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Preface

This volume includes a selection of peer-reviewed contributions presented at the
33FNE and 13CLATSE meetings held jointly in Guadalajara, Mexico from October
1st to 5th, 2018.

The FNE (Foro Nacional de Estadística) is the official meeting of the Mexican
Statistical Association (AME), taking place annually since 1986. The purpose of the
FNE is to offer an opportunity for statisticians and practitioners to share the latest
developments in research and applications, exchange ideas, and explore opportu-
nities for collaboration. The meetings are complemented by short courses and
workshops, to fulfill the mission of AME of promoting the knowledge and good
practice of Statistics in the country. The CLATSE (Congreso Latino Americano de
Sociedades de Estadística) is the joint statistical meeting of Latin America. Born as
a collaboration between the Argentinean (SAE) and Chilean (SOCHE) Statistical
Societies, it has grown significantly since its first edition in 1991 in Valparaíso,
Chile. It now includes the Statistical Societies of Colombia (SCE), Ecuador (SEE),
Perú (SOPEST), and Uruguay (SUE), as well as AME and the Brazilian Statistical
Association (ABE). The 33FNE was organized by AME and the University of
Guadalajara (UDG), while responsibility for the 13CLATSE was shared by SAE,
ABE, SOCHE, SCE, and AME. The joint event was hosted by the UDG University
Centre for Exact Sciences and Ingeneering (CUCEI).

Statistical research in Latin America is prolific, and collaborative networks span
within and outside the region. A great territorial extension, climatic peculiarities,
and political and socioeconomic factors may hinder the international dissemination
of the high-quality research output of the region. Additionally, much of the work is
typically carried out and published in Spanish, and thus a large portion of the
interested public may overlook interesting findings. We hope that this volume will
provide access to selected works from Latin American statisticians and their
research networks to a wider audience. We are sure that new methodological
advances, motivated in part by the challenges of a data-driven world and the Latin
American context, will be of interest to academics and practitioners around the
world.
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The scientific program of the 33FNE and 13CLATSE included a total of 107
oral presentations, organized in 43 contributed and 7 invited sessions, in Spanish
and English, plus 4 keynote sessions delivered by Alexandra M. Schmidt (McGill
University, Canada), Haavard Rue (KAUST, Saudi Arabia), Abel Rodriguez
(University of California Santa Cruz, USA), and Francisco Louzada (University of
São Paulo, Brazil). Five short courses on Spacial Statistics (Ronny Vallejos,
Federico Santa María Technical University, Chile), Computational methods for
Bayesian inference (Hedibert Lopes, Insper, Brazil), Environmental Statistics
(Bruno Sansó, University of Santa Cruz, USA), The challenges of Teaching
Statistics: New Scenarios at the Undergraduate, Masters and Doctorate levels
(María Purifcación Galindo, University of Salamanca, Spain), Statistical
Foundations of Machine Learning with STATA (Miguel Ángel Cruz, MultiON
Consulting, Mexico), and 45 poster presentations completed the program. The
event was preceded by a full day of courses, aimed mainly at interested students, on
the topics of Variational Bayes and beyond: Bayesian inference for big data
(Tamara Broderick, MIT, USA), Machine Learning (Elmer Garduño, Google Inc.,
USA), Bayesian computing with INLA (Haavard Rue, KAUST, Saudi Arabia), and
Statistical and psychometric intricacies of educational survey assessments (Andreas
Oranje, Educational Testing Service, USA).

We thank all participants who brought scientific quality to the events and made
the experience rewarding. A special recognition is due to the local organizers
Humberto Gutiérrez Pulido and Abelardo Montesinos López (UDG, Mexico), and
to Leticia Ramírez Ramírez (CIMAT, Mexico) of the organizing committee. The
international quality of the event would not have been achieved without the hard
work of the members of the Scientific Committees: Eduardo Gutiérrez Peña
(UNAM, Mexico), Abelardo Montesinos López (UDG, Mexico), Lizbeth Naranjo
Albarrán (UNAM, Mexico), and Luis Enrique Nieto Barajas (ITAM, Mexico), for
the 33FNE; Jorge Luis Bazán (University of São Paulo, Brazil), Ramón Giraldo
(National University of Colombia), Manuel Mendoza (ITAM, Mexico), Orietta
Nicolis (University of Valparaiso, Chile), and Lila Ricci (National University of
Mar del Plata, Argentina), for the 13CLATSE.

Venice, Italy Isadora Antoniano-Villalobos
Mexico City, Mexico Ramsés H. Mena
Mexico City, Mexico Manuel Mendoza
Mexico City, Mexico Lizbeth Naranjo
Mexico City, Mexico Luis E. Nieto-Barajas
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A Heavy-Tailed Multilevel Mixture
Model for the Quick Count in the
Mexican Elections of 2018

Michelle Anzarut, Luis Felipe González and María Teresa Ortiz

Abstract Quick counts based on probabilistic samples are powerful methods for
monitoring election processes. However, the complete designed samples are rarely
collected to publish the results in a timely manner. Hence, the results are announced
using partial samples, which have biases associated to the arrival pattern of the
information. In this paper, we present a Bayesian hierarchical model to produce
estimates for the Mexican gubernatorial elections. The model considers the poll
stations poststratified by demographic, geographic, and other covariates. As a result,
it provides a principled means of controlling for biases associated to such covariates.
We compare methods through simulation exercises and apply our proposal in the
July 2018 elections for governor in certain states. Our studies find the proposal to
be more robust than the classical ratio estimator and other estimators that have been
used for this purpose.

Keywords Bayesian calibration · Hierarchical model · Model-based inference ·
Multilevel regression · Poststratification · Zero-inflated model

1 Introduction

In this paper, we present one of the statistical models used in the quick count of
the 2018 Mexican elections. Mexico is a Federal State that comprises 32 states. The
government system is presidential; the president and the governor of each state are
elected for a 6-year term by the population. The candidate who wins a plurality of
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2 M. Anzarut et al.

votes is elected and no president nor governor may be reelected. Each state has its
own electoral calendar, and in some cases, the federal and state elections coincide.

The National Electoral Institute (INE) is a public, autonomous agency with the
authority for organizing elections. The INE organizes a quick count the same night
of the election. The quick count consists of selecting a random sample of the polling
stations and estimating the percentage of votes in favor of each candidate.With highly
competed electoral processes, the rapidity and precision of the quick count results
have become very important. Even more, the election official results are presented
to the population a week after the election day. Therefore, the quick count prevents
unjustified victory claims during that period.

The election of 2018 was qualified as the largest election that has taken place in
Mexico,with 3,400 positions in dispute. For the first time, quick countsweremade for
nine local elections for the governor position, simultaneous to a quick count for the
presidential federal election. The INE creates a committee of specialists in charge of
the quick count, whose responsibilities encompass, mostly, the sample design, and
the operation of statistical methods to produce the inferences. The inferences are
presented as probability intervals with an associated probability of at least 0.95.

The information system starts at 6 p.m. and, every 5min, collects all the sample
information sent. Thus, the system produces a sequence of accumulative files used to
determine the available percentage of the sample and its distribution over the country.
The partial samples are analyzed with the estimation methods to track the trend of
the results. Notice that the partial samples have a potential bias associated to the
arrival pattern of the information. Generally, the quick count results that are made
public use one of these partial samples, since the complete sample takes too long to
arrive. The committee reports a result when certain conditions are met, such as the
arrival of a large part of the sample and the stability in the estimates.

In addition to the partial samples being biased, it has been observed in recent
elections that the complete planned sample hardly ever arrives. Studying the missing
data of the 2012 elections, we note that the two main reasons for this missingness are
communication problems in nonurban areas and the weather conditions in certain
regions, especially heavy rain. Therefore, wemust assume that the data is not missing
completely at random. As a consequence, the probability that a polling station is not
reported may depend on the response we intend to measure.

The context of the analysis is then as follows.We have a stratified sample designed
by the committee, so we know the inclusion probabilities and the strata weights,
which are proportional to the inverse of the inclusion probabilities. The key chal-
lenge is that we have to estimate with incomplete and biased samples, which may
imply limited (or null) sample size in some strata and where the missingness is not
completely at random. This is wheremodel-based inference brings out its usefulness.

For a population with N units, let Y = (y1, ..., yN ) be the survey variables and
I = (I1, ..., IN ) be the inclusion indicator variables, where Ii = 1 if unit i is included
in the sample and Ii = 0 if it is not included. Design-based inference for a finite
population quantity f (Y ) involves the choice of an estimator f̂ (Y ). The estimator is
a function of the sampled values Yinc, and usually is unbiased for f with respect to I .
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Hence, the distribution of I remains the basis for inference.As an implication, design-
based methods do not provide a consistent treatment when there is nonresponse or
response errors. Model-based inference means modeling both Y and I . The model is
used to predict the non-sampled values of the population, and hence finite population
quantities. A more detailed explanation can be found in [6].

Let Z denote known design variables; we apply Bayesian model-based inference,
meaning that we specify a prior distribution P(Y |Z) for the population values. With
this, we have the posterior predictive distribution p(Yexc|Yinc, Z , I ) where Yexc are
the non-sampled values. Wemake the inference for the total number of votes in favor
of each candidate based on this posterior predictive distribution. Occasionally, it is
possible to ignore the data collection mechanism. In such a case, the mechanism
is called ignorable (see [4, p. 202]). This means that inferences are based on the
posterior predictive distribution p(Yexc|Yinc, Z), which simplifies the modeling task.
However, it also means we are assuming that, conditional on Z , the missing data
pattern supplies no information. With a complete sample, the mechanism would be
ignorable by including the strata variable in the model. In this setting, there is always
missing data. Hence, we include in the analysis all the explanatory variables we
consider relevant in the data collection mechanism or in the vote decision. Note that
as more explanatory variables are included, the ignorability assumption becomes
more plausible.

The proposedmodel is a heavy-tailed multilevel mixture model (denoted as heavy-
MMmodel). This model, defined later on, is a Bayesian multilevel regression, where
the dependent variable has a heavy-tailed distribution with a mass at zero. We tested
the heavy-MM model using data from 2006 and 2012 gubernatorial elections in the
states of Chiapas, Morelos, and Guanajuato. The model was used, among others, to
estimate the results in the quick count of the 2018 elections in those three states. In
this paper, to show the process of model building, we use the data of Guanajuato.

The outline of the paper is as follows. In Sect. 2, we describe the sample design. In
Sect. 3, we define the proposed model. In Sect. 4, we describe the estimation method
and calibration. In Sect. 5, we develop the application of the model to the elections
of 2018. Finally, in Sect. 6, we give some concluding remarks and future research
directions.

2 Sample Design

The sample design was stratified where, within each stratum, we selected polling
stations by simple random sampling without replacement. To define the strata, we
considered possible combinations of the following variables:

• Federal district: Units in which the territory of Mexico is divided for the purpose
of elections.

• Local district: Units in which the territory of each state is divided for the purpose
of elections.
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• Section type: Urban, rural, or mixed.

In addition, as a comparative point, we also considered simple random sampling
without stratification.

For each combination, we computed the estimation precision with a 95% of prob-
ability and with different sample sizes using the databases of gubernatorial elections
of 2012. The details may be consulted in [1]. The more variables used in the strat-
ification, the smaller the estimation error. The same applies to the sample size, the
greater the sample the smaller the error. Nevertheless, there are some other important
criteria that need to be evaluated, for example, the total number of strata, the aver-
age number of polling stations within each stratum, and the number of strata with
few voting stations. Moreover, we also took into consideration the average number
of polling stations to be reported by field employees, and the percentage of field
employees in charge of more than one polling station. The aim of evaluating all of
these criteria is to find a balance that minimizes the errors without jeopardizing the
collection of the sample.

After considering all the alternatives, we decided to use the local district with a
sample of 500 units, giving rise to 22 strata with an average of 300 polling stations
each. Finally, we set the sample size for each stratum proportionally to its size.

3 A Multilevel Model

Multilevel models are appropriate for research designs where data are nested. The
model we propose is based on the well-known multilevel regression and poststratifi-
cation model, which has a long history (see, for example, [10]), but its modern-day
implementation can be traced to [9]. The central idea of the multilevel regression and
poststratification model is to use multilevel regression to model individual survey
responses as a function of different attributes, and then weight the estimates to esti-
mate at the population level. The multilevel regression requires a set of predictors
and the choice of a probability distribution. In this section, we discuss those two
topics.

3.1 Predictors

For the elections, the INE does a geographic subdivision of the country in electoral
sections. The electoral sections can be labeled as urban, rural, or mixed. Within each
section, a basic polling station is installed. Additionally, other types of polling station
may be installed which are:

• Adjoint polling station: They are installed when the number of voters in the section
is greater than 750.
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Fig. 1 State of Guanajuato divided by local district; the gray and white indicate the two regions
considered as predictors in the heavy-MM model

• Extraordinary polling station: They are for the residents of a section that, because of
conditions of communication routes or sociocultural matters, have difficult access
to the polling stations.

• Special polling station: They are installed so that the voters outside the section
corresponding to their home can vote.

As a consequence, at most 750 citizens are registered as potential voters on every
station. Thefilewith the names and photographs of these citizens is called the nominal
list.

After testing all the available predictors, Table1 summarizes the ones that we
choose to use. The specification of the region variable can be found in Fig. 1. In
addition, it is natural to consider the interaction of section type with section size. We
model all the variables in Table1, except strata, as regression coefficients without
multilevel structure.

While exit polls and past election results could be strong predictors, we cannot
include them in the model since it is considered to be politically unacceptable for a
quick count organized by the electoral authority.

3.2 Multilevel Model with Normal Probability Distribution

Oncewe have established the predictors, wemove to the task of defining the probabil-
ity distribution assumed for the total number of votes of each candidate. A common
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Table 1 Predictors of the multilevel regression model

Predictor Levels Notation

Section type Rural
Urban or mixed

Rural
·

Polling station type Basic or contiguous
Special or extraordinary

·
typeSP

Section size Small (less than 1000 voters)
Medium (from 1000 to 5000
voters)
Large (more than 5000 voters)

·
sizeM
sizeL

Region East
West

regionE
·

Strata 22 local districts ·

assumption based on asymptotic theory is to use a normal distribution. One contri-
bution that follows this direction is [7]. They propose a Bayesian parametric model
where the number of people in favor of a candidate divided by poll and stratum has a
normal distribution. Based on the same idea, the first model we raise is the multilevel
model with normal probability distribution.

We model each candidate independently, let Xk be the number of votes in favor
of a candidate in the k-th polling station, and then

Xk ∼ N(μk, σ
2
k ) I[0,750], (1)

with mean μk = nkθk and variance σ 2
k = nkψ

2
strata(k). The indicator function I[0,750]

is one if the value is in the interval [0, 750] or zero otherwise. The term nk is the size
of the nominal list in the polling station, θk represents the proportion of people in the
nominal list of the k-th polling station who voted for the candidate, and the variance
ψ2

strata(k) is assumed to be constant in the corresponding stratum.
We fit a multilevel regression model for the parameter θk ,

θk = logit−1(β0 + βrural · ruralk + βrural_sizeM · ruralk · sizeMk

+βsizeM · sizeMk + βsizeL · sizeLk + βregionE · regionEk

+βstrata
strata(k) + β typeSP · typeSPk).

Finally, we adjust a model to the stratum level,

βstrata
j ∼ N

(
μstrata, σ 2

strata

)
,

Where μstrata is given a N(0, 10) initial distribution, and σ 2
strata is given a U(0, 5)

initial distribution. For the rest of the coefficients, we also assign a N(0, 10) initial
distribution.
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candidate D candidate E candidate F

candidate A candidate B candidate C

120 130 140 150 160 900 925 950 975 1000 1100 1150

25 30 35 40 27.5 30.0 32.5 35.0 75 80 85 90
0

100

200

0

100

200

yrep

de
ns

ity

Fig. 2 Posterior predictive distributions of the total number of votes (in thousands) in the 2012
gubernatorial elections of Guanajuato using the multilevel model with normal probability distribu-
tion. The red line indicates the total number of votes observed

By adding predictors at the stratum level, we reduce the unexplained variation
within each stratum and, as a result, we also reduce the total variation, producing
more precise estimates.

As a first step to evaluate themodel, we perform a posterior predictive check using
the 2012 data. This check helps us test the richness of themodel to capture the relevant
structure of the true data generating process (see [2]). Figure 2 shows the posterior
predictive distributions of the total number of votes. Clearly, the truncated normal
distribution produces a bad fit. This is in part due to the longer tails of observed data
compared to the normal distribution, in particular with smaller candidates, which
tend to have districts where they are extremely popular compared to the rest of the
state. Therefore, we need to use another type of probability distribution.

3.3 The Heavy-MM Model

We need a distribution that is also bell-shaped, but with heavier tails than the normal
distribution. A natural choice is the t-distribution. However, we also need to catch the
high number of zero votes in some polling stations. This leads us to the heavy-MM
model, which is a multilevel model with a zero-inflated probability distribution. In
this model, we replace distribution in Eq. (1) for
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Xk ∼ pkδ0 + (1 − pk)t(μk, σ
2
k , νk) I[0,750], (2)

where μk = nkθk, σ
2
k = nkψ

2
strata(k), and νk = νdistrict

k .
The distribution δ0 refers to the degenerate distribution on the value zero. The dis-

tribution t(μk, σ
2
k , νk) refers to the non-standardized Student’s t-distribution, where

μk is the location parameter, σ 2
k is the variance parameter and νk is the degrees of

freedom. The terms I[0,750], nk , θk , and ψ2
strata(k) are defined as in Eq. (1).

Now, both for the proportion θk , and for themixingparameter pk ,wefit amultilevel
regression

θk = logit−1(β0 + βrural · ruralk + βrural_sizeM · ruralk · sizeMk

+ βsizeM · sizeMk + βsizeL · sizeLk + βregionE · regionEk

+ βstrata
strata(k) + β typeSP · typeSPk),

pk = logit−1(β0
p + βrural

p · ruralk + βrural_sizeM
p · ruralk · sizeMk

+ βsizeM
p · sizeMk + βsizeL

p · sizeLk + βregionE
p · regionEk

+ β
strata-p
strata(k) + β typeSP

p · typeSPk).

Finally,

βstrata
j ∼ N

(
μstrata, σ 2

strata

)
,

β
strata-p
j ∼ N

(
μstrata-p, σ 2

strata-p

)
,

Where μstrata is given a N(0, 10) initial distribution, and σ 2
strata is given a U(0, 5)

initial distribution. For the rest of the coefficients, we assign independent N(0, 10)
initial distributions. The corresponding posterior distributions have unknown forms.
Hence, they are approximated with simulation methods.

For the parameters βstrata
strata(k) and β

strata-p
strata(k), we use redundant parameters to speed

computation, rescaling based on the mean (see [3, p. 316]). This can be consulted in
detail in the R package quickcountmx [8].

The heavy-MM model assumes that the sample is a mixture of two sorts of indi-
viduals: one group whose counts are generated by the Student’s t-distribution, and
another group who has zero probability of a count greater than zero. This implies
that the heavy-MMmodel is part of the zero-inflated models (see, for example, [5]),
which have become fairly popular in the research literature.

Performing the same posterior predictive check as for the previous model, we can
see in Fig. 3 the distribution (2) gives a much more appropriate fit. Therefore, we
used the heavy-MM model to predict the results of the 2018 elections.

Notice that party symmetry is preserved in the model since no ad hoc adjustments
are made for particular parties, their size, or their results in previous elections. The
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Fig. 3 Posterior predictive distributions of the total number of votes (in thousands) in the 2012
gubernatorial elections of Guanajuato using the heavy-MM model. The red line indicates the total
number of votes observed

political scenario of Mexico has changed drastically in recent electoral periods, so
this is an essential feature of the model.

4 Estimation and Calibration

We implemented the model using the software JAGS called from R. The implemen-
tation can be consulted and fully reproduced in the R package quickcountmx
[8]. Let us stress out the importance of this reproducibility. On the scientific side,
reproducibility is crucial to examine the veracity and robustness of the conclusions
of a paper. However, in this case, reproducibility is more important still, as it helps
to achieve transparency in the electoral procedure. Any citizen can download the
sample and compute the same results that were announced publically the night of
the election. This transparency fosters trust in institutions and gives legitimacy to the
outcome of the quick count.

After fitting themodel, the straightforward estimation proceeded as follows. First,
for every polling station not in the sample, we simulated its vote counts according
to the model. Then, we aggregated observed values from polling stations with sim-
ulated ones and obtained simulated vote counts for the total of polling stations.
Finally, we summarized the aggregated samples to produce vote proportions and the
corresponding intervals.
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To ensurewe can cover a variety of possible outcomes,wedidBayesian calibration
(see, for example, [6]). This implies that, although the model is Bayesian, it is chosen
to yield inferences well calibrated in a frequentist sense. Specifically, we generated
100 samples from the 2012 elections database and tested if the model provides
posterior probability intervalswith approximately their nominal frequentist coverage.
We simulated five different scenarios:

1. Complete data: 100 stratified random samples each consisting of 507 polling
stations.

2. Trends 22:00: We censored the 100 complete data samples as follows. First, we
partitioned the polling stations by local district and type (rural/no-rural). We then
used the information of the 2012 federal election to compute the proportion of
polling stations that arrived before 22:00 in each cell. Finally, for each of the
complete samples, we sampled each polling station with probability according to
the observed proportion of the cell. The average size of the resulting samples is
445 polling stations.

3 Trends 20:30: We repeated the same procedure as the one in Trends 22:00 for
20:30. The average size of the resulting samples is 262 polling stations.

4. Strata biased: We censored the 100 complete data samples deleting all the polling
stations from three strata. We selected the three strata independently for each
sample, with probability proportional to the observed proportion of votes in the
strata for the major candidate. The resulting samples average 438 polling stations.

5. Polls biased: We deleted 15% of the polling stations of each of the 100 complete
data samples.We considered the probability of not observing a polling station pro-
portional to the observed proportion of votes in the strata for the major candidate.
The final sample size is of 431 polling stations.

We also did the calibration for two othermethods. One is the ratio estimator, which
is a traditional survey sampling estimation method. The other one is the Bayesian
parametric model found in [7], which we refer to as the normal no pooling model
(NNP). Our implementation of this model can be found in the quickcountmx
package. These methods were chosen because versions of them were also used for
the quick count during the 2018 elections.

We want methods producing well-calibrated estimates of the uncertainty. Also,
intervals should be reasonably narrow to be useful in most situations (for example,
within one percentage point of actual tallies). Additionally, we analyze the perfor-
mance of each method. Estimation procedures should be fast enough to produce
results as the batches of data are received so that partial samples can be monitored,
and the decision of when to publish taken. In this case, the committee established
the model fitting process should not take more than 10min.

Figure4 shows the calibration. Let us point out that all the results resemble each
other when the estimation is done with the complete sample, and neither the ratio
estimator nor the Bayesian method of [7] is designed to be used when there are
missing polls or missing strata. However, on the night of the election, we estimate
using partial samples. With either of these two methods, modifications can be made,
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Fig. 4 Calibration of the ratio estimator, the NNPmodel, and the heavy-MMmodel. The size of the
bars represents the percentage of times that the intervals cover the true value. The numbers above
the bars indicate the mean of the 95% intervals precision

such as collapses or strata redistribution, to allow the methods to return an answer
and provide more accurate estimations. Nevertheless, the heavy-MMmodel requires
no special modification, as all cases are handled by standard Bayesian inference.
Moreover, collapses or strata redistribution do not amend the bias. For this reason,
the ratio estimator and the NNP model present a greater risk in the case where the
partial sample used to present the final result has an important bias.

The refinement of the heavy-MMmodel was carried out with 2012 data fromGua-
najuato state and involved likelihood improvement to gross inadequacies. However,
the final calibrationwas also corroboratedwith 2012 and 2006 data fromGuanajuato,
Chiapas, and Morelos. The most appealing part of the model is that, in the absence
of a response, it attracts the parameters of a group toward the group mean. As a
result, we have a consistent treatment of missing data in samples, and better interval
coverage properties when the sample data is biased. However, a disadvantage is the
heavy-MM model estimation method is much slower than the others. Running in
parallel a candidate in each core, the heavy-MM model estimates with the complete
sample in approximately 5min, while the other two methods run in less than 30s.
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Fig. 5 Estimation of the percentage of votes of the Guanajuato gubernatorial election of 2018 as
the partial samples arrived (intervals of 95% of probability/confidence). The dotted lines are the
true percentages and each color represents a candidate

5 Application to the 2018 Mexican Elections

In the Guanajuato gubernatorial election of 2018, the probability intervals of 9:45
pm were reported, with 357 polling places in the partial sample. Figure5 shows the
monitoring of the intervals as the partial samples arrived, computed with the three
methods we compared in Sect. 4. Note the consistency provided by the proposed
model, the order of the winners does not change with time, and the length of the
interval decreases as the sample arrives.

Within the 2018 quick count, we were in charge of the state of Guanajuato.
Additionally, we were part of the support team for the state of Chiapas. To illustrate
the generality of the model, Fig. 6 shows the monitoring of the intervals as the partial
samples arrived for Chiapas. In fact, Chiapas is an interesting example as there was
a close competition for the second and third places.

Fig. 6 Estimation of the percentage of votes of the Chiapas gubernatorial election of 2018 as the
partial samples arrived (intervals of 95% of probability/confidence). The dotted lines are the true
percentages and each color represents a candidate
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6 Conclusions and Future Work

We presented the heavy-MM model as an alternative model to estimate the total
number of votes in the Mexican elections. In this context, we have an incomplete
and biased sample. The heavy-MM model provides: (1) a consistent treatment of
missing data, (2) more stable behavior of partial samples, and (3) better coverage for
certain types of bias in the samples.

Futurework includes, in onedirection, attempting a larger set of predictorswith the
2018 data. We focused our attention on the predictors available in the INE databases.
However, other information could be useful. Also, a deep analysis of the interactions
could improve the predictions of the model. In another direction, it is worth trying to
make the estimation method more efficient. For instance, modeling the covariance
among the candidates could improve the coverage; however, it implies amuch greater
computational effort that requires a faster algorithm tomaintain the needed threshold
of 10min.
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Bayesian Estimation for the
Markov-Modulated Diffusion Risk Model

F. Baltazar-Larios and Luz Judith R. Esparza

Abstract We consider the Markov-modulated diffusion risk model in which the
claim inter-arrivals, claim sizes, premiums, and volatility diffusion process are influ-
enced by an underlying Markov jump process. We propose a method for obtaining
the maximum likelihood estimators of its parameters using a Markov chain Monte
Carlo algorithm. We present simulation studies to estimate the ruin probability in
finite time using the estimators obtained with the method proposed in this paper.

Keywords Ruin probability · Bayesian estimation · Markov-modulated

1 Introduction

Lu and Li [9] considered a two-state Markov-modulated risk model giving explicit
formulas for non-ruin probabilities when the initial reserve was zero and when both
claim sizes have exponential, Erlang, and a mixture of exponential distributions. As
a generalization, Ng and Yang [10] considered the same model except the claim size
distributions were phase-type.

For its part, Bäuerle and Kötter [3] considered the Markov-modulated diffusion
risk reserve process. They used diffusion approximation to show its relation with
classicalMarkov-modulated risk reserve processes. They also showed that increasing
the volatility of the diffusion increases the probability of ruin.

Asmussen [1] provided the stationary distribution of a queueing system in terms
of ruin probabilities for an associated process and solved the corresponding ruin
problem. He also put special attention to Markov-modulated models.
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Respect to the estimation, Guillou et al. [6] showed the strong consistency of
the maximum likelihood estimator (MLE) for a Markov-modulated Poisson process
(MMPP) driven loss process in insurance with several lines of business and fitted
their model to real sets of insurance data using an adaptation of the EM algorithm.
The same authors in [7] studied the statistical analysis of an MMPP, proving the
strong consistency and asymptotic normality of a maximum split-time likelihood
estimator and presented an algorithm to compute it.

In this paper, we will consider a Bayesian estimation of the parameters of a
generalized risk model, theMarkov-modulated diffusion risk model (MMDRM).We
consider that theMMDRMhas been observed only via their inter-arrivals claims and
claim sizes in an interval time, so the data can be viewed as incomplete observations
from a model with a tractable likelihood function. The full data set is a continuous
record of the MMDRM and the underlying process. Then, we can find the maximum
likelihood estimates using techniques of hierarchical grouping for classification of
claim sizes and by applying aGibbs sampler (GS) algorithm in the case of incomplete
data. The main contribution of this work is to provide a Bayesian algorithm for
estimating the parameters of the MMDRM in this scenario.

This paper is organized as follows. In Sect. 2, we present the MMDRM. The
likelihood function is presented in Sect. 3, including the GS algorithm for the case of
incomplete data. In Sect. 4, we present a simulation study for the method proposed,
and we estimate the ruin probability in finite time. Final remarks are given in Sect. 5.

2 The Model

Let U = {Ut }t≥0 be the MMDRM where the underlying random environment is
denoted by J = {Jt }t≥0, which is a homogeneous and irreducible Markov jump pro-
cess (MJP), with finite state-space E = {1, . . . , m}, intensity matrix Q = {qi j }m

i j=1

where qi = −qii = −∑
i �= j qi j , initial distribution π0 = (π0

1 , π0
2 , . . . , π0

m), and sta-
tionary distribution π = {π1, . . . , πm}. We interpret each state of the MJP, J , as a
state of the economy. The MJP influences the premium rate, the arrival intensity of
claims, the claim size distribution, and the volatility of the diffusion.

Let Nt be the number of claims in the time interval [0, t] for all t > 0.We suppose
that if Js = i for all s ∈ [t, t + h] for some i ∈ E , t ≥ 0, h > 0, then Nt+h − Nt ∼
Poisson(λi h), for λi > 0. Let λ = {λ1, . . . , λm}. We assume that the process N =
{Nt }t≥0, called modulated Poisson process, has independent increments given the
process J .

On the other hand, let Tn , n ∈ N, be the arrival time of n-th claim. Then, the
amount of the n-th claim, Xn , given JTn = i , has a distribution function given by
Fi (·|ηi ), where Fi is assumed to belong to a family of distributions parametrized by
ηi , and also Fi has support (0,∞), with density function fi and mean μi < ∞, for
i ∈ E . Let μ = {μ1, . . . , μm}, and η = {η1, . . . , ηm}. Let fi be the corresponding
density function of Fi , i ∈ E .
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We will assume the claims sizes {Xn}n≥1 are conditionally independent given J .
If Js = i for all s ∈ [t, t + h] for some i ∈ E , then the volatility of the diffusion on
the interval [t, t + h] is given by σi > 0. Let σ = {σ 2

1 , . . . , σ 2
m}.

We assume the premium income rate at time s is cJs , i.e., as long as Js = i we
have a linear income stream at rate ci . Then the surplus process {Ut }t≥0 MMDRM
is given by

Ut = u +
∫ t

0
cJs ds −

Nt∑

k=1

Xk +
∫ t

0
σJs dWs, (1)

where u ≥ 0 is the initial capital, and W = {Wt }t≥0 is a standard Brownian motion.
Let θ = (Q,λ, η, σ ) be the parameters of the MMDRM. The structure of the
MMDRM differs from the classical risk model where trajectories are linear with
jumps. However, the MMDRM arises as a limit of properly scaled classical risk pro-
cesses, this means the MMDRM can be interpreted as a risk process with very small
and frequent claims.

