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Preface

The increasing complexity of software and hardware systems and their ever more
central role in society poses many challenges concerning their reliability, safety,
correctness, and robustness. Based on a variety of fundamental concepts from
theoretical computer science to formal methods techniques aimed at making a
significant contribution to better quality systems. The development and use of formal
methods aspire to mathematically sound methods and tools for system analysis and
verification.

The present volume contains the post-proceedings of the 8th IPM International
Conference on Fundamentals of Software Engineering (FSEN 2019), which was held
in Tehran, Iran, during May 1–3, 2019. This two-yearly event is organized by the
School of Computer Science at the Institute for Research in Fundamental Sciences
(IPM) in Iran. The topics of interest in FSEN span over all aspects of formal methods,
especially those related to advancing the application of formal methods in the software
industry and promoting their integration with practical engineering techniques.

The Program Committee of FSEN 2019 consisted of 44 top researchers from 17
countries. In this edition of FSEN, 47 submissions were received from 19 countries.
Each submission was reviewed by at least three independent referees, for its quality,
originality, contribution, clarity of presentation, and its relevance to the conference
topics. After thorough discussions on each individual paper, the referees selected 14
full papers and 3 short papers for inclusion in the present post-proceedings after a
further review of their revised versions.

Many people contributed to making FSEN 2019 a success. First of all, we would
like to thank all authors that submitted high-quality papers. Special thanks also go to
the Institute for Research in Fundamental Sciences (IPM) in Tehran, Iran, for their
financial support and for hosting FSEN 2019. We thank the distinguished keynote
speakers for their excellent presentations: Rocco De Nicola, Giovanna Di Marzo
Serugendo, and Martin Wirsing. We also thank the members of the Program
Committee for their excellent contributions, making FSEN a high-quality international
conference. Special thanks also go to the general chairs, Farhad Arbab and Hamid
Sarbaziazad, and to the Steering Committee, in particular Marjan Sirjani, for their
valuable support during all phases of the organization. We also thank the publicity
chair Maurice ter Beek for the efficient publicity, the local organization chair
Hamidreza Shahrabi and his wonderful team for their fantastic hospitality, as well as
EasyChair and Springer for their facilities that greatly helped us run the review process
and prepare the proceedings. Finally, we are indebted to all conference attendees for
their active and lively participation, also through the presentation of more than 15
posters, ultimately contributing to the success of this special conference series.

July 2019 Hossein Hojjat
Mieke Massink



Organization

Conference Chairs

Hossein Hojjat Rochester Institute of Technology, USA
Mieke Massink CNR-ISTI, Italy

Publicity Chair

Maurice H. ter Beek CNR-ISTI, Italy

Program Committee

Mohammad Abdollahi
Azgomi

Iran University of Science and Technology, Iran

Erika Abraham RWTH Aachen University, Germany
Gul Agha University of Illinois at Urbana-Champaign, USA
Christel Baier Technical University Dresden, Germany
Ezio Bartocci Vienna University of Technology, Austria
Marcello Bonsangue University of Leiden, The Netherlands
Mario Bravetti University of Bologna, Italy
Michael Butler University of Southampton, UK
Alessandra Di Pierro University of Verona, Italy
Ali Ebnenasir Michigan Technological University, USA
Wan Fokkink Vrije Universiteit Amsterdam, The Netherlands
Adrian Francalanza University of Malta, Malta
Masahiro Fujita University of Tokyo, Japan
Maurizio Gabbrielli University of Bologna, Italy
Fatemeh Ghassemi University of Tehran, Iran
Jan Friso Groote Eindhoven University of Technology, The Netherlands
Hassan Haghighi Shahid Beheshti University, Iran
Philipp Haller KTH Royal Institute of Technology, Sweden
Hossein Hojjat Rochester Institute of Technology, USA
Mohammad Izadi Sharif University of Technology, Iran
Narges Khakpour Linnaeus University, Sweden
Ramtin Khosravi University of Tehran, Iran
Natallia Kokash IT Consultant NK Research, The Netherlands
Eva Kühn Vienna University of Technology, Austria
Kim Gulstrand Larsen Aalborg University, Denmark
Zhiming Liu Southwest University, China
Mieke Massink CNR-ISTI, Italy
Emanuela Merelli University of Camerino, Italy



Hassan
Mirian-Hosseinabadi

Sharif University of Technology, Iran

Ugo Montanari University of Pisa, Italy
Peter Mosses Swansea University, UK
Mohammadreza Mousavi University of Leicester, UK
Ali Movaghar Sharif University of Technology, Iran
Magnus O. Myreen Chalmers University of Technology, Sweden
Shiva Nejati University of Luxemburg, Luxemburg
Jose Proença CISTER-ISEP and HASLab-INESC TEC, Portugal
Wolfgang Reisig Humboldt-Universitaet zu Berlin, Germany
Philipp Rümmer Uppsala University, Sweden
Gwen Salaün University of Grenoble Alpes, France
Cristina Seceleanu Mälardalen University, Sweden
Marjan Sirjani Mälardalen University, Sweden, and Reykjavík

University, Iceland
Marielle Stoelinga University of Twente, The Netherlands
Meng Sun Peking University, China
Carolyn Talcott SRI International, USA
Erik de Vink Eindhoven University of Technology, The Netherlands
Peter Ölveczky University of Oslo, Norway

Steering Committee

Farhad Arbab CWI and Leiden University, The Netherlands
Christel Baier Technical University Dresden, Germany
Frank de Boer CWI and Leiden University, The Netherlands
Ali Movaghar Sharif University of Technology, Iran
Hamid Sarbazi-azad IPM and Sharif University of Technology, Iran
Marjan Sirjani (Chair) Mälardalen University, Sweden, and Reykjavík

University, Iceland
Jan Rutten CWI and Free University Amsterdam, The Netherlands

Additional Reviewers

Hugo Araujo
Giovanni Bacci
Maryam Bagheri
Shirin Baghoolizadeh
Paolo Baldan
Frederik M. Bønneland
Mohammadsadegh
Dalvandi
Carlos Diego Damasceno
Eduard Enoiu
Predrag Filipovikj
Herman Geuvers
Stefania Gnesi

Ali Jafari
Sung-Shik Jongmans
Sebastian Junges
Saeed Khalafinejad
Ajay Krishna
Alfons Laarman
Ivan Lanese
Tong Liu
Alberto Lluch Lafuente
Florian Lorber
Raluca Marinescu
Chiara Muzi
Muhammad Nakhaee

Thomas Neele
Ali Nosrati
Tope Omitola
Marco Piangerelli
Elisa Quintarelli
Mehran Rivadeh
Ali Sedaghatbaf
Mahsa Varshosaz
Kim Völlinger
Stefano Pio Zingaro
Johannes Åman Pohjola

viii Organization



Contents

Agent Based Systems

A Formal Model to Integrate Behavioral and Structural Adaptations
in Self-adaptive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Narges Khakpour, Jetty Kleijn, and Marjan Sirjani

A Two-Dimensional Self-coordination Mechanism of Agents
in a Minority Game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Sanaz Hasanzadeh Fard and Hadi Tabatabaee Malazi

A Persistent Entropy Automaton for the Dow Jones Stock Market . . . . . . . . 37
Marco Piangerelli, Luca Tesei, and Emanuela Merelli

Theorem Proving

Proof Guidance in PVS with Sequential Pattern Mining . . . . . . . . . . . . . . . . 45
M. Saqib Nawaz, Meng Sun, and Philippe Fournier-Viger

Using PVS for Modeling and Verification of Probabilistic Connectors . . . . . . 61
M. Saqib Nawaz and Meng Sun

Greenify: A Game with the Purpose of Test Data Generation
for Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Sharmin Moosavi, Hassan Haghighi, Hasti Sahabi,
Farzam Vatanzade, and Mojtaba Vahidi Asl

Learning

Active Learning of Industrial Software with Data . . . . . . . . . . . . . . . . . . . . 95
Lisette Sanchez, Jan Friso Groote, and Ramon R. H. Schiffelers

An Experimental Study on Flakiness and Fragility of Randoop
Regression Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Samad Paydar and Aidin Azamnouri

Verification

Formalizing and Analyzing Security Ceremonies with Heterogeneous
Devices in ANP and PDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Antonio González-Burgueño and Peter Csaba Ölveczky



Logics for Petri Nets with Propagating Failures . . . . . . . . . . . . . . . . . . . . . 145
Leandro Gomes, Alexandre Madeira, and Mario Benevides

Verifying System-Wide Properties of Industrial
Component-Based Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Thomas Neele, Marijn Rol, and Jan Friso Groote

Distributed Algorithms

Case Study on Certifying Distributed Algorithms: Reducing Intrusiveness . . . 179
Samira Akili and Kim Völlinger

Taming Hierarchical Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
José Proença and Alexandre Madeira

Service Orchestration with Priority Constraints . . . . . . . . . . . . . . . . . . . . . . 194
Behnaz Changizi, Natallia Kokash, and Farhad Arbab

Program Analysis

Modeling Non-deterministic C Code with Active Objects. . . . . . . . . . . . . . . 213
Nathan Wasser, Asmae Heydari Tabar, and Reiner Hähnle

Verification of Smart Contract Business Logic: Exploiting a Java
Source Code Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Wolfgang Ahrendt, Richard Bubel, Joshua Ellul, Gordon J. Pace,
Raúl Pardo, Vincent Rebiscoul, and Gerardo Schneider

An Approach to Generate Effective Fault Localization Methods
for Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Babak Bagheri, Mohammad Rezaalipour, and Mojtaba Vahidi-Asl

Correction to: Verifying System-Wide Properties of Industrial
Component-Based Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1

Thomas Neele, Marijn Rol, and Jan Friso Groote

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

x Contents



Agent Based Systems



A Formal Model to Integrate Behavioral
and Structural Adaptations
in Self-adaptive Systems

Narges Khakpour1(B), Jetty Kleijn2, and Marjan Sirjani3

1 Linnaeus University, Växjö, Sweden
narges.khakpour@lnu.se

2 LIACS, Leiden University, Leiden, The Netherlands
3 Mälardalens Högskola, Sweden and Reykjavik University, Väster̊as, Sweden

Abstract. An approach for modelling adaptive complex systems should
be flexible and scalable to allow a system to grow easily, and should
have a formal foundation to guarantee the correctness of the system
behavior. In this paper, we present the architecture, and formal syntax
and semantics of HPobSAM which is a model for specifying behavioral
and structural adaptations to model large-scale systems and address re-
usability concerns. Self-adaptive modules are used as the building blocks
to structure a system, and policies are used as the mechanism to perform
both behavioral and structural adaptations. While a self-adaptive mod-
ule is autonomous to achieve its local goals by collaborating with other
self-adaptive modules, it is controlled by a higher-level entity to prevent
undesirable behavior. HPobSAM is formalized using a combination of
algebraic, graph transformation-based and actor-based formalisms.

1 Introduction

The growth and adaptation of a system is realized by behavioral adaptation
and/or structural adaptation. While structural adaptation aims to adapt the
system behavior by changing its architecture, behavioral adaptation focuses on
modifying the functionalities of computational entities. Behavioral adaptation
is usually suitable for the cases that minor changes are required to adapt the
system. Structural adaptation is more scalable and suitable for large-scale and
distributed adaptations. Yet changing the system structure to achieve minor
changes is rather expensive. Hence, both behavioral and structural adaptations
are often required to design complex adaptive systems.

A system must be able to evolve and grow continually even in unforeseen
situations. Since an adaptation requirement might be unknown at design time,
adaptive behavior must be built in a way that is flexible and modifiable at run-
time. Furthermore, to guarantee the functionality of a complex software system,
we have to provide mechanisms to ensure that the system is operating correctly.
Here formal methods can play a key role.
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Hojjat and M. Massink (Eds.): FSEN 2019, LNCS 11761, pp. 3–19, 2019.
https://doi.org/10.1007/978-3-030-31517-7_1
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4 N. Khakpour et al.

Several frameworks and models have been inspired by natural systems
to design large-scale adaptive systems [5,22,26,27]. Although, they support
self-organization, self-adaptability and long-lasting evolvability, they are not
provided with a formal foundation. Moreover, specification and analysis of
dynamic adaptation have been given lots of attention in the last decade
[1,2,8,14,19,20,25] where most of the approaches deal with either behavioral
adaptation or structural adaptation [6,7]. However, dynamic adaptation and
self-* properties are restricted to responding to short-term changes, while sys-
tems must be additionally able to evolve and grow to cover the long-term evolu-
tion of systems [9]. Therefore, we need an approach to design complex software
systems which supports behavioral and structural adaptations to tackle the long-
term evolution, flexibility, complexity, scalability and assurance problems.

The use of policies has been given attention as a powerful mechanism to
achieve flexibility in adaptive and autonomous systems which allows one to
“dynamically” specify the requirements in terms of high level goals. A policy
is a rule describing under which conditions a specified subject must (can or
cannot) perform an action on a specific object [15]. PobSAM (Policy-based Self-
Adaptive Model) is a policy-based model with formal foundation for developing
and modeling self-adaptive systems that supports behavioral adaptation. A Pob-
SAM model consists of a set of managers and actors. Managers control the
behavior of actors by enforcing policies. This model provides a high degree of
flexibility at the behavioral level by allowing one to change policies dynamically.
However, it only supports behavioral adaptation.

In this paper, we consider an extension of PobSAM [14,15], called HPob-
SAM (Herarchical PobSAM) to support modeling large-scale adaptive systems.
In HPobSAM, self-adaptive modules have been added to PobSAM as a struc-
turing feature. A self-adaptive module consists of managers, actors and pos-
sibly other self-adaptive modules. The notion of a role is introduced to spec-
ify structure-independent adaptations. Roles are dynamically assigned to self-
adaptive modules and actors. Structural adaptation occurs by changing the
roles of entities which leads to creation, removal or changing the interactions of
entities. The managers are responsible to perform structural adaptations using
structural adaptation policies that are defined in terms of roles.

HPobSAM is used in [13] to model a case study in the area of smart airports.
In [13], we refer to an unpublished technical report for a complete description
of HPobSAM. Here we present the description, architecture, and formal syntax
and semantics of HPobSAM. We use prioritized hierarchical hypergraph (hh-
graph) transition systems to specify the operational semantics of HPobSAM.
Prioritized hh-graph transition systems are essentially classical prioritized state
transition systems augmented with a function mapping states into hh-graphs
and transitions into partial morphisms, i.e. a state is provided with a hh-graph
indicating the current system structure.

Formal methods have been proposed for the modeling and analysis of adap-
tive software systems, but they are not always suitable for designing large-
scale software systems. We propose a flexible policy-based approach with formal
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foundation to design large-scale software systems. Compared to existing work,
our approach has the following novel features:

1. We present a formal extension of PobSAM to model large-scale systems that
is flexible and supports both structural and behavioral adaptations. We use
structural adaptation policies as a mechanism for performing structural adap-
tation that can be modified at runtime, without the need to change the low-
level programs.

2. We present an operational semantics for HPobSAM whose semantics rules
allow us to transform a substructure that is specified only partially, i.e. we
can add or remove a self-adaptive module whose internal structure is not
known completely. This feature is an advantage in open systems where limited
knowledge is available about the entities.

2 Case Study

Here, we introduce the running example of the paper shown in Fig. 1. Con-
sider a service-based system that dynamically adapts its behavior to provide an
appropriate quality of service to clients. The system includes several clusters of
application servers that require data provided by the data servers. The cache
handler is used to determine the best cluster for handling a request considering
the quality of service constraints, and the logger monitors the incoming requests.
The request receiver analyzes the requests and transmits them to the request dis-
patcher of the proper cluster. The latter forwards the request to an application
server in the cluster. When a request is processed, the result is sent back to
the request receiver component. This component sends the result back to the
requester and/or to the cache handler.

The system should be able to adapt its behavior to provide the requested
service properly. The behavioral adaptation is done by dynamically balancing
the load of clusters/servers and can be effective to some extent. However, if the
load of system becomes high enough such that the current number of servers
cannot handle the requests, structural adaptations come into play. We need to
adapt the system structure by adding or replacing the clusters to improve the
system throughput.

Fig. 1. The architecture of server clusters.
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3 Overview of PobSAM

A PobSAM model is composed of three layers [14,15]:

– The functional behavior of the system is implemented by the actor layer and
contains computational entities, i.e., the actors.

– The view layer consists of view variables that provide an abstraction of the
actors’ states for the managers. A view variable is an actual state variable,
or a function applied to state variables of actors.

– The main layer of PobSAM is the manager layer containing the autonomous
managers. Managers control the behavior of actors according to predefined
policies. A manager may have different configurations of which one is active
at a time. Behavioral adaptation is performed by switching among those con-
figurations. A configuration contains two classes of policies: governing policies
and behavioral adaptation policies. A manager directs the actors’ behavior
by sending messages to them according to the governing policies. A governing
policy is of the form 〈o, e, ψ〉•a where o ∈ N is the policy priority, e ∈ E is
an event, ψ is the policy condition defined over views, and a is the policy
action. Whenever a manager receives an event e it identifies all the governing
policies that are triggered by that event. For each of the triggered policies, if
the policy condition evaluates to true and there is no other triggered govern-
ing policy with priority higher than o, action a is requested to be executed
by instructing the relevant actors to do so (by sending them asynchronous
messages). The behavioral adaptation policies are used to perform behavioral
adaptations by switching among different configurations.

Example 1. We model the request dispatcher of a cluster as a manager that is
responsible to manage and control the behavior of the cluster. This manager
has two configurations lowConf and highConf to control the cluster behavior
respectively, in low-loaded and high-loaded conditions. The servers are modeled
as the actors responsible for handling incoming requests. The view layer provides
some information about the processing power of each server, their current loads,
the whole throughput of the cluster, and the average number of handled requests
by each server. The following governing policy of lowConf with priority n defined
for the request dispatcher of the cluster A states that when a new request x is
received and the load of server1 is less than l, ask server1 to handle the request:
g = 〈n, newreq(x), load1 < l〉•(server1.handle(x)).

4 The Architecture of HPobSAM

The components of a HPobSAM model are (i) self-adaptive modules, (ii) actors,
(iii) the multi-level view layer, (iv) managers, and (v) roles. A system at the
highest level is defined as a self-adaptive module. Figure 2 gives a schematic
view of the HPobSAM architecture.

The concept of self-adaptive modules is inspired by SMC (Self-Managed
Cells) [24] for structuring complex adaptive systems. A Self-Adaptive Module
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(SAM) is a policy-based building block which is able to automatically adapt
its behavior in a complex dynamic environment. A self-adaptive module con-
tains (i) possibly other lower-level self-adaptive modules, (ii) the actors, (iii) a
view layer, and (iv) a manager. To cater for large-scale systems, multiple self-
adaptive modules are composed and aggregated hierarchically into a single larger
self-adaptive module. A self-adaptive module may provide services to other self-
adaptive modules. Note that the services are provided and used by the manager
of a self-adaptive module.

Fig. 2. A typical self-adaptive module.

A manager is aware of its substructure and is responsible for performing
structural and behavioral adaptations of its module. The managers are provided
with a new type of policies, so-called structural adaptation policies to perform
structural adaptation. When the system requires adaptation, different managers
are informed and they plan various adaptations to adapt the system behavior to
the current context. Hence, adaptation is performed in a distributed manner in
the system and not a single entity is responsible for performing an adaptation.

In PobSAM, the view layer provides information about the actor layer to the
managers. In HPobSAM, a view layer exists at multiple levels. Each self-adaptive
module has a view layer defined based on the view layers of its self-adaptive
modules in addition to the actors’ state variables of that module. The view
layer acts as a tuple space to coordinate interactions of self-adaptive modules
and a self-adaptive module can have controlled access to the view layer of other
self-adaptive modules.

The structure of a system can change due to adding or removing an actor or a
self-adaptive module, and modifying the actors and/or the self-adaptive modules
interconnections. If the policies of a manager are described in terms of individ-
ual actors or self-adaptive modules, any modification of the manager’s under-
lying substructure (i.e. by joining or deleting actors or self-adaptive modules)
influences the specification of its policies and the view layer, and subsequently,
policies and view variables have to be redefined to become consistent with the
new structure. To tackle this problem of structure-dependent policies, we use
the notion of roles to refer to the agents with the same functionality. The roles
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are assigned by a manager to the actors and the self-adaptive modules that it
controls, and managers’ policies as well as view variables are described in terms
of roles. A structural reconfiguration is realized by changing the roles assigned
to the entities, and hence, the managers’ policies become structure-independent
and do not have to be modified after a structural reconfiguration.

(b)(a)

Fig. 3. (a) HPobSAM architecture of running example; (b) a hierarchical hypergraph.

Example 2. Figure 3(a) partially shows the HPobSAM architecture of our exam-
ple. The whole system is a self-adaptive module that contains (i) several lower-
level self-adaptive modules each corresponding to a cluster, (ii) a manager mod-
eling the request receiver, and (iii) two actors for the cache handler and the
logger. The roles lowPowerClusterRole, loggerR, and cacheHandlerRole are
assigned by the request receiver to the cluster A (as a low-power cluster), the
logger, and the cache handler, respectively.

5 The Syntax of HPobSAM

In this section, we first briefly introduce hierarchical hypergraphs that are used
to model the system structure; then we specify the structural modeling of HPob-
SAM; and,finally, we give the syntax of HPobSAM.

5.1 Hierarchical Hypergraphs Overview

A hypergraph is a generalization of a graph, where an edge can connect any
number of nodes.
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Definition 1 (Hypergraph). A hypergraph is a tuple G = (N,E, θ), where N
is the set of nodes, E is the set of hyperedges, θ : E → N∗ is the tentacle function
mapping each hyperedge to a unique finite non-empty multiset of nodes.1

Given two hypergraphs G1 and G2 with Gi = (Ni, Ei, θi) for i = 1, 2, a
hypergraph morphism m : G1 → G2 is a pair of mappings m = (mN ,mE) with
mN : N1 → N2 and mE : E1 → E2, such that for all e ∈ E1, the multiset defined
by θ2(mE(e)) is the multiset defined by mN (θ1(e)).2

Such a morphism is injective (surjective, bijective) if both mN and mE are
injective (respectively surjective, bijective, partial or total). If there is a bijective
morphism m : G2 → G1, then G1 and G2 are isomorphic.

Hierarchical hypergraphs [10] are hypergraphs in which some hyperedges,
called frames, may refer to hypergraphs that can be hierarchical again, with an
arbitrary but finite depth of nesting.

Definition 2 (Hierarchical Hypergraph). Let X be a set of symbols called
variables. Let H = H0(X ) be a set of triples H = 〈G,F, cts〉 where G is a hyper-
graph, F = ∅, and cts the trivial function from F to X .

For i > 0, Hi(X ) consists of all triples H = 〈G,F, cts〉 where G = (N,E, θ)
is a hypergraph, F ⊆ E is the set of frame hyperedges of G, and cts : F →
Hi−1(X ) ∪ X assigns to each frame its content.

The class H(X ) =
⋃

i≥0 Hi(X ) is the set of hierarchical hypergraphs (hh-
graphs) derived from H with variables in X .

Example 3. Figure 3(b) shows a hh-graph which has hyperedges {e1, e2, e3},
seven nodes depicted by circles, and two frames depicted using double-lined
rectangles.

The concept of a graph morphism can be generalized to the hierarchical case
[10]. Let X be a set of variables. For i = {1, 2}, let Hi = 〈Gi, Fi, ctsi〉 be two
hypergraphs with variables in X , and let Xi denote the set {f ∈ Fi | ctsi(f) ∈ X}
of variable (or primitive) frames of Hi.

Definition 3 (Hierarchical Morphism). A hierarchical morphism m from
H1 to H2 is a pair m = (m̄,mf ) where f ∈ F1\X1 and
(i) m̄ : G1 → G2 is a graph morphism;
(ii) for all frames f ∈ F1, m̄E(f) ∈ F2, and if m̄E(f) ∈ X2 then f ∈ X1;
(iii) mf : cts1(f) → cts2(m̄E(f)) is a hierarchical morphism for all f ∈ F1\X1.

A hierarchical morphism is injective (surjective, bijective, partial or total) if
both m̄ and mf are injective (respectively surjective, bijective, partial or total).

1 Note that we choose to represent multisets as elements of N∗, i.e. strings of occur-
rences of elements from N . Thus, e.g., the string bab represents the multiset {a, b, b}
as do abb and bba. Moreover, for every hyperedge e the string θ(e) is not empty; and
for every hyperedge e′ �= e, the multisets represented by θ(e) and θ(e′) are not the
same.

2 Note that the application of mN to the string θ1(e) yields a string in N∗
2 .
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With graph constraints, certain graph properties can be expressed. In partic-
ular, it can be formulated that a graph G must (or must not) contain a certain
subgraph G′. An atomic graph constraint (gcons(C,C ′)) informally states that
if a graph G contains the sub-graph C (premise), then it contains the sub-graph
C ′ (conclusion) too [11].

Definition 4 (Atomic Graph Constraint). Let C and C ′ be two graphs. An
atomic graph constraint is specified as a graph morphism k : C → C ′.

Fig. 4. Part of the hierarchical hypergraph model of our example.

A graph G satisfies atomic graph constraint gcons(C,C ′) specified by the
graph morphism k : C → C ′. if, for every injective graph morphism p : C → G,
there exists an injective graph morphism q : C ′ → G with q ◦ k = p. A graph con-
straint is a boolean formula over atomic graph constraints: (i) True and every
atomic graph constraint are graph constraints, and (ii) if c and c′ are two graph
constraints, then c ∨ c′, c ∧ c′ and ¬c are graph constraints.

5.2 HPobSAM Syntax

Structural Modeling. The system structure is modeled as a hh-graph. We model
role assignments as nodes, self-adaptive modules as frames, and managers, actors
and roles as hyperedges. The hh-graph H = (G,K, cts) describes how several
elements of a self-adaptive module κ are connected together logically. The set of
self-adaptive modules of κ is given by K, and cts gives their internal structure.
The hypergraph G shows the first-level internal structure of κ defined as follows:

G = (N,E, θ) , E = {m} ∪ A ∪ R ∪ K

where m is the manager of κ, A indicates the set of κ’s actors, and R indicates
the set of roles assigned by m.

Example 4. Figure 4 partially depicts the hh-graph of our example.
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Views. A self-adaptive module κ has its own view layer V consisting of view
variables defined over the state variables of its (immediate) actors (A) and the
view variables of its (immediate) self-adaptive modules (K), i.e., a view variable
v ∈ V is a function over V , K, and the state variables of the actors in A.

Managers. A manager m is defined as a tuple m = 〈C, c0, κ, V,H〉, with C the
(finite) set of configurations of m, c0 ∈ C its initial configuration, κ the self-
adaptive module of which m is the manager, V the (finite) set of view variables
of κ, and the hierarchical hypergraph H = (G,K, cts) describes how m is logically
connected to other agents.

A configuration c ∈ C is defined as c = 〈PG, PB , PS〉, where PG, PB and
PS indicate the governing policy set, the behavioral adaptation policies set, and
the structural adaptation policy set of c, respectively. A primitive action of a
governing policy is of the form r.msg and is intended to send the message msg
to some actors/self-adaptive modules with role r. The behavioral adaptation
policies are not influenced by this extension (See Sect. 3).

A structural adaptation policy sp ∈ PS is defined as sp=〈o, e, ψH〉•aH con-
sists of priority o ∈ N, event e, condition ψH and an action aH . The condition
ψH can be defined as a combination of ordinary boolean expressions defined over
the view layer and graph constraints defined over H, the internal structure of
κ. Let as be an actor or a self-adaptive module. The action aH is a strategy to
apply a dynamic reconfiguration with the primitive actions of the forms

– r.msg to send the message msg to the agents with role r ∈ R,
– join(r, as) for assigning role r to as,
– quit(r, as) for releasing as from role r,
– add(as) for adding as to the substructure of m, and
– remove(as) for removing as from the substructure of m.

The condition ψH of a structural adaptation policy is defined as follows where
gcons(Y, Y ′) is an atomic graph constraint:

ψH = (∃r ∈ R).ψH | (∀r ∈ R).ψH | ψH ∧ ψ′
H | ¬ψH | gcons(Y, Y ′)

Example 5. The policy PolicyA states that when the request load is high, the
cache handler is activated, i.e. the role cacheHandlerRole is assigned to the cache
handler by executing the action join(cacheHandlerRole, cachehandler). Then, the
logger is deactivated (quit(loggerRole, logger)) and a new cluster with powerful
servers (clusterD) is added to the system. The operators ; and || are resp. the
sequential and parallel composition of the algebra CAa that is used to specify
policy actions (See [15]):

PolicyA = 〈1, onhighload,�〉 • (join(cacheHandlerRole, cachehandler);

quit(loggerRole, logger))||(add(clusterD) ; join(powerfuleClusterRole, clusterD))

Self-adaptive Modules. A self-adaptive module κ is formally defined as κ =
〈V,Hκ〉 where V and Hκ respectively represent the view layer and the hh-graph
of κ. Observe that Hκ is a hyperedge with the content H as defined above.
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6 Structural Operational Semantics

We present prioritized hh-graph transition systems to define the operational
semantics of HPobSAM models. Prioritized hh-graph transition systems are
essentially prioritized state transition systems [15] augmented with a function
mapping states into hierarchical hypergraphs and transitions into partial hier-
archical morphisms. Thus every state is provided with a graph indicating the
current system structure.

Definition 5. (Prioritized State Transition System). A prioritized state
transition system is a tuple T = 〈S, δ, L, s0〉 where S is a set of states, s0 ∈ S is
the initial state, L is a set of labels, and δ ⊆ S × L × S is a set of transitions.

Labels l ∈ L are of the form (φ, α, n) and a transition s
(φ,α,n)−−−−−→s′ means that

it is possible to perform action α under condition φ in state s when there is
no enabled transition with higher priority than n in state s, and then make a
transition to s′.

Definition 6. (Prioritized hh-Graph Transition System). A prioritized
hh-graph transition system is given by a pair 〈T, g〉, where T is a prioritized
state transition system and g is a pair g = 〈g1, g2〉 of mappings such that g1(s)
is a hh-graph for each state s ∈ S, and g2(t) : g1(s) → g1(s′) is an injective
partial hierarchical morphism for each transition t : s

l−→ s′ ∈ δ.

The conditions of a transition t : s
l−→ s′ ∈ δ can contain graph constraints

that are to be evaluated over g1(s). The semantics of the actor layer remains
unchanged by this extension. The semantics of the view layer is similarly defined
as that of PobSAM [14,15]. In this paper, we restrict ourselves to introduce the
semantics of managers as the core part of HPobSAM.

Overview of a Manager’s Semantics. We use the notation [M ]c〈b, p, a, q,H〉 to
describe a manager M where c = 〈PG, PB , PS〉 is its current configuration,
b ∈ PB is its triggered behavioral adaptation policy, p ⊆ PG ∪ PS is its set
of triggered governing/structural adaptation policies, a is its current execut-
ing action (that can belong to a governing policy or a structural adaptation),
q is its input message queue, and H is a hh-graph denoting the substructure
of M . The semantics of triggering structural policies is identical to that of gov-
erning policies presented in [15]. Hence, we focus on their enforcement and use
the notation M〈p, a, q,H〉 for the sake of simplicity. The notation

√
is used to

show an empty action. The operational semantics of managers in HPobSAM is
described by the transition rules for PobSAM proposed in [15] and the transition
rules given in Figs. 5 and 7 which we explain later. The conditions of transitions
specifying managers’ semantics (e.g. φ in Fig. 5) are evaluated on M ’s view and
its substructure.
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The Semantics of a Manager’s Interactions is presented in Fig. 5 that contains
graph constraints presented in Fig. 6. The rules description and the definition of
symbols are described in the following. A primitive action of a PobSAM manager
is sending an asynchronous message msg to an actor a that results in putting the
message msg in a’s queue. In HPobSAM, there are three types of interactions
that a manager may initiate: (i) sending a message to an actor with the role r,
(ii) sending a message to a lower-level self-adaptive module with the role r, and
(iii) sending a message to the sibling self-adaptive modules with the role r. The
operational semantics of case (i) is expressed using the rule MSR1 where G1 is
a graph depicted in Fig. 6(a), gcons(∅, G1) is a graph constraint that holds if the
actor a has the role r, and sa and s′

a indicate the local states of a before and
after receiving the message msg. The rule MSR2 expresses the semantics of case
(ii). In this rule, a message is sent to a lower-level self-adaptive module κ′ with
the role r that contains a manager M2. The graph G2 is defined in Fig. 6(b).
The manager M1 in the self-adaptive module κ has assigned the role r to its
sibling self-adaptive module κ′ that contains the manager M2. The manager M1

uses the rule MSR3 to send a message to M2 (case (iii)) where gcons(∅, G3) is
a graph constraint with graph G3 as defined in Fig. 6(c) and Hκ′ ∪ Hκ is the
union of Hκ′ and Hκ.

MSR1
M〈p, r.msg, q, H〉 (�,r.msg,n)−−−−−−−→ M〈p,

√
, q, H〉 H � gcons(∅, G1)

sa
(�,r.msg,n)−−−−−−−→ s′

a

MSR2
M1〈p, r.msg, q, H〉 (�,r.msg,n)−−−−−−−→ M1〈p,

√
, q, H〉 H � gcons(∅, G2)

M2〈p′, a′, q′, H′〉 (�, r.msg , n)−−−−−−−−−→ M2〈p′, a′, q′ : msg, H′〉

MSR3
M1〈p, r.msg, q, H〉 (�,r.msg,n)−−−−−−−→ M1〈p,

√
, q, H〉 Hκ′ ∪ Hκ � gcons(∅, G3)

M2〈p′, a′, q′, H′〉 (�, r.msg , n)−−−−−−−−−→ M2〈p′, a′, q′ : msg, H′〉

Fig. 5. The rules for managers’ interactions.

M

r

a

κM1

r

M2

κ′

M1
κ

r

κ′
M2

)c()b()a(

Fig. 6. The graph constraints of interactions semantics.
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The Semantics of Structural Adaptation is presented in Fig. 7. In this figure, a

function f ′ = f |{(e1, v1), . . . , (e2, vn)} is defined as f ′(x) =
{

vk x = ek

f(x) − . The

predicate conn(e, n, e′) = n ∈ θ(e) ∩ θ(e′) informally states that the hyperedges
e and e′ are connected through the node n in a hypergraph G. The underlying
substructure of M before and after a reconfiguration is respectively H and H ′

where H = 〈G,F, cts〉, G = (N,E, θ), and H ′ = 〈G′, F ′, cts′〉, G′ = (N ′, E′, θ′).
Note that for the sake of readability, only updated components of H are given
in the rules.

(AAR)

conn(M ,n1 , ι),n2 ∈ θ(ι)\{n1}, θ′ = θ|{(as, {n2})}, as /∈ E ,E ′ = E ∪ {as}
hhyper(as,Gas) ∧ wellFormed(Gas) =⇒ (F ′ = F ∪ {as} ∧ cts′ = cts|{(as,Gas)})

M〈p, add(as), q, H〉 (�,add(as),1)−−−−−−−−−→ M〈p,
√

, q, H′〉

(RAR)

conn(M, n1, r), conn(r, n2, as), E′ = E\{as}, E′ �= ∅
as ∈ F =⇒ (F ′ = F\{as}, cts′ = cts|{(as,undef)})
M〈p, remove(as), q, H〉 (�,remove(as),1)−−−−−−−−−−−→ M〈p,

√
, q, H′〉

(JAR)
conn(M, n1, r), as ∈ E, n2 ∈ θ(r)\n1, θ′ = θ|{(as, θ(as) ∪ {n2})}

M〈p, join(r, as), q, H〉 (�,join(r,as),1)−−−−−−−−−−→ M〈p,
√

, q, H′〉

(QAR)
conn(M, n1, r), conn(r, n2, as), r �= ι, θ′ = θ|{(as, θ(as)\{n2})}

M〈p, quit(r, as), q, H〉 (�,quit(r,as),1)−−−−−−−−−−→ M〈p,
√

, q, H′〉

Fig. 7. The rules for structural adaptation.

When the action add(as) is executed by the manager M , the actor or the
self-adaptive module as is added to its underlying structure (Rule AAR). The
hyperedge as is added to the hyperedge set (E ′ = E ∪ {as}), and it becomes
connected to the predefined role ι through the node n2. If as is associated to a
hh-graph with the content Gas (hhyper(as,Gas)), it is added to the frame set
(F ′ = F ∪ {as}) and cts is updated to reflect the content of as. The rule RAR
is used to remove an actor or a self-adaptive module as (E ′ = E\{as}). If as is
a self-adaptive module, it is removed from the frame set (F ′ = F\{as}) and cts
is updated correspondingly.

The rule JAR is used to assign the role r to as. This rule adds the node n2

to the set of nodes connecting by the hyperedge as (θ′ = θ|{(as, θ(as)∪{n2})}).
Similarly, execution of the primitive action quit(r, as) results in quitting as from
the role r using the rule QAR. In this rule, as is connected to r through the node
n2 and this connection is removed by eliminating n2 from the nodes connected by
as, i.e., (θ′(as) = θ(as)\{n2}). If an actor or a self-adaptive module quits from
all of its roles, since it has the predefined role ι, will remain as an underlying
actor of the manager m.

Example 6. Let Fig. 4 show the current structure of our example. Figure 8(a)
illustrates the structure after the execution of add(clusterD) in Example 5 that
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assigns the default role r to the self-adaptive module clusterD. Then, execution
of the action join(powerfuleClusterRole, clusterD) leads to the system structure
shown in Fig. 8(b). To remove or add a cluster, the request receiver does not
need to know the internal structure of the cluster which is an advantage of our
model.

(b)(a)

Fig. 8. The graph transformations of Example 6.

The set of nodes connected by a set X is defined as θ(X) =
⋃

e∈X

θ(e). Let

a self-adaptive module κ contain a manager M , the set of actors A, the set of
self-adaptive modules K and the set of roles R assigned by M . We define the
well-formedness of κ’s structure as follows:

Definition 7. Well-formed structure. The hh-graph H = (G,K, cts)
describing κ’s internal architecture, is well-structured if (1) H has at least a
managed element, i.e. A ∪ K �= ∅, (2) the manager M is only connected to
the roles, i.e. θ(M) ⊆ θ(R), (3) every role r ∈ R is connected to M (i.e.
∃n.θ(M) ∩ θ(r) = {n}) in addition to the actors and the self-adaptive modules
(i.e. θ(r) ⊆ θ(K)∪θ(A)), (4) every actor a ∈ A is only connected to other actors
or roles, i.e. θ(a) ⊆ θ(R) ∪ θ(A\{a}), (5) every self-adaptive module κ ∈ K is
connected to the role hyperedges, i.e. θ(κ) ⊆ θ(R), and (6) every self-adaptive
module κ ∈ K is well-formed.

The following lemma states that the transformation rules used to specify the
reconfiguration semantics are sound:

Lemma 1. If H is a well-formed hh-graph showing the underlying structure of
M , then H ′ obtained after some structural adaptations by M is also a well-
formed hh-graph.

Proof. We prove this by induction on the number of performed structural adap-
tations. We show the structure after n structural adaptations by Hn.

Base Case. If there is no structural adaptation, H ′ = H = H0 and the conclu-
sion is obvious.
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Inductive Step. Assume it holds for n adaptations, i.e. Hn is well-formed. We
should prove that Hn+1 is well-formed. To prove this, we should prove that all
six conditions are preserved by each of the rules in Fig. 7.

None of the rules changes the manager M , the roles and the nodes connected
by M , i.e. θ′(M) = θ(M) and θ′(R) = θ(R), therefore, (1), (2) and the first part
of (3) are preserved by all the rules. In the first rule, two cases can happen:

– if as isn’t aframe, this rule adds a new edge as that connects only the node
n2 where n2 belongs to θ(ι), i.e. n2 ∈ θ(ι). The updates performed by this
rule include adding the new hyperedge as and setting θ′(as) to {n2}, i.e.
θ′(as) = {n2}. From, n2 ∈ θ(ι) and ι ∈ R, we can conclude θ′(as) ⊆ θ′(R) and
subsequently the item (4) holds. The self-adaptive modules do not change,
i.e. θ′(K) = θ(K), hence (5) and (6) are followed from the inductive step
hypothesis and the fact that θ′(κ) = θ(κ) for all κ ∈ K.

– if as is a frame, the proof of (5) will be similar to that of (4) in the previous
case. This rule also adds as to the frames and (6) is trivially followed from
the side-conditions of this rule (i.e. wellFormed(Gas)) and the inductive step
hypothesis.

The proof for the rule RAR is similar to that of AAR. The rule JAR only
updates the graph by adding n2 to the nodes connected by as, i.e. θ′(as) =
θ(as)∪{n2}. If as is a self-adaptive module, from n2 ∈ θ′(r) and the assumption
that θ(as) ⊆ θ(R), it follows θ′(as) ⊆ θ′(R) (i.e. (5) holds). The conditions (4)
and (6) are respectively followed from the facts that this rule does not change
nodes connected by the actors (i.e. θ′(A) = θ(A)) and no frame is added or
modified by this rule (i.e. θ′(R) = θ(R)). Similarly, we can prove QAR.

7 Discussion and Related Work

In [13], the suitability of HPobSAM for modeling large-scale self-adaptive sys-
tems has been discussed, particularly, it was discussed how the hierarchical
structure of this model to support centralized and decentralized adaptations,
improves scalability. In [17], the authors refer to [13] and mention that how the
hierarchical structure offers a form of controlled autonomy and balances agent
autonomy and system controllability, for example to prevent unsafe situations
caused by a selfish acting ATV. Since we use hierarchical hypergraphs and a
type of graph transformation rules which allows us to add or remove compo-
nents with no need to be aware of their internal structure, this feature enables
us to model open evolving systems where components enter or leave at any
time, while their internal structure is unknown. Moreover, we use roles to spec-
ify structure-independent adaptation logic which allows us to adapt the system
without changing the adaptation logic.

Three different features - separation of concerns, computational reflection
and component-based design - guarantee th flexibility of the apporach to develop
self-adaptive systems. Policies are used to adapt the system behavior and the
system structure which can be changed and loaded dynamically. This feature
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provides a high-degree of flexibility and makes HPobSAM a suitable model to
model evolving software systems. We believe this work is original in using both
structural and behavioral adaptations which are directed by an identical flexible
mechanism. The applicability of this model has been shown by applying it on
two case studies in the areas of server clusters and an autonomous transportation
system in a smart airport [13].

In [14,15], we have compared PobSAM with existing approaches for modeling
behavioral adaptation in terms of flexibility, separation of concerns and formal
foundation. The main aim of the research presented here is to extend our formal
approach for architectural modeling and structural adaptation of software inten-
sive systems. Hence we focus here on related work concerned with the design of
software-intensive systems and formal modeling of structural adaptation.

Another related area of research is structural adaptation which has been
given strong attention. Formal techniques have been extensively used to model
and analyze dynamic structural adaptation (see [7]). Structural adaptation (or
dynamic reconfiguration) is usually modeled using graph-based approaches (e.g.
[8,25]) or ADL-based approaches (e.g. [18,21]). Compared to the proposed
approaches based on graph transformation, we use hierarchical hypergraphs
and a type of graph transformation rule which allows us to add or remove
components without need to be aware of their internal structure. Moreover,
most existing work concentrates on modeling structural changes [6,7], while we
have integrated both behavior and architecture in our model. The authors in [6]
model the system as graphs and use graph transformation to model the system
behavior. In this work, both behavior and structure are modeled with the same
formalism, however handling large and complex graphs would be difficult for
large-scale systems. We take the benefit of both an ordinary state-based for-
malism for specifying behavioral information in addition to graphs as a natural
model to express the system structure.

In [3,4], a coordinated actor model for self-adaptive track-based traffic control
systems is introduced which is inspired from PobSAM and Rebeca language [23].
In coordinated actor model, unlike HPobSAM we have a centralised coordinator.
Creol is a formal object-oriented language to develop open distributed systems
that supports dynamic upgrading of classes [28]. While this language supports
some limited levels of dynamism that can be used for behavioural adaptations
(e.g. by upgrading a method) or structural adaptations (e.g. by defining new
interfaces), however, (i) it is not flexible as HPobSAM is, and (ii) its supported
adaptations are limited and fine-grained, e.g. one cannot remove a whole sub-
system. DR-BIP [12] is a component framework for programming reconfigurable
systems that supports structural adaptations. In contrast to HPobSAM, this
framework does not support behavioural adaptation and is not flexible.

8 Conclusion

We provided a formal semantics for HPobSAM which is a formal model to specify
structural and behavioral adaptations in large-scale systems. In this model, self-
adaptive modules are used as autonomous building blocks to structure a system.
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We used hierarchical hypergraphs to model the system structure. The proposed
semantics rules enable us to add or remove a component of which the internal
structure is not given. To support reasoning about systems designed using HPob-
SAM, we plan to extend a tool developed in [13] to generate Maude specifications
from HPobSAM models which will allow us to use the reasoning techniques pro-
vided by Maude (e.g. model checking). Furthermore, the behavioural equivalence
theory proposed for PobSAM [15,16] can be slightly extended to support graph
morphisms and reason about behavioural/structural equivalence.

Acknowledgment. We thank the anonymous reviewers for their helpful comments
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figurable systems. In: Bae, K., Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222,
pp. 118–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02146-7 6

https://doi.org/10.1007/978-3-319-57666-4_15
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-030-02146-7_6


A Formal Model to Integrate Behavioral and Structural Adaptations 19

13. Khakpour, N., Jalili, S., Sirjani, M., Goltz, U., Abolhasanzadeh, B.: Hpobsam
for modeling and analyzing it ecosystems - through a case study. J. Syst. Softw.
85(12), 2770–2784 (2012)

14. Khakpour, N., Jalili, S., Talcott, C., Sirjani, M., Mousavi, M.R.: Pobsam: policy-
based managing of actors in self-adaptive systems. Electr. Notes Theor. Comput.
Sci. 263, 129–143 (2010)

15. Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: Formal modeling
of evolving adaptive systems. Sci. Comput. Program. 78, 3–26 (2012)

16. Khakpour, N., Sirjani, M., Goltz, U.: Context-based behavioral equivalence of com-
ponents in self-adaptive systems. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS,
vol. 6991, pp. 16–32. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24559-6 4

17. Lee, E.A., Sirjani, M.: What good are models? In: Bae, K., Ölveczky, P.C. (eds.)
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Abstract. Coordination of several agents in accessing a limited resource
is a common problem among various systems. In the absence of a central
coordinator, the primary challenge of the problem is to bring equilib-
rium among agents in accessing a limited shared resource. The El Farol
Bar Problem is the generic description of this problem. In this paper,
we devised a new two-dimensional approach called Social Coordination
(SoCo). In the first dimension, we define a new function, called Effect(),
that plays a determinative role in choosing the strategy for the current
action. In the second dimension, we define a new social coordination
constraint that boosts the system to achieve the entire equilibrium, in
which near optimum status in social and individual utilities are reached
without any starvation cases. SoCo not only attempts to improve the
social utility but also considers the individual utility and starvation as
the optimization goals. The simulation results show that SoCo improves
social utility by 57.61% compared to similar approaches. The simulations
demonstrate that the maximum starvation length of agents in SoCo is
7.93 times less than similar methods.

Keywords: Distributed systems · Self-coordination ·
El farol bar problem · Social utility · Individual utility ·
Resource starvation

1 Introduction

One of the common problems in distributed systems is to establish a kind of dis-
tributed coordination among competing players in accessing a limited resource
[1,2]. In absence of a central coordinator, different players have to establish
a coordination mechanism to optimize resource usage by avoiding excessive
accesses or leaving the resource underused. In systems with unknown players
or in cases where the players do not know each other, the coordination problem
has to be addressed without communication among the participants. That is,
the players are not able to communicate with each other to share their previous
history of accessing the resource or their intentions. The El Farol Bar [3] and
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minority games [4] (which are inspired by El Farol Bar Problem) are the games
that try to address the problem of coordinating a set of selfish players to regulate
cooperation in accessing a resource in the absence of communications. The lack
of a suitable coordination mechanism may result in congestion, starvation, or
degradation in social and individual utilities of the players.

The classic El Farol Bar Problem [3] happens in Santa Fe city, where every
Thursday one hundred citizens (agents) have to decide whether to attend the
city bar or not. The bar has a limited capacity (60 seats). If the attendees are
more than the capacity, no one will have a pleasant time. Therefore, each agent
thinks of the bar situation before making a decision. He will go to the bar if
he thinks that the bar is not crowded. Otherwise, he would prefer to stay at
home. The individual utility of an agent for each iteration (week) is the result
of his decision. If he stays at home, the value of his individual utility is equal
to zero. If he decides to go to the bar and the bar was over-crowded, he will
receive −1. Otherwise, he will get +1 for his individual utility in that iteration.
The social utility of the city for an iteration is the sum of the individual utilities
of all agents. The challenging issue is that agents cannot communicate before
making their decisions. In other words, no one is aware of the bar’s condition
before going to the bar. Moreover, there is no central coordination controller.

The main objective of any candidate solution is to converge the number of
attendees to the bar capacity. Consequently, the system will achieve the highest
social utility. An alternative goal is to decrease the convergence time, which
yields the maximization of the total social utility (sum of social utilities for all of
the iterations). Another important factor is to increase individual utility, which
implies that all agents benefit from the resource fairly. Finally, the starvation of
agents is the last evaluation metric that illustrates the fairness level in smaller
time units for the resource distribution among agents. For instance, it is possible
to have a high individual utility for most agents, but a minority of them do not
have any access to the resource for a long period of time. To analyze the metric,
the maximum starvation length of agents has to be monitored.

Some research concentrates on providing solutions for the generic El Farol
problem. They can be classified into several categories [5]. One category of
researches is named predictor based [3,6,7]. These solutions have a top-down
view, and the decision-making process is performed by predicting the aggregated
system behavior. In another category of the solutions [8–11], the agent’s individ-
ual information is in the center of attention. These solutions have a bottom-up
view of the problem. The analyses reveal several drawbacks. Firstly, the level
of being over-crowded does not have a significant effect on the decision-making
process. For instance, in iteration x, twenty persons above the bar capacity
wanted to attend, and in iteration y only one extra attendee intended to join the
bar. The level of being over-crowded in iteration x is different from iteration y,
but both cases are treated the same. Secondly, studies such as [3] are that the
optimization of individual utility is not considered as the objectives. Similarly,
minimizing the starvation length is not addressed in [3,6–9]. Finally, in some of
the methods such as [10,11], the scalability in terms of the number of agents is
an issue.
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In this paper, we devise a new approach, called Social Coordination (SoCo)
that uses a bottom-up view. To differentiate the impact of the previous iterations
in terms of the level of being over-crowded, it uses a second dimension and defines
a new function called Effect(t). The function returns the coefficient (impact)
of iteration t that discriminates the over-crowded situations from each other
as well as the under-crowded ones. We also define a new coordination factor
that defines the optimum limit of attendance for an agent according to the
bar’s condition and its capacity. The factor is called Ca and defines the social
coordination among agents to maintain the optimum number of attendance and
it is calculated according to the history of agent’s experiences. It leads to the
distribution of resource among agents in a balanced manner. Finally, in SoCo,
the decision strategies are designed in a way that hinders the starvation.

The rest of the paper is organized as follows: In Sect. 2, we review some of
the outstanding work. Section 3 is dedicated to the problem definition. Then,
the details of SoCo are explained, and the performance is analyzed in Sects. 4
and 5, respectively. Finally, Sect. 6 concludes the paper.

2 Related Work

Several researchers studied the El Farol Bar Problem due to its capabilities in
modeling real-world applications. Some of the studies concentrated on addressing
the classic problem, while others employ it in applications. This section briefly
reviews some of the distinguished researches.

The El Farol Bar Problem was introduced by Arthur et al. in [3] for the first
time. In his paper, the behavior of agents is considered in a complex system with
limited decision-making information. It is explained that deductive reasoning is
not sufficient, and inductive reasoning can be used in such an environment.
The decision-making is performed using predictors such as “same as last week”
and “an average of four recent weeks”. Then, the system uses the predictors
for inductive reasoning and estimates the number of agents, which go to the
bar. The goal is to converge the number of attendees to the bar capacity. The
shortcomings of the solution are that it does not consider minimizing agent
starvation and maximizing individual utility.

The agent starvation is investigated in the Adaptive Parasitized approach
[9]. The idea is to add behaviosit to alter the behavior of the agent. The main
objective of the behaviosit is to decrease the attending period of an agent, which
intends to go to the bar in the far future. That is if the attending period of an
agent is above a predefined threshold, the behaviosit is added, and consequently,
the attending period starts to decrease. This leads to the mitigation of the star-
vation problem in accessing the bar. Similar to the Adaptive method [8], the
Adaptive Parasitized does not exploit complex predictors.

The researchers in [7] applied cognitive modeling to equip agents with human-
inspired ability. The authors used the cognitive emotion theory [12,13], which
is relied on belief and desire concepts. The belief shows the level of confidence
to the reliability of the strategy, and the desire represents the agent’s tendency
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for maintaining and operating the current strategy. In the beginning, each agent
chooses a strategy randomly among the same set of strategies. The agent pre-
dicts the system situation according to the selected strategy and performs the
specified action. If the action is correct, the belief will increase accordingly, and
the agent keeps repeating the current strategy. Otherwise, it will decrease. If the
decreased belief falls below the threshold, the agent will decide to change the
current strategy. One of the interesting features of the approach is supporting
the heterogeneity of agents. The authors in their next work in [14] analyze the
effect of extending the memory size and did not find any clue for improvement
of system performance.

Szilagyi in [15] solved the El Farol Bar Problem as a special case of the
N -person battle of sexes. He modeled agents as stochastic learning cellular
automata. The interacting environment of the agents is described with cellu-
lar automata, and stochastic learning rules are used for the agents’ behavior. In
the described model a range of different personality profiles can be used, such
as Pavlovian, stochastically predictable (angry, benevolent, and unpredictable),
accountant, conformist, and greedy.

Shu-Heng et al. in [10] defined a good society equilibrium with economic
efficiency and economic equality characteristics. The authors propose the proba-
bility of achieving this equilibrium by a suitable topological network and agents
with social preferences. The network of agents is established using the Von Neu-
mann Network. Additionally, agents have extrinsic or intrinsic preferences. In
the first one, agents are described by the minimum attendance threshold, while
in the second one the awareness of inequity is formed through interactions with
neighbors by averaging the attendance frequencies of the neighbors. That is,
the original El Farol Bar Problem model is changed to the bi-dimensional one,
which will boost the emergence of the good society. The authors performed a
sensitivity analysis of the approach in [11], and study the effects of size-related
parameters such as network size (number of agents), number of each agent’s
neighbors, and agent’s memory size on the equilibrium. The main drawback is
that, for large networks, the chance of reaching equilibrium is low compared to
small networks. For very large networks, this chance is almost zero. Moreover,
the other size related parameters do not have a considerable effect on achieving
the equilibrium.

Overall, the main objective in most of the studies is the optimization of
resource efficiency, while the individual utility and starvation are not in the
center of attention.

3 Problem Definition

In the original El Farol Bar Problem [3], a set of n agents is considered. Let A
denote the set of agents and ai be a sample one. Each agent (ai) may tend to
go to the bar every Thursday. Each week is defined by an iteration (Et), where
1 ≤ t ≤ T , and T is the total number iterations. Each agent has a memory that
remembers his last h iterations (history). The decision of agent i at iteration
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t is denoted as dt
i. If the agent decides to attend the bar, the value of dt

i is 1,
otherwise, the value is 0. The bar has a limited capacity (C), and if the number
of attendees at the iteration t (attt) exceeds more than C, the bar will be over-
crowded (attt =

∑n
i=1(d

t
i) > C). Hence, all the attending agents will have an

unpleasant time and will receive a negative utility. On the other hand, when
the bar is under-crowded (attt =

∑n
i=1(d

t
i) ≤ C), the visiting agent will have a

pleasant time.

Definition 1: The individual utility of an agent (ai) at iteration t is denoted
by rt

i and is calculated according to Eq. 1.

rt
i =

⎧
⎪⎨

⎪⎩

+1 attt ≤ C, dt
i = 1

0 dt
i = 0

-1 attt > C, dt
i = 1

(1)

Definition 2: The total individual utility (tiu) of an agent ai is the sum of his
individual utilities in every iteration (Eq. 2).

tiui =
T∑

t=1

rt
i (2)

Definition 3: The social utility (sut) of the system at iteration t is the sum of
all agents’ individual utility at that iteration (Eq. 3). The upper bound of sut is
C and the lower bound is -n (−n ≤ sut ≤ C).

sut =
n∑

i=1

rt
i (3)

Definition 4: The total social utility (tsu) is defined as the summation of the
social utilities in all iterations (Eq. 4).

tsu =
T∑

t=1

sut (4)

Definition 5: The starvation length of an agent ai is the maximum number of
consecutive iterations in which the agent does not get any positive individual
utility, and it is denoted by xi (Eq. 5). This definition is more rigorous compared
to the definition provided in [9].

∀p, q : p ≤ t ≤ q, rt
i ≤ 0;∃m,n : m ≤ t ≤ n, rt

i ≤ 0; | n−m ≥ q−p ⇒ xi = n−m
(5)

The maximum starvation length (X) of the system is the maximum of xi for
all agents.

X = Maxn
i=1(xi) (6)
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The main constraint of the problem is that agents do not know what the
other agents’ actions are for the current iteration, and the situation of the bar
is not revealed before attending. Furthermore, the system does not have any
central coordinating entity.

The main goal of a candidate solution is to establish a self-coordination
mechanism that:

1. Leads the system to converge the number of attendees (attt) to the bar capac-
ity (C): Fast convergence toward the bar capacity results in a higher total
social utility.

2. Maximizes the total individual utility: It is expected that the total individual
utility of an agent ai reaches a floor threshold (a specific portion of the sum-
mation of the bar capacity in all iterations). This objective is to ensure that
each agent gets a fair share of the bar. The ideal value of the threshold is tsu

n .
But, practically the total individual utility is bounded by tsu

n ± ε (Eq. 7). A
fair approach has an ε value close to zero.

tsu

n
− ε ≤ tiui ≤ tsu

n
+ ε (7)

3. Minimizes the maximum starvation length of agents: It is worth pointing out
that a low starvation length will not necessarily lead to a high total individual
utility. On the other hand, an agent may not attend the bar in half of the
consecutive iterations but joins the bar for all the iterations of the second
half. Therefore, the maximum starvation length is xi = T/2, but the total
individual utility may reach above the floor threshold.

4 The Devised Social Coordination Method

We devised a two-dimensional method that uses agents’ previous experiences to
make a decision about the next action. The objective of the first dimension is to
differentiate the over-crowded situations from each other along with the under-
crowded ones. We define the Effect() function that considers the number of atten-
dees for each iteration. The second dimension examines the experiences of an
agent independently from other agents. We define a new parameter called social
coordination constraint (Ca), which is the optimum times that an agent attends
the bar in his last h iterations. In the rest of this section, the Effect() function
is introduced, then the social coordination constraint is described. Finally, the
decision-making process is explained in detail.

4.1 The Effect() Function

The effect of iteration t is defined as the subtraction of the number of attendees
(attt) from the bar capacity (Effect(t) = C − attt). The function is used for
the last h iteration to calculate the impact of previous experiences of the agent.
The Effect() value can be positive, zero, or negative for each iteration according
to the following situations:
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– Under-crowded case (attt < C ⇒ Effect(t) > 0): The positive value
indicates that the previous decision was right, and the agent tends to continue
this trend. The value also indicates the number of free seats in the bar. The
closer the value is to the zero, the closer the system is to the equilibrium.

– The same number of attendees as the bar capacity (attt = C ⇒
Effect(t) = 0): The value of the function at iteration t is equal to zero. That
is, the number of attending agents is the same as the bar capacity. This is
the ideal case where the participating agents made the right decision, as they
get positive individual utilities. Moreover, agents who choose to stay at home
have also made a correct decision, since the bar was not under-crowded, and
in case they decided to participate, the bar would be over-crowded. The value
of the Effect() function for both types of agents must be equally the same for
their right decision.

– Over-crowded case (attt > C ⇒ Effect(t) < 0): In the last case, the
negative value implies the over-crowded situation of the bar, and shows the
incorrect decision. The value presents the number of extra attendees that
made the bar crowded. Hence, the agent is willing to change the decision in
future iterations.

The Effect value of the agent who did not attend the bar is considered zero,
regardless of the status of the bar. The main reason is to preserve the condition
that an agent that stayed at home should not have any information about the
over-crowded or under-crowded situation of the bar.

To show how the Effect() function discriminates over-crowded cases as well as
under-crowded ones, consider an agent ai’s experiences in two different iterations
of t1 and t2. The Effect(t1) and Effect(t2) have the same sign. If they both
are positive (0 < Effect(t1) < Effect(t2)), the one with lower value (t1) will
be close to equilibrium. The value of the Effect() function illustrates the number
of needed agents to complete the bar capacity. Besides, the social utility of t1
is higher, since the number of free seats is less. In the second case, if they both
are negative (Effect(t2) < Effect(t1) < 0), the one with higher value (t1) is
favored. The reason is that the Effect() function represents the number of extra
attendance. To conclude, the distance of the value from zero shows how far the
system is to the equilibrium.

4.2 The Social Coordination Constraint

Potentially, the Effect() function can be used to lead the system to equilibrium,
but it does not inhibit the starvation problem. Assuming a case in which a group
of agents always attend the bar and the rest of them do not try it at all is a
good example. To cope with this issue, a new constraint is defined, which is
called social coordination (Ca). Agents that reach Ca accesses to the bar, will
abstain themselves for new access attempts to prevent possible congestions. It
defines an optimum limit and a fair quota for an agent in attending the bar
without facing any congestion.
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The Ca is computed according to the bar capacity (C), the population of
agents (n), and the history length (h). In Eq. 9, Ca is the total bar capacity
during the h iterations (Eq. 8) divided by the number of agents.

