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Abstract In this paper, we study the problem of coefficients identification in popula-
tion growth models. We consider that the dynamics of the population is described by
a system of ordinary differential equations of susceptible-infective-recovered (SIR)
type, and we assume that we have a discrete observation of infective population. We
construct a continuous observation by applying time series and an appropriate fitting
to the discrete observation data. The identification problem consists in the deter-
mination of different parameters in the governing equations such that the infective
population obtained as solution of the SIR system is as close as to the observation.
We introduce a reformulation of the calibration problem as an optimization problem
where the objective function and the restriction are given by the comparison in the
L2-norm of theoretical solution of the mathematical model and the observation, and
the SIR system governing the phenomenon, respectively. We solve numerically the
optimization problem by applying the gradient method where the gradient of the
cost function is obtained by introducing an adjoint state. In addition, we consider a
numerical example to illustrate the application of the proposed calibration method.
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1 Introduction

Throughout the human history, there are diseases that due to their characteristics
suddenly affect a large part of the population of a certain region, generating consid-
erable morbidity and mortality [19]. This type of disease is called epidemic and is
developed in populations that acquire a certain population density [6]. However, we
observe that the term epidemic is also used sometimes in the case of noninfectious
diseases that are of population scale, for instance, the dynamic of diabetes. In this
work, we will analyze the epidemics due to infectious diseases and within them those
that are not transmitted through vectors.

From the historic point of view, we notice that the epidemics caused several health
problems on a population scale, jeopardizing the survival of different civilizations.
For instance, the bubonic plague [25] and its famous plagues developed in the old
Egypt [24], the epidemic of plague in Athens, Typhoid and Syracuse [4] in the old
Greece, the black plague that affected the whole of Europe [34], the epidemics due
to the meeting between Europeans and Native Americans in America [26], and the
outbreaks of cholera due to the contamination of water with fecal matter [26]. We
remark that the consequences of the plagues in America are even more important
than those occurring in Europe [15].

In the last decades, there are several efforts to understand the dynamics of diseases
caused by epidemic. Nowadays, the mathematical epidemiology is one of the most
important branches of bio-mathematics [11, 13].Moreover, we observe that there are
several kinds ofmathematicalmodels. For instance, there aremathematicalmodels in
terms of discrete mathematics, deterministic or even stochastic ordinary differential
systems or partial differential equations, and statistical theory.

The mathematical modeling of the population dynamics for infectious diseases is
a standard or classical problem in differential equations theory [21, 27]. We observe
that the earliest published paper on mathematical modeling of spread of disease was
carried out in 1766 by Daniel Bernoulli. Trained as a physician, Bernoulli created
a mathematical model to defend the practice of inoculating against smallpox [18].
According to Pesco [26], in 1927 Kermack and Mc Kendrick published an article
in which they proposed a mathematical model, implemented in differential equa-
tions, that simulates the transmission of an infectious disease. This model divides
the population into compartments according to the epidemiological status of the indi-
viduals, classifying them as susceptible (S), infected (I ), and recovered (R), which
is currently known as the SI R model.

On the other hand, related with statistical methods, we notice that inferential
methods have also been developed to evaluate the correlation between epidemio-
logical data and possible indicators of risk or health policies [1, 23]. Nowadays,
epidemiology is used to describe the clinical spectrum of a disease, to know the
transmission mechanisms of the disease, to know the natural history of biological
systems, to make population diagnoses, to identify factors that produce the risk of
acquiring the disease, and to test the effectiveness of different mitigation strategies.
It is mainly used to generate information required by public health professionals
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to develop, implement, and evaluate health policies [12]. However, in the best of
our knowledge, there are no works related with time series theory applied to model
calibration in epidemiology. An exception and an advance in this research line is the
recent work [9].

In the processes of mathematical modeling by ordinary differential equations,
there are at least four phases: abstraction, simplification or mathematical model
formulation, solution or analysis, and validation [14]. Particularly, the phase of val-
idation requires the solution of problem well known as the mathematical model
calibration.

