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Abstract. Cardiac disease is the leading cause of death in developed
countries, and arrhythmias, which are disorders in the regular genera-
tion and propagation of electrical waves that trigger contraction, form
a major class of heart diseases. Computational techniques have proved
to be useful in the study and understanding of cardiac arrhythmias.
However, the computational cost associated with solving cardiac mod-
els makes them especially challenging to solve. Traditionally, hardware
available on personal computers has been insufficient for such models;
instead, supercomputers have been employed to overcome the compu-
tational costs of cardiac simulations. However, in recent years substan-
tial advances in the computational power of graphics processing units
(GPUs), combined with their modest prices and widespread availabil-
ity, have made them an attractive alternative to high-performance com-
puting using supercomputers. With greater use of GPUs, however, new
challenges have emerged. GPUs must be programmed using their own
languages or extensions of other languages, and, at present, there are
a number of languages that support general-purpose GPU codes with
substantial differences in programming ease and available levels of opti-
mization. In this work, we present the implementation of cardiac models
in several major GPU languages without language-specific optimization
and compare their performance for different levels of model complexity
and domain sizes.
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1 Introduction

Cardiac disease remains the leading cause of death worldwide [1]. Ventricular
fibrillation (VF), a life-threatening arrhythmia, is associated with disruption of
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the ventricular electrophysiological signalling that controls the contraction of the
heart muscle. Such disruption manifests as spatiotemporally disorganized electri-
cal waves [2–5] that require immediate intervention. Another form of arrhythmia
that can last for years and impair the quality of life of patients is atrial fibrillation
(AF). It is estimated that over 2.7–6.1 million Americans suffer from AF [1]. If
untreated for prolonged periods, AF can lead to more problematic arrhythmias
or even stroke.

It is possible that VF and AF treatment could be improved by designing
patient-specific prevention, control and/or therapy using new computational
tools that are fast, accessible and easy to use [6]. In fact, numerical simula-
tions of cardiac dynamics are becoming increasingly important in addressing
patient-specific interventions [7] and evaluating drug effects [8]. It is notewor-
thy that the Food and Drug Administration recently sponsored a new Cardiac
Safety Research Consortium initiative (CiPA) [8,9] that specifies the use of math-
ematical models of cardiac cells to aid pro-arrhythmic drug risk assessment.
However, as the mathematical models incorporate more detailed and sophis-
ticated biophysical mechanisms, they are becoming extremely complex mathe-
matically, with some of them requiring the solution of 50–100 nonlinear ordinary
differential equations (ODEs) per computational cell [10]. Such ODEs typically
are stiff and thus require a small temporal discretization, which is further com-
plicated by the spatial discretization size imposed by the size of the cardiac
cells. These complicating factors make cardiac dynamic simulations too large
for traditional serial CPU-based computing. While some efforts have been made
to create programs to aid with cardiac cell simulations in PCs [11,12], in gen-
eral, scientists have used supercomputer-based high-performance implementa-
tions of cardiac models to study cardiac electrophysiology, especially for large
two- and three-dimensional tissues. However, supercomputers are expensive to
acquire and hard to maintain, and even when such resources are managed by
individuals other than the end users, users typically are required to submit their
programs for execution as batch jobs, which can be inconvenient.

Substantial advances in the computational power of graphic processing
units (GPUs) have made them an attractive alternative to traditional high-
performance computing. Currently available GPUs are equipped with thousands
of powerful computational cores, and they can be acquired at affordable prices
sometimes as low as a few hundred US dollars. As such, they can provide high-
performance computing on personal computers at merely a fraction of the cost of
traditional CPU-based supercomputers. However, GPUs require machine code
that is prepared for the specific target GPU hardware. Thus, computer codes
either need to be implemented in a special language that is intended for GPU
programming or should be modified such that they become suitable for execu-
tion on GPUs. At present, there are several languages and programming solu-
tions that enable implementation of GPU applications. As might be expected,
each solution and programming language has certain benefits and may perform
differently for different applications. Therefore, a comprehensive study focused
on comparing the ease of programming and performance of such programming
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languages and solutions when applied to cardiac models can be beneficial to help
researchers in the cardiac community choose the appropriate approach.