Ch = h × C (8)

Ca =
Ch

n
=

h × C

n
(9)

4.3 Decision-Making Process

In the devised method, the decision process of an agent has a two-dimensional
approach. The first dimension is the Effect value of each iteration. The sec-
ond dimension is the history of an agent during the past h iterations. To com-
bine these factors, we define a pre-decision parameter pdt

i that denotes the pre-
decision of agent ai at iteration t. It is computed according to Eq. 10. It is worth
mentioning that if an agent does not attend the bar in an iteration (dτ

i = 0), it
will not have any effect on the pre-decision parameter.

pdt
i =

t−1∑

τ=t−h

(Effect(τ) × dτ
i ) (10)

In the first h iterations, agents randomly choose to join the bar or stay at home.
After these setup iterations, agents select a proper strategy according to their
pre-decision value. In the following, these cases are introduced.

The Negative Value of Pre-decision: The negative value of pdt
i indicates

that the over-crowded experiences dominate the pleasant ones. Thus, ai decides
to stay at home to prevent the continuity of this situation (Eq. 11).

Strategy 1: pdt
i < 0 ⇒ dt

i = 0 (11)

The Zero Value of Pre-decision: There are two cases in which the zero value
for the pre-decision parameter can be obtained. In the first case, the summation
of the positive Effect values and the negative ones is zero. The case implies that
neither the positive Effect values are encouraging enough to attend the bar, nor
the negative Effect values are strong enough to stay at home. Therefore, ai will
decide to stay at home (Eq. 12).

Strategy 2: (pdt
i = 0) and (∃τ : t−h ≤ τ < t,Effect(τ) < 0) ⇒ dt

i = 0
(12)

In the second case, all the Effect() values of the past h iterations are zero. This is
due to the prevention of the agent from going to the bar, or the equilibrium state
of the bar is reached. Therefore, the agent considers the number of times that
he/she attends the bar, and compares it with the social coordination constraint.
If the value is below the Ca threshold, it has not benefited enough from the
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bar. So, he will decide to go to the bar (Eq. 13). On the other hand, if he has
attended equal to or more than the Ca threshold, he will decide to stay at home
to prevent further congestion (Eq. 14). In this case, Ca constraint plays a social
coordination role among agents.

Strategy 3: (pdt
i = 0) and (∀τ : t − h ≤ τ < t,Effect(τ) = 0)

and (
t∑

τ=t−h

dτ
i ≥ Ca) ⇒ dt

i = 0 (13)

Strategy 4: (pdt
i = 0) and (∀τ : t − h ≤ τ < t,Effect(τ) = 0)

and (
t∑

τ=t−h

dτ
i < Ca) ⇒ dt

i = 1 (14)

The Positive Value of Pre-decision: In the last case, the value of pdt
i is

positive. It indicates that the overall effects of the previous experiences are pos-
itive and the agent is encouraged to continue this trend. The main obstacle is
the starvation of the other agents. To avoid the problem, the agent counts the
number of times he attended the bar. If the number is below the Ca, he will
attend the bar (Eq. 15), otherwise, he will choose to stay at home (Eq. 16).

Strategy 5: (pdt
i > 0) and (

t∑

τ=t−h

dτ
i ≥ Ca) ⇒ dt

i = 0 (15)

Strategy 6: (pdt
i > 0) and (

t∑

τ=t−h

dτ
i < Ca) ⇒ dt

i = 1 (16)

4.4 Discussion on the Convergence Stability

The stability of El Farol after reaching equilibrium is analyzed with an example.
Table 1 exhibits five consecutive sample iterations that the system converges to
an equilibrium, where each row of the table presents ten agents. Let the bar
capacity be sixty, and the number of agents is one hundred, where each agent
remembers his last five iterations. The number of attendees in each iteration is
sixty. The optimum number of participation for each agent in five iterations is
three (according to Eq. 9). It is expected for each agent to go to the bar three
times during every five consecutive iterations in an equilibrium state (Eq. 17).

h × C

n
=

5 × 60
100

= 3 (17)

Considering that the system is in the optimum state, we analyze the situation
of agents in iteration Et6. To make a decision for the next iteration (Et6), each
agent checks its last four iterations (Et2 to Et5). If he went to the bar three
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Table 1. The bar condition in a five sample consecutive iterations

Agents Et1 Et2 Et3 Et4 Et5 Et6 Et7

ai:i=1,2,...,10 × × ×
ai:i=11,12,...,20 × × ×
ai:i=21,22,...,30 × × ×
ai:i=31,32,...,40 × × ×
ai:i=41,42,...,50 × × ×
ai:i=51,52,...,60 × × ×
ai:i=61,62,...,70 × × ×
ai:i=71,72,...,80 × × ×
ai:i=81,82,...,90 × × ×
ai:i=91,92,...,100 × × ×

times during the last four iterations, he would not attend the bar for the current
one to protect his individual utility as well as the social utility. Consequently,
there will be no congestion. According to Table 1, sixty agents attend the bar in
the first iteration. These are agents that join the bar only two times from Et2

to Et5, and will decide to go to the bar again. On the other hand, the rest of
agents that do not join the bar in the first iteration, have already gone to the
bar for three times from Et2 to Et5, and will decide to stay at home.

It has to be mentioned that we used five setup iterations with an equilibrium
status, but in the real world, these iterations happen randomly. That is the
reason for the distinction between this example and our simulations in the next
section.

5 Evaluation and Discussion

Before analyzing the performance of SoCo, we first present the simulation envi-
ronment and its configuration. Then, the evaluation parameters and the com-
paring approaches are introduced. Finally, we present the simulation scenarios
and discuss the results.

5.1 The Simulation Environment

We use Matlab R2012b to simulate the El Farol Bar Problem environment. It
is a discrete time simulator that fits well with the problem. The main reason is
its capabilities in modeling the problem as a set of matrices, and its speed in
running thousands of iterations. Similar to the original definition of the El Farol
Bar Problem [3], the number of agents is set to one hundred. But to analyze the
scalability, we also use 200, 300, and 400 agents as well. The initial value of the
bar capacity is sixty, and for the scalability scenarios, we apply 120, 180, and
240 seats. The applied values for agents’ memory size (history) are 3, 5, 7, 9, 11,
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Table 2. The simulation configuration

Parameter Value(s)

Number of agents (n) 100, 200, 300, 400

Bar capacity (C) 60, 120, 180, 240

Total number of iterations (T) 2000

History size (h) 3, 5, 7, 9, 11, 13, 15

13, and 15. Finally, the total number of iterations for each experiment is 2000
to reflect the behavior of the methods during the time. To reduce the effect of
randomness, we repeated each experiment one hundred times, and present the
mean values. The simulation configuration is presented inTable 2.

The evaluation parameters are social utility (which is the average over all
iterations) (Eq. 4), total individual utility (Eq. 2), maximum starvation length
(Eq. 6), and the scalability in the number of agents. We compare the performance
of our approach with the researches presented in [9,10]. The study presented in
[10] is one of the latest work on the El Farol Bar Problem that studied the effect
of network topology (Von Neumann network) in social networks. Also, the work
[9] is selected due to its emphasis on the starvation issue.

5.2 The Effect of History Size

Table 3 demonstrates the effect of history size on the individual and social utili-
ties as well as the maximum starvation length in seven different history sizes. We
repeated the simulations for one hundred times for each case and averaged the
results. The results show that larger history sizes lead to longer starvation. The
history length of five performs the best individual and social utilities. Besides,
it has a comparatively low starvation length. Due to this, we used h = 5 in the
rest of the simulations.

Table 3. The effect of history size

History size Total individual
(mean)

Social utility
(mean)

Max starvation
length (mean)

3 481.93 24.10 2.94

5 873.72 43.69 2.66

7 824.48 41.22 3.5463

9 864.08 43.20 4.01

11 778.24 38.91 6.79

13 833.30 41.67 6.50

15 331.17 16.56 18.19
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5.3 The Analysis of Social Utility

The main objective of the El Farol Bar Problem is to maximize social utility.
Figures 1, 2, and 3 demonstrate the overall performance of the methods according
to this metric. The X axis shows the iterations (weeks), and the Y axis is the
social utility of the iterations. The social utility of agents in each iteration for
Adaptive Parasitized method is presented in Fig. 1. The figure shows that it is
relatively low in the starting iterations and slowly rises until it reaches near the
optimum point. The main reason for the low social utility at early iterations is
the randomly chosen parameters of Ci (frequency of attendance for agent ai)
and Pi (time step until the next attendance of agent ai). The average social
utility of the system during the 2000 iteration is 19.09. Its minimum number is
5.24, and the maximum is 49.12.

Figure 2 demonstrates the social utility of the Good Society method for
each iteration. The utility fluctuates between positive and negative values. The
main reason is that the numbers of attendees oscillate around the bar capacity.
Although in some iterations the number of attendees is near the optimum, in
some others the over-crowded case happens. Therefore, all agents get negative

Fig. 1. The social utility of Adaptive
Parasitized [9].

Fig. 2. The social utility of Good Society
[10].

Fig. 3. The social utility of SoCo.
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points, and it results in the poor social utility of the system. The average social
utility of the method is −5.74, and the values are bounded to −28.54 and 48.40.

Figure 3 shows the results for SoCo, which is closer to the optimum point
compared to the other two methods. The social coordination mechanism (Ca)
suppresses the participants that cause congestion. Besides, the Effect function
persuades agents to attend the bar based on the previous iterations. The mean
social utility of the system in this method is 46.56. The minimum and maximum
values of the gained social utility are 42.71 and 50.11.

5.4 The Analysis of Total Individual Utility

In this simulation, we analyze the performance of the methods from the total
individual utility point of view. Figures 4, 5, and 6 depict the achieved results
for Adaptive Parasitized, Good Society, and SoCo methods in 2000 iterations
(weeks), respectively. The horizontal axis shows agents, and the vertical one is

Fig. 4. The total individual utility of
agents in Adaptive Parasitized [9].

Fig. 5. The total individual utility of
agents Good Society [10].

Fig. 6. The total individual utility of
agents in SoCo.

Fig. 7. The total individual utility of
agents in SoCo (magnified).
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the gained total individual utility of agents. Due to small fluctuations of SoCo
method in Fig. 6, we heightened the chart in Fig. 7.

According to the achieved results, the individual utilities of agents in Adaptive
Parasitized are bounded to 334.30 and 452.62 with the average value of 381.83.
The Good Society method does not provide promising results. The best value
gained by an agent is −93.23, and worst value is −136.73. Considering that the
bar has sixty seats, in the best case, each agent may receive total individual
utility of 1200 in 2000 iterations. In the proposed method, the total individual
utilities of agents are between 906.74 and 986.40 with the mean value of 931.29.
The distance between the highest and the lowest achieved values are 30.07% in
Adaptive Parasitized and 8.41% in SoCo.

5.5 The Maximum Starvation Length

One of the secondary goals of the devised method is to minimize the starvation
length of agents in accessing the bar. Figures 8, 9, and 10 present the results for
Adaptive Parasitized [9], Good Society [10], and SoCo, respectively. The horizon-
tal axis represents agents, and the vertical one shows the maximum starvation
length of the agent during the 2000 iterations.

In the Adaptive Parasitized method, a less rigorous definition of maximum
starvation length is provided, which indicates the maximum consecutive times
that an agent does not intend to join the bar. The definition does not consider
the cases in which an agent attends the over-crowded bar. The maximum star-
vation length of the method, according to the above definition, is equal to the
threshold, which is set to 15 to achieve the best social utility. We rigorously rede-
fine the maximum starvation length. Based on the new definition, the maximum
starvation length of agents in Adaptive Parasitized method is bounded to 19.87
and 22.52 with the mean value of 21.10. Figure 8 reveals the results.

Fig. 8. The maximum starvation length
agents in Adaptive Parasitized [9].

Fig. 9. The maximum starvation length
of agents in Good Society [10].
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Fig. 10. The maximum starvation length of agents in SoCo.

Figure 9 depicts the outcome of the Good Society method. The mean value
of maximum starvation of agents is 31.23. The highest value is 37.82, and the
lower one is 26.26.

The SoCo achieves the best results. They are bounded to 2.36 and 2.88 with
an average of 2.63. It is almost eight times less than Adaptive Parasitized method,
and about eleven times less than Good Society method. Moreover, Adaptive
Parasitized method needs to divide the agents into casual and regular classes,
whereas SoCo method does not require any classification of agents. The winning
point of our devised approach is the social coordination factor (Ca), which brings
equilibrium in accessing the bar.

5.6 Scalability

The last evaluation scenario is the scalability of the devised method. Figures 11,
12, 13, and 14 show the results for 100, 200, 300, and 400 agents, respectively. We
used the total individual utility metric to compare these cases since its range

Fig. 11. The individual utility of
agents for n = 100.

Fig. 12. The individual utility of
agents for n = 200.
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Fig. 13. The individual utility of agents
for n = 300.

Fig. 14. The individual utility of agents
for n = 400.

does not change with the number of agents. In Fig. 11, one hundred agents
are competing for seats of the bar. The total individual utility of agents are
in the range of 866.60 and 1000.30. Figure 12 shows a similar experiment for
200 agents in which their gained total individual utility is between 999.20 and
1000.5. The results for 300 and 400 agents are similar to the previous ones. The
simulation outcome demonstrates that the devised approach is scalable in terms
of the number of participating agents. This is in contrast to good society method,
where the performance degrades by surging the number of agents.

6 Conclusion

In the lack of a central coordinator, the establishment of a self-coordination
mechanism for accessing a limited resource is a common problem that a variety
of systems are facing. The classic El Farol Bar Problem models the situation,
where a number of citizens may decide to go to the bar with a limited capacity.
According to the number of attendees, they may receive a negative utility if the
bar is over-crowded, positive utility if it is not over-crowded, or zero utility if
they do not attend the bar. Agents’ decision is only based on their previous
experiments. In this paper, we introduced a new method that applied a two-
dimensional approach. The main idea was to use some details of each iteration
as well as the agents’ past experiences. For the first case, we defined a new
function called Effect() that discriminates over-crowded cases from each other,
as well as under-crowded ones. For the second case, we introduced a new social
coordination parameter that hindered agents from overusing the resource. The
simulation results showed the performance of the devised approach in terms of
convergence speed, social utility, total individual utility, starvation length.

As future work, we are going to apply this method to various applications
such as energy consumption in smart homes, public transportation, and network
traffic.
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Abstract. Complex systems are ubiquitous. Their components, agents,
live in an environment perceiving its changes and reacting with appro-
priate actions; they also interact with each other causing changes in the
environment itself. Modelling an environment that shows this feedback
loop with agents is still a big issue because the model must take into
account the emerging behaviour of the whole system. In this paper, fol-
lowing the S[B] paradigm, we exploit topological data analysis and the
information power of persistent entropy for deriving a persistent entropy
automaton to model a global emerging behaviour of the Dow Jones stock
market index. We devise early warning states of the automaton that sig-
nal a possible evolution of the system towards a financial crisis.

Keywords: Complex systems · S[B] paradigm · Emerging behavior ·
Topological data analysis · Stock market

1 Introduction

A complex system is any system consisting of a great number of heterogeneous
entities interacting with each other within an environment to shape an emerging
behavior. Such emerging behaviour depends on a non-trivial space of correla-
tions that derive from the interplay of agents entangled in loops of non-linear
interactions. In the metaphor of the flock of starlings, any environmental change
perceived by the starlings during their flight is visible in the formation of the
flock shape due to their reaction. This implies that there is an underlying feed-
back loop between the agents and the global system.

Mastering the complexity of these systems has always been a challenge in
almost every branch of science. In computer science, process-, actor- and agent-
based models and languages have been developed for describing the behaviour
of complex software systems [1,2,6,11]. All these approaches require an a priori
knowledge of the basic rules governing the dynamic of the system in order to
define the behaviour of the components and of the environment. Unfortunately,
for natural or social phenomena, it is quite impossible to have enough knowledge
about the real interaction rules. However, global information about the system
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is hidden inside phenomenological data produced by the individual components.
Thus, we need suitable methods to extract a specific model of interest.

Topological Data Analysis (TDA) is a relatively new field of study in which
topology driven methods are used to analyse big collections of data [4,5,8]. The
S[B] paradigm is a general framework of modelling in which a complex system
is described as a pair of entangled systems: S, the global environment, and B,
a set of interactive agents [13,14]. Persistent Entropy (PE) is a Shannon-like
entropic measure able to describe the global dynamics of a complex system [16].
PE has been used for studying complex phenomena in different fields [15–17].
As shown in [16], by analysing the trajectories of PE and its derived quantities,
an automaton, called Persistent Entropy Automaton (PEA), which models the
global dynamics of the system under study, can be manually devised.

The global financial system is one of the most important, human-made, com-
plex systems. This system is composed of multiple interacting autonomous com-
ponents or “selfish” agents, who - very often - act for their own benefit, and of
complex interactions among those components. Each component behaves accord-
ing to his/its own strategies, under the influence of the environment and inter-
acting with other heterogeneous components. Classical tools for analysing and
modelling such systems operate under a range of rather unrealistic assumptions.
For example, interactions are normally abstracted with equations: this implies
that the system reaches the equilibrium through non-linear optimisation meth-
ods rather than emerging from the agents interactions [12].

In this paper we use TDA to construct a data space from the components of
the Dow Jones stock market index. The considered data set is the time series of
the daily log-returns of Dow Jones’ components from 1987 to 2017. From the data
space, we calculate the PE and we devise a PEA whose locations model global
states of the stock market. We show that early warnings about the emergence
of the already occurred financial crisis can be identified by the PEA.

2 Methods

TDA employs concepts and principles of the field of computational topology to
reveal higher dimensional patterns hidden in big data sets [5,8]. Computational
topology studies invariants of shapes among which the so called Betti numbers,
or barcodes, that characterise the existence of n-dimensional holes in the topo-
logical data space. TDA builds a discrete topological space, a simplicial complex,
following a filtration procedure. In this work we use the Vietoris-Rips complex
filtration that works on point clouds [8]. At each step of the filtration the persis-
tent homology is computed yielding a collection of barcodes that indicate the life
span of the topological invariants. PE is then computed from the barcodes [15].

The 24 time series of the considered Dow Jones components were mapped
into a point cloud using a sliding window of 50 days and scrolling one point at a
time with superposition of 49 points. Each window then produced 50 points in
R

24. This technique has been demonstrate suitable for studying the time-varying
properties of systems similar to the one we are studying [9,15].
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The mechanism driving critical transitions in complex systems is called tip-
ping point, which is an abrupt qualitative change in the behaviour of a dynamical
system when one or more control parameters change. In approaching a tipping
point, a complex system shows a phenomenon called Critical Slowing Down
(CSD), which can be considered an Early Warnings Signal (EWS) for the criti-
cal transition [3,18]. Since PE describes a system globally, it contains a summary
of the knowledge about the system. Moreover, it can be considered a time series
itself and can be calculated for all the dimensions. Thus, we study the total PE
time series (PEtot) - calculated as the sum of PEs for all the dimensions - with
an analytical approach. The goal is to identify EWSs about a crisis by detecting
the occurrence of tipping points. The obtained PEtot is shown in Fig. 1.

To delimit the CSD areas we used an adaptation of the W2 index, i.e. a
combination of statistical indices (coefficient of variation, 1-lag autocorrelation,
and kurtosis), described in [7]. W2 is computed from PEtot with the R package
“earlywarnings” using another sliding window of size 450. Thus, W2 is another
time series and it is plotted along with its running average and 2σ confidence
bands in Fig. 1. Potential areas of CSD are identified by finding points where
W2 > W2+2σ [7]. These areas are shown in Fig. 1 with black bands and represent
the EWSs in our system.

Identified CSD areas can be used to define PEA states. A PEA monitors the
PE and derived functions w. r. t. equilibrium conditions that define its states [16].
It remains in a state s as long as the associated equilibrium condition ec(s) is
satisfied. When it is violated, the PEA exits s and starts a non-instantaneous
transition, which can be seen as an adaptation phase. This adaptation may end
into an adjacent PEA state s′ as soon as ec(s′) is satisfied or may not termi-
nate. This definition is based on the fact that PEA states are devised from the
observed trajectories of PE and derived functions. Indeed, it may happen that
the monitored functions exhibit evolutions that were not identified as equilibrium
conditions. This is expected for natural complex systems for which “complete”
models can not be established. The main difference between a PEA and a hybrid
automaton, which is a top-down defined model not considering unknown evolu-
tions [10], is essentially in this different perspective.

3 Persistent Entropy Automaton of Dow Jones

In the S[B] paradigm the structural level S is a model of the global dynamics
of the system and the behavioural level B is a model of the local interactions
among the entities of the system [13]. In this study, the behavioural level B
is represented by real human agents that produced the data that we use. The
structural level S is defined as a PEA in the following.

We consider two financial crises, dot-Com and Lehman Brothers Crash, both
represented with coloured bands in Fig. 1. We devise the PEA by monitoring the
functions PEtot(t), W2(t), their running average PEtot(t), W2(t) together with
their derivatives indicated with a dot over the symbol. Each discrete instant
t corresponds to one day observation. The derived PEA is called PEAW2 , is
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Fig. 1. Plot of PEtot and its running average (above). Plot of W2 and its running
average with confidence bands (below). The grey and black vertical bands correspond
to the relative states of the automaton in Fig. 2. The thin coloured vertical bands
correspond to financial crises. (Color figure online)

depicted in Fig. 2 and its states are described in the following. A stable state is
characterised by the equilibrium condition |W2 − W2| < 2σ, that is W2 does not
exceed the confidence bands. The state called Stable is the initial one and holds
this condition. As soon as the functions violate the stable condition, PEAW2 exits
state Stable and starts an adaptation. The only state in which the adaptation
can end is the one called Grey, a state indicating that there was in the past at
least one violation of the stable state condition. The equilibrium condition of
Grey is Ẇ2 ≈ 0 ∧ ˙PEtot < 0 ∧ W2 < W2 − 2σ, which means that the running
average of W2 has minimal oscillations, the running average of the total PE
is decreasing and W2 exits the confidence band −2σ. Visually, the periods in
which PEAW2 stays in this state are represented by the grey bands in Fig. 1.
State White corresponds visually to the period after a grey band, it has the
stable equilibrium condition and records the fact that the system entered at
least once state Grey. After White, another grey band can occur (in this case
the PEA goes back to Grey) or a black band occurs. A black band corresponds
to state Black. This is the early warning state because from Black the system
can only evolve to state Tipping that represents a tipping point. In Tipping a
crisis, represented by the dashed transition towards state Stable, can occur or
the system can return to state Grey. The dashed transition can be interpreted
as the occurrence of a phase transition of the system.

PEAW2 is then able to give a warning, in state Black, that a crisis may occur,
without giving a prediction. However, if the current state is different from Black,
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the model says that a crisis cannot occur immediately: there must be at least
one (or more) adaptations before the tipping point state is reached.

Stable

|W2 − W2| < 2σ
start

Grey

Ẇ2 ≈ 0
∧

˙PEtot < 0
∧

W2 < W2 − 2σ

White

|W2 − W2| < 2σ

Black

Ẇ2 > 0
∧

˙PEtot ≤ 0
∧

W2 > W2 + 2σ

Tipping

|W2 − W2| < 2σ

Fig. 2. PEAW2 , describing the transitions among the global states of the system.

4 Conclusions

In this work we have modelled the global dynamics of a complex system by
manually devising a PEA. TDA has been used for analysing the phenomeno-
logical data of the system and PE has been calculated from a topological space
derived from a data set. The application domain is the Dow Jones stock market.
The derived automaton models the global behaviour of the market and is able to
recognise a tipping point state in which a financial crisis may occur and previous
states in which there is some degree of warning but there is not an immediate
alarm because some other adaptations are required to reach the tipping point
state. The transition that goes from the tipping point state to the stable state
can be interpreted as a phase transition of the system.

Despite the encouraging result we are aware that the proposed analysis
presents some limitations: one is about the peculiarity of the data set that does
not allow one to set up a statistical validation of the results because of the
unicity of the phenomenon under study, for which other instances do not exist.
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Another regards the computation of the indices for deriving the W2, for which
it is necessary to try different lengths of the sliding windows.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

3. Battiston, S., et al.: Complexity theory and financial regulation. Science 351(6275),
818–819 (2016)

4. Binchi, J., Merelli, E., Rucco, M., Petri, G., Vaccarino, F.: jHoles: a tool for under-
standing biological complex networks via clique weight rank persistent homology.
Electron. Not. Theor. Comput. Sci. 306, 5–18 (2014)

5. Carlsson, G.: Topology and data. Bull. AMS 46(2), 255–308 (2009)
6. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents

interaction and mobility. IEEE Trans. Softw. Eng. 24, 315–330 (1998)
7. Drake, J.M., Griffen, B.D.: Early warning signals of extinction in deteriorating

environments. Nature 467(7314), 456 EP - (2010)
8. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS,

Providence (2010)
9. Gidea, M., Katz, Y.: Topological data analysis of financial time series: landscapes

of crashes. Phys. A 491, 820–834 (2018)
10. Henzinger, T.: The theory of hybrid automata. In: Inan, M., Kurshan, R. (eds.)

Verification of Digital and Hybrid Systems, NATO ASI Series (Series F: Computer
and Systems Sciences), vol. 170, pp. 265–292. Springer, Heidelberg (2000). https://
doi.org/10.1007/978-3-642-59615-5 13

11. Jennings, N.R.: An agent-based approach for building complex software systems.
Commun. ACM 44(4), 35–41 (2001)

12. Landini, S., Gallegati, M., Rosser, J.B.: Consistency and incompleteness in gen-
eral equilibrium theory. J. Evol. Econ. (2018). https://doi.org/10.1007/s00191-018-
0580-6

13. Merelli, E., Paoletti, N., Tesei, L.: Adaptability checking in complex systems. Sci.
Comput. Program. 115–116, 23–46 (2016)

14. Merelli, E., Pettini, M., Rasetti, M.: Topology driven modeling: the IS metaphor.
Nat. Comput. 14(3), 421–430 (2015)

15. Merelli, E., Piangerelli, M., Rucco, M., Toller, D.: A topological approach for mul-
tivariate time series characterization: the epileptic brain. In: EAI Endorsed Trans-
actions on Self-Adaptive Systems (2016). https://doi.org/10.4108/eai.3-12-2015.
2262525

16. Merelli, E., Rucco, M., Sloot, P., Tesei, L.: Topological characterization of complex
systems: using persistent entropy. Entropy 17(10), 6872–6892 (2015)

17. Piangerelli, M., Rucco, M., Tesei, L., Merelli, E.: Topological classifier for detecting
the emergence of epileptic seizures. BMC Res. Not. 11, 392 (2018)

18. Scheffer, M.: Complex systems: foreseeing tipping points. Nature 467, 411 EP
(2010)

https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/s00191-018-0580-6
https://doi.org/10.1007/s00191-018-0580-6
https://doi.org/10.4108/eai.3-12-2015.2262525
https://doi.org/10.4108/eai.3-12-2015.2262525


Theorem Proving



Proof Guidance in PVS with Sequential
Pattern Mining

M. Saqib Nawaz1(B), Meng Sun1, and Philippe Fournier-Viger2

1 LMAM and Department of Informatics, School of Mathematical Sciences,
Peking University, Beijing, China
{msaqibnawaz,sunm}@pku.edu.cn

2 School of Humanities and Social Sciences,
Harbin Institute of Technology (Shenzhen), Shenzhen, China

philfv8@yahoo.com

Abstract. The recent introduction of the big data paradigm and
advancements in machine learning and deep mining techniques have
made proof guidance and automation in interactive theorem provers
(ITPs) an important research topic. In this paper, we provide a learning
approach based on sequential pattern mining (SPM) for proof guidance
in the PVS proof assistant. Proofs in a PVS theory are first abstracted
to a computer-processable corpus. SPM techniques are then used on the
corpus to discover frequent proof steps and proof patterns, relationships
of proof steps / patterns with each other, dependency of new conjectures
on already proved facts and to predict the next proof step(s). Obtained
results suggest that the integration of SPM in proof assistants can be
used to guide the proof process and in the development of proof tac-
tics/strategies.

Keywords: PVS · Proof development process · Proof corpus ·
Frequent patterns · Sequential pattern mining

1 Introduction

Theorem provers allow the formal development and verification of system prop-
erties that can be defined in appropriate logical formalisms. Automated (first-
order) theorem provers (ATPs) deal with the development of computer pro-
grams that can automatically perform logical reasoning. However, first-order
logic (FOL) lacks the expressibility power that is required to define complex
systems with an infinite domain. On the other hand, higher-order logic (HOL)
allows quantification over predicates and functions. HOL based theorem provers,
also known as interactive theorem provers (ITPs), offer support for rich logical
formalisms such as dependent and (co)inductive types as well as recursive func-
tions, which enable ITPs to model complex systems. Today, these mechanical
reasoning systems are used in verification projects that range from operating
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systems, compilers and hardware components to prove the correctness of large
mathematical proofs such as the Feit-Thomson Theorem and the Kepler conjec-
ture [22]. However, automatic reasoning in ITPs is still a hard problem due to
undecidable algorithms and proof methods [20].

Unlike ATPs where the proof process is generally automatic, ITPs follow
the user driven proof development process. The user guides the proof process
by providing the proof goal and by applying proof commands and tactics to
prove the goal. Generally, the user does lots of repetitive work to prove a non-
trivial theorem (goal), which is laborious and consumes a large amount of time.
Proof guidance and proof automation in ITPs are two extremely desirable fea-
tures. ITPs now do have a large corpora of computer-understandable formalized
knowledge [5,19] in the form of proof libraries. In PVS, proof scripts for a partic-
ular theory are stored separately in a file that can also be considered as a proof
corpus for the theorems and lemmas in that theory. Proof scripts of different
theories can be combined together to develop a more complex corpora. These
corpora play an important role in artificial intelligence based methods, such as
concept matching, structure formation and theory exploration. The ongoing fast
progress in machine learning and data mining made it possible to use these
learning techniques on such corpora in guiding the proof search process, in proof
automation and in developing proof tactics/strategies, as indicated in recent
works [8,9,15–17,21,26].

In this paper, the focus is on proof guidance and premise selection in ITPs
from the perspective of sequential pattern mining (SPM) techniques. SPM tech-
niques are used in data mining to find interesting and useful patterns (infor-
mation) that are hidden in large corpora of sequential data [14]. A particular
proof goal in PVS depends on the specifications inside the theory and it can be
completed with different combinations of proof commands, inference rules and
decision procedures [30]. This makes it difficult to infer useful proof tactics and
strategies from specific examples that can be applied more generally. Moreover,
a proof corpus contains too much information, which makes it hard to carry
out the brute force approach for proof search. However, there is the potential
to identify useful and interesting hidden proof patterns in these corpora and
relationships of such proof patterns with each other. With such information,
SPM techniques can be used to investigate the dependency of new conjectures
on already proved facts and to predict the next proof step(s) or pattern(s) for
guiding the proof of a novel non-trivial theorem/lemma.

We present an SPM-based proof process learning approach for the PVS proof
assistant. The basic idea is to convert the PVS proofs for a theory into a proof
corpus that is suitable for learning. SPM techniques are applied on the corpus
to find frequent proof steps and patterns that are used in the proofs. Moreover,
relationships of a proof steps/patterns with each other are discovered through
sequential rule mining. The learning approach is also used to find the relevance
of the new conjectures with the proofs and the performance of some state-of-the-
art prediction models are examined by training and testing them on the corpus
to predict the next proof step(s). Besides PVS, the proposed approach can also
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be used to guide the proof process in other proof assistants. The ultimate goal
is to develop proof tactics/strategies with useful patterns that can be invoked
directly by the user in the proof development process.

The rest of this paper is organized as follows: Sect. 2 elaborates the SPM-
based learning approach that is used to discover useful proof steps/patterns in
the proof corpus, their relationship and prediction of next proof step(s). Evalua-
tion of the proposed approach on a case study and obtained results are discussed
in Sect. 3. Related work on using the machine learning and data mining tech-
niques for automated reasoning in ATPs and ITPs is presented in Sect. 4. Finally,
the paper is concluded with some future directions in Sect. 5. PVS dump files
and SPM related data for this work can be found at [31].

2 Proof Corpus Mining with SPM

The structure of the SPM-based learning approach is shown in Fig. 1. It consists
of two main parts:

1. Development of proof corpus: PVS proof steps for theorems and lemmas
in a theory are converted to a proof corpus, where each complete proof is
abstracted to sequences of proof commands.

2. Learning through SPM: SPM algorithms are used on the corpus to discover
the common proof steps and patterns, relationships of proof steps/patterns
with each other, dependency of new conjectures on already proved facts and
prediction of next proof step(s). Each part is further elaborated next.

PVS Proof
Steps

Proofs
Corpus

A
b

st
ra

ct
io

n

SPM

Frequent proof steps and
patterns 

Dependency of new conjectures
on proved facts

Sequential rules between proof
steps / patterns 

Proof step(s) prediction

Learning

Fig. 1. SPM-based approach to learn the proof process

In general, data is assembled first, so that data mining algorithms can be
used. To make the proof corpus suitable for learning, it should satisfy certain
minimum requirements, such as:
– It is stored in a computational and electronic form.
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– It contains many examples of proofs that offer diversity in kinds of proof steps.
The corpus should have different proof steps so that useful proof patterns as
well as the dependency of proof steps and prediction of next proof steps can
be discovered.

– It is transformed in a suitable abstraction, so that no meaningful information
from the proofs is left out. For this, we use the “proof sequences to integers”
abstraction, where each proof command is converted to a distinct positive
integer. Such abstraction allows wide diversity and makes the approach more
general in nature.

Besides the dump file that contains the specifications for a particular theory
with imported libraries and proof scripts (collection of proof steps) for theo-
rems/lemmas, PVS also saves the proof scripts for a theory in a separate proof
file. These files contain proof commands with some other information related to
PVS. After removing the redundant information from the proof files, the com-
plete proof is a sequence of proof steps. In the following we present some concepts
related to sequences in the context of this work.

Let PS = {ps1, ps2, ..., psm} represent the set of proof commands. A proof
steps set PSS is a set of proof commands, that is PSS ⊆ PS. |PSS| denotes
the set cardinality. PSS has a length k (called k-PSS) if it contains k proof com-
mands, i.e., |PSS| = k. For example, consider the set of PVS proof commands
PS = {skolem, flatten, inst?, split, beta, iff, assert}. The set {skolem, flatten,
assert} is a proof steps set that contains three proof commands. For the purpose
of processing commands in some order, a total order relation on proof commands
is assumed to exist (e.g. the lexicographical order), denoted as ≺.

A proof sequence is a list of proof steps sets S = 〈PSS1, PSS2, ..., PSSn〉,
such that PSSi ⊆ PSS (1 ≤ i ≤ n). For example, 〈{skolem, flatten}, {inst?},
{beta, iff}, {assert}〉 is a proof sequence which has four proof steps sets being
used to prove a theorem. A proof corpus PC is a list of proof sequences PC =
〈S1, S2, ..., Sp〉, where each sequence has an identifier (ID). For example, Table 1
shows a PC that has five proof sequences with IDs 1, 2, 3, 4 and 5.

Table 1. A sample of a proof corpus

ID Proof sequence

1 〈{inst 1 “lambda (x,y: sequence[Time]): false”, grind}〉
2 〈{skosimp, expand “Teq”, flatten, assert}〉
3 〈{skosimp, expand “Fifon”, propax}〉
4 〈{skeep, expand “Tle”, typepred “<”, expand “strict_order?”, flatten,

expand “transitive?”, inst -2 “T(s1)” “T(s2)” “T(s3)”, assert }〉
5 〈{induct n},{expand "sum", propax},{skosimp, expand “sum” +, assert}〉

The final step is to convert the proof sequences into sequences of integers
to bring the corpus in a more suitable format for SPM techniques. In the final
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corpus, each line represents a proof sequence that was used for the proof of a
theorem/lemma. Each proof command in the sequence is replaced by a positive
integer. For example, the proof command skosimp is replaced by 1. Moreover,
proof commands are separated with a single space followed by a negative integer
-1. The negative integer -2 appears at the end of each line to indicate the end
of a proof sequence. It is to note that the same integers are used for similar
proof commands such as (inst?() and (inst fnum constants), and (skosimp) and
(skosimp*). This makes the learning process more general in nature and can be
used for other PVS theories, in particular for the PVS library.

A proof sequence Sα = 〈α1, α2, ..., αn〉 is present or contained in another
proof sequence Sβ = 〈β1, β1, ..., βm〉 iff there exist integers 1 ≤ i1 < i2 < ... <
in ≤ m, such that α1 ⊆ βi1, α2 ⊆ βi2, ..., αn ⊆ βim (denoted as Sα � Sβ). If
Sα is present in Sβ , then Sα is a subsequence of Sβ . In SPM, various measures
are used to evaluate the importance and interestingness of a subsequence. The
support measure is used by most SPM techniques. The support of Sα in PC is the
total number of sequences (S) that contain Sα, and is represented by sup(Sα):

sup(Sα) = |{S|Sα � S ∧ S ∈ PC}|
SPM is an enumeration problem that aims to find all the frequent subse-

quences in a sequential dataset. A sequence S is a frequent sequence (also called
sequential pattern) iff sup(S) ≥ minsup, where minsup (minimum support)
is the threshold being determined by the user. A sequence containing n items
(proof commands in this work) in a corpus can have up to 2n − 1 distinct subse-
quences. This makes the naive approach to calculate the support of all possible
subsequences infeasible for most corpora. Several efficient algorithms have been
developed in recent years that do not explore all the search space for all possible
subsequences.

All SPM algorithms investigate the patterns search space with two opera-
tions: s-extensions and i-extensions. A sequence Sα = 〈α1, α2, ..., αn〉 is a prefix
of another sequence Sβ = 〈β1, β1, ..., βm〉, if n < m, α1 = β1, α2 = β2 , ...,
αn−1 = βn−1, where αn is equal to the first |αn| items of βn according to the
≺ order. Note that SPM algorithms follow a specific order ≺ so that the same
potential patterns are not considered twice and the choice of the order ≺ does
not affect the final result produced by SPM algorithms. A sequence Sβ is an s-
extension of a sequence Sα for an item x if Sβ = 〈α1, α2, ..., αn, {x}〉. Similarly,
for an item x, a sequence Sγ is an i-extension of Sα if Sγ = 〈α1, α2, ..., αn ∪{x}〉.
SPM algorithms either employ a breadth-first search or a depth-first search. In
the following, a brief description of state-of-the-art SPM algorithms is presented.

The TKS (Top-k Sequential) algorithm finds the top-k sequential patterns in
a corpus, where k is set by the user and it represents the number of sequential
patterns to be discovered by the algorithm. TKS employs the basic candidate
generation procedure of SPAM and vertical database representation. With ver-
tical representation, support for patterns can be calculated without perform-
ing costly database scans. This makes vertical algorithms to perform better on
dense or long sequences. TKS also uses several strategies for search space prun-
ing and depends on the PMAP (Precedence Map) data structure to avoid costly
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operations of bit vector intersection. Another SPM algorithm is the CM-SPAM
algorithm that performs a depth-first search to discover frequent sequential pat-
terns in a corpus. The CMAP (Co-occurrence MAP) data structure is used in
CM-SPAM to store co-occurrence of item information. A generic pruning mech-
anism that is based on CMAP is used for pruning the search space with vertical
database representation, to efficiently discover sequential patterns. More detail
on TKS and CM-SPAM can be found in [10,11] respectively.

Sequential patterns that appear frequently in a corpus with low confidence
are worthless for decision making or prediction. Sequential rules discover patterns
by considering not only their support but also their confidence. A sequential rule
X → Y is a relationship between two PSSs X,Y ⊆ PS, such that X ∩ Y = ∅
and X,Y �= ∅. The rule r : X → Y means that if items of X occur in a sequence,
items of Y will occur afterward in the same sequence. X is contained in Sα

(written as X � Sα) iff X ⊆ ⋃n
i=1 αi. A rule r : X → Y is contained in Sα

(r � Sα) iff there exists an integer k such that 1 ≤ k < n, X ⊆ ⋃k
i=1 αi and

Y ⊆ ∪n
i=k+1αi. The confidence of r in PC is defined as:

confPC(r) =
|{S|r � S ∧ S ∈ PC}|
|{S|X � S ∧ S ∈ PC}|

The support of r in PC is defined as:

supPC(r) =
|{S|r � S ∧ S ∈ PC}|

|PC|
A rule r is a frequent sequential rule iff supPC(r) ≥ minsup and r is a

valid sequential rule iff it is frequent and confPC(r) ≥ minconf , where the
thresholds minsup, minconf ∈ [0, 1] are set by the user. Mining sequential rules
in a corpus deals with finding all the valid sequential rules. For this, the ERMiner
(Equivalence class based sequential Rule Miner) algorithm [12] is used. It relies
on a vertical database representation and represents the search space of rules
using equivalence classes of rules having the same antecedent or consequent.
It employs two operations (left and right merges) to explore the search space
of frequent sequential rules, where the search space is pruned with the Sparse
Count Matrix (SCM) technique, which makes ERMiner more efficient than other
sequential rule finding algorithms.

The statistical Naive Bayes (NB) classifier [32] is based on Bayes’ theorem
and is used to compute the probability of using the proof p in the corpus to
prove a new conjecture c. A conjecture is a proposition or statement that has
not been proved yet, but is thought to be true. The probability is based on the
fact that some p are already used before in the proof of conjectures similar to
c. As each p contains a set of proof steps, the conditional probability P (PSS|c)
estimates the relevance of PSS for c. The conditional probability is computed
and multiplied to get the overall probability for c.

The Compact Prediction Tree+ (CPT+) model is used to predict the next
proof step(s) [18]. CPT+ implements two strategies for compression to reduce the
CPT size and one strategy for the reduction of prediction time. In the training
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phase, CPT+ takes a set of training sequences as input and generates three data
structures: a prediction tree, a lookup table and an inverted index. These three
structures are built incrementally by considering the sequence one by one during
training. For a proof sequence Sα of n elements, the suffix of Sα of size y where
1 ≤ y ≤ n is defined as Py(Sα) = 〈αn−y+1, αn−y+2, ..., αn〉. Predicting the next
proof steps of Sα is done by finding those sequences that are similar to Py(Sα)
in any order. For prediction, CPT+ uses the consequent of each sequence that is
similar to Sα. Let Sβ be another proof sequence similar to Sα. The consequent
of Sβ with respect to Sα is the longest subsequence 〈βv, βv+1, ..., βm〉 of Sβ such
that

⋃v−1
k=1{βk} ⊆ Py(Sα) and 1 ≤ v ≤ m. Each proof command discovered in

the consequent of a similar proof sequence of Sα is stored in the count table
(CT) data structure. CPT+ in last returns the most supported proof step(s) in
the CT as prediction(s).

3 Experiments

All the following experiments are performed on an HP laptop with a fifth gen-
eration Core i5 processor and 8 GB RAM. For the case study, we select our
previous work [29], where PVS is used for the analysis and verification of Reo
connectors composed of untimed and timed channels. The main reason to select
the proofs in [29] is that we are extending the formalization framework to cover
the probabilistic [3] and stochastic [4] behavior of Reo connectors. The approach
not only enabled us to comprehend the proof process for probabilistic connectors
but also can be considered far effective in providing the necessary guidance to
attain the proofs of such connectors.

SPMF data mining library, developed in JAVA, is used to analyze the proof
corpus. It is an open-source and cross-platform framework that is specialized
in pattern mining tasks. SPMF offers implementations for more than 150 data
mining algorithms. More detail on SPMF can be found in [13].

3.1 Case Study

Reo [2] is a channel-based exogenous coordination language that allows the con-
struction of complex connectors from primitive channels through compositional
operators. Connectors in Reo provide the protocol for controlling and organizing
the communication, synchronization and cooperation between components. Each
channel in Reo has two channel ends type source or sink. The connector behavior
in PVS is formalized by means of data-flows on its sink and source nodes, which
are essentially infinite sequences. In PVS, record structure named TD is used
to represent the timed-data sequences on sink and source nodes, where time is
defined as a positive real number (R+) and data is defined as a positive type.
Three main composition operators (flow through, replicate and merge) are used
in Reo for connector construction. Flow through and replicate operators can be
achieved explicitly in PVS, whereas merge operator is defined inductively.
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We omit the details of Reo connector modeling in PVS due to the length lim-
itation. Interested readers can find more details in [29,31]. Here, one example is
provided to show how connectors are modeled and how properties for connectors
are proved in PVS.

Example 1. Figure 2 shows a connector which consists of one Synchronous (Sync)
channel (AB) and one FIFO1 channel (BC), that accepts data items at source
node A and stores the data items in the buffer, before dispensing them through
the sink node C. The mixed node B allows the data items to move from the
Sync channel to FIFO1 channel without any change.

Fig. 2. A connector composed of a Sync and a FIFO1 channel

Let a, b, c denote the time sequences when the corresponding data sequence
flows through nodes A, B and C respectively. According to the semantics of
Sync and FIFO1 channels, a = b < c. Let α, γ represent the data sequences
being observed at nodes A and C respectively, and α = γ. In PVS, these results
are proved with the following theorem.

Theorem 1. Sync(A,B) ∧ Fifo1(B,C) ⇒ Tle(A,C) ∧ Teq(A,B) ∧ Deq(A,C)

Proof. PVS prover is based on sequent calculus and it can build a graphical
proof tree for a proof goal. The nodes in the proof tree are sequents. PVS proof
commands may divide the main goal into sub-goals (tree leaves). The proof is
completed when all the sub-goals are proved. The proof steps for Theorem 1 are
shown in Fig. 3.

(expand "Sync" )

(skosimp)

(expand "Fifo1")

(expand "Teq")

(expand "Deq")

(expand "next")

(flatten)

(assert)

(split)

(propax)
(assert)

(expand "Tle")

Fig. 3. PVS proof tree for Theorem 1
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3.2 Results and Discussion

Results obtained by applying SPM algorithms on the proof corpus are discussed
in this section.

The TKS algorithm is first applied on the corpus to find hidden proof steps
and patterns. TKS takes a corpus and a user specified parameter k as input and
returns the top-k most frequent patterns as output. The parameter k is used in
place of minusp threshold due to the following two reasons:

1. Selection of a proper minimum support to discover the desired amount of
useful patterns has an effect on the performance of SPM algorithms.

2. The minimum support fine-tuning process is hard and time consuming.

To overcome these drawbacks, the parameter k puts a bound on the total
number of patterns to be discovered by the algorithm. Some proof patterns
discovered by the TKS algorithm with varying length are shown in Table 2. The
column Sup indicates the occurrence count of each pattern in the corpus. Table 3
provides some useful information related to frequent occurrence of proof steps
and patterns that are used in the verification of Reo channels and connectors.

Table 2. Extracted proof steps/patterns with TKS algorithm

≥
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Unlike TKS, the CM-SPAM algorithm offers the minsup threshold. Table 3
lists some of the most useful frequent proof patterns in the corpus which are
extracted with the CM-SPAM algorithm. The first six proof patterns appear in
at least 50% of the sequences in the corpus. The next six patterns appear in at
least 40% of the sequences and last two patterns appear in at least 10% of the
sequences. Discovered patterns with the CM-SPAM algorithm are almost similar
to the results obtained with the TKS algorithm. As the outputs of TKS and CM-
SPAM are very similar, the performance of TKS with CM-SPAM is compared in
terms of execution time and memory used. The CM-SPAM is fine tuned with the
minsup threshold to generate the k proof patterns. For optimal support, TKS
execution time is very similar to CM-SPAM. Similarly, TKS showed excellent
scalability. These results, which are consistent with [11], are important because
finding the top-k sequential proof patterns is a harder problem than mining all
proof patterns, as the minsup requires dynamic raising that starts from 0.

Table 3. Frequent proof patterns extracted with CM-SPAM

Pattern Sup Min. Sup

expand 40 0.5
assert 33 0.5
skosimp 39 0.5

expand, expand 34 0.5
expand, assert 28 0.5
skosimp, expand 31 0.5

inst 24 0.4
expand, expand, expand 25 0.4

expand, expand, expand, expand 22 0.4
expand, expand, assert 25 0.4
skosimp, expand, expand 26 0.4

skosimp, assert 25 0.4
inst, assert 6 0.1

expand, typepred, inst 6 0.1

Figure 4 shows the relationships between proof steps/patterns that are discov-
ered through sequential rule mining with the ERMiner algorithm. The confidence
(misconf) threshold is set to 70%, which means that rules have a confidence of
at least 70% (a rule X → Y has a confidence of 70% if the set of proof commands
in X is followed by the set of proof commands in Y at least 70% of the times
when X appears in a proof sequence). The value above the arrow is for the sup-
port and the value below the arrow indicates the confidence (probability). For
example, the first rule in Fig. 4 indicates that 94.7% of the time, the assert com-
mand is followed after the expand command. With the ERMiner algorithm, we
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found some interesting relationship and dependency of proof steps/patterns with
each other. Results obtained so far indicate that the total number of proof steps
in each proof (abstraction simplicity) has a direct correlation on the efficiency
of SPM algorithms.

expand assert18
94.7

skosimp assert30
79

typepred expand10
82

induct expand5
100

expand, flatten, skosimp assert12
92.3

inst, flatten assert6
85.7

skosimp expand, assert14
100

expand, flatten, skosimp split7
70

typepred expand, assert7
87.5

expand, skosimp propax5
83.3

flatten, skosimp, induct assert3
100

expand, flatten, skeep inst
3

100

expand, flatten, split, skosimp assert7
87.5 

Fig. 4. Sequential rules discovered in corpus

In [7], common proof patterns are found in the Isabelle proofs with a vari-
able length Markov Chain. Proofs are represented in a tree structure format,
which are linearized, such as the proofs are split into separate sequences and
given weights accordingly. However, linearization means losing any important
connections (information) between different branches in the proofs due to which
interesting patterns may well be lost. In this work, the proof corpus contains all
the necessary important information for pattern discovery and SPM algorithms,
which are more user-friendly and work efficiently on the corpus.

The NB classifier implemented in SPMF is used to check the dependency of
new conjectures on already proved proofs. For that, the classifier is trained on
the proofs presented in the corpus. We then provide new conjectures from our
ongoing work on probabilistic Reo connectors. In the output, the classifier suc-
cessfully classified the new conjectures, which shows that the proofs can be used
in guiding the proof process of new conjectures. Moreover, for conjectures taken
from PVS libraries, the classifier was unable to classify, which means that their
proofs are not dependent on the facts present in the corpus. NB classifiers are
also used in [23] for computing the proof dependencies for new conjectures from
the theorems taken from the Coq repository. Obtained results are presented with
measures such as precision, recall and rank. In SPMF, the NB implementation
only provides the binary type output for classification and does not provide infor-
mation for the measures. In future, we would like to enhance the implementation
of NB to provide statistics about the measures.

Predicting the next proof steps for the new conjecture or unproved theo-
rem/lemma has gained increased importance in last few years. The CPT+ model
is used for predicting the next proof steps. The model is first trained on the proof
sequences in the corpus. The prediction model is then used to predict the next
proof step for a new proof sequence. Prediction of the next proof step is based
on the scores calculated by the model for each proof command. For example,
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CPT+ predicted assert for the proof sequence <flatten, split>. The statistics
and scores assigned by the model to each proof step for the previous example
are listed in Table 4. It is to note here that a higher score is considered better
for CPT+.

Table 4. Results for TPC+ prediction model

Statistics Value Proof step Score

Number of distinct items 13 skosimp 2.018
Itemsets per sequence 12.342 expand 20.244
Distinct item per sequence 5.142 assert 26.297
Occurrence for each item 2.4 inst 2.778
Corpus size in MB 124.001 grind 2.636

To check the efficiency of CPT+, we compared its performance with vari-
ous other state-of-the-art prediction models such as Dependency Graph (DG),
Transition Directed Acyclic Graph (TDAG), CPT (the predecessor of CPT+),
AKOM (All-K-Order-Markov) and LZ78. Each model is trained and tested with
10-fold cross-validation. The cross-validation technique characterizes the perfor-
mance of each model by evaluating the generalization of independent set over
statistical results provided by the model. In k-fold cross-validation, the dataset
is randomly partitioned into k sub-datasets. One sub-dataset is then selected as
validation set for model testing and the remaining k−1 sub-datasets are used for
model training. This process is continued for k times and each sub-dataset is used
exactly once as the validation set. Single estimation of the result is obtained by
taking the average of k results. The main reason to use 10-fold cross-validation
is to achieve low variance in each run. Obtained results for various prediction
models are shown in Table 5.

Table 5. Accuracy of prediction models

Models DG TDAG CPT+ CPT AKOM LZ78

Success 41.176 73.529 79.412 85.714 73.529 50
Failure 58.824 26.471 20.588 14.286 26.471 50
No Match 0.00 0.00 0.00 17.647 0.00 0.00
Overall 41.176 73.529 79.412 70.588 73.529 50

For evaluation of prediction models, three measures are used. The result of
a prediction can be:
– a success if the model predicts accurately,
– a failure if the model predicts inaccurately and
– no match if the model cannot perform the prediction.
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The overall performance of each model is measured through its accuracy,
which is the total number of successful predictions performed by the model
against the total number of test sequences. Two other measures training time
and testing time are not included in the results here as all the models take
almost the same time for training and testing. CPT+ achieved higher accuracy
(79.412) as compared to other prediction models. CPT has a higher success
rate than CPT+, but the higher no match rate makes its accuracy lower than
CPT+. Markov based prediction models DG achieved the lowest success rate
and highest failure rate, while TDAG and AKOM have the same results for all
four parameters.

4 Related Work

Using machine learning and data mining in theorem provers is not a new idea
and they are used mainly for three tasks: premise selection, strategy selection
and internal guidance. Support vector machines (SVMs) and Gaussian processes
(GPs) were used in [6] for selection of a good heuristics in the E theorem prover.
In [27], kernel methods were applied for strategy scheduling and strategy find-
ing problems in three ATPs: E, Satallax and LEO-II. Deep networks have been
used in [28] for internal guidance in E, where deep learning based proof guid-
ance increases the total number of theorems proved while reducing the aver-
age number of proof search steps. Moreover, internal proof guidance methods
based on the watchlist technique were developed in [17] for E prover. A proof
search guidance technique based on leanCoP was presented in [24] to guide the
tableaux proof search. In [33], GRU networks were used in MetaMath for guid-
ing the proof search of a tableau style proof process. Monte-Carlo tree search
methods added with a connection tableau were studied and implemented in
leanCoP in [9] for guiding the proof search. A new theorem proving algorithm
(implemented in rlCoP) was recently presented in [26] for proof guidance that
uses Monte-Carlo simulations with reinforcement iterations. rlCoP showed bet-
ter performance than leanCoP in solving unseen problems when trained on a
large corpus.

For HOL based theorem provers, variable length Markov models (VLMM)
technique has been applied in [7] on a proof corpus of the Isabelle prover to
identify sequences of proof steps and these sequences were used to form tac-
tics. Particle swarm optimization and NB based techniques were proposed in [8]
to internally guide the given-clause algorithm in the Satallax prover. Premise
selection techniques were developed in [23] for the Coq system, where machine
learning methods are compared on Coq proofs taken from the CoRN repository.
Recurrent and convolutional neural networks were used in [21] for premise selec-
tion in the Mizar prover. A corpus of proofs was constructed in [1] for training
a kernalized classifier with bag-of-word features that show the term occurrences
in a vocabulary. Premise selection based on machine learning and automated
reasoning for the HOL4 is provided in [15] by adapting HOL(y)Hammer [25].
A learning based automation technique was recently developed in [16] called
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TacticToe on top of the HOL4 for automation of theorems proofs. The HolStep
dataset, introduced in [22], consists of 10K conjectures and 2M statements to
develop new machine learning based proof strategies.

5 Conclusion

The proof development process in ITPs requires heavy interactions between users
and the proof assistants, where users are forced to do lots of repetitive work
which makes the proving process a more time consuming activity. To make the
proof process simpler and for proof guidance, the SPM-based learning approach
is adopted in this work to find the frequent proof steps/patterns and their rela-
tionship in a PVS theory. NB classifier is used to check the dependency of new
conjectures on the already proved proofs. Moreover, the performance of some
models for the prediction of next proof step(s) is compared, where CPT+ per-
forms better than other models. Some interesting proof patterns are found with
SPM and obtained results show that the number of proof steps in each proof has
a direct correlation on the efficiency of SPM algorithms.

There are several directions of future work. First, we would like to use the
SPM algorithms on the corpora of proof steps for theories included in PVS
library, which contains thousands of theorems. This will enable us to develop
a more general learning approach for the proofs of new conjunctures. Another
direction is to use evolutionary and heuristics techniques such as genetic pro-
gramming and particle swarm optimization for the development of PVS strate-
gies from frequently occurring proof patterns. Some other future work includes
the implementation of some famous classifiers such as k-nearest neighbor in
SPMF and enhancing the implementation of NB to provide statistics about com-
mon measures such as precision, recall and f-measure. Last but not the least,
using SPM algorithms on the dataset provided by [22] is in our future plan as
well.
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Abstract. Reo is a channel-based coordination language that allows
the construction of connectors to coordinate behavior among different
components in distributed systems. Probabilistic connectors in Reo cap-
ture the random and probabilistic behavior to deal with the uncertainty
of the real world. In this paper we use PVS to provide a mechanical
formalization for probabilistic connectors. We first present the formal-
ization of random/probabilistic channels and the composition operators
in PVS. Random and probabilistic channels are modeled as relations on
timed data distribution sequences that are observed at the source and
sink ends of these channels. Composition operators are used to com-
bine random/probabilistic channels together with primitive channels to
construct complex component connectors. The approach can be used to
naturally specify complex connectors and prove important properties for
probabilistic connectors as well as the refinement/equivalence relations
between them with the PVS proof assistant.

Keywords: Reo · PVS · Random/probabilistic connectors ·
Specification · Verification

1 Introduction

Large-scale distributed systems, that are generally transparent and heteroge-
neous in nature, are built from components that interact with each other to
perform some specific tasks. Coordination languages offer possible binding for
components in a distributed environment to make the interactions possible. Reo
[2,8] is a popular exogenous coordination language where exogenous coordina-
tion [1] means that the primitives that support the coordination of an entity with
others reside outside of that entity. Reo allows the orchestration of complex con-
nectors from simple ones (called channels) through composition operators.

Connectors in Reo provide the protocols for controlling and organizing the
communication, synchronization and cooperation among the components that
they interconnect. Formal analysis and verification of connectors have gained
much interest in the past decade for component-based software engineering due
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to the recent evolution of software systems and advancements in cloud and grid
technologies. It is also important to certify the correctness of connectors, which
makes large-scale distributed systems more reliable. Some works have been done
in this regard in the past years. For example, a modeling approach based on
first-order relational logic in Alloy modeling language was provided in [14] for
Reo connectors. The symbolic model checker “Vereofy” has been developed in
[6] to verify CTL-like properties for connectors. Moreover, a formal transforma-
tion from Reo to the specification language mCRL2 that is based on process
algebra was presented in [15]. The models were then verified conveniently with
the mCRL2 model checker.

Complex distributed systems need to incorporate many aspects of the com-
munication and coordination between components, such as nondeterminism,
probabilistic and stochastic interactions, real-time information and resource con-
sumption, etc. The works reported in [3–5,9,12,17,22] extend classical Reo from
different perspective to deal with such requirements. The Unifying Theories
of Programming (UTP) semantic framework was used in [21,23] to formalize
connectors by providing design models for untimed and timed Reo connectors
respectively, and recently extended in [24] to cover connectors that are composed
from channels with random and probabilistic behavior. The theorem proving
technique has been used in [18] to encode and reason about the design mod-
els for untimed/timed Reo connectors in PVS [19]. In this paper, we extend
the approach to cover the formalization for Reo connectors with random and
probabilistic behavior. The basic idea is to model the observable behavior of a
probabilistic connector as a relation on the timed data distribution sequences
being observed at the source (input) and sink (output) ends of the connector. The
extended approach covers the scenarios for unpredictable, uncertain behavior.
Furthermore, the refinement/equivalence relations between probabilistic connec-
tors can be formalized and verified in PVS easily.

Our mechanized verification for probabilistic analysis of connectors is cer-
tainly not the first one. A variant of constraint automata called probabilistic
constraint automata (PCA) has been developed in [5] to provide the operational
semantics for probabilistic Reo connectors. Stochastic Reo automata was pro-
posed in [17] to compositionally derive a QoS-aware semantics for Reo. The
automata model was translated to Continuous-Time Markov Chains (CTMCs)
so that third-party verification tools can be used for stochastic analysis. Simi-
larly, priced probabilistic timed constraint automata (pPTCA) was used in [12]
for the reasoning about nondeterministic, probabilistic and timed behavior with
aspects of energy consumption. Reo was also used in [7] to coordinate modules
in the PRISM model checker. Although such formalisms scale up quite well,
they suffer from the state space explosion problem as Reo connectors generally
describe the manifold interactions among components that they interconnect,
rather than simple input-output behavior on one individual interface. Moreover,
the modeling and verification of unbounded primitives or even bounded prim-
itives with unbounded data domains always lead to the state space explosion
problem, which cannot be solved with such finite automata models. However,
such behavior can be specified and verified efficiently in theorem provers as shown
in our previous works [13,18,25,26].
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The remainder of the paper is organized as follows: The coordination lan-
guage Reo is briefly introduced in Sect. 2. In Sect. 3, we present the specifi-
cations in PVS for some basic definitions that are used later to model ran-
dom/probabilistic channels. Section 4 presents the formal modeling of ran-
dom/probabilistic channels and composition operators in PVS. Section 5 shows
how to reason about properties of probabilistic connectors in PVS and refine-
ment/equivalence relations between them. Finally, Sect. 6 concludes the paper
with some future work. The PVS dump file for this work can be found at [20].

2 Preliminaries

Reo offers a compositional framework where component connectors can be con-
structed from primitive channels of arbitrary types through composition opera-
tors. Connectors provide the protocol for controlling and organizing the commu-
nication, synchronization and cooperation between components. Each channel
has two channel ends, with one of two types: source and sink. A source end
provides input values to the channel via write actions and a sink end dispenses
data out of the channel with read actions. A channel’s ends can also be both
sinks or both sources. Figure 1 shows few primitive channel types in Reo.

