.2 s to perform a face
recognition operation with e.g. 110-bit security. Then, we provide the specifica-
tions for a second scheme in the case where encrypted data are classified by an
encrypted network. We introduce a method that uses FHE to allow for an arbi-
trary number of rounds with parameters that are depth-invariant. It classifies in
less than 0.6 s with 80-bit security. This paper is organized as follows. We start by
reviewing the challenges that combining neural networks and fully homomorphic
encryption presents. Some of those challenges have already been tackled in part
in the recent literature and some have yet to be. For self-containedness, we then
go into the basics of discrete Hopfield Networks at least to the extent that we
use them in this paper. This is then followed by a brief presentation of the LWE
encryption scheme as well as of TFHE, the LWE-based FHE scheme and library
that we use. Then, we present the building blocks that make the bulk of our
contribution: several encoding, encryption and computational methods designed
for different types of computations involved in various flavors of Hopfield net-
work homomorphic evaluation. Experimental results are finally provided with
an emphasis on the very reasonable timings that we obtain for classification on
a masked neural network and other variants, on a face-recognition application.

2 Homomorphic Neural Networks

2.1 Models for Evaluation of Encrypted Neural Networks

There are not many works yet on the subject of FHE applied to neural networks.
To the best of our knowledge, all of the previous works on the question have
focused on the classification of an encrypted input sent by a client but through
the use of a public or clear-domain neural network. However, this is only one of
the ways one could wish to apply FHE to neural networks. One could want a
number of things to be masked:

Encrypted Training Data. Good-quality (labeled) training data is costly
to obtain and some companies make a business out of providing such data.
Therefore, one might very understandably want to protect the data one spent
time or money acquiring when sending it to a remote server to be used for
training.

Encrypted Weights. Training an efficient NN is generally harder than it seems
and requires both computation time and know-how. Hence, the owner of a NN
might want to avoid for its weights to be leaked or for some entity (e.g. the
server homomorphically evaluating the network) to be able to use it without
restriction.

Hidden Topology of the NN. Training a NN is as much about the training
data and the training algorithm as it is about the topology of the NN (number
of hidden layers and neurons per layer for instance) on which will depend a lot
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of the properties of the NN (too large and it has a tendency to generalize badly;
too small and it might not be precise enough in its classification). So, in some
cases, there may be an interest in masking the network topology and not only
its weights, again w. r. t. the server homomorphically evaluating the network.

Encrypted Classification Data. This is arguably the first sought-after prop-
erty as it pertains to user privacy and allows the network to run on encrypted
data therefore providing a service without access to the actual user information.

On top of finding new, efficient ways to classify over encrypted data, this
paper also aims to hide the topology and the weights of the network as well. The
way we achieve this is by switching from a feed-forward network - one that was
used by all previous works - to a different kind of NN: a Hopfield network (HN).

2.2 Hopfield Networks Basics

Hopfield networks are recursive neural networks with only one layer of neurons,
all connected. They were first introduced by Hopfield in 1982 in [10,14]. See also
[12] and [8] for further uses in the literature. Let us thus consider a network
made up of M neurons with each having a value ai and weights wi,j between
neurons i and j.

During the evaluation of a network, the single layer updates the values it
stores at every iteration according to a correlation property. The weight wi,j

between two neurons i and j represents the correlation that exists between them.
An update of neuron i translates to a weighted sum of all other neuron values
with an activation function θ: ai = θ

(∑n
j=1 ajwi,j

)
Therefore every neuron is

“drawn” towards the values of the neurons most correlated to it. This correlation
is symmetric (wi,j = wj,i) and a neuron is not correlated with itself (wi,i = 0).
In practice what the Hopfield network does naturally is storing a number of
patterns by highly correlating the bits of the patterns. The network does not
need to globally converge to be useful. If we define certain bits as “classification
bits” (for example, in the face recognition experiment of Sect. 4.1 only 3 bits out
of 256 are used to classify between up to 8 patterns), then only those bits need to
be updated to obtain a first result. With a sign function as an activation function
these networks are computationally lighter than their feed-forward counterparts.

The training of the network (determining the weights) requires us to have
(as usual for NNs) three sets of data: the training set, the validation set and the
testing set. We trained the network used in this work ourselves.

3 LWE Encryption Scheme

In this work, we use the TFHE encryption scheme by Chillotti et al. [5,6] for an
homomorphic evaluation of Hopfield network with both encrypted weights and
encrypted activation values. We refer to those papers for an in-depth presentation
of TFHE and only refer here to what is necessary for the understanding of our
work.
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Notation. We use B to denote the set {0, 1}. We denote the reals R and use
T to denote the real torus mod 1. The ring Z[X]/(XN + 1) is denoted R and
BN [X] is its subset composed of the polynomials with binary coefficients. We
write TN [X] the quotient R[X]/(XN + 1) mod1 where N is a fixed integer.
Vectors are denoted with an arrow as such: #»∗ . Ciphertexts are denoted with
boldface letters. In the following, λ is the security parameter, M is the size of
the network as presented in Sect. 2.2 and B is the maximum value taken by the
weights of the network.

3.1 TFHE Basics

TRLWE is the ring version of LWE introduced in [11] over the torus. It encrypts
messages in TN [X]. TLWE is its “scalar” version and encrypts messages in T.
TRGSW is the ring version of the GSW scheme introduced in [7]. A TRGSW cipher-
text encrypts messages in R. We note here that in the rest of the paper, we
use bold lower-case letters for TLWE ciphertexts and bold upper-case letters for
TRLWE and TRGSW ciphertexts. A TLWE encryption c of μ with standard deviation
σ and with key s will be noted as c ∈ TLWEs,σ(μ) or c ∈ TLWE(μ, s, σ). The same
notations are valid for TRLWE and TRGSW encryptions.

Parameters. We have the following parameters involved for TLWE, TRLWE and
TRGSW encryption schemes respectively.

TLWE parameters: Given a minimal noise overhead α and a security parameter
λ, we derive a minimal key size n.
TRLWE parameters: we call n the key size and we have n = k × N . The fact we
use n for both TLWE and TRLWE parameters is not a problem. We see in the next
paragraph that through the TRLWE to TLWE extraction process one obtains a TLWE
ciphertext with n = k × N . In the rest of the paper we will have k = 1.
TRGSW parameters: We have decomposition parameters �, Bg. To define homo-
morphic multiplication, we decompose a TRGSW ciphertext as a small linear com-
bination of rows of a gadget matrix defined with respect to a basis Bg as a �
repeated super-decreasing sequence (1/Bg, . . . , 1/B�

g). Since we use an approxi-
mated decomposition, we have an additional precision parameter ε. We will take
β = Bg/2 and ε = 1

2Bl
g
.

Known Operations over TFHE Ciphertexts. We present linear algebra
computations for homomorphic neural network evaluation. These are all opera-
tions presented in the TFHE papers [5,6].

Linear combination over TLWE: TLWEp → TLWE
For p TLWE ciphertexts ci of μi ∈ T, and for p integers δi, we can obtain
an encryption of

∑p
i=1 δiμi through the operation

∑p
i=1 δi · ci . We write the

operation TLWEScalarProduct(c, δ). For p = 2 and δ1 = δ2 = 1, we write
c1 + c2 = AddTLWE(c1, c2). The TRLWE equivalent is AddTRLWE.

Extraction: TRLWE → TLWE
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From a TRLWE ciphertext C of μ =
∑N−1

i=0 μi ∈ TN [X], it is possible to extract
a TLWE ciphertext c of a single coefficient of μp at a position p ∈ [0, N − 1]. We
write this operation c = SampleExtract(C, p).

External Product: TRLWE × TRGSW → TRLWE
The external product between a TRGSW ciphertext C1 of δ ∈ ZN [X] and a TRLWE
ciphertext C2 of μ ∈ TN [X] produces a TRLWE ciphertext C of the product
δ · μ ∈ TN [X]. We write C = ExternalProduct(C2,C1).

Public Rotation: TRLWE → TRLWE
Given a TRLWE ciphertext C of μ and an integer p we can obtain a TRLWE
ciphertext C′ of μ × Xp at no cost to the variance of the ciphertext. We write
C′ = RotateTRLWE(C, p).

Key-switch: TLWE → TLWE
We give a TLWE ciphertext c ∈ TLWE(μ, s). For a given TLWE key s and two
integers base and t. Given KSi,j ∈ TLWE(si/base

j , s′, γ) for j ∈ [1, t] and i ∈ [1, n]
and with γ a given standard deviation. The key-switching procedure outputs
c ∈ TLWEs′(μ). We write KSs→s′ = (KSi,j)(i,j)∈[1,n]×[1,t] and we call it the key-
switching key.

Public Functional key-switch: TLWEp → TRLWE
We give p TLWE ciphertext ci ∈ TLWE(μi, s), and a public R-lipschitzian morphism
f : T

p �→ TN [X] of Z-modules. For a given TRLWE key s′ and two integers
base and t, we take KSi,j ∈ TRLWE(si/base

j , s′, γ) for j ∈ [1, t] and i ∈ [1, n]
and with γ a given standard deviation. The functional keyswitching outputs
C ∈ TRLWEK′(f(μ1, . . . , μp)). We write KSs→s′ = (KSi,j)(i,j)∈[1,n]×[1,t] and we
call it the key-switching key. We exclusively use a very specific function in this
paper. We will call it the identity function and refer to the key-switch operation
as KeyswitchId It is defined for any t ∈ T: t �→ t · X0.

Bootstrapping: TLWE → TLWE
Given an integer S, a TLWE ciphertext c ∈ TLWE(μ, s), n TRGSW ciphertexts BKi ∈
TRGSW(si, s

′, αb) where the si are coefficients of the equivalent TLWE key, we can
obtain a ciphertext co ∈ TLWE(μo, s

′, αboot) where μo = 1/S if μ ∈ [0, 1
2 ] and

μo = −1/S if μ ∈ [12 , 1]. Most importantly, the output standard deviation αboot

is fixed by the parameters of the bootstrapping key BK.

Homomorphic Operations and Variance Overhead. Table 1 summarizes
the elementary operations we use in this paper, and the noise propagation they
induce. We set several constants which depend on the parameters of the underly-
ing encryption schemes. We set δ to be a plaintext integer encrypted as a TRGSW
ciphertext in the external product operation.

Data Encoding. There are two types of data we want to encrypt: the activation
values ai which are equal to 1 or −1 and the weight values wi,j ∈ [−B,B]
where B ∈ Z. For TRLWE and TLWE encryption, we encode integers into torus
values as follows: we divide the torus into S slices and encode any x ∈ Z/SZ
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Table 1. Elementary operations and their variance overhead The ϑcs, the ϑc s and the
ϑC s are the noise variances of their respective ciphertexts. ϑKS is the variance for the
encryption of the key-switching key KS and ϑBK for the bootstrapping key BK. In the
case of the external product, we write δ the message encrypted by the input TRGSW

ciphertext C2. Furthermore, B = 2�Nβ2, C = ε2(1 + N) · ||δ||22, D = ||δ||22. As for
the bootstrapping, the output variance overhead is given by: ϑboot = 4Nn�β2 × ϑBK +
n(1 + N)ε2.

Operation Variance

TLWEScalarProduct(c, δ) ‖δ‖2
2 · ϑc

AddTLWE(c1, c2) ϑ1 + ϑ2

AddTRLWE(C1,C2) ϑ1 + ϑ2

SampleExtract(C , j) ϑC

Keyswitch(c) ϑc + ntϑKS + nbase−2(t+1)

KeyswitchId(c), p = 1 ϑc + ntϑKS + nbase−2(t+1)

ExternalProduct(C1,C2) Bϑ2 + C + Dϑ1

Bootstrapping ϑboot

as its corresponding slice in the torus representation. In other words, we have
x
S mod1 ∈ T. In this paper, we only encode activation values in the torus and
weights stay integers. The bigger the slice S is, the more error propagation can
be allowed before the error makes the decryption overflow into the adjacent slice.
Choosing to reduce the number of slices in order to relax the constraints on the
parameters while still ensuring a correct output is a choice made also in [3].
Heuristically, we found that S ≥ M is appropriate for our case. And in effect
we will choose S = M . Finally, we will call ϑmax be the maximum ciphertext
variance that still allows the message to be deciphered correctly. It depends only
on S.

3.2 Encrypted Inputs Through a Clear Network

In this paper, we present several methods for classifying encrypted inputs via
a Hopfield Network. In this section, we present the case where the network is
not encrypted, but the input activation values are. We encrypt the activation
values ai as TLWE ciphertexts c ∈ TLWE(1+2ai

2S ). Now, in order to update the
activation value of one neuron, we need to compute a scalar product and take
the sign of the result and then insert it back into the network for further com-
putations. For a given neuron p, this corresponds to the following computation:
ap = sign

(∑M
i=1 aiwp,i

)
The TLWE ciphertexts ci ∈ TLWE(ai) are grouped in a

vector #»c and the weights wi,p are in clear. Assuming we want to update the pth

neuron, we have an algorithm depicted in Fig. 1 below. Then our scheme con-
sists of applying this algorithm on a given number of activation values to update
them. Once the number has been reached the resulting encrypted activation
values can be sent back to the owner of their key.
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Keyswitchs′′
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b
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TLWEs′′
c
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)

Fig. 1. This figure illustrates the “clear-case” update algorithm. The output
of the Keyswitch operation is reincorporated into the vector of ciphertexts as its pth

component.

If we choose the parameters of the scheme and ϑc such that

MB2
(
ϑboot + ntϑKS + nbase−2(t+1)

)
≤ ϑmax and ϑc =

ϑmax

MB2

then our computation is fully homomorphic.

Scheme. We now present a scheme based on this algorithm. For this we define
three actors:

– “the network owner” (or “owner” for short). She trained a Hopfield network
on a given type of formatted data and owns the resulting network.

– “the cloud”. It has the computational ability to perform tasks with the
owner’s network at a low cost, making it interesting for other actors to use
its services.

– “the client”. She owns formatted data compatible with the owner’s network
and which she would like to run through the Hopfield network.

We present here the case where the owner does not encrypt the network.
She therefore shares it with the cloud which has access to the weights in clear.
She also shares instructions for the updates to perform for a classification. Fur-
thermore, she has to determine the parameters to use for encryption both for
activation values and the weights. She shares these parameters with the client.

The client does want to protect her data. She chooses a TLWE key, a TRLWE
key and creates a bootstrapping key BK and a key-switching key KS. Finally she
encrypts her data and the ciphertexts are sent, along with BK and KS, to the
cloud.

The cloud then performs the necessary updates, outputs an updated cipher-
text and sends it back to the client.

The client decrypts and has the result to the classification problem.



32 M. Izabachène et al.

3.3 Encrypted Inputs Through an Encrypted Network

We now consider the case where both the weights and the activation values are
encrypted. We have #»a = (a0, . . . , aM−1) and #  »wp = (w0,p, . . . , wM−1,p) for every
p.

Encryption Methodology. We use the TRLWE and TRGSW encryption schemes
to encrypt the activation values and the weights respectively. We are going to
use the same key for both: sc .

We constrain N ≥ M . We first encode the data as two (N − 1)-degree poly-
nomials (with 0 coefficients to pad if need be):

∀p ∈ [0,M − 1], Wp =
N−1∑
i=0

wi,p · XN−1−i, A =
N−1∑
i=0

ai · Xi ∈ TN [X]

We then encrypt both the weight polynomials and the activation polynomial
respectively as TRGSW and TRLWE ciphertexts:

C(p)
w ∈ TRGSW(Wp, sc , αc) and Ca ∈ TRLWE(A, sc , αc)

These are both encrypted using the same standard deviation αc. We also have
M TRLWE ciphertext for each individual activation value:

∀p ∈ [0,M − 1], Cp ∈ TRLWE(apX
p, sc , α

′
c)

We group them in a vector of ciphertexts
#»

C = (C0, . . . ,CM −1).

Update Algorithm. Figure 2 presents an update of the pth activation value
for a given p. Note that the Keyswitch operation hides a rotation operation that
transforms TRLWE(a′

p, sc) into TRLWE(a′
pX

p, sc) at no cost to the error propaga-
tion and virtually no time cost. Keeping TRLWE ciphertexts of individual acti-
vation values (the Ci ciphertexts) allows us to rebuild a new and updated Ca

ciphertext by summing them all up at the end.

Bootstraps′′
c s′′

b

Keyswitchs′′
b s′′

c

Ca

C
(p)
w

SampleExtract

C0 Cp CM−1... ...
TRLWEs′

c
(A×Wp)

TLWEs′′
c
(a ·wp)

TRLWEs′
c
(A′)

Fig. 2. This figure illustrates the update of the pth neuron in the “masked case”.
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Correctness. There are two sets of parameters defined both for the initial
ciphertexts and for the bootstrapping key BK. We will therefore use the nota-
tion ∗c for the initial ciphertext parameters and ∗b for the bootstrapping key
parameters. As for the key-switching key KS, we will use the notation ∗s. We
have Ns = Nc. This can work because all of the input ciphertexts have the same
parameters with only one exception: the variance of the Cp ciphertext which is
not equal to ϑc; we will refer to it by ϑ′

c. For this next theorem, we set some con-
stants in order to simplify notations. We set A = 4NcNblbβ

2
b ; B = Nc(1+Nb)ε2b ;

C = Nct; D = Ncbase
−2(t+1); E = MB2; F = ε2c(1 + Nc) and G = 2�cNcβ

2
i .

Then, if we choose the parameters of the scheme and ϑc, ϑ′
c such that

M(G + E) × (AϑBK + B + CϑKS + D) + F × E ≤ ϑmax (1)

ϑc ≤ ϑmax − F × E
G + E

and ϑ′
c = AϑBK + B + CϑKS + D (2)

then our computation is fully homomorphic.

Scheme. This scheme is identical to the one presented in Sect. 3.2 with the
only difference that the owner and the client share the same key sc . This means
collusion between the client and the cloud gives them access to the owner’s
network. The same goes for collusion between the owner and the cloud. There
are ways around this but none is perfect. One way is to introduce a Trusted
Third Party (TTP).

4 Experimental Results

4.1 Face Recognition via Hopfield Networks

Although their applicability is less universal than CNN, Hopfield networks are
known to perform well for certain tasks including image analysis and recognition.
In this section, we provide experimental results in the case of a face recognition
function. We used a free database available for research purposes. It consists
of pictures of 153 individuals - male and female alike - with 20 pictures per
individual with different facial expressions on each person. The database can
be downloaded from here: https://cswww.essex.ac.uk/mv/allfaces/faces94.html.
The feature extraction for the images was done using the LTP (Local Ternary
Patterns) introduced in [15] and from the Java library Openimaj (see [9]). From
a face image, the feature extraction gives us 128 80 × 80 matrices of raw binary
data that we use for the classification. For this test we selected 8 random faces.
By training the network on those patterns we wish to be able to classify a picture
of a person as one of those 8 faces. For this we apply one iteration of classification
on 3 neurons of a 256-neuron network. Empirically, the network stabilizes after
the first iteration, hence we do not find better classification results with more
iterations. We find that reducing the number of neurons to 256 maximizes the
time/performance ratio, giving us an 86.2% classification performance (however
we are confident that better results could be obtained with deeper machine
learning know-how).

https://cswww.essex.ac.uk/mv/allfaces/faces94.html
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4.2 Parameter Choices

Choosing the parameters, we have to take into account the security constraints
from the underlying LWE problem on top of the correctness constraints for the
two schemes we present. The overall security of the scheme relies entirely on
the security of the underlying TFHE scheme and therefore the LWE problem on
which it is built. For a given size of the key and a given security parameter, we
can obtain a minimum variance using the lwe-estimator1 script. The estimator
is based on the work presented in [1]. The structural parameters of the network
are M = 256 and B = 8. We have S = M = 256.

Parameters for the Clear Hopfield Network. For both an 80-bit security
and a 110-bit security, the parameters in Table 2 are appropriate. However we
need to choose different values for n. We set n = 470 for an 80-bit security; And
n = 650 for a 110-bit security.

Table 2. Parameter values for both security settings in the case of a clear network.
We have αs = αc and k is set to 1.

N αb αc Bgb �b t base

1024 4.26e-13 2.41e-06 64 4 3 32

Parameters for the Masked Hopfield Network. Table 3 presents the
parameters used for the initial ciphertext encryption, the bootstrapping key
and the key-switching key. These parameters are valid for an 80-bit security. We
were not able to go beyond this security level: the parameter constraints did not
hold anymore.

Table 3. Parameter values for initial ciphertext encryption (top left), for the boot-
strapping key BK (top right) and for the key-switching key KS (bottom) for an 80-bit
security

λ αc α′
c Nc Bgc �c

80 4.26e-13 4.26e-13 1024 64 4
λ αb Nb Bgb �b

80 8.88e-16 2048 256 5
λ αs Ns t base

80 4.26e-13 1024 4 128

We provide the sizes of the ciphertexts associated with these parameters. The
size of a single initial TRLWE ciphertext is 16.5 KBytes and the size of the initial
TRGSW ciphertext 132 KBytes. The size of the Bootstrapping key is 337 MBytes
1 https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py.

https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
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and the size of the Key-switching key 135 MBytes. The total size of the encrypted
network is 33.7 MBytes and the total size of the encrypted activation values
4.22 MBytes.

4.3 Network Performance

In this subsection, we present the timing results for our classification. All timings
are measured on an Intel Core i7-6600U CPU. The performances are given in
Table 4. Overall we can see that a 1-iteration classification does not take more
than 0.21 s in the clear case and under 0.6 s for a fully masked, fully homomor-
phic, 1-iteration classification.

Table 4. Algorithm timings (in seconds) for the clear-case classification implementa-
tion (top) and for the masked case (bottom). As a reminder, a classification requires 3
updates.

TLWEScalarProduct Bootstrap Keyswitch

7.5×10−7 0.06 0.009
Total time for 1 update ≤0.07

ExternalProduct Bootstrap Keyswitch AddTRLWE

3×10−4 1.6×10−1 1.4×10−2 5×10−4

Total time for 1 update ≤0.2

5 Conclusion

In this paper, we investigated a method to classify encrypted objects by means of
a fully encrypted neural network with practically relevant timings and accuracy
on a face recognition application, thus achieving both network and data privacy
for the first time to the best of our knowledge. We have done so by considering
Hopfield networks, a kind of neural network well-known in the Machine Learning
community yet more amenable to practical FHE performances than their feed-
forward counterparts. As such, this paper also provides insights as to how to
intricate an FHE scheme with an algorithm in order to achieve decent FHE
execution performances. As a matter of perspective, our next step is to achieve
the training of a Hopfield network on an encrypted data set.
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Abstract. We present the first practical software implementation of
Supersingular Isogeny Key Encapsulation (SIKE) round 2, targeting
NIST’s 1, 2, and 5 security levels on 32-bit ARM Cortex-M4 micro-
controllers. The proposed library introduces a new speed record of SIKE
protocol on the target platform. We achieved this record by adopting sev-
eral state-of-the-art engineering techniques as well as highly-optimized
hand-crafted assembly implementation of finite field arithmetic. In par-
ticular, we carefully redesign the previous optimized implementations of
filed arithmetic on 32-bit ARM Cortex-M4 platform and propose a set
of novel techniques which are explicitly suitable for SIKE/SIDH primes.
Moreover, the proposed arithmetic implementations are fully scalable
to larger bit-length integers and can be adopted over different security
levels. The benchmark result on STM32F4 Discovery board equipped
with 32-bit ARM Cortex-M4 microcontrollers shows that the entire key
encapsulation over p434 takes about 326 million clock cycles (i.e. 1.94 s
@168 MHz). In contrast to the previous optimized implementation of the
isogeny-based key exchange on low-power 32-bit ARM Cortex-M4, our
performance evaluation shows feasibility of using SIKE mechanism on
the target platform. In comparison to the most of the post-quantum
candidates, SIKE requires an excessive number of arithmetic operations,
resulting in significantly slower timings. However, its small key size makes
this scheme as a promising candidate on low-end microcontrollers in the
quantum era by ensuring the lower energy consumption for key trans-
mission than other schemes.

Keywords: Post-quantum cryptography · SIDH · SIKE ·
Montgomery multiplication · ARM Cortex-M4

1 Introduction

The hard problems of traditional PKC (e.g. RSA and ECC) can be easily solved
by using Shor’s algorithm [26] and its variant on a quantum computer. The tra-
ditional PKC approaches cannot be secure anymore against quantum attacks. A
c© Springer Nature Switzerland AG 2019
Y. Mu et al. (Eds.): CANS 2019, LNCS 11829, pp. 39–60, 2019.
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number of post-quantum cryptography algorithms have been proposed in order
to resolve this problem. Among them, Supersingular Isogeny Diffie-Hellman key
exchange (SIDH) protocol proposed by Jao and De Feo is considered as a pre-
mier candidate for post-quantum cryptosystems [17]. Its security is believed to
be secure even for quantum computers. SIDH is the basis of the Supersingular
Isogeny Key Encapsulation (SIKE) protocol [2], which is currently under con-
sideration by the National Institute of Standards and Technology (NIST) for
inclusion in a future standard for post-quantum cryptography [27]. One of the
attractive features of SIDH and SIKE is their relatively small public keys which
are, to date, the most compact ones among well-established quantum-resistant
algorithms. In spite of this prominent advantage, the “slow” speed of these pro-
tocols has been a sticking point which hinders them from acting like the post-
quantum cryptography. Therefore, speeding up SIDH and SIKE has become a
critical issue as it judges the practicality of these isogeny-based cryptographic
schemes. In CANS’16, Koziel et al. presented first SIDH implementations on
32-bit ARM Cortex-A processors [22]. In 2017, Jalali et al. presented first SIDH
implementations on 64-bit ARM Cortex-A processors [16]. In CHES’18, Seo et
al. improved previous SIDH and SIKE implementations on high-end 32/64-bit
ARM Cortex-A processors [25]. At the same time, the implementations of SIDH
on Intel and FPGA are also successfully evaluated [3,10,19,21]. Afterward, in
2018, first implementation of SIDH on low-end 32-bit ARM Cortex-M4 micro-
controller was suggested [20]. The paper shows that an ephemeral key exchange
(i.e. SIDHp751) on a 32-bit ARM Cortex-M4@120 MHz requires 18.833 s to per-
form - too slow to use on low-end microcontrollers.

In this work, we challenge to the practicality of SIKE round 2 protocols for
NIST PQC competition (i.e. SIKEp434, SIKEp503, and SIKEp751) on low-end
microcontrollers. We present new optimized implementation of modular arith-
metic for the case of low-end 32-bit ARM Cortex-M4 microcontroller. The pro-
posed modular arithmetic, which is implemented on top of the SIKE round 2
reference implementation [1], demonstrates that the supersingular isogeny-based
protocols are practical on 32-bit ARM Cortex-M4 microcontrollers.

2 Optimized SIKE/SIDH Arithmetic on ARM
Cortex-M4

2.1 Multiprecision Multiplication

In this work, we describe the multi-precision multiplication method in multipli-
cation structure and rhombus form.

Figures 1, 2, and 3 illustrate different strategies for implementing 256-bit mul-
tiplication on 32-bit ARM Cortex-M4 microcontroller. Let A and B be operands
of length m bits each. Each operand is written as A = (A[n − 1], ..., A[1], A[0])
and B = (B[n − 1], ..., B[1], B[0]), where n = �m/w� is the number of words
to represent operands, and w is the computer word size (i.e. 32-bit). The result
C = A ·B is represented as C = (C[2n− 1], ..., C[1], C[0]). In the rhombus form,
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Fig. 1. 256-bit Operand Caching multiplication at the word-level where e is 3 on ARM
Cortex-M4 [11], Init© : initial block; 1© → 2©: order of rows.

the lowest indices (i, j = 0) of the product appear at the rightmost corner,
whereas the highest indices (i, j = n− 1) appear at the leftmost corner. A black
arrow over a point indicates the processing of a partial product. The lowermost
points represent the results C[i] from the rightmost corner (i = 0) to the leftmost
corner (i = 2n − 1).

There are several works in the literature that studied the use of UMAAL instruc-
tions to implement multi-precision multiplication or modular multiplication on
32-bit ARM Cortex-M4 microcontrollers [8,9,11,13,20,23]. Among them, Fujii et
al. [11], Haase et al. [13], and Koppermann et al. [20] provided the most relevant
optimized implementations to this work, targeting Curve25519 and SIDHp751
by using optimal modular multiplication and squaring methods.

In [11], authors combine the UMAAL instruction with (Consecutive) Operand
Caching (OC) method for Curve25519 (i.e. 256-bit multiplication). The UMAAL
instruction handles the carry propagation without additional costs in Multi-
plication ACcumulation (MAC) routine. The detailed descriptions are given in
Fig. 1. The size of operand caching is 3, which needs three rows (3 = �8/3�)
for 256-bit multiplication on 32-bit ARM Cortex-M4. The multiplication starts
from initial block and performs rows 1 and 2, sequentially. The inner loop follows
column-wise (i.e. Product-Scanning) multiplication.

In [13], a highly-optimized usage of registers and the partial products are
performed with the Operand Scanning (OS) method, targeting Curve25519 (i.e.
256-bit multiplication). The detailed descriptions are given in Fig. 2. In partic-
ular, the order of partial products has an irregular pattern which only works
for the target operand length (i.e. 256-bit multiplication) due to the extremely
compact utilization of available registers in each partial product. However, for a
larger length integer multiplication, this greedy approach is not suitable since the
number of register is not enough to cache sufficient operands and intermediate
results to achieve the optimal performance.

In [20], authors proposed an implementation of 1-level additive Karatsuba
multiplication with Comba method (i.e. Product Scanning) as the underlying
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Fig. 2. 256-bit Operand Scanning multiplication at the word-level on ARM Cortex-M4
[13], 1© → 2© → 3© → 4© → 5©: order of rows.

multiplication strategy, targeting 768-bit multiplication. They integrated their
arithmetic library into SIDHp751 and reported the first optimized implementa-
tion of SIDH on ARM Cortex-M4 microcontrollers. However, the product scan-
ning is inefficient with the UMAAL instruction, since all the intermediate results for
long integer multiplication cannot be stored into the small number of available
registers. In order to improve their results, we studied the performance evalua-
tion of 448/512/768-bit multiplication by replacing the Comba method with OC
method, using the 1-level additive/subtractive Karatsuba multiplication. How-
ever, we realized that the Karatsuba approach is slower than original OC method
with UMAAL instruction for large integer multiplication on Cortex-M4, due to the
excessive number of number of addition, subtraction, bit-wise exclusive-or, and
loading/storing intermediate results inside Karatsuba method. Furthermore, 32-
bit ARM Cortex-M4 microcontroller provides same latency (i.e. 1 clock cycle) for
both 32-bit wise unsigned multiplication with double accumulation (i.e. UMAAL)
and 32-bit wise unsigned addition (i.e. ADD).

We acknowledge that on low-end devices, such as 8-bit AVR microcontrollers,
Karatsuba method is one of the most efficient approaches for multi-precision mul-
tiplication. In these platforms, the MAC routine requires at least 5 clock cycles
[14]. This significant overhead is efficiently replaced with relatively cheaper 8-bit
addition/subtraction operation (i.e. 1 clock cycle). However, UMAAL instruction in
ARM Cortex-M4 microcontroller can perform the MAC routine within 1 clock
cycle. For this reason, it is hard to find a reasonable trade-off between MAC
(i.e. 1 clock cycle) and addition/subtraction (i.e. 1 clock cycle) on the ARM
Cortex-M4 microcontroller. Following the above analysis, we adopted the OC
method for implementing multiplication in our proposed implementation. More-
over, in order to achieve the most efficient implementation of SIKE protocol on
ARM Cortex-M4, we proposed three distinguished improvements to the origi-
nal method which result in significant performance improvement compared to
previous works. We describe these techniques in the following.
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Table 1. Comparison of multiplication methods, in terms of memory-access complexity.
The parameter d defines the number of rows within a processed block.

Table 2. Comparison of multiplication methods for different Integer sizes, in terms of
the number of memory access on 32-bit ARM Cortex-M4 microcontroller. The param-
eters d and e are set to 2 and 3, respectively.

Efficient Register Utilization. The OC method follows the product-scanning
approach for inner loop but it divides the calculation (i.e. outer loop) into several
rows [15]. The number of rows directly affects the overall performance, since the
OC method requires to load the operands and load/store the intermediate results
by the number of rows1. Table 1 presents the comparison of memory access com-
plexity depending on the multiplication techniques. Our optimized implementa-
tion (i.e. Refined Operand Caching) is based on the original OC method but we
optimized the available registers and increased the operand caching size from e
to e+1. In the equation, the number of memory load by 3(�n/(e+1)�) indicates
the operand pointer access in each row.

Moreover, larger bit-length multiplication requires more memory access oper-
ations. Table 2 presents the number of memory access operations in OC method
for different multi-precision multiplication size. In this table, our proposed R-OC
method requires the least number memory access for different length multiplica-
tion. In particular, in comparison with original OC implementation, our proposed
implementation reduces the total number of memory accesses by 19.8%, 19.7%,
and 21% for 448-bit, 512-bit, and 768-bit, respectively2.

In order to increase the size of operand caching (i.e. e) by 1, we need
at least 3 more registers to retain two 32-bit operand limbs and one 32-bit
1 The number of rows is r = �n/e�, where the number of needed words (n = �m/w�),

the word size of the processor (w) (i.e. 32-bit), the bit-length of operand (m), and
operand caching size (e) are given.

2 Compared with original OC implementation, we reduce the number of row by 1
(4 → 3), 2 (5 → 3), and 2 (7 → 5) for 448-bit, 512-bit, and 768-bit, respectively.
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Table 3. Comparison of register utilization of the proposed method with previous
works.

intermediate result value. To this end, we redefine the register assignments inside
our implementation. We saved one register for the result pointer by storing the
intermediate results into stack. Moreover, we observed that in the OC method,
both operand pointers are not used at the same time in the row. Therefore, we
don’t need to maintain both operand pointers in the registers during the com-
putations. Instead, we store them to the stack and load one by one on demand.

Using the above techniques, we saved three available registers and utilized
them to increase the size of operand caching by 1. In particular, three registers
are used for operand A, operand B, and intermediate result, respectively. We
state that our utilization technique imposes an overhead in memory access for
operand pointers. However, since in each row, only three memory accesses are
required, the overall overhead is negligible to the obtained performance benefit.
We provide a detailed comparison of register assignments of this work with
previous implementations in Table 3.

Optimized Front Parts. As it is illustrated in Fig. 3, our R-OC method starts
from an initialization block (Init section). In the Init section, both operands
are loaded from memory to registers and the partial products are computed.
From the row1, only one operand pointer is required in each column. The front
part (i.e. I-F and 1-F) requires partial products by increasing the length of
column to 4.

Fujii et al. [11] implemented the front parts using carry-less MAC routines.
In their approach, they initialized up to two registers to store the intermedi-
ate results in each column. Figure 4 illustrates their approach. Since the UMLAL
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Fig. 3. Proposed 256-bit Refined Operand Caching multiplication at the word-level
where e is 4 on ARM Cortex-M4, Init© : initial block; 1©: order of rows; F©: front part;
R©: middle right part; L©: middle left part; B©: back part.

Fig. 4. 3-word integers with the product scanning approach using the UMLAL and UMAAL

instructions for front part of OC method [11].
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and UMAAL instructions need to update current values inside the registers, the
initialized registers are required.

In order to optimize the explicit register initialization, we redesign the front
part with product scanning. In contrast to Fujii’s approach, we used UMULL and
UMAAL instructions. As a result, the register initialization is performed together
with unsigned multiplication (i.e. UMULL). This technique improves the overall
clock cycles since each instruction directly assigns the results to the target reg-
isters. In particular, we are able to remove all the register initialization routines,
which is 9 clock cycles for each front part compared to [11]. Moreover, the inter-
mediate results are efficiently handled with carry-less MAC routines by using
the UMAAL instructions. Figure 5 presents our 4-word strategy in further details.

Efficient Instruction Ordering. The ARM Cortex-M4 microcontrollers are
equipped with 3-stage pipeline in which the instruction fetch, decode, and exe-
cution are performed in order. As a result, any data dependency between consec-
utive instructions imposes pipeline stalls and degrades the overall performance
considerably. In addition to the previous optimizations, we reordered the MAC
routine instructions in a way which removes data dependency between instruc-
tions, resulting in minimum pipeline stalls. The proposed approach is presented
in Fig. 5 (1-R section). In this Figure, the operand and intermediate result are
loaded from memory and partial products are performed column-wise as follows:

...
LDR R6, [R0,#4 ∗ 4] //Loading operand B[4] from memory
LDR R1, [SP,#4 ∗ 4] //Loading intermediate result C[4] from memory
UMAAL R14, R10, R5, R7 //Partial product (B[1]*A[3])
UMAAL R14, R11, R4, R8 //Partial product (B[2]*A[2])
UMAAL R14, R12, R3, R9 //Partial product (B[3]*A[1])
UMAAL R1, R14, R2, R6 //Partial product (B[4]*A[0])
...

The intermediate result (C[4]) is loaded to the R1 register. At this point, updat-
ing R1 register in the next instruction results in pipeline stall. To avoid this
situation, first, we updated the intermediate results into other registers (R10,
R11, R12, R14), while R1 register was updated during the last step of MAC. We
followed a similar approach in 1-L section, where operand (A) pointer is loaded
to a temporary register, and then the column-wise multiplications are performed
with the operands (A[4], A[5], A[6], and A[7]). In the back part (i.e. 1-B), the
remaining partial products are performed without operand loading. This is effi-
ciently performed without carry propagation by using the UMAAL instructions.

To compare the efficiency of our proposed techniques with previous works,
we evaluated the performance of our 256-bit multiplication with the most rele-
vant works on Cortex-M4 platform. To obtain a fair and uniform comparison, we
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Fig. 5. 4-word integers with the product scanning approach using the UMULL and UMAAL

instructions for front part of OC method.

benchmarked the proposed implementations in [11,13]3,4 with our implementa-
tion on our development environment.
3 Fujii et al. https://github.com/hayatofujii/curve25519-cortex-m4.
4 Haase et al. https://github.com/BjoernMHaase/fe25519.

https://github.com/hayatofujii/curve25519-cortex-m4
https://github.com/BjoernMHaase/fe25519
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Table 4. Comparison results of 256-bit multiplication on ARM Cortex-M4 microcon-
trollers.

Table 4 presents the performance comparison of our library with previous
works in terms of clock cycles. We observe that our proposed multiplication
implementation method is faster than previous optimized implementation on
the same platform. Furthermore, in contrast to the compact implementation of
256-bit multiplication in [13], our approach provides scalability to larger integer
multiplication without any significant overhead.

2.2 Multiprecision Squaring

Most of the optimized implementations of cryptography libraries use optimized
multiplication for computing the square of an element. However, squaring can
be implemented more efficiently since using one operand reduces the overall
number of memory accesses by half, while many redundant partial products can
be removed (i.e. A[i] × A[j] + A[j] × A[i] = 2 × A[i] × A[j]).

Similar to multiplication, squaring implementation consists of partial prod-
ucts of the input operand limbs. These products can be divided into two parts:
the products which have two operands with the same value and the ones in which
two different values are multiplied. Computing the first group is straightforward
and it is only computed once for each limb of operand. However, computing the
latter products with different values and doubling the result can be performed in
two different ways: doubled-result and doubled-operand. In doubled-result tech-
nique, partial products are computed first and the result is doubled afterwards
(A[i] × A[j] → 2 × A[i] × A[j]), while in doubled-operand, one of the operands
is doubled and then multiplied to the other value (2 × A[i] → 2 × A[i] × A[j]).

In the previous works [11,13], authors adopted the doubled-result technique
inside squaring implementation. Figures 6 and 7 show their techniques for imple-
menting optimized squaring on Cortex-M4 platform. The red parts in the figures
present the partial products where the input values are the same and the black
dots with gray background represent the doubled-result products.

Figure 6 demonstrates Sliding Block Doubling (SBD) based squaring method
in [11]. This method is based on the product scanning approach. The squaring
consists of two routines: initialization and row 1 computation. The intermediate
results are doubled column-wise as the row 1 computations are performed.

Figure 7 presents the Operand Scanning (OS) based squaring method in [13].
In contrast to previous method, computations are performed row-wise. However,
the intermediate results are doubled in each column. Note that in this method,
the order of computation is designed explicitly for 256-bit operand to maximize
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Fig. 6. 256-bit Sliding Block Doubling squaring at the word-level on ARM Cortex-M4,
Init© : initial block; 1©: order of rows [11].

Fig. 7. 256-bit Operand Scanning squaring at the word-level on ARM Cortex-M4, 1©
→ 2© → 3©: order of rows [13].

the operand caching. Similar to their multiplication implementation, the pro-
posed method does not provide scalability to larger bit-length multiplications.

In this work, we proposed a hybrid approach for implementing a highly-
optimized squaring operation which is explicitly suitable for SIKE/SIDH appli-
cation. In general, doubling operation may result in one bit overflow which
requires an extra word to retain. However, in the SIDH/SIKE settings, mod-
uli are smaller than multiple of 32-bit word (434-bit, 503-bit, and 751-bit) which
provide an advantage for optimized arithmetic design. Taking advantage of this
fact, we designed our squaring implementation based on doubled-operand app-
roach. We divided our implementation into three parts: one sub-multiplication
and two sub-squaring operations. We used R-OC for sub-multiplication and SBD
for sub-squaring operations. Figure 8 illustrates our hybrid method in detail.
First, the input operand is doubled and stored into the stack memory. Taking
advantage of doubled-operand technique, we perform the initialization part by
using R-OC method.

Second, the remaining rows 1 and 2 are computed based on SBD methods. In
contrast to previous SBD method, all the doubling operations on intermediate
results are removed during MAC routines. This saves several registers to dou-
ble the intermediate results since doubled-results have been already computed.
Furthermore, our proposed method is fully scalable and can be simply adopted
to larger integer squaring.
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Fig. 8. 255-bit proposed squaring at the word-level on ARM Cortex-M4, Init© : initial
block; 1© → 2©: order of rows.

Table 5. Comparison results of 255/256-bit squaring on ARM Cortex-M4 microcon-
trollers.

In order to verify the performance improvement of our proposed approach,
we benchmarked our 255-bit squaring implementation with the most optimized
available implementations in the literature. Table 5 presents the performance
comparison of our method with previous implementations on our target platform.

Our hybrid method outperforms previous implementations of 256-bit squar-
ing, while in contrast to [13], it is scalable to larger parameter sets. In particular,
it enabled us to implement the same strategy for computing SIKE/SIDH arith-
metic over larger finite fields.

2.3 Modular Reduction

Modular multiplication is a performance-critical building block in SIDH and
SIKE protocols. One of the most well-known techniques used for its implemen-
tation is Montgomery reduction [24]. We adapt the implementation techniques
described in Sects. 2.1 and 2.2 to implement modular multiplication and squaring
operations. Specifically, we target the parameter sets based on the primes p434,
p503, and p751 for SIKE round 2 protocol [1,6]. Montgomery multiplication can
be efficiently exploited and further simplified by taking advantage of so-called
“Montgomery-friendly” modulus, which admits efficient computations, such as
all-zero words for lower part of the modulus.

The efficient optimizations for the modulus were first pointed out by Costello
et al. [6] in the setting of SIDH when using modulus of the form 2x·3y−1 (referred
to as “SIDH-friendly” primes) are exploited by the SIDH library [7].

In CHES’18, Seo et al. suggested the variant of Hybrid-Scanning (HS) for
“SIDH-friendly” Montgomery reduction on ARM Cortex-A15 [25]. Similar to
OC method, the HS method also changes the operand pointer when the row
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Fig. 9. 503-bit “SIDH-friendly” Montgomery reduction at the word-level, where d is 4
on ARM Cortex-M4, 1© → 2© → 3© → 4©: order of rows; F©: front part; M©: middle part;
B©: back part; where M , R, T , and Q are modulus, Montgomery radix, intermediate
results, and quotient (Q ← T · M ′ mod R).

is changed. By using the register utilization described in Sect. 2.1, we increase
the parameter d by 1 (3 → 4. Moreover, the initial block is also optimized
to avoid explicit register initialization and the MAC routine is implemented
in the pipeline-friendly approach. Compared with integer multiplication, the
Montgomery reduction requires fewer number of registers to be reserved. Since
the intermediate result pointer and operand Q pointer are identical value (i.e.
stack), we only need to maintain one address pointer to access both values.
Furthermore, the modulus for SIKE (i.e. operand M ; SIKEp434, SIKEp503,
and SIKEp751) is a static value. As a result, instead of obtaining values from
memory, we assign the direct values to the registers. This step can be performed
with the two instructions, such as MOVW and MOVT. The detailed 32-bit value
assignment (e.g. 0x87654321) to register R1 is given as follows:

...
MOVW R1,#0x4321 //R1 = #0x4321
MOVT R1,#0x8765 //R1 = #0x8765 � 16 | R1
...

In Fig. 9, the 503-bit “SIDH-friendly” Montgomery reduction on ARM
Cortex-M4 microcontroller is described. The Montgomery reduction starts from
row 1, 2, 3, to 4.

In the front of row 1 (i.e. 1-F), the operand Q is loaded from memory and
the operand M is directly assigned using constant value. The multiplication
accumulates the intermediate results from memory using the operand Q pointer
and stored them into the same memory address. In the middle of row 1 (i.e. 1-M),
the operand Q is loaded and the intermediate results are also loaded and stored,
sequentially. In the back of row 1 (i.e. 1-B), the remaining partial products are
computed. Furthermore, the intermediate carry values are stored into stack and
used in the following rows.
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Table 6. Comparison results of modular multiplication and squaring for SIDH on
32-bit ARM Cortex-M4 microcontrollers.

Using the above techniques, we are able to reduce the number of row by 1
(5 → 4), 2 (6 → 4), and 2 (8 → 6) for 448-bit, 512-bit, and 768-bit, respectively,
compared to original implementation of HS based Montgomery reduction.

Recently, Bos et al. [4] and Koppermann et al. [20] proposed highly opti-
mized techniques for implementation of modular multiplication. They utilized
the product-scanning methods for modular reduction. However, our proposed
method outperfoms both implementations in terms of clock cycles. In particu-
lar, our proposed method provides more than 2 times faster result compared to
Bos et al. [4], while the benchmark results in [4] were obtained on the high-end
ARMv7 Cortex-A8 processors which is equipped with 15 pipeline stages and is
dual-issue super-scalar. Table 6 shows the detailed performance comparison of
multiplication, squaring, and reduction over SIDH/SIKE primes in terms of clock
cycles. We state that, the benchmark results for [7] are based on optimized C
implementation and they are presented solely as a comparison reference between
portable and target-specific implementations.

2.4 Modular Addition and Subtraction

Modular addition operation is performed as a long integer addition operation
followed by a subtraction from the prime. To have a fully constant-time arith-
metic implementation, the final reduction is performed using a masked bit. In
this case, even if the addition result is inside the field, a redundant subtraction
is performed, so the secret values cannot be retrieved using power and timing
attacks. The detailed operations are presented in the following:

– Modular addition: (A+B) mod P
1© C←A+B 2© {M,C}←C-P 3© C←C+(P&M).

– Modular subtraction: (A-B) mod P
1© {M,C}←A-B 2© C←C+(P&M).

Previous optimized implementations of modular addition on Cortex-M4
[20,25], provided the simple masked technique using hand-crafted assembly.
However, In this work, we optimized this approach further by introducing three
techniques:



SIKE Round 2 Speed Record on ARM Cortex-M4 53

– Proposed modular addition: (A+B) mod P
1© {M,C}←A+B-P 2© C←C+(P&M).

First, we take advantage of the special shape of SIDH-friendly primes which
have multiple words equal to 0xFFFFFFFF. Since this value is the same for multi-
ple limbs, we load it once inside a register and use it for multiple single-precision
subtraction. This operand re-using technique reduces the number of memory
access by n and n

2 for modular addition and modular subtraction, where the
number of needed words (n = �m/w�), the word size of the processor (w) (i.e.
32-bit), and the bit-length of operand (m) are given, respectively.

Second, we combine Step 1© (addition) and 2© (subtraction) into one opera-
tion ({M,C}←A+B-P). In order to combine both steps, we catch both intermedi-
ate carry and borrow, while we perform the combined addition and subtraction
operation.

Figure 10 illustrates the proposed technique in details. In this Figure, first,
4-word addition operations (A[0 ∼ 3] + B[0 ∼ 3]) compute the addition result.
Subsequently, a single register is set to constant (i.e. 0xFFFFFFFF), which is
used for the carry catching step. In Fig. 10, this step is shown in the last row
of fourth column. When the carry overflow happens from fourth word addition
(i.e. A[3] + B[3] + CARRY ), the carry catcher register is set to 232 − 1 (i.e.
0xFFFFFFFF ← 0xFFFFFFFF + 0xFFFFFFFF + 0x00000001) by using the con-
stant (i.e. 0xFFFFFFFF) in last row of fourth column (Constant + Constant +
Carry). Otherwise, the carry catcher register is set to 232 − 2 (i.e. 0xFFFFFFFE
← 0xFFFFFFFF + 0xFFFFFFFF + 0x00000000).

This addition operation stores the carry bit to the first bit of carry catcher
register. The carry value in carry catcher register is used for the following addi-
tion steps (second column in the Fig. 10).

The stored carry in the first bit is shifted to the 32nd bit by using
the barrel-shifter module. Afterward, the value is added to the constant
(i.e. 0xFFFFFFFF). If the first bit of carry catcher is set, the carry hap-
pens (i.e. 0x00000001�31 + 0xFFFFFFFF). Otherwise, no carry happens (i.e.
0x00000000�31 + 0xFFFFFFFF).

Similarly, we obtained the borrow bit. The results of 4-word addition oper-
ations (A[0 ∼ 3] + B[0 ∼ 3]) are subtracted by modulus (P [0 ∼ 3]) in the
third column. When the borrow happens from fourth word subtraction (i.e.
A[3]+B[3]−P [3]−BORROW ), the borrow catcher register is set to 232−1 (i.e.
0xFFFFFFFF ← 0x00000000 - 0x00000001) in last row of third column (Zero
- Borrow). Otherwise, the borrow catcher register is set to 0 (i.e. 0x00000000
← 0x00000000 - 0x00000000). The borrow bit in borrow catcher register is
used for the following subtraction steps. To obtain the borrow bit, the zero con-
stant is subtracted by the borrow catcher register. For one constant register
optimization, we used the address pointer instead of zero constant.

Since the address pointer of 32-bit ARM Cortex-M4 microcontroller is aligned
by 4-byte (i.e. 32-bit), the address is always ranging from 0 (i.e. 0x00000000)
to 232 − 4 (0xFFFFFFFC). When the borrow catcher register is set, we can get
the borrow bit through subtraction (e.g. Pointer - 0xFFFFFFFF where pointer
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Fig. 10. Initial part of step 1© in 512-bit modular addition on ARM Cortex-M4 (i.e.
A[0∼7]+B[0∼7]-P[0∼7]).
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Fig. 11. Initial part of of step 2© in 512-bit modular addition/subtraction on ARM
Cortex-M4 (i.e. C[0∼(n-1)/2]+(P[0∼(n-1)/2]&M)).

is ranging from 0 to 232 − 4). Otherwise, no borrow happens. The combined
modular addition routine reduces the number of memory access by 2n since we
can avoi4d both loading and storing the intermediate results.

In addition to the above techniques, the masked addition routine is also
optimized. This is shown as Step 2© of modular addition and subtraction. When
the mask value is set to 0xFFFFFFFF, the lower part of SIDH modulus is also
0xFFFFFFFF. Otherwise, both values are set to zero. We optimized the modu-
lus setting (MOVW/MOVT) and masking operation (AND) for lower part of SIDH
modulus. The detailed descriptions for initial part of step 2© in 512-bit modular
addition/subtraction are given in Fig. 11.

Using the above optimization techniques, we are able to reduce the number
of memory access for modular addition and subtraction by 3n (9n → 6n) and
n/2 (6n → 11n/2), respectively.

We benchmarked the proposed optimized addition and subtraction imple-
mentations on our target platform. We provide the performance evaluation of
this work and previous works over different security levels in Table 7. Compared
to previous works, the proposed method improved the performance by 16.7%
and 14.7% for modular addition and subtraction, respectively.

3 Performance Evaluation

In this section, we present the performance evaluation of our proposed
SIDH/SIKE implementations on 32-bit ARM Cortex-M4 microcontrollers. We
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Table 7. Comparison results of modular addition and subtraction for SIDH/SIKE on
ARM Cortex-M4 microcontrollers.

implemented highly-optimized arithmetic, targeting SIKE round 2 primes adapt-
ing our optimized techniques for multiplication, squaring, reduction, and addi-
tion/subtraction. We integrate our arithmetic libraries to the SIKE round 2
reference implementation [1] to evaluate the feasibility of adopting this scheme
on low-end Cortex-M4 microcontrollers.

All the arithmetic is implemented in ARM assembly and the libraries are
compiled with GCC with optimization flag set to -O3.5

Tables 8 and 9 present the comparison of our proposed library with highly
optimized implementations in the literature over different security levels. The
optimized C implementation timings by Costello et al. [7] and the reference C
implementation of SIKE [1] illustrate the importance of target-specific implemen-
tations of SIDH/SIKE low-end microcontrollers such as 32-bit ARM Cortex-M4.
In particular, compared to optimized C Comba based implementation in SIDH
v3.0, the proposed modular multiplication for 503-bit and 751-bit provide 19.05x
and 20.10x improvement, respectively.

The significant achieved performance improvement in this work is the result
of our highly-optimized arithmetic library. Specifically, our tailored multiplica-
tion minimizes pipeline stalls on ARM Cortex-M4 3-stage pipeline, resulting in
remarkable timing improvement compared to previous works.

Moreover, the proposed implementation achieved 362 and 977 million clock
cycles for total computation of SIDHp503 and SIDHp751, respectively. The
results are improved by 10.51x and 12.97x for SIDHp503 and SIDHp751, respec-
tively. In comparison with the most relevant work, our proposed modular mul-
tiplication and SIDHp751 outperforms the optimized implementation in [20] by
2.75x and 4.35x, respectively.

Compared with other NIST PQC round 2 schemes, the SIKE protocol shows
slower execution time but the SIKE protocols show the most competitive memory

5 Our library will be publicly available in the near future.
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Table 8. Comparison of SIDHp434, SIDHp503, and SIDHp751 protocols on the ARM
Cortex-M4 microcontrollers. Timings are reported in terms of clock cycles.

Table 9. Comparison of NIST PQC round 2 protocols on the ARM Cortex-M4 micro-
controllers. Timings are reported in terms of clock cycles. Koppermann et al. [20] does
not provide results on SIKE implementations.

utilization for encapsulation and decapsulation6. Furthermore, small key size of
SIKE ensures the lower energy consumption for key transmission than other
schemes. The low-energy consumption is the most critical requirement for low-
end (battery-powered) microcontrollers.

In Table 10, we evaluated the practicality of SIDH protocols on both high-
end ARM Cortex-A family of processors and low-end ARM Corex-M4 micro-
controllers by measuring the timing in seconds.

The fastest implementations of SIDHp503 on 64-bit ARMv8 Cortex-A53 and
Cortex-A72 only require 0.041 s and 0.021 s, respectively. For the case of 32-bit
ARMv7 Cortex-A15, the SIDHp751 protocol is performed in 0.157 s. This results
emphasize that SIDH protocol is already a practical solution for those “high-end”
processors.

6 SIKEp434 requires more memory than SIKEp503 since SIKEp434 allocates more
temporal storage than SIKEp503 in Fermat based inversion.
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Finally, prior to this work, supersingular isogeny-based cryptography was
assumed to be unsuitable to use on low-end devices due to the nonviable perfor-
mance evaluations [20]7. However, in contrast to benchmark results in [20], our
SIKE and SIDH implementation for NIST’s 1, 2, and 5 security levels are practi-
cal and can be used in real settings. The proposed implementation of SIDHp434
only requires 0.813 s, which shows that the quantum-resistant key exchange from
isogeny of supersingular elliptic curve is a practical solution on low-power micro-
controllers.

Table 10. Comparison of SIDH based key exchange protocols on high-end (ARM
Cortex-A series) processors and low-end (ARM Cortex-M4) microcontrollers. Timings
are reported in terms of seconds.
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Abstract. SipHash is an ARX-based pseudorandom function designed
by Aumasson and Bernstein for short message inputs. Recently, Ashur
et al. proposed an efficient analysis method against ARX algorithm—
“Rotational-XOR cryptanalysis”. Inspired by their work, we mount dif-
ferential and Rotational-XOR cryptanalysis on two instances of SipHash-
1-x and SipHash-2-x in this paper, where SipHash-1-x (or SipHash-2-x)
represents the Siphash instance with one (or two) compression round and
x finalization rounds.

Firstly, we construct the search model for colliding characteristic and
RX-colliding characteristic on SipHash. Based on the model, we find the
colliding characteristics and RX-colliding characteristics of SipHash by
the SMT-based automatic search tool. Moreover, we give a formula for
the selection of initial constants to improve the resistance of Siphash
against Rotational-XOR cryptanalysis to make the algorithm safer. In
addition, we find an RX-colliding characteristic with probability 2−93.6

for a revised version of SipHash-1-x with one message block, and an RX-
colliding characteristic with probability 2−160 for a revised version of
SipHash-1-x with two message blocks. With the SMT-based technique,
which outputs one message pair of the RX-collision if the given charac-
teristic has a nonzero probability. Finally, with the RX-colliding charac-
teristic we found earlier, we give the RX-collision with message pair and
key of a revised version of SipHash-1-x with one message block.

Keywords: Differential cryptanalysis · Rotational-XOR
cryptanalysis · SipHash · Initial constant · SMT software

1 Introduction

SipHash is a family of pseudorandom functions optimized for short inputs pro-
posed by Aumasson and Bernstein at Indocrypt 2012 [3]. Message string of any
length can be processed by SipHash with a 128-bit key to obtain a 64-bit or
128-bit output. The parameters c′ and d′ in SipHash-c′-d′ represent the number
of compression rounds and finalization rounds, respectively.
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One main design goal of SipHash is to ensure its security for short inputs. As
far as we know, the earliest study on SipHash is given by Siddappa et al. [15],
they proposed a SAT-based technique for a key recovery attack on SipHash-1-0,
by converting the SipHash primitive to a Conjunctive Normal Form (CNF) and
fed to a SAT solver. One of the best cryptanalytic results on SipHash is given
by Dobraunig et al. [7] using differential cryptanalysis. They find the differential
characteristic for SipHash-1-x with three message blocks and SipHash-2-x with
one message block, and show that SipHash-1-x is resistant against differential
cryptanalysis. It remains an interesting research question to check the security of
SipHash against other cryptanalytical methods, such as Rotational-XOR crypt-
analysis. Rotational-XOR cryptanalysis [4] is a recently proposed technique by
Ashur et al. in 2016 for analysing ARX ciphers. It generalises rotational crypt-
analysis and differential cryptanalysis to deal with the constants. Notice that the
propagation rule of Rotational-XOR differences allows more possible paths than
differential transitions by containing the normal XOR-difference propagation
rule. It means that one may obtain more possible characteristics by Rotational-
XOR cryptanalysis comparing with differential cryptanalysis. As implied by an
example in SPECK32 [4], Rotational-XOR cryptanalysis is an effective tech-
nique for the ARX structure, and it may generate characteristics covering more
rounds than differential ones. Moreover, the constants have a vital influence on
the details of the RX-characteristics, unlike differential cryptanalysis in both
single-key and related-key settings. Therefore, with Rotational-XOR cryptanal-
ysis, it helps to detect “weak” realizations of the constants which may leads to
a vulnerability.

Our Contributions. In this paper, we focus on the application of differential
cryptanalysis and Rotational-XOR cryptanalysis to pseudorandom functions by
searching for colliding characteristics and RX-colliding characteristics, by study-
ing a special internal collision (as we call it “internal RX-collision”) derived
from RX-characteristics of certain properties. Especially, our target ciphers are
the instances SipHash-1-x and SipHash-2-x. With differential cryptanalysis and
Rotational-XOR cryptanalysis, our results are as follows.

– Combining the search model and the automatic search tool, we give a col-
liding characteristic with probability 2−278 of SipHash-1-x with four message
blocks and a colliding characteristic with probability 2−241 of SipHash-2-x
with one message block. Besides, we find an RX-colliding characteristic with
probability 2−280 of SipHash-1-x with two message blocks.

– We give the theoretical proof for the colliding characteristics search results of
SipHash-1-x with one and two message blocks, and the RX-colliding charac-
teristic search result of SipHash-1-x with one message block.

– With Rotational-XOR cryptanalysis, we give an initial constants selection
formula to make the algorithm safer. In addition, we find an RX-colliding
characteristic with probability 2−93.6 for a revised version of SipHash-1-x
introducing one block message, and an RX-colliding characteristic with prob-
ability 2−160 for a revised version of SipHash-1-x introducing two blocks mes-
sage (Table 1).
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– Moreover, we give an SMT-based technique to verity the exact probability of
an RX-characteristic (or a differential-characteristic) is zero or nonzero, with
the RX-colliding characteristic of a revised version of SipHash-1-x with one
message block which we found earlier, we get an RX-collision with message
pair and key by the SMT-based technique.

Organization of the Paper. The rest of this paper is organized as follows.
A brief introduction of SipHash and an overview of differential cryptanalysis
and Rotational-XOR cryptanalysis are given in Sect. 2. In Sect. 3, we construct
the search model with differential cryptanalysis and Rotational-XOR cryptanal-
ysis. The results of colliding characteristics and RX-colliding characteristics for
SipHash are given in Sect. 4. In Sect. 5, we study the influence of constants selec-
tion on SipHash, and show an SMT-based technique for verifying the validity of
characteristics, and we apply it in finding an internal RX-collision under different
constants. We conclude in Sect. 6.

Table 1. Best found characteristics

Version Type Blocks Probability Reference

SipHash-1-x DC 1 0 Sect. 4.1

SipHash-1-x DC 2 0 Sect. 4.1

SipHash-1-x DC 3 2−169(∗) [7]

SipHash-1-x DC 4 2−278 Sect. 4.1

SipHash-2-x DC 1 2−242(∗) [7]

SipHash-2-x DC 1 2−241 Sect. 4.1

SipHash-1-x RX 1 0 Sect. 4.2

SipHash-1-x RX 2 2−280 Sect. 4.2

Revised SipHash-1-x RX 1 2−93.6 Sect. 5.3

Revised SipHash-1-x RX 2 2−160 Sect. 5.3
∗Supposed that there are two independent random inputs for every
modular addition in this paper, the colliding characteristics prob-
ability of SipHash-1-x with three message blocks and SipHash-2-x
with one message block in [7] are 2−169 and 2−242, respectively.
∗∗“DC” denotes differential cryptanalysis, and “RX” denotes
Rotational-XOR cryptanalysis.

2 Preliminaries

The notations we use in this paper are summarised in Table 2.
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Table 2. Notations

Symbol Meaning

(b1,i, a1,i, c1,i, d1,i) Inputs of the i-th round

(b2,i, a2,i, c2,i, d2,i) Outputs of the i-th round

uj,i, vj,i, wj,i, zj,i The intermediate values of i-th round

(Δb1,i, Δa1,i, Δc1,i, Δd1,i) Difference introduced in (b1,i, a1,i, c1,i, d1,i)

(Δb2,i, Δa2,i, Δc2,i, Δd2,i) Difference introduced in (b2,i, a2,i, c2,i, d2,i)

(
←−
Δb1,i,

←−
Δa1,i,

←−
Δc1,i,

←−
Δd1,i) RX-difference introduced in (b1,i, a1,i, c1,i, d1,i)

(
←−
Δb2,i,

←−
Δa2,i,

←−
Δc2,i,

←−
Δd2,i) RX-difference introduced in (b1,i, a1,i, c1,i, d1,i)

←−x x ≪ 1

2.1 Description of SipHash

SipHash is a family of pseudorandom functions based on ARX. The integer
parameters c′ and d′ in SipHash-c′-d′ represent the number of compression
rounds and the number of finalization rounds, respectively. Next, take SipHash-
1-x as an example to introduce SipHash. The processes of authentication splits
into three stages: Initialization, Compression and Finalization. The details of
SipHash-1-x with one message block can be found in Figs. 1 and 2 as shown
below. Here (a1, b1, c1, d1) → (a2, b2, c2, d2) are the intermediate values of the
single round encryption process of SipHash.

1. Initialization. The initial constants V0, V1, V2 and V3 are four 64-bit con-
stants. The only requirement for the constants is that (V0, V1) differ from (V2, V3)
for avoiding some symmetry in the states. The following set is given by the orig-
inal design document [3] as a possible choice of the constants.

V0 = 736f6d6570736575,

V1 = 646f72616e646f6d,

V2 = 6c7967656e657261,

V3 = 7465646279746573.

(1)

Four 64-bit words of internal state a0, b0, c0, d0 are initialized as

a0 = V0 ⊕ k0, b0 = V1 ⊕ k1,

c0 = V2 ⊕ k0, d0 = V3 ⊕ k1.

where k0, k1 are 64-bit words derived from the key.

2. Compression. SipHash-1-x processes a b-byte string m by parsing it as
w = �(b + 1)/8� 64-bit words m0, · · · ,mw−1. mw−1 includes the last 8 bytes of
m. Taking SipHash-1-x with one message block as an example. The message m0

is initially XORed to the state.

a1,1 = a0, b1,1 = b0,

c1,1 = c0, d1,1 = d0 ⊕ m0.
(2)
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Fig. 1. SipHahs-1-x with one message block

Fig. 2. SipHashRound

Then the intermediate values are obtained,

u1,1 = b1,1 ≪ 13, v1,1 = u1,1 ⊕ u2,1,

u2,1 = a1,1 � b1,1, v2,1 = u2,1 ≪ 32,

u3,1 = c1,1 � d1,1, v3,1 = u3,1,

u4,1 = d1,1 ≪ 16, v4,1 = u3,1 ⊕ u4,1.

(3)

w1,1 = v1,1 ≪ 17, z1,1 = w1,1 ⊕ w2,1,

w2,1 = v1,1 � v3,1, z2,1 = w2,1 ≪ 32,

w3,1 = v2,1 � v4,1, z3,1 = w3,1

w4,1 = v4,1 ≪ 21, z4,1 = w3,1 ⊕ w4,1.

(4)

b2,1 = z1,1, a2,1 = z3,1,

c2,1 = z2,1, d2,1 = z4,1.
(5)

where uj,1, vj,1, wj,1, zj,1, j ∈ {1, 2, 3, 4} are four 64-bit words of intermediate
values in SipHashRound.
Finally, m0 is XORed to b2,1: b1,2 = b2,1 ⊕ m0.

3. Finalization. The constant 0xff is XORed to the state c2,1,

c1,2 = c2,1 ⊕ 0xff.

After x iterations of SipHashRound, the finalization phase returns a 64-bit value

H(m0) = a ⊕ b ⊕ c ⊕ d.

where a, b, c, d are 64-bit outputs of the SipHashRound.
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2.2 Differential Cryptanalysis on ARX Structure

As a generally applicable cryptanalytic technique, differential cryptanalysis has
been extensively studied on ARX ciphers. Nyberg et al. [13] have studied the
differential propagations in modular addition by an automaton description, and
an explicit formula was derived by Schulte-Geers [14] in 2013 for calculating
the differential probabilities of independent inputs in modular addition. The
studies on differential properties of modular addition have greatly promoted the
analysis processes of ARX algorithms. A number of ARX ciphers are analyzed,
such as a number of results obtained for differential cryptanalysis on SPECK [1,
6], differential cryptanalysis on SPARX by Ankele et al. [2], and the results
of differential cryptanalysis in ARX structure [9,10,12]. In addition, there are
many articles on the automatic search of differential characteristics in ARX
ciphers [5,8,16,17].

Differences pass through the linear operations in ARX with probability 1,
whereas the differential probability of modular addition can be characterised by
the following equation

(x ⊕ Δx) � (y ⊕ Δy) = ((x � y) ⊕ Δz).

When the inputs x and y are independent random variables, the following
lemma depicts the propagation rule of the differences through modular addition.

Lemma 1 ([14]). Suppose that x, y ∈ F2n are independent random variables,
and let Δx = x ⊕ x′,Δy = y ⊕ y′, and Δz = z ⊕ z′ be differences in F2n , where
z = x � y. Then, we have

Pr[(x ⊕ Δx) � (y ⊕ Δy) = (z ⊕ Δz)]

= 1(I⊕SHL)(Δx⊕Δy⊕Δz)�SHL((Δx⊕Δz)|(Δy⊕Δz)) · 2−|SHL((Δx⊕Δz)|(Δy⊕Δz))|.
(6)

where SHL(x) = x � 1 and (I ⊕ SHL)(x) = x ⊕ SHL(x). 1x�y = 1 is the
characteristic function which evaluates to 1 when for all i : xi ≤ yi, 0 ≤ i ≤ n,
otherwise to 0.

2.3 Rotational-XOR Cryptanalysis on ARX Structure

Rotational-XOR cryptanalysis is a recent cryptanalysis method for ARX algo-
rithms proposed by Ashur et al. [4]. Rotational-XOR cryptanalysis was applied
to the block cipher SPECK [11] by Liu et al., where they obtained characteris-
tics covering more rounds than previous results. Rotational-XOR cryptanalysis
works with a new notion of difference called RX-difference.

Definition 1 ([4]). Rotational-XOR difference (or RX-difference in short) with
rotational offset 1 of two bit-strings x and x′ is defined as

←−
Δx = x ⊕ (x′ ≪ 1).
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Here, we give a quick overview of the basic propagation rule of the RX-
difference in ARX algorithms. Similar to differential cryptanalysis, the propaga-
tions of RX-difference through XOR and rotation is with probability 1. Whereas
the RX-differential probability of modular addition can be characterised by the
following equation.

((x ⊕ ←−
Δx) ≫ 1) � ((y ⊕ ←−

Δy) ≫ 1) = ((z ⊕ ←−
Δz) ≫ 1),

Where
←−
Δx,

←−
Δy,

←−
Δz denote the RX-difference introduced at x, y, z, and z = x�y.

For the nonlinear operation modular addition, the probability is evaluated by
the following proposition.

Proposition 1 ([4]). Suppose that x, y ∈ F2n are independently uniform ran-
dom variables, z = x � y. Let

←−
Δx,

←−
Δy and

←−
Δz be constants in F2n , which are

the RX-differences. Then,

Pr[((x⊕←−
Δx) ≫ 1) � ((y ⊕ ←−

Δy) ≫ 1) = (z ⊕ ←−
Δz) ≫ 1]

= 1(I⊕SHL)(δx⊕δy⊕δz)⊕1�SHL((δx⊕δz)|(δy⊕δz))

· 2−|SHL((δx⊕δz)|(δy⊕δz))| · 2−3

+ 1(I⊕SHL)(δx⊕δy⊕δz)�SHL((δx⊕δz)|(δy⊕δz))

· 2−|SHL((δx⊕δz)|(δy⊕δz))| · 2−1.415.

(7)

where δx =
←−
Δx 
 1, δy =

←−
Δy 
 1, and δz =

←−
Δz 
 1.

In words: Proposition 1 gives the propagation law of the input RX-differences←−
Δx,

←−
Δy through modular addition to output RX-difference

←−
Δz. More informa-

tion please refer to [4] and [11].

3 SMT-Based Search Model of SipHash

To search the characteristics of SipHash which could lead to an internal collision
(or internal RX-collision), we use an automatic search tool—Z3 solver based on
SMT. To make use of such a tool to get the characteristics, several key processes
need to be considered.

– Combine SipHash encryption processes with the propagation law of difference
(or RX-difference) through modular addition, designing the search model of
collision (or RX-collision).

– Convert the search model into SMT language with SMTLIB format.
– Run the solver to search for characteristics with a certain probability.
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SMT-Based Colliding Characteristics Search Model. In this subsection,
by combining the propagation law of difference proposed by Schulte-Geers [14]
with an SMT solver, we construct a search model of differential characteristics in
SipHash-1-x and SipHash-2-x. For convenience, a differential characteristic that
leads to an internal collision will be referred to as a colliding characteristic. Tak-
ing the case of SipHash-1-x with one message block as an example, we describe
the model as follow.

The notations of the input differences and the output differences
in (b1,i, a1,i, c1,i, d1,i), (b2,i, a2,i, c2,i, d2,i), and the differences introduced in
uj,i, vj,i, wj,i, zj,i are showed in Table 2. To construct an internal collision, the
difference Δm0 introduced by the message propagates through the round func-
tion of SipHash, and needs to be cancelled by the same difference on a different
branch. Hence, it is necessary to find a possible differential characteristic

(Δb1,1,Δa1,1,Δc1,1,Δd1,1) → (Δb2,1,Δa2,1,Δc2,1,Δd2,1).

in SipHash round which satisfies the active pattern

(0, 0, 0,Δm0) → (0,Δm0, 0, 0).

Similar to Eqs. (2)–(5), constraints of the difference propagations on SipHash-
1-x with one message block are described in the following.

Δu1,1 = Δb1,1 ≪ α1, Δv1,1 = Δu1,1 ⊕ Δu2,1,

(Δa1,1,Δb1,1)
�→ Δu2,1, Δv2,1 = Δu2,1 ≪ 32,

(Δc1,1,Δd1,1)
�→ Δu3,1, Δv3,1 = Δu3,1,

Δu4,1 = Δd1,1 ≪ β2, Δv4,1 = Δu3,1 ⊕ Δu4,1,

(8)

where α1 = 13, α2 = 17, β2 = 16, and β2 = 21. We can get the values
Δwj,1,Δzj,1, j ∈ {1, 2, 3, 4} similar to Δuj,1,Δvj,1, j ∈ {1, 2, 3, 4}, by replacing
α1, β1 with α2, β2.
The propagations of

(Δa1,1,Δb1,1)
�→ Δu2,1, (Δc1,1,Δd1,1)

�→ Δu3,1,

(Δv1,1,Δv3,1)
�→ Δw2,1, (Δv2,1,Δv4,1)

�→ Δw3,1

are expected to satisfy the constraints in Lemma 1, and (Δz1,1,Δz3,1,
Δz2,1,Δz4,1) equals to (Δb2,1,Δa2,1,Δc2,1,Δd2,1) = (0,Δm0, 0, 0).

SMT-Based RX-Colliding Characteristics Search Model. Similar to
the internal collision based on differential distinguishers, if the RX-differences
injected by the messages and the initial constants are cancelled by the
RX-differences after the application of message injection phase, the input
RX-differences to the finalization phase are all zero which leads to a rotational
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relation at the output of the pseudorandom function with a rotational probabil-
ity. The RX-characteristic that leads to an internal RX-collision will be referred
to as an RX-colliding characteristic.

Comparing with differential propagations, RX-difference has one extra con-
dition to pass through modular addition, which implies that there may exist pos-
sible RX-characteristics even when the difference propagations are impossible.
Therefore, it motivates us to study SipHash with Rotational-XOR cryptanaly-
sis. Taking SipHash-1-x with one message block as an example, the RX-colliding
characteristics need to satisfy the active pattern in Lemma 2.

Lemma 2. Suppose that there exists an RX-characteristic (
←−
Δb1,1,

←−
Δa1,1,←−

Δc1,1,
←−
Δd1,1) → (

←−
Δb2,1,

←−
Δa2,1,

←−
Δc2,1,

←−
Δd2,1) which produces an internal RX-

collision for SipHash-1-x with one message block. Then, it has the following
active pattern,

(C1, C0, C2, C3 ⊕ Δ) → (0,Δ,C4, 0),

where C0 = V0 ⊕ ←−
V0, C1 = V1 ⊕ ←−

V1, C2 = V2 ⊕ ←−
V2, C3 = V3 ⊕ ←−

V3, C4 =
0xff ⊕ ←−−

0xff, Δ represents the RX-difference of message block is introduced in
this case.

Proof. We give a theoretical explanation of this theorem according to the
SipHash-1-x encryption processes and the RX-difference definition. The full proof
is given in AppendixA. ��

Similar to the colliding characteristics search model of SipHash-1-x with one
message block, the propagations of

(
←−
Δa1,1,

←−
Δb1,1)

�→ ←−
Δu2,1, (

←−
Δc1,1,

←−
Δd1,1)

�→ ←−
Δu3,1

(
←−
Δv1,1,

←−
Δv3,1)

�→ ←−
Δw2,1, (

←−
Δv2,1,

←−
Δv4,1)

�→ ←−
Δw3,1

are constrained by Proposition (1).
If the output RX-differences (0,Δ,C4, 0) after the SipHash round are all zero,

the right message pairs and right key pairs satisfying the characteristic can be
found. Then after the finalization phase, the 64-bit output values H(m0),H(m′

0)
have a rotational relation H(m0) =

←−−−−
H(m′

0).

Converting the Search Model into SMT Language. For the second pro-
cess, all we need to do is converting the search model into SMT language with
SMTLIB format. Take “z=((a≪16)⊕ b)� (d ≪32)” for example, it can be
converted by “(assert(= z (bvadd (bvxor (( rotate left 16) a) b) ((
rotate left 32) d))))”. We will do a characteristic search in the next section
by the SMT software.
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4 Colliding Characteristics and RX-Colliding
Characteristics Search of SipHash

In this section, we will use the automatic tool to search the colliding characteris-
tics and the RX-colliding characteristics for SipHash-1-x with multiple message
blocks and SipHash-2-x with one message block, respectively.

4.1 Colliding Characteristics Search of SipHash

With the colliding characteristics search model and SMT software, we can
obtain the colliding characteristics of SipHash-1-x with four message blocks and
SipHash-2-x with one message block which are shown in Tables 3 and 4. The
experimental search results show that no colliding characteristic is found for
SipHash-1-x with one or two message blocks.

Table 3. Colliding characteristic of SipHash-1-x with four message blocks with prob-
ability 2−278.

Δm0 0000000600000000 Δk0 00000000000000000

Δm1 3fa0fe5a000000d0 Δk1 00000000000000000

Δm2 d0ce9cdda0101a69

Δm3 00000040000180000

Δa1,1 00000000000000000 Δb1,1 00000000000000000

Δc1,1 00000000000000000 Δd1,1 00000000600000000

Δa2,1 0000e000200000000 Δb2,1 00000000200000000

Δc2,1 00000000000000002 Δd2,1 0004e0002000000c0

Δa1,2 0000e000400000000 Δb1,2 00000000200000000

Δc1,2 00000000000000002 Δd1,2 03feefe5800000010

Δa2,2 087ce8ee80029d092 Δb2,2 0800cc0d200000046

Δc2,2 0000000720018c0d2 Δd2,2 070ce8cefffb61762

Δa1,3 0b86e70b20029d042 Δb1,3 0800cc0d200000046

Δc1,3 0000000720018c0d2 Δd1,3 0a00010325fa60d0b

Δa2,3 0f0c69c9dffee0669 Δb2,3 02000004000020000

Δc2,3 00001400000000020 Δd2,3 00000c40000180020

Δa1,4 0200800405ffe1c00 Δb1,4 02000004000020000

Δc1,4 00001400000000020 Δd1,4 00000c00000000020

Δa2,4 00000040000180000 Δb2,4 00000000000000000

Δc2,4 00000000000000000 Δd2,4 00000000000000000

Time 1094m59.207 s
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Table 4. Colliding characteristic of SipHash-2-x with one message block with proba-
bility 2−241.

Δm0 d08ca994f84216ba Δk0 0000000000000000

Δk1 0000000000000000

Δa1,1 0000000000000000 Δb1,1 0000000000000000

Δc1,1 0000000000000000 Δd1,1 d08ca994f84216ba

Δa1,2 9911cfad8e574746 Δb1,2 31845fb478420fca

Δc1,2 78420fca31845fb4 Δd1,2 a7c210b5d684654c

Δa2,2 d08ca994f84216ba Δb2,2 0000000000000000

Δc2,2 0000000000000000 Δd2,2 0000000000000000

Time 112m52.949 s

From the colliding characteristics search model, the colliding characteristics
need to satisfy the active pattern (0, 0, 0,Δm0) → (0,Δm0, 0, 0). As shown by
a careful analysis of the difference transitions, the following theorem shows that
the differential characteristics of the above active pattern are all impossible.

Theorem 1. Given any non-zero value Δ ∈ F
64
2 , (0, 0, 0,Δ) → (0,Δ, 0, 0) is an

impossible differential characteristic of SipHash-1-x with one message block.

Proof. The full proof is given in AppendixA. ��
It is shown by the above theorem that under the single-key model, one cannot

find the effective colliding characteristic of SipHash-1-x with one message block
by differential cryptanalysis. A similar result can be derived for SipHash-1-x
with two message blocks, and we omit the details here.

4.2 RX-Colliding Characteristics Search of SipHash

In this subsection, we use the automatic search tool to search for the RX-colliding
characteristics of SipHash-1-x, with the initial constants used in the design doc-
ument of Siphash [3]. We find an RX-colliding characteristic of SipHash-1-x with
two message blocks which is shown in Table 5.

The results of Rotational-XOR cryptanalysis experiments show that there
exist no RX-colliding characteristic of SipHash-1-x with one message block.
Combining Lemma 2 and Proposition 1, we give a theorem to characterize the
Rotational-XOR cryptanalysis experimental result for this case.

Theorem 2. For any non-zero Δ ∈ F
64
2 , (C1, C0, C2, C3 ⊕ Δ) → (0,Δ,C4, 0) is

an impossible RX-characteristic of SipHash-1-x with one message block.

Proof. The full proof is given in AppendixA. ��
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Table 5. RX-colliding characteristic of SipHash-1-x with two message blocks with
probability 2−280.

←−
Δm0 46c8f685a03378df

←−
Δk0 0000000000000000←−

Δm1 00030008000001e0
←−
Δk1 0000000000000000←−

Δa1,1 95b1b7af9095af9f
←−
Δb1,1 acb196a3b2acb1b7←−

Δc1,1 b48ba9afb2af96a3
←−
Δd1,1 da675a232bafd74a←−

Δa2,1 4e88f6a3a12d7c0b
←−
Δb2,1 00404002010004d4←−

Δc2,1 c00000fcfefcf781
←−
Δd2,1 c0030007010f1a60←−

Δa1,2 08400026011e04d4
←−
Δb1,2 00404002010004d4←−

Δc1,2 c00000fcfefcf781
←−
Δd1,2 c000000f010f1b80←−

Δa2,2 00030008000001e0
←−
Δb2,2 0000000000000000←−

Δc2,2 0000000000000101
←−
Δd2,2 0000000000000000

Time 263m55.258 s

4.3 Discussion on Differential Cryptanalysis and Rotational-XOR
Cryptanalysis

Based on the analysis of SipHash-1-x and SipHash-2-x, our work can cover
SipHash-1-x or SipHash-2-x with more message blocks. For example, let the
differences in the remaining n − 4 blocks are 0, the result of differential crypt-
analysis of SipHash-1-x with four message blocks can be extended to SipHash-1-x
with n message blocks, where n > 4. In addition, taking SipHash-1-x with two
message blocks as an example, and letting the RX-differences of the last m − 2
message blocks are 0, whose differences are not 0 with probability of almost 1,
the result of Rotational-XOR cryptanalysis can also be extended to SipHash-1-x
with m > 2 message blocks.

Compared with the RX-characteristics found in block ciphers [11], one
possible reason may be attributed to the input constraints between the RX-
characteristic search processes of SPECK and RX-colliding characteristic search
processes of SipHash-1-x. The input form of the RX-colliding characteristic on
SipHash needs be controlled, which is not the same case as that of a block cipher.
Therefore, better cryptanalysis results may be obtained by changing the input
form of RX-colliding characteristics search model.

5 The Influence of Initial Constants on SipHash

Based on the analysis of SipHash, the results show that one cannot get the RX-
colliding characteristic of SipHash-1-x with one message block. Next, we will
utilise the SMT solver to produce an RX-characteristic under a different set of
constants, where the right pairs of messages and keys are found.
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5.1 Theoretical Characterization of Initial Constants of SipHash-1-x
with One Message Block

In this subsection, we will analyze the influence of initial constants on SipHash-
1-x with one message block theoretically. The dependency between the initial
constants and the internal RX-collision are characterized in details by the follow
theorem.

Theorem 3. Suppose that C0 = V0 ⊕←−
V0, C1 = V1 ⊕←−

V1, C4 = 0xff⊕←−−
0xff, and

α = (C1 ≪ 13) ⊕ (C4 ≫ 49). If V0 and V1 are values satisfying the following
condition:

((I ⊕ SHL)(C ′
0 ⊕ C ′

1 ⊕ α′ ⊕ t))&(SHL((C ′
0 ⊕ α′)|(C ′

1 ⊕ α′)))
= ((I ⊕ SHL)(C ′

0 ⊕ C ′
1 ⊕ α′ ⊕ t)).

(9)

where C ′
0 = C0 
 1, C ′

1 = C1 
 1, α′ = α 
 1 and t = 0x0 or 0x1. Then,
SipHash-1-x with one message block instantiated by the constants has no internal
RX-collision.

Experimental Analysis of Initial Constants. We verified whether the 128-
bit V0, V1 of random selection satisfy the Eq. (9) by experiments. After 228 exper-
iments, there are 219 sub-experiments making it doesn’t satisfy the Eq. (9). That
means there exits 2−9 probability that the initial constants selection may pro-
duce an internal RX-collision. The total degree of freedom of V0, V1, V2, V3 is 256,
with the Eq. (9), we can avoid 2256 × 2−9 = 2247 selections which may produce
an internal RX-collision.

Table 6. RX-colliding characteristic of a revised version of SipHash-1-x with one mes-
sage blocks with probability 2−93.6.

V0 556f883b0003e5f0 V2 1affff070080a170

V1 3061a82efffffc23 V3 1f03f5ebe0ff1f2f←−
Δa1,1 ffb0984d00042e10

←−
Δb1,1 50a2f87300000465←−

Δc1,1 2f0001090181e390
←−
Δd1,1 2100000801012071←−

Δa2,2 00041e3420000100
←−
Δb2,2 0000000000000000←−

Δc2,2 0000000000000101
←−
Δd2,2 0000000000000000

Time 0m37.782 s

5.2 RX-Colliding Characteristics of Revised SipHash-1-x

With the RX-colliding characteristic search model, we assign new variables for
the possible choices of the constants V0, V1, V2, V3 to analyze SipHash-1-x with
Rotational-XOR cryptanalysis. (9) as a necessary condition for revised SipHash
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Table 7. RX-colliding characteristic of a revised version of SipHash-1-x with two mes-
sage blocks with probability 2−160.

V0 3ff8f919d6faaa57
←−
Δk0 0000000000000000

V1 aa84e6ace90555a8
←−
Δk1 0000000000000000

V2 23e2c1dfdc5b0300
←−
Δm0 05d1bda4e5f90381

V3 2153d54348f33a81
←−
Δm1 0000000000400000←−

Δa1,1 40090b2a7b0ffef9
←−
Δb1 1 ff8d2bf53b0ffef9←−

Δc1,1 6427426064ed0500
←−
Δd1 1 6625c2613cec4c02←−

Δa2,1 0591bfa4e5f90f84
←−
Δb2 1 0000020000000404←−

Δc2,1 8000010101818181
←−
Δd2 1 8000000001410383←−

Δa1,2 0040020000000c05
←−
Δb1 2 0000020000000404←−

Δc1 2 8000010101818181
←−
Δd1 2 8000000001010383←−

Δa2 2 0000000000400000
←−
Δb2 2 0000000000000000←−

Δc2 2 0000000000000101
←−
Δd2 2 0000000000000000

Time 279m15.155 s

with RX-colliding characteristics, according to condition (9), we search an RX-
colliding characteristic with probability 2−93.6 > 2−128 of a revised version of
SipHash-1-x with one message block. And we get a RX-collision with it, which
is shown in Table 6. In addition, the RX-colliding characteristic with probability
2−160 of a revised version of SipHash-1-x with two message blocks which is shown
in Table 7.

5.3 SMT-Based Experimental Verification on the Possibility of
Distinguishers

Next, we develop an experimental method for verifying the possibility of RX-
characteristics and generating right pairs with an SMT solver.

To experimentally verify whether a differential distinguisher (Δi → Δo)
encompasses any right pair, a general solution is to run through the input space
and check the differences of the outputs. However, it is often infeasible due to
the size of the input space and the probability of the differential distinguisher.

In this subsection, we encode an ARX cipher into an SMT model for describ-
ing the differential propagations, and execute the solver to find right pairs of
inputs following the characteristics. More specifically, a pairs of messages with
the input difference are defined by two variables. The operations in the ARX
algorithms can be described by the functions and instructions in SMT language,
since they are basically binary and arithmetic operations. After transforming the
round function of an ARX cipher into an SMT description, one obtains the inter-
mediate values and the final outputs as an SMT model. By setting a constraint
on the output differences (and intermediate differences), we run the SMT solver
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Algorithm 1. SMT-based experimental verification of an RX-distinguisher in
SipHash-1-x with one message block.
1: Input: Initial constants state V0, V1, V2, V3 and output difference pattern

(
←−
Δa2,1,

←−
Δb2,1,

←−
Δc2,1,

←−
Δd2,1).

2: Output: The possibility of the distinguisher
3: Define m0, m

′
0, k0,k1 as 64-bit initial variables

4: Derive the intermediate variables a1,1, b1,1, c1,1, d1,1 and a′
1,1, b

′
1,1, c

′
1,1, d

′
1,1 as

expressions on the initial variables
5: Derive the expressions for the intermediate variables a2,1, b2,1, c2,1, d2,1 and

a′
2,1, b

′
2,1, c

′
2,1, d

′
2,1

6: Assign the output differences to the output variables
7: Run the solver for a realisation of the initial variables
8: If satisfiable
9: return k0,k1 and m0,m

′
0

10: Otherwise
11: return The distinguisher is impossible.

and ask for a solution. If the solver returns unsatisfiable, then the differential
distinguisher is impossible; otherwise, the solver returns the right pairs.

As an application to SipHash-1-x with one message block, Algorithm1 gives
a detailed description of our experimental ideas on the verification of a RX-
distinguisher, the model is analogous for differential distinguishers hence it is
omitted here. With the RX-colliding characteristic in Table 6, there exits an
internal RX-collision of a revised version of SipHash-1-x with one message block
is shown in Table 8.

Table 8. RX-collision of a revised version of SipHash-1-x with one message block.

k0 097ff58b00007470 V0 556f883b0003e5f0

k1 9b8e2a7effff7e0b V1 3061a82efffffc23

m0 680ddf951f0079a4 V2 1affff070080a170

m′
0 d01fa11e1e00f248 V3 1f03f5ebe0ff1f2f

The assignment of the variables takes several seconds by the solver. In
addition, comparing with the automatic-search-based technique of finding RX-
characteristics, our method finds the right pair of messages in addition to gen-
erating a characteristic, which allows us to have a more precise evaluation of
Rotational-XOR cryptanalysis on SipHash-1-x with short message inputs.

6 Conclusions

In this paper, we apply the Schulte-Geers’s differential cryptanalysis frame-
work on ARX cipher to find the colliding characteristics of SipHash-1-x and
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SipHash-2-x. Besides, we study the security of SipHash-1-x with Rotational-XOR
cryptanalysis, a recently proposed technique against ARX ciphers. Analogously
to internal collision, we convert a special form of RX-characteristics into a new
type of collisions, which we call internal RX-collisions. As shown by theoretical
analysis, there is no internal collision for SipHash-1-x with one and two mes-
sage blocks, nor internal RX-collision for SipHash-1-x with one message block.
In addition, we look into the underlying cause of the impossibility and gave a
criteria on the initial constants where no internal RX-collisions can be found.
Notice that internal RX-collisions are closely related to the initial constants, we
develop an SMT-based technique for verifying the possibility of characteristics
by checking the existence of the right pairs. More importantly, with a different
choice of the constants, an internal RX-collision is found with the pair of input
messages recovered, which implies that the security of SipHash is closely related
to the choice of the constants. Our future work is to deal with application of
SMT-based technique in searching for right pairs of other ARX ciphers.

A Proofs

Lemma 2. Suppose that there exists an RX-characteristic (
←−
Δa1,

←−
Δb1,←−

Δc1,
←−
Δd1) → (

←−
Δa2,

←−
Δb2,

←−
Δc2,

←−
Δd2) which produces an internal RX-collision

for SipHash-1-x with one message block. Then, it has the following active
pattern,

(C1, C0, C2, C3 ⊕ Δ) → (0,Δ,C4, 0),

where C0 = V0⊕←−
V0, C1 = V1⊕←−

V1, C2 = V2⊕←−
V2, C3 = V3⊕←−

V3, C4 = 0xff⊕←−−
0xff.

Proof. For a pair of messages m0,m
′
0, RX-difference Δ = m0 ⊕ ←−

m′
0. a1, b1, c1, d1

and a′
1, b

′
1, c

′
1, d

′
1 are the inputs of the first round to the compression phase

a1 = V0 ⊕ k0, a′
1 = V0 ⊕ ←−

k0,

b1 = V1 ⊕ k1, b′
1 = V1 ⊕ ←−

k1,

c1 = V2 ⊕ k0, c′
1 = V2 ⊕ ←−

k0,

d1 = V3 ⊕ k1 ⊕ m0. d′
1 = V3 ⊕ ←−

k1 ⊕ m′
0.

where V0, V1, V2, V3 and k0, k1 denote the initial constants states and two 64-bit
keys, respectively. The message m′

0 is processed by the keys
←−
k0,

←−
k1.

Then, the RX-differences
←−
Δa1,

←−
Δb1,

←−
Δc1,

←−
Δd1 between a1, b1, c1, d1 and

a′
1, b

′
1, c

′
1, d

′
1 equal to (C1, C0, C2, C3⊕Δ). Similarly, we have (b2, a2, c2, d2) equal

to (0,Δ,C4, 0) ��

Theorem 1. Given any non-zero value Δ ∈ F
64
2 , (0, 0, 0,Δ) → (0,Δ, 0, 0) is an

impossible differential characteristic of SipHash-1-x with one message block.
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Fig. 3. The propagation of the intermediate differences in SipHahs-1-x processing one
message block.

Proof. Suppose that there exists a non-zero Δ ∈ F
64
2 , such that (0, 0, 0,Δ) →

(0,Δ, 0, 0) is a possible differential characteristic. Then the differential prop-
agation at the four modular addition in Fig. 3 should satisfy the differential
propagation rules given by Lemma1. We have

(0, 0) �−→ 0, (0,Δ) �−→ α,

(0, α) �−→ 0, (0,Δ ≫ 21) �−→ Δ.
(10)

In each equation, the characteristic function defined in Lemma1 is derived
from the input and output differences, and evaluates to 1. Particular, when
(0, α) �−→ 0 is a possible differential characteristic, we have

((0 ⊕ α ⊕ 0) ⊕ (0 ⊕ α ⊕ 0)<<1) � ((0 ⊕ 0)|(α ⊕ 0)).

which is equivalent to (α ⊕ α�1) � α�1. Therefore, we have

((α63, · · · , α0) ⊕ (α62, · · · α0, 0)) � (α62, · · · , α0, 0). (11)

Then α0 = 0, · · · , α63 = 0, namely, α = 0. Analogously, we have Δ = 0.
Hence, the characteristic (0, 0, 0,Δ) → (0,Δ, 0, 0) is trivial with Δ = 0. So,

we can’t get right message pair that could lead to an internal collision when only
one a message block is injected into SipHash-1-x. ��

Theorem 2. For any non-zero Δ ∈ F
64
2 , (C1, C0, C2, C3 ⊕ Δ) → (0,Δ,C4, 0) is

an impossible RX-characteristic of SipHash-1-x with one message block.

Proof. Figure 4 shows the notations for RX-differences in SipHash-1-x with one
message block,

←−
Δm0 = Δ is injected before and after one round of SipHash.

For the characteristic (C1, C0, C2, C3 ⊕ Δ) → (0,Δ,C4, 0), the RX-difference
propagation at the modular additions in Fig. 4 should satisfy the propagation
rule given by Proposition 1.
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Fig. 4. Notations on RX-differences of SipHash-1-x with one message block

(C1, C0)
�−→ α,

(C2, C3 ⊕ Δ) �−→ β,

((C4 ≫ 49), β) �−→ (C4 ≫ 32),

((α ≪ 32), (Δ ≫ 21)) �−→ Δ.

(12)

where C1 = V1 ⊕ ←−
V1 = 0xacb196a3b2acb1b7, C2 = V2 ⊕ ←−

V2 =
0x95b1b7af9095af9f, C4 = 0xff ⊕ ←−−

0xff, V1, V2 are the initial constants state
given by SipHash design document.

By the relation between C1, C4, α from Fig. 4, one gets α = (C1 ≪ 13) ⊕
((C4 ≫ 32) ≫ 17) = 0x32d4765596b67596. However, a necessary condition

for the transition (C1, C0)
�−→ α is 1(I⊕SHL)(C0⊕C1⊕α)�SHL((C0⊕α)|(C1⊕α)) or

1(I⊕SHL)(C0⊕C1⊕α)⊕1�SHL((C0⊕α)|(C1⊕α)), which leads to a contradiction. There-
fore, the characteristic (C1, C0, C2, C3 ⊕ Δ) → (0,Δ,C4, 0) is impossible. ��
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Abstract. Finite field multiplication plays the main role determining
the efficiency of public key cryptography systems based on RSA and
elliptic curve cryptography (ECC). Most recently, quantum-safe crypto-
graphic systems are proposed based on supersingular isogenies on elliptic
curves which require large integer multiplications over extended prime
fields. In this work, we present two Montgomery multiplication archi-
tectures for special primes used in a post-quantum cryptography system
known as supersingular isogeny key encapsulation (SIKE). We optimize
two existing Montgomery multiplication algorithms and develop area-
efficient and time-efficient Montgomery multiplication architectures for
hardware implementations of post-quantum cryptography. Our proposed
time-efficient architecture is 32% to 42% faster than the leading one
(depending on the prime size) available in the literature which has been
used in original SIKE submission to the NIST standardization process.
The area-efficient architecture is 42% to 50% smaller than the counter-
parts and is about 3% to 11% faster depending on the NIST security
level.

Keywords: Hardware architectures · Isogeny-based cryptosystems ·
Montgomery multiplication · Post-quantum cryptography

1 Introduction

Post-quantum cryptography (PQC) refers to the research of cryptographic prim-
itives (usually public-key cryptosystems) that are not efficiently breakable using
quantum computers. Most notably, Shor’s algorithm [1] can be efficiently imple-
mented on a quantum computer to break standard Elliptic Curve Cryptography
(ECC) and RSA cryptosystems. There exist some alternatives secure against
quantum computing threats [2], such as lattice-based cryptosystems, hash-based
signatures, code-based cryptosystems, multivariate public key cryptography, and
isogeny-based cryptography [3].
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Isogeny-based cryptography or more specifically supersingular isogeny Diffie-
Hellman (SIDH) key exchange has been proposed by Jao and De Feo [4] as an
alternative to Elliptic Curve Diffie-Hellman (ECDH) resistant to Shor’s quan-
tum attack. A more secure model of SIDH a.k.a. SIKE (supersingular isogeny
key encapsulation) has been submitted to NIST standardization process [3].
SIKE computations constitute an algebraic map between supersingular elliptic
curves, which appear to be resistant to quantum attacks. Existing results on
the hardware implementations of SIKE have appeared in [5–8]. SIKE’s lower
level computations are mainly over Fp2 or extended prime fields. The prime size
which decides the security of SIKE determines the size of arithmetic unit for
lower level multiplication, addition, squaring, and inversion. Among these oper-
ations, multiplication plays the main role determining the performance of SIKE
cryptosystem. Therefore, efficient and high-performance implementations of the
multiplier is crucial. In comparison to the other post-quantum candidates, SIKE
offers smallest key size for the same security level which is more attractive for
bandwidth-constrained applications. However, SIKE is not the fastest quantum-
safe candidate, and its performance still needs to be improved as stated in NIST
submission [3].

In this paper, we focus on the optimization of arithmetic operations employed
in SIKE and propose two new hardware architectures for modular multiplication
algorithm targeting SIKE primes based on the well-known Montgomery modu-
lar multiplication algorithm [9]. Previous work on hardware implementation of
Montgomery multiplication has been proposed in [10,11] for arbitrary primes
and in [5,8] for SIKE primes. Since the primes employed in SIKE (SIKEp434,
SIKEp503, SIKEp610, and SIKEp751 for NIST level-1, -2, -3, -5, respectively)
have special forms, we developed a time-efficient implementation and an area-
efficient implementation of Montgomery multiplication to be used in future work
of SIKE. The time-efficient implementation reduces the latency and the area
usage compared to previous work, maintaining high frequency while the area-
efficient implementation significantly reduces the area.

Our Contributions

– We optimize two existing Montgomery multiplication algorithms for special
primes used in post-quantum cryptography, SIKE.

– We provide efficient hardware architecture for the proposed Montgomery mul-
tiplication algorithms.

– We evaluate time and area performance of the proposed hardware architecture
benchmarked on FPGA and compare with counterparts.

The organization of the paper is as follows. In Sect. 2, we discuss the Mont-
gomery modular multiplication algorithm and two algorithms: Coarsely Inte-
grated Operand Scanning (CIOS) and Finely Integrated Operand Scanning
(FIOS) algorithms that perform Montgomery multiplication word-by-word. In
Sect. 3, we provide optimization techniques for the CIOS and FIOS Montgomery
multiplication algorithms. In Sect. 4, we propose efficient hardware architectures
of the proposed Montgomery multiplier algorithms. In Sect. 5, we implement the
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Algorithm 1. Montgomery Multiplication [9]
Input : p < 2K , R = 2K , p′ = −p−1mod R, a, b < p
Output: a · b · R−1mod p

1 T ← a · b
2 m ← T · p′ mod R
3 T ← (T + m · p)/R
4 if T > m then return T − p
5 return T

proposed hardware architectures on FPGA, provide area and timing results, and
compare with counterparts available in the literature. Finally, in Sect. 6, we give
our final thoughts and discuss future work.

2 Preliminaries: Montgomery Multiplication

Modular multiplication (i.e. a × b mod p) of large integers (especially the ones
used in SIKE) can be efficiently implemented using Montgomery multiplication.
Montgomery multiplication [9] avoids the division operation which is difficult
to implement in an efficient way in hardware. Montgomery multiplication has
been used in recent hardware implementations of isogeny-based cryptography
including SIDH [5–7] and SIKE [12].

2.1 Montgomery Multiplication Algorithm

Montgomery multiplication performs modular multiplication by transforming
the division by p into division by a power of 2, which is a simple shift. The over-
head cost of Montgomery multiplication is the need to convert the inputs into
the Montgomery domain, then perform all arithmetic operations in the Mont-
gomery domain, and finally convert back to the ordinary domain. For simple
applications with few modular multiplications, this conversion would be expen-
sive. However, in SIKE, this is extremely useful because of its high dependence
on a large number of modular multiplications.

Montgomery multiplication algorithm (MontMult) takes two inputs a
and b with the remaining inputs constants and produces a single output
MontMult(a, b) = a · b · R−1 mod p where R and p are co-prime. By taking
R as a power of 2, the division becomes a simple shifting. Algorithm 1 shows the
original Montgomery multiplication algorithm. The first part (line 1) performs
the multiplication step while the second part (lines 2–4) performs the reduction
step. Note that the same algorithm can be used to convert between the ordi-
nary and Montgomery domain [9]. The conversion into the Montgomery domain
can be done using MontMult(a,R2 mod p) where a is the input in the ordi-
nary domain and the conversion into the ordinary domain can be done using
MontMult(a, 1) where a is the input in the Montgomery domain.
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The final subtraction step (line 4) can be removed from the algorithm and
performed once at the very end after converting to the ordinary domain. How-
ever, in this case, the output from MontMult, which is going to be the input for
subsequent MontMult, is <2p − 1 instead of <p. Therefore, the algorithm needs
to work for any input <2p − 1. The condition (T + m · p)/R < 2p − 1 needs to
be satisfied so that the output from line 3 is <2p − 1. If R is taken such that it
is 2 bits larger than the size of p, then this condition is satisfied.

Hardware implementations of MontMult for public key cryptography have
been studied in [5,10,11,13–21].

2.2 SIKE Primes

In SIKE submission for post-quantum cryptography [12], the primes employed
have a special form where Montgomery multiplication can be optimized. These
primes are given in Table 1. The main advantage of the primes used in SIKE is
that the least significant bits of the prime are all 1s. This form can be utilized in
Montgomery multiplication algorithm variants that perform word by word com-
putation such as the Separated Operand Scanning (SOS), Coarsely Integrated
Operand Scanning (CIOS) or Finely Integrated Operand Scanning (FIOS) algo-
rithms [22]. In these word-by-word variants, p′

0 = p′ mod 2w = −p−1 mod 2w,
where w is the number of bits in a word, can be used instead of p′ [23]. When
more than 2 words are used for SIKE primes, p′

0 = 1 and m = T ·p′
0 mod R = T

mod R in line 2 becomes a simple copy register.

Table 1. SIKE primes for post-quantum cryptography based on NIST standardization
process [3]

Prime form Classical/quantum security Public key size (bytes)

p434 = 22163137 − 1 NIST level 1 330

p503 = 22503159 − 1 NIST level 2 378

p610 = 23053192 − 1 NIST level 3 462

p751 = 23723239 − 1 NIST level 5 564

2.3 Coarsely Integrated Operand Scanning (CIOS) Montgomery
Multiplication

The CIOS Montgomery multiplication algorithm [22] is a method that performs
word-by-word Montgomery multiplication by alternating between the multipli-
cation and reduction steps. The inputs a and b and prime p are split into s words
of w-bit wide each. CIOS is shown in Algorithm 2. As seen, lines 4–9 perform
the multiplication step while lines 11–18 perform the reduction step. Hardware
implementations of CIOS have been carried out in [10] by Mrabet et al. and in
[13] by McIvor et al.
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Algorithm 2. CIOS Montgomery Multiplication Algorithm [22]
Input : p < 2K , R = 2K , w, s, K = w · s, p′ = −p−1mod 2w, a, b < p
Output: MontMult(a, b)

1 T ← 0
2 for i ← 0 to s − 1 do
3 C ← 0
4 for j ← 0 to s − 1 do
5 (C, S) ← T [j] + a[i] · b[j] + C
6 T [j] ← S

7 (C, S) ← T [s] + C
8 T [s] ← S
9 T [s + 1] ← C

10

11 m ← T [0] · p′ mod 2w

12 (C, S) ← T [0] + m · p[0]
13 for j ← 1 to s − 1 do
14 (C, S) ← T [j] + m · p[j] + C
15 T [j − 1] ← S

16 (C, S) ← T [s] + C
17 T [s − 1] ← S
18 T [s] ← T [s + 1] + C

19 return T

2.4 Finely Integrated Operand Scanning (FIOS) Montgomery
Multiplication

The FIOS Montgomery multiplication algorithm [22] is a method that performs
word-by-word Montgomery multiplication by performing the multiplication and
reduction steps in the same loop. Similar to CIOS, the inputs a,b and prime p
are split into s words of w-bit each. FIOS is shown in Algorithm 3. In FIOS,
the first multiplication and m must be computed (3–6) before performing the
remaining multiplication and reduction steps (lines 7–15). The main difference
between FIOS and CIOS is that in FIOS, the multiplication and reduction can
be parallelized while in CIOS, the reduction has to wait for the multiplication
step.

Hardware implementation of FIOS has been conducted by McIvor et al. in
[13]. It has been shown that FIOS performed slower than CIOS. The main reason
for this is the need for carry propagation units (lines 4 and 9). To address, we will
show in this paper that the carry propagation can be eliminated for 1-bit larger
registers which adds minimal cost in hardware implementations and improves
the critical path delay.
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Algorithm 3. FIOS Montgomery Multiplication Algorithm [22]
Input : p < 2K , R = 2K , w, s, K = w · s, p′ = −p−1mod 2w, a, b < p
Output: MontMult(a, b)

1 T ← 0
2 for i ← 0 to s − 1 do
3 (C, S) ← T [0] + a[i] · b[0]
4 ADD(t(1), C)
5 m ← S · p′ mod 2w

6 (C, S) ← S + m · p[0]
7 for j ← 1 to s − 1 do
8 (C, S) ← T [j] + a[i] · b[j] + C
9 ADD(T [j + 1], C)

10 (C, S) ← S + m · p[j]
11 T [j − 1] ← S

12 (C, S) ← T [s] + C
13 T [s − 1] ← S
14 T [s] ← T [s + 1] + C
15 T [s + 1] ← 0

16 return T

3 Proposed Finite Field Multiplier Algorithms

In this section, based on the information provided in the previous section, we
propose an optimized CIOS and FIOS Montgomery multiplication algorithms
for primes employed in SIKE.

3.1 Optimized CIOS (O-CIOS) Montgomery Multiplication
Algorithm

We propose a new optimized coarsely integrated operand scanning multiplier
(O-CIOS) for SIKE which requires less hardware units as shown in Algorithm
4. We show that by taking R 3 bits larger than the size of the prime p, we only
require s + 1 registers. First, lines 11–12 in the original algorithm (Algorithm 2)
are replaced by lines 9–10 for s > 2 since p′ = 1 (as shown in Subsect. 2.2) and
p[0] = 2w − 1. Proposition 1 shows how lines 7–9 and 16–18 can be replaced by
lines 7 and 14, respectively, for w > 2.

Proposition 1. In Algorithm 2, lines 7–9 and 16–18 can be can be replaced by
lines 7 and 14 in Algorithm 4, respectively, for w > 2.

Proof. For i = 0, iteration j = s − 1 in line 5 has output ≤ (2w − 1)(2w−2 −
1) + (2w − 1) = 2w−2(2w − 1) ≤ 22w−2 − 1 which implies C ≤ 2w−2 − 1 ≤
2w−1 − 1. Therefore, T [s] ≤ 2w−1 − 1 and T [s+1] = 0 in lines 8 and 9. Iteration
j = s − 1 in line 5 has output ≤ (2w − 1) + (2w − 1)(2w−3 − 1) + (2w − 1) =
(2w−3 + 1)(2w − 1) ≤ 2w−2(2w − 1) ≤ 22w−1 − 1 for w > 2 which implies
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Algorithm 4. Optimized CIOS Montgomery Multiplication Algorithm for
SIKE primes
Input : p < 2K−3, R = 2K , w > 2, s > 2, K = w · s, a, b < 2p − 1
Output: MontMult(a, b)

1 T ← 0
2 for i ← 0 to s − 1 do
3 C ← 0
4 for j ← 0 to s − 1 do
5 (C, S) ← T [j] + a[i] · b[j] + C
6 T [j] ← S

7 T [s] ← C
8

9 m ← T [0]
10 C ← T [0]
11 for j ← 1 to s − 1 do
12 (C, S) ← T [j] + m · p[j] + C
13 T [j − 1] ← S

14 T [s − 1] ← T [s] + C

15 return T

C ≤ 2w−1 − 1. Therefore, T [s − 1] ≤ 2w−1 − 1 and T [s] = 0 in lines 17 and 18.
Now, proving for iteration i = k where k > 0, iteration j = s − 1 in line 5 has
output ≤ (2w − 1) + (2w − 1)(2w−2 − 1) + (2w − 1) = (2w−2 + 1)(2w − 1) ≤
2w−1(2w − 1) ≤ 22w−1 − 1 for w > 1 which implies C ≤ 2w−1 − 1. Therefore,
T [s] ≤ 2w−1 − 1 and T [s + 1] = 0 in lines 8 and 9. Iteration j = s − 1 in line 5
has output ≤ (2w − 1) + (2w − 1)(2w−3 − 1) + (2w − 1) = (2w−3 + 1)(2w − 1) ≤
2w−2(2w − 1) ≤ 22w−1 − 1 for w > 2 which implies C ≤ 2w−1 − 1. Therefore,
T [s − 1] ≤ 2w−1 − 1 and T [s] = 0 in lines 17 and 18. This complete the proof.

3.2 Optimized FIOS (O-FIOS) Montgomery Multiplication
Algorithm

We also propose an optimized FIOS algorithm for Montgomery multiplication
as shown in Algorithm 5. Similar to CIOS, lines 5 and 6 can be modified since
p′ = 1 and p[0] = 2w − 1 for s > 2. As for the carry propagation in lines 4
and 9, they can be directly integrated inside the other carry C in lines 6 and
10. However, the carry C must use a register of size w + 1 bits to accommodate
the extra accumulated bits. The changes are shown in lines 4–5 and line 7 in
the optimized algorithm. We notice that the two multiplications in line 7 can
be performed in the same cycle in parallel and without the need to propagate
the result of the first multiplication which will decrease architecture complexity
and routing delays. Proposition 2 shows how lines 12–15 can be replaced by 9
for w > 2.
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Algorithm 5. Optimized FIOS Montgomery Multiplication Algorithm for
SIKE primes
Input : p < 2K−2, R = 2K , w > 2, s > 2, K = w · s, a, b < 2p − 1
Output: MontMult(a, b)

1 T ← 0
2 for i ← 0 to s − 1 do
3 (C, S) ← T [0] + a[i] · b[0]
4 m ← S
5 C ← C + S
6 for j ← 1 to s − 1 do
7 (C, S) ← T [j] + a[i] · b[j] + m · p[j] + C
8 T [j − 1] ← S

9 T [s − 1] ← LSW(C)

10 return T

Proposition 2. In Algorithm 3, lines 12–15 can be replaced by line 9 in Algo-
rithm 5 for w > 2.

Proof. For i = 0, iteration j = s − 1 in line 7 in new algorithm has output
(≤ (2w−1)(2w−1−1)+(2w−1)(2w−2−1)+(2w−1) = (2w−1+2w−2+1)(2w−1) ≤
2w(2w − 1) = 22w − 1 for w > 1 which implies C ≤ 2w − 1. Therefore, T [s− 1] ≤
2w − 1 and T [s] = 0. Now, proving for iteration i = k where k > 0, iteration
j = s−1 in line 7 in new algorithm has output (≤ (2w−1)+(2w−1)(2w−1−1)+
(2w−1)(2w−2−1)+(2w−1) = (2w−1+2w−2+2)(2w−1) ≤ 2w(2w−1) = 22w−1
for w > 2 which implies C ≤ 2w − 1. Therefore, T [s − 1] ≤ 2w − 1 and T [s] = 0.
This complete the proof.

4 Proposed Efficient Architecture for O-CIOS and
O-FIOS Montgomery Multiplication Algorithms

In this section, we propose a hardware architecture design for each of the new
optimized algorithms O-CIOS and O-FIOS discussed in the previous section. The
O-CIOS design focuses on minimizing area usage while the design for O-FIOS
focuses on maximizing the frequency and minimizing the total multiplication
time.

4.1 Proposed O-CIOS Architecture

The proposed O-CIOS architecture is illustrated in Fig. 1 which mainly improves
the area usage in comparison to the ones adopted before for hardware imple-
mentations. The architecture is composed of several processing elements (PEs)
cascaded to perform the multiplication and reduction steps as can be seen in
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Fig. 1. (a) Proposed O-CIOS architecture. (b) Processing element. (c) Design for input
b and p. (d) Design for input a.
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Fig. 1(a). Each PE performs a multiplication and an addition in parallel fol-
lowed by an addition corresponding to lines 5 and 12 in Algorithm 4 as shown in
Fig. 1(b). Notice that unlike Mrabet’s design [10], no final PEs for multiplication
and reduction are required since lines 7 and 14 are respectively similar to lines 5
and 12 with some registers set to 0. In addition, line 10 can be integrated in the
reduction PE (line 12) since T [0] + m · p[0] = T [0] · 2w which implies C = T [0]
before performing the first iteration.

Each odd PE performs the entire first inner loop (lines 4–6) and line 7 (multi-
plication step) of one outer iteration while each even PE performs entire second
inner loop (lines 11–13) and line 14 (reduction step) of one outer iteration. There
is one fan-out needed in the output of the multiplication PE to store m for the
reduction PE.

Once the PE is finished with processing one iteration, it processes another
iteration, which can be seen by the loop-back after the last PE. There is a delay of
3 cycles between two consecutive multiplication or reduction PEs corresponding
to one multiplication, one reduction, and computing m cycles. Therefore, to
minimize the number of cycles, the number of PEs used is �(s + 1)/3�. This
means that each PE performs 2 or 3 iterations. Thus, each PE uses 2 or 3
different words of input a as can be seen in Fig. 1(c). Words from inputs b and
p rotate across each PE as shown in Fig. 1(d). The number of cycles required
for this architecture to compute Montgomery multiplication is 4s cycles. For
instance, for p434, O-CIOS requires 112 clock cycles.

4.2 O-FIOS Architecture

The proposed O-FIOS architecture is illustrated in Figs. 2 and 3. As one can see,
Fig. 2(a) illustrates the proposed systolic architecture based on PEs. This archi-
tecture focuses on improving timing results by parallelizing the multiplication
and reduction steps. The initial PE (Fig. 2(b)) computes m and the first carry
for each iteration (lines 3–5 in Algorithm 5). The remaining PEs (Fig. 3(c)) per-
form two consecutive iterations of the inner loop (lines 7–8). Therefore, each PE
processes two words of input b and prime p following Fig. 3(d) and outputs the
two words of the output following Fig. 3(e). Words for input a are pushed serially
using a shift register (Fig. 3(f)) into the initial PE and propagated to the next
PE after two cycles corresponding to the two consecutive iterations mentioned
earlier. Similarly, m is propagated through each PE after being evaluated in the
initial PE.

For the last line 9 of the algorithm, we tried feeding back the carry output of
the last PE into its sum input. However, this has caused a routing delay in the
FPGA we are using outweighing the cycle saved in the process. Therefore, we
have decided that for even s, the last PE can process the last line by grounding
the second bin, second pin, and Sin while in odd s, a simple register is used to
store the result before fed-back into Sin of the last PE. The number of cycles
required for this architecture to compute Montgomery multiplication is 3s cycles.
For example, in p434, O-FIOS requires 84 cycles.
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Fig. 2. (a) Proposed O-FIOS architecture. (b) Initial processing element.

4.3 Time Complexity Analysis

Table 2 provides a time complexity comparison between our O-CIOS and O-FIOS
implementations and different Montgomery multiplication implementations. For
a fair comparison, we have optimized Mrabet et al.’s implementation [13] for
SIKE primes by changing the β-cell into a simple register since p−1 = 1. As
for Koziel et al.’s implementation [5,11], we used a non-interleaved version of
the multiplier. Our proposed O-CIOS uses less number of clock cycles while
maintaining the same critical path delay of Mrabet’s CIOS. Our proposed O-
FIOS uses the least number of clock cycles of any design while maintaining the
same critical path delay of Koziel’s implementation. However, in the next section,
our results show that O-FIOS perform at the same frequency of Mrabet’s CIOS
mainly because our design has minimal routing delays. Furthermore, our designs
require less area which we will show in the next section after implementing in
hardware.
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Fig. 3. Remaining components of O-FIOS architecture. (c) Single processing element.
(d) Design for input b and p. (e) Design for input a. (f) Design for output.

5 Implementation Results

In this section, we are going to provide implementation results for the proposed
Montgomery multiplication architectures, O-CIOS and O-FIOS, discussed in the
previous sections. The implementations are performed in Xilinx Vivado 2018.2
for Xilinx Virtex-7 FPGA xc7vx690tffg1157-3. Table 2 reports area and timing
results for O-CIOS and O-FIOS. As one can see, for NIST level-1, our proposed
O-CIOS architecture operates in 233.5 MHz and occupies 770 Flip-flops, 1869
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Table 2. Time complexity comparison of 448-bit Montgomery multipliers for
SIKEp434. T16× indicates the critical path of a 16-bit×16-bit multiplication. T32+

indicates the critical path of a 32-bit addition.

Work Critical path delay Latency (cc)

Mrabet et al. [10] (w = 16) T16× + T32+ 114

McIvor/Koziel et al. [5,11] (w = 16) T16× + 2T32+ 87

This work O-CIOS (w = 16) T16× + T32+ 112

This work O-FIOS (w = 16) T16× + 2T32+ 84

Table 3. Implementation results and comparison of proposed O-FIOS and O-
CIOS Montgomery multiplication architectures on a Xilinx Virtex-7 FPGA device,
xc7vx690tffg1157-3

Prime NIST level Area Time Area×Time
#
FFs

#
LUTs

#
DSPs

#
Slices

Freq.
(MHz)

Latency
(cc)

Total
time (ns)

(×1000)

This work O-CIOS (w = 16)

p434 1 770 1869 40 447 233.481 112 479.696 214.424

p503 2 851 2094 44 519 216.685 128 590.720 306.584

p610 3 1075 2609 56 646 217.297 156 717.912 463.771

p751 5 1309 3188 68 761 219.635 192 874.176 665.248

This work O-FIOS (w = 16)

p434 1 1119 1905 43 607 271.370 84 309.540 187.891

p503 2 1290 2219 49 554 267.380 96 359.040 198.908

p610 3 1568 2704 61 835 267.380117 437.580 365.379

p751 5 1794 3308 73 967 232.829 144 618.480 598.070

Mrabet et al. [10]∗ (w = 16)

p434 1 3492 3737 40 2959 273.973 114 416.100 1,231.240

p503 2 3884 4240 44 3334 251.130 129 513.678 1,486.911

p610 3 4741 5148 54 4041 247.158 159 643.314 1,831.187

p751 5 5814 6288 66 4970 245.459 195 794.430 2,267.751

McIvor/Koziel et al. [5,11]∗(w = 16)

p434 1 687 3177 84 895 160.694 87 541.401 484.554

p503 2 784 3641 96 1044 162.470 99 609.345 636.156

p610 3 952 4040 117 1315 162.101 120 740.280 973.468

p751 5 1168 4193 144 1310 159.974 147 918.897 1,203.755
∗Note that the original paper does not have the results for these primes. The numbers
are based on our implementations using this work.

LUTs, 40 DSPs and 447 slices. The total time to perform one Montgomery
multiplication is 480 ns in O-CIOS. On the other hand, O-FIOS operates at
271.4 MHz and occupies 1119 FFs, 1905 LUTs, 43 DSPs and 607 slices for NIST
level-1. The total time to perform one Montgomery multiplication is 310 ns in
O-FIOS (Table 3).
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5.1 Comparison and Discussion

Table 2 compares our results with two different implementations; Mrabet et al.
[10] and non-interleaved Koziel et al. [5,11]. Our O-FIOS is 22% to 31% faster
than Mrabet’s implementation and 32% to 42% faster than Koziel’s implemen-
tation (a non-interleaved version of the one used in SIKE). In addition, the
O-FIOS architecture uses less area compared to other implementations (other
than O-CIOS). Our O-CIOS focuses on minimizing the area usage while main-
taining high frequency and low total time. For example, in p434, the number of
slices used in O-CIOS is 447 which is 2× smaller than Koziel’s implementation
at 895 slices and 6.5× smaller than Mrabet’s implementation at 2959 slices. This
implementation of O-CIOS is slightly slower (9% to 13%) than Mrabet’s CIOS
and slightly faster (3% to 11%) than Koziel’s implementation.

6 Conclusion

In this paper, we discussed two optimized Montgomery multiplication algorithms
O-CIOS and O-FIOS for SIKE primes. We then developed an architecture for
each algorithm. The O-CIOS architecture focuses on minimizing the area usage
while the O-FIOS architecture focuses on minimizing the total time. For perfor-
mance evaluation and comparison, we implemented our proposed architectures
in FPGA and showed area and timing results.

The Montgomery multiplication architectures developed in this paper show
great potential in increasing the performance of SIKE. Our future work is to
develop an optimized version of SIKE and employ the two Montgomery multi-
plier architectures developed in this paper.
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Abstract. As an extension of identity-based encryption (IBE), revo-
cable hierarchical IBE (RHIBE) supports both key revocation and key
delegation simultaneously, which are two important functionalities for
cryptographic use in practice. Recently in PKC 2019, Katsumata et al.
constructed the first lattice-based RHIBE scheme with decryption key
exposure resistance (DKER). Such constructions are all based on bilin-
ear or multilinear maps before their work. In this paper, we simplify the
construction of RHIBE scheme with DKER provided by Katsumata et
al. With our new treatment of the identity spaces and the time period
space, there is only one short trapdoor base in the master secret key and
in the secret key of each identity. In addition, we claim that some items in
the keys can also be removed due to the DKER setting. Our first RHIBE
scheme in the standard model is presented as a result of the above simpli-
fication. Furthermore, based on the technique for lattice basis delegation
in fixed dimension, we construct our second RHIBE scheme in the ran-
dom oracle model. It has much shorter items in keys and ciphertexts
than before, and also achieves the adaptive-identity security under the
learning with errors (LWE) assumption.

Keywords: Lattices · Identity-based encryption · Revocation ·
Delegation

1 Introduction

Background. Identity-based encryption (IBE), envisaged by Shamir [19] in
1984, is an advanced form of public-key encryption (PKE) where any string such
as an email address can be used as a public key. Hierarchical IBE (HIBE), an
extension of IBE introduced by Horwitz and Lynn [10] in 2002, further supports a
key delegation functionality. Moreover, just as many multi-user cryptosystems,
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an efficient revocation mechanism is usually necessary and imperative in the
(H)IBE setting. The public/private key pair of a system user may need to be
removed for various reasons, such as that the user is no longer a legitimate system
user, or that the private key is lost or stolen. Designing the revocable IBE (RIBE)
or revocable HIBE (RHIBE) turned out to be a challenging problem.

In 2001, Boneh and Franklin [6] proposed a naive solution for RIBE, which
requires users to periodically renew their private keys. This solution is too
impractical to be used in large-scale system, since for the key generation cen-
ter (denoted by KGC), the workload grows linearly in the number of users N .
Later in 2008, Boldyreva et al. [5] utilized the complete subtree (CS) method
of Naor et al. [16] to construct the first scalable RIBE, where KGC’s workload
is only logarithmic in N . RIBE requires three types of keys: a secret key SK,
a key update KU, and a decryption key DK. For each time period t, the KGC
broadcasts a key update KUKGC,t through a public channel, and only non-revoked
identity ID at this time period t can derive a decryption key DKID,t by combining
its secret key SKID with the key update KUKGC,t. In the security model of [5],
the adversary only has the access to a secret key reveal oracle and a key update
reveal oracle. However, leakage of decryption keys may also happen in practice.
In 2013, Seo and Emura [18] introduced a new security notion called decryption
key exposure resistance (DKER), and thus refined the security model, where the
adversary also has the access to a decryption key reveal oracle. The works in [5]
and [18] attracted a lot of followup works, and their RIBE schemes were also
extended to RHIBE schemes. Note that before Katsumata et al.’s work [11] in
2019, the constructions of R(H)IBE schemes with DKER are all based on bilinear
or multilinear maps, and they rely heavily on the so-called key re-randomization
property.