In this study, we investigate some of the major languages and solutions in
cardiac GPU computing. Specifically, we consider (1) GPU computing solutions
available in MATLAB, (2) the pragma-based approach of OpenACC, (3) Python-
Numba, (4) TensorFlow, (5) WebGL 2.0, and (6) NVIDIA CUDA together with
the Abubu.js library. Our comparisons will be based on implementations without
any substantial program-specific optimization. Of course, we expect that apply-
ing language-specific optimizations could improve performance. However, it is
fair to assume that most cardiac researchers are not necessarily experts in GPU
programming, so that in many cases the solution that would provide the best
performance with minimal effort would be ideal. Nevertheless, our comparisons
will help users with a broad range of programming expertise make informed
choices about GPU implementations for cardiac models.

2 Methods

2.1 Models

We will compare performance using three different models with different com-
plexity. The FitzHugh-Nagumo (FHN) model [13,14] is a two-variable model
used as a generic excitable media model and in some cases as a cardiac model.
Tuning the model’s parameters can change features like the trajectory of the
spiral wave tip [15].

The Minimal Model (MM) [16] is a four-variable model developed to repro-
duce many important properties of cardiac cells while also prioritizing compu-
tational tractability. The model includes a variable representing voltage as well
as three gating variables that govern the dynamics of summary sodium and cal-
cium currents; a time-independent potassium current also is included. Different
parameterizations of the MM have been shown to reproduce the dynamics of
other models with good fidelity [6,16–18].

The Beeler-Reuter (BR) model [19] is an eight-variable model that includes
sodium, calcium, and potassium currents. It was the first model developed to
simulate ventricular tissue and the first to include an intracellular calcium con-
centration. We made modifications to the BR model by speeding up the τf
and τd in the model to 50% of their original value to prevent the model from
breakup [20]. If the original model was used with the default parameter set, it
would gives rise to spiral wave breakup in two dimensions [20,21]. This is also the
first model for which it was shown that reaction-diffusion equations for cardiac
cells can produce spiral waves in 2D [21].

2.2 Numerical Methods

The cardiomyocytes’ membrane potential (V ) propagation through gap junctions
(and in neurons through synapses) can be modeled by a cable equation [22],
which is given by
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∂tV (x, t) =∇ · (D̃∇V ) − Itotal
Cm

. (1)

Here, the membrane potential diffuses with a diffusion coefficient D̃ (which repre-
sents the fiber orientation of the heart [23,24] and, in general, is anisotropic and
heterogeneous), while the ionic concentrations are local in cardiac as well as neu-
ronal tissues. The transmembrane currents for all ions as well as the ion pumps
and exchangers are included in Itotal =

∑
Ii(V, yi). The most general form of a

transmembrane current Ii permeable to ion i is simply Ii = gi(V − Ei), where
gi is a conductance term, V is the membrane potential or voltage, and Ei is
the Nernst potential for ion species i. Often, the conductance is calculated using
gates following the Hodgkin-Huxley [22] formalism, in which the conductance
term is decomposed into the product of a maximal conductance term and one
or more separate normalized variables that represent the probability of finding
the channel open, which typically depends on the membrane potential or an
ion concentration. These variables follow first-order differential equations of the
form

dyi(t)
dt

=αyi
(V )(1 − yi) − βyi

(V )yi (2)

where αyi
is the probability that the channel gate yi will transition from closed

to open and βyi
is the probability it will transition from open to closed; both

probabilities are a function of voltage. An alternative representation used in
some models is achieved through Markov chains, where each state sp follows a
differential equation of the form

dsp(t)
dt

=
n∑

q=1,q �=p

(kqpsq − kpqsp), (3)

where kqp is the transition rate from state sq to sp. With either formulation, the
ordinary differential equations become partial differential equations once a spa-
tially extended system, rather than a single cell, is considered. More details on
how to numerically integrate these equations including convergence and bound-
ary conditions can be found in Ref. [25].