In a broad sense, parameter calibrationmeans that wewant to find (or to calculate)
some unknown constants or functions (called model parameters) from some given
observations for the solutionmodel. Themathematical concept of calibration or iden-
tification is equivalent to that of estimation in statistics. In practice, these problems
can be solved by applying the inverse problem methodologies [14]. We remark that,
although the estimation (calibration or identification) of unknown parameters has a
significant practical importance, there are several problems which are not enough
investigated due, for instance, to the lack of results on the uniqueness of the solution
of the inverse problem, i.e., while the direct problem may have a unique solution,
the inverse problem does not usually have the same property [21, 30]. Moreover,
we observe that the inverse problem is crucial for calibrating the model and for
controlling the model parameters. Approaches involving inverse problems can be
successfully applied to a variety of important biological processes, including the
spread of infectious diseases, allowing epidemiologists and public health specialists
to predict the time interval between epidemics [5, 21].

The aim of this paper is the identification of certain coefficients (or parameters) in
the ordinary differential equations system of SI R type investigated by Bai and Zhou
[3] by using the inverse problem methodologies and the time series theory. We start
by defining a continuous observation using the time series and an interpolation of
discrete data. Then, we define an optimization problem for an appropriate cost func-
tion which is equivalent to the inverse problem. To solve the minimization problem,
we apply the gradient method where the gradient of the cost function is calculated
by the introduction of an adjoint state.

Among some previous and relatedworkswith the topic of parameter identification
in epidemiological models, we can refer to [16–18, 20, 22, 29, 33]. The models
considered by the authors are systems of stochastic differential equations and the
notion of parameters adopted by them is given by the context of statistics theory.
Thus, the methodologies are not comparable with the ones presented in this paper,
since the model is a deterministic model and the notion of parameter is used to define
the coefficients of the system.

The rest of the paper is organized as follows. In Sect. 2, we present the notation and
precise definition of the direct problem. In Sect. 3, we define the inverse problem. In
Sect. 4, we present the inverse problem solution methodology. In Sect. 5, we present
a numerical experiment. Finally, in Sect. 6, we summarize some conclusions.
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2 The Direct Problem

Let S(t) be the number of susceptible individuals, I (t) be the number of infec-
tive individuals, and R(t) be the number of recovered individuals at time t ∈ [0, T ],
respectively. According to the writing by Bai and Zou [3], “After studying the cholera
epidemic spread in Bari in 1973, Capasso and Serio introduced the saturated inci-
dence rate βSI (1 + k I )−1 into epidemic model,” where β I measures the infection
force of the disease and (1 + k I )−1 with k > 0 describes the psychological effect
or inhibition effect from the behavioral change of the susceptible individuals with
the increase of the infective individuals. This incidence rate seems more reasonable
than the bilinear incidence rate βSI , because it includes the behavioral change and
crowding effect of the infective individuals and prevents the unboundedness of the
contact rate.

The treatment is an important way to reduce the disease spread, such as measles,
tuberculosis, and flu [32]. In classical epidemic models, the treatment rate of infec-
tives is assumed to be proportional to the number of the infectives. The proportional
assumption will lead to very fast increase of the treatment resource. In fact, every
community has a suitable capacity for treatment. If it is too large, the community pays
for unnecessary cost. If it is too small, the community has a higher risk of disease
outbreak. It is realistic to maintain a suitable capacity of disease treatment. Wang
and Ruan [31] introduced a treatment function h(I ), which is a positive constant m
for I > 0, and zero for I = 0. This seems more reasonable when we consider the
limitation of the treatment resource of a community.

Bai andZhou [3] formulated a nonautonomousSIR epidemicmodelwith saturated
incidence rate and constant removal rate by introducing the periodic transmission
rate β(t). The general model is formulated as follows:

d

dt
S(t) = Λ − μ S(t) − β(t)S(t) I (t)

1 + k I (t)
,

d

dt
I (t) = β(t)S(t) I (t)

1 + k I (t)
− (μ + γ ) I (t) − h(I (t)),

d

dt
R(t) = γ I (t) + h(I (t)) − μ R(t).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1)

Here,Λ is the recruitment rate,μ is the natural death rate, γ is the recovery rate of the
infective population, and β(t) is the transmission rate at time t . Now, noticing that the
first two equations in (1) are independent of the third one, and the dynamic behavior
of (1) is trivial when I (t0) = 0 for some t0 > 0, Bai and Zhou [3] considered only
the first two equations with I > 0. Thus, these researchers restricted their study to
the model given by

d

dt
S(t) = Λ − μ S(t) − β(t)S(t) I (t)

1 + k I (t)
,

d

dt
I (t) = β(t)S(t) I (t)

1 + k I (t)
− (μ + γ ) I (t) − m.