This paper focuses on the lattice-based cryptography, which has faster arith-
metic operations and conjectured security against quantum attacks. In 2012,
Chen et al. [8] employed Agrawal et al.’s IBE [1] and the CS method [16] to
construct the first lattice-based RIBE scheme without DKER. Then in 2017,
Takayasu and Watanabe [20] presented a new lattice-based RIBE scheme secure
against exposure of a-priori bounded number of decryption keys for every
identity. Namely, their scheme only achieves bounded DKER. Later in 2019,
Katsumata et al. [11] proposed the first lattice-based R(H)IBE scheme with
DKER under the learning with errors (LWE) assumption. Specifically, they
provided a generic construction of RIBE with DKER from any RIBE without
DKER and two-level HIBE. This result directly implies the first lattice-based
RIBE scheme with DKER. Furthermore, they constructed the first lattice-based
RHIBE scheme with DKER by further exploiting the algebraic structure of lat-
tices. Since lattices are ill-fit with the so-called key re-randomization property,
Katsumata et al. [11] introduced new tools such as leveled ciphertexts, leveled
secret keys, leveled decryption keys, and level conversion keys. Therefore, their
techniques highly depart from previous works which are based on bilinear or
multilinear maps.
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The RHIBE Scheme Π0 in [11]

1. PP =
(

(Ai)i∈[L+1] , (Cj)j∈[L+1], (uk)k∈[L]

)
,

SKKGC =
(
BTKGC, (TAi)i∈[L+1]

)

2. CT =
(
c0, (ci)i∈[�], cL+1

)

3. SKID =
(
BTID, (θ, eID,θ)θ, (fID,k)k∈[�+1,L],

(T[Ai|E(ID)])i∈[�+1,L+1]

)

4. KUID,t =
(
(θ, eID,t,θ)θ, (fID[i],t,k)(i,k)∈[�]×[�+1,L]

)

5. DKID,t =
(
(fID[i],t,�)i∈[�−1], dID,t, gID,t

)

The items in Π0

1. Ai,Cj ∈ Z
n×m
q , uk ∈ Z

n
q ,

TAi ∈ Z
m×m

2. c0 ∈ Zq, ci ∈ Z
(i+2)m
q , cL+1 ∈ Z

(�+2)m
q

3. eID,θ, fID,k ∈ Z
(�+1)m,

T[Ai|E(ID)] ∈ Z
(�+1)m×(�+1)m

4. eID,t,θ ∈ Z
(�+2)m, fID[i],t,k ∈ Z

(i+2)m

5. fID[i],t,� ∈ Z
(i+2)m, dID,t,gID,t ∈ Z

(�+2)m

Our First RHIBE Scheme Π1

1. PP =
(

A , (Ci)i∈[L+1], u
)
,

SKKGC =
(
BTKGC, TA

)

2. CT =
(
c0, (ci)i∈[�], cL+1

)

3. SKID =
(
BTID, (θ, eID,θ)θ, T[A|E(ID)]

)

4. KUID,t =
(
(θ, eID,t,θ)θ, (dID[i],t)i∈[�]

)

5. DKID,t =
(
(dID[i],t)i∈[�], gID,t

)

The items in Π1

1. A,Ci ∈ Z
n×m
q , u ∈ Z

n
q ,

TA ∈ Z
m×m

2. c0 ∈ Zq, ci ∈ Z
(i+2)m
q , cL+1 ∈ Z

(�+2)m
q

3. eID,θ ∈ Z
(�+1)m,

T[A|E(ID)] ∈ Z
(�+1)m×(�+1)m

4. eID,t,θ ∈ Z
(�+2)m, dID[i],t ∈ Z

(i+2)m

5. dID[i],t ∈ Z
(i+2)m, gID,t ∈ Z

(�+2)m

Our Second RHIBE Scheme Π2

1. PP =
(
A, B, u

)
,

SKKGC =
(
BTKGC, TA, TB

)

2. CT =
(
c0, (ci,1, ci,2)i∈[�], cL+1

)

3. SKID =
(
BTID, (θ, eID,θ)θ, TA·P1(ID), TB·P2(ID)

)

4. KUID,t =
(
(θ, eID,t,θ)θ, (dID[i],t)i∈[�]

)

5. DKID,t =
(
(dID[i],t)i∈[�], gID,t

)

The items in Π2

1. A,B ∈ Z
n×m
q , u ∈ Z

n
q ,

TA,TB ∈ Z
m×m

2. c0 ∈ Zq, (ci,1, ci,2) ∈ Z
2m
q , cL+1 ∈ Z

m
q

3. eID,θ ∈ Z
m,

TA·P1(ID),TB·P2(ID) ∈ Z
m×m

4. eID,t,θ ∈ Z
m, dID[i],t ∈ Z

2m

5. dID[i],t ∈ Z
2m, gID,t ∈ Z

m

Fig. 1. Comparison of the RHIBE schemes Π0,Π1,Π2

Our Contributions and Techniques. In this paper, we manage to simplify
the construction of lattice-based RHIBE scheme with DKER in [11]. Specifically,
we present two new RHIBE schemes Π1 and Π2, both of which are based on
lattices and achieve DKER. Let Π0 denote the RHIBE scheme with DKER
in [11]. Then compared with Π0, our first scheme Π1 has fewer items in the
public parameters, secret keys, and key updates. Furthermore, in our second
scheme Π2, the items in keys and ciphertexts are much shorter than Π0,Π1.
The scheme Π0 in [11] and our first scheme Π1 are in the standard model,
and they both satisfy the selective-identity security, assuming the hardness of
the LWE problem. While our second scheme Π2, which is in the random oracle
model, achieves the adaptive-identity security under the LWE assumption.
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In Fig. 1, we show the public parameters PP, the master secret key SKKGC

(the secret key of KGC), the ciphertext CT, the secret key SKID, the key update
KUID,t, and the decryption key DKID,t, together with the description of their
items, for the schemes Π0, Π1 and Π2. In this figure, L is the maximum depth
of the hierarchy, and we use � := |ID| to denote the depth of the corresponding ID
explicitly in SKID, KUID,t, DKID,t, or implicitly in CT, respectively. In addition,
for n1, n2 ∈ N, we set [n1, n2] := {n1, n1 + 1, · · · , n2} if n1 � n2, or [n1, n2] := ∅
if n1 > n2, and then let [n] := [1, n] for n ∈ N. Figure 1 only provides a brief
description of the RHIBE schemes Π0,Π1,Π2, and the notations in this figure
will be clarified later in this paper when necessary. For example, the notation
BTKGC (or BTID), which denotes a binary tree managed by KGC (or ID), is
introduced in Sect. 2.3. The function E(·) used in SKID for Π0,Π1 is described
in Sect. 3, and the functions P1(·),P2(·) used in SKID for Π2 are defined in
Sect. 4. Actually, Fig. 1 is mainly for the comparison, from which we can see
that our first scheme Π1 needs fewer items than Π0, and the sizes of items are
much smaller in our second scheme Π2. Furthermore, with the help of Fig. 1, we
can briefly introduce our techniques as follows.

In the RHIBE, each identity ID = (id1, · · · , id�) at level � ∈ [L] belongs to
the hierarchical identity space IDH = (ID)�L :=

⋃
i∈[L](ID)i, where ID is the

element identity space. The KGC, i.e., the key generation center, is the unique
level-0 identity. For the construction of our scheme Π1, we introduce another
space ĨD such that ID ∩ ĨD = ∅, |ID| = |ĨD|, and there is a one-to-one
correspondence between id ∈ ID and ĩd ∈ ĨD. Suppose that in the encryption
algorithm, a message M is encrypted under an identity ID = (id1, · · · , id�) ∈ IDH

(and under a time period t). Then from Fig. 1, we know that both the schemes
Π0 and Π1 will output the ciphertext CT =

(
c0, (ci)i∈[�], cL+1

)
∈ Zq × (Z3m

q ×
Z
4m
q × · · · × Z

(�+2)m
q ) × Z

(�+2)m
q . However, for Π0 the item ci in CT is generated

from ID[i] := (id1, · · · , idi−1, idi), while the item ci for our Π1 is created from
ĨD[i] := (id1, · · · , idi−1, ĩdi). As a consequence, our scheme Π1 only needs one
short trapdoor base TA (or T[A|E(ID)]) in the secret key SKKGC (or SKID), and
accordingly the matrix A is used in PP instead of (Ai)i∈[L+1], shown as in Fig. 1.
In the security proof, the adversary A may issue a secret key reveal query on
ID∗

[i∗] but not on any ID∗
[j] for j ∈ [i∗−1], where ID∗ denotes the challenge identity

and i∗ � |ID∗|. In this case, the LWE problem instance is used to construct A,u
in PP and c0, ci∗ in CT for our scheme Π1. Though without the trapdoor TA,
we are still able to construct T[A|E(ID∗

[i∗])]
in SKID∗

[i∗]
for the adversary A, since

the simulated ci∗ is only related to ĨD∗
[i∗], not ID∗

[i∗] itself. The construction of
T[A|E(ID∗

[i∗])]
will not succeed, if ci∗ is obtained in the way of the scheme Π0.

This is also the reason why Π0 employs L+1 short trapdoor bases (TAi
)i∈[L+1]

in SKKGC, and L + 1 − � short trapdoor bases (T[Ai|E(ID)])i∈[�+1,L+1] in SKID,
just as Fig. 1 shows. Similarly, we also deal with the time period t differently in
the encryption algorithm for our scheme Π1. As a result, we no longer need TA

to answer all the queries made by the adversary A in the security proof.
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The items in Π0,Π1 related to the above changes are boxed in Fig. 1. Besides,
we describe the underlined items in Π0,Π1 as follows (the items in DKID,t are
not marked since there is no simplification). For the scheme Π0 in Fig. 1, the
vector fID,k in SKID, the vector fID,t,k in KUID,t and the vector dID,t in DKID,t,
satisfy the condition fID,t,k = dID,t + [fID,k‖0m×1] ∈ Z

(�+2)m for k ∈ [� + 1, L],
where [·‖·] denotes vertical concatenation of vectors, and � = |ID|. Actually, as a
preparation for achieving DKER, Katsumata et al. [11] also presented an RHIBE
scheme without DKER, where the decryption key DKID,t does not contain the
item gID,t. Following this scheme without DKER, they introduced these vectors
fID,k, fID[i],t,k to avoid a trivial attack. For simplicity, one can imagine that if there
is no gID,t in DKID,t for our scheme Π1 in Fig. 1, then the private DKID,t is totally
contained in the public KUID,t, which is obviously insecure. However, for the
construction of RHIBE with the DKER setting, it can be proved that the item
gID,t itself is sufficient to guarantee the security. Therefore, one no longer needs
the items (fID,k)k∈[�+1,L] in SKID, or part of the items (fID[i],t,k)(i,k)∈[�]×[�+1,L] in
KUID,t. Then in the public parameters PP we can also use only one vector u,
instead of (uk)k∈[L], and finally our scheme Π1 is obtained as a simplification of
Π0, shown as in Fig. 1.

As for our second RHIBE scheme Π2, we follow the idea of our Π1, and
adopt the technique for lattice basis delegation in fixed dimension introduced in
[2]. Therefore, the sizes of items are much smaller than Π0 and Π1. For example,
the ciphertext CT under an identity ID with � = |ID|, is a vector in Z

(2�+1)m+1
q

for our Π2. While in Π0 and Π1, CT is a vector in Z
( 1
2 �2+ 7

2 �+2)m+1
q . Moreover, as

Fig. 1 shows, the items in SKID, KUID,t, DKID,t for Π2 do not depend on � = |ID|.
They are either short matrices in Z

m×m, or short vectors in Z
m or Z

2m. Unlike
only one matrix TA in SKKGC for Π1, we emphasize that the master secret key
SKKGC in our scheme Π2 contains two trapdoor bases TA,TB. This comes from
the different technique introduced in [2]. Following this, two trapdoor bases are
necessary even for the construction of RIBE (not RHIBE) without DKER.
Organization. The rest of this paper is organized as follows. Section 2 reviews
some background on lattices, the definitions for RHIBE re-formalized in [11],
and the complete subtree method. Then in Sect. 3, we provide our first RHIBE
scheme Π1, together with its analysis. The construction and the security proof
for our second RHIBE scheme Π2, are presented in Sect. 4. Finally, the conclusion
is given in Sect. 5.

2 Preliminaries

Notations. The acronym PPT stands for “probabilistic polynomial-time”. We
say that a function ε : N → R is negligible, if for sufficient large λ ∈ N, |ε(λ)| is
smaller than the reciprocal of any polynomial in λ. The notation negl(λ) is used
to denote a negligible function ε(λ). Besides, an event is said to happen with
overwhelming probability if it happens with probability at least 1−negl(λ). The
statistical distance of two random variables X and Y over a discrete domain Ω
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is defined as Δ(X;Y ) := 1
2

∑
s∈Ω |Pr[X = s] − Pr[Y = s]|. If X(λ) and Y (λ) are

ensembles of random variables, we say that X and Y are statistically close if
d(λ) := Δ(X(λ);Y (λ)) is equal to negl(λ). For a distribution χ, we often write
x ←↩ χ to indicate that we sample x from χ. For a finite set Ω, the notation
x

$← Ω means that x is chosen uniformly at random from Ω. We treat vectors
in their column form. For a vector x ∈ Z

n, denote ‖x‖ as the Euclidean norm
of x. For a matrix A ∈ Z

n×m, denote ‖A‖ as the Euclidean norm of the longest
column in A, and denote ‖A‖GS as ‖AGS‖, where AGS is the Gram-Schmidt
orthogonalization of A.

2.1 Background on Lattices

Integer Lattices. A (full-rank) integer lattice Λ of dimension m is defined
as the set

{ ∑
i∈[m] xibi | xi ∈ Z

}
, where B := {b1, · · · ,bm} are m linearly

independent vectors in Z
m. Here B is called the basis of the lattice Λ. Let n,m

and q � 2 be positive integers. For a matrix A ∈ Z
n×m
q , define the m-dimensional

lattice Λ⊥
q (A) :=

{
x ∈ Z

m | Ax = 0 mod q
}
. For any u in the image of A, define

the coset Λu
q (A) :=

{
x ∈ Z

m | Ax = u mod q
}
.

Discrete Gaussians over Lattices. Let Λ be a lattice in Z
m. For any param-

eter σ ∈ R>0, define ρσ(x) := exp(−π‖x‖2/σ2) for x ∈ Z
m, and ρσ(Λ) :=∑

x∈Λ ρσ(x). The discrete Gaussian distribution over Λ with parameter σ is
DΛ,σ(y) := ρσ(y)/ρσ(Λ), for y ∈ Λ. Some properties are shown as follows.

Lemma 1 ([15]). For A ∈ Z
n×m
q ,u ∈ Z

n
q with q � 2,m > n, let TA be a

basis for Λ⊥
q (A) and σ � ‖TA‖GS · ω(

√
log m), then Pr[x ←↩ DΛu

q (A),σ : ‖x‖ >

σ
√

m] � negl(n).

Lemma 2 ([9]). Suppose that n,m, q ∈ Z>0, σ ∈ R>0, with q a prime, m �
2n log q and σ � ω(

√
log n). Then for A $← Z

n×m
q , e ←↩ DZm,σ, the distribution

of u := Ae (mod q) is statistically close to uniform over Z
n
q . Furthermore, for

a fixed vector u ∈ Z
n
q and a matrix A $← Z

n×m
q , the conditional distribution of

e ←↩ DZm,σ given Ae = u (mod q) is DΛu
q (A),σ with overwhelming probability.

In addition, as in [2], we set σR :=
√

n log q ·ω(
√

log m), and let Dm×m denote
the distribution on matrices in Z

m×m defined as (DZm,σR
)m conditioned on the

resulting matrix being Zq-invertible.
Algorithms about Lattices. Let us briefly review some algorithms which are
useful for lattice-based cryptography. For these algorithms introduced below, we
simply assume that n,m,m0, q ∈ Z>0 with q � 3 a prime and m = Ω(n log q).
Besides, we note that according to [14], there exists a fixed full rank matrix
G ∈ Z

n×m
q , called the gadget matrix, such that the lattice Λ⊥

q (G) has a publicly
known basis TG ∈ Z

m×m with ‖TG‖GS �
√

5.

TrapGen(1n, 1m, q) → (A,TA) ([3,4,14]): On input n,m, q, output a matrix
A ∈ Z

n×m
q and a basis TA of Λ⊥

q (A), such that A is distributed statistically
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close to uniform over Z
n×m
q and ‖TA‖GS � O(

√
n log q) with overwhelming

probability in n.
SamplePre(A,TA,u, σ) → e ([9]): On input a full rank matrix A ∈ Z

n×m
q ,

a basis TA of Λ⊥
q (A), a vector u ∈ Z

n
q , and a Gaussian parameter σ �

‖TA‖GS · ω(
√

log m), output a vector e ∈ Z
m distributed statistically close

to DΛu
q (A),σ.

SampleLeft(A,M,TA,u, σ) → e ([1,7]): On input a full rank matrix A ∈ Z
n×m
q ,

a matrix M ∈ Z
n×m0
q , a basis TA of Λ⊥

q (A), a vector u ∈ Z
n
q , and a Gaussian

parameter σ � ‖TA‖GS · ω(
√

log(m + m0)), output a vector e ∈ Z
m+m0

distributed statistically close to DΛu
q ([A|M]),σ.

SampleRight(A,H·G,R,TG,u, σ) → e ([1,14]): On input a matrix A ∈ Z
n×m
q , a

matrix of the form H·G ∈ Z
n×m
q (where H ∈ Z

n×n
q is full rank and G ∈ Z

n×m
q

is the gadget matrix [14]), a uniform random matrix R $← {−1, 1}m×m, a basis
TG of Λ⊥

q (G), a vector u ∈ Z
n
q , and a Gaussian parameter σ � ‖TG‖GS ·√

m · ω(
√

log m), output a vector e ∈ Z
2m distributed statistically close to

DΛu
q ([A|AR+HG]),σ.

RandBasis(T, σ) → T′ ([7]): On input a basis T of an m-dimensional lattice
Λ⊥

q (A) and a Gaussian parameter σ � ‖T‖GS ·ω(
√

log m), output a new basis
T′ of Λ⊥

q (A) such that T′ is distributed statistically close to DBasis(Λ⊥
q (A), σ)

introduced below, and ‖T′‖GS � σ
√

m holds with overwhelming probability.

The distribution DBasis(Λ⊥
q (A), σ) used above can be briefly described as fol-

lows. Let O(Λ⊥
q (A), σ) be an algorithm that generates samples from the distri-

bution DΛ⊥
q (A),σ, and set m as the dimension of Λ⊥

q (A). For i = 1, 2, · · · ,m, run
v ← O(Λ⊥

q (A), σ) repeatedly until v is linearly independent of {v1, · · · ,vi−1},
and then set vi ← v. After that, convert the set of vectors {v1, · · · ,vm} to a
basis TA of Λ⊥

q (A) using Lemma 7.1 of [13] (and using some canonical basis
of Λ⊥

q (A)). The distribution of this TA is then denoted as DBasis(Λ⊥
q (A), σ).

Actually, in the process of RandBasis(T, σ) → T′, the input basis T is only
used to run the algorithm SamplePre(A,T,0, σ), instead of the above algorithm
O(Λ⊥

q (A), σ). Thus up to a negligible statistical distance, the distribution of the
output basis T′ does not depend on T.

Using the distribution DBasis(Λ⊥
q (A), σ) introduced above, we are able to

describe the following algorithms for generating a random basis of some lattice.

SampleBasisLeft(A,M,TA, σ) → T[A|M] ([1,7]): On input a full rank matrix
A ∈ Z

n×m
q , a matrix M ∈ Z

n×m0
q , a basis TA of Λ⊥

q (A), and a Gaus-
sian parameter σ � ‖TA‖GS · ω(

√
log(m + m0)), output a basis T[A|M] ∈

Z
(m+m0)×(m+m0) distributed statistically close to DBasis(Λ⊥

q ([A | M]), σ).
SampleBasisRight(A,H · G,R,TG, σ) → T[A|AR+HG] ([1,14]): On input a

matrix A ∈ Z
n×m
q , a matrix of the form H · G ∈ Z

n×m
q (where H ∈ Z

n×n
q

is full rank and G ∈ Z
n×m
q is the gadget matrix [14]), a uniform ran-

dom matrix R $← {−1, 1}m×m, a basis TG of Λ⊥
q (G), and a Gaussian
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parameter σ � ‖TG‖GS · √
m · ω(

√
log m), output a basis T[A|AR+HG] ∈

Z
2m×2m distributed statistically close to DBasis(Λ⊥

q ([A | AR + HG]), σ).
BasisDel(A,R,TA, σ) → T(AR−1) ([2]): On input a full rank matrix A ∈ Z

n×m
q ,

a Zq-invertible matrix R ∈ Z
m×m sampled from Dm×m, a basis TA of Λ⊥

q (A),
and a Gaussian parameter σ � ‖TA‖GS ·

√
nm log q ·ω(log2 m), output a basis

T(AR−1) ∈ Z
m×m distributed statistically close to DBasis(Λ⊥

q (AR−1), σ).
SampleRwithBasis(A, σ) → (R,T(AR−1)) ([2,7]): On input a full rank matrix

A ∈ Z
n×m
q , and a Gaussian parameter σ �

√
n log q · ω(

√
log m), output

a Zq-invertible matrix R ∈ Z
m×m sampled from a distribution statistically

close to Dm×m, and a basis T(AR−1) ∈ Z
m×m distributed statistically close

to DBasis(Λ⊥
q (AR−1), σ).

Recall that the distribution Dm×m used above has already been defined below
Lemma 2. Besides, the algorithm SampleRwithBasis described above is actually a
combination of the original algorithm SampleRwithBasis in [2] and the algorithm
RandBasis in [7]. We directly describe this modified SampleRwithBasis just for
convenience in the future proof of security.
Hardness Assumption. The learning with errors (LWE) problem, first intro-
duced by Regev [17], plays a central role in lattice-based cryptography. The
security of our schemes will rely on the following LWE assumption.

Assumption 1 (LWE). Suppose that n,m, q ∈ Z>0, α ∈ (0, 1) with q a prime
satisfy αq > 2

√
n. For a PPT algorithm A, the advantage for the learning with

errors problem LWEn,m,q,DZm,αq
of A is defined as |Pr[A(A,A�s + x) = 1] −

Pr[A(A,v) = 1]|, where A $← Z
n×m
q , s $← Z

n
q ,x ←↩ DZm,αq,v

$← Z
m
q . We say

that the LWE assumption holds if the above advantage is negligible for all PPT
A.

2.2 Revocable Hierarchical Identity-Based Encryption

We briefly review the syntax, correctness and security definition for RHIBE,
which are re-formalized in [11]. First of all, let us introduce some notations as
follows.

Recall that the hierarchical identity space in RHIBE is denoted by IDH =
(ID)�L =

⋃
i∈[L](ID)i, where ID is the element identity space, and L is the

maximum depth of the hierarchy. The KGC is the unique level-0 identity, and
an identity ID ∈ IDH at level � ∈ [L] is expressed as a length-� vector ID =
(id1, · · · , id�) ∈ (ID)�. For k ∈ [�], we set ID[k] := (id1, · · · , idk) as the length-k
prefix of ID, and define prefix(ID) := {ID[1], ID[2], · · · , ID[�] = ID}. Besides, we
let pa(ID) := ID[�−1] if � � 2, and pa(ID) := KGC if � = 1. Here pa(ID) is called
the parent of ID. We use ID‖ID to denote the subset of (ID)�+1 which contains
all the members that have ID ∈ (ID)� as its parent. When ID = KGC (i.e. � = 0),
the notation ID‖ID just denotes ID.

Next, we introduce the notation RLt
(
⊆ (ID)�L

)
to denote the revocation

list on the time period t. If ID ∈ RLt, then implicitly we assume ID′ ∈ RLt also
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holds, where ID′ is any descendant of ID. Besides, it is required that RLt1 ⊆ RLt2
for t1 < t2. We set RLID,t := RLt ∩ (ID‖ID) as the revocation list managed by
the identity ID on the time period t. Following these notations, when we write
“ID ∈ RLt”, it means that user ID has been revoked on the time period t. For
any ID′ ∈ prefix(ID) and any t′ � t, we have ID′ ∈ RLpa(ID′),t′ ⇒ ID ∈ RLt. When
we write “ID /∈ RLt”, it means that user ID is not revoked on the time period t.
We have ID /∈ RLt ⇔ ID′ /∈ RLpa(ID′),t,∀ ID′ ∈ prefix(ID).
Syntax. As re-formalized in [11], an RHIBE scheme Π consists of the following
six algorithms Setup,Encrypt,GenSK,KeyUp,GenDK,Decrypt. Here the
“revoke” algorithm is not explicitly introduced, since it is a simple operation of
appending revoked users into a revocation list.

Setup(1λ, 1L) → (PP,SKKGC): This is the setup algorithm run by the KGC. On
input a security parameter λ and the maximum depth of the hierarchy L, it
outputs public parameters PP and the KGC’s secret key SKKGC.

Encrypt(PP, ID, t,M) → CT: This is the encryption algorithm run by a sender.
On input public parameters PP, an identity ID, a time period t, and a plaintext
M, it outputs a ciphertext CT.

GenSK(PP,SKpa(ID), ID) → (SKID,SK′
pa(ID)): This is the secret key generation

algorithm run by pa(ID), the parent user of ID. On input public parameters
PP, the parent user’s secret key SKpa(ID), and the identity ID, it outputs a
secret key SKID for ID along with the parent user’s “updated” secret key
SK′

pa(ID).
KeyUp(PP, t,SKID,RLID,t,KUpa(ID),t) → (KUID,t,SK

′
ID): This is the key update

generation algorithm run by the user ID. On input public parameters PP,
a time period t, a secret key SKID, a revocation list RLID,t, and the parent
user’s key update KUpa(ID),t, it outputs a key update KUID,t along with the
“updated” secret key SK′

ID. (In the special case ID = KGC, since KUpa(KGC),t

is not needed, we just define KUpa(KGC),t := ⊥ for all t ∈ T .)
GenDK(PP,SKID,KUpa(ID),t) → DKID,t or ⊥: This is the decryption key gener-

ation algorithm run by the user ID. On input public parameters PP, a secret
key SKID, and the parent user’s key update KUpa(ID),t, it outputs a decryption
key DKID,t, or the special “invalid” symbol ⊥ which indicates that ID has been
revoked.

Decrypt(PP,DKID,t,CT) → M: This is the decryption algorithm run by the user
ID. On input public parameters PP, a decryption key DKID,t, and a ciphertext
CT, it outputs the decrypted plaintext M.

Correctness. The correctness requirement for an RHIBE scheme Π states
that, for all λ,L ∈ Z>0, � ∈ [L], ID ∈ (ID)�, t ∈ T , M ∈ M, RLt ⊆
(ID)�L, if ID /∈ RLt, and all parties follow the above prescribed algorithms
Setup,GenSK,KeyUp,GenDK,Encrypt to generate PP,DKID,t,CT, then
Decrypt(PP,DKID,t,CT) = M.
Security Definition. Let Π = (Setup,Encrypt,GenSK,KeyUp,GenDK,
Decrypt) be an RHIBE scheme. We first consider the selective-identity
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security, which is defined via the following game between an adversary A and a
challenger C.

At the beginning, A sends the challenge identity/time period pair (ID∗, t∗) ∈
(ID)�L×T to C. After that, C runs (PP,SKKGC) ← Setup(1λ, 1L), and prepares
a list SKList that initially contains (KGC,SKKGC). During the game, whenever a
new secret key is generated or an existing secret key is updated for some identity
ID ∈ {KGC} ∪ (ID)�L, the challenger C will store or update the identity/secret
key pairs (ID,SKID) in SKList, and we do not explicitly mention this addi-
tion/update. The global counter tcu, which denotes the “current time period”,
is initialized with 1. Then C executes (KUKGC,1,SK

′
KGC) ← KeyUp(PP, tcu =

1,SKKGC,RLKGC,1 = ∅,⊥) for tcu = 1, and gives PP,KUKGC,1 to A.
From this point on, A may adaptively make the following five types of queries

to C.

Secret Key Generation Query: Upon a query ID ∈ (ID)�L from A, the chal-
lenger C checks whether the condition (ID, ∗) /∈ SKList, (pa(ID),SKpa(ID)) ∈
SKList is satisfied. If not, C just returns ⊥. Otherwise, C executes
(SKID,SK′

pa(ID)) ← GenSK(PP,SKpa(ID), ID). Furthermore, if ID ∈ (ID)�L−1,
then C executes (KUID,tcu ,SK

′
ID) ← KeyUp(PP, tcu,SKID, RLID,tcu =

∅,KUpa(ID),tcu), and returns KUID,tcu to A.
Secret Key Reveal Query: Upon a query ID ∈ (ID)�L from A, the challenger

C checks whether the following condition is satisfied.
– If tcu � t∗ and ID ∈ prefix(ID∗), then ID ∈ RLt∗ .

If not, C just returns ⊥. Otherwise, C finds SKID from SKList, and returns it
to A.

Revoke & Key Update Query: Upon a query RL ⊆ (ID)�L from A, the
challenger C checks whether the following conditions are satisfied simultane-
ously.

– RLtcu ⊆ RL.
– For ID, ID′ ∈ (ID)�L with ID′ ∈ prefix(ID), if ID′ ∈ RL, then ID ∈ RL.
– If tcu = t∗ − 1, and SKID for some ID ∈ prefix(ID∗) has been revealed by

the secret key reveal query, then ID ∈ RL.
If not, C just returns ⊥. Otherwise, C increments the current time period by
tcu ← tcu +1, and then sets RLtcu ← RL. Next, for all ID ∈ {KGC}∪ (ID)�L−1

with (ID, ∗) ∈ SKList, ID /∈ RLtcu in the breadth-first order in the iden-
tity hierarchy, C set RLID,tcu ← RLtcu ∩ (ID‖ID), and run (KUID,tcu ,SK

′
ID) ←

KeyUp(PP, tcu,SKID,RLID,tcu ,KUpa(ID),tcu). Finally, C returns all these gener-
ated key updates {KUID,tcu} to A.

Decryption Key Reveal Query: Upon a query (ID,t) ∈ (ID)�L ×T from A,
the challenger C checks whether the following condition is satisfied.

– t � tcu, ID /∈ RLt, (ID,t) �= (ID∗, t∗).
If not, C just returns ⊥. Otherwise, C finds SKID from SKList, runs DKID,t ←
GenDK(PP, SKID,KUpa(ID),t), and returns DKID,t to A.

Challenge Query: A is allowed to make this query only once. Upon a query
(M0,M1) with |M0| = |M1| from A, the challenger C picks the challenge bit

b
$← {0, 1}, runs CT∗ ← Encrypt(PP, ID∗, t∗,Mb), and returns the challenge

ciphertext CT∗ to A.
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At some point, A outputs b′ ∈ {0, 1} as the guess for b and terminates.
The above completes the description of the game. In this game, A’s selective-

identity security advantage is defined by AdvRHIBE-sel
Π,L,A (λ) := 2 · |Pr[b′ = b] −

1/2|, where λ is the security parameter. We say that an RHIBE scheme Π with
depth L satisfies the selective-identity security, if the advantage AdvRHIBE-sel

Π,L,A (λ)
is negligible for any PPT adversary A.

The game for the adaptive-identity security, is defined in the same way as
the above game, except that the adversary A chooses the challenge identity/time
period pair (ID∗, t∗) ∈ (ID)�L ×T not at the beginning of the game, but at the
time when A makes the challenge query. Formally, the challenge query is defined
differently as follows.

Challenge Query: A is allowed to make this query only once. The query
(ID∗, t∗,M0,M1) from A must satisfy the following conditions simultaneously.

– |M0| = |M1|.
– If tcu � t∗, and SKID for some ID ∈ prefix(ID∗) has been revealed by the

secret key reveal query, then ID ∈ RLt∗ .
– If tcu � t∗, then A has not submitted (ID∗, t∗) as a decryption key reveal

query.
After receiving this query (ID∗, t∗,M0,M1), C picks the challenge bit b

$←
{0, 1}, runs CT∗ ← Encrypt(PP, ID∗, t∗,Mb), and returns the challenge
ciphertext CT∗ to A.

Besides, in the other queries, the conditions related to ID∗, t∗ are naturally omit-
ted before A makes the above challenge query. Recall that at last A will output
b′ ∈ {0, 1} as the guess for b. The adaptive-identity security advantage is then
defined by AdvRHIBE-ad

Π,L,A (λ) := 2·|Pr[b′ = b]−1/2| for this modified game. Similarly,
we say that an RHIBE scheme Π with depth L satisfies the adaptive-identity
security, if the advantage AdvRHIBE-ad

Π,L,A (λ) is negligible for any PPT adversary A.

2.3 The Complete Subtree Method

Similar to the works in [5,8], the RHIBE scheme Π0 in [11], and our schemes
Π1, Π2 constructed in this paper, all need the complete subtree (CS) method
of Naor et al. [16] to achieve the revocation mechanism.

Shown as in Fig. 1, every identity ID, including the KGC, keeps a binary tree
BTID in its secret key SKID. Actually, each member that has ID as its parent,
will be randomly assigned to a leaf node of BTID. For a leaf node η, we use
Path(BTID, η) to denote the set of nodes on the path from η to the root in BTID

(both η and the root inclusive). For a non-leaf node θ, let θl, θr denote the left
and right child of θ, respectively. Besides, recall that RLID,t is the revocation list
managed by the identity ID on the time period t. Then the algorithm KUNode,
which takes BTID and RLID,t as input, can be described as follows: (1) X,Y ← ∅;
(2) for each ID′ ∈ RLID,t, add Path(BTID, ηID′) to X, where ηID′ denotes the leaf
node to which ID′ is assigned; (3) for each node θ ∈ X, add θl to Y if θl /∈ X,
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and add θr to Y if θr /∈ X; (4) if RLID,t = ∅, add the root node of BTID to Y ; (5)
return Y as the output of KUNode(BTID,RLID,t).

Let us focus on the decryption key generation algorithm GenDK(PP,
SKID′ ,KUID,t) run by the user ID′ with pa(ID′) = ID. Here the secret key SKID′

contains the set of nodes P := Path(BTID, ηID′). While the key update KUID,t

contains the set of nodes K := KUNode(BTID,RLID,t). If ID′ /∈ RLID,t, we have
P ∩ K = {θ∗}, which contains exactly one node θ∗. Then ID′ is able to generate
its decryption key DKID′,t, using some item related to θ∗. If ID′ ∈ RLID,t, we have
P ∩ K = ∅, from which ID′ can never obtain DKID′,t. This is the general way to
achieve the revocation mechanism from the CS method.

3 RHIBE Scheme in the Standard Model

In this section, we describe our first RHIBE scheme Π1 in Sect. 3.1, and then
present its selective-identity security in Sect. 3.2. As a preparation, we need to
explain our treatment of some spaces such as T , ID, IDH = (ID)�L, and intro-
duce an encoding with full-rank differences used in the scheme Π1.

Treatment of Spaces. The element identity space ID is treated as a subset of
Z

n
q \ {0n}, namely, ID ⊂ Z

n
q \ {0n}. We need to define a function f : ID → ĨD

such that f(id1) �= f(id2) for id1 �= id2. Here ĨD is a new space satisfying
ĨD ⊂ Z

n
q \ {0n} and ID ∩ ĨD = ∅. For simplicity, we just define

ID := {1} × Z
n−1
q , ĨD := {2} × Z

n−1
q and f(1‖v) := 2‖v for v ∈ Z

n−1
q .

The time period space T = {1, 2, · · · , tmax} is encoded into the set Z
n−1
q .

Here we note that one can also choose disjoint ID, ĨD ⊂ Z
n
q \ {0n} such

that |ID| = |ĨD| = 1
2 (qn − 1), and set T as a subset of Z

n
q \ {0n} with

|T | = � 1
L (qn − 1)�. Besides, let us deal with the hierarchical identity space

IDH = (ID)�L =
⋃

i∈[L](ID)i. Define F : (ID)�L →
⋃

i∈[0,L−1](ID)i × ĨD
as F(ID) := (id1, · · · , id�−1, f(id�)) for ID = (id1, · · · , id�−1, id�). Thus for
|ID| = � � 2, we have ID �= F(ID), ID[�−1] = [F(ID)][�−1]. For simplicity, let
us set ĩd := f(id), ĨD := F(ID), and use ĨD[i] to denote F(ID[i]).

Encoding with Full-Rank Differences. We use the standard map H defined
in [1] to encode vectors as matrices. The function H : Z

n
q → Z

n×n
q is actually an

encoding with full-rank differences for a prime q. Namely, the matrix H(ch1) −
H(ch2) is full rank for any two distinct ch1, ch2 ∈ Z

n
q , and H is computable

in polynomial time in n log q. One can refer to [1] for the explicit construction
of the map H. Finally, for CH = (ch1, ch2, · · · , ch�) ∈

(
Z

n
q \ {0n}

)�L and i ∈
[L], t ∈ Z

n−1
q , we define the following functions:

– E(CH) := [C1 + H(ch1)G | C2 + H(ch2)G | · · · | C� + H(ch�)G] ∈ Z
n×�m
q ,

– F(i, t) := CL+1 + H(i‖t)G ∈ Z
n×m
q .
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Here (Ci)i∈[L+1] are uniformly random matrices in Z
n×m
q chosen in the setup

algorithm of the scheme Π1 and G is the gadget matrix [14]. In addition, we can
treat i‖t as a vector in Z

n
q , since L < q obviously holds due to the parameters

selection given later.

3.1 Construction

Due to our new treatment of the identity spaces and the time period space,
we can obtain a much simple RHIBE scheme Π1 in the standard model, which
is described as follows. Here we let α, α′, (σ�)�∈[0,L] be positive reals denoting
Gaussian parameters, and set N as the maximum number of children each parent
manages. These parameters, together with positive integers n,m and a prime q,
are all implicitly determined by the security parameter λ, and in particular we
set n(λ) := λ.

Setup(1n, 1L) → (PP,SKKGC):
Taking the security parameter n and the maximum depth of the hierarchy L
as input, it performs the following steps.
1. Run (A,TA) ← TrapGen(1n, 1m, q).

2. Select Ci
$← Z

n×m
q for i ∈ [L + 1], and u $← Z

n
q .

3. Create a binary tree BTKGC with N leaf nodes, which denote N children
users.

4. Output PP :=
(
A, (Ci)i∈[L+1], u

)
, SKKGC :=

(
BTKGC, TA

)
.

Here recall that (Ci)i∈[L+1] define the functions E(·) and F(·) introduced
before.

Encrypt(PP, ID, t,M) → CT:
For M ∈ {0, 1}, |ID| = � ∈ [L], it performs the following steps.

1. Select si
$← Z

n
q for i ∈ [�] ∪ {L + 1}. Then sample x ←↩ DZ,αq, xi ←↩

DZ(i+2)m,α′q for i ∈ [�], and xL+1 ←↩ DZ(�+2)m,α′q.
2. Set⎧

⎨

⎩

c0 := u�(s1 + s2 + · · · + s�) + u�sL+1 + x + M� q
2�,

ci := [A | E(ĨD[i]) | F(i, t)]�si + xi for i ∈ [�],
cL+1 := [A | E(ID) | F(�, t)]�sL+1 + xL+1.

3. Output CT :=
(
c0, (ci)i∈[�], cL+1

)
∈ Zq × (Z3m

q ×Z
4m
q ×· · ·×Z

(�+2)m
q )×

Z
(�+2)m
q .

GenSK(PP,SKpa(ID), ID) → (SKID,SK′
pa(ID)):

For |ID| = � ∈ [L], it performs the following steps.
1. Randomly pick an unassigned leaf node ηID from BTpa(ID) and store ID in

node ηID. Then select upa(ID),θ
$← Z

n
q for node θ ∈ Path(BTpa(ID), ηID), if

upa(ID),θ is undefined. Here pa(ID) updates SKpa(ID) to SK′
pa(ID) by storing

new defined upa(ID),θ in θ ∈ BTpa(ID).
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2. Run eID,θ ← SampleLeft([A | E(pa(ID))],C� + H(ĩd�)G,T[A|E(pa(ID))],

upa(ID),θ, σ�−1) for θ ∈ Path(BTpa(ID), ηID). Here eID,θ ∈ Z
(�+1)m satisfies

[A | E(ĨD)]eID,θ = upa(ID),θ.
3. Run T[A|E(ID)] ← SampleBasisLeft([A | E(pa(ID))],C� + H(id�)G,

T[A|E(pa(ID))], σ�−1).
4. Create a new binary tree BTID with N leaf nodes.
5. Output SKID :=

(
BTID, (θ, eID,θ)θ∈Path(BTpa(ID),ηID), T[A|E(ID)]

)
, SK′

pa(ID).

KeyUp(PP, t,SKID,RLID,t,KUpa(ID),t) → (KUID,t,SK
′
ID):

For |ID| = � ∈ [0, L − 1], it performs the following steps.

1. Select uID,θ
$← Z

n
q for node θ ∈ KUNode(BTID,RLID,t), if uID,θ is undefined.

Here ID may update SKID to SK′
ID by storing new defined uID,θ in θ ∈ BTID.

2. Run eID,t,θ ← SampleLeft([A | E(ID)], F(�+1, t), T[A|E(ID)], u−uID,θ, σ�)
for θ ∈ KUNode(BTID,RLID,t). Here eID,t,θ ∈ Z

(�+2)m satisfies [A | E(ID) |
F(� + 1, t)]eID,t,θ = u − uID,θ.

3. If � � 1, run DKID,t ← GenDK(PP,SKID,KUpa(ID),t), where GenDK(·)
is defined below. Then extract (dID[i],t)i∈[�] from DKID,t.

4. Output KUID,t :=
(
(θ, eID,t,θ)θ∈KUNode(BTID,RLID,t), (dID[i],t)i∈[�]

)
, SK′

ID.

GenDK(PP,SKID,KUpa(ID),t) → DKID,t or ⊥:
For |ID| = � ∈ [L], it performs the following steps.
1. Extract P := Path(BTpa(ID), ηID) in SKID, and K := KUNode(BTpa(ID),

RLpa(ID),t) in KUpa(ID),t. If P ∩ K = ∅, output ⊥. Otherwise, for the
unique node θ∗ ∈ P ∩ K, extract eID,θ∗ , epa(ID),t,θ∗ ∈ Z

(�+1)m in
SKID,KUpa(ID),t, respectively. Parse them as eID,θ∗ = [eLID,θ∗‖eRID,θ∗ ],
epa(ID),t,θ∗ = [eLpa(ID),t,θ∗‖eRpa(ID),t,θ∗ ], where eLID,θ∗ , eLpa(ID),t,θ∗ ∈ Z

�m

and eRID,θ∗ , eRpa(ID),t,θ∗ ∈ Z
m. Then set dID,t := [eLID,θ∗ +

eLpa(ID),t,θ∗‖eRID,θ∗‖eRpa(ID),t,θ∗ ] ∈ Z
(�+2)m.

2. If � � 2, extract (dID[i],t)i∈[�−1] from KUpa(ID),t.
3. Run gID,t ← SampleLeft([A | E(ID)], F(�, t), T[A|E(ID)], u, σ�). Here

gID,t ∈ Z
(�+2)m satisfies [A | E(ID) | F(�, t)]gID,t = u.

4. Output DKID,t :=
(
(dID[i],t)i∈[�], gID,t

)
.

Decrypt(PP,DKID,t,CT) → M:
For |ID| = � ∈ [L], it performs the following steps.

1. Compute c′ := c0−
∑�

i=1 d�
ID[i],t

ci −g�
ID,tcL+1 ∈ Zq. Treat c′ as an integer

in [q] ⊂ Z.
2. Output M := 1 if |c′ − � q

2�| < � q
4�, and output M := 0 otherwise.

Correctness. Assume that ID has the depth |ID| = � ∈ [L]. If ID /∈ RLt,
then one can obtain DKID,t =

(
(dID[i],t)i∈[�], gID,t

)
. Recall that dID,t =

[eLID,θ∗ +eLpa(ID),t,θ∗‖eRID,θ∗‖eRpa(ID),t,θ∗ ] ∈ Z
(�+2)m, where θ∗ ∈ Path(BTpa(ID), ηID)∩

KUNode(BTpa(ID),RLpa(ID),t). According to
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[A | E(˜ID)]eID,θ∗ = upa(ID),θ∗ , [A | E(pa(ID)) | F(�, t)]epa(ID),t,θ∗ = u − upa(ID),θ∗ ,

eID,θ∗ = [eL
ID,θ∗‖eR

ID,θ∗ ], epa(ID),t,θ∗ = [eL
pa(ID),t,θ∗‖eR

pa(ID),t,θ∗ ],

one can obtain [A | E(ĨD) | F(�, t)]dID,t = u, d�
ID,tc� = u�s� +d�

ID,tx�. Similarly,

for i ∈ [� − 1] we also have [A | E(ĨD[i]) | F(i, t)]dID[i],t = u, d�
ID[i],t

ci = u�si +

d�
ID[i],t

xi. Besides, the vector gID,t ∈ Z
(�+2)m satisfies [A | E(ID) | F(�, t)]gID,t =

u, g�
ID,tcL+1 = u�sL+1 + g�

ID,txL+1. From the above, we can compute

c′ = u�(
∑�

i=1 si) + u�sL+1 + x + M� q
2� −

∑�
i=1 d�

ID[i],t
ci − g�

ID,tcL+1

= M� q
2� + (x −

∑�
i=1 d�

ID[i],t
xi − g�

ID,txL+1).

Set z := x −
∑�

i=1 d�
ID[i],t

xi − g�
ID,txL+1 as the noise. Then according to the

triangle inequality, the Cauchy-Schwarz inequality, and Lemma 1, the noise z
can be bounded as follows with overwhelming probability:

∣

∣z
∣

∣ �
∣

∣x
∣

∣ +
∑�

i=1

∥

∥dID[i],t

∥

∥ · ∥

∥xi

∥

∥ +
∥

∥gID,t

∥

∥ · ∥

∥xL+1

∥

∥

� αq +
∑�

i=1 2 · σi−1

√

(i + 2)m · α′q
√

(i + 2)m + σ�

√

(� + 2)m · α′q
√

(� + 2)m

= αq + [
∑�

i=1 2(i + 2)σi−1 + (� + 2)σ�]mα′q
� αq + [2L(L + 2) + (L + 2)]σLmα′q
= O(αq + L2σLmα′q).

As a conclusion, if O(αq+L2σLmα′q) < q/5, we know that
∣
∣z

∣
∣ is upper bounded

by q/5 with overwhelming probability, and thus our RHIBE scheme Π1 only has
negligible decryption error.
Parameters. The analysis for parameters selection is similar to that in [11].
We must consider the condition O(αq + L2σLmα′q) < q/5 for the correct-
ness requirement, and the condition q > 2

√
n/α for the hardness assumption

of LWEn,m+1,q,D
Zm+1,αq

. Besides, we also need to make sure that algorithms such
as SampleBasisLeft et al. can operate in the construction, and algorithms such
as SampleBasisRight et al. can work in the security proof. Finally, we set the
parameters used for our RHIBE scheme Π1 as follows:

m = 6n1+δ = O(Ln log n), α = [L
5
2 m

1
2 L+2ω(log

1
2 L+ 1

2 n)]−1, α′ = O((Lm)
1
2 )α,

q = L
5
2 m

1
2 L+ 5

2 ω(log
1
2 L+ 1

2 n), σ� = m
1
2 �+ 1

2 ω(log
1
2 �+ 1

2 n) for � ∈ [0, L],

and round up m to the nearest larger integer, and q to the nearest larger prime.
Here we choose δ such that nδ > �log q� = O(L log n).

3.2 Security

Theorem 1. The RHIBE scheme Π1 satisfies the selective-identity security,
assuming the hardness of the problem LWEn,m+1,q,χ where χ = DZm+1,αq.

Let ID∗ = (id∗
1, · · · , id∗

�∗), t∗ be the challenge identity and time period with
�∗ := |ID∗|. Then the attack strategies taken by A can be divided into the
following two types, which consist of �∗ + 1 strategies in total.
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– Type-I: A issues secret key reveal queries on at least one ID ∈ prefix(ID∗).
– Further divided into Type-I-i∗ (i∗ ∈ [�∗]):

A issues a secret key reveal query on ID∗
[i∗] but not on any ID ∈

prefix(ID∗
[i∗−1]).

– Type-II: A does not issue secret key reveal queries on any ID ∈ prefix(ID∗).

Our security proof follows the framework in [12] (the full version of [11]).
Firstly, we show that if a PPT adversary A follows the Type-I-i∗ strategy for
some i∗ ∈ [�∗], then its selective-identity security advantage is negligible, assum-
ing the hardness of the problem LWEn,m+1,q,χ. Secondly, the same also applies
for a PPT adversary A following the Type-II strategy. Finally, we can com-
plete the proof of Theorem 1 due to the “strategy-dividing lemma” introduced
in [11,12]. Note that the proof makes heavy use of the algorithms SampleRight,
SampleBasisRight, and Lemma 2. Due to space constraints, the details are given
in the full version of this paper.

4 RHIBE Scheme in the Random Oracle Model

In this section, we describe our second RHIBE scheme Π2 in Sect. 4.1, and then
provide its adaptive-identity security in Sect. 4.2. As a preparation, we need
to explain our treatment of some spaces such as T , ID, IDH = (ID)�L, and
introduce two random oracles used in the scheme Π2.

Treatment of Spaces. The time period space T , the element identity space ID,
and the space ĨD are all treated as subsets of {0, 1, 2}ω, such that T ∩ ID =
T ∩ ĨD = ID ∩ ĨD = ∅. Here ω is an integer determined by the security
parameter. Similarly, we also need to define a function f : ID → ĨD satisfying
f(id1) �= f(id2) for id1 �= id2. For simplicity, we just define

T := {0} × {0, 1, 2}ω−1, ID := {1} × {0, 1, 2}ω−1, ĨD := {2} × {0, 1, 2}ω−1,
and f(1‖ch) := 2‖ch for ch ∈ {0, 1, 2}ω−1.

Note that here one can also choose T , ID, ĨD as pairwise disjoint subsets
of {0, 1}∗. Next, let us deal with the hierarchical identity space IDH =
(ID)�L =

⋃
i∈[L](ID)i. We still define F : (ID)�L →

⋃
i∈[0,L−1](ID)i × ĨD

as F(ID) := (id1, · · · , id�−1, f(id�)) for ID = (id1, · · · , id�−1, id�). Similarly, for
|ID| = � � 2, we have ID �= F(ID), ID[�−1] = [F(ID)][�−1]. For simplicity, we still
set ĩd := f(id), ĨD := F(ID), and use ĨD[i] to denote F(ID[i]). In addition, for
KGC and ID = (id1, · · · , id�) ∈ ({0, 1, 2}ω)�, we define the notations KGC‖t := t
and ID‖t := (id1, · · · , id�, t) ∈ ({0, 1, 2}ω)�+1, and thus (ID‖t)[�] = ID.

Random Oracles. We define two random oracles H1,H2 as follows:

– H1 : ({0, 1, 2}ω)�L+1 → Z
m×m
q , CH �→ H1(CH) ∼ Dm×m,

– H2 : ({0, 1, 2}ω)�L → Z
m×m
q , CH′ �→ H2(CH′) ∼ Dm×m.
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Here the outputs of H1,H2 are both distributed as Dm×m, which is defined below
Lemma 2 in Sect. 2.1. Furthermore, for CH ∈ ({0, 1, 2}ω)�L+1 with � = |CH|, and
CH′ ∈ ({0, 1, 2}ω)�L with �′ = |CH′|, we define the following functions:

– P1(CH) := [H1(CH[�])H1(CH[�−1]) · · ·H1(CH[1])]−1 ∈ Z
m×m
q ,

– P2(CH′) := [H2(CH′
[�′])H2(CH′

[�′−1]) · · ·H2(CH′
[1])]

−1 ∈ Z
m×m
q .

Therefore, after setting P1(CH[0]),P2(CH′
[0]) as the identity matrix Im×m, we

have P1(CH[j]) = P1(CH[j−1]) · [H1(CH[j])]−1 for j ∈ [�], and P2(CH′
[j′]) =

P2(CH′
[j′−1]) · [H2(CH′

[j′])]
−1 for j′ ∈ [�′].

4.1 Construction

In the following, we describe the construction of our RHIBE scheme Π2 in the
random oracle model. Note that in this scheme the KGC’s secret key SKKGC

contains two trapdoor bases. Similar to Sect. 3.1, here we let α, (σ�)�∈[0,L] be
positive reals denoting Gaussian parameters, and set N as the maximum num-
ber of children each parent manages. These parameters, together with positive
integers n,m and a prime q, are all implicitly determined by the security param-
eter λ, and in particular we set n(λ) := λ. Besides, in the scheme Π2 we set
τ� := σ�

√
m · ω(

√
log m) for � ∈ [0, L] to make the algorithm SamplePre work.

Setup(1n, 1L) → (PP,SKKGC):
Taking the security parameter n and the maximum depth of the hierarchy L
as input, it performs the following steps.
1. Run (A,TA) ← TrapGen(1n, 1m, q), and (B,TB) ← TrapGen(1n, 1m, q).

2. Select u $← Z
n
q .

3. Create a binary tree BTKGC with N leaf nodes, which denote N children
users.

4. Output PP :=
(
A, B, u

)
, SKKGC :=

(
BTKGC, TA, TB

)
.

Encrypt(PP, ID, t,M) → CT:
For M ∈ {0, 1}, |ID| = � ∈ [L], it performs the following steps.

1. Select si
$← Z

n
q for i ∈ [�] ∪ {L + 1}. Then sample x ←↩ DZ,αq, xi,j ←↩

DZm,αq for (i, j) ∈ [�] × [2], and xL+1 ←↩ DZm,αq.
2. Define ID[0]‖t := t, and then set

⎧
⎪⎪⎨

⎪⎪⎩

c0 := u�(s1 + s2 + · · · + s�) + u�sL+1 + x + M� q
2�,

ci,1 := [A · P1(ĨD[i])]�si + xi,1 for i ∈ [�],
ci,2 := [B · P2(ID[i−1]‖t)]�si + xi,2 for i ∈ [�],

cL+1 := [A · P1(ID‖t)]�sL+1 + xL+1.

3. Output CT :=
(
c0, (ci,1, ci,2)i∈[�], cL+1

)
∈ Zq × (Zm

q × Z
m
q )� × Z

m
q .

GenSK(PP,SKpa(ID), ID) → (SKID,SK′
pa(ID)):

For |ID| = � ∈ [L], it performs the following steps.
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1. Randomly pick an unassigned leaf node ηID from BTpa(ID) and store ID in

node ηID. Then select upa(ID),θ
$← Z

n
q for node θ ∈ Path(BTpa(ID), ηID), if

upa(ID),θ is undefined. Here pa(ID) updates SKpa(ID) to SK′
pa(ID) by storing

new defined upa(ID),θ in θ ∈ BTpa(ID).
2. Define P1(KGC),P2(KGC) as the identity matrix Im×m, and then run

⎧
⎨

⎩

TA·P1( ˜ID) ← BasisDel(A · P1(pa(ID)), H1(ĨD), TA·P1(pa(ID)), σ�−1),
TA·P1(ID) ← BasisDel(A · P1(pa(ID)), H1(ID), TA·P1(pa(ID)), σ�−1),
TB·P2(ID) ← BasisDel(B · P2(pa(ID)), H2(ID), TB·P2(pa(ID)), σ�−1).

3. Run eID,θ ← SamplePre(A · P1(ĨD),TA·P1( ˜ID),upa(ID),θ, τ�−1) for θ ∈
Path(BTpa(ID), ηID).

4. Create a new binary tree BTID with N leaf nodes.
5. Output SKID :=

(
BTID, (θ, eID,θ)θ∈Path(BTpa(ID),ηID),TA·P1(ID),TB·P2(ID)

)
,

SK′
pa(ID).

KeyUp(PP, t,SKID,RLID,t,KUpa(ID),t) → (KUID,t,SK
′
ID):

For |ID| = � ∈ [0, L − 1], it performs the following steps.

1. Select uID,θ
$← Z

n
q for node θ ∈ KUNode(BTID,RLID,t), if uID,θ is undefined.

Here ID may update SKID to SK′
ID by storing new defined uID,θ in θ ∈ BTID.

2. Run TB·P2(ID‖t) ← BasisDel(B·P2(ID),H2(ID‖t),TB·P2(ID), σ�), and then
run eID,t,θ ← SamplePre(B · P2(ID‖t),TB·P2(ID‖t),u − uID,θ, τ�) for θ ∈
KUNode(BTID,RLID,t).

3. If � � 1, run DKID,t ← GenDK(PP,SKID,KUpa(ID),t), where GenDK(·)
is defined below. Then extract (dID[i],t)i∈[�] from DKID,t.

4. Output KUID,t :=
(
(θ, eID,t,θ)θ∈KUNode(BTID,RLID,t), (dID[i],t)i∈[�]

)
, SK′

ID.

GenDK(PP,SKID,KUpa(ID),t) → DKID,t or ⊥:
For |ID| = � ∈ [L], it performs the following steps.
1. Extract P := Path(BTpa(ID), ηID) in SKID, and K := KUNode(BTpa(ID),

RLpa(ID),t) in KUpa(ID),t. If P∩K = ∅, output ⊥. Otherwise, for the unique
node θ∗ ∈ P∩K, extract eID,θ∗ , epa(ID),t,θ∗ ∈ Z

m in SKID,KUpa(ID),t, respec-
tively. Then set dID,t := [eID,θ∗‖epa(ID),t,θ∗ ] ∈ Z

2m.
2. If � � 2, extract (dID[i],t)i∈[�−1] from KUpa(ID),t.
3. Run TA·P1(ID‖t) ← BasisDel(A · P1(ID), H1(ID‖t), TA·P1(ID), σ�), and

then run gID,t ← SamplePre(A · P1(ID‖t), TA·P1(ID‖t), u, τ�).

4. Output DKID,t :=
(
(dID[i],t)i∈[�], gID,t

)
.

Decrypt(PP,DKID,t,CT) → M:
For |ID| = � ∈ [L], it performs the following steps.

1. Compute c′ := c0 −
∑�

i=1 d�
ID[i],t

[ci,1‖ci,2] − g�
ID,tcL+1 ∈ Zq. Treat c′ as

an integer in [q] ⊂ Z.
2. Output M := 1 if |c′ − � q

2�| < � q
4�, and output M := 0 otherwise.
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Similar to Sect. 3.1, we can show that if O(LσLm
3
2 ω(

√
log m)αq) < q/5, the

above RHIBE scheme Π2 only has negligible decryption error. Besides, we set
the parameters used for Π2 as follows:

m = 6n1+δ = O(Ln log n), α = [Lm
3
2L+3ω(log2L+ 5

2 n)]−1,

q = Lm
3
2L+3n

1
2 ω(log2L+ 5

2 n), σ� = m
3
2 �+ 3

2 ω(log2�+2 n) for � ∈ [0, L],

and round up m to the nearest larger integer, and q to the nearest larger prime.
Here we choose δ such that nδ > �log q� = O(L log n). Due to space constraints,
the detailed analysis for correctness and parameters selection is given in the full
version of this paper.

4.2 Security

Theorem 2. The RHIBE scheme Π2 satisfies the adaptive-identity security,
assuming the hardness of the problem LWEn,2m+1,q,χ where χ = DZ2m+1,αq.

It is shown in Sect. 3.2 that the attack strategies taken by A can be divided
into the Type-I strategy (further divided into Type-I-i∗) and the Type-II
strategy. Suppose that a PPT adversary A follows the Type-I strategy, and
its adaptive-identity security advantage is denoted by AdvType-I

Π2,L,A(n). Then there
exits a PPT algorithm C, whose advantage for the LWEn,2m+1,q,χ problem is
denoted by AdvLWE

C (n), such that

AdvType-I
Π2,L,A(n) � (2L · QL

H1
· QH2) · AdvLWE

C (n) + negl(n),

where QH1 , QH2 denote the maximum numbers of queries made by A to the ran-
dom oracles H1,H2, respectively. We note that the algorithm SampleRwithBasis
and Lemma 2 will play an important role in the proof of the above inequality.
Similarly, for a PPT adversary A following the Type-II strategy with adaptive-
identity security advantage AdvType-II

Π2,L,A (n), we have

AdvType-II
Π2,L,A (n) � (2L · QL+1

H1
)AdvLWE

C (n) + negl(n).

Finally, according to the “strategy-dividing lemma” introduced in [11,12], we
get

AdvRHIBE-adΠ2,L,A (n) � AdvType-I
Π2,L,A(n) + AdvType-II

Π2,L,A (n)

� (2L ·QL
H1

·QH2 )Adv
LWE
C (n) + negl(n) + (2L ·QL+1

H1
)AdvLWE

C (n) + negl(n)

� 2L ·QL
H1

· (QH2 +QH1 ) · AdvLWE
C (n) + negl(n).

It is obtained that AdvLWE
C (n) = negl(n), assuming the hardness of the problem

LWEn,2m+1,q,χ. Since 2L · QL
H1

· (QH2 + QH1) is polynomial in n, we know that
AdvRHIBE-ad

Π2,L,A (n) � negl(n), which completes the proof of Theorem 2. Due to space
constraints, the detailed analysis for security proof is given in the full version of
this paper.
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5 Conclusion

In this paper, we present two new RHIBE schemes with DKER from lattices,
and thus simplify the construction of RHIBE scheme provided by Katsumata
et al. [11]. Our first scheme needs fewer items than that in [11], and the sizes
of items are much smaller in our second scheme. The security of these two new
schemes are both based on the hardness of the LWE problem, and our second
scheme also achieves the adaptive-identity security.
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ence Foundation of China (Grant Nos. 11531002, 61572026 and 61722213), the Open
Foundation of State Key Laboratory of Cryptology, and the program of China Schol-
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Abstract. For lattice-based group signatures (GS) with verifier-local
revocation (VLR), it only requires the verifiers to possess up-to-date
group information (i.e., a revocation list, RL, consists of a series of revo-
cation tokens for revoked members), but not the signers. The first such
scheme was introduced by Langlois et al. in 2014, and subsequently, a
full and corrected version (to fix a flaw in the original revocation mecha-
nism) was proposed by Ling et al. in 2018. However, both constructions
are within the structure of a Bonsai Tree, and thus features bit-sizes of
the group public-key and the member secret-key proportional to log N ,
where N is the maximum number of group members. On the other hand,
the tracing algorithm for both schemes runs in a linear time in N (i.e.,
one by one, until the real signer is traced). Therefore for a large group,
the tracing algorithm of conventional GS-VLR is not convenient and both
lattice-based constructions are not that efficient.

In this work, we propose a much more efficient lattice-based GS-
VLR, which is efficient by saving the O(log N) factor for both bit-sizes of
the group public-key and the member secret-key. Moreover, we achieve
this result in a relatively simple manner. Starting with Nguyen et al.’s
efficient and compact identity-encoding technique in 2015 - which only
needs a constant number of matrices to encode the member’s identity,
we develop an improved identity-encoding function, and introduce an
efficient Stern-type statistical zero-knowledge argument of knowledge
(ZKAoK) protocol corresponding to our improved identity-encoding func-
tion, which may be of independent cryptographic interest.

Furthermore, we demonstrate how to equip the obtained lattice-
based GS-VLR with explicit traceability (ET) in some simple way. This
attractive functionality, only satisfied in the non-VLR constructions, can
enable the tracing authority in lattice-based GS-VLR to determine the
signer’s real identity in a constant time, independent of N . In the whole
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process, we show that the proposed scheme is proven secure in the ran-
dom oracle model (ROM) based on the hardness of the Short Integer
Solution (SIS) problem, and the Learning With Errors (LWE) problem.

Keywords: Lattice-based group signatures · Verifier-local revocation ·
Stern-type zero-knowledge proofs · Identity-encoding technique ·
Explicit traceability

1 Introduction

Group signature (GS), put forward by Chaum and van Heyst [10], is a fundamen-
tal privacy-preserving primitive which allows any member to issue signatures on
behalf of the whole group without compromising his/her identity information,
and given a valid message-signature pair, the tracing authority (i.e., an opener)
can find out the signer’s real identity. These two properties, called anonymity
and traceability respectively, allow GS to find several real-life applications. To
construct such valid scheme is a interesting and challenging work for the research
community, and over the last quarter-century, various GS constructions with dif-
ferent security requirements, different levels of efficiency, and based on different
hardness assumptions have been proposed (e.g., [4–7,13,16] · · · ).
Lattice-based group signatures. Lattice-based cryptography, believed to be
the most promising candidate for post-quantum cryptography (PQC), possesses
several noticeable advantages over conventional number-theoretic cryptography:
conjectured resistance against quantum computers, faster arithmetic operations
and provable security under the worst-case hardness assumptions. Since the cre-
ative works of Ajtai [2], Regev [34], Micciancio and Regev [28], and Gentry et al.
[12], lattice-based cryptography has attracted significant interest by the research
community and become an exciting cryptographic research field. In recent ten
years, lattice-based GS has been paid greet attention along with other primitives.
The first construction was put forth by Gordon et al. [13], while their solution
only obtains a low running efficiency, due to the linear-size of public-key and
signature (i.e., linear in the security parameter n, and the maximum number of
group members N). Camenisch et al. [8] introduced a variant of [13] to achieve
the improvements with a shorter public-key and stronger anonymity while the
signature size is still linear in N . The linear-size barrier problem is eventually
overcome by Laguillaumie et al. [17], who provided the first logarithmic lattice-
based GS scheme with relatively large parameters. Ling et al. [24] and Nguyen
et al. [31] constructed more efficient schemes with O(log N) signature size respec-
tively. More recently, Libert et al. [20] developed a lattice-based accumulator
from Merkle trees and based on which they designed the first lattice-based GS
not requiring any GPV trapdoors. The first lattice-based GS realizations with
message-dependent opening (MDO), forward-secure (FS), and without NIZK in
the standard model (SM) were then proposed by Libert et al. [21], Ling et al.
[26], and Katsumata and Yamada [14], respectively. For the lattice-based GS



122 Y. Zhang et al.

schemes mentioned above, all are designed for the static groups and analyzed in
the security model of Bellare et al. [4], where no candidate member is allowed
to join or leave after the whole group’s preliminary setup.

For lattice-based GS schemes with dynamic features, member enrollment was
firstly token into account by Libert et al. [19] and a dynamic construction in the
model of Kiayias and Yong [16] and Bellare et al. [5] was introduced. Ling et al.
[27] added some dynamic ingredients into a static accumulator constructed in
[20] to construct the first lattice-based GS scheme with full dynamicity (i.e.,
candidate members can join and leave the group at will) in the model of Bootle
et al. [7]. Recently, Ling et al. [25] introduced a constant-size lattice-based GS
scheme (i.e., signature size is independent of N), meanwhile supporting dynamic
member enrollments.

As an orthogonal problem of member enrollment, the support for membership
revocation is also a desirable functionality of lattice-based GS. The verifier-local
revocation (VLR) mechanism, which only requires the verifiers to possess some
up-to-date group information (i.e., a revocation list, RL, consists of a series of
revocation tokens for the revoked members), but not the signers, is more efficient
than the accumulators, especially when considering a large group. The first such
scheme was introduced by Langlois et al. [18] in 2014, and subsequently, a full and
corrected version (to fix a flaw in original revocation mechanism) was proposed
by Ling et al. [22], and two more schemes achieving different security notions
were proposed by Perera and Koshiba [32,33] in 2018. However, all constructions
are within the structure of a Bonsai Tree of hard random lattices [9], and thus
features bit-sizes of the group public-key and the member secret-key proportional
to log N . The only two exceptions are [11,35] which adopt a identity-encoding
function as introduced in [31] to encode the member’s identity index and save
a O(log N) factor for both bit-sizes. However, the latter two constructions both
involve a series of sophisticated encryption operations and zero-knowledge proof
protocols in the signing phase, and on the other hand, the tracing algorithm for
[11,18,22,35] runs in a linear time in N (i.e., one by one for all members, until
the real signer is traced). For a large group, the tracing algorithm of conventional
GS-VLR is not so convenient and almost of all lattice-based constructions are not
that efficient. Thus these somewhat unsatisfactory state-of-affairs highlights the
challenge of designing a simpler and more efficient lattice-based GS scheme with
VLR, which can be more suitable for a large group.

Our results and main techniques. In this work, we reply positively to the
problems discussed above. Specifically, we propose a new lattice-based GS-VLR
achieving shorter key-sizes and explicit traceability. Here, by “shorter key-sizes”,
we mean saving a O(log N) factor for both bit-sizes of the group public-key and
the member secret-key; by “explicit traceability”, we mean the tracing authority
determining the signer’s real identity in a constant time, independent of N . The
proposed scheme is proven secure in the random oracle model (ROM) based on
the hardness of the Short Integer Solution (SIS) problem, and the Learning With
Errors (LWE) problem.
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The comparisons between our scheme and previous works, in terms of asymp-
totic efficiency (i.e., key-sizes, explicit traceability), functionality (i.e., static or
not) and anonymity, are shown in Table 1 (the security parameter is n, time
period T = 2d and group size N = 2� = poly(n)).

Our construction operates in the model of Boneh and Shacham [6] for VLR,
which enjoys the implicit traceability, and additionally, the explicit traceability is
also obtained. Furthermore, we declare that the “shorter key-sizes” and “explicit
traceability” can be obtained in a relatively simple manner, thanks to three main
techniques discussed below.

Table 1. Comparisons of known lattice-based GS schemes.

Scheme Group
public-key size

Signer
secret-key size

Explicit
traceability

Functionality Anonymity

GKV [13] N · ˜O(n2) ˜O(n2) yes static CPA

CNR [8] ˜O(n2) ˜O(n2) yes static CCA

LLLS [17] � · ˜O(n2) ˜O(n2) yes static CPA

LLNW [18] � · ˜O(n2) � · ˜O(n) no VLR Selfless

LNW [24] � · ˜O(n2) ˜O(n) yes static CCA

NZZ [31] ˜O(n2) ˜O(n2) yes static CCA

LLNW [20] ˜O(n2 + n · �) � · ˜O(n) yes static CCA

LMN [21] � · ˜O(n2) ˜O(n) yes MDO CCA

LLMNW [19] � · ˜O(n2) ˜O(n) yes enrollment CCA

ZHGJ [35] ˜O(n2) ˜O(n) no VLR Selfless

LNWX [27] ˜O(n2 + n · �) ˜O(n) + � yes fully-dynamic CCA

GHZW [11] ˜O(n2) ˜O(n) no VLR Selfless

LNWX [26] (� + d) · ˜O(n2) (�+d)2 ·d· ˜O(n2) yes FS CCA

LNLW [22] � · ˜O(n2) � · ˜O(n) no VLR Selfless

KP [33] � · ˜O(n2) � · ˜O(n) yes VLR almost-CCA

KP [32] � · ˜O(n2) ˜O(n) yes fully-dynamic almost-CCA

LNWX [25] ˜O(n) ˜O(n) yes enrollment CCA

KY [14] N · ˜O(n2) N · ˜O(n2) yes static Selfless

Ours ˜O(n2) ˜O(n) yes VLR Selfless

Firstly, as we discussed earlier, adopting a Bonsai Tree structure to construct
lattice-based GS-VLR results in a larger bit-sizes of the group public-key and the
member secret-key. To realize a more efficient lattice-based GS-VLR with shorter
key-sizes, we further need an efficient mechanism to encode the member’s identity
information, and a simpler zero-knowledge protocol to prove the signer’s validity
as a certified group member.

Towards the goal described as above, we utilize a compact identity-encoding
technique introduced in [31] which only needs a constant number of matrices to
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encode the member’s identity index. We consider the group of N = 2� members
and each member is identified by a �-bits string id = (d1, d2, · · · , d�) ∈ {0, 1}�

which is a binary representation of his/her identity index i ∈ {1, · · · , N}, that
is, id = bin(i) ∈ {0, 1}�. Throughout this paper, let n be the security parameter,
and other parameters N,m, q, β, s are the function of n and will be determined
later (see Sect. 4). In our new VLR scheme, the group public-key only consists of
a random vector u ∈ Z

n
q and 4 random matrices A0, A1

1, A
2
2 (used for identity-

encoding) and A3
3 (only used for explicit traceability) over Z

n×m
q . For member

i, instead of generating a trapdoor basis matrix for a hard random lattice as the
signing secret-key for i as in [31], we sample some short 2m-dimensional vector
ei = (ei,1, ei,2) ∈ Z

2m satisfying 0 < ‖ei‖∞ ≤ β, and Ai · ei = u mod q, where
Ai = [A0|A1

1 + iA2
2] ∈ Z

n×2m
q . Furthermore, for the VLR feature, the revocation

token of i is constructed by A0 and ei,1 ∈ Z
m, that is, grti = A0 · ei,1 mod q.

Secondly, the implicit tracing algorithm of conventional lattice-based GS-VLR
runs in a linear time in N , and thus it is not so convenient, resulting in a low
efficiency. To realize an efficient construction with explicit traceability, we further
need an efficient mechanism to encrypt the identity index of member i (in our
actual construction, it’s to encrypt bin(i) ∈ {0, 1}�) to obtain a ciphertext c, and
design a zero-knowledge argument to prove: c is a correct encryption of bin(i),
namely, a lattice-based verifiable encryption protocol. Besides the public matrix
A0, A1

1, and A2
2 for identity-encoding, a fourth matrix A3

3 is required to encrypt
bin(i) using the dual LWE cryptosystem [12]. This relation can be expressed as
c = (c1 = A3�

3 s + e1 mod q, c2 = G�s + e2 + �q/2�bin(i) mod q) where G is a
random matrix, and s, e1, e2 are random vectors having certain specific norm.

Thirdly, the major challenge for our construction lies in how to design
a simpler and efficient zero-knowledge proof protocol to prove the following
relations: (a) [A0|A1

1 + iA2
2] · ei = u mod q; (b) grti = A0 · ei,1 mod q;

(c) c = (c1 = A3�
3 s + e1 mod q, c2 = G�s + e2 + �q/2�bin(i) mod q). For

relation (b), we utilize a creative idea introduced by Ling et al. [22] by draw-
ing a matrix B ∈ Z

n×m
q from a random oracle and a vector e0 ∈ Z

m from the
LWE error distribution, define b = B�grti + e0 = (B�A0) · ei,1 + e0 mod q,
thus the member i’s token grti is bound to a one-way and injective LWE func-
tion. For relation (c), we utilize a creative idea of Ling et al. [24] by construct-
ing a matrix P ∈ Z

(m+�)×(n+m+�)
q (obtained from the public matrices A3

3 and
G, see Sect. 3 for details), and a vector e = (s, e1, e2) ∈ Z

n+m+�, then let
c = Pe + (0m, �q/2�bin(i)) mod q, thus the identity index i is now bound to
this new form which is easy to construct a Stern-type statistical zero-knowledge
proof protocol.

For relation (a), since ei ∈ Z
2m is a valid short solution to the Inhomogeneous

Short Integer Solution (ISIS) instance (Ai,u) where Ai = [A0|A1
1+iA2

2], a direct
way for member i to prove his/her validity as a certified group member without
leaking ei just by performing a Stern-type statistical zero-knowledge argument
of knowledge (ZKAoK) as in [23]. However, in order to protect the anonymity of
i, the structure of Ai should not be given explicitly. How to realize a Stern-type
zero-knowledge proof without leaking Ai and ei simultaneously? To solve this
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open problem, we transform matrix Ai to A′ which enjoys a new form and is
independent of the identity index i, i.e., A′ = [A0|A1

1|g� ⊗ A2
2] ∈ Z

n×(�+2)m
q ,

where g� = (1, 2, 22, · · · , 2�−1) is a power-of-two vector, and the identity index i
can be rewritten as i = g�

� · bin(i), the notation ⊗ denotes a concatenation with
vectors or matrices, and the detailed definition will be given later (see Sect. 3).
As a corresponding change to the member i’s signing secret-key, ei = (ei,1, ei,2)
is now transformed to e′

i = (ei,1, ei,2, bin(i)⊗ei,2) ∈ Z
(�+2)m. Thus, to argue the

relation Ai · ei = u mod q, we instead show that A′ · e′
i = u mod q.

Putting the above transformations ideas and the versatility of the Stern-type
argument system introduced by Ling et al. [23] together, we can construct an
efficient Stern-type interactive protocol for the relations (a), (b) and (c).

To summarize, by incorporating the compact identity-encoding technique and
the corresponding efficient Stern-type statistical ZKAoK into a lattice-based GS,
we design a more efficient lattice-based GS-VLR. The proposed scheme obtains
the shorter bit-sizes for the group public-key and the group member secret-key,
furthermore, the explicit traceability, and thus, is more suitable for a large group.
In addition, we believe that the innovative ideas and design approaches in our
whole constructions may be of independent interest.

Organization. In the forthcoming sections, we first recall some background on
GS-VLR and lattice-based cryptography in Sect. 2. Section 3 turns to develop an
improved identity-encoding technique, an explicit traceability mechanism and
the corresponding new Stern-type statistical ZKAoK protocol that will be used
in our construction. Our scheme is constructed and analyzed in Sect. 4.

2 Preliminaries

Notations. Assume that all vectors are in a column form. Sk denotes the set of
all permutations of k elements, and $←− denotes that sampling elements from a
given distribution uniformly at random. Let ‖·‖∞ denote the infinity norm (�∞)
of a vector. Given e = (e1, e2, · · · , en) ∈ R

n, Parse(e, k1, k2) denotes the vector
(ek1 , ek1+1, · · · , ek2) ∈ R

k2−k1+1 for 1 ≤ k1 ≤ k2 ≤ n. log a denotes the logarithm
of a with base 2. The acronym PPT stands for “probabilistic polynomial-time”.

2.1 Group Signatures with VLR

A conventional GS-VLR scheme involves two entities: a group manager (also is a
tracing authority) and a sets of group members. In order to support an explicit
traceability we add an Open algorithm to conventional GS-VLR.

Syntax of GS-VLR with Explicit Traceability. A GS-VLR with the explicit
traceability (GS-VLR-ET) consists of 4 polynomial-time algorithms: KeyGen,
Sign, Verify, Open. Because of the page limitation, we omit the detailed def-
inition, if any necessary, please contact the corresponding author for the full
version.
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Correctness and Security of GS-VLR-ET. As put forward by Boneh and
Shacham [6], A conventional GS-VLR scheme should satisfy correctness selfless-
anonymity, and traceability. Thus for GS-VLR-ET, these 3 requirements also
should be satisfied. Due to the limited space, the details are presented in the full
paper.

2.2 Background on Lattices

Ajtai [2] first introduced how to obtain a statistically close to uniform matrix A
together with a low Gram-Schmidt norm basis for Λ⊥

q (A) = {e ∈ Z
m | A · e =

0 mod q}, then two improved algorithms were investigated by [3,30].

Lemma 1 ([2,3,30]). Let integers n ≥ 1, q ≥ 2, and m = 2n
log q�. There
exists a PPT algorithm TrapGen(q, n,m) that outputs A and RA, such that A is
statistically close to a uniform matrix in Z

n×m
q and RA is a trapdoor for Λ⊥

q (A).

Lemma 2 ([12,30]). Let integers n ≥ 1, q ≥ 2, and m = 2n
log q�, given A ∈
Z

n×m
q , a trapdoor RA for Λ⊥

q (A), a parameter s = ω(
√

n log q log n) and a vector
u ∈ Z

n
q , there is a PPT algorithm SamplePre(A,RA,u, s) that returns a short

vector e ∈ Λu
q (A) sampled from a distribution statistically close to DΛu

q (A),s.

We recall 3 average-case lattices problems: ISIS, SIS (in the �∞ norm), LWE.

Definition 1. The (I)SIS∞
n,m,q,β problems are: Given a uniformly random matrix

A ∈ Z
n×m
q , a random syndrome vector u ∈ Z

n
q and a real β > 0,

– SIS∞
n,m,q,β: to find a non-zero e ∈ Z

m such that A · e = 0 mod q, ‖e‖∞ ≤ β.
– ISIS∞

n,m,q,β: to find a vector e ∈ Z
m such that A · e = u mod q, ‖e‖∞ ≤ β.

Lemma 3 ([12,29]). For m, β = poly(n), and q ≥ β · ˜O(
√

n), the average-case
(I)SIS∞

n,m,q,β problems are at least as hard as the SIVPγ problem in the worst-
case to within γ = β · ˜O(

√
nm) factor. In particular, if β = 1, q = ˜O(n) and

m = 2n
log q�, then the (I)SIS∞
n,m,q,1 problems are at least as hard as SIVP

˜O(n).

Definition 2. The LWEn,q,χ problem is: Given a random vector s ∈ Z
n
q , a prob-

ability distribution χ over Z, let As,χ be the distribution obtained by sampling a

matrix A $←− Z
n×m
q , a vector e $←− χm, and outputting a tuple (A,A�s + e),

to distinguish As,χ and a uniform distribution U over Z
n×m
q × Z

m
q .

Let β ≥ √
n·ω(log n), if q is a prime power, and χ is a β-bounded distribution

(e,g., χ = DZm,s), then the LWEn,q,χ problem is as least as hard as SIVP
˜O(nq/β).

Lemma 4 ([1]). Let R be an m×m-matrix chosen at random from {−1, 1}m×m,
for vectors e ∈ R

m, Pr[‖R · e‖∞ > ‖e‖∞ · ω(
√

log m)] < negl(m).

Lemma 5 ([1]). Let q ≥ 3, and m > n, A, B ∈ Z
n×m
q and a real s ≥ ‖˜RB‖ ·√

m · ω(log m). There is a PPT algorithm SampleRight(A,B,R,RB,u, s) that
given a trapdoor RB for Λ⊥

q (B), a low-norm matrix R ∈ {−1, 1}m×m, and a
vector u ∈ Z

n
q , outputs e ∈ Z

2m distributed statistically close to DΛu
q ([A|AR+B]),s.
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3 Preparations

3.1 The Improved of Identity-Encoding Technique

For an improved of identity-encoding technique, a public random vector u ∈ Z
n
q

is required, i.e., Gpk = (A0,A1
1,A

2
2,A

3
3,u), furthermore, the secret-key of i is

not yet a trapdoor basis matrix for Λ⊥
q (Ai), instead of a short 2m-dimensional

vector ei = (ei,1, ei,2) in the coset of Λ⊥
q (Ai), i.e., Λu

q (Ai) = {ei ∈ Z
2m | Ai ·ei =

u mod q}, and thus, the revocation token of i is constructed by A0 and the first
part of its secret-key, i.e., grti = A0 · ei,1 mod q.

In order to design an efficient Stern-type ZKAoK protocol corresponding to
the above new variant, we transform Ai = [A0|A1

1 + iA2
2] corresponding to i to

a new form. Before we do that, we first define 2 notations (we restate, in this
paper, the group is of N = 2� members):

– g� = (1, 2, · · · , 2�−1): a power-of-2 vector, for i ∈ {1, 2, · · · , N}, i = g�
� ·bin(i)

where bin(i) ∈ {0, 1}� denotes a binary representation of i.
– ⊗: a concatenation with vectors or matrices, given A ∈ Z

n×m
q , e′ ∈ Z

m
q , and

e = (e1, e2, · · · , e�) ∈ Z
�
q, define: e ⊗ e′ = (e1e′, e2e′, · · · , e�e′) ∈ Z

m�
q , e ⊗

A = [e1A|e2A| · · · |e�A] ∈ Z
n×m�
q .

Next, we transform Ai to a public matrix A′ that is independent of the index
i, where A′ = [A0|A1

1|A2
2|2A2

2| · · · |2�−1A2
2] = [A0|A1

1|g� ⊗ A2
2] ∈ Z

n×(�+2)m
q .

As a corresponding change to the group secret-key of member i, ei =
(ei,1, ei,2) is now transformed to e′

i, a vector with some special structure as
for ei, that is, e′

i = (ei,1, ei,2, bin(i) ⊗ ei,2) ∈ Z
(�+2)m.

Thus, from the above transformations, the relation Ai · ei = u mod q is now
transformed to a new form, (i) Ai · ei = A′ · e′

i = u mod q.
For the revocation mechanism, as it was stated in [22], due to a flaw in the

revocation mechanism of [18], a corrected technique which realizes revocation by
binding signer’s token grti to an LWE function was proposed, (ii) b = B�grti +
e0 = (B�A0) · ei,1 + e0 mod q, where B ∈ Z

n×m
q is a uniformly random matrix

from a random oracle, e0 ∈ Z
m is sampled from the LWE error χm.

For the explicit traceability mechanism, as it was shown in [24], the lattice-
based dual LWE cryptosystem [12] can be used to encrypt the identity index of
signer i. In our construction, the string bin(i) ∈ {0, 1}� is treated as the plaintext
and the ciphertext can be expressed as c = (c1, c2), where c1 = A3�

3 s+e1 mod q,
c2 = G�s+e2 +�q/2�bin(i) mod q). Here, G ∈ Z

n×�
q is a random matrix, and s,

e1, e2 are random vectors sampled from the LWE error χn, χm, χ�, respectively.
Thus, the above relation can be expressed as (iii) c = P · e + (0m, �q/2�bin(i)),

where P =

⎛

⎝

A3�
3

· · · · · · Im+�

G�

⎞

⎠ ∈ Z
(m+�)×(n+m+�)
q and e = (s, e1, e2) ∈ Z

n+m+�.

Putting all the above transformations ideas and the versatility of the Stern-
extension argument system introduced by Ling et al. [23] together, we can con-
struct an efficient Stern-type statistical ZKAoK protocol to prove the above new
relations (i), (ii) and (iii).
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3.2 A New Stern-Type Zero-Knowledge Proof Protocol

An efficient Stern-type ZKAoK protocol which allows P to convince any verifier
V that P is a group member who signed M will be introduced, namely, P owns
a valid secret-key, his/her token is correctly embedded into an LWE instance and
the identity information is correctly hidden with the dual LWE cryptosystem.

Firstly, we recall some specific sets and techniques as in [17,18,22] that will
be used in our VLR-ET construction. Due to the limited space, we give them in
the full version and the readers can also refer to [17,18,22].

Secondly, we introduce the main building block, a new Stern-type interactive
statistical zero-knowledge proof protocol, and we consider the group of N = 2�

members and each member is identified by id = (d1, d2, · · · , d�) ∈ {0, 1}� which
is a binary representation of the index i ∈ {1, 2, · · · , N}, namely, id = bin(i) ∈
{0, 1}�. The underlying new Stern-type statistical ZKAoK protocol between P
and V can be summarized as follows:

1. The public inputs include A′ = [A0|A1
1|g� ⊗ A2

2] ∈ Z
n×(�+2)m
q , B ∈ Z

n×m
q ,

P =

⎛

⎝

A3�
3

· · · · · · Im+�

G�

⎞

⎠ ∈ Z
(m+�)×(n+m+�)
q , u ∈ Z

n
q , b ∈ Z

m
q , c = (c1, c2).

2. P’s witnesses include e′ = (e′
1, e

′
2, bin(i) ⊗ e′

2) ∈ Secβ(id) corresponding to a
secret index i ∈ {1, · · · , N} and 4 short vectors e0, s, e1, e2, the LWE errors.

3. P’s goal is to convince V in zero-knowledge that:
a. A′ · e′ = u mod q where e′ ∈ Secβ(id), while keeping id secret.
b. b = (B�A0) · e′

1 + e0 mod q where 0 < ‖e′
1‖∞, ‖e0‖∞ ≤ β.

c. c = Pe+(0m, �q/2�bin(i)) mod q, where e = (s, e1, e2), 0 < ‖e‖∞ ≤ β,
while keeping bin(i) ∈ {0, 1}� secret.

Firstly, we sketch Group Membership Mechanism, i.e., P is a certified member
and its goal is shown in a. P does as follows:

1. Parse A′ = [A0|A1
1|A2

2| · · · |2�−1A2
2], use Matrix-Ext technique to extend it to

A∗ = [A0|0n×2m|A1
1|0n×2m| · · · |2�−1A2

2|0n×2m|0n×3m�].
2. Parse id = bin(i) = (d1, d2, · · · , d�), extend it to id∗ = (d1, d2, · · · , d2�) ∈ B2�.
3. Parse e′ = (e′

1, e
′
2, bin(i) ⊗ e′

2) = (e′
1, e

′
2, d1e′

2, d2e′
2, · · · , d�e′

2), use Dec, Ext
techniques extending e′

1 and e′
2 to k vectors e′

1,1, e
′
1,2, · · · , e′

1,k ∈ B3m, and k
vectors e′

2,1, e
′
2,2, · · · , e′

2,k ∈ B3m. For each j ∈ {1, 2, · · · , k}, we define e′
j =

(e′
1,j , e

′
2,j , d1e′

2,j , d2e′
2,j , · · · , d2�e′

2,j), it can be checked that e′
j ∈ SecExt(id∗).

So P’s goal in a is transformed to: A∗(
∑k

j=1 βje′
j) = u mod q, e′

j ∈
SecExt(id∗). To prove this new structure in zero-knowledge, we take 2 steps
as follows:

1. Pick k random vectors r′
1, · · · , r′

k
$←− Z

(2�+2)3m
q to mask e′

1, · · · , e′
k, then it

can be checked that, A∗ · (∑k
j=1 βj(e′

j + r′
j)) − u = A∗ · (∑k

j=1 βjr′
j) mod q.

2. Pick two permutations π, ϕ ∈ S3m, one permutation τ ∈ S2�, then it can be
checked that, ∀j ∈ {1, 2, · · · , k}, Tπ,ϕ,τ (e′

j) ∈ SecExt(τ(id∗)), where id∗ ∈ B2�

is an extension of id = bin(i) ∈ {0, 1}�.
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Secondly, we sketch Revocation Mechanism, i.e., P’s revocation token is cor-
rectly embedded in an LWE instance and its goal is shown in b. P does as follows:

1. Let B′ = B�A0 mod q ∈ Z
m×m
q , and e′

j,0 = Parse(e′
j , 1,m).

2. Parse e0 = (e1, e2, · · · , em) ∈ Z
m, use Dec, Ext techniques to extend e0 to k

vectors e0
1, e

0
2, · · · , e0

k ∈ B3m.
3. Let B∗ = [B′|I∗] where I∗ = [Im|0n×2m], Im is identity matrix of order m.

So P’s goal in b is transformed to: b = B′(
∑k

j=1 βje′
j,0) + I∗(

∑k
j=1 βje0

j ) =

B∗ · (
∑k

j=1 βj(e′
j,0, e

0
j )) mod q, e0

j ∈ B3m. To prove this new structure in zero-
knowledge, we take 2 steps as follows:

1. Let r′
j,0 = Parse(r′

j , 1,m), pick k random vectors r1, · · · , rk
$←− Z

3m
q to mask

e0
1, · · · , e0

k, it can be checked that,

B∗ · (
∑k

j=1 βj(e′
j,0 + r′

j,0, e
0
j + rj)) − b = B∗ · (

∑k
j=1 βj(r′

j,0, rj)) mod q

2. Pick φ ∈ S3m, then it can be checked that, ∀j ∈ {1, 2, · · · , k}, φ(e0
j ) ∈ B3m.

Thirdly, we sketch Explicit Traceability Mechanism, i.e., P’s index is correctly
embedded in a LWE cryptosystem and its goal is shown in c. P does as follows:

1. Let P∗ = [P|0(m+�)×2(n+m+�)] and Q =

⎛

⎝

0m×� 0m×�

· · · · · · · · · · · ·
�q/2�I� 0�×�

⎞

⎠, where I� is an

identity matrix of order �.
2. Parse e = (s, e1, e2) ∈ Z

n+m+�, use Dec, Ext techniques to extend e to k
vectors e(1), e(2), · · · , e(k) ∈ B3(n+m+�).

3. Let id∗ = bin(i)∗ ∈ B2� be an extension of id = bin(i) ∈ {0, 1}�.

So P’s goal in c is transformed to: c = P∗·(∑k
j=1 βje(j))+Q·id∗ mod q, e(j) ∈

B3(n+m+�), bin(i)∗ ∈ B2�. To prove this new structure in zero-knowledge, we take
2 steps as follows:

1. Pick a random vector rid∗
$←− Z

2�
q to mask id∗ = bin(i)∗, k random vectors

r′′
1 , · · · , r′′

k
$←− Z

3(n+m+�)
q to mask e(1), · · · , e(k), it can be checked that,

P∗ ·(∑k
j=1 βj(e(j) + r′′

j ))+Q·(id∗+rid∗)−c = P∗ ·(∑k
j=1 βjr′′

j )+Q·rid∗ mod q

2. Pick ρ ∈ S3(n+m+�), then it can be checked that, ∀j ∈ {1, 2, · · · , k}, ρ(e(j)) ∈
B3(n+m+�) and τ(id∗) ∈ B2�, where τ has been picked in the proof of group
membership mechanism.

Putting the above techniques together, we can obtain a new Stern-type inter-
active statistical zero-knowledge proof protocol, the details will be given bellow.

In our VLR-ET construction, we utilize a statistically hiding, computationally
blinding commitment scheme (COM) as proposed in [15]. For simplicity, we omit
the randomness of COM. P and V interact as follows:
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1. Commitments: P randomly samples the following random objects:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

r′
1, · · · , r′

k
$←− Z

(2�+2)3m
q ; r1, · · · , rk

$←− Z
3m
q ; r′′

1 , · · · , r′′
k

$←− Z
3(n+m+�)
q ;

π1, · · · , πk
$←− S3m; ϕ1, · · · , ϕk

$←− S3m; φ1, · · · , φk
$←− S3m;

ρ1, · · · , ρk
$←− S3(n+m+�); τ

$←− S2�; rid∗
$←− Z

2�
q .

Let r′
j,0 = Parse(r′

j , 1,m), j ∈ {1, · · · , k}, P sends CMT = (c1, c2, c3) to V,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

c1 = COM({πj , ϕj , φj , ρj}k
j=1, τ,A

∗ · (
∑k

j=1 βjr′
j),B

∗ · (
∑k

j=1 βj(r′
j,0, rj)),

P∗ · (
∑k

j=1 βjr′′
j ) + Q · rid∗),

c2 = COM({Tπj ,ϕj ,τ (r′
j), φj(rj), ρj(r′′

j )}k
j=1, τ(rid∗)),

c3 = COM({Tπj ,ϕj ,τ (e′
j + r′

j), φj(e0
j + rj), ρj(e(j) + r′′

j )}k
j=1, τ(id∗ + rid∗)).

2. Challenge: V chooses a challenge CH
$←− {1, 2, 3} and sends it to P.

3. Response: Depending on CH, P replies as follows:
◦ CH = 1. For j ∈ {1, 2, · · · , k}, let v′

j = Tπj ,ϕj ,τ (e′
j), w

′
j = Tπj ,ϕj ,τ (r′

j),
vj = φj(e0

j ), wj = φj(rj), v(j) = ρj(e(j)), w′′
j = ρj(r′′

j ), tid = τ(id∗) and
vid = τ(rid∗), define RSP = ({v′

j ,w
′
j ,vj ,wj ,v(j),w′′

j }k
j=1, tid,vid).

◦ CH = 2. For j ∈ {1, 2, · · · , k}, let π̂j = πj , ϕ̂j = ϕj , φ̂j = φj , ρ̂j = ρj ,
τ̂ = τ , x′

j = e′
j + r′

j , xj = e0
j + rj , x′′

j = e(j) + r′′
j and xid = id∗ + rid∗ ,

define RSP = ({π̂j , ϕ̂j , φ̂j , ρ̂j ,x′
j ,xj ,x′′

j }k
j=1, τ̂ ,xid).

◦ CH = 3. For j ∈ {1, 2, · · · , k}, let π̃j = πj , ϕ̃j = ϕj , φ̃j = φj , ρ̃j =
ρj , τ̃ = τ , h′

j = r′
j , hj = rj , h′′

j = r′′
j and hid = rid∗ , define RSP =

({π̃j , ϕ̃j , φ̃j , ρ̃j ,h′
j ,hj ,h′′

j }k
j=1, τ̃ ,hid).

4. Verification: Receiving RSP, V checks as follows:
◦ CH = 1. Check that tid ∈ B2�, for each j ∈ {1, 2, · · · , k}, v′

j ∈ SecExt(tid),
vj ∈ B3m, v(j) ∈ B3(n+m+�), and that,

{

c2 = COM({w′
j ,wj ,w′′

j }k
j=1, tid),

c3 = COM({v′
j + w′

j ,vj + wj ,v(j) + w′′
j }k

j=1, tid + vid).

◦ CH = 2. For j ∈ {1, 2, · · · , k}, let x′
j,0 = Parse(x′

j , 1,m), and check that,
⎧

⎪

⎨

⎪

⎩

c1 = COM({π̂j , ϕ̂j , φ̂j , ρ̂j}k
j=1, τ̂ ,A∗ · (

∑k
j=1 βjx′

j) − u,

B∗ · (
∑k

j=1 βj(x′
j,0,xj) − b),P∗ · (

∑k
j=1 βjx′′

j ) + Q∗ · xid − c),
c3 = COM({Tπ̂j ,ϕ̂j ,τ̂ (x′

j), φ̂j(xj), ρ̂j(x′′
j )}k

j=1, τ̂(xid)).

◦ CH = 3. For j ∈ {1, 2, · · · , k}, let h′
j,0 = Parse(h′

j , 1,m), and check that,
⎧

⎪

⎨

⎪

⎩

c1 = COM({π̃j , ϕ̃j , φ̃j , ρ̃j}k
j=1, τ̃ ,A∗ · (

∑k
j=1 βjh′

j),
B∗ · (

∑k
j=1 βj(h′

j,0,hj)),P
∗ · (

∑k
j=1 βjh′′

j ) + Q∗ · hid),
c2 = COM({Tπ̃j ,ϕ̃j ,τ̃ (h′

j), φ̃j(hj), ρ̃j(h′′
j )}k

j=1, τ̃(hid)).
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The verifier V outputs 1 iff all the above conditions hold, otherwise 0.

The associated relation R(n, k, �, q,m, β) in the above protocol is defined as:

R =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A0,A1
1,A

2
2,B ∈ Z

n×m
q ,P ∈ Z

(m+�)×(n+m+�)
q ,u ∈ Z

n
q ,b ∈ Z

m
q ,

c = (c1, c2) ∈ Z
m
q × Z

�
q, id = bin(i) ∈ {0, 1}�, e0 ∈ Z

m,

e′ = (e′
1, e

′
2, bin(i) ⊗ e′

2) ∈ Secβ(id), e ∈ Z
n+m+�; s.t.

0 < ‖e′‖∞, ‖e0‖∞, ‖e‖∞ ≤ β, c = Pe + (0m, �q/2�id) mod q,

b = (B�A0) · e′
1 + e0 mod q, [A0|A1

1|g� ⊗ A2
2] · e′ = u mod q.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

3.3 Analysis of the Protocol

The following theorem gives a detailed analysis of the above interactive
protocol.

Theorem 1. Let COM (as proposed in [15]) be a statistically hiding and com-
putationally binding commitment scheme, for a given commitment CMT, 3 valid
responses RSP1, RSP2 and RSP3 with respect to 3 different challenges CH1, CH2

and CH3, the proposed protocol is a statistical zero-knowledge argument of knowl-
edge for R(n, k, �, q,m, β), where each round has perfect completeness, soundness
error 2/3, argument of knowledge property and communication cost ˜O(�n log β).

Proof. The proof employs a list of standard techniques for Stern-type protocol as
in [15,18,23]. Due to the limited space, the proof is presented in the full version.

4 The Lattice-Based GS-VLR-ET Scheme

4.1 Description of the Scheme

− KeyGen(1n, N): On input security parameter n, group size N = 2� = poly(n).
The prime modulus q = ω(n2 log n) > N , dimension m = 2n
log q�, Gaus-
sian parameter s = ω(

√
n log q log n), and the norm bound β = 
s · log m�

such that (4β + 1)2 ≤ q. This algorithm specifies the following steps:

1. Run TrapGen(q, n,m) to generate A0 ∈ Z
n×m
q and a trapdoor RA0 .

2. Sample two matrices A1
1,A

2
2

$←− Z
n×m
q and a vector u $←− Z

n
q .

3. Run TrapGen(q, n,m) to generate A3
3 ∈ Z

n×m
q and a trapdoor RA3

3
.

4. As in [31], for group member with index i ∈ {1, 2, · · · , N}, define a matrix
Ai = [A0|A1

1 + iA2
2] ∈ Z

n×2m
q , and do the followings:

4.1. Sample ei,2
$←− DZm,s and let ui = (A1

1 + iA2
2) · ei,2 mod q. Then run

SamplePre(A0,RA0 ,u − ui, s) to obtain ei,1 ∈ Z
m.

4.2. Let ei = (ei,1, ei,2) ∈ Z
2m. Thus Ai · ei = u mod q, 0 < ‖ei‖∞ ≤ β.

4.3. Let the member i’s group secret-key be gski = ei, and its revocation token
be grti = A0 · ei,1 mod q.
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5. Output (Gpk,Gmsk,Gsk,Grt) where Gpk = (A0,A1
1,A

2
2,A

3
3,u), Gmsk = RA3

3
,

Gsk = (gsk1, gsk2, · · · , gskN ), Grt = (grt1, grt2, · · · , grtN ).

− Sign(Gpk, gski,M): Let H : {0, 1}∗ → {1, 2, 3}κ=ω(log n), G : {0, 1}∗ → Z
n×m
q

be two hash functions, modeled as random oracles. Let χ be a β-bounded
distribution as in Definition 2. On input Gpk and a message M ∈ {0, 1}∗,
the member i with secret-key gski = ei specifies the following steps:

1. Sample v $←− {0, 1}n and define B = G(A0,A1
1,A

2
2,u,M, v) ∈ Z

n×m
q .

2. Sample e0
$←− χm and define b = B�grti + e0 = (B�A0) · ei,1 + e0 mod q.

3. Sample G $←− Z
n×�
q , s $←− χn, e1

$←− χm, e2
$←− χ�, define c = (c1, c2) ∈

Z
m
q × Z

�
q where c1 = A3�

3 s + e1 mod q, c2 = G�s + e2 + �q/2�bin(i) mod q,
4. Generate a zero-knowledge proof that the signer is indeed a group mem-

ber who owns a valid secret-key, and has signed the message M ∈ {0, 1}∗,
and its revocation token is correctly embedded in b, and its identity is cor-
rectly embedded in c = (c1, c2) constructed as above. This can be achieved
by repeating κ = ω(log n) times the Stern-type interactive protocol as in
Sect. 3.3 with the public tuple (A0,A1

1,A
2
2,P,u,B,b, c = (c1, c2)) and a

witness (id, gski, e0, e), then making it non-interactive via the Fiat-Shamir
heuristic as a triple Π = ({CMTj}j∈{1,··· ,κ},CH, {RSPj}j∈{1,··· ,κ}) where
CH = {CHj}j∈{1,··· ,κ} = H(M,A0,A1

1,A
2
2,P,u,B,b, c, {CMTj}j∈{1,··· ,κ}).

5. Output the signature Σ = (M,Π,v,b,G, c).

− Verify(Gpk,RL,M,Σ): On input Gpk, a signature Σ on M ∈ {0, 1}∗, a set of
tokens RL = {grti′}i′≤N ⊆ Grt, the verifier specifies the following steps:

1. Parse the signature Σ = (M,Π,v,b,G, c).

2. Let P =

⎛

⎝

A3�
3

· · · · · · Im+�

G�

⎞

⎠, and check that if CH = {CH1,CH2, · · · ,CHκ} =

H(M,A0,A1
1,A

2
2,P,u,B,b, c, {CMTj}j∈{1,2,··· ,κ}).

3. For j ∈ {1, 2, · · · , κ}, run the verification steps of the protocol from Sect. 3.3
to check the validity of RSPj with respect to CMTj and CHj .

4. Let B = G(A0,A1
1,A

2
2,u,M,v) ∈ Z

n×m
q , and for each grti′ ∈ RL, compute

ei′ = b − B�grti′ mod q, and check that if ‖ei′‖∞ > β.
5. If the above are all satisfied, output 1 and accept Σ, otherwise reject it.

− Open(Gpk,Gmsk,M,Σ): On input Gpk, Gmsk = RA3
3
, a group signature Σ on

M ∈ {0, 1}∗, the tracing authority specifies the following steps:

1. Parse Σ = (M,Π,v,b,G, c), in particular, G = [g1,g2, · · · ,g�].
2. For i ∈ {1, 2, · · · , �}, run SamplePre(A3,RA3

3
,gi, s) to obtain fi ∈ Z

m, and
define F = [f1, f2, · · · , f�] ∈ Z

m×�
q .

3. Compute id′ = (d′
1, d

′
2, · · · , d′

�) = c2 −F�c1 mod q. For i ∈ {1, 2, · · · , �}, if d′
i

is closer to 0 than to �q/2�, define di = 1; otherwise, di = 0.
4. Let id = (d1, d2, · · · , d�) and output i = g�

� · id.
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4.2 Analysis of the Scheme

Efficiency and Correctness: For our lattice-based GS-VLR-ET, it only needs 3 pub-
lic matrices for identity-encoding, and one more matrix for explicit traceability,
thus the group public-key has bit-size ˜O(n2), the member secret-key has bit-size
˜O(n) and the signature has bit-size � · ˜O(n) = log N · ˜O(n). Compared with the
existing lattice-based GS-VLR constructions, our scheme saves a O(log N) factor
for both bit-sizes of the group public-key and the member secret-key, meanwhile,
supporting the explicit traceability, thus is more suitable for a large group.

Theorem 2. The proposed scheme is correct with overwhelming probability.

Proof. To prove that for all Gpk, Gsk, Gmsk, Grt generated by KeyGen, all indexes
i ∈ {1, 2, · · · , N}, and all messages M ∈ {0, 1}∗, the following holds true:

Verify(Gpk,RL,Sign(Gpk, gski,M),M) = 1 ⇔grti /∈ RL.

Open(Gpk,Gmsk,Sign(Gpk, gski,M),M) = i.

For the first 3 steps of Verify, a member i owning (e′, e0) ∈ Secβ(id) × χm

can always generate a signature satisfying them. For step 4, ei′ can be expressed
as ei′ = b − B�grti′ = B�grti + e0 − B�grti′ = B�(grti − grti′) + e0 mod q.

1. To prove that, grti /∈ RL ⇒ Verify(Gpk,RL,Sign(Gpk, gski,M),M) = 1.
Assume that grti /∈ RL, we prove that, the step 4 is satisfied with overwhelm-
ing probability, namely, the infinity norm of vector ei′ is lager than β, and
Verify(Gpk,RL,Sign(Gpk, gski,M),M) = 1. For all grti′ ∈ RL, we have that
B� · (grti − grti′) = ei′ − e0 mod q.
Let si′ = grti −grti′ , we have that ‖B�si′‖∞ ≤ ‖ei′‖∞ +‖e0‖∞ ≤ ‖ei′‖∞ +β.
According to Lemma 4 of [22], ‖B�si′‖∞ > 2β with overwhelming probabil-
ity, thus ‖e′

i‖∞ > 2β − β = β.
2. To prove that, Verify(Gpk,RL,Sign(Gpk, gski,M),M) = 1 ⇒ grti /∈ RL.

Assume that Verify(Gpk,RL,Sign(Gpk, gski,M),M) = 1. Thus for all grti′ ∈
RL, we have ‖ei′‖∞ > β. Therefore, if there is an index i′ satisfying grti =
grti′ , then we have ei′ = e0, thus ‖ei′‖∞ = ‖e0‖∞ ≤ β, the signature cannot
pass the verification of step 4, therefore, a contradiction appears.

3. To prove that, Open(Gpk,Gmsk,Sign(Gpk, gski,M),M) = i with overwhelm-
ing probability.
We set the parameters so that the lattice-based dual LWE cyrptosystem is
correct and a tracing authority owning the trapdoor for Λ⊥

q (A3
3) can compute

an identity index belonging to the collection {1, 2, · · · , N} effectively, or a
special symbol ⊥ denoting the opening failure, which implies that our Open
algorithm is also correct. This concludes the correctness proof.

Theorem 3. If COM (as proposed in [15]) is a statistically hiding commitment
scheme, then the proposed scheme is selfless-anonymous in ROM.

Proof. To proof this theorem, we define a list of games as follows:
Game 0. It is the original selfless-anonymity game. C honestly does as follows:
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1. Run KeyGen to obtain Gpk, Gmsk, Gsk, Grt. Set RL = ∅, Corr = ∅, and send
Gpk to adversary A.

2. If A queries the group secret-key of member i, C sets Corr = Corr ∪ {i} and
returns gski; if A queries the group signature on M ∈ {0, 1}∗ of member i, C
returns Σ ← Sign(Gpk, gski,M); if A queries the revocation token of member
i, C sets RL = RL ∪ {grti} and returns it to A.

3. A outputs a message M∗ ∈ {0, 1}∗, two members i0 and i1, and for each
b ∈ {0, 1}, ib /∈ Corr and grtib /∈ RL.

4. C chooses b
$←− {0, 1}, and generates a valid VLR-ET group signature, Σ∗ =

Sign(Gpk, gskib ,M
∗) = (M∗,Π,v,b,G, c) and returns it to A.

5. A can make queries as before, but it is not allowed to ask for gskib or grtib
for each b ∈ {0, 1}.

6. Finally, A outputs a bit b′ ∈ {0, 1}.

Game 1: C does the same as that in Game 0, except that it simulates the signature
generation in step 4 of Game 0 by programming the random oracle:

1. For the first 2 steps of algorithm Sign, work in the honest process, namely,
sample v $←− {0, 1}n, e0, e1

$←− χm, G $←− Z
n×�
q , s $←− χn, e2

$←− χ�. Let
B = G(A0,A1

1,A
2
2,u,M,v), b = B�grtib +e0 mod q, and c = (c1, c2), where

c1 = A3�
3 s + e1 mod q, c2 = G�s + e2 + �q/2�bin(i) mod q.

2. The simulation algorithm does as in the proof of Theorem 1 and will be
repeated κ = ω(log n) times. C programs the random oracle
H(M∗,A0,A1

1,A
2
2,P,u,B,b, c,CMT1, · · · ,CMTκ) = (CH1, · · · ,CHκ) and

due to the statistically zero-knowledge of underlying argument of knowledge,
the distribution of Π∗ is statistically close to Π.

3. Finally, C outputs the simulated signature ̂Σ∗ = (M∗,Π∗,v,b,G, c).

Game 2: C does the same as that in Game 1, except that it computes the vector
b = B�r+e0 mod q. In Game 1, b is generated by the revocation token grtib ,
which is unknown to A and statistically close to a uniform vector r ∈ Z

n
q .

Thus the distribution of b is statistically close to that in Game 1, and Game
2 and 1 are statistically indistinguishable.

Game 3: C does the same as that in Game 2, except that it generates (B,b) $←− U .
In Game 2, (B,b) is generated by an LWEn,q,χ instance, and according to Def-
inition 2, this distribution is computationally close to a uniform distribution
U over Z

n×m
q ×Z

m
q . Thus Game 3 and 2 are computationally indistinguishable.

Game 4: C does the same as that in Game 3, except that it obtains A3
3

$←− Z
n×m
q .

According to Lemma 1, A3
3 is statistically close to a uniform matrix in Z

n×m
q .

Thus Game 4 and 3 are statistically indistinguishable.
Game 5: C does the same as that in Game 4, except that it generates c = (c∗

1, c
∗
2),

where c∗
1 = z1, c∗

2 = z2 + �q/2�bin(i), here z1
$←− Z

m
q , z2

$←− Z
�
q. According

to Definition 2, the hardness of LWEn,q,χ problem implies that Game 5 and
4 are computationally indistinguishable.
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Game 6: C does the same as that in Game 5, except that it generates c = (c∗
1, c

∗
2),

where c∗
1 = z′

1, c
∗
2 = z′

2, where z′
1

$←− Z
m
q and z′

2
$←− Z

�
q. Thus it is easy to

see Game 6 and 5 are statistically indistinguishable. Furthermore, Game 6 is
independent of the bit b, thus the advantage Advself-anonA of A in Game 6 is 0.

According to a series of Games 1 to 6 defined as above, the advantage
Advself-anonA in Game 1 is negligible, namely, the proposed scheme is selfless-
anonymous.

Theorem 4. If the SIS∞
n,m,q,2β·(1+ω(

√
log m)) problem is hard, then the proposed

scheme is traceable in ROM.

Proof. Without loss of generality (WLOG), we first assume that the commitment
COM, mentioned in [15], is computationally binding.

Assume that there is a PPT forger F against our construction with advantage
ε, we can use F to construct an algorithm A to solve the SIS∞

n,m,q,2β·(1+ω(
√

log m))

problem with non-negligible probability.
Given a SIS instance Â ∈ Z

n×m
q , A is required to output a shorter non-zero

vector ê ∈ Z
m satisfying Â · ê = 0 mod q, and 0 < ‖ê‖∞ ≤ poly(m).

Setup: A does as follows:

1. Sample e1∗
1 , e2∗

2
$←− DZm,s, R

$←− {−1, 1}m×m, an index i∗ ∈ {1, 2, · · · , N}.
2. Run TrapGen(q, n,m) to generate A2

2 ∈ Z
n×m
q and a trapdoor RA2

2
.

3. Define A0 = Â, A1
1 = A0 · R − i∗A2

2 mod q.
4. Run TrapGen(q, n,m) to generate A3

3 ∈ Z
n×m
q and a trapdoor RA3

3
.

5. Define u = A0 · (e1∗
1 + R0 · e2∗

2 ) mod q.
6. For i = i∗, let gski∗ = (e1∗

1 , e2∗
2 ), grti∗ = A0 · e1∗

1 mod q.
7. For i ∈ {1, 2, · · · , N} \ {i∗}, define Ai = [A0|A1

1 + iA2
2] ∈ Z

n×2m
q , and run

SampleRight(A0, (i − i∗)A2
2,R,RA2

2
,u, s) to obtain ei = (ei,1, ei,2) ∈ Z

2m

and let gski = ei, grti = A0 · ei,1 mod q.
8. Let Gpk = (A0,A1

1,A
2
2,A

3
3,u), Gmsk = RA3

3
, Gsk = (gsk1, gsk2, · · · , gskN ),

Grt = (grt1, grt2, · · · , grtN ), then send (Gpk,Gmsk,Grt) to F .

Queries: F can make a polynomially bounded number of queries as follows:

1. Corruption: Request for secret-key of i, A adds i to Corr, and returns gski.
2. Signing: Request for a signature on M ∈ {0, 1}∗ of member i. A returns

Σ ← Sign(Gpk, gski,M). For queries to oracle H, uniformly random values in
{1, 2, 3}κ=ω(log n) are returned. Assume that qH is the number of queries to
H, for any d ≤ qH, let rd denote the answer to the d-th query.

Forgery: F outputs a message M∗ ∈ {0, 1}∗, a set of revocation tokens RL∗ ⊆ Grt
and a non-trivial forged group signature Σ∗ = (M∗,Π∗,v∗,b∗,G∗, c∗), where
Π∗ = ({CMTj ,CHj ,RSPj}j∈{1,2,··· ,κ}), which satisfies the followings:

1. Verify(Gpk,RL∗, Σ∗,M∗) = 1.
2. The tracing algorithm (no matter the implicit or explicit tracing) fails, or

traces to a member outside of the coalition Corr\RL∗.
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A exploits the above forgery as follows:

1. Let B∗ = G(A0,A1
1,A

2
2,u,M∗,v∗) ∈ Z

n×m
q .

2. A must queried H on (M∗,A0,A1
1,A

2
2,P,u,B∗,b∗, c∗, {CMTj}j∈{1,··· ,κ}),

since otherwise, the probability that
(CH1, · · · ,CHκ) = H(M∗,A0,A1

1,A
2
2,P,u,B∗,b∗, c∗, {CMTj}j∈{1,··· ,κ}) is

at most 3−κ. Thus, there exists d′ ≤ qH such that the d′-th hash query involves
(M∗,A0,A1

1,A
2
2,P,u,B∗,b∗, c∗, {CMTj}j∈{1,··· ,κ}) with probability at least

ε − 3−κ.
3. Let d′ be the target point. A replays F many times with the same random

tape and input as in the original execution. F is given the same answers to
the first d′ − 1 queries as in the original execution. From the d′-th query, A
chooses fresh random values r′

d′ , · · · , r′
qH ∈ {1, 2, 3}κ as replies.

According to the Improved Forking Lemma of Pointcheval and Vaudenay, with a
probability larger than 1/2, algorithm A can obtain a 3-fork involving the tuple
(M∗,A0,A1

1,A
2
2,P,u,B∗,b∗, c∗, {CMTj}j∈{1,2,··· ,κ}) after at most 32 · qH/(ε −

3−κ) executions of F . Let the answers of A corresponding to this 3-fork be r1
d′ =

(CH1
1,CH1

2, · · · ,CH1
κ), r2

d′ = (CH2
1,CH2

2, · · · ,CH2
κ), r3

d′ = (CH3
1,CH3

2, · · · ,CH3
κ),

then Pr[∃i ∈ {1, 2, · · · , κ} s.t. {CH1
i ,CH2

i ,CH3
i } = {1, 2, 3}] = 1 − (7/9)κ.

Thus, according to the existence of such i, one can parse these 3 forg-
eries corresponding to the fork to obtain (RSP1

i ,RSP2
i ,RSP3

i ) which are 3 valid
responses corresponding to 3 different challenges for the same commitment
CMTi. Further, COM is computationally binding, using the knowledge extrac-
tor K as described in the proof of Theorem 1, one can extract a witness
(id = bin(i) ∈ {0, 1}�, ei = (ei,1, ei,2) ∈ Z

2m, e∗
0, e

∗
1 ∈ Z

m, s∗ ∈ Z
n, e∗

2 ∈ Z
�)

such that,

1. [A0|A1
1 + iA2

2] · ei = u mod q, and ei ∈ Secβ(id).
2. b∗ = (B∗�A0) · ei,1 + e∗

0 mod q, and 0 < ‖e∗
0‖∞ ≤ β.

3. c∗ = (c∗
1, c

∗
2) = (A3�

3 s∗ + e∗
1 mod q,G∗�s∗ + e∗

2 + �q/2�bin(i) mod q).

Now, we consider the following 2 cases:

1. If i �= i∗, this event happens with a probability at most 1 − 1/N , then A
outputs ⊥ and aborts.

2. If i = i∗, A returns ê = (e1∗
1 − ei∗,1) + R · (e2∗

2 − ei∗,2) as a solution of the
given SIS problem. By construction, we have

Â · ê = A0 · (e1∗
1 − ei∗,1 + R · (e2∗

2 − ei∗,2))

= A0 · (e1∗
1 + R · e2∗

2 ) − A0 · (ei∗,1 + R · ei∗,2) = 0 mod q.

Next, we show that ê is with high probability a short non-zero preimage of
0 under Â.

1. ‖ê‖∞ ≤ poly(m). For j ∈ {1, 2}, ‖ej∗
j ‖∞, ‖ei∗,j‖∞ ≤ β, R is a low-norm

matrix with coefficients ±1, thus according to Lemma 4, with overwhelming
probability, we have ‖ê‖∞ ≤ (1 + ω(

√
log m)) · 2β = poly(m).
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2. ê �= 0. Σ∗ = (M∗,Π∗,v∗,b∗,G∗, c∗) is a valid forged signature, thus the
tracing algorithm (no matter the implicit or explicit tracing) either fails, or
traces to a member outside of the coalition Corr\RL∗.
(2.1). If the tracing algorithm fails. Verify(Gpk, grti∗ , Σ∗,M∗) = 1 implies that

A0 · ei∗,1 �= grti∗ = A0 · e1∗
1 mod q, thus ei∗,1 �= e1∗

1 .
(2.2). If the tracing algorithm traces to j∗ /∈ Corr\RL∗. Clearly, we have 2

facts: Verify(Gpk, grtj∗ , Σ∗,M∗) = 0, Verify(Gpk,RL∗, Σ∗,M∗) = 1.
Thus, we have the following conclusions:

a1. grtj∗ /∈ RL∗, thus j∗ /∈ Corr.
a2. Since ‖b∗ − B∗�grtj∗‖∞ = ‖B∗� · (A0 · ei∗,1 − grtj∗) + e∗

0‖∞ ≤ β,
‖e∗

0‖∞ ≤ β, thus ‖B∗� · (A0 · ei∗,1 − grtj∗)‖∞ ≤ 2β, furthermore,
according to Lemma 4 of [22], we have that grtj∗ = A0 · ei∗,1 mod q
with overwhelming probability.
Now, considering the following 2 cases:

b1. If F has never requested gski∗ , then (e1∗
1 , e2∗

2 ) cannot be known to F ,
and thus (e1∗

1 , e2∗
2 ) �= (ei∗,1, ei∗,2) with overwhelming probability.

b2. If F has requested gski∗ , then i∗ ∈ Corr, thus i∗ �= j∗, so grti∗ �= grtj∗ ,
which means ei∗,1 �= e1∗

1 .

Based on the above analysis, for an easy case, in (2.1) and b2, suppose that
e2∗
2 = ei∗,2, then we must have ê = e1∗

1 − ei∗,1 �= 0. On the contrary, in (2.1), b1

and b2, e2∗
2 �= ei∗,2, define ê2 = e2∗

2 − ei∗,2, in this case, we have 0 �= ‖ê2‖∞ ≤
2β � q, and thus there must be at least one coordinate of ê2 that is non-zero
modulo q. WLOG, let this coordinate be the last one in ê2, and call it ê. Let r be
the last column of R, the expression of ê can be rewritten as ê = r · ê+ ê′ where
ê′ does not depends on r. The only information about r available to F is just
contained in the last column of A1 = A0 · R. According to the leftover hash or
pigeonhole principle, there are expO(m−n log q)= ˜O(n) admissible and equally likely
vectors r that are compatible with the view of F , F cannot know the value of
r · ê with probability exceeding exp− ˜O(n), and at most one such value can result
in a cancelation of ê. Thus, ê is non-zero with a high probability 1 − exp− ˜O(n).

Therefore, we deduce that ê is with a probability larger than 1/(2N) · (1 −
(7/9)κ) · (1 − exp− ˜O(n)) · ε a short non-zero preimage of 0 under Â, i.e., Â · ê =
0 modq, 0 �= ‖ê‖∞ ≤ 2β · (1 + ω(

√
log m)) = poly(m). This concludes the proof.
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Abstract. Due to the threat posed by quantum computers, a series of
works investigate the security of cryptographic schemes in the quantum-
accessible random oracle model (QROM) where the adversary can query
the random oracle in superposition. In this paper, we present tighter secu-
rity proofs of a generic transformations for key encapsulation mechanism
(KEM) in the QROM in the multi-challenge setting, where the reduction
loss is independent of the number of challenge ciphertexts. In particu-
lar, we introduce the notion of multi-challenge OW-CPA (mOW-CPA)
security, which captures the one-wayness of the underlying public key
encryption (PKE) under chosen plaintext attack in the multi-challenge
setting. We show that the multi-challenge IND-CCA (mIND-CCA) secu-
rity of KEM can be reduced to the mOW-CPA security of the underlying
PKE scheme (with δ-correctness) using FO/⊥ transformation. Then we
prove that the mOW-CPA security can be tightly reduced to the underly-
ing post-quantum assumptions by showing the tight mOW-CPA security
of two concrete PKE schemes based on LWE, where one is the Regev’s
PKE scheme and the other is a variant of Frodo.

Keywords: KEM · QROM · CCA · Tight security

1 Introduction

Indistinguishability under adaptive chosen ciphertext attack (IND-CCA) secu-
rity has become a standard notion for the security of public-key encryption
(PKE) and key encapsulation mechanism (KEM). The most efficient construc-
tions of those schemes are usually proposed in the random oracle model (ROM)
[6]. Due to the threat to existing cryptographic systems posed by quantum
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computers, Boneh et al. [9] argue that one needs to prove security in the
quantum-accessible random oracle model (QROM) where the adversary can
query the random oracle in superposition. Moreover they proved that a variant
of Bellare-Rogaway encryption [6] is IND-CCA security in the QROM. Targhi
and Unruh [26] proposed variants of the Fujisaki-Okamoto (FO) and OAEP,
which are proven to be IND-CCA security in the QROM. Hofheinz, Hövelmanns
and Kiltz [17] revisited the KEM version of FO transformation, and obtained
several variants of FO transformation, which are FO⊥, FO/⊥, FO⊥

m, FO/⊥
m, QFO⊥

m

and QFO/⊥
m.1 Jiang et al. [19] proved the QROM security of two generic trans-

formations, FO/⊥ and FO/⊥
m without additional hash in the ciphertext, where the

IND-CCA security of KEM is reduced to the standard OW-CPA security of the
underlying PKE with quadratic security loss. Saito, Xagawa and Yamakawa [25]
proposed a construction of an IND-CCA KEM based on a deterministic PKE
(DPKE) scheme with a tight security reduction. However, the underlying DPKE
in [25] should satisfy a non-standard security notion called disjoint simulatabil-
ity and perfect correctness, and many practical lattice-based encryption schemes
have a small correctness error, e.g., New Hope, Frodo and Kyber.

Standard security notions such as IND-CCA only consider one challenge
ciphertext. The realistic setting for PKE and KEM, however, usually involves
more ciphertexts, which is called multi-challenge setting. General result [5] shows
that the single-challenge security implies security in the multi-challenge setting,
and the reduction loss of the proof is t, where t denotes the number of challenge
ciphertexts. Since the size of parameters is closely related to the loss of the secu-
rity reduction, it is necessary to consider tighter security for the multi-challenge
setting. A series works [1,7,8,11,13,16,18,21,28] explored cryptographic primi-
tives with tight or almost tight security in the multi-challenge setting under the
standard model. Considering the quantum adversary with multiple challenge
ciphertexts, Katsumata et al. [20] presented almost tight security proofs for
GPV-IBE (identity-based encryption) [14] in the QROM in the multi-challenge
setting.

1.1 Our Contributions

In this paper, we investigate tighter security proofs of the generic transformations
FO/⊥ [17] for KEM in the QROM in the multi-challenge setting. In order to
reduce the security loss of FO/⊥ in the multi-challenge setting, we introduce the
multi-challenge OW-CPA (mOW-CPA) security, which captures the one-wayness
of the underlying PKE under chosen plaintext attack in the multi-challenge
setting. Then we show that the multi-challenge IND-CCA (mIND-CCA) security
of KEM can be reduced to the mOW-CPA security of the underlying PKE
scheme (with δ-correctness) using FO/⊥ transformation, where the security loss
can be independent of the number of the challenge ciphertexts.
1 m (without m) means the ephemeral key K = H(m) (K = H(m, c)), /⊥ (⊥) means

implicit (explicit) rejection in decryption algorithm, and Q means adding additional
hash to the ciphertext in the QROM.
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Note that although the standard hybrid argument proposed in [5] can still
be applied in the QROM to achieve the multi-challenge security, it suffers a
security loss t, which is the number of the challenge ciphertexts. Concretely,
the single-challenge IND-CCA security of the KEM using FO/⊥ shown in [19] is
about q

√
δ + q

√
ε, where ε is the advantage of an adversary against the OW-

CPA security of the PKE, and q is the number of adversary’s queries to the
oracles. By the standard hybrid argument in [5], the resulting multi-challenge
security would be about t(q

√
δ + q

√
ε). Using our method, however, the security

bound can be reduced to about q
√

δ + q
√

ε′, where ε′ denotes the advantage of
an adversary against the mOW-CPA security.

Moreover, we show that the mOW-CPA security can be tightly reduced to
the underlying post-quantum assumptions. More precisely, we identify two PKE
schemes based on LWE with tight mOW-CPA security. One is the Regev’s PKE
scheme [23] and the other is a slight variant of Frodo [10]. It is shown that the
Regev’s PKE has much tighter security proof than that of the latter, while the
latter has much smaller public key size. By applying the generic transforma-
tions FO/⊥ to those schemes in the QROM, we can construct KEM with tighter
multi-challenge IND-CCA security, where the security loss is independent on the
number of the challenge ciphertexts.