In all cases, we used a domain size of 20 × 20 cm. The diffusion coefficient
D̃ was assumed to be isotropic and homogeneously defined over the domain.
Finite differences were used for numerical simulations. To discretize the spatial
term in Eq. (1), a second-order central difference scheme was used both in the x
and y directions. All ODEs were solved using the forward Euler time-stepping
scheme for most variables. As an exception, the time-integration of the Hudgkin-
Huxley-type gates in Eq. (2) used the Rush-Larsen time-stepping scheme [26].
In all cases, a uniform Cartesian grid was employed. The grid sizes used were
256×256, 512×512, 1024×1024, and 2048×2048. This implies that for smaller
grid sizes, the solution was not fully numerically resolved. However, we emphasize
that our objective was to compare the same solution obtained under different
conditions. This would guarantee that for the same model, we deal with the same
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loading conditions on the GPU cores. The time step was chosen as Δt = 0.05ms
up to a grid size of 2048 × 2048, where Δt = 0.01ms was employed instead to
satisfy the CFL condition. Our initial conditions were set to the resting state of
the cells everywhere in the domain, except for nodes with x < 1 cm to create a
traveling wave toward the right-hand side of the domain. Later, at t = 600 for
the FHN model and at t = 370ms for the MM and BR models, a depolarizing
wave is applied at the bottom half of the domain where y < 10 cm by changing
the transmembrane potential to a higher depolarizing potential. This voltage
was set to 1.0 for the FHN and MM model and 30mV for the BR model. For
more information on the implementation details, see the computer codes that
can be downloaded from http://abouzar.net/SmolkaFest2019/codes.zip (Fig. 1).

Fig. 1. Membrane potential for the FHN (first row), MM (second row), and BR (third
row) models at the initial time (first column), application of the depolarizing voltage
from the bottom half of the domain (second column), transient spiral wave dynamics
(third column), and after the spiral wave stabilizes (fourth column).

Because the details of GPU programming are closely connected with the
different implementations studied, this information is provided below in the next
section.

http://abouzar.net/SmolkaFest2019/codes.zip
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3 Comparison of GPU Implementations

Below, we describe six different GPU implementations of the three models (FHN,
MM, and BR). In some cases, we also compare additional options available for a
particular configuration. Along with measurements of speedup as a function of
the number of grid points, we also comment on ease of programming.

First, we implemented a serial version of all three models in the C program-
ming language. The PGI-C compiler was used to generate the machine code. This
serial version was used in all speedup calculations. The speedup was defined as
follows:

Speedup =
wall-time of single-core serial CPU C-program

wall-time of GPU implementation
, (4)

where wall-time is the measured time of execution of the program that an ordi-
nary wall-clock would measure, albeit here, we used the computer’s clock for
measurements.

All measurements were carried out on a Linux Manjaro operating system
with Kernel version 4.19.34. The system had an AMD� Ryzen threadripper
2990wx 32-core processor that was used for CPU time measurements (although
only one core was used in the CPU case). The graphics card that was used for
GPU measurements was a NVIDIA TITAN V/PCIe/SSE2.

In this study, all measurements were carried out in double precision, except
for the WebGL 2.0 and TensorFlow cases. For the CUDA and OpenACC imple-
mentations, we tried single-precision calculations and the speedups did not
change more than 10% on this GPU.