Fig. 1. Some primitive channels in Reo

A synchronous (Sync) channel has one source and one sink end.
Input/Output (I/O) operations can succeed only if the writing and reading oper-
ation is synchronized at source and sink end respectively. A lossy synchronous
(LossySync) channel is a variant of the Sync channel. Data items in LossySync
are transferred successfully if the write operation on the source end and the read
operation on the sink end occur simultaneously, otherwise the data items are lost.
A FIFO1 channel has one buffer cell of capacity 1, one source end and one sink
end. FIFO1 accepts a data item whenever the buffer is empty. After accepting a
data item from the source end, it is first stored in the buffer and dispensed out
of the channel through the sink end later in the FIFO order. The synchronous
Drain (SyncDrain) channel is used for synchronizing the writing operations at its
two source ends. It has no sink end and all written data items are lost. A t-timer
channel accepts any data item at its source end and produces a timeout signal
on its sink end after a delay of t time units. Further details on Reo and primi-
tive untimed/timed channels can be found in [2,3,21,23]. Furthermore, users can
specify new channel types with their own requirements and interaction policies
in Reo. For example, several probabilistic and stochastic extensions of Reo have
been proposed in [5,9,16].
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A connector can be depicted visually as a graph with some additional infor-
mation. The nodes represent sets of the channel ends and the edges represent the
established channels between the nodes. Nodes can be categorized into source,
sink or mixed nodes, depending on whether the node contains only source chan-
nel ends, sink channel ends, or both. Therefore, source nodes are analogous to
input ports and sink nodes to output ports. Data that flow through source and
sink nodes depends on the pending write and read operations of the environ-
ment. For channel composition, three types of operators are used, which are (1)
flow-through, (2) replicate and (3) merge, as shown in Fig. 2.

Fig. 2. Operators for channel composition

3 Basic Definitions in PVS

The behavior of untimed and timed connectors are formalized by modeling their
observable behavior as relations on the timed data sequences at their sink and
source nodes. For random and probabilistic behavior, sequences of data dis-
tributions where the data passes through connector nodes together with the
time moments for data items observation emerges as the key building block to
properly describe the connectors. Therefore, the observation on nodes can be
specified naturally as timed data distribution (TDD) sequences for connectors
that behaves probabilistically or randomly.

The PVS library for probability [10] and some pre-defined functions from
PVS prelude are used in the modeling of random and probabilistic channels. The
probability library is built on the firm foundations for probability theory [11].
Based on a σ-algebra, probability measure and probability space, the distribution
function (df) for a real-valued random variable X is defined in PVS. We are
interested in the cumulative distribution function (CDF) of a random variable.
To deal with continuous random variable, we would partially instantiate the
sample space T with real, σ-algebra with borel set (borel sets) and specify the
probability measure to describe the distributions for random variable.

A record structure in PVS is used to represent the TDD sequences on the
sink and source nodes, where time is defined as a positive real number (R+),
which is natural and expressive enough for the modeling of connector behavior.
For untimed/timed channels, data is defined as a positive type. To capture the
probabilistic behavior, data is defined as a function of type [T → real] (where
T is a positive (non-empty) type). With such a kind of functions, other abstract
sets of data can be processed first by mapping them to a set of real numbers in
an appropriate way. Moreover, such mapping for data can be expanded easily
in accordance with different application domains. The data distribution DD is
defined as a Cartesian product with square brackets [ , ] in PVS.
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Time: Type = posreal

Data: TYPE [T -> real]

dfs?(F:[real->probability]):bool = EXISTS X: FORALL x: F(x) = P(X <= x)

df: TYPE+ = (dfs?) CONTAINING (LAMBDA x: IF x < 0 THEN 0 ELSE 1 ENDIF)

DD: TYPE = [Data, df]

TDD: TYPE = [# T: sequence[Time],

D: sequence[DD] #]

Input, Output: VAR TDD

A TDD is a record structure type that has two components: T and D. The T
component is a sequence of time points being used to represent the time when
the data in the D component is observed. The D component is a sequence of
data distributions. The Input and Output are declared as variables of type TDD.
The components of a record type can be accessed through the corresponding
field name. For example in our case, the T component of Input is accessed by
Input‘T.

Since the type of component T in TDD is defined as sequence[Time], we
have to define the operators “<” and “>” for sequences of times. A strict order
(that is both transitive and irreflexive) is assumed for “<” and “>”. The type
system of PVS is not algorithmically decidable and may lead to proof obligations
called type correctness conditions (TCCs). Defining “<,>” for sequence of time
generated two TCCs. Proof steps for these two TCCs can be found at [20].

<: (strict_order?[sequence[Time]])

>: (strict_order?[sequence[Time]]) =

LAMBDA (s1, s2: sequence[Time]): s2 < s1

Some more functions and predicates are used in PVS for concise modeling of
probabilistic channels and composition operators. For example, Teq returns true
if the time of two sequences are exactly equal to each other. Tle (Tgt) represents
that time of the first sequence is strictly less (greater) than the second sequence.
Deq (Dneq) shows the equality of data: data sequence at one end is equal (not
equal) to data sequence at the other end. For primitive (untimed) channels,
the time of input sequence is a simulation of real time which means that time
sequence is increasing as time passes by. For probabilistic connectors including
timed channels, some more predicate formulas are defined in a similar way. For
example, Tltt (Tgtt) represents that the time of the first sequence with a delay t
is less (greater) than the second sequence. And the next function takes a TDD
and returns the derivative of the sequence. Suffix function that is used in the
next function is used to return a suffix sequence and its definition can be found
in the prelude library of PVS.

next(T1): TDD = T1 WITH [T:=(suffix(T1‘T, 1)),

D:=(suffix(T1‘D, 1))]
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4 Probabilistic Channels and Operators

The modeling of some basic probabilistic/random channels and composition
operators that are used to construct probabilistic connectors is presented in
this section.

4.1 Random and Probabilistic Channels

The behavior of probabilistic/random channels are specified in PVS with the
disjunction or conjunction of different predicates and constraints on the TDD
sequences at source and sink nodes. We consider one random channel, randomized
synchronous channel, and four probabilistic channels: message-corrupting syn-
chronous channel, probabilistic lossy synchronous channel, faulty FIFO1 channel
and lossy FIFO1 channel.

RSync: Randomized synchronous channel (A
rand(0,1)
−−−−→ B) is the randomized vari-

ant of synchronous channel. When the channel is activated through an arbitrary
write operation at source node A, it generates a random number b ∈ {0, 1} at
sink node B. Sink node synchronously takes the random number with equal prob-
ability for 0 (zero) and 1 (one). In RSync, zero and one are declared as random
variables. Their specifications generated two TCCs for expected type random
variable, which is proved interactively with the PVS theorem prover. To prove
both TCCs, we used already defined judgment constant is measurable in the mea-
sure space definition theory that can be found in the library measure integration.
The proofs for both TCCs are omitted here because of the page limitation and
can be found at [20]. RSync is specified as follows:

zero: random_variable = (LAMBDA t: 0)

one: random_variable = (LAMBDA t: 1)

RSync(Input, Output): bool = FORALL(n:nat):

Output‘D(n) = (zero, oah) OR

Output‘D(n) = (one, oah) &

Teq(Input, Output)

The universal quantification and the first disjunction capture the random
behavior being observed at the sink node. Each data element in the TDD
sequence at the sink node can be either zero or one with probability oah, which
is defined as:

oah(x): probability = 1/2

The synchronous behavior for this channel is satisfied with the predicate Teq,
which shows that the time for the occurrence of data elements being observed
at both channel ends are equal.

CSync: Message corrupting synchronous channel (A −−p→ B) is the probabilis-
tic variant of synchronous channel, where with probability p, the delivered mes-
sage can be corrupted. In such a channel, if a data element is written to the source
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end, then the probability that the exact correct data value will be obtained at the
sink end is 1−p. A corrupted data value, represented with c in the specification,
will be obtained with probability p.

CSync(Input, Output)(p:probability):

INDUCTIVE bool = (Output‘T(0) = Input‘T(0) &

Output‘D(0) = (Input‘D(0)‘1,(1-p)*Input‘D(0)‘2))

OR (EXISTS(c:Data): Output‘D(0) = (c,(p)*Input‘D(0)‘2)

& CSync(next(Input), next(Output))(p))

The CSync channel is defined inductively. Inductive definitions in PVS, which
are predicates with eventual range type boolean, are similar to recursive defini-
tions as both involve induction and must satisfy some constraints to guarantee
that they are total. The first formula is for the time equality constraint for the
synchronous behavior. We can also model the first constraint with Teq predi-
cate. The second and third formula with the disjunction reflects the probabilistic
behavior. The sink node receives the same data that was written at the source
node with the updated probability, where 1−p is multiplied with the probability
for data at source node. On the other hand, sink node receives the corrupted
value (c) with probability p multiplied with the probability for the written data.
The last formula is for the recursive step that channel takes.

PLSync: In the probabilistic lossy synchronous channel (A
q−−→ B), the trans-

mission of the message from the source to sink fails with probability q. And with
probability 1 − q, PLSync acts like a standard Sync channel where the message
is successfully transmitted from the source end to the sink end. In PVS, the
PLSync channel is modeled as follows:

PLSync(Input, Output)(q:probability):

INDUCTIVE bool = (Output‘T(0) = Input‘T(0) &

Output‘D(0) = (Input‘D(0)‘1,(1-q)*Input‘D(0)‘2)

& PLSync(next(Input), next(Output))(q)) &

(Output‘D(0)‘2 = (q)*Input‘D(0)‘2 => PLSync(next(Input),Output)(q))

The PLSync channel is defined inductively but unlike CSync, it may take
two different routes in each step. Three conjuncted formulas are for the case
when the data is successfully received by the sink end. First formula satisfies the
time constraint that ensures the synchronous behavior. Second formula reflects
that the data item is received by the sink end with probability 1 − q multiplied
to the probability for that data at the source end. The third formula is the
recursive step that channel takes when a data is transmitted successfully. For
the case when the transmitted data is lost, the recursive behavior of the channel
is reflected by the last two formulas with implication between them. In such
case, no data is obtained at the sink end.

FFIFO1: Faulty FIFO1 channel (A
r· · ·��→B) is a probabilistic variant of FIFO1

channel, that might loose (with probability r) the message when it is inserted
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into the buffer and the buffer remains empty. It can also behave as a normal
FIFO1 channel where the insertion of the data into the buffer is successful with
probability 1 − r.

FFifo(Input, Output)(r:probability):

INDUCTIVE bool = (Output‘T(0) > Input‘T(0) &

Output‘T(0) < Input‘T(1) & Output‘D(0) =

(Input‘D(0)‘1, (1-r)*Input‘D(0)‘2) &

FFifo(next(Input), next(Output))(r)) &

(Output‘D(0)‘2 = (r)*Input‘D(0)‘2 => FFifo(next(Input), Output)(r))

The FFIFO1 channel is also defined inductively and like PLSync, it may take
two different routes in each step. For the case when data written at source end is
inserted successfully into the buffer, the channel should satisfy four constraints
which are specified with the conjunction of four predicates. The first two formulas
are for the time constraints, where the first formula is for the time delay between
data at source and sink ends. As FIFO1 has a buffering capacity of 1, next data
item waits till the current data item in the buffer is taken out at the sink end.
This is specified with the second formula that the time of the next data item
is greater than the time for the current data item in the buffer. The last two
formulas are for the recursive behavior that channel takes when the written data
is lost before its insertion in the buffer. Like PLSync, no data is received at the
sink end in such case.

LFIFO1: Another probabilistic variant called lossy FIFO channel (A−−�� r���B)
might loose each stored data item with some fixed probability (r) in any step.
Compared to FFIFO1, this channel may loose the data in the process of taking
the data from the buffer. As channels are modeled by the relations between
observations on source and sink ends, therefore, the specifications for LFIFO1
and FFIFO1 are same.

With this modeling approach, we can easily adjust the specifications for
untimed and timed channels in a proper way, where the observations on source
and sink ends of all channels are specified by TDD sequences. Then the prob-
abilistic/random channels as well as untimed/timed channels can be combined
together to build connectors. A connector is probabilistic if it constitutes at least
one probabilistic or random channel.

4.2 Operators

Compositional operators can be applied on channels in various topological order
for the construction of complex connectors. As already discussed in Sect. 2, there
are three kinds of composition operators: (1) flow-through, (2) replicate and (3)
merge.

The flow-through operator simply allows the data items to pass through
mixed node(s) without any change. A component connected to a connector can
write data items at source node and can obtain data items from the sink node.
The replicate operator puts the source ends of different channels together into
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one source node. A write operation by a component on source node succeeds
only if all coinciding channels ends accept the data item. The behavior of flow-
through and replicate operators does not depend on the context of the data-flow.
The approach for the modeling of these two operators in [18] can be adopted
here without any change. The structure of connectors allow us to specify both
operators implicitly by means of nodes renaming and conjunction instead of
writing a new function.

This is explained with simple examples. For two channels PLSync(A, B)
and FIFO1(B, C), the flow-through operator acting on node B is implemented
already. For two channels PLSync(A, B) and FIFO1(C, D), the replicate oper-
ator can be implemented explicitly by renaming the C with A for the FIFO1
channel. Using conjunction and node renaming for these two operators make it
possible to specify connectors directly as lemmas and theorems.

Unlike flow-through and replicate, the merge operator depends on the con-
tent of the data-flow. The time and data dimension is same for TD and TDD
sequences, which means that these two dimensions do not need any change. As
we are dealing with data distribution, so the equality relation for data is changed
to the equality relation on data distribution. Thus, both data items and their
associated probabilities should be equal. Merge is modeled as follows in PVS:

Merge(s1,s2,s3:TDD): INDUCTIVE bool =

(NOT s1‘T(0) = s2‘T(0)) & (s1‘T(0) < s2‘T(0) => s3‘T(0) = s1‘T(0) &

s3‘D(0) = s1‘D(0) & Merge(next(s1),s2,next(s3))) & (s1‘T(0) > s2‘T(0)

=> s3‘T(0) = s2‘T(0) & s3‘D(0)= s2‘D(0) & Merge(s1,next(s2),next(s3)))

The modeling approach provided in this section for probabilistic/random
channels and composition operators can be used to construct different proba-
bilistic connectors according to their topological orders.

5 Reasoning

After connectors modeling, we can analyze and prove their properties. In
this section, some examples are provided for the reasoning about probabilis-
tic/random connectors as well as the refinement and equivalence relations
between them.

Example 1. Figure 3 shows a probabilistic Reo connector that distributed com-
ponents can use for message communication. Component 1 can deliver its mes-
sages to the connector via connecting to node in, while component 2 is connected
to the node out to obtain the message from the connector. Messages are trans-
mitted from component 1 to component 2 with FFIFO1 channel (AB). Other
primitive channels (Sync, SyncD, FIFO1, LossySync) are organized in the con-
nector to repeat component 1 message as often as necessary. The property that
component 2 almost surely obtain the message via out from in is established
with the following theorem in PVS.
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Fig. 3. A probabilistic Reo connector

Theorem 1. Sync(in,D) & Sync(in,C) & Sync(C,A) & Fifo1(C,E) &
Fifo1(E,F) & LSync(C,D)(n) & LSync(F,C)(n) & FFifo(A,B)(r) &
Fifo1(D,H) & Sync(H,G) & SyncD(G,B) & Sync(G,E) & Sync(B,out) =>
out‘D(0)‘1 = in‘D(0)‘1 & Tle(in,out)

Proof. Mathematical induction is used to prove Theorem 1. After applying
induction on n, main goal is split into two sub-goals. The first sub-goal is for the
base case and the other one is for the inductive case.

For the base case, the antecedent formula is simplified by creating a free
skolem variable and removing implies. The definitions of channels and predi-
cates are expanded. Some irrelevant formulas in the antecedent are suppressed
with the hide command. The sub-goal is divided into two more sub-goals: one
for the data dimension and other for the time dimension. Both sub-sub-goals are
proved with PVS proof commands and decision procedures.

For the inductive case, the sequent formula is first simplified with repeated
skolemization and flattening. In the first antecedent formula, the universal quan-
tifiers are instantiated automatically with inst? commands. Sometimes a single
inst? can only find a partial instantiation where successive invocations of inst?
can succeed in fully instantiating all of the quantified variables. The rest of the
proof is similar to the base case, where the sub-goal is split to two more sub-
goals for data and time dimension. The detailed PVS proof for Theorem1 can
be found at [20].

The notion of refinement has been adopted widely in development of complex
systems. Refinement relation provides guarantee for the correctness of implemen-
tation with respect to the abstract specification of the same system, and thus
helps in bridging the gap between requirements and the final implementations.

Here, we use the refinement relation for connectors defined in [23], where the
refinement order over connectors is established on the basis of the implication
relation of predicates. As discussed already, connectors are represented by con-
junction of a set of predicates, where the variables are bound by the universal
and existential quantification. Let C1 and C2 represent two connectors that are
modeled by set of predicates. C2 is a refinement of C1 only if C2 → C1, meaning
the behavioral properties of C1 can be derived from the properties of C2. C2

properties are regarded as hypothesis and the properties of connector C1 as con-
clusion. The refinement relation between C1 and C2 is denoted as C1 � C2. Next,
we provide an example for refinement relation between probabilistic connectors.
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Example 2 (Refinement). For the two connectors shown in Fig. 4, connector P
is a refinement of connector Q (Q � P ).

rand(0,1 )

rand(0,1 )

rand(0,1 )

rand(0,1 )

A D

B

C

A

B

C

E

F

Connector P Connector Q 

Fig. 4. Connectors refinement example

Given arbitrary input TDD sequence at node A and output TDD sequences
at nodes B and C, connector P is a refinement of another connector Q only
if the behavior property of Q can be derived from the connector P property.
In connector Q, the outputs are not synchronized and data is received asyn-
chronously by the sink ends B and C respectively. There is no constraints on
the relationship between the time sequence of the two output events. On the
other hand, P refines the behavior of Q by synchronizing the two sink nodes,
which ensures that the two output events must happen simultaneously. We use
a, b, c to denote the time sequence at nodes A, B and C respectively. Let d
denotes the random number d ∈ {0, 1}, that ranges over all data items. Let β, γ
represent the data sequence being observed at sink nodes B and C respectively.
Probabilistic connector P satisfies the condition a < b ∧ a < c ∧ b = c ∧ β = d∗

∧ γ = d∗. Whereas, Q satisfies a < b ∧ a < c ∧ β = d∗ ∧ γ = d∗. The refinement
relation between Q and P is verified with following theorem.

Theorem 2. ∀ (A,B,C:TDD):

(∃ (D:TDD): Fifo1(A,D) & RSync(D, B) & RSync(D,C)) ⇒ (∃
(E,F:TDD): (Fifo1(A,E) & RSync(E,B)) & (Fifo1(A,F) &

RSync(F,C)))

Proof. The first suitable formula in the sequent (∀/∃ A,B,C : TDD) is replaced
to TDD[A!1/A1, B!1/B1, C!1/C1] by creating three skolem constants. Implies
is removed from consequent with flattening. Now we have one existentially
quantified formula in both antecedent and consequent. Quantified formula in
antecedent is reduced by automatic introduction of skolem constant with skolem!
command. In consequent, we need to find the TDD sequences that specify the
data flow through mixed nodes E and F for connector Q. In other words, we
need to find an appropriate E and F that satisfies (Fifo1(A,E) ∧ RSync(E,B))
∧ (Fifo1(A,F ) ∧ RSync(F,C)). With (inst 1 “D!1” “D!1”), the first formula
in consequent is instantiated where both E and F are substituted with D!1.
Antecedent is divided into three formulas by removing logical &’s. Finally, the
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formula in the consequent is split into four sub-goals. All four sub-goals are
trivially true and PVS proved those sub-goals automatically with propax propo-
sitional axioms. PVS proof tree for Theorem2 is shown in Fig. 5.

(skolem!)

(skolem * ("A!1""B!1""C!1"))

(flatten)

(split)

(propax)

(propax)

(flatten)

(propax)

(propax)

(inst 1 "D!1" "D!1")

Fig. 5. Proof tree for connectors refinement proof

Generally, an equivalence relation is defined as a binary relation that holds
the reflexivity, symmetric as well as transitivity properties. The equivalence rela-
tion between two connectors C1 and C2 is defined with mutual refinement:

C1 ≡ C2 iff C1 � C2 ∧ C2 � C1

Here, the equivalence relation is represented with implications that goes both
ways, such as C2 ↔ C1.

Example 3 (Equivalence). Figure 6 shows two probabilistic connectors that are
constructed by composing five channels RSync, FIFO1, t-Timer, SyncD and
Sync in different topological orders. Both probabilistic connectors are equivalent
(R1 ↔ R2), which is proved in PVS.

A

R1

Erand(0,1 )

t

D

C

t

C

rand(0,1 )
B A

D E
B

R2

Fig. 6. Connectors equivalence example
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The three untimed (Sync, SyncD and FIFO1) channels and one timed chan-
nel (t-Timer) can be combined together to make a timed connector known as
tFIFO1, that was also studied in [13]. In a primitive FIFO1 channel, the data
distributions for the sequences at sink and source nodes are same with arbitrary
time delay. On the other hand, the time delay is fixed by the parameter t in
tFIFO1. Here, we call the tFIFO1 a sub-connector and is modeled as:

Tfifo(A, B)(t:Time)(d:Data): bool =

EXISTS (R,S:TDD): Fifo1(A, R) & SyncD(R, S)

& Timert(A, S)(t)(d) & Sync(R, B)

In general, the connectors build from same set of sub-connectors in commu-
tative orders are not equivalent as the configuration of connectors do not satisfy
the commutative law. However, connectors R1 and R2 are equal for the above
example.

Unlike the general approach that we adopted previously to construct a con-
nector from basic channels, connectors R1 and R2 are composed by connecting
the tFIFO1 sub-connector with the RSync channel in different topological order.
The main reason to use the reduced method (where a sub-connector is combined
with a channel) for connectors construction is to make the proof process simpler
and easier to understand. The equivalence relations between a channel linked
with a sub-connector in different positions are first proved as lemmas.

Lemma 1. ∀ (A,B:TDD)(t:Time)(d:Data):

∃ (E:TDD): RSync(A,E) & Tfifo(E,B)(t)(d) <=> RSync(A,E) & ∃
(C,D:TDD): Fifo1(E,D) & SyncD(D,C) & Timert(E,C)(t)(d) &

Sync(D,B)

Lemma 1 shows the equivalence relation between the reduced construction of
a connector and a connector constructed from basic channels for R1. Similarly
for R2, another lemma is provided.

Lemma 2. ∀ (A,B:TDD)(t:Time)(d:Data):

∃ (E:TDD): Tfifo(A,E)(t)(d) & RSync(E,B) <=> ∃ (C,D:TDD):
Fifo1(A,D) & SyncD(D,C) & Timert(A,C)(t)(d) & Sync(D,E) &

RSync(E,B)

The main goal of equivalence relation between R1 and R2 is proved with
following theorem:

Theorem 3. ∀(A,B:TDD)(t:Time)(d:Data):
∃ (E:TDD): RSync(A, E) & Tfifo(E,B)(t)(d) <=>

∃ (R:TDD): Tfifo(A,R)(t)(d) & RSync(R,B)
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Both lemmas are used to prove Theorem 3 and the complete proof can be
found at [20]. It is important to point out that one of the main limitations of using
proof assistants such as PVS is that heavy user intervention is required in the
proof development. For a non-trivial theorem, the user does lots of repetitive
work to prove the theorem. For example, Theorem 3 proof required repeated
proof commands to prove the main proof-goal, which is divided later into sub-
goals. To avoid this, PVS offers a powerful decision procedures such as grind
that can be used to complete the proof that does not require induction and only
requires the expansion of definitions in the model and reasoning for equality,
arithmetic and quantification.

6 Conclusion

The formalization approach for untimed/timed Reo connectors in PVS is
extended in this paper to model and reason about probabilistic/random connec-
tors that are constructed from channels with random and probabilistic behavior.
Probabilistic/random channels are modeled as relations on TDD sequences being
observed at the source and sink nodes. Untimed/timed channels specifications
are adjusted accordingly from TD sequences to TDD sequences. The specifi-
cations for probabilistic/random channels generated seven TCCs in total. Two
TCCs are proved automatically by the prover and five are proved interactively.
With formalised compositional operators and channels, complex connectors are
modeled and their properties as well as the refinement and equivalence relation
between them are proved with the help of PVS proof-commands, inference rules
and decision procedures.

For future work, we would like to add more complex probabilistic and stochas-
tic constraints in the connectors and reason about them. We also plan to extend
the formalization approach further to deal with hybrid connectors, QoS (Quality
of Service) and resource consumption aspects on connectors.
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Abstract. One of the most important, but tedious and costly tasks of software
testing process is test data generation. Several methods for automating this task
have been presented, yet due to their practical drawbacks, test data generation is
still widely performed by humans in industry. In our previous work, we
employed the notion of Game With A Purpose (GWAP) and introduced Rings
as a GWAP to reduce time and costs of human-based test data generation and
increase its appeal to engage even nontechnical people. In this paper, we pro-
pose a new game, called Greenify, with the purpose of test data generation so
that it solves the main issues of Rings. The environment of this game is built
based on a program’s control flow graph. To evaluate the proposed approach,
we designed several game levels based on six different C++ programs and gave
them to volunteering players. The results show that in comparison to both
conventional human-based approach and Rings, Greenify generates test data
with less rime for all feasible paths of the given benchmark programs. In
addition, Greenify identifies the smaller set of likely infeasible paths.

Keywords: Test data generation � Game With A Purpose �
Human-based computation game � Human-based software testing

1 Introduction

Most software systems have numerous possible choices for test data when being tested.
Thus, various criteria have been defined to find as small as possible subset of input
values that result in more effective tests, i.e., those tests which lead to finding more
failures of the Software Under Test (SUT). This process is called test data generation [1].

Three different categories of automatic test data generation methods have been
presented including the random-based, symbolic execution, and search-based methods.
These approaches have some drawbacks [3, 4, 12, 17] that makes them still incomplete
and ineffective in producing test data [5], and therefore, test data generation is still
typically carried out by human experts. Generating test data by humans has several
advantages among which is the ability of humans to understand and interpret the code
being tested while the computing power of human mind helps him solve problems with
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high levels of complexity. However, generating data for large SUT is very difficult for
humans. In addition, test data generation by humans is a very tedious, time-consuming
and costly task in the software development process [1, 2].

Nowadays, one of the well-known methods for solving problems is broadcasting
them to the crowd. Some of the crowdsourcing models use computer games in which
mind challenges are one of their most important elements. As player thinks and deducts
in the process of a game, he can implicitly and through no knowledge of his own, help
solve other problems (for example, test data generation) which do not have enter-
tainment goals, by their own. In these situations, crowdsourcing and human-based
computation help extracting a significant amount of information from a large number of
players and users [7, 11, 14, 16]. This approach to solve problems introduces the
concept of Game With A Purpose (GWAP). Based on this idea, the method suggested
in this paper for test data generation involves designing a game and extracting test data
based on solutions each non-technical player finds implicitly when playing the game.

The first and only attempt for employing GWAP for test data generation was
through the “Rings” game introduced in [13]. The puzzles of Rings are designed based
on symbolic execution technique. For each path constraint in a program unit’s Control
Flow Graph (CFG), a Rings’s puzzle is generated. When a player solves the puzzle, he
is implicitly generating appropriate input values that lead to the execution of the chosen
CFG path.

Rings alleviates some problems of human-based test data generation. Since the
shape of the game is not technical, bigger problems can be solved using crowdsourcing
(by nontechnical people without getting paid) with a major reduction in costs of test
data generation. Furthermore, the lack of motivation is compensated with the amuse-
ment of the game. The main drawback of Rings is incapability of visualizing programs
with complex conditional statements. The other shortcoming is the disposal of wrong
solutions although they could be right solutions of other paths.

In this paper, we aim at designing a GWAP based on concrete execution that does
not suffer from the Ring’s problems. In the proposed game, called Greenify, the
environment is built based on CFG of a given program. The CFG’s nodes are displayed
by light bubbles, and a path of the CFG is represented by a string of connected light
bubbles. The players should change the input power flows of the string until the color
of all connected bubbles turns to green. During the gameplay, players are actually
generating necessary data to cover the given test paths. Greenify can mitigate the main
drawbacks of Rings since:

1- It is not based on symbolic execution.
2- It stores all acquired data of player quests, even if it does not lead to success.
3- By checking all data extracted from different players’ play, the likely infeasible

paths could be identified.

We have conducted an experiment to evaluate the Greenify performance in com-
parison to Rings, the conventional human-based and random approaches. We have
selected six programs and developed the puzzles of both Greenify and Rings for all
paths of these programs. Then, we asked a group of players to play the puzzles, and
also, a group of programmers to manually generate data. The highlights of the
experimental results are as follows:
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• When players play Greenify, they generate data faster than other approaches.
• Many Greenify puzzles are solved by wrong data obtained for other puzzles.
• All feasible paths are covered by Greenify.
• The smaller set of probable infeasible paths is identified by Greenify.

In the following, we glance through related work in Sect. 2. The design of Greenify
is presented in Sect. 3. In Sect. 4, we have provided the experimental results. Finally,
Sect. 5 is devoted to the conclusions and some directions for future work.

2 Related Work

One of the methods for crowdsourcing is using game thinking. Hence, in this section,
some important works that apply the concept of crowdsourcing and game thinking in
the field of software testing are presented (Fig. 1).

Crowdsourcing- Nowadays crowdsourcing is a popular method in the domain of
software testing. In [26, 27], some complex testing tasks in functional testing and
verification such as cross-browser verification have been given to the crowd. The
results show that test performance is improved in terms of time and bug detection
compared to traditional software testing [28]. The research in [29, 30] use crowd-
sourced software testing (CST) for validation and acceptance testing and the results
indicate that CST improves quality while being more flexible. CST is shown to be
reliable, cost-efficient with high quality [30, 31] in usability testing, as well. To our
knowledge, there is no CST for test data generation in the literature.

Gamification- The researchers in [20] have conducted an experiment on a gamified
unit testing process including two groups of individuals, gamified and non-gamified,
and showed that the gamified group has had a significant outperformance in locating
faults compared to the non-gamified group. Arnarsson and Johannesson in [21]
reported that developers engaged in their experiment were motivated by their gamified
system to create more effective unit tests and emphasized that the software testing skills
of developers have been considerably improved. The authors of [22] introduced a game
called “Code Defenders” that engages students in a competitive way to do mutation
testing. In the game, the players can be defenders or attackers and SUT has a central
role.

Crowdsourcing (a model that 
people or organizations get 
goods or services from a large 
group of individuals and online
community) 

Game 
thinking 

Gamification (using game elements in non-
game contexts in order to engage users) 

GWAP (includes all elements and details of
game; however, there is a grander goal like a 
solution to a scientific problem) Non game 

thinking 

Fig. 1. The methods for crowdsourcing
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GWAP- In [24], a GWAP, called Xylem, The Code of Plant, was introduced for
formal verification. In this game, the invariants of program loops are presented as
strange plants. Pipe Jam is another game, introduced in [25], that carries out software
verification by converting the task into a game puzzle and then converting back the
solutions to a correctness proof. The first research to use GWAP in test data generation
has been introduced in [13]. The game, called Rings, generates test data based on
symbolic execution. In Rings, a CFG path is shown as a pipe network to players. At the
network entry, there are several rings that fall in the network of pipes during the play.
There are also some filters in the network. If the attributes of the rings are set correctly,
the rings transit between the filters, successfully. The program conditional statements
resemble the filters in the game and the input parameters of the source code map to the
rings of the game. When the players solve the puzzles, they indeed generate data for the
given source code. Although according to the evaluation results, it is successful as a
GWAP, Rings has several problems, including:

– Mathematical complexity: Rings cannot visualize nonlinear and complex path
constraints.

– Disposal of wrong solutions: if players are unsuccessful in solving a puzzle, all of
their data are wasted, even if a wrong solution for the puzzle could be the correct
solution for another puzzle.

– A large set of probable infeasible-test paths: Corresponding paths of puzzles that are
not solved by players in the threshold time, are considered as a set of likely
infeasible paths. However, a large set of likely infeasible paths is recommended by
Rings while many of these paths are feasible.

In the present paper, we propose a new game which has the Rings’ advantages while
solves the above-mentioned problems, as well.

3 The Game Design of Greenify

The goal of Greenify is to generate test data based on the program’s corresponding
CFG with the aim of covering special test paths. To this end, the player somehow
changes the input values to satisfy or dissatisfy the conditional statements of the
program, implicitly, in order to cover a specific test path without any technical
knowledge of the program variables, program control flow, and the conditions used in
the branch statements.

3.1 Display the Elements of a Program Unit in the Game

In this section, we explain how the components of a program (CFG and input variables)
are displayed by game elements.

The Display of CFG in Greenify- The first step of designing Greenify is formulating
CFG of SUT in a form of gameplay (or game environment). After extracting the CFG
from the source code, it is displayed on the screen with some graphical appeal. Light
bubbles that can present different colors are placed on the branches which are
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correspondent to the program’s conditional statements. When a light bubble’s color
turns to green, it means that the corresponding conditional statement of the branch is
evaluated as true, and when it turns to red, it means that the conditional statement is
evaluated as false. For each level of the game, the player is asked to solve a path in the
CFG.

The Display of Variables in Greenify- The SUT’s input variables are mapped into
sliders (for Integers, Floats and ASCII codes of characters) and checkboxes (for
Booleans). The sliders are appropriate for both continuous and discrete variables.
A player can change the input values by twiddling the sliders or checking and
unchecking the checkboxes, without getting involved with the actual values of the
variables.

For example, consider the code segment in Fig. 2 and its corresponding CFG. The
goal of this program is to calculate the common area of two concentric circles. The two
Boolean variables in1 and in2 determine if the outer or the inner area of each circle is
intended in the calculation of the common area. Considering the CFG of this code, take
for instance ABCEH as the target path of the graph that should be covered by appro-
priate input values. A screenshot of the game’s environment for this situation is shown
in Fig. 2 in which two sliders are shown for the two float inputs as well as two
checkboxes for the two Boolean inputs.

3.2 The Gameplay

A display of all described elements is shown to the player at the beginning of the game.
The target path is shown to the player with blinking all the light bubbles of the path.
The goal for the players is to adjust the input power flow by sliders or checkboxes to
turn these light bubbles to green. At first, the player starts out just by randomly
twiddling the sliders and checking the checkboxes. Each light bubble changes its color
based on the corresponding values of the sliders and checkboxes. If a light bubble turns
to green, this means the matching conditional is satisfied. However, if the bubble turns
to red, the matching predicate is false (meaning that it is not covered by the corre-
sponding input value). As the game goes by, the player can comprehend and learn

float interArea(float r1, bool in1,
float r2, bool in2){

if(r1>r2){ 
float t = r2;
r2 = r1;
r1 = t;
bool bt = in2;
in2 = in1;
in1 = bt;

} 
if(in1){ 

if(in2) return PI*r1*r1;
else return 0;}

else{ if(in2)  
return PI*(r2*r2-r1*r1);
else    return -1;}}

A 

C

D E 

B 

F G H I 

(r1>r2)

(in1)

(in2)(in2)

Fig. 2. The source code, CFG and game’s environment of “interArea”
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patterns by viewing the results of his decisions and move the sliders and checkboxes in
a more purposeful manner. Finally, when the player succeeds in turning all the light
bubbles of the path to green, the level is passed and the player can move on to play
other paths of the same graph or different graphs. The values with which the player
completed the level are the generated test data resulting in the execution of the given
test path for that level.

3.3 Logging the Events

As mentioned earlier, to complete each level of the game, all light bubbles in a specific
path have to turn to green. However, during a play, some unwanted paths may be
covered. When this happens, even though the level is incomplete, the values of the
sliders may be appropriate test data for other test paths. These values can then be
extracted as test data for those paths. This will not be told to the player since her target
path is still uncovered. But, this feature is beneficial because test data can be produced
for more than one test path in a single level. This way, a complete set of test data to
achieve the coverage of all feasible test paths in a CFG is produced more quickly.

3.4 Special Cases in Test Data Generation with Greenify

The Inputs’ Range: There is a challenge during the implementation of Greenify’s
sliders. The sliders, representing the input variables, have a limited length. Therefore,
mapping an integer range to these sliders can be challenging. A solution considered in
this article is to limit the input range in a more practical manner. For instance, in a
program, it would be sufficient to consider only a part of the integer range. Based on the
size of sliders on a mobile screen, we fitted the range from −10 to 10. As future work,
we are planning to use another model instead of sliders, with which the player can
change the precision simpler and choose the intended amounts, accordingly.

The Arrays: To simulate array data structures in the game, a new element is added to
the game as shown in Fig. 3. If a player adds a new slider, indeed he adds a new
element to the input array. The value of the array element is adjusted by changing the
value of the new slider. Since the array in a program could have many elements,
adjusting all elements for the players is very hard. Our solution to this challenge is
generating data to all elements by random in the first time, and then the player could
change each of the elements. To display a lot of sliders in the game, we use scroll bars
such as Fig. 3.

Fig. 3. A sample for considering program arrays in Greenify
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Infeasible Test Path Detection: To guess infeasible test paths of the CFG, the
approach used in this paper specifies a limited amount of time to complete a level (or
cover a test path). If the player is not successful in that time period, she loses the level
and another test path is given to her to cover. If the number of players who cannot solve
the puzzle of a given path exceeds a specified threshold, the difficulty of that path
increases and it will be given to higher-rated players. The more a path is given to
players and is left unsolved, the higher the probability of it is infeasible.

Large CFGs: As the size of CFG increases, the game becomes harder to play. Since
Greenify is merely designed to generate data for unit codes usually have small CFGs,
large CFGs are not in our research scope. Nevertheless, to show the effectiveness of
Greenify, in the next section, Triangle code is presented which has a large CFG with 57
paths such that their maximum length is 15. As the experiment showed, the players
easily played the Triangle’s game and did not engage in the apparent complexity of the
game.

3.5 Players

Game flow and attracting players is important in Greenify. Therefore, in the following
sub-sections, hinting and rating to players are discussed.

Hinting Players: It is important to design gameplay that is neither too easy nor too
hard. Hints and clues could be used such that while the player is challenged, she
doesn’t lose hope and leave the game. A possible way to hint the player is to somehow
show which light bubbles are affected when a slider is altered. For example, suppose
the variable “A” is directly used in nodes labeled 15, 21, 23 and 30. So, if the player
twiddles the slider representing “A”, the corresponding light bubbles can blink, grow or
change color. This way, the player is hinted which sliders should change to make a
specific light bubble green. Furthermore, this would not make the game too easy
because focusing on one light bubble to make it green can mess up the other light
bubbles. Accordingly, the player has to use the hints wisely. To figure out which light
bubbles are affected by each slider, we employed a scanner in our implementation to
find the variables used in each program branch.

Rating Players: To make Greenify more attractive, players can be rated as they
complete different levels. At first, players are rated as beginners, and they are asked to
complete easier graphs with shorter test paths. As a player completes different levels,
she gains more points and is rated higher. Players with higher rates are given harder and
larger test paths. The difficulty of each test path is affected by the number of program
branches (b), the number of the program’s input variables (i) and the complexity of the
program conditional statements in branches (c); the last parameter can be formulated as
the number of variables or the number of clauses in a conditional statement. All of
these parameters can be given proper weights by which the parameters’ values are
multiplied and averaged to come to a single value as the difficulty degree for a level.
Equation 1 formulates the difficulty degree, were the corresponding weight for each
parameter, w1, w2, and w3 can be chosen by the game designer.
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DifficultyDegree ¼ b w1ð Þþ i w2ð Þþ c w3ð Þ
w1þw2þw3

ð1Þ

As an example, the ABCEH path of the graph shown in Fig. 2 has two branches,
four input variables and the average branch complexity of 1.33 (The first branch’s
conditional statement includes two variables and the next two branches include 1
variable). If we respectively give a weight of w1 = 2, w2 = 3 and w3 = 1 to the
parameters, the difficulty degree for this path would be 3.22.

3.6 Example: The Triangle Program

To better illustrate how Greenify works, an example is presented here. The example
describes a game level based on a well-known program, called “Triangle”, that by
receiving three values as the three sides of a triangle, decides if the triangle is scalene,
isosceles, equilateral or it is not a triangle at all. The source code of the program is
shown in Fig. 4. This code has many infeasible test paths, and also its conditional
statements are complex. Thus, many automatic test data generation approaches are
unable to cover all feasible test paths.

The CFG of the “Triangle” program is illustrated in Fig. 5. The orange path, shown
in Fig. 5, is the path that should be covered in this level of the game. In this path, it is
determined that the triangle is isosceles. In Greenify, this path is first shown to the
player. Then, by twiddling the three sliders, each corresponding to an input variable of
the program, the player changes the input values. Each time the sliders are manipulated,
the color of each node is changed, accordingly. For instance, if the player sets all the
sliders to the same value, the path of the graph which leads to an equilateral triangle
becomes green. Now, the player is supposed to play more with the sliders to turn the
target path (shown in orange) to green. If she succeeds, she has finished the level and
the values of the sliders are the test data generated as a result of completing this level.

private static int Triangle (int Side1, int Side2, int 
Side3)
{    

int triOut;
if (Side1 <= 0 || Side2 <= 0 || Side3 <= 0)
{   triOut = 4;

return (triOut);}
triOut = 0;
if(Side1 == Side2)           triOut = triOut + 1;
if(Side1 == Side3)           triOut = triOut + 2;
if(Side2 == Side3)          triOut = triOut + 3;
if (triOut == 0)

{
if (Side1+Side2 <= Side3 || Side2+Side3<= 31

Side1 || Side1+Side3 <= Side2)  

triOut = 4;
else                       triOut = 1;

return (triOut);}
if (triOut > 3)           triOut = 3;
else if (triOut == 1 && Side1+Side2 > Side3)

triOut = 2;
else if (triOut == 2 && Side1+Side3 > Side2)

triOut = 2;
else if (triOut == 3 && Side2+Side3 > Side1)

triOut = 2;
else         triOut = 4;
return (triOut);}

Fig. 4. The source code of “Triangle”
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4 Evaluation

In this section, we compare the Greenify, with both Rings and conventional human-
based test data generation, in terms of test data generation speed, coverage and pro-
posed set of infeasible test paths. Since our purpose is improving the human-based
approach, the automated approaches to test data generation are not in the scope of our
research, and thus, we don’t compare Greenify with these methods. Instead, we
compare Greenify with random-based test data generation methods. In addition, we
intend to evaluate the amount of entertainment of the game. So, the research questions
are as follows:

1. Does Greenify generate test data faster in comparison to Rings, the conventional
human-based and random-based approaches?

2. Is the path coverage of Greenify better in comparison to Rings, the conventional
human-based and random-based approaches?

3. Does Greenify offer a smaller set for probable infeasible paths than Rings, the
conventional human-based and random-based approaches?

4. Is Greenify more attractive than Rings for the players?

In the following subsections (Subsects. 4.1, 4.2, 4.3 and 4.4), answers to the
questions 1 to 4 are described.

To conduct the experiment, simple versions of Greenify and Rings were designed
for six benchmark programs (the benchmark programs are described in Table 1) and
were given to 30 Computer Engineering students from the Faculty of Computer Sci-
ence and Engineering of Shahid Beheshti University to perform a trial run. The average
age of the participants was 21 years, 14 volunteers of them had programming expe-
rience, and 3 volunteers were familiar with concepts of software testing. The volunteers
were divided into two groups each with 15 players. The players of the first group, first
solved the Greenify puzzles, and after completing Greenify, they started to solve the
puzzles of Rings; the participants of the second group solved the puzzles of the games
in respectively reverse.

We also gave the six mentioned programs to five programmers and asked them to
find input values manually, in a way to cover all the feasible paths of the code. In the
end, we generated data for mentioned programs by the random-based test data gen-
eration approach. With the acquired data, we examined the amount of time consumed
by the programmers, by the players in both games, and by the random method. We also
computed the percentage of test paths covered by the test data generated via each
method.

Fig. 5. CFG of “Triangle”
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4.1 Test Data Generation Time

According to the first research question, we compared Greenify with Rings, the manual
and random approaches in terms of test data generation time.

The six benchmark programs contain 84 test paths, altogether, among which only
37 test paths are feasible. The total attempts of all the players in playing Greenify was
4263 times during which numerous test data was produced for all feasible test paths. In
four competitors, the time taken for each feasible test path to be covered for the first
time by any player was calculated in seconds, as displayed in Fig. 6. As shown in the
figure, in the worst case, Greenify took 62.6275 s to complete a path. It is interesting
that all other feasible paths were covered in less than 15 s. In the best case, it took
3.2250 s to complete a path. Both the best and the worst cases belong to the “Triangle”
program. The path with the highest coverage time is the one through which it is
determined that two of the inputs are equal, but the triangle inequality property is not
held, and therefore, the three inputs cannot make out a valid triangle. The path with the
least coverage time is the one through which it is concluded that at least one of the
inputs is less than or equal to zero, and thus, the inputs cannot build a valid triangle. It
is worth noting that some feasible paths were not covered by Rings and the random-
based approach. The first time which players covered all paths for each program in four
methods is shown in Table 2.

Table 1. The benchmark programs

# Name Description Number of test
paths

1 InterArea The common area between two centric circles
(Fig. 2)

8

2 Triangle Determining type of a triangle (explained in
Sect. 3)

57

3 Simple-Triangle Determining type of a triangle 4
4 Binary-Search Binary search algorithm 5
5 LCM Determining least common multiplier 6
6 Reminder Determining (x mod y) 4

0
50

100
150
200
250

B
in

ar
yS

ea
rc

h
B

in
ar

yS
ea

rc
h

B
in

ar
yS

ea
rc

h
B

in
ar

yS
ea

rc
h

B
in

ar
yS

ea
rc

h
R

em
in

de
r

R
em

in
de

r
R

em
in

de
r

R
em

in
de

r
LC

M
LC

M
LC

M
LC

M
LC

M
LC

M
In

te
rA

re
a

In
te

rA
re

a
In

te
rA

re
a

In
te

rA
re

a
In

te
rA

re
a

In
te

rA
re

a
In

te
rA

re
a

In
te

rA
re

a
Tr

ia
ng

le
Tr

ia
ng

le
Tr

ia
ng

le
Tr

ia
ng

le
Tr

ia
ng

le
Tr

ia
ng

le
Tr

ia
ng

le
Tr

ia
ng

le
Tr

ia
ng

le
Tr

ia
ng

le
Tr

ia
ng

le
2

Tr
ia

ng
le

2
Tr

ia
ng

le
2

Tr
ia

ng
le

2

Greenify
Player's time
Rings
Player's time
Programmer's
time
Random's
time

Fig. 6. Elapsed time (in seconds) for the first coverage of each feasible test path in Greenify,
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As shown in Table 2, Greenify, Rings and the random-based approach have gen-
erated data for feasible paths faster than the human-based approach while Greenify
outperformed Rings and the random-based method. The main reason for the better
performance of Greenify compared with Rings is the use of wrong solutions obtained
from Greenify players, which caused many paths to be covered by Greenify before they
were proposed to the players. The random-based approach has generated data in less
time for the two benchmarks while the speed of test data generation was less for other
benchmarks compared to Greenify. In other words, Greenify generated data in less time
for 66% of benchmarks.

To statistically analyze the time measured for covering paths by the four com-
petitors (i.e., Greenify, Rings, human-based and random testing), we used the Anova
test (Single Factor) method. A well-known test to compare the averages of two samples
is T-test; but in case of more than two samples, it may be unreliable. Therefore, the
Anova test could be a good choice to statistically analyze the time, elapsed to cover the
paths, by the four competitors. By the Anova test, we can check whether there is a
difference between the samples and it does not say which sample is better. Therefore, in
the null hypothesis we indicate the averages of the samples are the same, and the
alternative hypothesis is that the averages are different. We used the Anova test method
in Excel Analysis Toolpak to compute all the needed data. In the results, F, F-critical,
and P-value are equal to 46.64, 2.67 and 1.42E−20, respectively. Since F > Fcritical
and P-value is less than the chosen significance level (P-value < 0.05), the null
hypothesis is rejected. We compared the average elapsed times of Greenify and three
other methods which seems to indicate that Greenify outperforms the competitors
(Fig. 7).

Table 2. Comparison of the first time that all paths are covered by the four test data generation
approaches

In Greenify
(seconds)

In Rings
(seconds)

By humans
(seconds)

By random approach
(the threshold time
is 120 s)

InterArea 15.30 25.35 91 0.1
Triangle 21.25 40.34 (only 6

paths are
covered)

231 120 (only 3 paths are
covered)

simpleTriangle 9.03 20.454 34 120 (only 3 paths are
covered)

Binary-Search 62.62 110.03 117 120 (only 4 paths are
covered)

LCM 21.38 39.57 102 44.63
Reminder 17.90 40.214 181 7.74
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Since the Anova test could not show Greenify has less average time than the three
other methods, we use T-test to show that the difference between the average of the
elapsed time of Greenify and the programmers is significant. The null hypothesis is
“The average time of the programmers is less than the average time of Greenify”. The
calculated p-value is 2.58E−10. Since the p-value is less than the chosen significance
level (0.05), the null hypothesis is rejected. Therefore, the average elapsed time for
Greenify is less in comparison to the programmers.

4.2 Degree of Path Coverage

Based on the second research question, Greenify is compared with other approaches in
terms of the path coverage criterion. Test data generated by Greenify and programmers
covered all feasible paths. Rings covered 33 paths of 37 feasible paths and the random
test data generation approach covered only 28 feasible test paths when the threshold
time was 120 s. Feasible path coverage percentages are shown in Table 3.

We used Kruskal-Walis test, a rank-based nonparametric test, to statistically ana-
lyze the number of covered paths of the benchmark programs by the four competitors.
The null hypothesis in this analysis is “the number of covered paths for four categories
is equal” and we want to see whether it is rejected. According to results, H and P-value
are equal to 22.87 and 4.29E−5, respectively. Since H > P-value, the null hypothesis is
rejected.

Fig. 7. Elapsed time comparison between the four test data generation approaches (Average
times of Greenify, Rings, Programmers and Random are equal to 9.18, 18.83, 85.51 and 10.07,
respectively)

Table 3. The results of path coverage percentage of the four competitors

Greenify Rings Programmers Random test data generation

Path coverage percentage 100% 89% 100% 75%
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4.3 Estimation of Infeasible Paths

Based on the third research question, Greenify is evaluated in terms of the number of
likely infeasible test paths. The “Triangle” program has 57 paths yet only 10 paths are
feasible. This means that there is only a 17.5% chance for a player to be successful in
completing the paths given to her. However, keep in mind that this program is a special
case. In most other programs, the percentage of feasible paths is considerably higher.

Since the players have no idea whether a given level actually has an answer, they
keep playing until they can win by passing as many levels as they can. If this problem
was not handled by playing a game, developers obviously were not interested in
spending this amount of time on it. Even if they were obligated to spend this time, they
would not be satisfied with this part of their jobs. This somehow shows the engaging
privileges of the game. Additionally, while the players in our experiment continuously
tried to cover infeasible paths and failed, they unintentionally covered other paths by
setting the game sliders to the input values needed to cover those paths. This way, even
when they failed to complete the target path, they generated data for other feasible
paths, and this scenario resulted in faster coverage of all feasible paths.

The players made 1050 attempts for the “Triangle” program and were able to find
test data for 10 out of 57 test paths in the given time period set as the threshold for this
game. Therefore, based on the idea mentioned, one can conclude that 47 paths of the
“Triangle” program are most likely to be infeasible. The analysis of this program
showed that these 47 paths were the exact set of existing infeasible paths of this
program. On the other hand, Ring’s players were only able to cover 6 test paths of all
the 10 feasible test paths of the “Triangle”. This means that the set of probable
infeasible paths, proposed by Rings, was 41.

The number of proposed infeasible paths by the random method is 56. The random
method generated 110000000 data in 100 s for the “Triangle” code but only 4 paths
were covered while Greenify covered all feasible paths only by 1050 data. It shows that
the generated test data by the random approach are ineffective due to its blindness while
the players were smarter to generate test data.

4.4 Players’ Viewpoints About Greenify

According to the last research question, we asked the players to present their view-
points about Greenify and Rings.

To have a better understanding of the players’ viewpoint on the game, a ques-
tionnaire was given to each of them after they finished playing. We asked players to
rate their level of agreement about two questions on a five-point scale (1 = not at all,
5 = very) to compare the Rings and Greenify games in terms of their difficulty and
enjoyability. Also, we asked them to choose a design goal to Greenify.

In Table 4 the average rates given by the players to both questions are shown. We
use a statistical test (T-test) to show that difference between average rates of Greenify
and Rings is significant. We selected the significance level of 0.05 and used the T-test
function of Excel Analysis Toolpak to reject the null hypotheses shown in Table 4. The
calculated p-values for both questions are shown in Table 4. Since these p-values are
less than the chosen significance level, the null hypotheses are rejected. Therefore, the
players chose Greenify, a more enjoyable and less complicated game to play.
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The interesting point in this survey was that even though the players were all
students of computer engineering, only one of them guessed that Greenify had
something to do with software quality or testing, and most of them thought it was
designed just for entertainment (Fig. 8). The importance of this finding is that no basic
knowledge is needed to play this game and anyone familiar with video games can
easily play it.

5 Conclusions and Future Work

Based on the idea, explained in this paper, a game was designed and employed to
generate test data. The main advantage of this idea is the use of inexpensive and
copious agents (the players) that results in a decrease in costs and an increase in the
speed as well as coverage of test data generation.

The results of the evaluation indicate that the proposed game outperforms Rings,
the conventional human-based approach and the random method. Furthermore, the
proposed game identifies a smaller set of likely infeasible paths. At last, the results of
the conducted experiment reveal that the players mention Greenify as an attractive
game.

As a direction for future work, we plan to provide more and larger benchmarks for
better evaluation of Greenify. Another issue is finding a way to map the program’s big
input numbers into sliders. The solution we are considering is using another component

Table 4. The result of players’ answers to the questionnaire regarding enjoyability and difficulty
of Greenify and Rings

Questions Average
rate to
Greenify

Average
rate to
Rings

T-test parameters
Null
hypothesis

Alternative
hypothesis

P-value

1. The game
was enjoyable.

3.86 2.63 Ring is more
enjoyable

Greenify is
more
enjoyable

0.00053

2. The game
was difficult to
play

1.8 2.76 Playing
Greenify is
harder

Playing
Rings is
harder

0.00039

Fig. 8. Players’ opinion about the design purpose of Greenify
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instead of sliders, with which the player can change the precision, simpler, and choose
the intended amount, accordingly.

A further issue that is worth considering is that the data collected from the behavior
of the players as they attempt to cover paths can be very valuable for search-based
methods. For instance, this data can be given to an appropriate learner and the behavior
of the players can be analyzed to find further test data; therefore, the result can be a
system for automatic test data generation. Because of the vast amount of data extracted
from different players, a more powerful learner with higher precision and performance
can be designed.
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Abstract. Active automata learning allows to learn software in the form
of an automaton representing its behavior. The algorithm SL∗, as imple-
mented in RALib, is one of few algorithms today that allows learning
automata with data parameters. In this paper we investigate the suit-
ability of SL∗ to learn software in an industrial environment.

For this purpose we learned a number of industrial systems, with and
without data. Our conclusion is that SL∗ appears to be very suitable
for learning systems of limited size with data parameters in an indus-
trial environment. However, as it stands, SL∗ is not scalable enough to
deal with more complex systems. Moreover, having more data theories
available will increase practical usability.

Keywords: Active automata learning · SL∗ · Industrial environment

1 Introduction

For large and complex software systems, tasks like optimization and re-design
tend to be time-consuming as they require an in-depth knowledge of the behavior
of the system. Though such behavior ought to be properly documented, reality
shows such documentation to often be incomplete, outdated or inconsistent. To
be able to more efficiently execute said tasks, one would ideally, be able to obtain
a good understanding of the behavior of a software system with minimum effort
and within a limited time period.

Automata learning offers a solution to this problem, allowing one to learn
the behavior of a system by sending commands to the system and observing its
response. It allows for the automatic generation of formal models by applying
this technique to either known systems (white-box) or unknown systems (black-
box). This can be done in a passive sense by collecting and studying traces or
in an active sense by firing input at the system and waiting for a response. All
approaches have their pros and cons. While this research field is active in all
these directions, this paper focuses only on black-box active automata learning.
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A lot of the black-box active automata learning techniques ignore data
parameters as they concentrate on the control flow avoiding the intricacies of
data. Such techniques offer some insight into the behavior of the system but
they do not show the effect that data parameters may have on this behavior,
while in reality such knowledge can be crucial to effectively optimize or re-design
a system.

One of the few algorithms that allow learning with data is SL∗, an extension
of the famous L∗ algorithm of [4], presented by [8] and implemented in RALib
(by H.M. Falk and P.F. Brostean, available at bitbucket.org/learnlib/ralib/).
In contrast with the finite state machines that L∗ infers, SL∗ infers register
automata, a type of extended finite state machine (EFSM) which holds registers
and transition guards that compare registers with data parameters.

The research question this paper is concerned with is how suitable SL∗ is for
learning software behavior including data parameters through active automata
learning in an industrial environment. In particular we want to know what its
shortcomings are and how complex the systems are that it can cope with.

For this purpose we learn a number of systems at ASML, which is a company
in Veldhoven, The Netherlands, making wafer scanners. Wafer scanners repeat-
edly project images on silicium wafers to produce integrated circuits at a nano
meter scale. The challenge is to project each image exactly on top of each other.
These scanners consist of highly advanced hardware controlled by 50Mline of
code. ASML wants to replace parts of the existing code base by model based
software. Therefore, ASML explores whether such models can be learned auto-
matically from the code. We symbolically learned both standalone components,
and combinations of them. We compare this with learning the system without
data parameters by instantiating data parameters with a few concrete values.

Modulo some effort to adapt the tools to the industrial environment and
struggling with implementations errors, we can conclude that SL∗ is suitable
for learning software behavior with data parameters in an industrial environ-
ment for systems with limited complexity. For more complex systems learned
partial results may also provide useful insights into the behavior of the system
and potentially indicate errors in the implementation. However, as it stands,
learning full industrial systems, constellations of components, and even complex
individual components is not within reach.

In order to make learning more applicable in an industrial context, it is
very useful that SL∗ is extended with additional theories, especially those that
allow the use of constants, lists and queues. Furthermore, scalability needs to be
addressed, for instance by dividing the learning process into steps, containing
subsets of the input alphabet or subsets of the data parameters and combining
the results somehow.

Related Work. Looking at the field of black-box active automata learning
we see that many efficient algorithms produced over time are based on Dana
Angluin’s approach as presented in [4].

Angluin presented an algorithm L∗ that is capable of inferring determinis-
tic finite state machines from an unknown system, also referred to as a system

https://bitbucket.org/learnlib/ralib/
http://www.asml.com
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under learning (SUL). Her technique uses the concepts of a learner and a teacher,
where the teacher knows the SUL and the learner initially only knows the input
alphabet and the output alphabet of the SUL. By firing two types of queries,
namely (1) membership queries asking if a provided sequence of inputs and out-
puts is accepted by the SUL or not, and (2) equivalence queries asking whether
or not the model learned so far is equivalent to the SUL, the learner is able to
eventually learn the SUL.

Over time, improvements and adaptations of this algorithm have been
designed, of which a short summary is given in [18]. Such improvements include
research on how to perform membership queries [10,16] as well as equivalence
queries [14], but also data structure improvements [11–13,17], and research to
improve scalability [3,5,9].

However, it is not until recently that effort has been put into the design of
learning techniques that also consider the data flow of a system when learning
its behavior [1,8]. Previous algorithms can only learn behavior depending on
data when data is encoded into control by instantiating data to a few concrete
data values. We make use of the SL∗ algorithm of [8] where data is assumed
to stem from data domains with very specific properties, such as 〈N, {=}〉, i.e.,
the natural numbers with only equality, or 〈R, {=, <,>}〉, i.e., the real numbers
with an ordering.

So far, besides SL∗ there is only one other major method, namely Tomte [1,2],
that can deal with data. Tomte uses a similar technique but a different framework
architecture where a separate mapper component maps abstract data to concrete
values. This makes the learning algorithm independent from handling the data.
In SL∗ data is completely integrated into the learning algorithm. This is why we
chose to use SL∗ in our investigation.

Outline. We first provide some preliminaries in Sect. 2 after which we summarize
how SL∗ works in Sect. 3. Section 4 reports on the suitability of the adapted
version of SL∗ in an industrial environment after which Sect. 5 follows with a
discussion and conclusion.

2 Preliminaries

The SL∗ algorithm uses several important concepts [7,8] that are summarized
in this section before the algorithm itself is explained in the next section.

2.1 Theories and Data Languages

The automata learning algorithm SL∗ learns automata with data registers and
data input and output. The data ranges over specific theories that have the
following shape.

Definition 2.1. A theory is a pair 〈D,R〉 where

1. D is a possibly unbounded domain of data values.
2. R is a set of relations on D.
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We say that two sequences of data values 〈d1, . . . , dn〉 and 〈d′
1, . . . , d

′
n〉, with

d1, . . . , dn, d′
1, . . . , d

′
n ∈ D, cannot be distinguished by the relations in R iff for

all R ∈ R, we have that R(di1 , . . . , dij ) ⇐⇒ R(d′
i1

, . . . , d′
ij

) with i1, . . . , ij being
indices between 1 and n.

We assume that all elements of any D in this paper are denotable. The cur-
rent implementation of SL∗ comes with two theories, namely the IntegerEquality
theory 〈N, {=}〉 and the DoubleInequality theory 〈R, {=, <,>}〉.

An alphabet E is a set of actions which can be split into an input alphabet
Ein and an output alphabet Eout, with E = Ein ∪ Eout and Ein ∩ Eout = ∅. A
parameterized symbol α(p) is an action α ∈ E with a formal parameter p. For
some fixed theory 〈D,R〉, a data word is a concatenation of data symbols α(d)
with α ∈ E and d ∈ D, i.e., α1(d1) · α2(d2) · · · αn(dn) with α1, α2, . . . , αn ∈ E
and d1, d2, . . . , dn ∈ D. Similarly, a parameterized word is a concatenation of
parameterized symbols α(p) with α ∈ E and a formal parameter p.