1.2 Technical Overview

– Generic Conversion. For the classic security proof in random oracle model,
a RO-query list is used to simulate the random oracle, where changing one or
more points of the list usually does not provide much help for the PPT adver-
sary to distinguish the random oracle and the simulated one. In the QROM,
however, the adversary can query the random oracle in superposition, which
means the adversary may find the difference even if only one point is changed.
Fortunately, the one-way to hiding (OW2H) lemma introduced by [27] pro-
vided a useful tool to solve the above problem. But the OW2H lemma cap-
tures the indistinguishability between functions with only one point changed,
and cannot be applied in the multi-challenge setting, where multiple points
need to be reprogrammed. To overcome this problem, we take advantage of a
more general OW2H lemma [3], which is extended to the multi-point setting
while preserving the tightness. Applying the multi-point OW2H lemma, the
mIND-CCA security of the generic transformations FO/⊥ [17] for KEM can
be proven in the QROM in the multi-challenge setting.

– Tight mOW-CPA Security. Roughly speaking, the mOW-CPA security
considers the following game. The adversary which can make the chosen plain-
text attack is given multiple challenge ciphertexts and outputs a message. We
say the adversary wins the game if the message is the plaintext of one of the
challenge ciphertexts.
We show that the mOW-CPA security of Regev’s PKE scheme [23] can be
tightly reduced to the underlying LWE problem. Since Regev’s PKE scheme
is not very efficient due to its large public key size, we consider Frodo [10].
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However, the proof techniques of the OW-CPA security for Frodo cannot
be extended to the multi-challenge setting. Inspired by [20], we consider
the mOW-CPA security of a slight variant of Frodo [10] using the “lossy
mode” of the LWE problem, where a special distribution for a matrix A
is computationally indistinguishable from the uniform distribution. That
is, (A,AT s + e) = (A,b) leaks almost no information of the secret s, if
A samples from “lossy mode”. The ciphertext of our modified Frodo is
c1 = bT s′+m�q/2� and c2 = AT s′+e′. Note that, unlike Frodo, no additional
error is added in c1 due to the min-entropy of s′. Here, the vector bT can be
viewed as a hash function, so that the leftover hash lemma is used to argue
the entropy of the ciphertexts. To deal with multiple challenge ciphertexts,
we need to extend the leftover hash lemma and the smoothed-variant of the
leftover hash lemma [20] to the multi-challenge setting.

2 Preliminaries

2.1 Notation

We denote [n] as the set {1, 2, . . . , n}, where n ∈ N . For a distribution X,
x ← X denotes sampling x according to X, and x ← X denotes sampling
independently t times according to X, where x is a t-dimensional vector. We
write s ← S to denote uniformly choosing s from the set S. s ← S is defined in
a similar way, where s is a vector. |S| denotes the number of elements in the set
S. The statistical distance Δ(X,Y ) between two random variables X and Y , is
defined as Δ(X,Y ) = 1

2

∑
s |Pr[X = s] − Pr[Y = s]|. H denotes the set of all

the functions H which maps X to Y. Denote ||v||1 and ||v||2 or just ||v|| as the
l1-norm and l2-norm for a vector v ∈ Rn. AT is the transposition of matrix A.
We write f(v) as the vector (f(v1), f(v2), . . . , f(vt))T , where f is a function and
v = (v1, v2, . . . , vt)T .

2.2 Quantum Random Oracle

We consider quantum adversaries which are given quantum access to the random
oracles. For a oracle function H : {0, 1}n → {0, 1}m, the quantum access to H is
modeled by OH : |x〉|y〉 → |x〉|y⊕H(x)〉, where x ∈ {0, 1}n and y ∈ {0, 1}m. The
quantum adversary can access H in superposition by applying OH . We denote
A|H〉 that the oracle function H is quantum-accessible for A. Next we recall
some useful lemmas about quantum random oracle.

Lemma 1. [29] For any quantum algorithm A making q times quantum queries
to an oracle H, it cannot distinguish that H is drawn from truly random functions
or 2q-wise independent functions uniformly.

Lemma 1 states that a quantum random function can be simulated by a 2q-wise
independent hash function, where q is the number of quantum oracle queries
made by an adversary.
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Another important lemma is the one-way to hiding lemma (OW2H) intro-
duced by [27]. The OW2H lemma shows that if there exists an quantum adver-
sary A making at most q queries to H that can distinguish (x,H(x)) from (x, y),
where x and y are chosen uniformly, i.e., only one point of random oracle H is
changed randomly, then we can find x by measuring one of the queries of A.
Then [3] extended the OW2H lemma to the multi-point setting, where more
points are changed. That is, if A can distinguish (x,H(x)) and (x,y), where
x = (x1, x2, . . . , xt) and y = (y1, y2, . . . , yt) are t-dimensional vectors chosen
uniformly, we can find xi for some i in [t]. In this paper, we adopt a modified
description of the OW2H lemma in [3].

Lemma 2 Multiple One-way to Hiding (mOW2H). [3] Let H be the func-
tion family of all the H : {0, 1}n → {0, 1}m. Consider an oracle algorithm A
that makes q queries to H, where H ← H, and output a bit b′. Let B be an
oracle algorithm that on input x ← {0, 1}n does the following: pick i ← [q] and
y ← {0, 1}m, run A|H〉(x,y) until the i-th queries, measure the argument of the
query in the computational basis , and output the measurement. (When A makes
less than i queries, B outputs ⊥/∈ {0, 1}n.)

Let P 1
A = Pr[b′ = 1 : H ← H,x ← {0, 1}n, b′ ← A|H〉(x,H(x))], P 2

A =

Pr[b′ = 1 : H ← H,x ← {0, 1}n,y ← {0, 1}m, b′ ← A|H〉(x,y)], PB = Pr[x1
?=

x′ ∨ x2
?= x′∨, . . . ,∨xt

?= x′ : H ← H,x ← {0, 1}n, x′ ← B|H〉(x)], where
x = (x1, x2, . . . , xt) and y = (y1, y2, . . . , yt) are t-dimensional vectors. Then
|P 1

A − P 2
A| � 2q

√
PB.

The proof of Lemma 2 is omitted since it is similar to that of the OW2H lemma
in [3], with the exception that we do not need the assumption that all the xs
are distinct. More precisely, in our proof, if xi which is i-th choice of x equals to
some xj with i < j, we can set yi = yj .

Lemma 3. [25] Let H : {0, 1}n × X → Y and H ′ : X → Y be two independent
random oracles. If an unbounded time quantum adversary A makes a query to
H at most qH times, then we have

|Pr[A|H〉,|H(s,·)〉|s ← {0, 1}n] − Pr[A|H〉,|H′〉]| � 2qH
1√
2n

.

Lemma 4 Generic search problem. [4] Let λ ∈ [0, 1]. The oracle g : X →
{0, 1}, such that for each x ∈ X, g(x) is distributed according to Bλx

2, where
λx � γ. For each x, g′(x) = 0. If an unbounded time quantum adversary A
makes a query to g or g′ at most q times, then we have

|Pr[b = 1|b ← A|g〉] − Pr[b′ = 1|b′ ← A|g′〉]| � 2q
√

γ.

2 Bλ is the Bernoulli distribution. I.e., Pr[g(x) = 1] = λ and Pr[g(x) = 0] = 1 − λ.



146 Z. Zhang et al.

2.3 Lattices

Lattices. An n-dimensional lattice is defined as the set of all integer combina-
tions of n linearly independent vectors. The form of an n-dimensional lattice Λ
is {∑n

i=1 xibi|xi ∈ Z} where B = {b1, b2, , . . . , bn} are n linearly independent
vectors. B is called basis of the lattice Λ.

Gaussian. For a vector x and any s > 0, let ρs(x) = exp(−π||x/s||2) be a
Gaussian function scaled by a factor of s. Define ρs(Λ) =

∑
x∈Λ ρs(x) for a

lattice Λ. The discrete Gaussian probability distribution DΛ,s is

∀x ∈ Λ,DΛ,s =
ρs(x)
ρs(Λ)

.

Lemma 5. [25] For σ � ω(
√

log(n)), Pre←DZn,σ
[||e|| > σ

√
n] � 2−n+1.

LWE [23]. Let λ be a positive integer parameter, and n = n(λ), q = q(λ).
Let χ be a distribution over Z. For m = poly(λ) samples, the following two
distributions are computationally hard to distinguish: (1) (ai, a

T
i s+e) ∈ Zn

q ×Zq,
where ai, s ← Zn

q and e ← χ. (2) (ai, bi) ∈ Zn
q ×Zq, where ai ← Zn

q and bi ← Zq.
For any algorithm A, we define

AdvLWEn,m,q,χm

A =

|Pr[b′ = 1 : An×m ← Zn×m
q , s ← Zn

q , e ← χm, b′ ← A(A,AT s + e)]

−Pr[b′ = 1 : An×m ← Zn×m
q ,b ← Zm

q , b′ ← A(A,b)]|.
(1)

Lemma 6. [23] Let n and prime q be positive integers, and let m � 2n log q.
Then for all but a q−n fraction of all A ∈ Zn×m

q , the distribution of u = AT r
mod q is statistically close to uniform over Zn

q , where r ← {0, 1}m.

2.4 Cryptographic Primitives

Public-Key Encryption

Definition 1. A public key encryption (PKE) consists of three algorithms Gen,
Enc and Dec:

– Gen(1λ) takes as input a security parameter 1λ and outputs a public/secret
key pair (pk, sk).

– Enc(pk,m) takes as input a public key pk and a message m in the message
space M, and outputs a ciphertext c.

– Dec(pk, sk, c) takes as input a secret key sk and a ciphertext c, and outputs
a message m or a special failure symbol “⊥ /∈ M”.

Definition 2. A PKE =(Gen,Enc,Dec) scheme has δ-correctness if

E[max
m∈M

Pr[Dec(sk, c) = m : c ← Enc(pk,m)]] � δ,

where the expectation is taken over (pk, sk) ←Gen(1λ).
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Define multiple challenges one-way CPA (mOW-CPA) game and multiple
challenges IND-CPA (mIND-CPA) game for a PKE in Figs. 1 and 2, respectively.
Single challenge games are very similar to them, except that there is only one
challenge ciphertext.

GamemOW-CPA
PKE,A

(pk, sk) Gen(1λ)
m∗

c∗ Enc(pk,m∗)
m (pk, c∗)
return (m ?= m∗

1 ∨ m
?= m∗

2∨, . . . ,∨m ?= m∗
t )

M

A

Fig. 1. mOW-CPA game for PKE.

GamemIND-CPA
PKE,A

(pk, sk) Gen(1λ)
(st,m1,m2) 1(pk)
b 0, 1}
c∗ Enc(pk,mb)
b′

A
{

A2(st, pk, c∗)
return (b′ ?= b)

Fig. 2. mIND-CPA game for PKE.

Definition 3. A PKE is said to be mOW-CPA secure if Pr[GamemOW-CPA
PKE,A =

1] ≤ ε for any probabilistic polynomial time (PPT) adversary, where ε is a
negligible function in security parameter λ.

The mIND-CPA security of PKE can be defined in a similar way.

Key Encapsulation Mechanism

Definition 4. A key encapsulation mechanism (KEM) consists of three algo-
rithms Gen, Encaps and Decaps:

– Gen(1λ) takes as input a security parameter 1λ and outputs a public/secret
key pair (pk, sk).

– Encaps(pk) takes as input a public key pk and outputs a ciphertext c and an
ephemeral key k ∈ K, where K denotes the KEM’s key space.

– Decaps(pk, sk, c) takes as input a public key pk, a secret key sk and a cipher-
text c, and outputs the ephemeral key k or a special failure symbol “⊥ /∈ K”.

The multiple challenges mIND-CCA game for a KEM is defined in Fig. 3.

Definition 5. A KEM is said to be mIND-CCA secure if
|Pr[GamemIND-CCA

KEM,A = 1]− 1
2 | ≤ ε for any PPT adversary, where ε is a negligible

function in security parameter λ.

3 Generic Conversion in the Multi-challenge Setting

In this section, we show the security of the FO⊥ transformation for multiple
challenges case in QROM. The FO⊥ transformation is presented in Fig. 4. The
key space and ciphertext space of the KEM are K and C, respectively. The
message space and random number space of the underlying PKE scheme are M
and R, respectively. G: M → R and H: M × C → K are hash functions. G and
H denote the sets of all Gs and Hs, respectively.
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GamemIND-CCA
KEM,A Dec(c)

(pk, sk) Gen(1λ) if c = c∗(c ∈ (c∗
1, . . . , c

∗
t ))

b 0, 1} return ⊥
(c∗,K∗

0) Encaps(pk) else K = Decaps(sk, c)
K∗

1 return K

b′ Decaps()(pk, (c∗,K∗
b))

return (b′ ?= b)

{

K
A

Fig. 3. mIND-CPA game for KEM.

KEM.Gen(1λ) Encaps(pk) Decaps(pk, (sk, s), c)
(pk, sk) Gen(1λ) m m = Dec(sk, c)
s

M
M c = Enc(pk,m;G(m)) if Enc(pk,m;G(m)) = c

return ((sk, s), pk) K = H(m, c) return K = H(m, c)
return (K, c) else return K = H(s, c)

Fig. 4. FO⊥[PKE, G, H].

Theorem 1. Suppose PKE with δ-correct is mOW-CPA secure. For any quan-
tum adversary A against mIND-CCA security, there exists a mOW-CPA adver-
sary B against PKE , such that

AdvmIND-CCA
KEM,A � 2qH

1√M + 4qG

√
δ + 2(qG + qH)

√
AdvmOW-CPA

PKE,B ,

where qG and qH are the number of the quantum queries to random oracle G
and H, qD is the classical queries to Decaps oracle.

Proof. The proof is analogous to that of [19] and [25] except that we need to rely
on mOW2H lemma. In the proof, random oracle can be simulated by 2q-wise
random function according to Lemma 1. We prove the theorem via the following
sequence of games, which is also shown in Fig. 5.

GAME G0. This is the original GamemIND-CCA
PKE,A .

GAME G1. H(s, c) in Decaps oracle is replaced with Ĥ1, where Ĥ1 ← Ĥ and
Ĥ denotes the function space of Ĥ : C → K. Since s is uniformly chosen from
message space M, we have

|Pr[G0 = 1] − Pr[G1 = 1]| � 2qH
1√M .

due to Lemma 3.

GAME G2. We change the way that H responds to the adversary A. If A queries
on a valid pair (m, c), i.e. c = Enc(pk,m;G(m)). Then response is replaced by
Ĥ2(c), where Ĥ2 ← Ĥ.

For a tuple (pk, sk,m), we the following notations:
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GAMES G0 − G4

(pk, sk, s) Gen;G ; Ĥ1, Ĥ2 Ĥ;H
m∗ ;
r∗ = G(m∗) //G0 − G3

r∗ //G4

c∗ = Enc(pk,m∗; r∗);K∗
0 = H(m∗, c∗)

K∗
0 // G4

K∗
1

b 0, 1}
b′

G H
M

R

K
K

{
A|H〉,|G〉,Dec(pk, c∗,K∗

b)
return (b′ ?= b)

H(m, c) Decaps(c) //G0 − G2 Decaps(c) //G3 − G4

if Enc(pk,m;G(m)) = c //G2 − G4 m = Dec(sk, c) return K = Ĥ2(c)
return K = Ĥ2(c) //G2 − G4 if Enc(pk,m;G(m)) = c
else return H(m, c) return K = H(m, c)

else return
K = H(s, c) // G0

K = Ĥ1(c) // G1 − G2

Fig. 5. Games G0–G4 for the proof of Theorem 1.

– The set of bad randomness

Rbad(pk, sk,m) = {r ∈ R|Dec(sk,Enc(pk,m; r)) = m}.

– The set of good randomness

Rgood(pk, sk,m) = {r ∈ R|Dec(sk,Enc(pk,m; r)) = m}.

– The error rate of randomness for a tuple (pk, sk,m)

δ(pk, sk,m) =
|Rbad(pk, sk,m)|

|R| .

– The error rate of randomness for a pair (pk, sk)

δ(pk, sk) = max
m∈M

δ(pk, sk,m).

According to Definition 2, we have δ = E[δ(pk, sk)] where the expectation is
taken over (pk, sk) ← Gen(1λ).

We denote DEnc(·) = Enc(pk, ·;G(·)). Since DEnc(·) is an injective function
when there is no bad random numbers, we can see that Ĥ2 ◦ DEnc(m) and
H(m, c) have the same output distribution when input a valid pair (m, c). I.e.,
given (pk, sk), in GAME G1, the random oracle G(·) outputs bad random
numbers with probability δ(pk, sk,m), and in GAME G2, the random oracle
G′(·) always output good random numbers. Define Ĝ(·) may be G(·) in GAME
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B|ĝ〉,ĝ : Ĝ(m)
Pick 2qG-wise function f if ĝ(m) = 0
(pk, sk) Gen(1λ) Ĝ(m) = Sample(Rgood(pk, sk,m); f(m))
m∗ if ĝ(m) = 1
r∗ = Ĝ(m∗) Ĝ(m) = Sample(Rbad(pk, sk,m); f(m))
c∗ = Enc(pk,m∗; r∗) return Ĝ(m)
K∗

0 = H(m∗, c∗)
K∗

1

b 0, 1}
b′

M R

M

K
{
A|H〉,|Ĝ〉,Dec(pk, c∗,K∗

b)
return b′

Fig. 6. B|ĝ〉 the proof of Theorem 1.

G1 or G′(·) in GAME G2. If for a quantum adversary A given Ĝ(·) which can
distinguish GAME G1 and GAME G2, there exists a adversary B which can
solve the generic search problem in Lemma 4. The construction of B is in Fig. 6.
The B is given ĝ which may be g or g′ in the generic search problem, and
constructs Ĝ(m) for A as following: The probabilistic algorithm Sample(·; ·) can
uniformly choose good and bad random numbers, and the randomness space of
the Sample(·; ·) is Rf . Sample(·; f(m)) denotes the deterministic execution of
Sample(·; ·) using explicitly given randomness f(m), where f :M → Rf .

For fixed pair (pk, sk), we have

|Pr[1 ← B|g〉|(pk, sk)] − Pr[1 ← B|g′〉|(pk, sk)]|
=||Pr[1 ← A|G〉|(pk, sk)] − Pr[1 ← A|G′〉|(pk, sk)]||
�2qG

√
δ(pk, sk).

(2)

By averaging over (pk, sk) ← Gen(1λ), we have

|Pr[G1 = 1] − Pr[G2 = 1]| � 2qG

√
δ.

GAME G3. In the G3, the Dec oracle does not use (sk, s) any more. When A
queries the Decaps oracle on c s.t. c /∈ {c∗

1, c
∗
2, . . . , c

∗
t }, it receives K= Ĥ2(c).

We call a ciphertext c valid if Enc(pk,Dec(sk, c);G(Dec(sk, c)) = c, and invalid
otherwise, and consider the following two cases.

– Case 1: When A asks a valid c , both Dec oracle in G2 and G3 return Ĥ2(c).
– Case 2: When A asks a invalid c, Ĥ1(c) and Ĥ2(c) are returned in G2 and

G3 respectively. In G2, the Ĥ1(c) is a random function independent of G and
H in A’view. In G3, A can also access to Ĥ2(c) by querying H on a pair
(m, c), where Enc(pk,m;G(m)) = c. If A cannot find such m, then Ĥ2(c) is
random number in A’ view. If A finds such m, then it find a bad random
number G(m) for m.
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We can see that if G(m) is not a bad random number for each m, the G2 and
G3 are identical. Using the same analysis in GAME G2, we have

|Pr[G2 = 1] − Pr[G3 = 1]| � 2qG

√
δ.

GAME G4. In G4, r and K0 are chosen uniformly and independently from R
and K, respectively. Therefore, A cannot get any information about the bit b.
Hence,

Pr[G4 = 1] =
1
2
.

GAME G5. In G5, Lemma 2 is used to bound |Pr[G3 = 1] − Pr[G4 = 1]|.
Due to c∗

i = Enc(pk,m∗
i ;G(m∗

i )) for each (m∗
i , c

∗
i ) pair, we have H(m∗

i , c
∗
i ) =

Ĥ1(c∗
i ), where i ∈ [t]. We construct the random oracle W (m) = (G(m), Ĥ1(c)) :

M → R × K, where c = Enc(pk,m;G(m)). Then we can write the adversary
A in G3 or G4 as A|W 〉,Dec(pk,m∗, (r∗,K∗

b)), where b ← {0, 1}. Here, we do
not write the H(·, ·)3, because it is independent to W and unhelpful for A to
distinguish (m∗,W (m∗)) from (m∗, (r∗,K∗

0)), where m∗, r∗ and K∗
0 are chosen

uniformly. Consider the game G5 shown in Fig. 7. It is obvious that if A|W 〉,Decaps

takes as input (pk,m∗,W (m∗)), G5 perfectly simulates the environment in G3,
and if A|W 〉,Decaps takes as input (pk,m∗, (r∗,K∗

0)), G5 perfectly simulates the
environment in G4, where m∗, r∗ and K∗

0 are chosen uniformly.

GAME G5

i [qG + qH ], (pk, sk, s) Gen

H ,G , Ĥ1 Ĥ1

m∗ , r∗

c∗ = Enc(pk,m∗; r∗)
(K∗

0,K
∗
1) , b

H G
M R

K {0, 1}
run A|W 〉,Decaps(pk,m∗, (r∗,K∗

b)) until the i-th query to W
measure the argument m
return (m ?= m∗

1 ∨ m
?= m∗

2, . . . ,m
?= m∗

t )

Fig. 7. A|W 〉,Dec for the proof of Theorem 1.

By applying Lemma 2, we have

|Pr[G3 = 1] − Pr[G4 = 1]| � 2(qG + qH)
√

Pr[G5 = 1].

Then we can use the adversary A in G5 to construct an adversary B against
the mOW-CPA security of the underlying PKE scheme. B on input (pk, c∗)
executes as G5 except running A|W 〉,Decaps on input the challenges ciphertexts
in the mOW-CPA game. Finally, B outputs the measurement of the argument
m. So we get Pr[G5 = 1] � Pr[GamemOW-CPA

PKE = 1]. In summary, we have

AdvmIND-CCA
KEM,A � 2qH

1√M + 4qG

√
δ + 2(qG + qH)

√
AdvmOW-CPA

PKE,B .

3 The proof of OW2H with redundant oracle can be found in Lemma 3 of [19].



152 Z. Zhang et al.

4 Tight Security Proofs for mOW-CPA PKE

In this section, we identify two PKE schemes with tight mOW-CPA security.

4.1 Tight Security of Regev’s PKE Scheme

We recall the Regev’s PKE scheme [23].

– Gen(1λ): On input security parameter λ, choose a prime q, positive integers
n,m, where m � 2(n + 1) log q , and Gaussian parameters σ. Then choose a
matrix A ∈ Zn×m

q and a secret s ∈ Zn
q randomly, and output the public key

pk = A′ =
[

A
bT

]

, where b = AT s + e and e ← DZm,σ, and the secret key

sk = (A,b, s).
– Enc(pk,m): To encrypt a message m ∈ {0, 1}, one uniformly chooses r ∈

{0, 1}m and outputs the ciphertext

c = A′r + (0,m�q/2�)T ∈ Zn+1
q .

– Dec(sk, c): To decrypt a ciphertext c with a secret key sk, compute ω =
(−sT , 1) ·c and outputs 0 if ω is closer to 0 than to �q/2� modulo q. Otherwise
it outputs 1.

Correctness. According to Dec algorithm, we have

(−sT , 1) · c = (−sT , 1) · A′ · r + m�q/2�
= eT · r + m�q/2�
≈ m�q/2�.

(3)

In order to make the absolute value less than q/4, it suffices to choose appropriate
σ and q.

For the longer messages, we can just encrypt each bit of the message using
the original Regev’s PKE. Note that [22] provides another efficient variant of
Regev’s PKE for long message. In this paper, we only consider the first method
of Regev’s PKE for long messages.

Theorem 2. The Regev’s PKE scheme is mOW-CPA secure assuming the hard-
ness of LWEn,m,q,DZm,σ

. Namely, for any quantum adversary A against mOW-
CPA security, there exists an adversary B against LWEn,m,q,DZm,σ

, such that

Pr[GamemOW-CPA
PKE,A = 1] ≤ Adv

LWEn,m,q,DZm,σ

B + q−(n+1) + ltε +
t

2l
,

where l is the length of the each message, t is the number of the challenge cipher-
texts and ε is a negligible function.
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Proof. GAME G0. G0 is the original mOW-CPA game. The challenger C runs

Gen(1λ) to get the pk = A′ =
[

A
bT

]

. Then C randomly and independently

chooses t messages m1,m2, . . . ,mt, where the length of each message is l bits.
The challenger runs Enc(pk,mi) to get the corresponding ciphertexts. For each
bit bij , Enc(pk, bij) = cij = A′r + (0, bij�q/2�), where i ∈ [t], j ∈ [l] and
r ← {0, 1}m. Finally, C sends the pk and ciphertexts to the adversary A. At the
end of the game, A outputs m. We say A wins the games if m = mi for some
i ∈ [t]. That is, Pr[G0 = 1] = Pr[GamemOW-CPA

PKE,A = 1].

GAME G1. G1 is similar to G0 with the exception that the way of generating
b. The challenger randomly chooses b ← Zn

q . Now we prove that G0 and G1 are
computationally indistinguishable. Suppose there exists an adversary A which
can distinguish G0 and G1. We show how to construct an algorithm B which
can distinguish uniform (A,b) and LWE samples. B is given (A,b) and sends
it to A as the pk. Then B generates challenge ciphertexts by the way as in G0.
B outputs 1 if A wins the game and outputs 0 otherwise. It’s easy to see that if
(A,b) ← LWEn,m,q,DZm,σ

the view of the adversary is identical to that of G0,
and if (A,b) ← Zn×m

q ×Zm
q the view of the adversary is identical to that of G1.

So we have |P [G0 = 1] − P [G1] = 1| � Adv
LWEn,m,q,DZn,σ

B .
If (A,b) ← Zn×m

q ×Zm
q , the distribution of A′r is statistically ε-close to uni-

form distribution over Zn+1
q , for all but a q−(n+1) fraction of all A′ ∈ Z

(n+1)×m
q

by Lemma 6. Therefore, for any of A′r to encrypt the messages are not random
numbers with probability q−(n+1)+ ltε. If all A′r are random numbers, the prob-
ability of A guessing right one of the messages is 1

2l . So any adversary A wins

the game with probability at most q−(n+1) + ltε +
t

2l
. We can see

Pr[G1 = 1] � q−(n+1) + ltε +
t

2l
.

Finally, we can conclude that

Pr[GamemOW-CPA
PKE,A = 1] ≤ Adv

LWEn,m,q,DZm,σ

B + q−(n+1) + ltε +
t

2l
.

4.2 A Variant of Frodo

In this section, we show the mOW-CPA security of a variant of Frodo. Firstly,
we review some important results on information theory and lossy mode LWE.

Randomness Extraction. We recall the definition of the min-entropy of a
random variable X, and a similar notion called the average min-entropy, as
introduced by [12].

Definition 6. The min-entropy of a random variable X is defined as H∞(X) =
− log(maxx Pr[X = x]). The average min-entropy is defined as Ĥ∞(X|I) =
− log(Ei←I [2−H∞(X|I=i)]). The average min-entropy corresponds to the optimal
probability of guessing X, given knowledge of I.
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ε-smooth min-entropy introduced by [24] considers all distributions that are ε-
close to X, which has highest entropy. The ε-smooth average min-entropy can
be defined similarly.

Definition 7. The ε-smooth min-entropy of a random variable X is defined
as: Hε

∞(X) = maxY :
(X,Y )�ε H∞(Y ), and the ε-smooth average min-entropy is
defined as: Ĥε

∞(X|I) = max(Y,J):
((X,I),(Y,J))�ε Hε
∞(Y |J).

Definition 8. (2-Universal Hash Functions.) A family of functions H = {H :
X → [m]} is called a family of 2-universal hash functions, if ∀x, x′ ∈ X and
x = x′,PrH←H[H(x) = H(x′)] � 1

m .

Fact 1. Let q > 2, and H = {H : Zn
q → Zq} be a family of hash functions.

H(s) is defined as H(s) = hT s mod q, where h ∈ Zn
q . Then, H is a family of

2-universal hash functions.
The leftover hash lemma shows that good randomness can be extracted from

a random variable using universal hash functions. Here, we consider whether
universal hash functions can be used to extract good randomness from more
independent random variables. Next, we prove the multi-leftover hash lemma
where the hash function is used in multiple times.

Lemma 7. (Multi-Leftover Hash Lemma.) Let X1,X2, . . . , Xt be some indepen-
dent random variables over X . Let H = {H : D × X → {0, 1}l} be a family of
2-universal hash functions, where |D| is 2d and |X | is 2e. If for all the random
variables Xn, and n ∈ [t], we have H∞(Xn) ≥ k, where k = l + 2 log

√
t

ε . Then
for UD which is uniform distribution over D and independent of any Xn,

�((UD,H(X1),H(X2), . . . , H(Xt)), (UD, Ut×l)) ≤ ε/2,

where Ut×l is uniform distribution over {0, 1}t×l and independent of UH. That
is,

�((UD,H(X1),H(X2), . . . , H(Xt)), (UD, Ut×l)) ≤ 1
2

√
t2l−k.

The proof of Lemma 7 is similar to that of the original leftover hash lemma and
thus omitted.

The leftover hash lemma generalized in [12] and [20] shows a lower bound for
average min-entropy or smooth average min-entropy of a random variable, and
hash functions can still extract random numbers from the random variable. We
consider the case that universal hash functions extract random numbers from
more independent random variables given a lower bound for average min-entropy
or smooth average min-entropy of those random variables.

Lemma 8. Let X1,X2, . . . , Xt be independent random variables over X . Let H
be a family of 2-universal hash functions and H : D × X → {0, 1}l, where |D| is
2d and |X | is 2e. Suppose for a random variables I and all the n ∈ [t], we have
Ĥ∞(Xn|I) ≥ k, where k = l + 2 log

√
t

ε . Then we have

�((I, UD,H(X1),H(X2), . . . , H(Xt)), (I, UD, Ut×l)) ≤ ε/2,
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where UD is uniform distribution over D and Ut×l is uniform distribution over
{0, 1}t×l.

The proof of Lemma 8 is similar to that of Lemma 2.4 in [12] and hence omitted.

Lemma 9. Let Y , J1 and J2 be random variables. If Δ(J1, J2) ≤ ε/2, then
|Ĥ∞(Y |J1) − Ĥ∞(Y |J2)| ≤ ε2Ĥ∞(Y |J1) + 1.

The details of the proof can be found in AppendixA.

Lemma 10. Let X1,X2, . . . , Xt be independent random variables over X . Let
H be a family of 2-universal hash functions and H : D × X → {0, 1}l, where |D|
is 2d and |X | is 2e. Suppose for a random variables I and all the n ∈ [t], we
have Ĥε

∞(Xn|I) ≥ k, where k = l + 2 log
√

t
ε′ + 2 and ε = 2−k. Then we have

�((I, UD,H(X1),H(X2), . . . , H(Xt)), (I, UD, Ut×l)) ≤ ε′/2 + (t + 1)ε,

where UD is uniform distribution over D and Ut×l is uniform distribution over
{0, 1}t×l.

Proof. Let Δ(Yn, Jn) ≤ ε be the random variables such that

max
Δ((Xn,I),(Yn,Jn))≤ε

Ĥ∞(Yn|Jn).

I.e., Ĥ∞(Yn|Jn) = Ĥε
∞(Xn|I) where n ∈ [t].

Without loss of generality, we will show that Ĥ∞(Yn|J1) ≥ k − 2 for all the
n ∈ [t]. First, we have Δ(J1, Jn) ≤ Δ(J1, I) + Δ(I, Jn) ≤ 2ε. If Ĥ∞(Yn|J1) <

k − 2, Ĥ∞(Yn|Jn) − Ĥ∞(Yn|J1) ≤ 4ε2Ĥ∞(Yn|J1) + 1 ≤ 2 by Lemma 9. That is,

Ĥ∞(Yn|J1) ≥ Ĥ∞(Yn|Jn) − 2 ≥ k − 2,

which contradicts our assumption. According to the Lemma 8, we know that

Δ((J1, UD,H(Y1),H(Y2), . . . , H(Yt)), (J1, UD, Ut×l)) ≤ ε′/2.

Since Δ((Xn, I), (Yn, Jn)) ≤ ε for all the n ∈ [t], we have

�((I, UD,H(X1),H(X2), . . . , H(Xt)), (J1, UD,H(Y1),H(Y2), . . . , H(Yt))) ≤ tε,

and Δ((J1, UD, Ut×l), (I, UD, Ut×l)) ≤ ε. Therefore,

� ((I, UD,H(X1),H(X2), . . . , H(Xt)), (I, UD, Ut×l))
≤ � ((I, UD,H(X1),H(X2), . . . , H(Xt)), (J1, UD,H(Y1),H(Y2), . . . , H(Yt)))

+ Δ((J1, UD,H(Y1),H(Y2), . . . , H(Yt)), (J1, UD, Ut×l))
+ Δ((J1, UD, Ut×l), (I, UD, Ut×l))

≤(t + 1)ε + ε′/2.
(4)
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Lossy Mode for LWE [15]. The LWE problem has a lossy mode, where the
secret s still leaves high min-entropy given the pair (A,AT s + e), when A is
chosen from lossy mode, a special kind of distribution. What is more, a matrix
A chosen from lossy mode is computationally indistinguishable from a uniformly
random A under the LWE assumption.

Definition 9. [15] (SampleLossy.) Let χ = χ(λ) be an efficiently sampled dis-
tribution over Zq. The algorithm SampleLossy(n,m,w, χ) is as follow: B ←
Zn×w

q , C ← Zw×m
q , F ← χn×m and output A = BC + F .

Lemma 11. [15] For any quantum adversary A which can distinguish A0 ←
Zn×m

q and A1 ← SampleLossy(n,m,w, χ) , there exists adversary B against

LWEw,m,q,χm such that |Pr[A(A0)] − Pr[A(A1)]| � nAdvLWEw,m,q,χm

B .

Although the A0 is statistically far from A1, it is easy to show that they are
computationally indistinguishable from each other by a standard hybrid argu-
ment.

Lemma 12. [2] Let w, n,m, q, α, β, γ be integer parameters and χ distribution
(all parameterized by λ) such that Prx←χ[|x| � β] � negl(λ) and α � βγnm.
Let s and e be random variables distributed according to U([−γ, γ]n) and DZm,α.
Furthermore, let A be a matrix sampled by SampleLossy(n,m,w, χ). Then, for
any ε � 2−λ, we have the following:

Hε
∞(s|A,AT s + e) � H∞(s) − (w + 2λ) log q − negl(λ). (5)

Construction. We will show a variant of Frodo with the modification that we
change the way of sampling s′ and do not need additional error in the ciphertext
c1.

– Gen(1λ): On input security parameter λ, choose a prime q, positive integers
n,m, γ, and Gaussian parameters α, σ. Then choose a matrix A ∈ Zn×m

q

randomly, and output the public key pk = (A,b), where s ← DZm,σ, e ←
DZn,σ and b = As + e, and the secret key sk = (A,b, s).

– Enc(pk,m): To encrypt a message m ∈ {0, 1}, sample s′ ← U [−γ, γ]n and
e′ ← DZm,α.
Then compute the ciphertext as c1 = bT s′ + m�q/2� and c2 = AT s′ + e′.
Finally output the ciphertext c = (c1, c2) ∈ Zq × Zm

q .
– Dec(sk, c): To decrypt a ciphertext c = (c1, c2) with a secret key sk, compute

ω = c1 − sT c2 ∈ Zq and outputs 0 if ω is closer to 0 than to �q/2� modulo q.
Otherwise it outputs 1.

Correctness. According to the Dec algorithm, we have

ω = c1 − sT c2 = sT AT s′ + eT s′ + m�q/2� − sT AT s′ − sTe′

= m�q/2� + eT s′ − sTe′.
(6)
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The error term is bounded by

|eT s′ + sTe′| � |eT s′| + |sTe′|

� γ

n∑

i=1

|ei| +
m∑

j=1

|sje
′
j |

� γ||e||1 + ||s|| · ||e′||.

(7)

In order to make the error term less than q/4, it suffices to choose appropriate
σ and q.

Theorem 3. The variant of Frodo scheme is mOW-CPA secure assuming the
hardness of LWEn,m,q,DZn,σ

and LWEw,m,q,χm . Namely, for any quantum
adversary A against mOW-CPA security, there exists an adversary B against
LWEn,m,q,DZn,σ

and B′ against LWEw,m,q,χm , such that

Pr[GamemOW-CPA
PKE,A = 1] ≤ Adv

LWEn,m,q,DZn,σ

B + nAdv
LWEw,m,q,χm

B′ + t/2Ω(λ) + t/2l.

Proof. GAME G0. G0 is the original mOW-CPA game. The challenger C runs
Gen(1λ) to get the pk = (A,b) and sk = (A,b, s). Then C randomly and inde-
pendently chooses t messages m1,m2, . . . ,mt, where the length of each message
is l bits. The challenger runs Enc(pk,mi) to get the corresponding ciphertexts
ci = (ci1, ci2), where i ∈ [t]. Finally, C sends the pk and ciphertexts to the adver-
sary A. At the end of the game, A outputs m. We say A wins the games if
m = mi for some i ∈ [t]. That is,

Pr[G0 = 1] = Pr[GamemOW-CPA
PKE,A = 1].

GAME G1. G1 is similar to G0 with the exception that the way of generating
b. The challenger randomly chooses b ← Zn

q . Now we prove that G0 and G1 are
computationally indistinguishable. Suppose there exists an adversary A which
can distinguish G0 and G1. We show how to construct an algorithm B which
can distinguish uniform (A,b) and LWE samples. B is given (A,b) and sends
it to A as the pk. Then B generates challenge ciphertexts by the way as in G0.
B outputs 1 if A wins the game and outputs 0 otherwise. It’s easy to see that if
(A,b) ← LWEn,m,q,DZm,σ

the view of the adversary is identical to that of G0,
and if (A,b) ← Zn×m

q ×Zm
q the view of the adversary is identical to that of G1.

So we have |P [G0 = 1] − P [G1] = 1| � Adv
LWEn,m,q,DZn,σ

B .

GAME G2. In this game, we change the way that the matrix A is generated. A is
not chosen uniformly but in the lossy mode. In order to show the indistinguisha-
bility between G2 and G1, we construct an algorithm B̂ which can tell whether
A ← Zn×m or A ← SampleLossy(n,m,w, χ), where χ is a distribution such that
Prx←χ[|x| � β] � negl(λ) and α � βγnm. B̂ is given A and sends pk = (A,b) to
A. Then B̂ generates challenge ciphertexts as in G0. B outputs 1 if A wins the
game and outputs 0 otherwise. We can see that if A ← Zn×m the view of the
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adversary corresponds to that of G1, and if A ← SampleLossy(n,m,w, χ) the
view of the adversary is identical to that of G2. We have the second inequality

|Pr[G1 = 1] − P [G2 = 1]| � AdvLossy

B̂ � nAdvLWEw,m,q,χm

B′ .

by Lemma 11. It remains to show that no adversary has non-negligible chance
in winning G2. For each challenge ciphertext c∗

i , it can be written as

c∗
i1 = bT s′

i + m�q/2�, c∗
i2 = AT s′

i + e′.

For ε = 2−k, where k = log q + Ω(n), we have

Hε
∞(s′

i|A, c∗
i2 = AT s′

i + e′) � H∞(s′
i) − (w + 2k) log q

= n log 2γ − (w + 2k) log q

� log q + Ω(n).
(8)

where the first inequality follows by Lemma 12 and let n log 2γ−(w+2k) log q �
log q + Ω(n).

Since s′
i is independent of c∗

j2 for j = i, we get

Hε
∞(s′

i|A, c∗
12, . . . , c

∗
t2) = Hε

∞(s′
i|A, c∗

i2) � log q + Ω(n).

Now we can apply Lemma 10 to conclude that (b,bT s′
1, . . . ,b

T s′
t) is t/2Ω(n)-

close to the uniform distribution. Hence, we have Pr[G2 = 1] ≤ t/2Ω(λ) + t/2l.

Acknowledgements. We would like to thank the anonymous reviewers for their help-
ful comments. Zhengyu Zhang and Puwen Wei were supported by the National Nat-
ural Science Foundation of China (No. 61502276). Haiyang Xue was supported by
the National Natural Science Foundation of China (No. 61602473) and the National
Cryptography Development Fund (No. MMJJ20170116).

A Proof of Lemma9

Proof. We have

|Ej←J1 [2
−H∞(Y |J1=j)] − Ej←J2 [2

−H∞(Y |J2=j)]|
=|

∑

j

Pr[J1 = j]2−H∞(Y |j) −
∑

j

Pr[J2 = j]2−H∞(Y |j)|

≤
∑

j

|Pr[J1 = j] − Pr[J2 = j]|2−H∞(Y |j) ≤ ε.

(9)

The last inequality follows from Δ(J1, J2) ≤ ε/2 and the 2−H∞(Y |j) ≤ 1. Hence

|Ĥ∞(Y |J1) − Ĥ∞(Y |J2)|
=| − logEj←J1 [2

−H∞(Y |J1=j)] + logEj←J2 [2
−H∞(Y |J2=j)]|

=| log
Ej←J2 [2

−H∞(Y |J2=j)]
Ej←J1 [2−H∞(Y |J1=j)]

| ≤ log(1 +
ε

Ej←J1 [2−H∞(Y |J1=j)]
)

≤ ε

Ej←J1 [2−H∞(Y |J1=j)]
+ 1 = ε2Ĥ∞(Y |J1) + 1.

(10)

For the last inequality we use the fact that log(x + 1) ≤ x + 1.
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Abstract. Symmetric searchable encryption (SSE) has been proposed
for years and widely used in cloud storage. It enables individuals and
enterprises to outsource their encrypted personal data to cloud server
and achieves efficient search. Currently most SSE schemes are working
in the semi-honest or curious cloud server model in which the search
results are not absolutely trustworthy. Thus, the verifiable SSE (VSSE)
schemes are proposed to enable data integrity verification. However, the
majority of existing VSSE schemes have their own limitations, such as
not supporting dynamics (data updates), working in single-user mode or
not practical etc. In this paper, we propose a practical, dynamic and effi-
cient integrity verification method for SSE construction that is decoupled
from original SSE schemes. This paper proposed a practical and general
SSE (PGSSE for short) scheme to achieve more efficient data integrity
verification in comparison with the state-of-the-art schemes. The pro-
posed PGSSE can be applied to any top-k ranked SSE scheme to achieve
integrity verification and efficient data updates. Security analysis and
experimental results demonstrate that the proposed PGSSE scheme is
secure and efficient.

Keywords: Symmetric searchable encryption · Shamir’s secret
sharing · Merkle Patricia Tree · Integrity verification · Data update

1 Introduction

Accompanying with the explosive growth of cloud computing, data security has
become the most important aspect that needs to be guaranteed. To preserve
data security and privacy, individuals and enterprises usually encrypt their data
before outsourcing them to the remote cloud computing or cloud storage server.
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As a result, how to process and search on the encrypted data becomes the crit-
ical problem that needs to be resolved. Searchable encryption facilitates search
operations on the encrypted data meanwhile it preserves the privacy of users’
sensitive data, and thus it has attracted extensive attentions recently.

Since the first searchable encryption scheme [23] proposed in 2000, a large
number of related works have emerged in the literature during the last two
decades. According to the encryption algorithm adopted in searchable encryption
schemes, they can be classified into public key searchable encryption (PKSE) and
symmetric searchable encryption (SSE). As there are massive data in a cloud
storage, the data usually are encrypted by a symmetric encryption algorithm to
guarantee efficiency and data availability.

For a practical SSE scheme, it should satisfy at least the following prop-
erties: sublinear search time, compact indexes, supporting ranked search, effi-
cient updates, integrity verification and data security. Unfortunately, none of
the existing SSE constructions achieves all these properties at the same time,
which has limited their practicability. If an SSE scheme does not support top-k
ranked search, the cloud server will return all data files that contain the queried
keywords. As the user have no pre-knowledge of the encrypted files, he has to
decrypt all these files to further find the most matching files. These will result
in unnecessary computing overheads, time consumption and network traffics.
Hence, without it, SSE schemes are impractical in the pay-as-you-use cloud com-
puting era. By returning the most related files, ranked search schemes greatly
facilitate system practicability.

To enrich the functionalities of SSE, a variety of multi-keyword, multi-user
or multiple data owner, dynamic or verifiable SSE schemes have been proposed.
However, majority of existing SSE schemes have their own ways of index con-
struction, integrity verification and data updates. A general scheme with more
functionalities decoupling from any special constructions is lacking. Motivated by
this idea, in this paper, we propose a practical, dynamic and efficient integrity
verification method for SSE construction that is decoupled from original SSE
schemes. Our work is a one-step forward to the work due to Zhu et al. [31] in
terms of top-k ranked search and data update efficiency. The contributions of
this work can be summarized as follows.

– We proposed a practical and general integrity verification scheme (PGSSE)
with the aid of secret sharing scheme and Merkle Patricia Tree (MPT). Com-
pared with existing SSE schemes, the proposed scheme firstly introduces the
secret sharing scheme to SSE to make the general SSE scheme support top-k
ranked search.

– Thanks to the secret sharing scheme, users do not need to update the MPT
tree but just to update their keys when they update their data without key-
word addition. Thus the data updates of the proposed scheme are very effi-
cient.

This paper is arranged as follows. We will discuss related work in Sect. 2.
Section 3 gives the preliminaries. The system model and formal definition are



Practical, Dynamic and Efficient Integrity Verification for SSE 165

presented in Sect. 4. Section 5 describes the details of our PGSSE scheme con-
struction. Section 6 present security and performance evaluation of the proposed
scheme. We give a conclusion in Sect. 7.

2 Related Work

In 2000, Song et al. [23] proposed the first searchable encryption scheme which
needs to search all encrypted documents in a non-interactive way to check
whether a queried keyword is contained or not. For each queried keyword, it
has to scan all files and thus the search time was linear in the length of the
documents collection. In addition, the proposed scheme is only adapted to single
keyword search. In 2003, Goh [11] first proposed to construct index to achieve
search and a Bloom filter based index scheme is introduced. He gave a formal
security of IND-CKA for SSE and proved the proposed Bloom filter based SSE
scheme is IND-CKA secure. The drawback is that the Bloom filters based con-
struction had a possibility of false positives. In 2006, Curtmola et al. [8] proposed
two efficient SSE schemes, SSE-1 and SSE-2 with O(1) search time complexity.
They gave the formal security definitions for the proposed schemes and utilized
broadcast encryption to enable multi-user search in SSE-2. Both schemes only
support single-keyword search.

After that, a variety of functionally rich SSE schemes were proposed in the
last two decades, including multi-keyword search, top-k ranked search, dynamic
data update, verifiable SSE, fuzzy and similarity search etc. As described above,
if an SSE scheme does not support top-k ranked search, the cloud server will
return all data files containing the queried keywords, which will greatly reduce
the practicability of these schemes.

In 2010, Wang et al. [26,27] first proposed to use order-preserving symmetric
encryption (OPSE) to achieve a ranked keyword search scheme which protects
the privacy of relevance scores. The measure of relevance scores is based on a
TF×IDF model. To reduce the amount of information leakage, they proposed to
use a one-to-many OPSE scheme to obfuscate the original relevance score dis-
tribution. In 2011, Cao et al. [1,2] proposed a privacy-preserving multi-keyword
ranked searchable encryption (MRSE) scheme by using “coordinate matching”
and “inner product similarity”.

To improve the accuracy of search results, almost all multi-keyword SSE
schemes [5,9,18,29,30] support top-k ranked search since the ranked SSE scheme
has been proposed. However, the SSE constructions described above are static,
which means that they did not have the ability to add or delete documents
efficiently.

In 2010, Liesdonk et al. [19] proposed the first dynamic SSE scheme which
supports a limited number of updates and has a linear search time in the worst
case. In 2012, Kamara et al. [15] constructed a dynamic SSE scheme which is
an extension of SSE-1. They presented a formal security definition for dynamic
SSE. Their scheme is adaptively secure against chosen-keyword attacks (CKA2)
and it is also secure in the random oracle model. Then, in 2013, they presented
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a parallelizable and dynamic sub-linear SSE scheme with the help of multi-core
architectures [14]. The search time is about O(r/p)(r and p is the number of
documents and cores respectively) for searching a keyword with a logarithmic
number of cores. Compared to the SSE scheme in [15], this SSE scheme does not
leak the tokens of the keywords contained in an updated document. Their scheme
uses a keyword red-black tree (KRB) to construct index that makes updates
simple. However, this scheme focuses on the case of single-keyword equality
queries only. Since then, some dynamic SSE schemes are presented [3,6,10,12,
21,28].

As the cloud server is not trustable in some circumstances, verifiable SSE
(VSSE) [4,7,13,16,17,20,24,25] is proposed to check the integrity of search
results and data. In 2012, Kurosawa and Ohtaki [16] first formulate the security
of VSSE against active adversaries and proposed a UC-security (abbreviation of
Universal Composability) single-keyword VSSE scheme. Their scheme preserves
the search results correct even if the server is malicious. Later in 2013, they
gave a more efficient VSSE scheme [17] and extended the scheme to dynamic
VSSE scheme. In 2015, Sun et al. [24] proposed a dynamic conjunctive keyword
VSSE scheme by using bilinear-map accumulator tree. Recently, Jiang et al. [13]
proposed a multi-keyword ranked VSSE scheme and a special data structure
QSet based on an inverted index. The basic idea is to estimate the least frequent
keywords in the query to reduce the search times. The verification is based on a
keyword binary vector.

However, all the above works have their own ways of index construction,
integrity verification and data updates. A general scheme with more functionali-
ties decoupling from any special constructions is lacking. Recently, Zhu et al. [31]
proposed a generic and verifiable SSE scheme (GSSE). It can be adopted to any
SSE scheme to provide integrity verification and data updates. They proposed
to use the Merkle Patricia Tree (MPT) and incremental hash to construct proof
index and develop a timestamp chain to resist data freshness attacks. As MPT
is a kind of prefix tree, it is efficient to insert and delete nodes. Hence the GSSE
achieves data integrity verification efficiently.

But there is a shortcoming in the proposed GSSE scheme that the user has to
get all documents which contain the queried keyword in the document collection
to perform the integrity verification. If the queried keyword is common, there
could be quite a lot of documents containing the keyword. Many documents
returned may be not desired by the user while they will consume a lot of time to
search and verify. It also means that the GSSE scheme does not support top-k
ranked search.

Comparing to the GSSE scheme, the proposed PGSSE scheme supports top-k
ranked search which makes it more practical. As the incremental hash is utilized
for integrity verification in GSSE, users have to compute the hash of all queried
documents to verify the root of the MPT tree. Thus, the GSSE scheme can-
not support top-k ranked search. To overcome this disadvantage, we propose to
utilize a secret sharing scheme to replace incremental hash to perform integrity
verification. Comparing to GSSE, the PGSSE allows users to perform integrity
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verification when they only get the top-k documents containing the queried key-
words. Meanwhile, we found that the proposed scheme can achieve data updates
efficiently.

3 Preliminary

In this section, the notations, MPT and Shamir’s secret sharing scheme are
revisited.

3.1 Notations

In the following sections, the pseudo-random functions h1, h2 and h3 are defined
as {0, 1}∗ × {0, 1}λ → {0, 1}∗. The other notations are described in Table 1.

Table 1. Notations and descriptions

Symbol Denote

DC The document collection, including N documents and denoted as DC = (D1, D2, · · · , DN )

C The encrypted document collection C = (C1, C2, · · · , CN ) stored in the cloud server

I The encrypted index

W The keyword dictionary W = (w1, w2, · · · , wm)

m The number of keywords in W

DC(wi) The collection of documents that contain keyword wi

WDi The keyword set in the document Di

Au The authenticator

Enc/Dec(·) Symmetric encryption/decryption algorithm

Key The secret key stored by the data owner Key = {k1, k2, k3, k4, (spk, ssk), S, P}

For the secret key stored by the data owner, k1, k2 and k3 are used for
pseudo-random functions h1, h2 and h3 respectively, k4 is used for the symmetric
encryption algorithm Enc(), (spk, ssk) is the public/private key pair, S is a
matrix in which each row represents one polynomial’s coefficients, P is a set of
m arrays.

3.2 Merkle Patricia Tree

Merkle Patricia Tree (MPT) proposed in Ethereum is a mixture of Merkle tree
and Patricia tree. It is a kind of prefix tree that has high efficiency in insert and
delete operations. There are four kinds of nodes in the MPT, namely null node,
leaf node, extension node and branch node. The null node is simple and we use
a blank string to represent it. Leaf node (LN) and extension node (EN) are both
represented as one key-value pair and those keys are encoded in Hex-Prefix.
The keys in extension nodes indicate their descendant nodes’ common prefix
and their values are their children nodes’ hash values. The keys in leaf nodes
indicate the rest part except for the common prefix and the values are their own
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values. Differing from LN and EN, the branch nodes’ keys consist of 17 elements
in which 16 elements correspond to Hex-Prefix codes. The last element is used
only when the search route terminates here in which the value in BN plays the
same role as that in LN.

The construction of a MPT is through the “insert” operation which will be
demonstrated according to different situations.

(1) Insert to branch node (the current key is empty)

The initial MPT is empty as Fig. 1(a) and a new node with value ‘223’ will be
inserted to the MPT. The insert operation directly set the value of the MPT to
‘223’ and get the MPT as Fig. 1(b).

Fig. 1. Insert to branch node (the current key is empty).

(2) Insert to branch node (the current key is not empty)

Assume the initial MPT is Fig. 2(a) and a new node with key-value pair [‘a2912’,
‘22’] will be inserted to the branch node. As the descendant of the element ‘a’ is
empty, the “insert” algorithm will create a new leaf node (LN2) to store the rest
key ‘2912’ and the value ‘22’. The new MPT is illustrated as Fig. 2(b).

Fig. 2. Insert to branch node (the current key is not empty).

(3) Insert to Extension node

Assume the initial MPT is Fig. 2(b) and a new node with key-value pair [‘a2535’,
‘57’] will be inserted to the MPT. As the key ‘a2535’ has a common prefix ‘a2’
with LN2, the “insert” algorithm will create an extension node (EN1) whose key
is the rest common prefix ‘2’ and a branch node (BN2) whose key ‘5’ and key ‘9’
are linked to newly created leaf nodes with key ‘35’ and ‘12’ respectively. The
insertion is completed as Fig. 3.

When searching for a node in the MPT, the “Search” algorithm will start
from the root to bottom to check the nodes’ key at each level. For example, the
user wants to search the node with key ‘a2535’. The “search” algorithm will first
find the BN1 and then go on to EN1, and finally the path from BN1 to LN2 will
be found.



Practical, Dynamic and Efficient Integrity Verification for SSE 169

Fig. 3. Insert to extension node.

3.3 Shamir’s Secret Sharing Scheme

As pointed out that the incremental hash needs to compute the hash of all
queried documents to check the integrity of search results, it is unsuitable for
ranked search. With a secret sharing scheme, the pre-defined number of partici-
pants can compute the secret without the involvement of all participants. This
property can be applied to the ranked search. For the sake of generality, the
Shamir’s secret sharing scheme is chosen in the proposed PGSSE scheme.

Shamir’s secret sharing scheme [22] is a threshold scheme to share a secret in
a distributed way. For a (k, n) threshold scheme, a secret is split into n pieces for
n participants and any more than k − 1 participants can reconstruct the secret
(k is the threshold), but the secret cannot be reconstructed with fewer than k
pieces. With the feature of dynamics, it can be applied to the ranked search with
efficient data updates.

With the dynamics of Shamir’s secret sharing scheme, the security can be
easily enhanced without changing the secret, and only need to change the poly-
nomial coefficients and construct new shares to the participants.

To construct a (k, n) Shamir’s secret sharing scheme, it needs to construct a k-
1 degree polynomial f(x) in the finite field GF(q) and the polynomial’s constant
term is the secret s, where q is a big prime number (q > n). Firstly, it randomly
generates a k-1 degree polynomial based on GF(q) and set f(0) = a0 = s. Then,
it randomly selects n different non-zero numbers (x1, x2, ... , xn) and allocates
(xi, f(xi)) to each participant pi(0 < i < n), where xi is public and f(xi) is kept
secret.

Then to recover the secret s, it randomly selects k pairs (xj , f(xj))(0 < j < k)
and utilizes the Lagrange’s polynomial interpolation algorithm as Eq. (1) to
reconstruct the secret as Eq. (2).

f(x) =
k∑

j=1

f(xj)
k∏

l=1

x − xl

xj − xl
mod q (1)
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s = (−1)k−1
k∑

j=1

f(xj)
k∏

l=1

xl

xj − xl
mod q (2)

4 System Model and Formal Definition

The system model and formal definition are described in this section.

4.1 System Model

The system model is illustrated in Fig. 4. There are three entities, namely data
owner, data user and cloud server. Data owner is in charge of constructing index
and authenticator. He receives the request from data user and authenticates
the data user. After being authenticated, the data user can access cloud server
to obtain some search results and he will perform an integrity verification for
the search results and the corresponding document data. The cloud server is
responsible for storing users’ indexes, authenticator and document data. When
receiving the token from a data user, the cloud server will make the corresponding
proof and authenticator to the data user.

Fig. 4. System model.

4.2 Formal Definition

The proposed PGSSE scheme has seven polynomial-time algorithms.

(1) Setup(1λ) → Key: It is run by the data owner to setup the scheme. The
algorithm takes as input the security parameter λ and outputs the secret
Key.

(2) MPTBuild(Key,W,DC) → {I,Au}: It is run by the data owner. It takes
as input the Key and keyword dictionary W , and outputs the index and
authenticator.
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(3) TokenGen(k3, Q) → {Token}: It is run by the data user. It takes as input
k3 and queried keywords, and outputs the token.

(4) ProofBuild(I, Token, tq) → {Proof,Aut
q, Auc}: It is run by the cloud

server. It takes as input index I, the token and the query time tq, and
outputs the corresponding proof and two authenticators Aut

q and Auc.
(5) CheckAu(k4, Aut

q, Auc) → {result}: It is run by the data user. It takes as
input the key k4 and two authenticators Aut

q, Auc, and outputs a result to
indicate whether the root of MPT has been tampered.

(6) V erify(k2, k4, S, P, CQ, P roof, TokenQ, Aut
q) → {result}: It is run by the

data user. It takes as input the k2 and k4, the search result C, the authen-
ticator Aut

q and P , and outputs a result to indicate whether the queried
documents have been tampered.

(7) Update(P,Dj , I) → {P ′, I ′}: It is run by the data owner. It takes as input
the set P , update document Dj and index I, and outputs the new P ′ and
new I ′.

5 Scheme Construction

In this section, the seven polynomial-time algorithms of the proposed PGSSE
are detailed respectively. The authenticator of the “CheckAu” algorithm is used
to make this scheme to resist the freshness attack on the root of MPT. As it is
the same as the scheme in [31] and we will not elaborate on it here.

5.1 Initialization

The “Setup” algorithm will initiate the system parameters and generate all keys.
It is executed by data owner and the detailed process is illustrated in Algorithm
1. There are m polynomials and each keyword corresponds to a polynomial.
Meanwhile each keyword corresponds to the secret Swi

of the polynomial which
is also called node secret. All the node secrets are stored in the MPT. When a
data user receives the top-k documents, he/she would try to recover the node
secret and execute the integrity verification. The set of P consists of m arrays
and each array is in form of [‘key’ → ‘value’]. This array could help user recover
the node secret.

5.2 MPT Building

The MPT building algorithm is performed by the data owner and the detailed
procedure is illustrated in Algorithm 2. The index I is the MPT and the “insert”
algorithm can refer to Sect. 3.2. When |DC(wi)| ≥ k, the node secret will be
computed and inserted into MPT, and there will be more than k key-value pairs
and the node secret can be recovered through the secret sharing scheme. How-
ever, when |DC(wi)| < k, there are less than k key-value pairs in the keyword



172 L. Chen and Z. Chen

Algorithm 1. Setup Algorithm
Input: Parameter λ;
Output: Key = {k1, k2, k3, k4, (spk, ssk), S, P}.

1 Randomly generates k1, k2, k3, k4 and q;
2 Generates the public/private key pair (spk, ssk);
3 Compute node secret:
4 for wi ∈ W do
5 compute Swi = h1(k1, wi);
6 end
7 Generate the matrix S : S is an m × k matrix, the i-th row is

{ai1 , ai2 , · · · , ai,k−1, Swi}(i ∈ [1, m]) where {ai1 , ai2 , · · · , ai,k−1} are the
coefficients of the Shamir’s secret sharing polynomials fi(x), Swi is the secret of
fi(x);

8 Generate the set P which consists of m arrays. Each array corresponds to a
keyword and the keyword wi’s array (arrayi) is generated as follows:

9 for wi ∈ W do
10 for Dj ∈ DC(wi) do
11 Calculate keyDj = h2(k2, Dj);
12 Encrypt the keyDj with k4 and vxDj = Enc(k4, keyDj );
13 Extract the wi’s coefficients in S and build the k-1 degree polynomials

fi(x);
14 Calculate value = fi(keyDj );
15 Set the arrayi[vxDj ] = value;

16 end

17 end

arrays and the node secret cannot be reconstructed by the secret sharing scheme.
Hence, the sum of document hash values that can be used to check the integrity
of all returned documents is calculated in this situation.

The authenticator Au is used to ensure the freshness of the MPT’s root rt
that is proposed in [31] and it is generated in Eq. (3), where tp is the timestamp,
upi is the i-th update time point, Sig(ssk, ∗) is a signature with the private key
ssk,Aui,j represents the j-th authenticator in the i-th update interval.

Between a fixed update time point and a query time, more than one data
update may happen. Under such circumstances, the cloud server may return
the old Au in which tp is after the latest fixed update time point but before
the query time. Namely there is at least one data update during this period.
To resist this type of freshness attack, Zhu et al. introduce a timestamp-chain
mechanism in [31]. In each update interval, it generates a timestamp-chain which
is constructed according to Eq. (3) and the last authenticator in the chain also
locates at the beginning of the next update interval.
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Algorithm 2. MPT Building Algorithm
Input: Key, W, DC;
Output: Index I and authenticator Au.

1 Extract keyword dictionary W from DC ;
2 for wi ∈ W do
3 if |DC(wi)| ≥ k then
4 Compute Twi = h3(k3, wi) ;
5 Compute Swi = h1(k1, wi) ;
6 Execute I = I.insert(Twi , Swi) ;
7 else
8 Compute Twi = h3(k3, wi) ;
9 for Dj ∈ DC(wi) do

10 Compute Swi =
∑

h1(k1, Dj) ;
11 Execute I = I.insert(Twi , Swi) ;

12 end

13 end

14 end

15 end
16 Generate the authenticator Au as Eq. (3) with k4 and ssk ;
17 Send the index I and authenticator Au to the cloud server.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xconi,0 = Enc(k4, rti,0‖tpi,0), upi ≤ tpi,0 ≤ upi+1

Aui,0 =
(
xconi,0, Sig(ssk, xconi,0)

)

...
xconi,j = Enc(k4, rti,j‖tpi,j‖xconi,j−1), upi,j−1 ≤ tpi,j ≤ upi+1

Aui,j =
(
xconi,j , Sig(ssk, xconi,j)

)

...
xconi,n = Enc(k4, rti,n‖tpi,n‖xconi,n−1), tpi,n = upi+1

Aui,n =
(
xconi,n, Sig(ssk, xconi,n)

)

(3)

If no data update, the data owner just needs to generate the authenticator
with a new timestamp at the fixed update time point. If data update happens,
the data owner will generate the new authenticator with a new rt and tp. To
check whether the rt is the latest one, the data user just needs to compare
whether the tp in Au is before the latest update time.

5.3 Token Generation

This algorithm is run by data user and the procedure is described in Algorithm 3.
The Token can be regarded as the path from the root of the MPT to the node
corresponding to the keyword. The cloud server could find the corresponding
keyword in the MPT according to the Token.
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Algorithm 3. Token Generation Algorithm
Input: k3;
Output: Token.

1 for wi ∈ Q do
2 Compute Twi = h3(k3, wi);
3 end
4 Send the TokenQ = {Tw1 , Tw2 , · · · , Twc} to the cloud server.

5.4 Proof Generation

Proof generation algorithm is run by the cloud server and the detailed description
is illustrated in Algorithm 4. The checkpoint is the update time point which is
closest to the user’s query time.

The proof is used to provide necessary information for user to reconstruct
the root of MPT. If the Token sent by data user exists in MPT, the cloud
server will generate corresponding proof to provide necessary information for
user to reconstruct the root of MPT. If the Token is not existing in MPT, the
server could also generate the proof . Namely the server would return proof to
user no matter whether the keyword exists or not. It will help user to detect
whether the server deliberately omits all documents and returns an empty result
to evade the integrity verification. In addition, as PGSSE is designed for the
multi-keyword SSE scheme, the proof is not only a search path but also in the
form of a sub-tree.

5.5 Integrity Verification

The integrity verification algorithm is used to check the integrity of search results
and the procedure is described in Algorithm 5. According to the value of k, there
are corresponding operations to calculate the node secret. According to whether
the returned ciphertext and ‘remain’ are null for the queried keyword wi, it
performs different operations.

(1) If both the ciphertext and ‘remain’ are not null, the data user would look
up the arrayi and recover the node secret with the help of the returned
documents. Then he reconstructs the MPT’s root and compare it with rttq
decrypted from Aut

q.
(2) If both the ciphertext and ‘remain’ are null, the data user directly recon-

structs the MPT’s root, and compare it with rttq decrypted from Aut
q. Only

if they are matched, the data user will think that there is no search result
for this keyword. Otherwise, the search results must be tampered.

(3) If one of the ciphertext and ‘remain’ is null, the search results must be
tampered and the verification algorithm return 0.
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Algorithm 4. Proof Generation Algorithm
Input: Index I, Token and tq;
Output: Proof , authenticator Aut

q and Auc.
1 for wi ∈ Q do
2 Find the search path routewi = {n1, n2, · · · , ns} according to the Token,

where ni ∈ {EN, BN, LN}, i ∈ [1, s], and n1 is the root. The sequence of
route is the nodes from top to bottom of the MPT. Find the longest search
path routewl ;

3 end
4 if Twl exists then
5 for l = s − 1 to 0 do
6 if nl = BN then
7 Proof = Proof ∪ Vnl , where Vnl includes all key-value pairs of the

descendant nodes of the BN ;

8 end
9 else if nl = EN then

10 Proof = Proof ∪ Vnl , where Vnl is the key which is on the search
path;

11 end
12 else
13 Proof = Proof ∪ Vnl , where Vnl is key-value pair of node nl;
14 end

15 end

16 end
17 else
18 for l = s to 0 do
19 Repeat steps from 6-14;
20 end

21 end
22 Get the Proof generated based on the keyword wl;
23 for wj ∈ Q (except for wl) do
24 Scan the Proof and find the position of wj and shade the node secret in the

corresponding position;

25 end
26 Get the latest authenticator Aut

q according to the query time and Auc at the
checkpoint;

27 Send Proof, Aut
q and Auc to the data user.

5.6 Update Algorithm

The update operations include document addition, modification and deletion.
According to whether there is addition or deletion of keywords, there are corre-
sponding operations and it is described in Algorithm 6. If a keyword is newly
added, it will insert a new node for this keyword. If there is no keyword addition,
the MPT would remain unchanged and it only update the set P . For document
deletion, it just needs to refresh the set P and keeps the MPT unchanged.
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Algorithm 5. Integrity Verification Algorithm
Input: k2, k4, S, P, CQ, P roof, TokenQ, Aut

q ;

Output: result.

1 for wi ∈ Q do

2 Compute remainwi = String.match(Tokenwi , P roof);

3 end

4 Let (rttq, tp
t
q, xcon) = Dec(k4, xcontq);

5 if CQ �= null ∧ remainwi �= null then

6 Decrypt the CQ, and get document collection DQ;

7 if |DQ| > k then

8 for Dj ∈ DC(wi) do

9 Compute hashDj
= h2(k2, Dj), and insert it into set M ;

10 Get vxDj
= Enc(k4, hashDj

);

11 end

12 for hashDj
∈ M do

13 if arrayi[vxDj
] = null then

14 return result=0;

15 end

16 else

17 According to valuej = arrayi[vxDj
], there are k (hashDj

, valuej)

pairs. Thus utilizing Shamir’s secret sharing scheme with S to recover

the node secret;

18 end

19 end

20 end

21 else if |DQ| < k then

22 for Dj ∈ DQ do

23 Compute Swi =
∑

h1(k1, Dj);

24 end

25 Calculate the root rt′ according to the LN and proof from bottom to the root;

26 if rt′ = rtq then

27 return result=1;

28 end

29 else

30 return result=0;

31 end

32 end

33 end

34 else if CQ = null and at least one remainwi doesn’t exist(wi ∈ Q) then

35 Calculate the root rt′ according to the proof from bottom to the root;

36 if rt′ = rtq then

37 return result=1;

38 end

39 else

40 return result=0;

41 end

42 end

43 else

44 return result=0.

45 end
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Algorithm 6. Update Algorithm
Input: The set P , update document Dj and I;
Output: New set P ′ and new MPT I ′.

1 if the document Dj is added into the DC then
2 for wi ∈ Dj do
3 if wi ∈ W then
4 Calculate keyDj = h2(k2, Dj) and vxDj = Enc(k4, keyDj );
5 Extract the wi’s coefficients in S and rebuild the k-1 degree

polynomials fi(x);
6 Calculate value = fi(keyDj ) and set arrayi[vxDj ] = value in the set

P ′;
7 end
8 if wi �∈ W then
9 Compute Twi = h3(k3, wi) and Swi = h1(k1, wi);

10 Execute I ′ = I.insert(Twi , Swi);
11 Randomly generate the coefficients (ai1 , ai2 , · · · , ai,k−1) for wi and

then insert into S;
12 Generate keyword wi’s array (arrayi) for the set P ′ according to

Setup algorithm;

13 end

14 end

15 end
16 if the document Dj is removed from DC then
17 for wi ∈ Dj do
18 Calculate keyDj = h2(k2, Dj) and vxDj = Enc(k4, keyDj );
19 Delete the arrayi[vxDj ] in the set P ′.
20 end

21 end

6 Security and Performance Evaluation

The proposed PGSSE scheme acts as a general method for any SSE scheme for
integrity verification. We needs to guarantee that PGSSE can preserve the data
confidentiality and results verifiability for SSE schemes. It means that it does not
leaks any useful information about documents and keywords in the verification
process and it can be detected if the search results are tampered. The security
proof of PGSSE is similar to that of Ref. [31]. To achieve top-k ranked search, we
utilize Shamir’s secret sharing scheme in PGSSE to replace incremental hash in
GSSE of [31]. It will not bring more security risks. Because of space limitation,
we omitted the formal security proof.

The performance of PGSSE includes storage overhead, the time overhead of
index building, integrity verification and data updates. We compared the perfor-
mance of PGSSE with GSSE to better evaluate its efficiency. The configuration
of a PC used in experiments is core i5-M480 2.67 GHz CPU, 8 GB memory, and
Win10 (64 bit) operation system. The SHA-1, 256-bit AES and 1024-bit RSA
is used as the hash function, symmetric encryption/decryption algorithm and
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signature algorithm respectively. The construction of the MPT is implemented
in Java with about 800 lines code.

As the basic index structure of PGSSE is MPT that is same as GSSE, the
storage overhead of PGSSE and GSSE is close to each other. As the size of
MPT largely depends on the number of keywords in the dictionary, the storage
overhead of both PGSSE and GSSE grows linearly with the growth of keywords
when set the depth of MPT to be fixed. For 5000 documents in the document
collection, the storage overhead is about 17 MB and 15 MB for PGSSE and GSSE
respectively. As the PGSSE scheme has to store the coefficients of the Shamir’s
secret sharing polynomials and the set P of m arrays, the storage overhead of
PGSSE is slightly more than that of GSSE.

6.1 MPT Construction

The time overhead of MPT construction in the PGSSE scheme largely depends
on the number of document-keyword pairs in the inverted index. When set
the depth of MPT and the number of documents to be 5 and 3000 respec-
tively, Fig. 5(a) shows the time of MPT construction of both PGSSE and GSSE
grows linearly with the growth of document-keyword pairs. For 30000 document-
keyword pairs, the time of MPT construction is about 243 ms and 221 ms for
PGSSE and GSSE respectively. When set the depth of MPT and the number of
document-keyword pairs to be 5 and 5000 respectively, Fig. 5(b) shows the time
of MPT construction of both PGSSE and GSSE grows also with the growth of
the number of documents. For 3000 documents, the time of MPT construction
is about 142 ms and 126 ms for PGSSE and GSSE respectively. It demonstrates
that the time overhead of MPT construction for both schemes is positively corre-
lated with the number of document-keyword pairs and documents. As the more
the number of document-keyword pairs, the more the dimension of the Shamir’s

Fig. 5. (a) The time cost of MPT construction with variable number of document-
keyword pairs (MPT depth = 5 and the number of documents is n = 3000); (b) the
time cost of MPT construction with variable number of documents (MPT depth = 5
and the number of document-keyword pairs is 5000).
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secret sharing matrix and the more keyword arrays in the set P will be gener-
ated in PGSSE, hence the time overhead of PGSSE is a little more than that of
GSSE.

6.2 Integrity Verification

The time cost of integrity verification in PGSSE largely depends on the threshold
k and the number of queried keywords. The bigger the threshold k is, the more
documents will be returned. As a result, the more time will be consumed to
construct node secret in the “Verify” algorithm.

Fig. 6. (a) The time cost of integrity verification with variable k and fixed number of
documents n = 3000; (b) the time cost of integrity verification with variable number
of queried keywords (n = 3000 and k = 30); (c) the time cost of integrity verification
with variable number of documents (k = 30); (d) the time cost of integrity verification
with variable number of matched documents (k = 30).

Assume the number of documents n = 3000, Fig. 6(a) shows the time cost of
integrity verification of both PGSSE and GSSE grow linearly with k. To return
15 documents, the time of verification is about 81.1 ms and 62.8 ms for PGSSE
and GSSE respectively. Assume the number of documents n = 3000 and k = 30,
Fig. 6(b) shows the time cost of integrity verification of both PGSSE and GSSE
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grow linearly with the number of queried keywords. For 7 queried keywords,
the time of verification is about 204.2 ms and 174.6 ms for PGSSE and GSSE
respectively. As the time cost of integrity verification is related to the number
of returned documents, for k = 30, Fig. 6(c) shows the time cost of both PGSSE
and GSSE keeps stable with the growth of the number of documents.

The above experimental results show that the efficiency of integrity verifica-
tion of PGSSE is a bit lower than that of GSSE. In fact, as PGSSE is proposed to
improve the practicability of GSSE to enable the ranked top-k search, Fig. 6(d)
shows that the efficiency of integrity verification of PGSSE is superior to that
of GSSE when the number of matched documents increases sharply. For k = 30,
if the number of matched documents is 200, the time cost is about 136 ms and
612 ms for PGSSE and GSSE respectively. If the number of matched documents
is 1000, the time cost is about 140 ms and 3045 ms for PGSSE and GSSE respec-
tively. This is because of that GSSE has to get all documents which contain
the queried keyword in DC to perform the integrity verification. While PGSSE
just needs to get the top-k documents to perform the integrity verification, and
thus the verification time keeps stable in PGSSE with the growth of matched
documents.

6.3 Data Updates

Differing from GSSE, PGSSE only updates the keyword array and the MPT
remains unchanged if there is no keyword addition or deletion. Assume the num-
ber of documents n = 3000, Fig. 7(a) shows that the time cost of data updates of
PGSSE keeps stable with the growth of the number of added documents, while
it grows linearly with the growth of the number of added documents for that of
GSSE. For adding 400 documents, the time cost is about 77 ms and 355 ms for
PGSSE and GSSE respectively.

Fig. 7. (a) The update time cost with no keyword insertion and deletion (the number
of documents n = 3000); (b) the update time cost with keyword insertion (n = 3000);
(c) the update time cost with keyword deletion (n = 3000).

If there is new keywords addition in data updates, it will insert new nodes
to the MPT for the new keywords and update the keyword array for PGSSE.
While it will also insert new nodes to the MPT for the new keywords and update
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the incremental hashes of these nodes for GSSE. Figure 7(b) shows that the time
cost of data updates of both PGSSE and GSSE grows linearly with the number
of added keywords and the time cost is similar. If there is keywords deletion in
data updates, it will delete the corresponding nodes of MPT for both PGSSE
and GSSE. Figure 7(c) shows that the time cost of data updates of both PGSSE
and GSSE grows linearly with the number of deleted keywords and the time cost
is also similar.

7 Conclusion

To improve the practicability of existing SSE schemes, we proposed a general
and efficient method that provides dynamic and efficient integrity verification
for SSE construction that is decoupled from original SSE schemes. The pro-
posed PGSSE overcomes the disadvantages of the GSSE on ranked search. The
experimental results demonstrate that PGSSE is greatly superior to GSSE in
integrity verification and data updates for top-k ranked search.
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Abstract. Searchable symmetric encryption (SSE) for multi-owner
model draws much attention as it enables data users to perform searches
over encrypted cloud data outsourced by data owners. However, imple-
menting secure and precise query, efficient search and flexible dynamic
system maintenance at the same time in SSE remains a challenge. To
address this, this paper proposes secure and efficient multi-keyword
ranked search over encrypted cloud data for multi-owner model based
on searching adversarial networks. We exploit searching adversarial
networks to achieve optimal pseudo-keyword padding, and obtain the
optimal game equilibrium for query precision and privacy protection
strength. Maximum likelihood search balanced tree is generated by prob-
abilistic learning, which achieves efficient search and brings the compu-
tational complexity close to O(log N). In addition, we enable flexible
dynamic system maintenance with balanced index forest that makes
full use of distributed computing. Compared with previous works, our
solution maintains query precision above 95% while ensuring adequate
privacy protection, and introduces low overhead on computation, com-
munication and storage.

Keywords: Searchable symmetric encryption · Multi-owner · Ranked
search · Searching adversarial networks · Maximum likelihood

1 Introduction

Background and Motivation. In cloud computing, searchable symmetric
encryption (SSE) for multiple data owners model (multi-owner model, MOD)
draws much attention as it enables multiple data users (clients) to perform
searches over encrypted cloud data outsourced by multiple data owners (author-
ities). Unfortunately, none of the previously-known traditional SSE scheme for
MOD achieve secure and precise query, efficient search and flexible dynamic sys-
tem maintenance at the same time [9]. This severely limits the practical value of
SSE and decreases its chance of deployment in real-world cloud storage systems.

Related Work and Challenge. SSE has been continuously developed since
it was proposed by Song et al. [12], and multi-keyword ranked search over
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encrypted cloud data scheme is recognized as outstanding [9]. Cao et al. [1]
first proposed privacy-preserving multi-keyword ranked search scheme (MRSE),
and established strict privacy requirements. They first employed asymmetric
scalar-product preserving encryption (ASPE) approach [15] to obtain the simi-
larity scores of the query vector and the index vector, so that the cloud server
can return the top-k documents. However, they did not provide the optimal
balance of query precision and privacy protection strength. For better query
precision and query speed, Sun et al. [13] proposed MTS with the TF× IDF
keyword weight model, where the keyword weight depends on the frequency of
the keyword in the document and the ratio of the documents containing this
keyword to the total documents. This means that TF× IDF cannot handle the
differences between data from different owners in MOD, since each owner’s data
is different and there is no uniform standard to measure keyword weights. Based
on MRSE, Li et al. [8] proposed a better solution (MKQE), where a new index
construction algorithm and trapdoor generation algorithm are designed to real-
ize the dynamic expansion of the keyword dictionary and improve the system
performance. However, their scheme only realized the linean search efficiency.
Xia et al. [16] provided EDMRS to support flexible dynamic operation by using
balanced index tree that builded following the bottom-up strategy and “greedy”
method, and they used parallel computing to improve search efficiency. However,
when migrating to MOD, ordinary balanced binary tree they employed is not
optimistic [6]. It is frustrating that the above solutions only support SSE for
single data owner model. Due to the diverse demand of the application scenario,
such as emerging authorised searchable technology for multi-client (authority)
encrypted medical databases that focuses on privacy protection [17,18], research
on SSE for MOD is increasingly active. Guo et al. [6] proposed MKRS MO for
MOD, they designed a heuristic weight generation algorithm based on the rela-
tionships among keywords, documents and owners (KDO). They considered the
correlation among documents and the impact of documents’ quality on search
results, so that the KDO is more suitable for MOD than the TF× IDF. However,
they ignored the secure search scheme in known background model [1](a threat
model that measures the ability of “honest but curious” cloud server [14,20]
to evaluate private data and the risk of revealing private information in SSE
system). Currently, SSE for MOD is still these challenges: (1) comprehensively
optimizing query precision and privacy protection is difficult; (2) a large amount
of different data from multiple data owners makes the data features sparse, and
the calculation of high-dimensional vectors can cause “curse of dimensionality”;
(3) frequent updates of data challenge the scalability of dynamic system main-
tenance.

Our Contribution. This paper proposes secure and efficient multi-keyword
ranked search over encrypted cloud data for multi-owner model based on search-
ing adversarial networks (MRSM SAN). Specifically, including the following
three techniques: (1) optimal pseudo-keyword padding based on search-
ing adversarial networks (SAN): To improve the privacy protection strength
of SSE is a top priority. Padding random noise into the data [1,8,19] is a current
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popular method designed to interfere with the analysis and evaluation from cloud
server, which protects the document content and keyword information better.
However, such an operation will reduce the query precision [1]. In response to
this, we creatively use adversarial learning [4] to obtain the optimal probability
distribution for controlling pseudo-keyword padding and the optimal game equi-
librium for the query precision and the privacy protection strength. This makes
query precision exceeds 95% while ensuring adequate privacy protection, which
is better than traditional SSE [1,6,8,13,16]; (2) efficient search based on
maximum likelihood search balanced tree (MLSB-Tree): The construc-
tion of the index tree is the biggest factor affecting the search efficiency. If the
leaf nodes of the index tree are sorted by maximum probability (the ranking of
the index vectors from high to low depends on the probability of being searched),
the computational complexity will be close to O(log N) [7]. Probabilistic learning
is employed to obtain MLSB-Tree, which is ordered in a maximum probability.
The experimental evaluation shows that MLSB-Tree-based search is faster and
more stable compare with related works [6,16]; (3) flexible dynamic system
maintenance based on balanced index forest (BIF): Using unsupervised
learning [3,10] to design a fast index clustering algorithm to classify all index
into multiple index partitions, and a corresponding balanced index tree is con-
structed for each index partition, thus all index trees form BIF. Owing to BIF
is distributed, it only needs to maintain the corresponding index partition with-
out touching all indexes in dynamic system maintenance, which improves the
efficiency of index update operations and introduces low overhead on the com-
putation, communication and storage. In summary, MRSM SAN increases the
possibility of deploying dynamic SSE in real-world cloud storage systems.

Organization and Version Notes. Section 2 describes scheme. Section 3 con-
ducts experimental evaluation. Section 4 discusses our solution. Compared with
the preliminary version [2], this paper adds algorithms, enhances security anal-
ysis, and conducts more in-depth experimental analysis of the proposed scheme.

2 Secure and Efficient MRSM SAN

2.1 System Model

The proposed system model consists of four parties, is depicted in Fig. 1. Data
owners (DO) are responsible for constructing searchable index, encrypting data
and sending them to cloud server or trusted proxy; Data users (DU) are
consumers of cloud services. Based on attribute-based encryption [5], once DO
authorize DU attributes related to the retrieved data, DU can retrieve the corre-
sponding data; Trusted proxy (TP ) is responsible for index processing, query
and trapdoor generation, user authority authentication; Cloud server (CS)
provides cloud service, including running authorized access controls, performing
searches for encrypted cloud data based on query requests, and returning top-k
documents to data users. CS is considered “honest but curious” [14,20], so that
it is necessary to provide a secure search scheme to protect privacy. Our goal is
to protect index privacy, query privacy and keyword privacy in dynamic SSE.
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Fig. 1. The basic architecture of MRSM SAN

2.2 MRSM SAN Framework

Setup: Based on index clustering results (s index partitions) and privacy
requirements in known background model [1], TP determines the size Ni

of sub-dictionary Di, the number Ui of pseudo-keyword, sets the parameter
Vi = Ui + Ni. Thus V = {V1, . . . , Vs}, U = {U1, . . . , Us}, N = {N1, . . . , Ns}.

KeyGen(V ): TP generates key SK = {SK1, . . . , SKs}, where SKi =
{Si,Mi,1,Mi,2}, Mi,1 and Mi,2 are two Vi × Vi-dimensional invertible
matrices, Si is a random Vi-dimensional vector. Symmetric key SKi =
{Si,M

−1
i,1 ,M−1

i,2 }.
Extended-KeyGen(SKi, Zi): For dynamic search [8,16], if Zi new keywords

are added into the i-th sub-dictionary, TP generates a new key SK ′
i =

{S′
i,M

′
i,1,M

′
i,2}, where M ′

i,1 and M ′
i,2 are two (Vi+Zi)×(Vi+Zi)-dimensional

invertible matrices, Si is new a random (Vi + Zi)-dimensional vector.
BuildIndex(F, SK): To realize secure search in known background model [1],

TP pads Ui pseudo-keyword into weighted index I (associated with doc-
ument F ) to obtain secure index ˜I, and uses ˜I and SK to generate BIF
F = {τ1, . . . , τs} and encrypted BIF ˜F = {τ̃1, . . . , τ̃s}. Finally, TP sends ˜F
to CS.

Trapdoor(Q,SK): DU sends query request (keywords and their weights) and
attribute identification to TP . TP generates query Q = {Q1, . . . , Qs} and
generates trapdoor T = {T1, . . . , Ts} using SK. Finally, TP sends T to CS.

Query(T, ˜F , t, k): TP sends query information to CS and specifies t index
partitions to be queried. CS performs searches and retrieves top-k documents.

2.3 Algorithms for Scheme

1. Binary Index Generation: DOi uses algorithm 1 to generate the binary
index (vector) Ii for the documents Fi, then sends Ii to TP .

2. Fast Index Clustering & Keyword Dictionary Segmentation: We
employ Algorithm 2 to solve “curse of dimensionality” issue in computing.

3. Weighted Index Generation: TP exploits the KDO weight model [6] to
generate the weight index, as shown in Algorithm 3.
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Algorithm 1. Binary Index Generation
Input: Document set F = {F1, . . . , Fm}, keyword dictionary D = {w1, . . . , wn}.
Output: Binary index set I = {I1, . . . , Im}.

1: for i = 1, to m do
2: Based on Vector Space Model [11] and keyword dictionary D, DOi generates binary index

Ii = {Ii,1,. . . ,Ii,ni
} for documents Fi = {Fi,1,. . . ,Fi,ni

}, where Ii,j is a binary index vector.

3: return Binary index Index I

Algorithm 2. Fast Index Clustering & Keyword Dictionary Segmentation
Input: Binary index (vector) I from DO, where I = {Ii,. . . ,Im}, DO = {DOi,. . . ,DOm}.

Output: s index partitions, s sub-dictionaries and new binary index ̂I = {̂I1, . . . , ̂Is}.

1: Local Clustering: For I = {Ii,. . . ,Im}, TP uses Twin Support Vector Machine [3] to classify
the index vectors {Ii,1, . . . , Ii,ni

} in Ii into 2 clusters (i-th and (m + i)-th initial index
partition) and obtain the representative vectors for the i-th and the (m + i)-th initial index
partition. return 2m initial index partitions and their representative vectors.

2: Global Clustering: TP uses Manhattan Frequency k-Means [10] algorithm to group all initial
index partitions (representative vectors) into s final index partitions. return s index partitions.

3: Keyword Dictionary Segmentation: According to the obtained s index partitions, the keyword
dictionary D is divided into s sub-dictionaries D1, . . . , Ds correspondingly. TP obtains new

binary index ̂I = {̂I1, . . . , ̂Is}, where Ii = {̂Ii,1, . . . , ̂Ii,Mi
}, ̂Ii,j is a Ni-dimensional vector.

Delete “public redundancy zero element” of all index vectors in the same index partition.

return s sub-dictionaries and new binary index ̂I (low-dimensional) for s index partitions.

Algorithm 3. Secure Weighted Index Generation
Input: Binary index ̂I for s index partitions.

Output: Secure Weighted index ˜I for s index partitions, i.e. the data type is floating point.

1: Correlativity Matrix Generation: Using the corpus to determine the semantic relationship
between different keywords and obtain the correlativity matrix SNi×Ni

(symmetric matrix).

2: Weight Generation: Based on KDO [6], construct the average keyword popularity AKP about

DO. Specifically, calculate AKPi of DOi with equation “AKPi = (Pi · ̂Ii) ⊗ αi”, where ̂Ii is
the index after index clustering, the operator ⊗ denotes the product of two vectors
corresponding elements, αi = (αi,1,. . . ,αi,Ni

), if |Li(wt)| �= 0 (the number of documents

contain keyword wt), αi,t = 1
|Li(wt)| ,otherwise αi,t = 0. Calculate the raw weight information

for DOi, W raw
i = SNi×Ni

· AKPi, where W raw
i = (W raw

i,1 ,. . . ,W raw
i,Ni

).

3: Normalized Processing: Obtain the maximum raw weight of every keyword among different

DO, Wmax = (W raw
i′,1 , W raw

i′,2 , . . .). Based on the Wmax, calculate Wi,t =
W raw

i,t
Wmax[j]

4: Weighted Index Generation: TP obtains weighted index vector with “Ii,j = ̂Ii,j ⊗ Wi”, where

Ii,j associated with document Fi,j corresponds to the i-th index partition (j ∈ {1, . . . , Mi}).

5: Secure Weighted Index Generation: TP pads Ui pseudo-keyword into I that in the i-th index

partition, and obtains secure weighted index ˜I with high privacy protection strength [16, 19].

Algorithm 4. MLSB-Tree and BIF Generation
Input: Secure weighted index ˜I for s index partitions, randomly generated query vector Q.
Output: MLSB-Tree τ1, . . . , τs for s index partitions and BIF F for all indexes belong to DO.

1: for i = 1, to s do
2: for j = 1, to Mi do
3: Based on probabilistic learning, TP calculates “Scorei,j =

∑n
k=1 IT

i,j · Qi,k”; Then,
TP sorts Ii,1, . . . , Ii,Mi

according to Scorei,1, . . . , Scorei,Mi
; Finally, TP follows the

bottom-up strategy and generates MLSB-Tree τi (balanced tree) with greedy method.

4: return MLSB-Tree τ1, . . . , τs.

5: return BIF F = {τ1,. . . ,τs}.
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Algorithm 5. Encrypted MLSB-Tree and Encrypted BIF Generation
Input: BIF F = {τ1, . . . , τs} and key SK = {SK1, . . . , SKs}, where SKi = {Si, Mi,1, Mi,2}.

Output: Encrypted BIF ˜F = {τ̃1,. . . ,τ̃s}.

1: for i = 1, to s do
2: TP encrypts MLSB-Tree τi with the secret key SKi to obtain encrypted MLSB-Tree τ̃i.
3: for j = 1, to n do
4: TP “splits” vector ui,j .v of ui,j (node of τi) into two random vectors ui,j .v1, ui,j .v2.
5: if Si[t] = 0 then
6: ui,j .v1[t] = ui,j .v2[t] = ui,j .v[t].
7: else
8: if Si[t] = 1 then
9: ui.v1[t] is a random value ∈ (0, 1), ui,j .v2[t] = ui,j .v[t] − ui,j .v1[t].

10: TP encrypts ui,j .v with reversible matrices Mi,1 and Mi,2 to obtain “ũi,j .v = {ũi,j .v1,

ũi,j .v2} = {MT
i,1ui,j .v1, MT

i,2ui,j .v2}”, where ui,j .v1 and ui,j .v2 are Vi-length vectors

11: return Encrypted MLSB-Tree τ̃i.

12: return Encrypted Encrypted BIF ˜F = {τ̃1,. . . ,τ̃s}.

Algorithm 6. Trapdoor Generation and GDFS(T, ˜F , t, k)

Trapdoor Generation

Input: Query vectors Q = {Q1, . . . , Qs}.
Output: Trapdoor T = {T1, . . . , Ts}.

1: for i = 1, to s do
2: TP “splits” query vector Qi into two

random vectors Qi,1 and Qi,2.
3: if Si[t] = 0 then
4: Qi,1[t] is a random value ∈ (0, 1),

Qi,2[t] = Qi[t] − Qi,1[t].
5: else
6: if Si[t] = 1 then
7: Qi,1[t] = Qi,2[t] = Qi[t], where

t ∈ {1, 2, . . . , Ni}.

8: TP encrypts Qi,1 and Qi,2 with

reversible matrices M−1
i,1 and M−1

i,2 to

obtain trapdoor “Ti = { ˜Qi,1, ˜Qi,2} =

{M−1
i,1 Qi,1, M−1

i,2 Qi,2}”.

9: return T = {T1, . . . , Ts}.

GDFS(T, ˜F , t, k)

Input: Query(T, ˜F, t, k).
Output: top-k documents.

1: for i = 1, to s do
2: if τi is the specified index tree then
3: if ui,j is a non-leaf node then

4: if Score(ũi,j .v, Ti) > � k
t �-th

score then
5: GDFS(ui,j .high-child)
6: GDFS(ui,j .low-child)
7: else
8: return
9: else
10: if Score(ũi,j .v, Ti) > � k

t �-th
score then

11: Update � k
t �-th score for i-th

index tree τi and the ranked search result
list for ˜F .

12: return the final top-k documents for ˜F.

4. MLSB-Tree and BIF Generation: TP uses Algorithm 4 to generate
MLSB-Tree τ1, . . . , τs and BIF F = {τ1, . . . , τs}.

5. Encrypted MLSB-Tree and Encrypted BIF Generation. TP encrypts
F using Algorithm 5 and sends encrypted ˜F to CS. τi and τ̃i are isomorphic
(i.e.τi

∼= τ̃i) [16]. Thus, the search capability of tree is still well maintained.
6. Trapdoor Generation. Based on query request from DU , TP generates

Q = {Q1, . . . , Qs} and T = {T1, . . . , Ts} using Algorithm 6, and sends T to
CS.

7. Search Process. (1) Query Preparation: DU send query requests and
attribute identifications to TP . If validating queries are valid, TP gener-
ates trapdoors and initiates search queries to CS. If access control passes,
CS performs searches and returns top-k documents to DU . Otherwise CS
refuses to query. (2) Calculate Matching Score for Query on MLBS-Treeτi:

Score(ũi,j .v,Ti)={MT
i,1ui,j .v1,MT

i,2ui,j .v2}·{M−1
i,1 Qi,1,M−1

i,2 Qi,2}=uT
i,j .v·Qi
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(3) Search Algorithm for BIF : the greedy depth-first search (GDFS) algo-
rithm for BIF as shown in Algorithm6.

2.4 Security Improvement and Analysis

Adversarial Learning. Padding random noise into the data [1,8,19] is a pop-
ular method to improve security. However, pseudo-keyword padding that fol-
lows different probability distributions will reduce query precision to varying
degrees [1,8]. Therefore, it is necessary to optimize the probability distribu-
tion that controls pseudo-keyword padding. To address this, adversarial learn-
ing [4] for optimal pseudo-keyword padding is proposed. As shown in Fig. 2.
Searcher Network S( ε) : The search result is generated by taking the ran-
dom noise ε (the object probability distribution p(ε)) as an input and perform-
ing a search, and supplies the search result to the discriminator network D(x).
Discriminator Network D( x): The input has an accurate actual result or
search result and attempts to predict whether the current input is an actual
result or a search result. One of the inputs x is obtained from the real search
result distribution p(x), and then one or two are solved. Classify problems and
generate scalars ranging from 0 to 1. Finally, in order to reach a balance point
which is the best point of the minimax game, S(ε) generates search results, and
D(x) (considered as adversary) considers the probability that S(ε) produces the
accurate real results is 0.5, i.e. it is difficult to distinguish between padding and
without-padding, thus it can achieve effective security [19].

Fig. 2. Searching Adversarial Networks

Similar to GAN [4], to learn the searcher’s distribution ps over data x, we define
a prior on input noise variables pε(ε), then represent a mapping to data space
as S(ε; θs), where S is a differentiable function represented by a multi-layer
perception with parameters θg. We also define a second multi-layer perception
D(x; θd) that outputs a single scalar. D(x) represents the probability that x
came from the data rather than ps. We train D to maximize the probability of
assigning the correct label to both training examples and samples from S. We
simultaneously train S to minimize log(1 − D(S(ε))): In other words, D and S
play the following two-player minimax game with value function V (S,D):

min
S

max
D

V (D,S) = Ex∼pdata(x)[log D(x)] + Ex∼pε(ε)[log(1 − D(S(ε)))]
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Security Analysis. Index confidentiality and query confidentiality: ASPE app-
roach [15] is widely used to generate secure index/query in privacy-preserving
keyword search schemes [1,6,8,13,16] and its security has been proven. Since
the index/query vector is randomly generated and search queries return only
the secure inner product [1] computation results (non-zero) of encrypted index
and trapdoor, thus CS is difficult to accurately evaluate the keywords including
in the query and matching top-k documents. Moreover, confidentiality is further
enhanced as the optimal pseudo-keyword padding is difficult to distinguish and
the transformation matrices are harder to figure out [15].

Query Unlinkability: By introducing the random value ε (padding pseudo-
keyword), the same search requests will generate different query vectors and
receive different relevance score distributions [1,16]. The optimal game equilib-
rium for precision and privacy is obtain by adversarial learning, which further
improves query unlinkability. Meanwhile, SAN are designed to protect access
pattern [19], which makes it difficult for CS to judge whether the retrieved
ranked search results come from the same requests.

Keyword Privacy: According to the security analysis in [16], for i-th index
partition, aiming to maximize the randomness of the relevance score distri-
bution, it is necessary to obtain as many different

∑

ενi
as possible (where

νi ∈ {j|Qi[j + Ni] = αi, j = 1, . . . , Ui}; in [16], αi = 1). Assuming each index
vector has at least 2ωi different

∑

ενi
choices, the probability of two

∑

ενi
share

the same value is less than 1
2ωi

. If we set each εj ∼ U(μ′
i − δi, μ

′
i + δi) (Uniform

distribution), according to the central limit theorem,
∑

ενi
∼ N(μi, σ

2
i ) (Nor-

mal distribution), where μi = ωiμ
′
i, σ2 = ωiδ

2
i

3 . Therefore, it can set μi = 0 and
balance precision and privacy by adjusting the variance σi in real-world applica-
tion. In fact, when αi ∈ [0, 1] (floating point number), SAN can achieve stronger
privacy protection.

3 Experimental Evaluation

We implemented the proposed scheme using Python in Windows 10 operation
system with Intel Core i5 Processor 2.40 GHz and evaluated its performance
on a real-world data set (academic conference publications provided by IEEE
xplore https://ieeexplore.ieee.org/, including 20,000 papers and 80,000 different
keywords, 400 academic conferences were randomly selected as data owners DO).
All experimental results represent the average of 1000 trials.

Optimal Pseudo-Keyword Padding. The parameters controlling the proba-
bility distribution (using SAN to find or approximate) are adjusted to find the
optimal game equilibrium for query precision Pk (denoted as x) and rank privacy
protection P ′

k (denoted as y) (where Pk = k′/k, P ′
k =

∑ |ri − r′
i|/k2, k′ and ri

are respectively the number of real top-k documents and the rank number of
document in the retrieved k documents, and r′

i is document’s real rank number
in the whole ranked results [1]). We choose 95% query precision and 80% rank

https://ieeexplore.ieee.org/
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privacy protection as benchmarks to get the game equilibrium score calculation
formula: f(x, y) = 1

95x2+ 1
80y2 (objective function to be optimized). As shown in

Fig. 3, we find the optimal game equilibrium (max f(x, y) = 177.5) at σ1 = 0.05,
σ2 = 0.08, σ3 = 0.12. The corresponding query precision are: 98%, 97%, 93%.
The corresponding rank privacy protection are: 78%, 79%, 84%. Therefore, we
can choose the best value of σ to achieve optimal pseudo-keyword padding to
satisfy query precision requirement and maximize rank privacy protection.

Fig. 3. With different choice of standard deviation σ for the random variable ε. {(a)
query precision (%) and rank privacy protection (%); (b) game equilibrium (score). explanation
for σ ∈ [0.01, 0.2]: When σ is greater than 0.2, the weight of the pseudo-keyword may be greater
than 1, which violates our weight setting (between 0 and 1), so we only need to find the best game
equilibrium point when σ ∈ [0.01, 0.2]}.

Fig. 4. Time cost of query for 1000 random searches in 500 sizes of data set. (a)
Comparison of tree-based search efficiency. Since the query is random, the search time fluctuates,
which causes the curves in the graph to have intersections; (b) Comparison of MLSB-Tree and BIF
search efficiency.

Search Efficiency of MLSB-Tree. Search efficiency is mainly described
by query speed, and our experimental objects are index trees that are struc-
tured with different strategy: EDMRS [16] (ordinary balanced binary tree),
MKRS MO [6] (grouped balanced binary tree), MRSM SAN (globally grouped
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balanced binary tree), MRSM SAN MLSB-Tree. We first randomly generate
1000 query vectors, then perform search on each index tree respectively, finally
take the results of 20 repeated experiments for analysis. As shown in Fig. 4(a),
the query speed and query stability based on MLSB-Tree are better than other
index trees. Compared with EDMRS and MKRS MO, query speed increased by
21.72% and 17.69%. In terms of stability, MLSB-Tree is better than other index
trees. (variance of search time(s): 0.0515 [6], 0.0193 [16], 0.0061 [MLSB-Tree]).

Search Efficiency of BIF. As shown in Fig. 4(b), query speed of MRSM SAN
(with MLSB-Tree and BIF) is significantly higher than MRSM SAN (only with
MLSB-Tree), and the search efficiency is improved by 5 times and the stabil-
ity increase too. This is just the experimental result of 500 documents set with
the 4000-dimension keyword dictionary. After the index clustering operation,
the keyword dictionary is divided into four sub-dictionaries with a dimension
of approximately 1000. As the amount of data increases, the dimension of the
keyword dictionary will become extremely large, and the advantages of BIF
will become more apparent. In our analytical experiments, the theoretical effi-
ciency ratio before and after segmentation is: η = s O(log N)

O(log N)−O(log s) ,where s is
the number of index partitions after fast index clustering, and N is the number
of documents included. When the amount of data increases to 20,000, the total
keyword dictionary dimension is as high as 80,000. If the keyword sub-dictionary
dimension is 1000, the number of index partitions after fast index clustering is
80, the search efficiency will increase by more than 100 times (η = 143). This will
bring huge benefits to large information systems, and our solutions can exchange
huge returns with minimal computing resources.

Comparison of Search Efficiency (Larger Data Set). The efficiency of
MRSM SAN (without BIF) and related works [1,6,8,16] are show as Fig. 5(a),
and the efficiency of MRSM SAN(without BIF) and MRSM SAN(with BIF) are
show as Fig. 5(b). It is more notable that the maintenance cost of scheme based
on BIF is much lower than the cost of scheme only based on a balanced index tree.
When the data owner has added a new document to the cloud server, and TP
needs to insert a new index node in the index tree of the cloud server accordingly.
If it is only based on an index tree, it must search for at least O(log N) times
search and at least O(log N) times data updates, the total cost is 2O(log N)
(where N is the number of index vectors that contained by the index tree). But
BIF is very different, because we group all index vectors into s different index
partitions. We assume that the number of index vectors in each partition is equal
so we need to spend the same update operation for each partition, which makes
the overhead is only 2(O(log N) − O(log s)). Moreover, the increase in efficiency
is positively correlated with the increase in data volume and data sparsity.
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Fig. 5. Time cost of query for the same query keywords (10 keywords) in different
sizes of data set. {(a) Experimental results show that our solution achieves near binary search
efficiency and is superior to other existing comparison schemes. As the amount of data increases, our
solution has a greater advantage. It’s worth noting that this is just the search performance based on
MLSB-Tree; (b) Comparison of MLSB-Tree and BIF. Based on experimental analysis, it concludes
that when data volume grows exponentially data features become more sparse, if all index vectors
only rely on an index tree to complete the search task, the computational complexity will be getting
farther away from O(log N). Sparseness of data features makes the similarity between index vectors
is mostly close to zero or even equal to zero, which brings trouble to the pairing of index vectors.
Moreover, the construction of balanced index tree is not global order, so it is necessary to traverse
many nodes in the search, which proves the limitation of balanced binary tree [6,16]. We construct
MLSB-Tree with maximum likelihood method and probabilistic learning. Interestinglythe closer the
number of random searches is to infinity, the higher the search efficiency of obtained index tree, this
makes the computational complexity of search can converge to O(log N)}.

4 Discussion

This paper proposes secure and efficient MRSM SAN, and conducts in-depth
security analysis and experimental evaluation. Creatively using adversarial learn-
ing to find optimal game equilibrium for query precision and privacy protection
strength and combining traditional SSE with uncertain control theory, which
opens a door for intelligent SSE. In addition, we propose MLSB-Tree, which
generated by a sufficient amount of random searches and brings the computa-
tional complexity close to O(log N). It means that using probabilistic learning to
optimize the query result is effective in an uncertain system (owner’s data and
user’s queries are uncertain). Last but not least, we implement flexible dynamic
system maintenance with BIF, which not only reduces the overhead of dynamic
maintenance and makes full use of distributed computing, but also improves the
search efficiency and achieves fine-grained search. This is beneficial to improve
the availability, flexibility and efficiency of dynamic SSE system.
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Abstract. In recent years, we have seen a massive blockchain adoption
in cryptocurrencies such as Bitcoin. Following the success of blockchain
in cryptocurrency industry, many people start to explore the possibility
of implementing blockchain technology in different fields. In this paper,
we propose Smart Stamp Duty, a system which can revolutionize the way
stamp duty (document tax) is managed and paid. The proposed Smart
Stamp Duty offers significant improvements on the convenience when
paying stamp duty by removing the need of physical revenue stamp. At
the same time, the blockchain technology also provides the auditability
of the recorded data. Smart stamp duty enables the expansion of the
existing electronic stamp duty application to retail level. Smart stamp
duty also enables the taxpayers to pay the stamp duty of their electronic
documents. Our proposed system also enables the taxpayers to convert
their electronic documents into physical documents while still maintain
the ability to refer the electronic-based stamp duty payments.

Keywords: Blockchain · Smart contract · Electronic document ·
Taxation

1 Introduction

According to 2018 Indonesia State Budget, taxation is the major source of state
revenue, comprising 1.6 quadrillion Rupiah. The number has sharply increased
from 1.47 quadrillion Rupiah in 2017 [9–11,15]. The increase of taxation target
in 2018 is due to several assumptions, including automatic exchange of informa-
tion (AEoI), tax incentives, and improvements on human resources, information
technology, and taxation services to the taxpayers [10].

Stamp duty is a state tax levied on specific types of documents. Stamp duty is
categorised as “Other Taxes” category in Indonesia’s with a total revenue target
c© Springer Nature Switzerland AG 2019
Y. Mu et al. (Eds.): CANS 2019, LNCS 11829, pp. 199–213, 2019.
https://doi.org/10.1007/978-3-030-31578-8_11
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of 9 trillion Rupiahs [9]. This target is about 0.6% of the overall 2018 revenue,
increasing 11% from the 2017 state budget. Despite the small percentage the
stamp duty target carries, Directorate General of Taxes (DGT) as the Indonesian
Tax Authority looks for revenue improvements in this area [17]. Online trans-
actions should be evaluated as the users might also need to pay stamp duties
on the electronic documents, aside from the paper-based documents, involved in
the business [21].

1.1 Problem Definition

Indonesian stamp duty is currently only levied on paper-based documents, as
defined in the Stamp Duty Act 1985 [13]. The taxpayers need to attach phys-
ical revenue stamps, sign them properly, write the dates, and only then the
tax payments are deemed valid. The problem with physical stamp is that it is
inconvenient to get, because the taxpayers need to buy the physical stamps on
brick-and-mortar stores to be attached on their physical documents.

There is also a limited use of computerized stamp duty which is only valid
under certain circumstances [16]. To use the computerized stamp duty, the tax-
payers need to purchase tax credits. The amount of the tax credits to be pur-
chased is based on their estimated number of documents they will create in
the following month. However, not everyone is allowed to use the computerized
stamp duty. Only those who create at least one hundred documents per day
subject to stamp duty are allowed to use the mechanism.

The existing stamp duty mainly focuses on physical documents; hence, the
physical stamp is required. However, as technology advances, computerization
changes the way people conduct their business. Electronic documents are more
convenient to create, manage, and process compared to physical documents.
Although these electronic documents may be owed stamp duty, it is infeasible
for the taxpayers to purchase physical stamps and attach them to the electronic
documents [5].

In summary, we identify the gap of using computerized stamp duty where
individuals or companies that prefer to use electronic documents where these
documents are taxable by the stamp duty regulations. Several solutions have
been proposed to solve the problem [7,21]. However, the usability and correctness
of the data stored in the proposed solutions are questionable, where the payment
proofs are stored in traditional information systems without any proper auditable
features by all parties.

1.2 Our Contribution

Considering the current limitation of both physical and electronic stamp duty
mechanism, we propose a new blockchain-based electronic stamp duty as an
effort to increase the stamp duty revenue by using technological advancement.
The system will increase the convenience of the taxpayers to pay the stamp duty
when creating taxable documents. The system can be utilised by all taxpayers
through information technology devices. The system will also provide a public
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verifiability to prove that an electronic document has the stamp duty paid. The
built-in cryptographic techniques also prevent forgery which happened in the
physical stamp duty [8].

We coin the term Smart Stamp Duty to refer to our proposed system which
utilises smart contract as well as blockchain technology to record information
and conduct predetermined business processes automatically based on the user’s
inputs and program logic. The smart contract is fully auditable, transparent to
its stakeholders, and the finality of the data is guaranteed. Moreover, its standard
features such as timestamp and digital signature fulfil the requirements of a valid
stamp duty. Smart contract is scalable; not only retail users but also wholesale
users can use the Smart Stamp Duty as long as there exist sufficient applications
to pose as user interfaces to communicate with the smart contract.

2 Background

2.1 Indonesian Stamp Duty

Indonesian Stamp Duty Act 1985 determines that there are documents (in the
physical form) owed stamp duty [13]. As a proof that the tax is paid, a form of
physical stamp is glued on the documents and signed [13]. The cost of the stamp
depends on the category of the document and the amount of money printed on
the document [13].

2.2 Blockchain

Blockchain was first applied in Bitcoin, a decentralized payment system intro-
duced by Satoshi Nakamoto [12]. The blockchain technology enables users to
create transactions without the need of proving their real identities. There is
no central authority controlling the system. Instead every user can verify and
validate transactions data by using a set of protocols.

Blockchain can be divided into three models based on its type of partici-
pants, namely public blockchain, private blockchain, and consortium blockchain
[18]. Public blockchain is a type of blockchain which allows everyone to partic-
ipate at any time and allows anyone to leave whenever they desire. A private
blockchain, as its name implies, is a closed system where the participants need
specific permissions from a central authority which controls the whole system.
Although blockchain is originally intended to remove the central authority, how-
ever in some cases the central authority is still required and cannot be removed,
for example due to legal requirements.

The last blockchain model is consortium blockchain. It is a combination
between public and private blockchain, where there will be several authorities
sharing the power equally among them to control the system, however the mem-
bership of the authorities is not open as in a public blockchain. Consortium
blockchain also applies access control mechanism where not everyone has access
to the blockchain.
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To replace the role of a central authority, blockchain utilises consensus mech-
anism to determine the canonical version of the record and rules who may write
new information for a given block. Proof-of-Work (PoW) and proof-of-stake
(PoS) are two most common consensus mechanisms for public blockchains. Con-
sortium or private blockchain might use different methods of consensus algorithm
that meet the system requirement.

2.3 Smart Contract

While Bitcoin’s blockchain has a limited set of operation codes (opcodes), smart
contract platforms such as Ethereum was created to support Turing-complete
application in the blockchain [20]. Smart contract is generally an application
stored in the blockchain. It receives inputs from the user, runs functions, and
generates outputs. The execution of the smart contract codes are generally exe-
cuted on-chain by the nodes of the network. As it is stored in the blockchain,
the codes are permanent and transparent, hence it offers fairness to the partici-
pants. A smart contract platform also inherits the same traits as other blockchain
systems, where the transaction data is visible and verifiable to anyone.

3 Related Work

3.1 Electronic Stamp Duty

The business model of electronic stamp duty is investigated by [7,21]. The Infor-
mation and Electronic Transaction Act 2008 has provided a foundation in which
the term document can be extended, not only in the physical form but also in
electronic form, since both forms are now considered as legal proofs in Indone-
sian jurisdiction [14]. Before the act was established, all legal proofs must be
printed and legalized, but now all electronic information no longer need to be
printed in physical form, and if the information is properly handled, it can be a
legal proof.

3.2 Blockchain Technology in Taxation

Blockchain does not only show its massive potential in the payment industry,
but also other areas such as taxation. Previous studies describe that blockchain
technology can mitigate the problem of tax losses due to international trades [1–
4]. The blockchain technology has been proposed to modernize Value-Added Tax
(VAT) [19]. In this case, the blockchain is utilized to enhance the information
openness across multiple authorities and, likewise, to share information between
those authorities.



Designing Smart Contract for Electronic Document Taxation 203

4 Smart Stamp Duty

4.1 Overview

Our system works in the blockchain environment where cryptographic techniques
such as digital signature and hash functions exist. We will define the term tokens
to refer to electronic money balance owned by a user. The tokens can be used to
pay the stamp duty in a smart contract provided by the Tax Authority. Before a
user pays the stamp duty, she needs to buy the tokens before paying the stamp
duty for each taxable document she creates. The transparency of the system
enables the actors of the system to verify and validate all information stored in
the blockchain.

4.2 The Blockchain

The blockchain as a shared database which can be used to store the data as well
as the smart contracts, and then run the smart contracts based on the input
provided by the users. In the proposed system, we use the consortium-based
permissioned blockchain model where the Tax Authority along with other trusted
participants such as government’s auditing bodies can validate new transactions
and secure the blockchain.

There will be multiple nodes running the system. These nodes can be man-
aged by multiple participants, for example banks, the tax authority, and the
monitoring bodies. Each of these participants keeps a copy of all transactions in
the system for auditability and accountability purposes. Although there can be
many nodes owned by different participants, the access rights will still need to
be set up by the Tax Authority as the system administrator.

4.3 The Smart Contract

The smart contract is a set of permanent codes stored in the blockchain. The
smart contract also stores information and runs application logic based on the
previously stored codes. The purpose of the smart contract is to make the appli-
cation logic transparent, auditable, and to let everyone sees information stored in
the smart contract. The smart contract of our solution will have several param-
eters to be set by the owner based on the regulations. The smart contract of our
solution is created and owned by the Tax Authority.

4.4 The Roles

We determine several roles involved in the system: the users, the bank, the Tax
Authority, and monitoring organisations. Each role has its own credentials to do
different activities.
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The Taxpayers. The taxpayers are using the system to pay their tax dues,
e.g. stamp duty. They interact with the system by using application interfaces
provided. The taxpayers interact with the banks or any retail sellers to buy
balance by using electronic money, credit cards, bank accounts, or cash. The
users produce the documents, pay the stamp duty, and send the documents to
other users. The users can also verify that the documents they receive have the
tax paid.

The Bank. The bank usually provides financial services to the users. In the
proposed system, the bank also provides a gateway to convert the local currency
to tokens to access the system. The bank ensures that the exchange system is
accessible by the taxpayers whenever they want to buy the tokens to be used to
pay the stamp duty. At the end of a predetermined period, the bank reports to
the tax authority regarding the amount of money collected from the taxpayers
and send all the money to the government’s account.

The Tax Authority. The Tax Authority has the authority to determine the
tax rate to be paid by the taxpayers. In our system, the Tax Authority controls
the blockchain system, including deploying or modifying the smart contracts
used to run the system. The Tax Authority could authorize other parties to get
involved in the system.

Tax Monitoring Organisations. The tax monitoring organisations help run-
ning the system by participating the closed consensus mechanism. In this mech-
anism, these organisations along with the Tax Authority determine the transac-
tions to be stored in the blockchain. These organisations can have access to the
system and the information stored in it.

4.5 The Applications

The applications are the interface between the users and the blockchain/smart
contract. The applications used by different actors can be different based on
their own authority. The application used by The Tax Authority may have the
ability to modify the variables (by using the appropriate private keys), but the
users can only add new records.

There can also be some additional applications to conduct the business, such
as word extractor which enables the user to create the appropriate Bloom Filter
to supply the stamp duty payment. Bloom Filter checker will also be required
for validation in case the user prints the electronic documents and the printed
documents require verification. However, these additional applications are not
discussed in this paper.
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4.6 The Token

Tokens are numbers stored in a smart contract and can be moved from an address
to other addresses. The tokens are not intended to replace Indonesian national
fiat currency as it will violate Indonesian Currency Act 2011. Tokens are used as
proofs that the taxpayers have purchased tax credits which can be used to pay
stamp duty. The tax credits are in the form of the balance of addresses. Only
one token type will be created and available in the Smart Stamp Duty system,
where the number of tokens can be increased or reduced by the Tax Authority.

4.7 Core Business Process

The core business process is shown in Fig. 1. A simple description for each activ-
ity is as follows.

1. User A creates an electronic document (e-document) subject to stamp duty.
The electronic document can be in any form (word processor, spreadsheet,
raw data, etc).

2. User A purchases tokens from a bank which can be used to pay the stamp
duty. The user informs the bank of her “address”.

3. The bank credits the tokens to the user’s address by sending the correct
transaction to the smart contract. The token balance can be checked by User
A.

4. User A converts the electronic document into a protected format (i.e. PDF
format), then computes the hash value of the e-document. The user then
creates a transaction to put the hash value of the document to the smart
contract. The transaction will decrease User A’s token balance based on the
stamp duty paid.
The original document that has been signed needs to be kept by User A, while
a new copy of the original document can be modified to include the receipt
of the transaction.

5. The bank routinely provides a report to the Tax Authority regarding the
total amount of balance purchased by taxpayers. The report can also be sent
automatically or by using a specific interface.

6. The Tax Authority rechecks the report received from the bank to the actual
transactions in the smart contract. The process can also be converted into an
automatic job.

7. User A sends both the original copy and the paid copy of the electronic
document to User B.

8. User B checks whether the stamp duty has been paid by querying the
blockchain.

New users can join the system immediately by creating new public key pairs.
All transactions can be read by all actors, thus reduce the risk of fraud.
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Fig. 1. The core business process of the Smart Stamp Duty.

4.8 The Parameters

Based on the business process we have defined, we then determine the detailed
information to be stored in the smart contract. There are 3 types of the data:
account parameters, system parameters, and transaction parameters.

Account Parameters. Account parameters are information regarding the
token balance of the users. A new account will be created for a new user contain-
ing at least the user’s public key and an initial token balance (can be zero). The
public key cannot be modified while the token balance will always be recalculated
by the smart contract based on new transaction parameters.

System Parameters. System parameters are information required to run the
system. The smart contract looks up to the system parameters before executing
transactions. The smart parameters are determined by the Tax Authority based
on the existing regulations. The parameters can always be changed whenever
the regulation changes. The system parameters contain at least the following:

– The cost of the stamp.
– The regulation references.

The system parameters can be stored on the same script of the main smart
contract or be put on a different script.

Transaction Parameters. Transaction parameters are information regarding
stamp duty transaction created by the users. To satisfy the existing regulation
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on stamp duty, the information items required for a valid transaction are the
following:

– The public key of the taxpayer.
– The amount of the tax paid.
– Timestamp of the document.
– Hash value of the document.
– The payer’s signature.

In the real world, it might be possible for the taxpayers to create identical
documents multiple times, hence they produce an identical hash value. Thus,
to minimize the occurrence, it is possible to add unique information into the
documents, such as public keys of the taxpayers or their tax file number and the
document creation time.

4.9 The Program Logic

Based on the business process and the parameters, it is possible to determine
the program logic needed to run the system. All the program logic are run by
the smart contract independently.

System Parameter Definition. If the regulation changes, then the Tax
Authority can change the system parameter by sending a new transaction. The
smart contract checks if all required data is satisfied by the new transaction then
stores the new parameter. The system parameters are defined in Sect. 4.8.

Token Transaction. Activities related to tokens are: token creation, token
distribution and token sales, and lastly stamp duty payment.

– Token creation. As a central controller, Tax Authority is the only party that
is given the authority to create tokens. The number of tokens to be created
depends on the need. It is also possible to “mint” or create more tokens
as required. However, during contract creation, token amount can also be
initialized.

– Token distribution and token sales. Based on existing regulations, the Tax
Authority can distribute the tokens to authorized participants such as banks
and post office. The authorized participants can sell the tokens to any sec-
ondary markets such as distributors and retailers or sell them directly to end
users (taxpayers).

– Stamp duty payment. If the user wants to pay the stamp duty, then the user
creates a new transaction to do so. The smart contract first checks if there
is enough balance in the user’s account, checks if required data is supplied.
If everything is satisfied, then the smart contract reduces the amount of the
stamp duty to be paid in the user’s balance before storing the document data
in the smart contract. To prove that the user has paid the cost, the tokens
will be sent to the Tax Authority’s address. The tokens will be accumulated
by the Tax Authority which will be used for audit or reconciliation when
calculating the real number of tax paid in fiat currency.
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Tax Payment Audit. For the purpose of audit, the tokens received by the Tax
Authority will not be recirculated. When the audit is finished, then the same
number of tokens verified to be the stamp duty revenue could be sent to an
unusable address (an address without known private key) such as zero address.

The scope of the audit can be expanded such that auditing bodies can directly
assess and monitor the system and evaluate the data in a real time. By using
blockchain as a shared ledger, the amount of token that has been sold and the
amount of token that has been spent will be easy to calculate.

4.10 Transaction Fee

Assuming the blockchain will run in a permissioned environment, then it is pos-
sible to waive transaction fees for all transactions created within the system. It
is assumed that the Tax Authority will not abuse the system by flooding the sys-
tem by sending system parameter-defining transactions. It is also assumed that
when creating transactions, the Bank and the User need to have enough balance
to pay the stamp duty. Without a proper information supply, the transaction
will not be processed and confirmed by the system.

However, without any transaction fee, the system is prone to abuse by par-
ticipants, for example creating many transactions to their own addresses to slow
down the entire system. To avoid the useless transaction flooding, a small trans-
action fee can be introduced such that creating many transactions will be costly
to the attacker. The implementation of transaction fee is beyond the scope of
this paper.

4.11 Security Model

We define two possible attacks to the proposed system as follows.

1. An adversary tries to mint new token without authorization.
2. Malicious bank tries to reduce the report provided to Tax Authority to keep

the tax money illegally.

In a system where Tax Authority is assumed to be always honest and no security
vulnerability is found on the blockchain system and assuming that the crypto-
graphic techniques are secure, then:

1. The probability of an adversary to mint their own token is negligible; a token
can only be minted by authorized party, which is Tax Authority.

2. The probability of a malicious bank modifying the report without being
detected is also negligible, given the auditability feature of the blockchain.

5 Implementation and Evaluation

We have implemented our solution which can be deployed on Ethereum
blockchain. Ethereum-like private blockchain environment such as Quorum1 is
preferred during implementation phase because of the following consideration.
1 https://www.jpmorgan.com/country/US/EN/Quorum.

https://www.jpmorgan.com/country/US/EN/Quorum
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– A wide number of contributors and software developers that develop and use
Ethereum system provide confidence for future improvements.

– Much peer-reviewed research has been conducted on Ethereum in terms of its
security. Its security vulnerabilities have been well-discussed and documented.
This provides a great assistance in developing secure system.

– Ethereum system has endured severe attacks and exploits since the first
launch and proves its durability.

Our solution consists of two parts: the smart contract and the user interface.
The smart contract code is available on Github2. The user interface was written
in Python and it is also available on Github3.

The smart contract uses a standard ERC-20 as its foundation which adds the
capability of being traded on ERC-20 token markets due to its compatibility.
We call the token Smart Stamp Duty (SSD). As with other ERC-20 tokens, our
SSD is transferrable. Before paying the stamp duty, the user needs to buy the
SSD token. Aside from SSD token, the native token Ether also exists in Ethereum
environment. The transaction fee is paid by using Ether, while the amount of the
fee is determined by calculating the complexity of the smart contract, expressed
by gas. The gas is then converted into Ether by determining a conversion rate
called gas cost or gas price. For simplification, the gas cost can be set to 0 Ether
such that paying Ether will not be necessary in the implementation.

The main component, class StampDuty, contains two important data struc-
tures to contain information related to our solution, namely StampParam and
PayParam. Each structure will be further explained.

5.1 Implementing Data Structures

StampParam. StampParam, contains information about types of stamp duty.
Currently, there are only two stamps available which have different denomina-
tions: “Rp3000” and “Rp6000”4. Below is the detail of the StampParam struc-
ture.

– StampCode, to store stamp primary key (unique).
– StampName, to store human-readable stamp information.
– StampPrice, to store the price of the stamp.
– RegulationReference, to store the regulation reference of the stamp.
– IsActive, to flag active and inactive stamps.

StampParam is the master table for the stamp duty. Its importance is shown by
only allowing the owner (i.e. the Tax Authority) to add and modify the data.

2 https://github.com/sonicskye/smart-stamp-duty.
3 https://github.com/sonicskye/smart-stamp-duty-ui.
4 Rp stands for Rupiah, the Indonesian national currency.

https://github.com/sonicskye/smart-stamp-duty
https://github.com/sonicskye/smart-stamp-duty-ui
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PayParam. The second structure, PayParam, contains stamp duty payment
data. A user adds a PayParam information every stamp duty paid. The PayParam
structure is shown below.

– PayCode, works as the primary key of the payment (unique).
– DocHash, stores the hash value of the document related to the paid stamp.
– PayIndex, to store the index of the payment.
– Payer, to store the payer address.
– StampCode, to refer to the stamp paid by the transaction.
– BloomFilter, to store Bloom Filter information for testing.
– TimeStamp, to store timestamp in integer format.
– TimeStampStr, to store timestamp information in string format.
– PayerSignature, to store the payer’s signature.

As a unique key, the PayCode can be generated by a hash function H of multi-
ple information, such as DocHash, Payer, StampCode, and Timestamp when the
document is submitted such that:

PayCode = H(DocHash‖Payer‖StampCode‖Timestamp)

where the symbol (‖) is concatenation operation. PayerSignature is generated
by a signing function SIGN using Ethereum’s library under the following for-
mula:

PayerSignature = SIGN(DocHash, PrivateKey)

where PrivateKey is the private key owned by the payer, associated to the
payer’s address which is stored in Payer variable. Aside from the two data struc-
tures, there are also built-in functions to manage the system, including token
minting and token burning to control the token supply.

Bloom Filter [6] value of the document is also recorded on the smart con-
tract. It supports content matching mechanism when printing the electronic
document into paper-based document. The value BloomFilter can be used to
verify that the electronic and paper-based versions are identical. When comput-
ing the BloomFilter, the system will list all words in the document under a
parameter set, including number of words. The verification is done by sampling
keywords from the document. If the verification passes, then we can conclude
that the paper-based document is identical to the electronic version of it.