3.1 MATLAB

MATLAB, originally meaning matrix laboratory, is a proprietary programming
language developed by MathWorks. MATLAB allows for easy matrix opera-
tions and is equipped with several linear solvers, as well as built-in plotting and
visualization features, that together make it very popular for general program-
ming in academic settings. MATLAB’s easy-to-learn programming syntax makes
it attractive to novice programmers, and its feature-rich environment makes
it attractive to seasoned programmers, for both prototyping algorithms and
research. Additionally, MATLAB has an interactive user interface that combined
with MATLAB’s interpreter removes the hurdles of compiling, running, and visu-
alization of the data. As such, MATLAB has been adopted as the companion
language or the language of choice in several books [27–35]. MATLAB is also
widely used in several research fields, including but not limited to, fluid mechan-
ics [36,37], geophysical studies [38–40], volcanology [41–44], astrophysics [45–48],
chemical engineering [49–52], image analysis [53–57], neural networks [58–60],
cell modeling [61–64], and cardiac studies [65–71]. MATLAB also provides GPU
parallelism through fully automated GPU acceleration, the arrayfun command
which applies a function to each element of arrays, and CUDA kernel calls.
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Here, we implemented the arrayfun and CUDA kernel call options for each
of the three models. The arrayfun function applies a MATLAB function to all
elements of an array. After sending the arrays to the GPU using the gpuArray()
function, calling the arrayfun function for each time step allows the function
to be run on the GPU. MATLAB’s interpreter recognizes that it can run the
function independently for each element of the array on the GPU and it will do
so. Since this approach still relies on automatic detection of the parallelizable
section and acceleration of the code, it is expected to be less than “ideal”. The
second approach in MATLAB is to manually write the GPU code as a CUDA
kernel and run the CUDA kernel. This approach is supposed to result in the best
observed performance since there is no “guess-work” necessary by the MATLAB
interpreter and the GPU code is already parsed. The upside is that all MATLAB
visualizaton and data analysis tools still can be used, and the CUDA kernel will
only be in charge of running the accelerated code in an optimum way. However,
writing CUDA kernels requires familiarity with the NVIDIA CUDA C language
in addition to familiarity with MATLAB. Hence, it is expected that a smaller
number of MATLAB users will be comfortable programming CUDA kernels.
Speedup is assessed for problems sizes of 216, 218, 220, and 222 grid points. By
default, all implementations in MATLAB use double-precision variables.

Fig. 2. Speedup of models vs. grid size for the FHN, MM, and BR models using
MATLAB with array functions (dashed lines) and with CUDA kernels (solid lines).

Figure 2 shows that in all cases, as expected, the use of CUDA kernels pro-
vided more substantial speedup than the corresponding arrayfun implementa-
tions by as much as a factor of six. The largest speedup was found for the BR
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model, which is not surprising given that it has the most equations and thus the
most potential for concurrency within a given time iteration. Correspondingly,
the FHN model attained the smallest speedups, but it still achieved a speedup
of nearly two orders of magnitude for the largest grid size using CUDA kernels.
The MM achieved speedups more than twice that of the FHN model, most likely
because although it has twice the number of ODEs, it has a significant number
of additional algebraic equations evaluated during each time step, thus allowing
greater potential for performance increase through greater parallelization over
each time step.

3.2 OpenACC

OpenACC is a programming standard that developed as a joint effort between
Cray, CAPS, NVIDIA and PGI as an alternative to low-level CUDA program-
ming. OpenACC, similar to OpenMP, uses a pragma-based approach to identify
the computer code regions that can be parallelized on the GPU. The pragma
directives, together with environment variables and library calls, facilitate accel-
erating regions of the serial C/C++ or FORTRAN CPU codes that can benefit
from parallelization, typically loops, and in this case support use of GPGPU com-
puting. As a result, OpenACC provides an approach that can accelerate mature
CPU C/C++ or FORTRAN codes with minimal effort. This feature has made
OpenACC an attractive choice to a large group of researchers in various fields
including but not limited to fluid mechanics [72–76], earthquake modeling [77],
deep neural networks [78,79], astrophysics and data mining [80], cardiovascu-
lar [81] and cardiac electrophysiology [82,83].

First, we implemented a serial version of all three models in the C pro-
gramming language. This serial version was used in all speedup calculations.
OpenACC pragmas were added to the serial code to achieve parallelism. After
initializing the solution we used the OpenACC’s “data in” pragmas to copy the
data to the GPU. Then in the parallel loops these arrays were marked as present
on the GPU to avoid unnecessary copy of the arrays in and out of the GPU. The
data was copied out to CPU memory only on the time-steps that we intended
to write data to disk. This was achieved through the “update self” pragma. The
data was written to disk only for debugging and during performance measure-
ments no data was written to disk. Both single-precision and double-precision
implementations were tested and the variations in performance were limited to
less than 10% on this particular GPU. The results presented here were generated
using double-precision variables.

