
Ezio Bartocci
Rance Cleaveland
Radu Grosu
Oleg Sokolsky (Eds.)

From Reactive Systems
to Cyber-Physical Systems

Fe
st

sc
hr

ift
LN

CS
 1

15
00

Essays Dedicated to Scott A. Smolka
on the Occasion of His 65th Birthday

Lecture Notes in Computer Science 11500

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ezio Bartocci • Rance Cleaveland •

Radu Grosu • Oleg Sokolsky (Eds.)

From Reactive Systems
to Cyber-Physical Systems
Essays Dedicated to Scott A. Smolka
on the Occasion of His 65th Birthday

123

Editors
Ezio Bartocci
Technische Universität Wien
Vienna, Austria

Rance Cleaveland
University of Maryland
College Park, MD, USA

Radu Grosu
Technische Universität Wien
Vienna, Austria

Oleg Sokolsky
University of Pennsylvania
Philadelphia, PA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-31513-9 ISBN 978-3-030-31514-6 (eBook)
https://doi.org/10.1007/978-3-030-31514-6

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: Blick of “sort sol”. This work has been released into the public domain by its author,
Christoffer A. Rasmussen, Rasmussen29892 at the Wikipedia project. This applies worldwide.
Rasmussen29892 grants anyone the right to use this work for any purpose, without any conditions, unless
such conditions are required by law.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8004-6601
https://orcid.org/0000-0001-5715-2142
https://orcid.org/0000-0001-5282-0658
https://doi.org/10.1007/978-3-030-31514-6

Scott A. Smolka
Courtesy of Computer Science Department, Stony Brook University, USA.

Picture taken by Tony Scarlatos. Used with permission.

Preface

This Festschrift is dedicated to Scott A. Smolka on the occasion of his 65th birthday
that was celebrated on August 1, 2019. This book contains the papers written by his
closest friends and collaborators. These papers were presented during a two-day
workshop organized in his honor that was held during August 1–2, 2019, at Stony
Brook University, NY, USA.

Scott joined the Department of Computer Science of Stony Brook University in
1982, and was promoted to full professor in 1995. In 2016 he was appointed to the rank
of Distinguished Professor in the same university.

He has made fundamental research contributions in a number of areas, including
process algebra, model checking, probabilistic processes, runtime verification, and the
modeling and analysis of cardiac cells and neural circuits. He is perhaps best known for
the algorithm he and Paris Kanellakis invented for checking bisimulation. Scott’s
research in these areas has resulted in over 200 publications, generating more than
9,000 citations.

He has been principal investigator and co-principal investigator on grants totaling
more than $23 million, and he is the lead principal investigator of CyberCardia, a
$4.3-million National Science Foundation (NSF) multi-institutional grant,
“Compositional, Approximate, and Quantitative Reasoning for Medical
Cyber-Physical Systems.” He served as Deputy Director of a $10-million NSF
multi-institutional grant on “Computational Modeling and Analysis of Complex
Systems.” Scott is also a director and co-founder of Reactive Systems, Inc., a company
selling tools and services for embedded-software testing and validation.

In 2016, Scott was recognized as a Fellow of the European Association for
Theoretical Computer Science for his “fundamental contributions in formal modeling
and analysis.” He is the recipient of the President and Chancellor’s Award for
Excellence in Scholarship and Creative Activities, and the Department of Computer
Science’s Research Excellence Award.

The title of this volume, From Reactive Systems to Cyber-Physical Systems, reflects
Scott’s main research focus throughout his career. The contributions, which went
through a peer-review process, cover a wide spectrum of the topics related to Scott’s
research scientific interests, including model repair for probabilistic systems, runtime
verification, model checking, cardiac dynamics simulation, and machine learning.

Dear Scott, on behalf of all your friends, students, and collaborators, we wish you all
the best!

June 2019 Ezio Bartocci
Rance Cleaveland

Radu Grosu
Oleg Sokolsky

viii Preface

CyberCardia Team
Courtesy of Rahul Mangharam, University of Pennsylvania, USA.

Used with permission.

Personal Notes for Scott

From Ezio Bartocci - I met Scott for the first time twelve years ago, while I was
pursuing my PhD in Italy. My former advisor, given my background in both computer
science and biology, suggested me to spend three months in Stony Brook to visit Scott.
During that period, Scott and Radu were working on computational modelling and
analysis of cardiac dynamics. Starting that collaboration was of key importance to my
life, with a clear impact on my future academic career - and not only. Scott has been a
wonderful teacher, nurturing motivation, ideas and new exciting problems to be solved,
beyond my stay in Stony Brook. I am extremely indebted to Scott. I consider him not
only a scientific father, but also a dear friend and I am very happy to organize
this event.
Scott I wish you all the best for your 65th birthday!!

From Samir Das, Chair of the Department of Computer Science, Stony Brook
University - Scott is a leading expert in formal methods for the analysis of computing
systems and has an outstanding track record for making foundational technical
contributions and applications to real-world problems. He is inspiring to both our
faculty and students. His visibility and high-impact research bring significant
recognition to our department.

From James Glimm - Congratulations Scott! I have learned so much from the
CyberCardia project and benefited from your leadership of it. I have met with many
new colleagues and renewed an ancient collaboration with Flavio Fenton. You have
made all of this possible. My deepest thanks for this.

From Radu Grosu - It is my great pleasure and honor to write a Laudation for Scott
Smolka with the occasion of his 65-birthday celebration, highlighting some of my
memories with him. Scott has become over the years not only a mentor but also a true
friend of mine.

In order to do justice to my recollections with Scott, I would have to write volumes.
The first would be about our countless hours of joint research, which are continuing to
this day. The second would be about our common passion for tennis, and the countless
hours spent together on the tennis courts. The third would be about our countless
dinners together, where we both enjoyed wonderful conversations and delicious food.
Finally, the fourth would have to be about the miraculous way he overcame a serious
illness, such that we still have the privilege to be with him today. Since I will not have
the space required for these volumes, I will just mention the way I would probably like
to start the first volume.

One of the most distinguished aspects of Scott’s work is his extraordinary ability to
identify very relevant and exciting research problems, by giving an often-unexpected
twist to a mainstream research topic. One of the problems he came up with happened

during the time I still was in Stony Brook. Together with our systems colleague, Erez
Zadok, we were looking at various verification problems for the Linux OS. As we soon
realized that scaling up model checking to the extensive Linux-OS code was still
problematic, we started to consider cheaper and faster ways to achieving results.
Runtime verification (RV) seemed to be the right way to go, as it allowed us to regard
the OS as a black box. However, we needed to instrument the code with monitors,
which introduced in some cases considerable overhead. While looking for ways to
reduce this overhead, by selectively enabling and disabling some of the monitors, Scott
spent a sabbatical at NASA JPL working together with Klaus Havelund. When he came
back, he posed us the following research problem: What happens to RV if one misses
observations? This problem took us by surprise, but we immediately realized its
importance. Formalizing observation uncertainty required either the use of nondeter-
minism, leading to a logical approach to the problem, or probabilities, leading to a
stochastic approach. Since in the former one learns pretty large automata models (and
thus monitors), we opted for the latter, and at the suggestion of Scott Stoller, we settled
to Hidden Markov Models (HMM). During our discussions, I realized that Scott’s
problem, was strongly related to the state-estimation problem in control theory and we
dubbed our paper as “Runtime Verification with State Estimation”. Ezio Bartocci, a
Post- doctoral student at that time, took over the implementation aspects, by using the
Baum-Welch algorithm to learn the appropriate HMMs from corresponding partial
traces. This allowed us to successfully compute the probability that a desired property
of a system was violated or not during blackout periods, that is, while the systems was
running without being observed. Our synergistic work resulted in a paper that was later
distinguished with the best paper award at the RV’11 conference. Scott triggered it all.

Another scientific problem posed by Scott using his above-mentioned ability is
Flocking in V-Formation. We are still working on it today. It touches even more
aspects of (possibly distributed) machine learning, verification, and control. The origins
of this work have a very interesting story, too, but I leave this for another occasion.

From Panagiotis Katsaros - On the occasion of celebrating the 65th birthday of Scott
Smolka I would like to express my best wishes, along with my joy for having the
honour to collaborate with Scott during the last decade of his amazing research career.
Many colleagues will remind Scott’s seminal contributions in an impressively wide
range of research problems on formal modeling and verification. I will recall the man
who always leads his group to pioneering research ideas, the man with the strength to
collaborate with his fellows from the beginning to the last moment of a research by
overcoming any durability limitations, the man who inspires the younger researchers
with his attitude and human potential, our good friend, our own Scott. Happy birthday
Scott! I wish having the chance to work with you for many more years yet.

From Shan Lin - Dear Scott, I really appreciate all your help for me to start my
research career at Stony Brook. You’ve always been there, providing guidance and
advise since I joined Stony Brook. You have inspired me to work on my new projects
and explore new directions. I am very grateful for your support and looking forward to
continuing to work together.

xii Personal Notes for Scott

From Emanuela Merelli - When I met Scott for the first time, it was at Sunny. We
went for a meeting; during my talk about BioAgent modeling, Scott asked me if the
behavior of an agent in the multi-agent system was deterministic and how to analyze
the evident non-deterministic behavior emerging from the interactions of biological
entities whose compositional rules are unknown. He was speaking with his long vision
about of Aristotle’s “the whole cannot be decomposed as the sum of its parts”. Many
years passed, I’m happy to take this opportunity to thank Scott for helping me foster a
critical sense in going towards new intriguing science for Computer Science. It is
unbelievable how a person, even if met for some hours, can change your mind; this is
my experience in meeting Scott. For these reasons, I’m honored to take part in Scott’s
Festschrift contribution.

From Oleg - I arrived at Stony Brook for my Ph.D. studies without, as it quickly turned
out, a reasonable understanding of how computer science research works or even what
computer science, as a discipline, is about. Running into Scott at one of the
department’s Friday donut hours during my first semester turned out to be my lucky
break, which helped me find direction both in my doctoral work and later in my career.
He encouraged me to attend group meetings to learn more about the topic and later
invited me to join the group.

I had a lot of fun working a number of challenging problems while at Stony Brook
and learned much about formal verification. Still, probably the most important things I
learned were the ones you cannot pick up from technical papers. Scott was very
generous with sharing his insights into what it means to do good research, how to
choose problems to attack, and how to derive pleasure from solving them.

I would like to share a memory, which at the time has significantly influenced my
decision to stay in academia after completing my Ph.D. We had a weekly project
meeting that involved Scott, Gene Stark, and several of their students, including
myself. One day I showed up for the meeting, expecting students to give the usual
progress reports, followed by guidance from professors. Instead, Scott came in a very
bright mood and said that he had proved a new result and wanted to share it with the
group. The lively discussion that followed showed me that, first, it is possible to make
good technical progress without relying on graduate students. And second, maybe even
more importantly, I saw how excited Scott was and how much he enjoyed doing it.
I clearly remember thinking: if this is really as much fun as it seems, I want it, too. I did
stick with academic research and never regretted it. Thanks, Scott, for setting me (and
your many other students) on the right track!

From Shoji Yuen, Nagoya University, Japan - Dear Scott, Congratulations on your
65th birthday!! In Japanese, “65-sai no Otanjobi, Omedetou-Gozaimasu”. It’s been a
long time since my last visit to Stony Brook. I cannot believe how fast time passed and
how quickly things have been changing. Because of your great help and kindness, I
have been able to stay in academia till now. I do wish you stay well and take good care
of yourself. Hope you visit Japan again.

Personal Notes for Scott xiii

From Erez Zadok, Professor and Graduate Academic Adviser - In my PhD work I
had to write and debug lots of difficult kernel code. When I joined the department in
2001, I found out that Scott worked on verification. Knowing very little about
verification, I approached Scott with a “simple” request that I hoped would ease my
work—to verify all five million or so lines of Linux kernel code. Scott smiled, took a
deep breath, and carefully explained to me why this task is “not as simple” as I had
thought, especially for complex operating system code written in C. Boy, that was an
understatement! Knowing what I know now, Scott could have easily burst in laughter
at my naiveté. Instead, we began to collaborate towards that goal—a highly fruitful and
rewarding collaboration that continues to this day. Here’s hoping for many more years
of learning from Scott’s wisdom.

xiv Personal Notes for Scott

Contents

Scott Smolka and Me . 1
Rance Cleaveland

Analysis of Complex Biological Systems

A Comprehensive Comparison of GPU Implementations of Cardiac
Electrophysiology Models . 9

Abouzar Kaboudian, Hector Augusto Velasco-Perez, Shahriar Iravanian,
Yohannes Shiferaw, Elizabeth M. Cherry, and Flavio H. Fenton

From Automated MRI Scan to Finite Elements . 35
James Glimm, Hyunkyung Lim, Martin Bishop, and Soojin Kim

Program Analysis

Formalizing Requirements Is �h Hard . 51
Gerard J. Holzmann

Invisible Invariants Are Neither . 57
Lenore D. Zuck and Kenneth L. McMillan

A Refinement Proof for a Garbage Collector . 73
Klaus Havelund and Natarajan Shankar

Synthesis of Models, Parameters and Benchmarks

Model Repair Revamped — On the Automated Synthesis
of Markov Chains —. 107

Milan Češka, Christian Dehnert, Nils Jansen, Sebastian Junges,
and Joost-Pieter Katoen

Generating Hard Benchmark Problems for Weak Bisimulation 126
Bernhard Steffen and Marc Jasper

Robustness of Neural Networks to Parameter Quantization 146
Abhishek Murthy, Himel Das, and Md. Ariful Islam

Model-Based Design

Model-Based Energy Characterization of IoT System Design Aspects 165
Alexios Lekidis and Panagiotis Katsaros

A Logic-Inspired Approach to Reconfigurable System Modelling 181
Alessandro Maggi, Rocco De Nicola, and Joseph Sifakis

Data-Driven Design

Topological Interpretation of Interactive Computation 205
Emanuela Merelli and Anita Wasilewska

Conformal Predictions for Hybrid System State Classification. 225
Luca Bortolussi, Francesca Cairoli, Nicola Paoletti, and Scott D. Stoller

Control Synthesis Through Deep Learning . 242
Doron Peled, Simon Iosti, and Saddek Bensalem

Runtime Verification

The Cost of Monitoring Alone . 259
Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir,
and Karoliina Lehtinen

Runtime Verification of Parametric Properties Using SMEDL. 276
Teng Zhang, Ramneet Kaur, Insup Lee, and Oleg Sokolsky

Short Abstracts

Logic in the Time of Cancer: Causality and Clocks in Cancer 297
Bud Mishra

Towards Real-Time Program Analysis Based on Nested Timed Automata . . . 299
Shoji Yuen, Guoqiang Li, and Mizuhito Ogawa

Author Index . 301

xvi Contents

Scott Smolka and Me

Rance Cleaveland(&)

University of Maryland, College Park, MD 20742, USA
rance@cs.umd.edu

Abstract. Scott Smolka and I have been colleagues for over 30 years. In this
note I reminisce about our history as collaborators, colleagues and friends.

Keywords: Process algebra � Model checking � Cyber-physical systems

1 Introduction

Scott Smolka and I have known each other since 1988, although I first encountered him
several years earlier through a ground-breaking paper [1] that he co-authored with his
PhD adviser, Paris Kanellakis. Throughout the decades of our collaboration and
friendship we have co-authored papers; written grant proposals; co-supervised research
projects, students and postdocs; met each other’s families; played basketball and tennis;
and shared meals all over the world, from our own kitchens, to restaurants in our
respective cities as well as locales both American and European. We have also started a
company, Reactive Systems Inc., and have shared in each other’s personal and pro-
fessional lives.

Given this wealth of shared experience, my conundrum in writing this laudatio is,
where do I start? And what do I include? My decision has been to focus primarily on
our professional, and personal, relationship, as Scott has had one of the most profound
influences on my career of anyone.

2 My First Encounter with Scott

I first encountered Scott in the spring of 1984. At the time I was PhD student at Cornell
University, finishing my coursework and preparing to start my dissertation research.
I was taking a class on Distributed Algorithms that semester, and one of the require-
ments each student had to fulfill was to present a published paper on some algorithmic
aspects of distributed systems. I was nonplussed by most of the material, which was
heavily focused on consensus protocols of various sorts, and sought advice from the
professor about a paper that I could present that was related to the course topic but also
was more related to my interests. To his great credit, the professor asked me what these
interests were (I struggled to explain, beyond saying that I wished the models of
distributed computing we were studying were more precisely specified) and then
suggested a paper that had been published the previous year in the 1983 ACM Prin-
ciples of Distributed Computing (PODC) conference. The paper was by Scott Smolka
and Paris Kanellakis, and it addressed algorithmic issues in the computation of

© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 1–6, 2019.
https://doi.org/10.1007/978-3-030-31514-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_1

semantic equivalences over finite-state systems. There was reference to Milner’s
Calculus of Communication Systems (CCS), composition and congruence, process
algebra, and other concepts that I had no earthly idea about. However, I could see that
what I had found off-putting in some of the other work we studied in the class was
completely and definitively absent in this new theory.

I was hooked, and became obsessed with understanding every detail in the paper! I
devoted at least six weeks to preparing for my presentation. I read most of the papers
referenced in Scott’s and Paris’ article, and in doing so I encountered Robin Milner’s
original CCS notes [2], which was a complete revelation. I then gave what I am sure, in
retrospect, was a thoroughly incomprehensible hour-long presentation on process
algebra, CCS, bisimulation, observational equivalence, and the Kanellakis-Smolka
algorithm.

That was not all, however. I wound up being so intrigued by CCS that I wrote my
PhD thesis [3] on formalizing CCS in the NuPRL proof-development system [4]. I then
went to the University of Sussex to work as a postdoctoral research associate with
Matthew Hennessy on the Concurrency Workbench project [5], which was devoted to
developing an automated suite of routines for checking equivalences between, and
properties of, CCS processes. A major theme of my research career has subsequently
involved process-algebraic modeling and verification techniques. All of this work I can
trace back to 1984, when I was first exposed to CCS, and process algebra, as I read
Scott’s and Paris’ paper.

3 Our First Meeting

As I mentioned in the previous section, after I finished my PhD in 1987 I went to the
University of Sussex for a two-year postdoc. We had a number of interesting speakers
who came through Sussex during my stay, including Jean-Yves Girard and Richard
Stallman, and in the summer of 1988 Scott came to Brighton, where the University of
Sussex is located, to give a talk. I was thrilled, but also a little intimidated, when I heard
about this; after all, Scott had (indirectly) introduced me to what was becoming one of
my main research topics, and I had “lived” his and Paris’ paper during that fateful
spring four years previously. In addition to inspiring me, that paper had inspired others
as well; indeed, Robin Milner, who was a co-leader of the Concurrency Workbench
project, had told me during one of my visits to Edinburgh that a main driver behind the
conception of the Workbench was that same paper that had drawn me in as well.

Despite feeling a bit star-struck, and after consulting with my wife, I nevertheless
offered to put Scott up in our apartment during Scott’s visit to Sussex, and he stayed
with us for a couple of nights. I was expecting a god of concurrency: I got something
even better, a personable, engaging scholar who was a delight to be around! He was
interested in what I was doing and asked a lot of questions, as I did of him, and
although I did not think of it in those terms then, I realize in hindsight that during this
visit Scott morphed from a hero of mine to a colleague.

2 R. Cleaveland

4 1989–1998 BSB (Before Stony Brook)

After I finished my postdoc in 1989 I returned to the US to become a university
professor. Stony Brook, where Scott was (and is!), was very attractive to me, but there
were no positions available there, so I wound up on the faculty at North Carolina State
University (NCSU). At the time NCSU did not have a PhD program in Computer
Science, although one was started a couple of years later, and I was feeling a little
lonely, research-wise, although I made a couple of life-long friends on the faculty and
felt generally well-treated by the university.

During this time Scott’s and my professional relationship really blossomed. We
wrote papers and grant proposals together, and saw each other relatively frequently at
conferences and workshops. I also traveled to Stony Brook several times during this
period, to visit Scott, give talks and serve on PhD committees. (Indeed, one of these
students was Oleg Sokolsky!) I would usually stay with Scott when I came to Stony
Brook, and these frequent visits felt like a lifeline professionally to me then; they were
also very enjoyable. Scott was, and is, a great host, not least because he opens himself
up to visitors in a way that makes them feel welcome and engaged. I also learned
several things about Scott that helped cement our personal as well as our professional
relationship.

• Scott loves good food. Every time we have gotten together meals are a big topic,
and I always ate well when I visited Stony Brook.

• Scott loves basketball and tennis. This jibes with my interests also, especially
basketball.

• Scott loves New York professional sports teams, and in particular the Knicks, Mets
and Jets.

• Scott loves New York City.
• Scott loves music.
• Scott loves dogs, and indeed all animals, but especially dogs.

These topics have been fodder for any number of stimulating conversations over the
years, not least because Scott is so open. I also got to engage with Scott at a personal
level: I have been to a Passover seder at Scott’s sister’s house, attended Scott’s wed-
ding, walked his dogs with him, cooked out with him, played basketball, and gone to
innumerable restaurants. I had the good fortune to meet his parents and see his step-
daughter Zoe grow up. Scott’s friendship and professional interaction with me during
this time is something I treasured at the time, and it continues to inspire me to this day.

5 I Go to Stony Brook, and We Start a Company

In 1997 Scott approached me about the possibility of moving to from NCSU to Stony
Brook. We had a couple of joint grants at the time, and were working on a patent
application and a very large grant proposal to the NSF. We had also started talking
about the possibility of starting a company, something Scott had long had an interest in.

Scott Smolka and Me 3

My response? “Of course I would be interested!” One thing led to another, and in
late summer of 1998 my family and I moved to Long Island so that I could join the
Stony Brook faculty.

The changes were numerous, of course, but universities are universities, and I soon
fell into the familiar rhythm of teaching and research. The large NSF grant alas did not
pan out. The company, however, did: Reactive Systems Inc. (RSI) was started by Scott
and me in 1999, and is celebrating its 20th birthday this year.

The RSI story is an interesting one to me, because left to my own devices, I never
would have thought of founding a company. Scott however had that vision, and the
confidence to pursue it, so we started working on developing a strategy and business
plan with the idea of obtaining venture capital to launch our business, which we
originally anticipated would sell formal modeling and verification tools to telecom-
munications companies.

Early one we also recruited one of my former PhD students, Steve Sims, to join the
team, and the three of us put obtained a grant from the NSF to help commercialize our
technology, which was based on the Concurrency Factory [6]. We soon changed
direction, however, because early feedback from a potential customer, and pivoted
towards making a test-generation tool, called Reactis®1, for MATLAB®/
Simulink®/Stateflow®2 models. Reactis, and tools derived from it, have been the
mainstay of RSI ever since.

One of the things I quickly realized as we launched RSI was that starting a com-
pany is vastly different from running a research group at a university. In particular, the
open flow of information so prized in academe is largely absent in the commercial
sector, where information is money, and issues involving sales and marketing, not to
mention finance and governance, attain tremendous importance. I have to admit to
feeling overwhelmed on more than one occasion, especially with the courting of
investors, and confessed to Scott that I felt ill-suited to the task. He told me that from
his perspective, I was actually doing very well. This gave me pause: could he be right,
or was he just being encouraging? I looked inside myself and asked whether I enjoyed
the work I was doing in looking for investors. Somewhat surprisingly, the answer was
yes, I did! It was tiring, but rewarding, even if we did not in the end “go the venture
capital route” (we had a couple of offers, but we turned them down). It is still inter-
esting to me that an off-hand remark by Scott led me to a realization about myself that I
had not previously had; this realization has helped shape the trajectory of my profes-
sional life ever since, as I understood I had a knack for interacting with other people.

Anyway, we eventually obtained a second, and then a third, government grant to
develop Reactis, and in 2001 I took a leave of absence from Stony Brook to move to
the Washington DC area and work full-time for RSI. The company slowly found its
bearings and become profitable. In the mean time, I had a decision to make: return with
my family to Long Island and resume my position at Stony Brook, or leave Stony
Brook and stay in the Washington DC area?

1 Reactis® is a registered trademark of Reactive Systems, Inc.
2 MATLAB®, Simulink® and Stateflow® are registered trademarks of The MathWorks, Inc.

4 R. Cleaveland

6 The Big Project Era

As I was thinking about these matters in late 2004 I received a call from the University
of Maryland about a professorial position there that would also involve me heading a
research center on software engineering. Taking that position would mean leaving
Stony Brook and remaining in Washington – close to the company, but remote from
Scott. After talking the matter over, my wife and I decided to stay in DC, and I have
been on the faculty at Maryland since 2005.

Scott and I managed to continue our collaboration, however, with the great bulk of
the credit for this going to his invitations to me to join multi-university research
proposals that he helped put together and lead. We had one project with 19 co-
investigators on formal methods for various cyber-physical systems, then another with
13 co-investigators on cardiac assistive devices. Scott’s research interests had broad-
ened during this time to include biological cyber-physical systems, a topic I was not
expert in but knew about from a more applied perspective because of work I had done
with a couple of medical-device companies. While Scott and I were not collocated
anymore we have managed to interact fairly extensively in the context of these projects,
as well as through our ongoing involvement as board members for RSI. I continue to
appreciate Scott’s judgment, and his ability to focus on big-picture ideas, even if we no
longer have as many opportunities for those fine meals and conversations that we
enjoyed earlier in our careers.

7 Coda

So what has Scott meant to me? The question is so large, it is hard for me to formulate a
concise answer. He started off as a hero, as a co-author of a paper that would literally
change my career. He became a colleague, and a mentor, and a friend, as well as a
collaborator in some of the most consequential undertakings I have been part of. With
his optimism and creativity, he has pointed my personal research efforts in directions I
would not have imagined on my own. He has had among the deepest impacts of anyone
on my professional life, and I am profoundly grateful to him for that. On the occasion
of his 65th birthday, and as I reflect back on our 30+ years of our interactions, I thank
him, and also say that I am eager and impatient to see what happens next.

References

1. Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three problems of
equivalence. Inf. Comput. 86(1), 43–68 (1990). A preliminary version of this paper appeared
in 2nd ACM Symposium on Principles of Distributed Computation (PODC), 1983

2. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

3. Cleaveland, R.: Type-theoretic models of concurrency. Ph.D. dissertation, Cornell University,
Ithaca, NY (1987)

Scott Smolka and Me 5

http://dx.doi.org/10.1007/3-540-10235-3

4. Constable, R.L., et al.: Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, Inc., Upper Saddle River (1986)

5. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: a semantics-based tool
for the verification of concurrent systems. ACM Trans. Program. Lang. Syst. 15(1), 36–72
(1993). https://doi.org/10.1145/151646.151648

6. Cleaveland, R., Lewis, P.M., Smolka, S.A., Sokolsky, O.: The concurrency factory: a
development environment for concurrent systems. In: Alur, R., Henzinger, Thomas A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 398–401. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-61474-5_88

6 R. Cleaveland

http://dx.doi.org/10.1145/151646.151648
http://dx.doi.org/10.1007/3-540-61474-5_88
http://dx.doi.org/10.1007/3-540-61474-5_88

Analysis of Complex Biological Systems

A Comprehensive Comparison of GPU
Implementations of Cardiac
Electrophysiology Models

Abouzar Kaboudian1(B), Hector Augusto Velasco-Perez1, Shahriar Iravanian2,
Yohannes Shiferaw3, Elizabeth M. Cherry1,4, and Flavio H. Fenton1

1 Georgia Institute of Technology, Atlanta, GA 30332, USA
abouzar.kaboudian@physics.gatech.edu

2 Emory University, Atlanta, GA 30322, USA
3 California State University, Northridge, CA 91330, USA

4 Rochester Institute of Technology, Rochester, NY 14623, USA

Abstract. Cardiac disease is the leading cause of death in developed
countries, and arrhythmias, which are disorders in the regular genera-
tion and propagation of electrical waves that trigger contraction, form
a major class of heart diseases. Computational techniques have proved
to be useful in the study and understanding of cardiac arrhythmias.
However, the computational cost associated with solving cardiac mod-
els makes them especially challenging to solve. Traditionally, hardware
available on personal computers has been insufficient for such models;
instead, supercomputers have been employed to overcome the compu-
tational costs of cardiac simulations. However, in recent years substan-
tial advances in the computational power of graphics processing units
(GPUs), combined with their modest prices and widespread availabil-
ity, have made them an attractive alternative to high-performance com-
puting using supercomputers. With greater use of GPUs, however, new
challenges have emerged. GPUs must be programmed using their own
languages or extensions of other languages, and, at present, there are
a number of languages that support general-purpose GPU codes with
substantial differences in programming ease and available levels of opti-
mization. In this work, we present the implementation of cardiac models
in several major GPU languages without language-specific optimization
and compare their performance for different levels of model complexity
and domain sizes.