Two data words w and w′ are said to be R-indistinguishable, denoted by
w ≈R w′, iff their action sequences are the same and their data parameters
cannot be distinguished by the relations in R. For example, for some action
a ∈ E , D = Z and R = {<}, we have that data words α(2) · α(1) and α(3) · α(2)
are R-indistinguishable, since their action sequences α ·α are the same and since
we have 2<2 ⇔ 3<3, 1<1 ⇔ 2<2, 2<1 ⇔ 3<2 and 1<2 ⇔ 2<3.

Definition 2.2. Given a theory 〈D,R〉 and k ∈ N, we say that a data word u
is k-extendable iff either

– k = 0, or
– for any data word u′ with u ≈R u′ and any data symbol α(d′) with α ∈ E

and d′ ∈ D, we have that there is a data symbol α(d) with d ∈ D such that
u · α(d) ≈R u′ · α(d′), and such that u · α(d) is (k−1)-extendable.

For example consider some theory 〈N, {<}〉 and a data word u = α(1) ·α(2). We
have that u is not 1-extendable, because for u′ = α(2) ·α(4) we have u ≈R u′ but
for α(d′) = α(3) there is no α(d) such that α(1) ·α(2) ·α(d) ≈R α(2) ·α(4) ·α(3).

A theory is said to be strongly extendable iff all data words are ∞-extendable
and a theory is said to be weakly extendable iff for all data words u and for all
k ∈ N, there is a data word u′ with u′ ≈R u that is k-extendable.

Note. SL∗ requires a theory to be either weakly extendable or strongly extend-
able. The two theories currently implemented in RALib, namely 〈N, {=}〉 and
〈R, {=, <,>}〉 are both strongly extendable.

A data language L is a set of data words, such that for all two words w and
w′ that are R-indistinguishable, we have that w ∈ L ⇐⇒ w′ ∈ L. A word w is
said to be accepted by L iff w ∈ L, and rejected otherwise.

Furthermore, we make the following assumptions about any data language
L (w.r.t. a theory 〈D,R〉)

– L is prefix-closed, i.e., for any two words w,w′ we have that if w ·w′ ∈ L then
also w ∈ L.
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– L is input/output alternating, i.e., all data words in L contain alternating
input and output data symbols and start with an input data symbol.

– L is output-deterministic, i.e., for any word w ending in an input symbol, we
have, for all α(d), α(d′) with α ∈ Eout and d, d′ ∈ D, that if both w · α(d) and
w · α(d′) are in L then words w · α(d) and w · α(d′) are R-indistinguishable.

A system under learning (SUL) as used in this paper is an implementation
of a data language.

2.2 Register Automata

Register automata (RA) are a type of extended finite state machines that can
be used to model data languages.

We assume a theory 〈D,R〉, an alphabet E and a set of registers G =
{x1, . . . , xn}. A guard is a conjunction of negated or unnegated relations from
R over registers and formal parameters p used in parameterized symbols α(p).
A register automaton is then defined as follows.

Definition 2.3. A register automaton is a tuple A = (S, s0,X , Γ, λ) where

– S is a finite set partitioned in input states Sin and output states Sout .
– s0 ∈ S is the initial state.
– X : S → G is a mapping that maps each state to a finite set of registers.
– Γ is a finite set of transitions, each of the form (s, α(p), g, π, s′) where

• s is the source state.
• α(p) is a parameterized symbol. If s is an input state, α ∈ Ein and s′ is

an output state. Otherwise, i.e., if s is an output state, then α ∈ Eout and
s′ is an input state.

• g is a guard over p and X (s).
• π is an assignment that updates registers in X (s′) with values of p and

registers in X (s).
• s′ is the target state.

– λ : S → {+,−} is a mapping that maps each state to either + or −, indicating
whether a state is accepting.

We write s
α(p),g,π−−−−−→ s′ iff (s, α(p), g, π, s′) ∈ Γ . We write s

α(p),g,π−−−−−→ iff there

is an s′ ∈ S such that s
α(p),g,π−−−−−→ s′.

We assume that the RAs in this paper are deterministic, i.e., there are no data
words that lead to both accepting and rejecting states and we say that a reg-
ister automaton has runs over all data words iff every input state has outgoing
transitions for all actions in Ein and every output state has outgoing transitions
for all actions in Eout. In this case unwanted actions lead to rejected states.

In general the initial state s0 is an input state, i.e., s0 ∈ Sin . However, we
employ symbolic decision trees that are instances of register automata where the
initial state can also be an output state.
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We use SRAs to represent a SUL:

Definition 2.4. A simple register automaton (SRA) is a register automaton
A = (S, s0,X , Γ, λ) with X (s0) = ∅ that has runs over all data words.

Note. When visualizing RAs in this paper, input states are indicated by solid
lines and output states by dotted lines. Accepted states are indicated by double
lines and rejected states by singular lines. Furthermore, input actions are typi-
cally prepended with a question mark and output actions are typically prepended
with an exclamation mark.

2.3 Symbolic Decision Trees

One of the most distinguishing differences between SL∗ and its predecessor L∗

is that SL∗ uses symbolic decision trees to represent sets of data words.

Definition 2.5. A symbolic decision tree (SDT) is a register automaton T =
(S, s0,X , Γ, λ) where S and Γ form a tree with root s0. We write X (T ) to denote
X (s0).

An SDT models (part of) the data language based on the valuation of X (T ).
For example, consider the theory 〈R, {=, <,>}〉. There are two registers x1 and
x2 of which only the latter is used. A symbolic decision tree can express that
traces ε and α(p) can be accepted provided p ≥ x2. This SDT with a depth 1
is depicted in Fig. 1. For any sequence of actions σ, an SDT of depth |σ| can be
constructed.

α(p) | p < x2 α(p) | p ≥ x2

Fig. 1. SDT created for the prefix and suffix as shown in Table 1

Equivalence. To test the equivalence of two SDTs, the following notion of
isomorphism is used.

Definition 2.6. Let T = (S, s0,X , Γ, λ) and T ′ = (S ′, s′
0,X ′, Γ ′, λ′) be two

SDTs with sets of registers G and G′ respectively. Let γ : G → G′ be a bijection.
We say that T and T ′ are isomorphic under γ, denoted T �γ T ′, iff there is a
bijection φ : S → S ′ such that:

– φ(s0) = s′
0,

– γ(X (s)) = X ′(φ(s)) for all s ∈ S,
– λ(s) = λ′(φ(s)) for all s ∈ S, and
– (s1, α(p), g, π, s2) ∈ Γ ⇐⇒ (φ(s1), α(p), gγ , πγ , φ(s2)) ∈ Γ ′

where gγ and πγ are respectively a guard and an update with the registers
replaced according to γ.

Definition 2.7. Let T and T ′ be two SDTs with T �γ T ′. We say that T and
T ′ are isomorphic, denoted T � T ′, iff γ is a bijection.
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2.4 Observation Table

An observation table is a data structure used to store results on which data
words are accepted by the SUL and which are not.

Definition 2.8. Let F represent the set of all SDTs. Given an alphabet E and
a theory 〈D,R〉, an observation table is a tuple O = (U ,U+,V,Z) where

– U is a prefix-closed set of data words, referred to as short prefixes.
– U+ = {u ·α(d) | u ∈ U and α ∈ E} (adhering to the input/output alternating

assumption (Sect. 2.1)) and for some d ∈ D, is a set of extended prefixes.
– V is a set of parameterized words, referred to as symbolic suffixes.
– Z : (U ∪ U+) → F , is a mapping that maps each prefix to an SDT.

An observation table is considered closed iff for every u′ ∈ U+ there is a u ∈ U
and a γ such that Z(u′) �γ Z(u). Intuitively this means that for every extended
prefix there should be a short prefix such that their SDTs are isomorphic under
some γ. In this way, the number of states required to represent L is limited
to |U|.

An observation table is considered register-consistent iff for every u · α(d) ∈
U+ that requires an initial register, i.e., xi ∈ X (Z(u · α(d))), we also have
xi ∈ X (Z(u)). Intuitively this means that if some SDT requires an initial register,
this register should have been stored previously.

Intuitively, an SDT Z(u) indicates in a generic way how a SUL responds after
it is requested to perform a data word u. This response matches the actions from
a suffix, and it is formulated abstractly in terms of registers and conditions, where
the respective data values in u correspond to the registers in Z(u).

Creating SDTs. Given a theory 〈D,R〉, a prefix u ∈ (U ∪ U+) and a set of
symbolic suffixes V, let D′ represent the set of (instantiated) data values in the
prefix and let P ′ represent the set of (uninstantiated) formal parameters in V.
A set of test cases R(p′, d′) ∪ R(d′, p′) is then created for all R ∈ R, d′ ∈ D′ and
p′ ∈ P ′. For each such test case, all p′ ∈ P ′ are instantiated with appropriate
data values d ∈ D.

For example, consider a SUL that disallows decreasing numbers and consider
the theory 〈R, {=, <,>}〉, a data word u = α(1)·ok ·α(3)·ok for which the data
values 1 and 3 are stored in registers x1 and x2 respectively, and V = {α(p)}.
We then have D′ = {1, 3} and P ′ = p.

Table 1. Test cases for a specific prefix and symbolic suffix

Prefix Symbolic suffix Test cases Instantiated suffix Accepted

α(1)·ok ·α(3)·ok α(p) p < 1 α(0) no

1 < p < 3 α(2) no

p = 1 α(1) no

p = 3 α(3) yes

3 < p α(4) yes
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Table 1 shows the test cases generated for this example. For each test case an
instantiation is created formed by the concatenation of the prefix and the instan-
tiated suffix that satisfies the test case. The instantiated suffix is also depicted
in Table 1. The instantiation is sent to the SUL which either accepts or rejects
it (also indicated in Table 1). From these results an SDT can then be created as
is shown in Fig. 1. This SDT indicates that all data words α(1)·ok ·α(3)·ok ·α(p)
with p ≥ x2 are accepted by the SUL and all data words α(1)·ok ·α(3)·ok ·α(p)
with p < x2 are rejected by the SUL.

3 The Algorithm SL∗

3.1 Algorithm

The algorithm SL∗ presented by Cassel et al. is an extension of Dana Angluin’s
algorithm L∗. For a more detailed description of either algorithm we refer to the
original papers [4,8]. In this section we provide a brief summary of SL∗ which
should contain sufficient information for the purpose of this paper.

The main idea of SL∗ is similar to that of L∗, where concepts of a learner
and teacher are used. The learner attempts to learn a black-box system under
learning (SUL) that models a data language L with alphabet E . The SUL is
represented as a register automaton (RA, Sect. 2.2) and L is inferred by asking
the teacher so-called membership queries and equivalence queries.

The learner makes use of an observation table (Sect. 2.4) to create, and store
the results of membership queries and to build a hypothesis automaton based on
this table. The rows of an observation table consist of a set of prefixes, contain-
ing specific data values, and the columns consist of a set of symbolic suffixes,
which are abstracted from specific data values. Every cell represents a member-
ship query, which is a data word w (Sect. 2.1), where w is the concatenation of
the prefix and suffix of the cell. The answers from the teacher to each member-
ship query are transformed into a symbolic decision tree (SDT, Sect. 2.3), which
represents, for a given prefix, for which instantiations of parameters in the suffix
the SUL accepts the query (Sect. 2.3).

The learner continues to update the observation table by asking the teacher
membership queries until the observation table is both closed and register-
consistent (Sect. 2.4), at which point it creates a hypothesis automaton from
the table, represented as an RA, and sends it to the teacher in the form of an
equivalence query. Should the hypothesis automaton be equivalent to the SUL
the reply will be positive. Otherwise the teacher will provide a counterexample in
the form of a query that is accepted by the hypothesis but not by the SUL or vice
versa, after which the learner will continue with an updated observation table
and another set of membership queries until it creates the correct hypothesis
automaton.

Given an RA with t transitions and at most r registers per state, that models
a data language L, SL∗ infers L with O(tr) equivalence queries and O(t2r+trm)
membership queries, where m is the length of the longest counterexample [8].
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3.2 Example

In this section, we demonstrate the algorithm SL∗ by means of an example over
the data theory 〈R, {=, <,>}〉.

Consider the SUL as presented in Fig. 2, with input alphabet Ein =
{enter(p)} with p ∈ N, and output alphabet Eout = {ok, nok}. Any transitions
not shown in the figure lead to sink states which are omitted from the figure.

s0 s1 s2 s3

?enter(p) | true
x1 := p

!ok | true

?enter(p) | p ≥ x1

x1 := p

?enter(p) | p < x1

x1 := p

!nok | true

Fig. 2. Example SUL as described above

The observation table is initialized with U = {ε} and V = {ε} ∪ Eout, as is
shown in Table 2. True guards are omitted. Transitions that do not follow the
assumption of alternating input and output symbols are not processed.

Table 2. Observation table after the first round

V = {ε, ok, nok}

U ε

U+ enter(1) !ok !nok

The top SDT shown in the table indicates that the empty data word is
accepted by the SUL (indicated by the doubly lined state) but it does not show
the results for data words ok and nok as they do not follow the assumption of
alternating input and output symbols.

The bottom SDT shown in the table indicates with its initial, doubly dotted
state that the data word enter(1) leads to an accepting output state, i.e., a
state that requires the next action to be from the output alphabet (Sect. 2.2).
Furthermore, the SDT indicates that the data word enter(1) · ok is accepted by
the SUL and the data word enter(1) · nok is rejected by the SUL (indicated by
the singly lined state). Since V only contains the data symbols ε, ok and nok, no
other transitions are processed for this SDT.
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Table 3. Observation table after the fourth round

V = {ε, ok, nok}

U ε

enter(1) !ok !nok

enter(1) · nok

enter(1) · nok · enter(2) !ok !nok

U+ enter(1) · ok same as ε
enter(1) · nok · enter(2) · ok same as enter(1) · nok
enter(1) · nok · enter(2) · nok same as enter(1) · nok

?enter(p) | true

!ok | true

Fig. 3. The hypothesis automaton based on the observation table shown in Table 3

Table 2 is not closed however, since for row enter(1) in U+ there is no equiva-
lent row in U , hence row enter(1) is added to U and U+ is adapted appropriately.
Table 3 shows the observation table that is eventually obtained, which is both
closed and register-consistent.

A hypothesis automaton is created based on this table (Fig. 3).
This results in the following counterexample from the SUL: enter(1)·ok·
enter(2)·ok·enter(0)·nok, which is accepted by the SUL but not by the hypoth-
esis automaton.

Eventually, the algorithm obtains another closed and register-consistent
table, for which a new hypothesis automaton H is created (Fig. 4) and sent to the
teacher, resulting in a positive reply, meaning the learning process is complete
and the learner has learned the SUL. Looking past some syntactic differences we
can see that the automata in Figs. 2 and 4 are isomorphic under x1 → r1.
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4 Industrial Setting

4.1 Experimental Setup

As the main purpose of this paper is to investigate the suitability of SL∗ in an
industrial environment, the algorithm has been applied to several case studies
extracted from the coding environment of ASML. In this section we elaborate on
the case studies themselves and on applying the algorithm to these case studies.

l0 l1 l2 l3

?enter[int] | true
r1 := v int !ok | true

?enter[int] | v int > r1
r1 := v int

?enter[int] | v int == r1

?enter[int] | v int < r1
r1 := v int

!nok | true

Fig. 4. Result of SL∗ after learning the SUL of Fig. 2

Case Studies. In some departments within ASML, a modelling environment
called ASD:Suite [6] (see also [15] in this proceedings for a compact explanation
of ASD) is used to model the behavior of software from which the source code is
generated. Using ASD:Suite, a major component can be decomposed into many
smaller components. In particular there is a very large component within the
code base of ASML that is decomposed into 200–300 smaller components. For
the purpose of this paper, several of these smaller components are considered as
case studies.

It is important to note that components modeled in the ASD:Suite use guards
to make control flow decisions based on state variables, i.e., variables used to
describe the state of a system, as the use of such state variables provides a
more compact model of the behavior of the component. Any component using
state variables however, can also be modeled as a component without state
variables, resulting in a more extensive behavioral model with more explicit
states. Visually, this means that the second model has a layered structure, where
different layers of states represent the different values of an otherwise present
state variable. Models learned by SL∗ do not contain state variables and thus
contain such a layered structure when inferring ASD:Suite components that do
contain state variables.

The case studies we use in this paper are components referred to as c1, c2
and c3, of which only the last one contains behavior that is influenced by its
data parameters. These components communicate with each other as shown in
Fig. 5. For confidentiality reasons the names of these components are omitted in
this section, but we provide a short summary of their behavior.

Component c3 constitutes a rather typical list implementation, with behav-
ior that allows adding items to the list, removing items from the list, adapting
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c1

c2

c3

Fig. 5. Communication between the three components c1, c2 and c3

items on the list and viewing items on the list. The behavior of this component is
influenced by data parameters passed to the component and is therefore chosen
for this case study. Component c3 communicates only with c2, which receives
calls from c1 concerning the list and forwards them to c3 whilst also communi-
cating with two other components, indicated in gray in Fig. 5. Component c1 is
the simplest component of these three, as it only functions as a communicator
between other components and c2.

Each component is learned separately, observing the running times and
studying the results, as well as a combination of c1 and c2, and a combina-
tion of all three components, to observe the learning results and running times
when dealing with increased complexity.

To illustrate the strength of SL∗ when it comes to learning software behav-
ior with (abstract) data parameters, the same set of test cases is learned with
concrete data parameters. For this purpose, the input alphabet of each test case
is extended such that for each parameterized input i, five concrete but arbitrary
inputs are created instead, with concrete values v1, v2, . . . , v5.

Preparation. In preparation of applying the algorithm, code is generated for all
components in the SUL and for the direct environment of the SUL, i.e., the
components in the wrapper. The input and output alphabet are provided, as is
allowed in the black-box model, and a wrapper component is created.

Furthermore, due to the restrictions of theories 〈D,R〉, each parameter in
both the SUL and the stub code is transformed into a parameter d ∈ D. Should
there be no access to the code of the SUL, then the wrapper has to map param-
eters d ∈ D to the appropriate parameter types as they are in the SUL. For the
purpose of this paper, this extension is omitted, however. The IntegerEquali-
tyTheory is used in all cases.

Environment. The experiments are conducted on a machine with the following
properties:

– System: Windows 7, 64 bit, 8 GB RAM, 2.4 GHz CPU.
– JVM: Eclipse Neon 4.6.3, 64 bit, -Xms512m, -Xmx7144m.
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4.2 Results

The results are shown below in Table 4, which contains the following information:

– #Ein: the number of inputs in Ein.
– #Eout: the number of outputs in Eout prior to the final round of the algorithm,

i.e., when no new outputs are added to Eout anymore.
– sv: the number of state variables used in the implementation.
– time: the total running time of the algorithm averaged over 10 runs. The

word ‘om’ indicates that the learning process was interrupted due to an out
of memory error. For these cases the last obtained results are listed.

– states: the number of states in the resulting model.
– transitions: the number of transitions in the resulting model.
– mq: the number of membership queries performed, averaged over 10 runs.
– eq: the number of equivalence queries performed, averaged over 10 runs.
– correct: whether or not the learned result is correct. This correctness is

evaluated by visual inspection. Notations ‘N.A’. and ‘??’ denote cases that
do not have a final model to inspect or cases that are too big to evaluate by
visual inspection, respectively.

For each test case, two values are listed to indicate the result for the test case
with abstract and with concrete data parameters. The absence of two values
indicates a similar result for both cases. In the test cases that resulted in an
out of memory, the DoubleInequalityTheory has also been tried, resulting in the
same outcome.

For two out of five test cases the experiments with data parameters led to
out of memory. In both cases one parameterized input (the same input in both
cases) was removed from the input alphabet in order to be able to obtain a
partial result. This input dealt with obtaining the next item from an iterator.
These adapted test cases are indicated by the use of asterisks and their results
are shown in Table 5.

All in all, the results mostly indicate a problem with scalability as increased
complexity quickly leads to out of memory when including data parameters. For
those cases that were successfully learned though, the success of SL∗ becomes
apparent. For components that do not contain behavior based on data param-
eters, learning with SL∗ uses much less membership queries to learn the same
number of states with fewer transitions, resulting in more visual models. For com-
ponents that do contain behavior based on data parameters, an even more distin-
guishing result becomes visible. Note that the test cases without data parameters
contain only 5 hard-coded values, where the cases with data parameters allow
for values in an infinite domain, thereby attesting to the strength of SL∗ when
it comes to learning software behavior with data parameters.
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Table 4. Results of applying SL∗ to several case studies from an industrial environment

#Ein #Eout sv Time (sec) States Transitions mq eq Correct

c1 18 25 2 9/6 31/31 114/254 3984/9307 11/10 yes

c2 22 39 5 12K/6.9K 660/660 4.9K/12.2K 1.4M/3.3M 135/117 yes/??

c3 12 15 1 om/8.3K 127/2.7K 350/18K 19K/4.9M 38/245 N.A./??

c1, c2 20 33 6 137/66 108/108 752/1.7K 58k/132k 34/36 yes

c1, c2, c3 10 17 6 om/32K 328/2.4K 1.3K/30K 177K/11.5M 77/239 N.A./??

Table 5. Results of applying SL∗ to several simplified case studies from an industrial
environment

Time (sec) States Transitions mq eq Correct

c3 * 136/3.2K 87/842 227/5.4k 10k/895k 13/145 yes/??

c1, c2, c3 * 490/3835 109/838 383/9.1K 26k/2.2M 36/147 yes/??

5 Conclusion

Learning well known software with data parameters using SL∗ that fit the avail-
able theories is quite impressive. Applying SL∗ in an industrial environment can
be of use, but there are quite some limitations to consider.

First of all, two direct shortcomings were found that prevented SL∗ from
learning the correct results. Industrial systems do not have a strict alternation
of input and output. Furthermore, there are too many software flaws in the
available implementation of SL∗. Both had to be dealt with in order to allow
SL∗ to correctly learn the results of the industrial case studies. Especially, the
latter is not only very time consuming, but it also obfuscates conclusions about
the quality of SL∗.

While applying SL∗ to said industrial cases, another weakness became appar-
ent, namely the limited availability of data theories, forcing the use of integers
and doubles and limiting the operators usable in guards to equality, < and >.
In general other data types such as lists and sets are used in SULs but cannot
be learned. More importantly, the source code of a SUL may not be accessible,
and in such a case it is generally not known which data types are used; one can
only hope that they match the available theories.

Another problem is the scalability of the algorithm. Where smaller sized sys-
tems can be learned quite fast, an increased complexity quickly results in out of
memory errors. Unfortunately, it is not always clear in such cases whether the
problems find their origin in the size of the SUL, the quality of the implementa-
tion or in the data types that must be learned.

Despite these weaknesses, the strength of SL∗ has become apparent when
applying the algorithm to industrial case studies in comparison to learning these
case studies without data parameters. Under the right circumstances, SL∗ can
learn the behavior of a component with data much more efficiently and with
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a much more compact result, thereby providing valuable insights to engineers
requiring to gain knowledge of this behavior. Even when using SL∗ to learn the
behavior of a component that only employs trivial, finite data, the results can
be gained more efficiently and are in such a case more compact, by representing
this finite data using an infinite data domain.

It is clear that learning industrial software with data still has a long way to
go. But under the right circumstances, it can certainly work. And in such cases
the learned result generally offers a great amount of insight into the behavior
of a system, reducing the amount of time and effort required to gain knowledge
about the behavior of the system manually.
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Abstract. Randoop is a well-known tool that proposes a feedback-
directed algorithm for automatic and random generation of unit tests
for a given Java class. It automatically generates two test suites for the
class under test: (1) an error-revealing test suite, and (2) a regression
test suite. Despite successful experiences with applying Randoop on real
world projects like Java Development Kit (JDK) which have led to cre-
ation of error-revealing tests and identification of real bugs, it has not
been investigated in the literature how useful are the regression test suites
generated by Randoop. In this paper, we have investigated flakiness and
fragility of Randoop’s regression tests during evolution of 5 open source
Java projects with a total of 78 versions. The results demonstrate that
the flakiness of the regression tests is not generally noticeable, since in
our dataset, only 5% of the classes have at least one flaky regression
tests. In addition, test fragility analysis reveals that in most versions
of the projects under study, the regression tests generated by Randoop
could be successfully executed on many of later versions. Actually, for 2
out of 5 projects in the experiments, the regression tests generated for
each version could be successfully executed on all the later versions of
the project.

Keywords: Random testing · Randoop · Fragility · Flaky tests

1 Introduction

Randoop [16] is a well-known tool in the domain of random testing which employs
a feedback-directed algorithm for automatically generating unit tests for Java
programs. It takes a Java class as the class under test (CUT) and creates random
sequences of method calls on the objects of that class. Further, by executing
each generated method sequence, it decides whether the sequence is appropriate
for being extended to generate longer sequences. During sequence generation,
Randoop tries to execute sequences to check the CUT against a set of predefined
contracts that every Java class is expected to be compatible with. Should a
contract is violated, Randoop stores the corresponding method sequence as an
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error-revealing test. If a sequence does not violate any contract, it is stored as
a regression test that has captured the current behavior of the system. Finally,
Randoop generates two test suites from these two types of test: (1) an error-
revealing test suite, and (2) a regression test suite.

Based on our experience (including the experiments discussed in this paper)
with running Randoop on well-known open-source projects, we have observed
that usually the error-revealing test suite is empty for a CUT, since the default
contracts considered by Randoop are very general and they are not violated by
those projects which are implemented by professional programmers. Therefore,
for a test practitioner, the main output of Randoop is usually the regression test
suite that it generates. This test suite is aimed at revealing regressions during
the evolution of the CUT. In other words, if the behavior of the CUT which
is captured by Randoop regression tests is changed in the later versions, the
corresponding regression tests are expected to fail. Then, the tester needs to
analyze the code to see whether the new behavior is correct or it is the result of
an error introduced in the new version.

It is interesting to investigate how effective is the generated regression test
suite during the evolution of the CUT. In this paper, we discuss an experimental
study which mainly focuses on flakiness and fragility of Randoop’s regression
tests generated for real-world Java programs. The results are expected to shed
light on the required improvements on Randoop that can increase the potentials
of its application in real-world projects.

There are some works in the literature that study flaky tests [9], i.e. the tests
that their pass or fail result is not deterministic and hence, they fail in some
executions and pass in some other executions. In addition, a fragile test is a test
that is successfully executed on a version of the CUT, but it fails to execute,
e.g. due to a compile error, on the successive version of the CUT. Studying the
causes for a test to become fragile during the evolution of the software, and also
the possible automated fixes, have set the stage for a line of research, specifically
in GUI testing domain [2]. While studying the flaky tests and fragile tests has
been considered in the literature, there is not yet an established definition for
measuring the level of flakiness and fragility in a given test suite. Consequently,
in this paper, we first provide a set of metrics for this purpose, and then we use
them to analyze the flakiness and fragility of Randoop regression test suites for
open-source projects.

The reason why we focus on test flakiness and test fragility lies in the fact
that the more a regression test suite generated by Randoop contains fragile or
flaky tests, the less successful it would be in serving its main purpose, which
is assuring the quality of software during its evolution. A flaky test fails to
capture a consistent behavior of the CUT, and hence it cannot be used as a
reference to determine whether the behavior is changed during the evolution of
the CUT. Moreover, a fragile test first needs to be analyzed and modified so that
it can be successfully executed. Identifying flaky or fragile tests and performing
possible fixes on them might take a lot of time and effort, and hence, should
Randoop generates a large number of flaky or fragile tests, its applicability in
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real world projects becomes quite questionable. The main purpose of this paper
is to investigate this issue.

The rest of the paper is organized as follows. Section 2 briefly reviews the
related works on Randoop. In Sect. 3, the experimental study and its elements
are discussed, followed by the analysis of the results and discussion of the findings
of the experiments in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Work

In this section, we briefly review some works that are aimed at improving Ran-
doop effectiveness in unit test generation. First and foremost, the low code cov-
erage of the Randoop tests has attracted many researchers [8,10,21,23]. Due
to the fact that the method sequences are created randomly and without any
background knowledge or human intervention, it is quite difficult for Randoop
to provide the methods under test with the appropriate inputs so that various
states of the objects are covered. As a result, different parts of the code that
require specific inputs are not covered by Randoop tests.

To address this limitation, GRT [10] provides noticeable improvements over
Randoop by employing a two-step analysis method. In the first step, static anal-
ysis is performed to collect the required information from the class under test.
In the second step, a dynamic analysis is performed with regards to the feedback
received from the execution of the method sequences in addition to the informa-
tion collected in the first step that lead to making a good decision on choosing
which sequences should be extended. In [8], the idea of mutating an object under
test is employed for the purpose of improving code coverage of the tests.

Another limitation of Randoop is that it cannot properly generate sequences
from useful methods; thus, as a solution in [22], Seeker is introduced which
employs dynamic and static analysis to create more useful sequences.

Due to the importance of generating appropriate input arguments for method
calls, in [23], the TestMiner tool is introduced which extracts literals from the
source code of the tests and uses them to create the required input strings. In
[12], reusing the test cases from the libraries of the software under test, which
resulted in the better generation of test cases, were investigated. Another issue
with Randoop is that it does not test the private methods of CUT. In this
regard, the authors in [1] suggest using Java Reflection and having access to
private fields, which can result in false positives, but better code coverage. This
issue of code visibility is also considered in [11].

Regarding the flaky tests, i.e. the tests that their pass/fail behavior is non-
deterministic, the authors in [9] have discussed an empirical analysis of flaky
tests in real world projects. Their main goal has been to identify the root causes
for test flakiness, determine how and when the flaky behavior is manifested, and
also to describe the mechanisms that are usually used by developers to fix the
flaky tests. The focus in [9] is on flakiness of manually-written tests, while in
this paper, we specifically target the tests automatically generated by Randoop.

There are also some works that focus on repairing failed unit tests. For
instance in [4], the ReAssert technique is introduced which uses both static and
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dynamic analysis to suggest a repair for a failed unit test. The suggested repair
is mainly in terms of modification in the assertion statements, for instance,
replacing assertTrue with assertFalse, or replacing literal values in the assert
statements. It is worth noting that ReAssert is not intended to repair those tests
that cannot be compiled due to recent changes in the program under test. In
other words, it does not modify the unit tests to eliminate compile errors, but
just to make a failing test pass.

There is another line of works that have focused on evaluating automated
unit test generation tools. For instance, in [15], the methodology and the results
of the 6th JUnit testing tool competition is discussed. In this competition, a total
of 59 CUTs from 7 open-source Java projects are selected and four automated
JUnit tests generation tools, i.e. EvoSuite [5], JTexpert [19], T3 [17] and Randoop
are executed with different time budgets to generate test suites for these CUTs.
Finally, the performance of the tools are evaluated in terms of structural code
coverage metrics and through mutation analysis. In a similar work [3], Randoop
is also compared with EvoSuite and 4 other test input generator tools, again in
terms of code coverage, efficiency and mutation adequacy.

In another work [20], the authors have evaluated effectiveness of three auto-
mated test generation tools Randoop, EvoSuite and AgitarOne in terms of being
able to detect real faults in the Defects4J dataset. They have also analyzed the
flaky tests generated by these automated tools. The results have shown that
on average, 21% of the Randoop tests were flaky, i.e. their pass/fail behavior
is non-deterministic. In [7], the authors have discussed their experiences with
deploying Infer, a static analysis tool, and Sapienz, a dynamic analysis tool, at
Facebook. They have described the open problems that need to be considered by
software testing researchers, one of which is the flakiness of tests. In this regard,
the authors emphasize the highly stochastic behavior of the systems deployed in
real-word situations, and propose that we need to “Assume all Tests Are Flaky”.
Proposing the theoretical discussions behind this idea, a set of research questions
are provided on how to deal with flaky tests based on this assumption. In [18],
the authors have discussed their experience with applying Randoop for auto-
mated test generation for GUI testing of an industrial project. It is mentioned
that integrating Randoop with the build process for the purpose of regression
testing has resulted in many false positives. In other words, due to the high rate
of intended changes, most of the failing regression tests do not indicate a real
bug, but an intended change. However, the paper does not provide quantitative
analysis of this problem.

The review of the related work shows that while the limited coverage, read-
ability, and other aforementioned factors regarding Randoop and other auto-
mated unit test generation tools is taken into consideration by many researchers,
the flakiness and fragility of the Randoop regression tests during the evolution
of a project is not considered. This paper seeks to conduct the first investigation
in this regard.
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3 Experimental Study

In this section, different elements of the experimental study of Randoop regres-
sion tests are described. First, the research questions are introduced and then,
the preparation of the dataset used in the experiments is described. Finally, the
experiment procedures and the evaluation metrics are presented.

3.1 Research Questions

The goal of the current study is to investigate how effective are Randoop regres-
sion tests in terms of being able to reveal potential regressions during software
evolution. For this purpose, we have focused on evaluating flakiness and fragility
of Randoop regression tests. However, a prerequisite for this assessment is to
determine whether Randoop is able to create any regression test for the CUT.
In other words, if Randoop fails to create any regression test for a large ratio
of the classes in a program under test, then the effectiveness of the generated
regression test suites is questionable since they might not cover an appropriate
amount of the program’s code base. As a result, we first seek to determine for
what percentage of the input classes, Randoop has been able to create at least
one regression test.

Next, we consider two types of problems affecting the effectiveness of the
regression tests: (1) flakiness and (2) fragility of the tests. Assuming that a
regression test T is created over version i of the program under test, T is flaky
if the result of executing T on the same version of the program, i.e. version i, is
non-deterministic and hence varies over different executions [9,14]. A flaky test
is not useful from the point of view of regression tests, since it has not captured
a stable behavior of the CUT, and hence, it is unable to judge about regressions
in future versions of the CUT. In addition, T is a fragile test with regards to a
successive version j, j > i, if it cannot be executed on version j of the program
under test due to a compile error in T. The more flaky or fragile tests exist in
the test suite generated by Randoop, the less is effectiveness of the test suite.

It is worth noting that flakiness is an inherent weakness of a regression test,
since when a regression test which is created on version i is failed on the same
version, it has not been able to correctly and consistently capture the behavior of
that version of the CUT. Therefore, addressing the test flakiness issue requires
improving the Randoop algorithm details to prevent generation of the flaky
tests. Test fragility, on the other hand, is not necessarily rooted in the weakness
of Randoop or the regression tests it generates, since it is caused by the changes
made in the successive versions of the program under test. For instance, if Ran-
doop has created a regression test for class C1 in version i of the program under
test, and this class is renamed in version j, j> i, then the corresponding test will
fail to compile on version j and hence it becomes a fragile test with regard to
this version. However, this cannot be considered as the weakness of that test.
Actually, it depends on how we define a change in the behavior of the program
under test. If we consider renaming of a class as a change in the behavior of the
program under test, it can be argued that having the test failed is exactly what
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we expect, since the regression test is expected to fail to reveal the change in the
behavior of the program under test. If we exclude this kind of change from the
definition of behavior change, then the test is not expected to fail. Regardless
of which argument a test is in favor of, it is more appealing if it was possible to
repair the test so that it can be compiled and executed to see whether it passes or
fails. For instance, if it is possible to make the test executable just by renaming
the corresponding class in the test code, it is interesting to keep the test in the
regression test. However, this requires analyzing the source code to see what is
the reason for the compile error and what changes are required to eliminate the
error so that the test is compiled successfully. Apparently, this is not an easy
task and it might be quite challenging and time-consuming, specifically for a
large test suite. This increases the cost of using Randoop for practitioners, and
hence, this is why we consider test fragility to indirectly reduce the effectiveness
of the Randoop’s regression tests.

Based on the viewpoint described above, the main research question in this
research is:

RQ. How useful are the regression tests generated by Randoop? To answer
this question, the following specific research questions are considered:
RQ1. For what percentage of the classes under test, Randoop is able to
generate any regression test?
RQ2. What percentage of the Randoop regression tests are flaky?
RQ3. What percentage of the Randoop regression tests generated for a ver-
sion i of a CUT can be executed on the version i + 1 of that CUT?
RQ4. How long does a Randoop regression test last as a non-fragile test
during the evolution of the program under test? In other words, what is the
maximum value of k− j so that the regression tests generated over version j
can successfully execute over version k, k > j?

In this paper, we have conducted an experimental study to answer these
questions using a dataset of real world open source projects. While the results
of the experiments are not meant to be applicable to every project, we believe
they can provide a general understanding of the effectiveness of Randoop over
similar projects.

3.2 Dataset

For the purpose of the experimental evaluations, first, a dataset is prepared
including different versions of five Java open source projects from the Apache
Commons family. Table 1 shows the basic information about the selected
projects. We have selected these projects since they are well-known real-world
projects, each having released more than 10 version. Actually, on average, about
16 versions have been available for each project and the size of each project, in
terms of the number of classes, is increased by a factor of 10 from its first version
to its last version. Hence, while the number of projects included in the data set
is small, but the volume of the changes in these projects is noticeable and they
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are good candidates for representing the concept of evolution in a real-world
project.

In addition, to create a dataset of Randoop regression tests, for every public
class in each version of each project, we have executed Randoop with a time
limit of 10 s and the resulting regression tests are stored in the dataset. It is
worth noting that the default time limit of Randoop for test generation for a
single class is 100 s, however due to the large number of classes in the dataset,
we have used a smaller time limit to keep the execution cost of the experiments
reasonable. Further, we have set testsperfile parameter of Randoop to 1, so that
each regression test is created as a separate Java file declaring a test class with
a single test method. The information about the generated regression tests is
shown in Table 1.

Table 1. Dataset used in the experiments

Project Project name Versions Number of
classes with test

Avg. test per class

First Last Count Min Max Total

P1 BeanUtils 1.0 1.9.3 19 3 78 1025 338

P2 Codec 1.1 1.11 11 9 49 336 278

P3 Collections 1.0 4.4.1 11 21 220 1264 190

P4 Compress 1.0 1.16.1 20 36 126 1709 294

P5 Digester 1.0 3.3.2 17 11 67 599 353

3.3 Experiments

In order to answer the first research question, it is needed to analyze the regres-
sion tests generated by Randoop and identify the cases where it has failed to
generate any test for a given class. As for answering the next research questions,
i.e. RQ2 to RQ4, we designed two experiments:

1. Flakiness Experiment. Since a flaky test has different behaviors in different
executions, in order to determine the flaky tests, we have executed every
regression test generated for each version i of each project, on the same version
i of the same project until whether the test is failed or it is executed for 10
times. If the test is failed in one of its executions, it is considered to be a flaky
test. This experiment is designed for answering RQ2. Actually, repeating a
test for 10 times is not guaranteed to reveal its flakiness, however, to control
the execution cost of the experiment, we have used the value of 10 as a
reasonable threshold, since this strategy of 10 reruns is common in practice
[6,13].

2. Fragility Experiment. In this experiment, we have executed every regression
test generated on each version j of each project, on all the versions k (k> j)
of the same project. However, we have ignored the flaky tests identified in the
previous step. This experiment is considered to answer RQ3 and RQ4.
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3.4 Metrics

In order to analyze the results of the experiments, we have defined a set of
metrics which are introduced below.

– TestGenSuccess of Randoop on a specific version of a project P is the per-
centage of the classes in that version for which Randoop has successfully
generated at least one regression test.

– Flakiness of a class is the percentage of the tests generated for that class that
are flaky.

– Fragilityj,k of a class is the percentage of the non-flaky tests generated for a
class in version j of the corresponding project which are fragile with respect
to version k, k > j.

– Fragility-Free Length of a project is the maximum value of k− j where the
regression tests generated for version j can be executed on version k. A great
value for this metric points to a long period in the evolution of the project dur-
ing which the regression tests of older versions have no fragility with regards
to later versions.

4 Result Analysis

In this section, we analyze and discuss the results of the experiments and answer
the research questions described in the previous section.

4.1 Regression Test Suite Generation

In order to answer RQ1, we have computed for each version of each project the
percentage of the classes in that version for which Randoop has been success-
ful in generating at least one regression test. The results are shown in Table 2.
For instance, the results demonstrate that considering different versions of P1,
Randoop has been able to create regression tests for 94% to 100% of the CUTs.
Furthermore, across all the versions, on average, Randoop has created regression
tests for about 97% of the classes in P1. The worst performance of Randoop is
associated with P3 where Randoop has created regression tests for only 72% of
the classes in version 3.0. Some sample classes with no regression tests are men-
tioned in Table 3. Finally, over all the projects, Randoop has created regression
tests for an average of 95% of the classes under test. As a results, it is reasonable
to answer RQ1 by concluding that Randoop is powerful in creating regression
tests for most of the classes under test.

It is interesting to analyze why Randoop has not been able to create regres-
sion tests for some of the classes. Our initial analysis demonstrates that we
can attribute this issue to the inability of Randoop in preparing required argu-
ments for calling the methods, including constructors, of the CUTst, since they
require complex objects, not primitive values, as input parameter. Hence, Ran-
doop has not been able to create any object from these class and call methods on
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Table 2. Test generation results

Project TestGenSuccess for different versions (%)

Min Max Average

P1 94 100 97

P2 97 100 99

P3 72 100 85

P4 97 100 99

P5 85 100 95

Total 72 100 95

Table 3. Sample classes with no regression tests

Project Version Class name

P1 1.4 org.apache.commons.beanutils.ResultSetIterator

P2 1.10 org.apache.commons.codec.binary.BaseNCodecInputStream

P3 3.0 org.apache.commons.collections.list.LazyList

P4 1.10 org.apache.commons.compress.archivers.dump.DumpArchiveSummary

P5 3-3.0 org.apache.commons.digester3.binder.CallMethodBuilder

those objects. However, we admit that more precise analysis is required to iden-
tify any other possible cause for this problem.

Finally, it is interesting to mention that Randoop has created a non-empty
Error Test Suite only for 89 classes1, counting for about 1% of the classes in
the dataset. In addition, the average number of error tests generated for these
classes is 27. This supports our previous claim that from a practical point of
view, Randoop rarely generates any error-revealing for the class under test.

4.2 Flakiness Analysis

Next, we have analyzed the results of the flakiness experiment by computing
Flakiness for each CUT in each version of the projects in the dataset. The
results, shown in Table 4, demonstrate that for different projects, between 3%
to 9% of the classes have Flakiness > 0. Specifically, for those classes in P1 with
Flakiness > 0, the minimum, maximum and average Flakiness is respectively
1%, 79% and 11%. For other projects, the average flakiness of those classes with
Flakiness > 0 is greater, compared to P1. Finally, across the entire dataset, 5%
of the classes have Flakiness > 0 and the average Flakiness of these classes is
54%. Based on these results, we can answer RQ2 by concluding that for a low
ratio of the CUTs Randoop generates any flaky tests, but for such classes, on

1 This includes 26 distinct classes, since some classes have error test suite in different
versions.
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average, about half of the generated tests are flaky. Some sample classes for
which Randoop has generated flaky tests are introduced in Table 5.

Table 4. Results of the flakiness experiment for classes with flakiness> 0

Project Count Ratio (%) Count (Unique) Flakiness

Min Max Avg.

P1 49 5 5 1 79 11

P2 30 9 6 1 93 48

P3 44 3 10 1 99 43

P4 106 6 6 15 100 80

P5 38 6 9 5 100 55

Total 267 5 36 1 100 54

We have not performed a detailed root causes analysis of the flaky tests.
However, our initial investigation reveals that the way Randoop deals with side
effect of modifying static members of the CUT needs to be improved. A good case
in point is class org.apache.commons.beanutils.ConvertUtils in P1, where during
test generation, a method sequence modifies the static members defined in this
class, e.g. defaultDouble and defaultInteger, and later a second method sequence
reads the value of these members and uses them in the assertions. Later, when a
test that is created from the second method sequence is executed, it is executed
with no history of the changes that are performed by the first method sequence,
and hence, the assertions fail. Listing 1.1 shows a sample regression test that is
flaky due to this reason. It is worth mentioning that test order dependency is
identified in [12] as the third most frequent cause of test flakiness, and static field
in CUT is determined as one of the three identified sources of this dependency.

Table 5. Sample classes with flaky tests

Project Version Class name

P1 1.0 org.apache.commons.beanutils.ConvertUtils

P2 1.10 org.apache.commons.codec.digest.Crypt

P3 1.0 org.apache.commons.collections.BeanMap

P4 1.0 org.apache.commons.compress.archivers.zip.ZipArchiveEntry

P5 2.1 org.apache.commons.digester.Digester
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Listing 1.1. A sample flaky test generated by Randoop for version 1.0 of P1

@Test public void test1() throws Throwable {
org.apache.commons.beanutils.ConvertUtils convertUtils0 =

↪→ new org.apache.commons.beanutils.ConvertUtils();
float f1 = convertUtils0.getDefaultFloat();
org.junit.Assert.assertTrue(f1 == 10.0f);

}

4.3 Fragility Analysis

In order to analyze the results of the fragility experiment, we have first mea-
sured Fragilityj,k for each class under test in a source version j with respect to
all subsequent versions k, k > j. Next, we have computed the average value of
Fragilityj,k over all the classes in version j. The results are shown via the heat
maps in Figs. 1, 2 and 3. In these heat maps, a cell with a red color represents
the maximum value among all the cells and a green cell shows the minimum
value. For the purpose of brevity, the heat maps related to projects P1 and P4

are not shown since all their cells have a value of 0.

Fig. 1. Average fragilityj,k for P2 (Color figure online)

The results demonstrate that the average fragility of the regression tests
generated for every version of P1 with regards to every later version is 0%. This
interesting observation means that if Randoop was used to generate regression
tests for each version of P1, those test would have been executable on every
successive version of P1 to control any change in the behavior during the evo-
lution of the P1. The same is true about P4 where the average fragility of the
regression tests of each version with regards to successive versions is 0%. For P3,
the average fragility of the regression test of version 1.1 with regard to version
1.2 is 11%, meaning that 11% of the tests generated for version 1.1 cannot be
compiled and hence executed on version 1.2. Further, 17% of these tests can-
not be compiled on version 1.5 and later versions. However, the tests that are
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generated for version 1.5 and later, have no fragility with regard to all their suc-
cessive versions. For P3, the tests generated for versions before 4.4.0, all have a
noticeably high fragility with version 4.4.0 and later versions. This is a symptom
of a noticeable change in version 4.4.0. Actually, our investigation reveals that
this is due to renaming the main package of P3 from collections to collections4.
This has made all the tests generated for previous versions fail to compile. For
P5, the results are similar to P3, and the regression tests generated for versions
before 3.3.0 have almost complete fragility with regard to the version 3.3.0 and
later versions. Similar to P3, this can be attributed to the fact that the main
package of P5 is renamed from digester to digester3.

Finally, among 18 versions of P1 (the last version is not considered since it
has no successive version), all have the characteristic that their regression tests
have no fragility on their immediate successive version. For P2, P3, P4 and P5,
this is respectively 8 out of 10, 7 out of 10, 19 out of 19, and 14 out of 16.

Based on the discussion above, we can answer RQ3 by saying that fragility
of the regression test of a version is usually 0% or low with regard to at-least
a few successive versions. Consequently, we can conclude that if Randoop is
being used for regression testing during the evolution of a project, it could be
of great help in controlling regressions. However, as mentioned for P3 and P5,
in some points during the evolution of the project, the previous regression tests
might become fragile due to major changes introduced in a new version. What is
needed in that situation, is an effective technique for automatically performing
the possible repairs on the regression tests so that they can be compiled on the
new versions. We believe development of such a repair technique is both feasible
and valuable in improving the effectiveness of Randoop regression tests.

Fig. 2. Average fragilityj,k for P3 (Color figure online)

It is interesting to identify the cause of the fragility of the tests. Through
analysis of the compilation results of the tests, we have identified the top-5
errors most frequently raised by the compiler during the fragility experiment.
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Fig. 3. Average fragilityj,k for P5 (Color figure online)

The results are shown in Table 6. In this table, the compiler errors are
abstracted by replacing the project-specific identifiers, e.g. class name or
package names. While this requires thorough investigation to identify the
types of changes that have led to these compiler errors, our initial anal-
ysis have demonstrated that changing package names, moving classes to
new packages and changing access level of the class members (e.g. from
public to private) are among the most frequent changes that have caused
compiler errors and test fragility. For instance, in version 3.0 of P3, the
class FilterIterator is moved from org.apache.commons.collections package to
org.apache.commons.collections.iterators package. This change makes all the
regression tests that are created for previous versions and use FilterIterator to
fail to compile on version 3.0. We believe it is promising to seek to develop new
techniques for automatically repairing the regression tests to cope with these
changes. This is the main direction of our future work. To answer RQ4, it is
required to compute Fragility-Free Length for each project. This can be achieved
by identifying the length of the longest sequence of zeros in the rows of Figs. 1,
2 and 3. The Fragility-Free Length for each project is shown in Table 7. The
results emphasize the effectiveness of Randoop regression tests since it demon-
strates that the regression tests that are generated for the versions in which the
fragility-free period starts, could have been used to perform regression testing
on an interesting number of later versions.
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Table 6. Top-5 compiler errors for fragile tests

Compiler error template

cannot find symbol {identifier}
incompatible types: {type1} cannot be converted to {type2}
package {package} does not exist

reference to {identifier} is ambiguous

{class member} has private access in {class}

Table 7. Results of fragility experiment

Project P1 P2 P3 P4 P5

Fragility-free length 18 6 4 19 7

5 Conclusion

In this paper, we have discussed an experimental evaluation of the effectiveness
of the regression tests generated by Randoop. Specifically, we have investigated
flakiness and fragility of Randoop’s regression tests during evolution of 5 open
source Java projects with a total of 78 versions. The results demonstrate that the
flakiness of the regression tests is not generally noticeable, since in our dataset,
only 5% of the classes have at least one flaky regression tests. In addition, test
fragility analysis reveals that in most versions of the projects under study, if
Randoop has been used to generate regression tests, those tests could be suc-
cessfully executed on a noticeable number of later versions. Actually, for 2 out
of 5 projects that are used in the experiments, the regression tests generated
for each version could be successfully executed on all the later versions of the
project. For some of the projects, there are some points during the evolution
of the project in which the previous regression tests become fragile. We believe
that it is possible to develop repair algorithms to automatically do the required
modifications on some of the fragile tests to eliminate their fragility. Our future
work is mainly focused on development of such a repair technique.
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Abstract. Security ceremonies extend cryptographic protocols with
models of human users to allow us to take human behaviors into account
when reasoning about security. Actor-network procedures (ANPs) are a
well-known formal model of security ceremonies, and procedure deriva-
tion logic (PDL) allows us to reason logically about ANPs. In a secu-
rity ceremony, different nodes may have different capabilities: computers
can encrypt and decrypt messages, whereas humans cannot; a biomet-
ric device can capture biometric information, whereas a random number
generator used in e-banking cannot; and so on. Furthermore, even if a
node has the decryption capability, it must also know the encryption key
to decrypt a message. ANPs do not support explicitly specifying node
capabilities. In this paper, we extend ANPs to deal with heterogeneous
devices by explicitly specifying the nodes’ capabilities. We also modify
PDL to take into account the knowledge of participants at different points
in time. All this allows us to reason about secrecy and authentication in
ceremonies with different kinds of devices and human users.

1 Introduction

Most security breaches nowadays occur not by breaking cryptographic protocols
or because of buffer overflow, but through various forms of “social engineering
attacks,” such as phishing emails, malicious apps and web sites, browser sta-
tus/address bar spoofing attacks [6], and so on. Furthermore, web applications
typically interact with human users. To reason about security, we must therefore
include humans as key parts of the security process, which requires defining new
models of such processes. For example, in standard crypto-protocol formalisms,
the behavior of each actor is typically given as a (deterministic) sequence of
actions, whereas humans may exhibit nondeterministic behaviors (does the user
click on the link? does she perform an action in the wrong way?).

Security ceremonies [8] extend cryptographic protocols with models of human
users. Actor-network procedures (ANPs), introduced by Meadows and Pavlovic,
are one of the more popular ways of formalizing security ceremonies (see, e.g., [1,
5,11,12,14,15]), and procedure derivation logic (PDL) [11,15] allows us to reason
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logically about ANPs. ANPs define the possible behaviors as partial orders over
events, and PDL formulas allow nodes to assert the order of events in a protocol
run. ANP and PDL have been used to formalize and reason about a wide range of
systems, including physical access to secure areas of airports and office buildings,
multi-factor multi-channel authentication, and key agreement procedures.

A security ceremony typically includes different kinds of nodes, such as com-
puters, different kinds of humans (expert users, novices, intruders, etc.), and
authentication devices like smart cards, random number generators, biometric
devices, and so on. Different actors may have very different capabilities: a com-
puter can encrypt and decrypt messages whereas humans cannot; a biometric
device can capture biometric information, whereas a random number generator
used in e-banking cannot; and so on.

The ANP formalism is fairly abstract, and does not support specifying that
different nodes have different capabilities. In this paper, we therefore define
ANPs with capabilities (ANP-Cs), which extend ANPs with an explicit spec-
ification of the capabilities of the different nodes. ANP-Cs also add the following
events to APNs’ send and receive events: (a) learning events for obtaining infor-
mation (messages, keys, etc.) from previously received messages, and (b) events
creating new terms from existing knowledge and the node’s capabilities. Learning
events are needed to express secrecy: did the intruder learn m from overhearing
some (encrypted) message m′?

PDL is a logic for reasoning about the temporal order of events, and does not
allow us to reason about the knowledge of the nodes at certain times. However,
a node that has the capability to decrypt an encrypted message can only do
so if it currently knows the decryption key for the message. To reason more
accurately about security ceremonies, we should keep track of the knowledge
of each node throughout the run of the ceremony. We therefore modify PDL to
allow reasoning about ANP-Cs. Our new logic PDL-CK allows us to reason about
the dynamically evolving knowledge of the participants, and can be used, for
example, to reason logically about under what circumstances (i.e., what are the
necessary capabilities of the different actors and what must they know initially?)
a certain action, such a node decrypting a message, can take place.

The rest of this paper is structured as follows: Sect. 2 gives some background
on ANP and PDL. Section 3 shows how different capabilities can be axioma-
tized as operations in an equational algebraic theory, introduces the new events
for learning and creating, and defines ANP-Cs as ANPs with an explicit map-
ping from devices to capabilities. Section 4 introduces PDL-CK. Finally, Sect. 5
discusses related work, and Sect. 6 gives some concluding remarks.

2 Preliminaries

Meadows and Pavlovic have developed actor-network procedures (ANPs) [13,15]
to formally specify security ceremonies. This is a quite abstract model, where the
possible local behaviors of a group (“configuration”) of nodes is specified as a
partial order of localized events. A localized event is either send(t)P or receive(t)P ,
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where t is a term of a user-defined algebraic theory (Σ,E) of operations (con-
sisting of an algebraic signature Σ declaring sorts and operations/functions, and
a set E of equations axiomatizing those operations), and P is a node or group
of collaborating nodes.1 The set of possible runs in an entire system are then
given as the partial order of localized events that “combine” the different local
partial orders in a send/receive-consistent way.

Procedure derivation logic (PDL) [13,15] is a logic for localized reasoning
about the temporal order of events in an ANPs; for example, “node p knows
that if it has received the message t, then some node X previously sent t”.

Although ANP and PDL have been used on a number of applications [12,13,
15,16], there is currently no tool support for ANP and PDL.

Actor-Network Procedures. The “static” structure of an ANP is defined as
an actor-network. A configuration is a set of nodes and/or (sub)configurations
where all participants need each other to achieve a common goal. A smart card
and a card reader may be seen as a configuration: both are needed to validate
someone’s identity. An actor-network is a network of such (possibly hierarchical)
configurations, principals that control the configurations, and channels between
configurations, where each channel has a type, and is defined as follows in [15]:

Definition 1 ([15]). An actor-network consists of: a set J (of principals); a set
N (of nodes); a set P of configurations, where a configuration can be a finite
set of nodes, or a finite set of configurations; a set C (of channels); a set Θ (of
channel types); a partial map c© : P → J (denoting the principal controlling a
configuration); functions δ, � : C → P denoting the source and destination of a
channel; and a function ϑ : C → Θ (assigning to each channel its type).

An algebraic theory (Σ,E) defines the operations, such as encryption,
decryption, creating a nonce, etc. An event or action has the form a(t), where
a is an event identifier (such as send or receive) and the term t is its parameter.

An actor-network procedure extends an actor-network by adding a process,
which defines the local behaviors of each configuration as a partially ordered
multiset of localized events:

Definition 2 ([15]). A process F is a partially ordered multiset of localized
events, F = 〈FE,FP〉 : F → E × P, where

– (F,→) is a well-founded partial order, representing the structure time,
– E is a family of events, and
– (P,⊆) is the partial order of configurations

such that if φ → ϕ in F then FPφ ⊆ FPϕ or FPϕ ⊆ FPφ.

Although a process is defined as a partially ordered multiset of localized events,
for simplicity, Meadows and Pavlovic assume that each event takes place at
most once. We therefore write e1P → e2Q to denote that there are (time points)

1 send(t)P and receive(t)P are written 〈·t·〉P and (·t·)P , resp., in [13,15].
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φ and ϕ in F with φ → ϕ such that F(φ) = (e1, P ) and F(ϕ) = (e2, Q).
Informally, this means that e1 takes place in configuration P before e2 takes
place in configuration Q. The last requirement in Definition 2 implies that a
process just orders events inside the configuration P (or Q, if P ⊆ Q), and
hence only define the local behaviors.

A run of a process ρ assigns to each receive event receive(t)Q a unique flow
send(t)P

τ−→ receive(t)Q. A run can be seen as a partially ordered (multi)set
of localized events that extends the partial order → in ρ by adding these flows
send(t)P → receive(t)Q. That is, a run extends the internal synchronization in a
configuration to the whole network. A network procedure is then defined in [15]
as a pair (ρ,S) where ρ is a process and S is a set of runs of ρ (denoting the
“secure” runs).

Procedure Derivation Logic. Procedure derivation logic (PDL) [13] is a logic
for reasoning about security properties in actor-network procedures. The rea-
soning of protocol participants is concerned mostly with the order of events in
a protocol run. A PDL statement has the form A : Φ, where A ∈ J is a partici-
pant, and Φ is a predicate asserted by A. The predicate Φ is formed by applying
the usual quantifiers and logical connectives (we write =⇒ for implication) to
the atomic predicates, which can be: eP , meaning “the (localized) event eP hap-
pened,” or eP → e′

Q, meaning “the event eP happened before the event e′
Q”.

In PDL, the valid statements are derived from the few “generic” PDL axioms,
the protocol specification, and protocol-specific assumptions.

One of the generic PDL axioms says that any message that is received must
have been sent. That is, if the principal c©P controlling P knows receive(t)P ,
this principal also knows that there was a corresponding send event send(t) by
some configuration X:

c©P : receive(t)P =⇒ ∃X. send(t)X → receive(t)P

Other PDL axioms axiomatize freshly generated random numbers and con-
tinuous flows. In addition, the user can axiomatize her own assumptions about
her system. The paper [15] shows many examples of the use of PDL.

3 ANPs with Explicit Device Capabilities

Different devices taking part in a security ceremony can have different capa-
bilities. For example, a security ceremony could include smart cards, biometric
devices such as fingerprint readers or iris scanners, a fob device used in online
banking to generate one-time passwords, different kids of human users (super-
user, standard user, amateur user), computers, and so on.

A security ceremony including many such devices could involve a smart card
(or passport) which stores some biometric data of a user. When the user swipes
the smart card/passport, the smart card reader sends the biometric data to a
central computer, and a biometric device such as a face recognition system takes
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a photo of the human user and sends a hash of that information to a central
computer. If the biometric data on the smart card and the one taken by the
biometric device match, and everything else is OK according to the computer,
the user is allowed to enter a certain area/country.

These devices have different capabilities: a fingerprint reader can generate
a number by reading your fingerprint, whereas a human or computer cannot;
a computer can encrypt and decrypt messages, and a human cannot; only the
e-banking one-time password generator can generate one-time passwords; etc.

In this section we extend ANPs to explicitly define and include the capa-
bilities of the different actors in a security ceremony. The two main reasons for
making the capabilities explicit are:

– Specification: making explicit the capabilities of nodes in a ceremony.
– Most importantly, knowing the capabilities of the nodes is necessary to rea-

son about the (dynamically evolving) knowledge of the participants (e.g., a
node that cannot decrypt messages cannot know/obtain the plaintext from
an encrypted message), as well as reasoning under what circumstances certain
runs are possible.

In this section we first show how the different capabilities of different devices
can be given as functions in an algebraic theory (Σ,E). We then define an
actor-network procedure with explicit capabilities (ANP-C) as an actor-network
procedure with an associated map from nodes to sets of operations/capabilities.
Finally, to make the reasoning about obtained knowledge in Sect. 4 simpler,
and in general to make the knowledge obtained or created explicit, ANP-Cs
add two new kinds of events to ANPs: create event use a node’s capability
and current knowledge to create new informations, and learning events models
explicitly obtaining knowledge from other pieces of knowledge. The learning
event makes it possible to reason about secrecy and authentication; for example,
secrecy means that an intruder cannot obtain certain information m from an
overheard encrypted message—it does not mean that the intruder does not know
m. Therefore, just relying on knowledge is not enough to reason about secrecy;
we need to make the learning from something explicit.

3.1 Specifying Device Capabilities

We show in this section how different capabilities that devices may have can be
given as functions in the algebraic theory (Σ,E) of ANP operations.

Smart Cards. A smart card is a small device that typically can:

– Send and receive information to/from a smart card reader.
– Store (and possibly update) data, such as, e.g., the identity and credentials

of a user, a PIN code, the remaining amount of money on the card, and the
smart card’s public key and private key.

– Encrypt and decrypt data using its private and public keys.
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We can specify public-key encryption/decryption as the following algebraic
theory, written in the style of the Maude language [7], where the keyword op
introduces an operator/function, and eq introduces an equation:

sorts Node Msg EncMsg PbKey PvKey Key . subsort PbKey PvKey < Key .

op pv : Node -> Key . op pb : Node -> Key .

op enc : Msg PvKey -> EncMsg . op dec : EncMsg PbKey -> Msg .

vars X : Msg . var Y : Node .

eq dec(enc(X,pb(Y)),pv(Y)) = X . eq dec(enc(X,pv(Y)),pb(Y)) = X .

where the sorts Msg, EncMsg, PbKey, PvKey, Key, and Node denote, respectively,
messages, encrypted messages, private keys, public keys, keys in general (includ-
ing both public and private keys), and node identities. pv(n) and pb(n) denote,
respectively, the private key of n and the public key of n. Finally, enc and dec
denote public-key encryption and decryption, respectively.