Figure 3 shows the resulting speedups, which are quite similar to the speedups
obtained using MATLAB with CUDA kernels. Again, the BR model benefited
the most from acceleration, with speedups of up to three orders of magnitude
due to the fact that, for the BR model, the computational cost of the reaction
operations is much more than for the diffusion term. This suggests that the more
complicated models of cardiac dynamics can benefit even further from the use
of OpenACC implementations.
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Fig. 3. Speedup of models vs. grid size for the FHN, MM, and BR models using
OpenACC directives in the C programming language.

3.3 Python Numba Implementation

Python is an interpreted general-purpose language created in the early 1990s
by Guido van Rossum at Stichting Mathematisch Centrum in the Netherlands
as a successor of ABC [84]. Python supports multiple programming paradigms,
including functional, object-oriented, and procedural programming. Due to its
feature-rich environment and its approachable learning curve, Python is widely
popular as a language for teaching [85,86] and research in various field such as
astrophysics [87–89], machine learning [90,91], neural networks [92], and busi-
ness [93]. Similarly, Python is also used in cardiovascular [94–101], cardiac elec-
trophysiology [102–107], and arrhythmia detection [108] studies. Python’s pop-
ularity is evident in the large number of conferences that are held each year
dedicated to Python programming including DjangoCon Europe, EuroPython,
EuroSciPy, Kiwi PyCon, O’Reilly Open Source Convention, Plone Conference,
PyCon conferences held in different regions of the world, PyData, PyGotham,
SiPy and many more [109]. Project Jupyter has also contributed significantly
to the popularity of the Python language by providing a web application that
allows users to create and share documents that contain live interactive Python
codes, equations, visualization and narrative text [110].

The widespread popularity of Python has resulted in a broad range of
Python libraries that can be used for various different applications. One very
popular library is NumPy, which provides support for definition of multi-
dimensional array objects and array operations [111], which can be very useful in
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scientific computing. Numba is an open-source Just-In-Time (JIT) compiler
that translates a subset of Python and NumPy code into accelerated machine
code [112]. The Numba compiler can provide acceleration through multicore
CPUs or GPGPU. Numba has a very simple approach to accelerating Python
code. In fact, the Numba website provides a tutorial that teaches Python pro-
grammers to start accelerating their Python code in as little as five minutes [113].
This small learning curve makes Numba an attractive choice for cardiac
modeling.

Fig. 4. Speedup of models vs. grid size for the FHN, MM, and BR models using Python
Numba.

Figure 4 shows speedup results using Python-Numba. All measurements were
carried out using double-precision variables. As expected, the BR model achieves
the greatest speedup and the FHN model the least. Most notable is that large
performance gains do not appear until grid sizes of 220, which may be due to the
fact that for each time step there is a certain overhead time imposed for launching
a parallel code on the GPU. However, that effect becomes less important when
we keep the GPU busy for longer periods before advancing to the next time step.

3.4 TensorFlow Implementation

TensorFlow is a free and open-source software library primarily designed by
the Google Brain team [114,115] for internal use. It was released for public use
later under Apache 2.0 open-source licence on November 9, 2015 [116]. It has
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been used by a number of companies, including Airbnb, AIRBUS, Coca-Cola,
Google, Intel, PayPal and Qualcomm [117] in both research and production.
TensorFlow can be used on single as well as multiple CPUs and GPUs. Once
the target device is chosen, the parallelization is carried out automatically by
the TensorFlow engine. TensorFlow provides extensive features to be used for
machine learning and deep neural network applications [114,115,118]. Hence, it
can be considered an attractive choice for model-based machine-learning envi-
ronments where machine-learning algorithms can be trained using a dynamical
numerical model. A number of groups in the cardiac community have embraced
TensorFlow [119–127].

Fig. 5. Speedup of models vs. grid size for the FHN, MM, and BR models using
TensorFlow.