5.2 Implementing Content Matching

The content matching feature is implemented in our source code. The feature
simply tests a set of input strings which comes from a document against a Bloom
Filter value taken from the claimed electronic stamp duty. The input can either
be done manually or automatically, where the topic is beyond the scope of the
paper. The content matching protocol is as follows.
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– Determine the document W and its associated Bloom Filter value
BloomFilter which can be retrieved by querying the smart contract using
PayCode.

– Extract all distinct words w from the input document W such that W =
{w1, w2, w3, . . . , wn} where n is the number of distinct words.

– For each word w, check whether w ∈ BloomFilter. Store the result in R.
– The result is the percentage of True in R against the value n.
– The expected value is 100%. This result determines that there is a high prob-

ability that the document W is identical to the original document. Due to
the false positive rate in Bloom Filter, it can never be confirmed that the
examined document is identical to the original document.

6 Evaluation

6.1 System Evaluation

We deployed our implementation by using Truffle and Ganache as development
environment in a private Ethereum network. The PayParam contains data dupli-
cates such as timestamp and the payer’s signature which are actually embedded
in the transaction data and in the block where the transactions are included.
However, reading the timestamp and signature directly from the block requires
enormous computing power. When we tried this, the Ganache which we used as
a node in our development environment crashed every time the code was tested.

To reduce the computing resources to read the transaction signatures and
the block’s timestamp. PayParam explicitly includes the payer’s signature and
data creation timestamp such that they can be read directly from the smart
contract. As the result of this extra information, the required transaction fee
doubled from around 235,000 gas to more than 450,000 gas.

6.2 Security Evaluation

Our system is designed to be implemented in Ethereum-like private blockchain
environment where the Tax Authority poses as the central authority to control
the whole system. It is assumed that the Tax Authority behaves honestly and
never gives the tokens for free to any users and never leaks the private keys
to the adversary. It is also assumed that the system does not have severe bugs
which can be exploited by the adversary. In this scenario, it is infeasible for the
adversary to create SSD tokens without a proper authorisation from the Tax
Authority.

7 Conclusion and Future Work

We have described a new blockchain-based electronic stamp duty in the system
we call Smart Stamp Duty (SSD). The proposed system aims to expand the tax
base for the stamp duty as it enables the recording of electronic documents’
stamp duty payments. The benefit of our solution is threefold:
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1. to increase the convenience for the taxpayers to pay the stamp duty,
2. to increase the state revenue in the stamp duty sector, and
3. to increase the transparency and auditability of the stamp duty mechanisms.

Our solution also enables the format conversion of the document from electronic
format into paper-based format where the integrity of both documents can be
verified.

For future work, we plan to evaluate the privacy issue of our proposed smart
contract system. It is possible that the users’ privacy is analysed based on the
pattern of the transactions, thus expose risks on their privacy. We will develop
mitigation strategies based on our analysis and implement them on the next
version of our design. We also plan to evaluate the privacy issues of our system.
Although the users will not put their identities on the blockchain, empirical
analyses can be conducted to evaluate and discover the users, including their
behaviors, locations, or even their real identities.
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Abstract. Blockchain provides a distributed ledger recording a glob-
ally agreed, immutable transaction history, which may not be suitable
for Fintech applications that process sensitive information. This paper
aims to solve three important problems for practical blockchain applica-
tions: privacy, authentication and auditability.

Private transaction means that the transaction can be validated with-
out revealing the transaction details, such as the identity of the trans-
acting parties and the transaction amount. Auditable transaction means
that the complete transaction details can be revealed by auditors, regula-
tors or law enforcement agencies. Authenticated transaction means that
only authorized parties can be involved in the transaction. In this paper,
we present a private, authenticated and auditable consortium blockchain,
using a number of cryptographic building blocks.

Keywords: Blockchain · Privacy

1 Introduction

Blockchain is a fast-growing field of technology since it is recognized as the
core component of Bitcoin [10]. Blockchain can serve as a distributed ledger
in a peer-to-peer network to provide publicly verifiable data. Blockchain can be
mainly classified into three categories: public, private and consortium blockchain.
The public blockchain is an open, permissionless system such that every one is
allowed to join as a user or miner freely. Bitcoin and most cryptocurrencies
falls into this category. Public blockchain is suitable for decentralized network
without trusted authority. However, they usually have limited throughput. The
private blockchain is a closed, permissioned system such that a user must be
validated in order to use the system. It is a traditional centralized system with
auditability attached. The consortium blockchain is a partly private blockchain.
The submission of transactions can be performed by many (authorized) users,
but the verification of transactions is only permitted by a few predetermined
parties. Consortium blockchain provides a higher efficiency (more than 10 K
transactions per second (tps)) than the public blockchain, without consolidating
power with a single party as the private blockchain. Consortium blockchain is
suitable for organizational collaboration.
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Consortium blockchain received a great interest from the industry due to the
similarity with the existing business model, especially in the finance industry.
Hyperledger, an umbrella project of open source consortium blockchain, has 130
members including members from the IT industry (e.g., IBM, Intel) and the
financial industry (e.g., JP Morgan, American Express).

Privacy in Blockchain. Privacy is important for commercial system, especially
in the financial sector where money is transferred from one party to another. No
one would like to have his bank account transaction history posted on a public
blockchain. We define three key privacy properties that we want to achieve in
this paper:

1. Sender Privacy: the sender’s identity is not known by any third party and two
valid transactions of the same sender should not be linked.

2. Recipient Privacy: the recipient’s identity is not known by any third party and
two valid transactions of the same recipient should not be linked.

3. Transaction Privacy: the content of the transaction is not known by any third
party. General transaction privacy for smart contract is difficult to achieve
without using general zero-knowledge proof of circuit or fully homomorphic
encryption, which are both not quite practical. In this paper, we only consider
the privacy for transaction amount.

The above conditions should hold for any third party (including the parties
running the consensus algorithm). Cryptocurrencies such as Monero and Zcash
offer privacy in the public blockchain. There are also a number of academic and
industrial solutions for privacy-preserving consortium blockchain. Details will be
discussed in Sect. 3.1.

Our Contributions: Privacy, Authenticated and Auditable in Consor-
tium Blockchain. Auditability is essential for financial blockchain applications
and unconditional anonymity may not be desirable. Financial institution has to
undertake both internal and external audit for checking if there is any money
laundering or terrorist-related activities, under regulations from the government.
Auditing is usually performed by sample checking of all transaction records. In
case of court order, the institute has to provide the complete information of a
particular transaction to the court. For all of the above situations, the privacy
of certain transaction has to be revoked if necessary. For simplicity, we denote
the party to legally revoke privacy as the auditor.

Authentication is important for consortium blockchain in two aspects. First,
the consortium companies need to ensure that the user is authenticated to use the
system (e.g., he has paid/subscribed for the blockchain service). The consortium
companies do not earn from the “mining” process and no new coin is generated
from consortium blockchain. Second, authentication is useful for tracing real user
identity during the auditing process. If users can transact in the consortium
blockchain without registration, then the auditor can only discover the self-
generated public key after opening the transaction. The real world identity can
only be recovered if the user was registered before and is authenticated during
the transaction.
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Table 1. Comparison with existing privacy-preserving blockchain schemes

Sender

privacy

Recipient

privacy

Transaction

privacy

Auditability Authentication Efficiency

Public

blockchain

Monero/RingCT-based

solutions

Zcash/zk-SNARK-based

solutions

DAP [8]

Consortium/

Private

blockchain

R3 Corda, [9],

Hyperledger Fabric

Fabric experiment

PRCash [15]

This paper

In this paper, we show how to construct a private, authenticated and
auditable consortium blockchain: PAChain. We give the sender privacy, recipi-
ent privacy and transaction privacy by three separate modules. Auditability is
provided for all three modules. Authentication is analyzed for the sender privacy
and recipient privacy modules. It allows us to analysis the security of each mod-
ule clearly. It gives the flexibility for system architects to choose the properties
according to the business requirements. Therefore, our construction is suitable
to be deployed in real world business use cases. In our construction, we use a
number of cryptographic techniques (e.g., anonymous credential, zero-knowledge
range proof, additive homomorphic encryption) and modify them for higher effi-
ciency in consortium blockchain. Table 1 gives the comparison of our paper and
related works described in Sect. 3.1.

2 PAChain Overview

In this paper, we show the high level overview of how to achieve privacy and
auditability in consortium blockchain.

2.1 System Model

In blockchain system, clients can submit transactions (Tx) to nodes running the
consensus algorithms. The nodes validate the Tx and add it to a block. In this
paper, we extend the system model of Hyperledger Fabric 1.01, which is designed
for consortium blockchain. Transactions have to be endorsed by endorsers and
only endorsed Txs can be committed.

1 Hyperledger Fabric Architecture Explained. http://hyperledger-fabric.readthedocs.
io/en/latest/arch-deep-dive.html.

http://hyperledger-fabric.readthedocs.io/en/latest/arch-deep-dive.html
http://hyperledger-fabric.readthedocs.io/en/latest/arch-deep-dive.html
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There are five types of nodes in PAChain:

1. Client: A client invokes a Tx to the endorsers, and also broadcasts the
transaction-proposals to the orderer.

2. Peer: There are two types of peers. Endorser checks the validity of the Tx
submitted by the client. Committing peers commits Txs and maintains the
ledger. Note that a peer can play the role of endorser and committing peers
at the same time.

3. Orderer: A node running the service of ordering Txs. Consensus algorithm is
run between many orderers.

4. Auditor: The auditor can recover the sender identity, recipient identity and/or
the Tx amount of any transaction.

5. Certificate Authority(CA): CA issues certificate for the public key of clients.
Only authorized party can be involved in a Tx.

UTXO Model for Digital Assets. The model of Unspent Transaction Out-
puts (UTXO) is used in many blockchain systems, such as Bitcoin. If a user
wants to spend his digital assets in a Tx, he has to refer to the specific assets
that he wants to spend. If he spends the same asset twice, the verifier will notice
it and will reject the Tx. In this paper, we consider the general UTXO model
for digital assets and provides anonymity for their transactions2.

Transaction Workflow. Assume that the client obtains a certificate from the
CA. The basic workflow of a transaction (Tx) is as follows:

1. The client creates a signed Tx and sends it to endorser(s) of its choice.
2. Each endorser validates a Tx and produces an endorsement signature.
3. The submitting client collects endorsement(s) for a Tx and broadcasts it to

the orderers.
4. The orderers deliver the block of ordered Txs to all peers.
5. The committing peer checks if every ordered Tx is endorsed correctly accord-

ing to some policy. It also removes double-spending Tx endorsed by different
endorsers concurrently (only the first valid Tx is accepted). If the checking is
correct, it commits Txs and maintains the state and a copy of the ledger.

The auditor can recover the sender identity, recipient identity and the transaction
amount of the Tx if necessary.

2.2 High-Level Description of PAChain

We briefly describe how we can achieve privacy and auditability in our PAChain.
Generally speaking, we use the semi-trusted setting of consortium blockchain to
set up system parameters and user credentials. Then, we can achieve a more
efficient solutions for privacy and auditability, as compared to public blockchain
(where all nodes may have Byzantine faults).
2 Hyperledger Fabric 1.0 currently uses the account balance model by default, but it

also supports the UTXO model.
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Fig. 1. Nodes and workflow of PAChain

Sender Privacy: It is achieved by the sender Alice using anonymous credential
in Step 1 of the workflow. The credential is issued by the endorser of the last
corresponding Tx received by Alice, to ensure that she is authenticated. We
have to add a tag (which is a deterministic function of the user secret key)
to the signature in Step 1 in order to detect double spending. We can take
advantage of having some semi-trusted endorsers in our framework, which can
act as the group manager of anonymous credential. It provides sender anonymity
for all users using the same endorser (see Sect. 6.2). This anonymous credential
approach is more efficient the ring signature-based approach in Monero and zk-
SNARK-based approach in Zcash.

Recipient Privacy: It is achieved by generating one-time ephemeral key via Diffie-
Hellman protocol between the sender and the recipient, in Step 1 of the workflow.
However, we face the challenge that only authorized recipients are allowed in
consortium blockchain. Therefore, we have to embed the zero-knowledge proof
that the recipients are authorized into the generation of one-time ephemeral key
(see Sect. 5.2). It is a new security requirement which does not exist in the public
blockchain. This requirement is a major difference between PAChain and [8].

Transaction Privacy with Auditability: Our transaction amount privacy is achieved
by using additive homomorphic encryption and zero-knowledge proof in Step
1 of the workflow. The proof shows that the Tx output amount is encrypted
correctly, falls within a valid range, and the total Tx input and output amount
are balanced. The major challenge is that using Paillier encryption with zero-
knowledge range proof is not efficient. To be more specific, encrypting 2048-bit
plaintext and performing the binary-decomposition range proof is an overkill
for 64-bit of transaction amount (see Sect. 4). Therefore, we propose the use of
modified ElGamal encryption with signature-based range proof to enhance the
efficiency (see Sect. 4.2). The size of the zero knowledge proof is independent to
the size of the range. It cannot be used in public blockchain since it requires
trusted setup.
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Auditability: Auditability for sender and recipient identity can be achieved by
encrypting their public keys to the auditor, followed the zero-knowledge proof of
the correctness of such encryption in Step 1 of the workflow. We have discussed
the auditability of transaction amount above.

Our construction can also be modified to provide fine-grained privacy policy.
For example, if the transaction amount M is under $10,000, then the bank does
not need to perform checking for anti-money laundering. As a result, we can
leverage our efficient range proof to run the proof of knowledge:

PoK{(M, sender ID, recipient ID) : 0 ≤ M ≤ 10, 000
or Encrypt (M, sender ID, recipient ID) to the auditor}.

2.3 Threat Model

We assume that the system parameters are generated honestly. We consider the
following attacker model for privacy:

– The attacker can create malicious client or corrupt any client.
– The peer and CA are assumed to be honest-but-curious: it tries to break

privacy passively by recording all inputs, outputs and randomness used, but
it still follows the protocols.

– All keys and data used by the orderers are known to the attacker.
– The auditor is assumed to be honest for privacy. Compromising the auditor

trivially breaks all privacy3.

We do not consider network-level privacy issues, such as tracing the sender’s
IP address or analyzing meta-data in network packets. The correctness of the
consensus algorithm is not considered in this paper.

Consider the example of a consortium of banks. It is reasonable to assume
that the banks jointly generate system parameters (e.g., by multi-party compu-
tation). Each bank acts as a peer and follows the protocol (if it ignores Tx or
endorses invalid Tx, it will be discovered by other banks and will be handled by
other means outside the blockchain system). However, the bank may be curious
to view the Tx details of other banks. Our privacy model captures this scenario.
As a result, we allow a larger degree of decentralization by allowing multiple
endorsers to validate a Tx, without causing extra privacy leakage.

3 Backgrounds

3.1 Related Works

Public Blockchain. Monero is a cryptocurrency created in 2014 that pro-
vides privacy by linkable ring signature, stealth address and Ring Confidential
3 One may argue that it gives too much power for auditor. However in most companies,

internal auditor should always be able to control and governance business operations.
In some industries, laws require that information must be provided to the court
when requested (e.g., anti-money laundering in banks and lawful interception in
telecommunication industry).
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Transactions [11]. The major disadvantage of Monero is the size of the linkable
ring signature, which is proportional to the size of the ring (related to the level
of sender anonymity).

Zcash is a cryptocurrency created in 2016 that offers privacy and selective
transparency of Txs by using zero-knowledge proofs (zk-SNARK) on special
shielded transactions [2]. The major disadvantage of Zcash is the large signing
key size of 896 MB, long key generation time of 8 min and long signing time of
3 min. As a result, only around 7% of Txs are shielded in Zcash as of March 2017.
Recently, Zcash proposed a new Sapling update which reduced the proving time
to a few seconds. However, it is still far less efficient than the Monero’s approach
(and also this paper’s approach) which is about 100 ms.

A decentralized anonymous payment (DAP) with the support of account-
ability is proposed in [8]. They tackle the accountability problem in the public
blockchain by using the zk-SNARK approach. Hence, it is also not efficient.

No authentication is provided for all solutions in the public blockchain.

Consortium Blockchain. For consortium blockchain, the major platforms pro-
vide limited support for privacy. In R3’s Corda and Hyperledger Fabric, Txs are
handled by different channels and users can only view Txs in their own channel.
Therefore, privacy is maintained by the system’s access control policy. The level
of privacy is lower than that of Monero and Zcash, which are not affected by
system administrators. In addition, Hyperledger Fabric uses VKey to provide
transaction privacy by symmetric encryption. The problem of key distribution
between all parties is a severe challenge for a global deployment of such system.
There is an experiment to integrate identity mixer [7] with Fabric4. The identity
mixer provides a better sender anonymity (by preventing the system adminis-
trator to link all transactions from the same user), and provides auditability for
the sender identity.

Private Blockchain. Recently, a private industrial blockchain is proposed in
[9], where multiple distributed private ledgers are maintained by a subset of
stakeholders in the network. Each private ledger is maintained by its stakeholder
only. This approach only provides privacy for users outside the private ledger. To
provide higher level of privacy, the system must be divided into smaller private
ledgers. However, more expensive cross ledger asset transfer is needed if there
are some Txs between private ledgers.

PRCash [15] is a centrally-issued cryptocurrency with privacy and auditabil-
ity. They provide anonymity of the sender and recipient identity. A mixing tech-
nique is used to obfuscate the relation between multiple inputs and outputs.
However, there are still certain linkability between Txs. Anyone can see that the
input of a Tx comes from which previous Tx output. For auditability, PRCash
provides prefect transaction amount privacy and no auditability for small amount
Tx. For Txs with large amount, it cannot provide privacy for these Txs.

4 https://jira.hyperledger.org/browse/FAB-2005.

https://jira.hyperledger.org/browse/FAB-2005
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3.2 Mathematical Backgrounds

Bilinear Groups. G is an algorithm, which takes as input a security parameter
λ and outputs a tuple (p,G1,G2,GT , ê), where G1, G2 and GT are multiplicative
cyclic groups with prime order p, and ê : G1 × G2 → GT is a map, which has
the following properties: (1) Bilinearity: ê(ga, ĝb) = ê(g, ĝ)ab for ∀g ∈ G1, ĝ ∈ G2

and ∀a, b ∈ Zp. (2) Non-degeneracy: There exists g ∈ G1, ĝ ∈ G2 such that
ê(g, ĝ) �= 1G. (3) Computability: There exists an efficient algorithm to compute
ê(g, ĝ) for ∀g ∈ G1, ĝ ∈ G2.

4 Transaction Privacy

One of the challenging part for privacy in blockchain is the confidentiality of the
transaction amount. The major difficulty is how to verify the Tx that (1) the total
committed input amount is equal to the total committed output amount; (2) all
committed amounts fall within a valid range, e.g., from 0 to 264. This require-
ment is commonly known as the confidential transaction. Theoretically, it can be
achieved by combining additive homomorphic commitment with zero-knowledge
range proof. One example is Monero [11], which uses Pedersen commitment with
1-out-of-2 ring signature-based binary decomposition range proof.

In PAChain, we require auditability of transaction amount. It is common
in business use cases that all Txs can be audited by internal auditors or some
external regulators. Therefore, it is necessary to replace additive homomorphic
commitment with additive homomorphic encryption in confidential transaction,
such that the decryption key is hold by the auditor. However, technical difficulties
arise when combining the additive homomorphic Paillier encryption [12] with
existing zero-knowledge range proof.

Range Proof with Encryption. Range proof is one essential element in trans-
action privacy. Without a range proof, the attacker can create a transaction with
one input $0 and two outputs of $100 and −$100. The sum of input and output
amount is still balanced. If the output amount is encrypted, the attacker can
create $100 out of an input $0. Therefore range proof is needed to prevent any
negative amount or overflow amount.

Problems of Using Paillier Encryption with Range Proof. Paillier
encryption [12] is the most common additive homomorphic encryption to date.
However, combining Paillier encryption with existing range proof is not trivial
in blockchain applications. Therefore, there is no simple and efficient solution
for using Paillier encryption with range proof in blockchain.

4.1 Security Model of Transaction Privacy Protocol

We give a high level description on the notion and security model for transaction
privacy. Details will be given in the full version of the paper.

A transaction privacy protocol consists of:
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– Setup: It outputs the system parameters and the secret key of an auditor.
– TxPrivacySpend: When given some UTXO input amount, UTXO input cipher-

texts and some output amount, it outputs some UTXO output ciphertexts
and the proof of correctness.

– TxPrivacyVerify: When given some UTXO input ciphertexts, some UTXO
output ciphertexts and the proof of correctness, it checks if the proof is correct
or not.

– Decrypt: When given a UTXO ciphertext and the secret key of an auditor, it
outputs the decrypt amount.

Security Model. We define the security requirements for transaction privacy:

– No output transaction amount is outside the range with a valid proof in
TxPrivacySpend.

– The total input transaction amount is equal to the total output transaction
amount in TxPrivacySpend.

– No one can learn the transaction amount from the ciphertext, except the
auditor.

4.2 Transaction Privacy for PAChain

We give our efficient transaction privacy solution for consortium blockchain. We
overcome the problem for effectively combining additive homomorphic encryp-
tion and range proof due to two properties: (1) consortium blockchain allows
trusted setup; (2) the transaction amount is short.

The first observation is that encrypting a “short” transaction amount (e.g.,
51-bit can represent all 21M Bitcoins in terms of satoshi, or 64-bit can represent
trillions of dollars with sixth decimals) with Paillier encryption of message space
of 2048-bit is superfluous. Therefore, we propose to use the additive homomor-
phic ElGamal encryption instead. However, decrypting such ciphertext requires
the computation of discrete logarithm, which is not feasible for large message
space. Hence, we decompose the K-bit transaction amount M into � segment
μ0, . . . , μ�−1 which are smaller than the message space u by M =

∑�−1
j=0 μju

j . As
a result, we encrypt each μj by additive homomorphic ElGamal encryption. The
small message space of u guarantees efficient decryption. In our implementation,
we consider 64-bit transaction amount and the auditor uses a pre-computation
table of (g, g2, . . . , gu−1) for efficient decryption. We can choose � = 4, u = 65536
and the pre-computation table is about 2 MB. The ciphertext size is 2048-bit,
which is still less than the 4096-bit ciphertext size of Paillier encryption.

Another advantage of using ElGamal encryption is the ease to combine with
range proof. By using ECC ElGamal encryption, it can be combined with the
Boneh-Boyen signature-based range proof [6]. Note that this solution is only
suitable for consortium blockchain since the non-interactive version of such range
proof requires a trusted setup.

Our Construction. Our transaction privacy (TP) protocol is described below.
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- Setup. On input a security parameter 1λ and the range parameter R = u�, it
generates the bilinear group by (p,G1,G2,GT , ê) ← G(1λ). It randomly picks
generators g, g0 ∈ G1, ĝ ∈ G2 and X ∈ Zp. It computes Ŷ = ĝX, Ai = g

1
X+i for

i ∈ [0, u − 1]. Suppose H : {0, 1}∗ → Zp is a collision resistant hash function.
In addition, suppose the auditor picks a random secret key asktp in Zp and
outputs its public key htp = gasktp . It outputs param = (g, g0, htp, ĝ, ê(g, ĝ), Ŷ,
u, �,H,A0, . . . ,Au−1).

- TxPrivacySpend. On input n′ output transaction amount Mout,j , n transaction
input ciphertext Cin,i, amount Min,i and randomness rin,i, it outputs ⊥ if Cin,i

is not a valid ciphertext for (Min,i, rin,i) for some i ∈ [1, n], or
∑n

i=1 Min,i �=
∑n′

j=1 Mout,j .
For each Mout,j , it obtains (Cout,j , rout,j , πenc,j) by running the sub-protocol

EncProof(Mout,j).

EncProof. Suppose that the prover wants to prove some M lies in [0, u�). It
runs as follows:

1. It first decomposes M into μk ∈ [0, u − 1] such that M =
∑�−1

k=0 μku
k.

2. For each μk, the prover computes the ElGamal ciphertext (Ck = gμk

0 hrk
tp ,

Bk = grk) for some random rk ∈ Zp. Denote Cenc = {Ck, Bk}k∈[0,�−1]

and renc =
∑�−1

k=0 rku
k.

3. For each μk, it proves in zero-knowledge that the encrypted μk corre-
sponds to some Aμk

:

πenc ← PoK{({μk, rk,Aμk
}k∈[0,�−1]) :

ê(g, ĝ) = ê(Aμk
, ĝμk · Ŷ) ∧ Ck = gμk

0 hrk
tp ∧ Bk = grk}.

Details of the zero-knowledge proof is as follows. The prover randomly
picks vk, sk, tk, ν ∈ Zp for k ∈ [0, � − 1] and computes:

Vk = Avk
μk

, ak = ê(Vk, ĝ)−sk · ê(g, ĝ)tk , Ek = gsk
0 hνk

tp , Dk = gνk .

It computes c̃ = H(param, {Vk, ak, Bk, Ck,Dk, Ek}k∈[0,�−1]) and for k ∈
[0, � − 1]:

zμk
= sk − c̃μk, zvk

= tk − c̃vk, zrk
= νk − c̃rk.

Then πenc = ({Vk, zμk
, zvk

, zrk
}k∈[0,�−1], c̃).

4. It outputs (Cenc, renc, πenc).

Observe that Cout,j = {Cj,k, Bj,k}k∈[0,�−1]. For simplicity, denote C ′
out,j =

∏�−1
k=0 Cuk

j,k and B′
out,j =

∏�−1
k=0 Buk

j,k. The same definition applies for input cipher-
text.
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Next, it proves that the total input Tx amount is equal to the total output
Tx amount. It is equivalent to know xtp =

∑n′

j=1 rout,j − ∑n
i=1 rin,i, such that

∏n′

j=1
C ′

out,j/
∏n

i=1
C ′

in,i = h
xtp

tp .

The zero knowledge proof of xtp is as follows. It picks some random rtp ∈ Zp and
computes Rtp = h

rtp

tp , R̃tp = grtp , c̃′ = H(param, Rtp, R̃tp, {Cin,i}i∈[1,n], {Cout,j ,
πenc,j}j∈[1,n′]), ztp = rtp + c̃′xtp. Denote πtp = (ztp, c̃′, {πenc,j}j∈[1,n′]).

The algorithm outputs ({Cout,j , rout,i}j∈[1,n′], πtp).

- TxPrivacyVerify. On input n Tx input ciphertext Cin,i, n′ Tx output ciphertext
Cout,j and a proof πtp = (ztp, c̃′, {πenc,j}j∈[1,n′]). For each πenc,j , it runs the
following sub-protocol:

EncVerify. On input the ciphertext Cout,j = {Ck, Bk}k∈[0,�−1] and the proof
πenc,j = ({Vk, zμk

, zvk
, zrk

}k∈[0,�−1], c̃), it validates the proof by computing
for all k ∈ [0, � − 1]:

Dk = Bc̃
kgzrk , Ek = C c̃

kg
zμk
0 h

zrk
tp , ak = ê(Vk, Ŷc̃ĝ−zμk ) · ê(g, ĝ)zvk .

It outputs 1 if c̃ = H(param, {Vk, ak, Bk, Ck,Dk, Ek}k∈[0,�−1]) or 0 other-
wise.

It computes R′
tp = h

ztp

tp (
∏n

i=1 C′
in,i

∏n′
j=1 C′

out,j

)c̃′
, R̃′

tp = gztp(
∏n

i=1 B′
in,i

∏n′
j=1 B′

out,j

)c̃′
. It returns 1 if

and only if all EncVerify outputs 1, and c̃′ = H(param, R′
tp, R̃

′
tp, {Cin,i}i∈[1,n],

{Cout,j , πenc,j}j∈[1,n′]).

- Decrypt. On input the auditor’s secret key asktp and a ciphertext Cenc = {Ck,
Bk}k∈[0,�−1], it computes gμk

0 = Ck

B
asktp
k

for k ∈ [0, � − 1]. The auditor uses a

pre-computation table containing (g00 , g
1
0 , . . . , g

u−1
0 ) to find out the value of μk.

Finally, the auditor recovers M =
∑�−1

k=0 μku
k.

Security of Transaction Privacy. We give the security theorem of our TP
protocol. The proofs are given in the full version of the paper.

Theorem 1. Our TP protocol is sound if the u-Strong Diffie-Hellman (SDH)
assumption holds in (G1,G2) in the random oracle model. Our TP protocol is
private if the decisional Diffie-Hellman (DDH) assumption holds in G1 in the
random oracle model. Our TP protocol is balance if the discrete logarithm (DL)
assumption holds in G1 in the random oracle model.

5 Recipient Privacy

In blockchain, the user address is the hash of his public key, and hence it rep-
resents his identity. If we want to preserve the recipient privacy, we can always
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use a new public key for each Tx. However, this approach is problematic in
some consortium blockchain which only allows Txs between authenticated users.
It means that all recipient (and sender) address should be authenticated. A
straightforward approach is to associate each address with a certificate issued
by a CA. The key challenge is how to validate the certificate while hiding the
public key/address at the same time.

Previous Works. Dash’s PrivateSend is a coin-mixing service based on Coin-
Join [13]. Dash requires combining identical input amounts from multiple senders
at the time of mixing, and thus it restricts the mixing to only accept certain
denominations (e.g. $0.1, $1, $10, etc.). The level of anonymity is related to
number of Txs mixed. In Monero, the recipient uses stealth address [11], which
is a one-time DH-type public key computed from the recipient’s public key and
some randomness included in the transaction block. The corresponding one-time
secret key is only computable by the recipient. In Zcash, it uses the general zk-
SNARK to provide zero knowledge for all Tx details including UTXO used [2].

5.1 Security Model of Recipient Privacy Protocol

The formal security notion and security models will be given to the full version
of the paper. Roughly speaking, the security requirements for recipient privacy
are soundness and anonymity. It includes:

1. No adversary can be a recipient without credential, even with colluding audi-
tor.

2. No one can learn the identity of the recipient, except the auditor.

5.2 Recipient Privacy for PAChain

Stealth address [11] appears to be the most efficient approach for recipient
privacy. However in consortium blockchain, only the recipient’s public key is
authenticated by the CA, but not the one-time public key. Therefore, the sender
additionally needs to show that the one-time public key is computed from an
authenticated public key, without revealing the public key itself.

Our Construction. The recipient’s certificate is signed by the CA using BBS+
signature [1], which allows efficient zero-knowledge proof. In addition, we encrypt
the long-term public key in the zero-knowledge proof, such that the auditor can
decrypt the real address (long-term public key) of the recipient.

Our recipient privacy (RP) protocol is described below.

– Setup. On input a security parameter 1λ, the setup algorithm generates the
bilinear group by (p,G1,G2, GT , ê) ← G(1λ). It picks some random generators
g, g2, g3, h2 ∈ G1 and ĝ2 ∈ G2. Suppose H : {0, 1}∗ → Zp, H ′ : G1 → Zp

are collision resistant hash functions. In addition, suppose the auditor picks a
random secret key askrp ∈ Zp and outputs its public key hrp = gaskrp . It outputs
the public parameters param = (p,G1,G2,GT , ê, g, hrp, g2, g3, h2, ĝ2,H,H ′).



226 T. H. Yuen

– UserKeyGen. The user randomly picks a long-term secret key x1, x2 ∈ Zp and
computes a long-term public key Y1 = gx1

2 , Y2 = gx2
2 . It outputs the user key

pair (usk = (x1, x2), upk = (Y1, Y2)).
– OneTimePkGen. On input upk = (Y1, Y2), the sender randomly picks rtx ∈ Zp

and outputs (Rtx = grtx
2 , otpk = Y1g

H′(Y rtx
2 )

2 ).
– OneTimeSkGen. On input otpk, Rtx and usk = (x1, x2), the recipient computes

a one-time secret key otsk = x1 +H ′(Rx2
tx ), and it outputs otsk if otpk = gotsk2 .

– CAKeyGen. The CA randomly picks β ∈ Zp and computes Ŵ2 = ĝβ
2 . It outputs

the CA key pair (cask = β, capk = Ŵ2).
– CertIssue. On input CA’s public key capk and the user long-term public key
upk = (Y1, ·), the user first performs a zero-knowledge proof of discrete log-
arithm: x1 = logg2

Y1. Denote this proof as πca. After the CA validates πca,
the CA picks some random s, w ∈ Zp and uses his private key cask = β to
compute: F = (h2 ·Y1 ·gs

3)
1

β+w . The CA returns the certificate (F,w, s) to the
user.

– RecPrivacySpend. On input param, capk = Ŵ2:

1. The sender with usk decides one or more UTXOs that he wants to spend. For
simplicity, assume he picks one UTXO with (otpks, Rtx,s). He runs otsks ←
OneTimeSkGen(param, otpks, Rtx,s, usk). It runs a zero-knowledge proof of
discrete logarithm: otsks = logg2

otpks. Denote this proof as πotsk.
2. The sender chooses the set of recipients. For simplicity, assume there is only

one recipient with long-term public key upkr = (Y1, Y2). The sender generates
the recipient’s one-time public key by running OneTimePkGen. The sender
obtains otpkr, Rtx,r and the randomness rtx. Denote htx = H ′(Y rtx

2 ).
3. The sender encrypts Y1 to the auditor by picking a random rcert ∈ Zp and

computing Crp = (Ccert = Y1 · hrcert
rp , Bcert = grcert).

4. The sender runs the following proof of knowledge for showing that (1) otpkr is
computed from a public key, (2) the public key has a valid certificate (F,w, s),
(3) the public key is encrypted to the auditor:

πrp ← PoK{(F,w, s, Y1, htx, rcert) : ê(F, ĝw
2 · Ŵ2) = ê(h2 · Y1 · gs

3, ĝ2)

∧ otpkr = Y1g
htx
2 ∧ Bcert = grcert ∧ Ccert = Y1h

rcert
rp }.

The details of the zero knowledge proof πrp is as follows.
(a) ZKCommit: It picks some random ρ, rτ , rω, rσ, rρ, rcert, rc, rs ∈ Zp, com-

putes Θ = F ρ and

Rcert,1 = ê((h2 · Ccert)rρgrs
3 Θ−rωh−rσ

rp , ĝ2),

Rcert,2 = grc , Rcert,3 = B
rρ

certg
−rσ , Rcert,4 = hrc

rp g−rτ
2 .

(b) ZKChallenge: It computes c = H(CertAuth.mpk, Crp, Θ, Rcert,1, Rcert,2,
Rcert,3, Rcert,4).

(c) ZKResponse: It computes:

zω = rω + c · w, zτ = rτ + c · htx, zρ = rρ + c · ρ,

zc = rc + c · rcert, zσ = rσ + c · rcert · ρ, zs = rs + c · ρ · s.
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It outputs πrp = (c,Θ, zω, zτ , zρ, zc, zσ, zs).
5. Output πotsk, otpks, otpkr, Rtx,r, Crp and πrp.

- RecPrivacyVerify. On input param, capk, πotsk, otpks, otpkr, Rtx,r, Crp and πrp,
it outputs 1 if πotsk and πrp are valid zero knowledge proofs.

The details of verifying the zero knowledge proof πrp = (c,Θ, zω, zτ , zρ, zc, zσ,
zs) is as follows.

1. ZKReconstruct: Denote Crp = (Ccert, Bcert). It computes:

Rcert,1 = ê((h2 · Ccert)zρgzs
3 Θ−zωh−zσ

rp , ĝ2) · ê(Θ, Ŵ2)c,

Rcert,2 = gzcB−c
cert, Rcert,3 = B

zρ

certg
−zσ , Rcert,4 = hzc

rp g−zτ
2 (otpkr/Ccert)c.

2. ZKCheck: It computes c′ = H(CertAuth.mpk, Crp, Θ,Rcert,1, Rcert,2, Rcert,3,
Rcert,4). If c = c′, then πrp is a valid zero knowledge proof.

Security of Recipient Privacy. We give the security theorem of our RP pro-
tocol. The proofs are given in the full version of the paper.

Theorem 2. Our RP protocol is sound if the q-SDH assumption holds in (G1,
G2) in the random oracle model, where q is the maximum number of Issue oracle
query. Our RP protocol is anonymous if the DDH assumption holds in G1 in the
random oracle model.

6 Sender Privacy

In the UTXO model, the sender has to specify the UTXOs that he wants to
use. The UTXOs include the information of the owner’s address as well as the
transaction amount. The linkage between the current transaction and UTXOs
guarantees the validity of the transaction and ensures that there is no double
spending. However, this linkage violates the privacy of the sender (no matter the
address is used for one time only and the transaction amount is encrypted). It
is a dilemma to preserve the transaction correctness and to protect the sender
privacy at the same time.

Previous Works. The sender privacy for Dash and Zcash are achieved as the
same way as the recipient privacy. In Monero, it uses linkable ring signature
(LRS) for hiding the real UTXOs used with other UTXOs (by the anonymity
property of LRS), preventing double spending (by the linkability property of
LRS) and ensuring transaction correctness (by the unforgeability property of
LRS) at the same time [11]. The level of anonymity is related to number of
UTXOs (denote as L) included in LRS. However, the number of computation
used in signing and the signature size are both O(L). Recently, Sun et al. reduced
the signature size to O(1) [14], at the price of using trusted setup.
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6.1 Security Model of Sender Privacy Protocol

The formal security notion and model for the sender privacy protocol will be
given in the full version of the paper. In short, the security requirements for
sender privacy are soundness, unforgeability and anonymity. It includes:

1. No adversary can spend without credential, even with colluding auditor.
2. No adversary can spend money of honest user, even with colluding endorser

and auditor.
3. No one can learn the identity of the sender, except the auditor.

6.2 Sender Privacy for PAChain

We give our efficient sender privacy solution for consortium blockchain. By the
semi-trusted property of consortium blockchain, we can use the anonymous cre-
dential approach to achieve sender privacy. By using the semi-trusted endorser
as the group manager (in the honest-but-curious security model), we provide an
efficient solution which has the signing time, verification time and signature size
independent to the number of UTXO included in the group. At the same time,
the sender can be revealed by the auditor. Note that similar to group signature,
the endorser (who issued credentials) cannot link the transaction by the creden-
tial he issued. Credential is issued to the recipient when the endorser approve the
transaction. The endorser does not have any advantage in breaking anonymity
in the UTXO model.

Our Construction. Our construction differs from traditional group signatures
in two ways: (1) we have to hide both the sender’s public key as well as the
Tx amount, (2) we have to add a linkability tag to avoid double spending. For
the first requirement, we use the BBS group signature [4], since the underlying
credential is signed by Boneh-Boyen signature [3], which can be modified to sign
on multiple committed values [1]. For the second requirement, we use the tag
structure used in most linkable ring signature schemes.

There are two possible constructions: the Tx amount is in plaintext or in
ciphertext. In the UTXO model, transaction privacy is required in order to
protect sender privacy (otherwise, the attacker can use the Tx amount to link
past transactions). In the account-based model, transaction privacy may or may
not be needed in the blockchain. For simplicity, we only give the Tx amount
ciphertext version here and the plaintext version can be constructed similarly.

– Setup. On input a security parameter 1λ, the setup algorithm generates the
bilinear group by (p,G1,G2, GT , ê) ← G(1λ). It picks some random gener-
ators g, g1, g2, u1, hs, f ∈ G1 and ĝ2 ∈ G2. Suppose H : {0, 1}∗ → Zp is a
collision resistant hash function. Denote htp as the public key of the auditor
in transaction privacy. Suppose the auditor picks a random secret key asksp
in Zp and outputs its public key hsp = gasksp . It outputs the public parameters
param = (p,G1,G2,GT , ê, g, g1, g2, u1, hs, f, htp, hsp, ĝ2,H).
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– UserKeyGen. The user secret key is usk = x1 ∈ Zp and the public key is
upk = Y1 = gx1

2
5.

– EndorserKeyGen. The endorser randomly picks α ∈ Zp and computes Wsp =
ĝα
2 . It outputs the endorser key pair (esk = α, epk = Wsp).

– CredIssue. On input endorser public key epk, the user public key Y1 and the
Tx amount ciphertext C, the user first performs a zero-knowledge proof of
secret key: x1 = logg2

Y1. Denote this proof as πci. The user sends πci and πtp

to the endorser, where πtp is the zero-knowledge transaction privacy proof
(showing the knowledge of (m, rtp) such that C = gmh

rtp

tp ).
After the endorser validates the proofs πci and πtp, the endorser picks some
random v, z ∈ Zp and uses his secret key esk = α to compute: A = (hs · gv

1 ·
C · Y1)

1
α+z . The endorser returns the credential cred = (A, v, z) to the user.

– CredSign. On input param, and private input tuples x′
in, credin, m′

in, r
′
in, Y

′
in

(such that Cin = gm′
inh

r′
in

tp ), it runs the following:

1. It computes the tag for detecting double spending: T = fx′
in .

2. It encrypts the public key Y ′
in to the auditor, by randomly choosing rcred ∈ Zp

and computing Csp = (Ccred = Y ′
in · hrcred

sp , Bcred = grcred).
3. It computes the zero knowledge proof πsp for: (1) the credential credin =

(A, v, z) corresponds to Y ′
in = g

x′
in

2 and Cin = gm′
inh

r′
in

tp ; (2) T = fx′
in ; (3) Y ′

in is
encrypted to the auditor.

πsp =PoK{(x′
in,m

′
in, r

′
in, A, v, z, rcred) : ê(A,Wspĝ

z
2) = ê(hsg

v
1gm′

inh
r′
in

tp g
x′
in

2 , ĝ2)

∧ T = fx′
in ∧ Ccred = g

x′
in

2 · hrcred
sp ∧ Bcred = grcred}.

The output signature σ = (πsp, Csp, T ). Details of the zero-knowledge proof
is shown as follows.

(a) ZKCommit: It picks some random a, rψ, rk, ra, rb, rz, rm, rr, rv ∈ Zp. It
computes:

S = A · ua
1 , Ξ = ga

1 ,

Rcred,1 = ê(urb
1 S−rzgrv

1 grmhrr
tp grk

2 , ĝ2) · ê(u1,Wsp)ra , Rcred,2 = gra
1 ,

Rcred,3 = Ξrzg−rb
1 , Rcred,4 = grψ , Rcred,5 = grk

2 h
rψ
sp , Rcred,6 = frk .

(b) ZKChallenge: It computes c = H(CredAuth.mpk, Csp, T, S,Ξ,Rcred,1,
Rcred,2, Rcred,3, Rcred,4, Rcred,5, Rcred,6).
(c) ZKResponse: It computes:

zk = rk + c · x′
in, za = ra + c · a, zz = rz + c · z,

zb = rb + c · a · z, zv = rv + c · v, zm = rm + c · m′
in,

zr = rr + c · r′
in, zψ = rψ + c · rcred.

It outputs the proof πsp = (c, S,Ξ, zk, za, zz, zb, zv, zm, zr, zψ).
5 This public key Y1 can be a long term public key if recipient anonymity is not

protected in the previous transaction. Otherwise, it can be a one-time public key.
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- Verify. On input param, the endorser public keys Ws, a signature σ = (πsp, Csp =
(Ccred, Bcred), T ), it checks the validity of the proof πsp = (c, S, Ξ, zk, za, zz, zb, zv,
zm, zr, zψ):

1. ZKReconstruct: It computes:

R′
cred,1 = ê(uzb

1 S−zzgzv
1 gzmhzr

tp gzk
1 hc

s, ĝ2) · ê(uza
1 S−c,Wsp),

R′
cred,2 = gza

1 Ξ−c, R′
cred,3 = Ξzzg−zb

1 , R′
cred,4 = gzψB−c

cred,

R′
cred,5 = gzk

2 h
zψ
sp C−c

cred, R′
cred,6 = fzkT−c.

2. ZKCheck: It computes c′ = H(CredAuth.mpk, Csp, T, S,Ξ,Rcred,1, Rcred,2,
Rcred,3, Rcred,4, Rcred,5, Rcred,6).

It outputs 1 if c = c′; and outputs 0 otherwise.

- Link. On input param and two tags T1, T2 in signatures σ1, σ2, such that T1 = T2,
it outputs 1. Otherwise it outputs 0.

- Decrypt. On input a ciphertext (Ccred, Bcred) and asksp, it computes Y ′ =
Ccred/B

asksp
cred .

Security of Sender Privacy. We give the security theorem of our sender
privacy (SP) protocol. The proofs are given in the full version of the paper.

Theorem 3. The SP protocol is sound if the q-SDH assumption holds in (G1,
G2) in the random oracle model, where q is the maximum number of Issuee oracle
query. The SP protocol is unforgeable if the DL assumption holds in G1 in the
random oracle model. The SP protocol is anonymous if the DDH assumption
holds in G1 in the random oracle model.

7 Performance Analysis

We analyze our PAChain in terms of throughput and latency, two of the most
important metrics for analyzing the performance of a blockchain system. The
latency of our PAChain is affected by the running time of the modules. The
throughput of our PAChain is affected by both the running time of our three
modules, and the size of each transaction.

7.1 Transaction Overhead

In this paper, we consider 128-bit security. The transaction amount is represented
by a 64-bit positive integer (the same setting as Bitcoin and Monero).

For PAChain’s transaction privacy, 64-bit of transaction amount implies that
the range R = 264. We can take u = 216 = 65536, � = 4. The public parameters
for transaction privacy is about 2MB. The size of the ciphertext is 256 bytes. For
each transaction output amount, the size of the range proof πenc is 544 bytes 6.
6 A 64-bit range proof by the recent Bulletproof [5] is about 800 bytes.
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Table 2. Comparison of privacy-preserving blockchain schemes, for a standard 2-input-
2-output transaction.

Sender

privacy

Recipient

privacy

Tx

privacy

Auditability Authentication Tx

overhead

(bytes)

Sender

running

time

Verifier

running

time

Public

blockchain

Monero 12704 300ms 300ms

Zcash 576 120 s 10ms

Consortium

blockchain

Hyperledger

Fabric

628 10ms 10ms

This paper 2720 100ms 100ms

Table 3. Comparison for transaction privacy for a single output

Setup
time

Ctp Enc
time

Ctp Dec
time

πtp Proof
time

πtp Verify
time

Our scheme 53.8 s 2.8 ms 3.0 ms 27.1 ms 25.6 ms

Paillier encryption 402.6 ms 27.1 ms 7.4 ms

The size of πtp is 64 bytes plus all πenc for all transaction outputs. For recipient
privacy, the size of Crp is 64 bytes, πrp is 256 bytes for each recipient. The block
randomness Rtx,r is 32 bytes. (The 32 bytes of otpkr replaces the output address
and hence it is not viewed as an overhead). For sender privacy, the size of Csp is
64 bytes, πrp is 352 bytes and T is 32 bytes for each sender.

Considering a classical transaction of 2 inputs and 2 outputs, the overhead
for privacy-enhancing consortium blockchain is 2720 bytes. We compare our
PAChain with other schemes in Table 2:

– For consortium blockchain (e.g., Fabric or Corda), the classical transaction
of 2 inputs and 2 outputs includes 2 ECDSA signatures from two inputs (128
bytes) and two X.509 certificates for 2 outputs’ ECDSA public keys (about
500 bytes). The overhead is 628 bytes.

– For the public blockchain Monero, even if we consider the minimum ring size
for ring signature as 3 (i.e., the real sender is one-out-of-three public keys.
Hence the anonymity is very limited.), the total overhead is 12704 bytes for
2 inputs and 2 outputs.

– For Zcash, all the proofs can be combined to a single 288 bytes zk-SNARK
proof. The total proof size becomes 576 bytes. However, the time for gener-
ating the proof will be much longer (> 120 s) and it requires a lot of RAM
(> 3 GB). It causes a long latency in the blockchain system.

7.2 Module Implementation

We implemented our modules in a server with Intel Core i5 3.4GHz, 8GB
RAM, running on Linux. Our implementation is by Golang, using BN256 pairing
library.
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Transaction Privacy. For transaction privacy, the running time for a single
output is shown in Table 3. We compare our scheme with the additive homomor-
phic Paillier encryption with the same security level. When comparing with the
encryption and decryption part only, our scheme is about 9 times and 2 times
more efficient than the Paillier encryption. For the prover side, the complete
transaction privacy is almost as efficient as a single Paillier encryption. Compar-
atively, our scheme takes a longer time for Setup, mainly for the generation of
system parameters for the range proof.

Recipient Privacy. For recipient privacy for a single output, the Setup time is
4.6 ms, the CertIssue time is 1.4 ms, the Spend Time is 11.2 ms and the Verify
time is 10.6 ms.

Sender Privacy. For sender privacy for a single input, the Setup time is 7.8 ms,
the CredIssue time is 1.5 ms, the CredSign Time is 15.0 ms and the Verify time
is 16.3 ms.

For a standard 2-input 2-output transaction, the total running time of our
scheme (achieving all three properties) is 112 ms for the prover and 105 ms for
the verifier side.

7.3 Testing Transaction Privacy with Hyperledger Fabric

We integrate the transaction privacy protocol in Hyperledger Fabric 1.0, in order
to demonstrate our modulus can be consolidated into real world consortium
blockchain. There are a few technical obstacles to implement our scheme. The
first obstacle is that Fabric does not support optimization code of BN256 pair-
ing written in C language. It results in > 10 times slower exponentiation and
pairing computation. We expect future version of Fabric to allow optimization
for pairing-based computation.

The second difficulty is to implement the verification logic into the smart
contract (chaincode) of Fabric. We built a complete flow of transaction, including
the creation of money (deposit), normal transaction, balance query and the
destroy of money (withdraw). The chaincode has 2223 lines of codes. The extra
codes for server side and client are 575 lines and 1061 lines respectively. The
common module has 823 lines. (Comparatively, the core transaction privacy
protocol has 2143 lines of codes.)

Transaction Privacy. In our current implementation for a 2-input 2-output
transaction in Hyperledger Fabric 1.0, the signing time is 988 ms and the ver-
ification time is 1.35 s. Our implementation shows that other processing time
for the transaction packet in negligible when compared to cryptographic opera-
tions. We expect that if optimization code of pairing is allowed, the signing and
verification time can be about 100 ms.

The consensus algorithm is the current bottleneck of most consortium
blockchain systems. The PBFT consensus algorithm used in Hyperledger Fabric
1.0 allows about 2000 transactions per second and has about 1 s of latency. If
optimization is allowed in Fabric, our scheme has a running time of 100 ms for
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both the prover and verifier side, for a standard 2-input 2-output transaction.
Therefore, our scheme is practical and will not become the bottleneck of the
consortium blockchain system.

8 Conclusion

In this paper, we propose efficient solution for privacy, auditability and authen-
tication in consortium blockchain. We give module solutions for them, so that
they can be added to blockchain according to actual business need. We imple-
mented our schemes and they are more efficient than the existing solutions in
public blockchain.
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Abstract. Storing data in the blockchain brings many benefits. The
block-and-chain structure protects the data stored in the blockchain from
unauthorised changes. The data will also be duplicated to all nodes which
maintain the blockchain. These features guarantee the data immutability
and availability. However, such operation is expensive when large size
data needs to be stored. We propose Senarai, a protocol which provides
an affordable blockchain data storage. Our protocol utilises the fee-less
transaction feature provided by Tron. By using this feature, storing an
arbitrary size data can be done cheaply. We show that our protocol
is sustainable such that after initialisation phase, the permanent data
storage capacity is provided for free on daily basis.

Keywords: Storage · Immutability · Senarai · Tron · Blockchain

1 Introduction

Blockchain, which was first introduced in Bitcoin in 2009 by a pseudonym Satoshi
Nakamoto [12], has many features that makes it a permanent storage. The
tamper-proof ledger system is protected by multiple mechanisms: a block-and-
chain structure, cryptographic functions, and data duplications in nodes located
in different parts of the world. These nodes communicate to each other by using
a peer-to-peer network. The blockchain system protects all recorded information
which cannot be modified without a massive effort.

Much research has been done to formulate the best method to store informa-
tion in a blockchain, mostly in Bitcoin’s blockchain. Although the blockchain is
not intended to store information not related to bitcoin transactions, people have
found secondary blockchain usages other than just storing financial transactions.
By storing information in the blockchain, the information becomes permanent
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such that it cannot be modified easily. The immutability of the blockchain makes
it a good solution for problems such as digital notarisation and proof of existence.

Small size data such as hash values of digital information and bigger data
such as pictures have been embedded in Bitcoin’s blockchain [16]. However,
storing information in the blockchain is expensive such that one needs to pay all
necessary transaction fees which will increase linearly to the data size [16].

We propose Senarai, a sustainable public blockchain-based storage protocol.
After a proper initialisation, our protocol does not incur any fee when repeatedly
storing arbitrary size data in a blockchain, hence it is sustainable for a long-term
usage. To the best of our knowledge, our protocol has the best fee structure
compared to existing blockchain-based storage solutions.

2 Background

2.1 Blockchain and Public Blockchain

Blockchain is a ledger where the information stored in the ledger is made pub-
lic; any parties can read and verify the correctness of all information stored.
Blockchain is also a distributed database, where identical copies of the ledger
are stored on multiple servers called nodes. The nodes validate new transactions
and embed new blocks containing transactions to the existing blockchain. The
structure of the blockchain enables the immutability feature, where information
that has been validated will be infeasible to tamper with after a certain depth.

2.2 Tron

Tron is a project initiated by Tron Foundation led by Justin Sun [3]. Its native
token is called Tronix, abbreviated as TRX. The project aims to compete with
Ethereum by scaling the system to allow more transactions to be stored in the
blockchain compared to Ethereum. Similar to Ethereum, Tron also supports
smart contract creation and interaction, where Ethereum’s Solidity program-
ming language is also used in Tron development environment to write the smart
contract.

Tron offers free transactions, where each account of at least 24 h old is entitled
to 5,000 free “bandwidth points”. Each bandwidth point equals to 1 byte of stor-
age [6]. The bandwidth points can be used to create around 20–25 free standard
transactions per day, where each transaction requires around 200 bandwidth
points [6]. The free bandwidth points allowance is replenished every 24 h [8].

Tron also provides extra bandwidth points to any accounts that “freeze”
TRX for at least 72 h in exchange for the extra bandwidth points. The amount
of the extra bandwidth points given to the account depends on the number of
TRX frozen and total net weight [8]. Each TRX that is frozen for bandwidth
points will be awarded bandwidth points by using the following formula: b =
t × TNW

TNL [8], where b is the awarded bandwidth points, and t is the amount
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of TRX. TNW (Total Network Weight) is the total number of TRX frozen
for bandwidth points in the network, while TNL (Total Network Limit) is a
predefined constant value of 43,200,000,000 [6].

Whenever a user creates a transaction, the extra bandwidth points owned by
the user will be consumed first; if the extra bandwidth points are not sufficient,
then the basic allowance will be used. If these points are still insufficient for
the transaction fee, then the user needs to pay the transaction fee in TRX. One
TRX equals to 100,000 bandwidth points which equals to 100,000 bytes. [8].

3 Related Work

3.1 Bitcoin-Based Storage Systems

Much work has been done to create an efficient storage system on top of Bitcoin
[16]. One of the first methods to embed extra data inside Bitcoin transaction is
by using OP RETURN operand. An analysis shows shown that the operand
has been used for multiple services such as asset management, document notari-
sation, or to simply store short messages [2]. While the use of OP RETURN
can only store up to 80 bytes, other methods have been developed to increase
the storage capacity.

The use of Pay to Script Hash (P2SH) feature increases the storage capacity
where at most 1,400 bytes data can be embedded in a single P2SH transaction
scheme with a data efficiency of 85% [19]. Another method is to utilise data
dropping operands in Bitcoin, namely OP DROP and OP 2DROP . If no digital
signature is required in the transaction, the data dropping method can achieve
up to 94.1% data efficiency [16]. However, this method might be out of control
because everyone can try to redeem the transaction. A modified data dropping
method which requires a digital signature will give a data efficiency of 88.2% [16].

3.2 Permacoin

Permacoin was proposed to completely turn Bitcoin’s popular consensus method,
Proof-of-Work (PoW), into a more usable work. This is done by dropping PoW
and replacing it with a Proof-of-Retrievability (PoR), where the miners com-
pete to provide data storage instead of computing power [11]. The PoR provides
a mechanism to prove that the miners correctly store the data in their storage
systems [11]. Although Permacoin solution shows a promising resource utilisa-
tion, the solution is currently not compatible with the current Bitcoin protocol,
where Bitcoin’s PoW is unlikely to be modified into PoR in the near future.

3.3 Ethereum-Based Storage

There are two methods to store arbitrary size data into Ethereum blockchain:
either by storing the data in a smart contract or by storing the data directly into
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a transaction [7]. There are three different storage systems in Ethereum, namely
volatile stack, volatile memory, and nonvolatile (permanent) storage [14]. Each
of these storage systems has different cost with nonvolatile storage is the most
expensive in Ethereum [14].

3.4 Storage Service Cryptocurrencies

InterPlanetary File System (IPFS) is a decentralised network storage which was
initially developed by Juan Benet and Protocol Labs [20]. IPFS imitates Bitcoin’s
network and optimises it to identify duplicates as well as to locate specific files
in the nodes connected to its network.

The growing popularity of IPFS initiated cryptocurrency projects providing
an identical service: to provide decentralised and/or distributed storage system.
Filecoin1 is the incentive system built on IPFS protocol, while other products
such as Sia2, Storj3 and IPDB4 also provide similar storage service [17]. All of
the mentioned systems do not provide a permanent storage; the user needs to
pay monthly rent for uploading and downloading data from the service. Storj for
example, requires the user to pay a monthly fee of US$0.015 per GB data upload
and US$0.05 per GB data download [15]. At the time of writing, Filecoin, Storj,
and IPDB are still under development.

Although these storage service cryptocurrencies implements blockchain tech-
nology, the storage offered by the services is not inside blockchains. The block-
chain technology only helps to manage administrative and financial matters such
as storage contracts and payments, while the storage management will be done
by agents executing the contracts. This enables the services to offer data deletion,
which is not possible in a pure blockchain storage solution.

4 Preliminaries

4.1 Resources in Tron

There are two valuable resources in Tron other than tokens or its native cur-
rency, TRX. These resources are bandwidth and energy. Bandwidth is the term
to determine the cost to store data in the blockchain, where one byte of data
consumes one bandwidth point. Energy is the term to determine the cost to
run Tron’s smart contract, which is calculated based on CPU time required to
run the smart contract. Each microsecond of CPU time consumption costs one
energy [9].

To get bandwidth and energy, a user must “freeze” her TRX. Upon freezing
the TRX, she must choose whether she would prefer bandwidth or energy in
exchange of the frozen TRX. One frozen TRX can only be exchanged with either
bandwidth or energy [9]. The frozen TRX can be unfrozen after 72 h.
1 https://filecoin.io.
2 https://sia.tech.
3 https://storj.io.
4 https://ipdb.io.

https://filecoin.io
https://sia.tech
https://storj.io
https://ipdb.io
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4.2 Types of Token in Tron

In Tron, token generally means a value that is stored in a smart contract or in the
blockchain. There are two types of token in Tron, namely TRC-10 and TRC-20
[10]. TRC-10 is similar to Tron’s native currency, TRX, where it is transferrable
between accounts. Each account or address in Tron is allowed to create at most
one TRC-10 token. One-time cost needs to be paid by the token creator in TRX
currency, which currently stands at 1,024 TRX.

TRC-20 is a token built in a smart contract. TRC-20 imitates Ethereum’s
ERC-20. It is a set of rules in the smart contract development, where every token
which follows the rules needs to implement mandatory functions and naming
convention. By adopting the standard, an interface can be built for those tokens
without any significant changes.

The main difference between TRC-10 and TRC-20 is in their operation
requirement. Transferring TRC-10 only requires bandwidth, while executing
TRC-20 requires both bandwidth and energy.

5 Senarai

5.1 Overview

Senarai (a Malay language for list) is a transaction feeless-based blockchain
storage solution. It utilises Tron’s free daily bandwidth points allowance given
to Tron accounts. Senarai uses the allowance to create transactions that contain
payloads. The payloads are fragments of an arbitrary-size data to be stored per-
manently in the blockchain. The size of the payload is designed such that it does
not exceed the maximum free allowance, hence, no transaction fee is required.
Senarai has two main phases: one-time initialisation phase and data stor-
age and management phase. While the first phase requires transaction fees,
the latter phase does not.

5.2 Senarai Phases

One-Time Initialisation Phase. There are two steps required upon initialisa-
tion. The first step is to generate a new TRC-10 token [10]. The token is used to
replace transacted TRX so that no actual coins are involved in the transaction.
There is a one-time cost involved in creating TRC-10 token, which is 1,024 TRX
[10]. When creating a new TRC-10 token, one can set an int64 number of tokens
[18] such that it is sufficient enough for a foreseeable future.

The second step is to create as many new accounts as possible. There are
two methods to pay the fee: either by freezing TRX for bandwidth points or by
paying TRX. However, if one chooses to pay the transaction fee in bandwidth
points instead of TRX, the number of TRX to be frozen to get the sufficient
bandwidth points vary, depending on the total TRX frozen in the network.

If there is no frozen TRX in the creator’s account, then creating a new account
in Tron requires 0.1 TRX as a fee f . The maximum daily bandwidth size b
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depends on the number of accounts n multiplied by a constant a, where a equals
to 5,000 bandwidth points or 5,000 bytes. The formula to get the maximum
bandwidth b can be expressed as b = n × a. The cost c for a desired bandwidth
b is expressed as c = b ÷ a × f .

Data Storage and Management Phase. It is assumed that there are n Tron
accounts g in a set G, where g ∈ G. The remaining daily bandwidth b′ is defined
as the maximum bandwidth b subtracted by the bandwidth that has been used.
The maximum free transaction size is 5,000 bytes per account. One standard
token transaction requires around 285–287 bytes transaction data; therefore, the
maximum payload size is 4,715 bytes. To simplify and to give extra space to
the transaction data, the maximum payload size will be rounded to a constant
p equals to 4,700 bytes. The transaction data constant q becomes 300 bytes. A
static account gs will be the receiver of all related transactions. The protocol for
data storage is as follows.

1. Compute the total data size to be stored D in bytes. If D > b′ then abort.
2. Compute the number of transactions required t = CEILING(D ÷ p).
3. Compute the total bandwidth B required, which is the data payload and

transaction information, formulated as B = d + t × q. If B > b′ then abort.
4. Split the data D into t chunks of p bytes. A data chunk d is at most p bytes

long, where D = {d0, d1, . . . , dt−1}.
5. For each di ∈ D:

(a) Pick an account gj ∈ G.
(b) If gj ’s remaining free bandwidth allowance is less than the payload di,

then skip and continue to the next g.
(c) Create a transaction from gj to gs that sends one token and contains the

payload di.
(d) If successful, record the transaction ID (or transaction hash) to the

database as well as the chunk index number i.
6. The result of the storing process is the transaction hashes and the chunk

indexes which can be used to retrieve the data.

Data Retrieval. Data retrieval can be done in parallel, where multiple data
chunks d can be queried from the blockchain at the same time. Once all data
chunks are retrieved, the original data D can be reconstructed since the indexes
of the chunks are known.

6 Implementation and Evaluation

We have implemented our proposed protocol into a customised wallet where the
source code of the wallet is available on Github5. The wallet uses a modified

5 https://github.com/sonicskye/senarai.

https://github.com/sonicskye/senarai
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version of the standard Tron Python API caller library6. The communication
between the wallet and the Tron system is done by calling APIs provided by
Trongrid.io. The local wallet stores private keys, while the API provider conducts
all other processes such as signature generation and transaction deployment. The
wallet consists of five parts:

– Account generator. The code generates new accounts (addresses and private
keys) on the local wallet.

– Account initiator. The code creates transactions to new accounts by send-
ing them tokens.

– Remaining bandwidth point calculator. The code calculates bandwidth
points from all initialised accounts.

– Data storage. The code stores a local file to the blockchain by splitting the
file into chunks of data then embed the data chunks in blockchain transac-
tions.

– Data retrieval. The code retrieves the embedded data chunks based on
stored transaction ID and join the data chunks to get the original file.

6.1 Experiments

Experiments were conducted on Tron’s mainnet7. First, we generated a hefty 99
trillion TRC-10 token called NullCoin. The NullCoin token generation costed
1,024 TRX which was valued around US$20.48 at the time of token creation. An
amount of 9,225 TRX worth US$184.50 was frozen in exchange of 54,387 extra
daily free bandwidth points8. From the given bandwidth points, only 49,387
bandwidth points are usable to create transactions to new accounts (hence, cre-
ate the accounts), whereas the rest 5,000 bandwidth points can only be used to
create transactions to any existing accounts.

By using the given bandwidth points, after several days, 441 new accounts
were created. These new accounts are created by sending 100,000 NullCoin
to each account. All of these accounts are accountable to 2.2 MB of daily free
permanent data storage.

6.2 Evaluation

Performance. The wallet was operated on an Ubuntu 18.04.1 LTS 64-bit
virtual machine configured with one CPU core and 4 GB RAM. The virtual
machine was hosted on a Macbook Pro 2012 Dual Core 2.5 GHz Intel Core i5
and 16 GB RAM connected to a shared wireless ADSL2+ Home Internet con-
nection. The performance evaluation was done on protocol-related operations,
namely account generation, account initialisation, data storage, and
data retrieval. The result of the performance evaluation is as shown in Fig. 1.
6 https://github.com/sonicskye/tron-api-python.
7 Mainnet or main network is where the tokens have real value. In contrast, testnet or

test network provides free zero value tokens that can be used for testing purposes.
8 The number of free bandwidth points varies depending on the network parameters.

https://www.trongrid.io/
https://github.com/sonicskye/tron-api-python
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Fig. 1. The required time to finish operations.

Table 1. Evaluation on operation time

Operation Data count Lowest time (ms) Highest time (ms) Average time (ms)

Account generation 1,240 90.78 600.72 146.69

Account initialisation 97 675.10 2,489.82 862.17

Data storage 480 772.86 2,940.94 964.97

Data retrieval 645 221.36 3,722.77 309.69

The data in Table 1 shows that the account generation is the fastest opera-
tion in average compared to any other operations, while data retrieval comes
second. Account initialisation and data storage requires relatively the
same time; however, data storage operation needs slightly more time than
account initialisation operation. The account initialisation and data
storage operations are in the same level, because fundamentally they perform
the same task, which is sending transactions to the network and receiving results
from the transactions that were sent. The main difference is that the account
initialisation operation sends much lower data than data storage oper-
ation. However, the experiment shows that the data size does not make any
differences to the performance of the operation.

File storage performance tests9 were also conducted. The stored data is dou-
ble the size of the original files due to the inefficiency of the data encoding in
the Tron system library, where each byte from the original file will be stored as
two characters hexadecimal which is two bytes long. In this case, the maximum
size for the data chunk is 2,350 bytes to get an optimum encoded data of 4,700
bytes. The results show that the average time required to store each data chunk

9 The experiments use medium-size royalty-free image files provided by Pixabay.com.

https://pixabay.com/
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is almost one second, where the total required time depends on the number of
data chunks.

The results might be affected by the following factors:

– The Internet connection from the wallet to the API provider. Sending and
receiving data are done through the Internet. Considering that the time calcu-
lation starts when the wallet sends the data and ends when the wallet receives
the feedback, the Internet connection quality may affect the calculated time.

– The workload of the API provider. The raw transaction generation and signa-
ture generation are done on the API provider side. This puts a heavy burden
to the provider’s servers if there are massive requests to be processed.

Although these two factors may affect the results, the performance improvement
over these two factors will not be further discussed.

Total Cost and Cost Comparison. The experiments were conducted by using
a minimum cost, where there is only fee for creating tokens. The frozen coins
were not lost; hence, it can be resold in the future. Although there is a potential
loss due to price difference, it will be ignored for simplification. It is possible to
get a higher daily storage capacity by spending TRX instead of freezing coins. It
is assumed that the preferred capacity of our solution is 2 GB in order to store
1 GB data. At the time of the writing, the market price is US$0.02 per TRX.
The cost breakdown for our solution is shown in Table 2.

Table 2. Senarai’s cost breakdown for 1 GB storage capacity

Function No. of operations Cost (in TRX) Cost (in US$)

TRC-10 token creation 1 1,024 20.48

Account generation 400,000 0 0.00

Account initialisation 400,000 40,000 800.00

Total cost 41,024 820.48

Cost comparison was also done. Storage cost in Bitcoin and Ethereum were
taken from [13]. Adjustments were made to the calculations by applying the
most recent cryptocurrency values and transaction fee rates. At the time of the
writing, Bitcoin is traded at US$3,733 and Ethereum at US$133. The average
transaction cost in Bitcoin is US$0.03 [4], while the average Ethereum gas cost
is 2.1GWei [5]. The cost comparison detail is provided in Table 3.

As shown in Table 3, the one-time cost in our solution does not need to be
paid for storing the next gigabytes of data. Assuming that there will be 1 GB
data stored each day, the operational cost for 30 days and 1 year (365 days) is
shown in Table 4.

As it can be seen in Table 4, our solution does not incur any cost at all. This is
because there is no more operational fee involved after the initialisation phase.
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Table 3. Cost comparison between solutions

Protocol Storage cost per GB (in US$) Remark

Bitcoin 629,777.25 One-time storage

Ethereum 175,634.85 One-time storage

Senarai 820.48 One-time cost

Table 4. Storage cost for a long term usage

Protocol Monthly cost (in US$) Annual cost (in US$)

Bitcoin 18,893,317.50 229,868,696.25

Ethereum 5,269,045.57 64,106,721.13

Senarai 0.00 0.00

When the storage becomes enormously big, the cost during the initialisation
phase for our solution becomes incredibly small compared to other solutions. This
concludes that our solution is way more economical than the existing solutions
in the long term.

Payload and Data Efficiency. Our protocol optimises the free 5,000 band-
width points given by Tron system. To ensure that the transaction size does not
exceed the free bandwidth points, a maximum payload size of 4,700 bytes can
be stored in each transaction per account, per day. With the transaction data
requires around 300 bytes, our protocol has a payload efficiency of 94% with 6%
overhead. Table 5 shows the data efficiency comparison between Senarai, Bit-
coin, and Ethereum. Senarai’s efficiency rate is higher data dropping method in
Bitcoin (90.5%), but lower than Ethereum’s transaction data storage, where the
efficiency can be as high as 99.7%10.

Table 5. Data efficiency comparison

Method Max. data per Tx Data efficiency

Bitcoin’s data drop [16] 92,507 90.5%

Ethereum’s transaction [16] 44,444a 99.7%

Senarai 2,700 94%
aThe size can vary depending on the block gas limit

10 Based on the transaction created by an Ethereum Stackexchange user in August
2016 which utilised the maximum block gas limit at the time of transaction creation
[1]. The data efficiency rate is calculated by comparing the data payload and the
raw transaction. The Ethereum block gas limit is scalable, therefore it is possible to
increase the efficiency further [1].
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However, since the current inefficient encoding scheme requires double the
original file size, our protocol’s real data efficiency is only 47% of the total trans-
action size. This low efficiency significantly increases the cost during initialisation
phase, but the data storage phase remains free.

7 Conclusion and Future Work

We present Senarai, a sustainable blockchain-based storage protocol. Our pro-
tocol utilises free storage feature in Tron and expands the storage by creating
as many accounts as possible. Our protocol is cost-efficient; the expense is only
required during initialisation phase, where as little as US$820.48 will provide a
daily free data storage of 1GB. The sustainability will be maintained such that
the used storage will be replenished every 24 h.

For future work, we plan to optimise the encoding scheme in the standard
Tron library and to add a compression scheme to improve the current data
efficiency. By improving the encoding scheme and incorporating a compression
scheme in the protocol, it is expected that more data can be stored in the
blockchain without any additional fees.
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Abstract. In an attribute-based credential (ABC) system, users obtain
a digital certificate on their personal attributes, and can later prove pos-
session of such a certificate in an unlinkable way, thereby selectively dis-
closing chosen attributes to the service provider. Recently, the concept of
encrypted ABCs (EABCs) was introduced by Krenn et al. at CANS 2017,
where virtually all computation is outsourced to a semi-trusted cloud-
provider called wallet, thereby overcoming existing efficiency limitations
on the user’s side, and for the first time enabling “privacy-preserving
identity management as a service”.

While their approach is highly relevant for bringing ABCs into the
real world, we present a simple attack fully breaking privacy of their
construction if the wallet colludes with other users – a scenario which is
not excluded in their analysis and needs to be considered in any realis-
tic modeling. We then revise the construction of Krenn et al. in various
ways, such that the above attack is no longer possible. Furthermore,
we also remove existing non-collusion assumptions between wallet and
service provider or issuer from their construction. Our protocols are still
highly efficient in the sense that the computational effort on the end user
side consists of a single exponentiation only, and otherwise efficiency is
comparable to the original work of Krenn et al.

Keywords: Attribute-based credentials · Privacy-preserving
authentication · Strong authentication

1 Introduction

Anonymous attribute-based credential systems (ABCs) – first envisioned by
Chaum [11,12] and extended in a large body of work [5–10,15,20–22] – are
a cryptographic primitive enabling user-centric identity management. In ABC
systems, a user receives a certificate on his personal data such as name, nation-
ality, or date of birth from an issuer. Later, the user can present this certificate
to service providers (or relying parties), thereby deciding which attributes to
reveal or to keep private, in a way that makes different authentication processes
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unlinkable to each other. While the service provider receives strong authentic-
ity guarantees on the received attributes, the user’s privacy is maintained, even
against colluding issuers and service providers.

However, despite of their obvious benefits, ABC systems have not yet found
their way into relevant real-world applications. One main reason for this are com-
putational costs, which make them unsuitable for resource-constraint devices.

This drawback was recently addressed by Krenn et al. [18], who proposed a
scheme dubbed EABC, where virtually all computations can be outsourced to a
semi-trusted wallet. The underlying idea was that users get signatures on their
attributes, encrypted under some proxy re-encryption [3] scheme, from the issuer,
and upload signature and ciphertexts to the wallet, together with a re-encryption
key from their own public key to the intended service provider’s public key. For
presentation, the wallet re-encrypts the ciphertexts of the revealed attributes for
the service provider, randomizes the remaining ciphertexts, and attaches a zero-
knowledge proof of knowledge of a signature on the underlying ciphertexts. By
the privacy property of the proxy re-encryption scheme, the wallet can translate
encryptions from users to service providers, without ever learning any infor-
mation about the underlying plaintexts. However, while solving the efficiency
drawbacks of previous ABC systems, the attacker model underlying [18] is unre-
alistic, as they make very strong non-collusion assumptions between the wallet
on the one hand, and service providers or issuers on the other hand. Even worse,
we point out a trivial attack which fully breaks privacy in their construction.
That is, their security analysis would only hold true if in addition also any col-
lusion between wallet and other users is forbidden, which is clearly unrealistic,
e.g., in the case of malicious administrators.

The Attack on Krenn et al. [18]. The fundamental problem of [18] is that for
efficiency reasons their construction makes use of bi-directional multi-hop proxy
re-encryption schemes. That is, having a re-encryption key rkA→B that allows
a proxy to translates a ciphertext cA encrypted under pkA to a ciphertext cB

under pkB without learning the plaintext, and a re-encryption key rkB→C , the
proxy can also translate cA to cC under pkC (multi-hop); furthermore, rkA→B

can efficiently be turned into rkB→A (bi-directionality).
Assume now that Alice A wants to authenticate herself towards some ser-

vice provider SP and thus stores rkA→SP and encryptions cA of her personal
attributes on the wallet. Let the malicious administrator M also sign up for SP
and compute rkM→SP . Using the bi-directionality of the proxy re-encryption
scheme, this directly gives rkSP→M , and using the multi-hop functionality,
M can now translate all of A’s ciphertexts for herself, thereby fully break-
ing Alice’s privacy. Even more, because of the concrete choice of the deployed
re-encryption scheme, the attacker could even recover Alice’s secret key as
skA = rk−1

A→SP · skM→SP · sk−1
M without having to assume a corrupt service

provider. Actually, also the secret key of the service provider can be recovered
as skSP = skM→SP · sk−1

M .
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Note that this attack is not specific to the deployed scheme of Blaze et al. [3],
but arises in any multi-hop proxy re-encryption scheme that is used for out-
sourced data sharing application using long-term keys for the relying parties.

Mitigation Strategies. A straightforward solution to this problem might be
to replace the deployed proxy re-encryption scheme by a single-hop and/or uni-
directional encryption scheme. However, it turns out that the algebraic struc-
tures of existing signature and encryption schemes (with the required properties)
would then no longer allow for efficient zero-knowledge proofs or knowledge, and
the benefits of [18] would dissolve. Very informally speaking, the reason for this is
that all such potential schemes would “consume” the one available pairing in the
system. Furthermore, the other limitations of [18] (i.e., non-collusion assump-
tions) would not be addressed by such a modification.

Our Contribution. The main contribution of this paper is to overcome the
security limitations of [18] without harming the efficiency of the scheme. That
is, we provide an instantiation of an EABC system that does not require any
artificial non-collusion assumptions, at the cost of only a single exponentiation on
the user’s side. Furthermore, in contrast to [18], our system also gives metadata-
privacy guarantees in the sense that the wallet only learns the policy for which
it is computing the presentation tokens (i.e., which attributes are revealed and
which remain undisclosed), but does no longer learn for which service provider it
is computing the presentation, such that reliably tracking users becomes virtu-
ally impossible. Hiding the presentation policy within a set of policies could be
achieved by the techniques of Krenn et al. [18, Sect. 6.1] for a linear overhead.

In a bit more detail, our contribution is multifold.

– Firstly, we replace the static long-term keys used by the service providers in
[18] by ephemeral keys which are only used for a single authentication. This
is achieved through an interactive key agreement protocol between the two
parties, which guarantees freshness of the agreed keys. By this, a malicious
administrator can no longer run the attack described above, as the rkA→SP

and rkM→SP will no longer be bound to the same key of the service provider.
– Next, by using independent keys for the individual user attributes, even a

collusion of service provider and wallet may only reveal the information that
the user was willing to share with the service provider in any case.

– Thirdly, by replacing the signature scheme deployed in the issuance phase by
a blinded version of the same scheme, our construction achieves high unlink-
ability guarantees even in the case of wallet-issuer collusions. Our blinded
version of the structure-preserving signature scheme of Abe et al. [2] may be
also of independent interest beyond the scope of this paper.

– Finally, by having a separate identity key that is not stored on the wallet but
locally on the user’s device, the service provider is guaranteed that the user
is actively participating in the protocol. While Krenn et al. [18] considered
it undesirable that users need to carry secret key material with them, we
believe that having no information stored locally results in unrealistic trust
assumptions as there the wallet could impersonate a user towards any service
provider that the user ever signed up for.
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Outline. This paper is organized as follows. In Sect. 2 we discuss the building
blocks of EABC systems, and in particular the schemes needed for our concrete
instantiation. Then, in Sect. 3 we give a high-level description of EABC systems,
its revised adversary model and security notions. Finally, Sect. 4 presents the
concrete EABC instantiation, including security statements, the proofs of which
are given in the full version of the paper.

2 Preliminaries

In the following we introduce the necessary background needed in the rest of the
paper. In particular, we recap the notions of proxy re-encryption and structure-
preserving signatures. We then present a transformation of the AGHO signature
scheme [2] into a blinded version, which combines both features, blindness and
structure-preservation, needed to efficiently instantiate EABC systems.

2.1 Notation

We denote the security parameter by λ. All probabilistic, polynomial time (PPT)
algorithms are denoted by sans-serif letters (A,B, . . .), and their combination in
two-party or three party protocols by 〈A,B〉 and 〈A,B,C〉, respectively. Whenever
we sample a random element m uniformly from a finite set M , we denote this
by m ←$ M . We write Zq for the integers modulo a prime number q,Z∗

q for its
multiplicative group, and 1/e for the modular inverses. We shall make extensive
use of non-interactive zero-knowledge proofs of knowledge, where we use the
Camenisch-Stadler notation to specify the proof goal. For example,

NIZK
[
(α, β, Γ ) : y1 = gα ∧ y2 = gα · hβ ∧ R = e(Γ,H)

]

denotes a non-interactive zero-knowledge proof of knowledge proving knowledge
of values α, β, Γ such that the expression on the right-hand side is satisfied.
In most situations, extractability of zero-knowledge proofs will be sufficient.
However, in a single case we will require simulation-sound extractability [17].

2.2 Anonymous and Re-randomizable Proxy Re-encryption

A proxy re-encryption (PRE) scheme is an asymmetric encryption scheme which
allows a third party (the proxy) to transform ciphertexts encrypted for one
party into ciphertexts encrypted for another one, without learning the underlying
plaintext. As in [18], we instantiate our EABC system by using the scheme by
Blaze et al. [3] (BBS); the associated issues in [18] are mitigated by a different
use of the scheme. It possesses all the security properties needed for proving
our system secure, yet it yields algebraic simple relations for encryption, re-
encryption and re-randomization, altogether allowing for efficient zero-knowledge
proofs of statements which involve these operations.
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The BBS scheme consists of six PPT algorithms,

PREBBS = (Par,Gen,Enc,Dec,ReKey,ReEnc),

where Par(λ) outputs the system parameters pp = (G, q, g), where 〈g〉 = G is a
group of prime order q. Gen(pp) generates a key pair (sk, pk) by sk ←$Zq and
pk = (pp, gsk). Encryption and decryption works as for ElGamal [16], i.e.,

Enc(pk,m) = c = (c1, c2) = (gr, pkr · m),

where m ∈ G is the message, r ←$Zq, and Dec(sk, c) = c−sk
1 · c2.

Given two key pairs (pk1, sk1), (pk2, sk2), their re-encryption key rk =
rkpk1→pk2 is derived by ReKey(sk1, pk1, sk2, pk2) = sk1 · sk−1

2 , and

ReEnc(rk, c) = (crk
1 , c2)

transforms a ciphertext c = (c1, c2) for pk1 to one with respect to pk2.
The relevant properties of the BBS scheme are summarized next.

Proposition 1 ([3]). Under the DDH assumption in the message space G,
the BBS scheme is PRE-IND-CPA secure. That is,it is IND-CPA secure even
under knowledge of (polynomially many) re-encryption keys that do not allow
the adversary to trivially decrypt the challenge ciphertext.

Proposition 2 ([18]). The BBS PRE scheme with re-randomization function
ReRand(pk, c) = Enc(pk, 1) · Enc(pk, c) = (gr · c1, pkr · c2), r ←$Zq, has the
ciphertext re-randomization property. That is, given pk, a message m and its
ciphertext c, then the output distribution of ReRand(pk, c) is computationally
indistinguishable from that of Enc(pk,m).

Proposition 3 ([18]). Under the DDH assumption in G, the BBS proxy-re-
encryption scheme is anonymous. That is, for any PPT adversary Adv there
exists a negligible function ν such that

∣
∣
∣
∣
∣
∣
Pr

⎡

⎣
pp ← Par(λ); (ski, pki) ← Gen(pp), i ∈ {0, 1};
(m, st) ← Adv(pp, pk1, pk2);

b ←$ {0, 1}; b∗ ← Adv(st,Enc(pkb, m))

: b∗ = b

⎤

⎦ − 1
2

∣
∣
∣
∣
∣
∣
≤ ν(λ)

2.3 Structure-Preserving Blind Signatures

The structure-preserving signature scheme of Abe et al. [1,2] is based on asym-
metric bilinear groups (G,H,T, e) with the feature that messages, signatures and
verification keys consist of elements from G and/or H, and verification is realized
by pairing-product equations over the key, the message and the signature. This
allows for efficient zero-knowledge proofs of claims involving the message and
the signature, which is why they apply to various cryptographic protocols, e.g.,
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[1,14,15,18]. Similarly, our construction relies on the scheme in [2] (AGHO),
since it allows to sign vectors of group elements. The AGHO scheme

SIGAGHO = (Par,Gen,Sig,Vf)

consists of four PPT algorithms. The setup algorithm Par generates the scheme’s
parameters pp = (G,H,T, q, e,G,H) which are comprised of groups G, H, T of
prime order q, a bilinear mapping e : G×H −→ T, and their respective generators
G, H, e(G,H). Gen(pp) produces a private-public key pair (sk, vk),

sk =
(
v, (wi)li=1, z

)
and vk =

(
V, (Wi)li=1, Z) = (Hv, (Hwi),Hz

)
,

where all the secret components v, z, and wi are randomly sampled from Zq.
Given m = (gi)li=1 from G

l, we have that σ = Sig(sk,m) = σ = (R,S, T ) ∈
G × G × H, where

R = Gr, S = Gz · R−·v ·
l∏

i=1

g−wi
i , T = H

1/r,

for r ←$Z
∗
q . The verification condition of σ = (R,S, T ) is given by the two

bilinear equations e(S,H) · e(R, V ) · ∏
i e(gi,Wi) and e(R, T ) = e(G,H).

Theorem 1 ([2]). In the generic group model, the AGHO signature scheme
SIG = (Par,Gen,Sig,Vf) is strongly existentially unforgeable under adaptive cho-
sen message attacks (sEUF-CMA). That is, for every PPT adversary Adv there
exists a negligible function ν such that

Pr

[
pp ← Par(λ); (vk, sk) ← Gen(pp)

(m∗, σ∗) ← AdvSig(pp,sk, . )
:
Vf(vk, (m∗, σ∗)) = 1 ∧
(m∗, σ∗) /∈ Q

]

≤ ν(λ)

where Adv has access to a signing oracle Sig(pp, sk . ), which on input m computes
a valid signature σ, adds (m,σ) to the initially empty list Q, and returns σ.

Blind signatures allow a user to obtain signatures in a way such that both
the message as well as the resulting signature remain hidden from the signer.
Restrictive blind schemes additionally allow the signer to encode information
into the message, while still preserving the unlinkability of the resulting message-
signature pair to the issuance session. The notion of restrictiveness goes back to
Brands [4], and various adaptions have been made since then, e.g., [5,13,19]. In
the context of anonymous credentials, and for the first time done in [5], such
restricted message is typically a commitment on a value defined by the issuer.
As such, we consider a restrictive blind signature scheme

BSIG = (Par,Gen,User,Signer,Vf)

being based on a blind signature scheme and a commitment scheme

COM = (ParCOM ,CommCOM ,VfCOM )
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for values x such that its output is in the message space of the signature. Par, on
input the security parameter λ, sets up the scheme’s parameters pp, including
a compliant setting of COM, and Gen(pp) generates a private-public key pair
(sk, vk). The interactive algorithms User and Signer define the issuance protocol

〈
User(vk, x),Signer(sk, x)

〉

between a user and a signer with private-public key pair (sk, pk), which on input
a commonly agreed value x ∈ X outputs to the user a certificate (w, com, σ)
which consists of a commitment com of x together with an opening w and a
valid signature σ on com. The verification Vf(vk, x, (w, com, σ)) = 1 is a separate
validity check of the commitment com on (x,w) and the signature σ on com.

The notions of unforgeability and blindness adapted to our setting of restric-
tive blind signatures are as follows.

Definition 1. A restrictive blind signature scheme BSIG = (Par,Gen,User,
Signer,Vf) is strongly unforgeable if for any PPT adversary Adv there exists
a negligible function ν such that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pp ← Par(λ);

(vk, sk) ← Gen(pp);Q ← ∅
(x∗, (w∗

i , com∗
i , σ∗

i )
q
i=1) ← Adv〈 . ,Signer(sk, . )〉

:

q > mult(x∗) ∧
for 1 ≤ i ≤ q

Vf(vk, x∗, w∗
i , (com∗

i , σ∗
i )) = 1 ∧

∧

j �=i

(com∗
j , σ∗

j ) �= (com∗
i , σ∗

i )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ν(λ),

where Adv has access to a signing oracle 〈 . ,Signer(sk, . )〉 which logs every suc-
cessful query x in an initially empty list Q, and mult(x∗) denotes the multiplicity
of successful queries with x = x∗.

Definition 2. A restrictive blind signature scheme BSIG = (Par,Gen,User,
Signer,Vf) satisfies blindness, if for any PPT adversary Adv there exists a neg-
ligible function ν such that

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

pp ← Par(λ); (vk∗, x∗
0, x

∗
1, st) ← Adv(pp);

((wi, comi, σi), st) ← 〈
User(vk, x∗

i ),Adv(st)
〉
, i ∈ {0, 1}

if σ0 = ⊥ ∨ σ1 = ⊥ then (σ0, σ1) = (⊥, ⊥)

b ←$ {0, 1}; b∗ ← Adv(st, (comb, σb), (com1−b, σ1−b))

: b∗ = b

⎤

⎥
⎥
⎦− 1

2

∣
∣
∣
∣
∣
∣
∣
∣

≤ ν(λ) .

Blind AGHO Scheme. Our structure-preserving restrictive blind signature
scheme BSIGAGHO = (Par,Gen,User,Signer,Vf) is based on the AGHO scheme
SIGAGHO, a compatible commitment scheme COM, and two non-interactive
extractable zero-knowledge proof systems, to both of which we refer to as NIZK
without causing confusion. Par, Gen, and Vf are the corresponding algorithms
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from SIGAGHO, besides that Par also queries ParCOM so that the commitments
are elements of the messages space G

l of the AGHO scheme, and furthermore
generates a common reference string for the zero-knowledge proof systems. We
stress that our scheme is not merely based on a structure-preserving signature
(as the ones from, e.g., [1,14,15]) but is structure-preserving by itself, which is
an essential feature for our EABC instantiation.

Definition 3 (Blind AGHO signature on commited values). The issu-
ance protocol

〈
User(vk, x),Signer(sk, x)

〉
runs between a signer S with AGHO

signing keys sk = (v, (wi)li=1, z), vk, and a user U who wishes to receive a
certificate (w, com, σ) on the commonly agreed value x from the signer.

1. U computes com on x with opening w by using CommCOM . By our assump-
tion on COM, m = com is from the message space of the signature, i.e.
m = (mi)li=1 ∈ G

l.
2. U blinds m using a random pad P = (Pi)li=1 ←$G

l, and obtains m =
(mi)

l
i=1 =

(
mi · P−1

i

)l

i=1
. It further chooses e, f ←$Z

∗
q , a random decomposi-

tion f = f1+ f2 of f , and sets P = (P e
i )

l
i=1, (G1, G2, G3) = (Ge, Gf1 , Ge·f2).

U then sends m, P , (G1, G2, G3) to S and gives a zero knowledge of well-
formedness

πU = NIZK
[
(η, ϕ1, ϕ2, ω) : Gη

1 = G ∧ Gϕ1 = G2 ∧

Gϕ2
1 = G3 ∧ VfCOM (m · P

η
, x, ω) = 1

]
,

using the witnesses (η, ϕ1, ϕ2, ω) = (1/e, f1, f2, w).
3. S verifies πU , and returns ⊥ if not valid. Otherwise it generates a random

decomposition z = z1+z2 of its signing key’s z, and computes the ‘signatures’
σ =

(
R,S1, S2, T

)
, with R = Gr, T = H1/r, S1 = Gz1 · G−r·v

2 · ∏l
i=1 m−wi

i ,
S2 = Gz2

1 · G−r·v
3 · ∏l

i=1 P
−wi

i , where r ←$Z
∗
q . It then returns σ to U supple-

mented by a proof of wellformedness

πS = NIZK
[
(ρ, τ, (ωi)i, ζ1, ζ2) :

∧

i

Hωi = Wi ∧ Hζ1 · Hζ2 = Z ∧

Gρ = R ∧ T
ρ
= H ∧ V ρ · H−τ = 1 ∧

Gζ1 · G−τ
2 ·

l∏

i=1

m−ωi
i = S1 ∧ Gζ2 · G−τ

3 ·
l∏

i=1

P
−ωi

i = S2

]
,

by using the witnesses (ρ, τ, (ωi)i, ζ1, ζ2) = (r, r · v, (wi)i, z1, z2).
4. U checks if πS is valid. If so, she outputs σ = (R,S, T ), where R = R

f
, S =

S1 · S
1/e

2 , T = T
1/f

. (Otherwise she outputs ⊥).

Corrrectness of the blind AGHO scheme is straightforward, the proof of the
following theorem is given in the full version of the paper.
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Theorem 2. Suppose that both NIZK in Definition 3 are extractable. If the com-
mitment scheme COM is computationally hiding, then under the DDH assump-
tion in G the restrictive blind signature scheme BSIGAGHO satisfies blindness.
Furthermore, if COM is computationally binding, BSIGAGHO is strongly unforge-
able in the generic group model.

3 EABC: High-Level Description

An encrypted attribute-based credential (EABC) system, introduced in [18],
allows the delegation of selective disclosure to a third party in a privacy-
preserving manner by means of proxy re-encryption and redactable signatures.

There are four types of players in an EABC system: issuers, users, services,
and the central wallet. Each user U holds an identity key skU proving her identity
and which is securely stored on her trusted device (e.g., a smart card or TPM).
U engages in an issuance protocol with an issuer I to receive an encrypted
credential C on certain attributes only readable to her such that C is bound
to her identity key skU . U further owns an account managed by the wallet
W , a typically cloud-based identity provider, to which she uploads all of her
encrypted credentials C while not providing it the encryption keys k(C). At any
time later, when U wants to access a service S she is asked to attest some of
her attributes. To convince S of the requested attributes without revealing any
further testified information, U chooses one (or several) of her credentials from
her account, selects a subset of attributes contained therein, and instructs W to
engage in a presentation protocol with S, which serves the latter re-encryptions
of the requested attributes together with a proof of validity. In this protocol, the
wallet W undertakes (almost) all costly operations while reducing U ’s effort to
a possible minimum, requiring her only to supply the re-encryption keys for the
selected attributes, and a proof of her consent (via her skU ) to the presentation
process. This last proof is also how the overall model of EABCs differs from that
in [18], where no computation is required on the user’s side at all; however, as
discussed earlier, we believe this is needed for a realistic attacker scenario, as
otherwise the wallet could arbitrarily impersonate the user towards any service
provider that the user ever signed up for.

3.1 Formal Definition

An EABC system with attribute space A is built on a structure-preserving blind
signature scheme BSIG in the sense of Sect. 2.3, an anonymous re-randomizable
proxy re-encryption scheme PRE (cf. Sect. 2.2) which acts on the message space
of BSIG, and two zero-knowledge proof systems to which we both refer as ZKP
without causing confusion. Formally, an EABC system

EABC = (Par,GenI ,GenU , Iss,UserI ,UserP ,Wall,Serv)

consists of the (PPT) algorithms Par, GenI , and GenU for setup and key gener-
ation, and the interactive (PPT) algorithms Iss, UserI , UserP , Wall, Serv which
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are the components of the issuance and presentation protocol described below.
Given the security parameter λ, Par (λ) generates the system parameters sp.
These are comprised of the parameters for BSIG, PRE, and a common reference
string for ZKP. Every user U holds a PRE secret-public key pair (skU , pkU ) gen-
erated by GenU (sp) = GenPRE(sp), her identity key, which is used to generate
her certificate pseudonyms. On demand, a user repeatedly queries GenU (sp) to
generate the encryption keys k(C) of her credentials. Each issuer I is holder of a
key pair for the blind signature scheme (skI , vkI) ← GenI(sp), GenI = GenBSIG,
where skI denotes the secret signing key and vkI its public verification key. Note
that, unlike in [18] a service has no permanent key material for the proxy re-
encryption scheme. Its PRE key will be an ephemeral one-time key, one for each
presentation. Both the issuance and the presentation protocol run over server-
side authenticated, integrity protected and confidential connections (associated
with some random session identifier sid) and are as follows.

Issuance. The issuance protocol
〈
UserI (sid, skU , A, vkI) , Iss (sid,A, skI [, pkU ])

〉

is performed between a user U with identity keys (skU , pkU ) and an issuer I
with signature key pair (skI , vkI) who is the supplier of the random session
identifier sid. Both user and issuer agreed on the unencrypted content, the
attributes A = (ai)li=1 ∈ A

l beforehand. Depending on the type of issuance,
it might be mandatory that U authenticates with its identity key, hence we
leave it optional whether pkU is supplied to I or not, denoted by [, pkU ]. If
successful, the protocol outputs to U an encrypted attribute-based credential
(C, vkI) together with it’s (secret) key material sk = sk(C), the latter of
which U keeps on her device (and never provides it to a third party). In all
other cases, the user receives ⊥.

Presentation. The presentation protocol is a three party protocol
〈
UserP (sid, skU , sk(C),D) ,Wall (sid, C,D, vkI) ,Serv (sid,D, vkI)

〉

and involves a user U with identity key skU , the wallet W which hosts U ’s
credential (C, vkI), and a service S, who provides the random session identifier
sid. As before, sk(C) is the user’s secret key material for C. The user decides
the attributes in C to be disclosed to S beforehand, associated with some
index subset D ⊆ {1, . . . , l}. At the end of the protocol the service receives
a presentation C∗ of C, which is comprised of the requested attributes, re-
encrypted to a random one-time key sk′ of S, together with a proof of validity.
The service verifies the proof by help of the issuer’s public key vkI . If valid,
the service accepts and decrypts the attributes using sk′. Otherwise it rejects
and outputs ⊥ to both U and W .

3.2 EABC Security Notions

We widen the adversary model from [18] to a setting which does not impose any
trust assumption on the wallet. An attacker who controls several players of the
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EABC system, i.e. the central wallet, some of its users, service providers and
issuers, should not be able to compromise the system in a more than obvious
manner. That is, the adversary should not be able to

1. efficiently generate valid presentations which do not match any of the adver-
sary’s credentials (unforgeability),

2. alter the statement of a presentation successfully without knowledge of the
user (non-deceivability),

3. learn anything from the encrypted credentials besides the information dis-
closed under full control of the owner (privacy), and

4. distinguish presentations with the same disclosed content when the underly-
ing encrypted credentials are not known to the adversary (unlinkability).

All security notions are given in a game-based manner, and we assume server-
authenticated, confidential and integrity protected connections between the pro-
tocol participants.

Unforgeability for EABC. The unforgeability experiment paraphrases a mali-
cious wallet and (adaptively many) malicious users, who altogether try to trick
an honest service into accepting a presentation which does not match any of the
adversary’s queries to an honest issuer. The experiment manages a list L which
records the key material of all honest system participants during the entire life-
time of the system, i.e. the honest user’s identity keys (pkU , skU ) and honest
issuer keys (vkI , skI). The list L is also used to log all honest user’s credentials
(C, vkI , skU , sk(C)) under a unique handle h.

At any time the adversary Adv is given access to all public information con-
tained in L, i.e. the public keys pkU , vkI and the handles h, and as wallet W ∗ it
may retrieve the encrypted credentials (C, vkI) of every handle h contained in L.

Besides L, the experiment maintains another list QAdv used for logging all
adversaries queries to honest issuers of the system. At first, the experiment
initializes the system by running sp ← Par(λ), setting L = ∅, QAdv = ∅, and
returns sp to the adversary Adv. The adversary may then generate and control
adaptively many (malicious) players, and interact with the honest ones by use
of the following oracles:

Issuer oracle I(vkI , A [, pk∗
U ]). This oracle, on input an issuer’s vkI , attributes

A = (ai)i, and optionally a public identity key pk∗
U , provides the adversary

a (stateful) interface to an honest issuer’s Iss(A, skI [, pk∗
U ]) in the issuance

protocol, provided that vkI is listed in L. If not, then the oracle generates
a fresh pair of issuer keys (skI , vkI) ← GenI(sp), adds it to L, and returns
vkI to the caller Adv. Whenever the protocol execution is successful from the
issuer’s point of view, the oracle adds (vkI , (ai)i [, pk∗

U ]) to QAdv.
User-issuance oracle UI(pkU , A, vk∗

I ). This oracle provides the interface to an
honest user’s UserI(skU , A, vk∗

I ) in an adversarily triggered issuance session.
If vk∗

I belongs to an honest issuer (being listed in L) the oracle aborts. As
above, if pkU is not in L, the oracle adds fresh (skU , pkU ) ← GenU (pp) to
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L, and informs adversary about the new pkU . Whenever the session yields a
valid credential C for the user, the oracle adds (C, vk∗

I , skU , sk(C)) together
with a fresh handle h to L, and outputs (h,C, vk∗

I ) to the adversary.
Issuance oracle UI(pkU , A, vkI). This oracle performs a full issuance session

between an honest user pkU and an honest issuer vkI on the attributes A,
logs the resulting credential (C, vkI , skU , sk(C)) in L and outputs (C, vkI),
its handle h and the protocol transcript to the caller. Again, if either pkU or
vkI are not in L the oracle generates the required identities, adds them to L
and returns their new public keys before running the issuance.

User-presentation oracle UP (h,D). The user-presentation oracle initiates a
presentation session for an existing handle h, and provides both interfaces of
UserP (skU , sk(C),D), where (skU , sk(C)) belong to h, to the caller. If the
handle h is not listed in L, the oracle aborts.

Eventually the adversary Adv runs a presentation session claiming credentials
of some honest, but adversarily chosen vkI . The experiment is successful if Adv
manages to make Serv[vkI ] accept the presentation but the disclosed attributes
o∗

S = (a∗
i )i∈D∗ do not correspond to any of the adversary’s credentials issued by

vkI , which we denote by o∗
S /∈ QAdv|D∗ .

Definition 4. An EABC system EABC is unforgeable, if for any PPT adversary
Adv the success probability in the following experiment is bounded by a negligible
function in λ.

Unforgeability Experiment ExpforgAdv (λ)

pp ← Par(λ);L = ∅;QAdv = ∅;
(vkI , st) ← Adv(pp), with vkI listed in L

〈o∗
U , o∗

S〉 ← 〈
Adv(st),Adv(st), Serv(vkI , D)

〉

if o∗
U �= ⊥ ∧ o∗

S /∈ QAdv|D∗ return success else return failed

In this experiment, Adv = AdvI,UI ,UI,UP has access to the above defined (interac-
tive) oracles, oU denotes the service’s verdict (output to the user-side), and o∗

S

are the disclosed attributes (a∗
i )i∈D∗ (output on the service-side).

Non-deceivability of Honest Users. Non-deceivability (of honest users) is
the infeasibility of successfully altering the presentation goal without being
exposed to the honest user. Note that this property is not automatically covered
by Definition 4, since such a change of goal might be just between two vkI -
credentials of one and the same user. We formulate this property by means of
the non-deceivability experiment, which is almost identical to the unforgeability
experiment, except that in the last step the adversary Adv opens a presentation
session on behalf of an honest user for a credential C and index set D chosen by
the adversary.

Definition 5. An EABC system EABC is non-deceivable towards a user, if for
any PPT adversary Adv the success probability in the following experiment is
bounded by a negligible function in λ.
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Non-Deceivability Experiment ExpdecvAdv (λ)

pp ← Par(λ);L = ∅;
(h, D, st) ← Adv(pp), such that h is listed in L

Let C, vkI , skU , sk(C), and (ai)i belong to h;

〈o∗
U , o∗

S〉 ← 〈
UserP (skU , sk(C), D),Adv(st), Serv(D, vkI)

〉

if o∗
U �= ⊥ ∧ o∗

S �= (ai)i∈D return success else return failed

As in Definition 4, Adv = AdvI,UI ,UI,UP has access to the oracles described in
Sect. 3.2, o∗

U denotes the serivce’s verdict (ouput to the user-side), and o∗
S are

the disclosed attributes (a∗
i )i∈D∗ (output on the service-side).

Privacy for EABC. The adversary’s environment in ExpprivAdv is as in the
unforgeability experiment from Sect. 3.2. That is, the experiment maintains a list
L for the public and secret data of all honest participants, and the adversary is
given access to the same honest participant oracles I, UI , UI, UP . First, the experi-
ment generates the system parameters pp and a (random) subset D ⊆ {1, . . . , n},
and lets the adversary choose one of its issuance keys vk∗

I , two honest (not neces-
sarily different) user identities pkU1 , pkU2 and their queries A0, A0 being compli-
ant on D, i.e. A1|D = A2|D = (ai)i∈D. Then the experiment performs issuance
sessions with vk∗

I on A0 and A1 (but does not log the resulting credentials C0

and C1 in the list L). It chooses a random bit b, tells the adversary Cb and lets
Adv participate in a presentation session for Cb as many times as wanted. Based
on its experience during all these interactions, the adversary tries to guess the
random bit b.

Definition 6. An EABC system EABC satisfies privacy, if for any PPT adver-
sary Adv the advantage

∣
∣
∣Pr

[
ExpprivAdv (λ) = success

]
− 1

2

∣
∣
∣ in the following experi-

ment is bounded by a negligible function in λ.

Indistinguishability Experiment ExpprivAdv (λ)

pp ← Par(λ);L = ∅;D ←$ 2{1,...,lmax};

(st, vk∗
I , (pkU0 , A0), (pkU1 , A1)) ← Adv(pp),

with A0|D = A1|D and pkU0 , pkU1 listed in L

〈(Ci, sk(Ci)), st〉 ← 〈UserI(skUi , Ai, vk∗
I ),Adv(st)〉 , i ∈ {0, 1}

b ←$ {0, 1},

b∗ ← 〈UserP (skUb , sk(Cb), D, vk∗
I ),Adv(st, Cb)〉

if b = b∗ return success else return failed

Again, the adversary Adv = AdvI,UI ,UI,UP is given access to the oracles as
described in Sect. 3.2.
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Unlinkability of Presentations. Unlinkability of presentations is the
infeasability for a malicious service to link any two presentation sessions with
the user or the credentials hidden behind the presentation. Here, the service may
collude with issuers (in practice both can be even one and the same entity), but
in contrast to the above experiments, the wallet W is assumed to be honest. We
express this property by means of the unlinkability experiment which essentially
is as ExpprivAdv from Sect. 3.2, but the adversary is not given access to the UP ora-
cle, and it is forbidden to retrieve any credential C from L. In return it is given
access to the following honest wallet oracles:

Wallet oracle W[h,D]. This oracle provides the interfaces to an honest wallet’s
Wall[C,D, vkI ], where C and vkI belong to the handle h listed in L. If the
handle does not exist, the oracle aborts.

User-wallet oracle UW[h,D]. This oracle, on input the handle h and index
subset D, looks up the corresponding credential C and key material skU ,
sk = sk(C) in L and provides the caller the interfaces to the presentation
session 〈UserP [skU , sk(C), vkI ],Wall[C,D, vkI ], . 〉. As above, if the handle
does not exist the oracle aborts.

Definition 7. An EABC system EABC is unlinkable, if for any PPT adversary
Adv the advantage

∣
∣
∣Pr

[
ExplinkAdv (λ) = success

]
− 1

2

∣
∣
∣ in the following experiment is

bounded by a negligible function in λ.

Unlinbkability Experiment ExplinkAdv (λ)

pp ← Par(λ);L = ∅;
(st, vk∗

I , (pkU0 , A0), (pkU1 , A1), D) ← Adv(pp),

with A0|D = A1|D and pkU0 , pkU1 listed in L

〈(Ci, sk(Ci)), st〉 ← 〈UserI(skUi , Ai, vk∗
I ),Adv(st)〉 , i ∈ {0, 1}

b ←$ {0, 1};
b∗ ← 〈UserI(skUi , sk(Cb), vk∗

I ),Wall(Cb, D, vk∗
I ),Adv(st)〉

if b∗ = b return success else return failed

In the experiment the adversary Adv = AdvI,U1,UI,W,UW is given access to all
the honest-participant oracles from Sect. 3.2, and the above defined honest wallet
oracle W and UW.

4 Instantiating EABCs

We instantiate EABC = (Par,GenI ,GenU ,UserI , Iss,UserP , Wall,Serv) using the
structure-preserving blind signature scheme BSIG = BSIGAGHO from Sect. 2.3,
the anonymous re-randomizable proxy re-encryption scheme PRE = PREBBS by
Blaze, Bleumer, and Strauss (BBS, cf. Sect. 2.2), and two non-interactive zero-
knowledge proof systems (cf. Sect. 2.1), one of which is simulation extractable.
For notational convenience, we shall refer to both as NIZK without causing con-
fusion.
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4.1 System Parameters and Key Generation

Given the security parameter λ, a trusted1 third party generates the system
parameters by sp ← Par(λ), which internally queries ParBSIG and ParPRE in
such a way that the message space for BSIG and the ciphertext space of PRE is
the same group G of prime order q. Furthermore, it uses GenZKP to set up a
common reference string for the NIZK. Specifically, the system parameters are

sp = (L,G,H,T, q, e,G,H, g, crs) ,

whereas L is the maximum number of attributes allowed in a credential, G,
H, T are the AGHO pairing groups of prime order q, with bilinear mapping
e : G × H −→ T and respective generators G, H, and e(G,H), g ∈ G is the
generator for the BBS encryption scheme, and crs is the common reference
string for the NIZK proof systems. We further assume that all attributes a ∈ A

are represented by group elements from G.
An issuer I’s signing key generated by GenI(sp) = GenBSIG(sp) consists

of the AGHO keys skI = (v, (wi)li=1, z) and vkI = (V, (Wi)li=1, Z), where l ≤
L, and a user’s identity key consists of the BBS keys (skU , pkU ) generated by
GenU (sp) = GenPRE(sp).

4.2 Issuance

The issuance protocol is the restrictive blind AGHO signature (Definition 3)
based on the commitment

Comm(skU , (ai)i) = (c0, (pki, ci)i),

which embodies the encrypted certificate to be signed, being comprised by
U ’s certificate pseudonym c0 = EncBBS(pkU , 1), and the attribute encryptions
ci = EncBBS(pki, ai) with respect to fresh proxy re-encryption keys (pki)i.
Although authentication of U is outside the scope of the blind AGHO scheme,
we nevertheless integrate it into the issuance protocol by extending the well-
formedness proof of the restrictive scheme by a proof of knowing the secret key
belonging to pkU . The protocol runs over a server-authenticated, confidential
and integrity protected channel.

Definition 8 (Issuance Protocol).
〈
UserI(sid, skU , (ai)li=1, vkI), Iss(sid,

pkU , (ai)li=1, skI)
〉
is a protocol between a user U with identity key (skU , pkU )

and an issuer I with AGHO keys (skI , vkI). Both user and issuer agreed on the
unencrypted content, the attributes A = (ai)li=1 ∈ A

l, beforehand.

1. U computes com =
(
c0, (pki, ci)li=1

)
by generating a fresh pseudonym c0 =

(c0,1, c0,2) = EncBBS(pkU , 1) and attribute encryptions ci = (ci,1, ci,2) =
EncBBS(pki, ai) using a fresh set of attribute keys (ski, pki) ← GenBBS(sp),
1 ≤ i ≤ l. For notational convenience we write m = (mi,j) =
(pki, ci,1, ci,2)li=0 for com, where we set (sk0, pk0) = (skU , 1) and a0 = 1.

1 In practice, the generation of the system parameters can be realized using multi-
party techniques.
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2. With the above described commitment scheme, U engages the restrictive blind
signing session with I (Definition 3) to receive an encrypted credential

C =
{(

c0, (pki, ci)
l
i=1

)
, σ = (R,S, T )

}
,

with σ being a valid AGHO signature by I on com, and with (ski)li=0 as
the opening of com. Demanding additional authentication of the user U by
means of her identity key skU , the zero-knowledge proof πU as described in
Definition 3, is explicitly described by

πU = NIZK

[
(
η, ϕ1, ϕ2, (κi, λi)li=0

)
: gκ0 = pkU

∧ Gη
1 = G ∧ Gϕ1 = G2 ∧ Gϕ2

1 = G3

l∧

i=0

Gλi
1 = Gκi ∧ mi,0 · P

η

i,0 = gκi ∧ mi,2 · P
η

i,2 = mκi
i,1 · P

λi

i,1 · ai

]
,

which is bound to the unique session identifier sid. Here, the user U chooses
(η, ϕ1, ϕ2) = (1/e, f1, f2), and (ki, λi) = (ski, ski/e), 0 ≤ i ≤ l, as witnesses.

Remark 1. In some situations a user might be allowed to stay anonymous
towards the issuer. In such case the user’s public identity pkU is not part of
the commited x and hence not provided to I, the term gκ0 = pkU in πU is
omitted. In another setting similar to [5,7] a user might be known to I under
a pseudonym PU = EncBBS(pkU , 1) of her. Here, U proves to I that the same
secret key skU is used in both PU = (PU,1, PU,2) and the certificate pseudonym,
replacing gκ0 = pkU by cκ0

0,1 = c0,2 ∧ Pκ0
U,1 = PU,2.

4.3 Presentation

The presentation of a credential C, as described in full detail by Definition 10,
is essentially based on re-encrypting a re-randomization of C into a selective
readable version C for the service S, supplemented by two linked zero-knowledge
proofs: the computationally costly presentation proof πP , which is performed by
the wallet W and which relates the transformed C to the original C (the latter,
including its signature is hidden from S), and the ownership proof πO on the
pseudonym of C, proving knowledge of the secret identity key belonging to the
pseudonym. The first proof is efficiently instantiated by help of the structure-
preservation property of the blind AGHO scheme, the ownership proof supplied
by the user is a simple proof of knowledge of a single exponent.

For the sake of readability, we gather the establishment of the service’s session
keys and its corresponding transformation information in a separate subprotocol,
the ReKey protocol. Both Protocols from Defintions 9 and 10 run over a server-
authenticated, confidential and integrity protected channel, and are associated
with the same random session identifier sid supplied by the service. Furthermore,
the non-interactive proofs (πO and πS below) are bound to the context of the
presentation, in particular the common public parameters sid, vkI and D.
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Definition 9 (ReKey protocol). This protocol between the user U and the
service S is a subprotocol of the presentation protocol from Defintion 10.

1. U chooses a random one-time key sk′ ←$Zq, and forwards sk′ and D to S.
2. U re-randomizes2 her pseudonym c0 by e ←$Zq, c0 = (c0,1, c0,2) =

(
ce
0,1, c

e
0,2

)

and proves to S that she is in posession of its secret key, by supplying a
simulation extractable zero-knowledge proof

πO = NIZK
[
κ : cκ

0,1 = c0,2

]
,

in which she uses κ = skU as witness.
3. S verifies πO, and if valid it keeps c0 and sk′. Otherwise, S aborts the protocol.

On the user side, U takes the secret attribute keys (ski)i belonging to C and
determines rk′

0 = 1/e and the re-encryption keys rk′
i = ski/sk′, i ∈ D.

Definition 10 (Presentation Protocol). The presentation protocol
of encrypted ABCs

〈
UserP (sid, skU , (ski)i∈D),Wall(sid, C,D, vkI),Serv(sid,D,

vkI)
〉
is between a user U with identity key skU who owns the credential C

issued by I, the wallet W , and the service S (the supplier of the random session
identifier sid). Here, D ⊆ {1, . . . , l} denotes the index set of the attributes to be
disclosed, and (ski)i∈D are U ’s corresponding attribute keys.

1. U performs Protocol from Definition 9 with S, and if successful it sends the
re-randomized one-time pseudonym c0 together with the re-encryption keys
rk′

0, (rk′
i)i∈D and D to W .

From now on we proceed similar to [18]:
2. (Randomization and re-encryption) For i ∈ D, the wallet W re-randomizes

the ciphertexts ci to ci =
(
ci,1 · gfi , ci,2 · pkfi

i

)
, with fi ←$Zq. All other

attributes are randomized inconsistently, by choosing vi,0, vi,1, vi,2 ←$Zq and
setting pki = pki · gvi,0 , ci = (ci,1 · gvi,1 , ci,2 · gvi,3) for all i �∈ D. Using the
re-encryption keys (rk′

i)i∈D the wallet translates the attributes belonging to

i ∈ D by di = ReEncBBS (rk′
i, ci) =

(
c
rk′

i
i,1 , ci,2

)
.

3. (Presentation) W randomizes T by T = T x, x ←$Zq, forwards (di)i∈D,(
pki, ci

)
i/∈D

, and T to S, and provides a wellformedness proof of these ele-
ments via

πP = NIZK
[
(P,Σ, ξ), η, (κi, γi)i∈D, (νi,0, νi,1, νi,2)i/∈D : (1) ∧ (2)

]
,

which is defined by the relations (1) and (2) below.
4. S verifies πP using the verified one-time pseudonym received in Protocol 9. If

valid, it decrypts the attributes (di)i∈D with its one-time key sk′. (Otherwise
S outputs ⊥).

2 For the sake of efficiency, U might outsource the re-randomization of its pseudonym
to the wallet.
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Remark 2. Showing more than one credential is efficiently implemented by merg-
ing their ownership proofs to a single NIZK which simultaneously proves knowl-
edge of skU on all used pseudonyms, NIZK [(κ) :

∧
C c0,1(C)κ = c0,2(C)].

Equations (1) and (2) mentioned in Protocol 10, state that (P,Σ, T
1/ξ

) is a
valid signature for a quadratic derivative of the above group elements (c0,1, c0,2),
(di,1, di,2)i∈D and (pki, ci,1, ci,2)i�∈D, i.e.

e(Σ,H) · e(ρ, V ) · e(c0,1,W0,1)η · e(c0,2,W0,2)η

·
∏

i∈D

e (pk′,Wi,0)
κi · e(g,Wi,1)−γi·κi · e(pk′,Wi,2)−γi

·
∏

i�∈D

e (g,Wi,0)
−νi,0 · e(g,Wi,1)−νi,1 · e(g,Wi,2)−νi,2

= e(G,Z) ·
∏

i∈D

e(di,1,Wi,1)−1 · e(di,2,Wi,2)−1·
∏

i�∈D

e(pki,Wi,0)−1 · e(ci,1,Wi,1)−1 · e(ci,2,Wi,2)−1, (1)

where V , Z, and (Wi,0,Wi,1,Wi,2)li=0 are the components of the issuers verifica-
tion key, and

e(P, T ) · e(G,H)−ξ = 1. (2)

Linearization of the quadratic terms in (1) is accomplished by standard tech-
niques and given in the full version of the paper. An honest prover chooses
(P,Σ, ξ) = (R,S, x), and uses the parameters from step 2 of Protocol 10, i.e.
η = rk′

0, (κi, γi) = (1/rk′
i, rk

′
i · fi) for i ∈ D, and (νi,0, νi,1, νi,2) = (vi,0, vi,1, vi,2)

for all i �∈ D.

Theorem 3. Suppose that the AGHO signature scheme is EUF-CMA secure,
and that the NIZK from Definition 9 is simulation extractable. Then, under the
DDH-assumption in G,

1. the proxy re-encryption scheme PREBBS is PRE-IND-CPA secure, anony-
mous, and has the ciphertext re-randomization property,

2. the structure-preserving blind signature scheme BSIGAGHO is unforgeable and
has the blinding property,

hence our EABC system satisfies unforgeability, non-deceivability, privacy and
unlinkability in the sense of Sect. 3.2.

The proof of Theorem 3 is given in the full version of the paper.

5 Conclusions

In this paper, we pointed out a problem in Krenn et al.’s cloud-based attribute-
based credential system [18] by presenting a simple and efficient attack fully
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breaking the privacy guarantees of their construction in the real world. We then
provided a revised, provably secure construction which not only solves this issue,
but also reduces the trust assumptions stated in [18] with regards to collusions
between the central wallet and other entities in the system. As a building block
of potentially independent interest we presented a blind variant of the Abe et
al. structure-preserving signature scheme [2].

While we did not provide a concrete implementation of our construction,
we expect only very minor performance drawbacks with respect to [18], while
correcting all the deficiencies in their work. There, for a security parameter of
λ = 112, all computations on all parties’ sides were between 50ms and 440ms
when presenting 12 out of 25 attributes. By inspecting the computational efforts
needed in our protocol and theirs, one can see only negligible differences, except
for the proof of knowledge of a single exponent which is required on the user’s
side in our construction. However, such computations are efficiently doable, and
thus our protocol still provides a significant performance improvement compared
to fully locally hosted “conventional” attribute-based credential systems. Finally,
we leave a full-fledged implementation, not only of the cryptographic algorithms
but of the full system, as open work to demonstrate the real-world applicability
of EABCs in general and our construction in particular, and to help ABC sys-
tems to finally pave their way into the real world. For this, several approaches
can be envisioned, in particular for the presentation protocol, where the optimal
choice may depend on external constraints as well as requirements of the spe-
cific application domain. Firstly, using the wallet also as a communication proxy,
would not require further network anonymisation layers, yet leak metadata to
the wallet. Alternatively, by merely outsourcing the computational effort to the
wallet and routing the traffic through the user, one could reach the same pri-
vacy guarantees as in conventional systems, at the cost of increased bandwidth
requirements compared to the first approach; furthermore, the responsibility of
transport layer anonymity would be with the user. Finally, an approach close to
OpenID Connect could be achieved by combining these two approaches.
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Abstract. We propose a secure yet efficient data query system for cloud-
based key-value store. Our system supports encryption and compression
to ensure confidentiality and query efficiency simultaneously. To reconcile
encryption and compression without compromising performance, we pro-
pose a new encrypted key-value storage structure based on the concept
of horizontal-vertical division. Our storage structure enables fine-grained
access to compressed yet encrypted key-value data. We further combine
several cryptographic primitives to build secure search indexes on the
storage structure. As a result, our system supports rich types of queries
including key-value query and range query. We implement a prototype
of our system on top of Cassandra. Our evaluation shows that our sys-
tem increases the throughput by up to 7 times and compression ratio by
up to 1.3 times with respect to previous works.

Keywords: Encryption · Compression · Key-value store

1 Introduction

With the popularity of cloud computing and the growing demand for big data
processing, key-value (KV) store is adopted in many public cloud services to
enable efficient and scalable data processing tasks on behalf of users [2,3,16,
32]. However, storing sensitive data on untrusted cloud incurs serious privacy
issues [13,14,28,37]. As a result, we need to build a data query system that can
efficiently handle big data workloads and guarantee data confidentiality. On the
one hand, many big data stores employ compression [4,7,12,24] to significantly
increase efficiency, sometimes by up to an order of magnitude. Compression can
improve performance gains effectively because it enables servers to fit more data
in main memory, thus decreasing the number of accesses to persistent storage.
On the other hand, data is often encrypted and the key is preserved at the user
side [8,17,18,27,35,38,39] in order to protect data confidentiality. Therefore, an
ideal cloud data storage system that aims to protect data confidentiality and
preserve efficiency should incorporate both encryption and compression into its
design.
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Unfortunately, many state of arts only support either compression or encryp-
tion. The reason is that compression and encryption are not directly compatible.
Firstly, since pseudo-random data cannot be compressed, we cannot encrypt data
before compressing it. Secondly, if we first compress the data and then encrypt
it, we will not be able to perform fine-grained data query, making the system
difficult to manage. To the best of our knowledge, only MiniCrypt [41] enables
compression and encryption simultaneously. To achieve this goal, MiniCrypt
equally divides a key-value table into multiple record groups, with each group
containing multiple key-value records. For each record group, MiniCrypt com-
presses it and then encrypts the compression result. Their observation is that
the compression ratio of the entire key-value table is similar to that of a small
number of key-value records. However, this approach only supports group-level
data access, incurring high communication overhead in data queries.

1.1 Challenge and Contribution

In this paper, we aim to build a secure key-value query system that combines
compression and encryption while enabling fine-grained data access. Directly
packing multiple key-value records into a record group incurs high communica-
tion overhead in data query. When a user queries some columns of a key-value
record, the entire record group that contains the record needs to be returned,
incurring additional communication overhead. Therefore, how to design an
encrypted storage structure that can provide a high compression ratio and sup-
port fine-grained data query becomes a challenge.

In response, our system proposes a new encrypted key-value storage struc-
ture based on the concept of horizontal-vertical division. Specifically, we first
horizontally divide the key-value table into multiple record groups. We then ver-
tically divide each record group into multiple column packets, with each packet
containing a column of it. For each record group, we compress and encrypt each
column packet of it. This design brings many advantages. Firstly, the design
enables fine-grained data access to largely reduce communication overhead of
data queries. Suppose that a user wants to query several columns of a key-value
record. Different with MiniCrypt, our design only needs to return some column
packets of the record group that contain these columns. Secondly, column-wise
data compression can lead to a higher compression ratio.

We also build secure search indexes over the encrypted storage structure to
support rich types of queries including key-value query and range query. In brief,
our contributions are listed as follows:

• We propose an encrypted key-value storage system that guarantees data con-
fidentiality and efficiency.

• We design a new encrypted key-value storage structure based on the concept
of horizontal-vertical division to reconcile data compression and encryption.
Our design reduces communication overhead of data queries to improve effi-
ciency by avoiding unnecessary column returns and increasing compression
ratios.
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• We build a secure search index on the encrypted key-value storage structure
by using cryptography to support rich queries including KV query and range
query.

• We implement a prototype of our system on Cassandra, and deploy it
on Aliyun ECS server. We test the communication overhead, throughput,
latency, and query cost time. The experimental results show that our system
significantly reduces communication overhead of data queries and increases
system throughput. Compared with MiniCrypt, our system increases the
throughput by up to 7 times.

1.2 Related Work

Encrypted Databases. Currently, the existing key-value stores (e.g., Mon-
goDB [1] and Cassandra [29]) either do not provide encryption or store the secret
key on the server side. They cannot resist attacks from the server. However, if
the key is stored by the user, the server will not be able to decrypt the data,
making data management difficult. In order to support rich queries on encrypted
database, many schemes have been proposed [21,30,33–35,40]. Among them, the
first encrypted database supporting rich functions is CryptDB [35]. CryptDB
uses onion encryption to perform multi-layer encryption in order to meet the
requirements of different encryption functions. However, encrypted data brings
a lot of storage overhead. Their storage overhead is even several times that of
unencrypted data. Yuan et al. [40] implement a scheme for efficient querying
on an encrypted key-value storage database. They provide a data partitioning
algorithm on the encrypted domain, but since each key-value record has been
reconstructed, the storage overhead is large. We test the storage capacity of
this scheme, and the storage overhead is more than ten times that of unen-
crypted data. Macedo et al. [30] implement a NoSQL framework using modular
and extensible technology, supporting different cryptographic components for
different columns in the database, enabling the database to support richer query
methods. These encrypted databases all do not support compression of data,
which seriously affects system performance.

Compressed Databases. Previous works [19,20,25,26,36,42] have shown that
compression schemes significantly improve the query processing performance of
systems. So many databases currently use compression technology to reduce
storage overhead and improve system performance [4,5,7,24]. Abadi et al. [4]
propose an architecture for a query executor that allows for direct operation
on compressed data. It is commonly used in column-oriented database. But it
can’t be combined well with encryption technology. Binnig et al. [7] propose
data structures that support a dictionary compression efficiently. They build a
table that maps values to compressed codes (and vice versa). It can combine
compression with encryption, but raises storage issues for mapping tables while
making data updates complicated. MiniCrypt proposed by Zheng et al. [41]
combines compression technology and encryption technology, but due to records
group-level compression, it causes unnecessary communication overhead, which
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in turn reduces system performance. Compression ratios are generally higher in
column-stores because consecutive entries in a column are often quite similar
to each other, whereas adjacent attributes in a tuple are not [31]. We design
a new data storage structure which not only increases the compression ratio,
but also reduces communication overhead. The difference between our scheme
and MiniCrypt is that our scheme is based on column-wise compression and
encryption, which enables access to specific columns. The horizontal-vertical
partitioned data structure designed in our scheme is similar to the data structure
of RCFile [22]. However, the design goal of RCFile is different with that of our
work since it does not ensure data privacy.