We define the ultimate ruin time as follows:

τ = inf{t > 0|Ut < 0} if {t > 0|Ut < 0} �= ∅,

and τ = ∞ if ruin never occurs.
The ruin probability is given byψ(u) = P (τ < ∞|U0 = u), while the ruin prob-

ability in [0, T ] (finite time) is given by ψ(u, T ) = P (τ < T |U0 = u), for T > 0.
We also define the ultimate ruin probability given the initial state of the modulating
process as follows:

ψi (u) = P (τ < ∞|U0 = u, J0 = i) , (2)

for all i ∈ E . By the law of total probability, we get

ψ(u) =
∑

i∈E

π0
i ψi (u). (3)

When studying the ultimate ruin probabilities, since we can apply the time change
X̂t := X S(t) with S(t) = ∫ t

0
1

cJs
ds, so without loss of generality, we can suppose that

c{·} = 1 (see [3]).
In this paper, we will use the survival probability, and the survival probabilities

given the initial state of J , which are defined as φ(u) = 1 − ψ(u), and φi (u) =
1 − ψi (u), i ∈ E , respectively.

If κ = 1 − ∑
i∈E πiλiμi ≤ 0, then for all u ≥ 0 it holds that ψ(u) = 1 (see [3]).

We will assume that κ > 0.
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3 Estimation of the Parameters of the Markov-Modulated
Diffusion Risk Model

In this section, we present a Bayesian algorithm for the estimation of θ . We consider
the case where the only data available corresponds to the arrival times and claim
sizes of the MMDRM in a time interval.

3.1 Likelihood Function in the Full Data Case

Let suppose theMMDRMhas been observed continuously in the interval time [0, T ],
T > 0. If we define Uc = {Ut }t∈[0,T ] and J c = {Jt }t∈[0,T ], then the complete likeli-
hood function can be written as follows:

Lc
T (θ) = p(Uc, J c; θ) = p(Uc|J c; θ)p(J c; θ)

=
m∏

i=1

⎡

⎢
⎢
⎣

⎛

⎝
ci∏

j=1

λi e
−λi li j

⎞

⎠

⎛

⎝
ci∏

j=1

fi (xi j |ηi )

⎞

⎠

⎛

⎜
⎜
⎝

Ni∏

j=1

ri j∏

k=2

e
− z2i jk

2σ2i Δ

√
2πσ 2

i Δ

⎞

⎟
⎟
⎠

⎛

⎝
m∏

j �=i

q
Ni j
i j e−qi j Ri

⎞

⎠

⎤

⎥
⎥
⎦ , (4)

where Ni j is the number of jumps from state i to j ; Ni is the number of visits to state
i ; Ri is the total time spent in state i ; li j is the inter-arrival time of the j-th claim
while the process J stay in state i ; xi j is the amount of the j-th claim when J is in
the state i ; ci is the number of claims when J is in the state i ; zi jk = wi jk − wi jk−1,
where wi jk is the k-th observation of W at the j-th visit of the process J at state i ;
and ri j is the number of observations of the W at the j-th visit of the process J at
state i . Since we cannot simulate continuous trajectories of a Brownian motion, we
will simulate observations in each time interval of size Δ > 0.

The maximum likelihood estimators of the parameters are given by

λ̂i = ci
∑ci

j=1 li j
σ̂i

2 =
∑Ni

j=1

∑ri j

k=2 z2i jk

Δ
∑Ni

j=1(ri j − 1)
q̂i j = Ni j

Ri
, (5)

and the maximum likelihood estimator of η depends only on their corresponding
density function.

3.2 Discrete Observation of the Modulated Process

Now, we consider that the MMDRM has been observed only via their claims inter-
arrivals and claim sizes in the interval time [0, T ]. Given NT = n, we are inter-
ested in the inference of the parameter θ based on {T1, T2, . . . , Tn}, with T0 := 0,



Bayesian Estimation for the Markov-Modulated Diffusion Risk Model 19

Ud = {UT0 , UT1 , . . . , UTn }, and X = {x1, x2, . . . , xn}. Moreover, we suppose that
m, u, JT0 are known for all i ∈ E , and each fi belongs to some parametric family,
with their parameters ηi unknown.

To find the maximum likelihood estimators, we propose the following Bayesian
algorithm.

Algorithm 1. General algorithm
1: Classify X into m groups and label each group according to its average, i.e., x j ∈ Gi if the

average of Gi is μ̂i , for j = 1, . . . , n, i ∈ E , and μ̂1 < μ̂2 < · · · < μ̂m .
2: Estimate ηi based on Gi .
3: If x j ∈ Gi make J d

Tj
= i for j = 1, 2 . . . , n,

4: Estimate Q given Jd = {J d
T1

, . . . , J d
Tn

}.
5: Given Q̂ we simulate a continuous path J c(T ) of J in [0, T ]. In particular, J c

Ti
(T ) = J d

Tj
for

j = 0, 1, . . . , n.

6: Estimate λ given J c(T ).
7: Estimate σ given J c(T )

After a burn-in period, we can obtain the θ samples.
To implement this algorithm, in the following we will give a detailed description

of each step. Step 3 is trivial.

Step 1

For this step, we can use techniques of hierarchical grouping, which start from as
many clusters as there are elements in the database, and from that point, they integrate
groups generally by a criterion of proximity until the grouping constitutes a single
conglomerate.

Some well-known procedures of the hierarchical grouping are the linking inter-
groups, intragroups, the nearest neighbor, the furthest neighbor, grouping of cen-
troids, grouping of medians, and the Ward. In this work, we will use the latter. Ward
[13] states that the procedure allows forming mutually exclusive hierarchical groups
based on similarity with respect to specification characteristics.

We consider the traditional mixture modeling approach that requires the number
of clusters to be specified in advance, i.e., m. We recommend the reader to check [8]
for more classification and clustering methods viewed from statistical learning.

Step 2

Based on the classification of Step 1, in this step, we obtain the maximum likelihood
estimators for ηi using xi = {x1,i . . . , xci ,i } and the correspondent density function
fi for i = 1, 2, . . . , m.
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Step 4

In Step 3, the underlying MJP, J , is recorded at discrete times. We can think of {J d
Tj

}
as incomplete observations of the full data set given by the sample path {Jt }t∈[0,T ].
We are interested in the inference of the intensity matrix Q based on the sample
observation of Jd .

The likelihood function for the discrete-time data Jd is given in terms of transition
probabilities:

Ld
T (Q) =

n∏

j=2

pJT j−1 JT j
(Sj ), (6)

where Sj = Tj − Tj−1. The difficulty lies in finding the derivative of (6) with respect
to its entries, which has such a complicated form that the null cannot be found ana-
lytically. Hence, no analytical expression for the maximum likelihood estimator with
respect to Q is available. Moreover, there are some other issues that were discussed
in [4]: it is possible that the maximum does not exist, problems of identifiability and
of existence, and uniqueness of the estimator, among others.

In [4], the authors provided a likelihood inference for discretely observedMarkov
jump processes with finite state, the existence and uniqueness of the maximum like-
lihood estimator of the intensity matrix, and demonstrated that the maximum likeli-
hood estimator can be found either by the EM algorithm or by aMarkov chainMonte
Carlo (MCMC) procedure. Based on [4], the Gibbs sampler works as follows.

Algorithm (a) Gibbs sampler for estimating Q
1: Draw an initial Q from the prior.
2: Simulate a Markov jump process J with intensity matrix Q up to time T such that JTj = i , for

all j = 1, . . . , n and i ∈ {1, . . . , m}.
3: Calculate the statistics Ni j and Ri from {J (t)}0≤t≤T .
4: Draw a new Q from the posterior distribution.
5: Go to 2.

After a burn-in period, we can obtain the Q samples.
For Step 1 of this algorithm, the prior is given by

p(Q) ∝
m∏

i=1

∏

j �=i

q
ai j −1
i j e−qi j bi , (7)

where ai j > 0 and bi > 0, i, j ∈ E , are constants to be chosen conveniently (see
[4]). Then qi j ∼ Gamma(ai j , bi ).

For the simulation of conditioned paths of the MJP in Step 2 of Algorithm (a), we
use the algorithm proposed in [2].

Finally, the posterior distribution is given by
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p∗(Q) = Lc
T (θ)p(Q) ∝

m∏

i=1

∏

j �=i

q
Ni j +ai j −1
i j e−qi j (Ri +bi ),

then, qi j ∼ Gamma(Ni j + ai j , Ri + bi ).

Step 5

When Algorithm (a) converges, we use the estimated Q̂ in order to generate a con-
tinuous path J c(T ) such that J c

Tj
(T ) = J d

Tj
for j = 0, 1, . . . , n.

Step 6

Letmi be the number of claims arrivingwhile the underlying process J c(T ) is in state
i , i ∈ E . We define Tki := Tj if JTj = i , for ki = 1, 2, . . . , mi and j = 1, 2 . . . , n.
Also the number of jumps of J c(T ) in [Tj−1, Tj ] is zero.

If
Ski := Tki +1 − Tki ∼ Exp(λi ) for ki = 1, 2, . . . , mi ,

then, the estimator of λi , i ∈ E , is given by

λ̂i = mi
∑mi

k=1 Ski

.

Step 7

Now, to find an estimator of σ , based on [11], we will use data augmentation for
diffusion. Suppose that we observe the Brownian motion W i , i = 1, . . . , m, with
drift parameter zero and diffusion parameter σi > 0. In this case, we have only
discrete-time observations of W i at claim times. Then, we define

W +
ki

:= UTki
+ xTki

− ci Ski W −
ki

:= UTki −1 , (8)

where T0i := T1i − S1i , W +
ki

is the insurance capital without prime just before of
the k-th claim without jumps in J c(T ), and W −

ki
is the insurance capital at time

Tki − Ski for ki = 1, 2, . . . , mi , and i ∈ E . Then, we can think of the data set
{W −

1 , W +
1 , . . . , W −

mi
, W +

mi
} as incomplete observation of a full data set given the

sample BrownianmotionW i
t with volatility σi , t ∈ [Tki −1, Tki ] for ki = 1, 2, . . . , mi .

Then, we propose the following Gibbs sampler algorithm to find the maximum like-
lihood estimator of σ . We define ζi = 1

σ 2
i
for all i ∈ E .
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Algorithm (b) Gibbs sampler algorithm for estimating σ 2
i .

1: Draw ζi from the prior distribution Exp(ζ 0
i ) and make σi = 1√

ζi
, i ∈ E .

2: Simulate sample paths of W i
t for t ∈ [Tki −1, Tki ] with i ∈ E and ki = 1, . . . , mi . For this, we

generate a Brownian bridge (Tki −1, W −
ki

, Tki , W +
ki

) ≈ {wki 0 = W −
ki

, wki 1, . . . , wki Δki
= W +

ki
},

where Δki := Ski /Δ�, and Δ is the discretization of the Brownian motion.
3: Draw ζi from the posterior distribution

Gamma

⎛

⎝1 + mi (Δki − 1)

2
, ζ 0

i +
∑mi

k=1

∑Δki
�=1(wki � − wki (�−1))

2

2Δ
∑mi

k=1(Δki − 1)

⎞

⎠ .

4: Go to 2.

After a burn-in period, we can obtain the σ samples.

4 A Simulation Study

In this section, we apply the method developed before to an MMDRM simulated at
time interval [0, 1000], when the underlying MJP has the state-space E = {1, 2, 3},
initial probability vector π0 = (1/2, 1/4, 1/4), and intensity matrix

Q =
⎛

⎝
−2 1 1
1 −2 1
1 1 −2

⎞

⎠ .

The conditional distribution of claim inter-arrivals is Sn|JTn = i ∼ Exp(λ j );with
λ = (0.1, 0.14, 0.09), the conditional distribution of claim sizes is Xn|JTn = i ∼
Gamma(αi , βi ) with α = (1, 15, 40), β = (3, 3, 3), and the diffusion parameters
are σ = (0.9, 0.8, 0.5). We consider discrete observations of the surplus process at
each inter-arrival point. We estimate the parameters and we also report their standard
errors (SD). Moreover, we present a simulation study for the estimated probability
of ruin using the real parameter θ and its estimation θ̂ .

4.1 Estimation of Parameters

According to Algorithm 1, the steps are the following:

Step 1

First, classify the observed claims into three groups. The corresponding result is
presented in Fig. 1.
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Fig. 1 Claims Distribution. Classification of the data into three groups

Table 1 Maximum likelihood estimators for α and β

Parameter Real value Estimation SD Parameter Real value Estimation SD

α1 1 1.02362 0.02213365 β1 3 3.205170 0.08841398

α2 15 14.60547 0.42068222 β2 3 2.967807 0.08696558

α3 40 39.010476 0.90507887 β3 3 2.931284 0.06844663

Step 2

We estimated the parameters of fi , i = 1, 2, 3, of the Gamma distribution according
to the classification given before. The results are given in Table1.
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Fig. 2 Histograms of the three claim groups and their corresponding fitting

Figure2 shows the histogram for the three sets of claims with distribution
Gamma(αi , βi ) for i = 1, 2, 3 and their corresponding fitting.

Step 4

We estimate the parameters of the intensity matrix Q considering the prior distribu-
tion (7) with ai j = 1 and bi = 1 for all i, j ∈ E (see [4]).



Bayesian Estimation for the Markov-Modulated Diffusion Risk Model 25

Fig. 3 Ergodic averages taken every 10 iterations, of each qi j , i, j ∈ E , i �= j

Algorithm (a) was run with 1000 iterations and a burn-in of 300 based on Fig. 3
where we plot the ergodic averages for each of the 10 iterations.

The average and standard deviation of the last 700 iterations are presented in
Table2.

Step 6

Having Q̂, in Table3 we show the corresponding estimations of λ.
Figure4 shows the histograms of the times classified into the three groups corre-

sponding to λi , i = 1, 2, 3.
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Table 2 Maximum likelihood estimators of Q

Parameter Real value Estimation SD

q12 1 0.9966584 0.05406979

q13 1 0.9954521 0.06162783

q21 1 0.9953315 0.07231265

q23 1 1.0016352 0.05726284

q31 1 0.9972229 0.06204729

q32 1 0.9963995 0.06310475

Table 3 Maximum likelihood estimators for λ

Parameter Real value Estimation SD

λ1 0.1 0.09638170 0.001365332

λ2 0.14 0.13685713 0.002472661

λ3 0.09 0.08748555 0.001281092

Table 4 Maximum likelihood estimators of σ

Parameter Real value Estimation SD

σ 2
1 0.9 0.8904599 0.01892117

σ 2
2 0.8 0.8090435 0.01334441

σ 2
3 0.5 0.4929025 0.01087935

Step 7

Finally, Algorithm (b) was run with 200 iterations and a burn-in of 50 (see Fig. 5).
The average of the last 150 iterations was used for the estimation of σ , and the results
are given in Table4.

4.2 Estimation of Ruin Probability for the MMDRM

Now, we estimate the ruin probability by a Monte Carlo (MC) method using the real
and estimated parameter. Since our obtained estimators are based on observations
in a finite time interval, in this section we study their precision when estimating
the ruin probability in finite time using the true parameters and their estimators. The
equivalent study for infinite time horizonwould be by computing the exactly ultimate
ruin probability (if possible) using the corresponding estimators and parameters. The
MC method was run with a sample of size 1000, θ and θ̂ . Figure6 shows the ruin
probability considering Δ = 0.1, T = 1, and u = 0, . . . , 9.
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Fig. 4 Histograms of the three time groups and their corresponding fitting

Figure7 shows the ruin probability considering u = 0,Δ = 0.1, and T = 1, 5,
10, 15, 20, 25, 30, 35, 40, 45.

Another parameter to consider for a good simulation of the ruin is the length
between the observations of the diffusion process,Δ. The best way to exemplify this
is in the case of u = 0, where the instantaneous ruin is due to the Brownian motion
becomes negative within a very small time interval.
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Fig. 5 Estimation of the volatility of the diffusions σ

Figure8 shows the ruin probability for u = 0, T = 1, and Δ = 0.001, . . . , 0.1.
Small values of Δ allow to observe better the behavior of the process with dif-

fusion, and in this particular case, the instantaneous ruin by having initial capital
zero.

5 Conclusions

We have presented a Gibbs sampler algorithm for obtaining maximum likelihood
estimates of the parameters of the MMDRM when the underlying Markov jump
process influences the premium rate, the arrival intensity of the claims, the claim
size distribution, and the volatility of the diffusion. We considered the case when we
have incomplete observations of the continuous-time records of the surplus and the
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Fig. 6 Estimation of the ruin probability considering Δ = 0.1, T = 1, and u = 0, . . . , 9

Fig. 7 Estimation of the ruin probability considering u = 0,Δ = 0.1, and T = 1, 5, 10, 15, 20, 25,
30, 35, 40, 45

underlying Markov jump process. The data are discrete-time samples of the surplus
process at the time each claim arrives.

We calibrated our algorithm with a simulation study with efficient results. Fur-
thermore, we compared the estimation of the ruin probability in finite time using
the real parameters and the estimators obtained by the proposed method in a Monte
Carlo simulation. Using these estimators, it is possible to calculate or estimate the
ruin probability in finite time. In our example, the claim size distribution belongs
to the Phase-type class, so the ruin probabilities can be estimated by applying the
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Fig. 8 Estimation of the ruin probability considering u = 0, T = 1, and Δ = 0.001, . . . , 0.1

Erlangization method to the risk process (see [12]). For those claim size distributions
that do not belong to this class, the proposed algorithm represents an efficient method
to estimate the ruin of probability.

An extension of this work is to measure the precision of the estimates obtained
with the method proposed in this paper based on different time horizons in order to
estimate the ultimate ruin probability.

It is not difficult to generalize the method presented in this paper using other
diffusion processes.

Finally, in Step 1 of Algorithm 1, it is possible to use alternative techniques of
clustering, for example, Bayesian nonparametric models. The Bayesian nonparamet-
ric approach estimates howmany clusters are needed to model the observed data and
allows future data to exhibit previously unseen clusters ([5]).
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Abstract In meta-analysis for diagnostic test accuracy (DTA), summary measures
such as sensitivity, specificity, and odds ratio are used. However, these measures
may not be adequate to integrate studies with low prevalence, which is why statistical
modeling based on true positives and false positives is necessary. In this context, there
are several statistical methods, the first of which is a bivariate random effects model,
part of the assumption that the logit of sensitivity and specificity follow a bivariate
normal distribution, the second, refers to theHSROCor hierarchical model, is similar
to bivariate, with the particularity that it directlymodels the sensitivity and specificity
relationship through cut points. Using simulations, we investigate the performance
of hierarchical models, varying their parameters and hyperparameters and proposing
a better management of variability within and between studies. The results of the
simulated data are analyzed according to the criterion of adjustment of the models
and estimates of their parameters.
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FN TP

TN FP

Diseased

Non−Diseased

− +

Fig. 1 Test threshold and impact on diagnostic accuracy

1 Introduction

One way to summarize the behavior of a diagnostic test from multiple studies is by
calculating themean sensitivity and themean specificity, but these summarymeasures
are not valid if there is heterogeneity between the studies and unfortunately the tests
to detect heterogeneity are not very powerful [1], so that hierarchical models are
necessary, which are capable of capturing this heterogeneity. In meta-analysis, the
objective is to integrate the results of the different articles in which a diagnostic test
is evaluated.

The starting information is a tetrachoric table in which measures such as true
positive (TP), false positive (FP), false negative (FN), and true negative (TN) appear.
Table 1 shows the concordance between the result of the test in binary form and the
information on the disease (Fig. 1).

While the statistical methods for the meta-analysis of clinical trials are well devel-
oped and understood today, there are still challenges when performing meta-analysis
of data from studies on the accuracy of the diagnostic test. This is mainly due to the
bivariate nature of the response, where information on sensitivity and specificity
should be summarized.

Table 1 Generic representation of the precision analysis of a diagnostic test

Patient’s condition

Result of the test Positive Negative

Positive TP FP

Negative FN TN
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This correlation can be induced by populations or heterogeneous environments
in the different trials, but it is mainly derived from the balance between sensitivity
and specificity when the threshold to define the positivity of the test varies.

1.1 Hierarchical Models

More rigorous approaches have been proposed statistically based on hierarchical
models that overcome the limitations of the method proposed by [2]. This section
briefly describes the bivariate model [3] and the hierarchical model (HSROC) [4].
Both hierarchical models imply statistical distributions in two levels. At the lower
level, the count of the values taken by the tetrachoric tables extracted from each study
is modeled using binomial distributions and logistic transformations. At the higher
level, it is assumed that the random effects of the study explain the heterogeneity
between the studies beyond what is explained by the sampling variability at the lower
level. The bivariate model and the HSROC model are mathematically equivalent
when covariates are not available [5, 6] but differ in their parameterizations.

The Bivariate parameterization models the sensitivity, the specificity and the cor-
relation between them directly. While the parameterization of the model HSROC
models functions of thresholds of positivity, precision, and shape of the curve to
define an SROC graph.

1.2 Bivariate Model

The bivariate model uses a different starting point for the ordered pairs of sensitivity
and specificity of themeta-analyzes. Instead of transforming these twomeasurements
into a diagnostic indicator of accuracy, as in the SROC approach, the bivariate model
preserves the two dimensions of the data through analysis. It is assumed that the
sensitivity values of the individual studies (after the logit transformation) of a meta-
analysis follow a normal distribution around the value of the mean and with a certain
amount of variability around the same mean. This is a random effects approach,
similar to that used in therapeutic trials, to incorporate the variability not explained
in the analysis. This variation in the underlying sensitivity between the studiesmay be
related to the differences that persist in the study population, the implicit differences
in the threshold, or imperceptible variations in the clinical trial protocol.

The same considerations apply to the specificities of these studies. The potential
presence of a (negative) correlation between sensitivity and specificity within the
studies is addressed by the explicit incorporation of this correlation in the analysis.
The combination of normal distribution and logit transformations of sensitivity and
specificity, recognize the possible correlation between them, leading to a normal
bivariate distribution [7, 8].

The Bivariate method models sensitivity and specificity directly. It can be consid-
ered that the model has two levels corresponding to the variation within and between
the studies. In the first level, it is assumed that the variability within the study for sen-
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sitivity and specificity follows a binomial distribution [9] have shown that a binomial
probability distribution should be used to model variability within studies (especially
when data are scarce). A more formal definition is the following.

A and B are denoted for sensitivity and specificity, respectively, and the number of
true positives for yAi in study i, where n Ai denote the total number of sick individuals
and πAi represents the probability that the test will give a positive result in study i.
Similarly, yBi the number of true negatives, where nBi denotes the total of healthy
individuals and πBi is the probability that the test will give a negative result in study
i, that is:

yAi ∼ Binomial(n Ai , πAi ), yBi ∼ Binomial(nBi , πBi ) (1)

The specificity pair, sensitivity for each study should be modeled jointly at level
one (lower) since these measures are linked by study characteristics including the
threshold of positivity. At the upper level, it is assumed that the logit transformations
of the sensitivities have a normal with mean μA and variance σ 2

A, while the logit
transformations of the specificities are distributed by a normal with mean μB and
σ 2

B . Its correlation is included by modeling at the same time a single bivariate normal
distribution, which allows the joint analysis of the sensitivity and specificity, which
is a linear mixed model:

(
μAi

μBi

)
∼ N

((
μA

μB

)
,Σ

)
,Σ =

(
σ 2

A σAB

σAB σ 2
B

)
(2)

where σ 2
A and σ 2

B denote the variability between the logit transformations of sensi-
tivity and specificity, respectively, and σAB denotes the covariance between the logit
transformations of sensitivity and specificity. The model can also be parameterized
using the correlation ρAB = σAB/(σA σB), which may be more interpretable than
covariance. Therefore, the bivariate model without covariations has the following
five parameters: μA, μB , σ 2

A, σ 2
B , and σAB (o ρAB). The Bivariate statistical model

can be simplified assuming covariances or correlations equal to zero (that is, an inde-
pendent variance–covariance structure), then the model is reduced to two univariate
random effects logistic regression models for sensitivity and specificity.

1.3 Model HSROC

The HSROC model represents a general framework for the meta-analysis of trial
accuracy studies and can be seen as an extension of the SROC approach of [2] in
which rates of true positives (TTP) and false positive rate (TFP) for each study are
directly modeled [10]. The HSROC model is a generalized mixed nonlinear model
and takes the following form:

logi t (πi j ) = (θi + αi disi j )exp(−βdisi j ) (3)
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where πi j is the probability that a patient in study i with a disease condition j will
obtain a positive test result. The disease state is represented by disi j , which is coded
with −0.5 (j = 0) for individuals who do not possess the disorder (disease) and 0.5
(j = 1) for the group of individuals with the disease for the i-th study.

The implicit threshold θi (threshold parameter or positivity criterion) and αi the
diagnostic accuracy for each study, are modeled as random effects by means of
independent, variances of normal distributions: θi ∼ N(Θ , σ 2

θ ) and αi ∼ N(Λ, σ 2
α ),

respectively. The modeling also includes a parameter of shape or scale β that allows
the asymmetry in the SROC curve when admitting that the precision varies with the
implicit threshold.

Therefore, the SROC curve is symmetric if β = 0 or asymmetric if β �= 0. Each
study provides a single point in the ROC space, and therefore, the estimation of β

requires information from all the studies included in the meta-analysis. Thus, β is
modeled as a fixed effect. The HSROC model has the following five parameters:
Λ, Θ , β, σ 2

α y σ 2
θ ; the model is reduced to a fixed-effect model if: σ 2

α = σ 2
θ = 0.

Other specifications for SROC curves based on Bivariate model functions have been
proposed [5, 11], in this work we will focus our interest on the Rutter and Gatsonis
model.

2 Methodology

A simulation study was carried out to compare the HSROC model with various
simplifications (by eliminating the parameters of the model). We have chosen the
HSROC model because it has greater flexibility when choosing parameters [12].
The specifications of the scenarios were designed to reproduce realistic situations
found in the meta-analysis of diagnostic accuracy studies. The effect of these factors
was investigated: (1) number of studies; (2) prevalence of the disease; (3) variability
between the studies in accuracy and threshold; and (4) asymmetry in the SROCcurve.
We only investigate methods that use a binomial distribution.

2.1 Generation of the Simulated Data

Meta-analyzes with different numbers of studies were investigated randomly (N =
5, 10, 20, 35). The size of a study in each meta-analysis, n j , was randomly sam-
pled from a uniform distribution, U (200; 2000); Given an underlying p prevalence,
individuals within each study were randomly classified as sick or undiagnosed, and
a continuous test result value, x, was assigned that was sampled randomly [13]. To
determine the corresponding tetrachoric tables, we used the HSROC package of the
statistical program R [14], by using the simdata function (see Fig. 2). To create the
2x2 table for each study, the individuals were classified as true positives, false neg-
atives, false positives or true negatives based on the result of the test and the state of



38 S. A. Bauz-Olvera et al.

Table 2 Structure of the models adjusted to the simulated data

Num. Models Λ Θ β σ 2
α σ 2

θ

1 Complete model HSROC
√ √ √ √ √

2 Symmetrical HSROC model
√ √ √ √

3 HSROC model with fixed
thresholds

√ √ √ √

4 HSROC model with fixed precision
√ √ √ √

5 HSROC model with fixed
threshold and accuracy

√ √ √

the disease. The prevalences of the studies were adjusted by a uniform distribution
with parameters 0 and 0.25, that is, the prevalence of these studies took values less
than or equal to 25%.

We generated 23110 studies in 1200 independent meta-analysis datasets to allow
an accurate estimation of model performance, even if a large proportion of models
do not converge. In order to execute the simdata function, it is necessary to specify
the input parameters of the function, that is, it is necessary to choose the a priori
distributions of the simdata function, the initial parametrization was performed using
the following initial conditions [15]:

Dataset

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N ∼ Uni f orm [5, 35]
n ∼ Uni f orm [200, 2000]
p ∼ Uni f orm [0.0001, 0.2499]
β ∼ Uni f orm [−0.75, 0.75]
Λ ∼ Uni f orm [−0.75, 0.75]
σ 2

α ∼ Uni f orm [0.0001, 2]
Θ ∼ Uni f orm [−1.5; 1.5]
σ 2

θ ∼ Uni f orm [0.0001, 2]

Additionally, in each generated meta-analysis, a covariate with categories from 1
to 3 was included, through a uniform distribution U (1, 3).

2.2 Hierarchical Models Adjusted to the Simulated Data

In the later part we refer to an HSROC model that contains five parameters. The
following fivemodels were adjusted to the 1200 sets of data generated. From Table2,
it follows that for an HSROC model with precision and fixed thresholds (model 5),
it is only necessary to identify a priori the distributions for, Λ, Θ , and β. Similarly,
the remaining four models are understood.
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SQL
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SAS

BIVARIATE

GRAPHICS

BIVARIATE

HSROC

PROCEDURE

TABLES

OUT

JOIN

SQL

R

SAS

SIMDATA

NLMIXED

N

COVARIATE

Step 1 Step 2

Step 3

SAS

Fig. 2 General scheme of work and software required for the simulation of the data set (dataset),
storage in database [16] and statistical analysis for the presentation of results [17]

Note that due to the mathematical relationship between the bivariate model and
HSROC, it is possible to find the estimates of the five parameters of the HSROC
model by means of the reitsma function of the R mada package [6].

3 Results

The results of the simulated data (Table 3) show the different models that were
obtained by varying the hyperparameters of the complete hierarchical model.

Each category of the model is compared according to the adjustment criteria
(−2LogLikelihood, AIC, AICC, and BIC) with their respective confidence intervals.

For example, we see that the best model under prevalence conditions between
0.01 and 25% and the selection based on the lowest information criterion of Akaike
“AIC” is Model 2, in which case it corresponds to a symmetric HSROC model with
precision and threshold fixed.

Table 4 shows the estimates of the parameters of the bivariate model through the
execution of the NLMIXED procedure and the incorporation or not of a covariate.

It is important to emphasize that the incorporation of a covariate to the model
provides better adjustment to the modeling (see −2Log Likelihood).

The convergence problems of the HSROC models were presented with greater
recurrence when: (1) the estimated variance of the parameters (σ 2

α , σ 2
θ ) were very

close to zero; (2) when the relation that the variance of the parameter α is twice or
more the variance of the parameter θ , i.e., (σ 2

α /σ 2
θ > 2) is satisfied; (3) when the

variance of the random effects of the threshold and the precision are very small or
close to zero, this is understandable since the HSROC model was designed to model
the random effects.
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Table 3 Adjustment of the HSROC models, with parameters in each model and adjustment mea-
sures

HSROC Model

Without covariate With covariate

Threshold Accuracy Accuracy and
threshold

Accuracy
and threshold
and shape

Confidence intervals 95%

Parameter
estimates

Λ: (−0.37, 0.26) (−0.34, 0.29) (−0.29, 0.35) (−0.33, 0.31) (−0.33, 0.30)

θ : (−0.31, 0.03) (−0.32, 0.03) (−0.28, 0.07) (−0.30, 0.04) (−0.30, 0.05)

β: (0.99, 1.17) (0.99, 1.17) (1.00, 1.18) (0.98, 1.17) (0.97, 1.16)

σ 2
α : (2.49, 3.52) (2.58, 3.90) (2.40, 3.42) (2.50, 3.53) (2.49, 3.52)

σ 2
θ : (1.32, 1.68) (1.43, 1.83) (1.35, 1.75) (1.38, 1.79) (1.34, 1.73)

Goodness of
fit statistics

−2logl: (1027, 1161) (1012, 1145) (1022, 1155) (1014, 1147) (1019, 1153)

AIC: (1037, 1171) (1024, 1157) (1034, 1167) (1028, 1161) (1035, 1169)

AICC: (1040, 1174) (1029, 1161) (1039, 1171) (1035, 1168) (1048, 1182)

BIC: (1041, 1175) (1029, 1162) (1039, 1172) (1033, 1166) (1042, 1176)

Table 4 Adjustment of the bivariate model, bivariate model with and without covariate

Bivariate model

Without covariate With covariate

Confidence intervals 95%

Parameter estimates μA: (−4.48, −3.56) (−4.11, −3.27)

μB : (−0.12, −0.11) (−0.30, 0.14)

σ 2
A: (−0.16, −0.07) (−0.14, 0.10)

σ 2
B : (5.25, −12.85) (2.58, 3.90)

σAB : (7.05, −8.39) (6.52, 7.53)

Fit statistics −2logl: (372.23, 392.42) (370.29, 390.5)

AIC: (382.23, 402.42) (384.29, 404.5)

AICC: (385.07, 405.03) (390.99, 410.57)

BIC: (386.52, 407) (390.3, 410.9)

4 Discussion

The categories of hierarchical models obtained by varying the hyperparameters
directly model the precision and the threshold in the generalized mixed nonlin-
ear model [9], with the simulation of the different scenarios and using the available
software, we investigate situations extremes of the hierarchical HSROC model to
understand its complex execution in meta-analysis for diagnostic accuracy tests.
Convergence problems arose when the variance of one of the random effects is close
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to zero. This is particularly a problem for the parameterization of the bivariate model,
where an examination of the scatter plot can help to identify a strong heterogeneity
in sensitivity. We recommend a bivariate approach when the heterogeneity between
the included studies is moderate, and it is necessary to estimate a summary measure
for the sensitivity and specificity, but if the degree of heterogeneity is significant, we
recommend an HSROC model if the estimation of an SROC curve is necessary with
their respective variations.