Speedup results for the three models using Tensor-flow are given in Fig. 5.
The measurements for TensorFlow were made using single-precision variables, as
some of the functions did not have a double-precision implementation for GPU
parallelism at the time of coding the TensorFlow programs. In this case, speedup
is quite limited compared to the other approaches considered, with the maximum
speedup (attained for the BR model on the largest grid) still well below 100. The
speedups are the result of just choosing the target device to be the GPU. No
optimization such as using convolutions was used here. We would say the effort
required for parallelism on the GPU was minimal compared to other languages.
Given the minimal effort required for achieving parallelism, programmers are
encouraged to use the GPU as their target device for all models, especially more
complex ones.
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3.5 WebGL and Abubu.js Implementation

WebGL or the Web Graphics Library is a royalty-free JavaScript application
programming interface standard that provides low-level 2D and 3D rendering
capabilities in modern web browsers without the need to install any plug-ins
through the HTML5 canvas element [128]. This means that WebGL applications
can run on any modern web browser and on any major operating system (such as
Microsoft Windows, macOS, Linux, Android, or even iOS), and at the same time
harness the computational power of the available GPU on that device. WebGL
applications are automatically compiled at run-time for the particular user’s
graphic cards. Therefore, the WebGL applications do not need to be compiled by
the developers for all the intended GPUs and operating systems. This also means
that WebGL applications are capable of harnessing the computational power in
various GPU devices from various vendors, unlike some of the languages such as
NVIDIA CUDA, which can only run on specific hardware.

The heart of the WebGL applications is written in OpenGL Shading Lan-
guage (GLSL), which is a high-level programming language with a syntax based
on the C programming language [129]. GLSL supports most of the C/C++
familiar structural components, such as if statements, for loops, etc. It also has
a number of built-in functions for mathematical, vector, and matrix operations as
well as texture access [130]. The only drawback for using WebGL is that currently
it only supports single-precision variables and textures. Therefore, for applica-
tions that must use double-precision floats, WebGL is not suitable at present.
When using WebGL for parallelism, usually texture memory is utilized as the
basic data structure for the input and output of the programs [131]. However,
the WebGL language can have a high learning curve for novice programmers or
those who are not well versed in graphics programming. The Abubu.js program-
ming library is used to address this issue and remove the hurdles of GPGPU
programming with WebGL [6]. Using Abubu.js, WebGL has been shown to be
capable of solving a wide range of problems from studying fractals, solitons and
chaos [132] to cardiac dynamics, fluid mechanics, and crystal growth [6].

In this work, we followed the methods proposed in [6] to implement the FHN,
the MM, and the BR model in WebGL using Abubu.js. Figure 6 shows perfor-
mance gains using our WebGL implementation, which generally outperforms all
other implementations. In particular, the speedup for the MM is now above
1000 for the largest grid size, and for the BR model speedup exceeds 2000 for a
grid size of 220. However, performance for the BR model is more variable, with
a dropoff in speedup at the largest grid size in contrast to monotonic increases
with grid size in all other cases. In addition, WebGL performance for the smallest
grid size is typically no greater than that seen in OpenACC and MATLAB with
CUDA kernels. That is due to the fact that there is a minimum overhead time to
launch the WebGL applications in each time step. The performance drop in the
BR model for larger grid sizes could be due to memory access bottlenecks and
how the data is stored on the GPU. It should be noted that even with the per-
formance drops, the WebGL applications outperform all other implementations
by a large margin for larger domains.
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Fig. 6. Speedup of models vs. grid size for the FHN, MM, and BR models using WebGL
together with the Abubu.js library.

3.6 NVIDIA CUDA Implementation

One of the most popular platforms to solve PDEs in parallel using GPUs is
CUDA. CUDA is a parallel platform developed by NVIDIA that allows the user
to execute programs on the GPU of a personal computer. This allows faster
processing and visualization of large data sets that fulfill certain characteris-
tics that will be discussed below. Since its launch in 2007, CUDA has helped
to extend the use of GPU technology to the scientific community. Specifically,
the CUDA platform has been applied in several scientific and engineering fields
such as fluid dynamics [133,134], machine learning and neural networks [135–
138], astrophysics [139–142], the Lattice Boltzmann method [143–145], molecular
dynamics [146–148], clinical applications [149,150], and recently in the cardiac
modeling community [151–155]. CUDA has also been successfully used for teach-
ing purposes, including in undergraduate workshops [156]. Like all computational
tools, it has advantages and disadvantages.