Biometric Devices. A biometric device is an authentication device that verifies
the identity of a person based on physiological or behavioral characteristics, such
as fingerprints, facial or iris images, and/or voice recognition. A biometric device
compares the pre-stored biometric information about the user2 with the biomet-
ric information captured by the sensor of the device during the authentication
process. In addition to authenticating a person, biometric keys are also used to
encrypt/decrypt sensitive information, for example in smart phones.

The following operations define the capability of turning an “image” (of a
person’s iris or fingerprint) into biometric data, as well as an operation for check-
ing whether the biometric data of two “images” refer to the same person:

sorts Image BioData .

ops fingerPrint irisScan ... : Image -> BioData .

op compare : BioData BioData -> Bool .

If biometric data are also used for, say, shared-key encryption, there is an
operation bioKey that generates a shared key from biometric data; we also
axiomatize shared-key cryptography with shared-key encryption and decryption
operations skEnc and skDec:

sorts SharedKey Key . subsort SharedKey < Key .

op bioKey : BioData -> SharedKey .

op skEnc : Msg SharedKey -> EncMsg . op skDec : EncMsg SharedKey -> Msg .

var SK : SharedKey . eq skDec(skEnc(X,SK),SK) = X .

One-Time PIN Generators. A one-time PIN generator is a device that generates
a sequence of “random” numbers used for example in online banking as well
as in online services like Google, Facebook, or Dropbox. These devices use a
formula that generates pseudo-random numbers based on a seed, e.g., a shared
key (such as the device serial number) and the moment in time in which the

2 The biometric information of the user can be pre-stored at the device itself, e.g., a
phone with a biometric sensor, or in an external support such as a passport.
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transaction/operation is performed. Since the device (whose owner must push
a button or perform an action to activate the device and generate the random
value) and the entity at which the user wants to be authenticated both know
the seed and the time, both can obtain the same number and hence (partially)
authenticate the user. Alternatively, the generated random is instead a function
of the seed and the previous random number (or a counter). Since we use an
untimed framework, we can only define the second option:

sort Seed . subsort Seed < Nat . op pin : Seed Nat -> Nat .

Our longer report [10] defines many more operations used in security ceremonies.

3.2 Actor-Network Procedures with Capabilities

We define an ANP with capabilities (ANP-C) to be a pair (A,C) where A is an
ANP and C assigns to each node n in A its capabilities:

Definition 3. An ANP with capabilities (ANP-C) is a pair (A,C) where:

– A = (J ,N ,P, C, Θ, δ, �, ϑ,F) is an ANP such that the different capabilities
of the devices and their algebraic properties are included in its underlying
algebraic theory (Σ,E), and

– C is a capability distribution C : N → ℘(Σ) assigning to each node n in A
its capabilities.

3.3 Learn and Create Events

As mentioned, to reason about secrecy (what did a bad guy learn by overhearing
a message M?), we need some way of saying that someone learnt a particular
piece if information from a certain message. Just reasoning about the knowledge
of the intruder is not sufficient, since the intruder may know the secret from
before, but could not learn it from the overheard message. We therefore introduce
a new type of event, called a learning event, which has the form

apply op to t toLearn t′,

where op is a function in our signature (op ∈ Σ) and t, t′ ∈ TΣ are two Σ-
terms. In this event, an actor which has the capability to perform the oper-
ation op applies op to the term t (which could be the overheard message)
and learns t′. This event may take additional parameters u1, . . . , un; the actor
performing such a learning event should already know t and u1, . . . , un, and
op(t, u1, . . . , un) =E t′; that is op(t, u1, . . . , un) and t′ are equivalent terms in
the equational theory (Σ,E). For example, an intruder that has overheard (and
hence knows) a message skEnc(m, sk), knows the (shared) encryption key sk , and
has the capability to shared-key decrypt messages, can then perform the learn-
ing event apply skDec to skEnc(m, sk) toLearn m to learn m from skEnc(m, sk),
since skDec(skEnc(m, sk), sk) =E m.
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The creation of a term t in ANP, used e.g., for creating fresh nonces, in [15]
does not take into account the capabilities of the node which creates a term.
We therefore define a new kind of create event which makes explicit also the
capability used to create the event. Such a create even has the form

apply op to t1, . . . , tn,

where op ∈ Σ and t1, . . . , tn ∈ TΣ are terms of appropriate sorts. Introducing
such an event also facilitates the reasoning about how the knowledge of actors
evolves during a run. We therefore assume that nodes create terms before using
them; e.g., a node knowing both m and sk should perform the event/create the
term apply skEnc to m, sk before sending this encrypted message.

3.4 Example: Establishing Shared Keys Using SSL/TSL

Figure 1 shows a graphical representation of an ANP-C for the SSL/TSL proce-
dure involving a user, her smartphone with a fingerprint reader, and a computer
belonging to, e.g., the bank, for establishing a secret shared key.

The different nodes are represented as filled circles at the far left of the figure.
Each time point φk is written k© and is decorated with the event FE(φk) that
takes place at the time point. The actor/configuration that performed the event
is the actor to the left of the time point.

A run has an internal synchronization inside the same node/configuration;
these are written with a standard arrow → between two time points. The exter-
nal synchronization between two different configurations happens when one con-
figuration receives a message sent by another. We write i© m=⇒ k© for such a
communication event, where m is the message transferred. We do not write that
the events taking place at φi and φj are send(m) and receive(m), respectively.

According to [13], a node may perform local operations. Specifically, if a node
applies a Boolean operation, then it can branch to different time points, depend-
ing on whether the result of the previous operation equals true or false. We use

the arrows
true��� and

false��� in this case. Finally, to save space, some expressions are
abbreviated, and given as equations s = t.

In the example, the user U can check whether a certificate from the bank
C looks OK; the smartphone P can read fingerprints and generate biometric
data from them, and can generate shared keys and do public-key cryptography;
the computer can compare two (biometric data associated to) two fingerprints
and decide whether they belong to the same person (finger?), and can generate
certificates for the user. The new capabilities added to (Σ,E) are therefore:

sort Cert . subsort Cert < Msg . op genCert : Bool Node -> Cert .

op visCheck : Cert -> Bool . op genSk : Bool Node Node -> SharedKey .

The ceremony has the following steps: The user U sends her fingerprint
image to the smartphone P (time points φ0 and φ1); P then uses the operation
fingerprint to create the biometric data fingerprint(image), which is abbreviated
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Fig. 1. An ANP-C showing an SSL/TLS procedure involving a user (U), a smartphone
with a biometric device (P), and the bank’s computer (C).

to bio (φ2); P then applies the function enc to bio and the computer’s public
key Pk(C) (φ3), and then sends enc(bio,Pk(C)) at time point φ4. This message
is read by the computer C at time point φ5. C then applies the dec function
to learn bio (φ6). If this received biometric information bio equals the bank’s
stored biometric data storedBio (time point φ7), which the bank hopefully knows
before (see Sect. 4 for a discussion on defining initial knowledge), we continue
to time point φ9, where C applies genCert to generate C’s certificate, which is
encrypted at time point φ10 and sent to P at time point φ11. The smartphone P
receives this message (φ12), decrypts the message to learn the certificate (φ13),
and sends/shows the certificate to the user U (φ14). The user receives/sees this
certificate (φ15) and then checks the certificate visually (φ16). If the certificate
looks good, the user goes to time point φ18 where she “sends” an OK message to
the smartphone. The smartphone P gets this OK “message” (φ19), applies genSk
to generate a shared key between P and C (φ20), encrypt this message (φ21) and
sends this encrypted message to C (φ22). Finally, C receives this message at time
point φ23 and decrypts it at φ24 to learn the shared key.

4 PDL-CK: Reasoning About ANP-Cs and Knowledge

In this section we define a variation of the PDL logic, called PDL-CK, for rea-
soning about ANP-Cs.

PDL is typically used to reason about secure runs, that is, behaviors that
we know are possible. However, one of the main goals of making capabilities
explicit is exactly to reason about what runs are possible. For example, can
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an intruder obtain a secret? More precisely, under what circumstances can the
intruder obtain a secret? And under what circumstances is a security ceremony
with the desired event actually possible? For example, in the SSL-TSL example
above, under what circumstances is the shared key actually established?

Making capabilities explicit goes half ways towards answering these ques-
tions: to perform an action (like decrypting a message), a node needs both a
certain capability (such as decrypting messages) and certain knowledge (such
as knowing the decryption key). We therefore propose to reason about ANP-Cs
using a logic which takes into account both the capabilities and the (dynami-
cally evolving) knowledge of the participants of the ceremony. We call this logic
PDL-CK (“PDL with capabilities and knowledge”). With this logic we can rea-
son about under what circumstances something can happen or a property holds.
More precisely, which capabilities and what initial knowledge are needed for
a (good or bad) event to take place? That is, in addition to reasoning about
events and their temporal relationship as in PDL, PDL-CK allows us to reason
also about the knowledge of the actors when the different events take place.

Notation: assuming that each event only takes place once, we denote by Ke

the knowledge of the nodes at the end of the time point at which e takes place.
This section first introduces such global knowledge. Then we introduce the

logic PDL-CK and its axioms, before showing examples of reasoning in PDL-CK.

4.1 Knowledge Distributions and Knowledge Histories

Keys, messages, nonces, and so on, are usually modeled as ground terms in
the algebra (Σ,E), and are not identified with their actual numerical values.
Therefore, we can represent a node’s knowledge as a set of Σ-terms. A knowledge
distribution defines the current knowledge of each node in the network:

Definition 4. A knowledge distribution κ for a set of nodes N is a function
κ : N → ℘(TΣ) assigning to each node n the set κ(n) of ground terms it knows.

A knowledge history assigns such a knowledge distribution to each time point
in the procedure:

Definition 5. Given a process F with an underlying structure time (F,→), a
knowledge history K for F is a function K : F → (N → ℘(TΣ)) that assigns
to each time point ϕ ∈ F a knowledge distribution. Furthermore, the function K

must be monotonic w.r.t. →, i.e., ϕi → ϕj ⇒ K(ϕi)(n) ⊆ K(ϕj)(n) for all n.

Intuitively, K(φ) denotes the knowledge of the different actors at the “end”
of time point φ; that is, it includes knowledge acquired at time point φ.

Notation. Under the usual assumption that an event e takes place at most once,
at time point φ, we write Ke for the knowledge distribution K(φ).

The initial knowledge of the nodes plays a key role. We denote by Kinit the
initial knowledge in a knowledge history K. Mathematically, this can be seen
as adding a new event init which takes place at a new time point φinit so that
init → φ for any other time point φ (in the run).
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Example 1. A possible initial knowledge of the ANP-C in Fig. 1 could be

Kinit(U) = {image, ok}
Kinit(P ) = {Pb(C ),Pv(P ),Pb(P )}
Kinit(C) = {true, false,Pb(C ),Pv(C),Pb(P ), storedBio}.

For example, the computer initially knows a (pre-stored) biometric key of the
user. This history at time point φ9, after the event apply genCert to true, C, is:

Kapply...(U) = Kinit(U)
Kapply...(P ) = Kinit(P ) ∪ {bio(= fingerprint(image)), image, enc(bio,Pb(C ))}
Kapply...(C) = Kinit(C) ∪ {bio, enc(bio,Pb(C )), cert}.

4.2 PDL-CK

The procedure derivation logic with capabilities and knowledge (PDL-CK) mod-
ifies and extends PDL to reason not only about the temporal order of events,
but also of the participants’ knowledge at each point in time. To simplify the
exposition, in the rest of this paper we assume that we do not have “composite”
configurations. That is, any configuration is a single node.

The difference between PDL and PDL-CK is that PDL reasons about an
ANP A, whereas PDL-CK reasons about a pair ((A,C),K), where (A,C) is an
ANP-C and K is a knowledge history for A. (In practice, we are interested in
whether there exists a K such that Φ(K) holds for a given (A,C)).

Therefore, ep (the event e took place at p) and e1p → e2q (the event e1 took
place at p before e2 took place at q) are still atomic propositions in PDL-CK;
the difference is that the PDL-CK formulas also may include C and K. However,
the axioms in PDL are replaced with others to take also the capacities and the
knowledge into account.

Some generic PDL-CK axioms for global (bird’s-eye view) reasoning are given
in Table 1 (where we use the symbol =⇒ for logical implication). The axiom
Equality says that if p knows t1, and t1 and t2 are E-equivalent, then p must
also know t2. The axiom Send says that if p sends z, then p must have known
z before, and that nothing new was learnt anywhere as a result of performing
this action. The Receive axiom says that if p receives z, then: p knows z at
the end of this time point, that the only thing learnt globally during this time
point is that z learnt p, and the receive event must have been preceded by
the corresponding send event at some actor q. The axiom Learn says that if
p applies O to a term u to learn t, then p knows t at (the end of) this time
point, that p has the capability to perform O, that p knows u before, that
there are additional parameter values u1, . . . , un previously known by p so that
O(u, u1, . . . , un) =E t, and that the only thing learnt by performing this event
is that p learnt t. Likewise, Creation says that if you “generate” a new term
O(t1, . . . , tn), then you have learnt this new term, must have the capability O
and must know t1, . . . , tn earlier, and that the only new knowledge added is that
p has learnt the generated term. Finally, we add new axioms for test-and-branch.
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(Note that the nodes do not learn anything by taking a branch. We can encode
such knowledge by adding two new capabilities valid , inValid : Bool → Flag and
transform a branch boolExp

true��� e′ to e
true��� apply valid to boolExp → e′, and

transforming boolExp
false��� e′′ to e

false��� apply inValid to boolExp → e′′).

Table 1. PDL-CK Axioms.

Equality ∀t1, t2, e, p. t1 =E t2 =⇒ t1 ∈ Ke(p) ⇔ t2 ∈ Ke(p)

Send send(z)p =⇒ p knows z before send(z)p ∧ nothingLearnt(send(z)p)

Receive receive(z)p =⇒ z ∈ Kreceive(z)(p) ∧ onlyLearnt(receive(z)p, z, p)

∧ ∃q. send(z)q → receive(z)p
)

(apply O to u toLearn t)p

Learn =⇒ t ∈ K(apply O to u toLearn t)(p) ∧ O ∈ C(p)

∧ p knows u before (apply O to u toLearn t)p

∧ ∃ u1, . . . , un. O(u, u1, . . . , un) =E t

∧ ∀1≤i≤n. p knows ui before (apply O to u toLearn t)p
)

∧ onlyLearnt((apply O to u toLearn t)p, t, p)

(apply O to t1, . . . , tn)p
Creation =⇒ O(t1, . . . , tn) ∈ K(apply O to t1,...,tn)(p) ∧ O ∈ C(p)

∧ ∀1≤i≤n. p knows ti before (apply O to t1, . . . , tn)p
∧ onlyLearnt((apply O to t1, . . . , tn)p, O(t1, . . . , tn), p)

Branch.True bExprp
true��� eq =⇒ (eq =⇒ bExpr) ∧ nothingLearnt(bExprp)

Branch.False bExprp
false��� eq =⇒ (eq =⇒ ¬bExpr) ∧ nothingLearnt(bExprp)

The formulas p knows z before eq (p must know z before then localized
event eq takes place), onlyLearnt(eq, t, p) (the only knowledge added to the sys-
tem as a result of performing the event e is that p learnt t), and nothingLearnt(eq)
(nothing was learnt by performing the event e) are defined as follows:

p knows z before eq � z ∈ Kinit(p) ∨ ∃e′, r. (e′
r → eq ∧ z ∈ Ke′(p))

onlyLearnt(eq, z, p) �
∀x, r. x ∈ Ke(r) =⇒ (x =E z ∧ p = r) ∨ r knows x before eq

nothingLearnt(ep) � ∀t, q. t ∈ Ke(q) =⇒ q knows t before ep.

4.3 Examples

This section gives some small examples of reasoning with PDL-CK.
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Example 2. Figure 2 shows an ANP-C run where a computer CA sends a shared-
key encrypted message skEnc(msg1 , sk1 ) to a smart card reader R which
decrypts the message (e.g., to receive an update). The encrypted message is
overheard/received by a Trojan virus T . The algebraic theory (Σ,E) of opera-
tions is (a subset of) the one in Sect. 3.1. The run of this ANP-C is as follows:

skEnc(msg1,sk1) 

skEnc(msg1,sk1) 

apply skEnc to msg1 , sk1

apply skDec to skEnc(msg1,sk1) toLearn msg1

CATR

0

1

2

3

4

R
= {skDec}

T = {skEnc,skDec}

CA
= {skEnc}

init(CA) = {msg1,sk1}

init(T) = 

init(R) = {sk1}

Fig. 2. An actor-network run for updating information.

0. The computer CA creates the encrypted message skEnc(msg1 , sk1 ).
1. CA sends the shared-key encrypted message skEnc(msg1 , sk1 ).
2. The trojan virus T receives/overhears the message skEnc(msg1 , sk1 ).
3. The smart card reader R receives the message skEnc(msg1 , sk1 ).
4. R learns sk1 from the message skEnc(msg1 , sk1 ) by applying the skDec capa-

bility with parameter sk1.

The desired property is that if R learns msg1 from the shared-key encrypted
message skEnc(msg1 , sk1 ), then initially R knows the shared key, sk1 ∈ Kinit(R),
and R can perform the shared-key decryption operation, skDec ∈ C(R):

(apply skDec to skEnc(msg1 , sk1 ) toLearn msg1 )R =⇒ skDec ∈ C(R) ∧ sk1 ∈ Kinit(R).

Example 3. An interesting property to prove about the ceremony in Fig. 1 is
that if a shared key is established between the phone and the bank, then:

– the bank initially knows U ’s biometric data: storedBio ∈ Kinit(C); and
– the biometric data of the user matches the biometric data stored by the bank:

compare(fingerPrint(image), storedBio).

That is, the formula to prove is:

(apply dec to enc(sk ,Pb(C )) toLearn sk)C

=⇒ storedBio ∈ Kinit(C) ∧ compare(fingerPrint(image), storedBio).

Our longer report [10] contains many more examples, including reasoning
about secrecy and authentication.
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5 Related Work

Most papers on ANP and PDL [5,11,12,14] show how ANP and PDL can be
applied to reason about protocol runs, but do not use a dynamic representation
of the knowledge of the different actors, and do not differentiate between the
capabilities of different devices. Fiadeiro et al. [9] use ANP to describe a logic
for reasoning about the different states and state transitions of an actor network.
In this formalization, the different actors, interaction channels and knowledge
are static, whereas in our work, the knowledge of each actor evolves during the
execution of the run.

Basin et al. [3] use a node topology for the analysis of security protocols that
specifies the node’s capabilities, initial knowledge, honesty, and available commu-
nication channels. They group the different agents in three different groups based
on their capabilities and knowledge, i.e., honest, dishonest and restricted, but do
not distinguish between different types of restricted agents (human participants)
and their capabilities and knowledge. Their security ceremony formalization is
linked to the Tamarin tool, whereas our work is not yet linked to a tool.

Bella and Coles-Kemp [4] present a security ceremony model focused on the
human-computer interoperation, whereas our framework deals with the interac-
tions between different kinds of devices and humans, and we explicitly define
the different participants of the security ceremony (human and non-humans)
whereas they use a general model to represent the different actors.

Radke et al. [17] define an attacker model for security ceremonies in which
they use a recognize function to formalize human capabilities. In contrast to our
work, they do not focus on representing knowledge (explicitly).

Finally, Belfanz et al. [2] and Creese et al. [18] define different threat models
in different communications channels, but do not define the capabilities nor the
knowledge or the participants. We do not take into account channel features,
but we explicitly define the different participants and analyze a communication
process independently of the kind of channel used.

6 Concluding Remarks

Many different kinds of devices and humans, with different rights and capabil-
ities, participate in today’s security processes. We have therefore extended the
well-known and general model of security ceremonies by Meadows and Pavlovic
by explicitly representing the user-definable capabilities of each actor. We have
also defined a new logic, PDL-CK, to reason about our models. This logic allows
reasoning about the dynamically changing knowledge of the participants. We
believe that this is the first formalism for security ceremonies that makes explicit
the different user-definable capabilities of the participants. PDL-CK allows us
to reason, for example, under what circumstances (i.e., initial knowledge and
capabilities) certain actions, such as decrypting a message, can be performed.

Much work remains. Like the work of Meadows and Pavlovic that we extend,
our model does not yet have an executable formal semantics, and hence no
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tool support. We should develop verification strategies and should apply our
methods on state-of-the-art applications. We should also consider non-monotonic
knowledge and dynamic node capabilities.
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Abstract. Petri nets play a central role in the formal modelling of a
wide range of complex systems and scenarios. Their ability to handle
with both concurrency and resource awareness justifies their spread in
the current formal development practices. On the logic side, Dynamic
Logics are widely accepted as the de facto formalisms to reason about
computational systems. However, as usual, the application to new situ-
ations raises new challenges and issues.

The ubiquity of failures in the execution of current systems, inter-
preted in these models as triggered events that are not followed by the
corresponding transition, entails not only the adjustment of these struc-
tures to deal with this reality, but also the introduction of new logics
adequate to this emerging phenomenon.

This paper contributes to this challenge by exploring a combination
of two previous works of the authors, namely the Propositional Dynamic
Logic for Petri Nets [1] and a parametric construction of multi-valued
dynamic logics presented in [13]. This exercise results in a new family of
Dynamic Logics for Petri Nets suitable to deal with firing failures.

1 Introduction

Petri nets are semantic structures widely used in computer science. Their ade-
quacy to model, specify and analyze complex systems dealing with concurrency
and resource awareness is well known. At the core of this success is their rich
and intuitive graphical syntax. Nevertheless, for property oriented specification
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and verification purposes, it is useful to consider logic systems having this struc-
ture as a semantics. The first attempt in such direction was done by the linear
logic community (e.g. [6]). A number of other logics were then proposed in the
literature for standard and timed versions of Petri nets eg. [3].

Propositional dynamic logic (PDL) [8], a very versatile logic for verification
of computational systems, was also explored in this context. Particularly, Petri-
PDL [12] was introduced as an extention of PDL to give logical semantics to Petri
nets. In such variant, the programs are marked Petri nets expressed by a textual
syntax (with a choice and a composition operators). Another approach was taken
in [5], where the well established theory of modal semirings was used to develop
a generic modal algebra for reasoning about reachability properties in Petri nets.
The BI resource based semantics presented in [16] introduces another proposal to
allow comparison of “amounts of information” modelled by the possible worlds
of the model. In this work, Petri nets are presented as concrete instances of
this semantics. Later, the work of [12] was extended [1] to include the iteration
operator. This logic is expressive enough to describe properties of systems like
the one shown in the example below:

Example 1. Let us present the following situation, based on the example pre-
sented in [1], which illustrates the behaviour of a chocolate vending machine.
The system works as follows: we turn the machine on (l) and put one coin (m)
and then it releases the chocolate (c).

Its behaviour can be specified by the Petri net of Fig. 1. The upper left place
(�) is the power button of a vending machine; the bottom left is the coin inserted
(m) and the bottom right is the chocolate output (c); if the vending machine is
powered on, always when a coin is inserted you will have a chocolate released.
We can express that once we turn the machine on and put one coin we can
obtain a chocolate by the formula 〈(�,m), (�mt2x � xt3yc)〉�, meaning that, if
we are in a state were states � and m are marked, after executing the Petri net
program �mt2x � xt3yc, we reach a state were � is satisfied.

The above formula can be proved using the proof system presented in [1].

�

m

x

y

c

t2 t3

t1

�

m

x

y

c

t2 t3

t1

Fig. 1. Execution of the program �mt2x � xt3yc in the chocolate machine

The complexity of modern systems, namely the heterogeneity of the envi-
ronments where they live, entails a more demanding approach in their design
and building processes. The inevitability that human beings eventually make
mistakes in such processes extols the advantage of adopting formalisms which
deal with the possibility of failures at the outset.
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Recalling again the previous example, we would bet that the reader already
experienced undesirable situations like after putting a coin in a vending machine,
the desired chocolate gets stuck behind of the glass. The analysis of such kinds
of failures would require a formalism able to express statements like once we
turn the machine on and put one coin we have an assurance α that we will
obtain a chocolate. A possible model for handling theses scenarios would be
a variation of the classical definition of Petri nets, where the triggering of a
transition happens with some reliability degree. The resulting assurance would
depend on two aspects: on one side, the reliability degree associated to the
execution of a program; on the other, an appropriate evaluation of a formula
in a many-valued truth space. Despite their adequacy in the reasoning about
several properties of Petri nets, none of the approaches presented in [5,11] or
[16] aim to formalise the attribution of such degrees.

In order to achieve a Dynamic Logic analogous to [1], but suitable to this
scenario, we base this work on the construction of multi-valued dynamic logics
introduced in [13,14]. First, we introduce a new variant of the Petri Nets, the
Petri nets with A-failures, which explicitly assumes that the modelled system
may eventually fail, supporting a claim of reliability to each firing of a transition.
In the case where a failure occurs, the firing event is consumed without the
occurrence of the expected transition. Depending on the system modelled, it
would make sense to measure these reliability degrees in a discrete scale, in a
continuous interval, or simply in an universe only with the values true and false.
Hence, instead of fixing the domain of the assurances degrees as the usual real
interval [0, 1], we will be more generic: the proposed models are parametric to the
nature of the reliability degrees that are most suitable for each concrete situation.
This flexibility is realised by assuming, as parameter, an (action) lattice A. Some
additional considerations on this parameter are in order.

As in standard PDL, the interpretation of programs in Petri-PDL [11] relies
on the Kleene algebra of relations (as we will see in the next section, firing
functions are interpreted as binary relations). However, firing functions in Petri
nets with A-failures are based on reliability degrees given by elements of an
action lattice, and not on the interpretation of classic binary relations.

To give meaning to Petri net programs in this new formalism, this paper
adopts a class of Kleene algebras, parameterised by an action lattice A. These
algebraic structures base the interpretation of (composed) programs in Petri nets
with A-failures, by reflecting how failures in transitions are propagated into the
whole execution of a program. This is also reflected in the kind of assertions we
can express in the logic, as well as in the outcome we expect for the validity of
a Dynamic Logic formula in a Petri net with A-failures. For that purpose, we
follow a strategy similar to that used in [13,14], where an action lattice will follow
a similar role in our method, namely as a computational model (by representing
weighted fails) and as a truth universe (by giving a (possible) many-valued truth
space to the addressed logics). The proposed method for constructing graded
dynamic logics is parametric on whatever truth/computational domain is the
most suitable to the system under consideration.
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Outline. The remaining of this paper is organized as follows. Section 2 presents
all the background needed about the Petri-PDL� formalism and the concept of
action lattice. Section 3 is devoted to Petri Net with A-failures, as well as, to
suitable Kleene Algebras to interpret programs in these structures. In Sect. 4,
we introduce a parametric construction of dynamic logics for Petri nets with
A-failures, and proper illustrations for such a method. Finally, Sect. 5 concludes
the paper with some final remarks on future work.

2 Background

In this section, we present a brief overview of two topics on which the later devel-
opment is based. First, we review the syntax and semantics of Petri-PDL� [1].
Second, we recall the main notions behind the method introduced in [13], for
the generation of many-valued dynamic logics parametrized by an action lattice.
This parameter supports both the (possible non-bivalent) truth spaces and the
base computational model.

2.1 Propositional Dynamic Logic for Petri Nets with Iteration

This subsection recalls the syntax and semantics of Petri-PDL�, as presented in
[1]. The language of Petri-PDL� consists of

Propositional symbols: Prop = {p, q, . . .}
Place names: a, b, c, d, . . .
Transition types: T1 : xt1y, T2 : xyt2z and T3 : xt3yz
Petri net Composition symbol: �
PDL operator: � (iteration)
Markings: S = {ε, s1, s2, . . .}, where ε is the empty sequence. The notation

a ∈ s is used to denote that the place name a occurs in s. The expression
#(s, a) is the number of occurrences of place name a in s. It is said that a
sequence r is a subsequence of s, denoted r � s, if for any place name a, if
a ∈ r implies a ∈ s.

Definition 1. Petri-PDL� Programs for a set of places P

Basic programs: set Π0(P ) defined by the grammar

π ::= at1b | abt2c | at3bc

where ti is of type Ti, i = 1, 2, 3 and a, b, c ∈ P .
Petri net Programs: set Π(P ) defined by the grammar

η ::= π | π � η | η�

for π ∈ Π0(P )
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Definition 2. Let Prop be a set of propositions. The set of Petri-PDL� formulas
for Prop, denoted by FmPetri−PDL�(A), is defined by the grammar

ρ ::= p | � | ¬ρ | ρ ∧ ρ | 〈s, η〉ρ

where p ∈ Prop.

We use the standard abbreviations ⊥ ≡ ¬�, ρ ∨ ρ ≡ ¬(¬ρ ∧ ¬ρ), ρ → ρ ≡
¬(ρ ∧ ¬ρ) and [s, η]ρ ≡ ¬〈s, η〉¬ρ.

The definition below introduces the firing function. It defines how the mark-
ing of a basic Petri net changes after a firing.

Definition 3. For a set of markings S, we define the firing function f : S ×
Π0 → S as follows

– f(s, at1b) =
{

s1bs2, if s = s1as2
ε, if a /∈ s

}

– f(s, abt2c) =
{

s1cs2s3, if s = s1as2bs3
ε, if a /∈ s or b /∈ s

}

– f(s, at3bc) =
{

s1s2bc, if s = s1as2
ε, if a /∈ s

}

The definitions of frame, model and satisfaction, that we recall below, are
adapted from PDL to deal with the firing of basic Petri nets.

Definition 4. A frame for Petri-PDL� is a triple 〈W,Rπ,M〉, where

– W is a non-empty set of states;
– M : W → S;
– Rπ is a binary relation over W , for each basic program π, satisfying the

following condition: let s = M(w)
• if f(s, π) = ε, if wRπv then f(s, π) � M(v)
• if f(s, π) = ε, (w, v) ∈ Rπ

– we inductively define a binary relation Rη, for each Petri net program η, as
follows:

• Rη∗ = R∗
η, where R∗

η denotes the reflexive transitive closure of Rη.
• η = η1 � η2 � · · · � ηn

Rη = {(w, v)| for some ηi, ∃u such that si ∈ M(u) and wRηiu and uRηiv}

where s = M(w), ηi are Petri net programs and si = f(s, ηi), for all 1 ≤
i ≤ n.

Definition 5. A model for Petri-PDL� is a pair M = 〈F ,V〉, where F is a
Petri-PDL frame and V is a valuation function from a set of propositions Prop,
V : Prop → 2W .

The semantical notion of satisfaction for Petri-PDL� is defined below.
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Definition 6. Let M = (F ,V) be a model. The notion of satisfaction of a
formula ρ in a model M at a state w, notation M, w |= ρ, can be inductively
defined as follows:

– M, w |= p iff w ∈ V(p);
– M, w |= � always;
– M, w |= ¬ρ iff M, w |= ρ;
– M, w |= ρ ∧ ρ′ iff M, w |= ρ and M, w |= ρ′;
– M, w |= 〈s, η〉ρ if there exists w′ ∈ W , wRηw′, s ⊆ M(w) and M, w′ |= ρ.

If M, v |= A for every state v, we say that A is valid in the model M, notation
M |= A. And if A is valid in all M we say that A is valid , notation |= A.

2.2 Kleene Algebras and Action Lattice

We review in this section the notion of Action Lattice [10] as it was used in [13].

Definition 7 (Kleene Algebra and Action lattice). An action lattice is a
tuple A = (A,+, ; , 0, 1, ∗,→, ·), where A is a set, 0 and 1 are constants, ∗ is
an unary operation in A and +, ; ,→ and · are binary operations in A satisfying
the axioms enumerated in Fig. 2, where the relation ≤ is induced by +: a ≤ b
iff a + b = b. An integral action lattice consists of an action lattice satisfying
a ≤ 1, for all a ∈ A. A Kleene Algebra is a structure (A,+, ; , 0, 1, ∗) satisfying
(1)–(13).

a + (b + c) = (a + b) + c (1)

a + b = b + a (2)

a + a = a (3)

a + 0 = 0 + a = a (4)

a; (b; c) = (a; b); c (5)

a; 1 = 1; a = a (6)

a; (b + c) = (a; b) + (a; c) (7)

(a + b); c = (a; c) + (b; c) (8)

a; 0 = 0; a = 0 (9)

1 + (a; a∗) = a∗ (10)

1 + (a∗; a) = a∗ (11)

a;x ≤ x ⇒ a∗;x ≤ x (12)

x; a ≤ x ⇒ x; a∗ ≤ x (13)

a;x ≤ b ⇔ x ≤ a → b (14)

a · (b · c) = (a · b) · c (15)

a · b = b · a (16)

a · a = a (17)

a + (a · b) = a (18)

a · (a + b) = a (19)

Fig. 2. Axiomatisation of action lattices (from [10])

As stated in the introduction, the structure of an action lattice is explored
in this paper along a double dimension: as a computational model and as a
truth space. The intuitions for some of its operations shall be taken from both
of these perspectives. Such is the case of operation +, which plays the role
of non-deterministic choice, in the interpretation of programs, and of logical
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disjunction, in the interpretation of sentences. However, there are operations
whose intuition is borrowed from just in one of these domains. For instance, while
operations ∗ and ; are taken as iterative execution and sequential composition of
actions, operations → and · play the role of logical implication and conjunction,
respectively.

The following structures are examples of action lattices:

Example 2 (2 - linear two-values lattice). As a first action lattice example, we
consider the two valued boolean lattice 2 = ({�,⊥},∨,∧,⊥,�, ∗,→,∧) with the
standard boolean connectives defined as follows:

∨ ⊥ �
⊥ ⊥ �
� � �

∧ ⊥ �
⊥ ⊥ ⊥
� ⊥ �

→ ⊥ �
⊥ � �
� ⊥ �

∗
⊥ �
� �

Example 3 (Wk finite Wajsberg hoops). We consider now an action lattice
endowing the finite Wajsberg hoops [2] with a suitable star operation. Hence,
for a fix natural k > 0 and a generator a, we define the structure Wk =
(Wk,+ , ; , 0, 1, ∗,→, ·), where Wk = {a0, a1, · · · , ak}, 1 = a0 and 0 = ak, and
for any m,n ≤ k: am + an = amin{m,n}, am; an = amin{m+n,k}, (am)∗ = a0,
am → an = amax{n−m,0} and am · an = amax{m,n}.

Example 4 (�L - the �Lukasiewicz arithmetic lattice). The �Lukasiewicz
arithmetic lattice is the structure �L = ([0, 1],max,�, 0, 1, ∗, → , min), where
x → y = min(1, 1 − x + y), x � y = max(0, y + x − 1) and x∗ = 1.

More examples and properties of action lattices can be found in [13].

3 Petri Nets with Failures

This section introduces the notion of Petri net with A-failures, as well as suitable
Kleene algebras to interpret (composed) programs. As referred in the introduc-
tion, the use of an action lattice A as parameter is due to the necessity of
supporting a double dimension: (i) attribute a reliability degree to the firing of
a transition, referring to the interpretation of Petri net programs; (ii) state a
degree for a specific property of a Petri net, on the logical side.

As stated, this work is concerned with Petri nets where transitions between
markings may fail. This assumption entails adjusting the system dynamics of
classical Petri nets: while, in such case, we argue that a system evolves to another
markings if a transition is enabled, in our approach, a transition to a new marking
occurs with a reliability degree α, where α is an element of the lattice A. In cases
where the Petri net does not transit to another marking, the transition is still
consumed. Formally:

Definition 8. Given an action lattice A = (A,+, ; , 0, 1, ∗,→, ·), a set S of
markings (over a set of place names P ) and a basic Petri net program π ∈ Π0,
an α-firing function, for α ∈ A, is a function fα

π : S × S → A defined as
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– for any a t1 b ∈ Π1, fα
at1b(s, s

′) =

⎧⎨
⎩

α, if a ∈ s and b ∈ s′

α → 0, if a ∈ s and a ∈ s′

0 if a /∈ s

⎫⎬
⎭

– for any ab t2 c ∈ Π2, fα
abt2c(s, s

′) =

⎧⎨
⎩

α, if a, b ∈ s and c ∈ s′

α → 0, if a, b ∈ s and a, b ∈ s′

0 if a, b /∈ s

⎫⎬
⎭

– for any a t3 bc ∈ Π3, fα
at3bc(s, s

′) =

⎧⎨
⎩

α, if a ∈ s and b, c ∈ s′

α → 0, if a ∈ s and a ∈ s′

0 if a /∈ s

⎫⎬
⎭

where Πi(P ) are the following partitions of the atomic programs: Π(P ), Π1(P ) =
{x t1 y | x, y ∈ P}, Π2(P ) = {xy t2 z | x, y, z ∈ P} and Π3(P ) = {x t3 yz |
x, y, z ∈ P}.
Note that, in this work, we do not take into consideration the order of the tokens
in the markings. Hence, those are represented as multisets, instead of sequences
as done for Petri-PDL� [1].

Now, we have conditions to introduce the intended model.

Definition 9 (Petri net with A-failures). Let A = (A,+, ; , 0, 1, ∗,→, ·)
be an action lattice. A Petri net with A-failures consists of a tuple P =(
P, S,Π0, I,M0

)
where P is a set of places; S ⊆ P ∗ is the set of (admissible)

markings; Π0 ⊆ Π(P ) is the set of atomic programs; I : Π0 → A is the atomic
programs reliability degree and M0 ∈ S is the initial marking. The interpretation
of an atomic program π ∈ Π0 is given by the firing function f

I(π)
π .

In this work, as in [13], the underlying Kleene algebra of A (c.f. Definition 7)
provides a generic computational model for interpreting programs. However, dif-
ferently form such work, we interpret computations as α-firing functions of Def-
inition 8, which carry the information about their effect when executed. Hence,
we define the following algebra:

Definition 10. Let A = (A,+, ; , 0, 1, ∗,→, ·) be an action lattice and S be a
finite set. The algebra of A-firing functions is the structure F = (F,∪, ◦, ∅, χ, ∗)
where:

– F is the universe of all the α-firing functions, for all α ∈ A
– (fα1

π1
∪ fα2

π2
)(s, s′) = fα1

π1
(s, s′) + fα2

π2
(s, s′)

– (fα1
π1

◦ fα2
π2

)(s, s′) =
∑

s′′∈S

fα1
π1

(s, s′′); fα2
π2

(s′′, s′)

– ∅(s, s′) = 0

– χ(s, s′) =

{
1, if s = s′

0, otherwise
– (fα

π )∗(s, s′) =
∨

i≥0

(fα
π )i(s, s′) = (fα

π )0(s, s′) + (fα
π )1(s, s′) + (fα

π )2(s, s′) + . . .
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The next theorem states that F represents an adequate structure to interpret
Petri net programs for Petri nets with A-failures1.

Theorem 1. F is a Kleene Algebra

Proof. This proof is analogous to the proof of the classical result [4], stating that
the algebra of n × n matrices over a Kleene algebra is a Kleene algebra.

With this Kleene algebra, we are able to interpret regular programs in Petri nets
with A-failures, i.e. regular expressions of atomic transitions in A:

Definition 11 (A-interpretations of programs). Let A = (A,+, ; , 0, 1,
∗,→, ·) be an action lattice and

(
P, S,Π0, I,M0

)
a Petri net with A-failures. The

interpretation of a Petri net program η is a firing function recursively defined as
follows:

– for any atomic program π ∈ Π0, [[π]](s, s′) = f
F (π)
π (s, s′)

– [[π1;π2]](s, s′) = ([[π1]] ◦ [[π2]])(s, s′),
– [[η∗]](s, s′) = [[η]]∗(s, s′), for [[η]]∗(s, s′) =

∑
i≥0[[η]]i(s, s′) where [[η]]0(s, s′) =

χ(s, s′) and for any i ≥ 0, [[η]]i+1(s, s′) =
(
[[η]]i ◦ [[η]]

)
(s, s′)

– [[η + η′]](s, s′) = [[η]](s, s′) + [[η′]](s, s′), for η, η′ Petri net programs.

The interpretation of Petri Net composed programs, as presented in
Definition 1, where the global composition � is considered rather than the sequen-
tial composition ;, can be handled in our logic indirectly by defining � as

η � η′ ≡ η; (η + η′)∗ + η′; (η + η′)∗ (20)

where η and η′ are Petri net programs.

4 Parametric Construction of Dynamic Logics for Petri
Nets with Failures

This section introduces a parametric method to build Petri-PDL to reason about
Petri nets with A-failures, inspired by the construction proposed in [13]. The
semantic and satisfaction of these logics are built on top of an arbitrary action
lattice A = (A,+, ; , 0, 1, ∗,→, ·) (c.f. Definition 7). Hence, the resulting logics
will be denoted by GP(A). Petri-PDL�, as introduced in [12], is captured as an
instance of this construction (by using, as parameter, the lattice 2 of Example 2).
Beyond the reliability degrees for transitions, the action lattice also supports the
truth space for the (possible multi-valued) outcomes of the logic.

The language for GP(A) is the same of Petri-PDL�, except for formulae,
that we define below.

1 A more generic algebraic structure, suitable to deal with generic weighted computa-
tions was recently introduced by the authors in [7].
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Definition 12. Let Prop be a set of propositions. The set of GP(A) formulas
for the set of propositions Prop and for the set of place names P , denoted by
FmGP(A)(Prop, P ), is defined by the grammar

ρ ::= p | � | ⊥ | ρ ∧ ρ | ρ ∨ ρ | ρ → ρ | 〈ξ〉ρ | [ξ]ρ

where p ∈ Prop, ξ ::= π | π; ξ | ξ� | ξ + ξ for π ::= at1b | abt2c | at3bc, and
a, b, c ∈ P .

Observe that we denoted the regular programs (with the sequential compo-
sition ;) by letter ξ instead of η used for the Petri-net programs (with global
composition �). However, in the sequel, we will relax this convention by using
η for both cases. The symbol � will also be used as meta-syntax of our logic, to
be interpreted according to (20). For instance, the expression 〈η � η′〉ϕ is just
notation for the formula 〈η; (η + η′)∗ + η′; (η + η′)∗〉ϕ.

Note that, differently from previous work [1], we do not include the negation
as a primitive operator, and use, instead, the defined negation ¬x ≡ x → ⊥.
Actually, as stated, we intend to deal with generic truth spaces for possible
non bivalent interpretation of assertions (e.g. we are not requiring negative
involution).

Definition 13. A model for GP(A) is a pair M = 〈P,V〉, where P is a Petri
net with A-failures and V is a valuation function over a set of propositions Prop,
defined as V : Prop × S → A.

Now, we define the semantic notion of satisfaction for GP(A).

Definition 14. Let A = (A,+, ; , 0, 1, ∗,→, ·) be an action lattice. The (graded)
satisfaction |=: (M×S)×FmGP(A)(Prop) → A for GP(A) is recursively defined
for each model M, any marking s ∈ S and for any formula ρ ∈ FmGP(A)(Prop)
as follows:

– (M, s |= p) = V(p, s);
– (M, s |= �) = �;
– (M, s |= ⊥) = ⊥;
– (M, s |= ρ ∧ ρ′) = (M, s |= ρ) · (M, s |= ρ′);
– (M, s |= ρ ∨ ρ′) = (M, s |= ρ) + (M, s |= ρ′);
– (M, s |= ρ → ρ′) = (M, s |= ρ) → (M, s |= ρ′);
– (M, s |= 〈η〉ρ) =

∑
s′∈S

(
[[η]](s, s′); (M, s′ |= ρ)

)
;

– (M, s |= [η]ρ) =
∧

s′∈S

(
[[η]](s, s′) → (M, s′ |= ρ)

)

Example 5. Let us start by revisiting Example 1, by using GP(2) (see Exam-
ple 2). For that, we denote f�

�mt2x(�m, x) by a and f�
xt3yc(x, yc) by b and, in this

situation a = b = �. So, we can write the sentence of Example 1 as once we
turn the machine on and put one coin we have the (total) reliability that we will
obtain a chocolate. This expression can, then, be represented in GP(2) by the
formula (M, �m |= 〈�mt2x � xt3yc〉�) = �. Hence (Fig. 3):
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Fig. 3. A Petri net for a (possibly) defective chocolate vending machine

M, �m |= 〈�mt2x;xt3yc〉�
=

∑

s∈S

(
[[�mt2x;xt3yc]](�m, s); (M, s |= �)

)

=
∑

s∈S

(
([[lmt2x]] ◦ [[xt3yc]])(�m, s); (M, s |= �)

)

=
∑

s∈S

(( ∑

s′∈S

([[�mt2x]](�m, s′); [[xt3yc]](s′, s))
)
; (M, s |= �)

)

=
∑

s∈S

((
[[�mt2x]](�m, x); [[xt3yc]](x, s) + [[�mt2x]](�m, �m); [[xt3yc]](�m, s)

)
; (M, s |= �)

)

=
(
[[�mt2x]](�m, x); [[xt3yc]](x, yc) + [[�mt2x]](�m, �m); [[xt3yc]](�m, yc)

)
; (M, yc |= �)

+
(
[[�mt2x]](�m, �m); [[xt3yc]](�m, �m)

)
; (M, �m |= �)

+
(
[[�mt2x]](�m, x); [[xt3yc]](x, x) + [[�mt2x]](�m, �m); [[xt3yc]](�m, x)

)
; (M, x |= �) = �

Assume now that this machine has a technical problem and it can not assure
with total reliability the release of a chocolate every time a coin is inserted.
Suppose also that we can express such reliability degrees in a 1 . . . 10 discrete
scale. Hence, using GP(W10) (see Example 3), we can express that the machine
transits from marking lm to x with a reliability 8 and from x to yc with 9,
i.e. a = 8 and b = 9. Now, the verification of the property once we turn the
machine on and put one coin we have a reliability 7 out of 10 that we will obtain
a chocolate, from the marking �m, can be computed by

M, �m |= 〈�mt2x;xt3yc〉� =
(
8; 9 + (8 → 0); 0

)
; 10 +

(
(8 → 0); 0

)
; 10 +

(
8; (9 →

0) + (8 → 0); 0
)
; 10 = 7.

Nevertheless, for some situations, it could be more appropriate to use a con-
tinuous scale. Suppose, for instance, that we want to be more precise, by stating
that the reliability degree of the machine to evolve from marking lm to x is 0.78
and from x to yc is 0.93, which corresponds to a = 0.78 and b = 0.93. This can
be expressed using GP(�L) (see Example 4). In this case we have:

M, �m |= 〈�mt2x;xt3yc〉� = max{max{0.78�0.93, (0.78 → 0)�0}�1, ((0.78 →
0) � 0) � 1,max{0.78 � (0.93 → 0), (0.78 → 0) � 0} � 1} = 0.71.

Let us now use the global composition operator �, in place of the simple
sequential composition ;. Given the Petri net program η = �mt2x � xt3yc, we
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compute the reliability degree of the formula 〈�mt2x � xt3yc〉�, using GP(2),
as follows:
M, �m |= 〈�mt2x 	 xt3yc〉�
=

∑

s∈S

(
[[�mt2x 	 xt3yc]](�m, s); (M, s |= �)

)

=
∑

s∈S

(
[[�mt2x; η

∗
+ xt3yc; η

∗
]](�m, s); (M, s |= �)

)

=
∑

s∈S

(
([[�mt2x; η

∗
]](�m, s) + [[xt3yc; η

∗
]](�m, s)); (M, s |= �)

)

=
∑

s∈S

((
([[�mt2x]] ◦ [[η

∗
]])(�m, s) + ([[xt3yc]] ◦ [[η

∗
]])(�m, s)

)
; (M, s |= �)

)

=
∑

s∈S

(( ∑

s′∈S

([[�mt2x]](�m, s
′
); [[η

∗
]](s

′
, s)) +

∑

s′∈S

([[xt3yc]](�m, s
′
); [[η

∗
]](s

′
, s))

)
; (M, s |= �)

)

=
∑

s∈S

((
[[�mt2x]](�m, x); [[η

∗
]](x, s) + [[�mt2x]](�m, �m); [[η

∗
]](�m, s) + [[xt2yc]](�m, x); [[η

∗
]](x, s)

+ [[xt3yc]](�m, �m); [[η
∗
]](�m, s)

)
; (M, s |= �)

)

=
(
(� ∧ �) ∨ (⊥ ∧ �) ∨ (⊥ ∧ �) ∨ (⊥ ∧ �)

) ∧ � ∨ (⊥ ∧ �) ∧ � ∨ (
(� ∧ �) ∨ (⊥ ∧ �)

) ∧ � = �

5 Conclusions and Further Work

In this work, we contributed with the generalisation of the logic presented in [1],
by considering that the firing of a Petri net may fail. The approach taken in
order to handle this variation was based on previous work done in [13], where
an action lattice is considered to model both the notion of reliability degree of
transitions in models and to support the (possible) multi-valued truth degree of
a formula. This goal was accomplished by introducing: (i) a new definition of
Petri net, where transitions between markings may fail; (ii) an underlying class
of Kleene algebras (parametric on an action lattice), suitable for interpreting
(composed) Petri net programs; (iii) a parametric method to build Dynamic
logics with these semantics.

The extension of this work can be done in several directions. First, the neces-
sity to have supporting computational tools for these logics suggests the develop-
ment of a proof calculi and model checking algorithms, with their computational
complexity. In this line, we expect to obtain characterizations, parametric to the
base action lattice adopted in each situation. Moreover, comparing these logics
with the literature is also in our agenda, namely to establish a formal relation
between the models of GP(�L) and the Fuzzy Petri nets [17].

The behaviour of Petri nets is concurrent by nature, being defined by the
simultaneous firing of sets of transitions. However, in the method introduced,
global composition is presented as a derived operator from the base (sequential
composition, choice and reflexive transitive closure) Kleene operations. Hence,
in future, we intend to adapt the presented construction to another parameter
supporting a concurrent computational model like, for instance, a Concurrent
Kleene Algebra [9]. An approach in this direction was already addressed in [5],
which is based on the well known work on modal semirings [15]. Note however
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that, although such approach is capable of handling concurrency, it lacks the
expressiveness for generating a logic able to reason in a multi-valued truth space.
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Abstract. Analytical Software Design (ASD) enables model-based
development of component software systems. Until now, functional verifi-
cation of ASD systems is only possible on a per-component basis. There is
no functional verification engine for ASD itself, so this verification relies
on a translation of individual components to mCRL2, a process-algebraic
model checker. We show how to extend the ASD-mCRL2 translation to
support multiple components in order to enable checking of system wide
functional properties. With our extended translation, we perform a case-
study on a newly developed industrial system consisting of 26 communi-
cating components. The results indicate that it is feasible to model check
functional properties on this scale.

1 Introduction

Modern high-tech industry relies more and more on software to implement super-
visory control logic. With the large number of software components in a typical
machine, the software can become very complex. The industry not only wants
software that meets high quality standards to assure safety and reliability, but
the reduction of the costs and time of development also plays an important role.
This is assured by model based software design accompanied with formal analysis
where software problems are eradicated as soon as possible in the development
process. Comparative research shows that it is possible to reduce the number of
bugs by a factor 10 and the development time by a factor 3 [14].

Analytical Software Design (ASD) [3,4] is one of the model based engi-
neering tools being used in industrial environments. Using ASD, software engi-
neers develop models which can be checked for various properties such as dead-
lock/livelock freedom and interface compliance with a single press of a button.
From the models, ASD generates executable code, e.g. Java or C++, that can
be run in a production environment.

In contrast to many other tools that apply model checking techniques, ASD
does not suffer severely from the state-space explosion problem. This is achieved
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through the application of compositional verification techniques: each compo-
nent in a system is checked individually by comparing its implementation and
interface using failure divergence refinement (FDR) [17]. A pleasant property
of FDR is that deadlock/livelock freedom of each component guarantees dead-
lock/livelock freedom of the complete system. The ASD approach has been used
to develop systems with over 200 components [12] (more than 300 models if inter-
face and design models are counted separately), where total verification takes
around 20 min.

It is also possible to check a broader range of properties on single compo-
nents through a translation to mCRL2 [5,11]. The process algebraic description
language mCRL2 comes with a toolset for simulating, visualising, manipulating
and model checking behavioural specifications. We call the functional properties
that span a single component local properties.

There are however many global properties, also called ‘end-to-end’ properties,
that are not covered by only checking local properties. Typical examples are:

– If the software control is instructed to manufacture a product, then the appro-
priate associated low level instructions are always issued.

– If one of the actuators reports an error, the control system always reports the
error to the higher software layers.

– If the control software reports that the machine is off, it will never instruct
any of its controlled actuators to move.

In this paper we report on how we verify such global properties on newly
developed industrial control software. For this purpose we extend the existing
mCRL2 translation to support multiple components. Firstly, communication has
to be restricted to take place between the right components. Furthermore, impor-
tant functionality that was implemented in C++, instead of ASD, needs to be
translated manually to mCRL2. Finally, we must add several mechanisms to
preserve the single-threaded execution as defined by the semantics, i.e., we must
ensure that only one component is active at a time.

We evaluate the approach by translating an ASD system that is newly devel-
oped and which consists of 26 components (together containing 5054 so called
rule cases). On the resulting mCRL2 model, we check a complete set of end-
to-end properties. Because the state-space of the system only consisted of 178
million states, we were able to establish whether each requirement was satisfied.

Our expectation was that we would encounter many hardships in the verifi-
cation, especially because the state spaces would be excessively large. But the
contrary turned out to be true. The state space remained well within accept-
able limits for the available computer equipment. The reason for this appears
to lie in the run-to-completion semantics employed in ASD, together with the
strict use of interfaces. These coincide with design rules for systems to avoid
the state space explosion [10]. There were a number of minor issues that had to
be overcome, such as speeding up writing intermediate results to disk. It also
turned out that applying a branching bisimulation reduction to the intermediate
state space before applying model checking was much more time efficient than
following the ordinary workflow.
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Our conclusion is that it is very well possible to verify actual industrial-size
software while it is under development. But for success, it needs to be written in
an appropriate domain specific language whose semantics avoids a state space
explosion.

Overview. Section 2 introduces the basic concepts on which this paper is built.
We explain our approach to multi-component translation in Sect. 3. The case
study is introduced in Sect. 4 together with the properties we verify and Sect. 5
contains the results of the experiments we conducted. In Sect. 6, we give an
overview of some related work. Finally, Sect. 7 presents a conclusion.

2 Background Information

This section provides a short introduction to ASD, mCRL2 and the modal µ-
calculus, which form the bases of our approach.

2.1 Analytical Software Design

Analytical Software Design (ASD) [4], developed by Verum, enables the devel-
opment of software based on communicating components. The components are
designed and verified using the ASD:Suite. Furthermore, the ASD:Suite can gen-
erate the executable code that can be used in a production environment. In ASD,
there are two types of components:

– Standard ASD component. A standard component consists of an interface and
a design model. The interface model specifies the externally visible behaviour
of a component. It provides a more abstract view on the behaviour of a
component. The design model specifies the inner working of a component,
including how it interacts with lower level components. The design model
always refines the interface model under failure-divergence refinement [17].

– Foreign component. A foreign component consists of only an interface model.
It typically models the behaviour of a hardware component or another system
that is implemented outside of ASD, e.g., in C++.

component
boundary A

design model A

interface model A

design model B

interface model B interface model C

Fig. 1. An example system composed of
two standard components, A and B, and a
foreign component C.

If a component A relies on another
component B for certain tasks, then
we say A is a client of B and B is
a server of A. Intuitively, an inter-
face model serves as a contract on the
behaviour of the corresponding design
model. The interface model specifies
exactly in which order a client can send
calls to a server and which responses it
can expect. Most of the decision logic of a component is contained in the design
model. In ASD, the components must be structured as a tree, i.e., a component
cannot have more than one client. See Fig. 1.
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Within ASD, we distinguish four types of communication: call events, reply
events, notification events and modelling events. A call event happens when a
client wants to request certain information or a certain action from one of its
servers. While the server is handling that call event, it may choose to send one
or more notification events to its client. These notifications are stored in the
notification queue of the client until control is given back to the client. The
notification queue will be explained in detail later. When the server is finished
with a call event, it will always send a reply event to the client. When a reply
contains data, we call it a valued reply, otherwise it is called a void reply.

A modelling event typically represents low level input, such as an interrupt,
which can be guaranteed to come, or which can incidentally take place. It can
only be performed by a foreign component. Similar to notification events, they
are sent from a server to a client. However, whereas notification events always
happen as the result of a call event, modelling events only happen spontaneously.

All ASD models are described using a formalism similar to extended finite
state machines, which are state machines augmented with data. Software engi-
neers develop these state-machines in the ASD:Suite in a format called Sequence-
based Specification (SBS). A model can contain state variables, which store infor-
mation about the state of the component. State variables can be Booleans or any
other finite enumeration type. Transitions can be guarded with expressions over
the state variables, and state variables can be updated after every transition. A
guarded transition can only be taken when the guard evaluates to true given the
current values of the state variables. A row in an SBS is called a rule case. We
give a formal definition of a design model, which we will use later to highlight
the most important aspects of the translation to mCRL2.

Definition 1. A design model is a tuple DM = (S, V, T, (ŝ, v̂)), where

– S is a set of states;
– V is a set of state variables v1:D1, . . . , vn:Dn, and their types Di are finite

enumeration types;
– T is a set of transitions, defined as

T ⊆ S × Φ(V ) × Call × (Event∗ × (Reply ∪ {∅}) × A(V )∗ × S ∪ {Illegal})
S × Φ(V ) × (Reply ∪ Notif ) × (Event∗ × A(V )∗ × S ∪ {Illegal})

A transition has a source state and a guard, and can originate either from a
call event, from a notification that is stored in the queue or from a valued
reply. If the transition is not illegal, it results in zero or more calls and/or
notifications, a reply (when necessary), assignments to the state variables and
a state update.

– ŝ ∈ S and v̂ ∈ D1 × · · · × Dn define the initial state and the initial value of
the state variables, respectively.

Here, Call and Notif are the set of all call events and notifications respectively,
Event = Call ∪Notif is the set of all event, Φ(V ) is the set of all possible guards
over V , Reply is the set of all valued replies, ∅ is a void reply and A(V ) is the
set of all possible assignments over V .
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To simplify the reasoning, in the theory that is presented here, we assume that
none of the events carry data values. In ASD, the data that is carried by events
can only be forwarded and not inspected, so the assumption in the definition is
not restrictive. In the case study of Sect. 4, we do consider all of ASD’s features
including communication of data.

Example 1. We consider a component A that can be activated and deactivated
and also paused and resumed. Component A is a client of component B, which
always needs to be deactivated before component A can become inactive. A
sequence-based specification of the design model of component A is given in
Fig. 2: it shows the four rule cases of state Active and one rule case of the state
Inactive. When one of the actions Pause or Resume is performed, an empty
reply (VoidReply) is returned and the variable Enabled is updated (rule cases 4
and 5). Component A can only be deactivated when it is not Enabled (rule cases
1 and 2). Upon deactivation, it first sends a message to component B, and only
then deactivates itself by going to the state Inactive. Activation from the state
Inactive happens in a similar way. We assume the actions not shown for one of
the states are blocked in that state, i.e., they cannot happen. ��

There are two possible semantics for ASD: the multi-threaded execution model
and the single-threaded execution model [12]. In this paper, we only consider the
latter. In the single-threaded execution model events cannot happen in parallel,
but only in sequence. Therefore, these semantics should define clearly in which
order events are processed. According to the documentation of ASD, the fol-
lowing actions take place in order when a component receives an event from a
client:

– All actions from the SBS rule case are processed in order.
– State variables are updated.
– The transition to the target state is taken.
– The notifications in the queue are processed. No events other than those

caused by these notifications may occur before the queue has been emptied.
– A void or valued reply takes place to give control back to the client.

Fig. 2. Example of an SBS for the design model of a component called A.
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These rules are also referred to as run-to-completion semantics, meaning that
a component completes all of its tasks before relinquishing control to another
component. Note that since events and notifications can arrive in different orders,
there are still many potential runs in an ASD model.

Wrapper Components. The tree structure of ASD is quite restrictive in prac-
tice, since it does not allow a component to have more than one client. That
makes it impossible to implement bidirectional communication channels that
have two clients, or database-like components that have many clients. One can
work around this issue by manually implementing foreign components, as we
explain below.

wrapper
component

design model A

interface model A

design model B

interface model B

wrapper interface 1 wrapper interface 2

manually implemented router

interface model C

design model C

Fig. 3. The structure of a wrapper compo-
nent.

In the case study that we con-
sider, wrapper components are used
to implement symmetric communica-
tion channels, see Fig. 3. In this case,
there are three components A, B and
C. The components A and B are both
a client of C, albeit through two sep-
arate interfaces. The router – writ-
ten manually in C++ – implements
both these interfaces. Since ASD is not
aware of the connection between both
interfaces, this structure does not violate ASD’s single-client constraint.

The router forwards all requests from components A and B to C, and also
sends responses from C back to the correct client. For all requests component C
receives from component A, it sends a notification to B, and vice versa. In this
way, the wrapper component C serves as a bidirectional communication channel.

2.2 mCRL2

The language mCRL2 is a process-algebraic language [11] which can be analysed
using the accompanying toolset [5]. The main aim of mCRL2 is model checking
of parallel processes. Additionally, mCRL2 can generate, reduce, compare and
visualise state-spaces.

The mCRL2 modelling language is very flexible and despite a limited set of
language primitives, very expressive. Therefore, it is very well suited as a target
language for automatic translations. Several basic operators that we deal with
in this paper are sequential composition (operator ·), choice (operator +), sum
(operator

∑
, which generalises choice) and conditional (operator → � ).