Appendix

Availability and requirements for R Program
Project name: BivariateHSROC_Simulation
Project homepage: https://sourceforge.net/projects/metahi/
File: sourceCodeR.txt
Operating system(s):Microsoft Windows, Linux and Mac
Programming language: R, License: Open Source and free

Availability and requirements for SAS Program
Project name: BivariateHSROC_Simulation
Project homepage: https://sourceforge.net/projects/metahi/
File: sourceCodeSAS.txt
Operating system(s):Microsoft Windows, Linux and Mac
Programming language: SAS, License: Open Source and free
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Compound Dirichlet Processes

Arrigo Coen and Beatriz Godínez-Chaparro

Abstract The compound Poisson process and the Dirichlet process are the pillar
structures of renewal theory and Bayesian nonparametric theory, respectively. Both
processes have many useful extensions to fulfill the practitioners’ needs to model
the particularities of data structures. Accordingly, in this contribution, we join their
primal ideas to construct the compound Dirichlet process and the compound Dirich-
let process mixture. As a consequence, these new processes have a rich structure to
model the time occurrence among events, with also a flexible structure on the arrival
variables. These models have a direct Bayesian interpretation of their posterior esti-
mators and are easy to implement. We obtain expressions of posterior distribution,
nonconditional distribution, and expected values. In particular, to find these formu-
las, we analyze sums of random variables with Dirichlet process priors. We assess
our approach by applying our model on a real data example of a contagious zoonotic
disease.

Keywords Bayesian nonparametrics · Renewal theory · Compound poisson
process · Dirichlet process · Random sums

1 Introduction

In this contribution, we present two continuous time processes that are probabilis-
tically constructed through random sums, using the framework of Bayesian non-
parametric models. As a consequence of their construction, these processes can be
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used to model renewal phenomena. Examples of applied Bayesian nonparametric
models to analyze renewal theory phenomena are presented in [6, 17, 39]. One of
the principal reasons to combine these methodologies is the fact that in many cases
the renewal phenomena have complex random structures. Therefore, for these types
of analyses, it could be better to let the data speak by itself. By using parameter-free
models, important hidden structures unveil, whereas a parametric model may con-
ceal them. Although the combination of these branches is not new, the use of the
Dirichlet process that is here presented is a novel technique.

Formany applied statisticians random sumsmodels are everyday tools. An advan-
tage of these models is that they allow us to examine the data as the contribution
of simpler parts, which improve calculations and predictions. To choose a random
sum model, there are three key probability concepts to have in mind: (1) the law
governing the number of terms to add; (2) the dependence among the terms; and
(3) the interactions between (1) and (2). For instance, in [35] these concepts are
applied to model the behavior of insurance claims by taking into account: (1) how
many insurance claims are received in a fixed period of time; (2) the dependence
of claims sizes; and (3) the connections between the number of claims and their
sizes (see also [8, 18]). Other fields where random sum models are currently applied
are Multivariate analysis to model daily stock values [30], Bayesian nonparametric
theory to estimate the total number of species in a population [41], and Finance to
estimate the skewed behavior of a time series [29].

The classical theory of renewal processes focuses on the analysis of counting pro-
cess where the interarrival times are independent and identically distributed (i.i.d.).
Themost remarkable example of renewal process is the Poisson process, whose inter-
arrival times are i.i.d. exponential variables [22].By allowing some interaction among
the variables, thismodel has been generalized to resemblemore intricate phenomena.
Examples of these generalizations are the Cox process, the nonhomogeneous Pois-
son process, and the Markov and semi-Markov renewal models. A thorough analysis
of these models is presented in [24].

To define our model, we use one of the most influential Bayesian nonparametric
structures, the Dirichlet process (DP) prior [15]. The DP effectiveness is attested by
its successful application in many statistical analyses. As pointed out by Ferguson
in [15], two desirable properties of a prior distribution for nonparametric problems
are: a large support and a manageable posterior distribution. The DP prior handles
both properties in a remarkable manner, with a clear interpretation of its parame-
ters. Moreover, the many representations of the Dirichlet process give rise to diverse
important Bayesian nonparametric structures: neutral to the right processes [10], nor-
malized log-Gaussian processes [25], stick breaking priors [21, 26], species sampling
models [32], Poisson–Kingman models [33], and normalized randommeasures with
independent increments [34], to mention a few. Each of these models generalizes
an aspect of the Dirichlet process in some direction, thus obtaining more modeling
flexibility with respect to some specific features of the data.

In this study, we are applying the Dirichlet process as a mechanism to control
the probability structure of a random sum stochastic process. Under this framework,
we inherit the flexibility of the DP to resemble the data behavior and have a broad
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spectrum of probability structures to establish as prior beliefs. Also, we gain an
interpretation of the clustering structure of the renewals and an efficient posterior
simulation algorithm. In fact, these models allow us to analyze the cluster behavior
of the time and space components, induced by discrete random measures.

2 Compound Dirichlet Processes

In this section, we define the stochastic structure of the compound Dirichlet pro-
cess and the compound Dirichlet process mixture, and show some of their appeal-
ing modeling properties. These processes could be applied to phenomena where
the stochastic-time component defines the arrivals of random variables. Under this
framework, we settle a dependence structure among arrivals and another among the
events of the arrivals, keeping independence between the two.

Let us first consider a sequence of positive random variables {Tj }∞j=1, and define
its renewal process {Nt }t∈R+ as

Nt = sup{ j ∈ N : T1 + T2 + · · · + Tj < t}, t ∈ R+,

where the randomvariables Tj are interpreted as the interarrival times between events
of the phenomenon of study. Then, Nt is the number of events that take place before
time t . The general theory of exchangeable renewalmodels is studied in [7], however,
here we analyze the particular implications of the DP prior framework. To this end,
similar to the ideas of a compound Poisson process, we focus our analysis on the
random process {St }t∈R+ given by

St =
Nt∑

i=1

Xi , t ∈ R+, (1)

where {Xi }∞i=1 is independent of {Tj }∞j=1. In this construction, we will place two
exchangeable structures: one over the events {Xi }∞i=1 and one on their interarrival
times {Tj }∞j=1. The advantage of assuming this symmetric structure lies in the fact that
with it we could model various dependence behaviors and, at the same time, allows
the analysis of cluster formations among variables [1]. To define these dependent
structures, we will use Dirichlet process priors. The DP prior model is defined as

Xi | G ∼ G, (2)

G ∼ DP(α,G0),

where DP(α,G0) denotes a Dirichlet process with precision parameter α > 0 and
base distribution G0. The DP random measure G is defined in [15] by the distribu-
tional property
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(G(A1), . . . ,G(Ak)) ∼ Dir(αG0(A1), . . . , αG0(Ak)),

for all measurable partition (A1, . . . , Ak) of the sample space of G0, where
Dir(a1, . . . , ak) denotes the Dirichlet distribution of k-dimension with parameter
(a1, . . . , ak). An implication of these assumptions is that the joint distribution of
(X1, . . . , Xn) can be factorized using the generalized Pólya urn scheme [3], i.e., for
any n > 1,

Xn|Xn−1, Xn−2, . . . , X1 ∼ α

α + n − 1
G0 + 1

α + n − 1

n−1∑

i=1

δXi , (3)

where δx denotes de Dirac measure at x . This last expression could be interpreted as
Xn given Xn−1, Xn−2, . . . , X1 has probability α

α+n−1 of being a new G0-distributed
random variable independent of the past values and probability n−1

α+n−1 to repeat
a previously seen value. This also implies that the random variables {Xi }∞i=1 are
exchangeable, meaning that the joint distribution of (X1, . . . , Xn) is equal to the
distribution of (Xπ1 , . . . , Xπn ), for any permutation π of {1, . . . , n} [1]. It follows
that the variables Xi are conditionally independent and identically distributed G0,
with constant correlation given by

Corr(Xi , X j ) = 1

α + 1
, i, j ∈ N.

It is important to take into consideration the discreteness of the distributions
sampled from the Dirichlet process. Many works overcome this difficulty by using
a DP as a prior over the distribution of an extra layer of parameters [12, 16, 27]. In
fact, in many cases, these parameters help to make the description simpler and have
a direct interpretation. These models are known as the Dirichlet process mixtures
models, and they are defined by the structure

Xi | θi ∼ Fθi

θi | G ∼ G,

G ∼ DP(α,G0),

where Fθ denotes a member of a fixed family of distributions parametrized by θ .
Even thought, this last approach adds a hidden extra layer of parameters, there are
many Gibbs sampling methods to confront this issue [21, 28, 31]. Furthermore, the
discreteness of the random DP measures allows to study the clustering properties of
the data [11, 13, 20]. Under this notation, we can establish a nonparametric structure
on (1).

Definition 1 A continuous time stochastic process {St }t∈R+ given by (1) is a com-
pound Dirichlet process (CDP) if it follows the stochastic structure
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Tj | GT ∼ GT , Xi | GX ∼ GX ,

GT ∼ DP(αT ,GT
0 ), GX ∼ DP(αX ,GX

0 ),

where {Xi }∞i=1 is independent of {Tj }∞j=1. To simplify the notation, we use St ∼
CDP(αT ,GT

0 , αX ,GX
0 ).

It is important to notice that, as in the DP framework, the CDP model also has
a positive probability of repeating previously observed values. In the classical DP
model, as n → ∞ the expected number of distinct Xi terms in {X1, . . . , Xn} grows
as α log n [23]; it is important to notice that this rate is smaller than n. Consequently,
the CDP has a positive probability of repeat increments. In other words, there is a
positive probability that the increment St2 − St1 is equal to the increment St4 − St3 , for
any positive real numbers t1 < t2 and t3 < t4. Nevertheless, it is important to notices
that the rate of repeated values is even smaller than the one of the DP frameworks.
The addition operation confers a decrease in the number of repeated values; selecting
different adding terms gives an extra possibility of different total results. In order to
diminish the problem of repeated values and to study the clustering structure of the
random variables, we have the next definition.

Definition 2 A continuous time stochastic process {St }t∈R+ given by (1) is a com-
pound Dirichlet process mixture (CDPM) if it follows the stochastic structure

Tj | θT
j ∼ FT

θ j
Xi | θ X

i ∼ FX
θi

θT
j | GT ∼ GT , θ X

i | GX ∼ GX ,

GT ∼ DP(αT ,GT
0 ), GX ∼ DP(αX ,GX

0 ),

where {Xi }∞i=1 is independent of {Tj }∞j=1.We use St ∼ CDPM(αT ,GT
0 , FT , αX ,GX

0 ,

FX ) to denote this process, where FT and FX represent parametric families of
distributions.

UnderDefinitions1 and2,wehave a rich structure to consider the time evolution of
the compound randomvariables. The next section presents the statistical implications
of the CDP and CDPM models.

2.1 Some Properties of CDP and CDPM

Let us continue with some properties of the CDP and CDPM models. These results
are presented under the CDP framework; however, their implications on the CDPM
models are direct. The results are arranged in order to calculate, or at least approxi-
mate, the posterior distribution of St .

Theorem 1 If St ∼ CDP(αT ,GT
0 , αX ,GX

0 ), then for any t, s ∈ R+
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P [St ≤ s] =
∞∑

n=1

∑

v∈Δn

pv(n)
(
H∗v1

1 ∗ H∗v1
2 ∗ · · · ∗ H∗vn

n

)
(s)P [Nt = n] , (4)

where Δn = {
v = (v1, . . . , vn) ∈ N

n : ∑n
i=1 ivi = n

}
,

pv(n) = n!
αX (αX + 1) · · · (αX + n − 1)

n∏

i=1

(αX )vi

ivi vi ! ,

H∗vi
i is the vi -convolution of the distribution Hi (·) = GX

0 (·/ i), and
(
H∗v1

1 ∗
H∗v1

2 ∗ · · · ∗ H∗vn
n

)
(·) is the convolution of these convolutions.

The proof of Theorem 1 is a direct consequence of the following lemma.

Lemma 1 If Xi |G ∼ G and G ∼ DP(α,G0), we define {Sn}∞n=1 by

Sn =
n∑

i=1

Xi , n ∈ N.

Then

P [Sn ≤ s] = n!
α(α + 1) · · · (α + n − 1)

∑

v∈Δn

(
H∗v1
1 ∗ H∗v1

2 ∗ · · · ∗ H∗vn
n

)
(s)

n∏

j=1

αv j

jv j v j ! ,

for every s ∈ R+, where H∗vi
i is the vi -convolution of the distribution Hi (·) =

GX
0 (·/ i). Moreover, if we define

N X
t = sup{n ∈ N : X1 + X2 + · · · + Xn < t}, t ∈ R+.

then P
[
N X
t = n

] = P [Sn ≤ t] for t > 0.

Proof For the sake of completeness, we repeat the proof presented in [7] for this
result. Let V = (V1, . . . , Vn) be the random vector counting the repeated values in
(X1, . . . , Xn), under the following scheme: there are V1 values that only repeat once,
V2 values that repeat twice, and so on. Then, conditioning on V the distribution of
Sn can be written as

P [Sn ≤ s] =
∑

v∈Δn

P [X1 + · · · + Xn ≤ s|V = v]P [V = v] .

The conditional distribution of X1 + · · · + Xn given V = v is equal to the convolu-
tion of v1 independent variables with distribution H1, convolvedwith the convolution
of v2 variables distributed H2, and so on. We condition on V because this eliminates
the repeated values of (X1, . . . , Xn), allowing us to consider the convolution of inde-
pendent variables. Consequently, we define Hj because given the repeated values of
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Xi we need to consider the probabilities P [ j X ≤ t], for X ∼ G0 and j ∈ N. Thus,
we obtain

P [X1 + · · · + Xn ≤ s|V = v] = (
H∗v1

1 ∗ H∗v1
2 ∗ · · · ∗ H∗vn

n

)
(s).

The probabilities of {V = v} are given by the Ewens’s sampling formula [14], as

P [V = v] = n!
α(α + 1) · · · (α + n − 1)

n∏

j=1

αv j

jv j v j ! , (5)

by applying the generalized Pólya urn scheme (3) over the possible different values of
X1, . . . , Xn . Finally, the equality P

[
N X
t = n

] = P [Sn ≤ t] is a direct consequence
of the definition of N X

t . �

According to the last results, the distribution of the CDP can be expressed as an
infinite sum. Although we are not presenting directly the distributions of St and Nt ,
they can be expressed in terms of the distribution of Sn , using the second statement of
Lemma 1. Since the Dirichlet process tends to concentrate most of its mass on a few
atoms the convergence of the series of (4) is fast. This allows us to approximate the
distribution of St in two ways. We can truncate the sum (4) to a finite fixed number
of terms, or we can fix a quantity ε0 to count only terms with P [Nt = n] > ε0.
In both cases, we restrain the error of the approximation. Also, our computational
experiments show that both approximations are stable.

Proposition 1 Given St ∼ CDP(αT ,GT
0 , αX ,GX

0 ), let μX,i = E
[
Xi
1

]
and μNt ,i =

E
[
Ni
t

]
, for i = 1, 2, 3, then

E [St ] =μNt ,1μX,1

E
[
S2t

] =
(
μNt ,2 − μNt ,1

)
(αμ2

X,1 + μX,2)

α + 1
+ μNt ,1μX,2

E
[
S3t

] =
(
2μNt ,1 − 3μNt ,2 + μNt ,3

)
(α2μ3

X,1 + 3αμX,2μX,1 + 2μX,3)

(α + 1)(α + 2)

+
(
μNt ,2 − μNt ,1

) (
αμX,1μX,2 + μX,3

)

α + 1
+ μNt ,1μX,3

Proof The expression for E [St ] follows conditioning on {Nt = n} and using the
lineality of the expectation operator. To obtain the expression for E

[
S2t

]
, one must

consider the possible repeated values of the exchangeable sequence {Xi }. From now,
let us assume that GX

0 is a continuous distribution. Then, conditioning on {Nt = n},
we obtain
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E
[
S2t |Nt = n

] =E

⎡

⎣
(

n∑

i=1

Xi

)2
⎤

⎦

=
n∑

i=1

E
[
X2
i

] +
∑

1≤i< j≤n

E
[
Xi X j

]

=nμX,2 + n(n + 1)E [X1X2]

=nμX,2 + n(n + 1)

(
μ2

X,1
α

α + 1
+ μX,2

1

α + 1

)
.

The last equality follows from conditioning on {X1 = X2}, and knowing that
P [X1 = X2] = α

α+1 . This last expression gives the result for E
[
S2t

]
. Likewise,

the result for E
[
S3t

]
is obtained by conditioning on the possible repetitions of

{X1, X2, X3}, and applying P [X1 = X2 = X3] = 1
α+1

2
α+2 , P [X1 = X2 �= X3] =

1
α+1

α
α+2 and P [X1 �= X2 �= X3 �= X1] = α

α+1
α

α+2 . Finally, in the discrete case, we
only need to ensure that we are conditioning only on cases when the variables are
equal as a consequence of the Pólya urn’s repetitions, and the formulas follow. �

Proposition 1 Under the notation of Lemma 1, the moment generator function of
Sn is given by

MSn (t) = n!
α(α + 1) · · · (α + n − 1)

∑

v∈Δn

n∏

j=1

1

v j !
[
αMX (t j)

j

]v j

, (6)

where MX denotes the generating generator function of X1.

Proof Conditioning over the possible partitions, we obtain

MSn (t) =
∑

v∈Δn

P [V = v]E
[
etSn |V = v

]

=
∑

v∈Δn

P [V = v]
n∏

j=1

MX (t j)v j ,

where the last equality follows since the expected value of etSn conditioned on {V =
v} is the product of independent random variables equal in distribution to et j X1 , each
repeated v j times for j = 1, . . . , n. This gives (6) when applying (5). �

To see an application of (6), let us consider the Gaussian distribution case. For
this base distribution, we obtain
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MSn (t) = n!
α(α + 1) · · · (α + n − 1)

∑

v∈Δn

n∏

j=1

1

v j !
αv j

jv j
et (μjv j )+t2(σ 2 j2v j )/2

= n!
α(α + 1) · · · (α + n − 1)

∑

v∈Δn

et (nμ)+t2(σ 2 ∑n
j=1 j2v j )/2

n∏

j=1

1

v j !
αv j

jv j
,

thus, we obtain that the sum of variables with DP prior and Gaussian base measure
is a mixture of Gaussian random variables. The next result shows that the CDP is a
conjugate model.

Proposition 2 If (X1, T1), . . . , (Xn, Tn) is a random sample of St ∼ CDP(αT ,GT
0 ,

αX ,GX
0 ), then

St | (X1, T1), . . . , (Xn, Tn)

∼ CDP

⎛

⎝αT + n,
α

α + n
GT

0 + α

α + n

n∑

j=1

δTj , α
X + n,

α

α + n
GX

0 + α

α + n

n∑

i=1

δXi

⎞

⎠ . (7)

Proof The proof is immediate by applying the conjugate property of the Dirichlet
process prior and the independence between {Tj }∞j=1 and {Xi }∞i=1. �

2.2 Two Examples of Flexible Base Measures for CDP and
CDPM

Let us continue by presenting two examples of families of distributions which when
used as the base measure GX

0 simplify the convolution of (4). These families are the
Gaussian and the phase-type. It is important to notice that both families have wide
support, which allows their use to approximate other distributions. First, in the case of
Gaussian distributions given by GX

0 = N(μ, σ 2), we obtain that Hj = N(μj, σ 2 j2),
and so

H∗v1
1 ∗ H∗v1

2 ∗ · · · ∗ H∗vn
n = N

⎛

⎝μn, σ 2
n∑

j=1

j2v j

⎞

⎠ .

This implies that the density of Sn is given by

fSn (t) = n!
α(α + 1) · · · (α + n − 1)

∑

v∈Δn

e−(t−μn)2/2σ 2 ∑n
j=1 j2v j

√
2πσ 2

∑n
j=1 j2v j

n∏

j=1

αv j

jv j v j ! .

Rates of the convergence of Gaussian mixtures to the true underlying distribution
are presented in [19, 36]. As a consequence of this convergence, we could use the
Gaussian model in cases with poor prior information.
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For the second example, we present the analytic expression for fSn in the case
of phase-type distributions. An excellent account of the theory of phase-type and
matrix-exponential distributions is presented in [4]. An important property of this
family is that it is dense on the set of positive random variables; i.e., any positive
random variable can be arbitrarily approximated by a phase-type distribution. We
denote by U ∼ PHp(π, T), a random variable with phase-type density given by

f (u) = πeTut,

where π = (π1, π2, . . . , πp) is a probability row vector, T a subgenerator matrix of
dimension p, and t = −T1, with 1 the vertical vector of ones of length p. Then, under
this notation, if GX

0 = PHp(π, T), we obtain that Hj = PHp(π, T/j). By applying
the convolution property of phase-type variables:

Z1 + Z2 ∼ PHp1+p2

(
(π1, 0),

[
T1 t1π2

0 T2

])
,

for Z1 ∼ PHp1(π1, T1) and Z2 ∼ PHp2(π2, T2), with t1 = −T11. Thus,

H
∗v j

j = PHpv j ((π, 0, . . . , 0), T( j, v j )),

where T( j, v j ) is a matrix of dimension pv j × pv j , given by

T( j, v j ) = 1

j

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

T −T1π 0 . . . 0
0 T −T1π . . . 0
0 0 T . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 0 T

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

This implies

H∗v1
1 ∗ H∗v1

2 ∗ · · · ∗ H∗vn
n = PHp

∑
v j ((π, 0, . . . , 0), Tv) ,

where Tv is a matrix of dimension p
∑

v j × p
∑

v j , given by

Tv =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

T(1, v1) −T1π 0 0 . . . 0
0 T(2, v2) −T1π/2 0 . . . 0
0 0 T(3, v3) −T1π/3 . . . 0
0 0 0 T(4, v4) . . . 0
...

...
...

...
. . .

...

0 0 0 0 0 T(n, vn)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.
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We eliminate from Tv the rows where v j = 0. This implies that the density of Sn is
given by

fSn (u) = n!
α(α + 1) · · · (α + n − 1)

∑

v∈Δn

πeTvutv

n∏

j=1

αv j

jv j v j ! ,

where tv = −Tv1. Thus, the sum of variables with DP prior and phase-type base
measure is distributed as a mixture of phase-type random variables.

3 An Application to Rabies in Dogs

Rabies is one of the most severe zoonotic diseases. It is caused by a rhabdovirus
in the genus Lyssavirus and infects many mammalian species. It can be transmitted
through infected saliva, and it is almost fatal following the onset of clinical symptoms
[37]. In up to 99% of cases, domestic dogs are responsible for the rabies virus
transmission to humans. In Africa, an estimated 21,476 human deaths occur each
year due to dog-mediated rabies, which is 36.4% of the global rabies-related human
deaths [38]. To have effective intervention against zoonotic infections, it is important
to recognize whether infected individuals stem from a single outbreak sustained by
local transmission, or from repeated introductions [9, 40].

Some probability models commonly applied to model epidemiological conta-
gion are coupling structures and random graphs. Likewise, the EM-algorithm and
MCMC methods are frequently used to obtain predictions and confidence intervals.
For a recent account of the theory, we refer the reader to [2, 5]. These models have
dependence structures to represent the infectious rate as a function of infected indi-
viduals in the vicinity. Another important quality of thesemodels is to admit censored
data, since often the epidemic process is only partly observed. These two properties
are also found in the CDPM model. The spatial vicinity is handled directly by the
posterior distribution; areas where the cases of the disease are found have a bigger
probability of new cases. Censored data can be managed both for censoring in time
or in the space.

In [9], 151 cases of rabies in dogs reported in Bangui, the capital of the Central
African Republic between the January 6, 2003 and the March 6, 2012, are analyzed.
The data include information on report date, spatial coordinates, and genetic sequence
of the isolated virus. The data are available in R the package outbreaks. The
authors apply a clustering graph model for each component and extract the most
connected dots by pruning. We study this data using the CDPM model under the
following assumptions. Tomodel the time component, we use an exponentialmixture
kernel with a Ga(α0, β0) base distribution, and to model the spatial component, we
use a multivariate Gaussian mixture kernel with the natural choice of priors for the
mean and covariance (Gaussian-inverse-Wishart distribution). The prior distribution
of the mean μ
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Fig. 1 Visualization of the density estimation of the rabies data using the CDPM model with
respect to the time component, with an exponential mixture kernel and Ga(1, 8) base distribution.
The x-axis represents the number of days between reports and the y-axis represents their frequency.
In this figure is compared the data histogram against the predictive density estimator with a 95%
confidence interval

(μ|Σ, ξ, ρ) ∼ N(ξ, ρΣ)

and the prior distribution of Σ−1 is Wishart:

(Σ−1|β,W ) ∼ W(β, (βW )−1) = (|W |(β/2)D)β/2

ΓD(β/2)
|Σ |(β−D−1)/2 exp

(
−β

2
tr(ΣW )

)
,

where d is the dimension and ΓD(z) = π D(D−1)/4 ∏D
d=1 Γ (z + (d − D)/2). The

joint distribution ofμ andΣ is the Gaussian-inverse-Wishart distribution denoted as

(μ,Σ) ∼ NW−1(ξ, ρ, β, βW ).

To fit these Dirichlet process mixtures, we use the Gibbs sampling methodology.
Figure1 shows that the model is able to capture the density pattern of the time

component. In this figure, the data histogram is compared against the predictive
distribution given the data, with a 95% confidence interval. As pointed out by [9],
the dates of the reports are close. This is characterized by the appearance of only two
mixture components in the posterior distributions. Figure2 presents the spatial cluster
behavior of the predictive distribution. Even though some spatial data is missing, we
estimate the spatial data from the posterior; these missing values do not affect our
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Fig. 2 Visualization of spatial clusters of the rabies data using the CDPM model, with a Gaussian
mixture kernel and NW−1(0, 1, 1, I ) base distribution

analysis sincewe are assuming independence between spatial and temporal variables.
In comparison with the results of [9], we obtain almost the same cluster structure.

In this application, the value of applying the CDPMmodel is on the estimation of
future rabies outbreaks. Under our framework, we obtain the complete probability
structure of probable future contagion. We could answer many statistical questions
through simulation using the posterior samples from the CDPMmodel. For instance,
we can find the probability that in the next year, the number of cases doubles with
respect to past year numbers. Likewise, we could obtain the spatial stochastic mobil-
ity of the disease, by locating the regions where the disease is more concentrated.
Our model allows an early assessment of infectious disease outbreaks, which is
fundamental to implementing timely and effective control measures.

4 Discussion

We have proposed a simple approach for statistical analysis of renewal phenomena,
which combines ideas from renewal theory and Bayesian nonparametric theory. The
model here presented is defined using two independent Dirichlet processes: one to
model the time occurrence of events and another to model their spatial distribution.
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The resultingmethodology is not computationally demanding and allowsus to predict
relatively well the evolution of renewal phenomena. Furthermore, it can be applied
in cases where the cluster structure is an important factor in the analysis.

The proposed methods perform well in real spatial contexts, showing appealing
features which can be useful to practitioners in important scientific fields such as
contagion analysis and general spatiotemporal analysis. Other choices of random
measures potentially lead to similar outcomes. The study of these more general
classes of priors will be pursued elsewhere.
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An Efficient Method to Determine the
Degree of Overlap of Two Multivariate
Distributions

Eduardo Gutiérrez-Peña and Stephen G. Walker

Abstract Assessing the degree towhich two probability density functions overlap is
an important problem in several applications. Most of the existing proposals to tackle
this problem can only deal with univariate distributions. For multivariate problems,
existing methods often rely on unrealistic parametric distributional assumptions or
are such that the corresponding univariate marginal measures are combined using
ad hoc procedures. In this paper, we propose a new empirical measure of the degree
of overlap of two multivariate distributions. Our proposal makes no assumptions on
the form of the densities and can be efficiently computed even in relatively high-
dimensional problems.

Keywords Distance matrix · Crossmatch algorithm · Multivariate analysis

1 Introduction and Motivation

Assessing the degree to which two probability density functions overlap is an impor-
tant problem in several applications. For instance, in ecology this problem appears
when comparing ecological niches (see, for example, Ridout and Linkie [8], Geange
et al. [2], Swanson et al. [10]). In medical settings, it is of interest to study the per-
formance of diagnostic tests, where it is necessary to compare the distribution of the
scores of healthy patients with that corresponding to sick patients [6]. In the context
of causal inference, imbalance occurs if the distributions of relevant pretreatment
variables differ for the treatment and control groups; lack of complete overlap oc-
curs if there are regions in the space of relevant pretreatment variables where there are
treated units but no controls, or controls but no treated units. These are both important
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Fig. 1 An example of two probability densities showing: a complete overlap; b no overlap

issues because they force the analyst to rely more heavily on model specification and
less on direct support from the data (Gelman and Hill [3], Chap. 10).

The idea behind most of the measures of overlap starts by assuming that a set of
d-dimensional observations x1,1, . . . , x1,n1 is available. If these data can be regarded
as a sample of a continuous random vector X , then we can use them to estimate the
probability density function f1(x1). Similarly, if x2,1, . . . , x2,n2 are d-dimensional
observations on the use of the same resources by another species, we can proceed in
the same way and estimate the corresponding density function f2(x2). It is illustra-
tive to consider the following two cases. If f1 and f2 are equal, then they would fully
overlap. Conversely, if these density functions are completely different—in particu-
lar, if the intersection of their supports is empty—then there would be no overlap at
all. Figure1 illustrates these two situations. The problem of quantifying an overlap
thus reduces to the choice of a measure of similarity between two density functions.
In the case of discrete random variables, we would compare the corresponding prob-
ability mass functions instead.

In the univariate case (d = 1), a number of measures of overlap have been pro-
posed based on this approach. For example, Ridout and Linkie [8] mention the fol-
lowing three measures that can be used to quantify the overlap of the two densities
f1 and f2 in ecological settings:

Δ( f1, f2) =
∫

min{ f1(x), f2(x)} dx,

ρ( f1, f2) =
∫ √

f1(x) f2(x) dx,

and

λ( f1, f2) = 2
∫

f1(x) f2(x) dx

/ {∫
f1(x)

2 dx +
∫

f2(x)
2 dx

}
.

Perhaps the most popular of these measures is the coefficient of overlapping,
Δ( f1, f2), which is related to the total variation distance. (Note that ρ( f1, f2) is sim-
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Fig. 2 Graphical depiction of the coefficient of overlapping

ilarly related to the Hellinger distance.) For one thing, the interpretation ofΔ( f1, f2)
as the area under the minimum of f1 and f2 is intuitively appealing (see Fig. 2). This
coefficient is widely used by ecologists to describe daily animal activity patterns
thanks to the availability of user-friendly software such as the R package overlap
[5]; see Sect. 4. For these reasons, in this paper, we will only compare our measure
of overlap with Δ( f1, f2).