The CUDA platform is an extension of other programming languages, i.e.,
it is a set of functions added to a preexisting platform that allows the user to
communicate with the GPU. This implies that most of the base language char-
acteristics and logic will be inherited by the parallel functions. There are several
versions of CUDA, mainly C/CUDA (CUDA for the C language), PyCUDA
(CUDA for Python) and CUDA Fortran. We decided to develop our solvers in
C/CUDA because it is the most supported version. The description below is
valid regardless of the version chosen.
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In some cases, CUDA is able to launch millions of processing threads simulta-
neously, which can increase the speed of computations and save many hours and
possibly days of processing time (). The speedup depends mainly on the type
of algorithm implemented to process the data and the structure of the data.
To understand better how these factors affect the speed of the computations, it
is important to understand the interaction between the software and hardware,
particularly the interaction between the CPU (commonly referred to as the host)
and the GPU (commonly referred to as the device). All programs start at the
host level, meaning that they are all managed by the host and all the data is
held in CPU RAM or the hard drive. Meanwhile, sections of memory in the
GPU are reserved to hold the data that needs to be processed. Once everything
is ready, the CPU calls specific functions to be executed on the GPU. After the
GPU processes the data, it must be sent back to the CPU so that it can be
post-processed by the user. In most programs, there is a constant exchange of
data between host and device. As a rule of thumb, the programmer should try
to reduce the number of memory transactions between both ends mainly due
to bandwidth limitations. Other factors to be considered are the GPUs memory
capacity and frequency of kernel calls (functions called by the CPU that exe-
cute on the GPU and hold the bulk of the processing algorithm). In addition to
adequately controlling the data flow, the program must manage the data in a
parallel-friendly arrangement, specifically, we must determine the way that data
will be read and written. As commonly observed in programming languages with
arrays of two or more dimensions, the data layout and memory access patterns
need to be aligned to achieve maximum performance. More specifically, CUDA
requires the data layout to adapt to a single instruction multiple data processing
structure, which means that all processing threads must be performing the same
instructions simultaneously to avoid thread divergence.

In addition to the memory transactions and layout mentioned above, CUDA
requires the programmer to adapt the data to a specific hierarchical structure of
threads. In general, threads are organized into blocks, which can be one-, two-,
or three-dimensional. Sets of blocks are then organized in a grid. Again, the grid
can be arranged in all three dimensions. More information can be found in [157]
and [158]. The dimension of these objects refers to how they will be accessed,
not how they are physically stored in memory. The user can adapt this structure
to increase the performance of their computations. In our particular case, two-
dimensional blocks and grid resemble very well the 2D domains in which we are
solving the PDEs. Still, different memory access patterns will influence the speed
of our computations. Other factors to be considered when building a CUDA
program are coalesced memory patterns, in which multiple threads can receive
data through a single combined memory access, and the use of the various types
of internal memories and the interaction among them. These are just some of
many considerations that are important to keep in mind. It is also worth noting
that if a task is not inherently parallelizable due to dependencies across loop
iterations without substantial work within each iteration (such as a Fibonacci
sequence calculation) or if the number of threads is small (typically on the order
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of hundreds or lower), CUDA will perform worse than most standard serial
implementations due to overhead associated with launching kernels and moving
data between the host and device.