Keywords: Cardiac electrophysiology · GPU · MATLAB ·
OpenACC · Python · Numba · TensorFlow · WebGL · Abubu.js ·
NVIDIA CUDA

1 Introduction

Cardiac disease remains the leading cause of death worldwide [1]. Ventricular
fibrillation (VF), a life-threatening arrhythmia, is associated with disruption of
c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 9–34, 2019.
https://doi.org/10.1007/978-3-030-31514-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_2

10 A. Kaboudian et al.

the ventricular electrophysiological signalling that controls the contraction of the
heart muscle. Such disruption manifests as spatiotemporally disorganized electri-
cal waves [2–5] that require immediate intervention. Another form of arrhythmia
that can last for years and impair the quality of life of patients is atrial fibrillation
(AF). It is estimated that over 2.7–6.1 million Americans suffer from AF [1]. If
untreated for prolonged periods, AF can lead to more problematic arrhythmias
or even stroke.

It is possible that VF and AF treatment could be improved by designing
patient-specific prevention, control and/or therapy using new computational
tools that are fast, accessible and easy to use [6]. In fact, numerical simula-
tions of cardiac dynamics are becoming increasingly important in addressing
patient-specific interventions [7] and evaluating drug effects [8]. It is notewor-
thy that the Food and Drug Administration recently sponsored a new Cardiac
Safety Research Consortium initiative (CiPA) [8,9] that specifies the use of math-
ematical models of cardiac cells to aid pro-arrhythmic drug risk assessment.
However, as the mathematical models incorporate more detailed and sophis-
ticated biophysical mechanisms, they are becoming extremely complex mathe-
matically, with some of them requiring the solution of 50–100 nonlinear ordinary
differential equations (ODEs) per computational cell [10]. Such ODEs typically
are stiff and thus require a small temporal discretization, which is further com-
plicated by the spatial discretization size imposed by the size of the cardiac
cells. These complicating factors make cardiac dynamic simulations too large
for traditional serial CPU-based computing. While some efforts have been made
to create programs to aid with cardiac cell simulations in PCs [11,12], in gen-
eral, scientists have used supercomputer-based high-performance implementa-
tions of cardiac models to study cardiac electrophysiology, especially for large
two- and three-dimensional tissues. However, supercomputers are expensive to
acquire and hard to maintain, and even when such resources are managed by
individuals other than the end users, users typically are required to submit their
programs for execution as batch jobs, which can be inconvenient.

Substantial advances in the computational power of graphic processing
units (GPUs) have made them an attractive alternative to traditional high-
performance computing. Currently available GPUs are equipped with thousands
of powerful computational cores, and they can be acquired at affordable prices
sometimes as low as a few hundred US dollars. As such, they can provide high-
performance computing on personal computers at merely a fraction of the cost of
traditional CPU-based supercomputers. However, GPUs require machine code
that is prepared for the specific target GPU hardware. Thus, computer codes
either need to be implemented in a special language that is intended for GPU
programming or should be modified such that they become suitable for execu-
tion on GPUs. At present, there are several languages and programming solu-
tions that enable implementation of GPU applications. As might be expected,
each solution and programming language has certain benefits and may perform
differently for different applications. Therefore, a comprehensive study focused
on comparing the ease of programming and performance of such programming

A Comprehensive Comparison of GPU Implementations 11

languages and solutions when applied to cardiac models can be beneficial to help
researchers in the cardiac community choose the appropriate approach.

In this study, we investigate some of the major languages and solutions in
cardiac GPU computing. Specifically, we consider (1) GPU computing solutions
available in MATLAB, (2) the pragma-based approach of OpenACC, (3) Python-
Numba, (4) TensorFlow, (5) WebGL 2.0, and (6) NVIDIA CUDA together with
the Abubu.js library. Our comparisons will be based on implementations without
any substantial program-specific optimization. Of course, we expect that apply-
ing language-specific optimizations could improve performance. However, it is
fair to assume that most cardiac researchers are not necessarily experts in GPU
programming, so that in many cases the solution that would provide the best
performance with minimal effort would be ideal. Nevertheless, our comparisons
will help users with a broad range of programming expertise make informed
choices about GPU implementations for cardiac models.

2 Methods

2.1 Models

We will compare performance using three different models with different com-
plexity. The FitzHugh-Nagumo (FHN) model [13,14] is a two-variable model
used as a generic excitable media model and in some cases as a cardiac model.
Tuning the model’s parameters can change features like the trajectory of the
spiral wave tip [15].

The Minimal Model (MM) [16] is a four-variable model developed to repro-
duce many important properties of cardiac cells while also prioritizing compu-
tational tractability. The model includes a variable representing voltage as well
as three gating variables that govern the dynamics of summary sodium and cal-
cium currents; a time-independent potassium current also is included. Different
parameterizations of the MM have been shown to reproduce the dynamics of
other models with good fidelity [6,16–18].

The Beeler-Reuter (BR) model [19] is an eight-variable model that includes
sodium, calcium, and potassium currents. It was the first model developed to
simulate ventricular tissue and the first to include an intracellular calcium con-
centration. We made modifications to the BR model by speeding up the τf
and τd in the model to 50% of their original value to prevent the model from
breakup [20]. If the original model was used with the default parameter set, it
would gives rise to spiral wave breakup in two dimensions [20,21]. This is also the
first model for which it was shown that reaction-diffusion equations for cardiac
cells can produce spiral waves in 2D [21].

2.2 Numerical Methods

The cardiomyocytes’ membrane potential (V) propagation through gap junctions
(and in neurons through synapses) can be modeled by a cable equation [22],
which is given by

12 A. Kaboudian et al.

∂tV (x, t) =∇ · (D̃∇V) − Itotal
Cm

. (1)

Here, the membrane potential diffuses with a diffusion coefficient D̃ (which repre-
sents the fiber orientation of the heart [23,24] and, in general, is anisotropic and
heterogeneous), while the ionic concentrations are local in cardiac as well as neu-
ronal tissues. The transmembrane currents for all ions as well as the ion pumps
and exchangers are included in Itotal =

∑
Ii(V, yi). The most general form of a

transmembrane current Ii permeable to ion i is simply Ii = gi(V − Ei), where
gi is a conductance term, V is the membrane potential or voltage, and Ei is
the Nernst potential for ion species i. Often, the conductance is calculated using
gates following the Hodgkin-Huxley [22] formalism, in which the conductance
term is decomposed into the product of a maximal conductance term and one
or more separate normalized variables that represent the probability of finding
the channel open, which typically depends on the membrane potential or an
ion concentration. These variables follow first-order differential equations of the
form

dyi(t)
dt

=αyi
(V)(1 − yi) − βyi

(V)yi (2)

where αyi
is the probability that the channel gate yi will transition from closed

to open and βyi
is the probability it will transition from open to closed; both

probabilities are a function of voltage. An alternative representation used in
some models is achieved through Markov chains, where each state sp follows a
differential equation of the form

dsp(t)
dt

=
n∑

q=1,q �=p

(kqpsq − kpqsp), (3)

where kqp is the transition rate from state sq to sp. With either formulation, the
ordinary differential equations become partial differential equations once a spa-
tially extended system, rather than a single cell, is considered. More details on
how to numerically integrate these equations including convergence and bound-
ary conditions can be found in Ref. [25].

In all cases, we used a domain size of 20 × 20 cm. The diffusion coefficient
D̃ was assumed to be isotropic and homogeneously defined over the domain.
Finite differences were used for numerical simulations. To discretize the spatial
term in Eq. (1), a second-order central difference scheme was used both in the x
and y directions. All ODEs were solved using the forward Euler time-stepping
scheme for most variables. As an exception, the time-integration of the Hudgkin-
Huxley-type gates in Eq. (2) used the Rush-Larsen time-stepping scheme [26].
In all cases, a uniform Cartesian grid was employed. The grid sizes used were
256×256, 512×512, 1024×1024, and 2048×2048. This implies that for smaller
grid sizes, the solution was not fully numerically resolved. However, we emphasize
that our objective was to compare the same solution obtained under different
conditions. This would guarantee that for the same model, we deal with the same

A Comprehensive Comparison of GPU Implementations 13

loading conditions on the GPU cores. The time step was chosen as Δt = 0.05ms
up to a grid size of 2048 × 2048, where Δt = 0.01ms was employed instead to
satisfy the CFL condition. Our initial conditions were set to the resting state of
the cells everywhere in the domain, except for nodes with x < 1 cm to create a
traveling wave toward the right-hand side of the domain. Later, at t = 600 for
the FHN model and at t = 370ms for the MM and BR models, a depolarizing
wave is applied at the bottom half of the domain where y < 10 cm by changing
the transmembrane potential to a higher depolarizing potential. This voltage
was set to 1.0 for the FHN and MM model and 30mV for the BR model. For
more information on the implementation details, see the computer codes that
can be downloaded from http://abouzar.net/SmolkaFest2019/codes.zip (Fig. 1).

Fig. 1. Membrane potential for the FHN (first row), MM (second row), and BR (third
row) models at the initial time (first column), application of the depolarizing voltage
from the bottom half of the domain (second column), transient spiral wave dynamics
(third column), and after the spiral wave stabilizes (fourth column).

Because the details of GPU programming are closely connected with the
different implementations studied, this information is provided below in the next
section.

http://abouzar.net/SmolkaFest2019/codes.zip

14 A. Kaboudian et al.

3 Comparison of GPU Implementations

Below, we describe six different GPU implementations of the three models (FHN,
MM, and BR). In some cases, we also compare additional options available for a
particular configuration. Along with measurements of speedup as a function of
the number of grid points, we also comment on ease of programming.

First, we implemented a serial version of all three models in the C program-
ming language. The PGI-C compiler was used to generate the machine code. This
serial version was used in all speedup calculations. The speedup was defined as
follows:

Speedup =
wall-time of single-core serial CPU C-program

wall-time of GPU implementation
, (4)

where wall-time is the measured time of execution of the program that an ordi-
nary wall-clock would measure, albeit here, we used the computer’s clock for
measurements.

All measurements were carried out on a Linux Manjaro operating system
with Kernel version 4.19.34. The system had an AMD� Ryzen threadripper
2990wx 32-core processor that was used for CPU time measurements (although
only one core was used in the CPU case). The graphics card that was used for
GPU measurements was a NVIDIA TITAN V/PCIe/SSE2.

In this study, all measurements were carried out in double precision, except
for the WebGL 2.0 and TensorFlow cases. For the CUDA and OpenACC imple-
mentations, we tried single-precision calculations and the speedups did not
change more than 10% on this GPU.

3.1 MATLAB

MATLAB, originally meaning matrix laboratory, is a proprietary programming
language developed by MathWorks. MATLAB allows for easy matrix opera-
tions and is equipped with several linear solvers, as well as built-in plotting and
visualization features, that together make it very popular for general program-
ming in academic settings. MATLAB’s easy-to-learn programming syntax makes
it attractive to novice programmers, and its feature-rich environment makes
it attractive to seasoned programmers, for both prototyping algorithms and
research. Additionally, MATLAB has an interactive user interface that combined
with MATLAB’s interpreter removes the hurdles of compiling, running, and visu-
alization of the data. As such, MATLAB has been adopted as the companion
language or the language of choice in several books [27–35]. MATLAB is also
widely used in several research fields, including but not limited to, fluid mechan-
ics [36,37], geophysical studies [38–40], volcanology [41–44], astrophysics [45–48],
chemical engineering [49–52], image analysis [53–57], neural networks [58–60],
cell modeling [61–64], and cardiac studies [65–71]. MATLAB also provides GPU
parallelism through fully automated GPU acceleration, the arrayfun command
which applies a function to each element of arrays, and CUDA kernel calls.

A Comprehensive Comparison of GPU Implementations 15

Here, we implemented the arrayfun and CUDA kernel call options for each
of the three models. The arrayfun function applies a MATLAB function to all
elements of an array. After sending the arrays to the GPU using the gpuArray()
function, calling the arrayfun function for each time step allows the function
to be run on the GPU. MATLAB’s interpreter recognizes that it can run the
function independently for each element of the array on the GPU and it will do
so. Since this approach still relies on automatic detection of the parallelizable
section and acceleration of the code, it is expected to be less than “ideal”. The
second approach in MATLAB is to manually write the GPU code as a CUDA
kernel and run the CUDA kernel. This approach is supposed to result in the best
observed performance since there is no “guess-work” necessary by the MATLAB
interpreter and the GPU code is already parsed. The upside is that all MATLAB
visualizaton and data analysis tools still can be used, and the CUDA kernel will
only be in charge of running the accelerated code in an optimum way. However,
writing CUDA kernels requires familiarity with the NVIDIA CUDA C language
in addition to familiarity with MATLAB. Hence, it is expected that a smaller
number of MATLAB users will be comfortable programming CUDA kernels.
Speedup is assessed for problems sizes of 216, 218, 220, and 222 grid points. By
default, all implementations in MATLAB use double-precision variables.

Fig. 2. Speedup of models vs. grid size for the FHN, MM, and BR models using
MATLAB with array functions (dashed lines) and with CUDA kernels (solid lines).

Figure 2 shows that in all cases, as expected, the use of CUDA kernels pro-
vided more substantial speedup than the corresponding arrayfun implementa-
tions by as much as a factor of six. The largest speedup was found for the BR

16 A. Kaboudian et al.

model, which is not surprising given that it has the most equations and thus the
most potential for concurrency within a given time iteration. Correspondingly,
the FHN model attained the smallest speedups, but it still achieved a speedup
of nearly two orders of magnitude for the largest grid size using CUDA kernels.
The MM achieved speedups more than twice that of the FHN model, most likely
because although it has twice the number of ODEs, it has a significant number
of additional algebraic equations evaluated during each time step, thus allowing
greater potential for performance increase through greater parallelization over
each time step.

3.2 OpenACC

OpenACC is a programming standard that developed as a joint effort between
Cray, CAPS, NVIDIA and PGI as an alternative to low-level CUDA program-
ming. OpenACC, similar to OpenMP, uses a pragma-based approach to identify
the computer code regions that can be parallelized on the GPU. The pragma
directives, together with environment variables and library calls, facilitate accel-
erating regions of the serial C/C++ or FORTRAN CPU codes that can benefit
from parallelization, typically loops, and in this case support use of GPGPU com-
puting. As a result, OpenACC provides an approach that can accelerate mature
CPU C/C++ or FORTRAN codes with minimal effort. This feature has made
OpenACC an attractive choice to a large group of researchers in various fields
including but not limited to fluid mechanics [72–76], earthquake modeling [77],
deep neural networks [78,79], astrophysics and data mining [80], cardiovascu-
lar [81] and cardiac electrophysiology [82,83].

First, we implemented a serial version of all three models in the C pro-
gramming language. This serial version was used in all speedup calculations.
OpenACC pragmas were added to the serial code to achieve parallelism. After
initializing the solution we used the OpenACC’s “data in” pragmas to copy the
data to the GPU. Then in the parallel loops these arrays were marked as present
on the GPU to avoid unnecessary copy of the arrays in and out of the GPU. The
data was copied out to CPU memory only on the time-steps that we intended
to write data to disk. This was achieved through the “update self” pragma. The
data was written to disk only for debugging and during performance measure-
ments no data was written to disk. Both single-precision and double-precision
implementations were tested and the variations in performance were limited to
less than 10% on this particular GPU. The results presented here were generated
using double-precision variables.

Figure 3 shows the resulting speedups, which are quite similar to the speedups
obtained using MATLAB with CUDA kernels. Again, the BR model benefited
the most from acceleration, with speedups of up to three orders of magnitude
due to the fact that, for the BR model, the computational cost of the reaction
operations is much more than for the diffusion term. This suggests that the more
complicated models of cardiac dynamics can benefit even further from the use
of OpenACC implementations.

A Comprehensive Comparison of GPU Implementations 17

Fig. 3. Speedup of models vs. grid size for the FHN, MM, and BR models using
OpenACC directives in the C programming language.

3.3 Python Numba Implementation

Python is an interpreted general-purpose language created in the early 1990s
by Guido van Rossum at Stichting Mathematisch Centrum in the Netherlands
as a successor of ABC [84]. Python supports multiple programming paradigms,
including functional, object-oriented, and procedural programming. Due to its
feature-rich environment and its approachable learning curve, Python is widely
popular as a language for teaching [85,86] and research in various field such as
astrophysics [87–89], machine learning [90,91], neural networks [92], and busi-
ness [93]. Similarly, Python is also used in cardiovascular [94–101], cardiac elec-
trophysiology [102–107], and arrhythmia detection [108] studies. Python’s pop-
ularity is evident in the large number of conferences that are held each year
dedicated to Python programming including DjangoCon Europe, EuroPython,
EuroSciPy, Kiwi PyCon, O’Reilly Open Source Convention, Plone Conference,
PyCon conferences held in different regions of the world, PyData, PyGotham,
SiPy and many more [109]. Project Jupyter has also contributed significantly
to the popularity of the Python language by providing a web application that
allows users to create and share documents that contain live interactive Python
codes, equations, visualization and narrative text [110].

The widespread popularity of Python has resulted in a broad range of
Python libraries that can be used for various different applications. One very
popular library is NumPy, which provides support for definition of multi-
dimensional array objects and array operations [111], which can be very useful in

18 A. Kaboudian et al.

scientific computing. Numba is an open-source Just-In-Time (JIT) compiler
that translates a subset of Python and NumPy code into accelerated machine
code [112]. The Numba compiler can provide acceleration through multicore
CPUs or GPGPU. Numba has a very simple approach to accelerating Python
code. In fact, the Numba website provides a tutorial that teaches Python pro-
grammers to start accelerating their Python code in as little as five minutes [113].
This small learning curve makes Numba an attractive choice for cardiac
modeling.

Fig. 4. Speedup of models vs. grid size for the FHN, MM, and BR models using Python
Numba.

Figure 4 shows speedup results using Python-Numba. All measurements were
carried out using double-precision variables. As expected, the BR model achieves
the greatest speedup and the FHN model the least. Most notable is that large
performance gains do not appear until grid sizes of 220, which may be due to the
fact that for each time step there is a certain overhead time imposed for launching
a parallel code on the GPU. However, that effect becomes less important when
we keep the GPU busy for longer periods before advancing to the next time step.

3.4 TensorFlow Implementation

TensorFlow is a free and open-source software library primarily designed by
the Google Brain team [114,115] for internal use. It was released for public use
later under Apache 2.0 open-source licence on November 9, 2015 [116]. It has

A Comprehensive Comparison of GPU Implementations 19

been used by a number of companies, including Airbnb, AIRBUS, Coca-Cola,
Google, Intel, PayPal and Qualcomm [117] in both research and production.
TensorFlow can be used on single as well as multiple CPUs and GPUs. Once
the target device is chosen, the parallelization is carried out automatically by
the TensorFlow engine. TensorFlow provides extensive features to be used for
machine learning and deep neural network applications [114,115,118]. Hence, it
can be considered an attractive choice for model-based machine-learning envi-
ronments where machine-learning algorithms can be trained using a dynamical
numerical model. A number of groups in the cardiac community have embraced
TensorFlow [119–127].

Fig. 5. Speedup of models vs. grid size for the FHN, MM, and BR models using
TensorFlow.

Speedup results for the three models using Tensor-flow are given in Fig. 5.
The measurements for TensorFlow were made using single-precision variables, as
some of the functions did not have a double-precision implementation for GPU
parallelism at the time of coding the TensorFlow programs. In this case, speedup
is quite limited compared to the other approaches considered, with the maximum
speedup (attained for the BR model on the largest grid) still well below 100. The
speedups are the result of just choosing the target device to be the GPU. No
optimization such as using convolutions was used here. We would say the effort
required for parallelism on the GPU was minimal compared to other languages.
Given the minimal effort required for achieving parallelism, programmers are
encouraged to use the GPU as their target device for all models, especially more
complex ones.

20 A. Kaboudian et al.

3.5 WebGL and Abubu.js Implementation

WebGL or the Web Graphics Library is a royalty-free JavaScript application
programming interface standard that provides low-level 2D and 3D rendering
capabilities in modern web browsers without the need to install any plug-ins
through the HTML5 canvas element [128]. This means that WebGL applications
can run on any modern web browser and on any major operating system (such as
Microsoft Windows, macOS, Linux, Android, or even iOS), and at the same time
harness the computational power of the available GPU on that device. WebGL
applications are automatically compiled at run-time for the particular user’s
graphic cards. Therefore, the WebGL applications do not need to be compiled by
the developers for all the intended GPUs and operating systems. This also means
that WebGL applications are capable of harnessing the computational power in
various GPU devices from various vendors, unlike some of the languages such as
NVIDIA CUDA, which can only run on specific hardware.

The heart of the WebGL applications is written in OpenGL Shading Lan-
guage (GLSL), which is a high-level programming language with a syntax based
on the C programming language [129]. GLSL supports most of the C/C++
familiar structural components, such as if statements, for loops, etc. It also has
a number of built-in functions for mathematical, vector, and matrix operations as
well as texture access [130]. The only drawback for using WebGL is that currently
it only supports single-precision variables and textures. Therefore, for applica-
tions that must use double-precision floats, WebGL is not suitable at present.
When using WebGL for parallelism, usually texture memory is utilized as the
basic data structure for the input and output of the programs [131]. However,
the WebGL language can have a high learning curve for novice programmers or
those who are not well versed in graphics programming. The Abubu.js program-
ming library is used to address this issue and remove the hurdles of GPGPU
programming with WebGL [6]. Using Abubu.js, WebGL has been shown to be
capable of solving a wide range of problems from studying fractals, solitons and
chaos [132] to cardiac dynamics, fluid mechanics, and crystal growth [6].

In this work, we followed the methods proposed in [6] to implement the FHN,
the MM, and the BR model in WebGL using Abubu.js. Figure 6 shows perfor-
mance gains using our WebGL implementation, which generally outperforms all
other implementations. In particular, the speedup for the MM is now above
1000 for the largest grid size, and for the BR model speedup exceeds 2000 for a
grid size of 220. However, performance for the BR model is more variable, with
a dropoff in speedup at the largest grid size in contrast to monotonic increases
with grid size in all other cases. In addition, WebGL performance for the smallest
grid size is typically no greater than that seen in OpenACC and MATLAB with
CUDA kernels. That is due to the fact that there is a minimum overhead time to
launch the WebGL applications in each time step. The performance drop in the
BR model for larger grid sizes could be due to memory access bottlenecks and
how the data is stored on the GPU. It should be noted that even with the per-
formance drops, the WebGL applications outperform all other implementations
by a large margin for larger domains.

A Comprehensive Comparison of GPU Implementations 21

Fig. 6. Speedup of models vs. grid size for the FHN, MM, and BR models using WebGL
together with the Abubu.js library.

3.6 NVIDIA CUDA Implementation

One of the most popular platforms to solve PDEs in parallel using GPUs is
CUDA. CUDA is a parallel platform developed by NVIDIA that allows the user
to execute programs on the GPU of a personal computer. This allows faster
processing and visualization of large data sets that fulfill certain characteris-
tics that will be discussed below. Since its launch in 2007, CUDA has helped
to extend the use of GPU technology to the scientific community. Specifically,
the CUDA platform has been applied in several scientific and engineering fields
such as fluid dynamics [133,134], machine learning and neural networks [135–
138], astrophysics [139–142], the Lattice Boltzmann method [143–145], molecular
dynamics [146–148], clinical applications [149,150], and recently in the cardiac
modeling community [151–155]. CUDA has also been successfully used for teach-
ing purposes, including in undergraduate workshops [156]. Like all computational
tools, it has advantages and disadvantages.

The CUDA platform is an extension of other programming languages, i.e.,
it is a set of functions added to a preexisting platform that allows the user to
communicate with the GPU. This implies that most of the base language char-
acteristics and logic will be inherited by the parallel functions. There are several
versions of CUDA, mainly C/CUDA (CUDA for the C language), PyCUDA
(CUDA for Python) and CUDA Fortran. We decided to develop our solvers in
C/CUDA because it is the most supported version. The description below is
valid regardless of the version chosen.

22 A. Kaboudian et al.

In some cases, CUDA is able to launch millions of processing threads simulta-
neously, which can increase the speed of computations and save many hours and
possibly days of processing time (). The speedup depends mainly on the type
of algorithm implemented to process the data and the structure of the data.
To understand better how these factors affect the speed of the computations, it
is important to understand the interaction between the software and hardware,
particularly the interaction between the CPU (commonly referred to as the host)
and the GPU (commonly referred to as the device). All programs start at the
host level, meaning that they are all managed by the host and all the data is
held in CPU RAM or the hard drive. Meanwhile, sections of memory in the
GPU are reserved to hold the data that needs to be processed. Once everything
is ready, the CPU calls specific functions to be executed on the GPU. After the
GPU processes the data, it must be sent back to the CPU so that it can be
post-processed by the user. In most programs, there is a constant exchange of
data between host and device. As a rule of thumb, the programmer should try
to reduce the number of memory transactions between both ends mainly due
to bandwidth limitations. Other factors to be considered are the GPUs memory
capacity and frequency of kernel calls (functions called by the CPU that exe-
cute on the GPU and hold the bulk of the processing algorithm). In addition to
adequately controlling the data flow, the program must manage the data in a
parallel-friendly arrangement, specifically, we must determine the way that data
will be read and written. As commonly observed in programming languages with
arrays of two or more dimensions, the data layout and memory access patterns
need to be aligned to achieve maximum performance. More specifically, CUDA
requires the data layout to adapt to a single instruction multiple data processing
structure, which means that all processing threads must be performing the same
instructions simultaneously to avoid thread divergence.

In addition to the memory transactions and layout mentioned above, CUDA
requires the programmer to adapt the data to a specific hierarchical structure of
threads. In general, threads are organized into blocks, which can be one-, two-,
or three-dimensional. Sets of blocks are then organized in a grid. Again, the grid
can be arranged in all three dimensions. More information can be found in [157]
and [158]. The dimension of these objects refers to how they will be accessed,
not how they are physically stored in memory. The user can adapt this structure
to increase the performance of their computations. In our particular case, two-
dimensional blocks and grid resemble very well the 2D domains in which we are
solving the PDEs. Still, different memory access patterns will influence the speed
of our computations. Other factors to be considered when building a CUDA
program are coalesced memory patterns, in which multiple threads can receive
data through a single combined memory access, and the use of the various types
of internal memories and the interaction among them. These are just some of
many considerations that are important to keep in mind. It is also worth noting
that if a task is not inherently parallelizable due to dependencies across loop
iterations without substantial work within each iteration (such as a Fibonacci
sequence calculation) or if the number of threads is small (typically on the order

A Comprehensive Comparison of GPU Implementations 23

of hundreds or lower), CUDA will perform worse than most standard serial
implementations due to overhead associated with launching kernels and moving
data between the host and device.

In our implementations, we used global memory. Both single- and double-
precision implementations were tested and the variations in performance were
limited to less than 10% on this particular GPU. The results presented here are
generated using double-precision variables. One-dimensional arrays were used to
represent the 2D domain. The data could be arranged in either a row-major or a
column-major fashion in the one-dimensional arrays. In the row-major structure,
the matrix is stored in the 1D array one row after another until the entire
matrix is stored. In the column-major order, the same procedure is followed
for the matrix columns. Both versions were tested to observe the performance
differences. The row-major version of the data-structures performed consistently
better than the column-major structures. This could be due to the fact that the
row-major structure was more compatible with hardware, possibly due to the
way that warps are organized on this GPU. Different results might be expected
for different GPUs and the users should be aware of such differences. It should be
noted that this should not be confused with the loop access of multi-dimensional
arrays in CPUs. Here, in both cases, the data structures are one-dimensional
and the central difference algorithm for the diffusion term imposes a symmetry
condition on both directions.

We also decided against using shared-memory implementations such as those
suggested in earlier studies [152]. The use of shared memory requires copying the
variables from the global memory into shared memory, performing calculations
from shared memory in registered memory (implicit), then writing data into
shared memory, and then to global memory. These steps are required in each time
step as no data can be retained between time steps. However, the use of global
memory would require bringing the data to register for calculations and writing
the data back to global memory. It is evident that using global memory for this
type of problems involves fewer memory transactions compared to the shared
memory implementations but the same number of global memory accesses and
thus is expected to be faster. Additionally, our goal in this study is to compare
the simplest implementations in each language as the targeted programmers are
scientists whose primary expertise is not GPU programming. The use of texture
memory instead of one-dimensional arrays could also change the performance of
the applications. However, any performance improvements could be hardware-
dependent and would also depend on the problem size and complexity. In favor
of simplicity, we chose the use of a global memory implementation.

We used a 16 × 16 thread size for the CUDA implementations, and each
direction was then divided by 16 to get the block size. Smaller thread sizes led
to lower performance and larger thread sizes did not improve the performance
on our particular GPU.