⎫
⎪⎪⎬

⎪⎪⎭

(2)
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In the terminology of inverse problems, we have that the direct problem is given by
system (2) with some appropriate initial conditions for S and I . More precisely

Definition 1 The direct problem is formulated as follows: given the constants
T,Λ,μ, k, m, S0, I0 and the function β, find the functions S and I satisfying the
system (2) on the interval ]0, T ] and the initial condition (S, I )(0) = (S0, I0).

The direct problem is well-posed since it is the standard Cauchy problem for an
ordinary differential systemwhere the right-hand side is a locally Lipschitz function.

3 The Inverse Problem

The inverse problems consist in the determination of μ and γ in the system (2) from
a distribution of the number of infected individuals I obs and such that the infected
solution of the direct problem forμ and γ , denoted as Iμ,γ , is “as close as” to I obs . The
term “as close as” is numerically precise by considering the L2-norm of the distance
of Iμ,γ and I obs . However, we observe that I obs is not defined on the whole time
interval. Then, to extend I obs continuously we apply time series. Then we precise
the definition of the optimization problem.

To precise the application of time series, we consider the numeric values for
the parameters used by Bai and Zhou [3] to investigate the stability of the peri-
odic solution of (2) with given parameter values and small degree seasonal fluctua-
tion in transmission rate. We set that Λ = 400, k = 0.01, μ = 0.02, γ = 0.04, m =
10, and β(t) = 0.00006 + ε sin(π t/3), where 0 ≤ ε < 0.00006. Then, the system
(2) becomes

d

dt
S(t) = 400 − 0.02 S(t) − 3 [0.2 + ε sin(π t/3)] S(t) I (t)

10000 + 100 I (t)
,

d

dt
I (t) = 3 [0.2 + ε sin(π t/3)] S(t) I (t)

10000 + 100 I (t)
− (0.02 + 0.04) I (t) − 10,

S(0) = 14000, I (0) = 600.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3)

Now, we solve numerically system (3) and obtain the discrete synthetic observed
data which is shown on Fig. 1. The next step is to adjust this data by a continuous
function. Indeed, due to the structure of the data, we deduced that it would be very
useful to use time series to find the best model that fits such data. Figure2 shows
the graph of the time series associated with the data. To be more precise, as the
series shown in Fig. 2 shows a lot of variability, the first thing we did was to apply
a transformation to the data. Then, using the programming language R [28] and the
tseries library next to the Arima command, we obtained a two-differentiated AR(1)
model [7], in which results are summarized in the following expression:

(1 − B)2(1 − B6)(1 − 0.512B)Yt = εt , εt ∼ N (0, σ 2),
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Fig. 1 Plot of the number of infected population solution of (3)

where B is the lag operator. Remembering that BYt = Yt−1, it turns out

Yt = 2.512Yt−1 − 2.024Yt−2 + 0.512Yt−3 + Yt−6

−2.512Yt−7 + 2.024Yt−8 − 0.512Yt−9 + εt , (4)

where εt is a white noise N (0, σ 2).
Then, using this time series and an appropriate interpolation we construct the

function I obs(t) on [0, T ].
Weobserve thatmodel (4) corresponds to the synthetic data obtainedby simulation

of (3). Then for other particular cases of system (2), we proceed analogously to
construct the corresponding time series model and the appropriate I obs continuous
function.

We reformulate the inverse problem like an optimal control problem. The opti-
mization problem is now formulated as follows: the objective function J depending
on the variables μ and γ is the least squares cost function and the restriction is
the initial value problem for the system (2) with some parameters μ and γ . More
precisely we have the following definition.