OPE and ORE: Agrawal et al. [6] introduce the definition of order-preserving
encryption and show how to use order-preserving encryption (OPE) for range
query. Boldyreva et al. [9] give the security notion IND-OCPA for order-
preserving encryption, and point out that no effective order-preserving scheme
can achieve IND-OCPA security. In the same work, they also introduce a weaker
security notion (POPF-CCA security). After that, Boldyreva et al. [10] point out
that in their OPE scheme, nearly half of the bits in the underlying ciphertexts
are leaked. Boneh et al. [11] give a special OPE scheme called order-revealing
encryption (ORE) which achieves the IND-OCPA security. In the ORE scheme,
a comparison function is used to compare two input ciphertexts and outputs the
order. However, it is difficult to implement in practice because of its complex
tools. Chenette et al. [15] give a practical ORE scheme and give a definition of
security. In the same job, Chenette et al. also give the strategy of converting its
ORE scheme to OPE scheme, which achieves the same security as ORE. In order
to adapt to our system, we will adopt this scheme of converting ORE to OPE.

1.3 Organization

The rest of this paper is organized as follows. Section 2 introduces the system
architecture, threat model and preliminaries. We introduce our proposed storage
structure in Sect. 3. We elaborates the system operations in Sect. 4. We give our
system security analysis in Sect. 5. We discuss our system implementation and
performance evaluation in Sect. 6. At last, we summarize the paper in Sect. 7.

2 Overview

2.1 System Architecture

Our system consists of users and a cloud server. The users are within an orga-
nization and share a secret key, which is not available to the cloud server. The
cloud server hosts the encrypted key-value store, and the users issue data queries
toward the cloud server.

Figure 1 shows the format of a key-value table. We consider that each key-
value record in the table is represented as a row indexed by a search key(k).
The row consists of multiple columns with each column indexed by a column
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attribute(att). We aim to develop a secure key-value query system that combines
compression and encryption while supporting fine-grained data access. Specifi-
cally, we aim to achieve the following requirements:

Rich queries: The system should be able to support rich types of queries
over the key-value store:

• KV query: Given a search key with (possibly) several column attributes, the
cloud server searches the key-value record that matches the key and returns
the columns of the record that match the column attributes. For example,
given a search key 103 with the column attribute att1, the cloud server returns
‘Jenny’.

• Range query: Given two search keys with (possibly) several column attributes,
the cloud server searches the key-value records with search keys that within
the range of the two search keys, and returns the columns of these records
that match the column attributes. For example, given two search keys 103
and 105 with the column attribute att1, the cloud server returns (‘Jenny’,
‘Bob’, ‘Danny’).

Data Confidentiality: The cloud server should not be able to get any non-
trivial information about its stored data.

Efficiency and Scalability: The system should be able to efficiently process big
data workloads and support fast queries without incurring high communication
overhead.

Fig. 1. Key-value table Fig. 2. Storage structure details

2.2 Threat Model

We consider a honest-but-curious threat model. Specifically, we consider the
cloud server as a passive adversary to faithfully perform data queries of users
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but deliberately obtain sensitive information from its hosted key-value store.
On the other hand, we assume that the users are trusted and allowed to query
the key-value store hosted at the cloud side. As a result, we mainly focus on
protecting the confidentiality of the key-value store against a server adversary.

2.3 Preliminaries

In this section, we present some basic cryptographic primitives that are used in
this work.

Symmetric Encryption: A symmetric encryption scheme consists of three
algorithms: (KGen,Encrypt,Decrypt).

– Sym.KGen(1λ): The algorithm inputs a security parameter λ, and then out-
puts a secret key sk.

– Sym.Encrypt(sk,m): The algorithm inputs a secret key sk and a plaintext m,
and then outputs a ciphertext c.

– Sym.Decrypt(sk, c): The algorithm inputs a secret key sk and a ciphertext c,
and then outputs a plaintext m.

Order-Revealing Encryption: An order-revealing encryption (ORE)
scheme on an ordered domain consists of three algorithms: Π =
(ORE.KGen,ORE.Encrypt,ORE.Compare):

– ORE.KGen(1λ): The algorithm inputs a security parameter λ, and then out-
puts a secret key sk.

– ORE.Encrypt(sk,m) → c: The algorithm inputs the secret key sk and a plain-
text m, and then outputs a ciphertext c.

– ORE.Compare(c1, c2) → b: The algorithm inputs two ciphertexts c1, c2, and
then outputs a bit b ∈ {0, 1}

Order-Preserving Encryption: An order-preserving encryption (OPE)
scheme [6,9] is an encryption scheme that supports comparisons over encrypted
values. An OPE scheme must ensure that m1 > m2 → c1 > c2 where c1 =
OPE.Encrypt(m1) and c2 = OPE.Encrypt(m2). For simplicity, an OPE scheme on
an ordered domain consists of two algorithms Π = (OPE.KGen,ORE.Encrypt).

– OPE.KGen(1λ): The algorithm inputs a security parameter λ, and then out-
puts a secret key sk.

– OPE.Encrypt(sk,m): The algorithm inputs the secret key sk and a message
m, and then outputs a ciphertext c.

We follow the ORE scheme proposed by Chenette et al. [15] which achieves
a simulation-based security notion. In order to better adapt to our database
system, we adopt the scheme of ORE conversion to OPE proposed in the same
work. The reason is that it supports custom comparator and does not need to
change the internal design of the DBMS. And it achieves the same security level
as the ORE scheme.
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3 Encrypted Key-Value Storage Structure

3.1 Notations

In this section, we present some notations (as shown in Table 1) that are used
in this work.

Table 1. Notations

Notations Meaning

k Search key of a key-value record

Ck Search key name of a key-value record

Catt Column attribute name of a key-value record

Dsort The data which is ordered by the search key

RG Record group

GID Group ID

kmin The smallest key in a record group

Vc Column attribute values for each column in a record group

C∗
pack Compressed and encrypted column packet

Vp Column attribute values in returned packets

Vr Matched column attribute values in Vp

s The total number of record groups in result

F A pseudo-random function

3.2 Basic Idea

We design a new encrypted key-value storage structure based on the concept of
horizontal-vertical division. Given the key-value table (as shown in Fig. 1), Fig. 2
shows the details of our storage structure. Specifically, we first horizontally divide
the table into multiple record groups. We then vertically divide each record group
into multiple column packets with each packet containing a column of it. For each
record group, we compress and encrypt individual column packets of it. Each
group consists of T key-value records specified by users. Our system supports
flexible group size T, which can be adjusted to balance the data compression
ratio and query efficiency. For example, if a user specifies T = 3, the key-value
table can be divided into two record groups. To further improve the compression
ratio, a user can select different compression algorithms for different column
packets within a record group according to the actual situation (e.g., data type
and data distribution).
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Fig. 3. Comparison of MiniCrypt and our scheme structure

We construct a secure index on the encrypted key-value storage structure. We
construct group IDs for record groups and organize them as an ordered index.
A group ID is the smallest search key of the key-value record in the group.
We use order-revealing encryption to protect the confidentiality of group IDs
while preserving their orders. A column attribute is the attribute of the column
compressed in the packet. We use pseudo-random function (PRF) to protect the
confidentiality of column attributes. We use the ordered index to support KV
query and range query.

3.3 Design Advantages

Figure 3 compares the data storage structures of our system and MiniCrypt [41].
MiniCrypt equally divides a key-value table into multiple record groups and
directly compress and encrypt each record group. Instead, we adopt a horizontal-
vertical division to further divide record groups into fine-grained column packets.
Then we compress and encrypt individual column packets of each record group.
Such a design enables our system to support finer-grained data access compared
with MiniCrypt. Considering a KV query, for MiniCrypt, even if only one column
of the record needs to be returned, the cloud server still needs to return the entire
record group that contains the record. For our system, the cloud server only
needs to return the matched column packets of the record group that contains
the record, avoiding return of unmatched columns.

Moreover, since our system compresses a record group in column-level, the
compression ratio is significantly higher than MiniCrypt. Table 2 shows the eval-
uation results over a key-value table containing a million of key-value records.
For a record group, the compression ratios of our system and MiniCrypt increase
as the size of the group increases. When the record group is the entire table, the
maximum compression ratios (MCRs) of our system and MiniCrypt is 5.3 and
3.92, respectively. We also observe that when increasing the size of a record
group to 1000, the compression ratio of our system is even higher than the MCR
of MiniCrypt. With higher compression ratio, our system can cache more data
in memory to decrease the number of accesses to persistent storage.
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Table 2. Our scheme and MiniCrypt compression comparison

Schemes Max com
ratio
(MCR)

90% MCR 90% MCR
num of
records

90% MCR
original data
size

90% MCR
com data
size

Our scheme 5.3 4.7 1000 139.7K 29.5K

MiniCrypt 3.92 3.5 300 41.6K 11.6K

4 System Operations

4.1 Construction of Encrypted Key-Value Data Storage

A user preprocesses its key-value table before submitting to the cloud server.
First, the user sorts the data in ascending order and then divide it according
to the given record group size. For each record group, the user compresses and
encrypts each column of it. Algorithm 1 describes the configuration process.

Algorithm 1. PackSetup
Input: parameter λ, record group size: T , the key-value table D;
Output: compressed and encrypted record groups
1: User:
2: (sko, ske, skc) ← KGen (λ);
3: Dsort ← Sort(D, k);
4: RGs ← Divide(Dsort, T )
5: for each RG in RGs do
6: GID ← ORE.Encrypt(kmin, sko);
7: for each column in RG do
8: C∗

pack ← Sym.Encrypt(Compress(Vc), ske);
9: end for

10: end for

4.2 Secure KV Query

Since the key-value records are packed and encrypted, users can only query the
key-value table in the granularity of column packet. Considering a KV query
consisting of a search key kc and several column attributes Catt[m], recall that
the ID of a group is the smallest search key of the key-value record within the
group. The cloud server first searches the record group with the highest group ID
from all the group IDs that are smaller than or equal to kc. The cloud server then
searches the column packets of the record group with column attributes matching
Catt[m], and finally returns them as query results. This query operation can run
efficiently because group IDs are organized as an ordered index, which is stored in
memory. Upon receiving the column packets, the user decrypts and decompresses
them to filter out the desired values based on (kc, Catt[m]). Algorithm 2 presents
the overall procedure.
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Algorithm 2. KVQuery
Input: private key {sko, ske, skc}; search key kc; request column attributes Catt[m];
Output: matched column attribute values Vr

1: User:
2: k∗

c ← ORE.Encrypt (kc, sko);
3: for each Catt|i ∈ Catt[m] do
4: C∗

att|i ← F(Catt|i, skc)
5: end for
6: C∗

k ← F(Ck, skc)
7: Cloud server:
8: C∗

pack[m + 1] ← select C∗
k , C∗

att|1, C
∗
att|2, ..., C

∗
att|m from table

9: where GID ≤ k∗
c order by GID desc limit 1

10: User:
11: Vp ← Sym.Decrypt(Decompress(C∗

pack[m + 1]), ske)
12: Filter Vp to get Vr by the search key kc

13: return Vr

4.3 Secure Range Query

Our system supports range query. For a query within a wide range, our system
can greatly reduce communication overhead. Considering a range query consist-
ing of two search keys klow, khigh and several column attributes Catt[m]. The
cloud server first searches all the record groups with IDs within (klow, khigh).
After that, if klow is not equal to the smallest record group ID in the result set, the
cloud server also needs to get the record groups potentially contains search keys
from klow to the smallest record group ID. The cloud server then searches the
column packets of these record groups with column attributes matching Catt[m],
and finally returns them as query results. The user decrypts and decompresses
them to filter out the desired values based on (klow, khigh, Catt[m]). The proce-
dure is presented in Algorithm 3.

5 Security Analysis

Our system is designed to protect the confidentiality of user data and provide
efficient performance. For performance, we use column-wise compression tech-
nology, which not only fits more data in the system memory but also reduces
communication overhead. For the confidentiality of data, the system relies on
various encryption strategies to ensure.

We use Advanced Encryption Standard (AES) [23] for internal data, and the
adversary cannot get any other information about the data from the encrypted
data. Classical encryption algorithms that ensure semantic security are not
designed for computing. Therefore, we only use these technologies for data trans-
mission and data storage. Our system does not reveal information about the
contents of record groups, except for the number of columns and the size of the
column packets. We use pseudo-random functions to ensure that the original
values of column attributes are not leaked.
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Algorithm 3. RanQuery
Input: private key sko, skc, ske; query range {klow, khigh}; request column attributes

Catt[m]
Output: matched column attribute values Vr

1: User:
2: k∗

low ← ORE.Encrypt (klow, sko);
3: k∗

high ← ORE.Encrypt (khigh, sko);
4: for each Catt|i ∈ Catt[m] do
5: C∗

att|i ← F(Catt|i, skc)
6: end for
7: C∗

k ← F(Ck, skc)
8: Cloud server:
9: (C∗

pack[m + 1][s], GID[s]) ← select GID, C∗
k , C∗

att|1, C
∗
att|2, ..., C

∗
att|m

10: from table where k∗
low ≤ GID ≤ k∗

high

11: if k∗
low < GIDmin in GID[s] then

12: C∗
pack[m + 1] ← select C∗

k , C∗
att|1, C

∗
att|2, ..., C

∗
att|m from table

13: where GID ≤ k∗
low order by GID desc limit 1

14: Add the C∗
pack[m + 1] to the C∗

pack[m + 1][s]
15: end if
16: User:
17: Vp ← Sym.Decrypt(Decompress(C∗

pack[m + 1][s]), ske)
18: Filter Vp to get Vr by the range (klow, khigh)
19: return Vr

For KV query and range query, we need to compare the record group IDs
based on the ordered index. To protect the security of ordered indexes, on the one
hand, in the design process, we first partitioned the ordered data by partition key.
The partition key is the result of modulo the hash value of the search key, which
disrupts the original sequence of the data and makes it order in the respective
partition. In addition, the original data is compressed into record groups, and
each record group is assigned to a different node according to the partition key,
which hides the distance between the plaintext values to some extent. On the
other hand, all the record group IDs are encrypted by the ORE scheme proposed
by Chenette [15] which is given the security definition. In order to adapt to the
common comparator of Cassandra, in our system, we adopt the scheme of ORE
conversion to OPE proposed in the same work. It achieves the same security
level as ORE.

Once the user uploads the encrypted value and encrypted index to the server
node, the size of index, the size of each column pack and the column number
of each record will be learned. When querying, the access pattern and search
pattern will be exposed, where access pattern indicates the accessed entries and
the associations between those columns, and search pattern represents the query
token that is repeatedly submitted.

Based on the information we leaked, we consider this situation. When the
server monitors multiple queries, it can infer some relevant information by
comparing the results of each query. The leak of column packet size makes it
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vulnerable to inference attacks. By comparing the size of different column pack-
ets in each query result, the server can infer the column attributes of the packet,
the association between the columns, and so on. Our system enables reducing
the information leaked by the size of the packet by padding the encrypted col-
umn packets to a tier of a few possible sizes. Our system allows the customer to
specify the padding tiers, such as small-medium-large or exponential scale, and
pads each pack to the smallest tier value that is at least the pack size.

6 Implementation and Evaluation

We implement our system using Java on an existing key-value storage system,
Cassandra [29]. Cassandra is an open source distributed NoSQL database sys-
tem that supports high scalability. In Cassandra, the unique primary key cannot
perform range queries, which acts as a partition key to determine which node
the data is located on. Our system makes some minor adjustments to accommo-
date this design. We use composite key as the primary key in Cassandra. The
composite key consists of a partition key and a clustering key. The clustering
key is used to sort the data inside the partition. Our design does not modify the
internals of Cassandra, but adds several interfaces to the upper layer of Cassan-
dra. For the key-value records, we first calculate hash values for keys, and then
perform modular operations on the hash values, so that the data is allocated to
M buckets. The number of buckets is determined by the user. The partition key
is the result of the modular operation. The clustering key is the record group ID.
For the column attribute name, after we perform pseudo-random processing, we
can add a letter in front of it to support Cassandra’s column attribute rule.

All benchmarks are conducted on Aliyun ECS server with 10 Mbps band-
width. The Cassandra replication factor is set to 3. All benchmarks use the data
warehouse benchmark set TPC-H. TPC-H contains eight basic tables. We use
the lineitem table because it contains the most columns. And then we initialize
the lineitem table. As a result, the entire data set contains fifteen columns of
data. All experiments set record group size to 1000 key-value records.

We compare the performance of our system with MiniCrypt [41]. MiniCrypt
adopt records group-level compression method. This scheme has similar security
to our system, but our system supports finer-grained access. In order to demon-
strate the advantages of our storage structure in a fair way, we use order-revealing

Table 3. Our system and MiniCrypt performance comparison in one KV query with
a single column attribute

Schemes Communication
overhead

ORE token
generation time

Transmission
time

Decrypt and
decompress

Our system 4.907K 14ms 31 ms 3 ms

MiniCrypt 37.275K 14ms 59 ms 10 ms
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encryption to encrypt search keys of both schemes, but when testing throughput
and latency, the overhead of order-revealing encryption is not included.

We pre-load 1 GB of data into Cassandra. Our evaluation consists of two
groups of experiments: (1) basic evaluation to show that our system takes up
less communication overhead; (2) query performance evaluation to demonstrate
the performance advantages of our system.

6.1 Basic Evaluation

In this experiment, we measure the communication overhead of MiniCrypt and
our system when performing KV queries with different column attributes and
range queries with 7 column attributes in different query ranges.

As shown in Fig. 4, when performing KV queries, compared with MiniCrypt,
our system results in less communication overhead no matter how many columns
are requested. The smaller number of request columns, the less communication
overhead of our system, and MiniCrypt remains unchanged.

Our system adopts the concept of horizontal-vertical division so that each
column in a record group can be independently accessed. When performing a KV
query with a small number of column attributes, it is not necessary to return
the entire record group. And the user only needs to decrypt and decompress
the returned column packets. What’a more, column-wise compression provides a
higher compression ratio because consecutive entries in a column are often quite
similar to each other. However, due to the mix of different data types, MiniCrypt
does not easily achieve a high compression ratio. At the same time, regardless of
how many columns of data are requested, MiniCrypt needs to return the entire
record group of data. Therefore, its communication overhead remains unchanged
(Fig. 6).

As shown in Fig. 5, when performing range queries, both our system and
MiniCrypt may incur the same communication overhead for different query
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Fig. 6. Query performance evaluation.

ranges. The reason is that each record group contains multiple key-value records.
The requested data fitted in different query intervals may be included in the same
record group. Moreover, we also find that the communication overhead of our
system is significantly less than that of MiniCrypt in range queries. The commu-
nication overhead of minicrypt is 3 times higher than our system. The reason is
that our encrypted key-value storage structure allows fine-grained data access,
reducing the amount of data to be returned.

6.2 Query Performance Evaluation

In this experiment, we first test the time cost of each phase of a KV query,
the results are shown in Table 3. After that, we compare the throughput ratio
and latency ratio of our system and Minicrypt when performing KV queries
with different number of columns. At last, we compare the throughput and
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latency of our system and Minicrypt when performing range queries with 7
column attributes. Experimental results show that our system can achieve higher
performance.

Since our system only needs to return the requested column packets when
querying a few columns, the communication overhead is greatly reduced, which
results in a reduction in transmission time. When performing a KV query with a
single column attribute, in our system, the transfer process takes 31 ms and
the process of decryption and decompression takes 3 ms. In MiniCrypt, the
transmission time takes 59 ms, and the process of decryption and decompres-
sion takes 10 ms. Therefore when multiple users concurrently issue KV queries,
our system can process more query requests per unit of time, thereby achieving
higher throughput. Our system increases the throughput by up to 7 times and
decreases the latency by about 80% when performing KV queries with three col-
umn attributes. What’s more, since the compression ratio of our system is higher,
even if issuing a KV query with all the column attributes, the transmission time
of our system is still less than that of MiniCrypt.

When performing range queries, we also find that the throughput of our
system is significantly higher than that of MiniCrypt in range queries. Our sys-
tem increases the throughput by up to 1.5 times and decreases the latency by
about 33% when performing range queries with seven column attributes. Com-
pared with MiniCrypt, the throughput improvement of our system increases as
the query range increases. The reason is that our encrypted key-value storage
structure allows fine-grained data access, reducing the communication overhead.

7 Conclusion

We propose an encrypted key-value storage system that combines compression
techniques to improve system performance. To support fine-grained access, we
build a new key-value storage structure using the concept of horizontal-vertical
division. We use order-revealing encryption to encrypt record group IDs to sup-
port KV queries and range queries. We implement the prototype of our scheme
on Cassandra. Experimental evaluation results show that our system can effec-
tively reduce communication overhead and improve system throughput. In the
future work, we plan to explore advanced encryption technologies to support
richer queries, such as aggregate query and conditional query. Meanwhile, how
to make our system better adapt to the distributed environment, with better
scalability will also become our future work.
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Abstract. Shamir’s threshold secret sharing scheme gives an efficient
way to share a secret among n participants such that any k or more of
them can reconstruct the secret. For implementation, Shamir’s scheme
requires a finite field. Desmedt et al. (AsiaCrypt ’94) proposed a multi-
plicative secret sharing scheme over non-abelian groups. In this paper,
we extend (non-abelian) multiplicative secret sharing to accommodate
unbounded number of participants. We introduce a new combinatorial
concept of “evolving” Perfect Hash Families and present a secret sharing
scheme as a consequence.
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1 Introduction

Threshold secret sharing, independently introduced by Shamir [31] and Blakley
[5], is a method to share a secret information among n participants in such
a way that any k or more of them can recover the secret but k − 1 or less many
participants do not have any information about the secret. Shamir’s construction
of secret sharing requires a finite field for implementation. This puts an inherent
limitation—at the same time, extensions of this scheme can work over abelian
groups [8,9,16].
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1.1 Background and Motivation

Homomorphic secret sharing was a popular topic after it was introduced by
Benaloh [3]. The fact that Shamir’s [31] secret sharing scheme is homomorphic for
the addition, is used heavily in secure multiparty computation. In [16], Shamir’s
secret sharing scheme and its homomorphic property were generalized to work
over any abelian group. This result played a key role to obtain the first threshold
RSA schemes (see [12] and [10]). So, an algebraic study of the homomorphic
properties of secret sharing was natural (see [17]). One of the results of [17]
shows that the homomorphic property cannot be achieved when the secret to
be shared belongs to a non-abelian group, except when the access structure is
trivial.

In the early 1990’s the topic of zero-knowledge interactive proof [19] was very
popular. In Goldreich et al.’s [18] zero-knowledge proof of graph isomorphism,
the prover, knowing a secret, proves that two graphs are isomorphic without
divulging the secret. This secret is in fact an element of Sn, the symmetric
group, which is non-abelian. A threshold cryptographic version was proposed
in [13]. It allows t parties (out of n) to share the secret and then jointly co-prove
that the two graphs are isomorphic. The main idea was to have a sequential
approach used by the t co-provers, this bypassed the fact that the homomorphic
property is impossible over non-abelian groups, which would have allowed a
parallel execution by the t co-provers. Note that, if the secret would be mapped
into a finite field and then one would use Shamir’s secret sharing, the threshold
proof of [13] would collapse. The way the reconstruction of the secret works
starting from the shares was called multiplicative1 secret sharing [13]. Followup
work at Eurocrypt 1996 by Blackburn et al. [4] generalized some of these results.
Stinson [33] later in an e-mail pointed out that the results in [4] can be explained
using perfect hash families (PHF). Note that the case t = 2 in [13] can also be
explained using PHFs. Besides the use of PHFs to make multiplicative secret
shares, secret shares over non-abelian groups have other properties.

Note also that block ciphers are substitutions and that these form a non-
abelian group. An attempt to make threshold block ciphers was made in [6].

Due to results by Barrington [2] one can perform any computation provided
one can perform certain operations over S5, a non-abelian group. This was used
in [14] (see also [15] and [7]) to propose a then new approach to perform secure
multiparty computation. The work uses shares that belong to, e.g., S5. The
approach in [14,15] were used in 2015 to propose an e-voting scheme using an
unconditionally secure MIX operation [11]. Note that a MIX performs a permu-
tation, which is a non-abelian group operation. The use of secret shares over this
non-abelian group was essential to obtain the results in [11].

1 Since this requirement corresponds exactly with the reconstruction used in this
paper, we do not explain the definition in background. We refer the reader to [13]
or [4].
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1.2 Challenging Issue and Our Contribution

The above mentioned secret sharing schemes are applicable only when the num-
ber of participants is pre-fixed and finite. To address the possibility of shar-
ing a secret with an unbounded number of participants, evolving secret sharing
schemes were introduced by Komargodski, Naor and Yogev [24] and were further
improved by [25]. However, both schemes use Shamir’s secret sharing and thus
work only over finite fields. Then, using [8,9,16], they can be extended to work
over abelian groups, but not over non-abelian groups.

In this paper, we extend the work of Desmedt et al. [13] by accommodating
unbounded number of participants. To achieve our goal we introduce a new com-
binatorial concept of “evolving” Perfect Hash Families. We explain the under-
lying combinatorics in Sect. 2.1 and a formal description in Sect. 3. To have an
overview of the idea, consider a situation when the domain of a perfect hash func-
tion (PHF) family is not known in advance but—according to some application—
it may have to be increased in the future. Since PHF is typically stored as a table,
it is quite reasonable to keep it small unless the application requires to extend
it. We use the term evolving,2 borrowing from the work of Komargodski, Naor
and Yogev [24]. We show how to extend the domain of an PHF family adaptively
by introducing new partial functions and extending the initial ones. Hereby, we
achieve a perpetually evolving PHF, i.e., growing to infinity.

Reflecting back to secret sharing, we recall that PHF has been used to con-
struct secret sharing schemes as shown implicitly by Desmedt et al. in [13] and
by Blackburn et al. in [4]. The link between these and PHF was made in [29,33].

Organization of the Paper

Our paper is organized as follows: Sect. 2 describes background in combinatorics,
as well as in secret sharing, including the Komargodski-Naor-Yogev scheme. In
Sect. 3, we present our model and definitions, including evolving set families and
evolving PHF. Some examples that clarify our concept are provided in Sect. 4.2.
Section 4 introduces our construction of the perpetually evolving PHF and its
proof of correctness. Then, a multiplicative secret sharing scheme over non-
abelian quasigroup implied by evolving PHF is sketched in Sect. 5. Finally, Sect. 6
provides concluding remarks and discusses open questions.

2 Preliminaries

Let us fix some notation first. For a natural number n, the set {1, . . . , n} will
be denoted as [n]. We will write “n-subset” to denote a subset of size n. Given
a function f , we will write its restriction to a subset X as f |X . All the logarithms
are to the base 2 unless stated otherwise.

2 A similar idea in the context of publishing was introduced by Sloane [32] under the
label of “eternal home page”.
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2.1 Perfect Hash Families

Perfect hash families were first discovered and studied as a part of compiler
design. Mehlhorn [28] gives a summary of early work made in this area. PHF
have later found applications in the realm of cryptography, for instance, in secret
sharing [4], threshold cryptography [30] etc. to name a few.

Definition 1. A family of functions F is called an (N ;n,m,w)-Perfect Hash
Family (PHF, in short) if:

– each f ∈ F is a function from [n] −→ [m] with |F| = N and,
– for any w-subset X ⊂ [n], there exists some g ∈ F s.t. g|X is one-to-one.

Note 1. We emphasize the following two points:

1. An inequality w ≤ m follows from the second condition above.
2. If we consider the binary case only, i.e., m = 2, then for non-triviality we

must have w = 2. In other words, for every 2-subset X of the domain, there
exists a function f in the family such that f |X is one-to-one.

Throughout this paper, we will use the following notation related to PHF:

– If the co-domain is of size m = 2, the function family is denoted by F2.
– For m = 2, we write the co-domain space as {0, 1}.
– If |F| = N then the family is denoted by PHF (N ;n,m,w).
– Let N(n,m,w) be the minimum value N for which a PHF (n,m,w) exists.

Results on PHF. Let us survey some useful results on recursive constructions
of perfect hash families [1,27].

Theorem 1 ([27]). For PHF (N ;n,m,w), we have that

N(n,m,w) ≥ 1 + N
(⌈ n

m

⌉
,m,w

)

and it follows that

N(n,m,w) ≥ log n

log m
.

Corollary 1. In the setting of the above theorem, for m = w = 2, we have that
N(n, 2, 2) ≥ log n.

The following stronger lower bound is given by Fredman et al. [20].

Theorem 2 ([20]). For PHF (N ;n,m,w),

N(n,m,w) ≥

(
n − 1
w − 2

)
· mw−2 · log(n − w + 2)

(
m − 1
w − 2

)
· nw−2 · log(m − w + 2)

.
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However, when restricted to the case m = w = 2, we get the same lower bound.

Corollary 2. For m = w = 2, N(n, 2, 2) ≥ log n.

The following upper bound was introduced by Mehlhorn [27].

Theorem 3 ([27]). For PHF (N ;n,m,w), N(n,m,w) ≤ �we
w2
m ln n�.

Corollary 3. In the setting of the above theorem, N(n, 2, 2) ≤ �2e2ln n� and
thus the behaviour of N as a function of n varies as Θ(log n) (for fixed values
of m = 2 and w = 2).

Atici et al. [1] focused on the problem of the growth of N(n,m,w) as a func-
tion of n. They provided some explicit constructions in which N grows as a poly-
nomial function of log n (for fixed m and w).

The first recursive construction (based on a difference matrix and a basic
PHF) by Atici et al. [1] gives us the following:

Theorem 4 ([1]). Suppose there is an
(
n0,

(
w
2

)
+ 1; 1

)
-difference matrix and

a PHF (N0;n0,m,w). Then there exists a PHF
(((

w
2

)
+ 1

)
N0;n2

0,m,w
)
.

Corollary 4. For m = w = 2, if there exists an (n0, 2; 1)-difference matrix and
a PHF (N0;n0, 2, 2), then there exists a PHF (2N0;n2

0, 2, 2). Thus, the size of
F2 becomes twice to make the domain size quadratic.

Using an easily constructive special family of difference matrices, Atici et al.
[1] gave an iterated result.

Theorem 5 ([1]). Suppose there is a PHF (N0;n0,m,w) and suppose that
gcd

(
n0,

(
w
2

)
!
)

= 1. Then there exists a PHF
(((

w
2

)
+ 1

)j
N0;n2j

0 ,m,w
)
.

Corollary 5. For m = w = 2, the condition gcd
(
n0,

(
w
2

)
!
)

= 1 is satisfied.
Therefore, from a PHF (N0;n0, 2, 2) one can construct another PHF with param-
eters (2jN0;n2j

0 , 2, 2).

Due to another (Kronecker product type) recursive construction by Atici et
al. [1] we have the following theorem.

Theorem 6 ([1]). Suppose that the following exist:
a PHF (N1;n0n1,m,w), a PHF (N2;n2, n1, w − 1), and a PHF (N3;n2,m,w).
Then, there exists a PHF (N1N2 + N3;n0n2,m,w).

Theorem 7 ([1]). N(n,m, 2) =
⌈

log n
log m

⌉
.

Corollary 6. For m = 2, N(n, 2, 2) = �log n�.
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2.2 Secret Sharing

Secret sharing schemes were proposed independently by Shamir [31] and Blakley
[5] in 1979. The idea of achieving such a primitive was present in mathematics for
quite some time [26] and some combinatorial solutions were proposed. However,
inefficiency of these solutions was resolved by [5,31]. They proposed schemes
where any k (or more) out of n participants are qualified to recover the secret
with 1 < k ≤ n. The resulting access structure is called a (k, n)-threshold access
structure where k acts as a threshold value for being qualified. Both schemes were
fairly efficient in terms of the size of the shares and computational complexity.
See also [21,22] for a generalization. In Appendix, we present a basic (2, 2) secret
sharing scheme.

The classical secret sharing schemes assume that the number of participants
and the access structure is known in advance. Komargodski, Naor, and Yogev
[24] introduced evolving secret sharing schemes where the dealer does not know
in advance the number of participants that will participate, and moreover there
is no upper bound on their number. Thus, the number of participants could
be potentially infinite and the access structure may change with time. Komar-
godski et al. [24] considered the scenario when participants come one by one
and receive their share from the dealer; the dealer however cannot update the
shares which have already been distributed. They showed that for every evolv-
ing access structure there exists a secret sharing scheme where the share size
of the tth participant is 2t−1. They also constructed (k,∞)-threshold evolving
secret sharing scheme for constant k in which the share size of the tth partici-
pant is (k − 1) log t + O(log log t). Furthermore, they have provided an evolving
2-threshold scheme which is nearly optimal in the share size of the tth participant
viz. log t + O(log log t).

The main trick that Komargodski et al. used to significantly reduce the share
size is introducing the concept of generations. Each generation consists of par-
ticipants and the size of every generation grows exponentially with time. The
sizes of generations are however prefixed depending on the threshold value k.
Deployment of Shamir’s secret sharing scheme helped to reduce share sizes expo-
nentially. In short, the authors combined the Shamir secret sharing with com-
binatorics to achieve an efficient construction. In Appendix, we describe (see
Fig. 7) a simple example to visualize the main idea behind the construction of
(2,∞) secret sharing proposed by Komargodski, Naor, and Yogev [24]. In Fig. 7,
the value s denotes the secret bit, bi’s denote random bits and Shamir(2, n)(s)
denotes the corresponding shares of the 2-out-of-n Shamir scheme on a set of n
parties.

Later, Komargodski and Paskin-Cherniavsky [25] applied the idea of evolv-
ing k-threshold schemes to evolving dynamic threshold schemes and provided
a secret sharing scheme in which the share size of the tth participant is O(t4 log t)
bits. Furthermore, they showed how to transform evolving threshold secret shar-
ing schemes into robust schemes with the help of algebraic manipulation detec-
tion (AMD) codes.
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3 Model and Definitions

We begin with the definition of an evolving set. Roughly speaking, points are
included in a set from time to time. We consider the case such that this inclusion
process gives rise to an at most countable family of finite sets. We denote the
evolving sequence of sets by {Xn}n≥0 where X0 is the basic set. More formally,

Definition 2. (Evolving family of sets)
A sequence of sets {Xn}n≥0 is an evolving family of sets if Xi ⊂ Xi+1 for

all i ≥ 0, i.e., the family is strictly monotone increasing.
If the sequence is finite, the family is called an evolving family of sets.

If the sequence can proceed indefinitely to accommodate infinitely many points
then the family is called perpetually-evolving.

To draw the similarity with evolving access structure as defined by Komar-
godski, Naor, and Yogev [24] we observe that the underlying set of participants
in their work is perpetually evolving.

We now define the concept of partial function which plays an instrumental
role in our construction. Roughly speaking, a partial function generalizes the
concept of a function f : X −→ Y , by not forcing f to map every element of X
to some element in Y . Rather, there is a subset X ′ of X such that f maps every
element of f to some element in Y . If X ′ = X, then we sometimes call it a total
function in order to specify that the domain is not a proper subset of X. Partial
functions are recurrent in the theory of computation.

Definition 3 (Partial function). A rule f : X −→ Y is called a partial
function if there exists a subset X ′ ⊂ X such that when restricted to X ′, f |X′ :
X ′ −→ Y is a (total) function.

Note 2. We will call a “total function”, simply a function when there is no
ambiguity.

Definition 4 (Evolving PHF). Let {Xr} be an evolving family of sets, {Yr}
be a sequence of sets (which may or may not be evolving) and {wr} be a non-
decreasing sequence of positive integers. A sequence of family of partial and total
functions {Fr} is called an ({Xr}, {Yr}, wr)-evolving PHF if:

– each f ∈ Fr is a partial/total function from Xr −→ Yr and
– for any wr-subset X ′ ⊂ Xr, there exists g ∈ Fr such that the restriction of g

on X ′ is one-to-one.

Remark 1. We remark that if the family {Xr} is perpetually evolving then the
corresponding PHF is called perpetual PHF. The sequence of co-domains {Yr}
need not be evolving. In fact, it can be a constant sequence i.e., Yr = Y for all r.
In addition, the non-decreasing sequence of positive integers {wr} can very well
be a constant sequence.

Note 3. We note that for every r ≥ 1, the collection Fr is a (|Xr|, |Yr|, wr)-PHF
in a weaker sense as Fr may contain partial functions.
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4 Main Result

In this section, we first describe an algorithm to construct perpetually evolving
perfect hash families. Then, through examples, we clarify the rationale behind
our construction.

4.1 Construction of Perpetually Evolving PHFs

We introduce Algorithm 1 for constructing perpetually evolving PHF.
We only consider the binary case, i.e., the co-domain is the set {0, 1} and

w = 2. A rough sketch of the algorithm is depicted in Fig. 1. In Algorithm 1, we
will use the following notations:

– Denote an m-dimensional null vector by 0̄m (written as a column).
– Denote an m-dimensional column vector with all entries equal to 1 by 1̄m.
– 0̄T

m and 1̄T
m, respectively, denote the transposes of the column vectors.

– After the introduction of rth partial row, the evolved matrix is denoted by
M(r).

Algorithm 1. Construction of perpetually evolving PHF

1: procedure Init.

2: Assign 0̄t as the first column, where t is an appropriate value.

3: procedure Introduction of first partial row

4: Place the remaining 2t − 1 columns C̄1
t , . . . , C̄2t−1

t to the right of 0̄t.

5: Append a partial row 0̄T
2t−1 just below C̄1

t , . . . , C̄2t−1
t .

6: Append C̄1
t , . . . , C̄2t−1

t to the right as columns 2t + 1 to 2t+1 − 1.
7: Append a partial row 1̄T

2t−1 just below the copied columns in Line 6.

8: procedure Introduction of rth partial row to the (r − 1)th

evolved matrix M(r − 1)
9: Choose the last �α

2 � columns B[1], B[2], . . . , B[�α
2 �] of M(r − 1),

where α denotes the number of columns in the evolved matrix M(r − 1).
10: Append 0̄T

α
2

just below B[1], B[2], . . . , B[�α
2 �].

11: Copy B[1], B[2], . . . , B[�α
2 �] to the right of M(r − 1).

12: Append 1̄T
α
2

just below the columns appended in Line 11.

Theorem 8. Algorithm1 admits a perpetually evolving PHF. The number of
columns that can be accommodated with the introduction of the rth partial row
is exponential in r. To be more precise, if the first column is a t-dimensional
(0̄) column then the number of new columns that can be accommodated by the
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introduction of rth partial row is
⌈(

3
2

)r−2 2t
⌉
. Thus, fixing the value of t, we can

see that O ((
3
2

)r) new columns can be accommodated by the introduction of rth

row.

Fig. 1. Pictorial illustration of Algorithm 1.

Proof. We can prove that the algorithm admits a perpetually evolving PHF using
induction. More precisely, we will show that after rth partial row the resulting
matrix M(r) gives rise to perfect hash family for every positive integer r.
The fact that for r = 1, i.e., after the introduction of the first partial row, the
resulting matrix M(1) gives rise to an PHF follows easily from the following
three observations:

– The first 2t columns when restricted to the first t entries are nothing but all
possible binary columns of length t. Therefore, any two columns in this list
differ at least in one position which gives us the required result.

– Any column C from 2 to 2t (Line 4 of the Algorithm 1) and any column D
from 2t + 1 to 2t+1 − 1 (Line 6 of the Algorithm 1) differ at the last position
because last entry of C is 0 (Line 5 of the Algorithm 1) and last entry of D
is 1 (Line 7 of the Algorithm 1).

– Any column from 2t + 1 to 2t+1 − 1, when restricted to the first t entries, is
also non-zero and hence differ in at least one position from the first column
0̄t.

Now to prove the general case, let us suppose that our hypothesis be true for r−1,
i.e., M(r − 1) gives rise to an PHF. We maintain the same notations as used in
the Algorithm 1. Specifically, B[1], B[2], . . . , B[�α

2 �] denote the last �α
2 � columns

of M(r−1) (Line 10 of the Algorithm 1), where α denotes the number of columns
in M(r−1). They are appended with a zero vector of length �α

2 � (Line 10 of the
Algorithm 1). The new columns that are accommodated/appended by Lines 11
and 12 in the algorithm contain 1 as the last entry. Therefore, any two columns
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in the last α columns of M(r) differ in at least one position either because of
the last entry or they already differed as columns in M(r − 1). The remaining
columns in M(r) differ with the newly added columns by our hypothesis when
we restrict the newly added columns to their first t + r − 1 entries.

It is not very hard to see that the introduction of rth partial row can accom-
modate

⌈
2t +(2t−1)+ 2t +3 · 2t−1 +32 · 2t−2 + ···+3r−32t−r+3

2

⌉
many new columns.

A simplification of the above expression results in
⌈
( 32 )r−22t

⌉
. 
�

A variant of Algorithm1 consists of modifying Steps 5–7, by placing zeros
below the columns 2t−1 + 1 up to 2t and then copy the last 2t−1 columns, but
having the last row having the values 1. Obviously, orderwise this will make no
improvement, but for the first iterations, in this variant, less rows are needed for
the first few columns.

4.2 Some Examples

In this section we study some examples to clarify the concept.

Example 1. Let us consider the following finite evolving family:
{Xr} = {X0,X1,X2,X3} with X0 = ∅,X1 = {1},X2 = {1, 2},X3 = {1, 2, 3};
{Yr} = {Y } = {{0, 1}} and w1 = 1, w2 = w3 = 2. We note that F0 = ∅.
The evolving family of functions is described below.

• F1 = {f1}, where f1 : {1} −→ {0, 1} defined by f1(1) = 0.
• F2 = {f1, f2}, where f1 : {1, 2} −→ {0, 1} defined by f1(1) = 0,f1(2) = 1.

(Here, f1 is actually an extension of f1 but we will abuse notation from
now on to denote the extended function by the function itself and a partial
function f2 : {1, 2} −→ {0, 1} defined by f2(2) = 0.)

• F3 = {f1, f2}, where f1 : {1, 2, 3} −→ {0, 1} defined by f1(1) = 0, f1(2) = 1,
f1(3) = 1, and f2 : {1, 2, 3} −→ {0, 1} defined by f2(2) = 0, f2(3) = 1.

It is easy to check that the above is an example of an evolving PHF.
For a better representation, we use Fig. 2 to depict the example.

Fig. 2. Evolving PHF from Example 1.

We represent a perfect hash family with co-domain {0, 1} by a binary matrix
where the columns are indexed by the members of the domain and the rows are
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indexed by (partial or total) functions. The (i, j)th entry of the matrix is the
output of ith (partial or total) function with input j. If the function is partial
then it is easy to see that the corresponding rows are also partial. Thus total rows
correspond to total functions and partial rows correspond to partial functions.

Fig. 3. Introducing a 3rd partial row for accommodating a future 4th column from
Example 2. (Color figure online)

Example 2. Taking cue from Example 1, we now want to see whether the process
can be continued (in a systematic way) indefinitely giving rise to a perpetually
evolving PHF. To accommodate “possible future points” we give an extra entry
(0) to the last point/column by defining a new partial row/function (see Figs. 3
and 4). Column 2 is given an extra 0 (defined by f2) to accommodate a “future”
Column 3.

These extra entries are marked with different colors. In Fig. 3, we see that
the third column receives a third “extra” entry to ensure that a future fourth
column can be added later, if need arise. It is not very hard to observe that
continuing this way we can accommodate points/columns indefinitely giving
rise to a perpetually evolving PHF. However, this approach is not efficient (see
Algorithm 1 for a better approach.

Note 4. From Example 2 we observe the following: (a) points/columns which are
added early are of shorter “length”, (b) the tth column receives t entries, (c) one
can accommodate an unbounded number of columns and (d) adding one new
partial row can accommodate only one new column.
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Fig. 4. PHF with domain size 4; one new partial row accommodates one new column
from Example 2.

Fig. 5. Seven columns are accommodated using three rows from Example 3.

Example 3 (Gaining efficiency). In this example (see Fig. 5) we see that
although each of first two columns get one extra entry as compared to Example 2
but with the 3 rows, we can accommodate upto 7 columns.

Example 4. In this example (see Fig. 6) we present a case where our technique
gives better results than the recursive constructions of Atici et al. [1]. Suppose
we have a PHF (N ; 3, 2, 2). We know that N(3, 2, 2) = �log 3� = 2. Applying
Corollary 4, we obtain a PHF (N ′; 9, 2, 2) with N ′ = 4. Our constructions achieve
the same result but the first two columns use less entries than the next ones.
Furthermore, we can accommodate one more column viz. 10th column.

5 Impact on Secret Sharing

The connection between perfect hash family and secret sharing is well-
established. In this section, we discuss the possibility of achieving non-abelian
secret sharing, or more generally, secret sharing schemes over quasi-groups for
an evolving access structure. The construction of Komargodski-Naor-Yogev [24]
uses combinatorics and applies it to the existing literature on secret sharing over
finite fields. However, our construction of perpetual PHF enables us to create
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Fig. 6. Evolving from PHF (2; 3, 2, 2) to PHF (4; 10, 2, 2) via partial rows (from Exam-
ple 4).

multiplicative sharing schemes for (2,∞)-threshold access structure, in which
the secret belongs to a group/quasi-group, which is not necessarily abelian.

Suppose the secret s is an element of a quasigroup (Q, ·). Algorithm 2 gives
a (non-abelian) secret sharing scheme over the quasigroup Q.

Algorithm 2. Construction of (2,∞)-secret sharing over quasigroup

1: procedure Share Generation

2: For every row i of perpetually evolving PHF (described in Algorithm 1):
the dealer assigns a random element ri ∈ Q and computes s · ri.

3: Participant j receives ri or s · ri or “ − ” (denoting an empty string),
if the (i, j)th position of the evolving PHF is 0 or 1 or blank respectively.

4: procedure Reconstruction

5: If two participants p1 and p2 come together then by construction of the
evolving PHF, there is a row k such that (k, p1)th and (k, p2)th entries are
different.

6: They solve the equation x · rk = s · rk to retrieve the secret.
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6 Conclusion

We introduced evolving combinatorial objects, and exemplified this concept with
evolving perfect hash family. This construction, in turn, gives rise to an evolving
secret sharing scheme, which does not rely on the operations over finite fields,
when compared to the scheme by Komargodski, Naor and Yogev [25].

We emphasize that our result paves way for studying evolving combinatorial
objects. A natural blueprint is to start from a recursive construction for some
combinatorial objects and to develop it into an evolving scheme. Note however
that depending on application, different parameters of the object need to be
extended. For example, when constructing secret sharing schemes from PHF
the domain size matters, but for some applications it could be a co-domain,
etc. Another issues to consider is a fine-grained control over parameters. For
example, at every step of evolution, our construction doubles the domain size.
It is possible that one would want to increase the parameter by some factor,
possibly not known in advance.

A natural open question for our future work is to develop evolving PHF for
larger co-domains and study the applicability in the realm of secret sharing.

Appendix

(2, 2) Secret Sharing Scheme

– Dealer has a secret bit s ∈ {0, 1};
– Dealer generates a random bit b and computes s ⊕ b;
– Share of Participant 1 is b and;
– Share of Participant 2 is s ⊕ b.

It is easy to check that each participant individually has no information about
the secret bit s. This is because the share of Participant 1 is independent of s, and
Participant 2 holds a one-time pad encryption of it. However, if two participants
pool their shares, collaborate then they easily reconstruct the secret bit simply
by computing their XOR.

Depiction of (2,∞) Secret Sharing Scheme
In Fig. 7, we present the share generation process for a (2,∞) secret sharing
scheme.
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Fig. 7. Shares of parties in an (2,∞) secret sharing scheme [24]. Entries in the square
brackets represent the shares. bi’s are random bits and s the secret bit.
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Abstract. Threshold changeable secret sharing studies the problem of
changing the thresholds of a secret sharing scheme after the shares of the
initial scheme have been distributed to players. We focus on the most
studied scenario of dealer-free threshold increase in the absence of secure
channels with an outsider adversary. Previous theoretical works in this
scenario only consider an unchanged privacy threshold and define opti-
mal threshold changeable secret sharing schemes as ones meeting the
bounds in this case. We highlight increasing the privacy threshold as an
independent design goal on top of increasing the reconstruction thresh-
old. We prove new bounds for the above threshold increase scenario with
respect to a new privacy threshold that is possibly bigger than the initial
privacy threshold. We similarly define an optimal threshold changeable
secret sharing scheme as one that achieves equality in all these bounds. A
trade-off between the new privacy threshold and the required combiner
communication complexity is discovered and new optimal schemes for the
case when privacy threshold also increases are identified. These theoreti-
cal results put our new construction of threshold changeable secret shar-
ing on a firm ground. Our threshold changeable ramp scheme does not
need a priori knowledge of the targeted thresholds to design the protocol
and allow the conversion into a ramp scheme with arbitrary new recon-
struction thresholds while the privacy threshold grows proportionally
as the reconstruction threshold grows. Previous such schemes were only
known from lattice-based constructions that use a non-standard privacy
definition. Our new schemes are statistical secret sharing schemes that
guarantee indistinguishability of shares up to the new privacy threshold.

Keywords: Threshold changeable secret sharing · Communication
efficient secret sharing

1 Introduction

Secret sharing, introduced independently by Blakley [1] and Shamir [2], is one of
the most fundamental cryptographic primitives. The general goal in secret shar-
ing is to encode a secret s into a number of shares s1, . . . , sn that are distributed
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among n participants such that only certain authorized subsets of the players
can reconstruct the secret. An authorized subset of players is a set A ⊂ [n] such
that the shares with indices in A can collectively be used to reconstruct the
secret s. On the other hand, A is an unauthorized subset if the knowledge of the
shares with indices in A reveals no information about the secret. A secret shar-
ing is called perfect if all the subsets are either authorized or unauthorized. The
set of authorized and unauthorized sets define an access structure, of which the
most widely used is the so-called threshold structure. A threshold secret sharing
scheme is defined with respect to an integer parameter r called reconstruction
threshold and satisfies the following property: Any set A ⊂ [n] with |A| < r
is an unauthorized set and any set A ⊂ [n] with |A| ≥ r is an authorized set.
When the share lengths are below the secret length, the threshold guarantee that
requires all subsets of participants be either authorized, or unauthorized can no
longer be attained. Instead, the notion can be relaxed to ramp secret sharing
which allows some subset of participants to learn some partial information about
the secret. A ramp scheme is defined with respect to two threshold parameters,
t and r. In a (t, r, n)-ramp scheme, the knowledge of any t shares or fewer does
not reveal any information about the secret. On the other hand, any r shares
can be used to reconstruct the secret. The subsets of size at least t + 1 and at
most r − 1, may reveal some partial information about the secret. We consider
a threshold secret sharing scheme with reconstruction threshold r as a special
case of a (t, r, n)-ramp scheme with t = r − 1. We denote it an (r, n)-threshold
scheme.

A basic application of (r, n)-threshold scheme is for achieving robustness of
distributed security systems. A distributed system is robust if the system security
is guaranteed even against an adversary who eavesdrops up to a certain number
of components of the distributed system. In such applications, an (r, n)-threshold
scheme can be directly applied. The threshold r of the scheme is determined by
a security policy based on an assessment which is a compromise between the
value of the protected system and adversary capabilities on one hand, and user
convenience and cost on the other hand. As often seen in many applications, the
value of the system and adversary capabilities may change over time. This has
motivated the study of threshold changeable secret sharing.

Changing threshold would be a trivial problem if the dealer is still active and
the secret channels for distributing the shares to participants are maintained.
Because one can simply start a new run of the protocol after instructing all par-
ticipants to discard their previous shares. Special threshold change without the
dealer assistance has been studied as a secret redistribution problem [3,4], where
communication among the shareholders through secure channels are allowed.
Techniques for changing threshold in [5,6] do not require secure channels but
rely on intensive use of broadcast channels.

In this work, we focus on the scenario of dealer-free threshold increase in the
absence of secure channels. This is probably the most studied scenario of thresh-
old changeable secret sharing, due to the fact that the setting asks for minimum
resources and, with careful designing, provides rather meaningful benefits. A
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theoretical model was discussed and three efficiency bounds were proved in [4].
The model considers an (r, n)-threshold scheme that, through each shareholder
locally applying a publicly known share conversion function to the individual
share he/she is holding, can be converted into a new ramp scheme with bigger
reconstruction threshold r′ > r. Of course, to make the idea work, the share-
holders are assumed honest and delete the initial shares once the new shares are
generated. As it turned out, it is impossible to have the threshold gap remaining
1 while increasing the thresholds, assuming both the initial and target schemes
have optimal share size (see [7, Lemma 1]). Remaining unchanged. Somehow
counter-intuitively, as the reconstruction threshold increases, the combiner com-
munication complexity for pooling the new shares to reconstruct the secret can
be significantly reduced. A threshold scheme with minimum share size that can
be converted into such a ramp scheme with minimum share size and minimum
combiner communication complexity is defined to be optimal. An explicit con-
struction of such optimal (r, n)-threshold scheme threshold changeable to r′ was
also given in [4] using the geometric construction of Blakley [1]. There are follow
up works on threshold changeability that gave new constructions of optimal (or
near optimal) threshold changeable secret sharing in this model with various
features [8–11]. For example, the packed Shamir scheme construction in [9] is
essentially an optimal construction for threshold changeable secret sharing and
[10] proposed a variant of the construction that reduces the share size.

Another line of works in this scenario of dealer-free threshold increase in
the absence of secret channels, however, concern with the practical applicability
rather than achieving theoretical optimality. In the theoretical model, there is
an initial reconstruction threshold r and a target new reconstruction threshold
r′ known a priori to the designer of the protocol, who then tune the construction
to achieve the best efficiency. But in practice, one may ask why not simply use a
threshold scheme with the bigger reconstruction threshold r′ from the beginning,
if we already know what will be the “right” threshold value a priori. Note that
directly using a standard (r′, n)-threshold scheme enjoys the benefit of having
threshold gap 1, which no (r, n)-threshold scheme threshold changeable to r′ can
achieve [7, Lemma 1]. Practical threshold changeability should at least remove
the need for a priori knowledge of the new threshold r′ and allows the protocol
designer to start with a standard (r, n)-threshold scheme without considera-
tion of future threshold increase. An important breakthrough in this line was
the lattice-based construction of threshold changeable schemes in [12] (standard
Shamir scheme) and its companion paper in [13] (standard Chinese Remainder
Theorem scheme). The share conversion functions are realised through deliber-
ately adding structured errors into the initial shares of the standard threshold
scheme. The combiner algorithm then adopts a positive application of lattice
reduction algorithm to correct the errors. The authors discovered that these
constructions not only enjoys the salient feature of removing the need for a pri-
ori knowledge of the new reconstruction threshold r′, but also allows the privacy
threshold to increase proportionally to the increase of reconstruction threshold
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r′. Their definition of privacy, however, is not a standard security definition,
which might be inherent limitation of the lattice techniques they use.

Our Contributions. Our main contributions in this work are two-fold. On the
theory side, we generalise the classical model of (r, n)-threshold scheme threshold
changeable to r′ by allowing the privacy threshold to grow as the reconstruction
threshold grows. A direct motivation for this generalisation is of course the break-
through constructions of practical threshold changeable secret sharing [12,13],
where the new privacy threshold becomes bigger than the initial privacy thresh-
old. We highlight increasing the privacy threshold as an independent design
goal that can be investigated on top of the conventional study of increasing the
reconstruction threshold. On the construction side, we construct a new thresh-
old changeable secret sharing that has better performance than the lattice-based
schemes [12,13] in all aspects.

Modeling. We generalise the (r, n)-threshold scheme threshold changeable to r′

model to the (t, r, n)-ramp scheme threshold changeable to (t′, r′, n)-ramp scheme
model. To have succinct notations, we denote it by (t, r, n) → (t′, r′, n)-ramp
scheme model. We generalise the three information-theoretical bounds for mea-
suring the efficiency of threshold changeable secret sharing to cover this general
setting. Let H(S) denote the secret length measured in bits. The initial share
spaces Si, i ∈ [n] and new share spaces S ′

i, i ∈ [n], are bounded as follows.

1. Bound on initial share size: max
1≤i≤n

log |Si| ≥ H(S)
r−t ;

2. Bound on new share size: max
1≤i≤n

log |S ′
i| ≥ H(S)

r′−t′ ;

3. Bound on combiner communication complexity: for any I ⊂ [n] with | I |= r′,

∑

i∈I

log |S ′
i| ≥ r′H(S)

r′ − t′
.

In particular, given a new reconstruction threshold r′, the combiner communi-
cation complexity bound reveals a trade-off between the new privacy threshold
t′ and the necessary combiner communication complexity that is required for
having privacy threshold t′. The necessary combiner communication complexity
decreases as the required privacy threshold decreases, and with the minimum
value at the well studied case when t′ = t. We identify optimal constructions for
the case when r′ : r = t′ : t, whose optimality was not known before. Interest-
ingly, the combiner communication complexity in this case remains unchanged
during the threshold changes. We leave the quest for optimal constructions with
other threshold parameter relations as an interesting open question.

Construction. We make black-box usage of the recent construction of binary
secret sharing scheme in [14] and construct a practical threshold changeable
secret sharing that does not require a priori knowledge of the future threshold
change. We simply use such a binary secret sharing scheme with appropriate
choice of parameters and divide the bit-string into n blocks to form n shares. This
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gives us the initial (t, r, n)-threshold scheme. The share conversion functions are
simply deleting an appropriate portion of the initial share. The scheme obtained
supports arbitrary reconstruction threshold change and the privacy threshold
grows proportionally t′ = � tr′

r � as the reconstruction threshold grows. When
the new thresholds t′ and r′ satisfy r′ : r = t′ : t, the secret length of our
scheme almost matches the bounds in the theoretical model. Moreover, thanks
to the statistical secret sharing we use in this construction, the privacy of the
obtained scheme is measured by statistical distance between two distributions
of any subset of at most t′ converted shares corresponding to a pair of secrets,
which has significant advantage over the lattice based constructions in [12,13].

Related Works. Wang and Wong [9] initiated the study of minimising the
combiner communication complexity through allowing a set of players of size
beyond the reconstruction threshold to take part in the reconstruction. Each
player apply a processing function to his/her own share and communicate the
output of the function instead of the complete share. A trade-off between com-
biner communication complexity and the number of participants involved in the
secret reconstruction was shown and the scheme achieving the bound is called
optimal communication efficient secret sharing scheme. Note that an optimal
communication efficient secret sharing scheme that requires d > r shares in
reconstruction naturally yields an optimal threshold changeable secret sharing
scheme, where the reconstruction threshold change from r to r′ = d and the
privacy threshold remains the same (t′ = t). More concretely, the processing
functions of the former serve as the share conversion functions of the latter.
An optimal construction of communication efficient secret sharing scheme for a
given d was proposed in [9]. In the follow-up works [15,16], constructions that
are universally optimal for all possible values of d, r ≤ d ≤ n were constructed
using packed Shamir secret sharing technique. Since the packed Shamir secret
sharing inherently requires large share size, an alternative construction using
algebraic geometry codes was proposed in [17] to cope with the share size issue.
But since algebraic geometry codes with small alphabet and large length do not
give optimal secret sharing schemes, the schemes obtained are only near optimal.

2 Preliminary

The log is to the base 2. Let X denote a random variable. The Shannon entropy
of X is denoted by H(X). The mutual information between X and Y is given by

I(X;Y) = H(X) − H(X|Y) = H(Y) − H(Y|X),

where H(Y|X) denotes the conditional Shannon entropy. The statistical distance
of two random variables (their corresponding distributions) is defined as follows.
For X,Y ← Ω,

SD(X;Y) =
1
2

∑

ω∈Ω

|Pr(X = ω) − Pr(Y = ω)|.
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Definition 1. Let P = {P1, . . . , Pn} be a group of n participants (a.k.a. share-
holders). Let S be the set of secrets and a secret s ∈ S is denoted in boldface.
Let Si be the share space of the participant Pi. A secret sharing scheme of n
participants is a pair of algorithms: the dealer and the combiner. For a given
secret from S and some random string from R, the dealer algorithm applies the
mapping

D : S × R → S1 × . . . × Sn

to assign shares to participants from P. The shares of a subset A ⊂ [n] of
participants can be input into the combiner algorithm

C :
∏

Pi∈A
Si → S

to reconstruct the secret.

Definition 2. A (t, r, n)-ramp scheme is a secret sharing scheme with n partic-
ipants such that the combiner algorithm always reconstructs the correct secret for
any A ⊂ [n] of size |A| ≥ r and for any A ⊂ [n] of size |A| ≤ t, no information
about the secret can be learned from pooling their shares together. Moreover if
t < r − 1, for any A ⊂ [n] of size t < |A| < r, neither the combiner algorithm
can uniquely reconstruct a secret nor the secret can remain unknown. That is r
is the smallest integer such that correct reconstruction is guaranteed and t is the
biggest integer such that privacy is guaranteed. We associate a probability with
each s ∈ S and obtain a random secret S ← S. The share vector obtained from
sharing the random secret S is denoted by

V ← S1 × . . . × Sn.

Let H(S|VA) denote the entropy of the random variable S conditioned on the
knowledge of the shares held by the participants in A. The above conditions defin-
ing a (t, r, n)-ramp scheme can be described information-theoretically as follows.

– Correctness: H(S|VA) = 0, for any A ⊂ [n] of size |A| ≥ r;
– Privacy: H(S|VA) = H(S), for any A ⊂ [n] of size |A| ≤ t;
– Ramp security: 0 < H(S|VA) < H(S), for any A ⊂ [n] of size t < |A| < r.

The parameter t is called the privacy threshold and the parameter r is called the
reconstruction threshold. The difference of these two thresholds is called the gap
and denoted by g = r − t. The last item ramp security in Definition 2 is void
when t = r − 1, as there is no integer lying in between t and r. In this case when
the gap g = 1, we call it a (r, n)-threshold scheme for short. A (t, r, n)-ramp
scheme is called an optimal (t, r, n)-ramp scheme if it has minimum share length
and the ramp security is strengthened to H(S|VA) = r−k

r−t , for any A ⊂ [n] of
size |A| = k with t < k < r.

Definition 3. A (ε, δ)-statistical (t, r, n)-ramp scheme is a secret sharing
scheme with n participants such that the combiner algorithm C correctly recon-
structs the secret for any A ⊂ [n] of size |A| ≥ r with probability at least 1 − δ
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over the randomness of the dealer algorithm D and for any A ⊂ [n] of size
|A| ≤ t, the leakage of information about the secret measured by statistical dis-
tance between two distributions of the shares specified by A corresponding to a
pair of secrets is at most ε. For a particular secret s ∈ S, let

D(s) ← S1 × . . . × Sn

denote the share vector corresponding to s, which is a random variable distributed
on the set S1× . . .×Sn with randomness from the dealer algorithm D. The above
conditions defining a (ε, δ)-statistical (t, r, n)-ramp scheme can be described as
follows.

– Correctness: for any A ⊂ [n] of size |A| ≥ r,

Pr[C(D(s)A) = s] ≥ 1 − δ.

– Privacy (non-adaptive): for any pair of secrets s0, s1 ∈ S and any A ⊂ [n] of
size |A| ≤ t,

SD(D(s0)A;D(s1)A) ≤ ε.

Note that when ε > 0, the above defined privacy against a non-adaptive read-
ing adversary is not equivalent to privacy against an adaptive reading adversary
(see [14] for an example showing the separation). An adaptive reading adversary
first chooses a subset of shares to read and is allowed to choose other (up to the
reading budget) shares to read using the knowledge gained in the first reading.
In the extreme case, the adaptive adversary choose the set A one share by one
share and base the choice on all previously read values. We only consider non-
adaptive reading adversary for statistical secret sharing in this paper, for which
we know the following.

Lemma 1 ([14]). For any 0 ≤ τ < ρ ≤ 1, there is an explicit construction of a
family of binary (ε(N), δ(N))-statistical (τN, ρN,N)-ramp schemes against non-
adaptive adversary, labeled by the share vector length N , such that (ε(N) and
δ(N) are both negligible in N and the secret is asymptotically equal to N(ρ − τ)
bits.

Lemma 1 shows that by relaxing from the error-free definition of secret shar-
ing to allowing some negligible amount of errors ε(N) and δ(N), the stringent
share size requirement can be overcome and the share size can be reduced to the
smallest possible 2. An asymptotic bound on the secret length of such binary
statistical secret sharing was shown in [14] and the explicit construction above
achieves that bound. By an explicit construction, we mean that both the dealer
algorithm and the combiner algorithm run in time polynomial in N .

3 Threshold Changeable Ramp Schemes

We revisit the problem of increasing the thresholds of a secret sharing scheme
after the shares are distributed to the shareholders, without further secret com-
munication between the dealer and the shareholders or among shareholders
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themselves. There might be instructions on how the conversion into a new scheme
should be accomplished publicly broadcasted to the shareholders. Each share-
holder must generate the new share from the initial share he/she receives, fol-
lowing the instructions. In this work, we consider an outsider adversary. That
is we assume that all the shareholders are honest and delete their initial shares
after generating the new shares from them. The adversary, who is an outsider,
corrupts the shareholders only after the initial shares are successfully deleted.
We discuss the necessity of considering an outsider adversary in more details
after we formally define our model.

Previous theoretical studies of threshold changeable secret sharing consider
a fixed privacy threshold and only increase the reconstruction threshold. That
is from a (r, n)-threshold scheme to a (r − 1, r′, n)-ramp scheme, for r′ > r. In
this work, we do not restrict the target privacy threshold to be equal to the
initial privacy threshold. That is from a (r, n)-threshold scheme to a (t′, r′, n)-
ramp scheme, where the target privacy threshold t′ can be an integer bigger
than the initial privacy threshold r − 1. We observe that allowing the privacy
threshold to increase as the reconstruction threshold increases is an arguably
more natural model. In fact, increasing the privacy threshold can be studied as
an independent design goal, on top of increasing the reconstruction threshold, in
threshold changeable secret sharing literature. From explicit construction point
of view, the lattice-based constructions in [12,13] yield threshold changeable
secret sharing schemes whose privacy threshold t′ increases proportionally as
the reconstruction threshold r′ grows. We believe that a thorough study of the
model with a changeable privacy threshold is well motivated and will stimulate
new constructions of threshold changeable secret sharing.

In the sequal, the results are described in a general language of changing
threshold parameters from a (t, r, n)-ramp scheme to a (t′, r′, n)-ramp scheme,
where t is not necessarily equal to r − 1. Results stated in this general form
enjoys a symmetric look that is not obvious when substituting in t = r − 1.
Moreover, including the t < r−1 cases into discussion is of independent interest,
for example, to a continuous threshold changeable secret sharing model, where
threshold changes may be activated multiple times before the shares are finally
pooled together to reconstruct the secret. According to the impossibility result
([7, Lemma 1]) mentioned above, the obtained scheme after the first change
is necessarily a ramp scheme with threshold gap strictly bigger than 1. All the
subsequent threshold changes are then between two general ramp schemes. Inves-
tigating threshold changeability in the full generality of ramp schemes is then a
necessary first step for modelling continuous threshold changeable secret shar-
ing. We call such general schemes (t, r, n)-ramp schemes threshold changeable
to (t′, r′, n). To make the notation short, we simply denote (t, r, n) → (t′, r′, n)
ramp schemes.

3.1 Defining (t, r, n) → (t′, r′, n) Ramp Schemes

Definition 4. A (t, r, n)-ramp scheme threshold changeable to (t′, r′, n), or a
(t, r, n) → (t′, r′, n) ramp scheme for short, is a (t, r, n)-ramp scheme together
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with a set of publicly known share conversion functions

hi : Si → S ′
i, i = 1, . . . , n,

and a new combiner algorithm

C′ :
∏

Pi∈A
S ′

i → S

for a subset A ⊂ [n] of participants such that the following properties are sat-
isfied. The share conversion function hi convert the share si ∈ Si of the ith
participant Pi into a new share s′

i = hi(si) ∈ S ′
i. The new combiner algorithm

C′ always reconstructs the correct secret for any A ⊂ [n] of size |A| ≥ r′ and for
any A ⊂ [n] of size |A| ≤ t′, no information about the secret can be learned from
pooling their new shares together. Moreover for any A ⊂ [n] of size t′ < |A| < r′,
neither the combiner algorithm can uniquely reconstruct a secret nor the secret
can remain unknown. That is r′ is the smallest integer such that correct recon-
struction is guaranteed and t′ is the biggest integer such that privacy is guar-
anteed. We associate a probability with each s ∈ S and obtain a random secret
S ← S. The share vector obtained from sharing the random secret S and then
applying the share conversion functions is denoted by

V′ ← S ′
1 × . . . × S ′

n.

Let H(S|V′
A) denote the entropy of the random variable S conditioned on the

knowledge of the new shares held by the participants in A. The above conditions
can be described information-theoretically as follows.

– Correctness: H(S|V′
A) = 0, for any A ⊂ [n] of size |A| ≥ r′;

– Privacy: H(S|V′
A) = H(S), for any A ⊂ [n] of size |A| ≤ t′;

– Ramp security: 0 < H(S|V′
A) < H(S), for any A ⊂ [n] of size t′ < |A| < r′.

In Definition 4, the set of share conversion functions {hi|i = 1, . . . , n} together
with the dealer algorithm D of the initial (t, r, n)-ramp scheme in fact define a
new dealer algorithm D′ through composition of functions.

D′ : S × R → S ′
1 × . . . × S ′

n. (1)

This new dealer algorithm D′ together with the new combiner algorithm C′

define a new secret sharing scheme. In this interpretation, a (t, r, n) → (t′, r′, n)
ramp scheme is a (t, r, n)-ramp scheme equipped with a set of share conversion
functions that can transform it into a (t′, r′, n)-ramp scheme.

The threshold changeable secret sharing as defined in Definition 4 is in the
outsider model, since the properties of the correctness, privacy and ramp security
for the target thresholds t′ and r′ are defined with respect to the new shares.
This makes sense only when all shareholders are honest and follow the protocol
deleting the initial shares. If on the contrary, the adversary is among the share-
holders and may not follow the protocol, he/she will store the initial share si
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instead of the new share s′
i = hi(si). One can also consider a semi-insider model

where the adversary corrupts up to t shareholders before the transformation
and t′ − t more shareholders after the transformation. The t′ − t more share-
holders corrupted after the transformation delete the initial shares completely
and only store the new shares. The privacy and ramp security conditions in the
semi-insider model will be alternatively defined with respect to the conditional
entropy H(S|VA,V′

B−A), for any A ⊂ B ⊂ [n] of size |A| ≤ t and |B| ≤ t′. We
only briefly discuss the semi-insider model for the special case t′ = t.

We first state a generalisation of [4, Lemma 1] that intuitively says that by
increasing the reconstruction threshold, the gap has to increase as well.

Lemma 2. Let Π be a (t, r, n) ramp scheme with privacy threshold changeable
to t′ and reconstruction threshold changeable to r′ > r. Let Π′ be the resulting
(t′, r′, n) ramp scheme. If both Π and Π′ have minimum share size, then t′ ≥ t
and r′ − t′ > r − t.

The proof is given in AppendixA. Lemma 2 shows that the range of achievable
new privacy threshold is t′ ∈ {t, t + 1, . . . , r′ − r + t − 1}.

3.2 Bounds and Optimal Schemes

It is then highly interesting to find out what are the theoretical bounds
for the full range t′ ∈ {t, t + 1, . . . , r′ − r + t − 1} and whether there are
optimal constructions. We begin with the information theoretic bounds, which
generalise [4, Theorem 2], where only t′ = t was treated and was stated for
t = r − 1 only.

Theorem 1. Let Π be a (t, r, n) → (t′, r′, n) ramp scheme, where r < r′ ≤ n
and t ≤ t′ < r′ − (r − t). Let hi : Si → S ′

i, i = 1, . . . , n, be its share conversion
functions. Then the following three bounds hold.

1. Bound on initial share size: max
1≤i≤n

log |Si| ≥ H(S)
r−t ;

2. Bound on new share size: max
1≤i≤n

log |S ′
i| ≥ H(S)

r′−t′ ;

3. Bound on combiner communication complexity: for any I ⊂ [n] of | I |= r′,

∑

i∈I

log |S ′
i| ≥ r′H(S)

r′ − t′
.

Proof. Item 1. follows from the fact that Π is by definition a (t, r, n)-ramp
scheme. We now prove Item 2. Consider arbitrary I = {i1, . . . , i|I|} such that
| I |= r′. Assume without loss of generality that | S ′

i1
|≤| S ′

i2
|≤ . . . ≤| S ′

i|I| |.
Let S be uniformly distributed, denote S′

I = (S′
i1

, . . . ,S′
ir′ ) be the output of the

share conversion functions.
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H(S′
i1

, . . . ,S′
ir′−t′ )

(a)

≥ H(S′
i1

, . . . ,S′
ir′−t′ | S′

ir′−t′+1
, . . . ,S′

ir′ )
(b)
= H(S′

i1
, . . . ,S′

ir′−t′ | S′
ir′−t′+1

, . . . ,S′
ir′ ) + H(S |S′

i1
, . . . ,S′

ir′ )
(c)
= H(S,S′

i1
, . . . ,S′

ir′−t′ | S′
ir′−t′+1

, . . . ,S′
ir′ )

≥ H(S | S′
ir′−t′+1

, . . . ,S′
ir′ )

(d)
= H(S),

where (a) follows from conditioning reduces entropy, (b) follows from the cor-
rectness property in Definition 4, (c) follows from the chain rule and (d) follows
from the privacy property in Definition 4. Therefore it follows that

r′−t′∑

j=1

log |S ′
ij

| ≥ H(S). (2)

It then follows from |S ′
i1

| ≤ |S ′
i2

| ≤ . . . ≤ |S ′
i|I| | that

log |S ′
ir′−t′ | ≥ H(S)

r′ − t′
(3)

and that,

log |S ′
ir′−t′+j

| ≥ log |S ′
ir′−t′ | ≥ H(S)

r′ − t′
, j = 1, . . . , t′. (4)

According to Eq. (4), we have

log |S ′
ir′ | ≥ H(S)

r′ − t′
.

Item 2 is obtained since

max
1≤i≤n

log |S ′
i| ≥ log |S ′

ir′ | ≥ H(S)
r′ − t′

.

Combining Eqs. (2) and (4) we have,

r′∑

j=1

log |S ′
ij

| ≥ H(S) +
t′H(S)
r′ − t′

≥ r′H(S)
r′ − t′

.

Item 3 is obtained.

As a result of Theorem 1, we observe a trade-off between the target privacy
threshold t′ and the combiner communication complexity. The lower bound on
the combiner communication complexity for a fixed r′ is determined by the
target privacy threshold t′: the necessary communication complexity decreases
as t′ decreases. We summarise this observation in the following corollary.

Corollary 1. Given a fixed r′. Among all choices of target privacy threshold
t′ ∈ {t, t + 1, . . . , r′ − r + t − 1}, the necessary communication complexity of
(t, r, n) → (t′, r′, n) ramp schemes decreases as t′ decreases, with the minimum
at the case t′ = t.
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Corollary 1 shows that the single goal of minimising the combiner commu-
nication complexity is optimised when consider the special case t′ = t. This
explains the reason that most of the previous works on threshold changeable
secret sharing [8,10,11] were focused on this case. These constructions usually
restrict to the parameter setting t = r − 1. As mentioned in the Related works,
the independent line of works [9,15–17] on minimising the communication com-
plexity by pooling more shares than the designed reconstruction threshold (no
threshold change is required and usually not restricted to the parameter setting
t = r−1) naturally give constructions of threshold changeable ramp schemes for
the special case t′ = t. Another reason that makes the t′ = t case special is the
fact that explicit schemes resistant to semi-insider attacks can be constructed in
this case. See an example construction in Appendix B and the discussion follow-
ing it.

In this work, we highlight increasing the privacy threshold as a secondary
design goal and ask for constructions that simultaneously achieve the threshold
changes and minimise combiner communication complexity.

Definition 5. A (t, r, n) → (t′, r′, n) ramp scheme is called optimal if equality
is achieved in all the bounds in Theorem1.

An intuitive observation is in place. Using the dealer algorithm D′ induced
by the initial dealer algorithm D and the share conversion functions {hi}i∈[n] as
described in (1), we immediately have the following corollary of Theorem1.

Corollary 2. A (t, r, n) → (t′, r′, n) ramp scheme is optimal if and only if both
its initial scheme with (D,C) and its new scheme with (D′,C′) have minimum
share size.

The optimality for the cases when t′ > t was not studied before, although
the following construction that achieves optimality is folklore (see e.g. [4]). To
distinguish this technique from the packing technique that is commonly used in
t′ = t case, we call the technique used in this case a folding technique, as in the
folded codes.

Let u
v = r

r′ = t
t′ . Let Πv be the (tv, rv, nv)-ramp scheme constructed

from polynomials. Let (s1, . . . , snv) be the share vector of Πv. Now we fold v
shares of Πv to form a new share and obtain a folded scheme Π that is obvi-
ously a (t, r, n)-ramp scheme with optimal share size. The share vector of Π
is then (S1, . . . , Sn), where Si = (s(i−1)v+1, . . . , siv). The dealer algorithm D
and combiner algorithm C of Π can be trivially adapted from those of Πv.
We next define a share conversion algorithm {hi}i∈[n] to transform the scheme
Π into Π′ through dropping the v − u components of each share. More pre-
cisely, let hi(Si) = (s(i−1)v+1, . . . , s(i−1)v+u). We show that Π′ with share vector
(S′

1, . . . , S
′
n), where S′

i = hi(Si), is a (t′, r′, n)-ramp scheme with optimal share
size. The new combiner algorithm C′ is similar to C. We note that any k shares
of Π′ are corresponding to ku shares of Πv. We then have any k shares of Π′

do not contain any information about the secret if and only if ku ≤ tv, namely,
k ≤ tv

u = t′. Similarly, any k shares of Π′ reconstruct the full secret if and only
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if ku ≥ rv, namely, k ≥ rv
u = r′. We have shown that the scheme Π together

with the transformation algorithm {hi}i∈[n] give an optimal (t, r, n) → (t′, r′, n)
ramp scheme.

We notice that in the above construction, the parameters satisfy t′ : t = r′ : r.
The optimal combiner communication complexity of the transformed scheme
in the above construction is the same as that of the original scheme. Indeed,
substituting t′ : t = r′ : r into the combiner communication complexity bound
in Theorem 1, we have

r′ × H(S)
r′ − t′

= r × H(S)
r − t

.

We conclude this section with an interesting open question of constructing
optimal (t, r, n) → (t′, r′, n) ramp schemes with t′ > t and t′ : t 
= r′ : r.

4 Arbitrarily Threshold Changeable Statistical Secret
Sharing

From now on, we discuss practical aspects of threshold changeable secret sharing.
The biggest drawback of the theoretical model in the previous section is that
in practice, it is not natural to assume that the new threshold values t′ and r′

are known before the distribution of the shares of the initial scheme. On the
contrary, the need for change of thresholds is the consequence of unforeseeable
development of the application environment. A practical threshold changeable
secret sharing should at least allow the users to start with a plain threshold
scheme (not a specially built (t, r, n) → (t′, r′, n) secret sharing for a pair of
fixed t′ and r′) and at a later stage, when the need for changing into arbitrary
new thresholds comes up, be able to implement the change.

4.1 Arbitrarily Threshold Changeable Model

Definition 6. An arbitrarily threshold changeable (ε, δ)-statistical (t, r, n)-ramp
scheme with respect to a set T ⊂ [n] × [n] of new thresholds is a (ε, δ)-statistical
(t, r, n)-ramp scheme together with publicly known share conversion functions

h
(t′,r′)
i : Si → S(t′,r′)

i , i = 1, . . . , n, (t′, r′) ∈ T ,

and combiner algorithms

C(t′,r′) :
∏

Pi∈A
S(t′,r′)

i → S, (t′, r′) ∈ T ,

for a subset A ⊂ [n] of participants such that the following properties are satis-
fied. The share conversion function h

(t′,r′)
i convert the share si ∈ Si of the ith

participant Pi into a new share s
(t′,r′)
i = h

(t′,r′)
i (si) ∈ S(t′,r′)

i . The new combiner
algorithm C(t′,r′) correctly reconstructs the secret for any A ⊂ [n] of size |A| ≥ r′

with probability at least 1− δ over the randomness of the dealer algorithm D and
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for any A ⊂ [n] of size |A| ≤ t′, the leakage of information about the secret
measured by statistical distance between the distributions of the subset of new
shares specified by A corresponding to a pair of secrets is at most ε.

More concretely, for a particular secret s ∈ S, let

D(t′,r′)(s) ← S(t′,r′)
1 × . . . × S(t′,r′)

n

denote the new share vector of s (obtained by applying the share conversion
functions {h

(t′,r′)
i }i∈[n]), which is a random variable distributed on the set

S(t′,r′)
1 × . . . × S(t′,r′)

n with randomness from the dealer algorithm D. The above
conditions defining a (ε, δ)-statistical (t, r, n)-ramp scheme can be described as
follows.

– Correctness: for any A ⊂ [n] of size |A| ≥ r′,

Pr[C(t′,r′)(D(t′,r′)(s)A) = s] ≥ 1 − δ.

– Privacy (non-adaptive): for any pair of secrets s0, s1 ∈ S and any A ⊂ [n] of
size |A| ≤ t′,

SD(D(t′,r′)(s0)A;D(t′,r′)(s1)A) ≤ ε.

The folklore construction described in previous section can be extended to
cope with the arbitrary threshold change scenario. But as we will see, the share
size required for this construction to support arbitrary threshold change is huge.
Recall that, to realise a (t, r, n) → (t′, r′, n) ramp scheme, we need to decide on
an integer v such that u

v = r
r′ . Since the choice of v directly affects the share size

of the building block Πv, which is a (tv, rv, nv)-ramp scheme, we want it to be
as small as possible. In the situation when r′ is not known a priori, one would
need to choose an integer v that is a multiple of n · (n−1) · . . . · (r+1). Using the
polynomial based construction of secret sharing, such a (tv, rv, nv)-ramp scheme
Πv requires share space Fq such that

q ≥ nv ≥ n2 · (n − 1) · . . . · (r + 1).

Note that the actual threshold scheme Π is a v-folded version of Πv and hence
will have share size

qv ≥
(
nv)v ≥ (n2 · (n − 1) · . . . · (r + 1)

)n·(n−1)·...·(r+1)
.

In order to keep the share size under control, we sacrifice the perfect privacy
(ε = 0) and perfect reconstruction (δ = 0) of the polynomial based construction
and settle for an imperfect but almost equally effective (ε, δ)-statistical secret
sharing. Through a black-box usage of the explicit construction of binary statis-
tical secret sharing of Lemma 1, we show the following.

Theorem 2. There is an arbitrarily threshold changeable (ε, δ)-statistical
(t, r, n)-ramp scheme with respect to T = {(� tr′

r �, r′)|r′ = r + 1, . . . , n}. In par-
ticular, when t′ = � tr′

r � = tr′
r , there is a quantity ξε,δ = o(H(S)) such that
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1. Initial share size: max1≤i≤n log |Si| = H(S)+ξε,δ

r−t ;

2. New share size: max1≤i≤n log |S(t′,r′)
i | = H(S)+ξε,δ

r′−t′ ;
3. Combiner communication complexity: for any A ⊂ [n] of |A| = r′,

∑

i∈A
log |S(t′,r′)

i | =
r′(H(S) + ξε,δ)

r′ − t′
.

Proof. Let ρ = r
n and τ = t

n . Let c = (c1, . . . , cN ) ∈ {0, 1}N be the binary
share vector of the binary (ε, δ)-statistical (Nτ,Nρ,N)-secret sharing scheme
in Lemma 1, where N is a multiple of nn!

r! and is chosen big enough such that
the security level (ε, δ) is met. The (t, r, n)-ramp scheme initially shared to n
participants is the binary secret sharing scheme with the N -bit share vector
folded into n blocks, each block of length N

n . More exactly, for i ∈ [n], the share
for the ith participant Pi is

si = (c (i−1)N
n +1

, . . . , c iN
n

).

It is straightforward to see that this gives a (ε, δ)-statistical (t, r, n)-ramp scheme.
We now define the share conversion functions. For any integer r < r′ ≤ n,

let t′ = � tr′
r �. For i = 1, . . . , n, let

Si = {0, 1}N
n , S(t′,r′)

i = {0, 1} Nr
nr′ (5)

and
h
(t′,r′)
i : Si → S(t′,r′)

i : (x1, . . . , xN
n

) �→ (x1, . . . , x Nr
nr′ ),

where Nr
nr′ is an integer since by construction N is a multiple of nn!

r! . The correct-
ness and privacy follows from that of the binary secret sharing scheme naturally.

– Correctness: for any A ⊂ [n] of size |A| ≥ r′, since the number of bits of
c = (c1, . . . , cN ) ∈ {0, 1}N that are contained in these shares is at least
r′ × Nr

nr′ = Nρ, we then have

Pr[C(t′,r′)(D(t′,r′)(s)A) = s] ≥ 1 − δ.

– Privacy (non-adaptive): for any pair of secrets s0, s1 ∈ S and any A ⊂ [n] of
size |A| ≤ t′, since the number of bits of c = (c1, . . . , cN ) ∈ {0, 1}N that are
contained in these shares is at least t′ × Nr

nr′ = � tr′
r � × Nr

nr′ ≤ Nρ, we have

SD(D(t′,r′)(s0)A;D(t′,r′)(s1)A) ≤ ε.

Finally, in the cases when � tr′
r � = tr′

r , we have t′ = tr′
r and want to show the

three equalities. According to Lemma 1, we know there exist a ξε,δ = o(H(S))
such that

H(S) = (ρ − τ)N − ξε,δ.
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Substituting in ρ = r
n and τ = t

n , we have

H(S) + ξε,δ =
(r − t)N

n
⇔ H(S) + ξε,δ

r − t
=

N

n
= log |Si|. (6)

According to (5), we have
log |Si|

log |S(t′,r′)
i |

=
r′

r
,

which together with t′ = tr′
r substituting into (6) yields

H(S) + ξε,δ

r′ − t′
= log |S(t′,r′)

i |. (7)

For any A ⊂ [n] of |A| = r′, it follows from (7) that

∑

i∈A
log |S(t′,r′)

i | =
r′(H(S) + ξε,δ)

r′ − t′
.

4.2 Comparing with Lattice-Based Construction

The only previously known threshold changeable secret sharing schemes that
have this feature of not requiring a priori knowledge of the new thresholds t′

and r′ were constructed in [12,13]. The privacy and reconstruction threshold
pairs (t′, r′) achieved by our construction is the same as those achieved by the
lattice based constructions of [12,13]. Their definition of privacy, however, is
not a standard security definition, which might be inherent limitation of the
lattice techniques they use. Their construction uses public parameters. Firstly,
the privacy their constructions achieved is probabilistic over the randomness of
the public parameters. More accurately, with overwhelming probability over the
randomness of the public parameters, their system generates a “good” value
of public parameter. Secondly, “good” value of public parameter provides the
guarantee that any subset of shares up to the privacy threshold leak at most a
ηH(S) bits of entropy, where η can be made as small as one wishes when the
secret is uniformly distributed. Note that η here is the fraction of the leakage
not the amount of leakage. A small fraction of a long secret can become a huge
amount of leakage.

Our construction enjoys a standard indistinguishability fashion of privacy,
thanks to the binary statistical secret sharing we used as a black-box. Our con-
struction almost achieves equalities in terms of the three efficiency bounds in
Theorem 11. The secret length H(S) is ξε,δ bits smaller than the bounds in The-
orem 1. But the quantity ξε,δ = o(H(S)) is negligible compare with the secret
length. Note that the deficiency here comes in the form of shorter secret, not
as leakage of the secret. A shorter secret that remains private is obvious more
desirable than a secret that leaks.
1 It should be understood that the bounds in Theorem 1 are derived assuming ε =

δ = 0 and hence is only used here as an indication of being almost optimal.
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5 Conclusion

We revisited the (r, n)-threshold scheme threshold changeable to r′ model, which
conventionally considered a fixed privacy threshold (at least in the theoretical
model), and highlighted an additional design goal of changing the privacy thresh-
old to t′. We casted the problem in the general setting of changing a (t, r, n)-
ramp scheme into a (t′, r′, n)-ramp scheme and extended the three information-
theoretic bounds to cover the general model. We identified a new optimal con-
struction with respect to the new bounds for the case when t′ grows propor-
tionally as r′ grows. An open question of theoretical interest is whether there
are other t′ values for which optimal constructions can be found. We also gave
a construction that supports arbitrary reconstruction threshold increase with-
out a priori knowledge of the new threshold. The achievable new privacy and
reconstruction threshold pairs for our construction is similar to those achieved
by the lattice based constructions of [12,13]. Our construction has the advantage
of enjoying a standard definition of privacy that measures leakage in terms of
statistical distance.

Acknowledgements. We thank the anonymous reviewers for their comments that
improve the presentation of this work. The research is supported by Singapore Ministry
of Education under Research Grant MOE2016-T2-2-014(S) and RG133/17 (S).

Appendices

A Proof of Lemma2

Proof. For each participant Pi, i ∈ [n], let the original share of Pi be Si and the
new share of Pi be S′

i. Here Si and S′
i are random variables, i ∈ [n]. Then the

quantity H(Si) is referred to as the size of Pi’s initial share and H(S′
i) as the

size of Pi’s new share.
We first prove t′ ≥ t. Since the new shares are generated from the initial

shares through applying deterministic functions, no information can be generated
other than those already contained in the initial shares. We then have that any
set of t new shares does not contain information about the secret, hence t′ ≥ t.

We next prove r′ − t′ > r − t. Assume by contradiction that we have r′ − t′ ≤
r−t. Since Π and Π′ both have minimum share size, we have H(Si) = H(S)/(r−t)
and H(S′

i) = H(S)/(r′ − t′) from [18]. We then have H(Si) ≤ H(S′
i). Since the

conversion function hi is deterministic, we know that H(S′
i | Si) = 0. On the

other hand, by the chain rule of mutual information, we have

I(Si;S′
i) = H(Si) − H(Si | S′

i)
= H(S′

i) − H(S′
i | Si).

Substituting H(S′
i | Si) = 0, we deduce that

H(Si | S′
i) = H(Si) − H(S′

i) ≤ 0,
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where the inequality follows from the fact that H(Si) ≤ H(S′
i). It is obvious that

H(Si | S′
i) can not be negative. We are left with H(Si | S′

i) = 0, which means
there is a one-to-one correspondence between shares from Π and Π′. That is, the
smallest number of new shares that can reconstruct the full secret in Π′ must be
r, which contradicts the fact that r′ > r.

B Semi-insider Secure (t, r, n) → (t′, r′, n) Ramp Scheme

The following construction is a simple adaption of a construction of optimal
communication efficient secret sharing [9].

Let g = r − t and g′ = r′ − t. We first parse the secret into v parts:
s(1)|| . . . ||s(v), where each s(j) ∈ F

g
q . Now we share s(1) using a (t, r, n)-ramp

scheme Π(1) with minimum share size, such as the polynomial based construc-
tion. We denote the share vector thus obtained by (s(1)1 , . . . , s

(1)
n ). Then we share

s(1)||s(2) using the (t, r + g, n)-ramp scheme Π(2) with randomness independent
from the randomness in the previous step. We denote the share vector thus
obtained by (s(2)1 , . . . , s

(2)
n ). We iterate this process for positive integer j ≤ v

and share s(1)|| . . . ||s(j) using the (t, r +(j − 1)g, n)-ramp scheme Π(j) with ran-
domness independent from the randomness in all previous steps. We denote the
share vector thus obtained by (s(j)1 , . . . , s

(j)
n ). Finally, for i ∈ [n], we let

Si = (s(1)i , . . . , s
(v)
i )

be the share of the ith player and obtain a ramp scheme Π with share vector
(S1, . . . , Sn).

We now show that Π is a (t, r, n)-ramp scheme with minimum share size.
Firstly, the t-privacy follows from the fact that all Π(j)’s have privacy threshold
t and they use independent randomness. Secondly, from any r shares Si1 , . . . , Sir

of Π, we can extract r shares of s
(j)
i1

, . . . , s
(j)
ir

of Π(j) for each j ∈ [v]. Now
given r shares s

(1)
i1

, . . . , s
(1)
ir

of Π(1), its secret s(1) can be fully recovered. The
knowledge of s(1) together with r shares s

(2)
i1

, . . . , s
(2)
ir

of Π(2) uniquely determine
its secret s(1)||s(2). By iterating this process, the full secret s(1)|| . . . ||s(v) can be
reconstructed. A dealer algorithm D and a combiner algorithm C for Π can be
built from the dealer algorithms {D(j)}j∈[v] and combiner algorithms {C(j)}j∈[v]

of {Π(j)}j∈[v], respectively. Finally, the secret is consist of g′ = vg finite field
elements while each share of Π is consist of v finite field elements. The scheme
Π obviously has the minimum share size.

We next define a share conversion algorithm {hi}i∈[n] to transform the scheme
Π into Π′ that is a (t, r′, n)-ramp scheme. Let

hi(Si) = s
(v)
i .

The new combiner algorithm is C′ = C(v).
We show that Π′ with share vector (S′

1, . . . , S
′
n), where S′

i = hi(Si), is a
(t, r′, n)-ramp scheme with minimum share size. This is trivial, since (S′

1, . . . , S
′
n)
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is just the share vector of Π(v), which is a (t, r′, n)-ramp scheme with minimum
share size by construction.

Let us re-examine the construction above and show security against semi-
insider adversary. A share of the packed scheme Π is consist of shares from
distinct schemes Π(1), . . . ,Π(v) sharing related secrets using independent ran-
domness. One special advantage of this structure is that a subset A(j1) of the
shares of Π(j1) and a subset A(j2) of the shares of Π(j2) for j1 
= j2 are independent
if one subset is of size at most t. This means that even if at most t shareholders
do not erase their original shares of Π after the transformation from Π into Π′

through applying the transformation algorithm {hi}i∈[n], the dishonestly kept
at most t shares of Π contribute the same amount of information as the trans-
formed partial shares to the transformed scheme Π′, since the dishonestly kept
extra partial content of the original shares are independent of the share vectors
of Π′.
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Client-Aided Two-Party Secure Interval
Test Protocol
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Abstract. Secure interval test protocol checks if an integer is within
some interval in a privacy-preserving manner. A natural application is
geological location hiding, where we can check whether a person is in a
certain territory without revealing any information. In addition, secure
interval test protocol enables us to do arithmetic over private values with
rounding errors. Therefore, it allows servers to obtain an approximation
of a complicated function.

In this work, we present an efficient secure interval test protocol that
checks whether a shared value is within the range of two plain values. We
also show that the interval test protocol can be used as a building block
to construct protocols with richer functionality such as the approxima-
tion of exponential functions or logarithmic functions.

Our protocol is constructed in the client-aided model, which is briefly
mentioned in some previous work on constructing practical MPC frame-
works such as SecureML (S&P’17), in which any number of clients can
not only create shares of their inputs but also generate some necessary
correlated randomness used in the online phase and distribute them to
servers. Such correlated randomness generated by clients serves efficient
protocols since servers don’t have to jointly generate randomness by
themselves, which can avoid costly computation/communication.

In this paper, we improve the state-of-the-art secure interval test pro-
tocol by Nishide and Ohta (PKC’07) based on a secret sharing scheme.
We use the client-aided model and tree-based techniques, which con-
tribute to reducing communication rounds. Our proposed protocol has
only 4 communication rounds regardless of the bit length of inputs. This
is about 3 times fewer rounds than existing protocols. Using the proposed
protocol, we further introduce a secure look-up table technique that can
be utilized to securely compute some richer functions.

Keywords: Two-party computation · Client-server model ·
Client-aided model · Secure interval test · GMW secret sharing

1 Introduction

Multi-party computation (MPC) is one of the most promising cryptographic
primitives, where parties can securely compute a function on their input. It
c© Springer Nature Switzerland AG 2019
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is useful in privacy-preserving data processing such as secure data mining and
secure out-sourced computation. In general, MPC enables N parties to jointly
compute a function f on their secret values. Formally, each party i has his own
secret xi for i = 1, . . . , N to jointly compute F = f(x1, . . . , xN ) without leaking
any information on xi. Security of MPC guarantees that any party i will not
obtain any information on input xj of any other party j �= i except what can be
derived from the output.

We focus on a secret sharing based MPC [12] in this paper. Compared to
garbled circuit based approaches [20] and (fully) homomorphic encryption based
approaches, secret sharing based MPC requires less computation and smaller
bandwidth, while it generally requires more communication rounds. Therefore,
one of the motivations for previous work has been constructing efficient protocols
that have fewer communication rounds.

Secure Interval Test Protocols. In this paper, we introduce a secure interval
test protocol. Similar to secure comparison protocols, secure interval test pro-
tocol itself is useful and also a good building block to construct fruitful secure
computations. For instance, interval test protocols can be applied to statistical
analysis, data classification, and machine learning.

There are two types of secure interval test protocols, which depend on the
types of input. One takes as input a shared value and a plain interval, while
another takes as input a shared value and a shared interval in order to check if
the value is within the interval. We focus on the former type of secure interval
test protocol since it is useful to construct secure protocols with richer functions.

Secure interval test protocol has been inefficient and could be a bottleneck for
applications. One of the reasons is that secure interval test protocols essentially
need bit-wise comparisons to check if a shared value is larger than the tight
lower bound and smaller than the tight upper bound, while applications such
as machine learning need to be processed arithmetically since they use various
mathematical functions. In a secret sharing scheme, a bit-decomposition protocol
for a bit length n requires log n communication rounds in order to convert an
arithmetic shared value into a bit-wise shared value.

However, Damg̊ard et al. [7] proposed an innovative method to execute a
bit-decomposition protocol in constant rounds, which is applied to construct
a constant round secure comparison protocol. Their proposed protocol can be
defined under any secret sharing scheme that satisfies linearity and contains con-
stant round multiplications. Nishide and Ohta [16] constructed an interval test
protocol, equality check protocol, and comparison protocol in constant rounds
without using a bit-decomposition technique. Their proposed protocols were still
not very practical since the protocols required more than 10 rounds.

In this paper, we improve the interval test protocol of Nishide and Ohta by
assuming the client-aided client-server two-party model and by using tree-based
techniques. Details are as follows.

MPC in Client-Server Model. As MPC is getting to be a necessary technique
for practical secure applications, the client-server model is drawing attention for
its suitability to real-world applications. Such a model is focused on not only by
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recent research such as Araki et al. [1] but also by business applications such as
the Sharemind system by Cybernetica. This model captures the situation where
there are N servers and an arbitrary number of clients (say, t clients). Each client
has their own input xi for i ∈ {1, . . . , t}, and secret-shares it to N servers. The
servers jointly compute a function f on these inputs xi to return f(x1, . . . , xt)
to the clients in secure manner. This model can also be considered to be (N + t)-
party MPC that N parties don’t have their input while the other t parties do.
The above model fits real-world services that users (clients) have their input and
ask servers to jointly compute a function. Here, clients who use the service just
provide their inputs and wait until they obtain outputs. Therefore, no clients
need to take part in heavy computation.

Client-Aided Client-Server Model. As Mohassel-Zhang [13] mentioned, in
the client-aided client-server model, clients not only provide input but also can
generate and secret-share correlated randomness to servers. Such correlated ran-
domness is used by N servers to make secure computation efficient. The only
downside of this model is the restriction that any server is not allowed to collude
with any client since, otherwise, it would break security. However, we can assume
that no servers will collude with any client because there is no incentive to do
so to damage their reputation. The security notion in the semi-honest model
follows from the standard notation of private computation [11].

1.1 Contribution

In this paper, we construct an efficient secure interval test protocol (Sect. 3) in
the client-aided model where there are two servers and any number of clients. Our
proposed protocol is, to the best of our knowledge, the most efficient protocol
in the two-party setting. The state-of-the-art secure interval test protocol by
Nishide and Ohta [16] in the multi-party setting has 11 rounds1. However, our
secure interval test protocol only needs 4 rounds, which is about three times
faster.

We further provide an explanation of how to construct a certain secure look-
up table protocol and construct a secure computation of the function f(x) =
�log x� as an example that uses such a look-up table (Sect. 4).

Our Technique. Our proposed protocol is based on the secure interval test pro-
tocol by Nishide and Ohta [16]. First of all, we highlight the main idea of Nishide
and Ohta’s protocol. In their protocol, parties collaboratively generate an arith-
metic share and boolean share of randomness r. To test if the (arithmetically)
shared form of a value �x� is within a public interval [yL, yR], the shared value x
is masked by the arithmetically shared randomness r and revealed (c = x + r).
Using the revealed value c and the original interval, the protocol obtains a new
interval [rlow, rhigh]. Then, we can consider the original interval test protocol
turns to be the protocol that checks if the boolean shared value r is within

1 According to [16], their protocol takes 13 rounds including 2 rounds for generating
randomness.
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the new interval. Now, bit-wise secure comparison protocol is used twice as a
building block to construct the secure interval test protocol.

We follow the above idea that checks whether the randomness is within the
new interval. We further reduce communication rounds in the client-aided two-
party model as follows:

– P1 generates randomness r by using a (pre-distributed) share of 0, while P2

computes c = x + r by just using the corresponding share of 0 without any
communication. Therefore, in our IntvlTest protocol, only P1 knows the value
r and only P2 knows the value c and the new interval [rlow, rhigh]. Since each
r and [rlow, rhigh] is possessed by P1 and P2 in the clear, respectively, we first
construct an interval test protocol that takes plain inputs, PlainIntvlTest.

– Note that [16] is based on any linear secret sharing scheme defined over a field.
On the other hand, our proposed protocol is based on a specific secret sharing
scheme, the so-called 2-out-of-2 secret sharing scheme. This is the basic MPC
protocol introduced by Goldreich et al. [12] and called a two-party GMW-style
secret sharing scheme. By focusing on the two-party secret sharing scheme,
we can use tree-based techniques to construct efficient sub-protocols.

– We construct PlainIntvlTest protocol by using tree-based techniques in a sim-
ilar manner to PlainLessThan protocol by [14]. The tree-based technique has
two advantages: (1) it enables parallel computations, and (2) each computa-
tion can be executed by using the 3-rounds PlainEqual by [14]. Note that it is
comparatively easy to generate the correlated randomness used in PlainEqual
protocol in the client-aided model.

1.2 Related Work

Multi-party computation has been studied ever since Yao [20] proposed the mil-
lionaire’s problem. As the millionaire’s problem is a secure comparison protocol,
secure comparison protocols, in particular, have been and will continue to be
widely studied [4–10,16–18,20].

As Veugen et al. [19] pointed out, secret sharing based secure comparison
protocols [6,10,16] have advantages in computational cost over the other proto-
cols based on garbled circuits or homomorphic encryptions. A secure interval test
protocol based on the secret sharing scheme also has the same advantage over
others since the protocol is essentially similar to secure comparison protocols.

Techniques to construct a secret sharing based constant-round secure com-
parison protocol [7,14,16] can be applied to construct a constant-round secure
interval test protocol. Nishide and Ohta [16] proposed a secret sharing based
constant-round secure interval test protocol as well as a secure comparison pro-
tocol. Our protocol is loosely based on their idea.

Nergiz et al. [15] proposed a secure interval test protocol constructed from
a secure set intersection protocol using homomorphic encryption. Catrina and
de Hoogh [6] provided an efficient secure comparison protocol, which can be
applied to construct an efficient secure interval test protocol. However, it offers
only statistical security We would like to highlight that our protocol does not rely
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on heavy cryptographic computations such as homomorphic encryption, garbled
circuits, and oblivious transfer, and it offers perfect security.

2 Preliminaries

In this section, we introduce some notation and some known techniques.

2.1 Notation

Let n be a positive integer and p be a prime of n-bit. That is, n = �log2 p�. Note
that x ≤ p−1 < 2n −1 for x ∈ Fp. We assume that a proposition (yL ≤ x ≤ yR)
denotes 1 if yL ≤ x ≤ yR, and 0 otherwise. Let [yL, yR] denote a set of elements
from Fp that are equal or larger than yL and equal or less than yR, which is
called the interval. Just to stress the two values yL and yR, we also write it
in a 2-dimensional vector (yL, yR). Through this paper, P1 and P2 represent
servers, and P3 represents a client. Since our protocol is based on the two-party
GMW-style (arithmetic) secret sharing scheme, the shares between two parties
are represented as follows: Let �x� denote that a secret x is shared between
two parties. That is, �x� = (�x�1, �x�2), where �x�j is a share of x that a party
Pj for j ∈ {1, 2} owns. We use binary logarithm that has base 2. A value x
can be represented in bit-wise form as follows: x = xn−1 ‖xn−2 ‖ . . . ‖x0, where
xi ∈ {0, 1} and x =

∑n−1
i=0 2i · xi for i ∈ [0, n − 1].

Let T2n be a complete binary tree whose leaves correspond to integers from
0 to 2n − 1. Let S2n denote the all nodes of a tree T2n and let wi,j denote a
node of j-th from the left at the i-th layer (leaves are at the bottom written as
0-th layer and roots are at the top written as n-th layer), where (i, j) satisfies
i ∈ [0, n] and j ∈ [0, 2n−i − 1].

2.2 GMW-Style Secret Sharing Scheme

In the two-party GMW-style secret sharing scheme [12], a party P1 has �x�1 = r

and a party P2 has �x�2 = x − r as arithmetic shares of x ∈ Z2n , where r
$←

Z2n . Suppose that Share(·) is the algorithm that produces such shares. Thus,
(�x�1, �x�2) ← Share(x).

For �x� = (�x�1, �x�2) and �y� = (�y�1, �y�2), secure addition �x� + �y� is
computed as follows: Each party Pi computes �x�i+�y�i locally. Moreover, secure
subtraction will be �x�i−�y�i and multiplication by a public value c will be c·�x�i.
Subtraction of public value, �x� − s, will be as follows: P1 does nothing, while
P2 computes �x�2 − s locally.

2.3 Multiplication Triple

The secure multiplication protocol in the GMW-style secret sharing scheme uses
pre-computed correlated randomness, so-called multiplication triples (MT) [3]
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such as �c� = �a�·�b� in order to make the protocol efficient. Standard multi-party
computation needs to prepare such MTs by executing homomorphic encryption
or oblivious transfer which have large offline communication costs.

On the other hand, the client-aided two-party computation [13] we use in this
paper allows clients to generate MTs such as a = a1 +a2, b = b1 + b2, c = c1 + c2
to whatever extent is needed and send the shares to the servers. This is done by
just selecting two randomnesses a, b, computing c = a · b, generating shares of
a, b, c, and sending them to servers, which can remove the communication cost
between servers while generating MTs.

3 Secure Interval Test and Sub-protocols

The secure interval test protocol has two variations depending on the types of
input as follows: (1) that takes as input a shared value �x� and a plain interval
(cL, cR), and (2) that takes as input a shared value �x� and a shared interval
(�cL�, �cR�). There is a trivial construction for both types of secure interval test
protocol using secure comparison protocol as sub-protocol as follows:

IntvlTest(�x�, (cL, cR)) def= LessThan(�x� − cL, cR − cL) (1)

IntvlTest(�x�, (�cL�, �cR�)) def= LessThan(�x� − �cL�, �cR� − �cL�), (2)

where LessThan takes as input two values and outputs 1 in shared form if the
first parameter is strictly less than the second one, and outputs 0 in shared
form otherwise. Here, the second parameter can be either a shared value or a
plain value. We note that using the LessThan protocol in [14] makes the above
protocols execute in 5 rounds. We focus on reducing communication rounds of
the former type of IntvlTest protocol since it is useful in practice. We present
some fruitful applications in Sect. 4. As previous work by Nishide and Ohta [16]
has shown, the former type of IntvlTest protocol can be constructed in a more
efficient way without using secure comparison protocol.

Our client-aided two-party secure interval test protocol improves the secure
interval test protocol in the multi-party setting introduced by Nishide and
Ohta [16] by adjusting to the two-server setting. The model we use captures
the situation in which there are 2 servers that run MPC and any number of
clients who generate correlated randomness and provide inputs. For simplicity,
we will assume that there is only one client unless stated otherwise. Namely, our
proposed protocol is constructed under the model where there exist 2 servers
(P1 and P2) who run MPC and a client (P3). We note that this model can be
considered “an unorthodox 3-party setting”.

As Table 1 shows, we succeed in reducing the number of communication
rounds compared with [16]. Our proposed protocol requires only 4 rounds while
the protocol in [16] requires 11 rounds. This is also 1 round fewer than the triv-
ial construction explained above. Our protocol requires transmitting more data
than [16] but since the number of communication rounds matters for execution
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Table 1. Comparison of round and communication complexity of IntvlTest

Ours Using LessThan in [14] [16]

Round 4 5 11

Comm. O(n2) O(n2) O(log2 n)

# of servers 2 2 ≥ 2

time, we can estimate that our protocol is about 3 times faster than the cur-
rent state-of-the-art protocol [16]. We note that the setting in [16] and ours are
slightly different, that is, [16] works in the multi-party setting while ours works
in the two-server setting (with clients).

In Sect. 3.1, we present our secure interval test protocol, IntvlTest. Then in
Sect. 3.2, we present a sub-protocol PlainIntvlTest used to construct our target
protocol, IntvlTest.

3.1 Secure Interval Test Protocol

Suppose that P1 and P2 have shares of x. For a (public) plain interval (cL, cR)
known by both P1 and P2, we propose a secure interval test protocol that checks
if cL ≤ x ≤ cR. More formally, the protocol runs as �δ� ← IntvlTest(�x�, (cL, cR)),
where the inputs are a share of �x� and a plain interval (cL, cR) ∈ F

2
p for cL < cR

and the output is a share of δ = (cL ≤ x ≤ cR)2.

Construction of IntvlTest Protocol. We describe the algorithm of our secret
sharing based secure interval test protocol IntvlTest in Algorithm 1. In this algo-
rithm, we only describe the operations of servers (P1 and P2). We don’t describe
client’s (P3’s) operation since it just works to generate correlated randomness
and provides input before starting online phase.

Correctness/Security. If P1 chose randomness r and sent �x�1 + r to P2, then
P2 would be able to obtain c ← x + r by computing �x�2 + (�x�1 + r). This
needs one round of communication, which can be reduced as follows: For pre-
distributed shares of 0 (i.e., �0� = r1 + r2), instead of choosing randomness,

P1 sets a value r
$← −(�x�1 + r1) mod p, while P2 sets c ← �x�2 + r2 mod p (=

x+r mod p) as in step 1 in Algorithm 1. After step 1, only P1 has the randomness
r, and only P2 has the masked value c = x+ r. The protocol to check whether x
is within the interval (cL, cR) can be rewritten as the protocol to check whether
r is within the new interval (rlow, rhigh) that depends on the value c.

Since the value c is known only by P2, only P2 can determine the new interval
(rlow, rhigh) depending on c. On the other hand, P1 does not know the value c,
and he just puts randomness r as input to PlainIntvlTest.

As shown in Fig. 1, we first suppose the case of cL ≤ c ≤ cR (Step 2-6). For
rlow ← c − cL + 1 and rhigh ← c + p − cR − 1, if rlow ≤ r ≤ rhigh, then x < cL or
2 We note that the output of the interval test protocol in [16] is shares of δ = (cL <

x < cR).
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Algorithm 1. 2-party IntvlTest Protocol
Functionality: �d� ← IntvlTest(�x�, (cL, cR)).
Input: Arithmetic shared value �x� over Fp and public integers cL, cR ∈ Fp, where

cL ≤ cR.
Auxiliary Input: Shares of 0 such that r1 + r2 = 0.
Output: Arithmetic shared value �d� over Fp, where d = 1 if cL ≤ x ≤ cR, and d = 0,

otherwise.
1: P1 sets r ← −(�x�1 + r1) mod p and P2 sets c ← �x�2 + r2 mod p (= x + r mod p)
2: if cL ≤ c ≤ cR then
3: P2 computes rlow ← c − cL + 1, rhigh ← c + p − cR − 1
4: Compute �d′� ← PlainIntvlTest(r, (rlow, rhigh))
5: Set �d′� ← �d′� − 1 (Note: only P2 works)
6: Set �d� ← �d′�2

7: else
8: if cR < c then
9: P2 computes rlow ← c − cR, rhigh ← c − cL

10: else (i.e., c < cL)
11: P2 computes rlow ← c + p − cR, rhigh ← c + p − cL

12: �d′� ← PlainIntvlTest(r, (rlow, rhigh))
13: Set �d� ← �d′�2

14: Output �d�

cR − p 0 x cL c cR p
r

rlow

rhigh

Fig. 1. Case of cL ≤ c ≤ cR

cR < x is satisfied. Therefore, we flip the result of PlainIntvlTest(r, (rlow, rhigh))
by computing �d′� ← �d′� −1 and �d� ← �d′�2 (Step 5, 6) to satisfy cL ≤ x ≤ cR.
Readers might wonder why it is not just �d� ← 1 − �d′�. The reason is that if
P1, who did not know the value c, noticed that he was jointly flipping �d′�, he
would have known some information about c. Thus, P1 is supposed to perform
exactly the same operation regardless of c, while P2 subtracts a public value 1
from his share in order to flip the value d′ in this case. After Step 5, the value d′

would be 0 or −1 (mod p). Therefore, two parties compute the square to obtain
a required value at Step 6.

As shown in Fig. 2, we now suppose the case of cR < c (Step 8, 9, 12, 13). For
rlow ← c − cR and rhigh ← c − cL, if rlow ≤ r ≤ rhigh, then cL ≤ x ≤ cR is
satisfied. Therefore, two parties compute PlainIntvlTest(r, (rlow, rhigh)) to obtain
a required value. We add Step 13 to keep the P1’s process consistent with Step
6. Note that Step 13 does not change the value at Step 12.

As shown in Fig. 3, we suppose the case of c < cL (Step 10-13). For rlow ←
c + p − cR and rhigh ← c + p − cL, if rlow ≤ r ≤ rhigh, then cL ≤ x ≤ cR is
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0 cL x cR c p
r

rlow

rhigh

Fig. 2. Case of cR < c

cL − p

x

cR − p c cL cR p
rlow

rhigh
r

0

Fig. 3. Case of c < cL

satisfied. Therefore, two parties compute a square of PlainIntvlTest(r, (rlow, rhigh))
and output it as in the previous case.

Since transmitting values are masked by randomness and we just use a
PlainIntvlTest protocol as a sub-protocol, security of IntvlTest protocol holds
straightforwardly.

Round Complexity. Since our proposed protocol, IntvlTest, has a PlainIntvlTest
protocol that is 3-round and one secure multiplication protocol, it requires 4
rounds, which is fewer than the IntvlTest protocol using LessThan protocol of [14]
and the IntvlTest protocol proposed in [16] as shown in Table 1.

3.2 Plain Interval Test Protocol (PlainIntvlTest)

Suppose that only P1 has x and only P2 has an interval (yL, yR). We describe
PlainIntvlTest protocol that checks if yL ≤ x ≤ yR. More formally, the protocol
executes as �δ� ← PlainIntvlTest(x, (yL, yR)), where it takes x ∈ Fp, (yL, yR) ∈ F

2
p

as input and outputs a share of δ = (yL ≤ x ≤ yR).

Approach. We construct PlainIntvlTest based on tree-based techniques in a
similar manner to [2,14]. PlainIntvlTest protocol takes plaintexts from two servers
as input, which allows servers to encode each plaintext to a tree structure. Such
a data representation enables two servers to run secure computation in parallel.

Now, we use two encoding techniques. One is called range encoding, and the
other is called point encoding [2]. In our construction, using PlainEqual protocol
that checks the equality of two plaintexts is crucial. PlainIntvlTest checks n equal-
ity at the same time. In this paper, we use a secret sharing based constant-round
PlainEqual protocol introduced in [14], which makes the protocol efficient.

Point/Range Encoding. Point encoding works in the same way as that of [14].
On the other hand, range encoding is slightly different from that of [14]. Range
encoding, in this paper, adds dummy nodes if necessary.

First, we review some basic notation for tree structures. A value x ∈ Fp

corresponds to a node w0,x. For u, v such as 0 ≤ u ≤ v ≤ 2n −1, we assume that
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Fig. 4. Point Encoding when x =
3. (Here, pointEnc(3) =

{
(0, 3), (1, 1),

(2, 0)
}
)
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,
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Fig. 5. Range Encoding when yL =
1, yR = 4. (Here, rangeEnc([1, 4]) =
{(0, 1), (0, 4), (1, 1), (1, 7), (2, 7), (2, 7)}
including dummy nodes.)

Algorithm 2. PlainIntvlTest Protocol
Functionality: �δ� ← PlainIntvlTest(x, (yL, yR)), such that δ = (yL ≤ x ≤ yR).
Input: Cleartext x ∈ Fp from P1, yL, yR ∈ Fp from P2, where yL ≤ yR.
Output: Arithmetic shared value �δ� over Fp.
1: P1 sets {(i, pi)} ← pointEnc(x);
2: P2 sets {. . . , (i, ri), (i, r

′
i), . . . } ← rangeEnc([yL, yR])

3: �di� ← PlainEqual(pi, ri) + PlainEqual(pi, r
′
i) for all i ∈ [0, n − 1].

4: �δ� ← ∑n−1
i=0 �di�.

5: return �δ�.

an interval R = [u, v]. For any interval R, a node wi,j ∈ S2n is called a cover
node of R if all descendant leaf nodes wi,j are in R. We write such a set of nodes
as cover(R). For wi,j ∈ S2n such as (i, j) �= (n, 0), parent(wi,j) denotes a parent
node of wi,j .

Next, we show definitions of range encoding and point encoding. Range
encoding is as follows: For an interval R = [u, v] such as 0 ≤ u ≤ v ≤ 2n − 1,
define

rangeEnc(R) := {(i, ai) ∈ S2n | (i, ai) ∈ cover(R),
parent(i, ai) �∈ cover(R)}.

Moreover, while rangeEnc(R) has less than two nodes at each layer j, it adds a
dummy node (j, 2n − 1).

For point x ∈ [0, p − 1], pointEnc(x) denotes a set of all ancestor nodes of a
node (0, x) in a tree T2n . Note that this includes the node (0, x) itself. We show
point encoding in Fig. 4 and range encoding in Fig. 5. These encoding methods
have the following properties: For any interval R and any point x ∈ Fp, if x ∈ R
then |rangeEnc(R) ∩ pointEnc(x)| is 1, while it is 0 if x �∈ R.

PlainIntvlTest Protocol. We describe our PlainIntvlTest protocol in Algorithm 2.

Correctness/Security. Assume that yL ≤ x ≤ yR. Then, one of the elements
in pointEnc(x) should be equal to one of the elements in rangeEnc([yL, yR]). All
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Algorithm 3. PlainEqual Protocol [14]
Functionality: �δ� ← PlainEqual(x, y), where δ = 1 if x = y; δ = 0, otherwise.
Input: Cleartexts x, y ∈ Fp

Output: Arithmetic shared value �δ�
1: Parse x = xn−1 ‖ xn−2 ‖ . . . ‖ x0.
2: Parse y = yn−1 ‖ yn−2 ‖ . . . ‖ y0.
3: P1 sets �xi�1 ← xi and �yi�1 ← 0 for i ∈ [0, n − 1].
4: P2 sets �xi�2 ← 0 and �yi�2 ← yi for i ∈ [0, n − 1].
5: Compute �vi� ← (1 − �xi� − �yi�)

2 for i ∈ [0, n − 1].
6: Compute �δ� ← AND∗(�v0�, �v1�, . . . �vn−1�).
7: return �δ�.

equality checks are executed at the same time and the final output is OR of all
the results. Since at most one of the value di can be one, the OR operation here
can be done by just using secure addition which is locally processed.

Assume now that x < yL or yR < x. As long as one uses the above encod-
ing methods, there are no matched nodes between a set pointEnc(x) and a set
rangeEnc([yL, yR]). Note that our definition of range encoding further contains
some steps to add dummy nodes for later use, which is slightly different from
that of [2,14]. After the first run of rangeEnc, we assign a node (j, 2n − 1) as a
dummy node until each layer j has two nodes.

By adding such dummy nodes, we guarantee that there are always two equal-
ity checks at each layer, so that no information about an interval of P2 will be
leaked to P1. Note that an equality check between a node in pointEnc(x) and a
dummy node in pointEnc always outputs 0.

Security holds straightforwardly since rangeEnc and pointEnc are locally exe-
cutable and only PlainEqual is used as a sub-protocol.

Round Complexity. As PlainEqual protocol at Step 3 of Algorithm2 requires
3 rounds as we show in the next subsection, PlainIntvlTest protocol requires 3
rounds.

3.3 Equality Check Protocol with Plain Input (PlainEqual)

Our proposed IntvlTest protocol uses PlainIntvlTest protocol as its sub-protocol.
Then, PlainIntvlTest protocol uses secure equality check protocol with plain input
(so-called PlainEqual) introduced in [14] that allows PlainIntvlTest to be constant-
rounds. PlainEqual takes two plain values and outputs whether the both values
are equivalent or not. PlainEqual is constructed using constant-round multi-fan-
in AND protocol AND∗ that takes several inputs and outputs AND of all of
them. We show the algorithm of PlainEqual protocol briefly. Refer to [14] for
more details.
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Table 2. Look-up table

x ∈ f(x)

(a1, a2) y1

(a3, a4) y2

(a5, a6) y3

(a7, a8) y4

(a9, a10) y5

...
...

(a2t−1, a2t) yt

Table 3. Look-up table for func-
tion f(x) = �log x�

x ∈ f(x)

{1} 0

(2, 3) 1

(4, 7) 2

(8, 15) 3

(16, 31) 4
...

...

(2n−1, p − 1) n − 1

AND∗ protocol used in Algorithm 3 is executed as follows:

AND∗(�v0�, �v1�, . . . , �vn−1�)

=

{
�0� if

∑n−1
i=0 vi ∈ [0, n − 1]

�1� if
∑n−1

i=0 vi = n.

AND∗ protocol introduced in [14] requires only 2 rounds. Therefore,
PlainEqual protocol requires only 3 rounds since it has secure multiplication
once at Step 5 and AND∗ protocol at Step 6.

4 Applications Using IntvlTest and PlainIntvlTest

In this section, we show some applications using IntvlTest and PlainIntvlTest as
sub-protocols.

4.1 Secure Look-Up Table

We construct a certain type of secure look-up table by using IntvlTest protocol.
Given a Table 2 of function f that has separated intervals as its index, say
(a1, a2), (a3, a4), (a5, a6), . . . , (a2t−1, a2t) for a1 < a2 < a3 < · · · < a2t shown in
the left-hand column, we can compute f(x) in shared form by using the values
in the right-hand column and IntvlTest protocol as follows:

�f(x)� ← IntvlTest(�x�, (a1, a2)) × y1 + IntvlTest(�x�, (a3, a4)) × y2

+ IntvlTest(�x�, (a5, a6)) × y3 + IntvlTest(�x�, (a7, a8)) × y4

...
+ IntvlTest(�x�, (a2t−1, a2t)) × yt.
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Algorithm 4. IIT Protocol (Type 1)
Functionality: �δ� ← IIT([�a�, �b�], [c, d]), where δ = 1 if [a, b] ∩ [c, d] 
= ∅; δ = 0,

otherwise.
Input: Shared interval [�a�, �b�] and public plain interval [c, d]
Output: Arithmetic shared value �δ�
1: Compute �t′� ← LessThanEQ(�a�, d)
2: Compute �t′′� ← LessThanEQ(c, �b�)
3: Compute �t� ← �t′� · �t′′�
4: return �t�.

Only one of the outputs from IntvlTest protocols should be 1 in shared form
and thus the corresponding value yi alone remains in shared form, which is
required.

As a simple example, we construct a function f(x) = �log x�, x ∈ Fp \ {0}
that computes a rounding down of logarithm on x. Table 3 shows input and
output of the function. Now, we use Table 3 to securely compute a function f(x)
as follows: Two servers jointly compute the following equation.

�f(x)� ←IntvlTest(�x�, (2, 3)) × 1 + IntvlTest(�x�, (4, 7)) × 2
+ IntvlTest(�x�, (8, 15)) × 3 + IntvlTest(�x�, (16, 31)) × 4

...

+ IntvlTest(�x�, (2n−1, p − 1)) × (n − 1).

Note that this look-up table technique only uses several IntvlTest protocols
in parallel, and multiplication of public values and secure addition, which can
be executed locally without communication. Therefore, the above secure look-up
table protocol requires only 4 rounds.

4.2 Secure Interval Intersection Test Protocol

Secure interval test protocol can be extended to secure interval intersection test
protocol in an analogous manner, which we denote IIT. We consider two types of
IIT protocols that takes as input (i) a shared interval and a plain interval (type
1), and (ii) two shared intervals (type 2), in order to check if the two intervals
overlap.

In Algorithm 4, we show an IIT protocol of type 1, where we use LessThanEQ
defined below as a sub-routine:

LessThanEQ(�x�, y) ← IntvlTest(�x�, (0, y))
LessThanEQ(y, �x�) ← IntvlTest(�x�, (y, p − 1)).

Round complexity of this protocol is 5 since we use 4-round LessThanEQ and
one secure multiplication as sub-routines.
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Algorithm 5. IIT Protocol (Type 2)
Functionality: �δ� ← IIT([�a�, �b�], [�c�, �d�]), where δ = 1 if [a, b] ∩ [c, d] 
= ∅; δ = 0,

otherwise.
Input: Shared intervals [�a�, �b�] and [�c�, �d�]
Output: Arithmetic shared value �δ�
1: Compute �t′� ← LessThanEQ′(�a�, �d�)
2: Compute �t′′� ← LessThanEQ′(�c�, �b�)
3: Compute �t� ← �t′� · �t′′�
4: return �t�.

Algorithm 6. PII Protocol (Type 1)
Functionality: [�e�, �f�] ← PII([�a�, �b�], [c, d]), where [e, f ] = [a, b] ∩ [c, d].
Input: Shared interval [�a�, �b�] and public plain interval [c, d]
Output: Shared interval [�e�, �f�]
1: Compute �t′� ← LessThanEQ(�a�, c)
2: Compute �e� ← �t′� · c + (1 − �t′�) · �a�
3: Compute �t′′� ← LessThanEQ(�b�, d)
4: Compute �f� ← �t′′� · �b� + (1 − �t′′�) · d
5: return [�e�, �f�].

In Algorithm 5, we show an IIT protocol of type 2, where we use LessThanEQ′

defined below as a sub-routine:

LessThanEQ′(�x�, �y�) ← 1 − LessThan(�y�, �x�)

for 5-round LessThan defined in [14].
Straightforward round complexity of this protocol would be 6 since we use

5-round LessThanEQ′ and one secure multiplication as sub-routines. However,
the secure multiplication can merge into multi-fan-in AND protocol used in
LessThan, which makes the type 2 IIT protocol 5 rounds in total.

4.3 Private Interval Intersection

Analogous to the private set intersection, private interval intersection proto-
col takes two intervals and outputs the intersection of intervals in a privacy-
preserving manner, which we denote PII protocol. Similar to IIT protocols, we
consider two types of PII protocols that take as input (i) a shared interval and a
plain interval (type 1), and (ii) two shared intervals (type 2), in order to output
the intersection of these two intervals.

In Algorithm 6, we show a PII protocol of type 1, where we use LessThanEQ
defined in Sect. 4.2 as a sub-routine. The round complexity of this type 1 PII
protocol is 5 rounds since we use 4-round LessThanEQ (Step 1, 3) and secure
multiplications (Step 2, 4), where Step 1, 2 and Step 3, 4 can be done in parallel.