In our implementations, we used global memory. Both single- and double-
precision implementations were tested and the variations in performance were
limited to less than 10% on this particular GPU. The results presented here are
generated using double-precision variables. One-dimensional arrays were used to
represent the 2D domain. The data could be arranged in either a row-major or a
column-major fashion in the one-dimensional arrays. In the row-major structure,
the matrix is stored in the 1D array one row after another until the entire
matrix is stored. In the column-major order, the same procedure is followed
for the matrix columns. Both versions were tested to observe the performance
differences. The row-major version of the data-structures performed consistently
better than the column-major structures. This could be due to the fact that the
row-major structure was more compatible with hardware, possibly due to the
way that warps are organized on this GPU. Different results might be expected
for different GPUs and the users should be aware of such differences. It should be
noted that this should not be confused with the loop access of multi-dimensional
arrays in CPUs. Here, in both cases, the data structures are one-dimensional
and the central difference algorithm for the diffusion term imposes a symmetry
condition on both directions.

We also decided against using shared-memory implementations such as those
suggested in earlier studies [152]. The use of shared memory requires copying the
variables from the global memory into shared memory, performing calculations
from shared memory in registered memory (implicit), then writing data into
shared memory, and then to global memory. These steps are required in each time
step as no data can be retained between time steps. However, the use of global
memory would require bringing the data to register for calculations and writing
the data back to global memory. It is evident that using global memory for this
type of problems involves fewer memory transactions compared to the shared
memory implementations but the same number of global memory accesses and
thus is expected to be faster. Additionally, our goal in this study is to compare
the simplest implementations in each language as the targeted programmers are
scientists whose primary expertise is not GPU programming. The use of texture
memory instead of one-dimensional arrays could also change the performance of
the applications. However, any performance improvements could be hardware-
dependent and would also depend on the problem size and complexity. In favor
of simplicity, we chose the use of a global memory implementation.

We used a 16 × 16 thread size for the CUDA implementations, and each
direction was then divided by 16 to get the block size. Smaller thread sizes led
to lower performance and larger thread sizes did not improve the performance
on our particular GPU.

Figure 7 shows the speedup achieved for each of the three models using our
CUDA implementation. CUDA slightly outperforms MATLAB with CUDA ker-
nels and OpenACC, especially for smaller grids, but overall the performance
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Fig. 7. Speedup of models vs. grid size for the FHN, MM, and BR models using CUDA
with column-major data structures in dashed lines and row-major data structures in
solid lines.

is fairly comparable for these three implementations. WebGL maintains better
performance for all grid sizes. Note that speedup seems to have saturated for
the FHN model and appears to be close to saturating for the other models. In
addition, it should be noted that we could potentially observe a performance
saturation similar to those observed in WebGL implementations. Moreover, due
to the limitations in the GPU memory size, there is a limit to the problem size
that can be handled on a single GPU so that using multiple GPUs for larger
problems becomes inevitable. While using multiple GPUs can be useful for han-
dling larger domains due to memory constraints, it should be noted the required
communication between the multiple GPUs will impose performance penalties
on the parallel GPU codes.

4 Discussion and Conclusion

Figure 8 shows the comparison between the speedup gains for each of the GPU
implementations of the three different models with different grid sizes. It can
be seen that the WebGL applications outperform all other implementations for
all cases except for the smallest grid sizes and the FHN model. As soon as
the workload on the GPU is “large” enough to take full advantage of concur-
rency, WebGL provides the best performance. All implementations performed
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Fig. 8. Speedup comparison for various implementations of the FHN, MM, and BR
models. Each color corresponds to a different grid size.

better with larger grid sizes and more complicated models, with the BR model
implementations providing the best performances among all models. Another
notable observation is that almost all GPU implementations provided perfor-
mance comparable to that of the NVIDIA CUDA implementations with minor
differences with the exception of TensorFlow. Therefore, we can conclude that
almost all languages considered in this study are ready to make effective use
of GPU hardware to reduce program runtimes. The least effort for achieving
parallelism in the languages was required by TensorFlow, C-OpenACC, MAT-
LAB arrayfun, and then Python Numba implementations. However, writing the
serial code in TensorFlow was the most convoluted of all the approaches tested.
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Nevertheless, moving from the serial code to the accelerated GPU code was as
simple as just choosing the target device. C-OpenACC was the most natural for
a novice programmer, which could provide the best performance with the least
programming effort. However, MATLAB and Python Numba provide built-in
visualization tools.
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