Figure 7 shows the speedup achieved for each of the three models using our
CUDA implementation. CUDA slightly outperforms MATLAB with CUDA ker-
nels and OpenACC, especially for smaller grids, but overall the performance

24 A. Kaboudian et al.

Fig. 7. Speedup of models vs. grid size for the FHN, MM, and BR models using CUDA
with column-major data structures in dashed lines and row-major data structures in
solid lines.

is fairly comparable for these three implementations. WebGL maintains better
performance for all grid sizes. Note that speedup seems to have saturated for
the FHN model and appears to be close to saturating for the other models. In
addition, it should be noted that we could potentially observe a performance
saturation similar to those observed in WebGL implementations. Moreover, due
to the limitations in the GPU memory size, there is a limit to the problem size
that can be handled on a single GPU so that using multiple GPUs for larger
problems becomes inevitable. While using multiple GPUs can be useful for han-
dling larger domains due to memory constraints, it should be noted the required
communication between the multiple GPUs will impose performance penalties
on the parallel GPU codes.

4 Discussion and Conclusion

Figure 8 shows the comparison between the speedup gains for each of the GPU
implementations of the three different models with different grid sizes. It can
be seen that the WebGL applications outperform all other implementations for
all cases except for the smallest grid sizes and the FHN model. As soon as
the workload on the GPU is “large” enough to take full advantage of concur-
rency, WebGL provides the best performance. All implementations performed

A Comprehensive Comparison of GPU Implementations 25

Fig. 8. Speedup comparison for various implementations of the FHN, MM, and BR
models. Each color corresponds to a different grid size.

better with larger grid sizes and more complicated models, with the BR model
implementations providing the best performances among all models. Another
notable observation is that almost all GPU implementations provided perfor-
mance comparable to that of the NVIDIA CUDA implementations with minor
differences with the exception of TensorFlow. Therefore, we can conclude that
almost all languages considered in this study are ready to make effective use
of GPU hardware to reduce program runtimes. The least effort for achieving
parallelism in the languages was required by TensorFlow, C-OpenACC, MAT-
LAB arrayfun, and then Python Numba implementations. However, writing the
serial code in TensorFlow was the most convoluted of all the approaches tested.

26 A. Kaboudian et al.

Nevertheless, moving from the serial code to the accelerated GPU code was as
simple as just choosing the target device. C-OpenACC was the most natural for
a novice programmer, which could provide the best performance with the least
programming effort. However, MATLAB and Python Numba provide built-in
visualization tools.

Acknowledgements. This work was supported in part by the National Science Foun-
dation under grants CNS-1446312(EMC) and by CMMI-1762553 (FHF and AK). EMC,
AK, YS, and FHF, also collaborated while at Kavli Institute for Theoretical Physics
(KITP) and thus research was also supported in part by NSF Grant No. PHY-1748958,
NIH Grant No. R25GM067110, and the Gordon and Betty Moore Foundation Grant
No. 2919.01.

References

1. Benjamin, E.J., et al.: Heart disease and stroke statistics-2017 update: a report
from the American Heart Association. Circulation 135(10), e146–e603 (2017)

2. Winfree, A.: Electrical turbulence in three-dimensional heart muscle. Science
266(5187), 1003–1006 (1994)

3. Gray, R.A., et al.: Mechanisms of cardiac fibrillation. Science 270(5239), 1222–
1226 (1995)

4. Gray, R.A., Pertsov, A.M., Jalife, J.: Spatial and temporal organization during
cardiac fibrillation. Nature 392(6671), 75 (1998)

5. Fenton, F.H., Cherry, E.M., Glass, L.: Cardiac arrhythmia. Scholarpedia 3(7),
1665 (2008)

6. Kaboudia, A., Cherry, E.M., Fenton, F.H.: Real-time interactive simulations of
large-scale systems on personal computers and cell phones. Sci. Adv. 5, eaav6019
(2019)

7. Zahid, S., et al.: Feasibility of using patient-specific models and the “minimum
cut” algorithm to predict optimal ablation targets for left atrial flutter. Heart
Rhythm 13(8), 1687–1698 (2016)

8. Dutta, S., et al.: Optimization of an in silico cardiac cell model for proarrhythmia
risk assessment. Front. Physiol. 8, 616 (2017)

9. Cavero, I., Holzgrefe, H.: CiPA: ongoing testing, future qualification procedures,
and pending issues. J. Pharmacol. Toxicol. Methods 76, 27–37 (2015)

10. Fenton, F.H., Cherry, E.M.: Models of cardiac cell. Scholarpedia 3(8), 1868 (2008)
11. Fenton, F.H., Cherry, E.M., Hastings, H.M., Evans, S.J.: Real-time computer

simulations of excitable media: JAVA as a scientific language and as a wrapper
for C and FORTRAN programs. Biosystems 64(1–3), 73–96 (2002)

12. Barkley, D.: EZ-spiral: a code for simulating spiral waves (2002). https://
homepages.warwick.ac.uk/∼masax/. Accessed 29 Apr 2019

13. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve
membrane. Biophys. J. 1(6), 445–466 (1961)

14. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simu-
lating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

15. Winfree, A.T.: Varieties of spiral wave behavior: an experimentalist’s approach to
the theory of excitable media. Chaos Interdiscip. J. Nonlinear Sci. 1(3), 303–334
(1991)

https://homepages.warwick.ac.uk/~masax/
https://homepages.warwick.ac.uk/~masax/

A Comprehensive Comparison of GPU Implementations 27

16. Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ven-
tricular action potentials in tissue. J. Theor. Biol. 253(3), 544–560 (2008)

17. Cherry, E.M., Ehrlich, J.R., Nattel, S., Fenton, F.H.: Pulmonary vein reentry–
properties and size matter: insights from a computational analysis. Heart Rhythm
4(12), 1553–1562 (2007)

18. Lombardo, D.M., Fenton, F.H., Narayan, S.M., Rappel, W.-J.: Comparison of
detailed and simplified models of human atrial myocytes to recapitulate patient
specific properties. PLoS Comput. Biol. 12(8), e1005060 (2016)

19. Beeler, G.W., Reuter, H.: Reconstruction of the action potential of ventricular
myocardial fibres. J. Physiol. 268(1), 177–210 (1977)

20. Courtemanche, M.: Complex spiral wave dynamics in a spatially distributed ionic
model of cardiac electrical activity. Chaos Interdiscip. J. Nonlinear Sci. 6(4), 579–
600 (1996)

21. Courtemanche, M., Winfree, A.T.: Re-entrant rotating waves in a beeler-reuter
based model of two-dimensional cardiac electrical activity. Int. J. Bifurc. Chaos
1(02), 431–444 (1991)

22. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and
its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544
(1952)

23. Streeter Jr., D.D., Spotnitz, H.M., Patel, D.P., Ross Jr., J., Sonnenblick, E.H.:
Fiber orientation in the canine left ventricle during diastole and systole. Circ.
Res. 24(3), 339–347 (1969)

24. Peskin, C.S.: Fiber architecture of the left ventricular wall: an asymptotic analysis.
Commun. Pure Appl. Math. 42(1), 79–113 (1989)

25. Ji, Y.C., Fenton, F.H.: Numerical solutions of reaction-diffusion equations: appli-
cation to neural and cardiac models. Am. J. Phys. 84(8), 626–638 (2016)

26. Rush, S., Larsen, H.: A practical algorithm for solving dynamic membrane equa-
tions. IEEE Trans. Biomed. Eng. 4, 389–392 (1978)

27. Halpern, D., Wilson, H.B., Turcotte, L.H.: Advanced Mathematics and Mechanics
Applications using MATLAB. Chapman and Hall/CRC, Boca Raton (2002)

28. Pozrikidis, C.: Introduction to Finite and Spectral Element Methods Using MAT-
LAB. CRC Press, Boca Raton (2005)

29. Quarteroni, A., Saleri, F., Gervasio, P.: Scientific Computing with MATLAB and
Octave, vol. 2. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-642-
45367-0

30. Strang, G.: Computational Science and Engineering, vol. 791. Wellesley-
Cambridge Press, Wellesley (2007)

31. Aarnes, J.E., Gimse, T., Lie, K.-A.: An introduction to the numerics of flow in
porous media using MATLAB. In: Hasle, G., Lie, K.A., Quak, E. (eds.) Geomet-
ric Modelling, Numerical Simulation, and Optimization, pp. 265–306. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-68783-2 9

32. Li, J., Chen, Y.-T.: Computational Partial Differential Equations Using MAT-
LAB. Chapman and Hall/CRC, Boca Raton (2008)

33. Anderson, D., Tannehill, J.C., Pletcher, R.H.: Computational Fluidmechanics and
Heat Transfer. CRC Press, Boca Raton (2016)

34. Elsherbeni, A.Z. Demir, V.: The finite-difference time-domain method for electro-
magnetics with MATLAB simulations. The Institution of Engineering and Tech-
nology (2016)

35. Kwon, Y.W., Bang, H.: The Finite Element Method Using MATLAB. CRC Press,
Boca Raton (2018)

https://doi.org/10.1007/978-3-642-45367-0
https://doi.org/10.1007/978-3-642-45367-0
https://doi.org/10.1007/978-3-540-68783-2_9

28 A. Kaboudian et al.

36. Martin, N., Gorelick, S.M.: MOD FreeSurf2D: a Matlab surface fluid flow model
for rivers and streams. Comput. Geosci. 31(7), 929–946 (2005)

37. Gholami, A., Bonakdari, H., Zaji, A.H., Akhtari, A.A.: Simulation of open chan-
nel bend characteristics using computational fluid dynamics and artificial neural
networks. Eng. Appl. Comput. Fluid Mech. 9(1), 355–369 (2015)

38. Irving, J., Knight, R.: Numerical modeling of ground-penetrating radar in 2-D
using MATLAB. Comput. Geosci. 32(9), 1247–1258 (2006)

39. Tzanis, A., et al.: MATGPR: a freeware MATLAB package for the analysis of
common-offset GPR data. In: Geophysical Research Abstracts, vol. 8 (2006)

40. Xuan, C., Channell, J.E.: UPmag: MATLAB software for viewing and processing
u channel or other pass-through paleomagnetic data. Geochem. Geophys. Geosyst.
10(10), 1–12 (2009). https://doi.org/10.1029/2009GC002584

41. Lesage, P.: Interactive MATLAB software for the analysis of seismic volcanic
signals. Comput. Geosci. 35(10), 2137–2144 (2009)

42. Battaglia, M., Cervelli, P.F., Murray, J.R.: dMODELS: a MATLAB software pack-
age for modeling crustal deformation near active faults and volcanic centers. J.
Volcanol. Geoth. Res. 254, 1–4 (2013)

43. Charpentier, I., Sarocchi, D., Sedano, L.A.R.: Particle shape analysis of volcanic
clast samples with the MATLAB tool MORPHEO. Comput. Geosci. 51, 172–181
(2013)

44. Valade, S., Harris, A.J., Cerminara, M.: Plume ascent tracker: interactive MAT-
LAB software for analysis of ascending plumes in image data. Comput. Geosci.
66, 132–144 (2014)

45. Ofek, E.O.: MATLAB package for astronomy and astrophysics. Astrophysics
Source Code Library (2014)

46. Ahmad, I., Raja, M.A.Z., Bilal, M., Ashraf, F.: Bio-inspired computational heuris-
tics to study lane-emden systems arising in astrophysics model. SpringerPlus 5(1),
1866 (2016)

47. Loredo, T., Scargle, J.: Time series exploration in Python and MATLAB: unevenly
sampled data, parametric modeling, and periodograms. In: AAS/High Energy
Astrophysics Division, vol. 17 (2019)

48. Kamel, N.A., Selman, A.A.-R.: Automatic detection of sunspots size and activity
using MATLAB. Iraqi J. Sci. 60(2), 411–425 (2019)

49. Guo, G.: Electromechanical feed control system in chemical dangerous goods pro-
duction. Chem. Eng. Trans. 71, 1039–1044 (2018)

50. Esche, E., Bublitz, S., Tolksdorf, G., Repke, J.-U.: Automatic decomposition of
nonlinear equation systems for improved initialization and solution of chemical
engineering process models. Comput. Aided Chem. Eng. 44, 1387–1392 (2018)

51. Fitzpatrick, D., Ley, S.V.: Engineering chemistry for the future of chemical syn-
thesis. Tetrahedron 74(25), 3087–3100 (2018)

52. Eastep, C.V., Harrell, G.K., McPeak, A.N., Versypt, A.N.F.: A MATLAB app to
introduce chemical engineering design concepts to engineering freshmen through
a pharmaceutical dosing case study. Chem. Eng. Educ. 53(2), 85 (2019)

53. Svoboda, T., Kybic, J., Hlavac, V.: Image Processing, Analysis and Machine
Vision-A MATLAB Companion. Thomson Learning, Toronto (2007)

54. Dhawan, A.P.: Medical Image Analysis, vol. 31. Wiley, Hoboken (2011)
55. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH image to imagej: 25 years

of image analysis. Nat. Methods 9(7), 671 (2012)

https://doi.org/10.1029/2009GC002584

A Comprehensive Comparison of GPU Implementations 29

56. Rodŕıguez-Cristerna, A., Gómez-Flores, W., de Albuquerque-Pereira, W.C.:
BUSAT: a MATLAB toolbox for breast ultrasound image analysis. In: Carrasco-
Ochoa, J.A., Mart́ınez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2017.
LNCS, vol. 10267, pp. 268–277. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59226-8 26

57. Cho, J.I., Wang, X., Xu, Y., Sun, J.: LISA: a MATLAB package for longitudinal
image sequence analysis. arXiv preprint arXiv:1902.06131 (2019)

58. Vedaldi, A., Lenc, K.: MatConvNet: convolutional neural networks for MATLAB.
In: Proceedings of the 23rd ACM international conference on Multimedia, pp.
689–692. ACM (2015)

59. Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.P.: Tensorizing neural net-
works. In: Advances in Neural Information Processing Systems, pp. 442–450
(2015)

60. Vardhana, M., Arunkumar, N., Lasrado, S., Abdulhay, E., Ramirez-Gonzalez, G.:
Convolutional neural network for bio-medical image segmentation with hardware
acceleration. Cogn. Syst. Res. 50, 10–14 (2018)

61. Molitor, S.C., Tong, M., Vora, D.: Matlab-based simulation of whole-cell and
single-channel currents. J. Undergrad. Neurosci. Educ. 4(2), A74 (2006)

62. Cardin, J.A., et al.: Driving fast-spiking cells induces gamma rhythm and controls
sensory responses. Nature 459(7247), 663 (2009)

63. Kirkton, R.D., Bursac, N.: Engineering biosynthetic excitable tissues from unex-
citable cells for electrophysiological and cell therapy studies. Nat. Commun. 2,
300 (2011)

64. Kodandaramaiah, S.B., Franzesi, G.T., Chow, B.Y., Boyden, E.S., Forest, C.R.:
Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat.
Methods 9(6), 585 (2012)

65. Prassl, A.J., et al.: Automatically generated, anatomically accurate meshes for
cardiac electrophysiology problems. IEEE Trans. Biomed. Eng. 56(5), 1318–1330
(2009)

66. O’Hara, T., Virág, L., Varró, A., Rudy, Y.: Simulation of the undiseased human
cardiac ventricular action potential: model formulation and experimental valida-
tion. PLoS Comput. Biol. 7(5), e1002061 (2011)

67. Cusimano, N., Bueno-Orovio, A., Turner, I., Burrage, K.: On the order of the frac-
tional laplacian in determining the spatio-temporal evolution of a space-fractional
model of cardiac electrophysiology. PLoS ONE 10(12), e0143938 (2015)

68. Elshrif, M.M., Shi, P., Cherry, E.M.: Representing variability and transmural
differences in a model of human heart failure. IEEE J. Biomed. Health Inform.
19(4), 1308–1320 (2015)

69. Passini, E., et al.: Human in silico drug trials demonstrate higher accuracy than
animal models in predicting clinical pro-arrhythmic cardiotoxicity. Front. Physiol.
8, 668 (2017)

70. Cusimano, N., del Teso, F., Gerardo-Giorda, L., Pagnini, G.: Discretizations of
the spectral fractional laplacian on general domains with Dirichlet, Neumann,
and Robin boundary conditions. SIAM J. Numer. Anal. 56(3), 1243–1272 (2018)

71. Handa, B.S., et al.: Interventricular differences in action potential duration resti-
tution contribute to dissimilar ventricular rhythms in ex-vivo perfused hearts.
Front. Cardiovasc. Med. 6, 34 (2019)

72. Kraus, J., Schlottke, M., Adinetz, A., Pleiter, D.: Accelerating a C++ CFD code
with OpenACC. In: 2014 First Workshop on Accelerator Programming using
Directives, pp. 47–54. IEEE (2014)

https://doi.org/10.1007/978-3-319-59226-8_26
https://doi.org/10.1007/978-3-319-59226-8_26
http://arxiv.org/abs/1902.06131

30 A. Kaboudian et al.

73. Blair, S., Albing, C., Grund, A., Jocksch, A.: Accelerating an MPI lattice Boltz-
mann code using OpenACC. In: Proceedings of the Second Workshop on Accel-
erator Programming Using Directives, p. 3. ACM (2015)

74. Huismann, I., Stiller, J., Fröhlich, J.: Two-level parallelization of a fluid mechanics
algorithm exploiting hardware heterogeneity. Comput. Fluids 117, 114–124 (2015)

75. Lou, J., Xia, Y., Luo, L., Luo, H., Edwards, J.R., Mueller, F.: OpenACC directive-
based GPU acceleration of an implicit reconstructed discontinuous Galerkin
method for compressible flows on 3D unstructured grids. In: 54th AIAA Aerospace
Sciences Meeting, p. 1815 (2016)

76. Raj, A., Roy, S., Vydyanathar, N., Sharma, B.: Acceleration of a 3D immersed
boundary solver using OpenACC. In: 2018 IEEE 25th International Conference
on High Performance Computing Workshops (HiPCW), pp. 65–73. IEEE (2018)

77. Gallovic, F., Valentova, L., Ampuero, J.-P., Gabriel, A.-A.: Bayesian dynamic
finite-fault inversion: 1. Method and synthetic test (2019)

78. Kan, G., He, X., Ding, L., Li, J., Liang, K., Hong, Y.: A heterogeneous comput-
ing accelerated SCE-UA global optimization method using OpenMP, OpenCL,
CUDA, and OpenACC. Water Sci. Technol. 76(7), 1640–1651 (2017)

79. Liu, C., Yang, H., Sun, R., Luan, Z., Qian, D.: SWTVM: exploring the auto-
mated compilation for deep learning on Sunway architecture. arXiv preprint
arXiv:1904.07404 (2019)

80. Cavuoti, S., et al.: Astrophysical data mining with GPU. A case study: genetic
classification of globular clusters. New Astron. 26, 12–22 (2014)

81. Rosenberger, S., Haase, G.: Pragma based GPU parallelizations for cardiovascular
simulations. In: 2018 International Conference on High Performance Computing
and Simulation (HPCS), pp. 1022–1027. IEEE (2018)

82. Campos, J., Oliveira, R.S., dos Santos, R.W., Rocha, B.M.: Lattice boltzmann
method for parallel simulations of cardiac electrophysiology using GPUs. J. Com-
put. Appl. Math. 295, 70–82 (2016)

83. Canal Noguer, P.: Modeling human atrial electrodynamics and arrhythmias
through GPU parallel computing: from cell to tissue. B.S. thesis, Universitat
Politècnica de Catalunya (2016)

84. History and license. https://docs.python.org/3/license.html. Accessed 28 Apr
2019

85. Fangohr, H.: A comparison of C, MATLAB, and Python as teaching languages
in engineering. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J.
(eds.) ICCS 2004. LNCS, vol. 3039, pp. 1210–1217. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-25944-2 157

86. Goldwasser, M.H., Letscher, D.: Teaching an object-oriented CS1-: with Python.
ACM SIGCSE Bull. 40, 42–46 (2008)

87. Vallisneri, M., Kanner, J., Williams, R., Weinstein, A., Stephens, B.: The LIGO
open science center. J. Phys. Conf. Ser. 610, 012021 (2015)

88. Rodriguez, C.L., Morscher, M., Pattabiraman, B., Chatterjee, S., Haster, C.-J.,
Rasio, F.A.: Binary black hole mergers from globular clusters: implications for
advanced LIGO. Phys. Rev. Lett. 115(5), 051101 (2015)

89. Aasi, J., et al.: Advanced LIGO. Class. Quantum Gravity 32(7), 074001 (2015)
90. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
91. Raschka, S.: Python Machine Learning. Packt Publishing Ltd., Birmingham

(2015)
92. Goodman, D.F., Brette, R.: Brian: a simulator for spiking neural networks in

Python. Front. Neuroinform. 2, 5 (2008)

http://arxiv.org/abs/1904.07404
https://docs.python.org/3/license.html
https://doi.org/10.1007/978-3-540-25944-2_157

A Comprehensive Comparison of GPU Implementations 31

93. Yen, D.C., Huang, S.-M., Ku, C.-Y.: The impact and implementation of XML on
business-to-business commerce. Comput. Stand. Interfaces 24(4), 347–362 (2002)

94. Lehmann, G., et al.: Towards dynamic planning and guidance of minimally inva-
sive robotic cardiac bypass surgical procedures. In: Niessen, W.J., Viergever, M.A.
(eds.) MICCAI 2001. LNCS, vol. 2208, pp. 368–375. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45468-3 44

95. Lehmann, G., Habets, D., Holdsworth, D.W., Peters, T., Drangova, M.: Simula-
tion of intra-operative 3D coronary angiography for enhanced minimally invasive
robotic cardiac intervention. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS,
vol. 2489, pp. 268–275. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45787-9 34

96. Azaouzi, M., Makradi, A., Petit, J., Belouettar, S., Polit, O.: On the numeri-
cal investigation of cardiovascular balloon-expandable stent using finite element
method. Comput. Mater. Sci. 79, 326–335 (2013)

97. Herman, W.H., et al.: Early detection and treatment of type 2 diabetes reduce
cardiovascular morbidity and mortality: a simulation of the results of the Anglo-
Danish-Dutch study of intensive treatment in people with screen-detected dia-
betes in primary care (addition-Europe). Diabetes Care 38(8), 1449–1455 (2015)

98. Itani, M.A., et al.: An automated multiscale ensemble simulation approach for
vascular blood flow. J. Comput. Sci. 9, 150–155 (2015)

99. Ramachandra, A.B., Kahn, A.M., Marsden, A.L.: Patient-specific simulations
reveal significant differences in mechanical stimuli in venous and arterial coro-
nary grafts. J. Cardiovasc. Transl. Res. 9(4), 279–290 (2016)

100. Updegrove, A., Wilson, N.M., Merkow, J., Lan, H., Marsden, A.L., Shadden, S.C.:
Simvascular: An open source pipeline for cardiovascular simulation. Ann. Biomed.
Eng. 45(3), 525–541 (2017)

101. Kuo, S., Ye, W., Duong, J., Herman, W.H.: Are the favorable cardiovascular
outcomes of empagliflozin treatment explained by its effects on multiple car-
diometabolic risk factors? A simulation of the results of the EMPA-REG OUT-
COME trial. Diabetes Res. Clin. Pract. 141, 181–189 (2018)

102. Myers, C.R., Sethna, J.P.: Python for education: computational methods for non-
linear systems. Comput. Sci. Eng. 9(3), 75–79 (2007)

103. Niederer, S.A., et al.: Verification of cardiac tissue electrophysiology simulators
using an N-version benchmark. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
369(1954), 4331–4351 (2011)

104. Burton, R.A., et al.: Optical control of excitation waves in cardiac tissue. Nat.
Photonics 9(12), 813 (2015)

105. Hurtado, D.E., Castro, S., Gizzi, A.: Computational modeling of non-linear dif-
fusion in cardiac electrophysiology: a novel porous-medium approach. Comput.
Methods Appl. Mech. Eng. 300, 70–83 (2016)

106. Cherubini, C., Filippi, S., Gizzi, A., Ruiz-Baier, R.: A note on stress-driven
anisotropic diffusion and its role in active deformable media. J. Theor. Biol. 430,
221–228 (2017)

107. Gizzi, A., et al.: Nonlinear diffusion and thermo-electric coupling in a two-variable
model of cardiac action potential. Chaos Interdiscip. J. Nonlinear Sci. 27(9),
093919 (2017)

108. Mane, R.S., Cheeran, A., Awandekar, V.D., Rani, P.: Cardiac arrhythmia detec-
tion by ECG feature extraction. Int. J. Eng. Res. Appl. 3, 327–332 (2013)

109. Conferences and workshops. https://www.python.org/community/workshops/.
Accessed 28 Apr 2019

https://doi.org/10.1007/3-540-45468-3_44
https://doi.org/10.1007/3-540-45787-9_34
https://doi.org/10.1007/3-540-45787-9_34
https://www.python.org/community/workshops/

32 A. Kaboudian et al.

110. Project jupyter. https://jupyter.org/. Accessed 29 Apr 2019
111. Numpy. https://www.numpy.org/. Accessed 29 Apr 2019
112. Numba. http://numba.pydata.org/. Accessed 29 Apr 2019
113. 1.1. a 5 minute guide to Numba. http://numba.pydata.org/numba-doc/latest/

user/5minguide.html. Accessed 29 Apr 2019
114. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), pp. 265–283 (2016)

115. Girija, S.S.: TensorFlow: large-scale machine learning on heterogeneous dis-
tributed systems (2016). Software tensorflow.org

116. Google just open sourced TensorFlow, its artificial intelligence engine. https://
www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/.
Accessed 29 Apr 2019

117. Case studies and mentions. https://www.tensorflow.org/about/case-studies/.
Accessed 29 Apr 2019

118. Cheng, H.-T., et al.: Wide & deep learning for recommender systems. In: Pro-
ceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp.
7–10. ACM (2016)

119. Lieman-Sifry, J., Le, M., Lau, F., Sall, S., Golden, D.: FastVentricle: cardiac seg-
mentation with ENet. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol.
10263, pp. 127–138. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59448-4 13

120. Warrick, P., Homsi, M.N.: Cardiac arrhythmia detection from ECG combining
convolutional and long short-term memory networks. In: 2017 Computing in Car-
diology (CinC), pp. 1–4. IEEE (2017)

121. Biswas, S., Aggarwal, H.K., Poddar, S., Jacob, M.: Model-based free-breathing
cardiac MRI reconstruction using deep learned & storm priors: MoDL-storm. In:
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6533–6537. IEEE (2018)

122. Kamaleswaran, R., Mahajan, R., Akbilgic, O.: A robust deep convolutional neu-
ral network for the classification of abnormal cardiac rhythm using single lead
electrocardiograms of variable length. Physiol. Meas. 39(3), 035006 (2018)

123. Iravanian, S.: fib-tf: a TensorFlow-based cardiac electrophysiology simulator. J.
Open Source Softw. 3(26), 719 (2018)

124. Kang, S.-H., Joe, B., Yoon, Y., Cho, G.-Y., Shin, I., Suh, J.-W.: Cardiac auscul-
tation using smartphones: pilot study. JMIR mHealth uHealth 6(2), e49 (2018)

125. Savalia, S., Emamian, V.: Cardiac arrhythmia classification by multi-layer per-
ceptron and convolution neural networks. Bioengineering 5(2), 35 (2018)

126. Teplitzky, B.A., McRoberts, M.: Fully-automated ventricular ectopic beat classi-
fication for use with mobile cardiac telemetry. In: 2018 IEEE 15th International
Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 58–
61. IEEE (2018)

127. Bello, G.A., et al.: Deep-learning cardiac motion analysis for human survival
prediction. Nat. Mach. Intell. 1(2), 95 (2019)

128. WebGL overview. https://www.khronos.org/webgl/. Accessed 29 Apr 2019
129. OpenGL shading language. https://www.khronos.org/opengl/wiki/OpenGL

Shading Language. Accessed 29 Apr 2019
130. WebGL 2.0 API quick reference guide. https://www.khronos.org/files/webgl20-

reference-guide.pdf. Accessed 29 Apr 2019
131. Owens, J.D., et al.: A survey of general-purpose computation on graphics hard-

ware. Comput. Graph. Forum 26–1, 80–113 (2007)

https://jupyter.org/
https://www.numpy.org/
http://numba.pydata.org/
http://numba.pydata.org/numba-doc/latest/user/5minguide.html
http://numba.pydata.org/numba-doc/latest/user/5minguide.html
http://tensorflow.org
https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/
https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/
https://www.tensorflow.org/about/case-studies/
https://doi.org/10.1007/978-3-319-59448-4_13
https://doi.org/10.1007/978-3-319-59448-4_13
https://www.khronos.org/webgl/
https://www.khronos.org/opengl/wiki/OpenGL_Shading_Language
https://www.khronos.org/opengl/wiki/OpenGL_Shading_Language
https://www.khronos.org/files/webgl20-reference-guide.pdf
https://www.khronos.org/files/webgl20-reference-guide.pdf

A Comprehensive Comparison of GPU Implementations 33

132. Kaboudian, A., Cherry, E.M., Fenton, F.H.: Large-scale interactive numerical
experiments of chaos, solitons and fractals in real time via GPU in a web browser.
Chaos Solitons Fractals 121, 6–29 (2019)