Definition 2 The inverse problem is defined by the optimization problem:

Minimize J (μ, γ ) = δ
∥
∥Iμ,γ − I obs

∥
∥2

L2(0,T )
:= δ

∫ T

0
(Iμ,γ − I obs)2(t)dt (5)
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Fig. 2 Plot of the adjustment of infected population solution of (3) by the time series to an
ARIMA(1, 2, 0)× (0, 1, 0)6 model

subject to Iμ,γ solution of system (2) a given initial condition (S, I )(0) = (S0, I0),
I obs is the continuous observation constructed with a time series and an appropriate
interpolation, and δ a positive constant.

We remark two facts. First, the objective function J measures the distance between
two functions, and therefore it must be minimized and is called cost. One of the
functions involved in this cost is that which solves the initial value problem and the
other is the one that adjusts the data through the series of time already found. Second,
we observe that the existence of solutions for the inverse problem can be derived by
applying the continuous dependence of (S, I ) with respect to (μ, γ ). However, the
uniqueness of the inverse problem solution or the proof of a unique global optimizer
for J is difficult to get.

4 Methodology of the Solution for the Inverse Problem

In order to solve the optimization problem, we apply the gradient method where the
gradient of the cost function is obtained by the introduction of an adjoint state. First,
we deduce the gradient of the cost function when all data are continuous and then
we mimic the process to introduce a discrete gradient.
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4.1 Continuous Gradient

We apply the Lagrange multipliers method. We recall that the Lagrangian is a linear
combination between the objective function and the constraints. As it must be scalar
then the constraints,which are functions, aremultiplied, respectively, by the functions
p and q, and then integrated over the whole domain, obtaining the following function
to be minimized:

L
(
Sμ,γ , Iμ,γ ; p, q

) = J (μ, γ ) − E
(
Sμ,γ , Iμ,γ ; p, q

)
,

where J is defined in (5) and E := E(Sμ,γ , Iμ,γ ; p, q) is given by

E = −
∫ T

0

[

S
dp

dt
+

(

Λ − μS − β(t)SI

1 + k I

)

p

]

dτ + p(T )S(T ) − p(0)S0

−
∫ T

0

[

I
dq

dt
+

(
β(t)SI

1 + k I
− (μ + γ )I − m

)

q

]

dτ + q(T )I (T ) − q(0)I0.

Thus, we have a classic minimization problem for L , and therefore we can apply
the first-order optimal conditions to deduce the adjoint state, i.e., we calculate the
gradient of the Lagrangian with respect to the variablesμ and γ , and select the states
(p, q) such that the gradient of L vanishes. We note that

dL

dμ
= ∂L

∂S

∂S

∂μ
+ ∂L

∂ I

∂ I

∂μ
+ ∂L

∂μ
≡ 0,

dL

dγ
= ∂L

∂S

∂S

∂γ
+ ∂L

∂ I

∂ I

∂γ
+ ∂L

∂γ
≡ 0.

The calculus of ∂μS, ∂μ I, ∂γ S, and ∂γ I is difficult to develop directly since the
functions S and I do not depend explicitly on μ and γ and the strategy is to select p
and q such that ∂SL = ∂IL = 0. We observe that

∂L

∂S
= − ∂ E

∂S
=

∫ T

0

[
dp

dt
−

(

μ + β(t)I

1 + k I

)

p + β(t)I q

1 + k I

]

dτ − p(T )

∂L

∂ I
= ∂ J

∂ I
− ∂ E

∂ I

= 2δ
∫ T

0
(I − I obs) + dq

dt
−

[
β(t)S

(1 + k I )2
p + β(t)S

(1 + k I )2
q + (μ + γ )q

]

dτ − q(T ).