Example 2. To illustrate some of the concepts behind mCRL2, we consider the
following specification.
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act tick , reset , press;
proc Clock(n:Nat) = tick .Clock(n+1) + reset .Clock(0);

Button = press.reset .Button;
init allow({tick , reset , press},

comm({reset|reset → reset},
Clock(0) ||Button));

In this system, we have two processes, a Clock and a Button. The clock can
perform an action tick, after which it increases the time (stored in parameter
n). When the button is pressed, it subsequently communicates with the clock
via the action reset, and the clock resets its counter. Communication is enforced
through the combination of the allow and comm operators, which in this case
express that both reset actions much happen synchronously. For a more complete
overview of the mCRL2 language, see [11]. ��

2.3 Modal µ-calculus

To express formal properties, the mCRL2 toolset relies on the modal µ-calculus
[13] with data, which is suitable to express virtually any conceivable behavioural
property. It is far more expressive than LTL/CTL, but it is equally efficient when
it comes to establishing those properties [6]. Here, we provide the core grammar
of the µ-calculus, i.e., without the use of data:

φ ::= false | true | ¬φ | φ ∨ φ | φ ∧ φ | φ ⇒ φ | 〈a〉φ | [a]φ | μX. φ | νX. φ | X

Here a is an action, X is a fixpoint variable representing a set of states and μX. φ
and νX. φ are the least and greatest fixpoints over X respectively. Formulae in
the µ-calculus are interpreted over labelled transition systems. The semantics
is roughly as follows. The Boolean operators have their usual semantics. The
diamond modality 〈a〉φ is true if and only if an a-step is possible after which φ
holds. The box modality [a]φ expresses that after every possible a-step, φ must
hold. The least fixpoint μX. φ is true for the smallest set of states X such that
φ holds for all states in X. Note that X can occur in φ. Dually, νX. φ is true for
the largest set X that satisfies φ. The least fixpoint operator expresses that a
property must be valid within a finite number of iterations, whereas the greatest
fixpoint also allows for infinitely repeating behaviour.

The mCRL2 toolset also allows specifying modalities with sets of actions
via so-called action formulas: true represents the set of all actions and false
represents the empty set of actions. Supported operators are union, intersection
and inverse (a is the set of all actions other than a). Furthermore, sequences
of actions can be specified with regular formulas, which give the possibility to
concatenate sequences (with the . operator), take their union (operator +) or
iterate over them (operator ∗). The action formula a∗ represents zero or more
occurrences of the sequence a, and true∗ represents any sequence of actions. For
example, [a.b]false means that a sequence a b is not possible (since if it is possible,
false must hold in the resulting state) and 〈a∗.b〉true means that a sequence
consisting of zero or more a’s followed by a b is possible. Action formulas and
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regular formulas can always be expressed using the fixed point operators, but
they are generally more convenient to specify concrete behavioural properties.

In this work, we do not consider µ-calculus formulae with data. In mCRL2,
data variables can be bound in quantifiers, i.e., ∃ or ∀, or as parameter of a
fixpoint variable. They are used in conditions, and as parameters of actions and
fixpoint variables. See [11] for a complete overview of the modal µ-calculus.

3 Approach

The existing translation from ASD to mCRL2 is only capable of translating the
models within one component boundary at a time [12]. This translation yields
two mCRL2 specifications: one containing the topmost interface model and one
containing the design model and the interface models below it. On the latter
specification, we can check local properties that concern only that component.

We define a new translation that yields a single mCRL2 specification that
represents the behaviour of the complete system. The new translation takes as
input all the design models and also the interface models of foreign components.
Before we introduce the challenges introduced by the new translation in detail,
we first introduce the basic single-component translation.

3.1 Translating Single Components

Due to the expressivity of mCRL2, ASD components can be mapped almost
directly to mCRL2. First, for every state of the component, a recursive process
is created. This process carries one parameter for each state variable of the
ASD model. For each rule case, this process has one action summand, which
contains the condition, actions, variable updates and target state deduced from
the rule case. Furthermore, the mCRL2 specification contains a Queue process
that represents the behaviour of the notification queue. A complete definition of
the translation can be found in [12].

Definition 2. Given a design model DMA = (S, V, T, (ŝ, v̂)), the mCRL2 pro-
cess that corresponds to its initial state is defined according to the function
Tr:

Tr(S, (v1:D1, . . . , vn:Dn), T, (ŝ, v̂)) = Pŝ(v̂,⊥)

where for each state s ∈ S, the corresponding recursive process in
mCRL2 is defined as Ps(v1:D1, . . . , vn:Dn, rv:Reply) =

∑
t∈T Tr(t), with
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Tr(s, ϕ, er, (es1, . . . , e
s
m), r, (a1, . . . , ak), s′) =

ϕ → er · Trs(es1) · · · · · Trs(esm)·
(qEmpty · sendReply(r) · Ps′(a1, . . . , ak)+
qNonEmpty · Ps′(a1, . . . , ak, rv = r))

Tr(s, ϕ, er, (es1, . . . , e
s
m), (a1, . . . , ak), s′) =

ϕ → Trr(er) · Trs(es1) · · · · · Trs(esm)·
(qEmpty · ((rv �≈ ⊥) → sendReply(rv) � skip) · Ps′(a1, . . . , ak, rv = ⊥)+
qNonEmpty · Ps′(a1, . . . , ak))

Tr(s, ϕ, er, Illegal) = ϕ → Trr(er) · illegal · δ

Trs(e) =

⎧
⎪⎨

⎪⎩

outwardNotif (e) if e ∈ Notif
e · recReply(∅) if e is a void call event
e if e is a valued call event

Trr(e) =

⎧
⎪⎨

⎪⎩

e if e ∈ Call
readNotif (e) if e ∈ Notif
recReply(e) if e ∈ Reply

In the definitions above, rv is a process parameter that stores the reply value
that needs to be returned after the queue is emptied. A special value, ⊥, indicates
that no reply is due to be sent. Whereas all call events are translated into com-
municating actions, notifications and replies are translated into arguments of the
actions outwardNotif and readNotif , and sendReply and recReply respectively.
Checking whether the queue is empty or not happens through the communicat-
ing actions qEmpty and qNonEmpty . Lastly, skip is the empty process and δ is
the deadlock process.

Example 3. Recall component A from Example 1. We give the translation of the
rule cases 1, 2 and 4 according to Definition 2:

AActive(enabled :Bool , rv:Reply)

= (enabled ≈ false) → A deactivate called · invoke B Deactivate · recReply(∅) ·
outwardNotif (A Deactivated) ·
(qEmpty · sendReply(∅) · AInactive() + qNonEmpty · AInactive(rv = ∅))

+ (enabled ≈ true) → A deactivate called · illegal · δ

+ A Pause called · (qEmpty · sendReply(∅) · AInactive(enabled = false)

+ qNonEmpty · AInactive(enabled = false, rv = ∅)) + . . .

For the state Active, we have a process definition AActive , which carries the state
variable enabled. The different types of events each have a prefix or suffix to dis-
tinguish them: received call events have the suffix called and sent call events have
the prefix invoke. After an illegal event, the process deadlocks (operator δ). ��
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3.2 Communication

In the existing single-component translation, a void reply is represented with the
action sendReply(∅). Since the scope of this translation is very limited – it only
translates one design model and several interface models from one component
boundary (cf. Fig. 1) – synchronization on this action can only take place in
one way: between the design model and one of the interface models. However,
in the multi-component setting, we have to explicitly enforce synchronization
to happen between the proper components. Therefore, every occurrence of an
action sendReply does not only have an argument for the type of the reply, but
also two arguments to indicate the source and destination of the reply. In this
way, only those components will synchronize on that action. The same approach
is applied to notifications.

3.3 Manual Translations

The automatic translation to mCRL2 cannot handle wrapper components, since
their router is implemented in C++ instead of ASD. The behaviour of a wrapper
component as a symmetric communication channel is essential to the behaviour
of the complete system. Therefore, it is desirable that the wrapper components
are also present in the translation of the complete system. We manually trans-
lated the router to mCRL2, because this is far more efficient than performing
an automatic translation from C++.

There is another component, called AsyncCall, of which the behaviour is
manually translated from C++ to mCRL2. The component AsyncCall can be
requested by any component to send a response at some later time. This is a
workaround such that ASD components can awaken themselves to finish residual
duties. Internally, these requests are stored in a queue in AsyncCall. The queue
can only contain one request per component and components also have the option
to cancel their request.

We remark that the wrapper components are partially generic and the Asyc-
Call component is completely generic. Therefore, they do not need to be imple-
mented from scratch when verifying several systems. Ideally, the mCRL2 speci-
fication of the wrapper components can be generated by the same program that
generates their C++ implementation.

3.4 Queues

As defined in the semantics of ASD, every component contains its own queue
to store notifications. This implies that the complete mCRL2 specification will
have a queue for every design model in the system. To ensure that the run-to-
completion semantics is preserved, we add a lock to every queue. A queue is
unlocked exactly when the corresponding component is active processing a call
from a client or a modelling event. In this way a client can only process the
content of a queue when it is active.
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3.5 Framework

Not only the ASD components themselves, but also the outside world, which we
will refer to as the framework, should behave according to certain constraints.
For example, the framework cannot send out another call or modelling event
when the system did not yet finish the previous task. To encode this, we add the
following features to our translation:

– A new action emptyQ that can only be executed when all queues are empty;
all queues synchronise on this action.

– An additional process Thread controls the sending of calls to the uppermost
components and sending of modelling events by the foreign components. At
the moment it sends a call or modelling event, it checks whether the queues
are empty. It can only send another message after the previous one completed
processing.

4 Case Study

We perform a case study to investigate the feasibility of our approach and to
determine its applicability to industrial-size systems. The case study is based
on a real-life ASD system found in the model stack of our industrial partner.
Components and events have been renamed for confidentiality reasons. Figure 4
shows the high-level structure of the system. The system consists of two loosely-
coupled subsystems, called A and B. A and B have to cooperate to execute an
action together, which we will call Exec. The clients of A and B independently
decide whether they are ready to do so. Moreover, after a client has requested
for Exec to be performed, it can repeal its decision by sending a Cancel message.

Fig. 4. The structure of the case study system. The
dashed lines indicates bidirectional communication
through wrapper components.

Both sides synchronize
using wrapper components
located on the cancel layer
and the control layer. The
cancel layer consists of the
components responsible for
cancelling the execution of
Exec and the control layer
is responsible for performing
Exec. The cancel and control
layers, including their direct
server components, consist
of 14 components. The com-
plete system consists of 26
components, which contain 5054 rule cases in total.

In the initial state, the clients of A and B can decide whether they want
to perform Exec or cancel it. When both clients request to do Exec without
sending a Cancel at some point, then this action is performed. If at least one
client requests a cancellation before they both request Exec, then the action
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Cancel is performed. If a client asks for Exec to be cancelled after Exec has
started, then it will not be cancelled. Both clients will receive a notification
when an Exec or a Cancel has been completed. After a client requests Exec,
it will immediately start preparing for Exec to happen. When Exec or Cancel
has finished, the system should return to the initial state. We call the process
between the first message and the performing of Exec or Cancel a round.

4.1 Subsystems

In our analysis, we consider four different variants of this system, to get a rough
idea of the scalability. Firstly, we have the layers subsystem, which consists of
the cancel layer, the control layer, the components directly below them and
the wrapper components in between. We consider two variants of the layers
subsystem: the regular implementation and an implementation where no Cancel
request can be performed. Secondly, we have two variants of the complete system:
one that does not allow errors to occur and one that does allow errors. We will call
the former good-weather behaviour (GWB) and the latter bad-weather behaviour
(BWB). The bad-weather behaviour system is rather rudimental, which means
that clients can raise errors which are subsequently dealt with by the system to
cause the least disturbance in the normal process operation.

Table 1. Properties of the layers system written in modal µ-calculus

Property Formula

0 Initial state (〈A Request Exec〉true ∧ 〈A Request Cancel〉true∧
〈B Request Exec〉true ∧ 〈B Request Cancel〉true)

1 Cannot do Exec without
two requests

[true∗](Initial state ⇒ [(A Request Exec
∗
+ B Request Exec

∗
).Exec]false)

2 Cannot request execution
after a cancel request

[true∗.A Request Cancel .(outwardNotification(Cancelled))
∗
.A Request Exec]false

3 Must perform execution
after two execute requests

[true∗](Initial state ⇒ [A Request Exec.(A Request Cancel

+ B Request Cancel)
∗
.B Request Exec]µX.([Exec]X ∧ 〈true〉true))

4 Raise cancel notification
after two cancel requests

[true∗.A Request Cancel .(outwardNotification(Cancelled))
∗
.B Request Cancel ]

µX.([outwardNotification(Cancelled)]X ∧ 〈true〉true)
5 After a cancel request,

Cancel is performed
[true∗](Initial state ⇒ [A Request Cancel + B Request Cancel ]

µX.([A Cancel]X ∧ 〈true〉true))
6 Cannot make multiple

Exec requests in a round
[true∗.A Request Exec.(outwardNotification(Exec finished))

∗
.A Request Exec]false

7 No synchronization error
during an execution

[true∗](Initial state ⇒ [A Request Exec.(B Request Exec)
∗
.B Request Exec

.(A Request Exec + B Request Exec)
∗
.Sync Error(A)]false)

8 Synchronization error af-
ter requesting an execute
too soon

[true∗]((〈A Request Exec〉true ∧ 〈B Get Results〉true) ⇒
[(B Get Results)∗.A Request Exec]µX.([Sync Error(A)]X ∧ 〈true〉true))
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4.2 Properties

After consulting the domain experts, we identified several system-wide properties
that the system under study should adhere to. For the layers subsystem, we
have eight properties, which are listed in Table 1. Furthermore, we have three
properties that involve the complete system; they are listed in Table 2. Note that
some properties are symmetric for both clients; in that case we only listed one
of the two µ-calculus formulae. Many properties are concerned with behaviour
from the moment that neither client has sent a message yet until the moment
that Exec or Cancel is performed. Since we are dealing with a system that runs
continuously, we should not only check what happens from the initial state, but in
every round. Therefore, we formulated a property in the µ-calculus that expresses
whether the system is at the start of a round (property ‘Initial state’ in Tables 1
and 2). This formula is used within other properties to check behaviour in all
rounds. Most action names in these properties should be self-explanatory. The
actions outwardReply and outwardNotification respectively represent a reply and
a notification sent to one of the two clients. The inserting of a notification into
the queue of a certain component is represented by the action raiseNotification.

Table 2. Properties of the full system written in modal µ-calculus

Property Formula

0 Initial state (〈A Request Exec.(Protocol Error(A))
∗
.outwardReply(VoidReply)〉true∧

〈A Request Cancel .(Protocol Error(A))
∗
.outwardReply(VoidReply)〉true∧

〈B Request Exec.(Protocol Error(B))
∗
.outwardReply(VoidReply)〉true∧

〈B Request Cancel .(Protocol Error(B))
∗
.outwardReply(VoidReply)〉true)

1 Must perform ex-
ecution after two
execute requests

[true∗](Initial state ⇒ [A Request Exec.(A Request Cancel + B Request Cancel)
∗
.

B Request Exec]µX.([Exec]X ∧ 〈true〉true))

2 Prepare steps are
done before per-
form steps

[true∗](Initial state ⇒ [A Request Exec.(A Request Cancel + B Request Cancel)
∗
.

B Request Exec.(raiseNotification(A Prepare Step Done))
∗
.Exec]false)

3 Perform steps are
done before rais-
ing an execution
notification

[true∗](Initial state ⇒ [A Request Exec.(A Request Cancel + B Request Cancel)
∗
.

B Request Exec.(raiseNotification(A Perform Step Done))
∗

.outwardNotification(Exec finished)]false)

In these properties, we use several common patterns. First, it is very common
to write a property of the shape [true∗]ϕ, meaning that after any sequence of
actions, ϕ has to hold. Building on that, the property [true∗.a]false expresses that
action a cannot occur anywhere and the property [true∗.a.b̄∗.c]false expresses
that after every action a, an action b must happen before the action c happens.

A more complex, but important, pattern is μX.([ā]X ∧ 〈true〉true), which
means that action a unavoidably happens within a finite amount of steps. The
intuition is as follows: as long as we do something other than a (subformula [ā]),



Verifying System-Wide Properties of Industrial Component-Based Software 171

we recurse through variable X. That may only happen finitely often, due to the
least fixpoint (μX). Therefore, we must at some point end up in a state where
actions other than a are not possible. This state cannot be a deadlock, since that
is explicitly forbidden by 〈true〉true. Hence, we end up in a state where only a
actions can be done, and at least one a is possible. This is the same as saying
that ultimately, a must be done.

5 Results

In our experiments, we applied the workflow of Fig. 5 to check each of the prop-
erties. First, the mCRL2 specification is normalised into a linear process (LPS),
from which we generate the state space in the shape of a labelled transition system
(LTS). This LTS is subsequently minimised under divergence-preserving branch-
ing bisimulation using the Groote-Jansen-Keiren-Wijs algorithm [9]. Combined
with a µ-calculus formula, we construct a Boolean equation system (BES), which
can be solved to obtain an answer to the model checking question. A benefit of
using this particular workflow is that the state space does not need to be gener-
ated repeatedly for every property we want to check.

mCRL2 LPS LTS

µ-calculus formula
BES /

linearisation
state-space
generation

minimisation

solving

Fig. 5. The workflow used for model checking.

To run the experiments, we used a machine with multiple Xeon E5520 pro-
cessors (56 cores in total), clocked at 2.27 GHz and 935 GB of memory. The
mCRL2 version we installed has Git commit hash 73241e378e1. The mCRL2
analysis tools are all single threaded.

Table 3 gives an overview of the time required for state-space generation and
the size of each of the state spaces. The time reported does not include the time
required for bisimulation reduction, which is about 45 min for the BWB system.
The full system under bad-weather behaviour is almost on the limit of what can
be generated in a reasonable amount of time with 178.6 million states. At the
same time, bisimulation reduction is very effective, and manages to bring the
number of states back to 12.4 million.

1 Sources are available at https://github.com/mCRL2org/mCRL2.

https://github.com/mCRL2org/mCRL2
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Fig. 6. Visual representation of the min-
imised state space of the layers subsystem.
(Colour figure online)

Figure 6 shows a visualisation of
the minimised state space of the lay-
ers subsystem. The initial state is
at the top and every disk represents
a (non-deterministic) choice. Initially,
the system contains little branching
behaviour (the red, yellow and green
parts at the top). Only deeper in the
state space, there is more choice to
perform different actions (blue and
purple parts at the bottom). The low
amount of branching can be ascribed
to the run-to-completion semantics of ASD.

Table 3. Time required for state-space generation and number of states and tran-
sitions for the systems before and after divergence-preserving branching bisimulation
minimisation.

System Time (s) Mem #states #transitions After bisim. red.

#states #transitions %red

Layers no Cancel 7 28MB 9, 107 9, 472 7, 085 7, 422 22.2

Layers subsystem 46 63MB 109, 608 114, 310 55, 361 58, 338 49.5

Complete system GWB 14, 713 1.7GB 17, 179, 798 19, 098, 495 3, 787, 974 4, 298, 103 75.0

Complete system BWB 154, 397 14GB 178, 603, 107 196, 784, 882 12, 451, 325 14, 879, 416 93.0

Table 4 records for each of the four variants of the system the average time
required to check one of the properties. All properties hold, except when checked
on the bad-weather behaviour system, since that has not been fully implemented.
The time required for the full system is significant: almost one hour for the good
weather version and close to five hours per property for the bad weather system.

While running these large experiments, we observed that a lot of time and
memory is spent on storing and loading intermediate files from disk. For a typical
property of the BWB system, lts2pbes spends more than three quarters of
the time on storing the PBES on disk. This problem could be by-passed by
implementing an integrated tool that combines the functionality of lts2pbes
and pbessolve. The amount of memory required to verify a property of the
BWB system is roughly 180 GB; this peak is also reached while writing the
output in lts2pbes.

6 Related Work

The successor of ASD is Dezyne2, also developed by Verum. Similar to the
ASD-mCRL2 translation, there is also a translation from Dezyne to mCRL2 [2].
2 See https://www.verum.com/, accessed 13-05-2019.

https://www.verum.com/
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Table 4. Average time spent to verify a single property on each of the four
(sub)systems.

Time (s)

Layers no cancel Layers system Full system GWB Full system BWB

lts2pbes 2.06 9.82 2,317 14,126

pbessolve 0.44 3.74 890 4,150

Total 2.50 13.56 3,207 18,276

This translation is also limited to single components, so it does not support
verification of end-to-end properties.

mCRL2 has also been used in other studies to analyse systems with a very
large state space. For example, in [1], the train control system ERTMS Hybrid
Level 3 is analysed with mCRL2. They apply the same workflow as we do:
minimise the transition system with bisimulation before checking any property.
The largest state space they verified contains close to 34 million states.

Remenska et al. [15] also work with an automated translation. They convert
the behaviour captured in UML2.0 sequence diagrams to mCRL2 specifications.
Their technique is applied on DIRAC, the computing grid framework of CERN’s
LHCb experiment. Although the state-space is too large to generate completely,
they do find a counter-example to the desired property with depth-first search.

The idea of generating code from formal models that have been checked with
model checking is also applied in [7]. The authors present a tool called DLC, Dis-
tributed LNT Compiler, which can produce C code from an LNT specification.
The generated code is suited for running om multiple machines concurrently, syn-
chronization between the machines is achieved with a rendezvous protocol. LNT
specifications can be analysed with the existing tools from the CADP toolset [8].

7 Conclusion

We showed how to translate a component system implemented in ASD to
mCRL2. This enables checking of end-to-end properties on ASD, which is impor-
tant for mission-critical software. Furthermore, we demonstrated with a case-
study that this approach is applicable to an actual industrial system. For the
two variants of the layers subsystem, the time and space required to run the
model checker is sufficiently small to enable interactive verification during devel-
opment. This is due to the semantics of ASD that avoids a major state-space
explosion. The results exceeded our own expectations and give us hope that
model checking of complete systems can be applied more often in industrial
settings. Based on these results, we aim to develop an environment in which
all industrial controllers, newly developed in ASD, can be completely verified
during their development process.

One of the challenges that needs to be tackled before wider adoption of this
approach is possible, is the complexity of modal µ-calculus. Currently, specify-
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ing properties with µ-calculus requires expertise, and it is not uncommon for
formulas to contain mistakes. A possible solution is to supply developers with
natural-language templates in which they enter the correct action names. The
corresponding formula will then be generated from the template [16].
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In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461, pp. 17–32.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43613-4 2

17. Roscoe, A.W.: On the expressive power of CSP refinement. Form. Asp. Comput.
17(2), 93–112 (2005). https://doi.org/10.1007/s00165-005-0065-x

https://doi.org/10.1007/978-3-642-38088-4_17
https://doi.org/10.1007/978-3-662-43613-4_2
https://doi.org/10.1007/s00165-005-0065-x


Distributed Algorithms



Case Study on Certifying Distributed
Algorithms: Reducing Intrusiveness

Samira Akili(B) and Kim Völlinger
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Abstract. Certifying distributed algorithms (CDAs) are a runtime ver-
ification method for distributed systems. A CDA computes additionally
a witness to an input-output pair – a correctness argument for the pair.
The witness is verified at runtime by a distributed checker algorithm.
In this paper, we apply CDAs to an industrial case study of collabo-
rative transport robots serving machines in a factory. In particular, we
present a certifying variant of a distributed bidding algorithm executed
by the robots to assign transport jobs amongst each other. Furthermore,
we introduce overlays in order to organize the communication of the
distributed checker, and compare them regarding their intrusiveness.

1 Introduction

We consider certifying distributed algorithms (CDAs) – a runtime verification
method for distributed systems. A CDA computes a witness w additionally to
an input-output pair (i, o) such that if a witness predicate holds for the triple
(i, o, w), the pair (i, o) is correct. A distributable witness predicate states a prop-
erty in the system by stating properties for each component, and hence can be
decided by a distributed checker algorithm at runtime. As an example, consider
a distributed algorithm where the components of a network decide if the net-
work graph itself is bipartite. In the case of a non-bipartite network graph, an
odd cycle in the graph is a witness since an odd cycle is not bipartite itself.
The witness predicate states that an odd cycle exists in a network for which
the distributed algorithm outputs that its non-bipartite. In [7] a distributable
witness predicate for the example is described. In the typical setup of runtime
verification, a system is instrumented to compute outputs for a monitor decid-
ing if a given property holds. Analogously, a CDA is instrumented to compute a
witness for the checker deciding if an input-output pair is correct. In this paper,
we investigate a case study of transport robots serving machines in a factory [1].
Since the robots execute distributed algorithms to achieve collaborative goals,
they can be classified as a multi-agent system. We apply CDAs to verify a dis-
tributed bidding algorithm used to assign transport jobs at runtime. Moreover,
we consider overlays (i.e. communication topologies imposed on the components
of the system) for the distributed checker, and compare them regarding their
intrusiveness (i.e. the degree to which runtime verification affects the system).
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Published by Springer Nature Switzerland AG 2019
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Related Work. Certifying sequential algorithms are established [5] but there
is little work on certifying distributed algorithms [7–10]. CDAs can be classified
as a distributed and choreographed monitoring approach since the checker is
a distributed algorithm, and as a synchronous monitoring approach since the
system waits for the checker to accept [2]. Overlay networks are a well estab-
lished research strand offering sophisticated solutions for various applications [3].
However, to our knowledge, there is no approach of using overlays to reduce
intrusivenes for runtime verification.

2 Preliminaries: Certifying Distributed Algorithms

We model the communication topology of a distributed system as a connected
undirected graph G = (V,E): a vertex represents a component, an edge a
communication channel. A distributed algorithm, running on a distributed sys-
tem, consists of a sub-algorithm for each component such that all components
together solve one problem [4]. The input i is distributed such that each com-
ponent v ∈ V has a sub-input iv with i = ∪v∈V iv; analogously for the out-
put. A CDA computes a witness w additionally to its input-output pair (i, o)
such that if a predicate – the witness predicate – holds for the triple (i, o, w),
the pair (i, o) is correct [10]. We call a predicate that is defined over a com-
ponent’s sub-input, sub-output and sub-witness a local predicate. A predicate
Γ is universally distributable with a local predicate γ if for all triples (i, o, w)
holds: ∀v ∈ V : γ(iv, ov, wv) −→ Γ (i, o, w), and existentially distributable if:
∃v ∈ V : γ(iv, ov, wv) −→ Γ (i, o, w). A predicate is distributable if one of
the former applies, or if it is implied by conjuncted and/or disjuncted univer-
sally/existentially distributable predicates [7]. The witness predicate has to be
distributable such that it can be decided by a distributed checker algorithm
at runtime. The sub-checker of component v decides all local predicates over
(iv, ov, wv). Using a spanning tree, the sub-checkers aggregate the evaluated
local predicates upwards and combine them by logical conjunction or disjunc-
tion depending on whether the according predicate is universally or existentially
distributable; the root decides the witness predicate by combining the evaluated
distributable predicates [9]. Hence, if the distributed checker accepts, the dis-
tributed input-output pair (i, o) is correct. The user of a CDA does not have
to trust the actual algorithm but the checker which is simpler for a well-chosen
witness. Using the framework proposed in [8,9] an implemented checker can be
verified.

3 Case Study: Certifying Distributed Bidding

We conduct a case study on a fleet of collaborative transport robots serving
machines in a factory, provided by InSystems [1]. In particular, we investigate
distributed bidding which is executed whenever a machine signals that it needs to
be served. The robots communicate via a wireless network by sending broadcast
or unicast messages.
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Specification. W.l.o.g. let ID = {1, ...n} be the set of the robots’ unique
identifiers. We refer to a robot with ID k ∈ ID as robot k. For a robot
k, the sub-input is its ID (ik := k) and the sub-output is its winner-tuple
(ok := (winnerIDk, winnerBidk)). The correctness of a distributed bidding is
specified by the following postconditions: all robots agree on the winner (agree-
ment), the winner exists (existence), and the bid of the winner is the maximum of
all bids (maximum). InSystems provides different variants for distributed bid-
ding. However, we treat the algorithm as a black box and ground its certifying
variant on the specification.

In the following, we give a certifying variant of distributed bidding by intro-
ducing a witness, a witness predicate and distributed checker algorithm. More-
over, we compare different overlays organizing the communication of the dis-
tributed checker regarding their intrusiveness.

Distributed Witness. The sub-witness of robot k is its own bid and a set
containing the sub-outputs of the other robots. Hence, wk = (bidk, {ol|l ∈
ID and l �= k}. The sub-witnesses are computed during bidding by bookkeeping;
no additional computation is necessary.

Local Predicates. Let γagree, γexist and γmax be local predicates over robot
k’s sub-input ik, sub-output ok, and sub-witness wk. The predicate γagree holds
iff ok = ol for all k �= l ∈ ID, i.e. if k’s winner-tuple equals the winner-tuples
of all other robots. The predicate γexist holds iff k = winnerIDk, i.e. if k chose
itself as a winner. The predicate γmax holds iff bidk ≤ winnerBidk, i.e. if k′s
bid is less than or equal to the bid of its chosen winner.

Distributable Predicates. Let Γagree, Γexist, Γmax be predicates over the
distributed input i, output o and witness w stating the three properties of
the specification, e.g. if Γagree holds agreement is ensured. We forego a for-
malization. The three predicates are distributable with the introduced local
predicates. The predicate Γagree is universally distributable with γagree since
for all triples (i, o, w) holds: ∀k ∈ ID, γagree(ik, ok, wk) −→ Γagree(i, o, w).
The predicate Γexist is distributable with γagree and γexist since for all triples
(i, o, w) holds: (∃k ∈ ID, γexist(ik, ok, wk) ∧ Γagree(i, o, w)) −→ Γexist(i, o, w).
The predicate Γagree ensures that there is exactly one winner. The predicate
Γmax is distributable with γagree and γmax since for all triples (i, o, w) holds:
(∀k ∈ ID, γexist(ik, ok, wk) ∧ Γagree(i, o, w)) −→ Γmax(i, o, w). The predicate
Γagree ensures that each robot compares its bid with the same winner-bid.

Witness Predicate. A logical conjunction of the predicates Γagree, Γexist and
Γmax is a witness predicate for the specification of distributed bidding.

Distributed Checker. The sub-checker of each robot runs as a separate process
on the robot, and sub-checkers communicate with each other using the robots’
IDs. The sub-checker of a robot k executes the following tasks:

(1) collecting the winner-tuples for its robot’s sub-witness wk, and deciding the
local predicates γagree, γexist and γmax on the triple (ik, ok, wk),
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(2) participating in deciding the distributable predicates Γagree, Γexist and Γmax

on the triple (i, o, w),
(3) and participating in deciding the witness predicate on the triple (i, o, w).

Note that for an arbitrary (connected) overlay, it is sufficient to consider the
winner-tuples of neighbors in the overlay for task (1) since agreement is ensured
by transitivity over neighborhoods. Hence, for task (1), a sub-checker collects
the winner-tuples of neighboring robots. As the chosen overlay determines the
number of neighbors, it affects the intrusiveness of the tasks. We investigate the
tasks in more detail for each overlay at the end of this Section.

Criteria for Intrusiveness. Intrusiveness denotes the degree to which run-
time verification affects the original system [2]. We evaluate intrusiveness by
the message overhead, runtime and local computation time of the distributed
checker. We measure message overhead as the number of received messages to
reflect the processing overhead a message inflicts, e.g. a broadcast message is
counted once per receiving component. As usual for asynchronous systems, we
measure runtime by assuming that a message is delivered in one time unit [6].
Local computation time denotes the sequential computation time of a robot. In
distributed algorithm analysis, local computation time is neglected when rea-
sonably low but pointed out if a component performs a “global” computation
(i.e. in our case, if the local computation depends on the number of robots) [6].
As message overhead, runtime and local computation of the checker delay the
system and take resources of the robots, we consider these measurements to be
reasonable criteria for intrusiveness.

Communication of Sub-Checkers. We investigate three topologies to orga-
nize the communication of the distributed checker: the original system with-
out an overlay (complete graph), and two overlays, a star tree and a balanced
binary tree. For each topology, we evaluate the intrusiveness of the tasks (1)–(3).
The results are summed up in the table in Fig. 1. We denote if the number of
sub-checkers having a certain local computation time is constant or linear in
the number of components; e.g. Θ(n)1 denotes that a constant number of sub-
checkers has the local computation time Θ(n), and Θ(n)n that the number of
sub-checkers having Θ(n) is linear in the number of components. Moreover, we
denote if some sub-checkers have nothing to do with a 0 instead of Θ(1) to point
out how fairly work is distributed between the sub-checkers. For the overlays,
the first row of local computation is root’s (one of the sub-checkers) effort with
the exception of task (2) for the binary tree where it is the effort of all non-leave
sub-checkers. Note that the complexity classes of task (1) depend on the partic-
ular local predicate, while the complexity classes for the tasks (2) and (3) are
the same for each distributable witness predicate.
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Fig. 1. The intrusiveness of the tasks (1)–(3) for each topology.

Complete Graph. For task (1), each sub-checker broadcasts the winner-tuple
of its robot and subsequently compares its robot’s winner-tuple with all other
tuples to decide the predicate γagree. Hence, local computation time is linear in
the number of robots for each sub-checker. For task (2), each sub-checker broad-
casts a triple with its evaluated local predicates, and decides the distributable
predicates with the received triples. Note that by comparing its robot’s winner-
tuple with all other tuples, each sub-checker already decides the predicate Γagree

by deciding γagree in task (1) since a robots sub-witness equals the distributed
witness in this case. However to decide the distributable predicates for the max-
imum and existence property communication is still needed. For task (3), each
sub-checker logically conjuncts the three evaluated distributable predicates.

Star Tree. For task (1), root broadcasts its winner-tuple and the other sub-
checkers compare their winner-tuple with it. For task (2), each sub-checker
sends the triple of its evaluated local predicates to root. As root decides the
distributable predicates, root’s local computation is linear in the number of
robots. For task (3), root decides the witness predicate and informs the other
sub-checkers by a broadcast.

Balanced Binary Tree. For task (1), each non-leaf sub-checker sends its
winner-tuple to its children, and each child compares its winner-tuple with the
winner-tuple of its parent. For task (2), starting by the leaves, each sub-checker
gets the triple of the evaluated local predicates from its children and combines
it with its own triple. The root holds a triple of the evaluated distributable
predicates. Hence, the runtime is the tree’s depth. For task (3), root decides the
witness predicate and informs all others using the tree.

Comparison. The complete graph and star have the lowest runtime. However,
regarding message overhead and local computation, the complete graph performs
the worst. In the star, only root computes a global computation, while in the
binary tree no global computation occurs. We conclude that the complete graph
is not suitable to organize the communication of the sub-checkers, while the star
and binary tree can be both justified. They reflect a trade-off between runtime
and local computation time which respectively depend on the depth and the
branching factor of a tree. A star is extreme in branching and therefore minimizes
runtime. A chain would be extreme in depth. However, we chose a binary tree for
comparison since its runtime is sub-linear while local computation time is still
constant. A balanced tree additionally restricts the depth. Hence, the branching
factor should be optimized according to the requirements of the system.
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4 Discussion

We applied CDAs to an industrial case study [1]. Particularly, we presented
a certifying variant of distributed bidding to verify it at runtime. Moreover,
we introduced overlays to organize the communication of the sub-checkers, and
compared them regarding their intrusiveness. We concluded that an overlay with
a tree topology improves a quadratic message overhead to a linear one, and that
by adjusting the branching factor, runtime and local computation time can be
balanced out. Our results can be generalized to obtain a generic method to verify
agreement at runtime (e.g. to be reused for consensus problems) using overlays.

Future Work. Note that for a universally distributable witness predicate, the
distributed checker could stop after task (1) if a sub-checker raises an alarm
when detecting that the according local predicate is not satisfied. When choosing
an overlay, as many checkers as possible should be able to raise an alarm. We
reflected that idea e.g. for the binary tree by letting the children check agreement
with their parent. If parents check agreement with their children, leaves (about
half of the components) cannot raise an alarm. For an existentially distributable
witness predicate, a time out could be used: if no sub-checker decides that a
local predicate holds before a time out is reached, the checkers conclude that
the predicate does not hold. However, this could lead to false negatives. Another
criteria for an overlay could be robustness against message loss, e.g. by choosing
neighbors in the overlay according to the physical neighbors. Another direction is
to consider overlays that can be efficiently updated in case of system dynamics.
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Abstract. Building and maintaining complex systems requires good
software engineering practices, including code modularity and reuse.
The same applies in the context of coordination of complex component-
based systems. This paper investigates how to verify properties of com-
plex coordination patterns built hierarchically, i.e., built from compos-
ing blocks that are in turn built from smaller blocks. Most existing
approaches to verify properties flatten these hierarchical models before
the verification process, losing the hierarchical structure. We propose an
approach to verify hierarchical models using containers as actions; more
concretely, containers interacting with their neighbours. We present a
dynamic modal logic tailored for hierarchical connectors, using Reo and
Petri Nets to illustrate our approach. We realise our approach via a pro-
totype implementation available online to verify hierarchical Reo connec-
tors, encoding connectors and formulas into mCRL2 specifications and
formulas.

1 Introduction

Coordination languages describe how to combine the behaviour of independently
executing components, oblivious to each other. As the complexity of systems and
their coordination increases, so does the need to structure these systems into
reusable blocks of manageable size. In the context of coordination languages, we
argue that a complex connector or protocol should be built using a hierarchy of
reusable blocks, each in turn built by compositing more refined blocks.

This section motivates this notion of hierarchical construction using Reo [1]
to describe a switcher connector (Fig. 1) that routes data from a source end a to
either a sink end b or a sink end c. A second source end sw switches between the
two possible data flows, i.e., initially all data flows from a to b, but after signalled
by sw data will flow from a to c. Observe that the hierarchical construction can
also be used with other connector models, such as process algebra communicating
over shared channels [4], or with Petri Nets [5].

Connectors interact with components and with other connectors via their
interfaces, depicted as ‘ ’ in Fig. 1. Informally, the xor connector sends data
atomically from its left port to either its top-right or bottom-right port. In turn,
the alternator uses this connector alternate between sending data from its left
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Fig. 1. Hierarchical construction of a switcher connector.

port to its top-right and to its bottom-right ports. The gateOpen connector
controls the passage of data from the left port to the right port: initially data
can flow; upon receiving a signal from its bottom port the data flow stops until
a new signal is received from its bottom port. Finally, the switcher connector
routes data to either the top or to the bottom right port, alternating whenever
the left-bottom port is triggered.

Fig. 2. Flattened switcher connector.

Existing approaches to model-check
Reo connectors consider only the flat-
tened connector (see Fig. 2 for the flat-
tened switcher). This paper addresses
how to model-check hierarchical connec-
tors, exploiting the hierarchical structure.
E.g., allowing one to verify if, after ignor-
ing the internals of the alternator, the
switcher can output two consecutive val-
ues on its bottom-right port.

We present a model and a modal
logic to specify hierarchical connectors, not
restricted to the realm of Reo, whose alphabet of actions are the reusable contain-
ers. Containers can be either a primitive connector (e.g., ) or a connector
built with other containers (e.g., gateOpen in Fig. 1). Performing a container
c, from our perspective, means performing an action where c interacts with its
exterior.

Summarising, the key contribution of this paper is a model (Sect. 2) and a
logic (Sect. 3) to specify and model-check hierarchical connectors, using Reo as an
example to specify connectors. A prototype implementation generates mCRL2
specifications and logical formulas of our proposed model and logic (Sect. 4).

2 Modelling Hierarchical Connectors

We define hierarchical models for connectors for which a compositional semantics
exist. This semantics may be given, for example, by constraint automata [2] (in
the case of Reo), by a process algebra [4], or by Petri nets (PN) [5]. The toy
examples in Fig. 3, using Reo and PN, will be used to illustrate the concepts.
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Table 1. Semantics of the containers in Fig. 3 (x and y) and container abstractions (∂).

Using the constraint automata semantics [2] without data constraints [6] for
Reo and the standard Petri Net semantics we derive their semantics in Table 1
(columns x and y). The two right columns exemplify container abstractions,
replacing actions by the container names that use these to interact. The Reo
and PN semantics are omitted because these are orthogonal to our approach.

A hierarchical connector (HiCon) is as a set of nested containers, each
mapped to a labelled transition system whose labels consist of sets of actions.
In turn, these actions are mapped to the set of their parent containers. As an
example, the PN of Fig. 3 has containers x and y, whereas y is in x. The tran-
sition a belongs to x, c belongs to y, f does not belong to any container, and e
belongs to both x and y. This notion of action belonging to containers is then
used to formalise the container abstraction ∂ up to a given set of containers.

Formally, a HiCon is a tuple H = (C,A, rt , σ, ρ) such that: C is a set of con-
tainers; A is a set of actions performed by containers; rt ∈ C is the root container;
σ is a function mapping each container c to a labelled transition system (LTS)
(Qc, q0,c, Ac,→c), with states Qc, initial state q0,c, actions Ac ⊆ A, and transition
relation → ⊆ Qc × 2Ac ×Qc; and ρ = (ρC , ρA) is a pair of functions ρC : C → C
and ρA : A → 2C , where ρC induces a total partial order with upper bound
rt , and ρA maps actions to their parents such that c ∈ ρA(a) implies a ∈ Ac.
For example, the Reo connector depicted in Fig. 3 is formalised as (C,A, x, σ, ρ)
where C = {x, y}, A = {a, b, c, d, e}, σ(x) and σ(y) are depicted in Table 1,
ρC = {y �→x, x �→x} and ρA = {a �→ {x} , b �→ {x} , c �→ {x, y} , d �→∅, e �→ {x, y}}.

c
da

b
e

a

b c
e

f• •

Fig. 3. Similar examples of hierarchical connectors, using Reo (left) and PN (right).
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Fig. 4. Examples of container abstractions of the switcher connector from Fig. 3.

Given a HiCon H, a container c, and a subset CH of its containers, we define
the container abstraction of c up to the containers in CH , written ∂CH

(c), as
the LTS (Q, q0, C

′,→′) where (Q, q0, A,→) = σ(c), →′ = {(q,⋃ ρ(as), q′) | (q, as,
q′) ∈ →}, and C ′ = {c′ | ((q, cs, q′) ∈ →) ∧ c′ ∈ cs}. This definition matches
∂x,y(x) and ∂x(x) depicted in Table 1. The more complex example in Fig. 1, using
Reo’s Port Automata semantics, yields the container abstractions in Fig. 4.

3 Container Logic

This section introduces a logic to express and verify properties over hierarchical
connectors. For that, let us consider the following syntax:

ψ := true | false | 〈φ〉 ψ | [φ]ψ | @c ψ | ∂ ψ (state formula)
φ := ϕ | φ∗ | φ + φ | φ . φ (regular formula)
ϕ := c | τ | all | none | ϕ | ϕ + ϕ | ϕ & ϕ (action formula)

This logic, based on a Hennessy-Milner with regular modalities (e.g. as the
one adopted in the mCRL2 toolset [4]), is intended to express and verify prop-
erties of container abstractions ∂C(c). Action formulas build sets of actions over
basic containers and abstract transitions τ (that abstracts actions not belong-
ing to containers C). Regular formulas represent regular expressions over these
sets. Finally, state formulas enrich standard dynamic (modal) formulas with two
extra operators, aiming to navigate over the hierarchy of containers. Intuitively,
@ operator allows to move down in the hierarchy by ‘looking within’ the view
being analysed; conversely, ∂ operator goes up by ‘looking outside’ of it.

We start by formalising the interpretation of regular formulas in our semantic
structures. A regular formula φ is inductively interpreted in a container abstrac-
tion M = ∂C(c) = (Q, q0, C,→) by the relation Mφ ⊆ Q × Q defined below.

Mφ∗ = (Mφ)
∗ Mφ+φ′ = Mφ ∪ Mφ′ Mϕ&ϕ′ = Mϕ ∩ Mϕ′

Mφ.φ′ = {(q, q′) | ∃s ∈ Q · (q, s) ∈ Mφ ∧ (s, q′) ∈ Mφ′} Mϕ = Q × Q \ Mϕ

Mall = {(q, q′) | (q, c, q′) ∈ →, c ∈ C} Mτ = {(q, q′) | (q, c, q′) ∈ →, c /∈ C}
Mnone = Q × Q \ Mall Mc = {(q, q′) | (q, c, q′) ∈ →, c ∈ C}
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Let H = (C,A, rt , σ, ρ) be a hierarchical connector, c ∈ C a container, and
CH ⊆ C a set of containers. The satisfaction of a formula ψ in a state q ∈ Q
of a container abstraction M = ∂C(c) = (Q, q0, C,→) is defined as follows.

H, c, q |= true is always true H, c, q |= @c′ ψ if H, c′, q |= ψ
H, c, q |= false is always false H, c, q |= ∂ ψ if H, ρC(c), q |= ψ
H, c, q |= 〈φ〉 ψ if ∃q′ ∈ Q · (q, q′) ∈ Mφ ∧ H, c, q′ |= ψ
H, c, q |= [φ]ψ if ∀q′ ∈ Q · (q, q′) ∈ Mφ ⇒ H, c, q′ |= ψ

Consider, for example, the formulas φ1 = [all∗ . gateOpen & gateClose] false
and φ2 = 〈all∗ . gateOpen〉@gateOpen 〈alternator∗〉 ∂ 〈gateOpen〉 true. The first
states that gateOpen and gateClose cannot fire at the same time, and
the second that gateOpen can fire twice in a row without its alternator
firing. Both properties hold for switcher; more specifically, it holds that
∂gOp,gCl(switcher), switcher, q |= ψ1 and ∂gOp,alt(switcher), switcher, q |= ψ2,
where q is the initial state.

4 Model-Checking HiCon in Practice

We propose a concrete approach to model-check HiCon, in the context of Reo
connectors, by using mCRL2 model-checking tools. This work is built over the
encoding of a calculus of Reo [8] into the process algebra used to describe mCRL2
specifications [3,7], here extended to hierarchical connectors, and over the μ
modal logic used by mCRL2’s model-checker [4].

This section introduces (1) the hierarchical calculus of Reo connectors, (2)
its encoding into mCRL2, and (3) an informal encoding of our logic into the
standard modal logic used in mCRL2.

Hierarchical Calculus of Reo Connectors. The core language of hierarchical
connectors is given by the grammar below, based on the core by Proença and
Clarke [8], where n is a number and P is a set of primitive connectors.

c := p ∈ P | id | swap | c ; c′ | c * c′ | loop(n)(c) | c{def }

def := s = c | [hide]s = c | def , def ′

The set P includes primitives dupl (to duplicate data), merger (to combine two
inputs), fifo, lossy, and drain. In a nutshell, connectors are sequentially com-
posed with ‘;’ and composed in parallel with ‘*’. The connector id is the identity
of ‘;’, swap swaps the order of 2 inputs, and loop(1)(c) creates a feedback loop
from the last output of c to its first input.

The example from Fig. 3 can be written as ‘x {y=fifo;lossy, x=merger;y}’,
meaning that the connector is the container x, defined as merger;y, and y is
defined as fifo;lossy. We can define the container abstraction ∂merger,y(x) by
marking the specification of y with the prefix [hide].
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Encoding into mCLR2 Specifications. We encode hierarchical Reo con-
nectors into mCRL2 specifications based on a previous encoding of a calculus
of flatten Reo connectors [3]. The hierarchy allows (1) the hiding of actions of
containers marked as hidden, and (2) the inclusion of the names of the par-
ent containers in the actions. We describe this encoding using as example the
encoding of the connector ‘x {[hide]y=fifo;lossy, x=merger;y}’ from Fig. 3:

1 proc
2 Merger1 = (x_merger_1i1|x_merger_1m3 + x_merger_1i2|x_merger_1m3) . Merger1;
3 Fifo2 = x_y_2m4 . x_y_2m5 . Fifo2;
4 Lossy3 = (x_y_3m6 + x_y_3m6|x_y_3o1) . Lossy3;
5 Init1 = hide({x_y_2m5_x_y_3m6},
6 block({x_y_2m5, x_y_3m6},
7 comm({x_y_2m5|x_y_3m6→ x_y_2m5_x_y_3m6}, Lossy3 || Fifo2 )));
8 Init2 = block({x_merger_1m3, x_y_2m4},
9 comm({x_merger_1m3|x_y_2m4→ x_merger_1m3_x_y_2m4}, Init1 || Merger1));

10 init Init2;

Actions in this specification are ports of the Reo connectors. E.g. x_merger_1i2
denotes the 2nd input port of the merger in container x with unique identifier 1.
The main process denoting this connector is Init2 (line 10), which is defined as
the Init1 and Merger1 processes in parallel (line 9). In turn, Init1 consists of the
Lossy3 and Fifo2 processes. In both Init processes communication is enforced
by the block and comm constructs, but they differ in that Init1 also includes a
hide construct (line 5) to hide communication between its lossy and fifo.

Encoding into mCRL2 Formulas. The encoding into mCRL2 specifications
shown above quickly becomes unreadable for humans. To verify Reo connectors
we use our container logic (Sect. 3) over containers (including primitive con-
nectors), encoded into the modal logic used by mCRL2 to verify the encoded
mCRL2 specifications. For example, the property 〈all∗〉@x〈merger〉 true can be
read as “at any moment the container merger inside x can interact”, and is
translated into the modal formula <true*> <x_merger_1i1|x_merger_1m3_x_y_2m4

|| x_merger_1i2|x_merger_1m3_x_y_2m4> true. Informally, this encoding collects all
possible actions and communications by traversing the internal representation
of the mCRL2 specification, and uses this to infer in which actions the merger
container can have interactions with its neighbours. It then expands merger
occurrence by a disjunctions of its possibilities. Note that all constructs of our
container logic are mapped directly into their mCRL2 counterparts, with the
exception of @ and ∂ that are used to pinpoint the desired containers.

HiCon in the Arcatools Framework. Our approach is realised by a public
prototype tool developed in Scala and JavaScript that can be executed via a web-
browser, available to use and download at http://arcatools.org/#reo. Selecting
the swicher connector under “Examples” yields the screenshot in Fig. 5. with the
specification and the logical formulas on the left side, and the visualisation and
the generated mCRL2 specification on the right size. The reader can load the

http://arcatools.org/#reo
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Fig. 5. Screenshot of the Arcatools framework to verify hierarchical Reo connectors.

formula and print the encoded mCRL2 formula, which can be used against the
mCRL2 specification. It is also possible to download the tools and run a server
locally that will also include the options to invoke mCRL2 tools directly from
the browser to verify and visualise the specification.

5 Conclusions and Future Work

This paper presents an approach to reason about the behaviour of connectors
built in a modular way. We empower the hierarchical structure of this construc-
tion, and propose a model that focuses on the containers of sub-connectors rather
than on their interfaces. An action in the evolution of this model consists of a set
of containers that interact with its neighbours at a given moment in time. We
claim that this perspective over hierarchical connectors facilitates the writing
and verification of properties of complex connectors.

In the future we plan to further explore the dedicated logic for hierarchical
connectors. On one hand, we plan to exploit the existence of internal actions
at different levels, leading to notions of weak and strong modalities and to new
notions of behavioural equivalences. On the other hand, we plan to formalise the
encodings described in Sect. 4, and to prove relevant results over our construc-
tions, such as the preservation of behaviour during container abstractions.
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Abstract. Business process management is an operational management
approach that focuses on improving business processes. Business pro-
cesses, i.e., collections of important activities in an organization, are
represented in the form of a workflow, an orchestrated and repeatable
pattern of activities amenable to automated analysis and control. Prior-
ity is an important concept in modeling workflows. We need priority to
model cancelable and compensable tasks within transactional business
processes. We use the Reo coordination language to model and formally
analyze workflows. In this paper, we propose a constraint-based approach
to formalize priority in Reo. We introduce special channels to propagate
and block priority flows, define their semantics as constraints, and model
priority propagation as a constraint satisfaction problem.

Keywords: Transaction · Priority · Constraints · Coordination

1 Introduction

Business Process Management (BPM) systems [20,23] are widely used to auto-
mate organizational business processes. Organizations rely on BPM to analyze,
control or optimize their processes. BPM systems provide means for automated
process analysis such as model validation, transformation, simulation, visualiza-
tion of key performance indicators, and reporting [3]. Despite the variety of BPM
systems [21,29], The foundation of BPMN is based on Petri Nets [1,32]. The
choice of Petri Nets as foundation for BPMN implementation over other formal
methods, often more expressive or specialized [13,14], is not surprising: hardly
any model is as simple, intuitive, and naturally supports task traceability.

While Petri net-based models enable automated process analysis, they lack
a few desirable characteristics: (i) They cannot naturally represent semantics
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of component-based or service-based processes. Ideally, we would like to plug
semantic models for individual components (often integrated dynamically at
run time) to the semantic models of existing processes in a compositional way.
(ii) The classical Petri Nets are not expressive enough and often are extended
(e.g., with colors, reset and inhibitor arcs, priority transitions) to enable mean-
ingful process analysis. Such extensions change the semantics of the model and
generate incompatible dialects of process-specification languages adopted by var-
ious tools.

An alternative formalization to express the semantics of BPMN models is
the Reo coordination language [5]. Reo has been used to formalize semantics
of BPMN, UML Activity and Sequence Diagrams [15], to map BPEL frag-
ments [33], to represent transactional workflows [27], and to implement service
orchestrations [24] and service choreographies [30]. Reo allows composition of
components and services in an intuitive way, and addresses the issue (i) men-
tioned above. Moreover, the open-ended nature of Reo allows us to introduce
channels with specific properties required for some applications. Introducing new
primitives may make it necessary to extend the formal semantics of Reo in order
to include some new concepts. Several dozen variations of semantic models for
Reo have been proposed [25]. They vary from rather simple ones that cover basic
Reo behavior (e.g., constraint automata [8]) to more complex models that cover
specific behavioral aspects, e.g., context-sensitivity [18]. In some of these models,
computing the overall semantics of a system is computationally expensive. This
hampers using the language for analyzing large real-world business processes.

In [16], the authors proposed to model the semantics of Reo as a constraint
satisfaction problem (CSP). They define data flow in a Reo network in the form
of mathematical expressions on data observed at Reo nodes. The main advantage
of such representation is the possibility to use existing constraint solvers to infer
the behavior of a network given the semantics of its constituent parts.

Priority flow is an important aspect of process modeling, which is not easily
supported by existing formalisms. Analyzing compensation and error handling
requires a mechanism to express priority of some flow alternatives over others. In
this paper, we propose a constraint-based framework for priority flow. There is
ongoing work on an existing automata based formal semantics of Reo to handle
priority, but our practical needs for dealing with large models of realistic business
processes currently complicates direct use of automata-based semantic models.

This paper is organized as follows: In Sect. 2, we briefly describe the Reo
coordination language. In Sect. 3, we introduce priority flow in Reo along with a
constraint-based semantics for it. In Sect. 4, we extend our approach to support
numeric priorities. In Sect. 5, we show the application of our constraint-based
approach via two classes of connectors: (a) priority-aware, and (b) connectors
with a large number of states. In Sect. 6, we overview related work. Finally, in
Sect. 7, we conclude the paper and outline future work.
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2 Reo

In the realm of service-oriented computing, the behavior of a software system is
not only defined by the functionality of its services, but also by their interactions.
The code written to realize the latter is often called glue code. Writing and
maintaining glue code is a tedious task, especially in complex systems wherein
the size and rigidity of the glue code tend to grow over time. Coordination
languages offer a more manageable alternative for generating glue code. Reo [5,6]
is a channel-based coordination language for composition of software components
and services. Using a small and open-ended set of predefined and user-defined
constructs, Reo supports modeling of complex coordination behavior.

The primitive constructs in Reo are channels and nodes, whose composition
yields connectors. A channel is an atomic connector with two ends and a con-
straint that relates the flow of data at these ends. Channel ends are either source
ends that read data into the channel or sink ends that write the channel’s data
out. Channels can connect to each other through nodes. There are two types
of channel ends; therefore, three types of nodes can exist: source nodes where
only source ends coincide, sink nodes where only sink ends coincide, and mixed
nodes where both source and sink ends coincide. The mixed nodes of a connec-
tor are internal to the connector and not accessible for external data exchange.
The source and sink nodes of a connector, collectively called its boundary nodes
or ports, are used to connect to (the ports of) components to exchange data.
A source node atomically replicates an incoming data items into all of its coin-
cident channel ends, whenever they are all ready to accept. A sink node nonde-
terministically selects a data item out of one of its coincident channel ends and
delivers it as its outgoing data item, leaving all other data items in its coincident
channels intact. The behavior of a mixed node is an atomic combination of the
behavior of a source node and that of a sink node: whenever all of its coinci-
dent source channels ends are ready to accept data items, it selects a data item
out of one of its nondeterministically chosen coincident sink channel ends, and
atomically replicates it into all of its source channel ends.

A Sync channel has a source and a sink end. It accepts data from
its source iff its sink can dispense it simultaneously. A LossySync has
a source and a sink end. It reads a data item from its source and writes it
simultaneously to its sink. If the sink end is not ready to accept the data item,
the channel loses it. A SyncDrain has two source ends and no sink end.
It reads data from its two ends and discards it iff the ends are ready to interact
simultaneously. A FIFO1 has a source end, a sink end, and capacity
for only one data item. If it is empty, the channel accepts a data item from its
source end and buffers it. If it is full, it is ready to dispense data through its sink
end. Both ends of the channel cannot interact simultaneously. In addition to the
primitive nodes, Merger and Replicator, here we use Router and Cross-product,
which are shortcuts for derived connectors. The Reo nodes used in this work are
explained as follows: A Replicator has one source end and one or more sink
ends. It replicates data coming from its source to its sinks simultaneously. A
Merger has one or more source ends and one sink end. It chooses one of its
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ready to interat source ends non-deterministically, receives a data item through
this end, and writes it to its sink end simultaneously. A Router has one

source end and a number of sink ends. It accepts a data item from its source
and simultaneously replicates it on one of its non-deterministically chosen sink,
which is ready to accept data. A Cross-product has a number of source ends

and a sink end. It accepts a data item from each source, forms a tuple of them in
the counter-clock-wise order with respect to its sink, where it writes the tuple,
simultaneously.

3 Priority Flow

Here we define four channels to deal with priority in Reo.
A PrioritySync ! channel is similar to a Sync channel except it imposes

priority on its flow, which propagates through the connector (unless it is blocked),
and it can influence the non-deterministic choices in the containing connector
by favoring data-flow alternatives that incorporate its ends. A BlockSourceSync
channel ) is a Sync channel that blocks the propagation of priority from its
source end towards its sink end. A BlockSinkSync channel ( is a Sync channel
that stops propagation of priority from its sink end towards its source end. A
BlockSync channel )( , a combination of BlockSourceSync and BlockSinkSync,
stops the propagation of priority in both ways.

We model priority using the concepts of innate and acquired priority. Both
ends of priority sync have innate priority. When an end with innate priority
connects to another end that has no priority, the new end will obtain acquired
priority. When one end of a synchronous type channel (e.g., sync, lossy sync,
sync drain, ...) has acquired priority, the other end has innate priority.

However, in the case of non-synchronous channels (e.g., FIFO, async drain)
and also the priority blocking channels, their ends can only have acquired prior-
ity. We update the constraint-based framework for Reo [16] to capture priority
and the priority propagation mechanism, which we informally described above.
In the rest of this paper, we omit data constraints when defining behavior of
Reo elements. Data constraints are irrelevant for priority flow and were thor-
oughly covered in [16]. Motivated by the constraint-based nature of Reo itself,
and the fact that constraint solving has advanced to the point that a number of
practically useful constraint solvers exist today that can cope with realistically
sized problems, we propose to define the behavior of Reo channels, as algebraic
constraints that alter a set of variables.
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Let N and M be global sets of ends and state memory variables, respectively.
A free variable v has one of the following forms, where n ∈ N and m ∈ M:
ñ ∈ {�,⊥} shows presence or absence of data-flow on n; m̊, m̊′ ∈ {�,⊥} denotes
whether or not the state memory variable m is defined in the source and the
target states of the transition, respectively; n� ∈ {�,⊥} indicates the reason
for lack of data-flow on n originating from the primitive or the context (of this
primitive), respectively; n!• , n!◦ ∈ {�,⊥} models priority flow denoting whether
n has acquired or innate priority. An end n has priority iff n!• ∨ n!◦ = �.

A constraint Ψ , which encodes the behavior of a Reo network is defined as:
a:: = ñ | n!• | n!◦ | n� | m̊ | m̊′ (atoms), Ψ:: = � | a | ¬Ψ | Ψ ∧ Ψ (formulae)
A solution to Ψ is a map from the variable sets V to a value in {⊥,�}. The
satisfaction rules for a solution 〈δ〉 are satisfaction in propositional logic. We
denote the set of all solutions for Ψ as S(Ψ).

Definition 1 (RCSP). A Reo Constraint Satisfaction Problem (RCSP) is a
tuple 〈N ,M,M0,V, C〉, where: N is a finite set of ends. M is a finite set of state
memory variables. M0 ⊆ M is a set of state memory variables that define the
initial configuration of a network. V is a set of variables v defined by the grammar
v:: = ñ | n� | m̊ | m̊′ | n!◦ | n!• for n ∈ N and m ∈ M. C = {C1, C2, ..., Cm}
is a finite set of constraints, where each Ci is a constraint given by the grammar
Ψ involving a subset of variables Vi ⊆ V.

Definition 2. (Composition 
). The composition of two RCSPs ρ1 = 〈N1,
M1, M0,1, V1, C1〉 and ρ2 = 〈N2, M2, M0,2, V2, C2〉 is defined as follows:
ρ1 
 ρ2 = 〈N1 ∪ N2, M1 ∪ M2, M0,1 ∪ M0,2, V1 ∪ V2, C1 ∧ C2〉.

Axiom 1 (Join axiom). To propagate no-flow reasons, when a source end c
and a sink end k from two networks, the following holds: ¬c̃ ⇔ ¬k̃ ⇔ (c� ∨ k�).

Axiom 2 (Priority join axiom). When a source end c and a sink end k from
two networks connect, this holds: (c!◦ ∨ c!• ⇔ k!◦ ∨ k!•) ∧ (c!◦ ∧ k!◦ ⇔ c!• ∨ k!•).