133. Jacobsen, D., Thibault, J., Senocak, I.: An MPI-CUDA implementation for
massively parallel incompressible flow computations on multi-GPU clusters. In:
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, p. 522 (2010)

134. Ladický, L., Jeong, S., Solenthaler, B., Pollefeys, M., Gross, M.: Data-driven fluid
simulations using regression forests. ACM Trans. Graph. 34(6), 1–9 (2015)

135. Jang, H., Park, A., Jung, K.: Neural network implementation using CUDA and
OpenMP. In: 2008 Digital Image Computing: Techniques and Applications, pp.
155–161. IEEE (2008)

136. Nageswaran, J.M., Dutt, N., Krichmar, J.L., Nicolau, A., Veidenbaum, A.V.:
A configurable simulation environment for the efficient simulation of large-scale
spiking neural networks on graphics processors. Neural Netw. 22(5–6), 791–800
(2009)

137. Sierra-Canto, K., Madera-Ramirez, F., Uc-Cetina, V.: Parallel training of a back-
propagation neural network using CUDA. In: 2010 Ninth International Conference
on Machine Learning and Applications, pp. 307–312. IEEE (2010)

138. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexi-
ble, high performance convolutional neural networks for image classification. In:
Twenty-Second International Joint Conference on Artificial Intelligence (2011)

139. Nylons, L.: Fast n-body simulation with CUDA (2007)
140. Belleman, R.G., Bédorf, J., Zwart, S.F.P.: High performance direct gravitational

n-body simulations on graphics processing units II: an implementation in cuda.
New Astron. 13(2), 103–112 (2008)

141. Glinskiy, B.M., Kulikov, I.M., Snytnikov, A.V., Romanenko, A.A., Chernykh,
I.G., Vshivkov, V.A.: Co-design of parallel numerical methods for plasma physics
and astrophysics. Supercomput. Front. Innov. 1(3), 88–98 (2015)

142. Hamada, T., Narumi, T., Yokota, R., Yasuoka, K., Nitadori, K., Taiji, M.: 42
TFlops hierarchical N-body simulations on GPUs with applications in both astro-
physics and turbulence. In: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, pp. 1–12. IEEE (2009)

143. Obrecht, C., Kuznik, F., Tourancheau, B., Roux, J.-J.: A new approach to the
lattice Boltzmann method for graphics processing units. Comput. Math. Appl.
61(12), 3628–3638 (2011)

144. Rinaldi, P.R., Dari, E., Vénere, M.J., Clausse, A.: A lattice-Boltzmann solver for
3D fluid simulation on GPU. Simul. Model. Pract. Theory 25, 163–171 (2012)

145. Obrecht, C., Kuznik, F., Tourancheau, B., Roux, J.-J.: Scalable lattice Boltzmann
solvers for cuda GPU clusters. Parallel Comput. 39(6–7), 259–270 (2013)

146. Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynamics
simulations fully implemented on graphics processing units. J. Comput. Phys.
227(10), 5342–5359 (2008)

147. Liu, W., Schmidt, B., Voss, G., Müller-Wittig, W.: Accelerating molecular dynam-
ics simulations using graphics processing units with CUDA. Comput. Phys. Com-
mun. 179(9), 634–641 (2008)

148. Stone, J.E., Vandivort, K.L., Schulten, K.: GPU-accelerated molecular visualiza-
tion on petascale supercomputing platforms, pp. 1–8 (2013)

34 A. Kaboudian et al.

149. Reichl, T., Passenger, J., Acosta, O., Salvado, O.: Ultrasound goes GPU: real-time
simulation using CUDA. In: Medical Imaging 2009: Visualization, Image-Guided
Procedures, and Modeling, vol. 7261, p. 726116, International Society for Optics
and Photonics (2009)

150. Alsmirat, M.A., Jararweh, Y., Al-Ayyoub, M., Shehab, M.A., Gupta, B.B.: Accel-
erating compute intensive medical imaging segmentation algorithms using hybrid
CPU-GPU implementations. Multimedia Tools Appl. 76(3), 3537–3555 (2017)

151. Dawes, T.J.W., et al.: Machine learning of three-dimensional right ventricular
motion enables outcome prediction in pulmonary hypertension: a cardiac MR
Imaging Study. Radiology 283(2), 161315 (2017)

152. Bartocci, E., Cherry, E.M., Glimm, J., Grosu, R., Smolka, S.A., Fenton, F.H.:
Toward real-time simulation of cardiac dynamics. In: Proceedings of the 9th Inter-
national Conference on Computational Methods in Systems Biology, pp. 103–112.
ACM (2011)

153. Berg, S., Luther, S., Parlitz, U.: Synchronization based system identification of
an extended excitable system. Chaos 21(3), 033104 (2011)

154. Sato, D., Xie, Y., Weiss, J.N., Qu, Z., Garfinkel, A., Sanderson, A.R.: Accelera-
tion of cardiac tissue simulation with graphic processing units. Med. Biol. Eng.
Comput. 47(9), 1011–1015 (2009)

155. Landoni, M., Genoni, M., Riva, M., Bianco, A., Corina, A.: Application of cloud
computing in astrophysics: the case of Amazon web services. In: Software and
Cyberinfrastructure for Astronomy V, vol. 10707, p. 107070G. International Soci-
ety for Optics and Photonics (2018)

156. Bartocci, E., et al.: Teaching cardiac electrophysiology modeling to undergraduate
students: laboratory exercises and GPU programming for the study of arrhyth-
mias and spiral wave dynamics. Adv. Physiol. Educ. 35(4), 427–437 (2011)

157. Fallis, A.: CUDA by example, vol. 53 (2013)
158. NVIDIA: NVIDIA CUDA C Programming Guide Version 4.2, p. 173 (2012)

From Automated MRI Scan to Finite
Elements

James Glimm1, Hyunkyung Lim1(B), Martin Bishop2, and Soojin Kim1

1 Stony Brook University, Stony Brook, NY 11794, USA
hyun-kyung.lim@stonybrook.edu

2 King’s College, London, UK

Abstract. We present algorithms for the automated transition from
scanned MRI images to finite element simulations. The algorithms are
designed for the reconstruction of fine scale blood vessels as possibly
important to defibrillation studies in electrocardiac physiology. The auto-
mated nature of the transition is essential for practical usage, as the oth-
erwise necessary human intervention is prohibitive. The automated soft-
ware relies on a mixture of public domain algorithms and new algorithms
developed specifically for the current purpose. The problem of transitions
from MRI images to accurate physiology is important in many medical
applications, and much of our work will be helpful in more general cases.
The definitive nature of the blood vessel problem which makes the entire
analysis feasible is a conceptual model of the final geometry, as the con-
nected branches of veins and arteries together with the inner and outer
cardiac surface.

Keywords: MRI scan · Defibrillation · Cardiac blood vessels

1 Introduction

Heart failure is a leading cause of death in the industrial world [1,2]. Understand-
ing the normal and abnormal behaviors of the heart has been studied actively
[10]. Ventricular fibrillation is a significant aspect of heart failure. It is fatal if
not treated promptly, by an electrical shock to reset the cardiac conditions and
to allow resumption of a normal heart beat. As an alternative to the traditional
method of a single high voltage defibrillation shock, the method of Low Energy
Action Potential (LEAP) [29] offers advantages, but details in its mode of oper-
ation remain to be clarified. The effectiveness of both LEAP and the strong
shock method depend on localized discontinuities in the cardiac electrical con-
ductivity to generate charges, known as virtual electrodes as a response to the
electrical shock. These virtual electrodes interfere with the chaotic fibrillating
state and bring about its termination, allowing resumption of a normal heart
beat. The electrical discontinuities are located at the cardiac surfaces are of
primary importance. The blood vessel walls are also a source of electrical dis-
continuity. They play a helpful but secondary role [3]. In a quantitative study
c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 35–48, 2019.
https://doi.org/10.1007/978-3-030-31514-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_3

36 J. Glimm et al.

of defibrillation [4], it was shown that both the shock strength and the mini-
mum blood vessel size were important in determining which blood vessels were
significant. Here a threshold of perhaps 50µ radius was identified. In [5], the
interplay between applied voltage and blood vessel diameter is examined, with
most of the effect occurring at voltages larger than typical LEAP protocols or
only for large blood vessels. Our aim here is to refine our understanding of this
secondary role, especially as a function of the blood vessel size, and in a model
of the full ventricle, beyond the thickened slab previously considered.

With high resolution 25µ MRI data of a rabbit ventricle, we have an oppor-
tunity to assess the roles of blood vessels of various sizes in the formation of
virtual electrodes. This is where the automated analysis of this paper is impor-
tant. Starting with the high resolution MRI data, we transition from segmen-
tation (black-white stair step images) to finite element surface meshes to full
volume finite elements meshes, to fiber orientation within the mesh to finite ele-
ment fibrillation and defibrillation simulations. The main thrust of the present
paper is the automated procedure, with the fibrillation and defibrillation studies
not considered here. The automation is nearly complete, and remaining manual
steps are sufficiently minor to allow systematic use of this technology. As the
later stages of this suite of algorithms were developed in [6], our focus here is on
the surface mesh and its construction from the segmented (stair steps) image.

In emphasizing an automated procedure, our goal is feasibility of the analysis.
The decision to be made, fragment by fragment, is whether it is included in the
analysis (radius above 50µ) or excluded from analysis. The number of such
variables in the rabbit ventricle is of the order of tens of tens of thousands,
and for a human heart, approximately 33 = 27 larger, this number approaches
million.

The human effort to manage the automated software is also a complicated
and time consuming undertaking. Thus we allow instances where human judge-
ment is less burdensome than the addition of a new software tool to the suite of
analysis programs.

The governing equations for the electrical activity within the heart consist
of a diffusion equation and a reaction source term depending on ionic currents.
The equations and a finite element algorithm based on the CHASTE simulation
platform (Cancer, Heart and Soft Tissue Environment) [7–9], for their solution
are described in [6]. We solve the bidomain equations, representing the cardiac
tissue at overlapping intracellular and extracellular domains [10], as is needed for
the duration of the electrical shock. In the bidomain equations, a distinguished
orientation within each mesh cell describes the direction of the fibers in that cell.

Computational resource requirements for this automated pipeline are a linux
cluster or equivalent supercomputer access, both for computation and memory
usage.

Finite elements are a form of discretization of the cardiac equations. In this
technology, all of space is divided into tetrahedra, and the equations are solved
on this basis, with the voltages defined as having values in each tetrahedra,
As we use them here, they are adaptive, with the cardiac surfaces (inner and

From Automated MRI Scan to Finite Elements 37

outer walls and blood vessels) lying on the boundary of the finite elements.
With this framework, the surface mesh is the set of surface elements (triangles)
that define the conductivity discontinuity boundaries (i.e. the heart walls and
the blood vessel (inner) surfaces). For some purposes, there are not one but
two voltages defined in each cell, one representing the average of the voltages
of the individual cardiac cells and the other the voltage on the average of the
extracellular space. This is called a bidomain model, and is needed during the
passage of the electrical shock as part of the defibrillation treatment. In the
bidomain equations, the orientation of the cardiac fibers is important, and must
be added to the equations to specify it. The standard bidomain equations for
cardiac electro physiology [7] consist of a diffusion equation for the voltages
(in the intra cellular and extracellular cardiac tissue and non cardiac tissue
called bath) coupled to an ordinary differential equation for the ionic currents.
The extracellular voltage and the bath voltage are solved as a single continuous
potential, with no flux (Neumann) boundary conditions for the external bath
boundary and a discontinuous diffusion tensor across the heart-bath boundary.
The solution domain is denoted by Ω = H ∪ B, where H is the heart tissue
and B is the bath. The boundaries of the heart tissue and bath are denoted by
∂H and ∂B respectively. The governing bidomain equations with the boundary
conditions can be written as [32]

χ(Cm
∂v
∂e

+ Iion(v,w)) − ∇ · (Di∇v) − ∇ · (Di∇ve) = 0, in H (1)

∇ · (Di∇v) + ∇ · ((Di + De)∇ve) = 0, in H (2)

∂w
∂t

+ g(v,w) = 0, in H (3)

∇ · (Db∇ve) = 0, in B (4)

n · (Di∇v) + n · (Di∇ve) = 0, on ∂H (5)

n · (De∇ve) = n · (Db∇ve), on ∂H (6)

n · (De∇ve) = Ie, on ∂B\∂H (7)

where χ is the surface to volume ratio of the membrane, Cm is the electrical
capacitance of the cardiac tissue per unit area, Iion is the ionic current over the
membrane per unit area, which is calculated by the transmembrane potential v
and the gate variable w. The gate function g and Iion are determined by the cell
ionic model, including the electroporation current Iep [33–35]. The intra cellular
and extracellular potentials and intra and extra conductivity tensors, denoted by
vi, ve, Di and De respectively, are defined in the heart tissue H. The extracellular
potential is also defined in the bath B with the bath conductivity Db. The unit
normal vector at the cardiac surface, n, is oriented outward while Ie represents
the electrical current across ∂B\∂H.

For both the surface and the volume mesh, mesh quality is important, of
the numerical solution method will fail. Mesh quality is assessed in terms of
approximate equal volumes of the mesh elements, areas of the surface mesh

38 J. Glimm et al.

triangles and in both cases of the size of the vertex angles. The finite element
equations are a linear system of equations, which cannot be solved explicitly. The
solution is iterative and involves successive approximations. It is a general lore
for such solutions that poor mesh quality makes the resulting iterative equations
poorly conditioned. This means excessive computation time as the most favorable
outcome, and more likely, failure of the iteration to converge. As there are many
time steps and many such iterative solution steps, a high degree of reliability is
essential, and this reliability requirement imposes a mesh quality condition.

The paper is organized as follows. The main thrust of the paper is contained
in Sect. 2, where the automated algorithm is constructed. While many aspects
of the algorithm can be used for the interpretation of a variety of MRI image
data, we observe that its full force depends on high resolution data and on a
clear conceptual understanding of the answer: an inner and an outer surface and
connected branching networks of blood vessels (the veins and the arteries). Sect. 3
describes the ionic model of the equations and Sect. 4 contains a discussion of
the model construction.

To complete the finite element equations in their bidomain form, we specify
a fiber orientation in every mesh cell. This is constructed from an algorithm [11],
as detailed experimental data is missing. We show a schematic diagram of the
model construction for defibrillation studies in Figs. 1 and 2.

Fig. 1. Automated Construction of Whole Heart from MRI

From Automated MRI Scan to Finite Elements 39

Fig. 2. A schematic diagram of the model construction for defibrillation studies.

2 The Automated Algorithm

We emphasize the large increase in automation achieved here vs. [4]. The [4]
level of automation allowed detailed construction of a slice only from a rabbit
ventricle. In contrast, we address detailed vascular resolution of the full ventricle
with possible extension to the human ventricle.

Our approach is a combination of the use of existing tools and the skilled
of new ones. Often, especially with our emphasis on public domain tools, their
tools are immature and require additional effort to become useful. The tools are
designed for use in a stand alone fashion, and these integration and interoper-
ability is a further problem. As examples of new algorithms and developments,
we mention several issues. Identification of which intermediate sized structure
contain a segment of greater than 50µ is not contained in any software package.
The algorithm for growing the outer wall of a blood vessel from its inner wall,
which are previously used in a hand corrected version is now fully automated
[6]. The step of surface mesh quality was not previously considered, and we did
not find a suitable public domain algorithm for [6].

2.1 Segmentation

The segmentation algorithm is described in detail in [5,12]. We only summarize
a few of the highlights from this algorithm, which as given in these references
is not fully automated. We only make use of the initial step of the method
described in detail below. Our main trust is to by pass all but the initial step
fully automated.

The methods of tissue preparation are described in detail in [5]. Initial seg-
mentation only attempts to differentiate between tissue and non-tissue, with the
further segmentation into distinct tissue classes (vessel walls vs. blood) accom-
plished later. In contrast to [12], the full resolution MR dataset was segmented,
with no prior down-sampling. The heart of the method is an iterative use of level
set technology, to identify a smooth surface separating distinct regions. Here the
Insight Toolkit library, ITK, www.itk.org and several other software packages

www.itk.org

40 J. Glimm et al.

played an important role. A segmentation pipeline involving threshold, geodesic
and Laplacian level-set algorithms was employed in an automated manner, with
specific parameter combinations for each filter obtained by visual inspection, as
described in [12]. Following automated segmentation, due to poor MR contrast
at some tissue boundaries, minor manual adjustments were needed throughout
the dataset, again based on visual inspection.

For our present purposes, we take only the first pass segmentation version of
the [5,12] segmentation protocol, which is fully automated. This algorithm leads
to subsequent data problems which we address here.

2.2 Surface Mesh

The surface mesh is constructed from the stair step segmented image of Sect. 2.1
by a level surface algorithm. The level surface algorithm finds an interpolating
surface between the stair steps. At each point, its distance to the nearest black-
white boundary is noted. This is a signed distance, and the 0 (mid) value of the
interpolation is by definition the level surface. The level surface is triangulated
via the marching cubes template based formula [13].

Blood Vessel Surface Mesh Data Cleaning. The blood vessel surface mesh
constructed in Sect. 2.2 can be divided topologically into distinct connected com-
ponents (i.e. isolated fragments of the surface mesh). The decision variable is
made for the component as a whole, to retain in the final model or to eliminate,
on the basis of a size criteria. These components are the primary decision vari-
ables for subsequent analysis. There are 9642 of these components. The algorithm
for the identification of the individual components is a marching front method,
with the key decision criteria based on the fact that each triangle knows (has
pointers to) each of the three triangles which it borders.

The mesh is of low quality. The many artifacts to be removed are mainly
obvious to a human eye, but due to the large number of decision variables,
an automated method is required. A fully resolved cardiac blood vessel model
might have two components, one consisting of arteries and the other of veins,
with possible exceptions due to the ventricle only nature of the data.

Our goal is to resolve only the blood vessels of radius 50µ or larger. Studies
conducted by [5,12] indicated that a significant role for blood vessels of inner
radius smaller than 50µ appears to be excluded. These studies were conducted
in idealized geometries. This conclusion appears to be accepted by most workers
in this field. As the resolution is 25µ, we divide the problem into three parts,
large, intermediate and small sized components. The automated decision used
to govern this separation is based on a count of the number of triangles in each
component. The border between the sizes is adjusted by visual inspection. The
large ones are components which are to be retained, the small ones are ones to
be eliminated and the intermediate ones require a more careful analysis. The
point of this division is to reduce the number of intermediate components as
their detailed analysis is more expensive. Of the 9642 total components, we

From Automated MRI Scan to Finite Elements 41

find 8246 small components and 142 large ones, leaving 1250 intermediate ones,
about 15% of the total number of components. By numbers of surface triangles,
the proportions is quite different, with 33,053,937 surface triangles assigned as
208,41,658 (about 2/3) to the large components, 7,467,308 (about 1/5) to the
intermediate and 4,744,971 (about 1/7) to the small components.

Large Components
We search among the blood vessels for regions with a large volume. These are
located within the large blood vessels. This search depends on the software
package meshlab, http://www.meshlab.net/. Its use is manual, but not onerous
in difficulty, as it is used to determine the full connected component of the blood
vessels after manual identification of a large blood region starting point, with a
relatively modest number of manual choices made. This algorithm brings along
with the large starting blood vessel the many smaller ones branching off of it.
The triangles identified in this manner are a preponderance of the total triangles
of the surface. In Fig. 3 we show the five largest components identified in this
manner.

Fig. 3. We display the five largest blood vessel connected component networks. Each
is identified starting from a large volume branching point and with the aid of a visual-
ization tool finding all multiple smaller blood vessels connected to it. The units on the
coordinate axes are in cm.

Intermediate Components
The most difficult case is the intermediate one. An example is shown in Fig. 4.
By adjustment of parameters, we place most of the components into the large
or small categories. The remaining intermediate sized components represent in
blood vessels of a marginal size, near the 50µ radius criteria for elimination.

http://www.meshlab.net/

42 J. Glimm et al.

Fig. 4. We show an example of the intermediate sized blood vessel with two compo-
nents. The components could be joined, but this seems to be a minor change in terms
of surface triangles involved, which is where the virtual electrodes are located. Units in
cm. On the coordinate axis indicate a radius of 100µ, indicating that these components
are to be retained in the final model.

We consider 1254 components of this category, a reduction 15% from the total
number of components. Because of the borderline nature of the intermediate
cases, these cases require a more careful and detailed analysis.

The detail analysis is based on the medial axis algorithm, is available
from Matlab under the program name Skeleton3D. Public domain medial axis
software is available from http://www.ams.sunysb.edu/∼lindquis/3dma/3dma
rock/3dma rock.html with technical description in [14]. The medial axis finds a
precisely defined centerline for any component. It may have multiple branching
points. We apply it only away from its branching points. As such, the medial
axis defines a centerline of an extended 1D object. We form a normal plane to
the centerline and intersect the blood vessel surface with this normal plane. The
result is a curve in the normal plane, changing as one moves along the medial
axis. This curve, if approximated by an ellipse, has a major and a minor radius.
The major radius is of interest here. If anywhere along the medial axis, the max-
imum radius exceeds 50µ, then (at least this fragment of) the component is to
be retained.

The medial axis technology also offers the opportunity to join disconnected
components, as the two components in question will appear as gaps in a single
line or curve. We expect for the current purposes, this step will not be important,
as the blood vessels joined in this manner will often be below the threshold of
(50µ) radius. See Fig. 4. The medial axis (not shown in the figure) runs down
the centerline of the two segments. Direct determination of the maximum radius
within a component is also possible, avoiding use of the medial axis.

http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html
http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html

From Automated MRI Scan to Finite Elements 43

Small Components
The small components (which we might refer to as “fly specks”) are regarded as
segmentation artifacts and are removed from further analysis. Some of these
represent small but under resolved blood vessels and that a more accurate
reconstruction would “connect the dots” to yield an intact blood vessel. If this
level of data analysis were achieved, the reconstructed blood vessels would be
mainly below our target threshold, and after this careful reconstruction, would
be removed from the analysis.

The number of components within the small category is 8246, by far a large
fraction of the total number of components. Thus we see that the fly specks algo-
rithm is a crucial first step in reducing the human complexity of the algorithm.

We show typical “fly specks” in Figs. 5 and 6

Surface Mesh Quality. Next we eliminate edges too small or too large. The
large/small edge elimination is through a queue of large and small edges. The
small edges are collapsed to a point, thereby reducing two triangles with this
common edge to become edges themselves. Similarly, the edges too large are
bisected by the insertion of a new point at the edge midpoint, thereby replacing
two triangles having a common edge with four triangles having two common
edges. These two operations are the inverse of one another, and in combination,
will keep the side length ratios between triangles or within a single triangle within
the range [0.5, 2]. Thus bad aspect ratios are also eliminated. The algorithm is
similar to the volume mesh quality algorithm, previously described [6], so we
omit further details.

Fig. 5. The totality of all small components shows only low levels of coherent structure,
and is regarded as “noise” in the present context. Units in cm.

44 J. Glimm et al.

Surface Mesh Verification. The first check for surface quality is to ensure
that the surface has no non-manifold edge. These are edges which border three
or more triangles. The non-manifold search is automated, but repair is manual.
An absence of holes in the cardiac surfaces is ensured by the same marching
front algorithm discussed above.

Fig. 6. A typical small component is shown.

We require that the entire cardiac surface consists of inner and outer wall,
each without gaps and multiple fragments of artery and vein networks. Nonman-
ifold segments have been removed.

2.3 Vessel Wall Thickness

The segmentation yields the inner wall of the blood vessel only. Experimen-
tal correlations establish a vessel wall thickness according to its diameter and
whether it is a vein or an artery. For the 142 large components, the distinction
is based on expert knowledge.

As discussed in [6], the outer blood vessel wall surface is constructed as the
solution of a dynamic equation

dx(t)
dt

= −n (8)

to “grow” the inner surface in the direction −n. The n is oriented outward
relative to the cardiac tissue and so −n is outward relative to the blood vessel.
x(0) is some node of a triangle on the inner blood vessel wall, as initial conditions

From Automated MRI Scan to Finite Elements 45

for (8), and the final time for this equation is set by the wall thickness. The
dynamics of (8) are stable for outward growth of convex surface which is the
normal case for the construction of the outer blood vessel wall from the inner
wall. At branching points, where the veins divide, the inner surface is concave
and the outward dynamics is unstable. Conceptually, consider a closed polygon
in 2D to be propagated inward. If some of the vertex angles are sharp as with an
elongated diamond shape, the points on the short axis can self intersect under
inward propagation with a finite step size. Locations generating self intersections
are characterized sharp surface angles and vertices or small triangles. The self
intersections are resolved incrementally within the algorithm. If the local surface
is concave, the stable version of this algorithm forces the outward growing surface
to be single valued in infinitesimal steps.

2.4 Volume Mesh

The public domain algorithm TetGen will construct a volume mesh which
respects a given surface mesh [15]. However the mesh quality can be poor and the
resulting discretized equations cannot be solved by the finite element method.
Our mesh quality improvement algorithm was discussed in [6]. To improve the
mesh quality, we make a list of problem mesh volume elements, and introduce
an algorithm which will improve the local mesh in each of the several cases.

As with the surface mesh quality algorithm, the volume mesh quality is based
on a queue of bad element edges. The bad edges are either too large or too small,
and are eliminated by addition of a midpoint with two new triangle facets of four
new tetrahedrons or the inverse operation, by collapse of an edge, combining two
facing facets into an edge and four tetrahedrons into a single tetrahedron. As
in the case of the edge mesh quality algorithm, the resulting edge ratios are
consistent within a factor of 2. Because this edge ratio criterion has already
been enforced for the surface mesh, the volume mesh will never divide an edge
which is part of the surface mesh. Thus the surface mesh is not modified as part
of the volume mesh quality algorithm.

2.5 Fiber Orientation

At least during the application of the shock, a bidomain conductivity model is
needed, in which the electrical currents occur simultaneously within the fibers
defining the cardiac cells and in the extracellular space that surrounds the fibers.
The fibers are much finer that any feasible mesh resolution, so that within any
mesh cell, both regions will occur. The resulting diffusion tensor then has dis-
tinguished properties along a single direction (the fiber direction). Thus to com-
plete the specification of the equations, the fiber orientation must be specified
in every mesh cell. The limited experimental data for the fibers will establish
general properties of the fiber orientation, but not its cell by cell orientation.
Thus a software model, informed by the limited experimental data, is used to
fill in the required fiber orientation at the mesh cell level [16]. The wrapping of
fibers around and not terminating at blood vessels is discussed in [11].

46 J. Glimm et al.

3 Ionic Model

A number of models of the ionic currents have been proposed at differing levels
of completeness and complexity [17,18]. The canine ventricular cell model of
Flaim et al. [19] includes as many as 87 variables, the Bondarenko et al. model
[20] involves more that 100 variables. Although these complex models repro-
duce existing experimental results through careful selection of parameters, high
parameter numbers often affect model robustness and introduce inconsistencies
between models of the same animal species and specific regions of the heart [21],
not to mention their computational expenses. Several reduced models have been
proposed [22–25]. In the Fenton-Karma (FK) model [24],

Iion (φ,y) = Ifi (φ, v) + Iso (φ) + Isi (φ,w) , (9)

where Ifi, Iso and Isi denote the fast-inward, slow-outward, and slow-inward ionic
currents respectively, and y = (v, w) is the vector of gate variables controlling
the fast- and slow-inward components. The FK three-variable model is widely
used, due to its capability to maintain most of the quantitative properties of the
more complicated models, while reducing the computational complexity signifi-
cantly [17]. These properties have made the FK model popular in a wide range
of studies, including vortex dynamics in the myocardium [24], mechanisms for
discordant alternate [26], temperature effects [27,28] and the promising field of
low-energy defibrillation [29,30]. These models and the more complicated Maha-
jan model [31], which has been calibrated to experimental data for the rabbit,
are known not to allow a sustained fibrillation state. For this reason, following
[3], we introduce an enhanced CA++ channel, with a parameter denoted R into
into the model [31], which is believed to allow sustained fibrillation and a more
accurate model of defibrillation.

4 Discussion

A combination of publicly available software tools with new algorithms described
here and in [6] allow the construction of a detailed cardio-vascular mesh and
finite element software model. The main point of the construction is to avoid
prohibitive levels of human involvement in the construction. For this purpose,
manual aspects of the construction are kept to a minimum.

The detailed mesh allows definitive studies of the importance (or not) of
small features in the LEAP defibrillation protocol. The current data is for a
rabbit. The authors believe that the same methods allow finite element models
of a human heart, based on high resolution MRI data.

The optimal balance between efforts assigned to the various software stages
remains to be explored. For example, automated but stronger segmentation algo-
rithms appear to be a possibility.

Acknowledgements. This work is supported in part by the National Science Foun-
dation grant NSF CPS-1446832.