In Algorithm 7, we show a PII protocol of type 2, where we use LessThanEQ′

defined in Sect. 4.2 as a sub-routine. The round complexity of this type 2 PII
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Algorithm 7. PII Protocol (Type 2)
Functionality: [�e�, �f�] ← PII([�a�, �b�], [�c�, �d�]), where [e, f ] = [a, b] ∩ [c, d].
Input: Shared intervals [�a�, �b�] and [�c�, �d�]
Output: Shared interval [�e�, �f�]
1: Compute �t′� ← LessThanEQ′(�a�, �c�)
2: Compute �e� ← �t′� · �c� + (1 − �t′�) · �a�
3: Compute �t′′� ← LessThanEQ′(�b�, �d�)
4: Compute �f� ← �t′′� · �b� + (1 − �t′′�) · �d�
5: return [�e�, �f�].

protocol is 5 rounds since we use 5-round LessThanEQ′ (Step 1, 3) and secure
multiplications (Step 2, 4), where secure multiplication can merge into the multi-
fan-in AND protocol used in LessThanEQ′.
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Abstract. An important characteristic of recent MPC protocols is
an input-independent setup phase in which most computations are
offloaded, which greatly reduces the execution overhead of the online
phase where parties provide their inputs. For a very efficient evaluation
of arithmetic circuits in an information-theoretic online phase, the MPC
protocols consume Beaver multiplication triples generated in the setup
phase. Triple generation is generally the most expensive part of the pro-
tocol, and improving its efficiency is the aim of our work.

We specifically focus on computation over rings of the form Z2� in
the semi-honest model and the two-party setting, for which an Oblivious
Transfer (OT)-based protocol is currently the best solution. To improve
upon this method, we propose a protocol based on RLWE-based Addi-
tively Homomorphic Encryption. Our experiments show that our proto-
col is more scalable, and it outperforms the OT-based protocol in most
cases. For example, we improve communication by up to 6.9x and run-
time by up to 3.6x for 64-bit triple generation.

Keywords: Secure two-party computation · Beaver multiplication
triples · Ring-LWE · Additively Homomorphic Encryption

1 Introduction

Secure multi-party computation (MPC) allows a set of distrusting parties to
jointly compute a function on their inputs while keeping them private from one
another. There is a multitude of MPC protocols such as [9,10,15] that allow
secure evaluation of arithmetic circuits, which form the basis of many privacy-
preserving applications. An important characteristic of many of the recent MPC
protocols is an input-independent setup phase in which most computations are
offloaded, which greatly reduces the execution overhead of the online phase where
parties provide their inputs. The idea is to compute Beaver multiplication triples
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[3] in the setup phase, and then use them to evaluate arithmetic circuits very
efficiently in an information-theoretic online phase, without using any crypto-
graphic operations. In light of their significance on the overall runtime of the
protocol, the main focus of this work is efficient generation of such triples in the
semi-honest setting.

In the malicious model and the multi-party setting, the first to employ
RLWE-based Somewhat Homomorphic Encryption (SHE) for triple generation
were [9] in 2012. Their major source of efficiency was the packing method from
[22]. In 2016, this method was replaced by an Oblivious Transfer (OT)-based
method by Keller et al. [15]. Later in 2017, SHE emerged again with the Over-
drive methodology [16]. These protocols were designed to generate triples over
a finite field which can only be used to support finite field arithmetic in the
online phase. In 2018, Cramer et al. [7] proposed an OT-based protocol that
generates triples over rings of the form Z2� . Designing protocols over rings is
useful in a lot of applications since it greatly simplifies implementation of com-
parisons and bitwise operations, which are inefficient to realize with finite field
arithmetic. Apart from this, using ring-based protocols also implies that we can
leverage some special tricks that computers already implement to make integer
arithmetic very efficient. In 2019, Orsini et al. [18] presented a more compact
solution based on SHE and argued that it is more efficient than the OT-based
protocol of [7]. Concurrently, Catalano et al. [5] used the Joye-Libert homomor-
phic cryptosystem [14] to improve upon the communication of [7] particularly
for larger choices of �.

Our Contributions. In this paper, we consider the semi-honest model and the
two-party setting, for which the current best method for generating triples over
rings is the OT-based approach of [10]. Taking inspiration from the changing
trend in the malicious model, we propose a protocol based on RLWE-based
Additively Homomorphic Encryption (RLWE-AHE) that improves upon the
OT-based solution. In the process, we analyze the popular approaches for triple
generation using AHE and adapt them to using state-of-the-art RLWE-AHE
and our scenario. We also argue why the approach taken in [18] does not provide
the most efficient solution in our semi-honest setting. Our experiments show
that our protocol is more scalable, and it outperforms the OT-based protocol in
most cases. For example, we improve communication over [10] by up to 6.9x and
runtime by up to 3.6x for 64-bit triple generation.

2 Preliminaries

2.1 Notation

We denote the players as P0 and P1. κ denotes the symmetric security parameter,
σ the statistical security parameter, and λ the computational security parameter.
〈x〉 is a shared value of x ∈ {0, 1}�, which is a pair of �-bit shares (〈x〉0, 〈x〉1),
where the subscript represents the party that holds the share. A vector of shares
is represented in bold face e.g. 〈x〉, and multiplication, denoted by ·, is performed
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component-wise on it. To represent an element x being sampled uniformly at
random from G, we use the notation x ←$ G. Assignment modulo 2� is denoted
by ←�.

Functionality n
Triple: Sample values a0,a1,b0,b1, r $ (Z2�)n. Output tuples

(a0,b0, (a0 + a1) · (b0 + b1) + r) and (a1,b1,−r) to P0 and P1, respectively,
where arithmetic is performed modulo 2�.

Fig. 1. Functionality for generating Beaver multiplication triples.

2.2 Problem Statement

A Beaver multiplication triple [3] is defined as the tuple (〈a〉, 〈b〉, 〈c〉) satisfying:

(〈a〉0 + 〈a〉1) · (〈b〉0 + 〈b〉1) ≡ (〈c〉0 + 〈c〉1) mod 2�.

Our aim is to construct a two-party protocol that securely realizes the Fn
Triple

functionality which is defined in Fig. 1.

2.3 Security Model

Our protocol is secure against a semi-honest and computationally bounded
adversary. This adversary tries to learn information from the messages it sees
during the protocol execution, without deviating from the protocol.

2.4 Ring-LWE-Based Additively Homomorphic Encryption
(RLWE-AHE)

We use an IND-CPA secure AHE scheme with the following 5 algorithms:

– KeyGen(1λ) → (pk, sk): Key Generation is a randomized algorithm that out-
puts the key pair (pk, sk), with public key pk and secret key sk. We consider
a single key pair (pk, sk) throughout the entire paper.

– Enc(pk,m) → ct: Encryption is a randomized algorithm that takes a vec-
tor m ∈ (Zp)n as input, where n depends on scheme parameters m and p
(cf. Sect. 4.1), along with pk, and outputs a ciphertext ct. We assume that
all ciphertexts in the following description of the scheme are encrypted with
public key pk.

– Dec(sk, ct) → m: Decryption takes the secret key sk and a ciphertext ct, and
outputs the plaintext m ∈ (Zp)n.
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– Add(pk; ct1, ct2) → ct′: Addition takes as input two ciphertexts ct1, ct2 and
the public key pk, and outputs a ciphertext ct′ such that Dec(sk, ct′) = m1 +
m2 ∈ (Zp)n, where addition is performed component-wise. This algorithm is
also denoted by the ⊕pk operator.

– ScalarMult(pk; ct, s) → ct′: Given inputs ciphertext ct and scalar s, and
the public key pk, scalar-multiplication outputs a ciphertext ct′ such that
Dec(sk, ct′) = Dec(sk, ct) · s ∈ (Zp)n, where multiplication is performed
component-wise. This algorithm is also denoted by the 	pk operator.

Possible instantiations of RLWE-based schemes that satisfy the description
above are [4,11]. These schemes are IND-CPA secure, and their security relies
on the Decision RLWE assumption [17]. We assume that the parameters of the
scheme have been chosen to be large enough to allow evaluation of the circuit
for our triple generation protocol and accommodate the extra noise added to
prevent leakage through ciphertext noise (cf. Sect. 4.3).

3 Previous Works

The previous approaches for generating multiplication triples in the semi-honest
model are based on AHE and OT. Initially, Beaver triples were generated using
AHE schemes such as Paillier [19] and DGK [8]. However, the authors in [10]
showed that the OT-based generation method greatly outperforms the AHE-
based generation, and is currently the best method. In this section, we summarize
both approaches. Although the protocols based on AHE are much slower, they
are the basis for our proposed protocol.

3.1 AHE-Based Generation

Case I - 2�|p. Figure 2 describes a well-known protocol for generating triples
using AHE [20]. This protocol generates multiplication triples in Z2� , using an
AHE scheme with plaintext modulus p, and it works if and only if 2�|p. This is
due to the fact that the AHE scheme implicitly reduces the underlying plaintext
modulo p. We can use the DGK cryptosystem [8] since it uses a 2-power modulus.

Case II - 2�
� p. We start by choosing r from an interval such that d = 〈a〉0 ·

〈b〉1+〈b〉0 ·〈a〉1+r does not overflow the bound p. This affects the security of the
protocol as we no longer have information theoretic security provided by uniform
random masking by r. To get around this issue, we resort to “smudging” [1],
where we get statistical security of σ-bits by sampling r from an interval that
is by factor 2σ larger than the upper bound on magnitude of the expression
v = 〈a〉0 · 〈b〉1 + 〈b〉0 · 〈a〉1. Since the upper bound on v is 22�+1, we sample
r from Z22�+σ+1 . Consequently, the plaintext modulus p has to be of bitlength
2� + σ + 2. This prevents the overflow and provides statistical security of σ-
bits [20]. We can instantiate this case with the Paillier cryptosystem [19], whose
plaintext modulus is the product of two distinct primes.
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Party P0 Party P1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Initialization Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(pk, sk) KeyGen(1λ)

pk

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈a〉0, 〈b〉0 $Z2� 〈a〉1, 〈b〉1 $Z2�

cta Enc(pk, 〈a〉0) r $Zp

ctb Enc(pk, 〈b〉0)
cta, ctb

ct′a cta �pk 〈b〉1
ct′b ctb �pk 〈a〉1
ctd ct′a ⊕pk ct

′
b ⊕pk r

ctd

d � Dec(sk, ctd)

〈c〉0 � 〈a〉0 · 〈b〉0 + d 〈c〉1 � 〈a〉1 · 〈b〉1 − r

Output 〈a〉0, 〈b〉0, 〈c〉0 Output 〈a〉1, 〈b〉1, 〈c〉1

Fig. 2. ΠBasicTripleAHE: Basic Beaver Triple Generation using AHE.

3.2 OT-Based Generation

The feasibility result for triple generation over Z2� using Oblivious Transfer was
given in [13], and it was shown in [10] that it is the currently best method
for triple generation in the semi-honest setting. This protocol facilitates the
triple generation by allowing secure computation of the product of two secret
values. The amortized complexity of generating a triple in Z2� using OT-based
generation is 2� Correlated-OT (C-OT) over (� + 1)/2-bit strings (cf. [10]). The
protocol uses state-of-the-art C-OT extension (cf. [2]) that requires κ + �-bit
communication per C-OT on �-bit strings.

4 RLWE-Based Generation

In Sect. 3.1, we described two cases, namely 2�|p and 2�
� p, and presented a

protocol for both of them. While we can build a protocol based on our RLWE-
AHE scheme that follows a similar design as in Sect. 3.1 for both cases, the two
protocols are not equally efficient. In this section, we analyze these differences



352 D. Rathee et al.

and show that the protocol for 2�
� p is more efficient. Before comparing the

cases, we detail two optimizations and a security consideration that are crucial
for our analysis.

4.1 Batching Optimization

Using a RLWE-AHE scheme, we can generate many triples at the cost of gener-
ating one by leveraging the ciphertext packing technique described in [22]. For a
prime p, we can encrypt a maximum of n = φ(m)/ordZ∗

m
(p) plaintexts mi ∈ Zp

in a single ciphertext. The operations performed on a ciphertext are applied to
all the slots of the underlying plaintext in parallel. As a result, in a single run
of the protocol, we can generate n triples.

4.2 CRT Optimization

Using a very large plaintext modulus p results in inefficient instantiations since
a larger p leads to a larger ciphertext modulus to contain the noise growth.
Therefore, we use the CRT optimization to split the plaintext modulus p into
e distinct primes pi of equal bitlength such that p =

∏i=e
i=1 pi for some e ∈ Z.

We create e different instances of the cryptosystem for each pi, and the whole
protocol is performed for each instance. The plaintexts produced after decryption
are combined using the Chinese Remainder Theorem (CRT) (with precomputed
tables) to get the output in Zp. This technique also has the advantage that it
can be parallelized in a straightforward manner.

4.3 Leakage Through Ciphertext Noise

The ciphertexts of RLWE-based schemes have noise associated with them, whose
distribution gets skewed on performing homomorphic operations on the cipher-
text. This can lead to potential leakage through noise, and reveal private infor-
mation input by the evaluator to the key owner. A solution to this problem,
called the noise flooding technique, was proposed in [12]. This technique involves
adding a statistically independent noise from an interval B′ much larger than
B, assuming that the ciphertext noise is bounded by B at the end of the com-
putation. Specifically, this is done by publicly adding an encryption of zero with
noise taken uniformly from [−B′, B′] such that B′ > 2σB, to provide statistical
security of σ bits. We denote the encryption with noise from an interval p · 2σ

times larger than the normal encryption as Enc′.

4.4 Parameter Selection

The plaintext modulus p determines the protocol to be used as described in
Sect. 3.1. After determining p, we can determine the other parameters to maxi-
mize efficiency as follows:
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Case I - 2�|p: This approach was recently considered in [18] for the malicious
model. In order to generate authenticated triples in Z2� , the authors required
Zero Knowledge Proofs of Knowledge (ZKPoKs) and triples to be generated in
Z2�+s to prevent a malicious adversary from modifying the triples with error
probability 2−s+log s. However in the semi-honest setting, the adversaries can
not deviate from the protocol. Hence we do not require ZKPoKs, and computing
triples in Z2� suffices. We start by choosing m to be a prime like in [18] to ensure
a better underlying geometry. Given that d is the order of 2 in Z

∗
m, we get

n = φ(m)/d slots, each of which embeds a d-degree polynomial (cf. [22]). In
order to utilize the higher coefficients of the polynomial embedded in each slot,
we employ the packing method from [18] to achieve a maximum utilization of
φ(m)/5 slots. Despite this significant optimization, most of the slots are wasted.
Moreover, since p is a power of 2, we can not use the CRT optimization.

Case II - 2�
� p: Here, we choose m to be a power of 2 for efficiency reasons

described in [6], and big enough to provide security greater than 128-bits. Accord-
ingly, we choose a prime plaintext modulus p of 2� + σ + 2 bits that satisfies
p ≡ 1 mod m, thereby maximizing the number of slots to φ(m). A concern of
inefficiency here is that now our plaintext modulus is much larger than it was in
the previous case. However, using the CRT optimization, we can split the plain-
text modulus into e distinct primes pi and get e instances of the cryptosystem
with similar parameter lengths as in the previous case. A run of the protocol
will require e times more computation and communication, but we can use the
maximum number of slots. An important consideration here is that while we
will have similar plaintext modulus and ciphertext modulus bitlengths, taking
a 2-power m might result in an at most twice as large n than is required for
128-bit security. However with increasing n, the communication and computa-
tion increase only linearly and quasi-linearly respectively, and the number of
triples generated increase linearly as well. Therefore, the amortized communica-
tion remains the same and the amortized computation increases at most by a
factor of Δ = (log(n) + 1)/ log(n), which is small for the minimum value of n
typically required to maintain security (for n = 4096,Δ = 1.08).

Conclusion: A single run of the protocol for Case I requires e = (2� + σ + 2)/�
times more computation and communication than Case II. However, the protocol
for Case II requires at least 5 runs of the protocol to generate the same number
of triples. Hence, considering σ = 40-bits and with the exception of small values
of � (� ≤ 15), Case II is more efficient. Although we conclude that Case I could be
better for smaller �, we have implemented the protocol just for Case II because
SEAL [6], currently the most efficient publicly available library that satisfies the
description of our RLWE-AHE scheme, only supports 2-power cyclotomics.

4.5 Our Final Protocol

Our final protocol is given in Fig. 3. In the protocol, we have shown an initializa-
tion phase for the generation of n triples. However, arbitrary many triples can
be generated following a single initialization phase (involving a single key-pair).
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As discussed above, we have used the parameters for Case II with 2�
� p. Rather

than drowning the ciphertext noise with a fresh encryption of zero with extra
noise, we combine it with the step of adding r, and simply add a fresh encryption
of r with extra noise. The advantage of using RLWE-AHE for generating triples
is not only efficiency (cf. Sect. 5); we also get post-quantum security, unlike the
OT-based approach which heavily relies on OT extension for efficiency.

Party P0 Party P1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initialization Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(pk, sk) KeyGen(1λ)

pk

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Setup Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈a〉0, 〈b〉0 $ (Z2�)n 〈a〉1, 〈b〉1 $ (Z2�)n

cta Enc(pk, 〈a〉0) r $ (Z22�+σ+1)n

ctb Enc(pk, 〈b〉0) ctr Enc′(pk, r)

cta, ctb

ct′a cta �pk 〈b〉1
ct′b ctb �pk 〈a〉1
ctd ct′a ⊕pk ct

′
b ⊕pk ctr

ctd

d � Dec(sk, ctd)

〈c〉0 � 〈a〉0 · 〈b〉0 + d 〈c〉1 � 〈a〉1 · 〈b〉1 − r

Output 〈a〉0, 〈b〉0, 〈c〉0 Output 〈a〉1, 〈b〉1, 〈c〉1

Fig. 3. ΠTripleRLWE: Beaver Triple Generation using RLWE-AHE. Enc′ denotes encryp-
tion with extra noise (cf. Sect. 4.3) and n denotes the number of plaintext slots (cf.
Sect. 4.1).

Theorem 1. The ΠTripleRLWE protocol (cf. Fig. 3) securely computes the Fn
Triple

functionality (cf. Fig. 1) in the presence of semi-honest adversaries, providing
statistical security against a corrupted P0 and computational security against a
corrupted P1.

Proof. We first show that the output of the functionality Fn
Triple and the output

of the protocol ΠTripleRLWE are identically distributed. Then we construct a sim-
ulator for each corrupted party that outputs a view consistent with the output
of the functionality.
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Output Distribution. The functionality chooses the shares 〈a〉i, 〈b〉i uniformly
at random for i ∈ {0, 1}, as do the parties P0 and P1 in the protocol, which
makes them identically distributed in both cases. Let u = (〈a〉0 + 〈a〉1) ·
(〈b〉0 + 〈b〉1) mod 2� and v = 〈a〉1 · 〈b〉1 mod 2�. The functionality sets
〈c〉0 = u + r mod 2� and 〈c〉1 = −r mod 2� for some r ←$ (Z2�)n, while the
parties compute 〈c〉0 = u + (r∗ − v) mod 2� and 〈c〉1 = −(r∗ − v) mod 2�

for some r∗ ←$ (Z22�+σ+1)n. Since 2� | 22�+σ+1, t = r∗ − v mod 2� is uniformly
distributed in (Z2�)n and the joint distribution of 〈c〉0 and 〈c〉1 is identically
distributed in the ideal functionality and the protocol. Hence, the output is
identically distributed in both scenarios.

Corrupted P0. The Simulator S0 receives (〈a〉0, 〈b〉0, 〈c〉0) as input. It chooses a
uniformly random tape ρ for P0, and uses this tape to run (pk, sk) ← KeyGen(1λ).
It then uses independent randomness to sample a uniformly random d∗ ∈
(Z22�+σ+1)n such that d∗ ≡ 〈c〉0 − 〈a〉0 · 〈b〉0 mod 2�, and to encrypt d∗ with
extra noise. Its output is (ρ, ctd∗ = Enc′(pk,d∗)).

ctd∗ is statistically indistinguishable from ctd received by P0 in the pro-
tocol. This follows from the fact that t = v + r and r∗, where v ∈ Z22�+1

and r, r∗ ←$ Z22�+σ+1 , are statistically 2−σ indistinguishable [20]. Therefore, the
underlying plaintexts are statistically indistinguishable. From a similar argu-
ment, the ciphertexts are also statistically indistinguishable (cf. Sect. 4.3). Hence,
the output distributions are identical and the corresponding views are statisti-
cally indistinguishable, implying that the joint distribution of party P0’s view
(ρ, ctd) and the protocol output is statistically indistinguishable in the ideal and
the real execution.

Corrupted P1. The Simulator S1 receives (〈a〉1, 〈b〉1, 〈c〉1) as input. It chooses
a uniformly random tape ρ for P1. It then uses independent randomness to run
(pk, sk) ← KeyGen(1λ), and to perform encryptions on a vector of zeros (denoted
by 0n) using pk. Its output is (ρ, pk, cta = Enc(pk, 0n), ctb = Enc(pk, 0n)).

The computational indistinguishability of the view follows from the IND-
CPA security of the AHE scheme (cf. Sect. 2.4), because the distinguisher doesn’t
have access to the randomness used to generate the key-pair (pk, sk) with which
cta and ctb were encrypted. Hence the joint distribution of party P1’s view
(ρ, pk, cta, ctb) and the protocol output is computationally indistinguishable in
the ideal and the real execution. ��

5 Implementation Results

In this section, we compare the performance of our RLWE-based method (cf.
Sect. 4) with the OT-based method (cf. Sect. 3.2) for generating Beaver multi-
plication triples.

Experimental Setup. Our benchmarks were performed on two servers, each
equipped with an Intel Core i9-7960X @ 2.8 GHz CPU with 16 physical cores and
128 GB RAM. We consider triple generation for bitlenghts � ∈ {8, 16, 32, 64}.
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We have used the Microsoft SEAL library v3.1 [6] to implement the RLWE-
based method ΠTripleRLWE, and the OT-based method ΠTripleOT is implemented
in ABY library [10]. In all experiments, we have set the symmetric security
parameter to κ = 128, and the statistical security parameter to σ = 40. The
computational security parameter λ for the RLWE-AHE scheme has been chosen
to get security of at least 128-bits (see the full version of our paper [21] for
concrete parameters).

We run the benchmarks for three network settings (bandwidth, latency):
LAN10 (10 Gbps, 0.5 ms RTT), LAN1 (1 Gbps, 0.5 ms RTT), and WAN
(100 Mbps, 50 ms RTT). In each setting, we performed experiments for N ∈
{215, 216, . . . , 222} triples and T ∈ {2, 8, 32} threads.

Results and Analysis. We give the amortized (over generating N = 220 triples)
runtimes in Table 1 and the communication in Table 2 to compute one Beaver
multiplication triple using RLWE-AHE and OT for bitlengths � ∈ {8, 16, 32, 64}.
Extensive plots of the results of our experiments are given in the full version of
our paper [21] and we give some highlights in Fig. 4. The results of our experi-
ments can be summarized as follows:

Fig. 4. Performance plots showing amortized runtime (over generating N triples) to
compute one �-bit Beaver multiplication triple in the LAN1 scenario. The legend entries
represent the method and the number of threads T used.

1. RLWE-AHE requires less communication than OT, and the difference grows
with increasing �. For � = 64, the improvement factor over OT is 6.9x.

2. RLWE-AHE requires more computation than OT for smaller bitlengths, since
OT has a smaller runtime than RLWE-AHE in the LAN10 setting where
communication is not a bottleneck.

3. RLWE-AHE is faster than OT for larger bitlengths due to lower computation
and communication requirements, achieving speedup of 3.6x for � = 64 in the
WAN setting.
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Table 1. Amortized runtime (in μs) for generating one �-bit Beaver multiplication
triple with T threads in the LAN10, LAN1, and WAN setting. A total of N = 220

triples are generated. Smallest values are marked in bold.

Setting � T = 2 T = 8 T = 32

OT RLWE Impr. OT RLWE Impr. OT RLWE Impr.

LAN10 8 0.92 2.36 0.39x 0.35 0.70 0.51x 0.24 0.51 0.47x

16 1.74 2.38 0.73x 0.56 0.69 0.81x 0.39 0.50 0.77x

32 3.35 2.37 1.41x 0.99 0.68 1.46x 0.75 0.49 1.51x

64 6.53 4.61 1.41x 1.89 1.30 1.46x 1.61 0.80 2.01x

LAN1 8 1.30 3.07 0.42x 1.27 2.07 0.61x 1.28 2.02 0.64x

16 2.64 3.08 0.85x 2.56 2.09 1.22x 2.58 1.99 1.29x

32 5.55 3.07 1.81x 5.53 2.34 2.36x 5.49 2.24 2.45x

64 13.14 5.85 2.25x 13.09 4.06 3.23x 13.03 3.88 3.35x

WAN 8 20.48 20.02 1.02x 19.33 25.11 0.77x 20.14 22.90 0.88x

16 31.10 20.39 1.53x 32.66 26.11 1.25x 28.98 23.83 1.22x

32 60.81 23.85 2.55x 60.22 26.42 2.28x 61.25 26.44 2.32x

64 140.48 39.34 3.57x 138.54 45.20 3.07x 140.79 41.57 3.39x

Table 2. Amortized communication (in Bytes) for generating one �-bit Beaver multi-
plication triple. Smallest values are marked in bold.

� OT RLWE Impr.

8 272 224 1.21x

16 576 224 2.57x

32 1280 256 5.00x

64 3072 448 6.85x

4. OT is faster than RLWE-AHE for smaller bitlengths in most cases. For
instance, OT is better than RLWE-AHE in all cases for � = 8 in the LAN1
setting (cf. Fig. 4a).

5. Due to less communication, the improvement factor in runtime of RLWE-
AHE over OT increases with decreasing network performance.

6. RLWE-AHE benefits more from multi-threading than OT for faster networks.
For � = 64 in the LAN1 setting, the improvement factor increases from
2.25x to 3.35x as we move from 2 to 32 threads. When communication is the
bottleneck, multi-threading does not benefit either method.

7. OT benefits more from increasing N in general, and the gains are more
prominent for smaller �. For � = 8 (resp. 64) in the LAN1 setting and T =
2 threads, the performance of OT improves by 3.27x (resp. 1.25x) as we
increase N from 215 to 222, compared to a performance improvement by
1.58x (resp. 1.37x) for RLWE-AHE.

8. The performance of RLWE-AHE saturates for a smaller N as compared to
OT. For instance, in Fig. 4, the performance of RLWE-AHE saturates at
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N = 218 for � = 8 (resp. N = 217 for � = 64), while the performance of OT
saturates at N = 221 (resp. N = 219).

9. Overall, our RLWE-based method is a better option for most practical
cases. It is faster in almost all scenarios for the WAN setting, while even
in the LAN10 setting, the performance improvement is significant for larger
bitlengths. However, for smaller bitlengths such as � = 8, the OT-based
method is more suitable even in the WAN setting.
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Abstract. Many cryptographic constructions are based on the famous
problem LWE [Reg05]. In particular, this cryptographic problem is
currently the most relevant to build FHE [GSW13,BV11]. In [BV11],
encrypting x consists of randomly choosing a vector c satisfying 〈s, c〉 =
x+noise (mod q) where s is a secret size-n vector. While the vector sum
is a homomorphic operator, such a scheme is intrinsically vulnerable to
lattice-based attacks. To overcome this, we propose to define c as a pair
of vectors (u, v) satisfying 〈s, u〉/〈s, v〉 = x+noise (mod q). This simple
scheme is based on a new cryptographic problem intuitively not easier
than LWE, called Fractional LWE (FLWE). While some homomorphic
properties are lost, the secret vector s could be hopefully chosen shorter
leading to more efficient constructions. We extensively study the hard-
ness of FLWE. We first prove that the decision and search versions are
equivalent provided q is a small prime. We then propose lattice-based
cryptanalysis showing that n could be chosen logarithmic in log q instead
of polynomial for LWE.

1 Introduction

Many cryptographic constructions are based on the famous problem Learning
with Errors (LWE) [Reg05]. Cryptographic work over the past decade has built
many primitives based on the hardness of LWE. Today, LWE is known to imply
essentially everything you could want from crypto (apart from a few notable
exceptions as obfuscation). In particular, this cryptographic problem is currently
the most relevant to build FHE [GSW13,BV11]. LWE is known to be hard
based on certain assumptions regarding the worst-case hardness of standard
lattice problems such as GapSVP and SVP and no quantum attacks against this
problem are known.

Typically, LWE deals with a secret vector s ∈ Z
n
q and an example w of LWE

is a randomly chosen size-n vector satisfying1 〈s,w〉 = e (mod q) with e � q
being a randomly chosen noise value. The problem LWE consists of recovering
s from a polynomial number of examples. This problem is equivalent to solve
a SVP (Shortest Vector Problem) on a lattice of dimension n. The hardness of
LWE holds ensuring that n is chosen sufficiently large, i.e. Ω(log q).

1 〈s, c〉 denoting the scalar product between s and c.

c© Springer Nature Switzerland AG 2019
Y. Mu et al. (Eds.): CANS 2019, LNCS 11829, pp. 360–371, 2019.
https://doi.org/10.1007/978-3-030-31578-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31578-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-31578-8_20


Fractional LWE: A Nonlinear Variant of LWE 361

We propose here a nonlinear variant of LWE, called Fractional LWE (FLWE),
hopefully less vulnerable to lattice-based attacks. For concreteness, an example
of this new problem is a pair of randomly chosen vectors w = (u,v) satisfying

〈s,u〉/〈s,v〉 = e (mod q)

This problem does not intuitively seem easier than LWE and the same security
level could be hopefully guaranteed in smaller dimension n. But can we quan-
tify this? The main purpose of this paper is to extensively study this problem.
Similarly to LWE, we reduce the search version to the decisional one (consisting
distinguishing between m examples of FLWE and m randomly chosen vectors)
provided q is a small prime (see Sect. 2). Then, we mainly propose two classes
of lattice-based attacks. A typical lattice-based attack of the first class exploits
the following equation

〈s,u〉 · 〈s,v〉q−2 = e (mod q)

Indeed, by expanding the right term and by sampling sufficiently many examples
wi, the noise values ei and thus s can be recovered by solving a SVP. However,
this attack fails by choosing q sufficiently large. The first class of lattice-based
attacks is a generalization of this attack (see Sect. 3.4). We formally prove that
this class does not contain any efficient attack for any choice of n provided q is
sufficiently large.

We then consider a second class of lattice-based attacks exploiting polynomial
equations between noise values (see Sect. 3.5). As the expanded representation
size of the involved polynomials exponentially grows with n, it suffices to choose
(provided the noise level is large enough to ensure that the noise values cannot
be guessed with non-negligible probability)

n = Ω(log log q)

(instead of n = Ω(log q) for LWE [LL15]) to ensure the inefficiency of these
attacks.

In Sect. 4, we develop a very simple large plaintext encryption scheme whose
security relies on FLWE. Typically, an encryption of x ∈ {0, . . . , ξ − 1} with
ξ ≈ 2λ is a pair of vectors c = (u,v) satisfying

〈s,u〉/〈s,v〉 = x + eξ (mod q)

where e is uniform over {0, . . . , ξ−1}. We show that this encryption scheme is sig-
nificantly more efficient that (large domain) LWE-based schemes to evaluate very
short arithmetic circuits assuming the hardness of FLWE with n = Ω(log log q).

However, the homomorphic capabilities of our scheme are very limited due
to the ciphertext expansion. Indeed, the ciphertext size polynomially (but not
exponentially as we may intuitively think) grows with the number of arith-
metic operations restricting evaluation to very short-size arithmetic circuits.
However, very small arithmetic circuits can be evaluated very efficiently making
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this scheme relevant for some (cloud) applications. Can we concretely compare
homomorphic performance of our scheme with the ones of LWE? In appearance,
LWE seems better because one homomorphic addition only requires O(n) while
one homomorphic addition/multiplication requires O(n2) for our scheme. Never-
theless, one homomorphic multiplication also requires O(n2) for LWE meaning
that these two schemes are equivalent in the worst case. Furthermore, n might
be chosen significantly smaller in our scheme. This gives hope to improve exist-
ing LWE-based homomorphic encryption schemes. For instance, relinearization
technics used in [BGV14] could be perhaps adapted to our scheme in order to
overcome the ciphertext expansion.

Because of the lack of space, most of the proofs were omitted. They
can be found in [GB19].

Notation. We use standard Landau notations. Throughout this paper, we let
λ denote the security parameter: all known attacks against the cryptographic
scheme under scope should require 2Ω(λ) bit operations to mount.

Given two vectors a = (a0, . . . , an) and b = (b0, . . . , bn), a�b
def= (cij)n≥i≥j≥0

with cii = aibi and cij = aibj + ajbi if i > j.

Definition 1. A rational function φ = φ′/φ′′ is said to be polynomial-degree if
φ′, φ′′ are both polynomial-degree polynomials.

Remark 1. The number M(n,m) of n-variate monomials of degree m is equal to(
m + n − 1

n − 1

)
. Fixing n, M(n,m) = O(mn−1).

2 Fractional LWE

For positive integer n and q ≥ 2, a vector s ∈ {1} × Z
n
q and a probability

distribution χ on Zq, let As,χ be the distribution obtained by choosing at random
a noise term e ← χ and two vectors u,v ← Z

n+1
q satisfying 〈s,u〉/〈s,v〉 = e

and outputting (u,v). For concreteness, (u,v) can be chosen as follows: e ←
χ, (u1, . . . , un, v0, . . . , vn) uniform over Z

2n+1
q and u0 := e · 〈s,v〉 − ∑n

i=1 siui.
Moreover, if 〈s,v〉 = 0 (this happens with probability 1/q) then this process is
started again.

Definition 2. For an integer q = q(n), a distribution ψ over {1} × Z
n
q and

an error distribution χ = χ(n) over Zq, the learning with errors problem
FLWEn,m,q,χ,ψ is defined as follows: given m independent samples from As,χ

where s ← ψ, output s with non-negligible probability.
The decision variant of the FLWE problem, denoted by DFLWEn,m,q,χ,ψ is to

distinguish (with non-negligible advantage) m samples chosen according to As,χ

from m samples chosen according to the uniform distribution over Zn+1
q ×Z

n+1
q .

As done for LWE, we propose a reduction from FLWE to DFLWE ensuring that
q is a prime polynomial in λ. The proof of the following proposition is largely
inspired by the reduction from LWE to DLWE found in [Reg05]. However, we
also need that the number m of samples is not too large, i.e. m = O(q).
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Lemma 1 (Search to Decision). Assuming m = O(q), there is a probabilistic
polynomial-time reduction from solving FLWEn,m,q,χ,ψ with overwhelming prob-
ability to solving DFLWEn,m,q,χ,ψ with overwhelming probability provided q is a
small prime (polynomial in λ).

Challenging issues remain unresolved. For instance, can Lemma1 be extended
to large primes q or can worst-case be reduced to average?

3 Analysis of FLWE

3.1 Probability Distributions χ, ψ

An example of FLWEn,m,q,χ,ψ is a pair of vectors w = (u,v) satisfying
〈s,u〉/〈s,v〉 = e (mod q) where s ← ψ and e ← χ. To simplify the analy-
sis, we will only consider probability distributions χ which ensure that noise
values e cannot be guessed.

Typically, χ refers to the uniform probability distribution over {0, . . . , ξ − 1}
and ψ refers to the uniform probability distribution over {1} × Z

n
q ,

ξ ≈ 2λ < q

q ≈ 2δλ

3.2 Problem Statement

Let s∗ ← ψ and let w1 = (u1,v1), . . . ,wm = (um,vm) be m examples of
FLWEn,m,q,χ,ψ drawn according to As∗,χ.

By rewriting the equations 〈s,ui〉/〈s,vi〉 = ei (mod q), we get the following
polynomial system F = 0 whose (s1 = s∗

1, . . . , sn = s∗
n, x1 = e1, . . . , xm = em) is

a solution⎧⎨
⎩

(u10 − x1v10) + (u11 − x1v11)s1 + · · · + (u1n − x1v1n)sn = 0
· · ·
(um0 − xmvm0) + (um1 − xmvm1)s1 + · · · + (umn − xmvmn)sn = 0

(1)

Let X ⊂ Z
m+n
q be the solution set of F = 0. Throughout this section, IF refers to

the ideal generated by the family of polynomials F ⊂ Zq[S1, . . . , Sn,X1, . . . , Xm]
and IX refers to the ideal of polynomials which are zero over X. By construction,
IF ⊆ IX but it is well-known that the converse is not true in general.

This system is clearly underdefined (n variables can be freely chosen) and
hence s∗ cannot be recovered without taking into account the shortness of the
variables ei. Szepieniec et al. [SP17] have conjectured that this problem called
Short Solutions to Nonlinear Systems of Equations (SSNE) is difficult. They
identified two types of attacks (algebraic and lattice-based attacks).
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3.3 Algebraic Attacks

It is well-known that solving polynomial systems is NP-hard. (ensuring that
the degree of the polynomials is at least 2). To solve such systems, we classically
compute a (lexicographic order) Groebner basis [BKW93] of IF which consists of
a set of univariate polynomials: this new set of (univariate) polynomial equations
can be solved with Berkelamp’s algorithm [BRS67]. Although the complexity
of the best known algorithm to compute Groebner basis is (at least double)
exponential, it is difficult to evaluate their running-time in practice. It mainly
depends on the number of variables and the degree of the polynomials.

Nevertheless, this purely algebraic method cannot be applied here because
the system F = 0 (1) is underdefined2. Some polynomials, exploiting the fact
that Zq is a finite field or that ei ∈ {0, . . . , ξ − 1}, can be added to F in order
to overdefine the system, i.e. xq

i − xi, sq
i − si or

∏
k∈{0,...,ξ}(xi − k). However,

the degree of these polynomials is large3 making Groebner basis computations
surely impracticable.

Finally, hybrid attacks consisting of guessing some variables in order to
overdefine the system is not relevant here because q, ξ are assumed to be large.

3.4 A First Class of Lattice-Based Attacks

Typically, an example w of LWE satisfies 〈s,w〉 = e meaning that LWE is
natively a lattice problem. Indeed, by considering sufficiently many examples
w1, . . . ,wt, the vector noise (e1, . . . , et) and thus s can be recovered by solving
a SVP over the lattice spanned by the n vectors αi = (w1i, . . . , wti).

An example of FLWE is pair of vectors w = (u,v) s.t. 〈s,u〉/〈s,v〉 = e. By
using x−1 = xq−2 (mod q), we get the polynomial equation 〈s,u〉 · 〈s,v〉q−2 = e
(mod q) leading to a lattice-based attack. To highlight this, consider the case
q = 5 and n = 1, i.e. s = (1, s). In this case, (u1 + su2)(v1 + sv2)3 = e. By
developing the right term, we get4

4∑
i=0

sipi(u,v) = e

where pi is a degree-4 polynomial. It follows that s can be recovered by solving a
SVP over a small dimension lattice. However, choosing a large prime q (exponen-
tial in λ) ensures that the dimension of the lattice is exponential. Nevertheless,
one can imagine more efficient attacks based on the same idea. This section aims
at formally proving the non-existence of such attacks.

Let us imagine that the attacker is able to recover functions ϕ1, . . . , ϕγ such
that there are constants (indexed by s) a1, . . . , aγ ∈ Zq and a function ε satis-
fying

a1 · ϕ1(w) + · · · + aγ · ϕγ(w) = ε(w)
2 For instance s1, . . . , sn can be chosen arbitrarily.
3 not polynomial in the security parameter λ.
4 u1v

3
1+s(u2v

3
1+3u1v

2
1v2)+s2(3u2v

2
1v2+3u1v1v

2
2)+s3(u1v

2
2+3u2v1v

2
2)+s4(u2v

3
2) = e.
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where ε(w) � q. Note that this equality holds with ai = si, ϕi(w) = wi

and ε(w) = ei if w is a LWE example. By sampling sufficiently many
instances w1, . . . ,wt, the coefficients a1, . . . , aγ can be recovered by solving
an approximate-SVP. This is a relevant attack if s can be derived from the
knowledge of ε(w1), . . . , ε(wt). This attack can be identified to the tuple
(ϕ1, . . . , ϕγ , ε). This is formally encapsulated in the following definition where
the functions ϕ1(w), . . . , ϕγ(w) are rational and where ε(w) = p(e), p being a
polynomial.

Definition 3. Let (ϕ1, . . . , ϕγ) be a (polynomial-size) tuple of polynomial-degree
rational functions (see Definition 1) and let p be a non-constant polynomial-
degree polynomial. We say that (ϕ1, . . . , ϕγ , p) belongs to the class C if there
exist functions a1, . . . , at satisfying

a1(s) · ϕ1(w) + . . . + aγ(s) · ϕγ(w) = p(e) (2)

with non-negligible probability over the choices of s,w.

By considering sufficiently many examples wi and by assuming that p is a small-
degree polynomial with small coefficients, i.e. p(e) � q, the rational functions
ϕ1, . . . , ϕγ satisfying (2) can be used to recover p(e1), . . . , p(et) and thus (hope-
fully) e1, . . . , et and then s.

Theorem 1. C is empty5 for any n ≥ 1.

3.5 Equations Between Noise Values

The second way to investigate F = 0 (1) consists of exploiting the fact that
the noise values are relatively small w.r.t. q. However, s∗

1, . . . , s
∗
n are not short

and they should be eliminated in order to obtain a system of equations only
dealing with x1, . . . , xn. In other words, we are looking for polynomials φ ∈ IX ∩
Zq[X1, . . . , Xm]. The computational methods to achieve this generally consists
of searching polynomials in φ ∈ IF ∩ Zq[X1, . . . , Xm].

Case n= 1. Let s = (1, s) and let w = (u,v) and w′ = (u′,v′) be two instances
of FLWE. We can eliminate s by extracting s from the equations 〈s,u〉 = e〈s,v〉
and 〈s,u′〉 = e′〈s,v′〉, i.e. s = (ev1 − u1)(u2 − ev2)−1 = (e′v′

1 − u′
1)(u

′
2 − e′v′

2)
−1

(mod q) leading to the equation

u1u
′
2 − u′

1u2 + e(v1u′
2 − v2u

′
1) + e′(u1v

′
2 − v′

1u2) + ee′(v1v′
2 − v′

1v2) = 0 (3)

This equation can be seen as a three-variate linear equation having a short
solution (e, e′, ee′). It is well-known that such a solution can be recovered by
considering a dimension-4 lattice6. We will investigate the case n > 1 in next
sections. In particular, we will see that the size of the linear combinations that
we obtain by eliminating s1, . . . , sn exponentially grows with n. It follows that
n could be chosen logarithmic in λ instead of polynomial for LWE.
5 There does not exist any lattice-based attack satisfying Definition 3.
6 However, by choosing δ = 1, this attack fails because ee′ � q.
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Recovering a Short Integer Solution in Linear Systems. Let q be a
large prime, let x∗ = (x∗

1, · · · , x∗
	 ) be a randomly chosen short vector and let

A ∈ Z
t×	
q with t ≤ n be a randomly chosen matrix such that Ax∗ = 0. Our

problem simply consists of recovering x∗ only given A. This problem looks like
a generalization of the Subset Sum Problem but it does not fit to the famous
problem SIS (Short Integer Solution) (which is equivalent to SVP on L⊥(A))
because we want to specifically recover x∗ instead of an arbitrary short solution
in SIS7. Unlike SIS, the smaller is the number of rows t, the harder is our problem.
Indeed, if t is too small 8 then many short solutions - even shorter than x∗ -
could exist. Conversely, by increasing t, smaller equations can be found with
gaussian eliminations, i.e. equations dealing with 
 − t + 1 variables which could
be obtained and solved considering dimension-(
−t+1) lattices. More generally,
the solution set of Ax = 0 is a q-ary9 dimension-
 euclidean lattice L spanned
by at least 
− t dimension-
 (linearly independent) vectors10 x1, . . . ,x	−t (being
solutions of the system). In order to reduce the lattice dimension, these vectors
could be truncated ensuring that the truncated vector x∗ can be still considered
as small in the lattice spanned by the truncated vectors x1, . . . ,x	−t. However,
more than 
−t+1 components should be kept (
−t is surely not enough because
L = Z

	−t in this case). It follows that dimension-(d ≥ 
 − t + 1) lattices should
be considered. Hence, ensuring that 
 − t is not too large, short solutions can
be recovered by applying a lattice basis reduction algorithm over L, e.g. LLL or
BKZ. Let us try to quantify it.

It is well-known that SVP is a NP-hard (under some conditions) problem and
lattice basis reduction algorithms only recover approximations of the shortest
vector within a factor11 γd (with γ ≈ 1.01 for the best known polynomial-time
algorithms [MR09]). While this approximation may be sufficient to solve SVP
on some lattices, it is ensured that x∗ cannot be recovered provided12 γd ≥ q

√
d

and hence (provided (log q − log log q) log γ ≥ 1)

d ≥ 
 − t + 1 ≥ (log q + log log q)/ log γ (4)

Indeed, the euclidean norm of any vector of Z
d
q is smaller than q

√
d. Conse-

quently, satisfying (4) ensures that any solution of Ax = 0 can be potentially
output. As the number of solutions of Ax = 0 is large, it can be assumed that
x∗ is output with negligible probability.

7 Unlike our problem, some columns of A can be removed in SIS (meaning that some
components of the searched solution are set to 0) reducing the dimension of the
considered lattice. Obviously, if too many columns are removed then short solutions
do not exist meaning that a compromise should be done (see [MR09]).

8 typically t < �/r according to gaussian estimations.
9 meaning that qZ� ⊂ L, see [MR09].

10 and vectors belonging to qZ�.
11 γd for a full rank dimension-d lattice.
12 The norm of any vector belonging to Z

d
q is smaller than q

√
d.
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Applying It to Our Scheme. Contrarily to LWE-based encryption, elimi-
nating s1, . . . , sn from F = 0 gives nonlinear equations (as observed in the case
n = 1 (3)) between the variables x1, . . . , xn+1. This is the major difference with
LWE.

We first easily check that there do not exist equations between less than n
variables. The most natural way to get equations between n + 1 variables is to
consider the n first equations of F = 0 as a linear system where the variables
are s1, s2, . . . , sn. By doing this, each variable si can be expressed as a ratio
pi/p0 of two degree-n polynomials defined13 over x1, . . . , xn. By injecting these
equations in the (n + 1)th equation of F = 0, we get an equation between
the variables x1, . . . , xn+1 of degree n + 1, i.e. we obtain a polynomial φ ∈
IF ∩ Zq[X1, . . . , Xn+1] defined by

φ(x1, . . . , xn+1)
def=

n∑
i=0

(un+1,i − xn+1vn+1,i)pi(x1, . . . , xn) = 0 (5)

We obviously obtain the same polynomial φ by permuting the (n + 1) first rows
of F . In addition,

φ(x1, . . . , xn+1) =
∑

e∈{0,1}n+1

aex
e1
1 · · · xen+1

n+1

where ae are degree-(n + 1) polynomials defined over w1, . . . ,wn+1. By consid-
ering each monomial of φ as a variable, we get an linear equation that could lead
to lattice-based attacks. However, one could reasonably think that ae = 0 with
negligible probability (over the choice of w1, . . . ,wn+1) implying that the num-
ber of monomials of φ is exponential. Nevertheless, we cannot a priori exclude
the possibility to recover smaller equations. The following lemma establishes the
non-existence of such equations.

Lemma 2. Let φ be the polynomial defined in Eq. 5. We have,

1. φ has more than (1 − 1/ξ − n/q) · 2n+1 monomials in mean14.
2. Any non-null multiple ϕ of φ has more monomials than φ.
3. With overwhelming probability (see footnote 14), any polynomial ϕ ∈ IX ∩

Zq[X1, . . . , Xn+1] s.t. deg ϕ < q
2(n+1) is a multiple of φ.

By corollary, IF ∩ Zq[X1, . . . , Xn+1] is generated (see footnote 14) by φ and
any non-null polynomial ϕ ∈ IF ∩ Zq[X1, . . . , Xn+1] has more than15 2n+1

monomials. What about polynomials ϕ ∈ IF ∩ Zq[X1, . . . , Xm]?

13 Consider the n×n matrix M = [(uij−xivij)1≤i,j≤n], the vector t = (ui0−xivi0)1≤i≤n

and the matrix Mj equal to M where the jth column is replaced by −t. Solving
F = 0 as a linear system gives si = det Mi/ det M . It follows that the polynomials
pi = det Mi and p0 = det M have 2n monomials xe1

1 · · · xen
n where 0 ≤ e1, . . . , en ≤ 1.

14 randomness coming from the choice of F , i.e. w1, . . . , wm.
15 a quantity exponentially close to 2n+1.
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One can reasonably think that the number of monomials grows with the
number of involved variables implying that any ϕ ∈ IF ∩Zq[X1, . . . , Xm] has at
least 2n+1 monomials. To get such a general result, Lemma 2 should be extended.
We did not succeed in proving such a result while we obtained some partial
and/or informal results. Details can be found in [GB19].

Conjecture 1. With overwhelming probability (see footnote 14), any non-null
polynomial ϕ ∈ IF ∩ Zq[X1, . . . , Xm] has more than 2n+1 monomials.

Let us now consider a set of t polynomials φ1, . . . , φt ∈ IF ∩Zq[X1, . . . , Xm]. Let

 denote the number of monomials involved in this set of polynomials. Hence,
by considering each monomial as a variable, we get a system Ax∗ = 0 with t
equations and 
 variables. Without loss of generality, it can be assumed that
these equations are linearly independent (otherwise it suffices to remove linearly
dependent equations). According to the previous section, short solutions could
be found by applying lattice basis reduction algorithms. However, assuming that
Conjecture 1 is true, it is ensured that 
 − t + 1 is larger than 2n+1. Indeed, if it
is not the case, polynomials ϕ ∈ IF ∩Zq[X1, . . . , Xm] containing less than 
− t+
1 < 2n+1 monomials can be obtained by gaussian eliminations. Consequently,
according to (4), it suffices that 
 − t + 1 ≥ 2n+1 ≥ (log q + log log q)/ log γ to
ensure that Ax∗ = 0 cannot be solved by using lattice basis reduction algorithms.
Thus, n can be chosen as follows:

n ≥ log(log q + log log q) − log log γ − 1
≥ log log q − log log γ

≈ log λ + log δ − log log γ

For instance, one can choose n = log δ + 13 for γ = 1.01, λ = 100.
The monomials were assumed to be small relatively to q. However, it is not

the case provided
n ≥ δ

This ensures the inefficiency of such lattice-based attacks. This suggests that n
can be fixed independently of the security parameter λ.

3.6 Discussion

In this section, we investigated the hardness of FLWEn,m,q,χ,ψ (and
FDLWEn,m,q,χ,ψ). Our security analysis deals with probability distributions χ
ensuring that noise values cannot be guessed with non-negligible probability.
Typically, χ is the uniform probability distribution over a set {0, . . . , ξ −1} with
2λ ≈ ξ < q. Our analysis suggests that FLWEn,m,q,χ,ψ is hard ensuring that
n ≥ log log q − log log γ or n ≥ log q/ log ξ.

Let us consider now smaller noise levels. Our analysis remains relevant except
that some noise values can be guessed. Assume for instance that ξ ≈ 210 and
q ≈ ξδ. At most 10 (= (λ = 100)/ log ξ) noise values can be guessed, one can
reasonably think that it suffices to choose n larger than 10+log log q−log log γ ≈
27 + log δ (assuming γ = 1.01).
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4 A Somewhat Homomorphic Private-Key Encryption

Let λ be a security parameter, let ξ be a λ-bit prime and let q be a (2δ +1)λ-bit
prime with δ ≥ 1. Throughout this section, χ refers to the uniform distribution
over {0, . . . , ξ − 1}. Note that this set is also the plaintext domain.

Definition 4. The functions KeyGen, Encrypt, Decrypt are defined as follows:

– KeyGen(λ, ξ, q). Let n be indexed by λ, q. The uniform probability over {1}×Z
n
q

is denoted by ψ and let s ← ψ.

K = {s} ; pp = {q, ξ}
– Encrypt(K, pp, x ∈ {0, . . . , ξ − 1}). Let e ← χ and let x = x + eξ. Output a

pair c = (u,v) ∈ Z
n+1
q × Z

n+1
q of two randomly chosen vectors16 satisfying

〈s,u〉 · 〈s,v〉−1 = x (mod q)

– Decrypt(K, pp, c = (u,v)). Output x = 〈s,u〉 · 〈s,v〉−1 mod q mod ξ

In the rest of the paper, it will be assumed that pp = {q, ξ} is public. We remark
that c and ac are encryptions of the same value for any a ∈ Z

∗
q .

4.1 Homomorphic Properties

Let c = (u,v) and c′ = (u′,v′) be fresh encryptions (output by Encrypt) of
respectively x and x′. Similarly to LWE-based encryption schemes, this scheme
has natural homomorphic properties coming from the following equalities

〈s, au〉
〈s,v〉 = ax

〈s,u + av〉
〈s,v〉 = x + a

〈s,u〉〈s,u′〉
〈s,v〉〈s,v′〉 = xx′ 〈s,u〉〈s,v′〉 + 〈s,u′〉〈s,v〉

〈s,v〉〈s,v′〉 = x + x′

It follows that vectors17 (u�v′+u′�v,v�v′) and (u�u′,v�v′) are encryptions
of respectively x+x′ and xx′ under the key K2 = (sisj)n≥i≥j≥0 with s0 = 1. This
process can be naturally iterated. However, the noise exponentially grows with
the homomorphic multiplications limiting evaluation to degree-δ polynomials.
Moreover, the ciphertext size grows with the number of homomorphic operations
m. Nevertheless, it is important to notice that this growth is only polynomial
and not exponential. Indeed, the size of Km is equal to the number of degree-m
monomials defined over n + 1 variables. According to Remark 1, this number
is in O(mn). While this growth strongly limits the homomorphic capabilities,
short arithmetic circuits representing degree-δ polynomials could be efficiently
evaluated provided n is small enough.
16 For instance, one can randomly choose u, v1, . . . , vn−1, e and adjust vn in order to

satisfy the equality.
17 Recall that given two vectors a = (a0, . . . , an) and b = (b0, . . . , bn), a � b

def
=

(cij)n≥i≥j≥0 with cii = aibi and cij = aibj + ajbi if i > j.
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4.2 Security Analysis

As expected, FLWE can be almost straightforwardly reduced to the security of
our scheme.

Proposition 1. Let m be the number of requests to the encryption oracle done
by the CPA attacker. Our scheme is IND-CPA secure assuming the hardness of
DFLWEn,m,q,χ,ψ.

4.3 Efficiency

Proposition 1 and the analysis of FLWE suggests that our scheme is IND-CPA
secure assuming either n ≥ log(2δ + 1) + log λ − log log γ or n ≥ 2δ + 1. For
instance, one can choose n = 9 for δ = 4 with ξ ≈ 2100 and q ≈ 2900. Such
parameters lead to a scheme able to evaluate degree-4 polynomials and the ratio
(fresh) ciphertext size/plaintext size is close to 900

100 × (9 + 1) × 2 = 180. More
generally, this ratio is

O (δ(log δ + log λ − log log γ))

by choosing n = log(2δ + 1) + log λ − log log γ.
Let us propose a comparison with a simple (large plaintext) LWE-based

encryption where a ciphertext is a vector c ∈ Z
n
q satisfying 〈s, c〉 = x+ eξ. Even

if we consider the smallest noise level (for instance e ← {0, 1}), q should be
at least a δλ-bit prime to ensure correctness of degree-δ polynomial evaluation.
Moreover, in such schemes, it is required that n = Ω(q) leading to a ratio
ciphertext size/plaintext size in Ω(δ2λ). This shows that our scheme significantly
outperforms LWE-based schemes in the evaluation of short arithmetic circuits.

5 Perspectives

We proposed a new cryptographic primitive derived from LWE, called Fractional
LWE. Our analysis suggests that n could be chosen logarithmic in log q instead
of polynomial for LWE (FLWE). We then propose a very simple private-key
homomorphic encryption based on this problem. This large plaintext encryp-
tion scheme achieves good efficiency to evaluate very short arithmetic circuits.
Nevertheless, a part of our security analysis is subject to Conjecture 1. While
formal and experimental results are proposed in favor of Conjecture 1, we did
not manage to formally prove it. In our opinion, this conjecture represents a nice
algebraic challenge and its proof would be a great step in the security analysis
of our scheme. More fundamentally, the existence of reductions from classical
cryptographic problems (LWE, SVP,...) should be investigated. In parallel, it is
interesting to wonder whether some LWE-based cryptographic primitives can be
improved with our scheme. The most natural one would be an efficient (some-
what) homomorphic encryption by introducing relinearization technics to reduce
the ciphertext expansion.
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Abstract. Aggregator-oblivious (AO) encryption allows the computa-
tion of aggregate statistics over sensitive data by an untrusted party,
called aggregator. In this paper, we focus on exact aggregation, wherein
the aggregator obtains the exact sum over the participants. We iden-
tify three major drawbacks for existing exact AO encryption schemes—
no support for dynamic groups of users, the requirement of additional
trusted third parties, and the need of additional communication channels
among users. We present privacy-preserving aggregation schemes that do
not require any third-party or communication channels among users and
are exact and dynamic. The performance of our schemes is evaluated by
presenting running times.

Keywords: Data aggregation · Privacy · Aggregator obliviousness

1 Introduction

Data aggregation is the process of compiling data from multiple entities or
databases into one location with the intent of preparing a combined dataset.
The entity performing the aggregation is referred to as the aggregator. Data
aggregation has many applications in surveys, e-voting, data analytics, etc. How-
ever, a major concern with data aggregation is that the data handled in most
of these settings are sensitive, or confidential, or may be correlated with sensi-
tive information. This gives rise to data privacy concerns, particularly when the
aggregator is untrusted.

Consider the simple example of a salary survey, where an aggregator is inter-
ested in computing the average salary of a group of users. A user may consider
her individual salary as private information that she does not wish to reveal
to the aggregator. However, if an aggregation protocol allows the aggregator to
compute the average salary without requiring access to any individual’s salaries
in the clear, then the user may be willing to participate in the protocol.

Similarly, in the health sector, patient health information is protected by
legal frameworks, such as Health Insurance Portability and Accountability Act
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(HIPAA), which regulates the use and disclosure of protected health informa-
tion, including medical records and payment history, held by covered entities like
health-care providers and health insurances. A network of healthcare providers
or hospitals may be interested in computing aggregate statistics over their joint
populations of patients for research purposes, or for disease prevention and con-
trol. However legal frameworks may not allow them to share individual patient
records in the clear. In such a scenario, the network would like to leverage a
privacy-preserving aggregation protocol which would allow them to compute the
aggregate statistics without access to data in the clear. Many businesses also
leverage user data analytics, for operations management, marketing and sales
campaigns, or to provide personalized services to their customer base, especially
in the age of digital economy. Businesses that operate in different regions of
the world, such as the USA and the European Union (EU), may face different
privacy regulations in each location. Such businesses may see their ability to
transfer user data across their different corporate locations or with their global
partners restricted, as illustrated by the decision by the EU Court of Justice to
invalidate the EU-US Safe Habor agreement, on which thousands of companies
had relied for the transatlantic transfer of user data since 2000 [5]. Limitations
on data transfer in turn generates the need for new privacy-preserving aggrega-
tion techniques to perform aggregate statistics over user data across locations,
without transferring individual user data in the clear.

Aggregator Obliviousness. The notion of aggregator obliviousness (AO) [17] was
introduced to allow an aggregator to receive encrypted data from users and
compute the aggregate and nothing else. With an AO encryption scheme, the
aggregator gains no additional knowledge other than what is evident from the
aggregate itself. Formal definitions for AO are given in Sect. 2.

Suppose that there is a population of n users, denoted by {1, . . . , n}, as well
as a designated entity called the aggregator. Let xi,τ denote the private data of
user i, where i ∈ S for a subset S ⊆ {1, . . . , n} of users, and with tag τ , where
the tag is an identifier of the aggregation (τ may for example indicate the time
period at which the aggregate is computed). The goal of the aggregator is to
compute the aggregate value

Στ =
∑

i∈S
xi,τ

in an oblivious way, that is, without having access to the private data xi,τ in
the clear. For simplicity, we focus on the aggregate sum throughout the paper.
Extensions to operations and statistics beyond the simple sum are presented in
Sect. 5.

Certain aggregation schemes make use of additional communication channels
among users to perform the aggregation. These channels are used to exchange
information among users and can enhance schemes. However, such channels may
not exist between users, and even when they do exist, such protocols have very
high communication overheads. So, a protocol would ideally not make use of
communication channels among users.
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Several current schemes require the presence of one or more additional third
parties to carry out the protocol. These third-parties are assumed to be non-
colluding with the aggregator and their participation often adds desirable prop-
erties (like dynamism or fault tolerance) to the protocol. However, such third
parties are often difficult to find in practice, thereby rendering such schemes less
practical. For such settings, it is desirable to develop a scheme which does not
require an additional third-party.

In many existing AO encryption schemes, the group of users that are aggre-
gated is static. The scheme is setup for a given set of users and if any user joins or
leaves, fresh keys need to be distributed to all the users. For many applications,
it is desirable to have a dynamic scheme, which allows users to easily join or leave
a group. With a dynamic scheme, the aggregator can carry out the aggregation
over any subset or superset of users without much hassle; in particular, without
having to redistribute keys to every user involved in the computation.

The lack of fault tolerance is another drawback present in many aggregation
schemes. An aggregation scheme is said fault-tolerant when the aggregator is
still able to compute an aggregate even if one or several users fail to report their
share.

From the above discussion, it turns out that an ideal AO encryption scheme
should be one where the users send their encrypted share in a single communica-
tion step and, at the same time, must enjoy the properties of being dynamic and
fault-tolerant—without additional non-colluding third parties. No such scheme
does exist as far are exact aggregates are concerned. This is not surprising as
the above sought-after features are incompatible all together. In particular, such
an exact AO encryption cannot be fault tolerant. Indeed, when there are no
extra parties involved in the protocol, the users have to send their encrypted
contributions directly to the aggregator. Hence, if the scheme is supposed to
be fault-tolerant, the aggregator should be able to compute the aggregate sum
in the clear over all participating users but also over all but one participating
users, thereby obtaining the private data of the victim user by subtracting the
two aggregate sums.

Our Contributions. This paper considers the weaker notion of selective fault-
tolerance. In this setting, the subset of users over which the aggregate is to be
computed can be dynamically chosen but must be known to the users beforehand.
A useful application is the ability to leave out persistently failing users by making
use of the dynamic nature of the scheme.

More specifically, we present two dynamic AO encryption schemes, which do
not require any third party or communication among users. In these schemes,
each user can participate in the protocol with the knowledge of the other users’
identities. Just by knowing the identities, a user can derive a key to perform the
encryption. This key has special properties that allow the aggregator to decrypt
the aggregate when all users in a selected subset encrypt with their corresponding
keys. We implement the schemes and evaluate their performance.
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Related Work. A number of candidates for AO encryption schemes have been
proposed, including [1,2,7,8,11,13–17]. However most of them are not dynamic.
Among the ones that can support dynamic joins and leaves, [7] requires n2

messages exchanged among users at each time period, [1,14] need each user to
store n keys, which can be impractical for a large set of users, and [2,8,11,15]
assume the presence of one or more third parties. Schemes like [1,11,16,17]
provide a different notion of privacy: Differential Privacy (DP), which makes
the final aggregate noisy.

In this paper, we focus on exact aggregation, without addition of any noise.
However, our schemes can be modified to return noisy sums, for instance through
differential-privacy techniques as was done, e.g., in [17]. Jawurek et al. [12] pro-
vide a fantastic survey for different techniques used for privacy-preserving aggre-
gation.

2 Definitions

In this section, we formally define relevant notions for privacy-preserving aggre-
gation. We first formally define Aggregator Obliviousness and then briefly
describe the scheme by Shi et al.

2.1 Aggregator-Oblivious Encryption

The definition of aggregator-oblivious encryption was introduced in [17]. Here,
we extend their definition to cover a broader class of encryption schemes and
use cases.

Definition 1. An aggregator-oblivious encryption scheme is a tuple of algo-
rithms, (Setup,KeyGen,Enc,AggrDec), defined as:

Setup(1κ) On input a security parameter κ, the Setup algorithm generates the
system parameters param, a master secret key msk, and the aggregation key
sk0. Parameters param are made public and key sk0 is given to the aggrega-
tor.

KeyGen(param,msk, i) Given a user’s identifier i, the KeyGen algorithm produces
the private key ski for user i as ski = KeyGen(param,msk, i).

Enc(param, ski, τ,Sτ , xi,τ ) Given the private input xi,τ with tag τ of user i ∈ Sτ

and the private key ski, user i applies this algorithm to produce the ciphertext
ci,τ = Enc(param, ski, τ,Sτ , xi,τ ).

AggrDec(param, sk0, τ,Sτ , {ci,τ}i∈Sτ
) Upon receiving the ciphertexts ci,τ ∀i ∈ Sτ

associated with tag τ , the aggregator obtains the aggregate value

Στ =
∑

i∈Sτ

xi,τ

as Στ = AggrDec(param, sk0, τ,Sτ , {ci,τ}i∈Sτ
) using the aggregation key sk0.

Remark 1. Three modifications were made to the original definition:



Private Data Aggregation over Selected Subsets of Users 379

1. In the original definition, the aggregation is always computed over the entire
set of users: Sτ = {1, . . . , n}. This set is fixed and is part of the system
parameters. In our case, we allow for subsets Sτ of users that may change
depending on the value of τ .

2. The setup algorithm is now divided in two sub-algorithms: the Setup algo-
rithm itself that outputs the system parameters and the aggregation key
and the KeyGen algorithm that returns the private keys for each user. The
original definition corresponds to the case where the master secret key is
the vector containing all user’s private keys, msk = (sk1, . . . , skn), and the
KeyGen algorithm simply returns the i-th component of msk as the private
key of user i.

3. Finally, in the original definition, tag τ explicitly refers to a time period.
We use the more generic term of tag, which serves as a unique identifier for
the aggregation instance.

2.2 Aggregator Obliviousness

The security notion of aggregator obliviousness (AO) requires that the aggrega-
tor cannot learn, for each tag τ , anything more than the aggregate value Στ

from the individual encrypted values. If there are corrupted users (i.e., users
sharing their private information with the aggregator), the notion requires that
the aggregator gets no additional information about the private values of the
honest users beyond what is evident from the final aggregate value and the pri-
vate values of the corrupted users. Furthermore, in our setting, we assume that
each user encrypts only one value for a given tag.

More formally, AO security is defined by the following game between a chal-
lenger and an attacker.

Setup The challenger runs the Setup algorithm and gets param, msk and sk0.
It also runs KeyGen to obtain the encryption key ski of each user i. The
challenger gives param to the attacker.

Queries In the first phase, the attacker can submit queries that are answered
by the challenger. The attacker can make two types of queries:
1. Encryption queries: The attacker submits (i, τ,Sτ , xi,τ ) for a pair (i, τ)

with i ∈ Sτ and gets back the encryption of xi,τ with tag τ under key ski;
2. Compromise queries: The attacker submits i and receives the private

key ski of user i; if i = 0, the attacker receives the aggregation key sk0.
Challenge The attacker chooses a target tag τ�. Let U� ⊆ {1, . . . , n} be the

whole set of users for which, at the end of the game, no encryption queries
associated to tag τ� have been made and no compromise queries have been
made. The attacker chooses a subset Sτ� ⊆ U� and two different series of
triples

〈(i, τ�, x
(0)
i,τ�)〉i∈Sτ� and 〈(i, τ�, x

(1)
i,τ�)〉i∈Sτ� ,

that are given to the challenger. Further, if the aggregator capability sk0 is
compromised at the end of the game and Sτ� = U�, it is required that

∑

i∈Sτ�

x
(0)
i,τ� =

∑

i∈Sτ�

x
(1)
i,τ� .
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Guess The challenger chooses at random a bit b ∈ {0, 1} and returns the
encryption of 〈x(b)

i,τ�〉i∈Sτ� to the attacker.
More queries In the second phase, the attacker can make more encryption

queries and compromise queries. Note that since Sτ� ⊆ U�, the attacker
cannot submit an encryption query (i, τ�, ·, ·) with i ∈ Sτ� or a compromise
query i with i ∈ Sτ� .

Outcome At the end of the game, the attacker outputs a bit b′ and wins the
game if and only if b′ = b (i.e., if it correctly guessed the bit b). As usual,
A’s advantage is defined to be

AdvAO(A) := 2
∣∣Pr[b′ = b] − 1/2

∣∣

where the probability is taken over the random coins of the game accord-
ing to the distribution induced by Setup and over the random coins of the
attacker.

Definition 2. An encryption scheme (Setup,KeyGen,Enc,AggrDec) is said to
meet the AO security notion if no probabilistic polynomial-time attacker A can
win the above AO security game with an advantage AdvAO(A) that is non-
negligible in the security parameter.

2.3 Example Scheme

As an illustration, we briefly review the scheme proposed by Shi et al. [17] for
achieving aggregator-obliviousness. This notion is met under the DDH assump-
tion [4,10] in the random oracle model. This scheme will serve as a building
block for our final scheme.

Setup(1κ) On input a security parameter κ, a trusted dealer generates a group
G = 〈g〉 of prime order q for which the DDH assumption holds. It also
defines a cryptographic hash function H : {0, 1}∗ → G, viewed as a random
oracle. Finally, it generates n random elements s1, . . . , sn ∈ Z/qZ and lets
s0 = −∑n

i=1 si (mod q), where n denotes the total number of users. The
system parameters are param = {G, g, q,H}, the master secret key is msk =
(s1, . . . , sn), and the aggregation key is sk0 = s0. Parameters param are
made public and sk0 is given to the aggregator.

KeyGen(param,msk, i) On input user’s identifier i, the KeyGen algorithm returns
the private key ski = si for user i, where si is the i-th component of msk.

Enc(param, si, τ, {1, . . . , n}, xi,τ ) User i ∈ {1, . . . , n} encrypts a value xi,τ with
tag τ using the private key si to get the ciphertext

ci,τ = gxi,τ H(τ)si .

AggrDec(param, s0, τ, {1, . . . , n}, {ci,τ}1�i�n) Upon receiving all the ci,τ ’s (with
i ∈ {1, . . . , n}) associated with tag τ , the aggregator first computes

Vτ = H(τ)s0
∏

1�i�n

ci,τ
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and then obtains the aggregate value Στ =
∑

1�i�n xi,τ (mod q) by com-
puting the discrete logarithm of Vτ w.r.t. basis g.

The scheme works because the aggregation key is defined as s0 =
−∑

1�i�n si. The aggregator is so able to remove the masking expression
H(τ)

∑
1�i�n si = H(τ)−s0 by using the aggregation key s0. Indeed, the aggrega-

tion step computes Vτ = H(τ)s0g
∑

1�i�n xi,τ H(τ)
∑

1�i�n si = gΣτ , the discrete
logarithm of which yields Στ .

3 Dynamic AO Encryption

In this section, we describe a dynamic aggregation scheme. With a dynamic
scheme, the aggregator can carry out the aggregation over any subset or superset
of users without needing to perform the full Setup. To aggregate over any subset
of users, the aggregator only needs to convey information about the composition
of the subset to all the users. To add a new user to the set Sτ , only KeyGen
needs to be carried out for that user, after which the aggregation can be carried
out as before.

To devise a dynamic AO scheme, we begin by building on top of the scheme
due to Shi et al. As seen in Sect. 2.3, the key trick behind that scheme is sk0 =
−∑

i ski. Shi et al. achieve this by having a trusted dealer generate and send
keys satisfying this property to the users and the aggregator. To apply Shi et
al.’s scheme, as it is, on a subset of users, the trusted dealer has to regenerate
keys for each subset and send them over to the users. Thus, the scheme would
require multiple interactions with the trusted dealer. In settings where the key is
burned onto a hardware component (like set-top boxes), such a scheme becomes
inapplicable.

In the proposed schemes, we give users the ability to compute such keys
on their own. A trusted dealer provides all users and the aggregator with an
initial secret key ski. If a user knows the identities of the other users are in the
desired subset Sτ , then she can compute the subset-key si,τ for that subset such
that s0,τ = −∑

i∈Sτ
si,τ . We use a combination of pairings and identity-based

encryption so that users can compute the subset key from only the identities
of the other users in the given subset. There is no need to redistribute any
keys. Kursawe et al. [14] use a similar technique, but they combine pairings and
public-key encryption. The primary advantage in our schemes is that there is no
need for a public-key infrastructure and users do not need to remember or verify
public keys. Thus, we obtain more versatile aggregation schemes over dynamic
subsets of users.

3.1 Key Ingredient

To provide the ability to users to compute their own subset keys, we use identity-
based encryption (IBE) and bilinear type-1 pairings. In an IBE scheme, the pub-
lic key of a user is a unique identifying information about the user. This allows
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other users to send encrypted values with just the knowledge of the identity of
the recipient. A bilinear type-1 pairing is a symmetric map e : Ĝ × Ĝ → ĜT ,
where Ĝ, ĜT are cyclic groups of order p and the function e satisfies bilinearity:
e(ĝa, ĝb) = e(ĝ, ĝ)ab, where 〈ĝ〉 = Ĝ and a, b ∈ Z/pZ.

In our setting, we assume that i is the unique identifier for user i. The trusted
dealer sends the secret key ski = J(i)msk to user i, where msk is the master secret
key of the trusted dealer and J : Z → Ĝ is a publicly known cryptographic hash
function. Given the identities of users in a subset Sτ , a user i ∈ Sτ derives on
her own the corresponding subset key from Sτ and ski as

si,τ =
∑

k∈Sτ ∪{0}
k<i

H(Ki,k) −
∑

k∈Sτ
k>i

H(Ki,k) (mod T )

with
Ki,k = e(J(k), ski)

and H : ĜT → Z/TZ is hash function (typically, T = q a prime, or T = 2�).
We assume that the aggregator’s identifier is i = 0. For a subset Sτ , the

aggregator also derives the matching subset key s0,τ in a similar manner, which
results in

s0,τ =
∑

k∈Sτ ∪{0}
k<0

H(K0,k) −
∑

k∈Sτ
k>0

H(K0,k) (mod T )

= −
∑

k∈Sτ

H(K0,k) (mod T ).

Property. We now show that the above construction satisfies the following prop-
erty ∑

i∈Sτ

si,τ = −s0,τ (mod T )

By construction, variable Ki,k is symmetric. Indeed, we have

Ki,k = e(J(k), ski) = e(ski, J(k)) = e(J(i)msk, J(k))

= e(J(i), J(k)msk) = e(J(i), skk) = Kk,i.

In a way similar to [9, Proposition 1], letting mτ = mini∈Sτ
i and Mτ =

maxi∈Sτ
i, it is then readily verified that:

∑

i∈Sτ

si,τ =
∑

i∈Sτ

[ ∑

k∈Sτ ∪{0}
k<i

H(Ki,k) −
∑

k∈Sτ
k>i

H(Ki,k)
]

=
∑

i∈Sτ

[
H(Ki,0) +

∑

k∈Sτ
k<i

H(Ki,k) −
∑

k∈Sτ
k>i

H(Kk,i)
]
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= −s0,τ +
∑

i∈Sτ
i�=mτ

∑

k∈Sτ
k<i

H(Ki,k) −
∑

i∈Sτ
i�=Mτ

∑

k∈Sτ
k>i

H(Kk,i)

= −s0,τ +
∑

i∈Sτ
i�=mτ

∑

k∈Sτ
k<i

H(Ki,k) −
∑

k∈S
k �=mτ

∑

i∈Sτ
i<k

H(Kk,i)

= −s0,τ (mod T ).

This was the key property used by Shi et al.’s scheme, but instead of having
a key dealer generate keys which satisfy this property, we now have a mechanism
to generate keys having this characteristic. With this building block in place, we
are now ready to present our new schemes.

3.2 Proposed Schemes

We detail the description of our schemes using the building block we describe
in the previous section. The Enc phase now has an additional step wherein the
subset keys are computed by users.

In both schemes, user i receives an initial secret key ski, while the aggre-
gation key sk0 is given to the aggregator. Given the identities of the users in
the subset and the secret key, each user computes the subset key si,τ , which
satisfies the property s0,τ = −∑

i∈Sτ si,τ , where s0,τ is the aggregator’s subset
key. With the subset key, each user encrypts her value and sends the ciphertext
to the aggregator. Upon receiving ciphertexts from all the users in the subset,
the aggregator uses the subset key s0,τ to recover the aggregate value. The cor-
rectness of the schemes follows from the correctness of the building block since
s0,τ = −∑

i∈Sτ si,τ . Details of both schemes are provided in the following sec-
tions.

Scheme I

Setup(1κ) On input a security parameter κ, a trusted dealer generates the sys-
tem parameters param = {G, g, q, Ĝ, ĜT , e,H,H, J} where G = 〈g〉 is a
group of order q, Ĝ and ĜT are two groups of order p with a bilinear type-
1 pairing e : Ĝ × Ĝ → ĜT , and H : {0, 1}∗ → G, H : ĜT → Z/qZ and
J : Z → Ĝ are cryptographic hash functions. The trusted dealer also gen-
erates a master secret key msk ∈ Z/pZ and computes the aggregation key
sk0 = [J(0)]msk ∈ Ĝ. Parameters param are made public and key sk0 is given
to the aggregator.

KeyGen(param,msk, i) Given user’s identifier i, the KeyGen algorithm returns
ski = [J(i)]msk ∈ Ĝ, where msk is the master secret key of the trusted
dealer.

Enc(param, ski, τ,Sτ , xi,τ ) Sτ represents the subset of users among whom the
aggregation is to be computed. For a private input xi,τ ∈ Z/qZ with tag τ ,
provided that i ∈ Sτ , user i computes the ciphertext

ci,τ = gxi,τ H(τ)si,τ (∈ G)
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where
si,τ =

∑

k∈Sτ ∪{0}
k<i

H(Ki,k) −
∑

k∈Sτ
k>i

H(Ki,k) (mod q)

with Ki,k = e(J(k), ski) ∈ ĜT . The user sends ci,τ to the aggregator through
any channel.

AggrDec(param, sk0, τ,Sτ , {ci,τ}i∈Sτ
) Upon receiving all the ciphertexts ci,τ

with i ∈ Sτ , all with tag τ , the aggregator computes in G

Vτ := H(τ)s0,τ ·
∏

i∈Sτ

ci,τ = g
∑

i∈Sτ
xi,τ

where s0,τ = −∑
k∈Sτ

H(K0,k) (mod q) with K0,k = e(J(k), sk0). The
aggregator obtains the sum Στ :=

∑
i∈Sτ

xi,τ (mod q) by computing the
discrete logarithm of Vτ with respect to g.

In [3], the authors show how the use of two hash functions lead to a much
tighter security reduction. The same observation readily applies here.

Scheme II

Setup(1κ) On input a security parameter κ, a trusted dealer generates the sys-
tem parameters param = {Ĝ, ĜT , e, �, {Hτ}τ , J} where Ĝ and ĜT are two
groups of order p with a bilinear type-1 pairing e : Ĝ × Ĝ → ĜT , � is a
length upper-bounding the bit-length of the private inputs and their sums,
{Hτ}τ : ĜT → Z/2�

Z is a family of keyed cryptographic hash functions, and
J : Z → Ĝ is a cryptographic hash function. The trusted dealer also gen-
erates a master secret key msk ∈ Z/pZ and computes the aggregation key
sk0 = [J(0)]msk ∈ Ĝ. Parameters param are made public and key sk0 is given
to the aggregator.

KeyGen(param,msk, i) Given user’s identifier i, the KeyGen algorithm returns
ski = [J(i)]msk ∈ Ĝ, where msk is the master secret key of the trusted
dealer.

Enc(param, ski, τ,Sτ , xi,τ ) Sτ represents the subset of users among whom the
aggregation is to be computed. For a private input xi,τ ∈ Z/2�

Z with tag τ ,
provided that i ∈ Sτ , user i forms the ciphertext

ci,τ = xi,τ + si,τ (∈ Z/2�
Z)

where
si,τ =

∑

k∈Sτ ∪{0}
k<i

Hτ (Ki,k) −
∑

k∈Sτ
k>i

Hτ (Ki,k) (mod 2�)

with Ki,k = e(J(k), ski) ∈ ĜT . The user sends ci,τ to the aggregator through
any channel.
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AggrDec(param, sk0, τ,Sτ , {ci,τ}i∈Sτ
) Upon receiving all the ciphertexts ci,τ

with i ∈ Sτ , all with tag τ , the aggregator computes in Z/2�
Z

Στ := s0,τ +
∑

i∈Sτ

ci,τ =
∑

i∈Sτ

xi,τ (mod 2�).

4 Performance

In this section, we present performance results from implementations of both
our schemes. The principal computational difference between our schemes and
prior schemes is the additional time required for the computation of the subset
key described in Sect. 3.1. This is the most expensive step computationally as it
requires a user to compute n pairings, where n is the subset size.

For Scheme I, this computation of the subset key is required only when
subsets change. As long as aggregates are computed over the same subsets, in
spite of the aggregations being with different tags, there is no need to recompute
subset-keys. However, for Scheme II, the subset keys cannot be reused in spite
of having the same subsets. For every aggregation with a different tag τ , users
must compute fresh subset keys. But if user i has access to the components Ki,k

for every k ∈ Sτ (e.g., by storing them), this computation is very fast as it only
involves evaluations of keyed hash functions.

For the second step of the encryption (i.e., the encryption itself) or for the
decryption, Scheme II is far more efficient than Scheme I. This is expected since
Scheme II does not require costly operations like exponentiations and discrete-
log computations, instead relies solely on modular additions. The computational
efficiency is clear from Table 1 of timing comparisons.

All computations described in this section were performed on a 2.6 GHz Intel
Core i7 processor with 8 GB 1600 MHz DDR3 RAM.

Subset Keys

For the computation of subset keys, we use Tate pairing with an embedding
degree of 2 on a supersingular curve to compute pairings required for subset-
key computation. The GF(p) elliptic curve is assumed to be of the form y2 =
x3 + Ax + B mod p, where A = −3 and B = 0. A low embedding degree (2 in
our case) has an adverse impact on performance, but timings can be improved
by using an embedding degree of 3 as shown by Teruya et al. [18].

To compute the subset key, a user has to compute a pairing for every other
user in the subset. Thus, the time required for computing the subset key is linear
in the size of the subset. The rate of this linear increase (slope) depends on how
big the pairings are. We compare the rate of increase in computation times using
pairings of size 512, 1179, and 1536 bits. The slope is steeper as the size of pairing
increases. With a 512-bit pairing, it takes nearly 1.5 s to compute the subset key
when there are 400 users in a subset. Thus, depending on how often users have
to compute the subset keys, the size of each subset can be decided. For example,
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if users are expected to report values once every few minutes, subsets can easily
have about 16, 000 users. However, if users are to report values every few seconds,
then subsets need to be much smaller (less than 300). In Fig. 1, we show how the
computation time changes with the number of users and the size of the pairing.
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Fig. 1. Variation in subset key computation time with subset size and size of pairing.
For a given pairing size, the time is linear in the subset size.

Schemes I and II

We present the computation times of both our schemes in Table 1. The running
times are with a margin of error at 95% confidence, computed with 100 samples
for 212 users, for both the schemes. For the first scheme, we use a 200-bit curve
similar to the one used in [3]. The timings presented here do not include the
times required to compute the subset keys; we discuss them in the previous
section. The computation time of AggrDec does not include the time to compute
the subset key of the aggregator s0,τ . The hashing of tags (H(τ)) is performed
using SHA-512.

Table 1. Comparison of running times for Schemes I & II

Enc AggrDec Result recovery

H(τ) ci,τ

Scheme I 0.22(±0.01) 2.40(±0.06) 27.1(±0.38) 112(±11.73)

Scheme II − 0.003(±0.0) 0.15(±0.01) −
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5 Extensions and Applications

The AO encryption schemes proposed in Sect. 3 can be extended to allow the
aggregator to compute other statistics beyond the simple sum

∑
i xi,τ . In this

section, we present extensions and example applications of dynamic AO encryp-
tion. These applications have in common the following: an aggregate value needs
to be computed over a selected subset of a population, while not releasing indi-
vidual user values in the clear. A major advantage of the schemes proposed in
this paper is that they allow to compute aggregate values over any selected sub-
sets of the population, without the need for redistributing keys for every new
subset of selected users considered.

Hereafter, we will recurrently use the application example of surveys, polls,
or electronic voting. In this case, the subset of users Sτ on which the aggregate
is computed is the set of users who are eligible to take the survey or poll, or to
vote in the election. The tag τ is a unique identifier associated with each survey
or election, that determines the subset of users over which the aggregate will
be computed. For instance, the subset Sτ can have associated eligibility criteria,
such as demographic information (citizenship, age, location, . . . ). The individual
user value xi,τ represents the vote of user i, or her answers to the poll or to the
survey. The dynamic schemes proposed in this paper allow to conduct multiple
surveys or elections over different subsets of the population without the need to
redistribute keys each time.

5.1 Weighted Sums

The proposed schemes can be extended to support weighted sums
∑

i ai xi,τ for
some predetermined individual weights ai ∈ Z known to each user. Particular
cases of weighted sums include the simple sum

∑
i∈Sτ

xi,τ where ai = 1 for
all i ∈ Sτ , and the sample mean X̄τ := 1

|Sτ |
∑

i∈Sτ
xi,τ where ai = 1

|Sτ | for all
i ∈ Sτ .

Application. Consider the simple example of a salary survey, where an aggrega-
tor is interested in computing the average salary of a subset Sτ of the population.
User i ∈ Sτ may consider her individual salary xi,τ as private sensitive informa-
tion that she does not wish to disclose in the clear. However, she may be willing
to take part in the survey provided only the average salary Στ = 1

|Sτ |
∑

i∈Sτ
xi,τ

over all users in Sτ is released in the clear, but not the individual user values,
which is the promise of AO encryption.

5.2 k-th Order Moments

If the aggregator wishes to evaluate the k-th order sample moment mk,τ :=
1

|Sτ |
∑

i∈Sτ
(xi,τ )k, each user encrypts (xi,τ )k. For instance, if the aggregator

wishes to evaluate the sample mean (1st order moment) and the sample 2nd
order moment, each user has to encrypt both xi,τ and (xi,τ )2. Applying the basic
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scheme, the aggregator then gets
∑

i∈Sτ
xi,τ and

∑
i∈Sτ

(xi,τ )2, from which the
sample mean and 2nd order moment are obtained as

X̄τ :=
1

|Sτ |
∑

i∈Sτ

xi,τ and m2,τ :=
1

|Sτ |
∑

i∈Sτ

(xi,τ )2.

Similarly, the sample variance (2nd order central moment) can be obtained
as στ

2 := 1
|Sτ |

∑
i∈Sτ

(
(xi,τ )2 − X̄ 2

τ

)
. Note that the unbiased sample variance can

be obtained using Bessel’s correction, as στ
2 := 1

|Sτ |−1

∑
i∈Sτ

(
(xi,τ )2 − X̄ 2

τ

)
.

5.3 Vector Aggregation and Histograms

The schemes can also be extended to support vector aggregation, where each
user i holds a vector xi,τ of some length L. Vector aggregation can be used to
compute at once the aggregates of L different variables of interest, or to compute
histograms. Using the schemes to encrypt the vectors and then perform vector
aggregation is more efficient than encrypting and aggregating each of the L values
of interest separately. This can be done via a standard batching technique, that
is, by packing the L components of the vector into a single ciphertext.

Application. Consider the example of a survey, where an aggregator is interested
in computing both the average height and weight of a subset Sτ of the population.
For each user i, xi,τ = [hi, wi] is a vector of length L = 2 containing the user’s
height and weight. The vector aggregate X̄τ = 1

|Sτ |
∑

i∈Sτ
xi,τ produces a vector

of the same length as xi,τ which contains the average height and weight.

Application [Histogram]. Consider a survey or an election where users are asked
to make a choice among several possible values. In that case, a user’s vote or
answer to a survey question can be encoded as a binary vector of length the
number of possible values among which the user has to chose. Each entry of
the vector is a 0 or a 1 indicating whether the user chose this value or not.
For instance, if a user is asked to choose one candidate among 3 candidates
for an election, then vector xi,τ will be of length 3, the three entries of the
vector representing candidates to the election. An example answer would be
xi,τ = [0, 1, 0], which means that the user voted for the second candidate. The
result of the election can be obtained by aggregating the individual user vectors
over the set of eligible voters Sτ : Στ =

∑
i∈Sτ

xi,τ is a histogram of the votes,
i.e., a vector of the same length as xi,τ which contains the counts over each
entries. In the previous election example, Στ would be of length 3, where each
entries contain the vote counts for each candidate.

In the more advanced case of surveys or election ballots with multiple ques-
tions, the vector binarization procedure presented in the previous example can
be extended. A user’s election ballot or answers to the full survey can be encoded
as a binary vector of length [number of questions × number of possible answers
to each question], and the position of each ‘1’ in the vector indicates the user’s
selected answers to each question. For instance, if a user is asked to choose one
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candidate among 3 candidates for an election, and to answer a question with
5 choices, then vector xi,τ will be of length 3 + 5 = 8, the first three entries of
the vector representing candidates to the election, and the next 5 entries rep-
resenting the possible answers to the question. An example user ballot would
be xi,τ = [0, 1, 0, 1, 0, 0, 0, 0], which means that the user voted for the second
candidate, and chose the first possible answer to the question. The result of
the election can be obtained by aggregating the individual user vectors over the
set of eligible voters Sτ : Στ =

∑
i∈Sτ

xi,τ is a vector of the same length as xi,τ

which contains the counts over each entries. In the previous election example, Στ

would be of length 8, the first 3 entries containing the vote counts for each can-
didate, and the next 5 entries containing the counts that teach possible answer
to the question obtained. Note that questions allowing the choice of multiple
simultaneous answers are possible, for instance xi,τ = [0, 1, 0, 1, 0, 0, 1, 0] could
be a possible ballot where answers 1 and 4 to the question were simultaneously
selected.

Last, ensuring the validity of each individual user inputs xi,τ , to avoid that
users game the election or survey, is a problem beyond the scope of this paper.
It could be addressed by having a voting interface that restricts the format in
which users provide individual ballot inputs rather than allowing a user to return
any vector containing any values, or by using zero-knowledge proofs.

5.4 Statistics – Bootstrap Sampling

The bootstrap is a general method for assessing statistical accuracy, that relies
on sampling with replacement [6]. Consider a training dataset containing n data-
points {x1, . . . , xn} on which an analyst would like to fit a model, or from which
he would like to compute an estimate. For instance, the analyst may be interested
in computing an estimate of the population mean and assessing its accuracy. The
analyst generates B subsets of users of size n, called bootstrap samples. Tag τ
encodes each bootstrap sample. Then the analyst computes the sample mean
for each bootstrap sample of size n using AO encryption without needing to
redistribute keys for each bootstrap sample set. Using the B sample means, the
analyst can assess the accuracy of the sample mean estimate.
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Abstract. With the growing use of cloud storage facilities, outsourced
data security becomes a major concern. However, assured deletion for
outsourced data, as an important issue for users, but received less
attention in academia and industry. Most of traditional deletion solu-
tions require specific data organization forms or storage media, and are
not applicable for outsourced data. Moreover, existing access control
schemes for cloud which used ciphertext-policy attribute-based encryp-
tion (CPABE), focused on fine-grained access control, and completely
ignored data deletion. In this paper, we aim to design an effective data
deletion scheme that can be applied to any CPABE built on linear secret
sharing-scheme. However, the challenge is how to maintain the traits of
traditional CPABE while implementing a universal deletion method.

To address this challenge, we propose a policy graph to describe rela-
tionships among users, policies, attributes, and files and introduce a new
deletion concept for CPABE: when all users are unauthorized for a file,
we say that the file is deleted. Then, we extend an efficient and verifiable
deletion scheme on a CPABE. Specifically, we give an effective method to
select key attributes and update the relevant parts of ciphertext so that
all users become unauthorized. Furthermore, we verify the cipher update
performed by third-party server through merkle trees. We also demon-
strate its universality and prove the security under q-BDHE assumption.
Finally, the performance evaluation and simulation results reveal that our
solution achieves better performance compared with other schemes.

Keywords: Access policy deletion · Ciphertext update · Verifiable
assured deletion · Access right revocation

1 Introduction

During the past decade, we have seen an unprecedented growth in the use of cloud
technology. Technological devices are being used in schools, government insti-
tutes, business sectors, and even hospitals to store data and retrieve it instantly
when desired. Unfortunately, the convenience of technology also brings with it
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some drawbacks. Outsourced data, especially sensitive user information, are at
a risk of threat.

Ciphertext-policy attribute-based encryption (CPABE) is considered one of
the most promising technologies to achieve flexible and fine-grained data access
control without relying on a third party in cloud storage systems [14]. Many
security issues in cloud computing has been fully studied in existing CPABE
schemes, such as attribute revocation, ciphertext update, policy hiding, and
efficient encryption/decryption. However, assured outsourced data deletion, as
an important issue, received less attention in academia and industry.

Why is data deletion important in a CPABE scheme? Consider the following
scenario, (1) the data owner encrypts a file using a CPABE scheme, and then
stores the ciphers in a semi-trusted cloud server, (2) then he/she requests the
server to delete the ciphertexts. In the real world, the cloud server simply releases
the logical relationship between blocks, any authorized user can still access the
deleted data with the help of the cloud server [6]. Then, he/she decrypts these
ciphers with his/her secret key to access files that have been deleted. As we can
see, the lack of specific data deletion operations in CPABE may lead to data
leakage. Therefore, it’s necessary to design extra deletion methods for every
CPABE scheme to ensure that all users cannot decrypt deleted data.

Assured deletion has been extensively studied as an important direction of
privacy protection. There are two ways to perform secure deletion: (1) overwrite
the data [6] or destroy the physical media; (2) encrypt data or the whole media
and use the first method or one of the other specified methods to securely delete
the key [1]. The first method is not applicable for the cloud-based model because
of the popularity of the virtualized storage models in the cloud computing [2].
The second method includes time-based and policy-based. The latter achieves
more flexible deletion than the former [13]. Policy-based deletion schemes can be
broadly divided into two types: one is based on other encryption technologies,
the other is based on CPABE. However, the former cannot provide flexible access
control for outsourced data in cloud computing. To the best of our knowledge,
only the scheme in [19] is based on CPABE. The basic idea of this scheme is to
add a virtual deletion attribute for each access policy and each user’s attribute
set, and then delete files by revoking the deletion attribute. Unfortunately, we
must re-encrypt all data with a new access policy if we want to extend this
scheme to an existing CPABE. Moreover, the overhead of file deletion is very high
because a data owner is required to perform multiple bilinear pairing operations.

As mentioned above, most of existing deletion schemes don’t achieve fine-
grained access control, while most of the CPABE schemes completely ignore data
deletion. In this paper, we would like to propose an assured deletion method
without losing the characteristics of the attribute encryption scheme, such as
fine-grained access control, flexible user rights management. However, the chal-
lenge is that how to maintain the traits of traditional CPABE while implementing
a generic deletion method. That is, the deletion method can be applied to other
CPABE schemes. We translate this challenge into the problem how to establish
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the relationship between attribute revocation, policy deletion and data deletion,
which is talked in Sect. 3.

In the CPABE-based outsourcing scenario, files are encrypted by symmetric
technology, such as AES. Then, the data key is protected by CPABE. Therefore,
data deletion is to delete data keys. It can be achieved while all authorized users
cannot correctly recover the data key of deleted files. in order to realize deletion,
we make all users’ attribute set unauthorized. The main contributions of this
work can be summarized as follows.

– We propose a policy graph that defines the relationship among users, policies,
attributes, and files. A protected class is considered the smallest access unit.
It can support to simultaneously decrypt or delete a group of files. In order
to efficiently delete data, we also define a key attribute set for each policy.

– We extend an efficient deletion method on the traditional CPABE. It converts
data key deletion into policy deletion. The semi-honest cloud performs ciphers
update upon receiving a deletion request. We conduct an operation to select a
minimal key attribute set so that the server only updates essential attributes.

– We present a verify method based on Merkle Tree. The authority calculates
the Merkle root of the updated ciphertext components as long as the server
updates ciphers. Finally, it can return a verify result to the data owner. This
method can efficiently verify ciphertext update.

– We give a security proof under decisional q-parallel bilinear Diffie-Hellman
(q-BDHE) assumption, and universality analysis of our deletion method. We
also analyse the performance of user-side encryption/decryption, and policy
deletion. We also simulate our solution using the library in the github [7].
These results show that our scheme not only extends deletion in the CPABE
scheme but also is more efficient than schemes in [16,19].

The remaining of this paper is organized as follows. Section 2 gives the
background. Section 3 shows the definition of the policy graph, the relation-
ship between attribute revocation and file deletion, and security requirements.
Section 4 gives the system model and security model. Section 5 gives the construc-
tion of our scheme. Section 6 gives some analysis. Section 7 shows performance
analysis and experimental results. Section 8 gives the related works.

2 Preliminaries

2.1 Access Policy

Let P = {P1, P2, · · · , Pn} be the attribute universe. The set A ⊂ 2{P1,P2,··· ,Pn}

is monotone if ∀B,C ∈ A: if B ∈ A and B ⊂ C, then C ∈ A. Access struc-
ture is the monotone set A consisting of all non-empty subsets of P , that is
A ⊂ 2{P1,P2,··· ,Pn}/{∅}. The sets in A are called authorized set, and the sets not
in A are called unauthorized set. In the CPABE scheme, only the secret key
corresponding to the authorized set can decrypt the ciphertext correctly.
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2.2 Linear Secret-Sharing Schemes

A secret-sharing scheme Π over a set of attributes P is called linear (over Zp) if:
– The shares for each attribute form a vector over Zp.
– There exists a matrix an M with l rows and n columns called the share

generating matrix for Π. For all i = 1, ..., the i-th row of M we let the
function ρ defined the attribute labeling row i as ρ(i). When we consider the
column vector v = (s, r2, ..., rn), where s ∈ Zp is the secret to be shared, and
r2, ..., rn ∈ Zp are randomly chosen, then M · vT is the vector of l shares of
the secret s according to Π. The share Mi · vT belongs to the attribute ρ(i).

It is shown in [14] that every linear secret sharing-scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows: Sup-
pose that Π is an LSSS for the access structure A. Let S ∈ A be any authorized
set, and let I ⊂ {1, 2, 3, · · · , } be defined as I = i : ρ(i) ∈ S ⊂ {1, 2, 3, · · · , }.
Then, there exists constants {wi ∈ Zp|i ∈ I} such that, if {λi} are valid shares
of any secret s according to Π, then

∑
i∈I wiλi = s. Furthermore, it is proved in

[14] that these constants wi can be found in time polynomial in the size of the
share-generating matrix Ml×n. In our scheme, we encrypt the data key with the
share-generating matrix Ml×n which is related with the access policy.

2.3 Merkle Hash Tree

A Merkle Hash tree [9] is a tree in which every leaf node is labelled with the hash
of a data block and every non-leaf node is labelled with the cryptographic hash
of the labels of its child nodes. Hash trees allow efficient and secure verification
of the contents of large data structures. A Merkle tree is recursively defined as
a binary tree of hash lists where the parent node is the hash of its children, and
the leaf nodes are hashes of the original data blocks. In this paper, we use the
merkle tree to efficiently validate the ciphertext update in attribute revocation
and file deletion.

2.4 Crypographic Assumption

Waters [14] gave the definition of the decisional q-parallel Bilinear Diffie-Hellman
Exponent (q-parallel BDHE) problem as follows. Chooses a group G of a prime
order p. Let a, s, b1, b2, · · · , bq ∈ Zp be chosen at random and g be a generator
of G. Then

y = g, gs, ga, · · · , gaq

, , gaq+2
, · · · , ga2q

∀1 ≤ j ≤ q, gsbj , g
a
bj , · · · , g

aq

bj , , g
aq+2

bj , · · · , g
a2q

bj

∀1 ≤ k, j ≤ q, k �= j, g
as

bk
bj , · · · , g

aqs
bk
bj .

The advantage of an adversary A to distinguish a valid tuple e(g, g)aq+1s

from a random element R ∈ GT is as follows,

AdvA = |Pr[A(y , e(g, g)aq+1s) = 0] − Pr[A(y , R) = 0]|
where a bilinear pairing e : G × G → GT .
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3 Problem Description

In this section, we present a policy graph describing the relationship among
users, files, policies, attributes, and illustrate the mapping between attribute
revocation and policy deletion. Finally, we give three security goals.

3.1 Policy Graph

We define the policy graph suitable for our scheme. In the following description,
& represents the predicate AND, and | represents the predicate OR.

Protected Class. In a corporate environment, if a file is a minimum access unit,
each file will possess a data key, which causes inconvenience to each user in key
management. In this paper, we treat files protected by the same access policy
as a minimal access unit. A protected class is used to describe the logical group
of files. In other words, files under the same protected class have the same data
key. For example, in Fig. 1, File01, File02 and File03 possess the same access
policy Att01 & (Att02 |Att04) and the same data key. A minimal access unit is
also the smallest deletion unit.

Definition of Policy Graph. Let G(V,E) denote a policy graph, as shown in
Fig. 1. V is the set of all nodes, and it includes two kinds of nodes, source nodes
(attribute nodes) and interior nodes (protected class nodes). The indegree of a
source node is 0. E is the set of all edges. There are also two types of edges,
edges from a source node to an interior node and edges from an interior node
to an interior node. Each protected class node represents a unique user access
policy that is a logical combination of multiple attribute nodes. When a user is
in the user list of an attribute node, the node is true for the user. Therefore, the
value of a protected class node for a user depends on the access policy of this
protected class and the user’s attribute set. Note that the value of a protected
class node is always consistent with that of its access policy. For example, the
access policy of the node p3 is Att03 | Att05. For User01 and User02, p3 is true.
But for User03 and User04, p3 is false. Importantly, when a protected class
node is true for a user, he/she can access the correct data key. Otherwise, the
data key is invisible to the user.

The Key Attribute Set of a Policy. An attribute set is a key attribute set of
a policy if and only if all attributes in the set are False, p is always False. Let
KASp be a key attribute set of the policy p. If p is Att01 & Att02, KASp will be
one of the following sets {Att01},{Att02}, {Att01, Att02}. If p is Att01 | Att02,
KASp will be {Att01, Att02}. For an |, if and only if all child nodes are false, the
policy is false. For an &, we only need to set one of child nodes to false. There
are multiple sets of key attributes for a complex access policy, depending on the
type of gates that makes up the policy. In this paper, we only focus on one of
the smallest key attribute sets. The reason is given in Sect. 5.3.
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Fig. 1. A policy graph G(V, E) Fig. 2. ARPD

3.2 Attribute Revocation and Policy Deletion

Attribute revocation means an attribute of a user is revoked. That is, the revoked
user’s access right to each policy is updated. In Fig. 1, when we revoke the
attribute Att02 of the user User01, the access policy of p4 changes from true to
false for User01 but access rights of other users related to Att02, like User02,
User03, are not affected. Yang et al. [17] proposed an effective attribute revo-
cation scheme. As shown in Fig. 2, while an attribute of a user is revoked, other
users containing the revoked attribute will update their secret key and cipher-
texts related with this revoked attribute will also be updated. SK is user secret
key and CT is data key ciphertext. Their generation details are defined in Sect. 5.

In this paper, the deletion of a policy means the deletion of a data key. After
a policy is deleted, the policy is false for all users. That is, all users’ access rights
to the deleted policy are revoked. For example, if p1 is deleted, then all files
protected by p1 will be inaccessible. p1 is always false for any user. Therefore,
our main deletion idea is to ensure that the value of the deleted policy is always
false for any user. According to Sect. 3.1, if we let all attributes in the set KAS of
the deleted policy be false, the policy will be inaccessible (false) for any user. For
example, if we delete p1 and {Att01} belongs to KASp1 , we will make Att01 false
for any user. We achieve a policy deletion method by only updating the deleted
policy’s ciphertext components related to attributes in the KAS. We give the
schematic in Fig. 2. The marked part indicates the part that was updated and
ARPD means attribute revocation and policy deletion.

3.3 Security Goals

We distinguish users from three aspects: (1) Is he/she an authorized user? (2)
Registration time (bounded by the time for policy deletion). (3) Have she/he
visited the correct data key before deletion? According to this, we believe that
when a user accesses a ciphertext, he/she always needs to download the lat-
est ciphertext from the cloud server instead of storing previous keys and keys’
ciphertexts. We consider three specific security goals as followings:
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– Confidentiality of data and keys. It is expected that the data are well pro-
tected when stored and processed in the cloud and the corresponding secret
keys will not be disclosed to malious users.

– Secure fine-grained access control. This requirement is used to ensure that
unauthorized users are always unable to access files. Of course, it also can
resist the collusion attack of unauthorized users.

– Assured deletion. These kinds of users cannot gain any knowledge of files
protected by the deleted policy. The data owner can verify the data deletion.

4 System Model

In this section, we propose the system model, including the parties and their
functions. Then, we give the framework of our scheme to introduce the input
and output of each algorithm. Finally, we give the security model.

4.1 Overview of System Model

Our system is composed of five participants: center server (CS), the authority
(AA), the public cloud server (PBS), the data owners (DO) and the data con-
sumers (DU), as shown in Fig. 3. In order to achieve higher security, we require
that the user identity private key and the user decryption key be generated by
two different agencies, CS and AA.

The CS is a trusted server in the system. In the real world, it’s usually
provided by the government. In the system initialization, it runs CSetup for
system parameter generation and user registration.

The AA is also a trusted server in the system. It is mainly responsible for
issuing secret keys, and assistance for policy deletion. The AA runs AASetup
for generating attribute parameter. Then, it runs SKeyGen to produce secret
keys for legal users. In th policy deletion phase, DeleteKeyGen is executed. It
also performs V erify after a cipher is updated.

The PBS is a semi-honest (curious but honest) server. It stores files’ and data
keys’ ciphertexts. In the decryption, it runs TkeyGen to assist users to decrypt.
It updates the cipher of related data key so as to delete files protected by the
same protected class.

The DO encrypts files and data keys. The DO first queries the AA whether
the policy has been registered. If so, he/she should execute TkeyGen and then
Decrypt to get the data key, and encrypts files with this key. Otherwise, the AA
records this policy and the DO encrypts files and the data key.

Each DU is assigned to a secret key by the AA. With the help of PBS, the
DU runs Decrypt for decryption in a constant time.

4.2 Definition of Our Scheme Framework

Our assured deletion scheme contains four phases: system initialization, encryp-
tion and decryption, policy deletion, and verification of cipher updates. In the
Fig. 3, ➀ - ➅ refer to the main parameters of CSetup, SKeyGen, Encrypt,
TKeyGen, DeleteKeyGen, and V erify, respectively.
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Fig. 3. System model

System Initialization

– CSetup(1λ) → (msk, sp, (sk, vk), {id, UPKid, USKid, Cert(id)}) : This algo-
rithm takes the security parameter λ. It outputs the master key msk, the
system parameter sp, a secret and verificative key pair (sk, vk). It generates
a series of parameters for each user, such as a global unique user identity
id, a user-independent public and private key pair UPKid, USKid, and the
certificate Cert(id).

– AASetup(U) → (ASK,APK, {SKai
, PKai

|ai ∈ U}) : This algorithm
takes the attribute set U containing all attributes as input. It outputs the
attribute authorization secret key ASK and the attribute authorization pub-
lic key APK. For each attribute ai in U , it generates an attribute key pair
(SKai

, PKai
).

– SKeyGen(Cert(id), sp,ASK,ATid, {PKai
}) → (SKid) : It takes as inputs

the user certificate Cert(id), the system parameter sp, the attribute autho-
rization secret key ASK, a user’s attribute set ATid and a series of attribute
public keys {PKai

}. It outputs the secret key SKid.

Encryption and Decryption

– Encrypt(Cert(id), sp,APK, policy, f, k, (M,ρ), {PKai
}) → (C,CT ) : This

algorithm takes as inputs the certificate Cert(id), the system parameter sp,
the attribute authorization public key APK, the user access policy policy,
a file f , a data key k, the access structure (M,ρ), and a series of attribute
public keys {PKai

}. It outputs the file ciphertext C, the data key ciphertext
CT .

– TKeyGen(CT, SKid, UPKid) → (TKid) : This algorithm takes as inputs the
data key cipher CT , the secret key SKid, and the identity public key UPKid.
It outputs the token key TKid.

– Decrypt(C,CT, TKid, USKid) → (f) : This algorithm takes as inputs the
file ciphertext C, the data key ciphertext CT , the token key TKid, and the
identity secret key USKid. It outputs the plaintext f .
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Policy Deletion

– DeleteKeyGen(Cert(id), ASK, {SKaj
|aj ∈ KASp},KASp) → (

{
PDKaj

|aj

∈ KASp

}
) : This algorithm takes as inputs the user certificate Cert(id),

the attribute authorization secret key ASK, the related attribute secret keys
{SKa

′
j
}, and the key attribute set KASp for the policy p to be deleted. It

outputs the policy deletion key {PDKaj
}.

– CTDelete(CT, {PDKaj
}) → (CT

′′
) : This algorithm takes as inputs the data

key ciphertext CT and the policy deletion key {PDKaj
}. It outputs the data

key ciphertext CT
′′
, which cannot be decrypted by any user.

Verification of Cipher Updates

– V erify(CT, {PDKaj
}) → (true/false) : This algorithm takes as inputs the

data key ciphertext CT and the policy deletion key {PDKaj
}. It outputs

true or false.

4.3 Security Model

We define the security model of our scheme by the following game between a
challenger C and an adversary A. A can query for all secret keys that cannot be
used directly to decrypt the challenge ciphertext.

Init. A determines the access structure A
∗ of the deleted policy p∗, meaning

the data key encrypted by A
∗ is deleted.

Setup. The CSetup and AASetup are run to generate a series of system
parameters. Then, C sends the public keys to A.

Phase 1. A queries secret key by sending (id, SAid) to C, where SAid is a
set of attributes. C gives the secret key SKid to A.

Challenge. A submits two equal length messages m0 and m1. C flips a
random coin b, and encrypts mb under A

∗. Then, the ciphertext CT ∗ is sent to
A.

Phase 2. The adversary repeats the phase 1.
Guess. The adversary outputs a guess b∗ of b.
The advantage of an adversary in this game is defined as |Pr[b∗ = b] − 1

2 |.
Definition 2 A scheme is secure if all polynomial time adversaries have at

most a negligible advantage in the above game, that is to say, |Pr[b∗ = b] − 1
2 |

is negligible.

5 Construction of Our Scheme

In this section, we give the details of our scheme. Let G and GT be the multi-
plicative groups with the same prime order p and e : G×G → GT be the bilinear
map. Let the generator of G be g. Let H : {0, 1}∗ → G be a hash function such
that the security is in the random oracle.
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5.1 System Initialization

The CS runs CSetup. It randomly chooses a from the group Zp and sets the
master key msk = a, the system parameter sp = ga and a secret and verification
key pair (sk, vk). Then the CS sends sp and vk to the AA. When a user initiates
a registration request, the AA assigns him a global unique identity id. Then, it
randomly chooses uid, zid ∈ Zp to compute a user identity public key UPKid =
guid and a user identity secret key USKid = zid. Next, it computes a certificate
Cert(id) = Ensk(id, uid, g

1/zid) with public key encryption mechanism and sends
{id, UPKid, USKid, Cert(id)} to the user. Only the parameter UPKid can be
public.

In AASetup, the AA generates the authorized secret key ASK = (α, β, γ),
where α, β, γ are randomly selected from the group Zp. Then, it generates
the authorized public key as follows: APK = (g1/β , gγ/β , e(g, g)α). For each
attribute ai in the attribute set U , it produces the attribute secret key SKai

=
vai

and the attribute public key PKai
= (gvai H(ai))γ , where vai

is randomly
selected from the group Zp. The APK, all PKai

and sp can be public.
In SKeyGen, the AA produces the user secret key for each legal user accord-

ing to his/her attribute set. At first, it uses the verification key vk to decrypt the
user’s certificate Decvk(Cert(id)). If the DU is illegal, the AA does not respond
to the user’s request. In contrast, it computes the secret key as follows:

SKid = (Kid = gα/zidgauidg
tid
β , Lid = (g1/zid)βtid , Rid = gtid ,

∀ai ∈ ATid,Kid,ai
= gβγtid/zid(gvai H(ai))γ(βuid+γ))

where tid is a random number in Zp.

5.2 Encryption and Decryption

In the encryption phase, the DO sends a query and the user access policy p to
the AA. The AA sends a confirmation whether the corresponding data key has
already existed. If it existed, the owner performs the TKeyGen and Decrypt to
get the data key k and performs a symmetric encryption. Otherwise, the owner
randomly produces the data key k and runs Encrypt to encrypt the file f and
the data key k. The DO computes the data key ciphertext CT as follows:

CT = (C = ke(g, g)αs, C1 = gs, C2 = g
s
β

∀i = 1tol : CKi = gaλi · (PKρ(i))−ri ,DK1,i = g
ri
β ,DK2,i = g− γri

β )

In the decryption phase, the DU sends his/her secret key to the PBS and
requests the file ciphertext C. If the DU is authorized, the PBS computes the
token key by using TKeyGen as follows and sends the token key TKid to the
DU. The calculation by the PBS is as follows. First,

e(C1,Kid)e(C2, Rid)−1 = e(g, g)
sα
zid e(g, g)asuid
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Then,

e(CKi, UPKid)e(DK1,i,Kid,ρ(i))e(DK2,i, LidPKρ(i)) = e(g, g)aλiuid

Finally,

TK =
e(g, g)

αs
zid · e(g, g)sauid

∏
ρ(i)∈ATid

(e(g, g)aλiuid)wi
=

e(g, g)
αs
zid · e(g, g)sauid

e(g, g)auid

∑
ρ(i)∈ATid

λiwi

If ATid is an authorized set of the policy contained in the ciphertext, the
token key TKid will be e(g, g)

αs
zid . The user decrypts the data key ciphertext CT

as follows:

k =
CK

TKUSKid
=

ke(g, g)αs

e(g, g)
αs
zid

zid
.

Otherwise, TKid will be ⊥.

5.3 Policy Deletion

According to Sect. 3, we know that as long as we set all attributes which are
included in a key attribute set of a deleted policy to false, all users become
unauthorized for this policy. We update the deleted policy’s data key ciphertext’s
components that are related to the attributes in the key attribute set, so that all
users cannot correctly decrypt the ciphertext. In the file deletion phase, the AA
first produces the deletion key by running DeleteKeyGen for the deleted policy.
Then, the PBS runs CTDelete for the data key cipher of the deleted policy.

In DeleteKeyGen, the AA searches a minimal key attribute set of the deleted
policy by running Algorithm1. Why do we need to use an extra operation to find
the smallest set instead of directly using all attributes as a key attribute set?
Because, when the number of attributes in the key attribute set is reduced, the
number of the ciphertext component to be updated is also reduced. What’s more,
the cipher update time far exceeds the execution time of the search operation.

Fig. 4. A special policy Fig. 5. Verification

How do we choose the smallest key attributes set? For a simple policy, Att01
& Att02 or Att01 | Att02, we can easily determine a minimum key attributes set.
As shown in Sect. 3.1, as long as it is the &(AND) gate we only need to randomly
set one of its child nodes false. For a complex policy, we represent it as a binary
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tree. All non-leaf nodes are gate nodes, representing an access policy, and all
leaf nodes are attribute nodes. We assume that the minimum key attribute set
of a leaf node is composed only by itself. The key attribute set of a policy is the
minimum key attribute set of the root node of its corresponding binary tree. As
shown in Fig. 4, the policy is (Att01 & Att02) & (Att03 | Att04). For the node
1, its key attribute set is {Att01} or {Att02}. For the node 2, its key attribute
set is {Att03, Att04}. For the root node 0, its key attribute set is {Att01} or
{Att02} or {Att03, Att04}. Therefore, the minimum key attribute set for this
policy is {Att01} or {Att02}. Obviously, the minimum key attribute set of a
non-leaf node is the union of the smallest key attribute sets of its child nodes
or the smaller one. We present a recursive algorithm SelKAS to implement the
selection of a minimum key attribute set for a binary tree.

Then, it computes the deletion key PDKai
for each key attribute belonging

to KAS.
∀ai ∈ KASp : PDKai

= βdi,

where di is a random number in Zp.
In CTDelete, the PBS deletes the data key ciphertext as follows.

CT
′
= (C

′
= C,C

′
1 = C1, C

′
2 = C2,DK

′
1,i = DK1,i,DK

′
2,i = DK2,i

∀i = 1tol, if(ρ(i) /∈ KASpi
) : CKi

′ = CKi,

if(ρ(i) ∈ KASpi
) : CKi

′ = CKi · DK
PDKρ(i)
2,i )

We only update the data key ciphertext of p. As we can say, the policy is
always False for each DU. No one can obtain the data key of p, which means all
files protected by this user access policy are deleted.

5.4 Verification of Cipher Updates

The DO submits a verification request to AA after performing a policy dele-
tion operation. Figure 5 shows a verification diagram, where the deleted policy
includes four attributes. In the Fig. 5, Hashi is the hash value of ciphertext
component CKi and Hashij is the hash value of Hashi||Hashj. The process
in the dashed box needs to be performed while generating the initial cipher. As
long as a data key ciphertext is generated, the AA computes the initial merkle
root for all cipher components {CKi} of the policy. Let MerkRoot be the result
of Merkle({CKi}).

As long as a data key cipher is deleted, the AA requests the related ciphertext
components and recovers the cipher component as following:

if(ρ(i) /∈ KASpi
) : ¯CKi = CKi,

if(ρ(i) ∈ KASpi
) : ¯CKi = CKi/DK

PDKρ(i)
2,i .

The AA computes MerkRoot
′

= Merkle( ¯{CKi}). It outputs true while
MerkRoot

′
= MerkRoot. The DO who initiated the deletion request is con-

vinced that the ciphertext has been changed.
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Algorithm 1. Select Key Attributes of the deleted policy SelKAS
Input: the node of binary tree treeNode;
Output: the key attributes set KAS;
1: Create a key attribute set KAS = ∅;
2: if treeNode.isLeaf() then
3: KAS.add(treeNode)
4: return KAS
5: end if
6: KASL = SelKAS(treeNode.Lchild)
7: KASR = SelKAS(treeNode.Rchild)
8: if treeNode.value = ”AND” then
9: if thenKASL.size() > KASR.size()

10: KAS = KASR
11: else
12: KAS = KASL
13: end if
14: else
15: if treeNode.value = ”OR” then
16: KAS = KASL ∪ KASR
17: end if
18: end if
19: return KAS

6 Universality Analysis and Security Proof

In this section, we give the universality analysis and the security proof.

6.1 Universality Analysis

Our scheme can be applied to all CPABE schemes built on the LSSS access
structure. The reason why an authorized user can decrypt correctly is that the
parameters corresponding to the user attributes match that of the access struc-
ture in the ciphertext. While updating parameters related to attributes in the
KAS, we break the match between them so that all users can’t decrypt correctly
during the decryption phase.

6.2 Security Proof

The proof of the first two security goals are similar to [14]. The third goal is
proved as follows.

Theorem 1. Suppose the decisional q-parallel BDHE assumption holds in group
G and GT , there is no A who can break the security of the proposed protocol with
a nonnegligible advantage.
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Proof. The challanger C randomly chooses μ ←R {0, 1}. If μ is 0, then Z =
e(g, g)aq+1s. If μ is 1, Z ←R GT . Then, it set T = (ȳ, Z). After receiving T , B
performs the following games.

Init. The adversary A outputs the challenge access structure (M∗
l∗×n∗ , ρ∗).

Setup. B runs CSetup and AASetup and gives g to A. Then it also ran-
domly chooses α, β, γ ∈ Zp, and sets α = α

′
+ aq+1 by letting e(g, g)α =

e(ga, gaq

)e(g, g)α
′
.

The B programs the random oracle H as follows. It records every pair
(x,H(x)), and returns the same value for the same x. Let X be the set of
indices i, such that ρ∗(i) = x. Then, it runs the oracle as

H(x) = gdx

∏

i∈X

g
aM∗

i,1
bi

a2M∗
i,2

bi
··· an∗

M∗
i,n∗

bi .

If X is ∅, H(x) = gdx , where dx is a random value.
The B generates APK = (e(g, g)α, g1/β , gγ/β). Public attribute keys are

produced as follows.

PKx = (gdx+vx

∏

i∈X

g
aM∗

i,1
bi

a2M∗
i,2

bi
··· an∗

M∗
i,n∗

bi )γ .

B issues an identity id to A and chooses two random number u
′
id, zid. Then,

USKid = zid, UPKid = gu
′
idg

−aq

zid by setting uid = u
′
id − ( aq

zid
). (USKid, UPKid)

is sent to A.
Phase 1. A makes queries for secret key by submitting (id, SAid). B com-

putes a secret key SKid for the set SAid as follows. Note that SAid is an collection
of arbitrary attributes. A can obtain the key.

B finds a vector w = (w1, w2, · · · , wn∗) ∈ Z
n∗
p in which w1 = −1, and w ·M∗

i

= 0 for all i while ρ(i)∗ ∈ SAid.
Then, it chooses a random value r ∈ Zp and lets t as t = r+w1a

q +w2a
q−1+

· · · + wnaq−(n∗−1). It sets

L = g
rβ
zid

n∗
∏

i=1

(gaq+1−i

)
wiβ

zid , R = gr
n∗
∏

i=1

(gaq+1−i

)wi ,

K = g
α

′
zid gau

′
idg

r
β

n∗
∏

i=1

(gaq+1−i

)
wi
β .

Then, if x is used in the access policy

Kx = LγPK
βu

′
id

x PKγ
x (gaq

)
−βγ(vx+dx)

zid

∏

i∈X

n∗
∏

j=1

(g
aq+1+j

bi )−βγM∗
i,j .

If x is not used in the access policy Kx = LγGPK
βγ(vx+dx)
id gγ2(vx+dx).
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Challenge. A submits two messages of equal length, m0 and m1. B flips a
coin b. It computes C = mbTe(gs, gα

′
), C1 = gs and C2 = g

s
β . The difficult

part Ci is to simulate the values since this contains terms that must be canceled
out. However, the simulator can choose the secret splitting, such that these can
be canceled out. Intuitively, the simulator will choose random y

′
2, · · · , y

′
n∗ and

share s using the vector v = (s, sa + y
′
2, sa

2 + y
′
3, · · · , san∗−1 + y

′
n∗), and

λi = sM∗
i,1 +

n∗
∑

j=2

(saj−1 + y
′
j)M

∗
i,j .

It also chooses random values r
′
1, · · · , r

′
l .

Then, it sets DK1,i = (gr
′
i gsbi)

1
β , DK2,i = (gr

′
i gsbi)− γ

β . Let Ri be the set of
the other indices that map to the same attribute as row i,∀k ∈ Ri, k �= i, ρ∗(i) =
ρ∗(k), for all i = 1, 2, · · · , n∗. The B generates a key attribute set KAS of the
deleted policy. if ρ∗(i) ∈ KAS,

Ci = ((gvρ∗(i)+v
′
i H(ρ∗(i)))γ)r

′
i (

n∗
∏

j=2

(gaM∗
i,jy∗

j ))(g−bisγ)vρ∗(i)+v
′
i+dρ∗(i)

(
∏

k∈Ri

n∗
∏

j=1

(gajs(
bi
bk

))γM∗
k,j ),

where v
′
i is a random value. Otherwise,

Ci = (PKρ∗(i))r
′
i (

n∗
∏

j=2

(gaM∗
i,jy∗

j ))(g−bisγ)vρ∗(i)+dρ∗(i)(
∏

k∈Ri

n∗
∏

j=1

(gajs(
bi
bk

))γM∗
k,j ).

Phase 2. Then, it repeats the phase 1.
Guess. A will eventually output a guess b∗ of b. If b∗ = b, B outputs μ = 0

to show that T = e(g, g)aq+1s. Otherwise, it outputs μ = 1 to indicate that it
believes T is a random group element in GT . When T is a tuple, B gives a perfect
simulation so we have that Pr[B(y , T = e(g, g)aq+1s = 0)] = 1

2 + AdvA.
When T is a random group element, the message mb is completely hidden

from the adversary and we have Pr[B(y , T = R) = 1] = 1
2 .

Thus, the total advanrange for A in this q − parallel BDHE game is negli-
gible.

Privacy-Preserving Guarantee. In our scheme, PBS, CS, and AA can only
get one of the user’s keys (the secret key and the identity secret key). However,
only knowing the above two keys can correctly decrypt the ciphertext.

7 Performance Analysis

In this section, we analyze the performance of our scheme and deletion scheme
in [19] and some CPABE schemes in [8,11,15–18]. We also further compare our
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scheme with schemes in [16,19]. Because Yang’s scheme in [17] did not support
backward security [5] when the revoked user colludes with non-revoked users.
And in the remaining CPABE schemes, the scheme in [16] has better encryption
performance.

7.1 Comprehensive Analysis

We compare our scheme with previous works in terms of the user-side efficiency
and some features, data deletion and the verification of updating ciphers, as
shown in Table 1. In our scheme, we achieve efficient encryption by translating
key encryption into key decryption and offload part of the key decryption oper-
ation to the cloud. In the deletion phase, we use hash and exponential operation
rather than time-consuming pair. In general, our scheme not only realizes the
efficient operation of the DU, but also improves the shortcomings of existing
schemes in [8,11,15–19].

Table 1. Comparisions with previous related schemes

Scheme User-side efficient Data deletion Verifiable cipher update

Encryption Decryption

[8,15,16] × × × ×
[11,17] × � × ×
[19] × × � �
Ours � � � �

7.2 Implementation and Evaluation

We perform experiments on a Windows with an Intel Core i7 CPU at 3.40 GHz
and 8.00 GB RAM. We conduct implementation by the project CloudCrypto
based on the jpbc library [3]. While testing the costs in different schemes, we
use a prime-order bilinear group with 160-bit and the base field size is 512-bit.
In the verification phase, we use SHA-256 to generate the merkle root.

We implement three schemes, including our scheme, Yang’s scheme in [16]
and Yu’s scheme in [19]. We simulate all algorithms and measure the performance
of encryption, decryption and deletion. All algorithms are executed 100 times.
The results are the average of total time. The number of users’ attributes ranges
from 1 to 24. Let nf,p be the number of files protected by a policy.

Encryption Efficiency. We test the cases where nf,p is 1, 2, and 3, as shown
in Fig. 6(a). When nf,p is 1, the average encryption time of a file changes
from 60.267 ms to 558.13 ms as the number of attributes possessed by the pol-
icy increased, and when nf,p is greater than 1, the average encryption time
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reduces rapidly. When nf,p is 2 and 3, the average encryption time is 30.882 ms
to 279.7 ms and 20.838 ms to 186.678 ms. The encryption time in [19] ranges from
66.757 ms to 468.413 ms, and the time in [16] is from 62.743 ms to 656.604 ms.
It’s obvious that our solution shows better encryption performance than that
in [16,19] when nf,p is greater than 1. Specifically, we convert the user-side
encryption overhead to the outsourced decryption. We also test the cost time of
the secret key generation phase of the three scenarios. The secret key in Yu’s
contains less information, so this scheme has the best secret key generation effi-
ciency. Compared with the scheme in Yang’s, ours always takes an extra 20 ms
or so. The reason is that we always need to perform an exponential operation
more.