Axiom 3 (Non-deterministic choice axiom). Let N be a set of ends from
which a Reo primitive chooses one for communication non-deterministically. The
following guarantees that a node y with no priority has flow only if no prioritized
node, e.g., x, is ready to interact: (¬x̃ ∧ (x!◦ ∨ x!•) ∧ ỹ ∧ ¬(y!◦ ∨ y!•)) ⇒ ¬x�

In [16], the authors described the constraints that a primitive imposes on
a network as a CSP. We extend these constraints with priority capturing vari-
ables. If the variable p!• is true, the end p has innate priority. For example,
in a PrioritySync channel, both ends have innate priority. A primitive end can
also obtain innate priority via propagation. For instance, if one end of a Sync
channel has acquired priority, which means it is prioritized because a primitive
connected to it propagates priority, then the other end will have innate priority.
We denote acquired priority for a primitive end p as: p!◦ ∧ ¬p!• . The priority
capturing constraint for a Sync channel with source end a and sink end b can be
specified as follows: ¬(a!◦ ∨ a!• ∨ b!◦ ∨ b!•) ∨ (a!◦ ∧ ¬a!• ∧ b!•) ∨ (a!• ∧ b!◦ ∧ ¬b!•).
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1 Input: A Reo network R and its RCSP ψ, Output: Solutions for the given RCSP

2 fifoStates ← initial states of FIFOs from the given RCSP;
3 state0 ← {〈 fifoStates 〉}; toExplore ← {state0}; visited ← {}; solutions ← {};
4 while (toExplore �= {}) do
5 state ← toExplore.pop(); visited ← visited ∪ {state};
6 cnf ← updateStateAndMakeCNF(ψ, state);
7 solutionsB ← solve(cnf);
8 for solB ∈ solutionsB do
9 state′← next state of FIFOs extracted from solB ;

10 if state’ �∈ visited and state’ �∈ toExplore then
11 toExplore ← toExplore ∪ {state’};
12 end
13 solutions ← solutions ∪ {〈state, solB , state’〉};

14 end
15 output ← {solutions, state0};

16 end

Algorithm 1. Finding solutions for a given RCSP

The assertion ¬p!• blocks the priority propagation on p. Though, p can still have
acquired priority through a potential connecting primitive when p!◦ = �.

Table 1 shows the constraint encoding of Reo channels and nodes in pres-
ence of priority flow. The solutions to the CSP expressing the behavior of a Reo
network encode possible data-flow through its nodes. Since a network may later
connect to another network, the constraints should account for priority imposed
by potential future connections. This information can be discarded when ana-
lyzing the behavior of a network in isolation. To exclude such cases, we should
restrict the possible values of boundary ends.

Axiom 4 (Grounding axiom). Let B ⊂ N be the set of boundary nodes
in a Reo network. We rule out the solutions that are only present for further
expansion of the network by: ∀b ∈ B : b!◦ ⇒ b!• .

Solutions of the RCSP represent semantics of the corresponding Reo network,
but they are specified as equations, which are much harder to interpret than an
equivalent automata-based semantics. To tackle this issue, we introduce a new
form of automata-like semantics for Reo, which we call Reo Labeled Transition
System (RLTS). The purpose of the RLTS is to compactly represent solutions of
RCSPs for visualization, model checking and simulation. Given a Reo network,
its RCSP can be obtained by traversing the network and forming the conjunction
the constraint encodings of its primitives. The procedure to solve an RCSP is
presented in Algorithm 1. It takes a Reo connector and its RCSP and outputs the
solutions set and the initial state of the connector. First, the algorithm initializes
the global variables that keep the states of FIFO channels (fifoStates), the states
to explore (toExplore), and the visited states (visited) (lines 2,3). While toExplore
is not empty, Ψ is updated with the current state and its conjunctive normal
form (CNF) is produced for computing the solutions of the Boolean predicates
(lines 4,5). The 〈state′〉 indicates the new state of the connector and if it is not
already explored or queued to be processed, it gets added to the list of states
to be explored (lines 6–9). Then, the solutions set is updated with the current
solution (line 13). The final output is the set of solutions and the initial state.
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Table 1. Constraint encoding of Reo with priority

Channel Constraints
a b! (ã ⇔ b̃) ∧ ¬(a� ∧ b�) ∧a!• ∧ b!

•

a b)
(ã ⇔ b̃) ∧ ¬(a� ∧ b�) ∧¬b!•

a b(
(ã ⇔ b̃) ∧ ¬(a� ∧ b�) ∧¬a!•

a b)(
(ã ⇔ b̃) ∧ ¬(a� ∧ b�) ∧¬a!• ∧ ¬b!•

a b (ã ⇔ b̃) ∧ ¬(a� ∧ b�) ∧((¬a!• ∧ ¬a!◦ ∧ ¬b!• ∧ ¬b!◦) ∨ ((a!◦ ⇒
b!

•
) ∧ (b!

◦ ⇒ a!•)))

a b
(b̃ ⇒ ã) ∧ ¬a� ∧ ¬ã ⇒ b� ∧ ((¬a!• ∧ ¬a!◦ ∧ ¬b!• ∧ ¬b!◦) ∨ ((a!◦ ⇒
b!

•
) ∧ (b!

◦ ⇒ a!•)))

a b
(ã1 ⇔ ã2) ∧ ¬(a�

1 ∧ a�
2) ∧ ((¬a!• ∧ ¬a!◦ ∧ ¬b!• ∧ ¬b!◦) ∨ (a!◦ ⇒

b!
•
) ∧ (b!

◦ ⇒ a!•))

a b
(ã ⇒ ¬m̊∧m̊′)∧(b̃ ⇒ m̊∧¬m̊′)∧(¬ã∧¬b̃) ⇒ (m̊ ⇔ m̊′)∧(¬m̊ ⇒
b�) ∧ (m̊ ⇒ a�) ∧ (¬a!• ∧ ¬b!•)

b

a1

a2

b

a1

a2

ã ⇔ (b̃1 ∧ b̃2) ∧ ¬ã ⇒ ((¬a� ∧ b�
1 ∧ b�

2) ∨ (¬b�
1 ∧ b�

2 ∧ a�) ∨ (¬b�
2 ∧

b�
1 ∧ a�)) ∧ ((¬a!• ∧ ¬b!•1 ∧ ¬b!•2 ∧ ¬a!◦ ∧ ¬b!◦1 ∧ ¬b!◦2 ) ∨ ((a!◦ ⇒
(b!

•
1 ∧ b!

•
2 ) ∧ (b!

◦
1 ∨ b!

◦
2 ) ⇒ a!•)))

a
b1

b2

a
b1

b2

ã ⇔ (b̃1 ∨ b̃2)∧¬(b̃1 ∧ b̃2)∧ ã ⇔ (¬a� ∨¬(b�
1 ∨b�

2))∧ ((¬a!• ∧¬b!•1 ∧
¬b!•2 ∧¬a!◦ ∧¬b!◦1 ∧¬b!◦2 )∨ (ã ⇒ ((a!◦ ⇒ (b!

•
1 ∨b!

•
2 ))∧ (b!

◦
1 ∨b!

◦
2 ) ⇒

a!•) ∧ (b̃1 ⇒ (a!◦ ⇒ b!
•
1 ∧ b!

◦
1 ⇒ a!•) ∧ ((¬b!◦1 ∧ ¬b!•1 ∧ ¬b̃2 ∧ (b!

◦
2 ∨

b!
•
2 )) ⇒ ¬b2�)) ∧ (b̃2 ⇒ (a!◦ ⇒ b!

•
2 ∧ b!

◦
2 ⇒ a!• ∧ (¬b!◦2 ∧ ¬b!•2 ∧

¬b̃1 ∧ (b!
◦
1 ∨ b!

•
1 ) ⇒ ¬b1�)))))

Table 2. Updating Priority capturing constraints

a b!P a b) a b( a b)( a b

a!• ≥ P ∧ b!
• ≥ P b!

•
= 0 a!• = 0 a!• = 0 ∧ b!

•
= 0 a!• = 0 ∧ b!

•
= 0

a b
(a!• = 0 ∧ a!◦ = 0 ∧ b!

•
= 0 ∧ b!

◦
= 0) ∨ ((a!◦ > 0 ⇒ (a!◦ = b!

•
)) ∧ (b!

◦
> 0 ⇒

(b!
◦
= a!• ))) ∧ (b!

•
> 0 ⇒ b̃)

a b
a b

(a!• = 0 ∧ a!◦ = 0 ∧ b!
•
= 0 ∧ b!

◦
= 0) ∨ ((a!◦ > 0 ⇒ (a!◦ = b!

•
)) ∧ (b!

◦
>

0 ⇒ (b!
◦
= a!• )))

a b a!• = 0 ∧ b!
•
= 0

b

a1

a2

b

a1

a2

((a!• = 0 ∧ a!◦ = 0 ∧ b!
•

= 0 ∧ b!
◦

= 0) ∨ ((b!
◦

> 0 ⇒ (a!•
1 = b!

◦ ∧ a!•
2 =

b!
◦
)) ∧ (a!◦

1 > 0 ⇒ (a!•
2 = a!◦

1 ∧ b!
•
= a!◦

1 ) ∧ (a!◦
2 > 0 ⇒ (a!•

1 = a!◦
2 ∧ b!

•
=

a!◦
2 )))))

a
b1

b2

a

b1

b2

((a!• = 0 ∧ a!◦ = 0 ∧ b!
•
= 0 ∧ b!

◦
= 0) ∨ (b̃1 ⇒ (b!

◦
1 > 0 ⇒ (b!

◦
1 = a!• ))) ∧

(b̃2 ⇒ (b!
◦
2 > 0 ⇒ (b!

◦
2 = a!• )))∧((max(b!

◦
1 , b!

•
1 ) > max(b!

◦
2 , b!

•
2 )) ⇒ ((b̃2 ∧

¬b̃1) ⇒ ¬b�
1)) ∧ ((max(b!

◦
2 , b!

•
2 ) > max(b!

◦
1 , b!

•
1 )) ⇒ ((b̃1 ∧ ¬b̃2) ⇒ ¬b�

2)))
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Definition 3 (RLTS). A Reo Labeled Transition System (RLTS) is a tuple
RLT S=(N , M, Q, →, q0), where: N is a set of ends, M is a set of state
memory variables, Q is a (finite) set of states of the form 〈M〉, M is the set of
state memory variables that are valid in the given state, → ⊆ Q×2N ×2N ×2N ×Q
is a transition relation, wherein N , R, and I in (q, N, R, I, p) ∈→ represent
the ends that have flow, those without flow for which the reason for no flow is
the end not being ready for interaction, and the ends with priority. Note that
n �∈ N does not always mean n ∈ R as the reason for data flow can be the
network (then, n requires a reason for no flow). q0 ∈ Q is the initial state. We

write q
N, R, I−−−−−→ p instead of (q, N, R, I, p) ∈ →. For n ∈ I, n /∈ R ⇔ n ∈ N .

Definition 4 (Composition �). We define the composition of L1 =
(N1, M1, Q1, →1, q01) and L2 = (N2, M2, Q2, →2, q02) as: L1 � L2 =
(N1 ∪ N2, M1 ∪ M2, →, q01 × q02) where → is defined as:

q1
N1,R1,I1−−−−−−→1t1q2

N2,R2,I2−−−−−−→2t2N1∩N2=N2∩N1R1∩N2=R2∩N1I1∩N2=I2∩N1

q1×q2
N1∪N2,R1∪R2,I1∪I2−−−−−−−−−−−−−−→t1×t2

q1
N1,R1,I1−−−−−−→1t1q2

N2,R2,I2−−−−−−→2t2N1∩N2=∅
q1×q2

N1,R1,I1−−−−−−→t1×t2

, and its symmetric rule.

We define few operations on a solution s for Ψ = 〈NΨ , MΨ , MΨ0, VΨ , CΨ 〉:
source(s)=〈{m|m◦ ∈ MΨ : s(m◦) = �}〉, target(s)=〈{m|m′◦ ∈ MΨ : s(m′◦) =
�}〉, flow(s)={n|n ∈ NΨ : s(ñ) = �}, reason-giving(s)={n|n ∈ NΨ : s(n�) = �},

priority(s)={n|n ∈ NΨ : (s(n!◦) ∨ s(n!•)) = �}. We say s � q
N,R,I−−−−→ p, where q

= source(s), N = flow(s), R=reason-giving(s), I = priority(s), p = target(s).

Definition 5 (Visualization). The visualization function γ on Ψ = 〈N , M,
M0, V, C〉 yields L=(N , M, Q, →, q0), where M = {m|s(m◦) = �∨s(m′◦) =
�, s ∈ S(Ψ)}, Q =

⋃
s∈S(Ψ){source(s), target(s)}, →= {(source(s), f low(s),

reason-giving(s), priority(s), target(s)) |s ∈ S(Ψ)}, q0= source(s0).

Theorem 1. Let Ψ1 and Ψ2 be two RCSPs, we show that γ(Ψ1 
 Ψ2) = γ(Ψ1) �
γ(Ψ2).

Proof. Let γ(Ψ1)=(N1, M1, Q1, →1, q01), γ(Ψ2) = (N2, M2, Q2, →2, q02),
and γ(Ψ1 
 Ψ2) = (N, Q, →, q0). It is trivial to see that N = N1 ∪ N2,
M = M1∪M2, Q = Q1×Q2, q0 = q01 ×q02 . Assume ∃s ∈ S(Ψ1 
Ψ2), s1,∈ S1,

s2 ∈ S2, t1 : q1
N1,R1,I1−−−−−−→1p1, t2 : q2

N2,R2,I2−−−−−−→2p2 s.t. s1 � t1 and s2 � t2, but
� t : q

N,R,I−−−−→ p ∈→ s.t. s � t. Therefore, N1 ∩ N2 �= N2 ∩ N1 ∧ N1 ∩ N2 �= ∅
or (N1 ∪ N2) ∩ (R1 ∪ R2) �= ∅. The latter is impossible. For the former, either
n ∈ N1, n /∈ N2 or n ∈ N2, n /∈ N1, which is not possible as it means s(n) =
� ∧ s(n) = ⊥. Similarly, we can show it is impossible to have a t in γ(Ψ1 
 Ψ2),
when there is no s ∈ S s.t. s � t.

RLTS is comparable with Reo automata [12], a context-dependent formal seman-
tic of Reo. A transition in Reo automata is labeled with a guard, which is a
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Boolean predicate in disjunctive normal form expressing positive and negative
information about presence or absence of I/O requests, and a firing set that
models the occurring I/O operations in the transition. The second set in RLTS
transitions (the set of ends that provide reason for no flow) correspond to the
negated elements of the guards in Reo automata, while the set of ends with flow
relates to both the firing set and the positive elements of the guards. Unlike Reo
automata, RLTS supports priority.

4 Numeric Priority

In BPMN, an error event has the highest priority, and the exception has priority
over the normal flow. In this extension, the range for priority variables of an end
n, n!◦ and n!• , is N (natural numbers) ∪ {0}, where 0 indicates no priority. The
larger number is the higher priority it represents. Each PrioritySync channel
comes with a user defined priority value, which propagates through its ends. To
propagation of a higher priority over a lower priority or no priority, we constrain
priority variables to be greater than or equal to their initial values. Table 2 shows
the priority related parts of the Reo constructs constraints. 〈δ〉 � x ≥ P iff δ(x) ≥ P ,

〈δ〉 � x > P iff δ(x) > P , 〈δ〉 � x = P iff δ(x) = P , where x ∈ {x!• , x!◦ }, P ∈ N ∪ {0}. The new
constraint-based encodings of the replicator and router nodes in this table are
constructed in accordance with Axiom 3.

Definition 6 (NPRLTS). A Numeric Priority Reo Labeled Transition System
is a tuple (N , M, Q, →, q0), where: N is a set of ends, M is a set of state
memory variables, Q is a (finite) set of states of the form 〈M〉, M is the set of
state memory variables that are valid in the given state, → ⊆ Q×2N ×2N ×N �→
N×Q is a transition relation, wherein N , R, and fI in (q, N, R, fI , p) ∈→ are
the ends having flow, those without flow for which the reason for no flow is the
end not being ready for interaction, and a partial map of nodes with priority to
their priority values, respectively. q0 ∈ Q is the initial state. We write q

N,R,fI−−−−→ p

instead of (q, N, R, fI , p) ∈ →. For all q
N,R,fI−−−−→ p: f(n) > 0, n /∈ N ⇔ n ∈ R.

We redefine priority(s) as {(n, p)|n ∈ NΨ : s(n!◦) = p ∨ s(n!•) = p}.

Definition 7 (Extended Visualization). The visualization function γ on
Ψ = 〈NΨ , MΨ , MΨ0 , V, C〉 yields L = (NL, ML, Q, →, q0), where NL =
{n|s(ñ) = �, s ∈ S(Ψ)}, ML = {m|s(m◦) = � ∨ s(m′◦) = �, s ∈ S(Ψ)},
Q =

⋃
s∈S(Ψ){source(s), target(s)}, →= {(source(s), f low(s), reason-giving(s),

priority(s), target(s)) | s ∈ S(Ψ)}, q0=source(s0).

5 Case Study

Here we demonstrate the application of our approach via an example and present
a performance evaluation of our approach. Figure 2(a) depicts a sales process,
which starts by receiving an order. It proceeds by reserving the ordered items
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for the customer. Then, the customer gets charged and her account is updated.
Meanwhile if the payment encounters a problem, a cancellation event is triggered,
which causes compensation for all of the performed activities. However, if an
error event occurs, all tasks inside the transaction stop, the boundary error
catch event redirects the flow to notifying the operator. Finally, if no problem
occurs, the ordered items are shipped and the process ends.

Figure 2(c) shows a Reo network that simulates this process. The process
starts by reading a token from the writer W2, which resembles receiving an
order. Though a Reo network can be used for modeling infinite data flow, in
the BPMN standard, when a start event is triggered, a new instance of the
process is instantiated. Therefore, the Reo network is designed to handle only
one request. The end A1 reads a token from the writer W2 and directs it to
replicator node B, which duplicates the token and forwards them to the BC and
BE FIFO1 channels. The token from BC continues to the CD FIFO1 channel.
If the payment succeeds, the flow from CD and BE FIFO1 channels merge and
a token enters the FG FIFO1 channel. Then, it gets consumed by the reader R3.

If the payment fails, performed activities need to be compensated. A token
from W1 simulates a payment failure, so the process needs to be canceled. The
prioritySync channel IJ imposes a priority of one on the failure associated flow.
The node J replicates the failure token into the lossySync channels JM and JU ,
depending on whether each of the FIFO1 channels BC and CD is empty or full,
the connected lossySync channels lose the incoming tokens or pass them to the
adjacent syncDrain to consume the tokens of FIFO1 channels, respectively. At
the same time, the replicator node J writes into the FIFO1 channels JK and
JN , which simulate cancel reservation and undo changes tasks, respectively. The
flow corresponding to error, starting from the writer W3, is structurally similar
to the failure flow, but it has a priority of 2 due to SQ PrioritySync.

To analyze the presented BPMN process, we convert it to a Reo network. The
core mapping is presented in [7,17], which maps a task to a FIFO1 channel, while
it converts message, cancel, and error events to writer components simulating the
incoming flows from the environment. A diverging parallel gateway is mapped
to a replicator, while a converging parallel gateway is mapped to a join. The
sequence flows are converted into sync channels. The mapping of exception and
error handling flows are more complex and are presented in [27].

In this example, the error handling flow has the highest priority, while the
exception handling has the medium priority, and the success flow has no priority.
The choice between these three alternative flows is made by the routers. We
obtain the NPRLTS as follows: First, we form the RCSP of the network by
traversing through its primitives. Then, we solve the obtained RCSP and extract
transitions from obtained solutions, as described in Algorithm 1.

To show the effect of priority on our example, we first investigate the behavior
of the network in absence of priority, wherein the normal flow of the process can
continue even in case of a payment failure. This is because the router node E
chooses one of its outgoing flows non-deterministically. The following assets a
priority-respecting routing of these alternative flows. ({BE} ∈ source(t)∧ (C1 ∈
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flow(t)∨E1 ∈ flow(t))) ⇒ ((W3 /∈ reason−giving(t) ⇔ W3 ∈ flow(t))∧(W3 ∈
reason − giving(t) ∧ W1 /∈ reason − giving(t)) ⇔ W1 ∈ flow(t)).

A typical way of verifying this property is to check it against the NPRLTS of
the network. The given property is straight forward to check. Due to the number
of ends in this example, the transition labels of the NPRLTS are lengthy. Thus
for brevity, we apply an abstraction on the original NPRLTS, which leads to a
more concise and readable model. To address a node end, we append a number
index to the node name (e.g., B1). We refer to a channel using the name of the
nodes connected to its ends (e.g., BC). Similarly, we append a number index to
a channel name to denote a channel end (e.g., BC1). In addition, we group the
ends with a similar name e.g., B1,2 (referring to ends B1 and B2).

Since, the property solely mentions the ends C1, E1, W1, and W3 on the
transitions originating from the states where BE FIFO1 channel is full, we
abstract from the rest of the ends in those transitions and from all the ends
in other transitions. It is straight-forward to see that this abstraction does not
affect the correctness of the validation due to the nature of the property.

Figure 2(b) shows the abstract NPRLTS of the network of Fig. 2(c) in absence
of priority. The property that we are interested to check is that if from any state
wherein BE holds, W3 has flow unless it provides a reason for no flow itself, and
if W3 provides a reason for no flow, W1 has flow unless it provides a reason for no
flow itself. This property, however, does not hold on the current NPRLTS as it
contains transitions originating from states {BC,BE} and {CD,BE}, wherein
either W3 is absent in R (the set of ends providing a reason for now flow), yet it
is not in N (the set of ends with data flow) or W3 is in R, but W1 is not in R,
yet it is not in N .

Here we show how considering priority constraints rules out these transi-
tions. We reason about one of the transitions (the transition from {BC,BE} to
{CD,BE} with N = {C1, ...}, R = {W1, ...}). Similar reasonings hold for the
rest.

0 : ∃t∈NPRLTS:C1∈N(t),W1∈R(t),W3 /∈N(t),W3 /∈R(t)

∃ s∈S(Ψ) s.t. s⇒C̃1∧¬W̃3∧W1
�∧¬W3

�

1 : 0&ΨP rioritySync1 (SQ1,2) & priority join on the network

C!◦
3 =1

,

2 : 0&ΨP rioritySync2 (IJ1,2) & priority join on the network

C!◦
4 =2

, 3 : 2;Ψrouter(C1,2,3,4)

C̃1∧¬C̃4⇒C4
� ,

4 : 0 & join

¬C̃4
, 5 : coloring & join

C4
�⇒W3

� ,, 6 : 0 & 3 & 4 &5
W3

� , 7 : 0 & 5
⊥

This disproves the existence of the aforementioned transition meaning that
when {BC} and {BE} are full, the request from W1 is not ignored.
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The execution time of the Algorithm 1 depends on the number of states of
the RCSP and the time to solve the RCSP. Thus, to study the performance
of our framework and to compare it with the existing approaches, we choose
N-Sequencer, which consists of N FIFO channels that are circularly connected.
Adding each FIFO1 channel doubles the number of states in the corresponding
semantic model and increases the complexity of the constraints encoding the
behavior of the network by adding new variables and new assertions on them.
This makes the network a good choice for our benchmarking, where we would like
to compare the solutions on state explosion. Since we are interested in comparing
our approach with the existing tools, we do not include priority in our case study.
This is justified by the fact that incorporating priority does not affect the number
of states in the model and influences only the size of the constraint. In addition,
adding more FIFO1 channels to the network increases both the number of states
and the size of the constraint capturing the semantics of the network. Since we
use optimized third-library tools to solve the constraints, we do not distinguish
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between the various form of constraints obtained from different channels and
instead we observe the approximate growth of the size of constraints.

Figure 1 shows a 7-sequencer. Though the size of the operational semantics
model of this network grows in a linear fashion in relation with N, the num-
ber of intermediate states to compute the final results grows exponentially. The
benchmarks have been performed on Mac Book Pro OS X El Capitan with 2.8
GHz Intel Core i7 and 16 GB MHz DDR3 memory. Our approach is imple-
mented in Java 8. We have used Reduce Algebra System revision number 2337
to compute the conjunctive normal form of the constraints and to solve them. We
have experimented with an optimization on the number of variables used in the
constraints by substituting equal variables with a single variable. Figure 2(a)
presents the average time to compute a single solution of the RCSP of an
N-Sequencer. Figure 2(b) shows the relation between N and the size of the
RCSP’s constraints of an N-Sequencer. This is an indication of the complex-
ity of the constraint. Figure 2(c) illustrates the total time required to compute
all solutions of a RCSP’s constraint of an N-Sequencer. Figure 2(d) shows the
time consumed to calculate the coloring semantics and the constraint automata
semantics of N-Sequencers using the ECT toolset. The computation of the color-
ing semantics and the constraint automata fail with the stack overflow error for
N = 16 and N = 21, respectively. The results shows that our approach handles
larger models than the existing tools can. The effect of the optimization is more
significant for larger N .

6 Related Work

Several works, e.g., [10,11,22] use priorities to model scheduling policies. Many
workflow languages rely on Petri nets [2,4]. Priority flow in Petri net-based
process models is managed with the help of inhibitor arcs and transition prior-
ities [31]. Inhibitor arcs allow a transition to fire only if the adjacent place is
empty. Prioritized Petri nets [9] introduce a partial order on transitions. Given
a set of enabled transitions, the transitions with higher priority fire before the
transitions with lower priority. Others, e.g., [28,34] use a partial order on tran-
sitions to model priority. Our earlier approach in modeling priority using binary
variables supports a limited form of priority compared to the mentioned Petri
nets approaches. However, the proposed extension bridges this gap by defining
priorities as non-zero natural numbers. An advantage of our model is its compo-
sitionality. Compared to the aforementioned methods, Reo fits in the realm of
component-based or service-oriented architecture in a compositional way. Reo is
an extensible language, where new behavioral aspects can be added. An effort
to express the behavior of Reo networks via constraints is reported in [19]. It
demonstrates the efficiency of the constraint-based approach. It models synchro-
nization and data flow constraints, but no priority flow was considered. In [16], a
framework is presented to encode semantics of Reo networks as CSP with predi-
cates in the form of binary propositions and numerical constraints. An advantage
of this method is handling data constraints symbolically and, hence, mitigating
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the state explosion problem of automata models. We extended this framework to
handle priority constraints, taking a step forward toward implementing a toolset
that covers all behavioral aspects of Reo. Among the formal semantics of Reo,
connector coloring comes with a limited notion of priority based on the context
information. The context information affects otherwise non-deterministic data-
flow choices. In [26], an automata-based semantics is proposed, which associates
a preference for each transitions. A transition of lower preference is fired iff no
more preferred transition can occur.

7 Conclusions and Future Work

In this paper, we addressed the problem of priority flow modelling using the
Reo coordination language. We extended the unified constraint-based semantics
of Reo with binary and numeric priority constraints, showed correctness of our
approach for the binary case and evaluated the performance of the algorithm for
solving the RCSP to derive the semantics of a Reo network given the behavior of
its consituent elements. We also illustrated the use of our framework for modeling
business processes with priority flow.

As part of our ongoing work, we are using this framework to encode other
aspects of the semantics of Reo, specifically, timed behavior. A promising area
for future work is to use our framework for constraint-based model checking of
Reo networks with priority.
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Abstract. Cheap and ubiquitous availability of multi-processor hard-
ware provides a strong incentive to parallelize existing software. We aim
to annotate existing sequential applications written in C with OpenMP
directives that can be processed by compilers on high performance paral-
lel computers. We adopt a model-based approach, where from sequential
C-code a software model is extracted in a largely automatic fashion.
The target is the modeling language ABS (Abstract Behavioral Spec-
ification), an active objects-language with formal semantics. ABS has
been designed to be statically analyzable. We focus on the first stages of
model-based parallelization: model extraction and validation. We define
a behavior-preserving, fully automatic translation of a large fragment of
sequential C that explicitly renders all possible execution sequences, then
use automated test case generation to produce validation test cases.

Keywords: Model extraction · Model validation · Parallelization

1 Introduction

The context of this paper is a project1 concerned with the adaptation of legacy
software due to changed requirements and technical advances. Specifically, cheap
and ubiquitous availability of multi-processor hardware provides a strong incen-
tive to parallelize existing software. In the long term we aim to annotate existing
sequential applications written in C with OpenMP directives [14].

We adopt a model-based approach as illustrated in Fig. 1. From given sequen-
tial C-code a software model is extracted in a largely automatic fashion. The
target is the modelling language ABS (Abstract Behavioral Specification) [7], an
active objects-language [4] with formal semantics [9]. ABS is formally defined,
free from ambiguity, and it has been designed to be statically analyzable [17].
1 Software-Factory 4.0, see http://www.software-factory-4-0.de/.
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4.0 project.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Hojjat and M. Massink (Eds.): FSEN 2019, LNCS 11761, pp. 213–227, 2019.
https://doi.org/10.1007/978-3-030-31517-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31517-7_15&domain=pdf
http://orcid.org/0000-0001-8000-7613
http://www.software-factory-4-0.de/
https://doi.org/10.1007/978-3-030-31517-7_15


214 N. Wasser et al.

C code (with implicit behaviour):
    - Non-determinism
    - Dependencies

C2ABS tool: Extract, Abstract, Explicitate

Extracted ABS model makes
non-determinism and
dependencies explicit.

Feedback for developers:
    - (OpenMP) Annotations
    - Generated test cases

ABS toolbox with existing
tools and future tools. Model

Fig. 1. Model-based parallelization

Therefore, it is possible to use software tools for exhibiting opportunities for
parallelization and to generate suitable directives. In this paper we focus on the
first stage: model extraction and model validation.

While abstraction of source code to a modelling language is a standard ingre-
dient of many model checking tool chains (for example, [8]), here we pursue differ-
ent goals: 1. we don’t abstract away from behavior, but make non-deterministic
behavior (a consequence of underspecification in C) explicit in the model; 2.
non-deterministic execution sequences2 and variable dependencies are precisely
represented in a formal language and amenable to symbolic analysis; 3. the for-
mal model with explicit non-determinism makes it possible to validate the model
via automatically generated test cases and to give feedback to the author of the
C-code about possibly unintended ambiguity.

Our main contributions are: 1. A behavior-preserving, fully automatic trans-
lation of a large fragment of sequential C that explicitly renders all possible
execution sequences in ABS, and 2. application and adaptation of the ABS test
case generator SYCO [3] to generate validation test cases. In Sect. 2 we define
the C-fragment that we currently support and introduce a running example. In
Sect. 3 we show how we extract an outline of the model based on the declarations
of global variables and functions; how we extend the function-modelling classes
with required helper methods in order to make non-determinism contained in
C expressions within the function definition explicit in the model; and finally
how we model the execution of the function call itself. In Sect. 4 we report on

2 Most C compilers decide the evaluation order of subexpressions and side-effects at
compile-time, but the C standard does not require this, so deciding at runtime is
possible. Hence, this underspecified behavior is classified here as non-deterministic.
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experiments performed with our tool, for model validation. Finally, we discuss
related and future work in Sect. 5 and conclude in Sect. 6.

2 C-Fragment and Active Object Language

2.1 Input Language: C

The supported C-fragment is closely related to MISRA-C [12], a C subset widely
used in embedded systems. We don’t cover all features of MISRA-C (yet) which
is not caused by principal limitations, but down to the fact that our tool is
a research prototype rather than a commercial product. More importantly, in
contrast to MISRA-C we explicitly permit non-deterministic computations and
programs with underspecified C semantics that may lead to different behavior.
In fact, our goal is to make such behavior explicit, so that it can be analyzed
and taken into account in the parallelization stage.

Figure 2 contains the subset of C we use as an input language to explain
our model extraction process.3 A program is a list of declarations containing
a function definition for main(). In addition to the assignment operator =, we
restrict ourselves to the operator set { +,−, ∗,==, ! =, >,>=, <,<= }. The
semantics of a program from this subset of C are the same as the semantics of
the C99 standard for the given program. In particular the unspecified evaluation
order for side effects of assignments, as well as evaluation of arguments and
subarguments to operators4 and functions are preserved. Following the standard,
evaluation of all function arguments and side effects caused by these is sequenced
before the actual function call, while evaluation of arguments and side effects
outside of the function call are indeterminately sequenced to it.5

Example 1. We consider an execution of the
program in Listing 1.1. Execution of a C pro-
gram always begins in the function main.
First, a local variable y is initialized with
the value −1. Then the condition of the
while loop (x > reset(1)) is evaluated. The
C standard imposes no order on the evalua-
tion of the arguments x and reset (1) of the
operator >.

Listing 1.1. A C program

int d = 0 ; int x = 2 ;
int r e s e t ( int p) {

return x = d ;
}
int main ( ) {

int y = −1;
while ( x > r e s e t ( 1 ) )

r e s e t (d = y ) ;
return x ;

}

3 Our model extraction tool C2ABS can process a much larger subset of C. The given
subset, however, is sufficient to demonstrate the key focus of this paper: making non-
deterministic unspecified behavior of a C program explicit through active objects.

4 The subset of C under consideration does not contain operators which introduce
sequence points, such as the comma operator (·,·) or the ternary operator (·?·:·).

5 This means that the evaluation of arguments and side effects outside of the function
call may happen before or after—but not during—the execution of the function call.
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Declc ::= GlobalVarDeclc ‘;’ | FuncDeclc ‘;’ | FuncDefc

GlobalVarDeclc ::= ‘int’ GlobalIdc ‘=’ Z

FuncDeclc ::= ‘int’ FuncIdc ‘(’ ParamDeclsc ‘)’

ParamDeclsc ::= ε | ‘int’ LocalIdc { ‘,’ ‘int’ LocalIdc }
FuncDefc ::= FuncDeclc ‘{’ { Stmtc } ‘return’ Exprc ‘;’ ‘}’

Stmtc ::= ‘;’ | ‘{’ { Stmtc } ‘}’ | LocalVarDeclc | Ifc | Whilec | Exprc ‘;’

LocalVarDeclc ::= ‘int’ LocalIdc ‘=’ Exprc ‘;’

Ifc ::= ‘ if’ ‘(’ Exprc ‘)’ Stmtc [ ‘else’ Stmtc ]

Whilec ::= ‘while’ ‘(’ Exprc ‘)’ Stmtc

Exprc ::= ‘(’ Exprc ‘)’ | Z | GlobalIdc | LocalIdc | Exprc Operator Exprc |
GlobalIdc ‘=’ Exprc | LocalIdc ‘=’ Exprc | FuncIdc ‘(’ Argsc ‘)’

Argsc ::= ε | Exprc { ‘,’ Exprc }

Fig. 2. Syntax for a subset of C

Therefore, either of the following executions follow the standard:

1. reset (1) is called, setting x to 0 while returning the value 0, then x is evaluated
to 0. Finally, 0 > 0 is evaluated to 0,6 thus the condition is deemed false, the
while loop is exited and the program returns 0 (the value of x).

2. x is evaluated to 2, reset (1) is called, setting x to 0 while returning the value
0. Finally, 2 > 0 is evaluated to 1, thus the condition is deemed true and the
while loop entered. The expression statement reset (d = y); is executed by
evaluating the expression. It is ensured that the value and side effect of d = y
are evaluated before the function reset is called. Therefore d is set to −1 and
reset(−1) is called, setting x to −1 (the value of d). Now the condition of the
while loop is checked again and will evaluate to 0 regardless of evaluation
order, thus exiting the loop. The program returns −1 (the value of x).

Execution of the program is thus underspecified, due to implicit non-
determinism.7

2.2 Output Language: Active Objects

Languages such as Java or C feature low-level concurrency where a thread can
be preempted at any time by another process running on the same processor and
heap space. This leads to myriads of possible interleavings that cause complex
data races being hard to contain and to characterize. On the opposite side of
preemptive scheduling is actor-based, distributed programming [16], where all
methods are executed atomically and concurrency occurs only among distinct

6 In C relational operators return 1 for true, 0 for false; if and while treat the con-
dition 0 as false, everything else as true.

7 Potential results of unspecified behavior in C often go unnoticed by the programmer.
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processors with disjoint heaps. In this scenario it is possible to specify behavior
completely at the level of interfaces, typically in the form of behavioral invariants
jointly maintained by an object’s methods. The drawback is: this restrictive form
of concurrency forces one to model and to specify systems at a highly abstract
level, essentially in the form of protocols. It precludes modeling of concurrent
behavior that is closer to real programs, such as waiting for results computed
asynchronously on the same processor and heap.

Recently, active object languages [4] attempt to occupy a middle ground
between preemption and full distribution. We focus on ABS [9] which is based
on cooperative scheduling and has been used to model complex, industrial con-
current systems [2]. Cooperative scheduling implies that tasks cannot be pre-
empted, but they may explicitly and voluntarily suspend their execution to allow
a required result to be provided by another task: concurrent methods on the same
processor and heap cooperate with each other to achieve a common goal.

The ABS language construct realizing this behavior has the form await f?,
where f is a reference (called future) to the result of a method that may not have
completed. Its effect is that the current task suspends itself and only resumes
once the value of f is available. However, there might be more tasks except the
one computing f’s value waiting for execution at this point. It is not determined
in which sequence these waiting tasks are scheduled. Since they share the same
memory, data races among them are possible.

Crucially, since the only ABS statement that can suspend execution is await,
data races are localized in that they can only occur at await statements (or at
the start of a method). Likewise, since all ABS methods run uninterruptedly
either to completion or until they encounter an await statement, only the final
state reached at the end of a method or before an await statement needs to be
known when analyzing local data races. Hence, it suffices to reason about a very
specific form of data race at few, explicitly specified code locations.

Listing 1.2. A model in ABSlite

class C( Int x ) {
Unit add ( Int y ) {

this . x = this . x + y ;
return Unit ;

}
Int getX ( ) {

return this . x ;
}

}
{ // main b l o ck

C o = new C( 5 ) ;
Fut<Unit> se = o ! add ( 2 ) ;
Fut<Int> fx = o ! getX ( ) ;
await se ? & fx ? ;
Int z = fx . get ;

}

Given a program from our C subset we
extract an ABSlite model from it. Figure 3
shows the syntax of ABSlite.8 For a brief
overview of the semantics of ABSlite, consider
the model in Listing 1.2. The main block at
the end is executed when the model is run. A
new object o of class C is created with an ini-
tial value of 5 for the implicitly defined field
this.x. Then two asynchronous calls are made
to the object o: one call to add 2 to the field
x and one call to return the value of field x.
An asynchronous call immediately returns a
future value, which can be polled through an
await statement to see if the method call has
returned. The await statement ensures that

8 C2ABS produces a model in ABS with additional features. ABSlite described here is
chosen to show only what is actually required to extract a model from the C subset.
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Modela ::= { ClassDecla } Blocka

ClassDecla ::= ‘class’ ClassIda ‘(’ ParamDeclsa ‘)’ ‘{’ { Decla } ‘}’
Decla ::= FieldDecla | MethodDecla

FieldDecla ::= Typea FieldIda ‘=’ PureExpra ‘;’

Typea ::= ‘Int’ | ‘Bool’ | ‘Unit’ | ‘Fut’ ‘<’ Typea ‘>’ | ClassIda
MethodDecla ::= Typea MethodIda ‘(’ ParamDeclsa ‘)’ RetBlocka

ParamDeclsa ::= ε | Typea ParamIda { ‘,’ Typea VarIda }
RetBlocka ::= ‘{’ { Stmta } ‘return’ PureExpra ‘;’ ‘}’

Stmta ::= ‘;’ | Blocka | VarDecla | Assigna | Ifa | Whilea | Awaita | Expra ‘;’

Blocka ::= ‘{’ { Stmta } ‘}’
VarDecla ::= Typea VarIda ‘=’ Expra ‘;’

Assigna ::= (VarIda | ‘this’ ‘.’FieldIda) ‘=’ Expra ‘;’

Ifa ::= ‘ if’ ‘(’ PureExpra ‘)’ Stmta [ ‘else’ Stmta ]

Whilea ::= ‘while’ ‘(’ PureExpra ‘)’ Stmta

Awaita ::= ‘await’ PureExpra ‘?’ { ‘&’ PureExpra ‘?’ } ‘;’

Expra ::= ‘new’ ClassIda ‘(’ Argsa ‘)’ | AsyncCalla | GetExpra | PureExpra
AsyncCalla ::= (‘this’ | VarIda | ‘this’ ‘.’FieldIda) ‘!’ MethodIda ‘(’ Argsa ‘)’

Argsa ::= ε | PureExpra { ‘,’ PureExpra }
GetExpra ::= (VarIda | ‘this’ ‘.’FieldIda) ‘.’ ‘get’

PureExpra ::= ‘(’PureExpra ‘)’ | VarIda | ‘this’ ‘.’FieldIda | OpExpra | Literala
OpExpra ::= ‘!’ PureExpra | PureExpra Operator PureExpra

Literala ::= Z | ‘True’ | ‘False’ | ‘Unit’

Fig. 3. Syntax for ABSlite

no further code in the main block is executed until both asynchronous calls have
returned. In the meantime the active object o has received the two asynchronous
calls. It begins to execute one of these calls. Once that call has returned, it will
execute the other. Depending on the order it executes these calls, the value
returned by getX() is either 5 or 7. The get returns the value of a future, block-
ing if neccessary until the value is available. Here the await ensures that the
return value from the call to getX() is available. It is stored in the local variable
z. Through the explicit non-determinism9 of active objects (realized by the two
asynchronous calls) the value of z is underspecified.

3 Model Extraction

An overview of the model extraction process is in Fig. 4. Each function definition
is modelled as a class, while each executing function call is modelled as an active
9 ABS code is atomically and deterministically executed by default. Non-determinism

occurs only at scheduling points that are syntactically explicit in the code.
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object of that class. Evaluation of (sub)expressions and side effects take place
in asynchronous method calls to the same active object, while await statements
at which forked asynchronous calls are joined model the sequencing rules of the
C standard. If a function is called multiple times (whether recursively or itera-
tively), each of these calls is modelled by its own active object. As all functions
have access to the global variables10, a single active object which all other active
objects have access to is used to model the state of all global variables. Blocking
calls to the global object are used to access/modify the global variables. Addi-
tionally, blocking calls are used to pass control from one function call to a nested
function call being executed, as the C standard ensures that subexpressions and
side effects outside of a function call are indeterminately sequenced to it and,
therefore, cannot occur during execution of the function call.

active object
of class
C main

modelling
function main

active object
modelling
a function

active object
modelling
a function

active object
of class
Global

modelling
global vars

program
entry

blocking calls
modelling

function calls

(*) blocking calls modelling access to global vars

(*)

(*)(†) async calls modelling
unspecified evaluation order of
subexpressions and side effects

(†)

(†)

Fig. 4. Overview of model extraction

3.1 Modelling Global Variable Declarations and Initial Call to Main

Given a program p we construct the model shown in Listing 1.3. The function
extractFunctions is described in Sect. 3.3 and extractGlobalVars is defined to
create a class Global, which contains all global variables with their initial values
as fields, with getter and setter methods for these fields:

extractGlobalVars : Declc∗ → Decla∗

ε �→ ε

decl decls �→ extractGlobalVars(decls), if decl �∈ GlobalVarDeclc
int gv = z; decls �→ Int gv = z; Int get gv() { return gv ; }

Unit set gv(Int x) { this.gv = x; return Unit; }
extractGlobalVars(decls)

10 We ignore the potential for variable shadowing.
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In the main block, we create an active object of class Global and pass this
to an active object modelling the program entry. Whenever new active objects
modelling function calls are created, we pass the Global object along, such that
every modelled function call has access to the global variables. As an example,
Listing 1.4 shows the extracted Global class from Listing 1.1.

Listing 1.3. Extracted model of p

class Global {
extractGlobalVars(p)

}
extractFunctions(p)
{

Global g l oba l = new Global ( ) ;
C main o = new C main ( g l oba l ) ;
Fut<Int> fv = o ! c a l l ( ) ;
Int v = fv . get ;

}

Listing 1.4. Example Global class
class Global {

Int d = 0 ;
Int get d ( ) { return d ; }
Unit s e t d ( Int x ) {

this . d = x ;
return Unit ;

}
Int x = 2 ;
Int get x ( ) { return x ; }
Unit s e t x ( Int x ) {

this . x = x ;
return Unit ;

}
}

3.2 Modelling Unspecified Evaluation Order Within Expressions

Evaluating an expression in C can exhibit unspecified behaviour due to the lack
of a rigid evaluation order for subexpressions and side effects offered by the
typical C standards (as opposed to, e.g., the Java language specification). To
correctly model this unspecified behavior, we take advantage of the explicit non-
determinism of active objects with respect to the execution order of asynchronous
calls. Execution of a function call in C is modelled by an active object executing
its call method. Within this method multiple asynchronous calls can be made
to other methods of this active object followed by an await statement, such that
these other methods can be executed in a non-deterministic fashion.

Definition 1. A tuple (stmts, se, futVar) ∈ (VarDecla∗ × VarIda∗ × VarIda),
where se contains only local variables of type Fut<Unit> declared in stmts
(the side-effects of the evaluated expression) and futVar is a local variable of type
Fut<Int> declared in stmts (the value of the evaluated expression) is defined as
an expression wrapper11. The set of all expression wrappers is defined as EW.

We define the function convert in Fig. 5, which converts a C expression
into an expression wrapper recursively, where x, se ∈ VarIda are fresh unused
identifiers, ei ∈ Exprc , z ∈ Z, lv ∈ LocalIdc , gv ∈ GlobalIdc , (stmtsi, sei, xi) =
convert(ei),⊕ ∈ Operator and f ∈ FuncIdc .

As can be seen in the function convert , asynchronous calls to various methods
of the current active object are made. The active object classes generated from a
C function are thus required to implement the subset of methods in Fig. 6 which
are used in the converted expression wrappers of all expressions contained in the
function definition.
11 In this paper we restrict expression wrappers to (VarDecla

∗ × VarIda
∗ × VarIda),

while in C2ABS they are in the superset (Stmta
∗ × VarIda

∗ × PureExpra).
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( e1 ) �→ convert(e1)

z �→ (Fut<Int> x = this!id(z);, ε, x)

lv �→ (Fut<Int> x = this!get lv();, ε, x)

gv �→ (Fut<Int> x = this!getGlobal gv();, ε, x)

lv = e1 �→ (stmts1 Fut<Unit> se = this!set lv(x1);, se1 se, x1)

gv = e1 �→ (stmts1 Fut<Unit> se = this!setGlobal gv(x1);, se1 se, x1)

e1 ⊕ e2 �→ (stmts1 stmts2 Fut<Int> x = this!op⊕(x1, x2);, se1 se2, x)

f(e1, . . . , en) �→ (stmts1 · · · stmtsn Fut<Int> x = this!call f m(args);, ε, x)

where args = x1, . . . , xn, se11 , . . . , sen|sen| and m =
∑n

i=1 |sei|

Fig. 5. The function convert : Exprc → EW

Int id ( Int x ) { return x ; }

Int ge t lv ( ) { return this . lv ; }

Unit s e t lv (Fut<Int> fx )
{

await fx ? ;
this . lv = fx . get ;
return Unit ;

}

// for ⊕ ∈ {+,−, ∗} :
Int op⊕ (Fut<Int> fx , Fut<Int> fy )
{

await fx ? & fy ? ;
Int x = fx . get ;
Int y = fy . get ;
return x ⊕ y ;

}

Int getGloba l gv ( ) {
Fut<Int> fx = this . g l oba l ! g e t gv ( ) ;
// no await , b l ock ing c a l l
Int r e s u l t = fx . get ;
return r e s u l t ;

}

Unit s e tG loba l gv (Fut<Int> fx ) {
await fx ? ; Int x = fx . get ;
Fut<Unit> se = this . g l oba l ! s e t gv ( x ) ;
se . get ; // no await , b lock ing c a l l
return Unit ;

}

// for R ∈ { ==, ! =, >,>=, <,<= } :
Int opR (Fut<Int> fx , Fut<Int> fy ) {

await fx ? & fy ? ;
Int x = fx . get ; Int y = fy . get ;
Int r e s u l t = 0 ;
i f ( x R y ) r e s u l t = 1 ;
return r e s u l t ;

}

Int c a l l f m(Fut<Int> fx1, . . . , Fut<Int> fxn ,
Fut<Unit> se1, . . . , Fut<Unit> sem ) {

await fx1? & . . . & fxn? & se1? & . . . & sem ? ;
Int x1 = fx1 . get ; . . . Int xn = fxn . get ;
C f o = new C f ( this . g loba l , x1, . . . , xn ) ;
Fut<Int> f r = o ! c a l l ( ) ;
// no await , b lock ing c a l l
Int r e s u l t = f r . get ;
return r e s u l t ;

}

Fig. 6. Families of required helper methods
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Side effects are created only by assignments, while the side effects of an
operator’s operands are gathered and passed upwards. A function call has no side
effects in this sense12, but rather introduces a sequence point between evaluation
of function arguments and any side effects produced therein, and the function
call itself. For this reason the call to call f m contains the future values for all
side effects of the function arguments, in addition to the arguments themselves.
This allows an await statement to ensure that all side effects are completed,
before the actual call to the function is modelled by creating a new active object
of the appropriate type and calling its call method.

3.3 Modelling Function Definitions as Classes

The function extractFunctions called in Listing 1.3 extracts ABSlite classes
modelling C function definitions and is defined in Fig. 7, together with
extractFunction and extractLocalVars. Here (stmts ′, se ′

1 · · · se ′
n, x

′) = convert(e)
and extractStmts (and helper functions extract and varDeclToAssign) are defined
in Fig. 8.

Function parameters are modelled as class parameters (which are implicit
fields), while local variables are modelled as explicit fields of the class. This
allows access to them as required from the helper methods. For this reason a
local variable declaration needs to be treated twice: once by creating a field
to model this local variable and assigning it a witness term (Int lv = 0;) in
extractLocalVars and once by modelling the initial value for the local variable
by assignment (this.lv = x’ .get;) in extract .

Treating while loops introduces an additional wrinkle: while in C the condi-
tion of a while loop can contain side effects, in ABS this is not possible. For this
reason the auxiliary statements in the expression wrapper required to calculate
the value of the pure expression must be performed twice: once before the while
loop and once at the end of the loop body before re-evaluating the condition.
We re-use the local variables declared in the auxiliary statements by replacing
local variable declarations with assignment in varDeclToAssign.

4 Experiments

We developed an Eclipse plugin C2ABS which extracts an ABS model from a
given C program, following the translation approach described in the previous
sections.13 To validate an extracted model we analyze it with SYCO14, a sys-
tematic tester for ABS concurrent objects. The SYCO kernel includes state-
of-the-art partial-order reduction techniques to avoid redundant computations
12 Obviously, a function call can have side effects, by changing the values of global

variables, but these will be dealt with in the active object modelling the function
call, rather than in the current active object.

13 C2ABS with example inputs and outputs can be found at: https://www.informatik.
tu-darmstadt.de/se/se research/se projects/fsen 2019.en.jsp.

14 http://costa.fdi.ucm.es/syco/clients/web/.

https://www.informatik.tu-darmstadt.de/se/se_research/se_projects/fsen_2019.en.jsp
https://www.informatik.tu-darmstadt.de/se/se_research/se_projects/fsen_2019.en.jsp
http://costa.fdi.ucm.es/syco/clients/web/
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extractFunctions : Declc
∗ → ClassDecla

∗

ε �→ ε

decl decls �→
{
extractFunction(decl) extractFunctions(decls) , if decl ∈ FuncDefc

extractFunctions(decls esiwrehto,)

extractFunction : FuncDefc → ClassDecla
int f ( int p1 , . . . , int pn ){stmts return e ;}

�→
class C f ( Global g loba l , Int p1, . . . , Int pn ) {

extractLocalVars(stmts)
Int c a l l ( ) {

extractStmts(stmts)
stmts ′

await x′ & se ′
1 & . . . & se ′

n ;
Int r e s u l t = x′ . get ;
return r e s u l t ;

}
. . . // requ i r ed he l p e r methods (see Fig. 6)

}

extractLocalVars : Stmtc
∗ → FieldDecla

∗

ε �→ ε

; stmts �→ extractLocalVars(stmts)

{ stmts1 } stmts2 �→ extractLocalVars(stmts1 stmts2)

e; stmts �→ extractLocalVars(stmts)

int lv = e; stmts �→ Int lv = 0; extractLocalVars(stmts)

if (e) st �→ extractLocalVars(st stmts)

if (e) st1 else st2 stmts �→ extractLocalVars(st1 st2 stmts)

while (e) st stmts �→ extractLocalVars(st stmts)

Fig. 7. The functions extractFunctions, extractFunction and extractLocalVars

during testing [3]. Two runs of an ABS program with the same main method are
redundant relative to each other when any possible difference in the scheduling
of tasks cannot possibly lead to a data race. Obviously, this is an undecidable
property. SYCO safely under-approximates redundant computations.

Table 1 contains C programs that contain expressions with unspecified eval-
uation order. The programs two-unspec, Schrödinger and one-to-fib are based
on an idea by Derek Jones15, where the C standard allows two-unspec to return

15 http://shape-of-code.coding-guidelines.com/2011/06/18/fibonacci-and-jit-
compilers/.

http://shape-of-code.coding-guidelines.com/2011/06/18/fibonacci-and-jit-compilers/
http://shape-of-code.coding-guidelines.com/2011/06/18/fibonacci-and-jit-compilers/
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extractStmts : Stmtc
∗ → Stmta

∗

ε �→ ε

st stmts �→ extract(st) extractStmts(stmts)

extract : Stmtc → Stmta
∗

; �→ ε

{ stmts →�} extractStmts(stmts)

e; �→ stmts ′ await x′ & se ′
1 & . . . & se ′

n;

int lv = e; �→ stmts ′ await x′ & se ′
1 & . . . & se ′

n; this.lv = x′.get;

if (e) st �→ stmts ′ await x′ & se ′
1 & . . . & se ′

n; Int x = x′.get;

if (x != 0) { extract(st) }
if (e) st1 else st2 �→ stmts ′ await x′ & se ′

1 & . . . & se ′
n; Int x = x′.get;

if (x != 0) { extract(st1) } else { extract(st2) }
while (e) st �→ stmts ′ await x′ & se ′

1 & . . . & se ′
n; Int x = x′.get;

while (x != 0) {
extract(st)

varDeclToAssign(stmts ′)

await x′ & se ′
1 & . . . & se ′

n; x = x′.get;

}

varDeclToAssign : VarDecla
∗ → Assigna

∗

ε �→ ε

T x = e; stmts �→ x = e; varDeclToAssign(stmts)

Fig. 8. The functions extractStmts, extract and varDeclToAssign

either 1 or 2, Schrödinger tests if two calls to two-unspec are equal and one-to-
fib(n) returns a value between 1 and the n-th Fibonacci number. Too many
false positives are often a problem with static code checkers, so no-reliance
is a test case which does not rely on unspecified evaluation order, calculating
the same result despite different execution paths. Finally, assign-chain returns
(x = y = z = 5) + f(), where f returns the sum x + y + z, to test unspecified
evaluation order of side effects.

We compared the result of model extraction with C2ABS followed by anal-
ysis with SYCO to program analysis using Cerberus16, a tool for developing a
semantic model for a substantial fragment of C [11]. It takes a similar approach
than we do by cross-compiling C into a Lisp dialect and performing analysis
on that program. Table 1 contains the number of explored states during anal-
ysis and the total time spent for the SYCO web interface. The Cerberus web

16 https://cerberus.cl.cam.ac.uk/.

https://cerberus.cl.cam.ac.uk/


Modeling Non-deterministic C Code with Active Objects 225

interface has a 45 second timeout and does not give exact run times. We also
show the different possible results for the programs and the number of execution
paths deemed different by the tools. In the case of SYCO, it shows only those
executions that lead to a different configuration after partial order reduction [1].

Table 1. Model validation with SYCO compared to program analysis with Cerberus

Program Extraction w/C2ABS, validation w/SYCO Cerberus (45s timeout)

Explored states Time (ms) Results Executions Results Executions

two-unspec 42 19 1, 2 2 1, 2 7

Schrödinger 148 190 0, 1 4 0, 1 98

one-to-fib(3) 58 35 1, 2 2 1, 2 7

one-to-fib(4) 382 972 1, 2, 3 12 timeout

no-reliance 104 120 0 2 0 2

Listing 1.1 208 570 −1, 0 5 −1, 0 9

assign-chain 4609 12838 11, 13, 14, 15, 480 11, 13, 16, 20 42

16, 17, 18, 20

While Cerberus times out after 45 seconds for one-to-fib(4), SYCO man-
ages to completely validate the model extracted by C2ABS in less than a sec-
ond. SYCO recognizes that there are only 4 different paths in the Schrödinger
model, while Cerberus claims 98. But most interesting are the different results
for assignment-chain: here the difference seems to be that Cerberus assumes the
order of the side effects is set (first assign z, then y, then x) and only allows
the evaluation of f() to interleave. However, this does not match the C standard
which clearly states that the evaluation order of side effects is unspecified. Our
model faithfully reflects this, allowing the side effects and function call to occur
in any order, resulting in additional possible results.

In addition to the C programs where SYCO could fully analyze the extracted
model, we considered programs where the extracted model caused SYCO to time
out after 45 seconds when attempting to analyze all possible execution paths.
The one-to-fib function for inputs greater than 4 is such a case, as well as a
nested for loop example with 10,000 inner iterations. Partial validation of these
larger models was possible, by enabling constraints in SYCO to only consider
certain paths, and by using a simulation tool that creates an Erlang program
from an ABS model and executes that.17 With these we can partially validate
one-to-fib with inputs up to 19 in less than 10 seconds.

5 Related and Future Work

We discussed the Cerberus tool in the previous section. Apart from it, there is
not much published work on model extraction. The SPIN model checker contains
the model extractor Modex from C to ProMeLA [8]. Unfortunately, we did not
manage to get it to work on our examples. MISRA-C is a well-known subset of
the C language widely used in the development of safety-critical systems [13].

17 http://samir.fdi.ucm.es:8080/ei/clients/web/.
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One of its rules checks whether the value of an expression is the same under any
order of evaluation that the standard permits. It stipulates that no unspecified
behavior is caused by the order of evaluation of subexpressions. There are several,
mostly commercial, static code analyzers equipped with a MISRA-C compliance
checker, for example , Astrée [6], Polyspace18, Axivion Bauhaus Suite [15], and
ECLAIR19. All of these are based on abstract interpretation [5]. Also, some
compilers like Green Hills , IAR , TASKING and TI are equipped with a MISRA-
C compliance checker. In contrast to MISRA-C compliance checkers we want to
analyze and detect also non-compliant behavior and we give detailed feedback
to the developer about differing computations.

In the future we intend to add operators that introduce sequencing (in par-
ticular the ternary operator), as well as tracking sequencing information to rec-
ognize undefined behavior, such as changing a value multiple times between
sequence points. We will also extend the types C2ABS can deal with. ABS has a
formally defined semantics [9], while a semantics for C is given by the K frame-
work20, allowing a formal proof of the correctness of the translation in future.
Common continuation region analysis [10] allows recognizing and optimizing
asynchronous calls which can be performed in parallel. Finding parallelization
potential in the ABS model could then be transferred back to the C program.

6 Conclusion

We described how to extract an ABS model from a C program to make the
implicit non-deterministic behavior explicit. There exist a number of tools built
to analyze ABS models [17], because the language was designed to be analyzable.
This will help us extend the ABS toolbox with tools built to localize parallelizable
parts of the model and thus give feedback to the C developers. We implemented
our model extraction approach and validated the models thus extracted using
SYCO. In doing so, we have found differences in results between our modelling
of the C standard and that chosen by developers of the related tool Cerberus.
We feel confident that our results are correct. Our approach also seems to scale
better. Additionally, we found areas where SYCO can be optimized and relayed
this to the developers.

Acknowledgments. We would like to thank the SYCO development team for their
support, in particular, Samir Genaim and Miky Zamalloa.
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6. Cousot, P., et al.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS,
vol. 3444, pp. 21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31987-0 3
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15. Raza, A., Vogel, G., Plödereder, E.: Bauhaus – a tool suite for program analysis
and reverse engineering. In: Pinho, L.M., González Harbour, M. (eds.) Ada-Europe
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Abstract. Smart contracts have been argued to be a means of building trust
between parties by providing a self-executing equivalent of legal contracts. And
yet, code does not always perform what it was originally intended to do, which
resulted in losses of millions of dollars. Static verification of smart contracts is
thus a pressing need. This paper presents an approach to verifying smart con-
tracts written in Solidity by automatically translating Solidity into Java and using
KeY, a deductive Java verification tool. In particular, we solve the problem of
rolling back the effects of aborted transactions by exploiting KeY’s native sup-
port of JavaCard transactions. We apply our approach to a smart contract which
automates a casino system, and discuss how the approach addresses a number of
known shortcomings of smart contract development in Solidity.

1 Introduction

Blockchain is a distributed ledger running in a decentralised manner on a network of
devices that allows for the exchange of data in a trusted manner. Such values may be
stored and modified without the need for a centralised trusted authority; trust is estab-
lished through distributed collaboration following specific protocols. Cryptocurrencies,
particularly Bitcoin [15], was the first proposed application of blockchain. A smart con-
tract platform built on top of blockchain, as proposed and built by Ethereum1, enables
for blockchain to be used for many other applications besides cryptocurrencies.

Smart contracts are software programs that are openly stored on the blockchain
(they can be read and used by anyone), and—as everything else on blockchains—are

1 https://www.ethereum.org.
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1. The casino owner may deposit or withdraw money from the casino’s bank as long as the
bank’s balance never falls below zero.

2. As long as no game is in progress, the owner of the casino may make available a new game
by tossing a coin and hiding its outcome. The owner must also set a participation cost of
choice for the game.

3. Clauses 1 and 2 are constrained in that as long as a game is in progress, the bank balance
may never be less than the sum of the participation cost of the game and its win-out.

4. The win-out for a game is set to be 80% of the participating cost.

Fig. 1. Excerpt from a legal contract regulating a coin-tossing casino.

permanent and cannot be altered. Their execution is typically performed by “workers”
(commonly known as miners) that earn some cryptocurrency in return for their work. A
smart contract typically offers means of invoking its functionality so end users can inter-
act with it to transfer data and cryptocurrency to the contract. The contract is effectively
the logic to manage these invocations and execute the corresponding instructions that
manipulate the local bookkeeping of data (including the cryptocurrency). Underlying
a smart contract lies a description, and prescription, of an agreement between different
parties in order to automate the regulated exchange of value and information over the
internet.