From Automated MRI Scan to Finite Elements 47

References

1. Centers for Disease Control and Prevention: State-specific mortality from sudden
cardiac death-united states, 1999. MMWR Morb. Mortal. Wkly. Rep. 51(6), 123
(2002)

2. Cherry, E.M., Fenton, F.H., Gilmour, R.F.: Mechanisms of ventricular arrhyth-
mias: a dynamical systems-based perspective. Am. J. Physiol. Heart Circ. Physiol.
302(12), 2451–2463 (2012)

3. Bishop, M., Plank, G.: The role of fine-scale atonomical structure in the dynamics
of reentry in computational models of the rabbit ventricles. J. Physiol. 18, 4515–
4535 (2012)

4. Bishop, M.J., Plank, G., Vigmond, E.: Investigating the role of coronary vascu-
lature in the mechanisms of defibrillation. Circ. Arrthymia Electrophysiol. 5(1),
210–219 (2012)

5. Bishop, M., Boyle, P.M., Plank, G., Walsh, D.G., Vigmond, E.: Modeling the role
of the cornary vasclature during external field simulation. IEEE Trans. Biomed.
Eng. 10, 2335–2345 (2010)

6. Lim, H., Cun, W., Wang, Y., Gray, R., Glimm, J.: The role of conductivity dis-
continuities in design of cardiac defibrillation. Chaos 28, 013106 (2018)

7. Mirams, G.R., Arthurs, C.J., Bernabeu, M.O., et al.: Chaste: an open source
C++ library for computational physiology and biology. PLoS Comput. Biol. 9(3),
e1002970 (2013)

8. Pathmanathan, P., Gray, R.A.: Verification of computational models of cardiac
electro-physiology. Int. J. Numer. Methods Biomed. Eng. 30(5), 525–544 (2014)

9. Pathmanathan, P., et al.: A numerical guide to the solution of the bidomain equa-
tions of cardiac electrophysiology. Int. Prog. Biophys. Mol. Biol. 102(2–3), 136–155
(2010)

10. Clayton, R.H., et al.: Models of cardiac tissue electrophysiology: progress, chal-
lenges and open questions. Int. Prog. Biophys. Mol. Biol. 104(1), 22–48 (2011)

11. Bishop, M., Boyle, P., Plank, G., Vigmond, E.: Modeling the role of coronary
vasculature during external field stimulation. IEEE Trans, Biomed. Eng. 57, 2335–
2345 (2010)

12. Bishop, M.J., Plank, G., Burton, R.A.B., Schneider, J.E., Gavaghan, D.J., Grau,
P.K.V.: Development of an anatomically detailed mri-derived rabbit ventricular
model and assessment of its impact on simulations of electrophysiological function.
Am. J. Physiol. Heart Circ. Physiol. 298(2), H699–H718 (2010)

13. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface con-
struction algorithm. Comput. Graph. 21(4), 163–169 (1987)

14. Lindquist, W.B., Lee, S.-M., Coker, D.A., Jones, K.W., Spanne, P.: Medial axis
analysis of void structure in three-dimensional tomographic images of porous
media. J. Geophys. Res. 101B, 8297–8310 (1996)

15. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans.
Math. Softw. 41(2), 11:1–11:36 (2015)

16. Bayer, J.D., Blake, R.C., Plank, G., Trayanova, N.A.: A novel rule-based algorithm
for assigning myocardial fiber orientation to computational heart models. Ann.
Biomed Eng. 40(10), 2243–2254 (2012)

17. Fenton, F., Cherry, E.: Models of cardiac cell. Scholarpedia 3(8), 1868 (2008)
18. Lloyd, C.M., Lawson, J.R., Hunter, P.J., Nielsen, P.F.: The CellML model reposi-

tory. Bioinformatics 24(18), 2122–2123 (2008)

48 J. Glimm et al.

19. Flaim, S.N., Giles, W.R., McCulloch, A.D.: Contributions of sustained INa and
IKv43 to transmural heterogeneity of early repolarization and arrhythmogenesis
in canine left ventricular myocytes. Am. J. Physiol. Heart. Circ. Physiol. 291(6),
2617–2629 (2006)

20. Bondarenko, V.E., Bett, G.C.L., Rasmusson, R.L.: A model of graded calcium
release and L-type Ca2+ channel inactivation in cardiac muscle. Am. J. Physiol.
Hear. Circ. Physiol. 286(3), 1154–1169 (2004)

21. Cherry, E.M., Fenton, F.H.: A tale of two dogs: analyzing two models of canine
ventricular electrophysiology. Am. J. Physiol. Heart Circ. Physiol. 292(1), 43–55
(2007)

22. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac
membrane. Bull. Math. Biol. 65(5), 767–793 (2003)

23. Duckett, G., Barkley, D.: Modeling the dynamics of cardiac action potential. Phys.
Rev. Lett. 85(4), 884 (2000)

24. Fenton, F., Karma, A.: Vortex dynamics in three-dimensional continuous
myocardium with fiber rotation: filament instability and fibrillation. Chaos 8(1),
20–47 (1998)

25. Karma, A.: Electrical alternans and spiral wave breakup in cardiac tissue. Chaos
Interdiscip. J. Nonlinear Sci. 4(3), 461–472 (1994)

26. Watanabe, M.A., Fenton, F.H., Evans, S.J., Hastings, H.M., Karma, A.: Mecha-
nisms for discordant alternans. Comput. Fluids 12(2), 196–206 (2001)

27. Fenton, F.H., Gizzi, A., Cherubini, C., Pomella, N., Filippi, S.: Role of temperature
on nonlinear cardiac dynamics. Phys. Rev. E 87(4), 042717 (2013)

28. Filippi, S., Gizzi, A., Cherubini, C., Luther, S., Fenton, F.H.: Mechanistic insights
into hypothermic ventricular fibrillation: the role of temperature and tissue size.
Europace 16(3), 424–434 (2014)

29. Chebbok, M., et al.: Low-energy anti-fibrillation pacing (LEAP): a gentle, non
traumatic defibrillation option. Eur. Hear. J. 33, 381 (2012)

30. Fenton, F.H., et al.: Termination of atrial fibrillation using pulsed low-energy far-
field stimulation. Circulation 120(6), 467–476 (2009)

31. Mahajan, A., Shiferaw, Y., Sato, D., et al.: A rabbit ventricular action potential
model replicating ardiac dynamics at rapid heart rates. Biophys J. 94, 392–410
(2008)

32. Xue, S., Lim, H., Glimm, J., Fenton, F.H., Cherry, E.M.: Sharp boundary electro-
cardiac simulations. SISC 38, B100–B117 (2016)

33. Krassowska, W.: Effects of electroporation on transmembrane potential induced
by defibrillation shocks. Pacing Clin. Electrophysiol. 18, 1644–1660 (1995)

34. Cheng, D.K., Tung, L., Sobie, E.A.: Nonuniform responses of transmembrane
potential during electric field stimulation of single cardiac cells. Am. J. Physiol.
Heart Circ. Physiol. 277, H351–H362 (1999)

35. Ashihara, T., Trayanova, N.A.: Asymmetry in membrane responses to electric
shocks: insights from bidomain simulations. Biophys. J. 87, 2271–2282 (2004)

Program Analysis

Formalizing Requirements Is ♦� Hard

Gerard J. Holzmann(B)

Nimble Research, Monrovia, CA 91016, USA
gh@nimbleresearch.com

Abstract. The use of formal methods in software engineering requires
that the user adopt a suitable level of precision in the description of
both design artifacts and the properties that should hold for those arti-
facts. The level of precision must be sufficiently high that the logi-
cal consistency of the design and the logic properties can be verified
mechanically.

The source code of any well-defined program is itself a formal object,
although it typically contains more detail than desirable for effective
analysis. But, practitioners often have no problem producing or recog-
nizing an abstracted version of the key features of a design, expressed in
the modeling language of a verification tool.

The real problem preventing a broader acceptance of formal methods
is that there are no intuitive formalisms that practitioners can use to
express logic requirements at the level of precision that is required for
formal verification. That problem is the focus of this paper.

Keywords: Software verification · Logic model checking ·
Temporal logic · Rule based specification

1 Introduction

Some claim that all defects in software products find their root cause in misstated
requirements, e.g., [1]. Industrial software development processes typically start
with a requirements elicitation process, with requirements captured in English
prose documents. The requirements are meant to be understood with some ease
by software developers, who can fill in gaps and resolve cases of ambiguity by
using common sense and experience. But, as we know, this process can lead to
problems.

A formal methods based process requires us to make things sufficiently pre-
cise that requirements and a suitably abstract representation of the code can
be checked for their logicall consistency by purely mechanical means: by an
algorithm. We will side-step the question here what the best way is to produce
this magical “suitably abstract representation” of the code, and for convenience
consider this a solved problem for now. What we would like to focus on is the dif-
ficulty of turning ambiguously and incompletely stated requirements into precise
logic statements that can be verified mechanically.

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 51–56, 2019.
https://doi.org/10.1007/978-3-030-31514-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_4

52 G. J. Holzmann

2 The Charm of Informality

“When you pick up the phone, you get a dialtone”. Unfortunately, the relevance
of this informal requirement is familiar only to a rapidly shrinking audience, but
for those of us with longer memories, the meaning of the statement will be clear.
The English text, though, is not precise enough for use in any formal verification
tool.

Pnueli was the first to point out, in 1977 [2], that statements like these can
be stated more precisely in temporal logic. A first attempt to do so can then
look as follows:

offhook → ♦ dialtone

where the right arrow → stands for logical implication, and the diamond operator
♦ is pronounced “eventually.” But that formalization needs quite a bit more work
before it could be considered correct.

The statement has precisely defined semantics that can roughly be summa-
rized as saying: “either the phone is not offhook now (i.e., in the initial state of
the system we are considering) or it must be true that now or at some point in
the future a dialtone will be present.” And, that’s not what we meant.

A first improvement is to make it clear that the property should not just
hold when coincidentally the phone happens to be offhook in the initial state,
but it should hold at any time. That leads to this version:

� (offhook → ♦ dialtone)

This is better, but still not quite right. Note that the property will be satisfied
even if the dialtone is already present in the very state that the phone goes
offhook. That takes away the cause and effect that we would like to verify, so we
have to separate the effect from the cause. That leads to this version:

� (offhook → X ♦ dialtone)

where we used the X symbol to represent the “next” operator, as we do in the
Spin model checker [4].

Are we done now? No, not really. For a more complete statement we may
also have to state that the dialtone should not be generated unless there was
an offhook event first, and it also need not be generated if the offhook event is
followed by an onhook event before the dialtone appears. Then we haven’t said
anything about the requirement that the dialtone should be generated within
the first few milliseconds after the offhook event, and it should disappear after
the first digit is dialed.

Once we are done with a precise statement of this still relatively simple
requirement, any user uninitiated in the use of temporal logic is unlikely to
recognize the statement, nor would that user be likely to produce it.

Formalizing Requirements Is ♦� Hard 53

2.1 Visualizing Requirements

One way to address these problems is to build tools that can visualize require-
ments in a more intuitive way, leaving it to a tool to synthesize the correct
formalization of the requirement with all subtleties properly addressed.

One such tool that we experimented with long ago is the timeline editor [3].
The editor allowed users to place events of interest on a timeline, and to annotate
that timeline with various types of constraints that can span overlapping periods
of time. The tool could convert the specifications into Büchi automata, which
could then be used directly in a logic model checking tool such as Spin [4].
A specification of the dialtone property is illustrated in Fig. 1.

Fig. 1. Visual formalism for specifying temporal logic properties from [3].

The use of a visual formalism as shown here does still have limitations. One
main drawback is, for instance, that the visual formalism is not expressive enough
to specify everything that can be specified in temporal logic.

But then again, also temporal logic is not expressive enough to formalize all
types of requirements that may be encountered in practice. The next section will
give an example.

3 Graphs and Sets

The following example property is inspired by [6].
Consider a graph where each node represents a lock. There is an edge in

the graph from node a to node b if at any time during an execution a thread
holds lock a while it acquires lock b. If this graph contains a cycle, there is a
potential for a deadlock scenario. Two events are of interest: acquire(t,a), which
represents the acquisition of lock a by thread t, and release(t,a), which represents
the release of lock a by thread t.

The property of interest is that in any given run of the system, the lock graph
as defined above is acyclic. How can we express this formally?

The first problem we have is that basic temporal logic does not have variables,
and it does not allow us to bind variables to symbols. If, for instance, we wanted
to state that every time lock a is acquired it is also released, we have to be able
to correlate the a from the release event with the a from the corresponding
acquire event. We may not know a priori which lock names might be used.

54 G. J. Holzmann

There have been a few attempts to explore extensions of temporal logic in
model checkers, but the restrictions are usually non-trivial, cf. [5]. But even if
we allow for variable binding, and add quantification, it is still very hard to talk
about the existence of a cycle in a graph of unknown size.

It is possible to state a highly simplified version of the problem, if we restrict
the problem to two threads and two locks only, by saying:

∀t1, t2, l1, l2 ·
� ((aquire(t1, l1) ∧ (¬ release(t1, l1) U aquire(t1, l2))) →
�¬ (aquire(t2, l2) ∧ (¬ release(t2, l2) U aquire(t2, l1))))

The formalization is very limited, but already relies on powerful features that
are not present in most systems.

A very similar specification problem would be to formalize the type of check
that is performed by the Eraser algorithm [7] for detecting data races in a multi-
threaded program. In this case we want to maintain a lockset for every shared
data object, and on every write access take the intersection of the lockset that
is currently held by the writer with previous locksets. If the stored set every
becomes empty we know there is a problem.

Here too the check asks us to track and update data, this time not in the
form of a graph but as a set of sets (one for each shared data object). Temporal
logic is clearly not equipped to handle this, but the question is: what type of
formal specification could do so elegantly?

One method, described in the context of runtime verification tools, in an
early draft of [6], is to use rule-based checks. We then minimally need the basic
operations to insert or remove items from sets, and to check for set membership.
Basic events like aquire and release then trigger set operations. Next we can
define a set of rules to deduce facts of interest from the stored sets, e.g. using
the Rete algorithm [8].

Writing properties in this way requires a change in perspective. Rather than
a logic-based approach we now have a more operational view. Basically, we are
writing a program to perform the checks we are interested in, though at a rela-
tively high level of abstraction.

The deadlock problem we started this section with can be formalized in the
following five rules (with minor edits, from the draft of [6]):

1. acquire(t, l) → insert(Locked(t, l))
2. release(t, l) → remove(Locked(t, l))
3. Locked(t, l1) ∧ acquire(t, l2) → insert(Edge(l1, l2))
4. Edge(l1, l2) ∧ Edge(l2, l3) ∧ ¬Edge(l1, l3) → insert(Edge(l1, l3))
5. Edge(l, l) → error

This is a remarkably succinct specification, though, like specifications written in
temporal logic, it may still require a substantial effort to create.

The last two rules perform what is basically term rewriting on the generated
sets. Clearly, the computation of transitive closure in rule 4 and the indirect check
for cycles in rule 5 could be computationally demanding. To use this approach in

Formalizing Requirements Is ♦� Hard 55

a model checker, e.g., integrated with a depth-first search algorithm, we’d need
to make arrangements for backtracking of changes to the constructed sets.

3.1 Rule-Based Model Checking

In principle, one could write an entire logic model checking procedure as a rule
based system. After all, in standard explicit state model checking we merely
construct a graph and check for the existence of specific types of cycles in that
graph. There have been several attempts already to implement model checkers
as rewrite systems, starting more than two decades ago, e.g. [9].

Yet, we are left with the question if rule based specification formalisms, or
rewrite systems in general, are any easier to use than logic based formalisms?

4 Conclusion

There may be two factors that can explain the continuing reticence of software
developers and software development organizations to adopt formal methods as
a routine part of software design, even for safety critical applications as used,
for instance, in cars and in medical devices. One factor is certainly the unpre-
dictability of the demands on both human and computer time that a formal
verification approach can impose. Cloud-based solutions may be able to change
at least some of these trade-offs [10].

A more serious factor is that writing formal specifications is not just perceived
to be hard, it actually is hard. Even expert users can be misled by the exact
meaning of complex formulae stated in temporal logic. It is perhaps also telling
that semi-formal methods based tools, such as static source code analyzers, that
make use of predefined specifications have indeed found broad acceptance, and
are routinely used in industrial software development. Routine use of these tool
could be boosted still further with the advent of interactive code exploration
algorithms for large code bases [11].

Logic model checking and formal program analysis techniques though seem
stuck at the hurdle of making formal specification human friendly. What can we
do to make formal requirements specification �♦ Easy?

References

1. Lutz, R.R.: Analyzing software requirements errors in safety-critical embedded
systems. In: Proceedings IEEE International Symposium on Requirements Engi-
neering, pp. 126–133. San Diego, CA, January (1993)

2. Pnueli, A.: The temporal logic of programs. In: Proceedings 18th FOCS, pp. 46–57.
Providence, RI, November (1977)

3. Smith, M.H., Holzmann, G.J., Etessami, K.: Events and constraints a graphical
editor for capturing logic properties of programs. In: Proceedings 5th International
Symposium on Requirements Engineering, pp. 14–22. Toronto Canada, August
(2001)

56 G. J. Holzmann

4. Holzmann, G.J.: The Spin Model Checker - Primer and Reference Manual.
Addison-Wesley, Mass (2004)

5. Bohn, J., Damm, W., Grumberg, O., Hungar, H., Laster, K.: First-order-CTL
model checking. In: Arvind, V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol.
1530, pp. 283–294. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-
540-49382-2 27

6. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry
data. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 61–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75632-5 3

7. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P.: Eraser: a dynamic data race
detector for multithreaded programs. ACM Trans. Comput. Syst. 15(4), 391–411
(1997)

8. Rete algorithm. https://en.wikipedia.org/wiki/Rete algorithm
9. Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of maude. In: 1st Inter-

national Workshop on Rewriting Logic and its Applications. Electronic Notes in
Theoretical Computer Science, vol. 4 (1996)

10. Holzmann, G.J.: Cloud-based verification of concurrent software. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 311–327. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 15

11. Holzmann, G.J.: Cobra: a light-weight tool for static and dynamic pro-
gram analysis. Innov. Syst. Softw. Eng. NASA J. 13(1), 35–49 (2017).
http://spinroot.com/cobra

https://doi.org/10.1007/978-3-540-49382-2_27
https://doi.org/10.1007/978-3-540-49382-2_27
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/978-3-319-75632-5_3
https://en.wikipedia.org/wiki/Rete_algorithm
https://doi.org/10.1007/978-3-662-49122-5_15
http://spinroot.com/cobra

Invisible Invariants Are Neither

Lenore D. Zuck1(B) and Kenneth L. McMillan2

1 University of Illinois at Chicago, Chicago, USA
lenore@cs.uic.edu

2 Microsoft Research, Redmond, USA
kenmcmil@microsoft.com

Abstract. The method of Invisible Invariants was conceived to ver-
ify properties of parameterized systems, for any instantiation, in one
fell swoop. Given a deductive proof rule for the desired property, the
method calls for two steps: (1) An heuristic to generate the hypothesis
of the proof rule, and (2) a method to validate the premises of the proof
rule once an hypothesis is generated.

At the time of its conception, the method was carried out by model
checkers based on BDDs, and both steps were performed without ever
having to explicitly generate the hypotheses, which rendered them
“Invisible”. Moreover, initially the method was applied to generate
invariants, but shortly after its introduction, it was used to generate
other types of hypotheses. Nowadays, the method can be applied with-
out BDDs, which renders Invisible Invariants to be neither invisible nor
invariants.

In this paper we attempt to shed light on the fundamental ideas of the
method and to argue for its applicability for a large class of infinite-state
systems.

Prologue

This paper is a Formal Method Offering (rather than an “Invisible Offering”) to
Scott Smolka for his seminal contributions to the area. While the connection to
Scott’s work may be indirect, we hope that it is aligned in spirit.

1 Introduction

The method of Invisible Invariants was conceived almost two decades ago [13]
to automatically verify safety of parameterized systems – systems consisting of
unbounded many instantiations of some finite-state systems. In this paper, we
would like to revisit that method in the light of subsequent developments. Our
goal is to gain a clearer understanding of the principles involved and to sepa-
rate these from aspects of the method that were contingent upon technologies
available at the time.

The work of the first co-author was partially funded by NSF award CCF-1563393.

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 57–72, 2019.
https://doi.org/10.1007/978-3-030-31514-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_5

58 L. D. Zuck and K. L. McMillan

The Invisible Invariants method falls in the general category of deductive
proof techniques. It begins with a proof schema or rule which contains a place-
holder φ for an unknown hypothesis. It also contains symbols for given facts,
such as the initial condition Θ and transition relation T of a transition system.
To infer the conclusion of the rule, the would-be prover must accomplish two
tasks:

1. Discover a suitable hypothesis φ.
2. Discharge the premises of the rule by proving them valid over the system

defined by Θ, T , and the hypothesis φ.

For example, the proof rule INV, in Fig. 1, is a schema to show that some
state property p holds over all reachable states of a system defined by the initial
condition Θ and the transition relation T . The hypothesis φ is an inductive
strengthening of p. A good φ should hold at the initial state (I1), be inductive
(I2), and strengthen p (I3). If such a φ is found, then the invariance of p over
the system () is established.

Fig. 1. The invariance rule INV.

The idea of instantiating a general proof schema with particular facts is at the
foundation of logic. What remains elusive is the method to discover the unknown
hypothesis φ and to discharge the resulting premises.

While the first task, that of divining a good hypothesis, is hard for all types
of systems, the second task, of discharging the premises, is more challenging
for parameterized systems, since these have to be discharged on all possible
instantiations of the system. Invisible invariants provide a method to accomplish
both tasks by resorting to finite models:

1. Discovering a candidate for φ by considering only a single finite model (for
example, a system of exactly k finite-state processes, or a program with a
heap containing exactly k objects). This aspect of the method is heuristic in
nature. The intuition is that what works for one model may generalize to all
models.

2. Discharging the premises by considering only finite models of up to a certain
cardinality. This step is justified by the syntactic form of the premises and a
corresponding small model theorem which is proved once for all cases.

The motivating advantage of this method is that both tasks can be accom-
plished by well-developed finite-state methods. In the original work, the focus

Invisible Invariants Are Neither 59

was on finding a strengthening inductive invariant φ for rule INV of Fig. 1. Both
phases of the discovery of the invariant and the discharging of the premises were
accomplished by BDD-based symbolic model-checking techniques. Moreover, the
two phases were combined in such a way that the formula φ was never actually
constructed. For this reason, the method was named “Invisible Invariants”.

In retrospect, this technicality, of the invisibility, was perhaps the least salient
aspect of the method. There was no reason in principle why the invariants should
be “invisible”.

In the case of INV, the unknown hypothesis φ is an inductive invariant.
However, the general method sketched above applies to other proof rules and
other sorts of hypotheses. For example, the conclusion of the rule might be
a liveness property and φ a well-founded order on states. So it appears that
invisible invariants are not only possibly visible, but possibly not invariants as
well.

1.1 The Problem of Generalization

In our current view, the most important aspect of the Invisible Invariants method
is the generalization from one model to all models. In fact it is far from clear
that such a method is justified. The best we can do is to appeal to examples
in which hypotheses derived from particular cases do work in the general case1.
Moreover, as pointed out by Goodman [6], the generalizations we make depend
on the language we speak.

In practice, our success at generalization depends on the space from which we
draw our hypotheses. This is a familiar phenomenon in the domain of machine
learning, where the hypothesis space is sometimes referred to as an inductive
bias [11]. In the Invisible Invariants work, the inductive bias was carefully chosen
to abstract away from the size of the model. For example, for a system of N
processes, we may restrict ourselves to statements about all pairs or triples of
processes. This bias reflects an intuition that, for large enough N , the feasible
states of process pairs or triples are unaffected by N . In fact, for finite-state
processes this is true, but it is still not enough to guarantee that a φ that
is inductive for models of size N will be inductive for models of size N + 1.
Our inductive bias may reflect our general knowledge or experience of proofs of
protocols, but it cannot guarantee a correct generalization.

Coming back to Goodman’s point, our hypothesis space is defined by the
syntax of the assertion φ. For example, we may express φ in the form ∀i, j. ψ(i, j)
where i and j represent process identifiers and ψ(i, j) is a quantifier-free formula
in a suitable theory. This form provides an inductive bias. Amongst all such
formulas satisfying the proof rule premises, we must choose one. We might choose
the strongest, which is another inductive bias.

The form of φ also has a strong bearing on the problem of discharging the
proof rule premises. That is, for some classes of formulas we may find that the

1 That is, we justify induction by appeal to induction, a method called into question
by David Hume [7].

60 L. D. Zuck and K. L. McMillan

premises lie within a decidable logic (perhaps admitting a small model theorem).
This is an important consideration apart from the heuristic question of inductive
bias. It is not strictly necessary for the premises to be in a known decidable
fragment, since they may still be proved valid in any given instance. However,
it is important to be able to determine when some premise is invalid in order to
try a new generalization using a different model.

This framework bears a strong similarity to supervised learning (for an
overview see, e.g., [16]). We have a learner whose job is to select a hypothesis
from a given space based on observations (finite models). The teacher determines
whether the learner’s hypothesis is acceptable (the rule premises are valid) and
if not provides the learner with addition data (addition models).

The original Invisible Invariants work proposed one approach to general-
ization. For proving safety properties, this relied on the symmetry of a set of
processes and involved projecting the reachable state space onto a tuple of arbi-
trarily chosen processes and then generalizing onto all tuples. This approach
captures the intuition of using finite models as a guide, but is not guaranteed to
satisfy the proof rule premises even for a fixed finite model, since the result may
not be inductive.

In this paper, we will try to present the Invisible Invariants approach in a
way that brings out its full generality, and also its relation to other methods
that generalize from finite models.

A difficulty in doing this is to present examples that are both realistic and
concrete. Proofs of realistic systems, especially of liveness properties, would
involve us in formidable technicalities that can obscure the underlying prin-
ciples. For this reason, we will confine ourselves to toy examples that illustrate
certain principles, with the hope that these will equip the reader to understand
more substantial examples worked in the literature.

2 Modeling Systems

A proof rule such as the invariance rule INV of Fig. 1 is sound relative to a
particular process formalism and allows to infer a temporal behavior of a tran-
sition system whose initial states are characterized by Θ and whose transitions
are characterized by T . In principle, the Invisible Invariants method applies to
instances of proof rules, and we need not be concerned with the syntax of the
process whose semantics is captured in the rule. Nonetheless, it is useful to have
some process model in mind in order to understand the origin of the proof rules,
and to describe examples, bearing in mind that the method is not tied to any
particular process model.

We present below a model of transition systems used in various works on
Invisible Invariants. The model allows us to compose processes in parallel, which
will be useful for describing protocols and also certain proof constructions. The
model also enables to easily define temporal properties of computations. Later
we will extend the model to deal with fairness properties when reasoning about
non-safety properties.

Invisible Invariants Are Neither 61

The model is based on standard many sorted first-order logic with equality.
We can extend the logic with various background theories as needed to express
the behavior of systems. We assume a collection S of primitive sorts, and a
signature Σ of symbols representing constants, functions and predicates over
these sorts. A Σ-structure assigns a non-empty range to each primitive sort and
values of appropriate type to each symbol in Σ. A structure M is said to be a
model of a theory T if every formula in T is true under M . Given a Σ-structure
and set V of sorted first-order variables, we say an M -interpretation of V is a
map assigning to each variable v ∈ V a value of the appropriate sort in M . We
write ϕ(V) to indicate that the free variables of formula ϕ are contained in V .
Given a Σ-structure M and an M -interpretation s of V we write s |=M ϕ(V) to
indicate that ϕ is true in structure M , assigning s(v) to every variable v ∈ V . If
M is understood, we write just s |= ϕ. For each variable v, we assume a distinct
successor variable v′, and we write V ′ for the set of successors of variables in V .
If s is an interpretation of V , then s′ is the corresponding interpretation of V ′.

2.1 A Basic Transition System

In the following, we fix a signature Σ, a theory T and model M of T . Similar to
[10], a transition system is described by:

• V —a finite set of sorted first-order variables. We say a state is an interpre-
tation of V , and denote the set of all states by Π. A first order formula ϕ(V)
is called an assertion, and a state s such that s |= ϕ. is a ϕ-state.

• Θ(V)—The initial condition: An assertion characterizing the initial states. A
state is called initial if it is a Θ-state.

• T (V, V ′)—A transition relation between states expressed as a bi-assertion
over the systems variables V and corresponding successor variables V ′. A
transition of the system is a pair of states 〈s, t〉 such that s ∪ t′ |= T .