Once the density estimates f̂1 and f̂2 are obtained, we can estimate the coefficient
of overlapping by Δ( f̂1, f̂2); this estimate will be denoted by CO . Unfortunately,
the CO is difficult to compute in multivariate settings. To get around this problem,
Geange et al. [2] proposed to estimate the coefficient of overlapping separately for
each of the variables and then take a simple average of the resulting measures. How-
ever, this procedure does not take into account the correlation between the variables
and is not invariant under certain transformations (such as rotations) that preserve
the degree of overlap. Swanson et al. [10] propose a new probabilistic method for
determining the niche region and pairwise niche overlap that can be extended be-
yond two dimensions and produces consistent and unique bivariate projections of
multivariate data. However, their method relies on the assumption of normality.

In this paper, we bring together some known elements of testing for the equality
between two multivariate distributions [9] and propose to use the output of the test
to measure the degree of overlap. This overlap measure has been studied as a conse-
quence of looking into the asymptotic properties of the crossmatch test. An unused
by-product of implementing the test is that the crossmatched pairs are actually pro-
vided in the construction, which estimates the measure of overlap between the two
distributions.

Our proposal makes no assumptions on the form of the densities and can be
efficiently computed even in relatively high-dimensional problems. Moreover, it can
also deal with circular and directional data.

In the next section, we describe our proposal and compare it with the coefficient
of overlapping in the case of univariate normal distributions. In Sect. 3, we present a
small simulation study to illustrate how our measure of overlap behaves in a range
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of bivariate settings where the distributions can be asymmetric and/or multimodal.
Finally, in Sect. 4, we provide some concluding remarks.

2 The Degree of Overlap

The measure of overlap that we propose, which we term Degree of Overlap and
denote by DO , is defined in terms of the pairwise distances between all of the points
in the two samples. While in principle any distance could be used, in this paper
we will only consider the Euclidean distance, and if the variables are measured in
different units, each of them can be standardized to get unitless measurements before
computing the distances.

Consider the two data sets, x1,1, . . . , x1,n1 and x2,1, . . . , x2,n2 , stacked one below
the other and arranged in a (n1 + n2) × d matrix in such a way that the first n1
rows correspond to the observations from f1, while the last n2 rows correspond
to the observations from f2. Now compute all the pairwise distances between the
(n1 + n2) data points (rows) and arrange them as usual in an (n1 + n2) × (n1 + n2)
distance matrix D with zeros along the diagonal. Note that D can be written in block
form as

D =
(
D11 D12

D21 D22

)
,

where D11 is an n1 × n1 matrix containing the pairwise distances between the ob-
servations from f1, D22 is an n2 × n2 matrix containing the distances between the
observations from f2, and D12 is an n1 × n2 matrix containing the cross-distances
between observations from f1 and f2. If f1 and f2 do not overlap at all, we can ex-
pect the distances in the matrices D11 and D22 to be smaller than those in the matrix
D12 (equivalently, D21, due to the symmetry of D). Conversely, if f1 and f2 overlap
completely, the distances in D11 and D22 would be of the same order as those in D12

(or D21).
Let v : {1, 2, . . . , n1 + n2} → {1, 2, . . . , n1 + n2} be the mapping that matches

each observation uniquely with another observation by minimizing the sum of the
distances between pairs, subject to the conditions v(i) �= i and v(v(i)) = i . Now,
for each i = 1, 2, . . . , n1, let δ1(i) = 1 if v(i) ≤ n1 and δ1(i) = 0 otherwise; and
for i = n1 + 1, . . . , n1 + n2, let δ2(i) = 1 if v(i) > n1 and δ2(i) = 0 otherwise. Fi-
nally, letm1 = ∑n1

i=1 δ1(i) andm2 = ∑n1+n2
i=n1+1 δ2(i). Focusing for the moment on the

observations from f1, if f1 and f2 do not overlap then we can expect m1 to be ap-
proximately n1, i.e., p = 100% of the observations from f1 would be matched with
observations from the same distribution f1. However, if f1 and f2 overlap completely
we would only expect roughly p = n1/(n1 + n2) × 100% of the observations from
f1 to be matched with observations from the same distribution f1. In this case, m1

would be approximately n21/(n1 + n2). A similar argument can of course be made
for the observations from f2.
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As is the case with most of the measures of overlap proposed in the literature, we
would like our degree of overlap to take the value 0 for no overlap and the value 1
for a complete overlap. We define the Degree of Overlap of f1 and f2 as

DO = min

{
1,

n (n1 − m1)

n1 n2

}
,

where n = n1 + n2 (note that n1 − m1 = n2 − m2). Clearly, 0 ≤ DO ≤ 1. Asymp-
totically, the upper limit for n(n1 − m1)/(n1 n2) is 1; hence, our inclusion of the
minimum with 1. Values of n(n1 − m1)/(n1n2) > 1 are very unlikely; they would
indicate a sampling anomaly suggestive of perfect overlap.

This measure was inspired by the crossmatch test statistic (i.e., (n1 − m1)/n),
proposed by Rosenbaum [9] to test for the equality of two multivariate distributions.
It is related to the following quantity:

∫
π(1 − π) f1(x) f2(x)

π f1(x) + (1 − π) f2(x)
dx,

where it is assumed that n1/(n1 + n2) → π for some π ∈ (0, 1); that is, the sample
sizes are assumed to be comparable; see Arias-Castro and Pelletier [1].

In the remainder of this section, we compare our DO with Δ( f1, f2), the coef-
ficient of overlapping defined in the previous section. Here we will only be dealing
with two univariate normal distributions, and so it is easy to compute the true value
of the coefficient of overlapping. However, for the sake of simplicity, in what follows
we will still denote this measure by CO even though we are no longer referring to
an estimate. This explains why, in Figs. 3 and 4, the curves for CO are smooth while
those for DO are not: the values of DO were estimated based on samples of sizes
n1 = n2 = 1000.

For the following examples, aswell as for those in the next section,we used the sta-
tistical environment R [7]. Specifically, in order to compute number of crossmatches
n1 − m1, we used the function crossmatchtest of the R package crossmatch
[4].

We first compare the DO with the CO in the context of two univariate normal
distributionswith the samevariance butwith varying levels of overlaps given by shifts
in the mean. Specifically, Fig. 3 shows the results of the comparison as f2 = N (s, 1)
is shifted to the right away from f1 = N (0, 1) by a given number s of standard
deviations. Similarly, Fig. 4 shows the results of the comparison as the dispersion
of f2 = N (0, s2) is increased relative to that of f1 = N (0, 1) in terms of a given
number s of standard deviations.

In both of these cases, we can see that the two measures are strongly positively
correlated. As expected, both DO andCO decrease as the level of overlap decreases.
It is worth stressing that, in practice, the DO can be just as easily computed even for
relatively high-dimensional, while computing the CO would require the estimation
of two multivariate densities as well as computing the area under the minimum of
such estimates.
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Fig. 3 Comparison of the degree of overlap (DO) and the coefficient of overlapping (CO) as the
location of f2 is shifted from f1 by a given number of standard deviations: a DO (continuous line)
andCO (dashed line) as a function of the shift; b illustrative example: overlap between f1 = N (0, 1)
and f2 = N (2, 1)
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Fig. 4 Comparison of the degree of overlap (DO) and the coefficient of overlapping (CO) as the
standard deviation of f2 increases relative to that of f1: a DO (continuous line) and CO (dashed
line) as a function of the standard deviation; b illustrative example: overlap between f1 = N (0, 1)
and f2 = N (0, 4)

3 Simulation Study

In this section, we will study the performance of the DO measure in a range of
bivariate cases. Note that, even in these simple examples, computing the CO would
be far from easy. As an alternative, and as pointed out in Sect. 1, a simple proposal for
such situations is to estimate univariate measures (such as the CO , the DO , or either
of the other measures described in the previous section) for each of the variables
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Fig. 5 Two mixtures of bivariate normal distributions. The bivariate overlap is very low (DO =
0.002). On the other hand, the overlap along the X1 axis is very high (DOX1 = 1.0), while that
along the X2 axis can be regarded as moderate (DOX2 = 0.4)

and then take a simple average of the resulting values. This procedure has several
limitations, as will be shown in the following examples by comparing the actual
bivariate DO with the average of the corresponding univariate measures.

3.1 Nonoverlapping Mixtures of Bivariate Normal
Distributions

We simulated a sample of size n1 = 1000 and sample of size n2 = 1000 from two
different mixtures of bivariate normal distributions. The data are shown in Fig. 5.
In this case, the bivariate degree of overlap is DO(X1, X2) = 0.002. On the other
hand, the degree of overlap along the X1 axis is DO(X1) = 1.0, while that along the
X2 axis is DO(X2) = 0.4. These values are consistent with what can be observed
in Fig. 5; namely, the bivariate degree of overlap is very low, while the univariate
degrees of overlap for X1 and X2 are quite high and relatively small, respectively.

Note that, in this case, the simple procedure proposed by Geange et al. [2] would
produce a relatively large value for the “bivariate overlap” (0.7), since it would take
a simple average of the two univariate measures. Note also that rotating the two data
sets by the same angle should not affect the degree of overlap. Ourmeasure of overlap
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Fig. 6 Two bivariate normal distributions with different correlation coefficients. The bivariate
overlap takes a moderate value (DO = 0.55). However, the overlap along each of the X1 and X2
axes is quite high (DOX1 = 1.0, DOX2 = 0.96)

remains the same because the distances between the data points do not change with
any rotation. However, the method proposed by Geange et al. [2] would produce
different values for each rotation because it depends on the corresponding marginal
measures, and both marginal distributions (projections) may change dramatically
when the data are rotated.

3.2 Overlapping Bivariate Normal Distributions

For this example, we simulated a sample of size n1 = 500 from a bivariate normal
distribution with a positive correlation coefficient, and sample of size n2 = 1000
from a bivariate normal distribution with a negative correlation coefficient. The data
are shown in Fig. 6. In this case the bivariate degree of overlap is DO(X1, X2) =
0.55. However, the degree of overlap along each of the two axes is quite high, with
DO(X1) = 1.0 and DO(X2) = 0.96. As in the previous example, these values are
consistent with what we can observe in the figure. Note also that the method of
Geange et al. [2] would again provide misleading results in this case. Specifically,
their method would suggest a high degree of “bivariate overlap” (0.98).
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Fig. 7 Two mixtures of bivariate normal distributions yielding unimodal but asymmetric distri-
butions. The bivariate overlap is very low (DO = 0.058). On the other hand, the overlap along
the X1 axis is somewhat low (DOX1 = 0.32), while that along the X2 axis is relatively high
(DOX2 = 0.81)

3.3 Asymmetric Bivariate Distributions

For this last example, we simulated a sample of size n1 = 1000 and sample of
size n2 = 1000 from two different mixtures of bivariate normal distributions, with
parameters suitably chosen so as to produce unimodal but asymmetric distributions.
The data are shown in Fig. 7. In this case, the bivariate degree of overlap is
DO(X1, X2) = 0.058. On the other hand, the degree of overlap along the X1 axis is
DO(X1) = 0.32, while that along the X2 axis is DO(X2) = 0.81.

As in the previous examples, the simple procedure proposed by Geange et al. [2]
would produce a value for the “bivariate overlap” (0.565) that does not really reflect
the actual degree of overlap.

4 Concluding Remarks

In this paper, we have proposed a novel distance-basedmethod to quantify the degree
of overlap of two multivariate distributions. Our proposal makes no assumptions



68 E. Gutiérrez-Peña and S. G. Walker

about the form of the two density functions and can be efficiently computed even in
relatively high-dimensional problems.

Further work is required in order to provide full inferences for the actual degree of
overlap of two multivariate distributions. The DO measure introduced in this paper
provides a point estimate only. However, interval estimates could in principle be
obtained by means of bootstrap methods. Also, even though the simulated examples
above illustrate some of the advantages of our proposal, it would be necessary to
study its performance in real-life applications. This will be explored elsewhere.
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Clustering via Nonsymmetric Partition
Distributions

Asael Fabian Martínez

Abstract Randompartitionmodels arewidely used to performclustering, since their
features make them appealing options. However, additional information regarding
group properties is not straightforward to incorporate under this approach. In order
to overcome this difficulty, a novel approach to infer about clustering is presented.
By relaxing the symmetry property of random partitions’ distributions, we are able
to include group sizes in the computation of the probabilities. A Bayesian model is
also given, together with a sampling scheme, and it is tested using simulated and real
datasets.

Keywords Bayesian modeling · Density estimation · Ordered set partitions

1 Introduction

The problem of clustering has received great attention in different fields of research,
among other facts, due to its generality and, as a consequence, its applicability. The
elemental idea behind clustering is to gather a given set of items in such a way that
those belonging to one group are similar among them and, at the same time, are
dissimilar to items in other groups. The degree of (dis)similarity can be defined by
some metric or according to some probabilistic model assigned to each group.

When formulating clustering as an inference problem, the parameter space poses
some challenges, for example, in the choice of nontrivial prior distributions under
a Bayesian perspective. The theory of random partitions is a widely used approach
adapted to perform Bayesian analysis; however, existing distributions over partitions
do not give further information on other group properties.

In this paper, we present and explore a novel approach to infer about clustering
based on random partitions, but where it is possible to obtain group structures sat-
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isfying an ordering constraint. This is achieved by relaxing the symmetry property
of exchangeable random partitions. In Sect. 2, the proposed model is derived, and in
Sect. 3, a nonsymmetric partition distribution is presented. A characteristic of this
distribution is that it takes into account the size of groups in the computation of
probabilities, favoring partitions whose groups are ordered by size.

Once the model is fully developed, in Sect. 4, conditional distributions are derived
and a sampling scheme is provided. It is also explained how to compute the posterior
distribution for the number of groups, something feasible since our approach is
partition based, and how to estimate a mixture density. Afterward, in Sect. 5, two
datasets are used to test the performance of the model. Finally, some final remarks
are given in Sect. 6.

2 A Bayesian Model for Clustering

Suppose there is a set of observations y = (y1, . . . , yn) we wish to cluster. Any
possible arrangement of y, or clustering structure, can be represented by a parti-
tion G = {G1, . . . , Gk} of y, for some positive k. Under a model-based clustering
approach, all observations in G j , for a fixed j , follow the same probabilistic model,
say κ(x j ).

A common representation for clustering has been exploited by random partition
clustering models found, for example, in Bayesian nonparametric models (see, for
example, [2] for further references). In this case, the underlying random partition is
defined in the set of partitions,P[n], and its distribution usually belongs to the class
of exchangeable partition probability functions (EPPFs).

Every element π ∈ P[n] is a partition of the set [n] := {1, 2, . . . , n} into k non-
empty subsets, also called blocks,π j , for some k. From this, every clustering structure
G is encoded by observations indices, for example, clustering {{y1}, {y2, y3}} corre-
sponds to the partition {1}/{2, 3}.

On the other hand, an EPPF g has two properties: first, the probability of any
partition is functionof its blocks sizes and second, g is a symmetric function.Consider
the case n = 3, where #P[3] = 5. First property implies that

Pr(Π = {1, 2}/{3}) = g(2, 1) = Pr(Π = {1, 3}/{2}),

whereas the second one makes additionally

Pr({1, 2}/{3}) = g(2, 1) = g(1, 2) = Pr({1}/{2, 3}).

It is important to highlight that blocks in π are indistinguishable for any π ∈ P[n].
Thus, for example, partition {2, 3}/{1} is equivalent to {1}/{2, 3}, and furthermore,
even if they could be treated as different elements, the symmetry of g would assign
the same probability.

A second approach for clustering, naturally derived from mixture models, makes
use of an indicator vectord = (d1, . . . , dn) in such away that eachgroupG ′

j is defined
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asG ′
j = {yi : di = j}, for some k ′, and in such a case, yi ∼ κ(xdi ), independently, for

i = 1, . . . , n. Despite the fact that clustering structures G ′ = {G ′
1, . . . , G ′

k ′ } and G,
defined above, for a common dataset y, are frequently considered as the same, there
are some differences. On the one hand, it is possible to have empty sets in G ′, and on
the other hand, clustering structures G ′ like {{y2, y3}, {y1}} and {{y1}, {y2, y3}} have
a different meaning. Indeed, the underlying support when using the indicator vector
d is known as the combinatorial class of words, W[n]. In [3], a more complete and
formal study of these two spaces is provided.

Although there are also different proposals defined over the spaceW[n] to perform
clustering (see, for example, [5, 6]), they allow to have empty groups which forces
the use of some additional procedure to remove them, and limit its applicability in
nonparametric settings where there is a potentially infinite number of groups.

Based on the two spaces and their modeling abilities, we will present a cluster-
ing model defined over a different space, the so-called ordered set partitions. This
combinatorial class, denoted hereafter asOP[n], is obtained from the classW[n] after
removing empty groups. Equivalently, it can be obtained fromP[n] when every per-
mutation of the blocks in any of its elements is considered as a different partition, i.e.,
if π ∈ P[n], with π = π1/ · · · /πk , then πρ(1)/ · · · /πρ(k) belongs to OP[n] for every
permutation ρ of [k]. A further explanation of these derivations and the properties
of OP[n] are also studied in [3].

Therefore, our clustering model is defined as follows. Let μ0 be a probability dis-
tribution overOP[n],Π be aμ0-distributed random partition, κ be a density function,
with parameter x j , modeling all observations belonging to group j , and ν0 be the
prior distribution for the kernel parameter. The model can be written hierarchically
as

yi |Π = π, X = x
ind.∼ κ(x j )1(i ∈ π j ), i = 1, . . . , n (1)

X j |Π = π
i.i.d.∼ ν0(φ), j = 1, . . . , #π

Π ∼ μ0(ψ),

where π = π1/ . . . /πk ∈ OP[n] for some 1 ≤ k ≤ n, #π denotes the number of
groups in the partition π , and φ and ψ are finite dimensional parameters. The like-
lihood function is given by

p(y|π, x) =
#π∏

j=1

n∏

i=1

κ(yi ; x j )1(i ∈ π j ) =
#π∏

j=1

∏

i∈π j

κ(yi ; x j ),

and the joint posterior distribution for (π, x) is

p(π, x |y) ∝
#π∏

j=1

∏

i∈π j

κ(yi ; x j )ν0(x j ;φ) μ0(π;ψ) =
#π∏

j=1

	(y;π j , x j , φ) μ0(π;ψ),

(2)
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where 	 is the likelihood of cluster π j . If there is interest only in the clustering
structure π , parameter x can be integrated out, leading to the posterior distribution

p(π |y) ∝
#π∏

j=1

∫

X

∏

i∈π j

κ(yi ; x)ν0(dx;φ) μ0(π;ψ) =
#π∏

j=1

L(y;π j , φ) μ0(π;ψ),

(3)
where L is the marginal likelihood of cluster π j .

Even though Model (1) is quite similar to P[n]-partition-based proposals for
clustering, the fact that Π is defined over OP[n], a superset of P[n], allows us to
analyze more features. For example, it is possible to compute posterior distributions
related to kernel parameters, e.g., p(x |π, y), whereas under aP[n] approach, this is
possible through the use of extra procedures.

3 Probability Distributions over Ordered Set Partitions

Having probability distributions overOP[n] is required in order to explore the perfor-
mance ofModel (1). To the best of our knowledge, there are few approaches working
over this space. In collaborative filtering, [9, 10] define particular product partition
distributions, and [1] proposes a stochastic process over this space but no concrete
distribution over OP[n] is provided. Therefore, we will derive an OP[n]-valued dis-
tribution based on the d-indicator-vector context.

It is interesting to mention that many authors working on mixture models agree
on the support of the indicator vector d (see, for example [4, 7, 8]), but their adopted
approaches are not defined on it. Mixing weights induce the probability distribu-
tion for the indicator vector d, but since their priors are symmetric, the resulting
probability distributions degenerate to the class of set partitions P[n].

Let d = (d1, . . . , dn) be a random vector where each di is a discrete random
variable. Assume each d j is independent and identically distributed, so

Pr(d1 = a1, . . . , dn = an) =
n∏

i=1

Pr(di = ai ).

To obtain an OP[n]-valued probability distribution, an appropriate relabeling is
required. Denoting by a∗ = (a∗

1 , . . . , a∗
k∗) the k∗ distinct values in (a1, . . . , an), we

need to define a bijection between a∗ and the set [k∗]. In particular, let ι = (ι1, . . . , ιn)

be a permutation of [n] such that aι1 ≤ aι2 ≤ · · · ≤ aιn . Therefore, the relabeled val-
ues, denoted by a′

1, . . . , a′
n , should be such that 1 = a′

ι1
≤ a′

ι2
≤ · · · ≤ a′

ιn
= k∗ for

the given ι. The induced ordered set partition π = π1/ . . . /πk∗ is then

π j = {i : a′
i = j}, j = 1, . . . , k∗.
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Notice that the clustering of the data does not change neither does the order among
groups; we have only removed empty groups.

As a particular example, take the indicator variable di geometric distributed, with
parameter λ, taking values in {1, 2, . . . }, for each i = 1, . . . , n, i.e., Pr(di = j) =
(1 − λ)λ j−1. Then

Pr(d1 = a1, . . . , dn = an) ∝ λ
∑n

i=1 ai ; (4)

the sum in the exponent can be expressed in terms of the unique values a∗ as

n∑

i=1

ai =
k∗∑

j=1

a∗
j #{ai = a∗

j },

with #A the cardinality of the set A. After performing the relabeling, the analogous
expression for the sum in (4) leads to the OP[n]-valued distribution given by

Pr(Π = π1/ . . . /πk) ∝ λ
∑k∗

j=1 j #π j . (5)

This distribution is not symmetric; unless all the groups have the same size, we will
have Pr(Π = π1/ . . . /πk∗) �= Pr(Π = πρ(1)/ . . . /πρ(k∗)) for any permutation ρ of
[k]. Indeed, this distribution assigns higher probabilities to partitions π ∈ OP[n] such
that #π1 ≥ #π2 ≥ · · · ≥ #πk∗ (cf. [5]).

The followed approach to build this probability distribution preserves appeal-
ing features of P[n]- and W[n]-based models. The relabeling procedure essentially
translates a W[n]-valued distribution to an OP[n]-valued one without removing, for
example, the model’s interpretability under a mixture model framework. Moreover,
since the classOP[n] generalizesP[n], features of the latter are almost automatically
inherited to the former, but it is also possible to incorporate additional group proper-
ties in theOP[n]-valued probability distribution. In particular, the symmetry property
was relaxed in (5) favoring partitions whose blocks are ordered by size.

4 Sampling Scheme and Inference

In order to simulate from the posterior distribution (2), a Markov chain Monte Carlo
(MCMC) scheme is needed. Updating kernel parameters x1, . . . , xk can be done by
means of the conditional posterior density

p(x j |x− j , π, y) ∝
∏

i∈π j

κ(yi ; x j )ν0(x j ; θ), j = 1, . . . , #π,

and simulating from it is straightforward, particularlywhen κ and ν0 form a conjugate
pair. The second step consists of sampling from the conditional distribution for the
partition π . We make use of the indicator vector d for this last step.
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Examining the possible changes in the partition π by means of d, suppose di = j
for some j ,meaning that observation yi belongs to clusterπ j . Thus,π canbemodified
according to the following cases:

1. Observation yi is moved to group πr , that is, di ← r . If r = j , the partition does
not change; otherwise, there are two possibilities. Suppose π = π1/ . . . /πk , then

a. #π j > 1, so the new partition π ′ will contain the same number of groups;
only two groups are modified: π ′

j = π j \ {i} and π ′
r = πr ∪ {i}.

b. #π j = 1, meaning that such a group disappear; the new partition is

π ′ = π1/ . . . /π j−1/π j+1/ . . . /πk,

with π ′
r = πr ∪ {i}. Note that the kernel parameters also have to be rear-

ranged, so they match their corresponding group, therefore

x ′ = (x1, . . . , x j−1, x j+1, . . . , xk).

2. Observation yi is moved to a new group. We have similar cases to the previous
ones, but the new partition will contain the group {i}, with associated parameter
x∗ drawn from the prior ν0.

An important point to be considered is the position of the new group in the second
case, since the order among groups is relevant under an OP[n]-approach. Denote by
π∗ = π∗

1 / . . . /π∗
k∗ the partition inducedby removing item i as explained as afirst step.

The updated partition π ′ can have the new group {i} between any couple of groups
π∗

j and π∗
j+1, j = 1, . . . , k∗ − 1, or just before group π∗

1 , or just after group π∗
k∗ .

Thus, there are k ′ = k + 1 different ways to place group {i} whenever #π j > 1, and
k ′ = k − 1 otherwise. Therefore, the corresponding conditional posterior distribution
for di , i = 1, . . . , n, is given by

p(di = j |d−i , x, y) ∝
{

κ(yi ; x j )μ0(πdi ← j ), j = 1, . . . , k,

κ(yi ; x∗)μ0(π
j−k∨ {i}), j = k + 1, . . . , k + k ′,

where x∗ ∼ ν0, πdi ← j denotes the induced partition obtained when no new group

appears, and π
r∨{i} is the partition π with item i as a singleton placed just before

group r , as already explained, with r = k ′ meaning the new group is placed after the
last group.

4.1 Distribution for the Number of Groups

Apart from the clustering structure, and similar toP[n]-based approaches, it is pos-
sible to infer about the number of groups using Model (1). Denote by OP k

[n] the
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subset of all ordered set partitions with exactly k groups. Thus, the probability dis-
tribution for the number of groups, k∗, can be calculated by marginalizing from the
OP[n]-valued distribution of Π as follows:

Pr(k∗ = j) =
∑

π∈OP j
[n]

Pr(Π = π), j = 1, . . . , n.

Furthermore, from the posterior distribution (3), the posterior distribution for k∗ is
given by

p(k∗ = j |y) ∝
∑

π∈OP j
[n]

p(π |y).

Let π(1), . . . , π(T ) be a sample of size T from the posterior distribution (2). The
posterior distribution for the number of groups can be computed as

p(k∗ = j |y) = 1

T

T∑

i=1

1(#π(i) = j).

4.2 Estimated Density

Another estimator of interest from Model (1) is the induced mixture density, which
is defined as

f (y|π, x) =
#π∑

j=1

#π j

n
κ(y; x j ), π ∈ OP[n], (6)

where the mixing weights are given by w j := #π j/n. Furthermore, marginalizing
over (π, x), we have

f (y) =
∑

π∈OP [n]

∫

X#π
f (y|π, x)ν#π0 (dx)μ0(π) =

∑

π∈OP [n]

#π∑

j=1

w j

∫

X

κ(y; x j )ν0(dx j ) μ0(π). (7)

Therefore, both expressions can be used to compute an estimation for the underlying
mixture density of Model (1).

Let (π(1), x (1)), . . . , (π(T ), x (T )) be the T sampled values from the posterior
distribution (2), where x (t) = (x (t)

1 , . . . , x (t)
k(t) ) with k(t) = #π(t). Then, for every

t = 1, . . . , T , the density function (6) is estimated by

f̂ (t)(y) =
#π(t)∑

j=1

#π(t)
j

n
κ(y; x (t)

j ),
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and the marginal density (7) as

f̂ (y) = 1

T

T∑

t=1

f̂ (t)(y).

A variant of this latter estimate is obtained when we consider a specific ordered
partition, π∗, such as the posterior mode. In this case, the estimated density is given
by

f̂ (y|π∗) = 1

T ∗

T∑

t=1

f̂ (t)(y) 1(π(t) = π∗).

with T ∗ = #{π(t) = π∗ : t = 1, . . . , T }.

5 Numerical Illustrations

Two datasets are used next to explore the performance of the proposed model. The
first one is a toy dataset, which allows us to compare simulation results with the
analytic ones, whereas the second corresponds to the well-known galaxies dataset.

A Gaussian kernel is assumed to model observations in each group, so κ(y; x) =
N(y; m, 1/v), where x = (m, v), with a conjugate prior for x , namely, a Normal-
Gamma distribution, thusm|v ∼ N(m; m0, c0/v) and v ∼ Ga(v; a0, b0). Then, given
a sample y = (y1, . . . , yn), the posterior distribution is

N

(
m; c0n ȳ + m0

c0n + 1
,

c0
v(c0n + 1)

)
Ga

(
v; n

2
+ a0,

n(ȳ − m0)
2

2(c0n + 1)
+ 1

2

n∑

i=1

(yi − ȳ)2 + b0

)
.

The toy dataset we will use has been taken from [5], which is

−1.521, −1.292, −0.856, −0.104, 2.388, 3.079, 3.312, 3.415, 3.922, 4.194,

and is displayed in Fig. 1. The advantage of using a small dataset is that we can com-
pute all the probabilities without numerical errors produced by simulation schemes
and compare them with those obtained using the sampling scheme presented previ-
ously. Basemeasure parameters used are (m0, c0, a0, b0) = (0, 100, 1, 1), and for the
partition distribution, its parameter was set to λ = 0.2. Table1 presents the highest
posterior probabilities for the partitions and the posterior distribution for the number
of groups for the simulation, together with the exact results. The posterior modal
partition corresponds to a grouping with two clusters, where the first and biggest
one is formed by observations (y5, . . . , y10) and the second cluster by observations
(y1, . . . , y4).
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Fig. 1 Histogram of the toy
example dataset

−2 −1 0 1 2 3 4 5

0
0.
2
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4

Table 1 Posterior probabilities for the toy example dataset. In both cases, the probabilities obtained
via the MCMC sampler and by exact computations are given

π p(π |y)

MCMC Exact

(2, 2, 2, 2, 1, 1, 1, 1, 1, 1) 0.69978 0.69927

(2, 2, 2, 1, 1, 1, 1, 1, 1, 1) 0.03252 0.03552

(2, 2, 2, 3, 1, 1, 1, 1, 1, 1) 0.02984 0.02845

(1, 1, 1, 1, 2, 2, 2, 2, 2, 2) 0.02724 0.02797

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.02348 0.02018

(a) Highest probabilities for the partitions. Each
partition π is shown using its corresponding indi-
cator vector d representation

p(k∗ |y)

k∗ MCMC Exact

1 0.02348 0.02018

2 0.83738 0.84145

3 0.13628 0.13544

4 0.00284 0.00292

5 0.00002 0.00001

(b) Posterior distribution for
the number of groups, k∗

Notice that labels, di , enable inference about the clustering structure, and also
indicate the position of each group in terms of its size: the biggest group is identified
with the number 1, the second bigger group with 2, and so on: the i th bigger group
will have label i . This is not possible to do under aP[n] approach.

The second dataset corresponds to the galaxies dataset, widely used in clus-
tering and density estimation applications. Keeping the kernel and prior distribu-
tion for its parameters from previous example, base measure parameters used are
(m0, c0, a0, b0) = (21, 450, 2, 1), and for parameter λ two values were used: 0.1
and 0.5. For each specification, a sample of size 20 000 was taken from the MCMC
after discarding 10 000, and the posterior modal clustering, density estimation, and
posterior distribution for the number of groups are reported in Figs. 2, 3, and Table2,
respectively.