The promise of smart contract technology is to diminish the costs of contracting,
enforcing contractual agreements, and making payments, while at the same time ensur-
ing trust and compliance, all in the absence of a central trusted authority. Such exe-
cutable legal contractual agreements suffer from some drawbacks: (i) it is not easy to
ensure that the smart contract complies with the legal contractual obligations that the
program is intended to implement; and (ii) it is not easy to ensure the correctness of
smart contracts. In this paper we focus only on the latter aspect. Consider the legal con-
tract shown in Fig. 1 regulating how a simple casino should make a coin-tossing game
available to players. A smart contract implementing this legal contract would carry out
concrete actions to ensure that the legal contract is never violated. For instance, clause 3
requires that while a game is in progress, there is always enough money available to pay
in case the player wins. This could be achieved by allowing a game to start only if there
is enough money to pay for a win, and then to disallow withdrawals which result in
not enough money left to pay. Or more radically by preventing the casino from with-
drawing any money during a game. Either way, we should be able to prove that our
implementation satisfies the invariant required by such clauses.

Smart contracts are programs, and as such they are vulnerable to bugs just as
any other software. Errors may have many causes, like out of range numbers, unintu-
itive language feature semantics, or intricate mismatches between internal bookkeeping
(in the local data) and external bookkeeping (in the blockchain), to name a few. Erro-
neous behaviour may be intended, explicitly provoked by malicious contract creators,
or exploited by opportunists. Bugs in smart contracts may result in massive losses in
an irreversible way (as blockchain transactions are permanent, and no authority has the
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power to undo them). Recent multi-million Ethereum bugs2 have shown that this is
indeed an issue researchers and practitioners should take seriously [3].

In this paper we focus on the verification of smart contracts written in Solidity3, by
translating them automatically into Java. By targeting Java, our translation can exploit
the similarities between the contract-oriented and the object-oriented paradigms, and
make use of existing verification tools. We use the deductive source code verifier KeY
[2] to verify the translated program since it is among the most powerful verification
tools for object-oriented languages, and specifically, it has native verification support for
transactions and their abortion, allowing to model the rolling back of program effects.
We apply our approach to a case study consisting of a Casino smart contract.

The paper is organised as follows. Section 2 gives some background on smart con-
tracts and the deductive verification tool KeY. In Sect. 3 we present our Solidity to Java
translation. Section 4 is concerned with the verification of the translated Java programs
using KeY. Section 5 introduces our case study. We discuss scope and limitations of our
approach in Sect. 6, followed by related work and a conclusion.

2 Preliminaries

2.1 Smart Contracts in Solidity

Since smart contracts are deployed on a blockchain (or some other form of distributed
ledger technology) which typically enforces immutability of deployed smart contract
code and also due to the critical nature of applications they are often employed for, a dif-
ferent mind set to traditional programming is required [6]. Ethereum’s virtual machine
provides a ‘one world computer’ abstraction: the Ethereum Virtual Machine (EVM)
[16] is an abstract machine that executes transactions atomically whereby a transaction
is an action initiated by a smart contract user. The predominant language used to write
Ethereum smart contract code is Solidity.

A deployed Ethereum smart contract has an associated unique address, can own
Ether (Ethereum’s native cryptocurrency), and transfer Ether to other addresses which
may be other contracts or user accounts. Being Turing complete, the EVM needs to cater
for code which may not terminate or takes an unacceptably long time to execute. To get
around this, the EVM implements a notion of gas—a cost (in Ether) for the execution
of each EVM bytecode instruction. If the amount of gas associated with a particular
transaction is not fully paid for, then execution of the smart contract stops and the altered
state within the transaction is reverted to the original state as it was upon initiation. This
ensures that all transactions terminate, and that computationally expensive functionality
is financially prohibitive, avoiding attempts to overload the Ethereum execution engine.

Listing 1.1 shows an excerpt of a Solidity contract4 we have built to model the
casino contract from Fig. 1. In particular, the listing shows the implementation of

2 https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-
bug-ether.

3 https://solidity.readthedocs.io.
4 See https://git.io/fx6cn.
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function removeFromPot which allows the casino to withdraw money from the casino’s
bank when invoked. The logic within the function is simple—it reduces the internal state
variable pot which keeps track of how much money lies in the casino’s bank (using
an unsigned 256 bit integer) and transfers the requested amount using the transfer
method to the caller of the function—msg is a variable representing the message invok-
ing the transaction and msg.sender is the transaction initiator’s address. It is worth
noting that on Ethereum, function calls are atomic (though still reentrant), in that they
execute to completion (whether successful or not) before another function call can be
invoked.

1 contract Casino {
2 private uint256 pot = 0;
3 private address operator;
4 ...
5 function removeFromPot(uint256 value) public byOperator noActiveBet {
6 pot = pot - value;
7 msg.sender.transfer(value);
8 }
9

10 modifier byOperator() {
11 require (msg.sender == operator);
12 _;
13 }
14 ...
15 }

Listing 1.1. Solidity code to withdraw money from the casino pot and definition of a modifier to
ensure that a function can only be invoked by the owner of the casino.

To ensure that the function can only be invoked by the casino owner and not during
an active game, the code uses two modifiers byOperator and noActiveBet, which add
in-line checks accordingly. The definition of the byOperator modifier is also shown
in Listing 1.1. It modifies any function it is applied to (here it has been applied to
removeFromPot) such that it executes the original function code where the placeholder
_; is specified. The modifier byOperator will thus ensure that the transaction initiator
is indeed the casino operator, using a require statement (one type of exception raising
convenience function provided which checks if a condition holds, or otherwise raises an
exception), and then executes the original function code. Internally, the require state-
ment triggers the Solidity command revert which raises an exception if the condition
does not hold.

It is worth noting that if the transfer function fails (for example due to insuffi-
cient available funds being available in the contract) then it will also raise an exception
and abort the transaction reverting the state (including variable values) back to their
original values as at the beginning of the invocation. Solidity also provides a send func-
tion which, in case of failure, will not raise an exception but returns a boolean success
response.

Functions are tagged by annotations indicating their visibility in Solidity—defining
from where calls can be made: private only from functions within the contract;
internal from functions within the contract or from deriving contracts; external only
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from external contracts (or using a contract interface transaction rather than a function
call); or public from anywhere.

2.2 Deductive Verification with KeY

We use the KeY system [2] to verify the Java programs (obtained from the original
Solidity contracts) to be correct with respect to their specification. The Java Modeling
Language (JML) [12], is used to write class invariants and method specifications.

JML specifications are embedded into Java source code as Java comments. Any
comment starting with //@ or /*@ marks the start of a JML specification. Consequently,
standard Java tools like compilers, simply ignore JML specifications, while JML aware
tools can distinguish Java comments from JML specifications and make use of them.

1 public class Account {
2 /*@ public invariant accountNr >= 0 &&
3 (\forall Account a; a != this; a.accountNr != this.accountNr); *@/
4 private /*@ spec_public @*/ int accountNr;
5
6 //@ public invariant balance >= 0;
7 private /*@ spec_public @*/ int balance;
8
9 /*@ public normal_behaviour

10 @ requires amount >= 0 && to != this;
11 @ requires this.balance >= amount;
12 @ assignable this.balance, to.balance;
13 @ ensures this.balance == \old(this.balance) - amount;
14 @ ensures to.balance == \old(to.balance) + amount;
15 @ ensures \result == true;
16 @*/
17 public boolean transfer(Account to, int amount) {...}
18 }

Listing 1.2. Java source code annotated with JML specifications.

Listing 1.2 shows a class Account, which implements a bank account. It consists
of two integer fields accountNr and balance as well as the method transfer, which
takes as arguments the target account (parameter to) and the amount to be transferred.

The class is annotated with two JML invariants. JML invariants specify proper-
ties of objects that have to be established by the constructor and to be preserved by
all methods. They are marked by the keyword invariant and followed by the actual
property written as boolean typed JML expression. JML expressions are a superset of
side-effect free Java expressions with additional operators like quantifiers \exists and
\forall. The first invariant (lines 2–3) states that account numbers are unique, while
the second (line 6) restricts the value of field balance to be non-negative.

Lines 9–16 contain transfer’s JML method specification. The method’s precon-
ditions are marked by requires, which is followed by a boolean JML expression. If
the caller ensures that the preconditions evaluate to true at invocation time, then the
method guarantees that (i) it terminates normally, i.e., without throwing an exception
(line 9), (ii) in its final state the postcondition (keyword ensures) holds (line 13–15)
and (iii) that at most the values of the fields listed in the assignable clause (line 12)
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have been changed. Multiple requires and ensures clauses are conjunctively com-
bined, and many method specifications can be connected using also. Complementary
to normal_behavior there are exceptional_behavior specifications stating which
exceptions are thrown under which conditions as well as assertions about the post state.

For convenience, JML defines a few defaults. For instance, by default all fields,
parameters and return values of reference type are not null. Further, there is an implicit
pre- and postcondition \invariant_for(this) for each method specification stating
that the method has to preserve the invariant of the this object.

To verify that a Java program satisfies its JML specification, KeY translates Java and
JML into a program logic called Java Dynamic Logic [2]. The formula is then proven
using a sequent calculus and symbolic execution. Symbolic execution is seamlessly
integrated as sequent calculus rules. KeY supports modular reasoning by using a method
specification to symbolically execute a method invocation statement, instead of inlining
the method’s body. A program in KeY is thus proven to be correct by verifying one
method at a time. The use of method specifications makes the approach modular.

Finally, in the context of the current work, it is important to note that KeY not
only supports full sequential Java, but also JavaCard, a Java derivative which features a
transaction mechanism including rollback of interrupted transactions [2]. The fact that
KeY natively supports transaction verification enables us to deal with rollback, which
is the mechanism used by the EVM to deal with failure in transactions.

3 Translation to Java

We describe here our translation of Solidity contracts into Java. First, we describe the
challenges in realising a semantics preserving translation from Solidity to Java. Then
we explain our translation in detail. Some challenges (e.g., challenge 1) are common to
all smart contract languages, whereas others (e.g., challenge 4) are Solidity specific.

1. Distributed ledger. Solidity contracts execute on the blockchain where all transac-
tions are recorded and the balance of all contracts is maintained. Functions such
as transfer use the blockchain to record exchanges of money between contracts.
Neither the distributed ledger nor the functions operating over it exist in the Java
runtime and are thus to be implemented separately if the specification refers to it.

2. Message passing. Solidity contracts may trigger the execution of functions in other
contracts through external calls using message passing. The message not only trig-
gers the right functionality (by naming the function to be executed), it also carries
further information such as the address of the message sender and funds sent with
the message. So, simply encoding Solidity function calls as Java method calls does
not work as the extra information has to be passed within the method calls.

3. Revertible transactions. Handling of messages in smart contracts takes the form of
a transaction, and failures throughout its execution result in a rollback, reverting the
state to what it was at the beginning of the call. Unless explicitly handled, such fail-
ures propagate even when they happen in further function calls within the same con-
tract or external ones. Such failures can occur indirectly due to attempts to transfer
unavailable funds, or directly through the revert command, possibly encapsulated
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within other instructions such as require. Java has no built-in notion of such revert-
ible transactions, and their interaction with the underlying ledger further complicates
their encoding.

4. Bounded datatypes. Although the EVM uses a 256-bit stack, Solidity provides a
family of bounded datatypes, such as the unsigned 256-bit integers uint256 and
signed 24-bit integers int24, none of which have direct equivalents in Java. These
datatypes have over- and underflow semantics, e.g. using a uint256, subtracting
5 from 4 would result in 2256 − 1. These datatypes are common sources of errors
and many smart contract vulnerabilities are due to insufficient checks for exceeding
bounds, hence, these are to be carefully modelled in the translation.

5. Function annotations and modifiers. Solidity allows functions to be tagged by visi-
bility and other built-in annotations, but also with user-defined modifiers. Visibility
annotations define access to contract functions, while built-in annotations include
pure and view (indicating that a function will and may not change the contract’s
state) and payable (indicating that messages invoking the function may include
transfer of funds with the smart contract as beneficiary together with the message).
Furthermore, as discussed earlier, functions can also be annotated by user-defined
modifiers, effectively code transformations, which are normally used to include
recurring snippets of code into functions. Java only supports visibility modifiers and
even these do not have a direct correspondence with their Solidity counterpart—the
rest remain to be encoded in the translation.

6. Fallback function. The message-passing invocation model used by Solidity allows
for the handling of messages invoking functions which are not defined in the contract
using a fallback function. A contract tries to match the message function name with
the functions defined in the contract to which the message is sent, but if none match,
the contract’s fallback function is invoked. For instance, if a contract at address addr
does not define a function f, then any call to addr.f will result in the invocation

of the fallback function at address addr. A common instance of this is that unless
a smart contract explicitly defines a transfer function (to receive funds), when-
ever another contract tries to send it funds through addr.transfer, the fallback is
invoked. This means that, in such a case, unless the fallback function is annotated
as payable, the contract cannot receive funds. This message handling mechanism is
completely absent in Java, and requires to be explicitly modelled at different points
of the translation.

We explain now how our automated translation addresses the above challenges in
order to preserve the semantics of the original Solidity contract.

(i) The distributed ledger’s functionality is abstracted as a public Java class.
To be able to model the environment of the smart contract—the blockchain sys-
tem on which it runs—we abstract it as a public class, Address, providing the
functionality of the distributed ledger on which the Solidity contracts operate
(challenge 1). Thus, the distributed ledger is modelled as several Address objects
that interact using the same functionality as in Solidity’s blockchain. The class
manages the balance of the corresponding Solidity contract and supports methods
to send and transfer modelling what happens at the back of the scenes when the
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corresponding Solidity functions are invoked. Through this class, the functionality
of the payable annotation, is also handled, transferring the requested amount from
the caller to the callee.

(ii) Built-in datatypes become public Java classes. To address challenge 4, the func-
tionality of the Solidity datatypes not available in Java has been replicated in Java
interfaces and classes. We end up having multiple classes implementing an inter-
face to support different ways of data handling, e.g., should an over- or underflow
trigger an exception (used when we want to verify the absence of over- or under-
flows), or should it replicate the semantics of Solidity bounded integers (used in
the rare cases when the smart contract may use over- and underflow in its func-
tionality). For instance, the interface Uint256 comes with the Uint256int and
Uint256BigInteger classes to model Solidity’s datatype uint256 (see Sect. 4 for
more details). Apart from providing the Solidity operators on these types (e.g. addi-
tion and multiplication for integers), the interface is also used to specify generic
JML class invariants and method specifications.

We also provide Java implementations that model information about a trans-
action, a message and a block which are provided by Solidity as global variables
accessible from within any function call. This behaviour is replicated by making
the transaction, message and block information available as attributes (respectively
tx, msg and block) in every contract class and which are updated upon every exter-
nal function call.

(iii) Solidity contracts are modelled as Java classes. Every Solidity contract is trans-
lated into a Java class extending the Address class in order to have the Ethereum
specific features (address where it resides, its balance), includes method definitions
to handle require throwing an exception to deal with rollback, and includes the
state variables of the Solidity contract as class attributes.

(iv) Contract functions are modelled as methods in the contract class. In order to
translate Solidity function definitions into Java, we must address: (i) annotations;
(ii) modifiers; (iii) transaction information and (iv) exception (revert) handling.
Listing 1.3 shows the Java template generated from a definition of a function f
with parameters p1, p2, etc., the content of which is explained below. Note that
from Solidity function f, two Java functions are created: one also called f, which
performs all required checks and then executes the original body of the function;
and another function call f, which is the function to be accessed and which adds
the necessary machinery to handle exceptions, transaction information, etc.

Visibility annotations public, private and internal are mapped to Java vis-
ibility annotations, but external (which allows only external calls to the function)
has no corresponding annotation in Java and is omitted. Internal uses of such func-
tions would fail at the compilation stage, thus the translation is no less safe. The
annotation payable is implemented by using the functionality provided by the Java
Ethereum model. The visibility annotation in Listing 1.3 is derived from that used
in the Solidity contract.

As for user-defined modifiers, we limit our automated translator to deal with
modifiers which just inject code before the function’s body. Each such modifier is
transformed into a method which just executes the code to be injected, and which
is invoked at the beginning of the main function call (see Listing 1.3).
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Transaction, message and block information is available in Solidity as global
variables whenever a function is called. We address this in the Java translation by
encoding them as additional parameters to the call f function. To handle failing
transactions, Java exceptions are used (since catching exceptions is not possible in
Solidity yet, there is no contract code in catch). Upon catching an exception, we
use the JavaCard transaction rollback mechanism (supported by KeY) to undo the
effects of the transaction so far (see the JCSystem.* calls appearing in lines 4, 6
and 9 in Listing 1.3).

(v) Fallback function. If a Solidity contract has a fallback function defined, then it is
translated as described above. If not, we emulate the Solidity compiler and define
an empty payable fallback method.

(vi) Function calls. Function calls are handled differently depending on whether they
are internal or external, as determined at translation time. External calls performed
as A.f(); (or using the Solidity call mechanism) are translated as calls to A.
call_f(..., msg, block, tx) in the corresponding contract class, defaulting
to the fallback function if no such function is defined. In contrast, internal calls are
simply translated as direct calls to method f(...) in the contract class.

1 visibility annotation return type call_f(p1, p2, ..., Message _msg, Block _block, Transaction
_tx) {

2 msg = _msg; block = _block; tx = _tx;
3 try {
4 JCSystem.beginTransaction(); // Only for verification purposes
5 return this.f(p1, p2, ...);
6 JCSystem.commitTransaction(); // Only for verification purposes
7 } catch (Exception e) {
8 System.out.println(e);
9 JCSystem.abortTransaction(); // Only for verification purposes

10 }
11 }
12
13 visibility annotation return type f(p1, p2, ...) {
14 this.user defined modifier1();
15 this.user defined modifier2();
16 ...
17 this.payable();
18 // Translated Solidity function code
19 }

Listing 1.3. Methods in contract class for each function in Solidity contract.

We implemented our translation in the tool JAVADITY5: it takes a Solidity contract
and gives a Java file that can be enriched with JML specifications to be verified with
KeY.

Example 1. Consider the Solidity function removeFromPot (shown in Listing 1.1). We
define, a specification that uses the following three preconditions: (i) only the operator
can remove from the pot, (ii) the value to be removed may not exceed the current value
of the pot, and (iii) no game may be in progress (the game state must be either idle

5 See https://github.com/rebiscov/Javadity.

https://github.com/rebiscov/Javadity
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or available); and three postconditions: (i) the variable pot is reduced by the amount
withdrawn, (ii) the caller’s balance is increased by this amount, and (iii) the contract’s
balance is reduced by the withdrawn amount. Furthermore, only the variable pot and the
balances of the caller and the casino smart contract may change as a result of calling
this function.

Upon applying the translation defined in this section (which is automatically carried
out by JAVADITY), we obtain the Java implementation shown in Listing 1.4. We (man-
ually) enrich the implementation with the JML specification (lines 2–9 in Listing 1.4)
corresponding with the requirements above. Lines 2–4 correspond to the preconditions,
lines 6–8 correspond to the postconditions and line 5 includes an assignable clause
indicating the variables that may be modified during the execution of the function.

4 Verification with KeY

In this section we outline the idea and principal approach for two aspects of the speci-
fication and deductive verification of the Java translations of Solidity contracts.

1 /*@ private behaviour
2 @ requires operator.eq(msg.sender);
3 @ requires \invariant_for(value) && value.gr(Uint256.ZERO) && value.leq(pot);
4 @ requires state == State.IDLE || state == State.GAME_AVAILABLE;
5 @ assignable pot, msg.sender.balance, this.balance;
6 @ ensures pot.eq(\old(pot.sub(value)));
7 @ ensures msg.sender.balance.eq(\old(msg.sender.balance.sum(value)));
8 @ ensures this.balance.eq(\old(this.balance.sub(value)));
9 @ ...

10 @*/
11 private void removeFromPot(Uint256 value) throws Exception {
12 // Modifiers
13 this.byOperator();
14 this.noActiveBet();
15 // Requires
16 this.require(value.gr(Uint256.ZERO) && value.leq(pot));
17 //Function code
18 this.pot = this.pot.sub(value);
19 msg.sender.transfer(this, value);
20 }
21
22 /*@ ... @*/
23 public void call_removeFromPot(Uint256 value, Message _msg, Block _block, Transaction _tx)

throws Exception {
24 msg = _msg; block = _block; tx = _tx;
25 try {
26 JCSystem.beginTransaction();
27 this.removeFromPot(value);
28 JCSystem.commitTransaction();
29 } catch (Exception e) {
30 JCSystem.abortTransaction();
31 }
32 }

Listing 1.4. Java translation of the removeFromPot function.
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Unsigned Integer of 256 Bit Length. As explained in Sect. 3, Solidity’s scalar uint256
datatype is mapped to the interface type Uint256 in Java. The interface provides all
the arithmetic operations and comparisons needed which we specified accordingly in
JML. To specify the interface in an efficient manner, we used JML’s ghost fields, i.e.,
fields that only exist on the specification level and not on the implementation level. The
advantage of ghost fields is that they can be declared for interfaces as instance fields to
be implicitly present in any implementing class. Using a ghost field allows us to relate
the interface type to an abstraction and to use the abstraction in other specifications.

We use a ghost field called _value of the JML type \bigint to model the value as
integer. JML’s bigint datatype represents the mathematical whole numbers. An addi-
tional invariant restricts the range of the ghost field to the range of Solidity’s uint256
datatype. The method specifications can then describe their effect with respect to the
ghost field _value. Listing 1.5 shows an excerpt of the specification. The expression
\dl_MAXUINT256() refers to the maximal value of the uint256 datatype. The speci-
fication for the addition (method sum) specifies the result in relation to the ghost field
value and takes care of overflow issues.

To allow the reasoning about Uint256 to be efficient and to a large degree automatic,
the classes using this interface had to be enabled to treat it more similar to a primitive
type than a reference type. To achieve this the immutability of the instances of this type
needs to be exploited. This is until now not directly supported by KeY and will be added
in a future release as additional contribution of our work.

To clarify the issue and solution, assume a class C has a field f of type Uint256.
The invariant of class C will include the boolean expression \invariant_for(this.
f) to assert the range restrictions. During verification of each method of class C we
have in particular to show that its invariant is preserved. This can become tedious as
it involves unpacking the invariant of this.f even though the method did not reassign
any value to f and thus because of the immutability could not possibly have changed the
validity of \invariant_for(this.f). Exploiting the knowledge about immutability
allows the prover to quickly determine that no operations are able to invalidate the
respective invariants. In our proof of concept we simulated this feature by specifying
the dependencies of the invariants accordingly via so called accessible clauses. Due
to the not yet implemented support for immutability in KeY, we are currently not able to
prove the correctness of our accessible clauses, but can make use of them when proving.

Support for Solidity’s State Rollback. To provide support for the Solidity’s rollback in
case of exceptions, the translation makes use of JavaCard’s transaction mechanism with
explicit commit and abort calls. Note again that KeY supports verification of code using
revertible JavaCard transactions [2].

In order to model unexpected failures (by external events and not visible by program
semantics), we generalise the JML specifications of the methods such that they allow
normal as well as exceptional termination. For these methods a wrapper method call_m
(..) is created (see Sect. 3) which wraps the call to m(..) using JavaCard transactions.
For the JML specification of the wrapper method, we need to distinguish between the
commit and abort case. For this we use a boolean ghost field (specification only field)
that is true if the abort case has been triggered and false otherwise.
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1 public interface Uint256 {
2 /*@ private instance invariant _value >= 0 && _value <= \dl_MAXUINT256();
3 @ private final instance ghost \bigint _value; @*/
4
5 /*@ private normal_behavior
6 @ requires \invariant_for(value);
7 @ ensures \result._value == (this._value+value._value > \dl_MAXUINT256() ?
8 @ ((\bigint)-1)*\dl_MAXUINT256() - 1 : (\bigint) 0) + this._value + value._value;
9 @ ensures \invariant_for(\result);

10 @ accessible _value, value._value;
11 @ assignable \strictly_nothing;
12 @ ...
13 @*/
14 Uint256 sum(Uint256 value) throws Exception;
15 }

Listing 1.5. Excerpt from the Uint256 interface specification.

JavaCard’s transaction mechanism is API based. JCSystem.beginTransaction
() starts a transaction and any code until a JCSystem.commitTransaction() or
JCSystem.aboutTransaction() is symbolically executed on a copy of the original
heap. In case of a commit the copy replaces the original heap; otherwise, the copy is
discarded and the original heap is used instead, thus rolling back the changes in case of
an abort.

5 Case Study: Casino Contract

As a case study, we use a Solidity contract modelling a casino whose legal contract is
given in Fig. 1. The casino manages a pot represented as a uint256 value representing
the amount of ether that can be won in a game consisting of a coin toss: A player places
a bet on the outcome, transfers her stake to the contract and records the amount. If the
prediction of the player is correct, the pot is transferred to her wallet, otherwise the
money the player has bet is added to the pot.

The Solidity contract is translated to a Java program by our tool, and annotated
with JML specifications, which describe the full functional behaviour of the contract6.
In particular, an invariant which states that the balance of the contract is equal to the
amount in the pot if no bet is currently placed; otherwise, the contract’s balance equals
the sum of the ether in the pot and the player’s wager.

We verified that a representative selection of methods (i.e. all supported features
occur) satisfy their contract and preserve the stated invariant. In particular, we veri-
fied for the methods call_closeCasino and call_removeFromPot that they behave
correctly w.r.t. the rollback semantics in case of exceptions. For instance, the proof
of call_removeFromPot required around 22,000 rule applications of which 207 were
interactive. The most critical rule applications were target unpacking of parts of the
class invariant. The rationale is to only unpack those parts whose property is required
to prove a property, e.g., if the fields occurring in a conjunct of an invariant have been
changed by the method and the conjunct has to be shown to be reestablished. For the

6 See https://github.com/raulpardo/casino-contract-java-solidity.

https://github.com/raulpardo/casino-contract-java-solidity
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unchanged parts, dependency contracts are used which exploit the fact that if a formula
does not depend on changed parts of the heap then it cannot be invalidated.

The verification effort is rather straightforward. It requires some tedious but trivial
interactions due to the Uint256 datatype being modelled as interface. The necessary
rule interactions are less than 1.5% of all rule applications. Thereof the vast majority
of interactive rule applications consist of unpacking of class invariants. This could be
easily automated by enforcing the unpacking of invariants before method contracts are
used. A small minority require proving or making use of framing properties, which can
be easily avoided if KeY were to make use of the fact that instances implementing the
Uint256 interface are immutable, and by tweaking the proof search strategies taking
advantage of the specifics of the Solidity translation.

6 Limitations and Challenges

One of the most difficult issues to be handled by our approach is the undefined evalua-
tion order of nested expressions in Solidity. This means the semantics of contracts with
nested expressions is dependent on the compiler being used (similar to the situation in
C). There are several alternatives to address this issue in our approach: (i) forbid nested
expressions to be used in a Solidity contract, and to reject such contracts early on; (ii)
provide compiler specific calculus rules to be chosen prior to a verification attempt, at
the cost of rendering the verification result compiler specific; (iii) split the proof into one
subproof for each possible evaluation order when encountering a nested expression. As
all possible orders are considered, a successful verification would be meaningful inde-
pendent of the used compiler. However, this can lead to rather large (number of) proofs
in the presence of nested expressions; (iv) and when reaching a nested expression dur-
ing symbolic execution, prove that the result is independent of the evaluation order and
continue with the uniquely determined result. In our current experiment we used the
first alternative, but we plan to adopt alternative (iii) or (iv) in the future.

One of the major challenges which static verification of smart contracts faces is
that of modelling the blockchain environment within which the smart contract is exe-
cuted. For instance, in Solidity, one may access the current block number, timestamp
of the block, and other parameters which may only be known at runtime. Our approach
is to make no assumption on these values, and thus proofs must go through with the
values being completely non-deterministic. In this manner, we ensure soundness but
we may lose completeness when an algorithm may have been designed to use implicit
constraints on these values e.g. that block numbers are strictly increasing. From our
experience, few smart contracts make such assumptions, and when one wants to verify
a property of such a smart contract, one can still add such assumptions explicitly.

Many of the bugs and security flaws of Solidity are due to specific decisions taken
when designing the language. In the white paper [7, Chapter 4.4] Everts and Muller
provide a comprehensive overview of these issues. In what follows we summarise some
of these issues and explain to which extent and how we deal with them.

One class of issues is rooted in the design choice concerning the semantics of certain
programming constructs in Solidity. Some examples of this are: (i) a differing semantics
whether division is on literals (and precomputed by the compiler) or involves variables
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(evaluated at runtime), (ii) difference in the treatment of method calls depending on
using an implicit or explicit this, i.e., the statements/expressions this.m() and m()
may result in different behaviour, and (iii) usage of copy-by-reference and copy-by-
value looks the same on the source code level. All of these issues are or can be easily
supported by our approach at the translation level by choosing the correct Java imple-
mentation of the used Solidity construct. This is indeed possible as these differences,
although invisible or surprising to the user, can be identified unambiguously by static
analysis and taken care of accordingly.

Another issue is how a programming language decides to deal with integer overflow
(and underflow). Solidity joins C’s and Java’s approach by silently overflowing. This
easily leads to mistakes, as programmers often use natural or whole numbers as internal
mental models. Our approach models overflow and underflow semantics faithfully and
proves a program correct only if the overflow was intended and/or does not invalidate
the property to be proven. KeY for Java provides also a second sound (but incomplete)
approach to the same problem by enforcing to prove that no overflow happens.

7 Related Work

Although the need for formal verification, particularly compile-time static analysis tech-
niques, for smart contracts has been highlighted various times e.g. [3,7], actual work in
the domain is still sparse. Most work on static analysis techniques for smart contracts
falls in one of two categories—either Lint-like syntactic analysis of code to find poten-
tial vulnerabilities like Solcheck (https://git.io/fxXeu) and Solium (https://git.io/fxXec),
or semantics-based static analysis specialised to identify commonly encountered prob-
lems with smart contracts (e.g. gas leaks, reentrancy problems).

Of the latter type, one finds approaches designed for different types of vulnerabili-
ties. Fröwis et al. [8] address smart contract control-flow mutability which is typically
not desirable. OYENTE [13] is a tool which can perform reentrancy detection and other
analysis using symbolic execution. Mythril [14] uses concolic analysis, taint analysis and
control-flow analysis for identifying security vulnerability, while SmartCheck (https://
tool.smartdec.net) uses both Lint-like and semantic analysis to identify various vulner-
abilities. Bhargavan et al. [5] transform Solidity into F* on which they perform analysis
to identify vulnerable patterns. The other approaches perform their analysis at the EVM
bytecode level, mainly because the control-flow analysis used typically does not use
the program structure. This enables the analysis of any smart contract deployed on the
Ethereum blockchain. It is worth noting that the semantics of Solidity are only infor-
mally described in the language documentation, and effectively pragmatically decided
based on what the compiler does. In contrast, there are published formal semantics for
EVM bytecode either through direct formalisation or via translation in [9–11].

Both these types of static analysis approaches have been shown to readily scale up to
large smart contracts, the former because the complexity of syntactic analysis is of the
order of the size of the source code, while the latter typically use overapproximations
to ensure tractability. However, the downside is that neither of these approaches allow
reasoning about the functional aspect of the smart contract under scrutiny, i.e. what the

https://git.io/fxXeu
https://git.io/fxXec
https://tool.smartdec.net
https://tool.smartdec.net
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contract is actually trying to achieve. There is little published work towards achieving
specification-specific static analysis for business logic verification of smart contracts.

Bai et al. [4] perform model checking using SPIN but perform the analysis on
a model of the smart contract rather than directly on the code. Similarly, Abdellatif
et al. [1] build a model not only of the smart contracts but also the underlying blockchain
and miners using timed automata to enable verification. In both cases there lies a sub-
stantial gap between the actual smart contract and the model, raising questions of the
faithfulness of the model with respect to the concrete code. Our approach suffers also
from this issue due to the translation from Solidity to Java. However, our model is much
more granular (no loss of precision), and thus the gap between our Java model and the
original is much narrower.

8 Conclusions

We have presented a translation-based verifier of smart contracts using the deductive
verification tool KeY. Our approach is one of the first to go beyond verifying standard
sanity checks (e.g. there are no integer over- and underflows) and enable verification
of business-logic and thus contract-specific specifications (e.g. when a player guesses a
number, the casino contract will pay her 1.8 times the bet they placed). We implemented
the translation in a tool and illustrated its use on a simple casino smart contract.

Although our results indicate that our approach is promising, our contribution
uncovered new unexpected questions and challenges. The first question is how the app-
roach fares with real-life contracts. What is promising is that the size and complexity
of smart contracts is trivial compared to typical software systems and matches well
with our case study. They typically run into some hundreds lines of code, and use loops
sparingly due to gas concerns. This may indicate that typical smart contracts are within
reach of automated verification techniques. We are currently applying our approach to
a number of real-world use cases (some with known bugs) to evaluate better this claim.

Currently we depend solely on hand-waving argumentation that the semantics of
Solidity and our translation match, which is a concern. However, we have to emphasise
that there is no established (or otherwise) formal semantics of Solidity, with the lan-
guage manual and the compiler acting as arbiters as to how constructs actually work.
Until now, the only semantics available are at the EVM assembly level, making a proof
of correctness of the translation impossible at present. However, translating between
two structured high level formalisms—Solidity and JavaCard—we believe that the leap
of faith is across a much narrower gap than using a semantics at a lower level of abstrac-
tion, and the fact that both languages have a native transaction (rollback) mechanism
strengthens this point. Still, a proof of semantics-preservation is highly desirable. We
are also currently investigating how to build a verification tool handling Solidity pro-
grams directly rather than through a translation.
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Abstract. Software Debugging is a tedious and costly task in soft-
ware development life-cycle. Thus, various automated fault localization
approaches have been proposed to address this problem, among which,
spectrum-based fault localization has attracted a lot of attention. Using
various formulas, known as ranking metrics, spectrum-based fault local-
ization techniques assign scores to the entities of programs (e.g., state-
ments) based on their suspiciousness of being the root cause of failures.
Despite the obvious advantages of spectrum-based fault localization tech-
niques, such as being lightweight, they cannot effectively locate faults in
every program owing to the fact that they do not consider the charac-
teristics of the programs. We believe that program characteristics can
be helpful at finding the right ranking metrics for programs, and they
can assist at combining several existing ones to produce a customized
ranking metric specific to a given program.

In this paper, we have proposed an approach which combines 40 differ-
ent ranking metrics to generate a new ranking metric specific to a given
program. Employing mutation testing operators, the proposed approach
retrieves information from the program and then, using different prefer-
ential voting systems, it combines various ranking metrics based on the
collected information. We have evaluated our approach on 154 faulty ver-
sions from eight different programs of Space and Siemens test suite and
compare it with nine state-of-the-art ranking metrics. The experimental
results indicate that the ranking metrics generated by our approach is
superior with respect to evaluation metrics such as the Exam score and
TOP-N.

Keywords: Software fault localization ·
Spectrum-based fault localization · Mutation testing · Ranking metric ·
Preferential voting system

1 Introduction

Manual debugging is a difficult task that consumes a lot of resources in software
development process [21]. It is reported that up to 80% of the total software
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development budget might be consumed by debugging tasks [20]. To address this
problem, a wide variety of Automated Fault Localization (AFL) techniques have
been established in the literature to assist developers at locating the root causes
of failures [23]. There are several approaches to automated fault localization such
as slicing-based [12,22,27], machine-learning-based [14,26,30], and spectrum-
based fault localization [1,6,10,19,28]. The Spectrum-based Fault Localization
(SFL) approach has been shown to be competitive compared to the rest [16].
Also, SFL is a lightweight approach, and it can be applied to large-scale pro-
grams [29].

SFL techniques execute a given program with an existing set of passing and
failing test cases. Then, leveraging program spectra [23] (i.e. program execution
traces of test cases), and employing a ranking metric [26], the suspiciousness
scores of program entities are computed. Program entities are source code ele-
ments with any granularity such as statements, methods, and basic blocks. Sus-
piciousness scores indicate the likelihood of each program entity to be faulty, and
ranking metrics assign higher suspiciousness scores to entities covered by more
failing tests and fewer passing ones. After the computation of suspiciousness
scores, program entities are sorted according to their suspiciousness scores and
handed to developers or automated program repair techniques [13]. Finally, the
source code is examined from the most suspicious entity to the least suspicious
one with the purpose of diagnosing the root causes of failures.

Several SFL techniques such as Ochiai [1] exist in the literature, each of which
performs effectively on specific programs while not ranking entities of other pro-
grams, appropriately [28]. In other words, for most programs, current techniques
assign higher suspiciousness scores to program entities that are not related to the
fault at hand [12]. Our intuition is that this issue can be addressed if program
characteristics are considered while suspiciousness scores are computed, which
is also mentioned by Wong et al. [23]. The semantics and structures of programs
are two examples of program characteristics. We believe that program charac-
teristics can lead us toward finding right SFL techniques (among the existing
ones) for any given program. Also, we hypothesize it can assist us at combining
various existing ranking metrics (i.e., SFL techniques) to produce more effective
ranking metrics, explicitly customized for a given program.

In this paper, we present an approach that combines various ranking met-
rics to generate an effective one for a given program. In this approach, first,
using mutation testing [9], several mutants are produced for the given program
which are then executed by an existing test suite. Then, runtime data such as
program spectra generated for the mutants are collected which are employed as
a representation of program characteristics. Afterward, these runtime data are
utilized to compute the effectiveness of 40 state-of-the-art ranking metrics. In
the end, considering the effectiveness calculated for these ranking metrics and
employing preferential voting systems [2,4,11,18], the 40 ranking metrics are
combined to generate a new ranking metric. We evaluate our approach using 154
faulty versions of the Siemens suite and the Space program and compare it with
nine state-of-the-art SFL techniques. According to the experimental results, the
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ranking metrics produced by our approach always perform more effective com-
pared to the nine comparative ranking metrics, regarding well-known evaluation
metrics such as the Exam score and TOP-N.

The remainder of this paper is structured as follows: Sect. 2 reviews prelimi-
nary materials and related work; Sect. 3 presents the proposed approach of this
paper; Sect. 4 provides the experimental results and discussions; Sect. 5 concludes
this work.

2 Background and Related Work

In the following, Sect. 2.1 provides a brief description of the preliminary materials
related to our work, and Sect. 2.2 reviews some of the state-of-the-art automated
fault localization techniques.

2.1 Preliminaries

Spectrum-Based Fault Localization. The goal of Spectrum-based Fault
Localization (SFL) techniques is to locate faulty program entities such as state-
ments, methods, and basic blocks. SFL techniques take as input a faulty program
and two sets of test cases. One of these sets contains failing test cases while the
other set has passing ones. Afterward, it collects program execution traces of the
test cases, referred to as program spectra [23], by instrumenting and executing
the given program, using the failing and passing test cases. Each program spec-
trum reports information regarding program entities that are executed by a test
case. Various tools can record program spectra. For instance, in our experiments,
we use Gcov [8] to instrument programs and retrieve runtime data. Based on pro-
gram spectra, several statistics are computed for each program entity ej such as
NCF (ej), NCS(ej), NUF (ej), and NUS(ej), which are the number of failing and
passing (successful) test cases covering ej , and the number of failing and passing
test cases not covering ej , respectively. Using these statistics, and employing a
ranking metric [26] such as Ochiai [1], which is shown in Eq. (1), SFL techniques
compute the suspiciousness score of every program entity. After computing the
suspiciousness scores, the program entities are sorted and handed to developers
or automated program repair techniques [13] to assist them in their debugging
task.

ScoreOchiai(ej) =
NCF (ej)√

(NCF (ej) + NUF (ej)) × (NCF (ej) + NCS(ej))
(1)

Mutation Testing. As a testing technique, mutation testing [9] is used to
measure the effectiveness of test suites regarding their ability to detect faults in
programs. This technique produces several mutants pi (1 < i < m) for a program
p by seeding it with m faults. Faults are seeded by employing mutation opera-
tors, which perform syntactical modifications to programs, such as replacing a
relational operator by another one. Then, the mutants are executed against the
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whole test suite. If the result or behavior of a mutant pi is different compared
to p, pi is said to be killed. The higher the number of killed mutants, the more
effective the test suite is. Besides being the most successful metric to measure
test suite effectiveness [3], mutation testing can be used for other purposes, as
well. For example, state-of-the-art automated program repair techniques such
as ELEXIR [17] apply various mutation operators for patch generation. In this
paper, we use mutation testing to measure fault localizing capability of SFL
techniques for a given program. We generate several mutants for the program at
hand and then, compute the effectiveness of SFL techniques at finding the faults
in these mutants.

Preferential Voting System. Ranked voting refers to special electoral systems
in which voters can vote for more than one candidate and sort them in their bal-
lots in order of their preferences. This type of ballot, referred to as ranked ballot,
contains more information compared to those that only mention one candidate.
Therefore, they must be processed and aggregated using certain methods spe-
cific to them called preferential voting systems. There are various preferential
voting systems in the literature each of which is subject to criteria such as
monotonicity which states that when a candidate is the winner of the election,
changing a ballot in favor of this candidate must still keep it as the winner
of the election. Reviewing these criteria and the advantages of different pref-
erential voting systems are beyond the scope of this paper, and we encourage
interested readers to refer to [5] for further details. For this research, we choose
four preferential voting systems Instant Run-Off Voting [4], Kemeny-Young [11],
Condorcet [2], and Schulze [18] because of their popularity among researchers.
We use these systems to aggregate ranking ballots produced by different mutants
which act as voters that prioritize various SFL techniques (ranking metrics) in
their ballots.

2.2 Automated Fault Localization Techniques

There are hundreds of studies about Automated Fault Localization (AFL) tech-
niques [23]. Program slicing-based AFL techniques obtain a slice for a given
program by collecting its executable statements that might have an impact on
the value of a specified variable. Xuan and Monperrus [27] proposed a method
called test case purification which utilizes program slicing to reduce failing test
cases with several assertions into several test cases with only one assertion. They
also indicated that employing test case purification improves the fault detection
capability of spectrum-based fault localization techniques. Mao et al. [12] pro-
posed a novel approach which first employs program slicing to identify program
entities that affect the given program output, and then, it uses a spectrum based
fault localization technique to rank the remaining entities with respect to their
suspiciousness. Wang et al. [22] presented a debugging framework called DrDe-
bug that enables users to debug multi-threaded programs while focusing on a
specific slice.

Machine learning, a field of artificial intelligence, has been used in vari-
ous studies on different software engineering tasks such as automated program
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Fig. 1. Overall structure of the proposed approach

repair [17] It has also been used in automated fault localization. Xuan and Mon-
perrus [26] employed machine learning to present a fault localization technique
that estimates the suspiciousness of program entities by automatically combining
25 ranking metrics. Zhang and Zhang [30] employed a Markov logic network to
compute the suspiciousness of program statements. Nath and Domingos [14] pre-
sented a probabilistic-based fault localization technique that finds faults accord-
ing to the bug patterns it learns. This technique has the capability of employing
the output of spectrum-based fault localization techniques as features, and can
be trained on a set of faulty programs.

Spectrum-based fault localization is probably the most studied approach in
the field, which is thoroughly reviewed in [19]. The first ranking metric, Taran-
tula, was proposed by Jones et al. [10] which is based on the idea that program
entities covered by more failing and fewer passing test cases are the most sus-
picious ones of being the root causes of failures. Dallmeier et al. [6] proposed
Ample as a plug-in for the Java IDE Eclipse to locate faults in object-oriented
programs. Abreu et al. [1] studied three widely used ranking metrics Tarantula,
Ample, and Ochiai and reported that Ochiai outperforms the other two tech-
niques. Yoo et al. [28] studied different ranking metrics and realized that some of
them are equivalent and do not dominate each other. They also concluded that
there is not a ranking metric that outperforms all the other ranking metrics for
every program.

The proposed approach of this paper is not based on program slicing and
does not employ machine learning. Our approach combines several existing SFL
techniques using preferential voting systems and mutation testing. In this regard,
it is different from the studies mentioned above.

3 Proposed Approach

This section presents the proposed approach of this paper, by which an effective
ranking metric is produced for a given program. As illustrated in Fig. 1, the
proposed approach receives three different inputs: (1) a program p, for which
a new ranking metric is produced; (2) a test suite TS ; (3) n existing ranking
metrics. Following two phases, the proposed approach generates a new ranking
metric for p by combining the n given ranking metrics.

At the first phase, various mutation operators are applied to p to generate m
mutants for it. Then, the mutants are executed by every test case in TS, and the
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execution results are collected and passed to the second phase (see more details
in Sect. 3.1). At the second phase, for each mutant, the effectiveness of every n
ranking metric is computed, employing the output of the first phase. Then, these
ranking metrics are combined based on their effectiveness so that a new ranking
metric is generated that is more effective for p, compared to each of the n given
ranking metrics, individually (see more details in Sect. 3.2).

3.1 Phase 1: Information Retrieval

The proposed approach generates ranking metrics specific to a given program.
To this end, the characteristics of the given program must be retrieved and
taken into consideration. The purpose of this phase is to collect this information,
employing mutation testing. As illustrated in Fig. 2, this phase comprises two
steps.

Step 1: Mutant Generation. At this step, m mutants are generated for the
given program p, subject to three criteria: (1) the test suite TS must be capable
of killing them all; (2) the mutants must be free of any infinite loops; (3) execut-
ing the mutants on TS must not result in any crashes or runtime errors. Those
mutants that do not satisfy the criteria, mentioned above, are thrown away, and
new mutants are generated to replace them. The following mutation operators
are randomly used to seed a fault in a randomly selected statement:

– modifying a character or numerical literal
– changing a relational operator (e.g., >)
– changing a logical operator (e.g., &&)
– replacing a function call by another one with the same signature
– replacing a variable by another variable of the same type
– inserting a statement
– replacing a predicate with TRUE or FALSE.

Step 2: Execution. At this step, each mutant, produced at the previous step,
is executed by every test case in TS. As a result, for each mutant, a matrix is
produced known as program spectra for that mutant, and we refer to it as the
coverage matrix. The output produced after executing each mutant using TS is
also collected. By comparing a mutant’s output with the output produced for p,
the execution results for that mutant is obtained. For instance, Fig. 3 shows an
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example of a coverage matrix collected for a mutant, along with its execution
results. Column one shows the five test cases within the test suite. Column
two through eight illustrate the coverage matrix, where 0s and 1s indicate that
program entity ei is covered and not covered, respectively, while executed by
test case ti. Column nine contains the execution results for the mutant, where
0s and 1s indicate that test case ti is failed and passed, respectively.

e1 e2 e3 e4 e5 e6 e7 r

t1 1 1 1 1 0 1 0 0
t2 0 0 1 0 1 1 1 0
t3 1 0 1 1 1 1 1 0
t4 1 0 0 1 1 1 0 1
t5 1 1 1 0 1 0 1 1

Fig. 3. Example of a coverage matrix and execution results produced for a mutant.

3.2 Phase 2: Ranking Metric Generation

According to Fig. 4, phase 2 comprises three different steps. Following these
steps, the n given ranking metrics are combined to produce a new ranking metric
for p.

Step 1: Generating Ranked Ballots. At this step, for each of the m mutants,
the effectiveness of the n ranking metrics are computed, using the coverage matri-
ces and execution results produced at the previous phase. By doing so, m ranked
ballots are produced, each of which contains the n ranking metrics listed accord-
ing to their effectiveness at locating the fault within the corresponding mutant.
Table 1 illustrates an example of 45 ranked ballots produced for a program, while
m = 45, and n = 5. Column 2 and 4 show the ranked ballots, and column 1 and
3 indicate the number of instances of each ballot. For example, according to this
table, for five different mutants, the sequence “T1 > T2 > T3 > T4 > T5” has
been produced as the ranked ballot. This ballot states that T1 and T5 are the
most and the least effective ranking metrics at locating the faults within these
five mutants.

Step 2: Selecting Ranking Metrics. At this step, the ranked ballots produced
at the previous step are aggregated into an ordered list of ranking metrics,
using one of the two preferential voting systems Instant Run-Off Voting [4] and
Kemeny-Young [11]. For instance, applying Instant Run-Off Voting to Table 1
produces “T2 > T3 > T1 > T4 > T5”, and using Kemeny-Young results in
“T4 > T3 > T1 > T5 > T2”. Then, as the output of this step, k best ranking
metrics are selected among the resulting list, which is referred to as B. For
example, for k = 4, using Instant Run-Off Voting and Kemeny-Young results in
B = [T1,T2,T3,T4] and B = [T1,T3,T4,T5], respectively.
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Table 1. Example of ranked ballots produced at step 1 of phase 2

No. of mutants Ranked ballot No. of mutants Ranked ballot

5 T1 > T2 > T3 > T4 > T5 7 T2 > T1 > T4 > T3 > T5

5 T1 > T5 > T4 > T2 > T3 2 T2 > T3 > T1 > T5 > T4

8 T3 > T4 > T5 > T1 > T2 7 T5 > T2 > T4 > T3 > T1

3 T2 > T1 > T3 > T4 > T5 8 T4 > T3 > T1 > T5 > T2

Step 3: Combining Ranking Metrics. As illustrated in Fig. 4, this step
receives B, which contains the k best ranking metrics selected at the second
step. It also gets the ranked ballots produced at the first step. Then, using
Eq. (2), a new ranking metric is generated, which is the output of the proposed
approach.

NewScore(ej) =
k∑

i=1

wBi
×NormScoreBi

(ej) (2)

In Eq. (2), ej represents program entities in p, for which suspiciousness scores
are computed; the term wBi

is the weight computed for ranking metric Bi accord-
ing to its effectiveness at locating faults in p; the term NormScoreBi

(ej) is the
normalized suspiciousness score computed by ranking metric Bi for ej , employ-
ing the feature scaling method presented in Eq. (3).

NormScoreT (ej) =
ScoreT (ej) −minT

maxT −minT
(3)

Equation (3) standardizes the range of suspiciousness scores that a given
ranking metric (T ) computes by scaling them in the range [0, 1]. The term
ScoreT (ej) is the suspiciousness score computed by T for program entity ej ;
the terms minT and maxT are respectively the minimum and maximum suspi-
ciousness scores computed by T for all of the program entities in p.

The terms wBi
(1 < i < k) in Eq. 2 are determined by employing one of the

two preferential voting systems Condorcet [2] and Schulze [18], and using the
ranked ballots produced at the first step. In case of using Condorcet, first, Con-
dorcet’s pairwise matrix of the given ranked ballots is produced which indicates
the number of times each ranking metric has been more effective compared to
the rest of them. Figure 5a shows an example of a pairwise matrix computed
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for the ballots in Table 1. Afterward, the terms wBi
(1 < i < k) are calculated

using Eq. (4), where M is Condorcet’s pairwise matrix. For instance, consider-
ing Fig. 5a as the pairwise matrix, wB1 , wB2 , wB3 , and wB4 are 68

270 = 0.251,
72
270 = 0.266, 59

270 = 0.218, and 71
270 = 0.262, respectively.

wBi
=

1
∑k

i=1

∑k
j=1,i �=j M [i, j]

k∑

j=1,j �=i

M [i, j] (4)

Against

B1 B2 B3 B4 Total

F
or

B1 - 26 20 22 68

B2 19 - 29 24 72

B3 25 16 - 18 59

B4 23 21 27 - 71

270

(a)

Against

B1 B2 B3 B4 Total

F
or

B1 - 26 26 24 76

B2 25 - 29 24 78

B3 25 25 - 24 74

B4 25 25 27 - 77

305

(b)

Fig. 5. Example of a pairwise and strength matrix produced for the lists in Table 1.
(a) Pairwise matrix; (b) Strength matrix.

In case of using Schulze, first, Schulze’s strength matrix is computed for
the given ranked ballots. This matrix illustrates the strengths of the strongest
paths for each pair of ranking metrics. In other words, it indicates how effective
a ranking metric has performed compared to the other ranking metrics (for
further details on strongest paths refer to [18]). Then, the weights are computed
employing Eq. (4), where M is Schulze’s strength matrix. Figure 5b indicates
an example of a strength matrix calculated for the lists in Table 1. Using this
matrix, wB1 , wB2 , wB3 , and wB4 are 76

305 = 0.249, 78
305 = 0.255, 74

305 = 0.242, and
77
305 = 0.252, respectively.

4 Experiments

In this section, we present the evaluation of the proposed approach. Section 4.1
reviews the experiment setup; Sect. 4.2 provides the results of the experiments;
Sect. 4.3 presents the discussion; Sect. 4.4 explains the threats to the validity of
the experimental results.

4.1 Experiment Setup

Subject Programs. The proposed approach is evaluated on eight popular pro-
grams, the Siemens suite along with the Space program, provided by Software-
artifact Infrastructure Repository (SIR) [7], which has been employed by vari-
ous fault localization studies. Table 2 illustrates the details of these programs.
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The first row shows each program’s size. Row two indicates the number of faulty
versions we have used in our experiments, each of which contains a single bug.
Row three shows the size of each program’s test suite, and row four illustrates the
number of mutants generated for the programs, which is the parameter m of the
proposed approach. During the experiments, we made sure that the generated
mutants were different from their corresponding faulty versions by analyzing
them, manually.

Table 2. Subject programs.
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LOC 478 399 512 292 301 141 440 6218 8781

No. of faulty versions 5 10 31 9 9 36 19 35 154

No. of test cases 4130 4115 5542 2650 2710 1608 1051 13858

No. of mutants (m) 143 127 203 118 126 96 183 483

Evaluation Metrics. To evaluate the effectiveness of the proposed approach,
we used three metrics of evaluation, which are defined as follows:

1. Exam: The Exam score [23] indicates the percentage of code that needs
to be inspected to locate the fault within a program. This metric is used to
compare AFL techniques on a single program while in our experiments, we had
154 faulty versions of eight different programs (see Table 2). Therefore, for any
ranking metric T , we computed T ’s Exam score on every faulty version, and
then, reported the mean of these 154 resulting scores as the Exam score of T . A
lower value of this metric indicates higher effectiveness.

2. Proportion of Located Faults: This evaluation metric indicates the percent-
age of faults located while a specific percentage of program entities are inspected.
To compute this metric for a ranking metric T , the top 10% of the program enti-
ties in each faulty version were inspected, and the percentage of located faults
was reported. A higher value of this metric indicates higher effectiveness.

3. TOP-N: This metric is similar to the previous one with the only difference
that in this metric, instead of a specific percentage of program entities, a certain
number of them are inspected. Considering the fact that regardless of the size of
programs, developers usually inspect a few of the top-ranked program entities
presented by AFL techniques [15], this metric is important in practice. In our
experiments, to compute this metric for a ranking metric T , top ten program
entities in each faulty version were examined, and the number of located faults
were reported as T ’s TOP-10 score. Note that a higher value of this metric
indicates higher effectiveness.
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Configuration and Implementation. We utilized the 40 state-of-the-art
ranking metrics presented in Table 3 as the third input to the proposed app-
roach, and thus, in our experiments, n was always 40. As stated in Sect. 3, for
the task of selecting k best ranking metrics, the proposed approach can use
one of the two methods Instant Run-Off Voting and Kemeny-Young, and to
perform the task of combining these ranking metrics, it may employ Condorcet
or Schulze. As a result, four different instances of the proposed approach was
implemented, each of which utilizes one of the two possible preferential voting
systems for these two tasks. These four instances are: “Instant Run-Off Voting
+ Condorcet”, “Instant Run-Off Voting + Schulze,” “Kemeny-Young + Con-
dorcet,” and “Kemeny-Young + Schulze,” which we refer to as IRV-C, IRV-S,
KY-C, and KY-S, respectively.

Table 3. Ranking metrics used in the experiments.

# Name # Name # Name # Name

1 Braun-Banquet [23] 11 Ample [6] 21 Hamming [23] 31 Sorensen-Dice [23]

2 Baroni-Urbani & Buser [23] 12 Phi (Geometric Mean) [23] 22 Hamann [23] 32 Tarantula [10]

3 Mountford [23] 13 Arithmetic Mean [23] 23 Sokal [23] 33 Naish2 [24]

4 Fossum [23] 14 Cohen [23] 24 Scott [23] 34 Ochiai [1]

5 Pearson [23] 15 Fleiss [23] 25 Rogot1 [23] 35 Wong [24]

6 Gower [23] 16 Zoltar [23] 26 Kulczynski [23] 36 GP13 [25]

7 Michael [23] 17 Harmonic Mean [23] 27 Anderberg [23] 37 GP02 [25]

8 Pierce [23] 18 Rogot2 [23] 28 Dice [23] 38 GP03 [25]

9 Dennis [23] 19 Simple Matching [23] 29 Goodman [23] 39 GP19 [25]

10 Tarwid [23] 20 Rogers & Tanimoto [23] 30 Jaccard [23] 40 Russel & Rao [24]

All of the four instances of the proposed approach were implemented in C++,
and the experiments were conducted on a virtual machine with Intel Core i5
CPU at 1.60 GHz, 2 GBs of RAM, and the 64-bit version of Ubuntu 16.04. To
instrument code and retrieve runtime data, we employed Gcov [8], the GNU
coverage testing tool that considers code lines as program entities.

4.2 Results

In this section we present the results of comparing the four instances of the
proposed approach namely KY-S, IRV-S, KY-C, and IRV-C with nine state-
of-the-art ranking metrics Naish2 [24], Zoltar [23], GP13 [25], Ochia [1],
Tarantula [10], Jaccard [23], GP03 [25], GP02 [25], and Wong [24]. Figure 6a
shows the results of the effectiveness comparison with respect to the first evalu-
ation metric presented in Sect. 4.1. According to the results, the four instances
of the proposed approach perform better than the rest of the ranking metrics.
Also, KY-S shows better effectiveness compared to the other three instances of
the proposed approach. Furthermore, the results indicate that fault localization
effectiveness can be increased by up to 62% using KY-S.
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Figure 6b compares the effectiveness of the proposed approach with other
ranking metrics with respect to the second evaluation metric presented in
Sect. 4.1. The purpose of this experiment is to evaluate the proposed approach
while only a small portion of program entities (in our case 10% of them) are
examined, which is an important perspective since developers tend not to exam-
ine every program entity presented by AFL techniques. Based on the results, the
proposed approach has the best effectiveness compared to other ranking metrics,
and again, KY-S performs better than the other three instances of the proposed
approach. To further investigate the effectiveness of the proposed approach, we
also compared KY-S, and KY-C with Naish2, Ochiai, and GP13 while the por-
tion of inspected program entities varied from 20% to 50%, and the results are
illustrated in Fig. 6c. As can be seen, no matter how many program entities are
inspected, KY-S is always superior.

Figure 6d shows the results of comparing the proposed approach with other
ranking metrics, regarding the third evaluation metric presented in Sect. 4.1,
which indicates the number of located faults by each ranking metric while only
ten program entities are inspected. According to the results, KY-S is superior
compared to the other ranking metrics.
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Fig. 6. Experimental results. (a) Exam scores; (b) proportion of located faults; (c)
proportion of faults located with respect to inspected program entities; (d) TOP-10
scores.
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4.3 Discussions

According to the experimental results presented in Sect. 4.2, the preferential
voting system used at step 3 in phase 2, which combines the best ranking metrics,
has a significant impact on the effectiveness of the generated ranking metric.
Considering the experimental results, employing the Schulze method results in
ranking metrics that are more effective than those produced by the Condorcet
method. We believe that this advantage is rooted in the ability of Schulze in
considering the transitive relation between the ranking metrics in ranked ballots
produced at step 1 in phase 2. In other words, compared to Condorcet, the
Schulze method can more appropriately determine the effectiveness of different
ranking metrics based on given ranked ballots.

Another important factor for generating an effective ranking metric is the
preferential voting system employed at step 2 in phase 2, which selects k best
ranking metrics among n. To investigate the impact of this factor, we removed
this step by setting k to n, and then, repeated the experiments. By doing so,
the Exam score of KY-S growed from 21.36% to 31.54% (which demonstrates
a decline in its effectiveness), and also the effectiveness of KY-S with respect
to the second and the third evaluation metrics presented in Sect. 4.1 decreased
from 42.3% to 16.8%, and from 63 bugs to 28 bugs, respectively. The parameter
k also has a significant influence on the effectiveness of the proposed approach.
To investigate the impact of this parameter, we repeated the experiments by
setting k as 5, 20, and 40. The results of this experiment is illustrated in Table 4,
according to which KY-S has the best effectiveness for k = 5.

Table 4. Sensitivity analysis of the parameter k for KY-S.

k = 5 k = 20 k = 40

Exam score (%) 21.36 29.46 31.45

Proportion of faults located (%) 42.3 24.3 16.8

4.4 Threats to Validity

The most critical threat to the validity of our experimental results is whether
they generalize to other programs. We have evaluated the proposed approach
using the Siemens suite which comprises relatively small programs. However,
these programs have been employed by many researchers in the field, and also,
we tried to mitigate this issue by using 35 faulty versions of the Space program
which are quite larger compared to the items in the Siemens suite.

In addition, the type of mutants generated at step 1 in phase 1, and the
number of ranking metrics selected at step 2 in phase 2 (the parameter k) can
also affect the experimental results, and thus, they are considered as other threats
to the validity of our results.
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5 Conclusions

In this paper, we presented an approach to generate SFL ranking metrics for
programs by combining various existing ranking metrics. We implemented four
instances of the proposed approach based on the preferential voting systems
used for two different tasks within the approach. All four instances of the pro-
posed approach were evaluated using the Siemens suite and the Space program,
and they were compared with nine state-of-the-art ranking metrics. According
to the results, using Kemeny-Young for selecting the best ranking metrics and
employing Schulze to combine them leads to better ranking metrics compared
to the other three instances of the proposed approach. Also, all four instances
of the proposed approach generate ranking metrics that are more effective than
the baselines with respect to the evaluation metrics such as the Exam score and
TOP-N.

In this work, we used four different preferential voting systems while there
are many other such systems that we plan to investigate their impact on our
approach. Also, to reduce the threat to the validity of our results, we are going to
evaluate our approach on Object-oriented, real-world, and large-sized programs,
as well. Since each subject program used in our experiments had only one bug,
we are going to evaluate our approach on programs with multiple bugs, as well.
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