Thus, a necessary condition for p and q such that ∂SL = ∂IL = 0 is given by

dp

dt
= μ p + β(t) I

1 + k I
(p − q),

dq

dt
= (μ + γ ) q + β(t) S

(1 + k I )2
(p − q) + 2δ(I obs − I ),

p(T ) = q(T ) = 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(6)
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Fig. 3 Scheme of the gradient calculus methodology. The definition of (S, I ), J, (p, q), and ∇ J
is given in (2), (5), (6), and (7), respectively. Now, the definition of (SΔ, IΔ), JΔ, (pΔ, qΔ), and
∇ JΔ is presented in (8), (9), (11), and (12), respectively

The backward problem (6) is called the continuous adjoint state. It gives rise to
the so-called continuous gradient, which arises equal to zero the derivatives of the
Lagrangian, obtaining

∇ J = ∇E = −
∫ T

0
(Sp, I q)dτ. (7)

The gradient given in (7) can be used to solve numerically the optimization problem.
However, there are several suggestions to use a discrete gradient obtained by a similar
methodology instead of direct discretization for ∇ J in (7), see, for instance, [8, 10].

4.2 Discrete Gradient

The discretization of (7) typically develops numerical instabilities [8, 10]. Then, the
strategy is to obtain a discrete gradient by a similar methodology to that applied to get
(7). We recall that the three steps are the following: (i) construct the continuous cost
function given on (5), (ii) apply a Lagrangian formulation to define the continuous
adjoint state given on (6), and (iii) use the continuous and the adjoint state to define
the continuous gradient given on (7), see the upper part on the scheme given on
Fig. 3. Then, to obtain the discrete we discretize the continuous state variables and
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proceed analogously to the steps (i)–(iii), see the lower part on the scheme given on
Fig. 3. The specific definitions of (SΔ, IΔ), JΔ, (pΔ, qΔ), and ∇ JΔ are given below.

The numerical solution (SΔ, IΔ) is calculated by a fourth-order Runge–Kutta
method. Let us select N ∈ N and define Δt = T/N , tn = nΔt and

(SΔ, IΔ)(t) = (Sn, I n), t ∈ [tn, tn+1[,

with xn := (Sn, I n)t calculated as follows:

xn+1 = xn + Δt

6

(
m1 + 2m2 + 2m3 + m4

)
,

m1 = f(xn, tn), m2 = f
(

xn + Δt

2
m1, tn + Δt

2

)

,

m3 = f
(

xn + Δt

2
m2, tn + Δt

2

)

, m4 = f
(

xn + Δt

2
m3, tn + Δt

)

,

x0 = (S0, I0),

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where f is defined by

f

⎛

⎝
S
I
t

⎞

⎠ =
⎛

⎜
⎝

Λ − μ S − β(t)S I

1 + k I
β(t)S I

1 + k I
− (μ + γ ) I − m

⎞

⎟
⎠ ,

i.e., f is the right side of the system (2). Thus, (8) with xn := (Sn, I n)t is the dis-
cretization of (2), which is called the discrete state.

The discrete cost function JΔ is given by

J�(μ, γ ) = δΔt
N∑

n=0

(
I n − I obs,n

)2
, (9)

where I n is obtained by the numerical scheme (8) and I obs,n is the evaluation of the
continuous observation on the nodes of the mesh, i.e., I obs,n = I obs(tn). Note that
J� given on (9) is the natural discretization of J given on (5). Thus, we have that

Minimize JΔ(μ, γ ) subject to IΔ solution of the numerical scheme (2) (10)

is the discrete version or the discretization of the optimization problem (5).
In order to define the discrete adjoint state (pΔ, qΔ), we apply the Lagrange

multipliers method. We define the discrete Lagrangian

LΔ(SΔ, IΔ; pΔ, qΔ) = JΔ(μ, γ ) − EΔ(SΔ, IΔ; pΔ, qΔ) ,

where JΔ is defined in (9) and EΔ := E(SΔ, IΔ; pΔ, qΔ) is given by
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EΔ =
N−1∑

n=0

[

xn
(

pn−1 − pn
)

− Δt

6

(
m1 + 2m2 + 2m3 + m4

)]

+ xN pN−1 − x0p−1.