The posterior modal ordered partition appears in Figs. 2 and 3 below the his-
tograms. Similar to Table1, label 1 identifies to the biggest group, and, in general,
label i identifies the i th bigger group. An important fact to be mentioned here is
that no additional procedures were needed to order the groups by size. Furthermore,
given this partition, the displayed density was computed. On the other hand, our
model also allows us to compute the posterior distribution of each kernel parameter,
conditioned on some partition. For the case λ = 0.1, these distributions are presented
in Fig. 4 when we condition on the posterior modal partition. Additionally, mixing
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Fig. 2 Estimated density for the galaxies dataset, using λ = 0.1. Numbers below the histogram
represent the posterior modal partition; their positions over the x-axis correspond to their associated
observed values
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Fig. 3 Estimated density for the galaxies dataset, using λ = 0.5. Numbers below the histogram
represent the posterior modal partition; their positions over the x-axis correspond to their associated
observed values

weights can be estimated, which are (ŵ1, ŵ2, ŵ3) = (72/82, 7/82, 3/82) under this
scenario; these are quite similar to the ones obtained by [5].

We can see that parameter λ plays a role in the clustering structure.When λ = 0.1,
the dataset is partitioned into three groups, and the distribution for the number of
groups is also concentrated around this value, but if λ increases, the biggest group is
disaggregated in such a way the modal partition has six groups, and the distribution
for the number of groups also changes accordingly.
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Table 2 Posterior distribution for the number of groups, k∗, for each value of λ, obtained for the
galaxies dataset

k∗

λ 3 4 5 6 7 8 9 10

0.1 0.92000 0.07965 0.00035 — — — — —

0.5 — 0.00185 0.04800 0.42395 0.40225 0.11135 0.01220 0.00040

20.5 21.0 21.5 22.0

0.0

0.5

1.0

1.5

(a) Posterior distribution of m1

0.10 0.15 0.20 0.25 0.30 0.35

0.0

2.0

4.0

6.0

8.0

10.0

(b) Posterior distribution of v1
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(c) Posterior distribution of m2

0.0 2.0 4.0 6.0 8.0

0.0

0.1

0.2

0.3

(d) Posterior distribution of v2

28.0 30.0 32.0 34.0 36.0 38.0
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(e) Posterior distribution of m3
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(f) Posterior distribution of v3

Fig. 4 Posterior distribution of kernel parameters given the posterior modal clustering for the
galaxies dataset when λ = 0.1
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6 Discussion and Ongoing Work

Wehave presented a novel approach to perform clustering based on randompartitions
by relaxing the symmetry property of P[n]-valued distributions. There are many
implications of this change. On the one hand, it is possible to model additional
partition features. Here, our approach includes the size of each group in the partition,
favoring those whose groups are ordered by size from left to right. On the other
hand, since this is still a partition approach, we can also infer about the number of
groups. In addition, since our approach is also based on a W[n] context, there is an
underlying mixture model, so it is possible to provide an estimate of the density.
Moreover, our model allows to infer about kernel parameters without the need of
additional procedures.

Regarding ongoing work, the space where our nonsymmetric distribution takes
values, the class of ordered set partitions, is on its own an interesting field of study.
With respect to mixture modeling, it seems that, when working over this space, we
can better understand the label-switching phenomenon and provide some way to
overcome it. From a more theoretical perspective, the study ofOP[n]-valued random
partitions seems to be a new subject for research.

Acknowledgements I would like to thank two anonymous referees for many helpful comments
made on a previous version of the paper.
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A Flexible Replication-Based
Classification Approach for Parkinson’s
Disease Detection by Using Voice
Recordings

Lizbeth Naranjo, Ruth Fuentes-García and Carlos J. Pérez

Abstract Detecting Parkinson’s disease (PD) by using a noninvasive low-cost tool
based on acoustic features automatically extracted from voice recordings has become
a topic of interest. A two-stage classification approach has been developed to dif-
ferentiate PD subjects from healthy people by using acoustic features obtained from
replicated voice recordings. The proposed hierarchical model has been specifically
developed to handle replicated data and considers a dimensional reduction of the
feature space as well as the use of mixtures of normal distributions to describe the
latent variables in the second order of hierarchy. The approach has been applied to a
database of acoustic features obtained from 40 PD subjects and 40 healthy controls,
improving results compared to previous models.

Keywords Bayesian binary hierarchical model · Common principal components ·
Mixtures of normal distributions · Parkinson’s disease · Replicated measurements ·
Voice recordings

1 Introduction

Parkinson’s disease (PD) is a progressive nervous system disorder that mainly
affects movement. PD is the second most common neurodegenerative disorder after
Alzheimer’s disease, affecting an estimated 7–10 million people worldwide accord-
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ing to the Parkinson’s Disease Foundation1 [30]. The symptoms are tremor, slow
movements, muscular stiffness, impaired posture and balance, loss of automatic
movements, and communication problems, among the most important ones. Symp-
toms start gradually and become disabling when time progresses. Up to now, there
is no cure but medications and, in some cases, surgery may significantly improve the
symptoms.

Most people with PD, at some stage, experience problems with their voice.
Hypokinetic dysarthria is the most common communication disorder, causing rigid-
ity and slowness of the systems of communication including swallowing, breathing,
and speech. These problems in the voice production usually lead to social isolation.
Vocal impairment can be one of the earliest indicators of PD [9].

In recent years, statistical models using features automatically extracted from
voice recordings have shown to provide an effective, noninvasive mode of discrim-
inating PD subjects from healthy people [10, 18, 29]. This has been motivated by
the increased interest in building predictive telediagnosis models that may help in
the early stage PD detection. Reference [26] presents a literature review on PD diag-
nosis through features extracted from speech. A recent comparative study of some
machine learning approaches for PD detection can be found in [19].

In this context, replicated voice recordings have been considered, leading to
within-subject variability, since consecutive voice recordings from the same per-
son at a concrete time are not identical due to technology imperfections and bio-
logical variability. However, most authors have used the corresponding replicated
features as if they were independent, obviating their dependent nature. Reference
[21] presented a logistic-based classification approach for PD detection that takes
into account the underlying within-subject dependence of the recordings. Reference
[15] also took into account the within-subject variability with an approach based on
the probit regression. Later, [16] considered this framework in a variable selection
context. The approaches in [15, 16] were tested on a database specifically designed
and collected for this purpose that is composed of three voice recording replications
of the sustained /a/ phonation for 40 subjects with PD and 40 healthy people.

The presence of high correlations between variables results in a multicollinear-
ity problem, causing estimates to be unstable and with possible bias. It also may
lead to large standard error for parameter estimates and/or parameter estimates with
opposite signs than those expected. Some solutions are variable selection [17, 24],
regularization [13, 20], or dimensional reduction [11].

The approaches that consider the within-subject variability may be improved by
using a flexible measurement error for the unknown covariate vectors. In specific,
latent variables can be introduced to model the features automatically extracted from
the speech recordingswith unimodal ormultimodal patterns usingmixtures of normal
distributions [2]. This may result in higher classification accuracies.

In this paper, a new classification approach has been developed to differentiate
people with Parkinson’s disease from healthy subjects by using acoustic features
obtained from replicated voice recordings. The approach extends those in [15, 16]

1https://parkinsonsnewstoday.com/parkinsons-disease-statistics/.

https://parkinsonsnewstoday.com/parkinsons-disease-statistics/
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by considering a flexible measurement error for the unknown covariate vectors.
Multicollinearity problems have been avoided by using common principal compo-
nent analysis (CPCA). Since the extracted features display a correlation structure
that is stable throughout the replications, CPCA is appropriate to handle replicated
measurement. The approach has been applied to several scenarios for comparison
purpose.

The remainder of this paper is as follows. Section1 gives a brief introduction. The
motivating problem is described in Sect. 2. Section3 shows the proposed methodol-
ogy. In Sect. 4, the Bayesian analysis of the proposed model is developed. Section5
presents the experimental results. Finally, Sect. 6 shows the conclusion on some
specific points of the proposed methodology and its advantages.

2 Motivating Problem

PD detection based on acoustic features automatically extracted from voice record-
ings is a topic of current interest in the scientific literature. Reference [12] presented
one of the most widely extended databases on this topic based on phonations of sus-
tained /a/. Signal processing algorithms were used to extract acoustic features from
the voice recordings. Many of these processing algorithms have slight differences,
providing highly correlated features. For instance, shimmer measures, which are
related to the amplitude variation of the individual pitch periods of the fundamental
frequency, have some related definitions as, for example, relative shimmer defined
by

Relative shimmer =
1

N−1

∑N−1
i=1 |Ai − Ai+1|
1
N

∑N
i=1 Ai

,

where Ai is maximum amplitude of the pitch periods, whereas APQ3 is defined by

APQ3 =
1

N−2

∑N−1
i=2

∣
∣
∣Ai − Ai−1+Ai+Ai+1

3

∣
∣
∣

1
N

∑N
i=1 Ai

.

Another four shimmer-related definitions have been considered in the scientific
literature, leading to highly pairwise correlated features. The samehappenswith other
groups of related features. This motivates the need for reducing the dimensionality of
the feature space by keeping the main information useful to differentiate PD subjects
from healthy ones. Even more, this dimensionality reduction must be performed in
a replication-based context.

In this paper, data from the experiment conducted by [15] is used. It is based
on acoustic features extracted from three voice recording replications of the sus-
tained /a/ phonation for each one of the 80 subjects (40 with PD and 40 healthy
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subjects). Each voice recording was processed to provide 44 acoustic features per
voice recording. The extracted features were grouped according to whether they had
related formulation or not. This led to eight groups, four of them having one only
feature, i.e.,

G1 Pitch local perturbation measures: relative jitter, absolute jitter, relative average
perturbation (RAP), and pitch perturbation quotient (PPQ).

G2 Amplitude perturbationmeasures: local shimmer, shimmer in dB, 3-point ampli-
tude perturbation quotient (APQ3), 5-point amplitude perturbation quotient
(APQ5), and 11-point amplitude perturbation quotient (APQ11).

G3 Harmonic-to-noise ratio measures: harmonic-to-noise ratio in the frequency
band 0–500Hz (HNR05), in 0–1500Hz (HNR15), in 0–2500Hz (HNR25), in
0–3500Hz (HNR35), and in 0–3800Hz (HNR38).

G4 Mel frequency cepstral coefficient-based spectral measures of order 0 to 12
(MFCC0, MFCC1,..., MFCC12) and their derivatives (Delta0, Delta1,...,
Delta12).

G5 Recurrence period density entropy (RPDE).
G6 Detrended fluctuation analysis (DFA).
G7 Pitch period entropy (PPE).
G8 Glottal-to-noise excitation ratio (GNE).

The dataset can be downloaded from UCI Machine Learning repository
https://archive.ics.uci.edu/ml/datasets/Parkinson+Dataset+with+replicated+acoustic
+features+.

In order to avoid a multicollinearity problem, [16] selected only one feature per
group. Other scenarios for variable reduction can be applied for the first stage, includ-
ing methods related to common principal component which is appropriate since the
covariance structure is very similar in each of the three replications. In a second stage,
these variables feed a flexible classification approach that takes into account mix-
tures of normal distributions. Therefore, the aim is to reduce the number of variables
with reduction techniques and a classification approach that is compatible with the
considered replication-based framework while keeping a high discrimination power.

3 Methodology

In this section, the methodology used in this paper is described. First, the common
principal component analysis is presented. Second, the hierarchical model to deal
with binary response variables is shown. Finally, the use of finite mixture model for
the latent variables to deal with the replications of the covariates is described.

https://archive.ics.uci.edu/ml/datasets/Parkinson+Dataset+with+replicated+acoustic+features+
https://archive.ics.uci.edu/ml/datasets/Parkinson+Dataset+with+replicated+acoustic+features+
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3.1 Common Principal Component Analysis

The common principal component (CPC) analysis is a generalization of principal
component analysis (PCA) that allows to reduce the dimension at the same time that
deals with replications. For more details, see [6–8, 11].

Suppose there are observations from a random K × 1 vector u and there are
J distinct replications, and that the covariance matrix for the j th replication is Σ j ,

j = 1, . . . , J.The presence ofCPC is defined by the hypothesis thatmultiple datasets
share common components, this means that there is an orthogonal matrix A that
simultaneously diagonalizes all the Σ j so that,

A′Σ j A = Λ j ,

where Λ j is a diagonal matrix for each j = 1, . . . , J. The kth column of A gives
the coefficients of the kth CPC, and the elements of Λ j give the variances of these
CPC’s for the j th replication. The simultaneously transformed variables x j = A′u j

are called common principal components, which are orthogonal. Thisway of deriving
components keeps the correlation structure of the replications.

Note that u j ’s denote all the covariates in the database and x j ’s denote the CPC
after applying the CPC analysis. x j ’s are used in Sect. 3.2 as covariates inside a
hierarchical model.

3.2 Binary Response Model

The binary response model constitutes the first level of the hierarchical model.
Suppose that n independent binary random variables Y1, . . . ,Yn are observed,
where Yi is distributed as a Bernoulli with success probability p(Yi = 1) = θi ,

i = 1, . . . , n. The probabilities θi are related to two sets of covariates xi and zi ,
where xi = (xi1, . . . , xi K )′ is a K × J matrix of a set of K covariates which have
been measured with J replicates, and zi = (zi1, . . . , zi H )′ is a vector of a set of H
covariateswhich are exactly known. Let x i j = (xi1 j , . . . , xiK j )

′ be the j th replication
of the unknown covariate vector wi = (wi1, . . . ,wiK )′, j = 1, . . . , J, and assume
that they have a linear relationship represented by an additive measurement error
model (see, e.g., [1, 3]). This implies that instead of the covariates wi , their repli-
cates xi j are observed, i.e., the xi j are the surrogates of wi . The parameters θi are
related to xi j and zi through the following hierarchical model, similar to the ones
proposed in [15, 16]:
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Yi ∼ Bernoulli(θi ),

Ψ −1(θi ) = w′
iβ + z′

iγ ,

xi jk = wik + εi jk,

εi jk ∼ Normal(0, σk),

for i = 1, . . . , n, j = 1, . . . , J and k = 1, . . . , K , where β and γ are vectors of
unknown parameters, of dimensions K and H, respectively. Ψ −1(·) is a known non-
decreasing function rangingbetween0 and1, usually it is the inverse of the cumulative
distribution function (cdf) of normal or logistic distributions. The parameters σk’s
are precisions. The error εi jk is independent of wik, so xi jk can be considered as a
surrogate of wik . The surrogate xi j is assumed to be an error-prone measurement of
the true wi .

3.3 Finite Mixture Model

An approach that extends the ones proposed in [15, 16] is developed here. The
aim is to include a flexible measurement error for the unknown covariate vectors
wi . Specifically, mixtures of normal distributions to address the replications in the
covariates are used.

The measured covariates showmultimodal patterns, so mixtures of gk fixed Gaus-
sian distributions [2] are considered in the second order of hierarchy to model the
latent variables wik, for i = 1, . . . , n and k = 1, . . . , K , i.e.,

wik ∼ FWk (μk, τ k, qk),

fWk (wik |μk, τ k, qk) =
gk∑

l=1

qklp(wik |μkl, τkl),

where 0 ≤ qkl ≤ 1,
∑gk

l=1 qkl = 1, qk = (qk1, . . . , qkgk ), μk = (μk1, . . . , μkgk ),

τ k = (τk1, . . . , τkgk ), and p(wik |μkl, τkl) denotes a Gaussian distribution with mean
μkl and precision τkl .

Note that in any mixture model, if all the gk components belong to the same
parametric family as in this case, then fWk (wik |μk, τ k, qk) is invariant under the
gk ! permutations of the component labels in the parameter space. This is known as
label switching which causes identifiability problems. These problems are handled
by imposing an identifiability constraint on the parameter space, i.e., μk1 < μk2 <

· · · < μkgk
In order to generate the latent variables, consider a vector of categorical random

variables dik for i = 1, . . . , n that takes value in 1, 2, . . . , gk . Regarded as allocation
variables for the observations, they are assumed to be independent draws from the
distributions,
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p(dik = l|μk, τ k, qk) = qkl ,

for l = 1, 2, . . . , gk . Note that p(dik = l|μk, τ k, qk) does not depend on μk or τ k,

then p(dik = l|μk, τ k, qk) = p(dik = l|qk).

Conditional on the dik = l, the density ofwik is given by p(wik |μkl, τkl). The vec-
tor dk = (d1k, d2k, . . . , dnk)′ is frequently called the missing data part of the sample
and is integrated out in many schemes. Let p(·) denote the corresponding density
function for the gk-component mixture. The unknown parameters (μk, τ k, qk) are
drawn from a set of appropriate prior distributions. Explicitly considering the allo-
cation variables, the density of the joint distribution of all variables can be written
as

p(wk,μk, τ k, dk, qk |gk) (1)

= p(wk |μk, τ k, dk, qk, gk)p(μk, τ k |dk, qk, gk)p(dk |qk, gk)p(qk |gk),

where p(·|·) is used to denote generic conditional distributions.
The posterior quantities of interest can then be approximated by numerical meth-

ods as the EM algorithm [14] or Markov chain Monte Carlo (MCMC) methods [4].

4 Bayesian Analysis

In this section, the prior distributions are presented and the posterior distribution is
derived.

4.1 Prior Distributions

A usual approach for linear models assumes normal distributions for the regression
parameters,

βk ∼ Normal(bk, Bk),

γh ∼ Normal(ch,Ch),

where b = (b1, . . . , bK ), B = (B1, . . . , BK ), c = (c1, . . . , cH ), and C = (C1, . . . ,

CH ) are fixed values.
For precisions σk, Gamma distributions are considered,

σk ∼ Gamma(sk, rk),

where sk and rk are the shape and rate parameters, respectively.
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In a finitemixturemodel context it is not possible to consider fully non-informative
or reference prior distributions to obtain proper posterior distributions (see, e.g., [5,
25]), since there is always the possibility that no observations are allocated to one
or more components, then informative prior distributions must be considered. We
used weakly informative prior distributions to ensure good mixing of the MCMC
algorithm (see, e.g., [2, 23]), in specific, the following informative prior distributions
are used for the parameters of the mixture:

qk ∼ Dirichlet (α) ,

μkl ∼ Normal
(
mk, 1/R

2
k

)
,

τkl ∼ Gamma (ak, λk) ,

λk ∼ Gamma
(
ek, κk/R

2
k

)
,

where mk is the median of the observed range of xi jk’s, Rk is the length of the
interval (the difference between the maximum and minimum of the range). By using
mk and Rk in the hyperparameters of the prior distributions, prior information can
be translated into a likely range for the variable spread. For μkl , its distribution
corresponds to the observed range. Moreover, introducing an additional hierarchical
level in the prior distribution, allowing λk to be random, it is less restrictive, without
being informative about their absolute size of the τk . See [23] for details.

The following prior distribution is used for μk :

p(μk) ∝ p(μk1)p(μk2|μk1)p(μk3|μk2) · · · p(μkm |μk,m−1),

where

μk1 ∼ Normal(mk, 1/R
2
k ),

μkl |μk,l−1 ∼ Normal(mk, 1/R
2
k )I[μkl > μk,l−1],

for l = 2, . . . , gk .
Note that as hyperparameters of the prior distributions are based on the data, the

proposed Bayesian model becomes an Empirical Bayesian model.

4.2 Exploring the Posterior Distribution

Under the hierarchical structure of the model defined in Sects. 3.2 and 3.3, the like-
lihood function considering the observed and the latent variables is given by
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L (β, γ , σ ,μ, τ , d, q | y, x, z,w, g) (2)
= p( y|z,w,β, γ )p(x|w, σ )p(w|μ, τ , d, q, g)

=
n∏

i=1

⎧
⎨

⎩
p(yi |zi ,wi ,β, γ )

⎡

⎣
J∏

j=1

K∏

k=1

p(xi jk |wik , σk)

⎤

⎦

[
K∏

k=1

p(wik |μk , τ k , dk , qk , gk)

]⎫
⎬

⎭
.

The joint posterior distribution of the unobservables latent variables w and d and the
parameters β, γ , σ , μ, τ , and q is obtained by using the likelihood function (2) and
the prior distributions defined in Sect. 4.1, and it is given by

π(β, γ , σ ,μ, τ , d, q | y, x, z,w, g) (3)

∝ L (β, γ , σ ,μ, τ , d, q | y, x, z,w, g)p(β)p(γ )p(σ )

×
K∏

k=1

[
p(μk, τ k |dk, qk, gk)p(dk |qk, gk)p(qk |gk)

]
.

The algorithm has been implemented in JAGS (http://mcmc-jags.sourceforge.net/).
R and JAGS codes are available in GitHub repository https://github.com/lizbethna/
ParkinsonReplicationClassification.

5 Results

This section presents both the experimental settings and the experimental results
obtained by applying the proposed methodology. Besides, the results are compared
with others published in the statistical literature.

5.1 Experimental Settings

The dataset considered here is the same as in [15, 16], so the performance is compa-
rable. The acoustic variables have been individually normalized to have mean 0 and
standard deviation 1, and the variable sex Z takes values z = 0 for men and z = 1 for
women. The response variable Y takes values y = 0 for healthy subjects and y = 1
for people with PD.

In order to avoidmulticollinearity problems, two scenarioswith variable reduction
based onCPCs have been considered. Specifically, the first scenario (CPCs per group)
considers CPCs calculated independently for each one of the first four groups, i.e.,
for Gg, g = 1, 2, 3, 4, whereas the untransformed features of the remaining groups
(Gg, g = 5, 6, 7, 8) are considered. From the groups G1, G2, and G3, one CPC per
group is obtained providing 95%, 98%, and 98% of the total variability, respectively.
For G4, three CPCs covers 81% of the total variability. Note that for the groups from

http://mcmc-jags.sourceforge.net/
https://github.com/lizbethna/ParkinsonReplicationClassification
https://github.com/lizbethna/ParkinsonReplicationClassification


90 L. Naranjo et al.

G1 to G8, K is equal to 4, 5, 5, 26, 1, 1, 1 and 1, respectively. This makes a total of 44
acoustic features that nowhave been reduced to K = 10.The second scenario (jointly
selected CPCs) considers CPCs jointly extracted from the first four groups and the
only feature from each one of the remaining groups. In this case, four CPCs have
been selected and they cover 83% of the total variability. Now, the dimensionality
reduction is even greater, leading to a total of K = 8 variables. For comparative
purpose, four scenarios are considered: (A) Approach [15], (B) Approach [16], (C)
CPCs per group, and (D) Jointly selected CPCs.

The variables (CPCs and acoustic features) in scenarios (C) and (D) are used
in the proposed approach defined in Sects. 3.2 and 3.3. The number of components
(modes) of the finite mixtures of normal distributions for each variable has been
chosen separately, independently of the other variables. For each variable, several
criteria have been used to choose the number of components. First, as a test, each
variable or CPC, denoted by xi jk, is fitted by using the specifications in Sect. 3.3
and considering that it could be modeled by one, two, or three components. Second,
some of these options were discarded, mainly those where it was not clear that more
that one component was necessary. This was performed either when the distribu-
tion of the variable is unimodal, or where problems of lack of identifiability of the
components arise, or some label switching problems appeared in spite of the identi-
fiability constraints or the informative prior distributions used. Finally, some criteria
were used to choose the best option: the deviance information criterion (DIC) [28],
the penalized loss function criterion [22], the mean absolute error (MAE), the mean
relative error (MRE), and the root mean squared error (RMSE). The lower they are,
the better the fit is.

For the approach (C), the number of modes for each group was the following: 1
mode for G1, 3 modes for G2, 1 mode for G3, 1 mode for the CPC1 of G4, 2 modes
for the CPC2 of G4, 1 mode for the CPC3 of G4, 1 mode for G5, 1 mode for G6, 3
modes for G7, and 3 modes for G8. For the approach (D), the number of modes for
each group was 1, 2, 1, and 1 modes, which were used for the CPC1, CPC2, CPC3,
and CPC4 jointly extracted from the groups G1, . . . ,G4; 1 mode for G5, 1 mode for
G6, 3 modes for G7, and 3 modes for G8.

The MCMC sampling approach defined in Sect. 4 is applied with the following
prior distributions: βk ∼ Normal(0, 0.01), for k = 1, . . . , K , γ ∼ Normal(0, 0.01),
σk ∼ Gamma(0.01, 0.01), qk ∼ Dirichlet (α) , μkl ∼ Normal

(
mk, 1/R2

k

)
, τkl ∼

Gamma (2, λk) , λk ∼ Gamma
(
0.5, 10/R2

k

)
,wheremk is themidpoint of the observed

range of xi jk’s, Rk is the length of the interval. Moreover, only three components
have been considered, for which α = (2, 0, 0) if gk = 1, α = (2, 2, 0) if gk = 2, and
α = (2, 2, 2) if gk = 3.

A total of 30,000 iterations with a burn-in of 10,000 and a thinning period of 10
generated values are used, providing a sample of length 2,000. With these specifi-
cations, the chain generated using the MCMC sampling algorithm seems to have
converged. BOA package [27] was used to perform the convergence analysis. The
chains require a long burn-in period and the previous specifications are enough to
provide evidence of convergence for all parameters in both scenarios.
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Table 1 Accuracy metrics for approaches A to D with the considered stratified cross-validation
framework. Means (standard deviations)

Criteria Approach A Approach B Approach C Approach D

Accuracy rate 0.752 (0.086) 0.779 (0.080) 0.836 (0.117) 0.822 (0.120)

Sensitivity 0.718 (0.132) 0.765 (0.135) 0.827 (0.140) 0.821 (0.132)

Specificity 0.786 (0.135) 0.792 (0.150) 0.847 (0.107) 0.837 (0.100)

Precision 0.785 (0.118) 0.806 (0.115) 0.832 (0.070) 0.822 (0.066)

AUC-ROC 0.860 (0.070) 0.879 (0.067) 0.901 (0.059) 0.895 (0.064)

Predictive probabilities are obtained for each subject and a confusion matrix is
built to obtain the accuracy metrics. The metrics are accuracy rate ((TP+TN)/n),
sensitivity (TP/(TP+FN)), specificity (TN/(TN+FP)), and precision (TP/(TP+FP)).
Moreover, the area under the curve of receiver operating characteristic (AUC-ROC)
is presented. A stratified cross-validation framework is considered. Specifically, the
dataset is randomly split into a training subset composed of 75% of the control
subjects (healthy people) and 75% of the people with PD. The remaining individuals
constitute the testing subset, 25% of healthy people and 25% with PD. The model
parameters are determined using the training subset, and errors are computed using
the testing subset. This procedure is repeated 100 times and the results are then
averaged. Note that at each iteration by using the training subset, the CPCs defined
in Sect. 3.1 are obtained, and then they are used to estimate the parameters of the
proposed approach defined in Sects. 3.2 and 3.3. Table1 shows the results of the
classification measures of the scenarios described above.

5.2 Experimental Results

Following the previous experimental setting, the results are presented in Table1.
Approach C provides the best results in all accuracy metrics. The second best results
are obtained with Approach D. Both approaches outperform approaches A and B in
all accuracy metrics.

The percentage improvements provided byApproachCwith respect to the remain-
ing ones are the following. The accuracy metrics in Approach C improves the ones
in Approach D only between 0.67 and 1.70%. However, it improves Approach B
between 2.50 and 8.10%. The largest improvement of percentages are obtained when
comparing with Approach A, leading to values between 4.76 and 15.18%.

With an illustrative purpose, Fig. 1 shows the histograms of some variables xi jk
that have been modeled with different number of components using mixtures of
normal distributions. The bars show the relative frequency of the variables xi jk, and
the curves are the density of the mixture of normal distributions of wik . Note that in
some variables it is clear their distribution could be modeled by a mixture of normal
densities due to its multimodal nature.
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Fig. 1 Histograms and density of the mixtures of normal distributions of some variables modeled
with different number of components (modes): (left) one mode for HNR group; (middle) twomodes
for CPC2 of G4; (right) three modes for PPE

6 Conclusion

A two-stage classification approach has been developed to differentiate PD sub-
jects from healthy people by using acoustic features extracted from replicated voice
recordings. Due to the high number of correlated acoustic features, CPC analysis has
been considered togetherwith aBayesian hierarchical approach specifically designed
to classify subjects by handling replicated covariates and multimodal distributions.
The computational problem of generating from the posterior distribution has been
avoided by applyingMCMCmethods and using JAGS. The results obtained improve
the ones obtained in the scientific literature between 1.70 and 11.17% for accuracy
rate and between 0.67 and 4.76% for AUC.

Detecting Parkinson’s disease (PD) by using noninvasive low-cost tools as pro-
posed here is a topic of interest. Developing new approaches based on the nonlinear
behavior of the impaired voice production may improve the methodology based
on the linear assumption. Our next research will address nonlinear classification
approaches in a replication-based framework.
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Calibration of Population Growth
Mathematical Models by Using Time
Series
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Abstract In this paper, we study the problem of coefficients identification in popula-
tion growth models. We consider that the dynamics of the population is described by
a system of ordinary differential equations of susceptible-infective-recovered (SIR)
type, and we assume that we have a discrete observation of infective population. We
construct a continuous observation by applying time series and an appropriate fitting
to the discrete observation data. The identification problem consists in the deter-
mination of different parameters in the governing equations such that the infective
population obtained as solution of the SIR system is as close as to the observation.
We introduce a reformulation of the calibration problem as an optimization problem
where the objective function and the restriction are given by the comparison in the
L2-norm of theoretical solution of the mathematical model and the observation, and
the SIR system governing the phenomenon, respectively. We solve numerically the
optimization problem by applying the gradient method where the gradient of the
cost function is obtained by introducing an adjoint state. In addition, we consider a
numerical example to illustrate the application of the proposed calibration method.
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1 Introduction

Throughout the human history, there are diseases that due to their characteristics
suddenly affect a large part of the population of a certain region, generating consid-
erable morbidity and mortality [19]. This type of disease is called epidemic and is
developed in populations that acquire a certain population density [6]. However, we
observe that the term epidemic is also used sometimes in the case of noninfectious
diseases that are of population scale, for instance, the dynamic of diabetes. In this
work, we will analyze the epidemics due to infectious diseases and within them those
that are not transmitted through vectors.

From the historic point of view, we notice that the epidemics caused several health
problems on a population scale, jeopardizing the survival of different civilizations.
For instance, the bubonic plague [25] and its famous plagues developed in the old
Egypt [24], the epidemic of plague in Athens, Typhoid and Syracuse [4] in the old
Greece, the black plague that affected the whole of Europe [34], the epidemics due
to the meeting between Europeans and Native Americans in America [26], and the
outbreaks of cholera due to the contamination of water with fecal matter [26]. We
remark that the consequences of the plagues in America are even more important
than those occurring in Europe [15].

In the last decades, there are several efforts to understand the dynamics of diseases
caused by epidemic. Nowadays, the mathematical epidemiology is one of the most
important branches of bio-mathematics [11, 13].Moreover, we observe that there are
several kinds ofmathematicalmodels. For instance, there aremathematicalmodels in
terms of discrete mathematics, deterministic or even stochastic ordinary differential
systems or partial differential equations, and statistical theory.

The mathematical modeling of the population dynamics for infectious diseases is
a standard or classical problem in differential equations theory [21, 27]. We observe
that the earliest published paper on mathematical modeling of spread of disease was
carried out in 1766 by Daniel Bernoulli. Trained as a physician, Bernoulli created
a mathematical model to defend the practice of inoculating against smallpox [18].
According to Pesco [26], in 1927 Kermack and Mc Kendrick published an article
in which they proposed a mathematical model, implemented in differential equa-
tions, that simulates the transmission of an infectious disease. This model divides
the population into compartments according to the epidemiological status of the indi-
viduals, classifying them as susceptible (S), infected (I ), and recovered (R), which
is currently known as the SI R model.

On the other hand, related with statistical methods, we notice that inferential
methods have also been developed to evaluate the correlation between epidemio-
logical data and possible indicators of risk or health policies [1, 23]. Nowadays,
epidemiology is used to describe the clinical spectrum of a disease, to know the
transmission mechanisms of the disease, to know the natural history of biological
systems, to make population diagnoses, to identify factors that produce the risk of
acquiring the disease, and to test the effectiveness of different mitigation strategies.
It is mainly used to generate information required by public health professionals
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to develop, implement, and evaluate health policies [12]. However, in the best of
our knowledge, there are no works related with time series theory applied to model
calibration in epidemiology. An exception and an advance in this research line is the
recent work [9].