It is convenient to represent the transition relation T as a disjunction of
labeled transitions of the form τ : Tτ (V, V ′), where τ is a label and Tτ is a
corresponding transition relation, and the labels occurring in T are distinct.
We say that label τ is enabled at state s if for some state t, (s ∪ t′) |= Tτ . Let
σ : s0, s1, s2, . . ., be an infinite sequence of states. We say that σ is a computation
of the system if it satisfies the following requirements:

• Initiality—s0 is initial, that is, s0 |= Θ.
• Consecution—For each
 = 0, 1, ..., 〈s�, s�+1〉 is a transition.

For a set U ⊆ V , we define pres(U) =
∧

u∈U (u′ = u) as an abbreviation
asserting that the variables of U remain unchanged in a transition. We usually
assume an idle transition τidle : pres(V) that leaves all state variables unchanged.

For the purpose of examples, we will introduce useful sorts such as integers,
integer ranges and arrays as needed, without formally defining their theories.
Their definitions should be easily understood from context and are not generally
needed for the results we will obtain here. Where they are needed for the proof

62 L. D. Zuck and K. L. McMillan

of small model theorems, we will point this out and refer to the appropriate
literature.

We use ‖ to denote asynchronous (interleaving) composition of transition
systems. We will dispense with the definition of this operator (see [10] for details)
and instead give examples of the resulting transition systems using formulas.

Example 1. Consider program simple in Fig. 2, which is a simple mutual exclu-
sion algorithm that guarantees deadlock-free access to the critical section for any
N processes. Here, N is a constant of natural number sort in the signature Σ.
The constraint N > 1 is part of the background theory T . Thus, any model of
T fixes a number of processes greater than one.

In this version of the algorithm, location 0 constitutes the non-critical section
which a process may non-deterministically exit to the trying section at location 1.
Location 1 is the waiting location where a process waits until the semaphore
(sem) is available and then sets it to 0. Location 2 is the critical section, and
location 3 is the exit section where the process releases the semaphore. As we
show, the program guarantees that at each given point in time there is at most
one process in the critical section (location 2).

Fig. 2. Program simple

To model the system induced by the algorithm as a transition system, we
define:

V :

{
π : array [1..N]of [0..3] / the program counter/
sem : boolean;

Θ : ∀i : π[i] = 0 ∧ sem = 1
T : ∨ ∃i ∈ 1..N.⎛

⎜⎜⎜⎜⎜⎜⎝

τidle : pres(V) ∨
τ0[i] : π[i] = 0 ∧ π′[i] ∈ {0, 1} ∧ ∀j �= i. pres(V \ {π[j], sem}) ∨
τ1[i] : π[i] = 1 ∧ sem = 1 ∧ π′[i] = 2 ∧ sem′ = 0 ∧ pres(V \ {π[i], sem})

∨ π[i] = 1 ∧ sem′ = 0 ∧ π′[i] = 1 ∧ pres(V) ∨
τ2[i] : π[i] = 2 ∧ π′[i] = 3 ∧ ∀j �= i. pres(V \ {π[j], sem}) ∨
τ3[i] : π[i] = 3 ∧ π′[i] = 0 ∧ sem′ = 1 ∧ ∀j �= i. pres(V \ {π[j]})

⎞
⎟⎟⎟⎟⎟⎟⎠

The interleaving concurrency of the N processes is represented by the existential
quantifier in the transition formula T . We explicitly include an idle transition
τidle , though when it is taken, it cannot be distinguished from any τ1[i] when

Invisible Invariants Are Neither 63

the semaphore is not available. Also, note that we use a sort 1..N as the index
of array π, where N is a parameter in Σ. This is interpreted in the background
theory T , which restricts the sort 1..N to have exactly N elements.

2.2 Accommodating Fairness

Establishing non-safety properties or reasoning about parameterized systems
require some infinitary assumptions on computations. Most notable among them
are “fairness” properties that rule out some computations. Traditional fairness
properties are justice (weak fairness) and compassion (strong fairness). Justice
restricts to computation in which some property has to occur infinitely many
times, such as “every process attempts to take infinitely many steps”.

Justice can be incorporated by adding to the system a “just set” J of labeled
transitions that cannot be enabled indefinitely and never taken. For the system
of Example 1, these are all the transitions but for the idle one.

Sometimes justice is too weak to allow progress in the system. In Example 1,
this is illustrated by τ1: having this transition in the justice set would only
guarantee that if the semaphore is always available it will eventually be granted.
Since there are several processes competing for this resource, even if it’s available
infinitely many times, justice would only grant that one of the processes will get
it infinitely many times, but not that each of them will.

To avoid such a “discrimination” amongst the processes, a stronger type of
fairness, called compassion, requires that a transition is either infinitely many
times taken or finitely many times enabled. We define a set C of compassionate
labeled transitions. For Example 1, we may as well include in C all the non-
idle transitions. For non-τ1 transition, being “upgraded” to C from J makes no
difference since, once enabled, they can only be disabled if taken.

The two types of fairness are usually kept distinct because the proof rules
handling liveness under them are different, with those that have only justice
being considerably simpler computation-wise. In fact, semaphore is one of the
few cases where compassion is needed, and most systems can be dealt with using
only justice.

While justice and compassion are the most common fairness properties, oth-
ers can be defined, in particular those describing probabilistic systems [1,14,17].

Here we do not give examples of liveness properties. Yet, many liveness prop-
erties are, by nature, “bounded safety” ones. For example, a liveness property
“always eventually p” may be reduced, in some systems, into “always, once every
process takes k steps, p holds,” which is a bounded safety property assuming, of
course, that every process is always guaranteed to eventually take k steps. Then,
the proof of liveness can split into two parts, one establishing a bounded-safety
property assuming a particular fairness assumption, say f , and one establish-
ing that the fairness assumption f follows from the fairness requirements. What
makes this method attractive is that the fairness assumption f is often trivially
implied by the justice assumptions, thus the second step is straightforward.

64 L. D. Zuck and K. L. McMillan

3 Discharging the Premises

As mentioned in Sect. 1, the Invisible Invariants method consists of two tasks,
discovering an hypothesis (initially, an invariant) and discharging the premises
of a proof rule using the discovered hypothesis. In this section we focus on the
second task.

To discharge the premises on BDD-based tools, the Invisible Invariants meth-
ods calls for the hypothesis to be constructed in a language that renders the
premises to be in a logical fragment with a small model property. That is, that
the validity of the premises, once the hypothesis is embedded in them, can be
established by checking small instantiations of the system.

In order to obtain a small model result, some restrictions on the sorts and
operators used are generally required. Typically, the variable sorts are restricted
to be Booleans, bounded scalars, index types 1..N , Boolean arrays (maps from
index variables to Booleans or other finite sorts) or data arrays (map from index
types to other index types). The data arrays are required to be stratified (that
is, the graph where each scalar sort is a node and each array induces an edge
from its index sort to its value sort is acyclic).

The quantifier structure of formulas must also be restricted. Consider for
example Rule INV in Fig. 1. Assume that the initial condition Θ is a ∀ formula,
which is often the case in parametrized systems. Moreover, assume that the
transition relation is a ∃∀ formula in prenex normal form, and that the only
operations on the bound variables are equality and inequality. (Note that all
these assumptions hold for the case of Example 1).

If then an hypothesis consists of a boolean combination of ∀ and ∃ formulae
(assuming prenex normal form), then the premisses of INV all have a small
model property. We sketch the intuition of the proof of the existence of a small
model property on the inductive premise I2 of INV, which has the most complex
structure.

Suppose there is a large model that is a counterexample to I2. Then this
offending model satisfies the negation of the ∀∃ formula, which is an ∃∀ formula.
Here’s a smaller model that also violates the formula: Consider the set of values
the (big) model assigns to the existentially quantified variables and all values
assigned to variables that are bound to them. All other values are removed. The
resulting model is a smaller one that also satisfies the ∃∀ formulae.2

The size of the small model depends on the number of quantified variables,
the number of constants, and the structures allowed. For example, if i and j are
index variables in the scope of an existential quantifier, then having a comparison
of the type a[i] < a[j] will “cost” with a larger model than if all comparisons are
between i and j directly.

The small model property was generalized from equalities and inequalities
to more involved relations (e.g., i = j + 1) and transitive closures [2–4], at
a cost in the size of the resulting small model. It can even be generalized to

2 This process is akin to Alice’s rule in the “Mock Turtle’s Story”: Take care of the
sense, and the sounds will take care of themselves.

Invisible Invariants Are Neither 65

some premises that are of the form ∃∀ [5]. These extensions allow the method of
Invisible Invariants to be applied to infinite state systems that are not necessarily
parameterized such as various heap structures.

The main role of the small model property in the Invisible Invariants method
is that it reduces the problem of checking validity of an application of a deductive
proof rule for parameterized systems to that of checking the validity of the
premises in small instantiations. The need for the small model property is rooted
in the restriction to BDD-based techniques. Now, almost 20 years later, with the
vast progress in automatic theorem proving and in particular SMT solving, this
is no longer necessary and any tool that can establish the validity of the premises
can be applied.

4 Hypotheses Discovery: Classical Invisible Invariants

As stated in the introduction, the discovery of hypotheses in Invisible Invariants
has an inductive bias: that hypotheses are of a certain structure. Moreover, that
they can be derived from small instantiations of the system, and generalized
into larger ones. This bias is justified in the case of systems such as the one in
Example 1 which is of the form ‖N

i=1Pi, where the Pi’s differ only in their indices
(i), and we want to prove some property that should hold for every N > 1.

Such systems have a “basic” symmetry : The processes behave similarly to
one another. The nature of the symmetry depends on the details of the transition
relation. In Example 1 the symmetry is perfect. This, however, is not generally
the case. Often, the guards of the transition relation of each Pi refer to states or
variables of other processes, as in containing expressions like ∀j
= i.π[j] =
 or
∃j.a[j] > a[i], which allows for a uniform (and symmetric) syntactic description
while not a perfect semantic one.

The basic idea to discover hypotheses introduced by Invisible Invariants is
to:

1. Instantiate the system to some small number of processes, say k;
2. Project the resulting reachable set of states onto fewer processes, say m < k.

The projection is the strongest formula that can be constructed from the
formula describing the reachable states for the k-process system restricting the
vocabulary to the m chosen processes. In the simple case such as Example 1,
where we have only bounded scalars (sem) and arrays from indexed variables
to scalars (π whose range is [0..3]), this amounts to removing mention of any
π[j] for an index j outside of the chosen m indices. In the general case, this
may be a harder task that depends on the stratification of the data structures.
Modulo equivalence, there are finitely many formulas that can be constructed
over the allowed vocabulary, the one which is constructed is bound to be the
strongest over the m processes;

3. Generalize the projection onto arbitrary processes. The generalization is
achieved by replacing the references to the concrete processes, say p1, . . . , pm

by symbols, say i1, . . . , im, and adding a universal quantifier over i1, . . . , im

66 L. D. Zuck and K. L. McMillan

to the formula. Usually, the quantification has to be explicit about the ij ’s
being mutually distinct. At times, there is some ordering imposed on them.

We refer to steps (1)–(3) as Project & Generalize.

Example 2. Consider Example 1 and the mutual exclusion property

we wish to prove for every N . Using the above recipe, we perform:

Step 1 : We first instantiate the system to N = 3. The set of reachable states
can be described by

reach :
(3∑

i=1

π[i] ∈ {2, 3}
)

+ sem = 1

that is, the number of processes in locations 2 or 3, plus the value of sem, is
always 1. The formula we chose for reach is a manually obtained shorthand of
what an automated tool can produce. There are many equivalent representation
of reach, but since there are finitely many reachable states, there are only finitely
many potential candidates (again, modulo equivalence).

Step 2 : We next project reach onto a single process, say P2. That is, we start
with reach (or an equivalent formula describing the set of reachable states),
remove references to π[1] and π[3], and leave the references to π[2] and sem
intact. For example, a state described by π[1] = 0∧π[2] = 3∧π[3] = 1∧ sem = 0
is projected onto the state described by π[2] = 3 ∧ sem = 0. The result of this
projection on reach can be summarized by the formula π[2] ∈ {2, 3} → sem = 0.
This projection is also a representation of a finite set of states and could have
been written in many different (and equivalent) ways.

Step 3 : To generalize the projection, we replace the index 2 by a generic i,
to obtain π[i] ∈ {2, 3} → sem = 0, and add a universal quantifier to obtain

φ1 : ∀i.π[i] ∈ {2, 3} → sem = 0

While invariant, when this hypothesis is used in INV, both premises I2 and
I3 are not valid, implying φ1 is neither inductive nor does is it strengthen the
property.

The hypothesis for INV has to be an inductive over-approximation of the
reachable states. The project & generalize technique attempts to discover the
strongest hypothesis that over-approximates the reached states (which is not
always inductive), regardless of the property whose invariance one has to prove
(the p in the). In Example 2, the derived invariant, φ1, is neither inductive
nor does it imply p. Yet, it is an over-approximation of the reachable states.

When a candidate hypothesis derived from the project & generalize tech-
nique is not inductive, a projection to a larger number of processes results in a
smaller hypothesis that is still includes the reachable state. As a rule of thumb, it
makes sense to project on at least as many processes that appear under universal
quantification in the property p.

Invisible Invariants Are Neither 67

Example 3. Since the mutual exclusion property has 2 processes under universal
quantification, we can attempt to compute an invariant from a projection to 2
processes, say P2 and P3. The projection is just like the one in Example 2, only
here we ignore every variable in the reachability set that refers to P1, namely,
π[1]. We then generalize the result by replacing 2 and 3 by i and j (in whichever
order), to obtain the hypothesis

φ2 : ∀i,∀j
= i. π[i] ∈ {2, 3} → (π[j]
∈ {2, 3} ∧ sem = 0)

which turns out to be a good hypothesis that suffices to prove the mutual exclu-
sion property using INV.

An alternative method of narrowing a non-inductive candidate hypothesis is
conjuncting it with a formula that rules out some unreachable states: Let φ be
an non-inductive invariant and let rest = reach ∧¬φ. We can then apply project
& generalize to rest to obtain another ∀-formula, say χ, and take φ ∧ ¬χ as
the next candidate. Note that ¬χ is a ∃-formula, and the small model theorem
outlined in Sect. 3 still holds over the new hypothesis.

In our running example, which is somewhat trivial, this “trick” yields nothing
interesting, yet, it did help in other cases. Another obvious idea we can employ
is to add (conjunct) the property p to the hypothesis and test this as a new
candidate hypothesis.

Example 4. Recall the property p whose invariance we want to establish and the
(bad) hypothesis φ1 from Example 2. Their conjunction is:

φ3 : ∀i,∀j
= i. ¬(π[i] = 2 ∧ π[j] = 2)
︸ ︷︷ ︸

p

∧ ∀i.π[i] ∈ {2, 3} → sem = 0
︸ ︷︷ ︸

φ1

The hypothesis φ3 does render the premises of INV valid.

While the restrictions of the hypothesis in the previous two examples can be
fully automated, sometimes some human intervention helps: As been observed
at the dawn of formal verification, (e.g., [9,12]) history variables can make things
simpler.

Example 5. A common version of the program in Fig. 2 is one where a fresh
variable, say last , whose values in the range [1..N], is added. Whenever a pro-
cess enters the critical section it sets last to its own id. This doesn’t alter the
normal execution of the system since no guard depends on last . Its only role is
to remember “the last process to have entered the critical section.” With this
variable, the set of reachable states is:

(
N∑

i=1

π[i] ∈ {2, 3}) + sem = 1 ∧ ∀i. (π[i] ∈ {2, 3} → last = i)

Applying project & generalize now to a single process results in the candidate
hypothesis

φ4 : ∀i. π[i] ∈ {2, 3} → (sem = 0 ∧ last = i)

which is a good hypothesis for INV.

68 L. D. Zuck and K. L. McMillan

For all above examples, the small model property implies that it suffices to
check the premises of INV for instantiations up to size 4 to conclude the mutual
exclusion property.

5 An Abstract Interpretation Discovery

The project & generalize operation can be viewed as the abstraction function
α for a particular abstract domain. This abstract domain is that of Indexed
Predicate Abstraction [8], consisting of a set of universally quantified formulas,
using a set of atomic predicates built from the state variables and the operators of
the background theory. We can think of the approach to hypothesis generation in
the previous section as a particular strategy to arrive at the strongest inductive
invariant in this domain. This view gives us alternatives to project & generalize
for inferring hypotheses from finite instances, and also allows us to continue
refining our hypothesis when the first attempt at generalization fails to yield an
inductive predicate.

Suppose M is a model of the background theory T . This model determines
the value of the system parameters. We let SM stand for the finite set of M -
interpretations of the state variables V . That is, SM is the set of states of the
system for the parameter values in M . We will say that K, the set of configu-
rations of the system, is the set of pairs 〈M, s〉 where M is a model of T and
s ∈ SM . In other words, a configuration captures a parameter valuation and also
a system state. We define the concrete domain D as the powerset lattice over K.
Let L be a finite collection of formulas that is closed under conjunction. For any
set of configurations K ∈ D, we define its abstraction α(K) as the conjunction
of all the L-formulas that are valid over K. That is,

α(K) =
∧

{φ ∈ L : ∀〈M, s〉 ∈ K. s |=M φ}

Conversely, the concretization γ(φ) of a formula φ ∈ L is the set of its models:

γ(φ) = {〈M, s〉 ∈ K : s |=M φ}

We also define a collecting semantics τ : D → D. Let the initial configurations I
be the set of configurations 〈M, s〉 that satisfy the initial condition Θ. For two
configurations cs = 〈M, s〉 and ct = 〈M, t〉, we say that cs � ct if 〈s, t〉 |=M T .
Then

τ(K) = K ∪ I ∪ {ct ∈ K : ∃cs ∈ K. cs � ct}

The collecting semantics is defined so that its least fixed point is the set of
reachable configurations.

We next generalize from a finite set of reachable system states to an inductive
hypothesis using α. We fix a model M (hence fixing the parameter values) and
define the concrete domain DM to be the powerset lattice over SM . We define

Invisible Invariants Are Neither 69

corresponding abstraction and concretization functions αM (S) = α({〈M, s〉 : s ∈
S}) and γM (φ) = {s ∈ S : 〈M, s〉 ∈ γ(φ)}. We define a corresponding collecting
semantics τM : DM → DM . Define the initial states IM = {s ∈ SM : s |=M Θ}
and say that s �M t when (s ∪ t′) |=M T . Then we have:

τM (S) = S ∪ IM ∪ {t ∈ SM : ∃s ∈ S. s �M t}

The set of reachable states of model M is the least fixed point of τM , which
we will also write as τ∗

M (∅). Our first guess at an inductive hypothesis is the
abstraction of reachable states of M , that is, αM ◦ τ∗

M (∅). This is the strongest
formula in our abstract domain that is true of all the reachable states for the
particular parameter valuation defined in M . Assuming our abstract domain
contains “false” (⊥), we can rewrite the above as ρM (⊥), where ρM = αM ◦τ∗

M ◦
γM .

Remarkably, this is often sufficient to obtain a hypothesis that satisfies the
premises of INV. The intuition behind this is that M represents some measure
of the size or complexity of a uniformly defined system. Because the abstraction
can capture only a finite amount of information about the system, at some point
it loses the ability to distinguish the reachable states of system M from the
reachable states of any larger system. That is, the abstraction must saturate for
sufficiently large instances of the system.

This does not guarantee, however, that the hypothesis we obtain will be
inductive. It may be the case that our hypothesis abstracted from the reachable
states is not even inductive for the given fixed model M . In this case, we know
that there is a strongest φ in the abstract domain that is inductive and that our
guess under-approximates it. We thus continue by concretizing our guess using
γM , producing a larger set of concrete states, and continue the reachability
computation, producing a new guess ρ2M (⊥). Continuing this process we obtain
a sequence of undera-pproximations of the strongest invariant that is guaranteed
to converge, since the abstract domain is of finite height.

Having obtained an inductive invariant for model M does not guarantee it
being inductive for other models, that is, premise I2 may still fail. In this event,
the original invisible invariants method would give up on M and move on to
a larger model. The abstract interpretation view gives us an alternative: Since
the abstract domain is closed under conjunction, there exists a best abstract
transformer τ � = α ◦ τ ◦ γ. The strongest hypothesis satisfying I2 is the least
fixed point of τ �. Since our guess under-approximates it, we can make progress
towards the strongest inductive invariant by applying τ � to it. This gives us the
following fixed point computation:

(τ � ◦ ρ∗
M)∗(⊥) (1)

We alternately take ρM to a fixed point, and apply τ �, until a fixed point is
reached. This gives the same final result as if we had computed the least fixed
point of τ �, but may require us to apply τ � fewer times (in fact, in the best
cases, zero times). This can be a major advantage, since available techniques for
computing τ � require an exponential number of calls to a theorem prover [8].

70 L. D. Zuck and K. L. McMillan

For example, the method of indexed predicate abstraction as implemented
in [8] computes τ � by using an eager transformation of the consecution test
I2 into propositional logic and then applying ALL-SAT methods. This has two
weaknesses. First, the eager encoding is incomplete, since it uses a fixed set of
instantiations of the universal quantifiers. Moreover, the ALL-SAT computation
may be very expensive. An alternative method introduced in [15] relies on a
finite model finder to discover counterexamples to consecution and computes
the abstract meet over these counterexamples until no counterexamples remain.
This process may diverge in the finite model finder (if the logic does not have
a finite model property) and when it terminates may be very costly, since the
number of calls to the model finder is exponential in the worst case. By contrast,
in the Invisible Invariants approach, it is sufficient to under-approximate τ �

with a single counterexample to consecution and still make progress towards
the strongest inductive invariant on the domain. Moreover, if we have a small
model property, we can use it to obtain a complete reduction to SAT of the
consecution test. We do not need to rely on an incomplete heuristics for quantifier
instantiation.

The Invisible Invariant approach, extended as in Formula (1), can be seen
as a way to use finite-state model checking techniques to make the computation
of the least fixed point of τ � more efficient, by minimizing the number of calls
to a theorem prover. In addition, we can also easily extend this approach from
parameterized finite-state systems to infinite-state systems, as long as we can
identify a suitable finite subset of the states. For example, given a program with
an unbounded heap, we could arbitrarily restrict the state space to states with
up to k objects in the heap, and use this finite-state system in place of τM .

In the Invisible Invariants method, the abstract domain L is finite. However,
the general approach outlined above applies as well to domains of infinite height,
for which a widening might be required to obtain finite convergence. Note that
widening is only required in the outer iterations of Formula (1) above.

From the point of view of abstract interpretation it is interesting to note
that we have computed an over-approximation (the least fixed point of τ �) from
an under-approximation (the reachable states for a fixed model M). Somehow
we have computed the fixed point of the abstract transformer before ever actu-
ally applying it. In practice this approach often does converge to the abstract
least fixed point and suggests an alternative approach to computing abstract
fixed points that might greatly reduce the computational cost when the abstract
transformer is computationally expensive. The only requirement for this is that
we have a meaningful way to divide the infinite concrete state space into finite
subsets of increasing size or complexity.

Obviously, one doesn’t have to choose between the two approaches, but can
use a hybrid approach, where, the classic Invisible Invariants uses symbolic tech-
niques to generate the concrete reachability and some of the computations of αM ,
γM , or τ �.

Finally, note that the hypothesis we obtain from the abstract interpretation
approach is not invisible, yet, the way it is obtained is consistent with the project

Invisible Invariants Are Neither 71

& generalize approach, which is the heart of the generation in the Invisible
Invariants method.

6 Epilogue

The method of Invisible Invariants was conceived to verify properties of parame-
terized systems, for any instantiation, in one fell swoop. Given a deductive proof
rule for the desired property, the method calls for two steps: (1) A heuristic
to generate the hypothesis of the proof rule, and (2) a method to validate the
premises of the proof rule once an hypothesis is generated. Any language that
allows for the above conditions can be used to obtain invisible invariants.

At the time of its conception, BDD-based model checking was at its peak,
and, at the time, both steps were performed by such. To that end, the sys-
tems were restricted to be expressible in (a variety) of specific languages, and
the validation was heavily dependent on a small model property of the derived
premises. In fact, having both generation and validation performed by BDD-
based model checking allowed both steps to be carried out without ever having
to explicitly generate the hypotheses, which rendered them “invisible”. This was
considered a great quality since, being generated by BDD-techniques, they were
rather unsightly and their invisibility was part of their appeal.

Soon after its introduction, the method of Invisible Invariants was applied to
other non-invariant hypothesis, yet maintaining the “Invariant” part of its name.
Later it was applied so that the constructs obtained (invariant or not) by the
heuristics employed were no longer invisible. In fact, the advent of SMT solving
offered validating of the premises with non-BDD methods, thus alleviating the
allure of their initial invisibility. We are thus left with Invisible Invariants that
are neither invisible nor invariant.

Although its name is no longer accurate, the method is still appealing. It can
be viewed as a case of supervised learning, where the learner suggests hypotheses
and a teacher who checks whether they render the premises valid, with the learner
having an bias towards a certain shape of the hypotheses that, once plugged into
the premises, results the premises being decidable and checkable by the teacher.
In particular, the language we chose to specify the system and the hypotheses
is justified by the following considerations:

– To generate a candidate hypothesis we want to obtain a finite set of states
for each instantiation of the system.

– To project, we need the abstract domain to have a finite height so to guarantee
that the α computation (see below) is finite. The restrictions we chose result
in a finite set of expressible predicates, thus guaranteeing an finite abstract
domain, and therefore can be generalized (concretized.).

– The premises of the rules should be in a decidable logic so they can be verified.

We gave two examples of viewing the method – the “classical” one that is
most often referred to, and one based on abstract interpretation that in fact
generalizes the classical approach and offers new application areas.

72 L. D. Zuck and K. L. McMillan

We hope that the paper sheds light on the fundamental ideas of Invisible
Invariants and will encourage their use in new cases of infinite-state systems.

References

1. Pnueli, A., Zuck, L.: Parameterized verification by probabilistic abstraction.
In: Gordon, A.D. (ed.) FoSSaCS 2003. LNCS, vol. 2620, pp. 87–102. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36576-1 6

2. Balaban, I., Pnueli, A., Sa’ar, Y., Zuck, L.D.: Verification of multi-linked heaps. J.
Comput. Syst. Sci. 78(3), 853–876 (2012)

3. Balaban, I., Pnueli, A., Zuck, L.D.: Shape analysis by predicate abstraction. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 164–180. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30579-8 12

4. Balaban, I., Pnueli, A., Zuck, L.D.: Shape analysis of single-parent heaps. In:
Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 91–105. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-69738-1 7

5. Fang, Y., McMillan, K.L., Pnueli, A., Zuck, L.D.: Liveness by invisible invari-
ants. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006.
LNCS, vol. 4229, pp. 356–371. Springer, Heidelberg (2006). https://doi.org/10.
1007/11888116 26

6. Goodman, N.: Fact Fiction and Forecast, 4th edn. Harvard University Press,
Cambridge (1983)

7. Hume, D.: Treatise of Human Nature. Clarendon Press, Oxford (1888). Edited by
L. A Selby Bigge. Originally published 1739–1740

8. Lahiri, S.K.: Ubounded system verification using decision procedure and predicate
abstraction. Ph.D. thesis, Carnegie Mellon University (2004)

9. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. SE-3, 2:125–143, 3 (1977)

10. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995). https://doi.org/10.1007/978-1-4612-4222-2

11. Mitchell, T.M.: The need for biases in learning generalizations, Technical report
(1980)

12. Owicki, S., Gries, D.: Verifying properties of parallel programs: an axiomatic app-
roach. Commun. ACM 19(5), 279–285, 5 (1976)

13. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
82–97. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9 7

14. Pnueli, A., Zuck, L.D.: Probabilistic verification by tableaux. In: Proceedings of the
Symposium on Logic in Computer Science (LICS 1986), Cambridge, Massachusetts,
USA, 16–18 June 1986, pp. 322–331 (1986)

15. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.
In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 21

16. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pear-
son Education Limited, London (2014)

17. Zuck, L., Pnueli, A., Kesten, Y.: Automatic verification of probabilistic free choice.
In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 208–224. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-47813-2 15

https://doi.org/10.1007/3-540-36576-1_6
https://doi.org/10.1007/978-3-540-30579-8_12
https://doi.org/10.1007/978-3-540-69738-1_7
https://doi.org/10.1007/11888116_26
https://doi.org/10.1007/11888116_26
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/3-540-45319-9_7
https://doi.org/10.1007/978-3-540-24622-0_21
https://doi.org/10.1007/3-540-47813-2_15

A Refinement Proof
for a Garbage Collector

Klaus Havelund1(B) and Natarajan Shankar2

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
klaus.havelund@jpl.nasa.gov

2 Computer Science Laboratory, SRI International, Menlo Park, USA

Abstract. We describe how the PVS theorem prover has been used to
verify a safety property of a widely studied garbage collection algorithm.
The safety property asserts that “nothing but garbage is ever collected”.
The garbage collection algorithm and its composition with the user pro-
gram can be regarded as a concurrent system with two processes working
on a shared memory. Such concurrent systems can be encoded in PVS as
state transition systems using a model similar to TLA [16]. The safety
criterion is formulated as a refinement and proved using refinement map-
pings. Russinoff [19] originally verified the algorithm in the Boyer-Moore
prover, but his proof was not based on refinement. Furthermore, the
safety property formulation required a glass box view of the algorithm.
Using refinement, however, the safety criterion makes sense independent
of the garbage collection algorithm. As a by-product, we encode a ver-
sion of the theory of refinement mappings in PVS. The paper reflects
substantial work that was done over two decades ago, but which is still
relevant.