(a) Enc (b) Dec

(c) Del (d) SK Gen

Fig. 6. Experimental results

Decryption Efficiency. Our decryption operation is divided into two parts:
the generation of token key by the PBS, and then the final encryption by the
DU. As shown in Fig. 6(b), a large amount of decryption overhead is offloaded
to the PBS, the cost on the DU is almost close to 0 (0.608 ms–0.793 ms). In
[19], the DU takes a lot of time (36.042 ms–324.793 ms) for decryption. In [16],
decryption time on each DU is from 25.042 ms to 300.793 ms. What stands out
in the Fig. 6(b) is that our scheme achieves more efficient decryption.

Policy Deletion Efficiency. We test the total cost of the deletion phase includ-
ing the policy deletion key generation, the cipher update and the verification,
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and analyze the best case and the worst case. “Best” means the key attribute
set only includes one element. “Worst” is that the key attribute set contains all
attributes in the deleted policy. Yu’s [19] deletion is also given in the Fig. 6(c).
Note that the horizontal axis is the number of attributes of a deleted policy.
It’s apparent that even in the worst case, our scheme is also more efficient than
Yu’s in [19]. Moreover, we also test the case while we perform deletion without
the operation SelKAS, where the overhead is always close to the worst case. In
the Fig. 6(c), SKV is SeleKAS. Therefore, we can effectively reduce the num-
ber of updated ciphertext components and improve the deletion efficiency by
performing the selection of key attributes.

8 Related Work

Assured deletion has been extensively studied in a large number of works. These
studies are divided into two parts: (1) erase the data [6] or destroy the physical
media; (2) encrypt data and then make data key irrecoverable [1].

8.1 Erase the Data

The schemes [6] based on erasing depend heavily on the physical storage. They
are only suitable for the deletion of local data. Unfortunately, due to the pop-
ularity of the virtualized storage medias in the cloud computing, these schemes
are no longer feasible.

8.2 Secure Deletion via Encryption

The encryption-based deletion methods are to implement encryption key dele-
tion. They can be divided into three categories: (1) based on the erasable memory
[1,10], (2) time-based [12]and (3) policy-based [2,13,19]. First case mentioned
above is to store the key in erasable memory. Obviously, it is difficult and imprac-
tical for outsourcing scenarios. The second methods are to generate a time key
in the encryption phase. When the time key expired, the corresponding file will
not be decrypted correctly. However, we need to know the deletion time of all
files in advance. Fortunately, policy-based outsourced data deletion overcomes
the shortcomings of the first two solutions.

Tang et al. [13] first proposed a policy-based deletion scheme, emphasizing
outsourced data deletion based on multiple key management, but ignoring the
flexible access control of data which is an important feature for outsourcing
scenario. Cachi [2] et al. then proposed a secret sharing-based deletion scheme.
The key is inaccessible by setting the recovery threshold and updating the key
component, but the update of the key component still relies on the erasable
memory.

With the development of access control schemes, Waters et al. [14] firstly pro-
posed the ABE, especially, CPABE. It is considered to be a promising solution in
the outsourcing scenario because of its flexible access control. However, most of
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attribute encryption schemes focus on user right management, key leakage track-
ing, lightweight encryption and decryption and so on [4,8,11,16,17]. Assured
deletion for outsourced data, as an important issue for users, but received less
attention in academia and industry.

Only one paper extends data deletion in traditional CPABE. Yu et al. [19]
proposed an efficient deletion scheme that added a deletion attribute for each
policy associated with ciphertexts, and the value of the deletion attribute could
directly determine the true value of the user policy. File deletion is achieved by
canceling the deletion attribute. However, this scheme adds an deletion attribute
when encrypting and decrypting, which leads to many additional overhead.
In particular, when a user encrypts multiple files, the overhead of adding an
attribute is not to be underestimated. In addition, a user needs to perform mul-
tiple pair operations in the verification phase, which is inefficient.

Therefore, we want to conduct a deletion scheme based on CPABE, without
adding an additional attribute to achieve high efficiency on the user side.

9 Conclusion

In this paper, we study the privacy threat of imcomplete data deletion in CPABE
schemes. We propose a novel deletion concept for CPABE: when all users’ access
right to a file are revoked, we believe that the file was deleted. We also introduce
an improved CPABE scheme based on protected class, and realize the user-side
efficient encryption. After that, we extend a deletion method by revoking all
users’ rights. At the same time, in order to improve the efficiency of deletion,
we propose a key attribute selection method to reduce the number of attributes
that need to be deleted. Finally, we propose a Merkle tree-based verification
method for each update so as to ensure that the PBS always stores the latest
ciphertext version. Our implementation shows that ours is more efficient than
previous works.
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Abstract. In [AJPS18], Aggarwal, Joux, Prakash & Santha described
an elegant public-key encryption (AJPS-1) mimicking NTRU over the
integers. This algorithm relies on the properties of Mersenne primes
instead of polynomial rings.

A later ePrint [BCGN17] by Beunardeau et al. revised AJPS-1’s initial
security estimates. While lower than initially thought, the best known
attack on AJPS-1 still seems to leave the defender with an exponential
advantage over the attacker [dBDJdW17]. However, this lower exponen-
tial advantage implies enlarging AJPS-1’s parameters. This, plus the fact
that AJPS-1 encodes only a single plaintext bit per ciphertext, made
AJPS-1 impractical. In a recent update, Aggarwal et al. overcame this
limitation by extending AJPS-1’s bandwidth. This variant (AJPS-ECC)
modifies the definition of the public-key and relies on error-correcting
codes.

This paper presents a different high-bandwidth construction. By oppo-
sition to AJPS-ECC, we do not modify the public-key, avoid using error-
correcting codes and use backtracking to decrypt. The new algorithm
is orthogonal to AJPS-ECC as both mechanisms may be concurrently
used in the same ciphertext and cumulate their bandwidth improvement
effects. Alternatively, we can increase AJPS-ECC’s information rate by a
factor of 26 for the parameters recommended in [AJPS18].

The obtained bandwidth improvement and the fact that encryption
and decryption are reasonably efficient, make our scheme an interesting
post-quantum candidate.

Keywords: KEM · Efficiency improvement · MERS assumption ·
Implementation

1 Introduction

The public-key encryption schemes that are mostly used today are RSA [RSA78]
and ElGamal [ElG85]. Their security are based on the problems of factoring large
composite integers or computing discrete logarithms.
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However, in [Sho97], Shor published an algorithm that quantum computers
can use to solve both discrete logarithms and factoring in polynomial time.
Therefore, it is important to construct new encryption schemes which are to
remain secure even after the advent of quantum computers.

For this purpose, in 2016 the National Institute of Standards and Technol-
ogy (NIST) has initiated a competition to select post-quantum cryptographic
algorithms that are supposed to resist future quantum computers [NIS17].

One promising candidate selected for such quantum-resistant encryption
scheme is the AJPS cryptosystem [AJPS17a,AJPS18,AJPS17b], introduced by
Aggarwal, Joux, Prakash, and Santha, which is an interesting alternative to the
well-established NTRU cryptosystem. The security of AJPS encryption relies
on the hardness of Mersenne Low Hamming Combination (MERS) problem
[AJPS17a,AJPS18]: Given a Mersenne prime p = 2n − 1 (where n is prime),
samples of the MERSh,n distribution are constructed as (a, b = as + e), where
a ∈R Zp, the secret s and the error e are chosen uniformly at random from
the elements in Zp of Hamming weight h. The decisional version of the MERS
assumption states that no efficient adversary can distinguish the MERSh,n dis-
tribution from a uniform distribution over Z

2
p.

Despite the efficiency benefit of its reliance on Mersenne primes. The cryp-
tosystem introduced in [AJPS18], however, remains inefficient because of the
constraint that n = Θ(h2).

In this paper, we present new KEM schemes for enhancing the information
rate of [AJPS18] by a factor of 26, this O(1) improvement is nonetheless signif-
icant in practice.

1.1 Related Works

Lattice-based cryptography is the most popular candidate for post-quantum
security. Its security relies on the hardness of basis reduction and other related
problems in random lattices, like Learning with Errors (LWE) based cryptosys-
tems [Reg06], Ring-LWE based cryptosystems [LPR10] and NTRU [HPS98].

Concurrently to the above, AJPS’s Mersenne post-quantum cryptosystems
[AJPS18] belong to the NTRU family.

1.2 Organization of the Paper

Section 2, overviews basic notions and notations, key-encapsulation mechanisms
and backtracking. Section 3 recalls the MERS problem and its hardness. Section 4
reviews the original AJPS scheme and its variants. In Sect. 5 we propose our
KEM schemes, which are the Bivariate KEM and Trivariate KEM and prove
their security. Section 7, provideq an instantiation for the backtracking used in
our KEMs. Finally, we conclude the paper in Sect. 9.
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2 Preliminaries

2.1 Notation

We denote by ‖x‖ the Hamming weight of an n-bit string x, which is the total
number of 1’s in x. Let Hn,h be the set of all n-bit strings of Hamming weight h
and {0, 1}n the set of all n-bit strings.

Let Zp be the integer ring modulo p, where p = 2n − 1 is a Mersenne prime.
We have the following property:

Lemma 1. Let x, y ∈ Zp, then the following properties hold:
Property 1: ‖x + y (mod p)‖ ≤ ‖x‖ + ‖y‖
Property 2: ‖x · y (mod p)‖ ≤ ‖x‖ · ‖y‖
Property 3: x �= 0n ⇒ ‖ − x (mod p)‖ = n − ‖x‖

The proof can be found in [AJPS18].

2.2 Key-Encapsulation Mechanism Syntax

A key-encapsulation mechanism (KEM) consists in four algorithms: Π = (Setup,
KeyGen, Encap, Decap).

– Setup: The set up algorithm takes as input a security parameter λ and outputs
a public parameter pp.

– KeyGen: The key generation algorithm takes as input a public parameter pp
and outputs a public-key pk and a secret key sk.

– Encap: The encapsulation algorithm takes as input a public key pk and out-
puts a ciphertext C and key K.

– Decap: The decapsulation algorithm takes as input a ciphertext C and sk and
outputs ⊥ or a key K.

Definition 1. We say that Π = (Setup, KeyGen, Encap, Decap) has (1-λ)-
correctness if for any (pk, sk) generated by KeyGen, we have that:

Pr
[
Decap(sk,C) = K : (C,K) ← Encap(pk)

] ≥ 1 − λ.

2.3 Backtracking Techniques

For solving constraint satisfaction problems, there are basically three main
approaches: backtracking, local search, and dynamic programming. In this work,
we consider backtracking (also known as depth-first search), which consists of
searching every possible combination in order to solve an optimization prob-
lem. To that end, backtracking proceeds in three steps: it picks a solution as a
sequence of choices to the first sub-problem, then recursively attempts to resolve
other sub-problems based on the solution of the first sequence of choices, then it
returns the best solution found. We refer the reader to [Knu] for further intro-
ductory background.
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3 The MERS Assumption: Notation and Definitions

Aggarwal et al. introduced a new assumption [AJPS18] mimicking NTRU over
integers, this assumption relies on the properties of Mersenne primes in the ring
Zp instead of polynomial rings Zq[x]/(xn − 1). Their conjecture is based on the
observation that given any number a ∈ Zp we obtain this property: if we multiply
a by any number b = 2x where x ∈ [0, n − 1], then the result c = a · b is just a
cyclic shift.

The security of our scheme is based on the following assumptions:

3.1 MERS Assumption

For two integers 4h2 < n and for n-bit Mersenne prime p = 2n − 1, and for
integer s ∈ Zp, we define a distribution MERSs,n,h as follows: choose r ← {0, 1}n

and b ← Hn,h, return (r, r · s + b mod p). We also define a uniform distribution
U as follows: choose r ← {0, 1}n and b ← {0, 1}n, return (r, b mod p).

Definition 2 ((Decisional) Mersenne Low Hamming Combination
Assumption (MERS Assumption) [AJPS18]). For two positive integers 4h2 <
n and for an adversary A, we introduce the MERSn,h advantage as the quantity:

AdvMERSh,n(A) =
∣
∣
∣Pr[AMERSs,n,h() ⇒ True] − Pr[AU() ⇒ True]

∣
∣
∣ ,

where s
$←− Hn,h. We say that the MERSn,h problem is (t, q, ε)-hard if for

all attackers A with time complexity t, making at most q queries, we have
AdvMERS(A) ≤ ε.

3.2 RMERS Assumption

Definition 3 (Mersenne Low Hamming Ratio Search Assumption
(RMERS) [AJPS18]). Given an n-bit Mersenne prime p = 2n − 1, 4h2 < n
and an integer H ∈ Zp, find F,G ∈ Hn,h such that:

H =
F

G
mod p

3.3 Hardness of the MERS Problem

Meet-in-the-Middle attack. de Boer et al. [dBDJdW17] presented a meet-
in-the-middle attack for solving the MERS problem. Their classical and quantum
attacks run in respective times:

Õ

(√(
n − 1
h − 1

))

and Õ

(
3

√(
n − 1
h − 1

))
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LLL-attack. [BCGN17,dBDJdW17] present an LLL-based algorithms [LLL82]
for solving the RMERS, whose Turing and quantum running times are respec-
tively O(22h) and O(2h). To date, this is the most efficient known approach for
solving RMERS. Assuming a quantum computer using Grover’s algorithm, one
obtains a quadratic speedup over [dBDJdW17] (i.e. O(2h)). Therefore, as per
[AJPS18], our scheme is secure when h = λ = 256.

Primality of n. [AJPS17a,AJPS18] recommend p = 2n −1 and n to be primes
to avoid an attack on composite n.

4 The Original AJPS Cryptosystem

4.1 The AJPS-1 Encryption Scheme

The original AJPS-1 encryption scheme based on MERS assumption [AJPS17a],
is defined by the following sub-algorithms:

– Setup(1λ) → pp. Chooses the public parameters pp = {n, h} so that p = 2n−1
is an n-bit Mersenne prime achieving some λ-bit security level.

– KeyGen(pp) → {sk, pk}. Picks {F,G} ∈R H2
n,h and returns:

{
sk ← G

pk ← H = F/G mod p

– Enc(pp, pk,m ∈ {0, 1}) → C. Picks {A,B} ∈R H2
n,h, and computes:

C ← (−1)m(AH + B) mod p

– Dec(pp, sk, C) → {⊥, 0, 1}, computes d = ‖GC mod p‖ and returns:
⎧
⎪⎨

⎪⎩

0 if d ≤ 2h2,

1 if d ≥ n − 2h2,

⊥ otherwise

The intuition behind the decryption formula is the observation that when
m = 0 we get:

W = GC = G(AH + B) = FA + GB ⇒ W is of low Hamming weight

The security of this cryptosystem is based on the (decisional) MERS problem
introduced before.

To increase bandwidth, Aggarwal et al. introduced the AJPS-ECC variant
described hereafter.
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4.2 The AJPS-ECC Encryption Scheme

In the second variant AJPS-ECC [AJPS18,AJPS17b] aims to extend AJPS-1’s
bandwidth, while requiring an ancillary error correction scheme {D, E}.

AJPS-ECC is formally defined by the following sub-algorithms:

– Setup(1λ) → pp. As in Sect. 4.1.
– KeyGen(pp) → {sk, pk}. Picks {F,G} ∈R H2

n,h, R ∈R {0, 1}n and returns:
{
sk ← F

pk ← {R, T} = {R,FR + G mod p}

– Enc(pp, pk,m ∈ {0, 1}λ) → C. Picks {A,B1, B2} ∈R H3
n,h and computes the

ciphertext:

C =

{
C1 ← (AR + B1 mod p

C2 ← (AT + B2 mod p) ⊕ E(m)

– Dec(pp, sk, C) → {⊥,m} returns:

D((FC1 mod p) ⊕ C2).

For the sake of clarity, we keep the definition of C1 unchanged but slightly
depart from [AJPS17a]’s original formulae by modifying the definitions of T and
C2 as follows:

T ← (FR − G mod p

C2 ← (AT − B2 mod p) ⊕ E(m)

To understand the intuition behind Dec consider the quantity W = FC1−C2

corresponding to the particular case E(m) = 0:

W = FAR+FB1−AT +B2 = FAR+FB1−A(FR−G)+B2 = FB1+GA+B2

As before, we see that d = ‖W‖ is low. This means that the noise attached to
E(m) after the clean-off operation (FC1 mod p)⊕ C2 is low and thus surmount-
able by the error-correcting code {E ,D}.

The security of this cryptosystem is based on the (decisional) MERS prob-
lem. We refer the reader, again, to [AJPS18] for further details about this cryp-
tosystem and the parameter choices allowing successful decryption and sufficient
security. Sticking only to the core idea, we purposely omit the hashing and re-
encryption tests performed during the key de-encapsulation process.
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5 Proposed Schemes

5.1 Overview of Our Approach

In this section we will describe two AJPS-ECC variants based on the new idea of
Randomness Reconstruction.

Our idea departs from AJPS-1 in a direction orthogonal to the above.
We set by design m = 0 in AJPS-1 or E(m) = 0 in AJPS-ECC and attempt

to recover the randomness1 into which information (encapsulated keys and/or
plaintext information) will be embedded.

The intuition is that the receiver might be able to recover the randomness if
parameters are properly chosen using his extra knowledge of G,F and knowing
that, in addition, the unknown randomness has a low Hamming weight.

We hence focus the rest of this paper on methods for solving equations of
the following forms:

W = Fx + Gy or W = Fx + Gy + z mod p

Where all parameters2 and unknowns are randomly chosen in Hn,h and where
a solution {x, y} or {x, y, z} is known to exist.

We do not introduce any modifications in Setup and KeyGen, nor do we
modify pp or sp3. We thus focus on the encapsulation (encryption) and on the
de-encapsulation (decryption) processes only, in KEM and PKE respectively.

In a non-KEM version, a plaintext m encoded in the unknowns (x, y or x, y, z)
can be directly recovered upon decryption. Such an encryption mode must how-
ever be protected against active attacks using padding and randomization that
we do not address here.

Remark 1. It is tempting but inadvisable to create dependencies between the
variables F,G and/or the unknowns x, y, z. Consider an AJPS-ECC where m ∈R

{0, 1}λ and {A,B2} ∈R H2
n,h but where B1 ← H(m) is obtained by hashing m

into Hn,h. Given m, anybody can re-compute B1 and algebraically infer A,B2.
We hence see in this example that A,B2 do not add extra entropy as security
solely rests upon m.

We carefully distinguish between security bandwidth and information rate. An
idea, unexplored in AJPS-ECC, may exploit Remark 1 to transport more plaintext
information in {C1, C2} without adding extra security. To encrypt a τ -bit mes-
sage μ, pick a key m ∈R {0, 1}λ and encrypt c ← Fm(μ) using a block cipher F .
Set B1 ← H(m). Let M be any invertible public mapping M : {0, 1}τ → H2

n,h.
Encode: {A,B2} ← M(c) and form {C1, C2} using AJPS-ECC. To decrypt,
recover m using error-correction, recompute B1, algebraically recover {A,B2}
and retrieve the plaintext μ by:

1 A, B or A, B1, B2.
2 Except W .
3 Note that in AJPS-1/ECC given G one can compute F and vice versa.
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μ ← F−1
m (M−1(A,B2))

= F−1
m

(
M−1(

C1 − B1

R
mod p,C2 − (C1 − B1)T

R
mod p)

)

= F−1
m

(
M−1(

C1 − H(m)
R

mod p,C2 − (C1 − H(m))T
R

mod p)
)

Because in AJPS-ECC{n, h} = {756839, 256} the potential encoding capacity
of M can be relatively high:

2 log2

(
756839
256

)
= 6631 bits

This increases AJPS-ECC’s information rate by a factor of 26. Again, proper
message padding may be necessary to resist active attacks. We stress, again, that
this does not increase security bandwidth but information rate only. An attacker
guessing m will determine μ.

5.2 The Bivariate KEM

Our Bivariate Cryptosystem Π1 = (Setup,KeyGen,Encap,Decap) is defined as
follows:

– Setup(1λ) → pp: As in Sect. 4.1.
– KeyGen(pp) → {sk, pk} are identical to AJPS-1.
– Encap(pp, pk) → C. Picks {A,B} ∈R H2

n,h and computes:

C ← AH + B mod p

– Decap(pp, sk, C) → {⊥, {A,B}} returns:

{A,B} ← Solvex,y[GC = Fx + Gy mod p]

If {A,B} �= ⊥ use {A,B} as KEM entropy for further encryption.
Example: Let μ be a plaintext and R a redundancy function. Compute

m ← R(μ, ρ) where ρ is random. A typical KEM4 is shown here:

RNG H(α,m) H′(A,B) Fk(α,m)

HA + B

α

A,B

k

mm

C ′

C

H

4 Where H, H′s are hash functions and F is a block-cipher.
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Solvex,y H′(A,B) F−1
k (C ′)

m valid if (A,B) = H(α,m)

A,B k α,m

C ′

F,G,C

Retrieve m from μ ← R−1(m).

5.3 The Trivariate KEM

Our Trivariate Cryptosystem Π2 = (Setup,KeyGen,Encap,Decap) is defined as
follows:

– Setup(1λ) → pp: As in Sect. 4.1
– KeyGen(pp) → {sk, pk} are identical to AJPS-ECC but with the modified

formula T ← FR − G mod p.
– Encap(pp, pk) → C. Picks {A,B1, B2} ∈R H3

n,h and computes the ciphertext:

C =

{
C1 ← AR + B1 mod p

C2 ← AT − B2 mod p

– Decap(pp, sk,C) → {⊥, {A,B1, B2}} returns:

{A,B1, B2} ← Solvex,y,z[FC1 − C2 = Fy + Gx + z mod p]

If {A,B1, B2} �= ⊥ use {A,B1, B2} as KEM entropy for further encryption.
As noted before, the trivariate version may accommodate in the encryption

formula an independent E(m) and thus cumulate the bandwidth improvements
due to both mechanisms. This requires that the {n, h} values of both schemes
coincide and the enforcement of the condition n ≤ 16h2, not addressed here. We
conjecture that such a meeting point exists.

6 Security Proof

Just as RSA, our encryption process is deterministic (i.e., requires no nonce) if
the message is encoded in A,B. As such, unless we use a proper padding before
encryption, the encryption function itself cannot provide “native” indistinguisha-
bility against chosen plaintext attacks.

We nonetheless provide a proof that breaking our KEM is equivalent to the
solving the (search) RMERS Problem, defined in Sect. 3.2.
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Theorem 1. Inverting the KEM described in Sect. 5.2 with parameter h is as
hard as solving RMERS Problem for parameter h/2.

Proof. We will show that any attack algorithm A(C,H, h, p) = {A,B} extracting
the exchanged key {A,B} without resorting to the secret key can be used to solve
the RMERS for parameters h/2, p. There is hence a loss in the reduction of a
factor of 2 in the security parameter h.

Assume that A(C,H, h, p) exists.
We note that A resolves the equation C = AH +B mod p without resorting

to the secret elements F,G.
What happens if we invoke A(0,−H mod p, h, p)?
In such a case A will return A,B such that:

0 = −AH + B mod p that is: H =
B

A
=

F

G
mod p

A has thus solved the RMERS for parameters h, p.
This is, however, insufficient as A may refuse to solve the equation C =

AH + B mod p when C = 0. We will hence mask the input C so that A could
not refuse to process it.

To do so, we sacrifice reduction tightness to force A to solve arbitrary target
instances Ht of the RMERS for parameters h/2, p.

– Generate two random numbers rA, rB ∈R H2
n,h/2.

– Form the quantity:
C = HtrA − rB mod p

– Invoke A(C,−Ht mod p, h, p)

A will return an A,B such that:

C = −AHt + B = HtrA − rB mod p

In other words:

Ht =
B + rB

A + rA
=

F

G
mod p

A was hence instrumented to solve a RMERS instance of parameter h/2, as
required (Fig. 1).

�
The proof extends, mutatis mutandis, to the trivariate KEM of Sect. 5.3.
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Ht
RMERS

h
2

A h

F, G

A, B
H = −Ht mod p
C = HtrA − rB

Fig. 1. Security reduction: Turning an attacker into an RMERS solver.

7 Instantiating Solvex,y Using Backtracking

This section explains how to instantiate Solvex,y. The routine Solvex,y,z is
obtained mutatis mutandis.

The intuition behind Solvex,y is the following: assume that we are given the
quantity W = GC = AF +BG mod p where ‖W‖ ∼= 2h2. Because multiplication
modulo p is (somewhat) weight-preserving, we can test the hypothesis that the
i-th bit of A is equal to one by looking at the quantity Δ:

Δ = ‖W‖ − ‖W − 2iF mod p‖
Intuitively, a good guess should result in a weight decrease of  h whereas

a wrong guess should re-blur W by triggering random carry propagations. Evi-
dently, because there may be false positives during this process, we must be
able to backtrack. To reduce the false positive error probability, n must be large
enough with respect to h. The exact same idea applies to Solvex,y,z.

7.1 Prerequisites and Subroutines

We start by introducing three necessary prerequisites.

The Ancillary Function Confirm: Our algorithms require an ancillary
function Confirm-ing a candidate solution {x, y}. e.g. given a candidate x,
Confirm(x) may solve GC = Fx + Gy mod p for y and return {y,True} if
‖x‖ = ‖y‖ = h. Because in some cases several solutions may exist, a simpler
implementation may just compare H(x, y) to a confirmation digest τ provided
with the ciphertext and return {y,True} if the purported solution hashes into τ . If
H(x, y) �= τ then Confirm(x) returns {⊥,False}. Note that using a confirmation
digest would not satisfy the standard indistinguishability security requirement
for KEMs.
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Table 1. Backtracking success chances for {t, h, n} = {1, 72, 19937}. 50 decryption
simulations per entry.

Γ 50 51 52 53 54 55 56 57 58 59 60
Probability 24% 20% 26% 30% 32% 20% 22% 18% 14% 9% 4%

10 20 30 40 50 60 70

20

40

60

80

of success

Fig. 2. Backtracking success chances for {t, h, n} = {1, 65, 19937}. 200 decryption sim-
ulations per entry. Fitted with 82.922 exp(−(Γ − 45.7122)2/34.6815)

Determining the Backtracking Aperture Γ : Backtracking is parametrized
by a constant Γ controlling the aperture of the exhausting process (i.e. the
marginal tolerance allowing to exclude a search path from further investigation).
Simulations indicate that for any given {n, h} there is a Γoptimal value minimizing
the failure probability. We did not attempt a formal analysis of the dependency
between {n, h} and Γoptimal but estimated Γoptimal for various {n, h} pairs using
simulations as shown in Table 1 and Fig. 2.

7.2 The Backtracking Algorithms

The deterministic backtracking algorithm B1 subtracts left-shifted F s from W
to obtain candidate ws having smaller and smaller weights. B1 maintains a set of
integers R containing the bit positions of x discovered so far. The deterministic
algorithm is called by {A,B} ← B1(W, ∅, 0) and the randomized version is called
by B2(W, ∅, 0, φj) where φjs are random permutations of Zk. Code is available
from the authors upon request.
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Algorithm 1
Backtracking B1(w,R, e)
Input: w, R, e. The values G, F, h, n, p = 2n − 1, C are global and invariant.
Output: {x, y} = {A, B} such that W = CG = Fx + Gy mod p or Failure.

if e = n then return Failure
else

if #R = h then
x ← ∑

i∈R 2i

{s, y} ← Confirm(x)
if s then return {x, y}

w ← w − 2eF mod p
if |‖w‖ − ‖w‖ + h| ≤ Γ then

B1(w, R ∪ {e}, e + 1)
else

B1(w, R, e + 1)

Algorithm 2
Backtracking B2(w,R, e, φ)
Input: w, R, e, φ. The values G, F, h, n, p = 2n − 1, C are global and invariant.
Output: {x, y} = {A, B} such that W = CG = Fx + Gy mod p or Failure.

if e = n then return Failure
else

if #R = h then
x ← ∑

i∈R 2φ(i)

{s, y} ← Confirm(x)
if s then return {x, y}

w ← w − 2φ(e)F mod p
if |‖w‖ − ‖w‖ + h| ≤ Γ then

B2(w, R ∪ {e}, e + 1, φ)
else

B2(w, R, e + 1, φ)

We conjecture that working with a fixed Γ during the entire backtracking
process handicaps the algorithm. When the process starts the weight of W is
high, hence the probability to strike-out h bits by subtraction is high. However as
subtractions make w sparser aperture should intuitively decrease. It may hence
make sense to explore algorithms in which the constant Γoptimal is replaced by
a function Γ (‖w‖, ‖w‖, n, h).

Best Candidate Search: B1 and B2 explore all the paths starting by an a
priori promising Δ. However, B1 and B2 do not explore the most promising
paths first. A more complex backtracking strategy (B3) trying with priority the
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paths starting by a Δ as close as possible to h was developed as well (information
available from the authors upon request). We do not include this algorithm here
for the sake of concision.

Dealing with Decoding Failures: Because we may discard seemingly unin-
teresting (but actually promising) exploration paths, backtracking may fail to
decode W . As it seems complex to formally compute the algorithm’s success
probability, we estimated it by simulation. To deal with decryption failures we
re-attempt backtracking after index randomization i.e. pick t random permuta-
tions {φ0, . . . , φt−1} of Zk and re-run B2(W, ∅, 0, φj) t times hoping that at least
one of the t runs will succeed5. A more brutal approach consists in sending t
encapsulated keys to increase the probability exponentially. This (conjectured)
exponential probability gain only handicaps the information rate by a constant
factor6. A simple idea for (conjectured) squaring the failure probability con-
sists in trying to backtrack on A and, upon failure, re-launch the algorithm to
backtrack on B.

Information Leakage from Decryption Failures: Because decryption may
fail, a possible cryptanalysis (that we did not investigate) might be to analyze,
possibly adaptively, the ciphertexts causing failures and thereby extract infor-
mation on {F,G}. We do not regard this as a major problem for the following
reasons:

– Failure is highly dependent on the backtracking algorithm chosen by the
receiver. The backtracking procedures that we give here are one possibility
amongst many.

– An empirical protection consists in randomizing the backtracking process,
e.g., assume all the φi to be randomly drawn per decryption and secret.

– Another protection is to purposely fail decryption with some probability ε to
prevent the cryptanalyst from identifying true failures. Note that the random
tape used to simulate false failures must be derived from a fixed secret and
the ciphertext itself to avoid replays and majority votes.

Protection Against Side-Channel Attacks: It is reasonable to assume that,
like most encryption schemes, the algorithms described in this paper are vulner-
able to timing and side-channel attacks, an aspect that we did not investigate
here.

5 Note that B1(W, ∅, 0) = B2(W, ∅, 0, ID).
6 Link B0, . . . , Bt−1 in a way allowing the recovery of all the Bi if one of them is known

(e.g. define Bi = Fi(seed) where Fk(m) is a block-cipher encrypting into Hn,h). Use
the Ai to transport entropy or information. One successful decryption reveals the
seed ⇒ open all the Bis ⇒ all the t information containers Ai.
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7.3 Eccentric Reconstruction Strategies

Backtracking might be improved in a variety of ways. As examples, we are intro-
ducing in this section a few research ideas that we did not explore in detail.

Idea 7.3.1: Brittle Encryption Formulae. We may modify the bivariate
encryption formula to C ← HA+3B and enforce by design that H,A,B do not
contain the binary sequence 11. This means that the bit positions representing
3B will be “colored” by a pattern 11 making their isolation and identification
easier. If n � h we may even attempt to brutally reset all the isolated ones in
W and divide the result by 3G to directly obtain B. For the trivariate version
one may use:

C =

{
C1 ← AR + B1 mod p

C2 ← AT − 3B2 mod p

resulting in the decryption formula W = FC1 − C2 = FB1 + GA + 3B2. Here
as well, we banish the pattern 11 from G,F,A,B1, B2. We may thus attempt
to identify in W the binary patterns 11, hinting the probable presence of B2 to
ease decoding. Note that the pattern 11 may result naturally from the multipli-
cation, the addition or the reduction and hence mislead the decoder (backtrack).
Similarly, an 11 due to 3B2 may disappear due to addition (backtrack). Note
that marking B with 11s makes backtracking more efficient as this increases the
SNR. e.g. if we replace each 1 in B by a 1111 we increase overall weight of W
to 5h2 but a correct guess will cause a weight decrease of  4h instead of h. In
other words, while requiring a larger n, this improves the SNR:

from SNR =
h

2h2
=

1
2h

to SNR =
4h
5h2

=
4
5h

Idea 7.3.2: Dye Tracing. In hydrogeology, dye tracing is a technique for
tracking various flows using dye added to the water source. In other words, dye
tracing uses dye as a flow tracer. It is an evolution of the ages-known float
tracing method, which consists of throwing a buoyant object into a waterflow
to see where it emerges. To simulate the effect of dye tracing, we inject into F ’s
digits a few low-weight binary patterns and track their appearance in W . For
instance (toy example), generate an F of weight h − 10 not containing any of
the ten sequences �i:

11 101 111 1001 1011 1101 10001 11001 10101 10011

randomly insert those ten �is into F ’s blank spaces (insert each �i once, this will
increase the weight of F to h − 10 +

∑ ‖�i‖ = h − 10 + 26 = h + 16 and the
weight of W to  2h2 + 16h). To retrieve A, isolate the 10 dyes tracers in W
and use majority voting on bit offsets to infer the probable positions of A’s bits.
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Idea 7.3.3: Demodulation. We can attempt to “travel back in time” and infer
ω = FA+GB ∈ Z from W , or at least estimate the probability that a candidate
bit in W originates from the number’s pre-reduced upper half. Given ω ∈ Z

decryption7 is immediate because:

A = ωF−1 mod G = (W demodp)F−1 mod G

To demodulate W we work modulo p = 2n −3 that “colors” the folded MSBs
by turning them into LSB 11s. The process is error-prone8 but actually works
for parameters that are large enough. We implemented the idea very brutally,
by simply translating each 11 in W into a 1 in the MSB of ω without taking
any further precautions. 100 demodulation attempts for {n = 6 × 107, h = 55}
resulted in 29 successes. Although n is huge, the resulting information rate is
not “that” catastrophic as we can pack:

2 log2

(
6 × 107

55

)
= 2356 plaintext bits into the ciphertext.

In other words, each plaintext bit claims 25461 ciphertext bits and is suc-
cessfully transmitted with probability 29%.

While h = 55 is not very large and n = 6× 107 is extremely large, our simu-
lation shows that it is definitely possible to make ingredients meet at workable
parameter combinations. We conjecture that with proper analysis and refined
demodulation strategies k might be reduced by at least two orders of magnitude.
It may also be possible to work modulo 2n −π with a more distinguishable color
π �= 3 despite an extra weight due to a more complex π. π = −1 is interesting
as well as −1 turns folded bits into long chains of 1s.

Note 1. (important) One of the features preventing lattice-based attacks in
AJPS-1/ECC is the emergence of parasitic short vectors due to working mod-
ulo 2n − 1 (Sect. 5.1. [AJPS17a]9). We did not evaluate the impact of π �= 1 on
the number and the norm of parasitic short vectors and hence on security.

Idea 7.3.4: Pattern Identification. Another idea consists in exploiting the
fact that W = AF + BG mod p will naturally contain binary sequences of the
form:

v� = 0, . . . , 0
︸ ︷︷ ︸
� zeros

|1| 0, . . . , 0
︸ ︷︷ ︸
�+1 zeros

Let m be an �-bit encapsulated key10 and define C = m(AH +B) mod p we
get:

CG = m(AF + GB) = mW = m × (w′|v�|w) = u′|m|u mod p

7 Take F, G coprime in Setup.
8 Again, “natural” 11s may be already present in the LSBs of ω, 11+ 01 may destroy

an 11, 10+ 01 may create fake 11s etc.
9 ePrint version 20170530:072202.

10 We consider m to be beyond exhaustive search, typically 160 bits.
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m can thus be read11 on CG mod p. It remains to identify m. To do so,
we can generate {A,B} ← H(m) and hence confirm proper decryption using n
re-hashings and re-encryptions. This workload may be considerably reduced by
sacrificing a few bits of m, e.g. 16 bits, to display a specific pattern (e.g. 0xFFFF)
allowing a quick identification of m. This divides the number of hashings and re-
encryptions by 216. As a numerical example, {n, h} = {75×104, 100} corresponds
to an �  200. If we sacrifice 20 bits devoting them to an identification pattern
we can hope to decapsulate a  160-bit key using one re-encryption only.

� has a low variance as it is essentially determined by a max-min over the
differences between the positions si of the bits equal to one in W :

� ∼= max
i

min(si − si−1, si+1 − si)

For a subtle technical reason � is actually higher than this crude estimate. To
understand why we refer the reader to Fig. 3 where we illustrate the expected
distribution of � = 2h2 bits amongst n potential positions. The least significant
1-bit • is expected to appear at γ where:

γ =
�

(n − 1)�

∫ n−1

0

x (n − 1 − x)�−1 dx =
n − 1
� + 1

Similarly, the most significant 1-bit position • is expected at  �γ. The
reason why two other points are singled-out by • and • will be clarified later.
Now, because arithmetics modulo p wrap everything that overflows 2n on 20 the
actual gap between • and • is not γ but 2γ. This is illustrated in Fig. 4. In other
words, the primary formula for � should be corrected to:

� ∼= max
(
α, α,max

i
min(si − si−1, si+1 − si)

)

Where:

α = min([•, •], [•, •]) u= [•, •]  γ

and

α = min([•, •], [•, •]) u= [•, •]  γ

n − 1 γ(� − 1)γ 3γ 2γ�γ 0

Fig. 3. Dots show the expected positions of � bits picked randomly amongst n positions.
Here γ = n−1

�+1
.

11 Note that reading is circular i.e. wrapping around CG mod p.
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Where u= denotes “usually (or frequently) equal to”. We therefore see that
wrapping due to modular arithmetic has an unexpected favorable effect on �.

Pattern identification is somewhat homomorphic but with a very fast increas-
ing noise: encode a zero as m = 01, a one as m = 11 and read the plaintext on
the most significant bit of that encoding.

0 ≡ n − 1
= γ

2γ

3γ

. . .. . .

(� − 2)γ

(� − 1)γ

= �γ

mod 2n − 1

Fig. 4. The interval [min, max] = [•, •] of size 2γ created by wrapping modp.

Idea 7.3.5: Prime Embedding. A variant of the above, mostly of theoretical
interest, is the following: because there is a number of natural leading and tailing
zeros in η = AF + GB mod p we can encode C = m(AH + B) mod p, recover
m(AF +GB) mod p and, provided that m is short enough, hope that η is small
enough to get12 ω = mη ∈ Z. It remains to extract m from ω. To do so, pick m as
a product of, say 64-bit random primes. The receiver can pull-out those primes
from ω using ECM factorization13. When a candidate m was formed, confirm
it using hashing and re-encryption as before. {n, h} = {2.5 × 106, 100} gives an
average expected margin of  240 bits for encoding m. The main problem with
this variant would be the high variance in the size of m embeddable into the
ciphertext which would make decryption uncertain.

Note 2. (research note) To the above we add two ideas that we conjecture to be
insecure (by opposition to the previous ideas that we do not conjecture to be
secure)

Variant 7.3.6. Correlated As: To ease backtracking we wish to give the
decoder several Δs generated from the same B. Generate t independent keys

12 The possibly rotated.
13 Accidental similar-size prime factors may come from AF + GB as well, but those

are few and hence easy to filter.
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{Fi, Gi,Hi} (possibly modulo different pis). Pick t − 1 public random permuta-
tions φ1, . . . , φt−1 of Zn. Generate {B0, . . . , Bt−1, A0} ∈R Ht+1

n,h . Let

A0 =
n−1∑

i=0

2iai

and form t ciphertexts {C0, . . . , Ct−1}:

Cj = AjHj + Bj mod pj where Aj =
n−1∑

i=0

2φj(i)ai

Simultaneous backtracking on the Ajs will reveal more information per bit
guess to the decoder.

Variant 7.3.7. Correlated Hs: Set G and define Hi = Fi/G for i ≥ 1. We
illustrate the idea with two His. Encrypt C = A0H0 + A1H1 + B. We see that
W = GC = F0A0 + F1A1 + BG. Linking A0 and A1 as in note 9.1 we see that
the SNR14 in the case of a successful guess increases:

from SNR =
h

2h2
=

1
2h

to SNR =
2h
3h2

=
2
3h

This modifies the complexity assumption as well.

Note 3. (a broken variant) We close this paper by attracting the reader’s atten-
tion to the broken variant given in the appendix, that we mention as a target
for fixing.

8 Security and Parameter Sizes

Brittle encryption, dye tracing, demodulation, pattern identification and prime
embedding are only illustrative research directions that we consider interesting
or curious but that we do not claim nor conjecture to be secure. This work
did not cover the security of the proposed constructions and focused on the
textbook modes in which data is encoded and decoded. Parameter sizes were
not recommended and numerical examples are given for illustrative purposes.

A careful trade-off must be established between 1 the security, 2 the back-
tracking failure probability and 3 the efficiency of the various Solve processes.
So far, simulations indicate that there seem to be ways to practically satisfy
those three constraints at once.

14 Note that as backtracking proceeds the SNR improves. In this paper SNR stands for
the SNR at the beginning of the backtracking process.
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9 Concluding Remarks

In this paper, we have introduced a new KEM schemes improving the AJPS cryp-
tosystem and its variant. They are related to the hardness of MERS problem.
Since our constructions rely on newly introduced assumptions, further cryptan-
alytic efforts are demanded in order to get more confidence about their exact
security.

Acknowledgments. The authors thank Waïss Azizian, Sarah Houdaigoui and Qu´̂oc
Tún Lê for the development and the simulation of different backtracking strategies.

A Appendix: A Broken Scheme Target for Repair

While designing the algorithms in this paper we broke the following variant that
we mention here as a fixing target. Let R be a secret n-bit number of the form:
R ← random|v�|random where v� is defined as in Pattern identification, and
define the auxiliary public-key L ← R/G mod p. Note that this modifies the
complexity assumption on which the scheme rests.

Encrypt by C ← AH + B + Lm mod p and decrypt by W ← GC = AF +
GB+Rm mod p. This offers a (noisy) visibility window on m allowing to extract
and error-correct m.

The problem here is the equation defining L from which G can be revealed
using LLL. It is unclear if this can be fixed using modifications in the encryption
process and/or in parameter sizes. It is also interesting to determine if secure
H-less variants15 can be designed.

Assuming that the above could be repaired, the following is for readers fond
of dangerous games.

A dangerous game, that we do not recommend, reduces noise in the visibility
window. If A,B,G, F are generated in a biased way by shifting more Hamming
weight into the MSBs and the LSBs as shown in Fig. 5, then the result of the mul-
tiplication modulo p of two such numbers results in a number of the form shown
in Figs. 6 and 7. Those densities are illustrated in Figs. 8 and 9. This reduces
the noise in the reading window and allows an easier recovery of m. It must be
stressed that this increases the vulnerability of the public-key to the partition
attacks of [BCGN17] as the attacker can better zoom on the information-rich
part of F and G. This might be compensated by a higher h. Note that weight
shifting does not necessarily need to be similar in all four variables A,B, F,G
and that several weight shifting schemes are circularly equivalent because of the
multiplication modulo p.

15 i.e. where the sender encrypts by C ← Lm + B mod p this is insecure) or a similar
trick.
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=
h/4 + Δ

=
h/2 − 2Δ

=
h/4 + Δ

Fig. 5. Unbalanced weight of A, B, F, G before multiplication.

∼=
h2/4 + 2Δ2

∼=
h2/2 − 4Δ2

∼=
h2/4 + 2Δ2

Fig. 6. Unbalanced weight of AF mod p and BG mod p after multiplication.

∼=
h2/2 + 4Δ2

∼=
h2 − 8Δ2

∼=
h2/2 + 4Δ2

Fig. 7. Unbalanced weight of AF + BG mod p after addition.

Fig. 8. Unbalanced A and F for {n, h, Δ} = {214, 32, 6}.

Fig. 9. Unbalanced AF mod p for {n, h, Δ} = {214, 32, 6}. Note the relatively lower
dot density at the middle of the diagram.
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Abstract. Cellular automata (CA) has attracted the attention of
research communities for its applications in the design of symmetric and
public-key cryptosystems. The strength of cellular automata lies in its
inherent data parallelism, which can help accelerate access control mech-
anisms, and its information scrambling capabilities, which can enhance
the security of the system. Also, the cryptosystems designed using CA
do not involve number-theoretic methodologies that incur large compu-
tational overhead like traditional cryptosystems. However, existing CA-
based cryptosystems encompass a limited set from the set of all possi-
ble transition rules indicating the existence of CA cryptosystems which
are possibly unbreakable but have not been explored sufficiently. Thus,
they have not yet been considered for applications involving fine-grained
access control for heterogeneous access to the data. In this paper, we
propose a secure distributed multi-authority attribute-based encryption
using CA, which has potential applications in cloud systems. Our cryp-
tosystem adopts the concept of multi-authority attribute-based access
control where the encryption and attribute distribution use reversible
CA, and policy satisfiability is achieved by Turing-complete CA in a dis-
tributed environment. We illustrate the practical usability of our pro-
posed cryptosystem, in terms of efficiency and security, by extensive
experimental results.

Keywords: Cellular automata · Reversible cellular automata ·
Turing-complete cellular automata · Attribute-based access control ·
Multi-authority access control · Cloud system

1 Introduction

A cellular automaton can be defined as an automaton consisting of a set of
states, a grid with its initial content, and a transition function [1]. The state of
each cell is an element of a pre-defined finite set. The configuration of a cellular
automaton is said to be the content of the grid at any instance of time. The
future state of a cell depends on its current state and that of its neighbours via a
c© Springer Nature Switzerland AG 2019
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mapping, known as the transition function or the rule of the cellular automaton.
A cellular automaton is said to be reversible [18] if and only if there exists a
bijective mapping from the set of all possible configurations of a grid to itself. A
cellular automaton is said to be Turing-complete [2] if it can emulate any Turing
machine, i.e., the functionality within the configurations behaves in the same
way as an equivalent Turing machine would do.

Cellular automata have been analyzed for producing interesting informa-
tional variations [12,13] from simple rules, which aroused a lot of expectations
on their computational power and universality. One-dimensional CA of rule 110
has been proven to be Turing-complete [3], with a polynomial-time emulation
[4], but finally has been found to be in NC (Nick’s class) [21] in terms of algorith-
mic complexity. This means if an algorithm takes T (n) time to run on a Turing
machine of input size n, then the same algorithm may take O

(
T (n)4 log(T (n))

)

time to run on an equivalent rule 110 CA [4]. Two-dimensional CA is proven to
be more efficient in terms of emulation [5], but are still slower in practical appli-
cations. The fact that all the cells of the grid change its state simultaneously
implies high data-level parallelism that can help accelerate, as well as assess,
certain important mechanisms.

Cellular automata is used for designing efficient symmetric-key [18] as well as
public-key cryptosystems [20]. The inherent nature of the information produced
by the temporal evolution of CA introduces a significant amount of pseudo-
randomness [13], and allows flexibility in information scrambling, making it
secure. But such traditional systems do not support fine-grained access control,
which is one of the essential requirement for cloud systems.

Cloud systems allow users to store data on remote servers in a secure, and
reliable manner. As the servers are not completely trusted, traditional encryption
methods encrypt the data and distribute keys to the user before storing the
data on remote servers. Although these methods provide secure access control,
key management is a difficult task for data owners when more users are added
to the system. Data owners have to stay online to distribute keys to new users
periodically as per their requirement. Also, there are multiple copies of ciphertext
for the same data which incurs large storage overhead on the server. Several
methods deliver key management and distribution task from the data owner
to remote servers under the assumption that these servers are fully trusted.
However, remote servers cannot be fully trusted, and thereby, these methods
cannot be applied to cloud storage. Attribute-based encryption (ABE) [7] is a
promising technique to provide fine-grained access control on encrypted data.
But recent implementations of such systems [26] requires a large number of
arithmetic computations such as pairing, repeated exponentiation, etc., which
in turn result in computation overhead to the system.

In traditional ABE cryptosystems, computations such as pairing, repeated
exponentiation, etc., incur a lot of computational overhead, thus rendering them
inefficient for practical applications. On the other hand, cellular automata allow
highly scaling levels of data parallelism and scramble the information efficiently
but do not provide fine-grained access control, which is a primary requirement in
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large-scale cloud systems. Also, security concerns become even more serious when
the access control needs to be distributed among various attribute authorities.
This motivates us to design a multi-authority attribute-based cryptosystem using
CA.

In this paper, we present a novel CA-based public-key cryptosystem where
encryption and decryption are realized using reversible cellular automata, and
policy satisfiability is performed using Turing-complete cellular automata. Our
proposed cryptosystem has the following features:

1. Turing completeness is highly rare in CA in comparison with the reversibil-
ity principle. Proving Turing-completeness is still a venture not completely
explored. So using our proposed CA-based cryptosystem, it is very less likely
for the attacker to guess the policy satisfiability of the system which uses
Turing-complete CA.

2. Reversibility in CAs adds a lot of non-linearity to the encryption and decryp-
tion ends, thus preventing linear attacks.

3. Even though the process of attribute authorization is sequentially before the
encryption, they do not affect the overall result and are independent. So our
cryptosystem is portable across different topologies of distributed authorities.

4. A distinguishable feature of a CA is that all cells of its change their states
simultaneously at a single instance of time. This implies a very high level of
data parallelism, which can be used to improve the speed of the system for
large message blocks sent by a larger number of users.

The paper is structured as follows. In Sect. 2, we present some important
related works that are relevant and motivational to the design of our proposed
cryptosystem. In Sect. 3, a brief background on first order CA is presented, along
with some important features of CAs that form the cornerstone to our cryptosys-
tem. In Sect. 4, we define, describe, exemplify, and illustrate our cryptosystem
in terms of its security against some prevalent attacks. We present some exper-
imental results, in Sect. 5, that show the efficacy of our cryptosystem. Finally,
we conclude our work in Sect. 6.

2 Related Work

Cellular automata (CA) were first suggested to be used as efficient pseudoran-
dom number generators (PRNG) which is used in stream ciphers [27] and block
ciphers [23]. One-dimensional elementary CA with periodic boundary conditions,
such as rule 30 [12], were the first suggestions but were cracked through cho-
sen plaintext attacks [13]. Having its vulnerabilities in some periodic patterns,
second-order, block, and programmable CA [14] were also suggested as a means
to vaccinate itself from such attempts of pattern recognition, but were again
cracked employing several layers of linear attacks [15]. Adding some hybridiza-
tion in terms of transition rules and periodicity, yet another PRNG was proposed
by Tomassini [16], which has so far been resistant enough against attacks. A lot
of other generic realizations such as S-boxes in DES, AES, etc., some Boolean
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function based public-key cryptosystems have also been deeply explored and
discussed [17]. But these CA-based cryptosystems consider a limited set of tran-
sition rules of all the possible ones. Reversible CA have been suggested to be
used in symmetric key cryptosystems [18], and public key cryptosystems [20].
Also, there have been recent works on non-linear CA to improve the random-
ness property [24]. But such primitive systems do not inherently provide any
fine-grained access control mechanism, which is a strong necessity in large-scale
cloud systems. Such fine-grained access control mechanisms have been incorpo-
rated in encryption systems that have been discussed below, but do not use CA
anywhere.

Sahai and Waters (2005) [7] first proposed attribute-based encryption (ABE)
for supporting secure fine-grained threshold-based access control through secret
sharing. Later Goyal et al. [8] introduced Key-Policy Attribute-Based Encryption
(KP-ABE) and Bethencourt et al. [9] proposed Ciphertext-Policy Attribute-
Based Encryption (CP-ABE). The dichotomy between KP-ABE and CP-ABE
is clarified by the parties who have access control. While, in KP-ABE schemes,
the access control lies with the system users, in CP-ABE schemes, the access
control lies with the data owners [11].

Multiple studies and papers addressing various issues in attribute-based
encryption have surfaced since 2005. The domain of ABE schemes consists of
designs having large universe constructions with high expressiveness and based
on the prime-order setting. With the introduction of decentralization in ABE
by M. Chase in 2007 [28], other issues like user and attribute revocation [10]
and traceability for malicious user identification [29] have been proposed and
improved upon [25]. Most of the previous attribute-based constructions are com-
putationally expensive due to multiple pairing and exponentiation operations
involved in their algorithms. This motivates our current research, along with the
future scope of CA-based systems in emerging fields such as DNA and molecular
computing.

In this work, we aim to improve upon the security of the cryptosystems
for cloud storage by making use of reversible CAs [18] in the attribute-based
encryption process. The Turing completeness of Game of Life allows us to make
the attribute checking process encapsulated in an envelope of homogeneity, in
the sense that all the encryption-decryption process happens through the cellu-
lar automaton. This way, we inculcate a fine-grained access control mechanism
at a significantly low mathematical complexity and computational cost, thus
overcoming the disadvantage of traditional ABE schemes. While symmetric and
public-key encryption systems do not provide the fine-grained access control,
identity-based cryptosystems [19] involve a lot of complicated arithmetic, ren-
dering it to be practically unusable. Also, this should help the shift of paradigm
of the use of cellular automaton as a PRNG to that as a fundamental and reliable
model of encryption. While PRNG models focused on expanding keys using fixed
rules to generate relatively untraceable information, such models allow flexibility
in the rules as well. The use of the main key repository using a dictionary data
structure adds to the flexibility of the systems.



438 A. Pradhan et al.

3 Background

In this section, we formally define and describe a generic first-order CA. We illus-
trate the definition by some classic examples of Turing-complete CA, followed
by an explanation of reversible CAs. Finally, we state some important properties
that will help us understand the design of the cryptosystem.

3.1 First-Order Cellular Automata

Any n-dimensional r-neighbourhood first-order cellular automata can be defined
as a 4-tuple (S,Qt, N, f) where S ⊆ N, known as the set of states; Qt is an
l1 × l2 · · · × ln matrix for an instance of time t, where ∀k ∈ {1, 2, . . . n} ∀ik ∈
{1, 2, . . . lk}, Qt[i1, i2, . . . in] ∈ S. N is an r × n matrix known as the neigh-
bourhood matrix. Finally, f : Sr+1 → S, known as the transition function. Here
the future state of a cellular automaton is defined in the following way:

∀k ∈ {1, 2, . . . n} ∀ik ∈ {1, 2, . . . lk},

where

hm = Qt[{(ik + N [m, k]) mod lk) ∀k ∈ {1, 2, ...lm}}] ∀m ∈ {1, 2, . . . r}

A cellular automaton is said to be elementary if n = 1, r = 2, S = {0, 1}, N =
(1,−1)T . The decimal equivalent of the binary number formed by an ordered
sequence of the images of the function f of an elementary cellular automaton
is said to be its ‘rule’, or the ‘Wolfram totalistic rule’. An example running of
rule 110 cellular automaton is graphically illustrated in Fig. 1 [4]. The transition
function f110 : S3 → S for rule 110 cellular automaton is given below in the form
of a boolean expression:

f110(A,B,C) = A(B + C) + A(B ⊕ C)

Throughout the paper, we refer the sequence Q1, Q2, Q3, Q4 . . . as the tempo-
ral evolution of a cellular automaton, the matrix Q1 as the seed of the machine.

Local patterns observed in class 4 CA with specific initial configurations are
seemingly scrambled in future configurations, but universality in computation
requires some special features in these local patterns. Rule 110 is Turing-complete
[4], but the equivalence is not efficient enough. This is just one side of the scenario
that the use of Turing-complete CA has never occurred specifically in any kind
of cryptosystem. Though the Turing-completeness scrambles the information, it
is not guaranteed that one can retrace back the original seed from there.

The initial usage of CA in the design of cryptosystems was pertinent and
inclined to that of PRNGs in stream ciphers, a classical example of rule 30 [12].
When such cryptosystems were broken [13], then second-order block CA were
used [14] and these were again broken [15]. Tomassini’s cryptosystem [16] is yet
another PRNG, which has not been broken. Several other CA-based cryptosys-
tems [17] have been proposed.
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Another classical example of a Turing-complete two-dimensional CA is shown
in Fig. 2, known as “Conway’s Game of Life” [5,32], whose transition function
is described as follows:

1. Any live cell (i.e., a cell with state ‘1’) with fewer than two live neighbours
dies (i.e., the cell attains the state ‘0’), as if by under-population.

2. Any live cell with two or three live neighbours lives on to the next generation.
3. Any live cell with more than three live neighbours dies, as if by overpopula-

tion.
4. Any dead cell with exactly three live neighbours becomes a live cell, as if by

reproduction.

Fig. 1. A demonstration of the rule 110 cellular automaton [4]. The first row shows the
transition rules. It is noteworthy of the binary number formed of the outputs, whose
decimal equivalent is rule 110. The subsequent grid shows the temporal evolution,
where the initial seed consists of a single one and rest all zeroes.

Fig. 2. A demonstration of the Game Of Life cellular automaton [5]. The first grid
shows the seed, and the subsequent grids show the temporal evolution of the same.
This is known as a ‘glider’.

Conway’s Game Of Life has been shown to be Turing complete, as it is possi-
ble to emulate AND, OR, and NOT gates. It has been shown how to place appro-
priate p30 gliders and other associated gliders in the seed of the two-dimensional
CA [5], which enables us to allow the interpretation of all possible Boolean logic.
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This will be used in securing the fine-grained access control mechanism provided
by our design of the cryptosystem, described in a later section.

A reversible cellular automata is one where every temporal evolution (or
configuration) leads to a unique seed in the next time switch of the cellular
automata. Thus, if d = l1l2l3 · · · ln, and k = |S| in the above definition and
as is defined in [6], there are kd! possibilities of the (kd)k

d

to get a reversible
cellular automaton. Since we will be using these kinds of CAs for encryption and
decryption, as described in Sect. 4.3, this poses a huge problem for the adversary
to know the key space. Reversible CAs were explored in design of symmetric and
public-key cryptosystem [18,20].

3.2 Some Important Observations

The essential properties of a CA that supports the design of our proposed cryp-
tosystem are as follows:

1. Tracing back the previous states of a temporal evolution of a CA
is in NP: Given a previous configuration of a CA and its corresponding
transition rules, we can compute the future configuration of a CA using a
deterministic Turing machine in polynomial time. Thus verifying the solution
to the posed problem is in P. So the problem is in NP.

2. Game of Life is Turing-complete and hence is non-linear: Turing-
completeness has already been proved in [5]. Also, to find chaotic patterns
that lead to Turing-completeness, as shown in [4] and [5], the transition func-
tion should not be generating any such mathematical sequence. The proof is
led by the following contradiction: say the ‘computationally universal’ tran-
sition function F allows a generation of some sequence S in its configuration
C. Since the automaton is ‘computationally universal’, one must be able to
generate another fundamentally different sequence S′ starting from the same
seed. Without loss of generality, S′ will definitely reflect upon at least one
different configuration C ′ in one of its temporal evolutions. This implies that
this might have started from a transition function F ′. Thus, the temporal
evolution of a Turing-complete CA is not mathematically tractable, and thus
consequently non-linear.

3. Checking if a 1-dimensional CA rule is reversible or not is in NP:
Suppose there is a decision problem ‘Given a CA rule, is the mapping from
a set of all possible configurations C to the future ones bijective?’. We claim
that this decision problem is in NP. Consider the verification version of the
problem: Given a bijective mapping fc : C → C and a given CA rule R, can
fc be generated by the temporal evolution of R? This can be solved in linear
time with respect to the size of C. This proves our claim. There have been
solutions proposed [22] but are not polynomial-time in the worst case. It has
also been proven that deciding whether an n-dimensional CA is reversible
for n > 1 is Turing-undecidable [6].

4. Only a small fraction of all possible CAs are actually reversible:
As discussed in Sect. 3.1, the expected fraction of reversible CAs of k states
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and d cells is kd!

(kd)kd . For example, if k = 2 and d = 16, the probability that a

CA is reversible is kd!

kdkd = 7.659×10−28460. This shows a typical value of the
fraction of all possible CAs that are reversible. So, it is extremely difficult
for the adversary to realize the key space of the proposed cryptosystem. This
strengthens the security of the proposed solution as will be seen in Sect. 4.3.

5. All reversible CAs are non-linear, i.e. no reversible CA are linear:
We will again prove this by contradiction. Let us consider a bijective mapping
fc : C → C of a linear CA, where configuration C = {c1, c2, c3 · · · cd} ∈
{0, 1}d, d being the number of cells in the configuration. Since the transition
function fc : C → C is linear, there exist a1, a2, a3 · · · ar ∈ {0, 1} such that
a cell c′

i in the future configuration is given by,

c′
i = a1ci−� r

2 � ⊕ a2ci−� r
2 �+1 ⊕ · · · ⊕ aici ⊕ · · · arci+� r

2 � (1)

Say for the number of neighbours r ≥ 2, there exist two numbers e, f such
that i − � r

2	 ≤ e, f ≤ i + � r
2	 such that ae = af , so in two distinct initial

configurations where one has ce = cf = 0 and another has ce = cf = 1 will
lead to same c′

i. Thus fc is not bijective, leading to a contradiction. Thus no
reversible CA is linear.

Such essential, remarkable, and annotated observations have been taken into
account for proving the security of our proposed cryptosystem against some
prevalent attacks. Various aspects of our proposed cryptosystem are described
in the section below.

4 Proposed Cryptosystem

In this section, we present the details of our cryptosystem along with the archi-
tectural design. The working of the cryptosystem is illustrated with an example.
We finally use the important properties of CAs to substantiate the security of
our cryptosystem.

4.1 Operational Flow of Our Cryptosystem

1. We define a function T1 : I → Θ to map attributes to their corresponding
authorities. Here I is the set of attributes, and Θ is the set of all authorities.
It can be noted that each attribute is associated with only one authority,
but a single authority can possess many attributes. Also, two small positive
integers N1 and N2 are chosen for the Central Authority and the attribute
authorities respectively.

2. Data owner DO sends a prototype access structure A1 and attribute list S
to the Central Authority (CAuth), which is fully trusted.

1 A prototype access structure is a Boolean representation of the access policy which
is to be satisfied by the user’s attributes in order to access the data.
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3. Each user U submits its credentials to CAuth and obtains the associated
set of attributes based on them.

4. CAuth also possesses a tokenizing cellular automata2 CAtoken that
works on some chosen reversible CA rule Rtoken.

5. For each attribute i ∈ S, CAuth computes the Intermediate Token (IT)
i1 = T2(i), where T2 : I → I1, I1 being the set of all such possible inter-
mediate tokens. The computation is as follows: the attribute i is fed as the
seed of the tokenizing CA and is run for N1 steps until the intermediate
token i1 is obtained.

6. The central authority CAuth and the attribute authorities exchange certain
special messages for obtaining the final tokens from the intermediate tokens.
These special messages are in the form of 5-tuples (θ1, θ2, θ3, i1, k) where

(a) θ1 is the ID of the nearest attribute authority from where the 5-tuple will
start travelling from and reach back.

(b) θ2 is the ID of the attribute authority that is presently going to receive
the 5-tuple.

(c) θ3 is the ID of the attribute authority that has the attribute associated
with the intermediate token i1 and converts it into final token.

(d) i1 could be either intermediate or final token.
(e) k is a Boolean value, which is True if the i1 is a final token.

7. CAuth submits an initialized set S1 = {(θn, θn, θ, i1, False) : θ = T1(i), i1 =
T2(i) ∀i ∈ S} to the nearest authority server θn.

8. All the attribute authorities are connected to each other by means of an
arbitrary topology G. Each authority is associated with some identifier (ID)
θA ∈ Θ and all agree upon some routing algorithm Ar. For all 5-tuples
(θn, θ2, θ3, i1, k) coming to a server with ID θ2, the following cases are con-
sidered, and whichever case is satisfied by the 5-tuple, the corresponding
procedure is followed.

(a) If θ2 = θ3 and the Boolean variable k is False, that means this server is
the destination server that has the authority for the given attribute. So
the server computes the Final Token(FT) i2 ∈ I2, I2 being the set of all
FTs, from the IT i1 by feeding it as a seed to the tokenizing CA running
with same reversible rule Rtoken for N2 steps. Then it consults its own
routing table to find the next hop attribute authority server with ID θ4
which can route this tuple to the one with ID θn. Finally, it replaces
the 5-tuple (θn, θ2, θ3, i1, k) with (θn, θ4, θn, i1, T rue) and submits it to
attribute authority with ID θ4.

(b) If θ2 �= θ3 and the Boolean variable k is False, that means the tuple still
has the IT and it has not reached the concerning attribute authority
server. So this server consults its routing table to find the next hop
attribute authority server with ID θ4 which can route this tuple to
the one with ID θ3. Then it replaces the 5-tuple (θn, θ2, θ3, i1, k) with
(θn, θ4, θ3, i1, k) and submits it to attribute authority with ID θ4.

2 Tokenising CA is a CA that converts an attribute into its intermediate token.
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(c) If θ2 �= θ3 = θn and the Boolean variable k is True, that means the
tuple has the FT, but it has not reached the nearest attribute authority
server to CAuth. So this server consults its routing table to find the next
hop attribute authority server with ID θ4 which can route this tuple to
the one with ID θn. Then it replaces the 5-tuple (θn, θ2, θn, i1, k) with
(θn, θ4, θn, i1, k) and submits it to attribute authority with ID θ4.

(d) If θ2 = θ3 and the Boolean variable k is True, that means θ2 = θ3 = θn,
the algorithm Ar has terminated and the tuple containing the FT has
finally reached back to nearest attribute authority server. So the set
S2 = {i2 : i2 = T2(i1)∀(θn, θ2, θ3, i1, k) ∈ S′

1}, T2 : I1 → I2, is submitted
back to CAuth. Here I2 is the set of all such possible final tokens and S′

1 is
the modified set of 5-tuples after the termination of the routing algorithm
Ar. CAuth waits until the complete set S2 is received to prevent any
replay attacks.

CAuth ensures that all the equality checks performed in the above algorithm
are secured and cannot be compromised by an external attacker.

9. Meanwhile, the central authority CAuth waits for a fixed amount of time for
the response from the authority server θn. If it does not receive any response,
it aggressively sends a dummy packet to θn. Then attribute authority θn
replies with the same dummy packet after it has cleared all of its dirtied
buffers.

10. For all FTs i2 ∈ S2, CAuth computes the original i, T2(i) = i2 by passing
i2 as a seed to detokenizing CA3 that uses reverse tokenizing CA rule
R−1

token for N1 +N2 steps. Then CAuth calculates the policy P representing
the prototype access structure A by considering the Boolean min-terms.
Finally, CAuth sends P to the key allocation repository (KAR). CAuth
controls KAR and periodically monitors it.

11. KAR maintains a one-to-one mapping M1 : P� → RCA where P� is the
set of all policies and RCA is the set of all reversible rules. KAR submits
Rencrypt = M1(P ) to the data owner DO.

12. DO chooses a random number N as a public key. It also has a specific CA
known as encryption CA4, there data D is fed as its seed. The CA is
run N times with rule Rencrypt, to obtain ciphertext C. DO then sends the
2-tuple <C,N> to the cloud.

13. At the decryption end, the user U places its own attribute set A′ to the
first Game of Life (GoL) that generates the policy Pu ∈ P� that it satisfies.

14. The user submits Pu to the KAR, which replies back with Rdecrypt =
M1(Pu). Then Rdecrypt is fed as the seed to the second GoL which returns
reverse CA rule R−1

decrypt.
15. U now feeds C to the decryption CA5 that runs on rule R−1

decrypt for N
steps. If Rdecrypt = Rencrypt, it means that U satisfied the policy and it

3 Detokenizing CA is a CA that converts a final token into its actual attribute.
4 Encryption CA is a CA that is responsible for encryption of a message into its

ciphertext.
5 Decryption CA is a CA that is responsible for converting the ciphertext back to its

original message.
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will obtain the message M successfully from the decryption CA. Else, the
policy satisfaction has been unsuccessful; therefore, the decryption is also
unsuccessful.

<C,N>
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Fig. 3. Architectural design of the proposed cryptosystem.

The following is a description of the encryption-decryption algorithm for our
proposed cryptosystem. The pictorial representation of the system is given in
Fig. 3.

Now, we discuss the proof of correctness, a proven upper bound on the num-
ber of users and some comments on the security of our proposed cryptosystem.

Proof of Correctness: Say for a transition function f : Sr+1 → S fol-
lowing a CA rule R beginning with message M1, ends up in a sequence
M1,M2,M3, · · · MN after N = N1 + N2 steps of temporal evolution. Here,
C = MN is the final ciphertext, and M2,M3, · · · MN−1 are the intermediate
texts during the temporal evolution of encryption cellular automaton. For every
intermediate ciphertext Mi, fR(Mi) = Mi+1 =⇒ fR−1(Mi+1) = Mi, where
R−1 is the reverse of the CA rule R. So if the attributes satisfy the policy gen-
erated from first GoL, the ith step of encryption that corresponds to the stage
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fR(Mi) = Mi+1 is directly mapped to the (N − 1 − i)th step of decryption, i.e.,
fR−1(Mi+1) = Mi. This allows the original message retrieved from the ciphertext
successfully. A similar logic holds good for the case of the generation of interme-
diate and final tokens from the attributes and vice-versa. There, the attribute
behaves like the message, and the first few steps of encryption are carried out
at the central authority to generate the intermediate token, and the rest at the
respective attribute authorities. This completes the proof of correctness of our
cryptosystem.

4.2 A Working Example

Suppose a data owner DO want to send a message “ThisIsACryptoSystem” to
all the users satisfying a policy Cp with a first-order cellular automaton with the
following parameters:

1. Set of states S =
{
t, h, i, s, a, c, r, y, p, o, e,m, T,H, I, S,A,C,R, Y, P,O,

E,M
}
, k = |S| = 24

2. A neighbourhood of size r = 3
3. A grid of size d = 19 (which is actually the length of the message in this

case)

We assume a typical reversible CA rule Rencrypt that represents a bijective
mapping fencode of the set S of these 24 letters to itself, as shown in Table 1,
corresponds to Cp. We are choosing N1 = 7 and N2 = 3 for this example.

Table 1. The function fencode : S → S shown in tabular form

mi fencode(mi) mi fencode(mi)
t T h t
i A s C
a R c I
r Y y i
p a o P
e H m O
T y H s
I E S r
A c C R
R M Y e
P S O o
E m M p

Let there be three attributes in Cp, namely a1, a2 and a3. Let a1 be encoded
as (03af)16, a2 as (8316)16, and a3 as (941e)16. Suppose Cp = a1ā2a3 + ā1a2ā3.
Let the rule of the tokenizing CA be Wolfram rule 18. For attribute a1, the
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Table 2. The steps of generating the intermediate token in the tokenizing CA.

Step 0 0000001110101111

Step 1 1000010000000000

Step 2 0100101000000001

· · · · · ·
Step 7 1011010100000010

tokenizing CA performs the N1 = 7 steps to obtain the intermediate token
(b502)16 as shown in Table 2. This step is known as tokenization.

Similarly the intermediate tokens for attributes a2 and a3 are (1a83)16 and
(2a8c)16 respectively. Now when the nearest authority server θn is sent the set
S1 containing the authority IDs and the intermediate tokens, first the corre-
sponding authority IDs are matched. Let us assume that the inherent routing
algorithm ensures that the tuples in S1 attributes a1, a2 and a3 reach the respec-
tive authorities θ1, θ2 and θ3 respectively. Since all attribute authorities agree
to use the same rule 18 to encode the ITs, the server with ID θ1 generates the
final token for a1 as (0231)16 using N2 = 3 steps of CA computation as shown
in Table 3.

Table 3. The steps of generating the final token at the attribute authority.

Step 0 1011010100000010

Step 1 0000000010000100

Step 2 0000000101001010

Step 3 0000001000110001

Similarly, the final tokens for a2 and a3 are (a900)16 and (1150)16 respectively.
Now after the collection of final tokens by the server with ID θn, the attributes
need to retrieved back using rule 18R [33] once the modified version of set S1

is sent back to the central authority. For example, the code for attribute a1, i.e.
(03af)16 is retrieved back from its final token (0231)16 by applying rule 18R in
the detokenizing CA for N1 + N2 = 10 steps, as shown in Table 4.

This step is called as detokenization, which happens in a similar way for
attributes a2 and a3 also.

Now the attributes are combined in the policy generator to form a policy
Cp resembling the prototype access structure A. Suppose the access policy is
given as A = a1ā2a3 + ā1a2ā3. Let every Boolean variable x is expressed as
logic ‘1’, and its negation x̄ as logic ‘0’. Then, the min-terms a1ā2a3 and ā1a2ā3

are expressed as (101)2 = (5)10 and (010)2 = (2)10. We express Cp as a single
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Table 4. The steps of retrieving the attribute back from the final token at the central
authority.

Step 0 0000001000110001

Step 1 0000000101001010

Step 2 0000000010000100

· · · · · ·
Step 10 0000001110101111

number 22 + 25 = 4 + 32 = 36. This number represents the policy. Likewise,
there are 22

v

representative policies for v number of attributes. Now Cp is sent
to the key allocation repository, and corresponding CA rule Rencrypt is chosen
and sent back to DO.

The data owner DO chooses a random number N = 5 as its public key, and
performs five steps of encryption, as shown in Table 5.

Table 5. The steps of encryption

Step 0 ThisIsACryptoSystem

Step 1 ytACECcRYiaTPriCTHO

· · · · · ·
Step 5 IAmaPaOhCEycesEacMr

The message obtained after 5th step of temporal evolution is the final cipher-
text. Along with the public key and the list of users, the following ciphertext
is uploaded to the cloud - <“IAmaPaOhCEycesEacMr”, 5 >. Now suppose the
user Alice (that has the attributes to satisfy the policy Cp) logs in to the system
to access this ciphertext. Firstly, she provides her attribute set to the first GoL.
Our cryptosystem implements a multiplexer logic to convert this attribute set
into the required policy Cp = 36. The CA rule Rp is extracted from Cp in the
key allocation repository and passed to 2nd GoL. The inverse rule R−1

encrypt is
computed in the second GoL, that yields the function f−1

encode. The Table 6 shows
the function f−1

encode to compute different characters in plaintext.
Now the decryption CA applies five steps, shown in Table 7, on the ciphertext

with inverse mapping f−1
encode. After 5th step of temporal evolution of the inverse

CA, Alice gets the original message.
Suppose another user Bob satisfies policy C ′

p = 38. The first GoL, here, would
generate C ′

p and send it to KAR. Suppose C ′
p is mapped to a CA rule R′

p that
represents a bijective mapping f−1

decode : S → S. The function fdecode as shown
in Table 8.

KAR replies with rule R′
p to Bob. In his second GoL, the inverse CA rule

(R′
p)

−1 is generated. In this case, the decryption CA performs five steps, shown in
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Table 6. The function f−1
encode : S → S shown in tabular form

mi f−1
encode(mi) mi f−1

encode(mi)
A i C s
E I H e
I c M R
O m P o
R C S P
T t Y r
a p c A
e Y h a
i y m E
o O p M
r S s H
t h y T

Table 7. The steps of decryption

Step 0 IAmaPaOhCEycesEacMr

Step 1 ciEpopmasITAYHIpARS

· · · · · ·
Step 5 ThisIsACryptoSystem

Table 8. The function fdecode : S → S shown in tabular form

mi f−1
encode(mi) mi f−1

encode(mi)
A I C s
E i H e
I m M R
O c P o
R t S r
T C Y P
a p c A
e Y h a
i O m E
o y p M
r S s T
t h y H

Table 9, on the ciphertext <“IAmaPaOhCEycesEacMr”,5 > with the mapping
fdecode to obtain the message, which is incorrect.

Table 9. The steps of wrong decryption

Step 0 IAmaPaOhCEycesEacMr

Step 1 mIEpopcasiHAYTipARS

· · · · · ·
Step 5 cOAhYhEtIoiHCIhipS
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This completes the illustration of the operational flow of our cryptosystem.
We note that there are N steps taken in encryption and decryption, N1 steps
for the intermediate token generation, N2 steps for the final token generation
and N1+N2 steps of original attribute generation. Taking into consideration the
constant time of the routing algorithm, the overall time complexity of our pro-
posed cryptosystem is O(N +N1 +N2). And for a certain instance of encryption
and decryption, the parameters N , N1 and N2 are fixed. Thus our cryptosystem
takes constant time for both encryption and decryption. This is clearly visible
in the experimental results obtained in Sect. 5.

4.3 Security of the Proposed Cryptosystem

The following are some of the proofs of security of the systems, presenting some
possible brute force attacks, and the time complexity of the most intelligent
possible scheme for the corresponding attack.

1. Resistance to brute force attacks to discover the underlying CA
rule being used. As mentioned in Sect. 3.1, for a CA with k states, r

neighbours and grid of size d, there are (kd)k
d

possibilities of the mapping
of the configurations, and kkr

possibilities of transition functions. So, the
most intelligent interception through the brute force attack may scale as

Ω

(
(kd)k

d

+ kkr

)
, which will be extremely time consuming. For example,

for k = 2, d = 20, r = 6, the value of (kd)k
d

is approximately (2.06 × 106)10
6

and that of kkr

is approximately 1.8446 × 1019. These numbers are simply
a rough estimate of how many instructions the adversary needs to carry out
for this brute force attack.

2. Resistance to brute force attack on the Game of Life CA. Here,
we discuss the case where the adversary attacks the Game of Life CA that
formulates the satisfying policy. The adversary here tries to guess the policies
of each and every user. Since 3-SAT is in NP-complete, guessing the policy
will be highly time-consuming. The most intelligent brute force attack on the
Game of Life CA assuming attribute set of cardinality A and n users, will be
Ω(exp(n ∗ 22

A

)), as the number of all policies using the complete attribute
set is 22

A

, which will also be highly scaling. For example, if n = 100, A = 5,
exp(n ∗ 22

A

) ≈ 73 × 210
11

.
3. Resistance to linear attacks. As seen in Sect. 3.2, both the Turing com-

plete and reversible CAs are non-linear, and again looking at the pragmatic
magnitudes, prominent attacks on linear systems such as differential, linear
and interpolation attacks will be super-exponentially scaling with time. For
example, if there are k states and d cells in the grid, the most intelligent
linear attack will demand the computation of d coefficients using d equa-
tions, with choosing d messages among the kd possibilities, rendering

(
kd

d

)

choices, with O(d3) test time per choice (by means of Gaussian elimination).
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Thus the time required for such an attack for a first-order cellular automa-

ton becomes Ω

(
(
kd

d

)
d3

)
. This complexity keeps on scaling with increasing

order of linearity. For instance, if k = 2, d = 5, an approximate value of(
kd

d

)
d3 is 6.95 × 10240. This itself tells us how strong our system is against

linear attacks.
4. Resistance to attacks on attribute authorities. Now the attribute

authorities exchange intermediate tokens and final tokens among each other.
So the most intelligent attacks on the attribute authorities will be a brute-
force attack to check which of all the possible CA rules are reversible or not.
As concluded from Sect. 3.2, the fraction of reversible CA rules are (kd)!

kdkd . So
the time complexity of a maximal probabilistic brute force attack to check
whether a rule is reversible or not is Ω(exp((kd)!)), which is also high. For
instance, if k = 2, d = 10, then exp((kd)!) ≈ 43 × 210

2639
.

5. Resistance to attacks by malicious attribute authorities. It might be
a case where some malicious attribute authorities might not forward some
of the attributes to the corresponding authorities. In that case, the near-
est attribute authority to the central authority is not able to send the final
tokens, and the central authority stops waiting after its timer has gone off.
The dummy packet it sends cautions the authority that the process of for-
warding has gone wrong at some point. So it waits for some time, replies
with the dummy packet and the entire process restarts. Since the nearest
authority waits for some time, the network is released of its traffic, authori-
ties have their buffers cleared, and the system successfully comes back to its
original state.

5 Experimental Results

In this section, we evaluate the performance of our cryptosystem in various
scenarios. The important metric of consideration here is the time complexity
of encryption and decryption algorithms. The experiments illustrated here are
of programmatic nature, i.e., software-enabled mechanisms have been used. The
testing environment is set up in Python and Wolfram languages, where standard
libraries are used wherever required, and linear operations happen via BLAS
(Basic Linear Algebra Subsystem) packages [31].

5.1 Complexity of Encryption and Decryption

The time complexity of the encryption and decryption in such an environment
is governed by the size of the hardware, the number of steps (N1 and N2) in tok-
enization, the random public key parameter N and the network topology among
the attribute authorities. For the sake of simplicity of analysis, we show the effect



Distributed Multi-authority Attribute-Based Encryption 451

assuming the hardware is as large as the input message, however it can be eas-
ily generalized easily to large size messages. Figure 4 shows the variation of the
encryption and decryption time with the length of the message. Figure 5 shows
the same with the number of steps in intermediate tokenization (N1) and Fig. 6
with that of final tokenization (N2). Figure 7 shows the variation with the public
key parameter N . All these results were obtained by considering the attribute
authorities in a logical mesh topology. Also, in each of these plots, the variation
with respect to one parameter has been shown having the other parameters held
constant. Wherever required, the public key parameter N , and the parameters
N1 and N2 have been held constant at 60. Also, as and when necessary, the
message length has been fixed at 1.5 MB. Figure 8 shows a comparison of the
same across different kinds of topology with fixed message length, parameters
N1 and N2, and public key parameter N . Comparison has been made among
mesh, star, tree, ring, and hypercube topology among eight attribute authori-
ties. Figure 4 shows that the practical time complexity is invariant of the length
of the message, as the definition of CA itself allows the entire plaintext to be
accommodated wholly in a single go. Figures 5, 6 and 7 show a direct linear
relationship between the speed and the number of steps taken in tokenization,
and also with the public key parameter which substantiates the time complexity
of O(N +N1+N2) derived in Sect. 4.2. Figure 8 reveals that the decryption time
is invariant of the routing algorithm or the topology, but the encryption time is
dependent on the same. For example, the encryption time is maximum for tree
and ring topology (as the diameter of the graph is the highest) and minimum for
the star topology (as the diameter of the graph is 2). The diameter of a graph is
defined as the maximum possible length of the shortest path between all pairs
of vertices.

Fig. 4. The plot of encryption and decryption time (in µs) against the message length
l (in MB).
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Fig. 5. The plot of encryption and decryption time (in µs) against number of steps N1

in intermediate token generation.

Fig. 6. The plot of encryption and decryption time (in µs) against number of steps N2

in final token generation.

Fig. 7. The plot of encryption and decryption time (in µs) against public key param-
eter N .

5.2 Comparison with Existing Cryptosystems

A comparison of the performance of our proposed cryptosystem has been
made with an existing efficient statically-secure large-universe multi-authority
attribute-based cryptosystem [30]. Figures 9 and 10 clearly show that our cryp-
tosystem performs much better than the existing systems in terms of encryption
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Fig. 8. The plot showing the variation of encryption and decryption time across dif-
ferent kinds of topology of the attribute authorities.

Fig. 9. The plot showing the variation of encryption time with the message length
(in MB) of both the proposed cryptosystem and the RW-scheme [30]. The blue curve
shows the measure of time in microseconds whereas the red curve shows the same in
millisecond. (Color figure online)

Fig. 10. The plot showing the variation of decryption time with the message length
(in MB) of both the proposed cryptosystem and the RW-scheme [30]. The blue curve
shows the measure of time in microseconds whereas the red curve shows the same in
millisecond. (Color figure online)

and decryption times. This is because existing systems, such as the Rouselakis
- Waters scheme (RW-scheme) [30], have linear time complexity. On the other
hand, our cryptosystem has constant time complexity in terms of message length.
Here the encryption and decryption times consider the processes in totality, i.e.,
the time required for pairing, key generation, etc.
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6 Conclusion

In this paper, we propose a distributed multi-authority attribute-based encryp-
tion scheme for large-scale cloud systems using reversible and Turing-complete
cellular automata. This system uses reversible CAs for distributed attribute
authorization, encryption and decryption and Turing-complete CAs for policy
validation. We have shown the security of our system in encryption, decryption,
and attribute authorization. The system is designed a way where the attribute
authorization and encryption-decryption mechanisms are independent of each
other, which makes the system adaptable to any topology of attribute authority
network. Also, we have shown the efficacy of the system in terms of requir-
ing lesser hardware and accommodating the unrestricted number of users. We
believe that improvement in distributed computational hardware in the future
will reduce the cost of CAs.
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Abstract. In this paper, we give a new generic construction of bounded-
collusion identity-based encryption (BC-IBE) scheme from public key
encryption (PKE) scheme. Our construction significantly reduces the
number of public parameters to O(t), where t is a collusion parameter.
Especially, we present the first construction in which the number of pub-
lic parameters is independent from the total number of identities in the
system. To achieve this, we propose a novel table-based ID-to-key map,
and a method of deriving key pair from two (public and secret) parame-
ter tables by using a cryptographic hash function. We provide a security
proof of our construction in random oracle model.

1 Introduction

In identity-based encryption (IBE) schemes [12], a user’s identity itself serves
as a public key, and the corresponding secret key is generated by a trusted key
generation center. After the first efficient construction of Boneh and Franklin’s
pairing-based IBE scheme [2], it has been remarkably improved in terms of secu-
rity and efficiency of IBE schemes [1,3,11].

On the other hand, Dodis et al. [5] considered a variant of IBE scheme,
bounded-collusion IBE (BC-IBE) scheme which is secure against any probabilis-
tic polynomial time adversary who can obtain at most t secret keys sk1, · · · , skt.
They presented a generic construction of BC-IBE scheme from any semantic
secure PKE scheme. Unfortunately, the size of ciphertext in the induced BC-
IBE scheme is significantly larger than that of the underlying PKE scheme, but
their result is still valuable in that BC-IBE is a stepping stone for a generic
reduction from PKE to IBE. In 2012, Goldwasser et al. [8] showed how to con-
struct BC-IBE from PKE with key homomorphism while maintaining ciphertext
size. Their security proof of BC-IBE scheme depends on the fact that the under-
lying PKE satisfies “linear hash proof property” inspired by the paradigm of hash
proof systems [4]. In 2014, Tessaro and Wilson [13] presented a generic construc-
tion of BC-IBE from PKE with key homomorphism and malleability property,
in order to apply more PKE schemes. However, the size of public parameters
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is increased to O(t2 log |ID|) from the previous result O(t log |ID|), where t is
the collusion parameter and |ID| is the total number of identities the scheme
supports.

An (BC-)IBE scheme consists of four algorithms (Setup,Extract,Enc,Dec):
Enc and Dec are usual encryption and decryption algorithms, and Setup generates
public parameter pp and master secret key msk. Extract takes pp, msk, and a
user’s identity ID as input, and outputs the user’s secret key skID.

In both of [8] and [13], Setup algorithm generates N key pairs {(ski, pki)}i∈[N ]

of a PKE scheme where N = O(t log |ID|) in [8] and N = O(t2 log |ID|)
in [13], respectively. We have pp = (pk1, · · · , pkN ) and msk = (sk1, · · · , skN ).
The extraction algorithm of [8] is described as follow: for an identity ID and a
hash function H, compute f(H(ID)) = (id1, · · · , idN ) where f is a function sat-
isfying the linear hash proof property and each idi is an integer. The output of
Extract is the user’s secret key computed by skID =

∑N
i=1 idi ·ski. Note that by the

homomorphic property the corresponding public key will be pkID =
∏N

i=1 pk
idi
i .

In [13], they made use of a “(N, s)-cover-free map” φ : [N ] → 2[N ] where 2[N ]

denotes the collection of all the subsets of [N ]. Extract algorithm takes ID, and
computes skID =

∑
i∈φ(ID) ski and pkID =

∏
i∈φ(ID) pki. The (N, s)-cover-free map

φ guarantees that there always exists an element of [N ] contained in exactly one
subset among {φ(ID1), · · · , φ(IDt−1)} for t distinct identities ID1, · · · , IDt, i.e.,
the set φ(IDt) \ ∪t−1

i=1φ(IDi) is nonempty. Note that if we think msk and pp as
1-dimensional tables of length N then Extract chooses s element from the table
to compute key pairs. The table size N cannot be reduced since this is intrinsic
to guarantee the security from the property of the cover-free map φ.

Our Construction. We take a similar approach but in a different way: Instead
of using cover-free maps, we set msk and pp as 2-dimensional tables. Given a
security parameter λ, take two integers u, v ∈ Z satisfying uv = λ. Then, for a
cryptographic hash function H : {0, 1}∗ → {0, 1}λ, we interpret the hash value
H(ID) as a vector of length v with elements in {0, 1, · · · , 2u − 1}, i.e., H(ID) =
h1‖h2‖ · · · ‖hv. Then, the key generation algorithm generates secret/public keys
by the following rule

skID =
∑v

j=1
sk(hj ,j), and pkID =

∏v

j=1
pk(hj ,j),

i.e., for each j-th column in Table 1, we take (hj , j)-th component and then
compute the sum and product for secret and public keys, respectively.

We show that, with the above identity-to-key assignments, one can generi-
cally convert PKE with key homomorphism and additional properties into BC-
IBE with collusion parameter t ≈ 2u · v where uv = λ. In Table 2, we summa-
rize the required assumptions on the underlying PKE schemes. The additional
requirement of our construction, “power of message-and-key”, can be easily sat-
isfied by PKE schemes of our interest. Note that the table size N = 2uv varies
with the choice of (u, v). For example, the possible minimum table size is N = 2λ
where u = 1 and v = λ and the maximum table size is N = 2λ where u = λ and
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Table 1. Master secret table msk and public parameter table pp with 2u rows and v
columns.

sk(0,1) sk(0,2) · · · sk(0,v)
sk(1,1) sk(1,2) · · · sk(1,v)

...
...

...
sk(2u−1,1) sk(2u−1,2) · · · sk(2u−1,v)

pk(0,1) pk(0,2) · · · pk(0,v)
pk(1,1) pk(1,2) · · · pk(1,v)

...
...

...
pk(2u−1,1) pk(2u−1,2) · · · pk(2u−1,v)

v = 1. To guarantee the storage efficiency, We encourage the use of (u, v) such
that u � v. We also stress that the table size N in fact determines the collusion
parameter t ≈ N .

Table 2. Comparison with previous constructions for BC-IBE. (t is the collusion
parameter and |ID| is the total number of identities in the system. #pp is the number
of public system parameters. Note that linear hash proof is strictly stronger assumption
than semantic security.)

Construction PKE assumptions Security #pp

GLW12 [8] - Linear hash proof Semantic O(t log|ID|)
- Key homomorphism

TW14 [13] - Semantic-secure PKE Selective O(t2 log|ID|)
- Key homomorphism

- Semantic-secure PKE Semantic

- Key homomorphism

- Weak multi-key malleability

- Semantic-secure PKE Semantic

- Multi-key malleability

Ours - Semantic-secure PKE Semantic O(t)

- Key homomorphism

- Weak multi-key malleability

- Power of message-and-key

2 Preliminaries

Key Homomorphisms. Throughout the paper, we focus on PKE = (KeyGen,
Enc,Dec), where the secret and public keys are elements of groups (Gsk,+)
and (Gpk, ·), respectively. For convenience and ease of distinction, we will use
additive notation for the group Gsk of secret keys and multiplicative notation
for the group Gpk of public keys.
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Definition 1 (Secret-key to Public-key Homomorphism [13]). We say
that PKE admits a secret-key to public-key homomorphism (key homomorphism,
in short), if there exist a map μ : Gsk → Gpk such that for all sk, sk′ ∈ Gsk, it
holds that μ(sk + sk′) = μ(sk) · μ(sk′) and further, for all (sk, pk) ← KeyGen, it
holds that pk = μ(sk).

For example, discrete logarithm problem (DLP)-based encryption schemes have
a key pairs (pk, sk) = (ga, a) where Gpk = G is a cyclic group of prime order
p and Gsk = Zp. Then they allow a secret-key to public-key homomorphism
μ : Zp → G defined by μ(a) = ga.

As stated in [13], the definition of key homomorphism does not require that
every group element sk ∈ Gsk is a valid secret key. Instead, we say that μ
satisfies v-correctness if for any k ≤ v valid secret keys sk1, · · · , skk output by
KeyGen, the correctness condition holds for the derived secret key sk = sk1 +
· · · + skk, i.e., we have for all message m, Dec(sk,Enc(μ(sk),m)) = m with high
probability.

IND-ID-CPA Security for BC-IBE. The security model of IBE must allow
the adversary to obtain the secret keys of identities ID1, ..., IDn of his choice
(via secret key extraction queries), where n is a polynomial number of queries.
On the other hand, the security model of BC-IBE must allow the adversary
to obtain secret keys associated with at most t(< n) identities, where t is a
threshold parameter for collusion resistance. The IND-ID-CPA security notion [8]
for BC-IBE is defined in term of the following game between a challenger C and
an adversary A:

Setup: C chooses a security parameter and obtains the public parameters and
master secret key by running the setup algorithm. It gives the public param-
eters to A.

Phase 1: C initializes a counter to be 0. When A issues secret key extraction
queries for various identities, C increments its counter for each query. If the
resulting counter is ≤ t, C responds by running key generation algorithm to
generate a secret key for the requested identity. If the counter is > t, it does
not respond to the query.

Challenge: A outputs two equal-length messages m0, m1 and an identity ID∗ that
is not queried in any private key extraction query in Phase 1. C flips a coin
b ∈ {0, 1}, encrypts mb to identity ID∗ using the encryption algorithm, and
responds the ciphertext to A.

Phase 2: A issues more secret key extraction queries for various identities not
equal to ID∗. C responds as in Phase 1. Note that the same counter is
employed, so that only t total queries in the game are answered with secret
keys.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. A wins the game if b′ = b.

The advantage of A in the above game is defined as AdvA =
∣
∣Pr[b′ = b] − 1/2

∣
∣.

We say that a bounded-collision IBE scheme with parameter t is IND-ID-CPA
secure if any adversary A has a negligible advantage in this game.
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3 A New Construction of BC-IBE

In this section, we present how to assign a user’s identity to its secret key which
is an important building block for our generic construction. Once a secret key
is assigned to the user, we can use the secret-key to public-key homomorphism
to obtain the corresponding public key, and then encryption and decryption
algorithms of our IBE scheme remain the same as the encryption and decryption
algorithms of the base PKE scheme.

To fix the idea, let us denote PKE = (KeyGen,Enc,Dec) be a public-key
encryption scheme. Assume the scheme has a secret-key to public-key homomor-
phism μ : Gsk → Gpk.

3.1 Table-Based Identity to Secret Key Map

In this section, we propose a new map φ which maps an arbitrary ID into the
corresponding secret/public key which is a group element. We then present a
generic construction of BC-IBE from PKE with key homomorphism based on
our identity map φ. Our ID-to-key map φ will depend on a table with random
group elements: we first apply a hash function to an ID string of arbitrary length
and then the corresponding key will be a subset sum (or product etc.) of group
elements related to the hash value of ID.

Let λ be a security parameter, and (G,+) be a group with additive notation
for the simplicity. We first construct a table T of random group element as
follows:

(i) Pick two integers u, v ∈ Z
+ satisfying uv = λ and let N = 2uv be the table

size.
(ii) Choose N distinct group elements x(i,j) ∈ G for 0 ≤ i < 2u and 1 ≤ j ≤ v.
(iii) Construct a table T with 2u rows and v columns. Set x(i,j) to be the (i, j)-th

entry of T .

ID-to-key Map(λ). Given the above table T , a cryptographic hash function
H : {0, 1}∗ → {0, 1}λ, and a group (G,+), we now define the ID-to-key map
φT : {0, 1}∗ → G into the group G. For each ID ∈ {0, 1}∗, we do the following:
1. Compute H(ID) ∈ {0, 1}λ.
2. Split the hash string H(ID) into v substrings with u-bit length. Let hj be

the j-th substring for 1 ≤ j ≤ v

H(ID) = h1‖h2‖ · · · ‖hv.

Note that each substring hj ∈ {0, 1}u can be seen as an integer hj with
0 ≤ hj < 2u.

3. For all j = 1, 2, · · · , v, keep the (hj , j)-th entry x(hj ,j) from the table T .
4. Output φT (ID) ∈ G defined by

φT (ID) =
v∑

j=1

x(hj ,j).
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This completes the description of our ID-to-key map φT into the group G with
respect to the table T .

Theorem 1. Let λ = uv be a security parameter and N = 2uv be the table size.
Let φT be the ID-to-key map into the group G with respect to the table T . Then,
given samples {(IDi, φT (IDi))}1≤i≤�−1 for � ≤ N − 1 − λ

log2 p , the probability
of constructing the next sample (ID�, φT (ID�)) for ID� /∈ {IDi}1≤i≤�−1 is 1 −
∏�

k=1

(
1 − k−1

2λ

)
.

Lemma 1. Let λ = uv and N = 2uv. For i = 1, 2, · · · , �, let Bi ∈ {0, 1}2u×v

be a binary matrix over Zp with p prime such that each column has Hamming
weight 1. If � ≤ N − 1 − λ

log2 p , then {Bi}1≤i≤� are linearly independent with

probability at least
∏�−1

k=0

(
1 − k

2λ

)
.

Proof. Let Ek be the event that {Bi}1≤i≤k are linearly independent, and Ik be
the event that Bk is linearly independent to {Bi}1≤i≤k−1. Then by definition it
holds that Ik ∩ Ek−1 = Ek for all k and we have

Pr[E�] = Pr[I�|E�−1] Pr[E�−1] = · · · =
�∏

k=1

Pr[Ik|Ek−1]

where Pr[E0] = 1. Consider the opposite probability Pr[I�
k |Ek−1] =

1 − Pr[Ik|Ek−1] that Bk is linearly dependent to {Bi}1≤i≤k−1 given that
{Bi}1≤i≤k−1 are linearly independent. This event is divided into the following
two cases:

(i) Bk = Bi for some 1 ≤ i ≤ k − 1, or
(ii) a · Bk =

∑k−1
i=1 ai · Bi for some a ∈ Z

∗
p, ai ∈ Zp and at least two of ai’s are

nonzero.

The first case occurs with probability k−1
2λ since the number of possible Bk’s

is (2u)v = 2λ and the number of all possible Bi’s is (k − 1). To estimate the
probability of the second case, we observe that the portion of matrices of the
form a · Bk in Z

2u×v
p is (p − 1) · 2λ

pN . Since there are pk−1 possible vectors of the

form
∑k−1

i=1 ai · Bi for given {Bi}1≤i≤k−1, we estimate the number of nontrivial
linear combinations a · Bk =

∑k−1
i=1 ai · Bi by

(p − 1) · pk−1 · 2λ

pN
<

2λ

pN−k

which is less than 1 by assumption k ≤ � < n − λ
log2 p . Thus, the second case

barely occurs, and hence we can say that Pr[I�
k |Ek−1] = k−1

2λ and Pr[E�] =
∏�

k=1

(
1 − k−1

2λ

)
. �
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Proof (Proof of Theorem 1). One useful way to see the ID-to-key map φT (ID) is
to introduce a binary matrix BID ∈ {0, 1}2u×v defined by

BID[i, j] =
{

1, if i = hj

0, otherwise

where H(ID) = h1‖h2‖ · · · ‖hv. Then we have

φT (ID) =
v∑

j=1

2u−1∑

i=0

BID[i, j] · x(i,j) =
v∑

j=1

2u−1∑

i=0

(BID ∗ T )[i, j],

where BID ∗T denotes component-wise multiplication. Let Bi be the correspond-
ing binary matrix for IDi for 1 ≤ i ≤ � − 1, then φT (IDi) is computed by adding
all components of Bi ∗ T . If one can find ID� such that B� =

∑�−1
i=1 ai · Bi for

some ai ∈ Zp, then one can also compute φT (ID�) from
∑�−1

i=1 ai · φT (IDi) since

we have B� ∗ T =
(∑�−1

i=1 ai · Bi

)
∗ T =

∑�−1
i=1 ai · (Bi ∗ T ). However, it occurs

with probability ≈ 1 − ∏�−1
k=0

(
1 − k

2λ

)
by Lemma 1. �

The above probability implies that, for limited numbers of queries, there
is little chance that linear dependence occurs. Hence it is hard to find a valid
secret key from the queries, and thus it leads to bounded-collusion security of
our scheme. For instance, at λ = 256, u = 8 and v = 32, the probability P�(=
1 − Pr[E�]) is ≤ 2−230 if � ≤ 8190, is ≈ 1 otherwise. Hence, if there exists a
BC-IBE scheme using the ID-to-key map with the above parameters, we can say
the scheme is “8190-bounded collusion IBE scheme”.

3.2 Construction

Given a PKE=(KeyGen, Enc, Dec) scheme with key homomorphism, we now con-
struct a BC-IBE scheme by using the method for ID-to-key mapping presented
above.

IBE.Setup(λ). To generate public parameters pp and master key msk, run as
follows:
1. Pick two integers u, v ∈ Z

+ such that uv = λ.
2. Generate N(= 2uv) key-pairs (sk(i,j), pk(i,j)) by running KeyGen algo-

rithm N times, where 0 ≤ i < 2u and 1 ≤ j ≤ v.
3. Generate two tables Tsk, Tpk with 2u rows and v columns using the N

key-pairs.
4. Construct two ID-to-key maps φTsk

and φTpk
.

5. Output msk = Tsk and pp = Tpk.
IBE.KeyGen(msk, pp, ID). Given an identity ID, the secret key is skID = φTsk

(ID).
IBE.Enc(pp, ID, m). To encrypt message m under an identity ID, compute pkID =

φTpk
(ID) and then set the ciphertext to be ct =Enc(pkID,m).

IBE.Dec(pp, ct, skID). To decrypt the ciphertext ct using the secret key skID,
output m = Dec(skID, ct).
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For the following security analysis, we define a following new property which
we call “power of message-and-key”. The property states that given an integer
v and a ciphertext ct of a message m under a known public key pk where ct
is used a random value r, we can generate a new ciphertext ct′ of the message
mv under the public key pkv where ct′ is used the same random value r of the
given ciphertext ct. As we know, the message encapsulation part in an ElGamal
encryption consists of multiplication of a shared secret pkr and a message m,
where pk is a public key and r is an ephemeral key (or random secret value). This
ElGamal type encryption scheme satisfies the property by computing ctv2, where
ct2 is a ciphertext corresponding to the message encapsulation. We will show for
give a concrete example based on DDH and LWE assumptions in Sect. 4.

Definition 2 (Power of Message-and-Key). We say that a PKE with a
secret-key to public-key homomorphism allows power of message-and-key compu-
tation if there exists an algorithm MKPower that takes a ciphertext ct = Enc(pk,
m; r) and an integer v and returns a new ciphertext ct′ = Enc(pkv,mv; r) where
the same random value r is used.

Another useful property that we will use is the “weak multi-key malleability”
of PKE from [13] which describes the property that one can transform a cipher-
text under a public key into another ciphertext under a product of some public
keys including the original public key. Here the product of public keys is also a
public key if PKE admits a key homomorphism.

Definition 3 (Weak Multi-key Malleability [13]). For an integer v, we say
that PKE is weakly v-key malleable if there exists an efficient algorithm Simulate
such that for all messages m and all sk, sk′, the probability distributions D0 and
D1 are computationally indistinguishable: for any key pairs (sk, pk), (sk′, pk′) ←
KeyGen(λ),

(i) D0 = {((pk, pk′), sk′, ct0) : ct0 ← Enc(pk · pk′,m)}
(ii) D1 =

{
((pk, pk′), sk′, ct1) : ct ← Enc(pk,m), ct1 ← Simulate(ct, (pk,

pk′), sk′)
}
.

To prove the security of our construction, we define ΓPKE as a PKE scheme
which satisfies the above two properties, and ΔBC·IBE as a BC-IBE scheme gen-
erated by our generic construction based on ΓPKE.

Theorem 2. Let H be a random oracle. Let εφ be an advantage against the ID-
to-key map φT . Suppose there exists an IND-ID-CPA adversary A against ΔBC·IBE.
Suppose A makes at most qH queries to the H. Then, there exists an adversary
B against the ΓPKE. Concretely,

AdvIND-CPA
B,ΓPKE

(λ) ≥ 1
qH

· AdvIND-ID-CPA
A,ΔBC·IBE (λ) + εφ.

Proof. Let A be an active adversary that gets an advantage in attacking the
IND-ID-CPA security of the BC-IBE scheme ΔBC·IBE. A can get the advantage by
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following two cases: one is breaking the ID-to-key map φT , namely computing
the secret key of a target identity directly, and the other is attacking the scheme
ΔBC·IBE without breaking the map φT . Roughly speaking, if t ≤ N − 2, the
advantage εφ for the first case is negligible by Theorem 1, where t is a parameter
for collusion resistance and N(= 2uv) is a table size.

For the second case, we show how to build an algorithm B that uses A to
break the IND-CPA security of PKE scheme ΓPKE. (Note that, in the following
proof, we will generate a public table that (randomly selected) half of the table
is computed using given public key for B and the other half is using inverse of
the public key. This is to satisfy the following three conditions: one is to behave
like random oracle, second is to respond for any private key extraction queries,
and the last is to connect a public key given to B to A’s challenged identity.)
Without loss of generality, we assume that any extraction queries are preceded
by H queries. On input pk∗, B outputs b∗ ∈ {0, 1} by interacting with A as
follows:

Setup. B picks u, v ∈ Z
+ such that uv = λ and generates n(= 2uv) key-pairs

(sk(i,j), pk(i,j)) by running KeyGen algorithm of ΓPKE, where i ∈ [0, 2u −1] and
j ∈ [1, v]. B sets RI = {0, 1, ..., 2u − 1} and CI = {0, 1, ..., v}. B selects v
random subsets RI+

j of RI such that |RI+
j | = 2u−1. B sets RI−

j = RI \RI+
j ,

where j ∈ [1, v] and |RI+
j | = |RI−

j | = 2u−1. To generate a public table Tpk′ ,
B then sets

pk′
(i,j) =

{
pk∗pk(i,j) if i ∈ RI+

j ,

(pk∗)−1pk(i,j) if i ∈ RI−
j ,

where i ∈ [0, 2u − 1] and j ∈ [1, v]. B guesses θ ∈ [1, qH ] such that A outputs
ID∗ for θ’th H query as a target identity for the challenge phase. To avoid
collision and consistently respond to these queries, B maintains a list LH =
{〈ID,H(ID) = h1||h2|| · · · ||hv〉} which is empty initially. B then gives the
public parameters pp = Tpk′ to A.

Phase 1. A issues H and extraction queries. B responds as follows:
H-queries: When A makes H query ID, B does the following:
– If the query ID is θ’th H query (we let ID = IDθ at this point), B chooses

v random values hθ
j ∈ RI+

j where j ∈ {1, 2, ..., v}. B adds 〈IDθ, hθ
1||hθ

2|| ·
· · ||hθ

v〉 to LH and responds with H(IDθ) = hθ
1||hθ

2|| · · · ||hθ
v. Note that

the public value pkIDθ for the H(IDθ) is (pk∗)vpk(hθ
1,1)pk(hθ

2,2) · · · pk(hθ
v,v).

(Note that, although the values hθ
j are picked in the fixed sets RI+

j , the
simulate for θ’th H query acts like a random oracle because the subsets
RI+

j are selected randomly in each game.)
– Otherwise, B selects a random subset CI+ of CI such that |CI+| = v/2.

B sets CI− = CI \ CI+, where |CI+| = |CI−| = v/2. For j from 1 to v,
B chooses random hj ∈ RI as follows:

hj ∈ RI+
j , if j ∈ CI+,

hj ∈ RI−
j , if j ∈ CI−.
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B adds 〈ID, h1||h2|| · · · ||hv〉 to LH and responds with H(ID) = h1||h2|| ·
· · ||hv. Note that, the value pkID = (pk∗)v/2(pk∗)−v/2pk(h1,1)pk(h2,2) · · ·
pk(hv,v) = pk(h1,1)pk(h2,2) · · · pk(hv,v).
Extraction queries: When A makes a secret key extraction query on
ID, if ID = IDθ, B aborts the simulation. Otherwise, B finds the tuple
〈ID, h1||h2|| · · · ||hv〉 in LH . B picks the sk(hj ,j) for each substring hj . B
then responds to A with skID = sk(h1,1) + sk(h2,2) + · · · + sk(hv,v). (Note
that, according to the security model of BC-IBE, A can obtain at most t
secret keys.)

Challenge. A outputs two messages m0, m1 ∈ M and an identity ID∗. If ID∗ �=
IDθ, B abort the simulation. Otherwise, B sets (m′

0 = m
1/v
0 ,m′

1 = m
1/v
1 ),

forwards (m′
0,m

′
1) to the IND-CPA game, and obtains a challenge ciphertext

ct. B then computes ct′ = MKPower(ct, v), pk′ =
∏v

j=1 pk(hθ
j ,j), and sk′ =

∑v
j=1 sk(hθ

j ,j), where ct′ is a ciphertext on the message mb(= (m′
b)

v) of ΓPKE

by MKPower algorithm. B generates ct∗ = Simulate(ct′, pk′, sk′) and gives ct∗

to A. (Note that, since the ciphertext ct is for pk∗, the algorithms MKPower
and Simulate are used to modify ct to ct∗ which is a cipertext on mb for pkIDθ .)

Phase 2. A issues more H and extraction queries. B responds as in Phase 1.
Guess. A outputs a guess b ∈ {0, 1}. B finally outputs b∗ = b.

The probability that B correctly guesses θ is 1/qH . If the advantage of A is εIBE,
then the advantage of B is at least εIBE

qH
+ εφ as required. �

Note that, an IND-ID-CPA secure BC-IBE scheme generated from our construc-
tion can transform into an IND-ID-CCA secure BC-IBE scheme in the random
oracle model by using the Fujisaki-Okamoto transformation [6].

4 Instantiation: BC-IBE from PKEs

4.1 DDH-Based Construction

We present a simple instantiation of our generic construction based on ElGa-
mal encryption as follows: (sk, pk = gsk) ←KeyGen(G, q, g); (gr,m · pkr) ←
Enc(pk,m); m = ct2 · ct−sk

1 ← Dec(sk, (ct1, ct2)), where G is a group with prime
order q, g is a generator of G, m(∈ G) is a message, and r is a random number
in Zq. As we know, the ElGamal encryption scheme is IND-CPA secure under
the DDH assumption and satisfies the following properties:

– Secret-key to public-key homomorphism μ : Zq → G, where μ(x) = gx.
– Computability of power of message-and-key: MKPower((ct1, ct2), v) →

(ct1, ctv2).
– Weak key malleability: ct∗ = Simulate((ct1, ct2), pk′, sk′) = (ct1, ct2 · ctsk′

1 ).

Eventually, it can construct the ElGamal encryption scheme to a BC-IBE scheme
which is IND-ID-CPA secure under the DDH assumption by Theorem 2 (Fig. 1).
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IBE.Setup(λ,G, q, g) IBE.KeyGen(msk, ID) IBE.Enc(pp, ID, m)

sk(i,j)
$← Zq, pk(i,j) ← g

sk(i,j) skID ← φTsk
(ID) pkID ← φTpk

(ID)

(i, j)th entry of Tsk ← sk(i,j) Return skID r
$← Z

∗
q

(i, j)th entry of Tpk ← pk(i,j) ct1 ← gr, ct2 ← m · pkr
ID

pp ← (q,G, g, Tpk) IBE.Dec(pp, ct, skID) Return ct = (ct1, ct2)

msk ← Tsk m ← ct2 · ct
skID
1

Return (pp, msk nruteR) m

Fig. 1. The BC-IBE scheme based on ElGamal encryption

4.2 LWE-Based Construction

The learning with errors (LWE) problem is one of the most important founda-
tions of lattice-based cryptography which is quantum-resistant. A majority of
candidates submitted to Post-Quantum Cryptography Standardization project
of NIST are lattice-based cryptography, and its security is fundamentally based
on the hardness of LWE problem. The LWE problem was first introduced by
Regev [9,10] and has been being studied in a plenty number of papers after-
wards.

Here we give a simplified description of the LWE problem for ease of under-
standing. See [9,10] for more details. The LWE problem is essentially to distin-
guish a special distribution from the uniform distribution. Let n ≥ 1, p ≥ 2 and
m ≥ n log p be parameters, and χ be an error distribution over Z

m
p sampling

short elements. We further assume that p is prime. For A
$← Z

m×n
p , s $← Z

n
p ,

e
$← χ, and b

$← Zp, the LWE assumption says that the following two distribu-
tions are statistically indistinguishable for secret s and e:

(A,As + e)
s≈ (A, b).

Our generic construction can be applied to obtain an LWE-based BC-IBE
scheme from PKE in [7] which is a dual encryption scheme of Regev [9,10].
Let us briefly review the PKE scheme of [7]. (sk = s, pk = (A, b = As)) ←
KeyGen(n,m, p); (rT A + e, rT b + e′ + m�p

2�) ← Enc(pk,m); m′ = ct2 − ct1 · sk,
1 ← Dec(sk, (ct1, ct2)) if m′ is close to p/2, 0 otherwise, where sk = s ∈ Z

n
p ,

A ∈ Z
m×n
p , e and e′ are sampled from proper error distributions, and r ∈ Z

m
p is

the random vector for random encryption (Fig. 2).

– Secret-key to public-key homomorphism μ : Zn
p → Z

m
p , defined by μ(s) = A · s

for a fixed matrix A ∈ Z
m×n
p .

– Computability of power of message-and-key: MKPower((ct1, ct2), v) → (ct1, v ·
ct2).

– Weak key malleability: ct∗ = Simulate((ct1, ct2), pk′, sk′) = (ct1, ct2+ct1 ·sk′).



468 K. Y. Choi et al.

IBE.Setup(λ, n, m, p) IBE.KeyGen(msk, ID) IBE.Enc(pp, ID, m)

A
$← Z

m×n
p , s(i,j)

$← DZm,r skID ← φTsk
(ID) pkID ← φTpk

(ID)

As(i,j) ∈ Z
m
p Return skID rT $← Z

m
p

(i, j)th entry of Tsk ← s(i,j) e
$← χ, e′ $← χ′

(i, j)th entry of Tpk ← As(i,j) ct1 ← rT A + e

pp ← (n, m, p, A, Tpk) IBE.Dec(pp, ct, skID) ct2 ← rT pkID + e′ + m� p
2 �

msk ← Tsk Return 0 or 1 by inspecting Return (ct1, ct2)

Return(pp, msk) ct2 − ct1skID

Fig. 2. The BC-IBE scheme based on the GPV scheme [7]
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Abstract. A redactable signature scheme allows removing parts of a
signed message without invalidating the signature. Currently, the need to
prove the validity of digital documents issued by governments and enter-
prises is increasing. However, when disclosing documents, governments
and enterprises must remove privacy information concerning individuals.
A redactable signature scheme is useful for such a situation.

In this paper, we introduce the new notion of the t-out-of-n redactable
signature scheme. This scheme has a signer, n redactors, a combiner, and
a verifier. The signer designates n redactors and a combiner in advance
and generates a signature of a message M . Each redactor decides parts
that he or she wants to remove from the message and generates a piece
of redaction information. The combiner collects pieces of redaction infor-
mation from all redactors, extracts parts of the message that more than
t redactors want to remove, and generate a redacted message.

We consider the one-time redaction model which allows redacting sig-
natures generated by the signer only once. We formalize the one-time
redaction t-out-of-n redactable signature scheme, define security, and
give a construction using the pairing based aggregate signature scheme
in the random oracle model.

Keywords: Redactable signature scheme · Aggregate signature
scheme · Shamir’s secret sharing · Bilinear map

1 Introduction

1.1 A Redactable Signature Scheme

Recently, due to the development of IoT devices, the number of electronic data
is steadily increasing. It is indispensable for future information society to make
use of these data. When we use data, it is important to prove that the data has
not been modified in any way. A digital signature enables a verifier to verify the
authenticity of M by checking that σ is a legitimate signature on M . However,
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in our real-world scenario, when we use data, the confidential information should
be deleted from the original data. A digital signature cannot verify the validity
of a message with parts of the message removed.

A redactable signature scheme (RSS) is a useful cryptographic scheme for
such a situation. This scheme consists of a signer, a redactor, and a verifier. A
signer signs a message M with a secret key sk and generates a valid signature σ.
A redactor who can become anyone removes some parts of a signed message from
M , generate a redacted message M ′, and updates the corresponding signature
σ′ without the secret key sk. A verifier still verifies the validity of the signature
σ′ on message M ′ using pk.

An idea of a redactable signature scheme was introduced by Steinfeld, Bull,
and Zheng [21] as a content extraction signature scheme (CES). This scheme
allows generating an extracted signature on selected portions of the signed orig-
inal document while hiding removed parts of portions. Johnson, Molnar, Song,
and Wagner [11] proposed a redactable signature scheme (RSS) which is similar
to a content extraction signature scheme.

Security. Security of a redactable signature scheme was argued in many works.
Brzuska, Busch, Dagdelen, Fischlin, Franz, Katzenbeisser, Manulis, Onete, Peter,
Poettering, and Schröder [3] formalized three security notions of a redactable
signature for tree-structured messages in the game-based definition.

– Unforgeability: Without the secret key sk it is hard to generate a valid signa-
ture σ′ on a message M ′ except to redact a signed message (M,σ).

– Privacy: Except for a signer and redactors, it is hard to derive any information
about removed parts of the original message M from the redacted message
M ′.

– Transparency: It is hard to distinguish whether (M,σ) directly comes from
the signer or has been processed by a redactor.

Derler, Pöhls, Samelin, and Slamanig [4] gave a general framework of a redactable
signature scheme for arbitrary data structures and defined its security definitions.

Additional Functionalities. Following additional functionalities for a
redactable signature scheme were proposed.

– Disclosure control [5,6,8,9,13–16,19]: Miyazaki, Iwamura, Matsumoto,
Sasaki, Yoshiura, Tezuka, and Imai [16] proposed the disclosure control. The
signer or intermediate redactors can control to prohibit further redactions for
parts of the message.

– Identification of a redactor [7,10]: Izu, Kanaya, Takenaka, and Yoshioka [7]
proposed the redactable signature scheme called “Partial Information Assur-
ing Technology for Signature” (PIATS). PIATS allows a verifier to identify
the redactor of the signed message.

– Accountability [18]: Pöhls and Samelin proposed an accountable redactable
signature scheme that allows deriving the accountable party of a signed mes-
sage.
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– Update and Marge [12,17]: Lim, Lee, and Park [12] proposed the redactable
signature scheme where a signer can update signature by adding new parts of a
message. Moreover, Pöhls and Samelin [17] proposed the updatable redactable
signature scheme that can update a signature and marge signatures derived
from the same signer.

1.2 Motivation

Consider the case where a citizen requests the signed secret document disclosure
to the government. To disclose the secret signed document, the government must
remove sensitive data from it. A decision of deletion for confidential information
of a document is performed by multiple officers in the government meeting.

One of the simple solutions is that the signer of the secret document gives the
signing key sk to the meeting chair. The chair takes a vote on removing sensitive
information and removes it from the secret document and signed it using sk.
However, if the meeting chair is malicious, it is risky for the secret document
signer to give the meeting chair a signing key sk. Therefore, the secret document
signer wants to avoid giving a signing key sk to others.

If we try to adapt the original RSS on this situation, we suffer from the
following problem. RSS allows anyone to redact message parts and even removes
the necessary information. Moreover, a malicious chair can redact message parts
form the signed document regardless of the decision of the officers.

1.3 Our Contributions

We introduce the new notion of t-out-of-n redactable signature scheme to over-
come this problem. This scheme is composed of a signer, n redactors, a combiner,
and a verifier. The signer designates n redactors and a combiner, generates a key
pair (pk, sk) and redactor’s secret key {rk[i]}n

i=1 and sends rk[i] to the redactor i.
Then signer decides parts of a message that redaction is allowed, signs the mes-
sage, and sends its signature to n redactor and a combiner. Each redactor i
selects parts of the signed message that he or she wants to remove, generates a
piece of redaction information RIi, and sends it to the combiner. The combiner
collects all redaction information {RIi}n

i=1, extracts signed message parts which
at least t redactors want to remove using {RIi}n

i=1, generates the redactable
signature. The verifier can verify the validities of signatures.

Now, we reconsider applying the t-out-of-n redactable signature scheme to
the above redaction problem. Let the secret document signer be a signer of the
t-out-of-n redactable signature scheme, officers be redactors, and the meeting
chair be a combiner. The secret document signer does not have to give the
signing key sk to the chair. Our t-out-of-n redactable signature only allows the
chair to redact parts of message which at least t officers wants to remove.

We consider the one-time redaction model which allows redacting signed
message only one time for each signature and gives the unforgeability, privacy,
and transparency security of the t-out-of-n redactable signature scheme in the
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one-time redaction model. Also, we give a concrete construction of the t-out-
of-n redactable signature scheme which satisfies the unforgeability, privacy, and
transparency security.

Our construction is based on the (t, n)-Shamir’s secret sharing scheme and
the redactable signature scheme proposed by Miyazaki, Hanaoka, and Imai [14]
which use the aggregate signature scheme proposed by Boneh, Gentry, Lynn,
and Shacham [1] based on the BLS signature scheme [2]. Our technical point
is to adapt (t, n)-Shamir’s secret share scheme and compute Lagrangian inter-
polation at the exponent part of the group element to reconstruct information
for the redaction. Security of our scheme is based on the computational co-CDH
assumption in the random oracle model.

2 Preliminaries

Let 1λ be the security parameter. A function f(k) is negligible in k if f(λ) ≤
2−ω(log λ). PPT stands for probabilistic polynomial time. For strings m and r,
|m| is the bit length of m and m||r is the concatenation of m and r. For a finite

set S, #S denotes the number of elements in S, s
$←− S denotes choosing an

element s from S uniformly at random. y ← A(x) denotes that an algorithm A
outputs y for an input x.

2.1 Bilinear Map

Let G be a bilinear group generator that takes as an input a security parameter
1λ and outputs the descriptions of multiplicative groups (q, G1, G2, GT , e, g1, g2)
where G1, G2, and GT are groups of prime order q, e is an efficient, non-
degenerating bilinear map e : G1 × G2 → GT , g1, and g2 are generators of
the group G1 and G2 respectively, and φ is a computable isomorphism from G2

to G1 with φ(g2) = g1.

1. Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, then e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g1, g2) �= 1GT

.

Definition 1 (Computational co-Diffie-Hellman Problem). For a groups
G1 = 〈g1〉, G2 = 〈g2〉 of prime order q, define Advco-CDH

G1,G2,A of a PPT adversary
A as

Advco-CDH
G1,G2,A = Pr

[
A(g2, gα

2 , h) = hα
∣∣∣α $←− Zq, h ← G1

]
,

where the probability is taken prover the randomness of A and the random selec-
tion of (α, h). The computational co-Diffie-Hlleman (co-CDH) assumption is that
for all adversaries A, the Advco-CDH

G1,G2,A is negligible in λ.
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2.2 Secret Sharing

In order to construct a t-out-of-n redactable signature scheme, we use the (t, n)-
Shamir’s secret sharing scheme [20]. The (t, n)-secret sharing scheme is composed
of a dealer and n users. The dealer decides a secret s, computes secret shares
{si}n

i=1, and gives the secret share si to the user i. If any t of n secret shares
or more shares are collected, we can reconstruct the secret s from them. While,
with less than t secret shares, we cannot recover the secret s.

Shamir’s Secret Sharing Scheme. We refer to the (t, n)-shamir’s secret shar-
ing scheme.

1. The dealer chooses the secret s ∈ Z and sets a0 ← s.
2. The dealer chooses a1, · · · , at−1 ∈ {0, · · · , p − 1} independently at random

and gets the polynomial f(X) =
∑t−1

i=0 aiX
i.

3. The dealer computes f(i), sets si ← (i, f(i)), and sends the secret share si to
the user i.

If we collect t or more secret shares, we can reconstruct the secret s by the
Lagrange interpolation. Let J ⊂ {1, · · · , n} and |J | = t. If we have secret shares
{sj}j∈J = {(j, f(j))}j∈J , we can compute s =

∑
i∈J

(
si

∏
j∈J,j �=i j(j − i)−1

)
.

3 A t-out-of-n Redactable Signature Scheme

We explain the outline of our proposed t-out-of-n redactable signature scheme in
the one-time redaction model. A t-out-of-n redactable signature scheme in the
one-time redaction model (t, n)-RSS is a signature scheme that has a signer, n
redactors, a combiner, and a verifier. The signer designates n redactors and the
combiner.

The signer selects a threshold t and the number of redactors n. Then, he or she
runs key generation algorithm and gets (pk, sk, {rk[i]}n

i=1). The pk is published
and the redactor’s key rk[i] is sent to the redactor i.

The signer signs a message M with an admissible description ADM which
represents parts of the message that redactors cannot remove from the message
M . In the processing of the signing, a random document ID (DID) is added to
the message M , then the signature σ is generated. (M,ADM,DID, σ) generated
by the signer is sent to n redactors and the combiner.

Each redactor i checks whether DID has never been seen before. If he or she
has seen it, then aborts. Also, if the signature is invalid, then aborts. Otherwise,
he or she selects parts of the message that he or she wants to remove and makes
the redaction information RIi and sends it to the combiner. The protocol works
only once for DID which redactors have not seen before.

The combiner collects pieces of redaction information {RIi}n
i=1. From

{RIi}n
i=1, the combiner extracts parts which at least t redactor want to remove.

Finally, the combiner outputs the redacted message M ′, ADM, DID, and its
updated valid signature σ′.
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The signature is verified using the signer’s public key pk. In the verification,
it is possible to prove the validity of the (M,ADM,DID, σ) made by a legitimate
signer or redacted by the redaction protocol for that signature while keeping
redactors anonymity.

3.1 A t-out-of-n Redactable Signature Scheme for Set

In this paper, we focus on the t-out-of-n redactable signature scheme in the
one-time redaction model for set. In the following, we assume that a message
M is a set and use following notations. An admissible description ADM is a set
containing all elements which must not be redacted.

A modification instruction MOD is a set containing all elements which a
redactor want to redact from M . ADM 
 M means that ADM is a valid descrip-

tion. (i.e., ADM∩ M = ADM.) MOD
ADM
 M means that MOD is valid redaction

description respect to ADM and M . (i.e., MOD ∩ ADM = ∅ ∧ MOD ⊂ M .) A
redaction M ′ MOD← M would be M ′ ← M\MOD. In the following definition, we
explicit ADM and DID in the syntax.

Definition 2. A t-out-of-n redactable signature scheme in the one-time
redaction model (t, n)-RSS Π is composed of four components (KeyGen,
Sign,Redact,Verify).
KeyGen : A key generation algorithm is a randomized algorithm that a signer
runs. Given a security parameter 1λ, a threshold t and the number of redactors
n, return a signer’s public key pk, a signer’s secret key sk, and redactor’s secret
keys {rk[i]}n

i=1.
Sign : A signing algorithm is a randomized algorithm that a signer runs. Given a
signer’s secret key sk, a message M and an admissible description ADM, return
a message M , an admissible description ADM, a document ID (DID), and a
signature σ.
Redact : A redact protocol is a 1-round interactive protocol between the com-
biner and n redactors. Each redactor i generates redaction information RIi and
sends to the combiner. The combiner collects all redaction informations {RIi}n

i=1

and finally outputs the redacted signature (M ′,ADM,DID, σ′). We describe the
protocol as follows:

– Given an input (M,ADM,DID, σ) from the signer, each redactor i selects
a modification instruction MODi and runs a redact information algorithm
RedInf with (pk, rk[i],M,ADM,DID, σ,MODi, L

t−1
i ). L

t−1
i is the list which

stores on DID sent from the signer. It is used for t-th input of the RedInf
by redactor i and L0 = ∅. In the processing in RedInf, if DID is previous input
to RedInf then redactor i stop interacting with a combiner. Otherwise, output
the redact information RIi and the updated list L

t
i. Each redactor i sends RIi

to the combiner.
– The combiner runs a deterministic threshold redact algorithm ThrRed with

(pk,M,ADM,DID, σ, {RIi}n
i=1) as an input. In the algorithm ThrRed, MOD is
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derived from {RIi}n
i=1 and it redacts a message M based on MOD. ThrRed out-

puts a redacted message M ′, ADM, DID and the updated signature σ′. Finally,
the combiner outputs (M ′,ADM,DID, σ′) as an output of Redact protocol.