In the processes of mathematical modeling by ordinary differential equations,
there are at least four phases: abstraction, simplification or mathematical model
formulation, solution or analysis, and validation [14]. Particularly, the phase of val-
idation requires the solution of problem well known as the mathematical model
calibration.

In a broad sense, parameter calibrationmeans that wewant to find (or to calculate)
some unknown constants or functions (called model parameters) from some given
observations for the solutionmodel. Themathematical concept of calibration or iden-
tification is equivalent to that of estimation in statistics. In practice, these problems
can be solved by applying the inverse problem methodologies [14]. We remark that,
although the estimation (calibration or identification) of unknown parameters has a
significant practical importance, there are several problems which are not enough
investigated due, for instance, to the lack of results on the uniqueness of the solution
of the inverse problem, i.e., while the direct problem may have a unique solution,
the inverse problem does not usually have the same property [21, 30]. Moreover,
we observe that the inverse problem is crucial for calibrating the model and for
controlling the model parameters. Approaches involving inverse problems can be
successfully applied to a variety of important biological processes, including the
spread of infectious diseases, allowing epidemiologists and public health specialists
to predict the time interval between epidemics [5, 21].

The aim of this paper is the identification of certain coefficients (or parameters) in
the ordinary differential equations system of SI R type investigated by Bai and Zhou
[3] by using the inverse problem methodologies and the time series theory. We start
by defining a continuous observation using the time series and an interpolation of
discrete data. Then, we define an optimization problem for an appropriate cost func-
tion which is equivalent to the inverse problem. To solve the minimization problem,
we apply the gradient method where the gradient of the cost function is calculated
by the introduction of an adjoint state.

Among some previous and relatedworkswith the topic of parameter identification
in epidemiological models, we can refer to [16–18, 20, 22, 29, 33]. The models
considered by the authors are systems of stochastic differential equations and the
notion of parameters adopted by them is given by the context of statistics theory.
Thus, the methodologies are not comparable with the ones presented in this paper,
since the model is a deterministic model and the notion of parameter is used to define
the coefficients of the system.

The rest of the paper is organized as follows. In Sect. 2, we present the notation and
precise definition of the direct problem. In Sect. 3, we define the inverse problem. In
Sect. 4, we present the inverse problem solution methodology. In Sect. 5, we present
a numerical experiment. Finally, in Sect. 6, we summarize some conclusions.
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2 The Direct Problem

Let S(t) be the number of susceptible individuals, I (t) be the number of infec-
tive individuals, and R(t) be the number of recovered individuals at time t ∈ [0, T ],
respectively. According to the writing by Bai and Zou [3], “After studying the cholera
epidemic spread in Bari in 1973, Capasso and Serio introduced the saturated inci-
dence rate βSI (1 + k I )−1 into epidemic model,” where β I measures the infection
force of the disease and (1 + k I )−1 with k > 0 describes the psychological effect
or inhibition effect from the behavioral change of the susceptible individuals with
the increase of the infective individuals. This incidence rate seems more reasonable
than the bilinear incidence rate βSI , because it includes the behavioral change and
crowding effect of the infective individuals and prevents the unboundedness of the
contact rate.

The treatment is an important way to reduce the disease spread, such as measles,
tuberculosis, and flu [32]. In classical epidemic models, the treatment rate of infec-
tives is assumed to be proportional to the number of the infectives. The proportional
assumption will lead to very fast increase of the treatment resource. In fact, every
community has a suitable capacity for treatment. If it is too large, the community pays
for unnecessary cost. If it is too small, the community has a higher risk of disease
outbreak. It is realistic to maintain a suitable capacity of disease treatment. Wang
and Ruan [31] introduced a treatment function h(I ), which is a positive constant m
for I > 0, and zero for I = 0. This seems more reasonable when we consider the
limitation of the treatment resource of a community.

Bai andZhou [3] formulated a nonautonomousSIR epidemicmodelwith saturated
incidence rate and constant removal rate by introducing the periodic transmission
rate β(t). The general model is formulated as follows:

d

dt
S(t) = Λ − μ S(t) − β(t)S(t) I (t)

1 + k I (t)
,

d

dt
I (t) = β(t)S(t) I (t)

1 + k I (t)
− (μ + γ ) I (t) − h(I (t)),

d

dt
R(t) = γ I (t) + h(I (t)) − μ R(t).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1)

Here,Λ is the recruitment rate,μ is the natural death rate, γ is the recovery rate of the
infective population, and β(t) is the transmission rate at time t . Now, noticing that the
first two equations in (1) are independent of the third one, and the dynamic behavior
of (1) is trivial when I (t0) = 0 for some t0 > 0, Bai and Zhou [3] considered only
the first two equations with I > 0. Thus, these researchers restricted their study to
the model given by

d

dt
S(t) = Λ − μ S(t) − β(t)S(t) I (t)

1 + k I (t)
,

d

dt
I (t) = β(t)S(t) I (t)

1 + k I (t)
− (μ + γ ) I (t) − m.

⎫
⎪⎪⎬

⎪⎪⎭

(2)
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In the terminology of inverse problems, we have that the direct problem is given by
system (2) with some appropriate initial conditions for S and I . More precisely

Definition 1 The direct problem is formulated as follows: given the constants
T,Λ,μ, k, m, S0, I0 and the function β, find the functions S and I satisfying the
system (2) on the interval ]0, T ] and the initial condition (S, I )(0) = (S0, I0).

The direct problem is well-posed since it is the standard Cauchy problem for an
ordinary differential systemwhere the right-hand side is a locally Lipschitz function.

3 The Inverse Problem

The inverse problems consist in the determination of μ and γ in the system (2) from
a distribution of the number of infected individuals I obs and such that the infected
solution of the direct problem forμ and γ , denoted as Iμ,γ , is “as close as” to I obs . The
term “as close as” is numerically precise by considering the L2-norm of the distance
of Iμ,γ and I obs . However, we observe that I obs is not defined on the whole time
interval. Then, to extend I obs continuously we apply time series. Then we precise
the definition of the optimization problem.

To precise the application of time series, we consider the numeric values for
the parameters used by Bai and Zhou [3] to investigate the stability of the peri-
odic solution of (2) with given parameter values and small degree seasonal fluctua-
tion in transmission rate. We set that Λ = 400, k = 0.01, μ = 0.02, γ = 0.04, m =
10, and β(t) = 0.00006 + ε sin(π t/3), where 0 ≤ ε < 0.00006. Then, the system
(2) becomes

d

dt
S(t) = 400 − 0.02 S(t) − 3 [0.2 + ε sin(π t/3)] S(t) I (t)

10000 + 100 I (t)
,

d

dt
I (t) = 3 [0.2 + ε sin(π t/3)] S(t) I (t)

10000 + 100 I (t)
− (0.02 + 0.04) I (t) − 10,

S(0) = 14000, I (0) = 600.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3)

Now, we solve numerically system (3) and obtain the discrete synthetic observed
data which is shown on Fig. 1. The next step is to adjust this data by a continuous
function. Indeed, due to the structure of the data, we deduced that it would be very
useful to use time series to find the best model that fits such data. Figure2 shows
the graph of the time series associated with the data. To be more precise, as the
series shown in Fig. 2 shows a lot of variability, the first thing we did was to apply
a transformation to the data. Then, using the programming language R [28] and the
tseries library next to the Arima command, we obtained a two-differentiated AR(1)
model [7], in which results are summarized in the following expression:

(1 − B)2(1 − B6)(1 − 0.512B)Yt = εt , εt ∼ N (0, σ 2),



100 F. Novoa-Muñoz et al.

0 20 40 60 80 100 120 140 160 180

Time (days)

600

700

800

900

1000

1100

1200

1300

1400

N
um

be
r 

of
 in

fe
ct

ed

Distribution of infected according to time

Fig. 1 Plot of the number of infected population solution of (3)

where B is the lag operator. Remembering that BYt = Yt−1, it turns out

Yt = 2.512Yt−1 − 2.024Yt−2 + 0.512Yt−3 + Yt−6

−2.512Yt−7 + 2.024Yt−8 − 0.512Yt−9 + εt , (4)

where εt is a white noise N (0, σ 2).
Then, using this time series and an appropriate interpolation we construct the

function I obs(t) on [0, T ].
Weobserve thatmodel (4) corresponds to the synthetic data obtainedby simulation

of (3). Then for other particular cases of system (2), we proceed analogously to
construct the corresponding time series model and the appropriate I obs continuous
function.

We reformulate the inverse problem like an optimal control problem. The opti-
mization problem is now formulated as follows: the objective function J depending
on the variables μ and γ is the least squares cost function and the restriction is
the initial value problem for the system (2) with some parameters μ and γ . More
precisely we have the following definition.

Definition 2 The inverse problem is defined by the optimization problem:

Minimize J (μ, γ ) = δ
∥
∥Iμ,γ − I obs

∥
∥2

L2(0,T )
:= δ

∫ T

0
(Iμ,γ − I obs)2(t)dt (5)
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Fig. 2 Plot of the adjustment of infected population solution of (3) by the time series to an
ARIMA(1, 2, 0)× (0, 1, 0)6 model

subject to Iμ,γ solution of system (2) a given initial condition (S, I )(0) = (S0, I0),
I obs is the continuous observation constructed with a time series and an appropriate
interpolation, and δ a positive constant.

We remark two facts. First, the objective function J measures the distance between
two functions, and therefore it must be minimized and is called cost. One of the
functions involved in this cost is that which solves the initial value problem and the
other is the one that adjusts the data through the series of time already found. Second,
we observe that the existence of solutions for the inverse problem can be derived by
applying the continuous dependence of (S, I ) with respect to (μ, γ ). However, the
uniqueness of the inverse problem solution or the proof of a unique global optimizer
for J is difficult to get.

4 Methodology of the Solution for the Inverse Problem

In order to solve the optimization problem, we apply the gradient method where the
gradient of the cost function is obtained by the introduction of an adjoint state. First,
we deduce the gradient of the cost function when all data are continuous and then
we mimic the process to introduce a discrete gradient.



102 F. Novoa-Muñoz et al.

4.1 Continuous Gradient

We apply the Lagrange multipliers method. We recall that the Lagrangian is a linear
combination between the objective function and the constraints. As it must be scalar
then the constraints,which are functions, aremultiplied, respectively, by the functions
p and q, and then integrated over the whole domain, obtaining the following function
to be minimized:

L
(
Sμ,γ , Iμ,γ ; p, q

) = J (μ, γ ) − E
(
Sμ,γ , Iμ,γ ; p, q

)
,

where J is defined in (5) and E := E(Sμ,γ , Iμ,γ ; p, q) is given by

E = −
∫ T

0

[

S
dp

dt
+

(

Λ − μS − β(t)SI

1 + k I

)

p

]

dτ + p(T )S(T ) − p(0)S0

−
∫ T

0

[

I
dq

dt
+

(
β(t)SI

1 + k I
− (μ + γ )I − m

)

q

]

dτ + q(T )I (T ) − q(0)I0.

Thus, we have a classic minimization problem for L , and therefore we can apply
the first-order optimal conditions to deduce the adjoint state, i.e., we calculate the
gradient of the Lagrangian with respect to the variablesμ and γ , and select the states
(p, q) such that the gradient of L vanishes. We note that

dL

dμ
= ∂L

∂S

∂S

∂μ
+ ∂L

∂ I

∂ I

∂μ
+ ∂L

∂μ
≡ 0,

dL

dγ
= ∂L

∂S

∂S

∂γ
+ ∂L

∂ I

∂ I

∂γ
+ ∂L

∂γ
≡ 0.

The calculus of ∂μS, ∂μ I, ∂γ S, and ∂γ I is difficult to develop directly since the
functions S and I do not depend explicitly on μ and γ and the strategy is to select p
and q such that ∂SL = ∂IL = 0. We observe that

∂L

∂S
= − ∂ E

∂S
=

∫ T

0

[
dp

dt
−

(

μ + β(t)I

1 + k I

)

p + β(t)I q

1 + k I

]

dτ − p(T )

∂L

∂ I
= ∂ J

∂ I
− ∂ E

∂ I

= 2δ
∫ T

0
(I − I obs) + dq

dt
−

[
β(t)S

(1 + k I )2
p + β(t)S

(1 + k I )2
q + (μ + γ )q

]

dτ − q(T ).

Thus, a necessary condition for p and q such that ∂SL = ∂IL = 0 is given by

dp

dt
= μ p + β(t) I

1 + k I
(p − q),

dq

dt
= (μ + γ ) q + β(t) S

(1 + k I )2
(p − q) + 2δ(I obs − I ),

p(T ) = q(T ) = 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(6)
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Fig. 3 Scheme of the gradient calculus methodology. The definition of (S, I ), J, (p, q), and ∇ J
is given in (2), (5), (6), and (7), respectively. Now, the definition of (SΔ, IΔ), JΔ, (pΔ, qΔ), and
∇ JΔ is presented in (8), (9), (11), and (12), respectively

The backward problem (6) is called the continuous adjoint state. It gives rise to
the so-called continuous gradient, which arises equal to zero the derivatives of the
Lagrangian, obtaining

∇ J = ∇E = −
∫ T

0
(Sp, I q)dτ. (7)

The gradient given in (7) can be used to solve numerically the optimization problem.
However, there are several suggestions to use a discrete gradient obtained by a similar
methodology instead of direct discretization for ∇ J in (7), see, for instance, [8, 10].

4.2 Discrete Gradient

The discretization of (7) typically develops numerical instabilities [8, 10]. Then, the
strategy is to obtain a discrete gradient by a similar methodology to that applied to get
(7). We recall that the three steps are the following: (i) construct the continuous cost
function given on (5), (ii) apply a Lagrangian formulation to define the continuous
adjoint state given on (6), and (iii) use the continuous and the adjoint state to define
the continuous gradient given on (7), see the upper part on the scheme given on
Fig. 3. Then, to obtain the discrete we discretize the continuous state variables and
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proceed analogously to the steps (i)–(iii), see the lower part on the scheme given on
Fig. 3. The specific definitions of (SΔ, IΔ), JΔ, (pΔ, qΔ), and ∇ JΔ are given below.

The numerical solution (SΔ, IΔ) is calculated by a fourth-order Runge–Kutta
method. Let us select N ∈ N and define Δt = T/N , tn = nΔt and

(SΔ, IΔ)(t) = (Sn, I n), t ∈ [tn, tn+1[,

with xn := (Sn, I n)t calculated as follows:

xn+1 = xn + Δt

6

(
m1 + 2m2 + 2m3 + m4

)
,

m1 = f(xn, tn), m2 = f
(

xn + Δt

2
m1, tn + Δt

2

)

,

m3 = f
(

xn + Δt

2
m2, tn + Δt

2

)

, m4 = f
(

xn + Δt

2
m3, tn + Δt

)

,

x0 = (S0, I0),

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where f is defined by

f

⎛

⎝
S
I
t

⎞

⎠ =
⎛

⎜
⎝

Λ − μ S − β(t)S I

1 + k I
β(t)S I

1 + k I
− (μ + γ ) I − m

⎞

⎟
⎠ ,

i.e., f is the right side of the system (2). Thus, (8) with xn := (Sn, I n)t is the dis-
cretization of (2), which is called the discrete state.

The discrete cost function JΔ is given by

J�(μ, γ ) = δΔt
N∑

n=0

(
I n − I obs,n

)2
, (9)

where I n is obtained by the numerical scheme (8) and I obs,n is the evaluation of the
continuous observation on the nodes of the mesh, i.e., I obs,n = I obs(tn). Note that
J� given on (9) is the natural discretization of J given on (5). Thus, we have that

Minimize JΔ(μ, γ ) subject to IΔ solution of the numerical scheme (2) (10)

is the discrete version or the discretization of the optimization problem (5).
In order to define the discrete adjoint state (pΔ, qΔ), we apply the Lagrange

multipliers method. We define the discrete Lagrangian

LΔ(SΔ, IΔ; pΔ, qΔ) = JΔ(μ, γ ) − EΔ(SΔ, IΔ; pΔ, qΔ) ,

where JΔ is defined in (9) and EΔ := E(SΔ, IΔ; pΔ, qΔ) is given by
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EΔ =
N−1∑

n=0

[

xn
(

pn−1 − pn
)

− Δt

6

(
m1 + 2m2 + 2m3 + m4

)]

+ xN pN−1 − x0p−1.

Thus, by analogous arguments to the continuous case, we need to determine (pΔ, qΔ)

such that ∂SnLΔ = ∂I nLΔ = 0. Thus, from differentiation of LΔ we obtain that
pn := (pn, qn)t can calculated by the scheme

pn−1 = pn + Δt

6

(
n1 + 2n2 + 2n3 + n4

)
+ 2δΔtg(xn),

n1 = ∂f(xn, tn), n2 = ∂f
(

xn + Δt

2
m1, tn + Δt

2

)

,

n3 = ∂f
(

xn + Δt

2
m2, tn + Δt

2

)

, n4 = ∂f
(

xn + Δt

2
m3, tn + Δt

)

,

pN = (0, 0),

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(11)

where

∂f

⎛

⎝
S
I
t

⎞

⎠ =
⎛

⎜
⎝

−μ − β(t) I

1 + k I
β(t)S

(1 + k I )2
− (μ + γ )

⎞

⎟
⎠ , g

(
S
I

)

=
(
0
I − I obs,n

)

,

and xn is calculated by (8). The scheme (11) is called the discrete adjoint state.
The discrete gradient ∇ JΔ is calculated by

∇ JΔ = Δt

6

N−1∑

n=0

[∇μ,γ m1 + 2∇μ,γ m2 + 2∇μ,γ m3 + ∇μ,γ m4
]
, (12)

where mi for i = 1, . . . , 4 are defined in (8). The gradient given in (12) is used to
solve numerically the inverse problem.

5 Numerical Results

In this section, we present a numerical result for estimating the value of parametersμ

and γ from synthetic observation data.We consider the system (3) and by a numerical
simulation we obtain a discrete observation. Then, by the process indicated on Sect. 3
we construct I obs on [0, T ], see also Figs. 1 and 2. To bemore precise, after processing
the observation by a time series technique, we fit the discrete observation data by
I obs : [0, T ] ∈ R

+ defined by

I obs(t) = a1 sin(b1t + c1) + a2 sin(b2t + c2) + a3 sin(b3t + c3)

+ a4 sin(b4t + c4) + a5 sin(b5t + c5), (13)
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where the values of ai , bi , and ci are given by

a1 = 2412, a2 = 1457, a3 = 430.7, a4 = 114.3, a5 = 40.3,

b1 = 0.01641, b2 = 0.02814, b3 = 0.04432, b4 = 0.05374, b5 = 1.047,

c1 = −0.3434, c2 = 1.491, c3 = 2.903, c4 = 5.065, c5 = −1.513.

The graph of I obs given in (13) is the curve labeled as real parameters in Figs. 4 and 5.
For identification, we use the gradient method where the gradient of the cost

function is defined by (12). To be more precise, we proceed to the identification with
the gradient method using the curvature information [2]:

ek+1 = ek − λk∇ J (ek), with ek = (μk, λk),

λk = ‖∇ JΔ(ek)‖ε̂2
|JΔ(ek − ε̂∇ JΔ(ek)) − 2JΔ(ek) + JΔ(ek + ε̂∇ JΔ(ek))| ·

Here JΔ is calculated by (9). Moreover, we remark that in our numerical simulations
we consider that ε̂ = 10E − 6 in the definition of λk and δ = 10E − 12 in the def-
inition of JΔ and the discrete adjoint state. The numerical value of the parameters
is given in Table1. The infected curve for the initial guess parameters is labeled
as initial estimate of the parameters as shown in Fig. 4. The infected curve for the
identified parameters is labeled as final estimate of the parameters shown in Fig. 5.
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Table 1 Numerical value of the parameters

μ γ

Observation parameters 0.0200 0.0400

Initial guess parameters 0.0005 0.0100

Identified parameters 0.0206 0.0387

Finally, Fig. 6 illustrates the path followed by the gradient method in order to
descend the values in the cost function until reaching the point where the optimum
is achieved.

6 Conclusions

In this paper, we have introduced a methodology, based on discrete gradient method
and time series, for parameter identification or model calibration in ordinary differ-
ential equation systems. Although the content of this research focuses on a specific
ordinary differential equations system, we can deduce that the proposed method can
be generalized for identification of coefficients in other types of system.Moreover, in
this study, we have applied the numerical identification for synthetic observation data
and expect to apply the methodology in the model calibration when the experimental
data is obtained in laboratory experiments.
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Fig. 6 Plot graph of the path traveled by the cost function until reaching the optimum
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Impact of the Red Code Process Using
Structural Equation Models
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Ramón Reyes Carreto, Raúl López Roque and Virginia Vera Leyva

Abstract This paper proposes an ad hoc model to explain the relationships between
latent and observed variables, which influence the results of the care of pregnant
woman with obstetric emergency before and after the implementation of a standard-
ized process called Red Code. It has used information from medical records of preg-
nant women who were treated in the emergency service of the Hospital de la Madre
y el Niño Guerrerense, Guerrero, Mexico. Based on expert judgment, 19 observed
variableswere grouped into 5 latent variables: first hemodynamic state, second hemo-
dynamic state, obstetric-gynecological history, treatments, and results of EMOC. An
ad hocmodel was proposed that includes the first four latent variables as independent
and the last one as a latent dependent variable. To asses the proposal, goodness-of-fit
indexes for the fitted structural equation model were used. It was concluded that the
results are mainly affected by obstetric-gynecological history and second hemody-
namic status for the before red code period and obstetric-gynecological history and
treatment for the red code period.
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1 Introduction

Maternal survival has beenoneof the priority topics of global health in recent decades.
This issuewas adopted as the fifthMillenniumDevelopmentGoal (MDG) (Arregoces
2015; Smith 2016 cited in [1]) and later as the third Sustainable Development Goal.
Despite the remarkable achievements in reducing maternal mortality, around 830
women around the world die each day from complications related to pregnancy or
childbirth.

México is divided into 32 states andGuerrero is one of poorest states in the country
where more women die during pregnancy, childbirth, and puerperium, mainly in the
indigenous regions known as Montaña and Costa Chica. For this reason and with
the aim of fulfilling the fifth MDG, in 2006, the Hospital de la Madre y el Niño
Guerrerense (HMNG) begins the training of personnel in emergency obstetric care
(EMOC) with the course-workshop called Intensive and integral management of the
pregnant woman in a critical state.

According to the Official Mexican Standard 007 (NOM 007 for its acronym in
Spanish), an obstetric emergency (OE) is defined as the complication or intercur-
rence condition of pregnancy that implies a risk of maternal–perinatal morbidity or
mortality.

The main pregnancy complications that cause OE are (a) obstetric hemorrhage
during pregnancy, childbirth, or after delivery, (b) hypertensive disorders in preg-
nancy, which are classified as preeclampsia, eclampsia, and (c) obstetric sepsis [2].

Obstetric hemorrhage is defined as the loss of blood greater than 500 cm3 after
a vaginal delivery or greater than 1000 cm3 after a caesarean section or less than
1000 cm3 if there are signs of hypovolemic shock. Preeclampsia or eclampsia occurs
in 3–5% of pregnant women and it is characterized for hypertension after the 20th
week of gestation. Finally, obstetric sepsis occurs when two or more of the following
signs exist: temperature greater than 38 ◦C or less than 36 ◦C; heart rate greater than
90 beats/minute; breathing frequency greater than 20 beats/minute or partial pressure
of carbon dioxide greater than 32 mmHg; leukocyte count greater than 12,000/mm3

or less than 4,000/mm3, with more than 10% of immature leukocyte forms; failure
of distant organs where the symptomatology depends on the affected organs, and
coagulation, liver, kidney, breathing, or neurological disorders may occur [3].

RedCode (RC) is the procedure aimed at pregnant womenwith obstetric emergen-
cies,which include the identificationofmorbidity, initialmanagement, and conditions
for referral when necessary.

The RC is an organized work scheme that, when an OE occurs, provides an
assistance team to work in an orderly and coordinated way in order to reduce the
pregnantwoman’smorbidity andmortality. TheRCbeginswhen the pregnantwoman
in the emergency room presents a pregnancy complication that may be a maternal–
perinatal risk.

To monitor the process of EMOC has proposed the assessment of indicators in
order to identify the medical care components that are working well, those that need
improvement, change, or further investigation [4]. In this way, the evaluation and
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monitoring of the EMOC indicators allow decision-makers to identify needs to plan
interventions that improve the functioning of programs and services that favor the
EMOC and thus contribute to the reduction of maternal and neonatal mortality.

The RC process begins with the activation of an audible alarm when health per-
sonnel detects the OE and the work team meets in the emergency room. The nurse
performs the registration of general data, gynecological and obstetric history, per-
forms somatometry, and takes vital signs such as blood pressure, temperature, heart
rate, breathing frequency, and catheter placement. She also starts the administration
of medications and prepares the patient for admission to the next care service.

The obstetrician performs the comprehensivematernal-fetal assessment and deter-
mines the diagnosis and management plan. At the same time, the internist performs
the neurological, hemodynamic, and metabolic assessment. Together, obstetrician
and internist establish medical treatment and decide what is the next healthcare
service for the pregnant woman with EO. Similarly, the pediatrician assesses the
maternal-fetal conditions and foresees the need to perform neonatal resuscitation.
Laboratory and cabinet studies are taken by the corresponding personnel, as well as
the request for hemocompatibility tests of blood components (erythrocyte package,
fresh frozen plasma, platelet package) to the blood bank.

The obstetrician determines if the patient responded to the initial management.
When the patient survives it is called “stabilized patient”; in case of death, it is
called “failed stabilization”. If the patient was stabilized, the obstetrician decides if
it requires Toco-Surgical management or admission to the adult Intensive Care Unit
(ICU), and the patient is immediately admitted to the second service.

As soon as the patient is admitted to the second care service, the nurse performs
the vital signs registration again and continueswith themedical surgicalmanagement
established as the administration of drugs and blood components.

If the patient dies, the obstetrician informs the relative responsible for the patient
about the consequences that conditioned the maternal death, elaborates Death Cer-
tificate and confidential maternal death questionnaire of the Secretary of Health.

On the other hand, the Social Work staff performs the record and follow-up of
RC patients up to 40 days after their admission with the aim of verifying the health
status of RC patients and supervising the adherence to medical treatment to avoid
sequelae and maternal deaths during the quarantine. At this point, the RC ends.

Measuring the effectiveness of the services requires insight and detail, and current
monitoring efforts are inconsistent. Measuring the effectiveness of the health ser-
vices requires insight and detail, current monitoring efforts are inconsistent. Several
researches have studied the primary healthcare facilities, the antibiotics administra-
tion, the manual removal of the placenta, and removal of retained products during the
assisted vaginal delivery using a vacuum extractor. Other researchers have focused
on the basic neonatal care including neonatal resuscitation, caesarean section, safe
blood transfusion services, and the treatment of the sick baby. Although the Hospital
del Madre y el Niño Guerrerense has been certified by ISO-9001:2018, the impact
of these services on improving maternal health has not been measured yet.

There is empirical evidence that the implementation of RC has improved the care
of pregnant women with obstetric emergencies. However, a formal study confirming
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it has not been carried out. The objective of this work is to evaluate the impact of
RC implementation, using a structural equations model (SEM), for the care of the
pregnant woman with OE. Because there is no model used in the literature, an ad
hoc model based on expert physicians is proposed.

2 Methodology

This section presents basic theory of the SEM, the database used for the analysis is
described, as well as the formulation of the ad hoc model proposed.

2.1 Structural Equation Models

The SEM permits to study the latent independent variables effect on a latent depen-
dent variable. The latent variables cannot directly be measured but they do through
observed variables that in this work are those that are involved in the EMOC. SEM
has received a great deal of attention in biomedical research [5, 6]. An SEM is formed
by (i) a set of measurement equations that represents the relationships of each latent
variable (or factor) with their corresponding observed variables and (ii) a set of struc-
tural equations where the relationships between the latent variables are described.
The measurement equations are defined by [7]

y = Λω + ε (1)

where y = (
y1, . . . , yp

)
is a p × 1 random vector of observed values, Λ is a p × q

matrix of factorial loads, ω is a vector of latent variables, and ε is a random vector
of measurement errors (residual). It is assumed that ε is distributed N (0,Ψε) where
Ψε is a diagonal matrix. In this work, y is a 19 × 1 vector, Λ is a 19 × 5 matrix, ω
is a 5 × 1 vector, and ε is a 19 × 1 vector.

Let ω = (ηT , ξ T )T , with η (q1 × 1) dependent latent vector and ξ (q2 × 1) inde-
pendent latent vector. The structural equations that define the relations between η

and ξ are given by
η = Πη + Γ ξ + δ (2)

where Π (q1 × q1) and Γ (q1 × q2) are matrices of unknown regression coefficients
that measure the causal effect of ξ on η and δ (q1 × 1) is a random vector of mea-
surement errors. The dimensions of η, Π, Γ , ξ , and δ are 4 × 1, 4 × 4, 4 × 1, 1 × 1,
and 4 × 1, respectively. The model assumes that ξ ∼ N (0,�) where � is a general
covariance matrix and δ ∼ N (0,Ψδ), where Ψδ is a diagonal matrix. In addition, δ is
independent of ξ , and ε is uncorrelated with ω and δ. It is also assumed that (I − Π)

is nonsingular.
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2.1.1 Model Estimation

The estimation involves determining the values of the unknown parameters and their
respective measurement error. One of the techniques widely used in most of the sta-
tistical packages for the SEM estimation is maximum likelihood (ML) [8]. Although
there are alternative methods, such as weighted least squares (WLS), generalized
least squares (GLS), and asymptotically free distributed (AGL), in this work, ML
was used.

2.1.2 Model Diagnostics

Some indexes were used to evaluate the fit of the model that were useful in determin-
ing how well the ad hoc model fits the sample data [1]. The goodness-of-fit index
(GFI) and adjusted GFI (AGFI) represent the proportion of variance, analogous to
R2. GFI and AGFI values range between 0 and 1 and it is generally accepted that
values of 0.90 or greater indicate well-fitted models. The root mean square error of
approximation (RMSEA) is a badness of fit index. If the RMSEA is equal to zero,
the best fit occurs, if it is less than 0.05 a good fit, and less than 0.08 an appropriate
fit. The comparative fit index (CFI) is an index that compares the fit of the theo-
retical model with the fit of the independence model, which is the one in which all
the variables are independent. The CFI values vary between 0 and 1, and a good fit
is reached if values greater than 0.90 occur. This value indicates that at least 90%
of the variance in the data can be reproduced by the model. Another index is the
standardized root mean squared residual (SRMR) which is obtained by dividing the
RMSEA by the standard deviation. This index is considered indicative of a good fit
if it is less than 0.08.

2.2 Database

The RCwas implemented in 2011 and since then it has been in operation. The before
red code (BRC) period was defined as the time period from 2009 to 2011 and the RC
period as the time period from 2013 to 2015. Although in the intermediate period the
RC already operated, it was still in its adaptation phase. For this reason, this period
of time was not considered.

The database corresponds to a case series study of pregnant women who attended
to the HMNG’s emergency service with an OE. The base consists of two groups of
patients, the first group was attended from January 2009 to December 2011 and cor-
responds to the BRC period and another group of patients attended from September
2013 to December 2015 with the RC procedure implemented.