1 Introduction

Russinoff [19] used the Boyer-Moore theorem prover to verify a safety property of
a mark–and–sweep garbage collection algorithm originally suggested by Ben-Ari
[3]. The garbage collector and its composition with a user program is regarded
as a concurrent system with both processes working on a common shared mem-
ory. The collector uses a colouring (marking) technique to iteratively colour all
accessible nodes black while leaving garbage nodes white. When the colouring
has stabilized, all the white nodes can be collected and placed in the free list.

An initial version of the algorithm was first proposed by Dijkstra, Lamport,
Martin, Scholten, and Steffens [6] as an exercise in organizing and verifying
the cooperation of concurrent processes. Their solution involved three colours.
Ben-Ari improved this algorithm so as to use only two colours while simplifying

K.Havelund – The research performed by his author was carried out at LITP, Paris
6, France (supported by an HCM grant); SRI International, California, USA; Aalborg
University, Denmark; and Jet Propulsion Laboratory, California Institute of Technol-
ogy, under a contract with the National Aeronautics and Space Administration.

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 73–103, 2019.
https://doi.org/10.1007/978-3-030-31514-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_6

74 K. Havelund and N. Shankar

the resulting proof. All of these proofs were informal pencil and paper exercises.
As pointed out by Russinoff [19], these informal proofs ran into difficulties of
one sort or another. Dijkstra et al. [6] explained (as an example of a “logical
trap”) how they originally proposed a minor modification to the algorithm. This
claim turned out to be wrong, and was discovered by the authors just before
the proof reached publication. Ben-Ari later proposed the same modification
to his algorithm and argued for its correctness without discovering its flaw.
Counterexamples were later given by Pixley [18] and van de Snepscheut [20].
Furthermore, although Ben-Ari’s algorithm is correct, his proof of the safety
property was found to be flawed. This flaw was essentially reproduced by Pixley
[18] where it again survived the review process, and was only discovered ten years
later by Russinoff during the course of his mechanical verification [19]. Ben-Ari
also gave a flawed proof of a liveness property (every garbage node will eventually
be collected) that was later observed and corrected by van de Snepscheut [20].

Russinoff’s correctness property is formulated as a state predicate P , which
is then proven to be an invariant, i.e., true in all reachable states. In gross terms,
this invariant predicate is formulated as follows. The garbage collector can at
any time be in one of 9 different locations. In one of the locations, here called
Append, the append operation representing garbage collection is applied to a
certain memory node X, but only when this node is white. The safety predicate
P is then formulated as: “if the control of the garbage collector is at location
Append and X is white then X is garbage”. However, this formulation of the
safety property does not really tell us whether the program is correct. We have
to additionally ensure that the append operation is only invoked in location
Append, and only on white nodes. Hence, the safety property of the garbage
collector follows from both the invariance of P and an operational understanding
of the garbage collection algorithm.

This observation motivated us to carry out a proof in the PVS1 theorem
prover [1] using a refinement approach, presented in this paper, where the safety
property itself is formulated as an abstract algorithm, and the proof is based
on refinement mappings as suggested by Lamport [16]. This approach has the
advantage that the safety property can be formulated more abstractly without
considering the internal structure of the final implementation. Here a black box
view of the algorithm is sufficient. This yields a further contribution in terms
of the formalization of refinement mappings in PVS. In order better to make
a comparison, we also carried out a proof in PVS using the same technique
as in [19]. This work was documented in [11]. In [12] we verified a distributed
communication protocol using similar techniques for representing state transition
systems. Our key conclusion is that techniques for strengthening invariants are
of major importance also in refinement proofs, and that refinement does not
remove this burden. The proof presented here was carried out over two decades
ago, but was only published as a (substantial) technical report [13]. Since we
still consider the work relevant, and even cited, we decided to finally publish
this work.

1 PVS stands for Prototype Verification System.

A Refinement Proof for a Garbage Collector 75

The paper is organized as follows. Section 2 outlines additional related work.
In Sect. 3, a formalization of state transition systems and refinement mappings is
provided in an informal mathematical style that is later formalized in PVS. The
garbage collection algorithm is described in Sect. 4. Sections 5 and 6 present the
successive refinements of the initial algorithm in three stages. This presentation
is based on an informal notation for transition systems. Section 7 lists some
observations on the entire verification exercise. Appendices A and B formalize
the concepts introduced in Sects. 3, 5 and 6 in PVS.

2 Additional Related Work

Our proof was performed in 1996. In the same year, Gonthier [10] verified a
detailed implementation of a realistic concurrent garbage collector [7] using TLP,
a prover for the Temporal Logic of Actions. Gonthier’s proof demonstrates that
the implementation preserves a complex safety invariant with about 22,000 lines
of proof. Since 1996, there have been a number of verification efforts aimed at
the verification of garbage collectors. Jackson [15] used an embedding of tem-
poral logic in PVS to verify both safety and liveness properties for an abstract
mutator/allocator/collector model of the tricolor algorithm of Dijkstra et al.
This abstract model is then refined to a lower-level heap-based implementation.
Burdy [4] formalized our refinement argument in both B and Coq for the pur-
pose of comparing the two formal systems. In Burdy’s formalization, the abstract
mutator already colors the target of a pointer assignment. Gammie, Hosking, and
Engelhardt [9] describe the Isabelle/HOL formalization and verification of the
tricolor concurrent garbage collector (similar to the one verified by Gonthier) for
an x86-TSO memory model in a multi-mutator setting as an invariance proof.
Many of the proofs build the cooperative marking by the mutator into the spec-
ification. When this marking by the mutator alternatively is viewed as a refine-
ment, as in our proof, it is important to demonstrate that the refinement has not
restricted the mutator so that it does not generate any garbage. It can do this,
for example, by never redirecting a pointer so as to leave a node orphaned. Such
a mutator would satisfy the refinement with an idle garbage collector. A correct
refinement must preserve the nondeterminism of the mutator and therefore must
simultaneously witness a simulation relation on the collector and a bisimulation
relation on the mutator.

Several efforts cover non-concurrent garbage collectors. McCreight, Shao, Lin,
and Li [17] use Coq to verify the safety of the implementation of several stop-
the-world and incremental garbage collectors in an assembly language. Coupet-
Grimal and Nouvet [5] embed temporal logic in Coq to verify an incremental
garbage collection algorithm. Hawblitzel and Petrank [14] verify stop-the-world
garbage collectors using Boogie exploiting the quantifier instantiation capability
of the Z3 SMT solver. Ericsson, Myreen, and Pohjola [8] describe the verification
of the CakeML generational garbage collector in HOL4.

76 K. Havelund and N. Shankar

3 Transition Systems and Refinement Mappings

In this section, we establish the formal theory for using an abstract non-
deterministic program as a safety specification so that any behaviour is safe
as long as it is generated by the abstract program. An implementation is then
defined as a refinement of this program. The basic concepts are those of tran-
sition systems, traces, invariants, observed transition systems, refinements, and
refinement mappings. The theory presented is a minor modification of the the-
ory developed by Abadi and Lamport [2]. We first introduce the basic concept
of a transition system. Specifications as well as their refinements are written as
transition systems.

Definition 1 (Transition System). A transition system is a triple (Σ, I,N),
where

– Σ is a state space
– I ⊆ Σ is the set of initial states.
– N ⊆ Σ × Σ is the next-state relation. Elements of N are denoted by pairs

of the form (s, t), meaning that there is a transition from the state s to the
state t.

An execution trace is an infinite sequence of states, where the first state sat-
isfies the initiality predicate and every pair of adjacent states is related by
the next-state relation. A sequence σ is just an infinite enumeration of states
〈s0, s1, s2, . . .〉. We let σi denote the i’th element si of the sequence. The traces
of a transition system can be defined as follows.

Definition 2 (Traces). The traces of a transition system are defined as
follows:

Θ(Σ, I,N) = {σ ∈ Σω | σ0 ∈ I ∧ ∀i ≥ 0 · N(σi, σi+1)}

We shall need the notion of a transition system invariant, which is a state pred-
icate true in all states reachable from an initial state by following the next-state
relation.

Definition 3 (Invariant). Given a transition system S = (Σ, I,N), then a
predicate P : Σ → B is an S invariant iff.

∀σ ∈ Θ(S) · ∀i ≥ 0 · P (σi)

Since we want to compare transition systems, and decide whether one transition
system refines another, we need a notion of observability. For that purpose, we
extend transition systems with an observation function, which when applied to
a state returns an observation in some domain.

Definition 4 (Observed Transition System). An observed transition sys-
tem is a five-tuple (Σ,Σo, I,N, π) where

A Refinement Proof for a Garbage Collector 77

– (Σ, I,N) is a transition system
– Σo is a state space, the observed one
– π : Σ → Σo is an observation function that extracts the observed part of a

state.

Typically (at least in our case) a state s ∈ Σ consists of an observable part sobs ∈
Σo and an internal part sint, hence s = (sobs, sint) and π is just the projection
function: π(sobs, sint) = sobs. We adopt the convention that a projection function
π applied to a trace 〈s1, s2, . . .〉 results in the projected trace 〈π(s1), π(s2), . . .〉.

The central concept in all this is the notion of refinement: that one observed
transition system S2 refines another observed transition system S1. By this we
intuitively mean that every observation we can make on S2, we can also make
on S1. Hence, if S1 behaves safely so will S2 since every projected trace of S2 is
a projected trace of S1. This is formulated in the following definition.

Definition 5 (Refinement). An observed transition system
S2 = (Σ2, Σo, I2, N2, π2) refines an observed transition system S1 =
(Σ1, Σo, I1, N1, π1) iff for every trace of S2 there exists a trace of S1 with the
same observed states (note that they have the same observed state space Σo):

∀σ2 ∈ Θ(S2) · ∃σ1 ∈ Θ(S1) · π1(σ1) = π2(σ2)

We have thus established what it means for one observed transition system to
refine another, but we still need a practical way of showing refinement. Note that
refinement is defined in terms of traces which are infinite objects so that reason-
ing about them directly is impractical. We need a way of reasoning about states
and pairs of states. A refinement mapping is a suitable tool for this purpose.
A refinement mapping from a lower level transition system S2 to a higher-level
one S1 is a mapping from the state space Σ2 to the state space Σ1, that when
applied statewise, maps traces of S2 to traces of S1. This is formally stated as
follows.

Definition 6 (Refinement Mapping). A refinement mapping from an
observed transition system S2 = (Σ2, Σo, I2, N2, π2) to an observed transition
system S1 = (Σ1, Σo, I1, N1, π1) is a mapping f : Σ2 → Σ1 such that there exists
an S2 invariant P (representing reachable states in S2), where:

1. ∀s ∈ Σ2 · π1(f(s)) = π2(s)
2. ∀s ∈ Σ2 · I2(s) ⇒ I1(f(s))
3. ∀s, t ∈ Σ2 · P (s) ∧ P (t) ∧ N2(s, t) ⇒ N1(f(s), f(t))

Property 1 says that the observation of a state in S2 is the same as that of its
image in S1 obtained by applying the refinement mapping. Property 2 says that
an initial state in S2 is mapped to an initial state in S1. Property 3 says that
if two reachable states (satisfying the invariant P) in S2 are connected via S2’s
next-state relation, then their images in S1 are correspondingly connected via
S1’s next-state relation.

We can now state the main theorem (which is stated in [2], and which we
have proved in PVS for our slightly modified version):

78 K. Havelund and N. Shankar

Theorem 1 (Existence of Refinement Mappings). If there exists a refine-
ment mapping from an observed transition system S2 to an observed transition
system S1, then S2 refines S1.

We shall show how we demonstrate the existence of refinement mappings
in PVS, by providing a witness, that is: defining a particular one. Defining the
refinement mapping turns out typically to be easy, whereas showing that it is
indeed a refinement mapping (the properties in Definition 6) is where the major
effort goes. Especially finding and proving the invariant P is the bulk of the
proof.

We differ from Abadi and Lamport [2] in two ways. First, we allow general
observation functions, and not just projection functions that are the identity map
on a subset of the state space. Second, in Definition 6 of refinement mappings,
we assume that states s and t satisfy an implementation invariant P , which is
not the case in [2]. We have thus weakened the premises of the refinement rule.
Whereas the introduction of observation functions is just a nice (but not strictly
necessary) generalization, the use of invariants is of real importance for practical
proofs.

4 The Algorithm

In this section we informally describe the garbage collection algorithm. As illus-
trated in Fig. 1, the system consists of two processes, the mutator and the col-
lector, working on a shared memory.

4.1 The Memory

The memory is a fixed size array of nodes. In Fig. 1 there are 5 nodes (rows)
numbered 0–4. Associated with each node is an array of uniform length of cells.
Figure 1 shows 4 cells numbered 0–3 per node. A cell is identified by a pair of
integers (n,i) where n is a node number and where i is called the index. Each cell
contains a pointer to a node, called the son. In the case of a LISP implementation,

Fig. 1. The mutator, collector and shared memory

A Refinement Proof for a Garbage Collector 79

there are, for example, two cells per node. In Fig. 1, we assume that all empty
cells contain the NIL value 0, and hence point to node 0. In addition, node 0
points to node 3 (because cell (0,0) does so), which in turn points to nodes 1
and 4. Hence the memory can be thought of as a two-dimensional array, the size
of which is determined by the positive integer constants NODES and SONS. Each
node has an associated colour, black or white, that is used by the collector in
identifying garbage nodes.

A pre-determined number of nodes, defined by the positive integer constant
ROOTS, are designated as the roots, and these are kept in the initial part of the
array (they may be thought of as static program variables). In Fig. 1, there are
two such roots shown separated from the rest with a dotted line. A node is
accessible if it can be reached from a root by following pointers, and a node
is garbage if it is not accessible. Nodes 0, 1, 3, and 4 in Fig. 1 are therefore
accessible, and node 2 is garbage.
There are only three operations by which the memory structure can be modified:

– Redirect a pointer towards an accessible node.
– Change the colour of a node.
– Append a garbage node to the free list.

In the initial state, all pointers are assumed to be 0, and nothing is assumed
about the colours.

4.2 The Mutator

The mutator corresponds to the user program and performs the main compu-
tation. From an abstract point of view, it continuously changes pointers in the
memory; the changes being arbitrary except for the fact that a cell can only be
set to point to an already accessible node. In changing a pointer the “previously
pointed-to” node may become garbage, if it is not accessible from the roots in
some alternative way. In Fig. 1, any cell can hence be modified by the mutator
to point to a node other than 2. Only accessible cells can be modified, but as
shown below, the algorithm can in fact be proved safe without this restriction.
The algorithm is as follows:

1. Select a node n, an index i, and an accessible node k, and assign k to cell
(n,i).

2. Colour node k black. Return to step 1.

Each of the two steps is regarded as an atomic instruction.

4.3 The Collector

The collector collects garbage nodes and puts them into a free list, from which
the mutator may then remove them as they are needed during dynamic stor-
age allocation. Associated with each node is a colour field, that is used by the

80 K. Havelund and N. Shankar

collector during its identification of garbage nodes. Basically, it colours acces-
sible nodes black, and at a certain point it collects all white nodes, which are
then garbage, and puts them into the free list. Figure 1 illustrates the situation
at such a point: only node 2 is white since it is the only garbage node. The
collector algorithm is as follows:

1. Colour each root black.
2. Examine each pointer in succession. If the source is black and the target is

white, colour the target black.
3. Count the black nodes. If the result exceeds the previous count (or if there

was no previous count), return to step 2.
4. Examine each node in succession. If a node is white, append it to the free

list; if it is black, colour it white. Then return to step 1.

Steps 1–3 constitute the marking phase where all accessible nodes are black-
ened. Each of these steps involves an iteration involving a smaller step that is
executed atomically. For example, step 3 consists of several atomic instructions,
each counting (or not) a single node.

5 The Specification

We now present the initial specification of the garbage collector. It is presented
as a transition system using an informal notation. In Appendix A it is described
how we encode transition systems in PVS.

We shall assume a data structure representing the memory. The number of
nodes in the memory is defined by the constant NODES. The type Node defines
the numbers from 0 to NODES− 1. The constant SONS defines the number of cells
per node. The type Index defines the numbers from 0 to SONS − 1. Hence, the
memory can be thought of a two-dimensional array, and can be declared as in
Fig. 22.

var M : array[Node,Index] of Node;

Fig. 2. Specification state

The memory will be the observed part of the state (Σo – see Definition 6)
throughout all refinements. For example, the node colouring structure and other
auxiliary variables that we later add will be internal. Recall that an initial seg-
ment of the nodes are roots, the number being defined by the constant ROOTS.
A number of functions (e.g., for reading the state) and procedures (e.g., for
modifying the state) are assumed, see Fig. 3.
2 The actual PVS specification shown on page 23 is more abstract and does not specify

the memory as being implemented as an array. We use an array implementation here
for clarity of presentation.

A Refinement Proof for a Garbage Collector 81

function accessible(n:Node):bool;

function son(n:Node,i:Index):Node;

procedure set_son(n:Node,i:Index,k:Node);

procedure append_to_free(n:Node);

Fig. 3. Functions and procedures used in the specification

The function accessible returns true if its argument node is accessible from
one of the roots by following pointers. The function son returns the contents of
cell (n,i). The procedure set son assigns k to the cell identified by (n,i). Hence
after the procedure has been called, this cell now points to k. The procedure
append to free appends its argument node to the list of free nodes, assuming
that it is a garbage node. The specification consists of the parallel composition
of the mutator and the collector. The mutator is shown in Fig. 4.

MODIFY :

[1] choose n,k:Node; i:Index where accessible(k) ->

set_son(n,i,k);

goto MODIFY

end

Fig. 4. Specification of mutator

A program at any time during its execution is in one of a finite collection
of locations that are identified by program labels. The above mutator has one
such location named MODIFY. Associated with each location is a set of numbered
([1], [2], . . .) rules, typically of the form p -> s, where p is a pre-condition
on the state and s is an assignment statement. When the program execution
is at this location, all rules where the condition p is true in the current state
are enabled, and a non-deterministic choice is made between them, resulting
in the next state being obtained by applying the s statement of the chosen
rule to the current state. The “choose x:T where p(x) -> s end” construct
represents a set of such rules, one for each choice of x within its type T. Hence,
the mutator repeatedly chooses two arbitrary nodes n,k:Node and an arbitrary
index i:Index such that k is accessible. The cell (n,i) is then set to point to
k. The collector is shown in Fig. 5.

COLLECT :

[1] choose n:Node where not accessible(n) ->

append_to_free(n);

goto COLLECT

end

Fig. 5. Specification of collector

82 K. Havelund and N. Shankar

It repeatedly chooses an arbitrary inaccessible node which is then appended
to the free list of nodes. Since the node is not accessible it is a garbage node, hence
only garbage nodes are collected (appended), and this is the proper specification
of the garbage collector. This yields an abstract specification of the behavior of
the collector that is not yet a reasonable implementation. We need to somehow
implement the selection of an inaccessible node.

6 The Refinement Steps

In this section we outline how the refinement is carried out in three steps, result-
ing in the garbage collection algorithm described informally in Sect. 4. Each
refinement is given an individual subsection, which again is divided into a pro-
gram subsection presenting the new program, and a proof subsection outlining
the refinement proof. According to Theorem 1 a refinement can be proved by
identifying a refinement mapping from the concrete state space to the abstract
state space, see Definition 6. Hence, each proof section will consist of a defini-
tion of such a mapping together with a proof that it is a refinement mapping,
focusing on the simulation relation required in item (3) of Definition 6. The PVS
encoding of the programs is described in Appendix A, while the PVS encoding
of the refinement proofs is described in Appendix B.

6.1 First Refinement : Introducing Colours

6.1.1 The Program

In the first step, the collector is refined to base its search for garbage nodes on
a colouring technique. The type Colour is defined as bool, the set of Booleans,
assumed to represent the colours black (true) and white (false). The global state
must be extended with a colouring of each node in the memory (not each cell),
and a couple of extra auxiliary variables Q and L used for other purposes. The
extended state is shown in Fig. 6.

var

M : array[Node,Index] of Node;

C : array[Node] of Colour;

Q : Node;

L : nat;

Fig. 6. First refinement state

Three extra operations on this new data structure are needed, shown in Fig. 7.

A Refinement Proof for a Garbage Collector 83

procedure set_colour(n:Node,c:Colour);

function colour(n:Node):Colour;

function blackened():bool;

Fig. 7. Additional functions and procedures used in first refinement

The procedure set colour colours a node either white or black by updating
the variable C. The function colour returns the colour of a node. Finally, the
function blackened returns true if all accessible nodes are black. The mutator
is now refined into the program which was informally described in Sect. 4, see
Fig. 8.

MUTATE :

[1] choose n,k:Nodes; i:Index where accessible(k) ->

set_son(n,i,k);

Q := k;

goto COLOUR;

end

COLOUR :

[1] true -> set_colour(Q,true); goto MUTATE;

Fig. 8. Refinement of mutator

There are two locations, MUTATE and COLOUR. In the MUTATE location, in
addition to the mutation, the target node k is assigned to the global auxiliary
variable Q. Then in the COLOUR location, Q is coloured black. Note that the muta-
tor will not be further refined, it will now stay unchanged during the remaining
refinements of the collector. The collector is defined in Fig. 9.

COLOUR :

[1] choose n:Nodes ->

set_colour(n,true);

goto COLOUR;

end;

[2] blackened() -> L := 0; goto TEST_L;

TEST_L :

[1] L = NODES -> goto COLOUR;

[2] L < NODES -> goto APPEND;

APPEND :

[1] not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;

[2] colour(L) -> set_colour(L,false); L := L + 1; goto TEST_L;

Fig. 9. First refinement of collector

84 K. Havelund and N. Shankar

It consists of two phases. While in the COLOUR location, nodes are coloured
arbitrarily until all accessible nodes are black (blackened()). The style in which
colouring is expressed may seem surprising, but it is a way of defining a post
condition: colour at least all accessible nodes.3 In the second phase at locations
TEST L and APPEND, all white nodes are regarded as garbage nodes, and are hence
collected (appended to the free list). The auxiliary variable L is used to control
the loop: it runs through all the nodes. After appending all garbage nodes to the
free list, the colouring phase is restarted.

6.1.2 The Refinement Proof

The refinement mapping, call it abs, from the concrete state space to the abstract
state space maps M to M. Note that such a mapping only needs to be defined
for each component of the abstract state, showing how it is generated from
components in the concrete state. Hence, the concrete variables C, Q and L are
not used for this purpose. This is generally the case for the refinement mappings
to follow: they are the identity on the variables occurring in the abstract state.
Also program locations have to be mapped. In fact, each program (mutator,
collector) can be regarded as having a program counter variable, and we have to
show how the abstract program counter is obtained (mapped) from the concrete.
Whenever the concrete program is in a particular location l, then the abstract
program will be in the location abs(l). In the current case, the concrete mutator
locations MUTATE and COLOUR are both mapped to MODIFY, while the concrete
collector locations COLOUR, TEST L and APPEND all are mapped to COLLECT. This
completes the definition of the refinement mapping.

In order to prove Property (3) in Definition 6, we associate each transition
in the concrete program with a transition in the abstract program, and prove
that: “if the concrete transition brings a state s1 to a state s2, then the abstract
transition brings the state abs(s1) to the state abs(s2)”. We say that the con-
crete transition, say tc, simulates the abstract transition, say ta, and write this
as tc � ta. Putting all these sub-proofs together will yield a proof of (3). Some
of the concrete transitions just simulate a stuttering step (no state change) in
the abstract system. This will typically be some of the new transitions associ-
ated with new location names added to the concrete program. Other concrete
transitions have exact counterparts in the abstract program. These are typically
transitions associated with same location names as in the abstract program. In
the following, we will only mention cases that deviate from the above two; i.e.,
where we add new location names, and where the corresponding new transitions
do not simulate a stuttering step in the abstract program.

Hence in our case, MUTATE.1 � MODIFY.1, and APPEND.1 � COLLECT.1
(APPEND.2 simulates stuttering). In the proof of APPEND.1 � COLLECT.1, an
invariant is needed about the concrete program:
3 By formulating this colouring as an iteration, we can avoid introducing a history

variable at a lower refinement level. Note that any node can be coloured, not only
accessible nodes. This allows a later refinement to colour nodes that originally were
accessible, but later have become garbage.

A Refinement Proof for a Garbage Collector 85

collector@APPEND ∧ accessible(L) =⇒ colour(L)

It says that whenever the concrete collector is at the APPEND location, and
node L is accessible, then L is also black. From this we can conclude that the
append to free operation is only applied to garbage nodes, since it is only
applied to white nodes. Hence, we need to prove an invariant about the con-
crete program in order to prove the refinement. In general, the proof of these
invariants is what really makes the refinement proof non-trivial. To prove the
above invariant, we do in fact need to prove a stronger invariant, namely that in
locations TEST L and APPEND: ∀n ≥ L · accessible(n) =⇒ colour(n). This
invariant strengthening is typical in our proofs.

6.2 Second Refinement : Colouring by Propagation

6.2.1 The Program

In this step, accessible nodes are coloured through a propagation strategy, where
first all roots are coloured, and next all white nodes which have a black father are
coloured. The state is extended with an extra auxiliary variable K used for con-
trolling the iteration through the roots. The extended state is shown in Fig. 10.
Two additional functions are needed, shown in Fig. 11.

The function bw returns true if n is black and son(n,i) is white. The function
exists bw returns true if there exists a black node, say n, that via one of its
cells, say i, points to a white node. That is: bw(n,i). The collector becomes as
shown in Fig. 12.

The COLOUR location from the previous level has been replaced by the two
locations COLOUR ROOTS and PROPAGATE (while the append phase is mostly
unchanged). In the COLOUR ROOTS location all roots are coloured black, the loop
being controlled by the variable K. In the PROPAGATE location, either there exists
no black node with a white son (i.e. not exists bw()), in which case we start
collecting (going to location TEST L), or such a node exists, in which case its son
is coloured black, and we continue colouring.

var

M : array[Node,Index] of Node;

C : array[Node] of Colour;

Q : Node;

K, L : nat;

Fig. 10. Second refinement state

function bw(n:Node,i:Index):bool;

function exists_bw():bool;

Fig. 11. Additional functions used in second refinement

86 K. Havelund and N. Shankar

COLOUR_ROOTS :

[1] K = ROOTS -> goto PROPAGATE;

[2] K < ROOTS -> set_colour(K,true); K := K+1; goto COLOUR_ROOTS;

PROPAGATE :

[1] choose n:Node; i:Index where bw(n,i) ->

set_colour(son(n,i),true);

goto PROPAGATE;

end;

[2] not exists_bw() -> L := 0; goto TEST_L;

TEST_L :

[1] L = NODES -> K := 0; goto COLOUR_ROOTS;

[2] L < NODES -> goto APPEND;

APPEND :

[1] not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;

[2] colour(L) -> set_colour(L,false); L := L + 1; goto TEST_L;

Fig. 12. Second refinement of collector

6.2.2 The Refinement Proof

The refinement mapping, besides being the identity on identically named enti-
ties (variables as well as locations), maps the collector locations COLOUR ROOTS
and PROPAGATE to COLOUR. Hence concrete root colouring as well as concrete
propagation are just particular kinds of abstract colourings.

Concerning the transitions, COLOUR ROOTS.2 � COLOUR.1, PROPAGATE.1 �
COLOUR.1, and PROPAGATE.2 � COLOUR.2. In the proof of PROPAGATE.2 �
COLOUR.2, an invariant is needed about the concrete program:

collector@PROPAGATE =⇒ ∀r : Root · colour(r)

It states that in location PROPAGATE all roots must be coloured. This fact com-
bined with the propagation termination condition not exists bw(): “there does
not exist a pointer from a black node to a white node”, will imply the propagation
termination condition in COLOUR.2 of the abstract specification: blackened(),
which says that “all accessible nodes are coloured”.

6.3 Third Refinement : Propagation by Scans

6.3.1 The Program

In the last refinement, the propagation, represented by the location PROPAGATE
above, is refined into an algorithm, where all nodes are repeatedly scanned in
sequential order, and if black, their sons coloured; until a whole scan does not
result in a colouring. The state is extended with auxiliary variables BC (black
count) and OBC (old black count), used for counting black nodes; and the variables
H, I, and J for controlling loops, see Fig. 13.