Verify : A verification algorithm is a deterministic algorithm. Given an input
(pk,M,ADM,DID, σ), return either 1 (Accept) or 0 (Reject).

Correctness. We require the correctness that all honestly computed and
redacted signatures are accepted.

Definition 3 (Correctness). A t-out-of-n redactable signature scheme in the
one-time redaction model (t, n)-RSS Π is correct, ∀λ ∈ N, ∀k ∈ N, 1 ≤ ∀i ≤ n,
∀Mk

0 , ∀ADMk 
 Mk
0 , ∀(pk, sk, {rk[i]}n

i=1) ← KeyGen(1λ, t, n),

∀(M0,ADM
k,DIDk, σk

0 ) ← Sign(sk,Mk
0 ,ADMk), ∀MODk

i

ADMk


 Mk
0 ,

(RIki , Lk
i ) ← RedInf(pk, rk[i],Mk

0 ,ADMk,DIDk, σk
0 ,MODk

i , Lk−1
i ),

(Mk
1 ,ADMk,DID, σk

1 ) ← ThrRed(pk,Mk
0 ,ADMk,DIDk, σk

0 , {RIki }n
i=1),

we require the following.
If DIDk /∈ L

k−1
i for all t ∈ {0, 1}, Verify(pk,Mk

t ,ADMk,DIDk, σk
t ) = 1.

If DIDk ∈ L
k−1
i , Verify(pk,Mk

0 ,ADMk,DIDk, σk
0 ) = 1.

3.2 Security of a t-out-of-n Redactable Signature Scheme

We give the security notion of unforgeability, privacy, and transparency for a
redactable signature scheme in the one-time redaction model.

Unforgeability. Unforgeability requires that without a signer’s secret key sk, it
should be infeasible to compute a valid signature σ′ on (M ′,ADM,DID) except
to redact a signed message (M,ADM,DID, σ) even if t − 1 redactors keys are
corrupted.

Definition 4 (Unforgeability). The unforgeability against redactors security
of a t-out-of-n redactable signature scheme in the one-time redaction model
(t, n)-RSS Π is defined by the following unforgeability game between a challenger
C and a PPT adversary A.

1. C generates key pairs (pk, sk, {rk[i]}n
i=1) using KeyGen(1λ, t, n), and gives pk

to an adversary A.
2. A is given access (throughout the entire game) to a sign oracle OSign(·, ·) such

that OSign(M,ADM), returns (M,ADM,DID, σ) ← Sign(sk,M,ADM).
3. A is given access (throughout the entire game) to a redact oracle

ORedact(·, ·, ·, ·, ·). ORedact is defined as follows:
For an u-th query (M,ADM,DID, σ,MOD):
1. (RIi, Lu

i ) ← RedInf(pk, rk[i],M,ADM,DID, σ,MOD, Lu−1
i ) for i = 1, ..., n.

2. (M ′,ADM,DID, σ′) ← ThrRed(pk,M,ADM,DID, σ, {RIi}n
i=1).

3. Return (M ′,ADM,DID, σ′).
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4. A is given up to t − 1 times access (throughout the entire game) to a corrupt
oracle OCorrupt(·), where OCorrupt(i) outputs a rk[i] of a redactor i.

5. A outputs (M∗,ADM∗,DID∗, σ∗).

A t-out-of-n redactable signature scheme in the one-time redaction model
(t, n)-RSS Π satisfies the unforgeability security if for all PPT adversaries
A, the advantage Adv

Uf-(t,n)-RSS
Π,A = Pr[Verify(pk,M∗,ADM∗DID∗, σ∗) = 1 ∧

(M∗,ADM∗,DID∗) /∈ (QSign ∪ QRedact)] is negligible in λ.
Here, qs is the total number of queries to OSign, (Mi,ADMi) is an i-th

input for OSign, (M i,ADMi,DIDi, σi) is an i-th output of OSign and QSign :=⋃qs
i=1{(M i,ADMi,DIDi)}. Also, qr is the total number of queries to ORedact,

(M i,ADMi,DIDi, σi,MODi) is an i-th input for ORedact, (M ′i,ADMi,DIDi, σ′i)
is an i-th output of ORedact and QRedact :=

⋃qr
i=1{(M ′i,ADMi,DIDi)}.

Privacy. Privacy requires that except for a signer, n redactors, and a combiner,
it is infeasible to derive information on redacted message parts when given a
message-ADM-DID-signature pair.

Definition 5 (Privacy). The privacy of a t-out-of-n redactable signature
scheme in the one-time redaction model (t, n)-RSS Π is defined by the following
weak privacy game between a challenger C and a PPT adversary A.

1. C generates key pairs (pk, sk, {rk[i]}n
i=1) using KeyGen(1λ, t, n), and gives pk

to an adversary A.
2. A is given access (throughout the entire game) to a sign oracle OSign(·, ·) such

that OSign(M,ADM), returns (M,ADM,DID, σ) ← Sign(sk,M,ADM).
3. A is given access (throughout the entire game) to a redact oracle

ORedact(·, ·, ·, ·, ·). ORedact is defined as follows:
For an u-th query (M,ADM,DID, σ,MOD):
Let w be the number of queries to OLoRredact when A makes an u-th query
to ORedact.
1. (RIi, Lu+2w

i ) ← RedInf(pk, rk[i],M,ADM,DID, σ,MOD, Lu+2w−1
i ) for

i = 1, ..., n.
2. (M ′,ADM,DID, σ′) ← ThrRed(pk,M,ADM,DID, σ, {RIi}n

i=1).
3. Return (M ′,ADM,DID, σ′).

4. A is given access (throughout the entire game) to a left-or-right redact oracle
OLoRredact(·, ·, ·, ·, ·, ·). OLoRredact is defined as follows:
For an w-th query (M0,ADM0,MOD0,M1,ADM1,MOD1):
Let u be the number of queries to ORedact when A makes an w-th query
to OLoRredact.
1. Compute (M c,ADMc,DIDc, σc) ← Sign(sk,M c,ADMc) for c ∈ {0, 1}.
2. For i = 1, · · · n, compute

(RI0i , L
u+2w−1) ← RedInf(pk, rk[i],M0,ADM0,DID0, σ0,MOD0, Lu+2w−2

i )

(RI1i , L
u+2w) ← RedInf(pk, rk[i],M1,ADM1,DID1, σ1,MOD1, Lu+2w−1

i ).
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3. For i = 1, ..., n, compute

(M c′,ADMc,DIDc, σc′) ← ThrRed(pk,M c,ADMc,DIDc, σc, {RIci}n
i=1).

4. If M0′ �= M1′ ∨ ADM0 �= ADM1, return ⊥.
5. Return (M b′,ADMb,DIDb, σb′). (b is chosen by C in step 1.)

5. A outputs b∗.

A t-out-of-n redactable signature scheme in the one-time redaction model
(t, n)-RSS Π satisfies the privacy security if for all PPT adversaries A, the
following advantage Adv

Priv-(t,n)-RSS
Π,A = |Pr[b = b∗] − 1/2| is negligible in λ.

Transparency. Transparency requires that except for a signer, n redactors,
and a combiner, it is infeasible to distinguish whether a signature directly comes
from the signer or has been redacted by redactors.

Definition 6 (Transparency). The privacy of a t-out-of-n redactable signa-
ture scheme in the one-time redaction model (t, n)-RSS Π is defined by the fol-
lowing weak privacy game between a challenger C and a PPT adversary A.

1. C chooses a bit b
$←− {0, 1}, generates key pairs (pk, sk, {rk[i]}n

i=1) using
KeyGen(1λ, t, n), and gives pk to an adversary A.

2. A is given access (throughout the entire game) to a sign oracle OSign(·, ·) such
that OSign(M,ADM), returns (M,ADM,DID, σ) ← Sign(sk,M,ADM).

3. A is given access (throughout the entire game) to a redact oracle
ORedact(·, ·, ·, ·, ·). ORedact is defined as follows:
For an u-th query (M,ADM,DID, σ,MOD):
Let w be the number of queries to OSign/Redact when A makes an u-th query
to ORedact.
1. (RIi, Lu+2w

i ) ← RedInf(pk, rk[i],M,ADM,DID, σ,MOD, Lu+2w−1
i ) for

i = 1, ..., n.
2. (M ′,ADM,DID, σ′) ← ThrRed(pk,M,ADM,DID, σ, {RIi}n

i=1).
3. Return (M ′,ADM,DID, σ′).

4. A is given access (throughout the entire game) to a sign or redact oracle
OSign/Redact(·, ·, ·). OSign/Redact is defined as follows:
For an w-th query (M,ADM,MOD):
Let u be the number of queries to ORedact when A makes an w-th query
to OSign/Redact.
1. Compute (M,ADM,DID0, σ) ← Sign(sk,M,ADM).
2. For i = 1, . . . n, compute

(RIi, Lu+2w−1
i ) ← RedInf(pk, rk[i],M,ADM,DID0, σ,MOD, Lu+2w−2

i ).

3. Compute (M ′,ADM,DID0, σ0) ← ThrRed(pk,M,ADM,DID0, σ, {RIi}n
i=1).

4. Compute (M ′,ADM,DID1, σ1) ← Sign(sk,M ′,ADM).
5. For i = 1, . . . n, L

u+2w
i ← L

u+2w−1
i ∪ {DID1}.
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6. Return (M ′,ADM,DIDb, σb).
5. A outputs b∗.

A t-out-of-n redactable signature scheme in the one-time redaction model
(t, n)-RSS Π satisfies the transparency security if for all PPT adversaries A,
the following advantage Adv

Tran-(t,n)-RSS
ΠA = |Pr[b = b∗] − 1/2| is negligible in λ.

Theorem 1. If t-out-of-n redactable signature scheme in the one-time redaction
model (t, n)-RSS Π satisfies transparency, then it satisfies privacy.

We prove Theorem 1 in a similar way of [3,4]. We will describe the proof of
Theorem 1 in the full version of this paper.

4 Our t-out-of-n Redactable Signature Scheme

In this section, we give a concrete construction of t-out-of-n redactable signature
scheme in one-time redaction model (t, n)-RSS Π1. Let �, d be polynomials in λ,
(q, G1, G2, GT , e, g1, g2) ← G(1λ), H : {0, 1}∗ → G1 a hash function, and M a
message having a set data structure (i.e., M = {m1, ...,m�}) and #M ≤ �.

KeyGen(1λ, t, n) : Given a security parameter 1λ, a threshold value t, and the
number of redactors n, the PPT algorithm KeyGen works as follows:

1. Choose x̃
$←− Zq, compute ỹ ← gx̃

2 , and set (pkFix, skFix) ← (ỹ, x̃).

2. Choose a0, a1, · · · , at−1
$←− Zq independently at random and gets the polyno-

mial f(X) =
∑t−1

i=0 aiX
i.

3. For i = 0 to n, compute xi ← f(i), yi ← g
f(i)
2 .

4. Set (pkAgg, skAgg) ← (y0, x0), rk[i] ← (i, xi) for all i ∈ [n].
5. Set (pk, sk) ← ((pkFix, pkAgg, t, n), (skFix, skAgg)).
6. Return (pk, sk, {rk[i]}n

i=1).

Sign(sk,M,ADM) : Given a signer’s secret key sk, a message M , and ADM (In this
scheme, ADM represent a set containing all blocks which must not be redacted.),
the PPT algorithm Sign works as follows:

1. Parse sk as (skFix, skAgg).
2. If ADM � M , (i.e., ADM ∩ M �= ADM.) then abort.

3. Choose document ID DID
$←− {0, 1}d.

4. Compute hADM ← H(DID||ord(ADM)).
ord(ADM) denotes a lexicographic ordering to the elements in ADM.

5. For mj ∈ M , compute hmj
← H(DID||mj).

6. Compute σFix ← hskFix
ADM.

7. Compute σADM ← h
skAgg
ADM, σmj

← h
skAgg
mj for mj ∈ M .

8. Compute Σagg ← σADM · ∏
mj∈M σmj

.
9. Set σ ← (σFix, Σagg).

10. Return (M,ADM,DID, σ).
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Redact : Redact is an interactive protocol between the combiner and n redactor.
The combiner interacts with the n redactors and finally outputs the redacted
signature. Given a tuple (M,ADM,DID, σ) to n redactors and the combiner from
the signer, the interactive protocol works as follows:

1. Each redactor i selects a modifiction instruction MODi. Let Li be the list
which stores DIDs, L

0
i = ∅, and L

t−1
i the list which used in the input of t-th

running of the PPT algorithm RedInf by the redactor i.
The redactor i runs RedInf(pk, rk[i],M,ADM,DID, σ,MODi, L

t−1
i ).

RedInf(pk, rk[i],M,ADM,DID, σ,MODi, L
t−1
i ) :

1. Parse pk as (pkFix, pkAgg, t, n) and σ as (σFix, Σagg).
2. If DID ∈ L

t−1
i then abort.

3. Update L
t
i ← L

t−1
i ∪ {DID}.

4. Check MODi

ADM
 M . (i.e., MODi ∩ ADM = ∅ ∧ MODi ⊂ M .)
5. Compute hADM ← H(DID||ord(ADM)).

ord(ADM) denotes a lexicographic ordering to the elements in ADM.
6. For mj ∈ M , compute hmj

← H(DID||mj).
7. If e(σFix, g2) �= e(hADM, pkFix) then abort.
8. If e(Σagg, g2) �= e

(
hADM, pkAgg

) · ∏
mj∈M e(hmj

, pkAgg) then abort.

9. For mj ∈ MODi, compute RIi,mj
← h

rk[i]
mj .

10. For mj /∈ MODi, set RIi,mj
← ∅.

11. Set a redaction information RIi of redactor i as RIi ← {RIi,mj
}mj∈M

12. Output (RIi, Lt
i).

For one DID, redactor i runs RedInf only once. This can be done by introducing
a table Li.

2. Each redactor i sends (i,RIi) to the combiner.
3. The combiner collects all n redaction information {RIi}n

i=1.
4. The combiner runs the PPT algorithm ThrRed(pk,M,ADM,DID, σ, {RIi}n

i=1).
ThrRed(pk,M,ADM,DID, σ, {RIi}n

i=1) :
1. Parse pk as (pkFix, pkAgg, t, n) and σ as (σFix, Σagg).
2. Parse RIi as {RIi,mj

}mj∈M .
3. For mj ∈ M , define RImj

= {RIi,mj
}n

i=1.
4. Define MOD = {mj |mj ∈ M ∧ #RImj

≥ t}
5. For mj ∈ MOD, define InRImj

← {i ∈ N|{RIi,mj
} �= ∅}.

6. For mj ∈ MOD, choose subset Jmj
⊂ InRImj

such that #Jmj
= t.

7. For mj ∈ MOD, compute σmj
← ∏

i∈Jmj

(
RIi,mj

)γi,Jmj ,

where γi,Jmj
=

∏
j∈Jmj

,j �=i j(j − i)−1.
8. Compute σMOD ← ∏

mj∈MOD σmj
, Σ′

agg ← Σagg/σMOD.
9. Set M ′ ← M\{MOD}, σ′ ← (σFix, Σ

′
agg).

10. Return (M ′,ADM,DID, σ′).
5. The combiner outputs (M ′,ADM,DID, σ′).

Verify(pk,M,ADM,DID, σ) : Given a tuple (pk,M,ADM,DID, σ), the PPT algo-
rithm Verify works as follows:

1. Parse pk as (pkFix, pkAgg, t, n) and σ as (σFix, Σagg).
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2. If ADM ∩ M �= ADM, return 0.
3. Compute hADM ← H(DID||ord(ADM)).

ord(ADM) denotes a lexicographic ordering to the elements in ADM.
4. For mj ∈ M , compute hmj

← H(DID||mj).
5. If e(σFix, g2) �= e(hADM, pkFix), return 0
6. If e(Σagg, g2) = e

(
hADM, pkAgg

) · ∏
mj∈M e(hmj

, pkAgg), return 1. Otherwise
output 0.

Correctness. If (M,ADM,DID, σ) is honestly generated by the Sign and
has not been processed by the Redact protocol, Verify(M,ADM,DID, σ) =
1 always holds. If (M,ADM,DID, σ) is honestly generated the Sign and
(M ′,ADM,DID, σ′) is honestly redacted from (M,ADM,DID, σ) by Redact pro-
tocol, (M ′,ADM,DID, σ′) passes the verification in the Verify. Therefore, our
construction of t-out-of-n redactable signature scheme in the one-time redaction
model satisfies correctness.

4.1 Security of Our t-out-of-n Redactable Signature Scheme

Theorem 2. In the random oracle model, if the computational co-Diffie-
Hellman problem assumption holds, then our proposed t-out-of-n redactable
signature scheme in the one-time redaction model (t, n)-RSS Π1 satisfies the
unforgeability property.

Here, to explain the outline of the proof, we introduce new notations. Let qs

be the total number of queries from an adversary to OSign, (Mi,ADMi) an i-th
input for OSign, (M i,ADMi,DIDi, σi) the i-th output of OSign. We denote

QSign :=
qs⋃

i=1

{(M i,ADMi,DIDi)}, QAD
Sign :=

qs⋃
i=1

{(ADMi,DIDi)}.

Also, let qr be the total number of queries from an adversary to ORedact,
(M i,ADMi,DIDi, σi,MODi) an i-th input for ORedact, (M ′i,ADMi,DIDi, σ′i) the
i-th output of ORedact. We denote

QRedact :=
qr⋃

i=1

{(M ′i,ADMi,DIDi)}, QAD
Redact :=

qr⋃
i=1

{(ADMi,DIDi)}.

We assume the following three types of PPT adversaries that breaks the
unforgeability security in our proposed scheme.

– An adversary A1 that outputs a forgery (M∗,DID∗,ADM∗, σ∗) such that
(ADM∗,DID∗) /∈ (QAD

Sign ∪ QAD
Redact).

– An adversary A2 that outputs a forgery (M∗,DID∗,ADM∗, σ∗) which sat-
isfies (ADM∗,DID∗) ∈ (QAD

Sign ∪ QAD
Redact). Moreover, there is M̃ such that

(M̃,ADM∗,DID∗) ∈ (QSign ∪ QRedact).
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– An adversary A3 that outputs a forgery (M∗,DID∗,ADM∗, σ∗) which satis-
fies (ADM∗,DID∗) ∈ (QAD

Sign ∪ QAD
Redact). Moreover, there are no M̃ such that

(M̃,ADM∗, DID∗) ∈ (QSign ∪ QRedact) and M̃ � M .

To prove the theorem, for each Ai, we consider a sequential of games from
the original unforgeability game to game which is directly related to solving a
co-CDH problem. Then, We construct Bi which breaking the co-CDH assumption
using Ai. B1 breaks the co-CDH assumption using the forgery σ∗

Fix. In the case
of B2 and B3, they use the forgery Σ∗

agg to break the co-CDH assumption. One
difference between B2 and B3 is how to program the hash value.

Case 1. We consider an adversary A1 that can generate a valid forgery with
εuf1 against our proposal redactable signature scheme. Let Game1−0 be the
original unforgeability game in a redactable signature scheme and Game1−5 be
directly related to solving the computational co-Diffie-Hellman problem. Define
AdvA1 [Game1−X ] as the advantage of an adversary A1 in Game1−X .

– Game1−0: Original unforgeability game in a redactable signature scheme.

AdvA1 [Game1−0] = εuf1

– Game1−1: We change a key generation algorithm KeyGen in Step 1.

Choose x̃
$←− Zq, r̃

$←− Zq and compute u ← gx̃, ỹ ← gx̃+r̃
2 .

Set (pkFix, skFix) ← (ỹ, x̃ + r̃).
– Game1−2: We change a setting of the random oracle OH . Fix h

$←− G2 and
let T be a table that maintains a list of tuples 〈v, w, b, c〉 as explain below.
We refer to this list for the query to Oh. The initial state of T is empty. For
queries v(i) to OH :

• If 〈v(i), w(i), ·, ·〉 (Here, ‘·’ represents an arbitrary value) already appears
in T, then return w(i).

• Choose s(i)
$←− Zq.

• Flip a biased coin c(i) ∈ {0, 1} such that Pr[c(i) = 0] = 1 − 1/(qs + 1) and
Pr[c(i) = 1] = 1/(qs + 1).

• If c(i) = 0, compute w(i) = φ(g2)b(i) .
• If c(i) = 1, compute w(i) = h · φ(g2)b(i) .
• Insert 〈v(i), w(i), s(i), c(i)〉 in T and return w(i).

– Game1−3: We modify the signing algorithm Sign in Step 4 as follows:
• Set v(0) ← (DID||ord(ADM)).
• Query v(0) to OH . We assume 〈v(0), w(0), b(0), c(0)〉 to be the tuple in T

for v(0).
• If c(0) = 1, return ⊥ and abort.

– Game1−4: We modify the signing algorithm Sign in Step 6 as follows:
• Compute σFix ← φ(u)b(0) · φ(g2)r̃b(0) .

(A signature σFix can be generated without a knowledge of skFix.)
– Game1−5: We receive a valid forgery (M∗,ADM∗DID∗, σ∗) from the adver-

sary A1, we operate as follows:
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• Set v(0) ← (DID∗||ord(ADM∗)).
• Query v(0) to OH . We assume 〈v(0), w(0), s(0), c(0)〉 to be the tuple in T

for each v(0).
• If c(0) = 0, then abort.

Lemma 1. The following equation holds.

AdvA1 [Game1−1] = AdvA1 [Game1−0].

Since the distribution of (pkFix, skFix) in Game1−0 and Game1−1 are same.

Lemma 2. If H is the random oracle model, the following eqauation holds.

AdvA1 [Game1−2] = AdvA1 [Game1−1]

Since the distribution of outputs of OH in Game1−1 and Game1−2 are identical.

Lemma 3. The following inequality holds.

AdvA1 [Game1−3] ≥ (1 − 1/(qs + 1))qs × AdvA1 [Game1−2].

Since the probability that each signing query does not abort at least 1−1/(qs+1).

Lemma 4. The following equation holds.

AdvA1 [Game1−4] = AdvA1 [Game1−3].

Since outputs of Sign in Game1−3 and Game1−4 are same.

Lemma 5. The following inequality holds.

AdvA1 [Game1−5] ≥ (1/(qs + 1)) × AdvA1 [Game1−4].

Since the probability that the forged signature satisfies c(0) = 1 at least 1/(qs+1).
To summarize Lemma 1 to 5, the following holds.

(In the following equation, e represents the Napier’s constant.)

AdvA1 [Game1−5] ≥ (1 − 1/(qs + 1))qs × (1/(qs + 1)) × AdvA1 [Game1−0]
≥ (1/e) × (1/(qs + 1)) × AdvA1 [Game1−0]

Now we construct the algorithm B1 which breaking the computational co-
Diffie-Hellman assumption using the algorithm A1. The operation of B1 for
the input co-Diffie-Hellman problem instance (g2, gα

2 , h∗) is changed to h to
h∗ and u to gα

2 in Game1−5. Suppose B1 does not abort receiving a forgery
(M∗,ADM∗,DID∗, σ∗) from A1.

B1 parses σ∗ as (σ∗
Fix∗ , Σ∗

agg), sets v(0) ← (DID∗||ord(ADM∗)) and computes
w(0) ← h∗ · φ(g2)b(0) . Since (M∗,ADM∗,DID∗, σ∗) is valid and pkFix = gα+r̃

2 ,
e(σ∗

Fix, g2) = e((w(0))α+r̃, g2) holds. It implies that σ∗
Fix = (w(0))α+r̃ = (h∗ ·

φ(g2)b(0))α+r̃. Therefore, B1 computes (h∗)α = σ∗
Fix ·(φ(u)b(0) ·(h∗)r̃ ·φ(g2)r̃b(0))−1
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and outputs the solution (h∗)α of the computational co-Diffie-Hellman problem
instance (g2, gα

2 , h∗).
Let εco-cdh is the probability that B1 break the computational co-Diffie-

Hellman assumption. We can bound the probability εco-cdh1 ≥ AdvA1 [Game 1−
5] and εco-cdh1 ≥ (1/e) × (1/qs + 1) × εuf1 holds. (e represents the Napier’s con-
stant.) Hence, if εuf1 is non-negligiable in λ, B1 breaks the computational co-
Diffie-Hellman assumption with non-negligiable in εco-cdh1.

Case 2. We consider an adversary A2 that can generate a valid forgery with
εuf2 against our proposal redactable signature scheme. Let Game2−0 be the
original unforgeability game in a redactable signature scheme and Game2−6 be
directly related to solve the computational co-Diffie-Hellman problem. Define
AdvA2 [Game2−X ] as the advantage of an adversary A2 in Game2−X .
– Game2−0: Original unforgeability game in a redactable signature scheme.

AdvA2 [Game2−0] = εuf2

– Game2−1: We change a setting of ORedact.
We introduce a table L

t that store DIDs and L
0 = ∅.

For a t-th query (M,ADM,DID, σ,MOD) to ORedact:
• Parse pk as (pkFix, pkAgg, t, n) and σ as (σFix, Σagg).
• If DID ∈ L

t−1, then abort.
• Set L

t ← L
t−1 ∪ {DID}.

• If MOD � M ∨ MOD ∩ ADM �= ∅, then abort.
• Compute hADM ← H(DID||ord(ADM)).

ord(ADM) denotes a lexicographic ordering to the elements in ADM.
• For mj ∈ M , compute hmj

← H(DID||mj).
• If e(σFix, g2) �= e(hADM, pkFix), then abort.
• If e(Σagg, g2) �= e

(
hADM, pkAgg

) · ∏
mj∈M e(hmj

, pkAgg), then abort.
• For mj ∈ MOD, compute σmj

← H(DID||mj)skAgg .
• Compute σMOD ← ∏

mj∈MOD σmj
, Σ′

agg ← Σagg/σMOD.
• Set M ′ ← M\MOD, σ′ ← (σFix, Σ

′
agg).

• Return (M ′,ADM,DID, σ′).
(Redactions are done using skAgg instead of using {rk[i]}n

i=1.)
– Game2−2: We change settings of KeyGen and OCorrupt.

• We change a key generation algorithm KeyGen in Step 2 to 6.
∗ Choose x

$←− Zq, r
$←− Zq, compute u ← gx, y ← gx+r

2 .
∗ Set pkAgg ← y, skAgg ← x + r.
∗ Return (pk, sk) ← ((pkFix, pkAgg, t, n), (skFix, skAgg)).
(Redactor’s keys {rk[i]}n

i=1 are not generated in the KeyGen.)
• We change the setting of OCorrupt as follows:

Let CR is a list to store a redactor’s key information (i, rk[i])
For a query i to OCorrupt,
∗ If (i, rk[i]) already appears in CR, then return rk[i].
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∗ Choose f(i) $←− Zq, set CR ← CR ∪ {(i, f(i))}.
∗ Return rk[i] ← (i, f(i)).

– Game2−3: We change a setting of the random oracle OH . Fix h
$←− G2 and let

T be a table that maintains a list of tuples 〈v, w, b, c〉 as explain below. We refer
to this list for the query to Oh. The initial state of T is empty. For queries v(i)

to OH :
• If 〈v(i), w(i), ·, ·〉 (Here, ‘·’ represents an arbitrary value) already appears in

T, then return w(i).
• Choose s(i)

$←− Zq.
• Flip a biased coin c(i) ∈ {0, 1, 2} such that such that Pr[c(i) = 1] = 1 −

1/((� + 1)(qs + qr) + 1), Pr[c(i) = 1] = 1/(2(� + 1)(qs + qr) + 2), Pr[c(i) =
2] = 1/(2(� + 1)(qs + qr) + 2).

• If c(i) = 0, compute w(i) = φ(g2)b(i) .
• If c(i) = 1, compute w(i) = h · φ(g2)b(i) .
• If c(i) = 2, compute w(i) = h−1 · φ(g2)b(i) .
• Insert 〈v(i), w(i), s(i), c(i)〉 in T and return w(i).

– Game2−4: We modify the signing algorithm Sign in Step 6 as follows:
• Set v(0) ← (DID||ord(ADM)), v(j) ← (DID||mj) (1 ≤ j ≤ #M).
• Query v(j) (0 ≤ j ≤ #M) to OH . We assume 〈v(j), w(j), b(j), c(j)〉 to be the

tuple in T for each v(j) (1 ≤ j ≤ #M).
• If c(0) = 2, c(1) = 1, c(j) = 0 (2 ≤ ∀j ≤ #M) or c(j) = 0 (0 ≤ ∀j ≤ #M),

go to Step 6 of Sign. Otherwise return ⊥ and abort.
– Game2−5: We modify the signing algorithm Sign in Step 7, 8 as follows:

• If c(0) = 2, c(1) = 1, c(j) = 0 (2 ≤ ∀j ≤ #M),
∗ Compute σADMm1 ← φ(u)b(0)+b(1) · φ(g2)r(b(0)+b(1)).
∗ For all mj ∈ M\{m1}, compute σmj

← φ(u)b(j) · φ(g2)rb(j) .
∗ Compute Σagg ← σADMm1 · ∏

mj∈M\{m1} σmj
.

• If c(j) = 0 (0 ≤ ∀j ≤ #M),
∗ Compute σADM ← φ(u)b(0) · φ(g2)rb(0) .
∗ For all mj ∈ M , compute σmj

← φ(u)b(j) · φ(g2)rb(j) .
∗ Compute Σagg ← σADM · ∏

mj∈M σmj
.

(By above modification, a signature Σagg can be generated without a knowledge
of the skAgg.)
– Game2−6: We change a setting of ORedact.

• Parse pk as (pkFix, pkAgg, t, n) and σ as (σFix, Σagg).
• If DID ∈ L

t−1, then abort.
• Set L

t ← L
t−1 ∪ {DID}.

• If MOD � M ∨ MOD ∩ ADM �= ∅, then abort.
• Set v(0) ← (DID||ord(ADM)), v(j) ← (DID||mj) (1 ≤ j ≤ #M).
• Query v(j) (0 ≤ j ≤ #MOD) to OH . We assume 〈v(j), w(j), b(j), c(j)〉 to be

the tuple in T for each v(j) (1 ≤ j ≤ #MOD).
• If e(σFix, g2) �= e(w(0), pkFix), then abort.
• If e(Σagg, g2) �= ∏

0≤j≤#M e(w(j), pkAgg), then abort.
• If c(j) = 0 (∀mj ∈ MOD), go to next step. Otherwise return ⊥ and abort.
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• For all mj ∈ MOD, compute σmj
← φ(u)b(j) · φ(g2)rb(j) .

• Compute σMOD ← ∏
mj∈MOD σmj

, Σ′
agg ← Σagg/σMOD.

• Set M ′ ← M\MOD, σ′ ← (σFix, Σ
′
agg).

• Return (M ′,ADM,DID, σ′).
(Redactions can be done without the knowledge of the skAgg.)
– Game2−7: We receiving the output forgery (M∗,ADM∗,DID∗, σ∗) from the
adversary A3,

• Set v(0) ← (DID∗||ord(ADM∗)), v(j) ← (DID||m∗
j ) (1 ≤ j ≤ #M∗).

• Query v(j) (0 ≤ j ≤ #M∗) to OH . We assume 〈v(j), w(j), s(j), c(j)〉 to be
the tuple in T for each v(j) (0 ≤ j ≤ #M∗).

• If c(0) = 1 and c(j) = 0 (1 ≤ j ≤ #M∗), then accept. Otherwise reject and
abort.

Lemma 6. The following equation holds.

AdvA2 [Game2−1] = AdvA2 [Game2−0].

Since outputs of ORedact in Game2−0 and Game2−1 are same.

Lemma 7. The following equation holds.

AdvA2 [Game2−2] = AdvA2 [Game2−1].

To simplify the discussion, let A2 get rk[i], . . . , rk[t − 1] from OCorrupt. In
[Game2−1], the following equation holds.

V

⎛
⎜⎜⎜⎜⎜⎝

a0

a1

a2

...
at−1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

f(0)
f(1)
f(2)

...
f(t − 1)

⎞
⎟⎟⎟⎟⎟⎠

where V =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2t−1

...
...

... · · · ...
1 t − 1 (t − 1)2 · · · (t − 1)t−1

⎞
⎟⎟⎟⎟⎟⎠

.

Since V is the Vandermonde matrix, V is the regular matrix. Distributions of
(a0, a1, · · · , at−1) and (f(0), f(1), . . . , f(t − 1)) are identical. Therefore, distri-
butions of (skAgg, rk[1], . . . , rk[t − 1]) in [Game2−1] and [Game2−2] are same.

Lemma 8. If H is the random oracle model, the following equation holds.

AdvA2 [Game2−3] = AdvA2 [Game2−2].

Since the distribution of outputs of OH in Game2−3 and Game2−2 is identical.

Lemma 9. The following inequality holds.

AdvA2 [Game2−4] ≥ (1 − 1/((� + 1)(qs + qr) + 1))(�+1)qs × AdvA2 [Game2−3].

Since the probability that each signing query does not abort at least (1−1/((�+
1)(qs + qr) + 1))(�+1).
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Lemma 10. The following equation holds.

AdvA2 [Game2−5] = AdvA2 [Game2−4].

Since outputs of Sign in Game2−5 and Game2−4 are same.

Lemma 11. The following inequality holds.

AdvA2 [Game2−6] ≥ (1 − 1/((� + 1)(qs + qr) + 1))(�+1)qr × AdvA2 [Game2−5].

Since the probability that each redaction query does not abort at least (1 −
1/((� + 1)(qs + qr) + 1))(�+1).

Lemma 12. The following inequality holds.

AdvA2 [Game2−7]

≥
(

1
2(�+1)(qs+qr)+2

)2

(
1 − 1

(�+1)(qs+qr)+1

)2

+
(

1
2(�+1)(qs+qr)+2

)2 × AdvA2 [Game2−6]

= (1/(4(� + 1)2(qs + qr)2 + 1)) × AdvA2 [Game2−6].

Since an output (M∗,ADM∗,DID∗, σ∗) satisfies (c(0), c(1)) = (0, 0) or (2, 1).
To summarize Lemma 6 to 12, the following holds.

(In the following equation, e represents the Napier’s constant.)

AdvA2 [Game2−7] ≥ (1 − 1/((� + 1)(qs + qr) + 1))(�+1)(qs+qr)

× 1/(4(� + 1)2(qs + qr)2 + 1) × AdvA2 [Game2−0]

≥ (1/e) × (1/(4(� + 1)2(qs + qr)2 + 1)) × AdvA2 [Game2−0]

Now we construct the algorithm B2 which breaking the computational co-
Diffie-Hellman assumption using the algorithm A2. The operation of B2 for
the input co-Diffie-Hellman problem instance (g2, gα

2 , h∗) is changed to h in
Game2−7 to h∗ and u to gα

2 .
Suppose B2 do not abort receiving a forgery (M∗,ADM∗,DID∗, σ∗) from A2.

B3 parses σ∗ as (σ∗
ADM∗ , Σ∗

agg), sets v(j) ← (DID∗||m∗
j ) (1 ≤ j ≤ #M∗), and com-

putes w(1) ← h · φ(u)b(1) · φ(g2)rb(1) , w(j) ← φ(u)b(j) · φ(g2)rb(j) (2 ≤ j ≤ #M∗).
Then B3 computes σ∗

m∗
1

← Σ∗
agg/

∏#M∗
j=2 σmj

. Since (M∗,ADM∗,DID∗, σ∗) is
valid signature and pkAgg = gα+r

2 , e(σ∗
m∗

1
, g2) = e

(
(w(1))α+r, g2

)
holds. It

implies that σ∗
m∗

1
= (w(1))α+r = (h∗ · φ(g2)b(1))α+r. Therefore, B3 computes

(h∗)α = σ∗
m∗

1
· (φ(u)b(1) · (h∗)r · φ(g2)rb(1))−1 and outputs the solution (h∗)α of

the computational co-Diffie-Hellman problem instance (g2, gα
2 , h∗).

Let εco-cdh2 is the probability that B2 break the computational co-Diffie-
Hellman assumption. We can bound the probability εco-cdh2 ≥ AdvA2 [Game2−7]
and εco-cdh2 ≥ (1/e) × (1/(4(� + 1)2(qs + qr)2 + 1)) × εuf2 holds. (e represents the
Napier’s constant.) If εuf2 is non-negligiable in λ, B2 breaks the computational
co-Diffie-Hellman assumption with non-negligiable in εco-cdh2. We will describe
the proof of Case 3 in the full version of this paper.
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Theorem 3. Our proposed t-out-of-n redactable signature scheme in the one-
time redaction model (t, n)-RSS Π1 satisfies the transparency.

We will describe the proof of Theorem 3 in the full version of this paper. By
Theorem 1 and Theorem 3, our proposed scheme satisfies the privacy.

5 Conclusion

In this paper, we introduce the new notion of t-out-of-n RSS. Our proposed
model supports only the one-time redaction model which allows redacting signed
message only one time for each signature. Our construction Π1 does not satisfy
the unforgeability in a model that allows redacting signed message many times.
For example, M = {m1,m2,m3} and ADM = ∅, an adversary who does the
following operation generates a valid forgery in a multiple redactions model.

1. Given pk from C.
2. Query (M,ADM) to OSign and get (M,ADM,DID, σ).
3. Let MOD1 = {m1} MOD2 = {m2}. Query (M,ADM,DID, σ,MOD1) to

ORedact and get (M ′,ADM,DID, σ′) and query (M ′,ADM,DID, σ′,MOD2) to
ORedact and get (M ′′,ADM,DID, σ′′).

4. Parse σ as (σFix, Σagg), σ′ as (σ′
Fix, Σ

′
agg), and σ′′ as (σ′′

Fix, Σ
′′
agg).

5. Compute σm1 ← Σagg · (Σ′
agg)

−1, Σ∗
agg ← σm1 · Σ′′

agg.
6. Set M∗ ← {m1,m3}, σ∗ ← (σFix, Σ

∗
agg) and output (M∗,DID,ADM, σ∗)

Giving a construction of RSS in the multiple redactions model is the interesting
futures work.
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Abstract. For many diseases it is necessary to gather large cohorts of
patients with the disease in order to have enough power to discover the
important factors. In this setting, it is very important to preserve the
privacy of each patient and ideally remove the necessity to gather all
data in one place. Examples include genomic research of cancer, infec-
tious diseases or Alzheimer’s. This problem leads us to develop privacy
preserving machine learning algorithms. So far in the literature there are
studies addressing the calculation of a specific function privately with
lack of generality or utilizing computationally expensive encryption to
preserve the privacy, which slows down the computation significantly.
In this study, we propose a framework utilizing randomized encoding in
which four basic arithmetic operations (addition, subtraction, multipli-
cation and division) can be performed, in order to allow the calculation of
machine learning algorithms involving one type of these operations pri-
vately. Among the suitable machine learning algorithms, we apply the
oligo kernel and the radial basis function kernel to the coreceptor usage
prediction problem of HIV by employing the framework to calculate the
kernel functions. The results show that we do not sacrifice the perfor-
mance of the algorithms for privacy in terms of F1-score and AUROC.
Furthermore, the execution time of the framework in the experiments
of the oligo kernel is comparable with the non-private version of the
computation. Our framework in the experiments of radial basis function
kernel is also way faster than the existing approaches utilizing integer
vector homomorphic encryption and consequently homomorphic encryp-
tion based solutions, which indicates that our approach has a potential
for application to many other diseases and data types.

Keywords: Privacy preserving machine learning · Randomized
encoding · String kernel · RBF kernel · Precision medicine

c© Springer Nature Switzerland AG 2019
Y. Mu et al. (Eds.): CANS 2019, LNCS 11829, pp. 493–511, 2019.
https://doi.org/10.1007/978-3-030-31578-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31578-8_27&domain=pdf
https://doi.org/10.1007/978-3-030-31578-8_27


494 A. B. Ünal et al.

1 Introduction

By the recent development of next generation sequencing (NGS) technologies,
DNA sequencing and RNA sequencing can be performed effectively and effi-
ciently [23]. However; the generated sequence data contains private information
about the host and one could infer many phenotypes of an individual, such as
hair color, skin color and more importantly genetic diseases, from the relevant
sequence data of that individual [5,11,16]. Such private information can be used
against the owner of the sequence data potentially leading to increased health
insurance premiums due to the genetic disease of that person. On the other
hand, machine learning algorithms still require these sequence data to capture
the underlying patterns of the diseases. In many of the real-world problems,
machine learning algorithms need to have more data than one source can pro-
vide [17,20,21].

In this paper, we consider a scenario where we have two parties with sequence
data, each of which we call input-party and one party, which we call function-
party that wants to run machine learning algorithms on the data of these input-
parties. To avoid the aforementioned privacy issues in our scenario due to the
leakage of sequence data utilized in machine learning algorithms, we propose
a framework utilizing randomized encoding [1,4] to enable machine learning
algorithms involving a single type of basic arithmetic operation to use the data
from two sources without sacrificing the privacy of participants. We provide the
function-party with the private calculation of four basic arithmetic operations,
that is addition/subtraction and division/multiplication. In order to demonstrate
the performance of our framework, we chose support vector machine (SVM)
with the oligo kernel and the radial basis function kernel on the prediction of
coreceptor usage of HIV based on V3 loop sequences [13]. We computed the
kernel matrices by employing our proposed framework and trained a prediction
model on top of these kernel matrices.

In the rest of the paper, we will explain the similar studies in the literature
in Sect. 2. We will give the background information about the oligo kernel, the
radial basis kernel and randomized encoding in Sect. 3. Then, we will propose
our framework in Sect. 4. Afterwards, we will discuss the security of the proposed
framework in Sect. 5. Next, we explain the dataset that we utilized in the experi-
ments in Sect. 6. We will then show and evaluate the results of these experiments
in Sect. 7. Finally, we will conclude the paper in Sect. 8.

2 Related Work

In this context, we refer to a source with data, such as a clinic having sequence
data, or an entity computing a function, such as a university conducting a study
on the data of clinics, as party. In the literature, some approaches using an
SVM are based on the distributed model, which assumes that each party of the
computation has its own data and the function needs to be calculated by using
the data of all parties. Vaidya et al. [25] proposed a privacy-preserving SVM
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classification algorithm. In the proposed approach, each party has its own data
and they compute the gram matrix to train an SVM model by using a modified
secure dot product calculation method. However; it focuses more on binary fea-
ture vectors and does not support advanced string kernels. Furthermore, there
are also a number of studies which employ an outsourced model in which the
data of the parties are stored on a cloud server as encrypted by the secret key
of the owners of the data. Liu et al. [15] introduced an SVM algorithm which
can be used to mine the encrypted outsourced data. Since the data is encrypted
before outsourcing, this slows down the process of model training. Zhang et al.
[28] also proposed a secure dot product calculation method to train an SVM
model. The underlying idea is to transform the secret key of the dot product
of two vectors encrypted by different keys into a known key by the server. In
order to accomplish the transformation, the server collaborates with the owners
of the keys of these vectors. The proposed approach fits into our scenario where
we have two input-parties and one function-party. However; the approach uti-
lizes integer vector encryption to preserve the privacy of the data. Therefore, it
cannot handle the data having a large number of features within a reasonable
time frame.

3 Preliminaries

In this section, we will explain the kernel functions that we utilized and the
randomized encoding which is our base security scheme.

3.1 Oligo Kernel

Although the oligo kernel belongs to the family of string kernels, it is widely
used to discover the patterns of biological sequences [10,18,19]. In the con-
text of sequence analysis, the oligo kernel is designed to work with oligomers
occurring in sequences such as DNA and protein. They can be varying lengths
but general tendency is to keep the length of the oligomers short. The
DNA oligomers with length 2, for instance, consist of all possible 2-length-
monomer combinations of the DNA alphabet A, where A = {A, T,C,G}.
To be more specific, the DNA oligomers with length 2 form a set A2 where
A2 = {AA,AT,AC,AG, TA, TT, TC, TG,CA,CT,CC,CG,GA,GT,GC,GG}.
In general, all possible combinations of K-length-monomers in an alphabet A of
a sequence type are called K-mers and they form a set AK . These K-mers are
utilized by the oligo kernel to determine the similarity between sequences. For
each K-mer ω ∈ AK occurring in a sequence S, the corresponding oligo function
μ is calculated as:

μω(x) =
∑

p∈Sω

exp(− 1
2σ2

(x − p)2) (1)

where Sω is the set of occurrences of K-mer ω in sequence S, σ is the positional
tolerance parameter for inexact matches. Based on the oligo function of each
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K-mer, the mapping function Φ in the oligo kernel is defined as follows:

ΦK(s) = [μω1 , μω2 , · · · , μωn
]

where s is the sequence and n is the size of the set AK . Even though this
representation is suitable for visualization and interpretation, we need to have
the kernel function. As stated in [18], the kernel function is calculated as follows:

k(si, sj) =
√

πσ
∑

ω∈AK

∑

p∈Si
ω

∑

q∈Sj
ω

exp(− 1
4σ2

(p − q)2) (2)

where si and sj are the sequences, σ is the positional tolerance parameter, AK

is the set of all possible K-mers of monomers in alphabet A, Si
ω and Sj

ω are the
set of occurrences of ω in sequence si and sequence sj , respectively.

Unlike other similar approaches, the oligo kernel can be adjusted in a way
that positional inexact matches of K-mers would also contribute to the similarity
of sequences. The degree of this positional independence can be manipulated by
the parameter σ. If σ is set close to 0, then only the exact matches of K-mers
would contribute to the similarity. On the other hand, if σ is set to ∞, then
there would be no importance of positions of K-mers.

Based on Eq. 2, the calculation of the oligo kernel requires the differences of
the positions of K-mers in both sequences. In our framework, we address the
required operation and enable the computation of the differences privately.

3.2 Radial Basis Function Kernel

The radial basis function (RBF) is one of the most popular kernel functions
in kernel learning algorithms [24]. It is commonly used in many different areas
[12,22,27]. For samples x, y ∈ R

n, the RBF kernel can be formulated solely based
on the dot product of samples as follows:

K(x, y) = exp

(
− ‖x · x − 2x · y + y · y‖2

2σ2

)
(3)

where “·” represents the dot product of vectors and σ is the parameter that
adjusts the similarity level. As shown in Eq. 3, the calculation of the RBF kernel
between the samples x and y can be done by the dot product, which consists of
the element-wise multiplication and summing up the results of these multiplica-
tions. In our framework, we allow the private computation of the RBF kernel by
enabling the element-wise multiplication of the vectors.

3.3 Randomized Encoding

In the cryptography literature, randomized encoding is proposed to compute a
function f(x) by a randomized function f̂(x; r), where r is a uniformly chosen
random value, without revealing the input value x [2,3]. The formal definition
of the randomized encoding is as follows:
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Alice Bob
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(c)

Fig. 1. In this setting, Alice and Bob are the input-parties and the server is the
function-party. (a) Alice creates a uniformly chosen random value r. She shares it
with Bob. (b) Once Bob receives the random value from Alice, he computes Y − r and
shares it with the server. Meanwhile, Alice computes X + r and sends it to the server.
(c) When the server receives the components of encoding, it calculates (X+r)+(Y −r)
to decode the result of the addition of the input values of Alice and Bob. At the end,
the server obtains X + Y without learning neither X nor Y . Similarly, none of the
input-parties learns about the input value of the other input-party.

Definition 1 (Randomized Encoding [1]). Let us define a function f : X →
Y . There exists a function f̂ : X × R → Z which is a δ-correct, (t, ε)-private
randomized encoding of f if randomized algorithms, decoder Dec and simulator
Sim, can be defined and the followings hold for these algorithms:

– (δ-correctness) ∀x ∈ X:

Pr
r←R

[Dec(f̂(x; r)) �= f(x)] ≤ δ.

– ((t, ε)-privacy) ∀x ∈ X and any circuit A of size t:
∣∣∣Pr[A(Sim(f(x))) = 1] − Pr

r←R
[A(f̂(x; r)) = 1]

∣∣∣ ≤ ε.

where Dec decodes the given encoding and Sim simulates the encoding such that
simulation and real encoding are indistinguishable.
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Besides the formal definition of the randomized encoding, they also proposed
two perfect decomposable and affine randomized encodings (DARE) for addition
and multiplication of two values. In order for a randomized encoding to be affine
and decomposable, each component of randomized encoding should be an affine
function over the set that the function is defined and they should depend on
only a single input value and a varying number of random values.

Definition 2 (Perfect RE for Addition [1]). Let us define a function
f(x1, x2) = x1 + x2 over some finite ring R. This addition function can be
perfectly encoded by the following DARE:

f̂(x1, x2; r) = (x1 + r, x2 − r)

where r is a uniformly chosen random value. The encoding can be decoded by
summing up the components of the encoding, and one can simulate the function
by sampling two random values whose sum is y.

Definition 3 (Perfect RE for Multiplication [1]). Let us define a function
f(x1, x2) = x1 · x2 over a ring R. This multiplication function can be perfectly
encoded by the following DARE:

f̂(x1, x2; r1, r2, r3) = (x1 + r1, x2 + r2, r2x1 + r3, r1x2 + r1r2 − r3)

where r1, r2 and r3 are uniformly chosen random values. Given the encoding
(c1, c2, c3, c4), we can recover f(x1, x2) by computing c1·c2−c3−c4. The simulator
Sim(y; c1, c2, c3) := (c1, c2, c3, c1c2 − y − c3) perfectly simulates f̂ .

Randomized encoding preserves the privacy of the data by randomizing the
input values and creating components by these values. At the end, it only allows
the computation of the desired output and nothing else about the input values is
revealed. Compared to the other methods in the literature such as homomorphic
encryption and secure multi-party computation that result in a high overhead
due to the use of computationally expensive cryptographic tools, the randomized
encoding is faster and more efficient.

In the scenario where we have two input-parties and one function-party, the
randomized encoding is also applicable. The randomized encoding of addition
can be adapted to calculate the summation of two input values belonging to two
different input-parties. The process is depicted in Fig. 1. The computation of the
differences of two values can be done with the same encoding after multiplying
the corresponding input value by −1. Similarly, one can employ the randomized
encoding of multiplication in a function party in order to compute the multipli-
cation of two input values owned by two distinct input-parties. The steps are
demonstrated in Fig. 2. One can use the randomized encoding of multiplication
to compute the division by simply using the reciprocal of the corresponding input
value. It is worth to note that we assume that the value at the divisor should be
non-zero.
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Fig. 2. In this setting, Alice and Bob are the input-parties and the server is the
function-party. (a) Alice creates three uniformly chosen random values and shares them
with Bob. (b) Once Bob receives the random values, he computes c2 = Y + r2 and
c4 = r1Y + r1r2 + r3. In the meantime, Alice computes c1 = X + r1 and c3 = r2X − r3.
They send c1, c2, c3 and c4 to the server. (c) When the server receives the components
of the encoding, it calculates c1c2 − c3 − c4 to decode the result of the multiplication of
the input values of Alice and Bob. At the end, the server obtains XY without learning
neither X nor Y . Similarly, none of the input-parties learns about the input value of
the other input-party.

4 Our Framework

In this paper, we propose a framework utilizing randomized encoding to sup-
port the computation of four basic arithmetic operations over the vectors of two
input-parties in a function-party privately. In this application, we focus on the
computation of differences and multiplications of these vectors. Our framework
allows the server to learn only the intended outcome, either the element-wise dif-
ferences or multiplications of the vectors, and nothing else about these vectors.
Similarly, an input-party learns neither the input vector of the other input-party
nor the result of the computation. Among the features of the framework, we use
the element-wise differences of the vectors to compute the oligo kernel on the
data owned by the input-parties. Additionally, we employ element-wise multipli-
cation feature in order to compute the RBF kernel on the same setting. However;
the framework is not limited to these methods. One can use the framework to
compute a function which requires one of the features of the framework.
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Server

BobAlice
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Server
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Fig. 3. In this figure, Ki represents the vector containing the positions of the occur-
rences of the i-th oligomer in the corresponding sequences. In those vectors, pj of Ki

represents the position of the j-th occurrence of the i-th oligomer. (a) Both input-
parties find the positions of the oligomers in their sequences and insert a varying num-
ber of dummy positions into randomly chosen oligomers. Then, Bob shares the length
of Kj ∀j ∈ {0, · · · , n} with Alice. (b) Afterwards, Alice creates the vector X

′ ∈ R
n′

by

applying the function T along with the vector D ∈ R
n′

for encoding. Then, she sends
D and the length of Ki ∀i ∈ {0, · · · , n} to Bob. (c) Bob creates the vector Y

′ ∈ R
n′

by

applying the function R. Next, they calculate (−Y
′ − D) ∈ R

n′
and (X

′
+ D) ∈ R

n′
,

respectively, and share them with the server. (d) At the end, the server computes the
element-wise summation of the given vectors to obtain all possible pairwise differences
of the positions for each oligomer. Once the server prunes the entries involving dummy
values, it can compute the oligo kernel function.

4.1 Computation of Oligo Kernel

We utilize the randomized encoding of addition in order to compute the oligo
kernel. Since the calculation of difference is required to compute the oligo kernel,
we adapt the encoding of addition by taking the negative of the input value of
one of the input-parties. The process of the computation of the oligo kernel is
depicted in Fig. 3. Let us assume that Alice and Bob have hashmap-like input
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vectors X and Y where X,Y ∈ R
n and n is the number of different oligomers.

These vectors contain Ki representing the vector of positions of i-th oligomer in
the sequence of the corresponding input-party for i ∈ {0, 1, . . . , n}. The length of
the vector Ki in X is denoted by lXi . It is worth to note that we have non-empty
vectors for all oligomers in Fig. 3 due to the illustration purposes. In fact, Ki can
be any length vector including empty vector, that is Ki ∈ {∅,R1,R2, · · · ,RM}
∀i ∈ {0, · · · , n} where M is the maximum possible number of oligomer that
could occur in a specific length of sequences. First of all, the input-parties find the
positions of oligomers in their sequences. Before Bob shares the length of vectors
Kj ∀j ∈ {0, 1, . . . , n} with Alice, that is the vector [lY0 , lY1 , · · · , lYn ], Bob inserts
varying number of dummy positions into randomly chosen oligomers where the
position value is smaller than possible. In our case, it is −109. Similarly, Alice
inserts some number of dummy positions into randomly chosen oligomers where
the position is too large. For Alice, this value is 109. After receiving the number
of occurrences of oligomers in the sequence of Bob, Alice applies the function
T , which repeats the vector as a whole for the specified number of times, over
her oligomers. As an example, T ([2, 5], 3) yields A = [2, 5, 2, 5, 2, 5]. Once Alice
has the transpose of these repeated vectors, she concatenates them to create
the vector X

′ ∈ R
n′

where n′ is the length of the vector after concatenation.
Alice also creates the vector D ∈ R

n′
having uniformly chosen random values

for each entry of X
′
. Afterwards, Alice shares the vector D and the number of

occurrences of her oligomers, that is the vector [lX0 , lX1 , · · · , lXn ]. It is important
to note that all oligomers exist and they are common among input-parties due to
the illustration purpose. However, in case of missing oligomers, Alice can work
on and send only the common oligomers among the input-parties in order to
reduce the communication cost. Once Bob gets the number of occurrences of
oligomers in Alice and the vector D, he applies the function R, which repeats
each entry of the given vector for the specified number of times, over his oligomer
vectors. As a clarification, R([2, 5], 3), for instances, yields A = [2, 2, 2, 5, 5, 5].
After Bob has the transpose of these repeated vectors, he concatenates them
to create the vector Y

′ ∈ R
n′

and calculates (−Y
′ − D). In the meantime,

Alice computes (X
′
+ D). Then, the input-parties share these vectors with the

server. After the server receives the components of the encoding, it computes
the summation of these components in order to obtain all possible pairwise
differences of the positions for each oligomer in the sequences of Alice and Bob.
At this point, the obtained vector contains the entries which are the results of
the operation involving dummy values in addition to the actual entries. Since the
server knows the artificial position values of Alice and Bob, it can detect whether
a result is valid or not. If the absolute of a result is larger than or close to the
artificial position value, then the server ignores it in the computation. At the
end, the purified vector is utilized to compute the oligo kernel function over two
sequences via Eq. 2. In order to compute the kernel matrix via the oligo kernel for
multiple sequences in each input-party, we repeat the same process for all pairs of
sequences from Alice and Bob. The differences among the sequences in the same
party can be computed by that party and shared with the server to complete



502 A. B. Ünal et al.

the kernel matrix. It is worth to note that sharing the number of occurrences of
oligomers can be done once for all in order to reduce the communication cost.

4.2 Computation of RBF Kernel

We employ the randomized encoding for multiplication to compute the RBF
kernel over the data of the input-parties. The first step of the computation is
to calculate the element-wise multiplication of the vectors from different input-
parties. We utilize the randomized encoding to overcome this problem. The pro-
cess is demonstrated in Fig. 4. In the computation, let us assume that Alice and
Bob have input matrices X and Y , respectively, whose columns represent sam-
ples and A.i shows the vector at the i -th column for any matrix A. In order
to create the components of the encoding, Alice creates three vectors with uni-
formly chosen random values of the same length with a sample in the input
vector X. Afterwards, Alice shares these vectors with Bob. When Bob receives
the random values, he computes the random components M2 and M4. Mean-
while, Alice computes her shares of encoding, namely M1 and M3. Eventually,
they send these components of randomized encoding to the server. Once the
server receives the components, it computes the dot products between the i -th
sample of Alice and the j -th sample of Bob by summing up the entries of the
vector (M1

.i � M2
.j − M3

.i − M4
.j) where “�” represents the Hadamard product.

The server repeats this process for all pairs of samples of Alice and Bob. In order
to complete the gram matrix which indicates the inner product of the vectors,
the input-parties compute the dot product among their own samples and send
the resulting matrices to the server. Then, the server employs Eq. 3, in which the
RBF kernel computation via the inner product is shown, to compute the RBF
kernel matrix.

5 Security Analysis

In this section, we give the threat model that we used to assess the security of
the framework. Based on the threat model, we evaluated the security of the oligo
kernel and the RBF kernel calculations.

5.1 Threat Model

We use the semi-honest adversary model in which a computationally bounded
adversary that is not allowed to deviate from the protocol description attempts
to obtain a valuable information from the messages sent during the execution
of the protocol. In other words, all parties follow the protocol specification, but
the parties may try to obtain additional information about the private input
values of other parties based on their views on the execution of the protocol. In
our framework, the input-parties try to keep their data private so, they can be
assumed to be trusted parties not to actively cheat. The function-party wants
to perform arithmetic operations on the data of the input-parties. It is expected
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Fig. 4. (a) In order to create the components of the encoding, Alice creates three
vectors with uniformly chosen random values of the same length with a sample in the
input vector X. Then, she sends these vectors to Bob. (b) When Bob receives the
random values, he computes the random components M2 and M4. Meanwhile, Alice
computes her shares of encoding, namely M1 and M3. Eventually, they send these
components of the randomized encoding to the server. (c) Once the server receives the
components, it computes the dot products between the i-th sample of Alice and the
j -th sample of Bob by summing up the entries of the vector (M1

.i � M2
.j − M3

.i − M4
.j).

The server repeats this process for all pairs of samples of Alice and Bob.
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that the function-party actively misbehaves in order to obtain the data of the
input-parties. However, the function-party does not send messages to the input-
parties in our framework. Therefore, it has to make a coalition with one of the
input-parties in order to obtain the data of the other input-party.

5.2 Oligo Kernel Computation

Lemma 1. Let A be a semi-honest adversary. The advantage of A of obtaining
the positions of oligomers by analyzing the number of occurrences of oligomers
is negligible.

Proof. Alice and Bob share the number of occurrences of oligomers
[lX0 , lX1 , · · · , lXn ] and [lY0 , lY1 , · · · , lYn ] to each other. A can try to recon-
struct Alice’s sequence and Bob’s sequence by using [lX0 , lX1 , · · · , lXn ] and
[lY0 , lY1 , · · · , lYn ], respectively. We assume that A can obtain some possible posi-
tion information of the oligomers from all possible sequences that she can con-
struct. The success rate of the attack increases with the increase in the size of
oligomers, that is the value of K. Alice and Bob add a varying number of dummy
positions for randomly chosen oligomers. This method increases the number of
possible sequences that A can construct, and thus reduce the success rate of this
attack to negligible levels.

Theorem 1. The computation of the oligo kernel described in Sect. 4.1 is secure
in the presence of a semi-honest adversary A.

Proof. In the computation of the oligo kernel, Alice and Bob compute (X ′ + D)
and (−Y ′ − D), respectively, where X ′ and Y ′ are vectors of their secret values
and D is the vector of random values. The calculation is directly based on the
randomized encoding for addition. The only difference is that it is made over
multiple values. Alice and Bob share the number of occurrences of oligomers
LX = [lX0 , lX1 , · · · , lXn ] and LY = [lY0 , lY1 , · · · , lYn ] to each other during the calcu-
lation. We assume that there is a semi-honest adversary A that can obtain X ′ or
Y ′ with non-negligible probability. A can use LX or LY in order to obtain X ′ or
Y ′, respectively. However, A cannot obtain X ′ or Y ′ from LX or LY , respectively
(Lemma 1). A has to decode X ′ and Y ′ from messages (X ′ +D) and (−Y ′ −D).
However, this contradicts with the privacy property of the perfect randomized
encoding of addition function (Definition 2).

5.3 RBF Kernel Computation

Theorem 2. The computation of RBF kernel described in Sect. 4.2 is secure in
the presence of semi-honest adversary A.

Proof. In the computation of the RBF kernel, Alice and Bob compute {(X.i +
r1), (r2 � X.i − r3)} and {(Y.j + r2), (r1 � Y.j + r1 � r2 + r3)}, respectively,
where X.i and Y.j are the column vectors of their secret values, and r1, r2 and
r3 are the vectors of random values. The calculation is directly based on the
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randomized encoding of multiplication. The only difference is that it is made
over multiple values. We assume that there is a polynomial-time adversary A
that can decode X.i and Y.j from messages (X.i + r1), (r2 � X.i + r3), (Y.j + r2)
and (r1�Y.j +r1�r2+r3). This contradicts with the privacy property of perfect
randomized encoding of the multiplication function (Definition 3).

6 Dataset

To show the benefit of privacy-preserving machine learning, we chose a genomic
data set with clinical relevance in precision medicine. It comprises V3 loop
sequences of HIV together with the coreceptor usage as the label. Corecep-
tor usage determines, how the viruses are entering the human cells. Since the
most common variants can only use the human CCR5 coreceptor, which can
be blocked by a drug, it is very important to determine the coreceptor usage
of the viral population before prescribing those antiretroviral drugs [14]. Over
recent years several successful applications based on predicting the phenotype
from genetic data have been introduced [7]. We downloaded publically available
data from the Los Alamos National Laboratory (LANL) HIV Sequence Database
at http://www.hiv.lanl.gov/. We chose all amino acid sequences with corecep-
tor usage information and then classified the data into two classes (CCR5 only
versus OTHER). We had 642 and 124 sequences in each class, respectively. The
sequences were aligned with the HIVAlign tool from the LANL website with
standard options. At the end, we obtained 766 sequences with 44 characters
each.

7 Results and Discussion

We utilized the framework to calculate the oligo kernel and the RBF kernel.
We applied these kernels on V3 loop sequences of HIV to predict the core-
ceptor usage by employing support vector machines [6]. We shared the labels
of the samples with the server in plaintext domain since it does not reveal
any additional information. We determined the best parameters according to
F1-score by 5-fold cross-validation. In this process, we evaluated different val-
ues for the kernel parameters, which are the positional tolerance parameter
σ ∈ {2−5, 2−4, · · · , 210} of the oligo kernel and the similarity adjustment param-
eter σ ∈ {2−5, 2−4, · · · , 210} of the RBF kernel. Similarly, we evaluated different
values for the SVM parameters, which are the weight w1 ∈ {20, 21, · · · , 25}
of the minority class OTHER and the misclassification penalty parameter
C ∈ {2−5, 2−4, · · · , 210}. We repeated the parameter optimization step 10 times
with different random folds and conducted the corresponding experiments with
each set of optimal parameters separately. We evaluated the results of the exper-
iments by employing F1-score and area under receiver operating characteristic
(AUROC) curve. In the experiments, we selected the random values from the
range [1, 100].

http://www.hiv.lanl.gov/
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In the experiments with the proposed framework, we employed three pro-
cesses. Two of them are the input-parties and the last one is the function-party.
We split the data into input-parties equally and used around 20% of the data of
each input-party as test data. We conducted the experiments on a server hav-
ing 512 GB memory, Intel Xeon E5-2650 processor and 64-bit operating system.
We let the parties communicate with each other over TCP sockets and assumed
that the communication is secure. We implemented the framework in Python.
This holds also for the key switching approach [28] to which we compare our
approach.

7.1 Oligo Kernel Experiments

In the oligo kernel experiments, we utilized the proposed framework to calculate
the kernel function without sacrificing the privacy of the sequence data. Since
we were not able to find a study which aimed for a similar scenario and uti-
lized the oligo kernel, we compared our approach to the non-private oligo kernel
computation in which we simply ran the oligo kernel in a single party where the
whole data is available. The execution time of both private scheme (PP) and
non-private scheme (NP) is shown in Fig. 5. Based on the figure, it can be stated
that the privacy setup in the framework does not put too much extra burden on
the execution time of the computation in PP. The private computation of the
oligo kernel function is still done within a reasonable time. Moreover, the actual
time required to obtain the results in PP is around one third of the given total
execution time of PP since we utilized three processes, which are two processes
for input-parties and one process for the function-party, to compute the function.
Figure 5 displays the total execution time of these processes.

Fig. 5. We compare the execution time of our framework (PP) to the non-private
scheme (NP) in the oligo kernel experiments. It shows that our framework is promising
for real-life applications.

The execution time for the experiments of both schemes with larger K-mers
tend to decrease with larger K values due to the decrease in the number of
occurrences of K-mers in the sequences. The number of possible occurrences of
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Fig. 6. In each K-mer, we have 10 different experiments. The experiments of both the
private scheme and the non-private scheme with the oligo kernel yield the same results.
Therefore, we give a single plot for each type of evaluation metric to display the results
of both schemes. The results are better towards small K values due to the size of the
alphabet of the protein sequences.

Fig. 7. The execution time of our approach in the oligo kernel experiment for a varying
size of the dataset is depicted for 10 repetitions for each size and different K-mer
lengths. It scales almost quadratically with the size of dataset for all K values.

K-mers in a sequence of length l is l − K − 1 and it gets lower by the increase
of K. Furthermore, since the sequences that we employ have gap characters due
to the alignment, the number of K-mers occurring in the sequences decreases
parallel to the increase of K in our experiments considering that we do not
allow gapped K-mers. Both approaches produced the same results in terms of
F1-score and AUROC, and Fig. 6 demonstrates these results. Having the same
results indicates that our framework is able to calculate the exact differences
without sacrificing the privacy of the data.

We further conducted experiments on our proposed framework by using
datasets of varying sizes to demonstrate the scalability of the framework. We used
a quarter, a half and the full of the dataset. The execution time for these exper-
iments are depicted in Fig. 7. The complexity of the framework grows almost
quadratically with the size of dataset.
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(a) The execution time (b) F-measure and AUROC

Fig. 8. (a) In the RBF kernel experiment, we compare the execution time of our frame-
work (OF) to the key switching approach (KS) in log-scale. In each approach, we have
10 repetitions of the experiments. (b) Both OF and KS experiments yielded the same
results in terms of F1-score and AUROC. The RBF kernel yields comparable or even
better results than the oligo kernel.

(a) (b)

Fig. 9. (a) The execution time of our approach in the RBF kernel experiment for
varying size of the dataset is shown. It scales almost quadratically with the size of
dataset. (b) Similarly, the execution time of the key switching approach to compute
the RBF kernel scales quadratically with the size of dataset. Note that the units are
seconds and hours, respectively, in the figures.

7.2 RBF Kernel Experiments

As an alternative approach, we employed the RBF kernel to predict the corecep-
tor usage of HIV. In order to prepare the data for the RBF kernel, we encoded
the sequences with one-hot-encoding such that each amino acid in a sequence
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was represented by 21 bits in which only one of those bits is 1 and the rest are 0.
We utilized the formula given in Eq. 3 to calculate the RBF kernel on the samples
of input-parties, which requires us to perform the element-wise multiplication of
the feature vectors of these samples. In order to compare the performance of
our proposed framework to existing approaches, we used key switching approach
[28] which utilized the idea in [26,29]. We selected the length of the secret key
in the key switching approach as 10 which was the length of the secret key in
their experiments. In both experiments, the dot product among the samples in
the same input-party is calculated directly in that input-party and the result
is sent to the server. To compute the dot product of the samples from different
input-parties, we utilized our proposed approach and the key switching approach
separately. Both approaches gave the same results for the same set of parame-
ters. F1-score and AUROC of these experiments are shown in Fig. 8b. Based on
the results, the RBF kernel can be considered as a competitive alternative to
the oligo kernel for this prediction scenario.

The execution time of both approaches are shown in Fig. 8a. It indicates that
our approach is way faster than the key switching approach. The underlying rea-
son for such a difference is that the number of features of the samples affects
the execution time of the key switching approach drastically [28]. In our case,
the length of the feature vectors is 21 ∗ 44, that is 924. Whereas, our approach
can handle high dimensional vectors efficiently compared to the key switching
approach and it does not involve any computationally expensive encryption.
Moreover, we can conclude that our approach is more efficient than the com-
putation of the dot product via HELib [8,9] since integer vector homomorphic
encryption is faster than HELib based dot product calculation [26].

8 Conclusion

Due to the necessity of data sharing in biomedical studies, privacy preservation
becomes very essential. Especially in genetics, the protection of the sequence
data of patients in the studies involving two sources requires the development of
new privacy methods. In order to address this, we propose a framework utiliz-
ing randomized encoding in order to enable the computation of machine learning
algorithms with a single basic arithmetic operation on the data from two sources.
During the computation, none of the input value of these sources is revealed to
neither of the other parties in the computation. Moreover, the result of the com-
putation is not revealed to the sources. We demonstrate the performance of the
framework on the coreceptor usage prediction problem of HIV by utilizing V3
loop sequences. The results of experiments of the oligo kernel show that our
framework can yield the same results as with non-private scheme. The execution
time analysis of oligo kernel experiments shows that our framework is promising
for real-life applications. In the experiments of the RBF kernel, we show that our
framework can compute the kernel function without losing information. More-
over, it is significantly more efficient than the key switching approach and the
dot product computation via HELib consequently. In addition to the utilized
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machine learning algorithms, our framework can be used on any problem requir-
ing one type of four basic arithmetic operations on data from two sources. If two
different basic arithmetic operations are required, then the function-party would
infer the input values of the input-parties in the current setting by utilizing the
information coming from different operations. As a future work, the proposed
framework can be improved in a way that it could perform more than a single
type of basic arithmetic operation in the same computation without sacrificing
the privacy of the input values. Additionally, one can extend the idea to cover
more than two input-parties in the computation.
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Abstract. Accountable assertion enables a payer to make off-chain pay-
ments to a payee, and at the same time, the payer’s secret credentials
can be revealed if she equivocates (i.e., makes conflicting statements
to others). In this paper, we introduce a new construction of account-
able assertion that allows an assertion to be accountable for k times.
We also present a new construction of anonymous payment channels for
the cryptocurrency Bitcoin that allows a payer with k-time accountable
assertions to anonymously make off-chain payments to the payee. In par-
ticular, we define formal security models for the new constructions, we
also prove that the k-time assertion can achieve strong secrecy, and the
asynchronous payment channel can achieve anonymity and untraceabil-
ity. The proposed anonymous payment channel with k-time accountable
assertions ensures that: (1) the payee can anonymously receive funds at
asynchronous points of sale, and (2) the payee can trace the real identities
of payers when they equivocate, and penalize them afterward.

Keywords: k-time accountability · Anonymity · Untraceability ·
Payment channel

1 Introduction

Bitcoin is a peer-to-peer payment system [13]. All payment transactions are
appended in a public ledger (or blockchain), and each transaction is verified
by network nodes in a peer-to-peer manner. Since the blockchain usually takes
10 min to confirm a set of valid payment transactions, the scalability becomes
a bottleneck for its practicality. To address such scaling problem, the Lightning
Network [19] (as well as Ethereum’s Raiden Network [2]) was proposed, which
aims to reduce the burden on the blockchain. That is, a massive amount of
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Y. Mu et al. (Eds.): CANS 2019, LNCS 11829, pp. 512–524, 2019.
https://doi.org/10.1007/978-3-030-31578-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31578-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-31578-8_28


Anonymous Asynchronous Payment Channel 513

transactions are performed off-chain, only two transactions (i.e., the initial and
final ones) are appended in the blockchain.

Preventing the equivocation is important in the off-chain payments. One
novel solution is to use the accountable assertion [21], which means that an off-
chain payment transaction is confirmed as valid if the corresponding assertion
is uniquely accountable for a statement (e.g., I buy a ticket with serial number
r, where r is a unique value). More specifically, a payer is required to have a
deposit in the initial transaction which is appended in the blockchain. Later, if
a payer equivocates such as making any conflicting statements, then the payer’s
secret credential (or secret key) is revealed and her deposit is confiscated.

The accountable assertion can be further explored in a k-time setting (k-time
accountable assertion kTAA), which is useful if a payer wishes to reuse her asser-
tion multiple times. As a result, multiple payment transactions can be confirmed
as valid using kTAA. A real-life example is, a user makes payment transactions
with a set of service providers who belongs to the same organization. The user
first derives a kTAA after a valid payment transaction with one of the service
providers, then she continues to obtain services from remaining service providers
using kTAA. That is, the kTAA ensures that an assertion can be accountable
up to k number of service providers (or k-time accountability). In addition, the
usage of kTAA can minimize user’s computational and communication cost for
off-chain transactions.

While kTAA offers a novel solution to the equivocation, it would trigger con-
cerns on privacy when applying it to the asynchronous payment channel. Many
privacy-preserving cryptocurrencies (as well as payment channels) have been
studied in the literature [7,9,12,22]. However, to the best of our knowledge,
there is no solution that can be directly applied to construct an anonymous
asynchronous payment channel with kTAA. In particular, the anonymity guar-
antee for a payment channel is necessary [1,9] when privacy-sensitive payers are
concerned about the privacy of off-chain payment transactions. Therefore, the
complete goal of this work is to design an anonymous asynchronous payment
channel with kTAA.

The anonymous asynchronous payment channel with kTAA is particularly
useful in distributed applications such as public transport. Let us consider a
number of passengers {Ai} who wish to use a bus company B’s services. Suppose
a passenger Ai first appends a transaction into the Bitcoin network for creating
a payment channel to B. The initial transaction includes a deposit B d and a
penalty B p, which are anonymously and jointly signed by Ai and B. Then, a
passenger Ai can use the payment channel to pay for multiple rides when she uses
B’s buses Bi up to the limit B d (i.e., paying through the channel). Eventually,
B’s buses are synchronized every night when closing the channel. We let Ai keep
the state (includes the current transaction amount, a revision number of the state
and the deposit B d) of the payment channel, which is anonymously signed by
B. Ai generates a kTAA associates with the signed state, so this kTAA allows Ai

to pay for a certain number (or set) of rides altogether. The anonymous payment
channel ensures that any rides cannot disclose Ai’s real identity. In addition, B
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can trace and penalize any passenger who equivocates (e.g., Ai pays for a new
set of rides using the old signed state) or misuses the kTAA (e.g., Ai uses the
signed state for k+1 times).
Technical Challenges. The accountable assertion is essentially based on a
chameleon hash function [10] in a (Merkle-style) tree setting, and all collisions
in a tree path can be found using the secret key (or trapdoor) of a payer. Since
we aim to construct a kTAA, we distribute the trapdoor into k shares by using
Shamir’s secret sharing scheme (SSS) [24]. We assume the height of the tree is
k, and we find collisions in a tree path (from leaf to the root) using k secret
shares, which is the key difference between accountable assertion and kTAA.
The problem is, the beneficiary (e.g., payee) cannot reveal payer’s trapdoor and
penalize her if she equivocates or misuses kTAA in the asynchronous payment
channel. Because the deposit B d and penalty B p are signed by the payer’s
trapdoor (not trapdoor shares) when creating a payment channel, the dishonest
payer’s trapdoor remains secure even when any trapdoor shares are extracted
using the “extraction” algorithm of chameleon hash functions (see Sect. 2).
Overview of Techniques. First, we design a kTAA which is suitable for off-
chain payments. The idea is to let the payer release a k-size set of trapdoor
shares in a tree path, and the released k shares are not used to find collisions
when generating a kTAA. Essentially, the kTAA has two trapdoor shares at
each level: one is a secret value which is used to find a collision; the other one
is a public value, which is used for tracing the dishonest payer. If equivocation
or kTAA misuse occurs, then payer’s trapdoor is revealed from the k publicly
known shares and the revealed secret share (due to the “extraction” algorithm
of chameleon hash function) by using the reconstruction of Shamir’s SSS [24].

Second, we exploit cryptographic primitives to achieve anonymous payment
channel with kTAA. Anonymous payment channel requires that the payee cannot
identify the real identity of a payer when paying through the channel. We achieve
it by using both ring signatures and blind signatures. That is, the deposit B d
and the penalty B p are jointly signed by a payer and a payee using ring
signatures [8,11] and Schnorr signatures [23], respectively. A payer derives a
pseudonym/credential pair using blind signatures [4] when interacting with the
payee, while the payee verifies the payment transactions between payer and payee
using the pseudonym/credential pair. As a result, the payee cannot identify the
payer from the pseudonym/credential pair (due to the untraceability of blind
signatures), and the signed deposit and penalty (due to the anonymity of ring
signatures).
Our Contributions. The main contributions of this work are summarized as
follows.

– New Accountable Assertion. We propose a new k-time accountable assertion
(kTAA) for non-equivocation contracts such that an assertion is accountable
up to k times. In particular, the secret key used in the kTAA is revealed when
equivocation or kTAA misuse occurs.
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– New Asynchronous Payment. We propose a new asynchronous payment chan-
nel such that the real identity of a payer is hidden from the off-chain payee
when paying through the channel.

– Security Models. We present the formal security definition for kTAA, and
prove that it achieves strong secrecy. We also prove that the proposed asyn-
chronous payment achieves anonymity and untraceability.

1.1 Related Work

Anonymous Cryptocurrency. Zerocoin (Miers et al.) is the first anonymous
distributed e-cash system for Bitcoin [12]. Specifically, it includes some cryp-
tographic techniques such as accumulators [6] and zero-knowledge proofs [23],
in order to ensure unlinkability across multiple transactions. Meanwhile, the
central “bank” [5] is not required, so Zerocoin is a decentralized e-cash scheme
which is consistent with the Bitcoin network model. To ensure anonymity on
sender/recipient and confidentiality on transaction amount, Sasson et al. [22]
proposed a Zerocash system, which is an instantiation of decentralized anony-
mous payment (DAP) schemes. The DAP schemes allow users to pay each other
directly and privately.

Saberhagen [26] introduced the Cryptonote architecture, which adds new
privacy-related features to the Bitcoin networks. Specifically, the one-time ring
signature [3] and non-interactive zero-knowledge (NIZK) proofs [23] are used
to achieve untraceability (or sender anonymity) and unlinkability. Later, ring
confidential transactions (RCT) [16] and RCT 2.0 [25] (a variant of RCT) were
proposed to hide the transaction amount, which is not possible in Cryptonote.
Both RCT and RCT 2.0 can be deployed in the cryptocurrency Monero.
Anonymous (Micro)Payments. Poon and Dryja [19] introduced a Lightning
Network (or off-chain payments) to tackle the scalability issue of Bitcoin. Such
payment channel allows payer transfers money to the payee without making all
their signed transactions public on the blockchain (i.e., only the first and last
transaction are appended to the blockchain). However, the Lightning network
did not provide payment anonymity between payment channel participants (e.g.,
the payee can see the real identity of a payer who makes a payment). Later, an
anonymous payment channel was introduced by Green and Miers [9]: Blind Off-
chain Light-weight Transactions (Bolt). The Bolt can achieve unlinkability and
confidentiality on payment amount by using cryptographic techniques, including
NIZK and commitment scheme [18].

A separate line of research on probabilistic micropayment schemes [7,17] has
evolved. Pass et al. [17] presented three probabilistic micropayments schemes for
decentralized currencies. The probabilistic micropayment means that a payee
receives a macro-value payment with a given probability so that, in expecta-
tion, he receives a micro-value payment [20]. However, these proposed proba-
bilistic micropayments either have an on-line trusted party or do not support
off-chain payments. Meanwhile, the probabilistic micropayments are linkable. To
achieve the unlinkable probabilistic micropayments, Chiesa et al. [7] introduced
the decentralized anonymous micropayment (DAM) scheme which allows users
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with access to a ledger to perform off-chain probabilistic payments with each
other directly and privately.

Prevent the double-spending in the off-chain (micro)payments is important.
In [7], the double-spend technique is based on 2-out-of-n Shamir’s SSS [24],
which is also used in [4]. By exploiting the chameleon hash function (HF) [10],
Ruffing et al. [21] introduced the accountable assertion, which enables time-
locked deposit in Bitcoin that are revoked when double spend occurs. In this
work, we use chameleon HF to capture the double-spending payer.

To highlight our distinction, we show the feature (or function) difference
between our proposed anonymous payments with kTAA and some closely-related
works in Table 1: it shows that the proposed construction has k-time account-
ability and sender anonymity, it works at an unidirectional public channel (i.e.,
multiple payers and one payee) and avoids using expensive pairing operations. In
particular, the proposed kTAA can be regarded as a generalization of account-
able assertion [21], and we assume that the receiver (or payee) behaves honestly
[7] in the asynchronous payment channel.

Table 1. The comparison between various cryptocurrencies and (micro)payments

Feature/Scheme [12] [26] [22] [21] [16] [19] [9] [7] Ours

k-time accountability × × × × × × × × �
Deterministic paya � � � � � � � × �
Pairing free � � × � � � × � �
Unlinkability � ×b � × × × � � ×
Sender anonymity × � � × � × � � �
Recipient anonymity × × � × � × � � ×
Confidentiality × × � × � × � � ×
a Deterministic payments means non-probabilistic payments.
b Cryptonote transactions are linkable due to some attacks mentioned
in [14].

2 Preliminaries

In this section, we present the chameleon hash function, which will be used
in our proposed kTAA scheme. The chameleon hash function was proposed by
Krawczyk and Rabin [10]. Together with an extraction algorithm ExtractCsk,
the generic chameleon hash function is defined as follows [21].

– KeyGen: It takes a security parameter λ as input, outputs a secret/public
key pair (sk, pk) ← KeyGen(1λ).

– CH: It takes a public key pk, a message m and a randomness r as input,
outputs an Chameleon hash h ← CH(pk,m).
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– Col: It takes a secret key sk, the old message/randomness pari (m, r), a hash
h and a new message m′ as input, outputs a new randomness r′ such that
h = CH(m, r) = CH(m′, r′).

– ExtractCsk: It takes a public key pk, the old message/randomness pair
(m, r) and new message/randomness pair (m′, r′), outputs the secret key sk.

3 k-Time Accountable Assertions

In this section, we first define and construct a k-time accountable assertion
(kTAA) based on accountable assertion [21] and Shamir’s SSS [24]. Then, we
present the strong secrecy model and provide the security of kTAA.

3.1 Definition

Definition 1 (k-time Accountable Assertions).

– KeyGen: It takes the security parameter λ as input, outputs a public/secret
key pair (pk, sk).

– Commit: It takes a secret key sk as input, outputs a set of commitments
C1, · · · , Ck.

– Assert: It takes a secret key sk, a set of contexts ct1, · · · , ctk and a statement
st, outputs an assertion τ .

– Verify: It takes a public key pk, an assertion τ , outputs d ∈ {0, 1} to indi-
cate whether τ is a valid assertion of a statement st in the set of contexts
ct1, · · · , ctk and the set of commitments C1, · · · , Ck under the public key pk.

– Extract: It takes a public key pk, a set of contexts ct1, · · · , ctk, two state-
ments st0, st1 and two assertions τ0, τ1, outputs the secret key sk.

3.2 Security Models

A secure kTAA should have extractability and secrecy. The extractability means
that a secret key can be extracted if two distinct statements have been asserted
in the same set of contexts. We directly use the extractability model defined in
[21]. Below we present the strong secrecy, which models an indistinguishability
adversary in a decisional game.

Strong Secrecy. Informally, a secret key remains secure even if adversary asks
the challenger to reveal a number of secret shares (which derived from the secret
key) used in an assertion. We define a formal game between an adversary A and
a simulator S as follows.

– Setup: S generates a secret/public key pair (sk, pk) for a user by running the
corresponding KeyGen algorithm. S returns the public key pk to A, and
maintains a set Q which is initialized as empty. S also tosses a random coin
b which will be used later in the game. Let U be another initially empty set
for recording the corrupted secret shares. Let M be a deterministic algorithm
which takes a secret key sk, a statement st and a set of contexts {cti} as
input, outputs a secret key share fi.
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– Training: A can make the following queries in arbitrary sequence to S.
• Assert: If A sends a statement sti and a set of contexts {cti} to S,

then S returns an assertion τi ← Assert(sk, {cti}, sti) associated with
a set of commitments {Ci} to A. S includes the statement/context pair
(sti, {cti}) to Q.

• Corrupt: If A issues a corrupt query to an assertion τi with respect to a
statement sti, then S returns a secret share fi ← M(sk, sti, {cti}) to A.
S includes the corrupted secret share fi to U .

– Challenge: Upon receiving a challenge statement st∗ and a challenge set of
contexts {ct∗i } (st∗, {ct∗i } /∈ Q) from A, S simulates the challenge assertion
using either a real secret share f∗ to A if b = 1, or a random secret share
R ← {0, 1}λ if b = 0. A outputs a bit b′, and wins if b′ = b.
We let the secret share f∗ /∈ U link to a context ct∗ ∈ {ct∗i }, and A is allowed
to corrupt at most k secret shares {fi} ∈ U with respect to the challenge
statement and contexts set. We prohibit that S generates any assertions with
distinct statements in the same set of contexts. We define the advantage of
A in the above game as follows

AdvA(λ) = |Pr[S → 1] − 1/2|.

Definition 2. We say a kTAA has strong secrecy if for any PPT A, AdvA(λ)
is a negligible function of the security parameter λ.

3.3 Proposed Construction and Security Analysis

The kTAA construction is based on the discrete logarithms assumption, let G

denote a cyclic group with prime order q and generator g. Let L be a hash
function that maps bitstrings to leafs {1, · · · , n�−1}, where �, n are the height
and the branching factor of a tree. Let H,G be collision-resistant hash functions,
and let Fκ be a pseudorandom function such that κ is a pseudo-random key.

– KeyGen: The key generation algorithm chooses a pseudo-random function
key κ ← {0, 1}λ, and chooses an assertion secret/public key pair (ask, apk),
where ask = α and apk = (gα, z), z = H(y1

1 , · · · , y1
n). The algorithm com-

putes the entries for the chameleon hash function in the root node as
y1

i = CH(x1
i , r

1
i ), where x1

i = Fκ(p, i, 0), r1i = Fκ(p, i, 1), i ∈ [1, n] and p
denotes the unique identifier for the position of the root node.

– Commit: The algorithm chooses a random polynomial f of degree at most
k with coefficients {αl} ∈ Zq, for 1 ≤ l ≤ k, and publishes the k-size commit-

ments Cl = gαl , for 1 ≤ l ≤ k. Specifically, f(x) k←− α +
∑k

l=1 αl · xl, where α
denotes the secret to be shared. We assume the height of tree as � = k.

– Assert: The stateful assertion algorithm maintains an initially empty set
L of used leaf positions. The algorithm verifies whether L({cti}) /∈ L
(i ∈ [1, · · · , �]) with respect to a statement st in a set of contexts {cti},
it outputs “0” when the verification fails. Otherwise, it adds L({cti}) to
L, and the algorithm proceeds. Then, a user computes an assertion path
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(Y�, a�, Y�−1, a�−1, · · · , Y1, a1) from a leaf Y� to the root Y1. In the following,
let xj

i = Fk(pj , i, 0) and rj
i = Fk(pj , i, 1), where pj is a unique identifier of the

position of the node Yj . Note that a� ∈ {1, · · · , n} is the position of the entry
within Y�.
1. Compute Y�: Assert a statement st with respect to Y� by computing

r
′�
a�

= Col(f(x(w,�)), x�
a�

, r�
a�

,S(st)), where f(x(w,�))
k←− α+

∑k
l=1 αl ·xl

(w,�),
x(w,�) = H(w,S(st), ct�) and w ∈ [0, 1] (its corresponding public key is
F (x(w,�)) = gf(x(w,�))).

2. Compute the entry y�
a�

= G(CH(S(st)), r
′�
a�

) = G(CH(x�
a�

, r�
a�

), r
′�
a�

).
3. Compute the remaining entries in node Y� as y�

i = CH(x�
i , r

�
i ) for i ∈

{1, · · · , n}\{a�}. The leaf Y� stores the entries (y�
1, · · · , y�

n).
4. Set z� = H(y�

1, · · · , y�
n) and f� = (y�

1, · · · , y�
a�−1, F (x(w,�)), y�

a�+1, · · · , y�
n).

Next, it computes the remaining nodes up to the root for h = � − 1, · · · , 1 as
follows.
1. Assert the value zh+1 with respect to Yh by computing r

′h
a�

=

Col(f(x(w,h)), xh
a�

, rh
a�

, zh+1), where f(x(w,h))
k←− α +

∑k
l=1 αl · xl

(w,h),

x(w,h) = H(w, r
′h
a�

, cth) and w ∈ [0, 1].
2. Compute the entry yh

a�
= CH(zh+1, r

′h
a�

) = CH(xh
a�

, rh
a�

).
3. Compute the remaining entries in node Yh as yh

i = CH(xp
i , r

p
i ) for i ∈

{1, · · · , n}\{a�}. The leaf Yh stores the entries (yh
1 , · · · , yh

n).
4. Set zh = H(yh

1 , · · · , yh
n) and fh = (yh

1 , · · · , yh
a�−1, F (x(w,h)), yh

a�+1, · · · , yh
n)

The assertion is τ = {(r
′�
a�

, f�, a�, f(x(1−w,�))), · · · , (r
′1
a1

, f1, a1, f(x(1−w,1)))}.
At each level �, the assertion outputs a secret share f(x(1−w,�)) while the
correct collision is found using a secret share f(x(w,�)) (underline part).

– Verify: It parses the assertion public key as (apk, z), and performs the fol-
lowing
1. apk is a valid chameleon hash function key.
2. Verify the released trapdoor shares, e.g., the trapdoor share at level �:

f(x(1−w,�))

gf(x(1−w,�)) ?= apk · C
x(1−w,�)
1 · C

x2
(1−w,�)

2 · · · Cxk
(1−w,�)

k

where x(1−w,�) = H(w,S(st), ct�).

3. Verify H(y1
1 , · · · , y1

n) ?=z by reconstructing the nodes (Y�, Y�−1, · · · , Y1) in
a bottom-up manner (from the leaf Y� to the root Y1), which includes the
entries y1

1 , · · · , y1
n.

– Extract: It takes ({cti}, st0, st1, τ0, τ1) as input, extracts a secret share first.
For example, a context ct� at level �: f(x(w,�)) ← ExtractCsk(x0, r0, x1, r1),
where ExtractCsk is an extraction algorithm of the chameleon hash func-
tion. That means a position (e.g, level �) is found where two assertion paths
form a collision in the chameleon hash function (i.e., a position where (x0, r0)
is used in the assertion path of st0 and (x1, r1) is used in the assertion path
of st1 such that CH(x0, r0) = CH(x1, r1)). Then, the secret α is revealed
using the reconstruction of Shamir’s SSS [24] from the revealed secret share



520 Y. Tian et al.

f(x(w,�)) and the publicly known k trapdoor shares (w.r.t. either st0 or st1).
If no collision is found, then this algorithm outputs “0”.

Theorem 1. The k-time accountable assertion achieves strong secrecy in the
random oracle model if the chameleon hash function is collision resistant and
the DDH assumption is held in the underlying group G.

Due to page limitation, the detailed security proof is deferred to the full version
of this work.

4 A New Asynchronous Payment Protocol

An asynchronous payment protocol consists of Setup, Payment and Synchro-
nization algorithms. The overview of the proposed construction is described
as follows. First, the deposit B d and the penalty B p with expiry time T is
jointly signed by a user A and a recipient B using a ring signature scheme and
Schnorr signature scheme in the Setup algorithm. In addition, user A derives
a pseudonym/credential pair and a signed state from B (we assume the deposit
specifies the beneficiary as B) using a blind signature scheme. In the Payment
algorithm, user A first generates a kTAA when interacting with a point of sale Bi.
Then, user A holds a signed state, a pseudonym/credential pair and a kTAA for
receiving services from k points of sale. In the Synchronization algorithm, B
synchronizes with {Bi}. If user A makes a conflicting statement on the old signed
state, then B reveals A’s secret key first, then penalizes her and revokes her’s real
identity accordingly. We denote ring signature, blind signature and digital signa-
ture as Σ1 = (KeyGen,Sign,Verify), Σ2 = (Setup,KeyGen,Sign,Verify)
and Σ3 = (Setup,KeyGen,Sign,Verify), respectively. The Σ3 is used by B
only for signing the deposit and the penalty in the Setup algorithm. We then
show the detailed full protocol below.

– Setup: A and B wish to establish an asynchronous payment channel. Hence,
A can make transactions with B under amount B d, penalty B p (we assume
d = p for convenience) and expiry time T . A and B perform the following
1. A generates a public/secret key pair (pkA, skA) for asynchronous pay-

ments. B also generates a set of public/secret key pairs {(spkBi
, sskBi

)}
with respect to many points of sale.

2. A creates a payment channel with B with total amount B (d + p) and
expiry time T . The amount B (d+p) with expiry time T is jointly signed
by pkA and sskB using Σ1.Sign and Σ3.Sign, respectively. We denote
pkA as a set of public keys involved in Σ1, which includes a real public
key pkA and many dummy public keys.

3. After confirming the payment channel by the Bitcoin network, A
obtains a blinded signed statement σ′

A ← Σ2.Sign(sskB , state) from
B, where state = (T, d,pkA, {k}, b = 0, spkB). Then A derives a
pseudonym/credential pair (idA, idA.cred), where idA is the pseudonym
which includes user’s public key pkA, and idA.cred is the signature which
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derives from σ′
A (we denote σA

BS←−− σ′
A for convenience). Note that {k}

denotes a set of contexts in kTAA.
4. A sets her assertion public key as apkA = idA and its secret key ask is

a blinded version of skA. In addition, A publishes a set of commitments
{C}k by running the kTAA.Commit algorithm.

We remark that the state is a plain signed message in the algorithm Σ2.Sign.
The deposit B d will specify an explicit beneficiary B who will receive the
penalty B p in case of equivocates. In the beginning, b = 0 means that all
money in the payment channel belongs to A and none belongs to B. We stress
that both A and B are honest entities in the Setup algorithm.

– Payment: If A wants to spend an amount B x (x ≤ d) at a point of
sale Bi, then A and Bi perform the interaction in Fig. 1, we provide further
explanations afterwards.

BA i

Input :(askA, apkA) Input :(sskBi
, spkBi

)
r ∈ Zq

r

b b + x
Transaction tx : b

kTAA.Assert(askA, {k}, r)
τA

tx, τA, state, idA, σA

Σ2.Verify(spkB , state, σA) = “1”
kTAA.Verify(apkA, {k}, r, τA) = “1”

b + x ≤ d(unexhausted channel)
pkA /∈ X(no blacklisted identity)

t < T (unexpired deposit)
If all the checks pass,

then record: (tx, τA, ki)
σBi

Σ3.Sign(sskBi
, ki)

σBi

Output :(σA, τA, σBi
)

Fig. 1. Payment

1. To verify A’s signed statement (state, σA), Bi runs the Σ2.Verify algo-
rithm, which takes pseudonym idA as input. Meanwhile, to verify A’s
assertion, Bi runs the kTAA.Verify algorithm. Recall that the assertion
public key apkA = idA.

2. The signed state includes a set of contexts {k}, each Bi needs to sign
a used contexts ki using σBi

← Σ3.Sign(sskBi
,mi), where mi = ki

denotes the used context. The remaining Bj (j �= i) perform the same
checks as described in Fig. 1. For example, Bj verifies (ki, σBi

), if the
signature is valid and all the checks pass, then Bj records (tx, τA,mj),
returns σBj

← Σ3.Sign(sskBj
,mj) and provides services to A, where

mj = (ki, kj).
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3. The updated state/signature is (state′, σ′
A) if the old signed state is used

up to k unsynchronous points of sale. Specifically, b′ = b + x, state′ =
(T, d,pkA, {k}, b′, spkBi

) and σ′
A ← Σ2.Sign(sskBi

, state′).
– Synchronization: Before the expiry time T , B synchronizes with each Bi.

1. B collects all transactions recorded by {Bi}.
2. If B detects A has made conflicting statements, then B obtains A’s secret

key skA by running the kTAA.Extract algorithm.
3. B uses the secret key skA to sign a transaction that spends the B (d+p)

to an address under the control of B. Then B adds A’s real identity pkA

to the blacklist X and broadcasts it to all Bi.
4. Before expiry time T , B closes the channel. B also adds pkA to the black-

list X and broadcasts it to all Bi.

Remark. The recipient B will eventually revoke A in the Synchronization algo-
rithm (i.e., closing the channel). If A did not spend amount x for the committed
k times, then B still receives the amount B b when closing the channel. By
contrast, if A reuses old signed state and its associated kTAA beyond the com-
mitted times (e.g., a k+1 TAA is generated without making conflict statement),
then A’s secret key is revealed using the reconstruction of Shamir’s SSS. Due
to page limitation, the security model (including anonymity and untraceability)
and the detailed security proof are deferred to the full version of this work.
Instantiation. First, we use a linkable ring signature scheme in [11] or a trace-
able ring signature scheme in [8] to initiate the digital signature Σ1 used in the
deposit B d and the penalty B p with expiry time T . For example, we remove
the public tracing property in [8] because the kTAA has such property. The sim-
plified ring signature is essentially based on the non-interactive zero knowledge
proof of knowledge (which is also used in CryptoNote protocol [26] and Monero
[15]). Second, we use the digital signature in [4] to initiate the underlying blind
signature Σ2 as it does not involve expensive pairing operations. Last, Σ3 can
be instantiated to Schnorr signature scheme [23].

5 Conclusion

In this work, we have extended the accountable assertion [21] to a k-reusable
setting (kTAA) using Shamir’s secret sharing scheme [24]. We have also proposed
a secure and anonymous asynchronous payment channel based on ring signatures
and blind signatures. As for the future work, we would like to design: 1) an
asynchronous payment channel with confidentiality on the transaction amount
[7,22] while capturing double-spend based on accountable assertions; and 2)
a bidirectional asynchronous payment channel that allows payer and payee to
exchange payments in either direction [9].
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Abstract. In this paper, we address the implicit related-key factoriza-
tion problem on the RSA cryptosystem. Informally, we investigate under
what condition it is possible to efficiently factor RSA moduli in poly-
nomial time given the implicit information of related private keys. We
propose lattice-based attacks using Coppersmith’s techniques. We first
analyze the special case given two RSA instances with known amounts of
shared most significant bits (MSBs) and least significant bits (LSBs) of
unknown related private keys. Subsequently a generic attack is proposed
using a heuristic lattice construction when given more RSA instances.
Furthermore, we conduct numerical experiments to verify the validity of
the proposed attacks.

Keywords: RSA · Factorization · Implicit related-key · Lattice-based
attack · Coppersmith’s techniques

1 Introduction

The RSA public-key cryptosystem [18] plays an important role in the area of
information security due to its simplicity and popularity. Its key equation is
ed ≡ 1 mod ϕ(N), where N , e, d and ϕ(N) are defined as follows. N = pq is
the product of two large primes of the same bit-size. e, d denote the public and
private keys, which are also called the public/encryption and private/decryption
exponents. ϕ(N) = (p − 1)(q − 1) is Euler’s totient function. One computes c =
me mod N and cd mod N for encryption and decryption operations, respectively.

In 1996, Coppersmith [4,5] made a significant breakthrough based on finding
small roots of modular and integer polynomial equations. The fundamental works
proposed novel and advanced lattice-based attacks on RSA. The main method
is known as Coppersmith’s techniques [6] and has been widely applied in the
cryptanalytic field of RSA. Many researchers have proposed several effective
attacks such as [1,7–10,15,21] etc. Among them, the partial key exposure attack
has been extensively studied as an active attack scenario.

In 1998, Boneh et al. [2] proposed several attacks on RSA given a fraction of
the private key bits with small public exponent e. The attacks employed some
known most significant bits (MSBs) or least significant bits (LSBs) of d. In 2005,
c© Springer Nature Switzerland AG 2019
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Ernst et al. [10] presented improved lattice-based attacks that work up to full
size exponents under a heuristic assumption. In our opinion, partial key exposure
attack can be reduced to the problem of factoring RSA modulus with an oracle
outputting some explicit information of d.

In 2009, May and Ritzenhofen [16] proposed the implicit factorization prob-
lem, which aims to factor RSA moduli with an oracle providing implicit infor-
mation about the amount of shared LSBs of the primes. It is mainly considered
for the malicious generation of RSA moduli like the construction of backdoor
RSA moduli. Later, Sarkar and Maitra [19] proposed a better approach based
on solving the approximate common divisor problem.

Inspired by the above attacks, we raise an interesting hybrid problem that
aims to efficiently factor RSA moduli given some implicit information about the
related private keys. We herein present the description of the implicit related-key
factorization problem as follows. Let (N1, e1, d1), . . . , (Nn, en, dn) be n distinct
key pairs, where N1, . . . , Nn are of the same bit-size and the prime factors are
also all of the same bit-size. Given the implicit information that certain portions
of the bit pattern in private keys d1, . . . , dn are common, under what condition is
it possible to efficiently factor N1, . . . , Nn. In this sense, the implicit factorization
problem [16] can be refined into the implicit related-prime factorization problem
accordingly.

There are several situations to use many RSA instances in practice like [20].
Once such RSA instances are generated with imperfect randomness or mali-
cious backdoor keys, one may encounter the implicit related-key factorization
problem. Our motivations come from two aspects. Mainly from the theoretical
view, we study a new problem combing two existing attacks, which may further
disclose the vulnerability of RSA with implicit information and enrich lattice-
based cryptanalyses in the literature. Practically, side channel attacks may not
give explicit information as expected. Instead, one may know the amounts of
shared MSBs and LSBs of the private keys as some implicit information. The
users’ misuses with certain repeated bit patterns in the private keys may also
lead to this problem.

We formulate the implicit related-key factorization problem with several RSA
instances clearly. Given n key pairs of RSA parameters (Ni, ei, di) for 1 ≤ i ≤ n.
We consider the full size case when ei ≈ N for N denoting an integer of the same
bit-size as Ni for simplicity. Besides, we assume di ≈ N δ share certain MSBs
and LSBs like dj = di + djiD for 1 ≤ i < j ≤ n, where D denotes the bit-length
of shared LSBs-block and dji denotes the difference between every two unknown
middle blocks with |D| ≈ Nγ and |dji| ≈ Nβ .

We follow Coppersmith’s techniques [6] to handle the implicit related-key fac-
torization problem. In addition, we adapt two subtle lattice techniques, namely
the splitting technique and the linearization technique. Our attacks rely on a
heuristic assumption, which works well in the literature. The assumption says
that algebraically independent polynomials can be obtained by the lattice-based
attacks and the common root can be efficiently extracted by the Gröbner basis
computation [3].
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Our main result is stated in Proposition 1, which will be proven in Sect. 3.
We want to point out that the theoretical result is asymptotic since the corre-
sponding lattice dimension is required preferably large.

Proposition 1. Let N1 = p1q1 and N2 = p2q2 be given two RSA moduli
of the same bit-size, where p1, q1, p2, q2 are large primes of the same bit-size.
Let e1, d1, e2, d2 be some integers satisfying e1d1 ≡ 1 mod (p1 − 1)(q1 − 1) and
e2d2 ≡ 1 mod (p2 − 1)(q2 − 1) such that e1 ≈ e2 ≈ N and d1 ≈ d2 ≈ N δ. Given
the implicit information that d2 = d1 + d21D for |d21| ≈ Nβ. Then N1 and N2

can be factored in polynomial time if

δ <
25 − 16β − √

177 − 96β

32
.

The rest of the paper is organized as follows. We provide basic knowledge
of Coppersmith’s techniques and Gaussian heuristic in Sect. 2. In Sect. 3, we
propose a lattice-based attack for given two instances and further develop a
notable lattice construction to analyze the case of n instances. We verify the
validity of the proposed attacks by computer experiments in Sect. 4. Finally,
concluding remarks are given in Sect. 5.

2 Preliminaries

In this section, we first briefly introduce lattice, the LLL reduction algorithm [14]
and Coppersmith’s techniques [6]. Then we give a rough condition for finding
the small roots of modular polynomial equations. We also briefly describe the
splitting technique [17] based on the Gaussian heuristic.

A lattice L spanned by linearly independent vectors b1, . . . , bm ∈ R
n is the

set of their integer linear combinations, which can be denoted by

L(b1, . . . , bm) =

{
m∑

i=1

zibi : zi ∈ Z

}
.

The basis vectors derive a basis matrix B by regarding each bi as row (or column)
vectors. The determinant of L is calculated as det(L) =

√
det(BBT). The rank

of L is m and we always consider a full-rank lattice for m = n. Thus, we have
det(L) = |det(B)|.

The LLL algorithm [14] is practically used for computing approximately short
lattice vectors due to its efficient running outputs. We provide the following
substratal lemma, whose proof refers to [15].

Lemma 1. Let L be a lattice spanned by basis vectors (b1, . . . , bm). The LLL
algorithm outputs a reduced basis (v1, . . . ,vm) satisfying

‖v1‖, ‖v2‖, . . . , ‖vi‖ ≤ 2
m(m−1)

4(m+1−i) det(L)
1

m+1−i for 1 ≤ i ≤ m

in time polynomial in m and in the bit-size of the entries of the basis matrix.
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Howgrave-Graham [13] refined on Coppersmith’s techniques to propose a
succinct lemma for judging whether the small roots of a modular equation are
roots over Z. For a given polynomial g(x1, . . . , xn) =

∑
ai1,...,in

xi1
1 · · · xin

n , its
norm is defined as ‖g(x1, . . . , xn)‖ :=

√∑ |ai1,...,in
|2.

Lemma 2. Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer polynomial of at most
m monomials. Suppose that

1. g(x′
1, . . . , x

′
n) ≡ 0 mod R, where |x′

1| ≤ X1, . . . , |x′
n| ≤ Xn,

2. ‖g(x1X1, . . . , xnXn)‖ < R/
√

m.

Then g(x′
1, . . . , x

′
n) = 0 holds over the integers.

Combining Lemmas 1 and 2, one can solve modular/integer equations under a
particular condition. One first constructs shift polynomials from a given equation
and then generate a lattice basis matrix using the coefficient vectors. Once integer
equations are derived from the first � reduced vectors through the LLL algorithm,
one can extract the root for 2

m(m−1)
4(m+1−�) det(L)

1
m+1−� < R/

√
m. It further leads to

a rough condition det(L) < Rm if ignoring the negligible lower terms. The first
� vectors are transformed into simultaneous equations sharing the common root
over the integers. Hence, one can apply the Gröbner basis computation to extract
the common root.

Recently, Peng et al. [17] proposed an improved lattice-attack on the Dual
RSA scheme [20] using the splitting technique. It can split a variable of large
norm into several variables of smaller norm by reducing a low-dimensional lat-
tice. Concretely, it is based on the observation of Gaussian heuristic in random
lattices, which says that the norm of the shortest non-zero vector s of a random
m-dimensional lattice L satisfies ‖s‖ ≈ √

m/(2πe) det(L)
1
m . Let the successive

minimum λi(L) denote the i-th minimum of L, which is the radius of the small-
est zero-centered ball containing at least i linearly independent lattice vectors.
In this sense, ‖s‖ can be written as λ1(L).

A further claim on this property can be found in [11]. The successive minima
of a random m-dimensional lattice L are all asymptotically close to the Gaussian
heuristic with an overwhelming probability. That is λi(L) ≈ √

m/(2πe) det(L)
1
m

for all 1 ≤ i ≤ m. We adapt the splitting technique along with the linearization
technique [12] to present convenient lattice construction in our lattice-based
attacks. In this paper, we use the fact |si1| ≈ det(L0)

1
m , where si for 1 ≤ i ≤ m

is a reduced basis vector after running the LLL algorithm on the constructed
m-dimensional full-rank lattice L0.

3 Implicit Related-Key Factorization Attacks

We first propose a lattice-based attack for given two RSA instances, namely
(N1, e1, d1) and (N2, e2, d2). Recall that we know e1 ≈ e2 ≈ N , where N denotes
an integer with the same bit-size as N1, N2 and the private keys d1, d2 share
some MSBs and LSBs leaving one different block in the middle. Moreover, we
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have d1 ≈ d2 ≈ N δ and d2 = d1 + d21D for |d21| ≈ Nβ and |D| ≈ Nγ (assuming
γ and β are given in advance).

We first perform the splitting technique to split one unknown private key into
a linear combination of two smaller unknown variables. To do so, we construct
a two-dimensional lattice L0 that is generated by the following basis matrix

B0 =
[
a0 e1
0 N1

]

for a well-chosen integer a0.
From the key equation e1d1 ≡ 1 mod ϕ(N1) and ϕ(N1) = N1+1−p1−q1, we

have e1d1 − k1N1 = k1(1− p1 − q1)+1 for a positive integer k1. Hence, we know
(d1,−k1)B0 = (a0d1, k1(1 − p1 − q1) + 1) is a vector belonging to L0. We have
k1 = (e1d1 − 1)/ϕ(N1) ≈ N δ. We set a0 = [N

1
2 ] to balance each coordinate of

(a0d1, k1(1−p1−q1)+1), whose norm is ‖(a0d1, k1(1−p1−q1)+1)‖ ≈ N δ+ 1
2 . The

determinant of L0 is det(L0) = |det(B0)| = a0N1 ≈ N
3
2 from our construction

of the basis matrix B0.
We can obtain two reduced basis vectors (s11, s12) and (s21, s22) through the

lattice reduction algorithm. Further by applying the Gaussian heuristic, we have
‖(s11, s12)‖ = ‖(s21, s22)‖ ≈ det(L0)

1
2 ≈ N

3
4 , which indicates the norms of s11,

s12, s21 and s22 are roughly N
3
4 . Actually, we have s11 = a0a1 and s21 = a0a2

as the reduced basis vectors are generated by[
s11 s12
s21 s22

]
=

[
a1 −
a2 −

] [
a0 e1
0 N1

]
=

[
a0a1 ∗
a0a2 ∗

]
,

where known integers a1 and a2 are elements appearing in the first column vector
of the unimodular transformation matrix. It can easily deduced that |a1| ≈ |a2| ≈
|s21/a0| ≈ N

1
4 .

On the other hand, we have a0d1 = s11c1+s21c2 since (s11, s12) and (s21, s22)
are also basis vectors. Hence, we obtain d1 = a1c1 + a2c2 for unknown c1 and
c2. Combining it with d2 = d1 + d21D, we finally have d2 = a1c1 + a2c2 + d21D.
We want to figure out the norms of c1 and c2. As |a1| ≈ |a2| ≈ N

1
4 , we have

|c1| ≈ |c2| ≈ |d2/a2| ≈ N δ− 1
4 . We substitute d2 = a1c1 + a2c2 + d21D in another

key equation e2d2 = k2(N2 +1− p2 − q2)+ 1 and have e2(a1c1 + a2c2 + d21D) =
k2(N2 + 1 − p2 − q2) + 1. Therefore, we turn to solving f(x, y, z, w) := x(y −
N2 − 1) + e2a1z + e2Dw − 1 mod e2a2 with the root (k2, p2 + q2, c1, d21) for the
implicit related-key factorization problem.

To provide an elegant lattice construction, we further apply the linearization
technique introduced in [12]. Letting u := xy − 1, we have the linear polynomial
f̄(x, z, w, u) := u − (N2 + 1)x + e2a1z + e2Dw mod e2a2. The shift polynomials
are defined as

g[i,j,k,l1,l2](x, y, z, w, u) := xiyjzl1wl2 f̄k(x, z, w, u)Es−k
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for E = e2a2, a positive integer s and i, j, k, l1, l2 ∈ N. We denote the set of the
shift polynomials by G := G1 ∪ G2, where

G1 :={g[i,0,k,l1,l2](x, y, z, w, u) : k = 0, . . . , s; i = 0, . . . , s − k;
l1 = 0, . . . , s − k − i; l2 = 0, . . . , s − k − i − l1.},

G2 :={g[0,j,k,l1−l2,l2−k](x, y, z, w, u) : l1 = 0, . . . , s; j = 1, . . . , τ l1;
l2 = 0, . . . , l1; k = 0, . . . , l2.}

for an optimizing parameter 0 ≤ τ ≤ 1 to be determined later. It is obvious that
all the shift polynomials share the common root (k2, p2+q2, c1, d0, k2(p2+q2)−1)
modulo Es.

By defining auxiliary parameters r = i + k + l1 + l2 and r′ = i′ + k′ + l′1 + l′2,
the polynomial and monomial orders ≺ are defined as g[i,j,k,l1,l2] ≺ g[i′,j′,k′,l′1,l′2]

and xiyjukzl1wl2 ≺ xi′
yj′

uk′
zl′1wl′2 , respectively if r < r′ or r = r′, i ≥ i′ or

r = r′, i = i′, l1 ≥ l′1 or r = r′, i = i′, l1 = l′1, l2 ≥ l′2 or r = r′, i = i′, l1 =
l′1, l2 = l′2, j < j′.

We can substitute each occurrence of xy by u+1. The lattice basis matrix B is
constructed by taking the coefficient vectors of g[i,j,k,l1,l2](xX, yY, zZ,wW, uU)
in G as row vectors, where X, Y , Z, W and U denote the upper bounds on
unknown variables. Additionally, the rows and columns of B are arranged accord-
ing to the above polynomial and monomial orders. Two parameters s and τ can
guarantee that B is square and triangular.

Table 1 shows a toy example of the lattice basis matrix B for s = 1 and τ = 1,
where each row can be viewed as the coefficient vector transformation from a
shift polynomial. We are able to obtain the basis matrix B that generates the
main lattice L directly from our construction.

Table 1. A toy example of the constructed lattice basis matrix B for s = 1 and τ = 1
with E = e2a2 and C = −(N2 + 1).

1 x z yz w yw u yu

g[0,0,0,0,0](xX, yY, zZ, wW, uU) E

g[1,0,0,0,0](xX, yY, zZ, wW, uU) EX

g[0,0,0,1,0](xX, yY, zZ, wW, uU) EZ

g[0,1,0,1,0](xX, yY, zZ, wW, uU) EY Z

g[0,0,0,0,1](xX, yY, zZ, wW, uU) EW

g[0,1,0,0,1](xX, yY, zZ, wW, uU) EY W

g[0,0,1,0,0](xX, yY, zZ, wW, uU) CX e2a1Z e2DW U

g[0,1,1,0,0](xX, yY, zZ, wW, uU) C e2a1Y Z e2DY W CU Y U

Since we already know X ≈ N δ, Y ≈ N
1
2 , Z ≈ N δ− 1

4 , W ≈ Nβ , U ≈ N δ+ 1
2

and E ≈ N
5
4 , we can calculate the determinant of L that is the product of the

diagonal entries of the basis matrix B.
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det(L) =

(
s∏

k=0

s−k∏
i=0

s−k−i∏
l1=0

s−k−i−l1∏
l2=0

XiZl1W l2UkEs−k

)

×
⎛
⎝ s∏

l1=0

τl1∏
j=1

l1∏
l2=0

l2∏
k=0

Y jZl1−l2W l2−kUkEs−k

⎞
⎠

= XsxY syZszW swUsuEsE ,

where sx, sy, sz, sw, su and sE are the respective exponent sums of the diagonal
entries of the basis matrix B. The lattice dimension is

m =
s∑

k=0

s−k∑
i=0

s−k−i∑
l1=0

s−k−i−l1∑
l2=0

1 +
s∑

l1=0

τl1∑
j=1

l1∑
l2=0

l2∑
k=0

1 =
1 + 3τ

24
s4 + o(s4).

Similarly, we calculate sx = 1
120s5, sy = τ2

20 s5, sz = sw = su = 1+4τ
120 s5 and

sE = 4+11τ
120 s5 when omitting o(s5) as it is negligible for sufficiently large s.

From the rough condition det(L) < Rm with R = Es for acquiring enough
integer equations sharing the common root, we have

XsxY syZszW swUsuEsE < E
1+3τ
24 s5

.

Moreover, we let s go to infinite and obtain the crucial condition

1
120

· ξx +
τ2

20
· ξy +

1 + 4τ

120
· (ξz + ξw + ξu) +

4 + 11τ

120
· ξE <

1 + 3τ

24
· ξE ,

where ξx, ξy, ξz, ξw, ξu and ξE denote the exponents of the respective upper
bounds. We further reduce the crucial condition to a simplified one

ξx + 6τ2ξy + (1 + 4τ)(ξz + ξw + ξu − ξE) < 0.

We know ξx = δ, ξy = 1
2 , ξz = δ − 1

4 , ξw = β, ξu = δ + 1
2 and ξE = 5

4 . Thus, we
obtain

δ + 3τ2 + (1 + 4τ)
(

δ − 1
4

+ β + δ +
1
2

− 5
4

)
< 0,

which leads to

δ <
(1 − β)(1 + 4τ) − 3τ2

3 + 8τ
.

The right side reaches its maximum by taking τ = (
√

177 − 96β − 9)/24. We
put it into the above inequality and hence derive the final condition

δ <
25 − 16β − √

177 − 96β

32
.

Once we extract the common root (k2, p2 + q2, c1, d21, k2(p2 + q2) − 1), we
can easily factorize N2 using the value of p2 + q2. Then we have d2 from d2 =
e−1
2 mod ϕ(N2), which can be used to recover d1 by d1 = d2 − d21D. Thus, we
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Fig. 1. The solid curve denotes the upper bound on δ and the dot-dash line denotes
the lower bound on δ. The gray area indicates the vulnerable scenarios of the proposed
implicit related-key factorization attack for given two RSA instances.

can factorize N1 as knowing d1 is equivalent to the factorization of N1, which
has been proved in [9].

The above result is illustrated in Fig. 1. We gain a significant improvement
of the insecure bound on δ with the help of known implicit information about
the related private keys. One may wonder whether our approach can handle the
implicit related-key factorization problem for more than two RSA instances. We
give an answer to this question below.

Recall the attack scenario for handling the implicit related-key factorization
problem with n distinct RSA instances. Given n key pairs of RSA parameters
(Ni, ei, di) for 1 ≤ i ≤ n. We assume ei ≈ N and di ≈ N δ with dj = di + djiD,
where |dji| ≈ Nβ and |D| ≈ Nγ for 1 ≤ i < j ≤ n.

We first perform the splitting technique to split d1 into a linear combination of
several smaller unknown variables. We introduce a concise heuristic construction
of a (2n − 1)-dimensional lattice L0 that is generated by the basis matrix

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 · · · 0 e2 · · · en

0 b0 · · · 0 e2D · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · b0 0 · · · enD
0 0 · · · 0 N2 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · Nn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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for two well-chosen integers a0 and b0. Hence, (d1, d21, . . . , dn1,−k2, . . . ,−kn)B0

belongs to L0. That is (a0d1, b0d21, . . . , b0dn1, k2(1−p2 −q2)+1, . . . , kn(1−pn −
qn) + 1) as we know eid1 + eidi1D − kiNi = eidi − kiNi = ki(1 − pi − qi) + 1 for
2 ≤ i ≤ n from the related-key equations of di, dj and the RSA key equations.

We know that ki = (eidi − 1)/ϕ(Ni) ≈ N δ for 1 ≤ i ≤ n. To balance each
coordinate of above vector, we set a0 = [N

1
2 ] and b0 = [N

1
2+δ−β ]. The norm

of the constructed vector is roughly estimated as N δ+ 1
2 . The determinant of

L0 is det(L0) = |det(B0)| = a0b
n−1
0

∏n
i=2 Ni ≈ N

3
2n−1+(n−1)(δ−β) from our

construction of the basis matrix B0.
When applying the Gaussian heuristic, the norm of the reduced basis vectors

is roughly det(L0)
1

2n−1 ≈ N
3n−2+2(n−1)(δ−β)

2(2n−1) . Similarly, we have d1 = a1c1+a2c2+
· · ·+a2n−1c2n−1 as an integer linear combination of (2n−1) unknown variables,
where ai’s come from the first column vector of the unimodular transformation
matrix. We have |ai| ≈ det(L0)

1
2n−1 /a0 ≈ N

3n−2+2(n−1)(δ−β)
2(2n−1) − 1

2 = N
(n−1)(2δ−2β+1)

2(2n−1)

and hence |ci| ≈ |d1/a1| ≈ N δ− (n−1)(2δ−2β+1)
2(2n−1) = N

2nδ+2(n−1)β−n+1
2(2n−1) .

Substituting the alternative expression of d1 in e1d1 = k1(N1+1−p1−q1)+1,
we try to solve x(y − N1 − 1) + e1a1z1 + · · · + e1an̂zn̂ − 1 mod e1an̂+1 in (n̂ + 2)
variables with the root (k1, p1 + q1, c1, . . . , cn̂) for n̂ = 2n − 2. Letting u :=
xy − 1, it can be rewritten in the linear form as fn̂(x, z1, . . . , zn̂, u) := u − (N1 +
1)x + e1a1z1 + · · · + e1an̂zn̂ mod e1an̂+1. The shift polynomials are defined as
g[i,j,k,l1,...,ln̂](x, z1, . . . , zn̂, u) := xiyjzl1

1 · · · zln̂
n̂ fk

n̂Es−k for E = e1an̂+1, a positive
integer s and i, j, k, l1, . . . , ln̂ ∈ N.

Analogous to the lattice-based solution applied to the case of two instances,
we finally obtain the following proposition for the case of n instances.

Proposition 2. Let Ni = piqi for 1 ≤ i ≤ n be given RSA moduli of the same
bit-size, where pi and qi are large primes of the same bit-size. Let ei and di

be some integers satisfying eidi ≡ 1 mod (pi − 1)(qi − 1) such that ei ≈ N and
di ≈ N δ. Given the implicit information that dj = di + djiD for 1 ≤ i < j ≤ n
with |dji| ≈ Nβ. Then given RSA moduli can be factored in polynomial time (but
exponential in n) if

δ <
1
2

− β +
2n2 + n − 1 + 4n2β − √

(2n − 1)(6n3 + 3n2 − 1 − 8n2(n − 1)β)
4n3

.

We illustrate the above result with respect to various β’s in Fig. 2 and dis-
cuss more about it. On the one hand, we can achieve higher insecure bound
as β decreases. On the other hand, exposing more RSA instances with implicit
related-keys is more vulnerable. Let n go to infinity, the asymptotic upper bound
converges to 1

2 − β. Consequently, it indicates that the proposed attack is effec-
tive for δ < 1

2 at best for β = 0, which is the same as the conjecture of the
previous small exponent attack [1] unless there exist more effective attacks.
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Fig. 2. The comparison of the upper bounds on δ of the proposed implicit related-key
factorization attack for given n RSA instances with respect to β = 0, β = 0.05, β = 0.1
and β = 0.15.

4 Experimental Results

We verify the validity of the proposed attacks analyzed in Sect. 3 on the implicit
related-key factorization problem for two instances. The experiments are carried
out in SageMath under Windows 10 running on a laptop with Intel Core i7-
8550U CPU 1.80 GHz. The numbers for generating the parameters of two RSA
instances are chosen at random.

To be specific, we first generate two 1024-bit RSA moduli N1 and N2. Then
we generate the implicit related-keys d1 and d2 with certain shared MSBs and
LSBs according to the preset values of β and γ. Finally, we compute the corre-
sponding public keys e1 and e2 from N1, d1 and N2, d2, respectively.

In each numerical experiment, we choose a suitable s with an optimal τ for
constructing the lattice, which implies we shall first reduce a two-dimensional
lattice and then another m-dimensional one. The comparison of the asymptotic
and experimental results are given in Table 2. The γ and β-columns provide the
concrete attack scenarios, by which we randomly generate two related private
keys. The amounts (recorded in bits) of shared MSBs and LSBs are given in the
MSBs and LSBs-columns. The δ∞-column provides the asymptotic bounds on
δ when s goes to infinity. The δe-column provides the experimental bounds for
our lattice settings indicated by the s, τ and m-columns. The respective time
consumption (recorded in seconds) of the LLL algorithm and the Gröbner basis
computation are given in the TL and TG-columns.

During the experiments, we can collect sufficient polynomials satisfying our
requirements. In other words, after running the LLL algorithm, we obtain enough
short reduced basis vectors. The polynomial equations sharing the common root
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Table 2. The comparison of asymptotic bounds and experimental results on δ of the
proposed implicit related-key factorization attack for given two RSA instances.

γ β MSBs LSBs δ∞ δe s τ m TL TG

0.117 0.048 130 120 0.346 0.292 5 0.200 136 112.834 0.121

0.117 0.039 163 120 0.350 0.315 6 0.166 225 1933.569 0.151

0.043 0.058 199 44 0.342 0.295 5 0.200 136 140.853 0.122

0.034 0.063 204 35 0.340 0.296 6 0.166 225 1647.016 0.176

0.078 0.092 123 80 0.329 0.290 5 0.200 136 174.732 0.146

0.078 0.097 121 80 0.327 0.293 6 0.166 225 2336.019 0.162

over the integers are derived from the vector-to-equation transformation of the
outputted lattice vectors. Based on the observation from Table 2, we briefly
comment on the root-extraction procedure of the proposed attack. We put the
derived polynomials into the Gröbner basis computation and obtain p2 +q2 that
leads to the factorization of N2. As mentioned before, we can also obtain the
factorization of N1. The time consumption of the Gröbner basis computation is
much lower than that for running the LLL algorithm.

5 Concluding Remarks

In this paper, we propose the formulation of a new problem with respect to
implicit related-key factorization, whose goal is to factor RSA moduli with the
help of implicit information about related private keys. We then propose lattice-
based attacks using Coppersmith’s techniques, which are applied for solving
modular polynomials as a powerful tool. Another technique we adapt is the
splitting technique, which can split a variable of the large norm into some vari-
ables of the smaller norm.

We analyze the implicit related-key factorization problem for a special case
when given two RSA instances. A lattice-based attack for such case is proposed
and illustrated. We further verify the validity of the proposed attack by numer-
ical experiments. For the case of more than two RSA instances, a similar attack
is proposed based on a heuristic lattice construction. The concrete matrix con-
struction with respect to the splitting technique may be improved (i.e. a0 and
b0 can be further optimized).
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