The list of patientswasobtained from the emergency records in the studiedperiods,
and their clinical records were used to obtain the needed information. Incomplete
records were not used in the database. The final database has 230 observations for
BRC and 106 for RC periods, respectively.
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The first column of Table1 lists the 19 observed variables included in the database
and the 5 latent variables formed according to the judgment of expert physicians. The
latent variable First hemodynamic state is related to the actions made by the nurse
when the pregnant woman is received in the emergency service. The variables mea-
sured are temperature, heart rate, blood pressure, breathing frequency, and number
of convulsions. In the same place, a nurse gets information about the second latent
variableObstetric-gynecological history that is measured by the observed variables
such as number of abortions, number of caesarean sections, pregnant’s weight, and
number of vaginal deliveries. Physicians determine the Treatments needed to face
the OE that can include platelets, plasma, and erythrocyte concentrate. The Second
hemodynamic state corresponds to the actions taken when the pregnant woman is
transferred from the emergency service to the ICU or Toco-surgery. The variables
measured are the same observed variables for the first hemodynamic state except for
the number of convulsions. The latent variable Results of the emergency obstetric
caremeasures the consequences of the actionsmade in the RC process. The observed
variables are the number of sequelae, the newborn’s weight, and the gestation weeks.

2.3 Ad hoc Model

The proposed ad hoc model, Eq. (3), was proposed based on the knowledge of expert
physicians. The proposed ad hoc SEM consists of five latent variables: four latent
dependent variables η1, η2, η3, and η4 and one latent independent variable, ξ . Table1
shows the factors considered and the observed variables that comprise it as well as
its mathematical notation. The model assumes that

1. The latent variable first hemodynamic state ismeasured through the observed vari-
ables: temperature, heart rate, blood pressure, breathing frequency, and number
of convulsions.

2. The latent variable second hemodynamic state is measured by the observed vari-
ables: heart rate, blood pressure, breathing frequency, and temperature.

3. The latent variable obstetric-gynecological history is measured by the observed
variables: number of abortions, number of caesarean sections, pregnant’s weight,
and number of vaginal deliveries.

4. The latent variable Treatments is measured by the observed variables: platelets,
plasma, and erythrocyte concentrate.

5. The latent variable Results of the emergency obstetric care is measured by the
observable variables: number of sequelae, newborn’sweight, and gestationweeks.

6. The obstetric-gynecological history has an effect on the first hemodynamic state.
7. The first hemodynamic state has an effect on the second hemodynamic state.
8. The first and second hemodynamic states and the obstetric-gynecological history

have effect on the treatments.
9. The first and second hemodynamic states, the obstetric-gynecological history, and

the treatments have effect on the results of the emergency obstetric care.
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The measurement Eqs. (1) become Eqs. (3) defined by using 19 observable vari-
ables yi = (yi1, . . . , yi,19) and 5 latent variables ω = (η1, η2, η3, η4, ξ)T as follows:

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

Tm1
Hr1
Bp1
B f 1
Nc
Hr2
Bp2
B f 2
Tm2
Na
Ncs
Pw
Nvd
Pla
Pls
Ec
Nms
Nw
Gw

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

λ11 0 0 0 0
λ21 0 0 0 0
λ31 0 0 0 0
λ41 0 0 0 0
λ51 0 0 0 0
0 λ62 0 0 0
0 λ72 0 0 0
0 λ82 0 0 0
0 λ94 0 0 0
0 0 λ10,3 0 0
0 0 λ11,3 0 0
0 0 λ12,3 0 0
0 0 λ13,3 0 0
0 0 0 λ14,4 0
0 0 0 λ15,4 0
0 0 0 λ16,4 0
0 0 0 0 λ17,5

0 0 0 0 λ18,5

0 0 0 0 λ19,5

⎤
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⎤

⎥⎥⎥⎥
⎦

+

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12
ε13
ε14
ε15
ε16
ε17
ε18
ε19

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

(3)

Similar to confirmatory factor analysis, one the factor loadings must be fixed in each
latent variable in order to fit the model. The fixed loads were λ11 = λ62 = λ10,3 =
λ14,4 = λ17,5 = 1.

The structural Eqs. (2) become Eqs. (4), and its matrix formulation is

⎡

⎢⎢
⎣

FHS
SHS
Treat

REMOC

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 0 0 0
π21 0 0 0
π31 π32 0 0
π41 π42 π43 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

FHS
SHS
Treat

REMOC

⎤

⎥⎥
⎦ +

⎡

⎢⎢
⎣

γ11
0

γ31
γ41

⎤

⎥⎥
⎦ OGH +

⎡

⎢⎢
⎣

δ1
δ2
δ3
δ4

⎤

⎥⎥
⎦ (4)

Two SEM models were fitted, the first one to the BRC period and the second one
to the RC period. The sem function on the library laavan [9] implemented in the R
package [10] was used to fit the models. The analysis was done using the correlation
matrix because the variables have very different variances.

3 Results

In this section, the estimation of the SEM, the goodness-of-fit indexes of the models
in both periods BRC and RC, and the interpretations of the fitted models are shown.
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Table 1 Exploratory analysis of the variables studied for the BRC and RC periods

Variables BRC RC p-value

Mean Sd∗ Median Mean Sd∗ Median

First hemodynamic state (FHS) η1

Temperature (Tm1) y1 36.41 0.45 36.40 36.24 0.49 36.40 0.00

Heart rate (Hr1) y2 83.69 12.04 81.00 84.92 123.00 81.00 0.33

Blood pressure(Bp1) y3 139.79 21.71 140.00 152.77 24.31 140.00 0.00∗∗
Breathing frequency (Bf1) y4 20.96 2.81 20.00 21.96 2.41 20.00 0.00

Number of convulsions
(Nc)

y5 0.10 0.83 0.00 0.06 0.36 0.00 0.50

Second hemodynamic state (SHS) η2

Heart rate (Hr2) y6 87.53 14.76 84.00 95.11 15.54 84.00 0.00∗∗
Blood pressure (Bp2) y7 85.98 17.94 84.50 85.87 13.66 84.50 0.81

Breathing frequency(Bf2) y8 21.73 5.08 21.00 21.85 2.58 21.00 0.78

Temperature (Tm2) y9 36.44 0.46 36.50 36.22 1.08 36.50 0.04

Obstetric-gynecological history (OGH) ξ

Number of abortions (Na) y10 0.20 0.49 0.00 0.18 0.77 0.00 0.83

Number of caesareans
section (Ncs)

y11 0.21 0.50 0.00 0.14 0.42 0.00 0.20

Pregnant’s weight (Pw) y12 69.78 13.82 68.00 68.79 12.99 68.00 0.52

Number of vaginal deliv-
eries (Nvd)

y13 1.41 2.30 0.00 1.24 2.04 0.00 0.47

Treatments (Treat) η3

Platelets (Pla) y14 0.26 1.49 0.00 0.01 0.10 0.00 0.01

Plasma (Pls) y15 0.27 1.48 0.00 0.04 0.04 0.00 0.01

Erythrocyte concentrate
(Ec)

y16 0.44 1.25 0.00 0.23 0.76 0.00 0.05

Results of the emergency obstetric care (REMOC) η4

Number of sequelae
(Nms)

y17 0.17 0.45 0.00 0.05 0.21 0.00 0.00

Newborn’s weight (Nw) y18 2554.47 712.97 2757.50 2706.81 708.99 2757.50 0.06

Gestation weeks (Gw) y19 37.48 3.04 38.25 37.81 2.60 38.25 0.28
∗Standard deviation, ∗∗p-value< 1 × 10−6

3.1 Exploratory Analysis

Table1 shows the means, the medians, and standard deviations of the variables stud-
ied. It also displays the p-value of the null hypothesis of equality of the population
means in BRC and RC periods using the t test for independent samples assuming
variances different or equal populations as appropriate.

Some important results that are observed in Table1 are mentioned. According
to the literature, convulsions in a pregnant woman in addition to hypertension are
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clear signs of eclampsia, which is one of the main causes of OE. It is observed that
a significative decrease in the number of convulsions during the RC period indicates
that theRChas a positive impact improving thematernal health. Another significative
decrease occurred in the use of blood products such as erythrocyte concentrate,
platelet, and plasma in the treatment of pregnant women with OE during the RC
period. Finally, the decrease in the number of sequelae, as well as the increase in the
newborn’s weight in the BRC period, shows the impact on improving the health of
the child–mother binomial.

Correlations among the observed variables are shown in Fig. 1. Blue shading
indicates positive correlations and red shading indicates negative correlations. The
p-value indicates that the population correlation is equal to zero. This was calculated
using a t test. In the BRC period, there are variables with high negative correlations,
for example, erythrocyte concentrate-pregnant’s weight (r = −0.17, p = 0.02) and
gestationweeks-number of caesareans section (r = −0.17, p = 0.01). There are also
variables with high positive correlations like gestation weeks-newborn’s weight (r =
0.67, p < 0.00), platelets-number of sequelae (r = 0.31, p < 0.00), and plasma-
platelets (r = 0.87, p < 0.00). In the RC period, there were low correlations among
the variables, some pairs of variables with high correlations are platelets-number of
sequelae (r = 0.43, p < 0.00) and number of vaginal deliveries-plasma (r = 0.30,
p < 0.00).

3.2 Model Estimation

Results of the fitted model to both, BRC and RC, periods are shown in Tables3 and
4. However, before interpreting the fitted model, it must be verified that the fit is
appropriate.

3.3 Model Diagnostics

Goodness-of-fit indexes of the ad hocmodel for the two periods are shown in Table2.
The chi-square statistic value and its p-value indicate that data are not well fitted by
the ad hocmodel in the BRC period; however, it is known that this statistic is affected
by large sample sizes (greater than 150). In contrast, this statistic indicates a good fit
of the model to the data in the RC period.

In the BRC period, the fitted model has GF I = 0.89 and in the RC period, it
has GF I = 0.87 and these values are very close to the reference value 0.90, which
indicates a good fit of the model. That is, 89 of variance in the observed data is in
the BRC period and 87 in the RC period is explained by the ad hoc model.

In the BRC period, the fitted model has AGF I = 0.85 and AGF I = 0.82. These
values are close to the reference value of 0.90, which means a good fit of the model.
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Fig. 1 Correlations between the observed variables for the BRC period (a) and RC period (b)
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Table 2 Goodness-of-fit indexes of the ad hoc model for the two periods

BRC RC Reference

Chi 295.5 159.8

p = 0.00 p = 0.22 >0.05

GFI 0.890 0.870 >0.90

AGFI 0.852 0.820 >0.90

RMSEA 0.068 0.029 <0.07

SRMR 0.078 0.080 <0.08

CFI 0.803 0.915 >0.90

They say that 85 and 82% of the population variance are explained by the ad hoc
model in the BRC and RC periods, respectively.

TheRMSEAvalue in theBRCperiod is 0.068 that is near the reference value 0.070
[11]. This RMSEA value indicates that the measurement model and the covariances
structure of the observed variables have an appropriate fit. However, in the RC period,
the RMSEA value is 0.029 that is less than 0.070, and therefore in the RC period the
model has better fit between the data and the model.

The SRMR in the BRC period was 0.078 which is a little lower than the reference
value 0.08 [12], and this means good fit of the model. For the RC period, the value
was 0.08, which is equal to the reference value suggested in the literature.

Finally, in theBRCperiod, theCFI valuewas 0.80, close but less than the reference
value 0.90 [13]. This means that the measurement model and covariance structure
of the observed variables have a reasonable fit, but do not achieve the minimum
acceptable. Better results occur in the RC period where the CFI is 0.915 that is
greater than the reference value 0.90 which indicates a good fit between the data and
the model.

In summary, the goodness-of-fit indexes for the fitted SEM in the two periods,
BRC and RC, vary from reasonable to good, and thus the fitted models can be
interpreted.

3.4 Model Inference

Parameter estimation of the ad hoc SEM proposed for the two periods is presented in
Tables3 and 4. The observed variables that have more impact on each latent variable
in the measurement model are as follows:

• First hemodynamic state: heart rate in both periods BRC and RC (1.73 and 4.38,
respectively).

• Second hemodynamic state: heart rate in both periods BRC and RC (1.00 in both
periods).
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Table 3 Measurement model estimates

BRC RC BRC RC

First hemodynamic state Obstetric-gynecological history

Blood pressure 1.00∗ 1.00 Pregnant’s weight 1.00 1.00

Breathing frequency 1.41∗ −1.75 Number of vaginal
deliveries

2.57 0.36

Heart rate 1.73∗ 4.38 Number of abortions 1.73 −6.77

Temperature 1.33∗ 0.10 Number of
caesareans section

−0.98 30.80

Number of convulsions 0.55∗ −1.97

Second hemodynamic state Treatments

Heart rate 1.00∗ 1.00 Platelets 1.00∗ 1.00

Temperature 0.49∗ 0.49 Plasma 0.95∗ 1.48

Blood pressure 0.80∗ 0.20 Erythrocyte
concentrate

0.40∗ 0.53

Breathing frequency 0.56∗ 0.65

Results of the emergency obstetric care

Number of sequels 1.00∗ 1.00

Newborn’s weight −13.84∗ 5.65

Gestation weeks −18.24∗ 5.13
∗ p-value< 0.05

Table 4 Structural fitted model

Latent variables BRC RC

Estimate Sd∗ p-value Estimate Sd∗ p-value

First hemodynamic state

Obstetric-gynecological history 0.11 0.21 0.60 −1.27 2.10 0.54

Second hemodynamic state

First hemodynamic state 1.22 0.37 0.00 −0.25 0.28 0.37

Treatments

First hemodynamic state −0.18 1.50 0.90 −0.17 0.39 0.65

Second hemodynamic state 0.35 1.45 0.75 −0.25 0.13 0.06

Obstetric-gynecological history 1.19 0.72 0.10 −4.24 2.90 0.53

Results of the emergency obstetric care

Obstetric-gynecological history −0.04 0.06 0.52 0.47 0.85 0.57

First hemodynamic state −0.06 0.12 0.61 −0.05 0.07 0.43

Second hemodynamic state 0.01 0.07 0.80 0.01 0.03 0.72

Treatments 0.01 0.01 0.48 0.08 0.05 0.08
∗Standard deviation
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• Obstetric-gynecological history: number of vaginal deliveries in the BRC period
and number of caesarean sections in the RC period (2.57 and−6.77, respectively).

• Treatments: platelets in the BRC period and plasma in the RC period (1.00 and
1.48, respectively).

• Results of the emergency obstetric care: gestation weeks during the BRC period
and newborn’s weight during the RC period (−18.24 and 5.65, respectively).

The interpretation of these estimates is as follows, in the BRC period, when the
first hemodynamic state increases one unit, then blood pressure (Bp1), breathing
frequency (Bf1), heart rate (Hr1), number of convulsions (Nc), and temperature
(Tm1) increase 1.00, 1.41, 1.73, 0.55, and 1.33 units, respectively. On the other
hand, in the RC period, when first hemodynamic state increases one unit, then blood
pressure (Bp1), heart rate (Hr1), temperature (Tm1) increase 1.00, 4.38, and 0.10,
respectively, and breathing frequency (Bf1) and number of convulsions (Nc) decrease
1.75 and 1.97 units. Similar interpretations can be made for the other factors latent
variables.

The factor loads corresponding to the breathing frequency had a change of sign.
In the BRC period, it had a positive sign and in the RC period, it was negative.
This shows the protector effect of the RC, and the same happens with the number of
convulsions. In addition, the factorial loads of the newborn’s weight and gestation
weeks have a negative sign in the BRC and positive in the RC period. That is, if
the results of the EMOC increases by a unit, in the BRC periods, newborn’s weight
decreases but in the RC period the weight increases. In other words, babies were to
be born with lowweight and were premature during the BRC period and the opposite
during the RC.

The main causes of the OE in both periods are the hypertensive disorders of
pregnancy. The results show that early and opportune management of the pregnant
womanwith OE reduces the risk of eclampsia, reflected in the decrease in the number
of convulsions, and therefore of maternal death.

Although estimations for the structural model were not statistical significative,
results in Table4 permit to say that:

1. The effect of the obstetric-gynecological history in the first hemodynamic state is
different in both periods. If the obstetric-gynecological history increases one unity
then the first hemodynamic state increases 0.1 units in the BRC, but decreases
1.27 units in the RC period, that is, pregnant women treated during the RC period
improve their first hemodynamic status.

2. The effect of the first hemodynamic state in the second is different in both periods.
When the first hemodynamic state increases one unity then the second hemody-
namic state increases 1.22 units in the BRC, but decreases 0.25 units in the RC
period, that is, pregnant women treated during the RC period improve their second
hemodynamic status.

3. The effect of the first and second hemodynamic states and the obstetric-
gynecological history in the treatments used is different in both periods for the
second and third latent variables. When the second hemodynamic state increases
one unity then the treatments used increases 0.18 units in the BRC, but decreases
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0.17 units in the RC period, that is, pregnant women treated during the RC period
use less treatments. On the other hand, if the obstetric-gynecological history
increases one unity then the treatments used increase 1.19 units in the BRC, but
decreases 4.24 units in the RC period, that is, pregnant women in the RC period
use significatively less treatments.

4. The effect of the first and second hemodynamic states, the obstetric-gynecological
history, and the treatments used in the results of the EMOC are different in both
periods only for the obstetric-gynecological history. In the RC period, if the
obstetric-gynecological history increases by a unit then the results of the EMOC
have an increment of 0.47 units, that is, the RC permits good control of the adverse
complications immersed in the obstetric-gynecological history. Similar positive
effects are observed for the first hemodynamic state and treatments used in the
RC period.

5. In the BRC period, the latent variables that most impact the results of the
EMOC are obstetric-gynecological history and first hemodynamic state (−0.06
and −0.04) and in the RC period, they are obstetric-gynecological history and
treatments used (0.47 and 0.08).

4 Conclusions

To the best knowledge, there are no papers regarding the impact of the red code
process. The structural equations model to measure the impact of the implementation
of the standardized process red codewas adequate and allowed to identify its positive
effect in the care of the pregnant woman with obstetric emergency attended in the
Hospital de la Madre y el Niño Guerrerense de Chilpancingo, Guerrero México.

A contribution of this study is a proposal to evaluate the effect of the attention of
the obstetric emergency. But the most important contribution, it is to give evidence
that the red codeprocess helps to guarantee quality care and safety of pregnantwomen
with obstetric emergency and thereby reduce maternal and perinatal morbidity and
mortality.

Important differences emerge from the parameter estimations of the fitted model
to the two periods. It can be seen a positive effect of the red code process in the
care of pregnant women with obstetric emergency and this is of clinical importance.
It has been reported that hypertensive disorders such as preeclampsia–eclampsia,
postpartum hemorrhage as well as puerperal infections are the three acute maternal
complications that increase the risk of having adverse results. The obstetric emer-
gency care protocol through the process red code is a tool that improves attention
and decreases adverse results in the child–mother binomial.

In summary, there was a positive effect on the health status of the patients treated
with the RC process compared to the patient who was not.

The results of this study provide information that allows feedback and reinforce
hospital management strategies in pregnant women with extreme morbidity who are
treated in the Hospital de la Madre y el Niño Guerrerense and, therefore, improve
the quality of the service provided.



Impact of the Red Code Process Using Structural Equation Models 125

References

1. Owili, P.O., Muga, M.A., Mendez, B.R., Chen, B.: Quality of maternity care and its determi-
nants along the continuum in Kenya: a structural equation modeling analysis. PloS One 12(5),
e0177756 (2017)

2. Chebbo, A., Tan, S., Kassis, C., Tamura, L., Carlson, R.W.: Maternal sepsis and septic shock.
Crit. Care Clin. 32(1), 119–135 (2016)

3. American College of Obstetricians, Gynecologists, et al.: Hypertension in pregnancy. Report
of the American college of obstetricians and gynecologists task force on hypertension in preg-
nancy. Obstet. Gynecol. 122(5), 1122–1131 (2013)

4. World Health Organization, UNICEF, et al.: Monitoring emergency obstetric care: a handbook
(2009)

5. Romero-Ibarguengoitia,M.E.,Vadillo-Ortega, F.,Caballero,A.E., Ibarra-González, I.,Herrera-
Rosas, A., Serratos-Canales, M.F., León-Hernández, M., González-Chávez, A., Mummidi,
S., Duggirala, R., et al.: Family history and obesity in youth, their effect on acylcarni-
tine/aminoacidsmetabolomics and non-alcoholic fatty liver disease (NAFLD). Structural equa-
tion modeling approach. PloS One 13(2), e0193138 (2018)

6. Ae Ri, J., Jang, K.S.: Structural equation modeling on health-related quality of life of patients
with ankylosing spondylitis. Iran. J. Public Health 46(10), 1338–1346 (2017)

7. Lee, S.-Y., Song, X.-Y.: Basic and Advanced Bayesian Structural Equation Modeling: With
Applications in the Medical and Behavioral Sciences. Wiley, New York (2012)

8. Kline, R.B.: Principles and Practice of Structural Equation Modeling. Guilford Publications,
New York (2015)

9. Rosseel, Y.: Lavaan: an R package for structural equation modeling and more. Version 0.5–12
(beta). J. Stat. Softw. 48(2), 1–36 (2012)

10. R Core Team: R: a language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria (2017)

11. Steiger, J.H.: Understanding the limitations of global fit assessment in structural equation
modeling. Personal. Individ. Differ. 42(5), 893–898 (2007)

12. Hu,L.,Bentler, P.M.:Cutoff criteria for fit indexes in covariance structure analysis: conventional
criteria versus new alternatives. Struct. Equ. Model.: Multidiscip. J. 6(1), 1–55 (1999)

13. Bentler, P.M.: Comparative fit indexes in structural models. Psychol. Bull. 107(2), 238–246
(1990)



On a Construction of Stationary
Processes via Bilateral
Matrix-Exponential Distributions

Luz Judith R. Esparza

Abstract In this paper, we consider a construction ofMarkov processes with invari-
ant Bilateral Matrix-Exponential distributions. These distributions have support on
the entire real line and have rational moment-generating functions, features of impor-
tance in the area of stochastic models. The approach taken is based on a latent repre-
sentation of the corresponding transition probabilities. The structure of the construc-
tion goes from the particular to the general: first, we consider Erlang and Gamma
distributions, and later we consider Matrix-Exponential distributions. We include a
simulation study.

Keywords Bilateral matrix · Markov process

1 Introduction

In 2002, Pitt et al. [15] introduced an approach to construct strictly stationary time
series models with arbitrary but given marginal distributions. Later, in 2009, Mena
andWalker [12] basedon that, constructed continuous time stationaryMarkovmodels
using a latent representation of the corresponding transition probabilities.

In this paper, we will use this idea considering Bilateral Matrix-Exponential
(BME) distributions as marginal distributions. This class of distributions was defined
in [9] as a generalization of the Matrix-Exponential (ME) class (see, e.g., [2, 6, 7]).
A random variable is BME distributed if its moment-generating function is rational,
while a random variable is ME distributed if its Laplace transform is rational. In the
last decade, these classes of distributions have become very important in the field
of stochastic models. Their applicability in areas like genetics, computer science,
queuing theory, finance, social science, and health, among others, has increased its
importance in the study of stochastic processes.
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Now, suppose that we want to build up a Markovian model {Xn}n≥1 with the
requirement that its marginal distribution belongs to a given parametric family, say
on the form πX (x). The approach consists in defining this process by constructing
the transition probabilities that govern it in such a way that the desired marginal
remains invariant through the time.

Once the marginal form has been chosen, the construction of the transition prob-
abilities is performed by imposing certain dependence through a latent variable with
conditional density given by fT |X (t |x). This conditional density is used to construct
the transition distribution, driving the process {Xn}n≥1, with transition density given
in the following form:

p(xn−1, xn) =
∫

fX |T (xn|t) fT |X (t |xn−1)η(dt),

where fX |T (x |t) ∝ fT |X (t |x)πX (x), and η denotes certain reference measure, in
practice the Lebesgue or counting measure.

Therefore, following this methodology, we will construct stationary processes
having Bilateral Matrix-Exponential distributions as marginals.

The remainder of the paper is organized as follows. In Sect. 2, we give a back-
ground of the Matrix-Exponential distributions in order to introduce the Bilateral
Matrix-Exponential distributions. In Sect. 3, we will construct stationary processes
usingGamma distributions.We consider both the univariate case and themultivariate
case. In Sect. 4, as a generalization, we will construct stationary processes using ME
distributions. Finally, in Sect. 5, we conclude the paper.

2 Matrix-Exponential Distributions

Let us consider the distributions of nonnegative random vectors with a joint rational
Laplace transform, i.e., a fraction between twomultidimensional polynomials. In the
univariate case, these distributions are known as Matrix-Exponential (ME) distribu-
tions, since their densities can be written as linear combinations of the elements in
the exponential of a matrix.

Matrix-Exponential distributions [2, 8] are a generalization of the Phase-type
(PH) distributions [13, 14], for which a probabilistic interpretation is a priori more
clear. ME distributions deserve attention from researchers for a number of reasons.
First, ME distributions are useful in the analysis of stochastic models and, as it was
proved in [2, 5], they can be used in the analysis of renewal processes and queueing
systems. Second, the class of ME distributions includes all PH distributions and
all Coxian distributions, highly applied in areas like finance, communication, and
survival analysis, among others.

Consider a nonnegative random variable Y with rational Laplace transform, i.e.,

LY (s) = E(e−sY ) = p(s)

q(s)
, s ≥ 0,

where p(s) and q(s) are polynomials.
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Definition 2.1 A nonnegative random variable Y is said to have a ME distribution
if its Laplace transform L(s) = E(exp(−sY )) is a rational function in s.

The Laplace transform of Y can be determined from a representation (γ , L, �) as

L(s) = γ (sI − L)−1�, (1)

where, for finite m ≥ 1, γ is a 1 × m row vector, L is a m × m matrix, and � is a
m × 1 column vector, all with possibly complex entries, and I denotes the identity
matrix of appropriate dimension.

As a generalization of these distributions, we will consider a wider class of dis-
tributions whose support is the whole real line.

Definition 2.2 ([9]) A random variable X is Bilateral Matrix-Exponentially (BME)
distributed, if it has a rationalmoment-generating function MX (s) = E(es X ) = p∗(s)

q∗(s) ,
where p∗(s) and q∗(s) are polynomials.

As the ME representation, a BME random variable has a particular representa-
tion. We write X ∼ B M E(α+, T+, t+,α−, T−, t−) when X has the density given
by fX (x) = α+eT+x t+1{x>0} + α−eT−x t−1{x<0}, where α+ is a row vector of some
dimension m+, T+ is a matrix of dimension m+ × m+, and t+ is an m+-dimensional
column vector. Similarly, both the vectors α−, t− and the matrix T− are defined by
some dimension m−. Without loss of generality, we can take α+,α−, T+, and T−
real valued such that 0 ≤ α+e + α−e ≤ 1, and T+e + t+ = T−e + t− = 0, where
e is a vector of ones.

We know that if X ∼ B M E(α+, T+, t+,α−, T−, t−), then its moment-
generating function is given by

MX (s) = (1 − α+e − α−e) + α+(−s I − T+)−1 t+ + α−(−s I − T−)−1 t−. (2)

We recommend the reader to check [9] for more details.
On the other hand, we can interpret a PH random variable as resulting from

a simple reward structure on a finite Markov jump process. If the reward rate is
1 in each state, then the total reward is PH distributed (see [1, 10]). Therefore,
considering the PH class the rewards are strictly positive. As a generalization, BME
distributions consider positive and negative rewards, this feature makes the BME
class has applications in areas like statistics, finance, and computer science, where
general reward rates may have advantages. For example, in [9], the authors applied
this class of distributions considering Markov additive processes with absorption.

In the following section, we will construct processes with BME as marginal dis-
tributions.

3 Construction Using Erlang Distributions

In this section, we will construct processes through the Erlang distributions. These
distributions belong to the Phase-type class. We will consider both the univariate and
multivariate cases.
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3.1 Univariate Case

For the univariate case, we will consider the following three cases:

1. Let fX |T = N (0, σ 2T ), where σ > 0 and T is exponentially distributed, i.e.,
T ∼ exp(λ), λ > 0.

2. Considering fX |T = N (0, T ) and T is Gamma distributed, i.e., T ∼ Ga(λ, α2/2)
for λ, α > 0.

3. Andfinally, the third case is considering fX |T = N (βT, T ) and T ∼ Ga(λ, (α2 −
β2)/2), where λ > 0 and α2 − β2 > 0.

3.1.1 First Case

Let T be a random variable with exponential distribution with intensity λ > 0 and
moment-generating function (mgf) given by

MT (s) = E(esT ) = λ

λ − s
.

Now, define fX |T = N (0, σ 2T ). The mgf of X is given by

MX (s) =
∫ ∞

0
MX |T (s)d FT =

∫ ∞

0
e

1
2 σ 2T s2d FT = MT

(
1

2
σ 2s2

)

= λ

λ − 1
2σ

2s2
. (3)

Note that (3) is a rational function in s, i.e., X is bilateral matrix-exponentially

distributed, denoted by X ∼ B M E
(
1
2 ,−

√
2λ
σ

,
√
2λ
σ

, 1
2 ,

√
2λ
σ

,−
√
2λ
σ

)
.

Considering the case when σ 2 = 1 and λ = 1, i.e., fT = Exp(1) and fX |T =
N (0, T ), the mgf of X is given by

MX (s) = 1

1 − 1
2 s2

. (4)

On the other hand, Bayes’ theorem implies

fT |X ∝ fX |T · fT ∝ T −1/2 exp

(
− 1

2T
x2

)
· exp(−T )

= T −1/2 exp

(
−1

2
(x2T −1 + 2T )

)

= G I G(T ; λ∗ = 1/2, δ∗ = x2, γ ∗ = 2),
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where GIG denotes the Generalized Inverse Gaussian parametrized as in [11].
The one-step transition probability function is given through

p(xt , xt+1) =
∫ ∞

0
fXt+1|T · fT |Xt dT

=
∫ ∞

0
N (Xt+1; 0, T ) · G I G(T ; λ∗ = 1/2, δ∗ = x2

t , γ ∗ = 2)dT

= G H(xt+1; 1/2,
√
2, 0, xt , 0),

where GH denotes the Generalized Hyperbolic distribution parametrized as in [4].
Notice that, for this transition density, we have

fX (xt+1) =
∫
R

p(xt , xt+1)d FX (xt ),

where the marginal distribution is given by fX = G H(λ = 1, α = √
2, β = 0,

δ = 0, μ = 0).
It is well known the mgf of X ∼ G H(λ, α, 0, 0, 0) is given by

MX (s) =
(

α2

α2 − s2

)λ/2
Kλ(δ

√
α2 − s2)

Kλ(δ
√

α2)
=

(
α2

α2 − s2

)λ/2 (
α2

α2 − s2

)λ/2

=
(

α2

α2 − s2

)λ

=
(

1

1 − s2
α2

)λ

, (5)

where Kλ denotes the modified Bessel function. Here we use that Kλ(z) ≈ Γ (λ)

2

(
2
z

)λ

for λ > 0 and z ↓ 0.
Thus, taking λ = 1 and α2 = 2 in (5), we have that MX (s) = 1

1− 1
2 s2

, which coin-

cides with (4).

3.1.2 Second Case

Let us consider λ ∈ N, fX |T = N (0, T ) and FT = G I G(λ, 0, α2) = Ga(λ, α2/2)
with

MT (s) =
(
1 − s

α2/2

)−λ

=
(

1

1 − s
α2/2

)λ

.

Then, the mgf of X is given by

MX (s) =
∫ ∞

0
MX |T (s)d FT =

∫ ∞

0
e

1
2 T s2d FT = MT

(
1

2
s2

)
=

(
1

1 − s2
α2

)λ

,(6)
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which is a rational function of s. Therefore, in this case X ∼ B M E(α+, T+, t+,

α−, T−, t−), where

T+ = −T− =

⎛
⎜⎜⎜⎝

−α α 0 . . . 0
0 −α α . . . 0
...