Thus, by analogous arguments to the continuous case, we need to determine (pΔ, qΔ)

such that ∂SnLΔ = ∂I nLΔ = 0. Thus, from differentiation of LΔ we obtain that
pn := (pn, qn)t can calculated by the scheme

pn−1 = pn + Δt

6

(
n1 + 2n2 + 2n3 + n4

)
+ 2δΔtg(xn),

n1 = ∂f(xn, tn), n2 = ∂f
(

xn + Δt

2
m1, tn + Δt

2

)

,

n3 = ∂f
(

xn + Δt

2
m2, tn + Δt

2

)

, n4 = ∂f
(

xn + Δt

2
m3, tn + Δt

)

,

pN = (0, 0),

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(11)

where

∂f

⎛

⎝
S
I
t

⎞

⎠ =
⎛

⎜
⎝

−μ − β(t) I

1 + k I
β(t)S

(1 + k I )2
− (μ + γ )

⎞

⎟
⎠ , g

(
S
I

)

=
(
0
I − I obs,n

)

,

and xn is calculated by (8). The scheme (11) is called the discrete adjoint state.
The discrete gradient ∇ JΔ is calculated by

∇ JΔ = Δt

6

N−1∑

n=0

[∇μ,γ m1 + 2∇μ,γ m2 + 2∇μ,γ m3 + ∇μ,γ m4
]
, (12)

where mi for i = 1, . . . , 4 are defined in (8). The gradient given in (12) is used to
solve numerically the inverse problem.

5 Numerical Results

In this section, we present a numerical result for estimating the value of parametersμ

and γ from synthetic observation data.We consider the system (3) and by a numerical
simulation we obtain a discrete observation. Then, by the process indicated on Sect. 3
we construct I obs on [0, T ], see also Figs. 1 and 2. To bemore precise, after processing
the observation by a time series technique, we fit the discrete observation data by
I obs : [0, T ] ∈ R

+ defined by

I obs(t) = a1 sin(b1t + c1) + a2 sin(b2t + c2) + a3 sin(b3t + c3)

+ a4 sin(b4t + c4) + a5 sin(b5t + c5), (13)
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where the values of ai , bi , and ci are given by

a1 = 2412, a2 = 1457, a3 = 430.7, a4 = 114.3, a5 = 40.3,

b1 = 0.01641, b2 = 0.02814, b3 = 0.04432, b4 = 0.05374, b5 = 1.047,

c1 = −0.3434, c2 = 1.491, c3 = 2.903, c4 = 5.065, c5 = −1.513.

The graph of I obs given in (13) is the curve labeled as real parameters in Figs. 4 and 5.
For identification, we use the gradient method where the gradient of the cost

function is defined by (12). To be more precise, we proceed to the identification with
the gradient method using the curvature information [2]:

ek+1 = ek − λk∇ J (ek), with ek = (μk, λk),

λk = ‖∇ JΔ(ek)‖ε̂2
|JΔ(ek − ε̂∇ JΔ(ek)) − 2JΔ(ek) + JΔ(ek + ε̂∇ JΔ(ek))| ·

Here JΔ is calculated by (9). Moreover, we remark that in our numerical simulations
we consider that ε̂ = 10E − 6 in the definition of λk and δ = 10E − 12 in the def-
inition of JΔ and the discrete adjoint state. The numerical value of the parameters
is given in Table1. The infected curve for the initial guess parameters is labeled
as initial estimate of the parameters as shown in Fig. 4. The infected curve for the
identified parameters is labeled as final estimate of the parameters shown in Fig. 5.
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Table 1 Numerical value of the parameters

μ γ

Observation parameters 0.0200 0.0400

Initial guess parameters 0.0005 0.0100

Identified parameters 0.0206 0.0387

Finally, Fig. 6 illustrates the path followed by the gradient method in order to
descend the values in the cost function until reaching the point where the optimum
is achieved.

6 Conclusions

In this paper, we have introduced a methodology, based on discrete gradient method
and time series, for parameter identification or model calibration in ordinary differ-
ential equation systems. Although the content of this research focuses on a specific
ordinary differential equations system, we can deduce that the proposed method can
be generalized for identification of coefficients in other types of system.Moreover, in
this study, we have applied the numerical identification for synthetic observation data
and expect to apply the methodology in the model calibration when the experimental
data is obtained in laboratory experiments.
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Fig. 6 Plot graph of the path traveled by the cost function until reaching the optimum
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