...
. . .

...

0 0 0 . . . −α

⎞
⎟⎟⎟⎠ ,

of dimension λ × λ, and t+ = −t− = (0, 0, . . . , α)′ of dimension λ. Depending on
λ, the vectors α+,α− of dimension λ have special form that can be found using
Eq. (2), for example, if λ = 2 then α+ = α− = (1/4, 1/4), if λ = 3, α+ = α− =
(1/8, 3/16, 3/16), and so on.

Bayes’ theorem implies that fT |X = G I G(λ − 1/2, X2, α2), and the one-step
transition probability function is given by p(xt , xt+1) = G H(xt+1; λ − 1/2, α, 0,
xt , 0), with marginal distribution G H(λ, α, 0, 0, 0), whose mgf coincides with (6).

3.1.3 Third Case

Let us consider fX |T = N (βT, T ), and FT = G I G(λ, 0, α2 − β2) = Ga(λ, (α2 −
β2)/2) where λ ∈ N (i.e., FT is an Erlang distribution), thus its mgf is given by

MT (s) =
(
1 − s

(α2 − β2)/2

)−λ

=
(

1

1 − s
(α2−β2)/2

)λ

.

Consequently, the mgf of X is given by

MX (s) =
∫ ∞

0
MX |T (s)d FT =

∫ ∞

0
eβT s+ 1

2 T s2d FT = MT

(
βs + 1

2
s2

)

=
(

1

1 − 2βs
α2−β2 − s2

α2−β2

)λ

, (7)

which is a rational function of s, i.e., X ∼ B M E(α+, T+, t+,α−, T−, t−), where

T+ =

⎛
⎜⎜⎜⎝

−α + β α − β 0 . . . 0
0 −α + β α − β . . . 0
...

...
. . .

...

0 0 0 . . . −α + β

⎞
⎟⎟⎟⎠ , t+ = (0, 0, . . . , α − β)′
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T− =

⎛
⎜⎜⎜⎝

α + β −α − β 0 . . . 0
0 α + β −α − β . . . 0
...

...
. . .

...

0 0 0 . . . α + β

⎞
⎟⎟⎟⎠ , t− = (0, 0, . . . ,−α − β)′.

The vectors α+,α− of dimension λ can be found using Eq. (2).
Bayes’ theorem implies that fT |X = G I G(λ − 1/2, X2, α2), and the one-step

probability is given by

p(xt , xt+1) = G H(xt+1; λ − 1/2,
√

α2 + β2, β, xt , 0), (8)

with marginal distribution G H(λ, α, β, 0, 0), whose mgf coincides with (7).
Having this, and based on [11], we are ready to give the first important definition.

Definition 3.1 A strictly stationary Bilateral Matrix-Exponential ARCH-type
model, referred as BME-ARCH(1) model, is a Markov process {Xt }∞t=1 with transi-
tion distribution givenby (8) andmarginal distributionBMEwithmoment-generating
function given by (7).

3.2 Multivariate Case

Now, let us consider the multivariate case, which is a natural extension of the uni-
variate case.

Definition 3.2 [9] A random vector X ∈ R
q of dimension q is multivariate Bilateral

Matrix-Exponential (MVBME) distributed if the joint moment-generating function
E(e<X,s>), s ∈ R

q is a multidimensional rational function that is a fraction between
two multidimensional polynomials. Here < ·, · > denotes the inner product in R

q .

In [9], we find the following characterization of this class of distributions.

Theorem 3.1 A vector X follows a multivariate Bilateral Matrix-Exponential dis-
tribution if and only if < X, s >∼ B M E for all s ∈ R

q/0.

Now, consider independent Bi (t) ∼ N (βt, t), i = 1, . . . , q, and

fT = G I G(λ, 0, α2 − β ′Δβ), (9)

where λ ∈ N, α2 > β ′Δβ, Δ ∈ R
q×q is a positive definite matrix with |Δ| = 1, and

β = (β, . . . , β)′ ∈ R
q , i.e., β is a vector of dimension q × 1.

Equation (9) denotes the density of a Gamma distribution (in particular an Erlang)
with parameters (λ, (α2 − β ′Δβ)/2), i.e., we have that its mgf is given by
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MT (s) =
(
1 − s

(α2 − β ′Δβ)/2

)−λ

=
(

1

1 − s
(α2−β ′Δβ)/2

)λ

.

Define X|T = (B1(T ), . . . , Bq(T ))′, i.e., fX|T = Nq(T Δβ, T Δ). Thus, the mgf
of X is given by

MX(s) =
∫ ∞

0
MX|T (s)d FT =

∫ ∞

0
exp

(
s′T Δβ + 1

2
s′T Δs

)
d FT

=
∫ ∞

0
exp(θT )d FT ; where θ = s′Δβ + 1

2
s′Δs

= MT (θ) =
(

1

1 − θ

(α2−β ′Δβ)/2

)λ

=
(

1

1 − 2s′Δβ

α2−β ′Δβ
− s′Δs

α2−β ′Δβ

)λ

(10)

which is a rational function of s. This implies that X ∼ MV B M E , and thus
< X, s >∼ B M E (see Sect. 3.1.3).

On the other hand, Bayes’ theorem implies

fT |X = G I G
(
λ − q

2
, r2, α2

)

where r =
√
x′Δ−1x with x ∈ R

q .
Following similar steps to the univariate case, we can construct an i-orderMarkov

transition probability function as follows:

p(xt+i |x(t,i−1)) =
∫
R+

N (xt+i ; Tβt+i , T )G I G

(
T ; λ − i

2
, r2(t,i−1), α

2

)
dT

= G H

(
xt+i ; λ − i

2
,

√
α2 + β2

t+i , βt+i , r(t,i−1), 0

)
(11)

where r(t,i−1) =
√
x(t,i−1)′Δ−1x(t,i−1), and x(t,i−1) is an i-dimensional vector deno-

ting the time-space values corresponding to X (t,i−1) = (Xt , . . . , Xt+i−1).

According to the previous section, the marginal distribution is given by G H(λ, α, β,

0, 0) with mgf on the form (7), which belongs to the BME class.
Now, we are ready to address the second important definition of this paper.

Definition 3.3 Suppose that {Xt }t≥1 has a marginal distribution G H(λ, α, β, 0, 0),
and Xt+i |X(t,i−1), i = 1, . . . , q, follows the distribution given in (11) (so that
marginally Xt+q ∼ G H(λ, α, β, 0, 0)). The resulting Markov process {Xt }t≥1 will
be termed as the stationary BME-ARCH (q) model.
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4 Construction Using Matrix-Exponential Distributions

From [2, 3], another characterization of the Matrix-Exponential (ME) distributions
is that they are the absolutely continuous distributions on the positive real line with
densities f that are trigonometric polynomials:

Z ∼ M E, with fZ (z) =
q∑

j=0

c j z
n j eθ j z,

where q and the n j ’s are nonnegative integers, and the c j ’s and θ j ’s are complex.
For the sake of notation, we denote η j = −θ j , and suppose η j > 0. Taking fX |Z =

N (0, Z) (see [9]), we have that the marginal of X is given by

fX (x) =
∫ ∞

0
fX |Z (x |z) · fZ (z)dz =

∫ ∞

0

1√
2π

z−1/2 exp

(
−1

2
x2z−1

) q∑
j=0

c j zn j e−η j zdz

=
q∑

j=0

c j
1√
2π

∫ ∞

0

(
z−1/2zn j

)
exp

(
−1

2
x2z−1 − η j z

)
dz

=
q∑

j=0

c j
1√
2π

∫ ∞

0
zλ j −1 exp

(
−1

2
(x2z−1 + 2η j z)

)
dz; λ j − 1 = −1/2 + n j

=
q∑

j=0

c j
1√
2π

2xλ j Kλ j (αx)

αλ j
; α2 = 2η j

=
q∑

j=0

[
c j

1√
2π

2

αλ j

1

a(λ, α, 0, 0)

] [
a(λ, α, 0, 0)xλ−1/2Kλ−1/2(αx)

] ; λ = λ j + 1/2

=
q∑

j=0

c∗
j G H(x; λ, α, 0, 0, 0) (note that both λ andα depend on j)

where

c∗
j = c j

1√
2π

2

αλ j

1

a(λ, α, 0, 0)
, and a(λ, α, 0, 0) = αλ+1/2

√
2πΓ (λ)2λ−1

.

Thus

c∗
j = c jΓ (λ)

(
2

α2

)λ

.

The mgf of X is given by

MX (s) =
∑

j

c∗
j

(
1

1 − s2/α2

)λ

.
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Note this is a rational function since λ is an integer (λ = 1 + n j ). Thus, the marginal
is a BME distribution (see Sect. 3.1.2).

Now, the conditional density function can be obtained as

fZ |X (z|x) ∝ fX |Z (x |z) · fZ (z) ∝ z−1/2 exp

(
−1

2
x2z−1

) q∑
j=0

c j z
n j e−η j z

=
q∑

j=0

c j
(
z−1/2zn j

)
exp

(
−1

2
x2z−1 − η j z

)

=
q∑

j=0

c j z
λ j −1 exp

(
−1

2
(x2z−1 + 2η j z)

)
; where λ j − 1 = −1/2 + n j

∝
q∑

j=0

c j G I G(z; λ j , x2, 2η j ).

The one-step transitions are given by

p(xt , xt+1) =
∫ ∞

0
fXt+1|Z · fZ |Xt dz

=
∫ ∞

0
N (xt+1; 0, z)

∑
j

c j G I G(z; λ j , x2
t , 2η j )dz

=
∑

j

c j

(∫ ∞

0
N (xt+1; 0, z)G I G(z; λ j , x2

t , 2η j )dz

)

=
∑

j

c j G H(xt+1; λ j ,
√
2η j , 0, xt , 0).

With marginal distribution

∑
j

c∗
j G H(λ j + 1/2,

√
2η j , 0, 0, 0)

which is a BME distribution (see Sect. 3.1.2).

Example 4.1 Hyper-exponential distribution

Consider k random variables Yi ∼ exp(λi ), i = 1, 2, . . . , k, and assume that Z takes
the value of Yi with probability γi . The distribution of Z , called hyper-exponential
distribution, can be expressed as a proper mixture of the Yi ’s. A ME representation
is given by
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γ = (γ1, . . . , γk), L =

⎛
⎜⎜⎜⎝

−λ1 0 . . . 0
0 −λ2 . . . 0
...

...
. . .

...

0 0 . . . −λk

⎞
⎟⎟⎟⎠ , � = (λ1, λ2, . . . , λk)

′,

with density function given by fZ (z) = ∑k
i=1 γiλi e−λi z .

Taking the conditional density function as fX |Z = N (0, Z) then

fZ |X =
k∑

i=1

γiλi G I G(z; 1/2, x2, 2λi ),

and the one-step transition probability is given by

p(xt , xt+1) =
k∑

i=1

γiλi G H(xt+1; 1/2,
√
2λi , 0, xt , 0),

withmarginal distribution
∑k

i=1 γi GH(1,
√
2λi , 0, 0, 0), andmgf

∑k
i=1 γi

(
1

1−s2/2λi

)
.

Indeed, we can also compute some useful moments.

1. The first moment: E(X) = ∫ ∞
0 E(X |Z)d FZ . If fX |Z = N (0, Z), then

E(X |Z) = 0, i.e., E(X) = 0.
2. Secondmoment:E(X2) = ∫ ∞

0 E(X2|Z)d FZ = ∫ ∞
0 zd FZ = E(Z).Weknow that

if Z ∼ M E(γ , L, �), its moments are given by Mi = E(Zi ) = i !γ (−L)−(i+1)�.
In particular, for Example4.1, we get that E(X2) = E(Z) = ∑k

i=1
γi

λi
.

3. Third moment: E(X3) = ∫ ∞
0 E(X3|Z)d FZ = 0.

4. Fourth moment: E(X4) = ∫ ∞
0 E(X4|Z)d FZ = ∫ ∞

0 3z2d FZ = 3E(Z2). Since
Z ∼ Hyper-exponential then

E(X4) = 3
k∑

i=1

2γi

λ2
i

= 6
k∑

i=1

γi

λ2
i

.

Note that we could also use Proposition 1 from [11] in order to find the moments.

Now, we will present the third important result from this paper: the construction
of a BME-normal model.

4.1 A BME-Normal Model

It is well known that for a nonnegative random variable Z ∼ M E(γ , L, �), with
� = −Le, its mgf is given by
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MZ (s) = γ (sL−1 + I)−1e,

where e is a vector of appropriate dimension of ones.
The construction of the BME-normal model is as follows.
Let Z ∼ M E(γ , L, �), τ > 0, and consider X |Z ∼ N (Zμ, Zτ). Then the mgf

of X is given by

MX (s) =
∫ ∞

0
exp

(
zsμ + z

1

2
s2τ

)
d F(z) = γ (θL−1 + I)−1e

where θ = sμ + 1
2 s2τ . Since this is a rational function of s, thus X ∼ B M E , whose

matrix representation depends on γ and L.
Imposing Y |(X, Z) ∼ N

(
X
Z ,

φτ

Z

)
, with φ > 0, then

X |(Y, Z) ∼ N

(
Z

Y + φμ

1 + φ
, Z

φτ

1 + φ

)
.

The n-steps transition probability can be obtained from

Xn|(X0, Z) ∼ N (an X0 + Zbn, Zcn)

where

an = an
1 = 1

(1 + φ)n

bn = b1(1 + a1 + · · · + an−1
1 ) = μ(1 − (1 + φ)−n)

cn = c1(1 + a2
1 + · · · + a2(n−1)

1 ) = τ(1 − (1 + φ)−2n).

See [12] for more details.
The asymptotic distribution can be obtained taking n → ∞, thus an → 0, bn →

μ, and cn → τ , i.e., X∞|Z ∼ N (Zμ, Zτ), and X∞ ∼ B M E .

Note that we can write

Xn|Xn−1 = AXn−1 + B + Cεn,

where

A = 1

1 + φ
, B = Z

φμ

1 + φ
, C = (Zτ(1 − (1 + φ)−2))1/2, εn ∼ N (0, 1).

The process {Xn}∞n=1 is stationary.
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A simulation algorithm for this process is the following:

Algorithm 1 Simulation of {Xn}n≥1

For φ > 0.
1: Simulate Z ∼ M E(γ , L, �)

2: Simulate X0 ∼ N (Zμ, Zτ)

3: Generate ε1, ε2, · · · ∼ N (0, 1)
4: X1 = 1

1+φ
X0 + Z φμ

1+φ
+ (Zτ(1 − (1 + φ)−2))1/2ε1

5: X2 = 1
1+φ

X1 + Z φμ
1+φ

+ (Zτ(1 − (1 + φ)−2))1/2ε2

.

.

.

An example of the simulation of this process is the following.

Fig. 1 All 200 trajectories and fixed size 900
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Fig. 2 All 200 trajectories and fixed size 10

Example 4.2 With μ = 0, τ = 1, and Z ∼ Ga(3, 2), we generate 200 trajectories
of size 1000. In Figs. 1, 2, 3, and 4, we show the histograms for different samples
and their corresponding normal fitting.

An ME representation of Ga(3, 2) is given by

γ = (1, 0, 0); L =
⎛
⎝−2 2 0

0 −2 2
0 0 −2

⎞
⎠ ; � = (0, 0, 2)′,

with mgf

Mz(s) = 1(
1 − s

2

)3 .
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Fig. 3 Fixed trajectory 1 and sizes n = 801, . . . , 1000

Sincewe canwrite X0 = Z X∗
0 with X∗

0 |Z ∼ N (μ, τ/Z), then, as a particular case
of the models presented in [12] in continuous time, we have that

Xt |(X∗
0, Z) ∼ N (Z(at X∗

0 + bt ), Zct )

where at=(1 + φ)−t ; bt = μ(1 − (1 + φ)−t ); ct = τ(1 − (1 + φ)−2t ), for φ>0
and t > 0.

The Chapman–Kolmogorov (CK) equation is satisfied if E(MXt+s |Xs (λ)) =
MXt |X0(λ). Since

MXt |X0(λ) = γ (θt L−1 + I)−1e

where θt = λ(at x∗
0 + bt ) + 1

2λ
2ct , we get that

E(MXt+s |Xs (λ)) = γ (θt+sL−1 + I)−1e
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Fig. 4 Fixed trajectory 1 and sizes n = 10, . . . , 209

where θt+s = λ(at+s x∗
0 + bt+s) + 1

2λ
2ct+s . (See [12] for more details). Thus, CK is

satisfied.

5 Conclusions

In this paper, we have considered a wide class of distributions called Matrix-
Exponential (ME) which is dense in R

d+, and it is a robust family of distribu-
tions. In order to extend this class into the real line, we have the Bilateral Matrix-
Exponential (BME) distributions, which are defined as the random variables with
rational moment-generating function.

In the area of stochastic models, the classes of ME and BME are well known,
although in Bayes community they are not. Some Markov Chain Monte Carlo
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algorithms, like the Metropolis–Hastings and the Gibbs sampler, have been used
in order to estimate a sub-class of the ME distributions called phase-type distribu-
tions. Exploring the construction of stationary processes using the ME and BME
classes of distributions represents an innovative way of modeling.

Indeed, we have provided interesting alternatives on constructing stationary
Markov processes havingBMEasmarginal distributions, using their characterization
of having rational moment-generating functions. As an extension, we can also use
the BMEmarginals considering the matrix-analytic representation, even considering
rewards, in order to extend their field of applications.
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fellowship at IIMAS that gave origin to the present work.
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BoostNet: Bootstrapping Detection
of Socialbots, and a Case Study from
Guatemala

E. I. Velazquez Richards, E. Gallagher and P. Suárez-Serrato

Abstract We present a method to reconstruct networks of socialbots given minimal
input. Thenwe use Kernel Density Estimates of Botometer scores from 47,000 social
networking accounts to find clusters of automated accounts, discovering over 5,000
socialbots. This statistical anddata-driven approach allows for inference of thresholds
for socialbot detection, as illustrated in a case study we present from Guatemala.

Keywords Kernel decomposition estimate · Data analysis · Social network
analysis · Empirical data

1 Introduction

In this paper, we analyze data from the social networking platform Twitter. We use
a statistical approach, with bi-variate Kernel Density Estimates, to detect automated
accounts (socialbots) at scale in a large dataset. We present our BoostNet algorithm,
which allows for the detection of networks of socialbots in microblogs and social
media platforms given a very small number of initial accounts. We illustrate its
performance with empirical data collected from Twitter in relation to current events
in Guatemala.

To begin to describe someof the context of the events that have led to this particular
social media situation, first we point out that the displacement of people due to
armed conflict and corruption is a problem that affects many countries around the
world. This phenomenon has strongly affected the Central American countries of
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Honduras and Guatemala. Nevertheless, currently the US enjoys the lowest level of
undocumented immigrants in US in a decade, according to a Pew Research Center
analysis of government data [12]. The same study indicates that border apprehensions
have declined for Mexicans but risen for other Central Americans.

What are the root causes ofmigration?Understanding these can better help prevent
forced displacement of people and thus also the effects on societies that receive them.
In a previous work, we investigated the use of socialbots in Honduras in relation to
protests alleging electoral fraud [9].

Consider the case of Guatemala. The International Commission against Impunity
in Guatemala (CICIG https://www.cicig.org/ [4]) was created in 2006 by the United
Nations and Guatemala. It is an international body whose mission is to investigate
and prosecute serious crime [4].

An independent international body, CICIG investigates illegal security groups and
clandestine security organizations in Guatemala. These are criminal groups believed
to have infiltrated state institutions, fostering impunity, and undermining democratic
advances since the end of the armed conflict in the 1990s. The third impeachment
against President Jimmy Morales for illicit electoral financing during his electoral
campaign in 2015 was requested by the Attorney General and the CICIG.

The mandate of the CICIG was set to end originally on September 3, 2019, but it
has been cut abruptly short as Guatemalan President Morales ordered the CICIG to
leave the country on January 7, 2019 [11].

After we published our work on socialbots in Honduras [9], we were contacted
by a Guatemalan journalist claiming that similar socialbots were acting against the
population there. It was claimed that multiple Twitter accounts were being used to
systematically intimidate and harassmembers of theCICIG and themedia that covers
their activities. In April 2018, we were provided with 19 seed accounts of potential
socialbots that were notorious in this instance for their negative behavior.

From these 19 accounts, we reconstructed a network of over 35,000 accounts, by
collecting their followers and their followees. The rationale is that socialbot accounts
are not generally followed by human accounts. Following this premise, we begin
with these 19 seed accounts and take two hops out into the follower network to find
potential accounts that are also automated and being used for this purpose. This
method, which we call BoostNet, is explained in Algorithm 1 and the networks are
visualized in Fig. 1 in terms of reach and spread of the full network, and in Fig. 2 in a
subset of the most active bot accounts and their retweet relationships. This strategy
led us to discover a socialbot network of over 3000 accounts. To this end, we queried
Botometer [6] and performed a statistical analysis of the scores it provides to find the
network of socialbots (explained below, see Fig. 3). Botometer is a machine learning
algorithm that is trained to categorize Twitter accounts as human or bot based on a
list of tens of thousands of previously labeled examples. The algorithm scans account
for about 1,200 different characteristics and behavior patterns and ranks the account
on a scale of probability whether the account is automated or human-operated.

We further validated our method by using 14more accounts mentioned in a media
interviewabout socialbot harassment inGuatemala fromNovember 2018. From these
14 seed accounts, we reconstructed a full network of over 12,000 accounts and found

https://www.cicig.org/
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Fig. 1 Gephi network graph created using OpenOrd and Force Atlas 2 force-directed layout algo-
rithms. The network contains 35,208 nodes, 59,471 edges, and 8 distinct clusters or communities.
As per Twitter’s data policies, we have used the user ID to label the nodes, and not the account
handle

over 2,000 socialbots (see Fig. 4). There were over 600 socialbots common to both
datasets.

In order to better understand the magnitude of this socialbot network, it is help-
ful to observe that Guatemala has a population of around 17 million people, and
Internet users include only 4.5 million [10]. Measurements of social media use in
Guatemala indicate that 5.24% of Internet users are active on Twitter [13]. We can
therefore extrapolate an—admittedly rough—estimate of around 250,000 Twitter
users in Guatemala (2018 figures). In this perspective, socialbot networks of 3,000
and 2,000 accounts can have a considerable impact.

Finally, at the request of a reviewer, we also include the use of a novel method to
quantify the topological effect that bot accounts create in a network. We use a new
graph distance [16] that recovers topological features found via non-backtracking
cycles—and is inspired by rigidity properties of the marked length spectrum—to
precisely measure how a network is affected by the presence of bots. These results
are summarized in Table2.
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Fig. 2 Gephi network graph created using OpenOrd and Force Atlas 2 force-directed layout algo-
rithms. The complete network (see Fig. 1) contains 35,208 nodes, 59,471 edges, and 8 distinct
clusters or communities, which were filtered by degree range 50 revealing 14 visible nodes (0.04%)
and 100 visible edges (0.17%) of the complete network

2 Discussion

The influence of socialbots in political life can restrict free speech and disband activist
groups. We have researched the effect of socialbots previously in case studies on
Mexico and Honduras. A study by Freedom House now includes pro-government
pundits and bots to their considerations of government censorship online as they are
capable of altering political dialogue.

FakeTwitter users among the followers of political figures are now a common phe-
nomenon, known as astro-turf, with up to 20–29% fake followers in some prominent
cases. Keeping track of socialbots is therefore important, for example, in electoral
races and in the recognition of influencers.

To evaluate the role of bots, it is also possible to cluster opinions using hashtags.
These methods depend on accessibility of data. It can become expensive to buy
a complete dataset, and the sampling method of Twitter’s Stream API introduces
additional statistical uncertainties. Here, we circumvent these issues by focusing on
an initial set of accounts and reconstruct a network of linked accounts.
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Post sentiment has been shown to be efficient at separating human fromnonhuman
users in Twitter; however, these methods work best in English. This is why in this
paper we concentrate on nonlanguage-specific features, as the language processing
applications to Spanish—as well as for other low resource languages—are not yet
available.

3 Data Collection

In this section,wedescribe our strategy to gather a large network of socialbot accounts
froma small number of accounts that are reported to be abusing a socialmedia service.
We present an algorithm that can be replicated in other circumstances, and can be
easily implemented to reconstruct a complete network of linked accounts.

3.1 BoostNet: A Method to Find Socialbot Networks with
Minimal Input

The following pseudocode illustrates our workflow to construct networks where the
human and socialbot accounts can be analyzed. Our method allows us to find large
networks of socialbots given a small number of starting accounts. We illustrate its
performance with an empirical case study here, we discovered two sets of socialbots:
one containing over 3,000 socialbot accounts and the second containing over 2,000
socialbot accounts, starting from only 19 and 14 accounts, respectively, in each case
that were reportedly harassing journalists and members of the CICIG.

Algorithm 1 BoostNet : Bootstrapping Socialbot Network Detection
Require: A collection C of Twitter Accounts
Ensure: Full linked network N (C) of with Socialbot account score
1: Initialize
2: For each account a in C :
3: Collect followers F(C) of the collection C from Twitter’s Rest API
4: Collect those accounts FR(a) who are following a from Twitter’s Rest API
5: Obtain scores of every account in F(C), FR(a) and a from Botometer, to determine if it is

Human or Socialbot
6: Construct a follower–followee network N (C) annotated with Botometer scores
7: return N (C)

8: End

3.2 Comparison with Twitter’s Stream API

Onepoignant criticismof certainTwitter studies is the reliance onTwitter’s Streaming
API for data acquisition. While Twitter’s Streaming API provides free and public
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access to a sample of tweets and has promoted research into social networks, there
are certain limitations that its sampling method impose. Here we circumvent these
difficulties in finding networks of linked accounts. Connections of followers and
followees were queried from Twitter’s Rest API. In this way, we have reconstructed
a full dataset of accounts that are linked in the same connected network.

Certain studies have avoided this sampling bias uncertainty fromTwitter’s Stream-
ing API by using the Search API to obtain complete datasets [14]. Another option
seems to work directly with Twitter, and some research has been successful at estab-
lishing influence relations using this kind of access [1].

For this work, we have reconstructed a full dataset of interest for our research
using the Rest API only.

4 Statistical Detection of Socialbot Networks

For a review of Botometer, we recommend [8]. Socialbots have been employed for
political purposes [20]. It has also been observed that this technology is used in
marketing and propaganda [18]. Although research has uncovered other successful
methods of bot detection [2, 3, 5, 7], Botometer provides public API access. The
features it has built in as well as a review of how it compares to, and surpasses, other
methods can be found in [6, 17].

We have previously used this method for identifying bots in online communities
in Latin America, specifically in Mexico and Honduras [9, 15, 19].

In this work, we have concentrated on three of the nonlanguage-specific classifiers
that Botometer provides. Botometer is a supervised learning tool that detects bot
accounts. It exploits over 1,200 features, including user metadata, social contacts,
diffusion networks, content, sentiment, and temporal patterns. Evaluated on a large
dataset of labeled accounts, it has reported high accuracy in discerning human from
bot accounts.

Network features capture various dimensions of information diffusion patterns.
User features are based on Twitter metadata related to an account, including language
geographic locations and account creation time. Friend features include descriptive
statistics relative to account contacts such as median moments and entropy of the
distribution of the followers, followees, and posts. Temporal features capture timing
patterns of content generation and retweets, for example, how that signal is similar
to a specific process (Poisson) or the average time between two consecutive posts.

Using the scores from Temporal, Network, and Friend evaluations that each
account in our dataset yields, we aggregate this data and then find a 2D bi-modal
behavior using KDE, as illustrated in Figs. 3 and 4.

It is important to highlight that a nonparametric method is needed in order to infer
the possible separation between types of accounts (human or bot) without making
any a priori assumptions about how these are distributed or the mass that should be
associated to them. Using kernel density estimates allows us to visualize different



BoostNet: Bootstrapping Detection of Socialbots, and a Case Study from Guatemala 151

Fig. 3 2D Kernel decomposition estimate for Network-Friend, Network-Temporal, and Temporal-
Friend, pairwise classifiers from Botometer, for the 35,308 Twitter accounts in our first dataset,
obtained through our BoostNet method. The regions in the upper right corners correspond to the
over 3,000 socialbot accounts that we discovered. These results were obtained on April 9–18, 2018

Fig. 4 2D Kernel decomposition estimate for Network-Friend, Network-Temporal, and Temporal-
Friend, pairwise classifiers from Botometer, for the 12,044 Twitter accounts in our second dataset,
obtained through our BoostNet method. The regions in the upper right corners correspond to the
over 2154 socialbot accounts that we discovered. These results were obtained between November
2018 and January 2019

Table 1 Linked accounts in our two datasets, from the full networks BoostNet reconstructed in
April and in November 2018. A comparison between both datasets yields 3688 shared accounts,
and at least 646 of them were classified as socialbots

Accounts in network

Total Bots

April 35,208 3009

November 12,044 2154

kinds of automated accounts (when they are present) and also provides an insight into
the limitation of choosing a pre-established threshold to decide whether an account
should be considered a bot, or not.

A numerical summary of the number of accounts found appears in Table1.



152 E. I. Velazquez Richards et al.

5 Topological Network Effect of Bots

How can we quantify the topological effects of bot accounts in a network? The
third named author together with Leo Torres and Tina Eliassi-Rad defined a new
graph distance that utilizes topological information from the fundamental group
(first homotopy group) of the underlying graph, and metric information in its marked
length spectrum [16]. In order for this method to be applied here, we consider each of
the two datasets (from April and from November, both in 2018) and we add a single
node to each one of the associated follower–followee graphs. In this way, we now
have connected graphs G ′

A and G ′
N . From each of these graphs, we now delete the

nodes that have been classified as bots, and obtain two graphs GA and GN . Now we
compute the spectral non-backtracking distances d(GA,G ′

A) and d(GN ,G ′
N ), which

provide a topologically informed way to measure the network effects of bots. The
results are included in Table2. In both cases, we see that there is a positive distance.
However, a comprehensive investigation of how this distance performs is beyond the
scope of this article.

In order to understand the change in the dynamics of information diffusion in a
network, we compare the change of the first eigenvalue λG of the graph Laplacian,
before and after removing the bots. In thisway,we can also quantify how thedynamics
of information flows inside the network are affected by the presence of bots. The
precise changes for these values are shown in Table3.

Table 2 Measurement of topological changes in the two datasets, as the bot accounts are removed
and the spectral non-backtracking distance (using Wasserstein distance between eigenvalues) is
computed between the two resulting networks. For more on this method and its validation with
random graph models as well as empirical data, we refer interested readers to [16]

Topological effect of bots in a network

Non-backtracking distance

April d(GA,G ′
A) = 0.0997397511933

November d(GN ,G ′
N ) = 0.0856553118609

Table 3 An approximation to information diffusion changes in the two datasets can be measured
using the changes in the first eigenvalue of the graph Laplacian

Information diffusion effect of bots in a network

Change in Laplacian 1st eigenvalue

April λGA − λG′
A

= 1504.5

November λGN − λG′
N

= 330.0
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6 Conclusions

Our work here demonstrates how statistical methods can show the existence of
considerable socialbot network of linked accounts. Given the potential size of
Guatemala’s total Twitter user base, the amount of socialbot accounts could cer-
tainly impede freedom of expression. These findings corroborate the experience of
users (and journalists)who claimedwidespread abuse of this technology for nefarious
purposes was present in Guatemala.

Moreover, our BoostNet strategy can be employed in other circumstances and
social media platforms, where limited observational data can then lead to a complete
reconstruction of networks of malicious accounts.

We hope that various statistical, topological, and dynamical approaches used here
will be of interest to researchers and social media users who face these kinds of
circumstances.
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