A Refinement Proof for a Garbage Collector 87

var

M : array[Node,Index] of Node;

C : array[Node] of Colour;

Q : Node;

H, I, J, K, BC, OBC : nat;

Fig. 13. Third refinement state

The collector is described in Fig. 14, where transitions have been divided into
4 steps corresponding to the informal description of the algorithm on page
8. Two loops interact (steps 2 and 3). In the first loop, TEST I, TEST COLOUR
and COLOUR SONS, all nodes are scanned, and every black node has all its sons

- Step 1 : Colour roots

COLOUR_ROOTS :

[1] K = ROOTS -> I := 0; goto TEST_I;

[2] K < ROOTS -> set_colour(K,true); K := K + 1; goto COLOUR_ROOTS;

- Step 2 : Propagate once

TEST_I :

[1] I = NODES -> BC := 0; H := 0; goto TEST_H;

[2] I < NODES -> goto TEST_COLOUR;

TEST_COLOUR :

[1] not colour(I) -> I := I + 1; goto TEST_I;

[2] colour(I) -> J := 0; goto COLOUR_SONS;

COLOUR_SONS :

[1] J = SONS -> I := I + 1; goto TEST_I;

[2] J < SONS -> set_colour(son(I,J),true); J := J + 1;

goto COLOUR_SONS;

- Step 3 : Count black nodes

TEST_H :

[1] H = NODES -> goto COMPARE;

[2] H < NODES -> goto COUNT;

COUNT :

[1] not colour(H) -> H := H + 1; goto TEST_H;

[2] colour(H) -> BC := BC + 1; H := H + 1; goto TEST_H;

COMPARE :

[1] BC = OBC -> L := 0; goto TEST_L;

[2] BC /= OBC -> OBC := BC; I := 0; goto TEST_I;

- Step 4 : Append garbage nodes

TEST_L :

[1] L = NODES -> BC := 0; OBC := 0; K := 0; goto TEST_I;

[2] L < NODES -> goto APPEND;

APPEND :

[1] not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;

[2] colour(L) -> set_colour(L,false); L := L + 1; goto TEST_L;

Fig. 14. Third and final refinement of collector

88 K. Havelund and N. Shankar

coloured. The variables I and J are used to “walk” through the cells. In the sec-
ond loop, TEST H, COUNT and COMPARE, it is counted how many nodes are black.
This amount is stored in the variable BC, and if this amount exceeds the old
black count, stored in the variable OBC, then yet another scan is started, and
OBC is updated. The variable H is used to control this loop.

6.3.2 The Refinement Proof

The refinement mapping is the identity, except for six of the locations of the
collector. That is, the collector locations TEST I, TEST COLOUR, COLOUR SONS,
TEST H, COUNT, and COMPARE are all mapped to PROPAGATE. Concerning the tran-
sitions, COLOUR SONS.2 � PROPAGATE.1 whereas COMPARE.1 � PROPAGATE.2. In
the proof of COLOUR SONS.2 � PROPAGATE.1, the following invariant is needed:

collector@COLOUR SONS =⇒ colour(I)

This property implies that the abstract PROPAGATE.1 transition pre-condition
bw(I,J) will be true (in case the son is white) or otherwise (if the son is also
black), the concrete transition corresponds to a stuttering step (colouring an
already black son is the identity function). Correspondingly, in the proof of
COMPARE.1 � PROPAGATE.2, the following invariant is needed:

collector@COMPARE ∧ BC = OBC =⇒ ¬ exists bw()

It states that when the collector is in location COMPARE, after a counting scan
where the number of black nodes have been counted and stored in BC, if the
number counted equals the previous (old) count OBC then there does not exist a
pointer from a black node to a white node. Note that BC = OBC is the propagation
termination condition, and this then corresponds to the termination condition
not exists bw() of the abstract transition PROPAGATE.2. The proof of these
two invariants is quite elaborate, and does in fact compare in size and “look” to
the complete proofs in [11] as well as in [19].

7 Observations

It is possible to compare the present proof (PVSref -proof) with two other mech-
anized proofs of exactly the same algorithm: the proof in the Boyer-Moore prover
[19], from now on referred to as the BMinv-proof; and the PVS proof [11],
referred to as the PVSinv-proof. Instead of being based on refinement, these
two proofs are based on a statement of the correctness criteria as an invariant to
be proven about the implementation (the third refinement step). The PVSinv-
proof follows the BMinv-proof closely. Basically the same invariants were needed.

A Refinement Proof for a Garbage Collector 89

The PVSref -proof has the advantage over the two other proofs, that the correct-
ness criteria can be appreciated without knowing the internal structure of the
implementation. That is, we do not need to know for example that the append
operation is only applied in location Append to node X, and only if X is white.
Hence, from this perspective, the refinement proof represents an improvement.
The PVSref -proof has approximately the same size as the PVSinv-proof, in that
basically the same invariants and lemmas about auxiliary functions need to be
proven (19 invariant lemmas and 57 function lemmas). The proof effort took a
couple of months. Hence, one cannot argue that the proof has become any sim-
pler. On the contrary in fact: since we have many levels, there is more to prove.
Some invariants were easier to discover when using refinement, especially at the
top levels. In particular nested loops may be treated nicely with refinement, only
introducing one loop at a time. In general, loops in the algorithm to be verified
are the reason why invariant discovery is hard, and of course nested loops are
no better. The main lesson obtained from the PVSinv-proof is the importance
of invariant discovery in safety proofs. Our experience with the PVSref -proof is
that refinement does not relieve us of the need to search for invariants. We had to
come up with exactly the same invariants in both cases, but the discovery process
was different, and perhaps more structured in the refinement proof. Automated
or semi-automated discovery of invariants remains a challenging research topic.

A Formalization in PVS

This appendix describes how in general transition systems and refinement map-
pings are encoded in PVS, and in particular how the garbage collector refinement
is encoded.

A.1 Transition Systems and Their Refinement

Recall from Sect. 3 that an observed transition system is a five-tuple of the form:
(Σ,Σo, I,N, π) (Definition 4). In PVS we model this as a theory with two type
definitions, and three function definitions.

ots : THEORY

BEGIN

State : TYPE = ...

O_State : TYPE = ...

proj : [State -> O_State] = ...

init : [State -> bool] = ...

next : [State,State -> bool] = ...

END ots

90 K. Havelund and N. Shankar

The correspondence with the five-tuple is as follows: Σ = State, Σo =
O State, π = proj, I = init and N = next. The init function is a predi-
cate on states, while the next function is a predicate on pairs of states. We shall
formulate the specification of the garbage collector as well as all its refinements
in this way. It will become clear below how in particular the function next is
defined. Now we can define what is a trace (Definition 2) and what is an invariant
(Definition 3). This is done in the theory Traces.

Traces[State:TYPE] : THEORY

BEGIN

init : VAR pred[State]

next : VAR pred[[State,State]]

sq : VAR sequence[State]

n : VAR nat

p : VAR pred[State]

trace(init,next)(sq):bool =

init(sq(0)) AND FORALL n: next(sq(n),sq(n+1))

invariant(init,next)(p):bool =

FORALL (tr:(trace(init,next))): FORALL n: p(tr(n))

END Traces

The theory is parameterized with the State type of the observed transition
system. The VAR declarations are just associations of types to names, such that
in later definitions, axioms, and lemmas, these names are assumed to have the
corresponding types. In addition, axioms and lemmas are assumed to be univer-
sally quantified with these names over the types. Note that pred[T] in PVS is
short for the function space [T -> bool]. The type sequence[T] is short for
[nat -> T]; that is: the set of functions from natural numbers to T. A sequence
of States is hence an infinite enumeration of states. Given a transition system
with initiality predicate init and next-state relation next, a sequence sq is a
trace of this transition system if trace(init,next)(sq) holds. A predicate p is
an invariant if invariant(init,next)(p) holds. That is: if for any trace tr, p
holds in all positions n of that trace. Note how the predicate trace(init,next)
(it is a predicate on sequences) is turned into a type in PVS by surrounding it
with parentheses – the type containing all the elements for which the predicate
holds, namely all the program traces.

A Refinement Proof for a Garbage Collector 91

The next notion we introduce in PVS is that of a refinement between two
observed transition systems (Definition 5). The theory Refine Predicate below
defines the function refines, which is a predicate on a pair of observed transition
systems: a low level implementation system as the first parameter, and a high
level specification system as as the second parameter.

Refine_Predicate[O_State:TYPE, S_State:TYPE, I_State:TYPE] : THEORY

BEGIN

IMPORTING Traces

s_init : VAR pred[S_State]

s_next : VAR pred[[S_State,S_State]]

s_proj : VAR [S_State -> O_State]

i_init : VAR pred[I_State]

i_next : VAR pred[[I_State,I_State]]

i_proj : VAR [I_State -> O_State]

refines(i_init,i_next,i_proj)(s_init,s_next,s_proj):bool =

FORALL (i_tr:(trace(i_init,i_next))):

EXISTS (s_tr:(trace(s_init,s_next))):

map(i_proj,i_tr) = map(s_proj,s_tr)

END Refine_Predicate

The theory is parameterized with the state space S State of the high level
specification theory, the state space I State of the low level implementation
theory, and the observed state space O State, which we remember is common
for the two observed transition systems. Refinement is defined as follows: for
all traces i tr of the implementation system, there exists a trace s tr of the
specification system, such that when mapping the respective projection functions
to the traces, they become equal. The function map has the type map : [[D->R]
-> [sequence[D] -> sequence[R]]] and simply applies a function to all the
elements of a sequence. Finally, we introduce in the theory Refinement the
notion of a refinement mapping (Definition 6) and its use for proving refinement
(Theorem 1). The theory is parameterized with a specification observed transi-
tion system (prefixes S), an implementation observed transition system (prefixes
I), an abstraction function abs, and an invariant I inv over the implementation
system.

92 K. Havelund and N. Shankar

Refinement[

O_State : TYPE,

S_State : TYPE,

S_init : pred[S_State],

S_next : pred[[S_State,S_State]],

S_proj : [S_State -> O_State],

I_State : TYPE,

I_init : pred[I_State],

I_next : pred[[I_State,I_State]],

I_proj : [I_State -> O_State],

abs : [I_State -> S_State],

I_inv : [I_State -> bool]] : THEORY

BEGIN

ASSUMING

IMPORTING Traces

s : VAR I_State

r1,r2 : VAR (I_inv)

proj_id : ASSUMPTION FORALL s: S_proj(abs(s)) = I_proj(s)

init_h : ASSUMPTION FORALL s: I_init(s) IMPLIES S_init(abs(s))

next_h : ASSUMPTION I_next(r1,r2) IMPLIES S_next(abs(r1),abs(r2))

invar : ASSUMPTION invariant(I_init,I_next)(I_inv)

ENDASSUMING

IMPORTING Refine_Predicate[O_State,S_State,I_State]

ref : THEOREM refines(I_init,I_next,I_proj)(S_init,S_next,S_proj)

END Refinement

The theory contains a number of assumptions on the parameters and a the-
orem, which has been proven using the assumptions. Hence, the way to use this
parameterized theory is to apply it to arguments that satisfy the assumptions,
prove these, and then obtain as a consequence, the theorem which states that the
implementation refines the specification (corresponding to Theorem 1). This the-
orem has been proved once and for all. The assumptions are as stated in Defini-
tion 6. We shall further need to assume transitivity of the refinement relation, and
this is formulated (and proved) in the theory Refine Predicate Transitive.

A Refinement Proof for a Garbage Collector 93

Refine_Predicate_Transitive[

O_State:TYPE, State1:TYPE, State2:TYPE, State3:TYPE] : THEORY

BEGIN

IMPORTING Refine_Predicate

init1 : VAR pred[State1]

next1 : VAR pred[[State1,State1]]

proj1 : VAR [State1 -> O_State]

init2 : VAR pred[State2]

next2 : VAR pred[[State2,State2]]

proj2 : VAR [State2 -> O_State]

init3 : VAR pred[State3]

next3 : VAR pred[[State3,State3]]

proj3 : VAR [State3 -> O_State]

transitive : LEMMA

refines[O_State,State2,State3]

(init3,next3,proj3)(init2,next2,proj2) AND

refines[O_State,State1,State2]

(init2,next2,proj2)(init1,next1,proj1)

IMPLIES

refines[O_State,State1,State3]

(init3,next3,proj3)(init1,next1,proj1)

END Refine_Predicate_Transitive

A.2 The Specification

In this section we outline how the initial specification from Sect. 5 of the garbage
collector is modeled in PVS. We start with the specification of the memory
structure, and then continue with the two processes that work on this shared
structure.

A.2.1 The Memory

The memory type is introduced in the theory Memory, parameterized with the
memory boundaries. That is, NODES, SONS, and ROOTS define respectively the
number of nodes (rows), the number of sons (columns/cells) per node, and
the number of nodes that are roots. They must all be positive natural num-
bers (different from 0). There is also an obvious assumption that ROOTS is not
bigger than NODES. These three memory boundaries are parameters to all our
theories. The Memory type is defined as an abstract (non-empty) type upon
which a constant and collection of functions are defined. First, however, types of
nodes, indexes and roots are defined. The constant null array represents the
initial memory containing 0 in all memory cells (axiom mem ax1). The function
son returns the pointer contained in a particular cell. That is, the expression
son(n,i)(m) returns the pointer contained in the cell identified by node n and
index i. Finally, the function set son assigns a pointer to a cell. That is, the

94 K. Havelund and N. Shankar

expression set son(n,i,k)(m) returns the memory m updated in cell (n,i) to
contain (a pointer to node) k. In order to define what is an accessible node, we
introduce the function points to, which defines what it means for one node, n1,
to point to another, n2, in the memory m.

Memory[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

Memory : TYPE+

Node : TYPE = {n : nat | n < NODES}
Index : TYPE = {i : nat | i < SONS}
Root : TYPE = {r : nat | r < ROOTS}
m : VAR Memory

n,n1,n2,k : VAR Node

i,i1,i2 : VAR Index

null_array : Memory

son : [Node,Index -> [Memory -> Node]]

set_son : [Node,Index,Node -> [Memory -> Memory]]

mem_ax1 : AXIOM son(n,i)(null_array) = 0

mem_ax2 : AXIOM son(n1,i1)(set_son(n2,i2,k)(m)) =

IF n1=n2 AND i1=i2 THEN k ELSE son(n1,i1)(m) ENDIF

points_to(n1,n2)(m):bool = EXISTS (i:Index): son(n1,i)(m)=n2

accessible(n)(m): INDUCTIVE bool =

n < ROOTS OR

EXISTS k: accessible(k)(m) AND points_to(k,n)(m)

append_to_free : [Node -> [Memory -> Memory]]

append_ax: AXIOM (NOT accessible(k)(m)) IMPLIES

(accessible(n)(append_to_free(k)(m))

IFF (n = k OR accessible(n)(m)))

END Memory

The function accessible is then defined inductively, yielding the least pred-
icate on nodes n (true on the smallest set of nodes) where either n is a root, or n
is pointed to from an already reachable node k. Finally we define the operation
for appending a garbage node to the list of free nodes, that can be allocated by
the mutator. This operation is defined abstractly, assuming as little as possible
about its behaviour. Note that, since the free list is supposed to be part of the
memory, we could easily have defined this operation in terms of the functions
son and set son, but this would have required that we took some design deci-
sions as to how the list was represented (for example where the head of the list
should be and whether new elements should be added first or last). The axiom
append ax defining the append operation says that in appending a garbage node,

A Refinement Proof for a Garbage Collector 95

only that node becomes accessible, and the accessibility of all other nodes stays
unchanged.

A.2.2 The Mutator and the Collector

The complete PVS formalization of the top level specification presented in Sect. 5
is given below.

Garbage_Collector[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

IMPORTING Memory[NODES,SONS,ROOTS]

State : TYPE = Memory

O_State : TYPE = Memory

s,s1,s2 : VAR State

n,k : VAR Node

i : VAR Index

proj(s):O_State = s

init(s):bool = (s = null_array)

Rule_mutate(n,i,k)(s):State =

IF accessible(k)(s) THEN set_son(n,i,k)(s) ELSE s ENDIF

Rule_append(n)(s):State =

IF NOT accessible(n)(s) THEN append_to_free(n)(s) ELSE s ENDIF

next(s1,s2):bool =

(EXISTS n,i,k: s2 = Rule_mutate(n,i,k)(s1)) OR

(EXISTS n: s2 = Rule_append(n)(s1)) OR

s2 = s1

END Garbage_Collector

The state is simply the memory, and so is the observable state. Hence, there
are no hidden variables, and the projection function proj is the identity. The
next-state relation next is defined as a disjunction between three disjuncts, each
representing a possible single transition of the total system. The first two dis-
juncts represent a move of the mutator and the collector, respectively, each move
defined through a function. The third possibility just represents stuttering: the
fact that a process does not change the state (needed for technical reasons).

Since each process (mutator, collector) only has one location we do not model
these locations explicitly. The function Rule mutate represents a move by the
mutator, which is non-deterministic in the choice of the nodes n,k and index i.
The function, when applied to an old state, yields a new state, where (if k is
accessible) a pointer has been changed. Non-deterministic choices are modeled
via existential quantifications. Each transition function is defined in terms of
an IF-THEN-ELSE expression, where the condition represents the guard of the

96 K. Havelund and N. Shankar

transition (the situation where the transition may meaningfully be applied), and
where the ELSE part returns the unchanged state, in case the guard is false4. The
function Rule append represents a move by the collector. In each step, either the
mutator makes a move, or the collector does. This corresponds to an interleaving
semantics of concurrency. Note how the repeated execution is guaranteed by our
interpretation of what is a trace in terms of the next-state relation.

A.3 The First Refinement

In this section we outline how the first refinement from Sect. 6.1 of the garbage
collector is modeled in PVS. In order to keep the presentation reasonably sized,
we only illustrate this first refinement. The remaining refinements follow the
same pattern. First, we describe a collection of colouring functions. The theory
Coloured Memory below introduces the primitives needed for colouring memory
nodes. The type Colour represents the colours black (true) and white (false). The
type Colours contains possible colourings of the memory, each being a mapping
from nodes to their colours. The functions colour, set colour and blackened
are formalizations of those presented in Fig. 7.

Coloured_Memory[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

IMPORTING Memory[NODES,SONS,ROOTS]

Colour : TYPE = bool

Colours : TYPE = [Node -> Colour]

n : VAR Node

i : VAR Index

c : VAR Colour

cs : VAR Colours

m : VAR Memory

colour(n)(cs):Colour = cs(n)

set_colour(n,c)(cs):Colours = cs WITH [n := c]

blackened(cs,m):bool = FORALL n: accessible(n)(m) IMPLIES colour(n)(cs)

END Coloured_Memory

We now show how the first refinement is formulated in PVS. The entire
theory called Garbage Collector1 is presented below.

4 This allows for stuttering where rules are applied without changing the state.

A Refinement Proof for a Garbage Collector 97

Garbage_Collector1[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

IMPORTING Coloured_Memory[NODES,SONS,ROOTS]

MuPC : TYPE = {MUTATE,COLOUR} CoPC : TYPE = {COLOUR,TEST_L,APPEND}
State : TYPE = [# MU:MuPC,CHI:CoPC,Q:nat,L:nat,C:Colours,M:Memory #]

O_State : TYPE = Memory

s,s1,s2 : VAR State n,k : VAR Node i : VAR Index

proj(s):O_State = M(s)

init(s):bool = MU(s) = MUTATE & CHI(s) = COLOUR & M(s) = null_array

Rule_mutate(n,i,k)(s):State =

IF MU(s) = MUTATE AND accessible(k)(M(s)) THEN

s WITH [M := set_son(n,i,k)(M(s)), Q := k, MU := COLOUR]

ELSE s ENDIF

Rule_colour_target(s):State =

IF MU(s) = COLOUR AND Q(s) < NODES THEN

s WITH [C := set_colour(Q(s),TRUE)(C(s)), MU := MUTATE]

ELSE s ENDIF

MUTATOR(s1,s2):bool =

(EXISTS n,i,k: s2 = Rule_mutate(n,i,k)(s1)) OR

s2 = Rule_colour_target(s1)

Rule_stop_colouring(s):State =

IF CHI(s) = COLOUR AND blackened(C(s),M(s)) THEN

s WITH [L := 0, CHI := TEST_L] ELSE s ENDIF

Rule_colour(n)(s):State =

IF CHI(s) = COLOUR THEN

s WITH [C := set_colour(n,TRUE)(C(s))] ELSE s ENDIF

Rule_stop_appending(s):State =

IF CHI(s) = TEST_L AND L(s) = NODES THEN

s WITH [CHI := COLOUR] ELSE s ENDIF

Rule_continue_appending(s):State =

IF CHI(s) = TEST_L AND L(s) < NODES THEN

s WITH [CHI := APPEND] ELSE s ENDIF

Rule_black_to_white(s):State =

IF CHI(s) = APPEND AND L(s) < NODES AND colour(L(s))(C(s)) THEN

s WITH [C:=set_colour(L(s),FALSE)(C(s)),L:=L(s)+1,CHI:=TEST_L]

ELSE s ENDIF

Rule_append_white(s):State =

IF CHI(s) = APPEND AND L(s) < NODES AND NOT colour(L(s))(C(s)) THEN

s WITH [M := append_to_free(L(s))(M(s)),L:=L(s)+1,CHI:=TEST_L]

ELSE s ENDIF

COLLECTOR(s1,s2):bool =

s2 = Rule_stop_colouring(s1) OR (EXISTS n:s2 = Rule_colour(n)(s1))

OR s2 = Rule_stop_appending(s1) OR s2 = Rule_continue_appending(s1)

OR s2 = Rule_black_to_white(s1) OR s2 = Rule_append_white(s1)

next(s1,s2):bool = MUTATOR(s1,s2) OR COLLECTOR(s1,s2) OR s2 = s1

END Garbage_Collector1

98 K. Havelund and N. Shankar

First of all, the state type is a record type with a field for each program
variable. In addition to the ordinary program variables, there is a program
counter “variable” for each process: MU for the mutator, and CHI for the collector.
Each program counter ranges over a type that contains the possible labels. The
observed state is still just the memory, hence ignoring, for example, the colour-
ing C. We see that the mutator next-state relation MUTATOR is now defined as a
disjunction between a mutate transition and a colour transition. The collector
next-state relation COLLECTOR is defined as the disjunction between six possible
transitions.

B The Proof in PVS

The proof of a single refinement lemma (step) is divided into three activities:
discovery and proof of function lemmas; discovery and proof of invariant lemmas;
and proof of the refinement lemma. A function lemma states a property of one or
more auxiliary functions involved, which in our case are for example properties
about the functions accessible and blackened. An invariant is a predicate on
states, and an invariant lemma states that an invariant holds in every reachable
state of the concrete implementation (Garbage Collector1 in our case). Recall
that we needed such an invariant when applying the Refinement theory (page
21). The function lemmas are used in proofs of invariant lemmas, which again
are used in proofs of refinement lemmas.

We shall show these lemmas for the first refinement, using a bottom-up pre-
sentation for pedagogical reasons, starting with function lemmas, and ending
with the refinement lemma. In, reality, however, the proof was “discovered” top
down: the refinement lemma was stated (by applying the Refinement theory
to proper arguments), and during the proof of the corresponding ASSUMPTIONs,
the need for invariant lemmas were discovered, and during their proofs, function
lemmas were discovered.

B.1 Function Lemmas

During the proof, we need a new set of auxiliary functions to “observe” (or cal-
culate) certain values based on the current state of the memory. These observer
functions occur in invariants. In the first refinement step, we shall need the
function blackened defined in the theory Memory Observers below.

This function is similar to the function which is part of the first refinement,
page 25, except that it has an additional natural number argument. The func-
tion returns true if all nodes above (and including) that argument are black if
accessible. The theory contains other functions, but these are first needed in later
refinements and will not be discussed here. The lemmas about auxiliary functions
that we need for the first refinement are given in the theory Memory Properties
below.

A Refinement Proof for a Garbage Collector 99

Memory_Observers[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING

roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING

IMPORTING Coloured_Memory[NODES,SONS,ROOTS]

cs : VAR Colours

m : VAR Memory

n : VAR Node

N : VAR nat

blackened(N)(cs,m):bool =

FORALL (n | N <= n): accessible(n)(m) IMPLIES colour(n)(cs)

...

END Memory_Observers

Memory_Properties[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

IMPORTING Memory_Observers[NODES,SONS,ROOTS]

cs : VAR Colours c : VAR Colour m : VAR Memory n,n1,n2,k : VAR Node

i,i1,i2,j : VAR Index N,N1,N2 : VAR nat

accessible1 : LEMMA

accessible(k)(m) AND accessible(n1)(set_son(n,i,k)(m))

IMPLIES accessible(n1)(m)

blackened1 : LEMMA

blackened(n)(cs,m) AND accessible(n)(m) IMPLIES colour(n)(cs)

blackened2 : LEMMA

accessible(k)(m) AND blackened(N)(cs,m)

IMPLIES blackened(N)(cs,set_son(n,i,k)(m))

blackened3 : LEMMA

blackened(N)(cs,m) IMPLIES blackened(N)(set_colour(n,TRUE)(cs),m)

blackened4 : LEMMA

blackened(n)(cs,m) IMPLIES blackened(n+1)(set_colour(n,FALSE)(cs),m)

blackened5 : LEMMA

NOT accessible(n)(m) AND blackened(n)(cs,m)

IMPLIES blackened(n+1)(cs,append_to_free(n)(m))

blackened6 : LEMMA

blackened(cs,m) IMPLIES blackened(0)(cs,m)

END Memory_Properties

100 K. Havelund and N. Shankar

The theory in its entirety contains other lemmas, needed for later refinements,
which we shall however not present here. The lemma accessible1 is a key
lemma, and it says that the set son operator cannot turn garbage nodes into
accessible nodes.

B.2 Invariant Lemmas

We can now state the invariant needed for the first refinement step. This is
given in the theory Garbage Collector1 Inv. The invariant really needed for
the refinement proof is inv1, corresponding to the invariant on page 13; but
during the proof of that, invariant inv2 is needed.

Garbage_Collector1_Inv[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING

roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING

IMPORTING Memory_Properties[NODES,SONS,ROOTS]

IMPORTING Garbage_Collector1[NODES,SONS,ROOTS]

IMPORTING Invariant_Predicates[State]

s : VAR State

inv1(s):bool =

CHI(s)=APPEND AND L(s) < NODES AND accessible(L(s))(M(s))

IMPLIES colour(L(s))(C(s))

inv2(s):bool =

CHI(s)=TEST_L OR CHI(s)=APPEND IMPLIES blackened(L(s))(C(s),M(s))

I : pred[State] = inv1 & inv2

inv : LEMMA invariant(init,next)(I)

END Garbage_Collector1_Inv

Invariant inv1 is in fact the safety property originally formulated for the
garbage collector in [19]. Its proof requires a generalization, which is inv2. This
shows an example, where we have to strengthen an invariant (inv1) to a stronger
invariant (inv2), which is then proven instead.

B.3 The Refinement Lemma

The first refinement step is formulated as an application of the Refinement
theory which we defined on page 21. This is done in the theory Refinement1
shown below.

A Refinement Proof for a Garbage Collector 101

Refinement1[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING

roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING

S : THEORY = Garbage_Collector [NODES,SONS,ROOTS]

I1 : THEORY = Garbage_Collector1[NODES,SONS,ROOTS]

IMPORTING Garbage_Collector1_Inv[NODES,SONS,ROOTS]

s : VAR I1.State

r1,r2 : VAR (I)

n,k : VAR Node

i : VAR Index

cs : VAR Colours

abs(s):S.State = M(s)

...

R1 : THEORY =

Refinement[S.O_State,

S.State,S.init,S.next,S.proj,

I1.State,I1.init,I1.next,I1.proj,

abs,I]

END Refinement1

The theory imports the specification garbage collector Garbage Collector,
giving it the name S; the implementation Garbage Collector1, named I1; and
the implementation invariant I defined in the theory Garbage Collector1 Inv.
The theory further defines the abstraction function abs, and finally applies the
Refinement theory. This application gives rise to four TCCs (Type Checking
Conditions) generated by PVS, which have to be proven in order for the PVS
specification to be well formed (type check). Furthermore, the proof of these
TCCs yields the correctness of the refinement. The TCCs are shown below:

R1_TCC1: OBLIGATION FORALL s: S.proj(abs(s)) = I1.proj(s);

R1_TCC2: OBLIGATION FORALL s: I1.init(s) IMPLIES S.init(abs(s));

R1_TCC3: OBLIGATION (FORALL (r1: (I), r2: (I)):

I1.next(r1, r2) IMPLIES S.next(abs(r1), abs(r2)));

R1_TCC4: OBLIGATION invariant(I1.init, I1.next)(I);

There is a TCC for each ASSUMPTION of the Refinement theory. In particular
R1 TCC3 states the simulation property, and R1 TCC4 states the invariant prop-
erty. As illustrated in Subsect. 6.1.2 p. X, we show for each concrete transition
which abstract transition it simulates, for example we had that APPEND.1 �
COLLECT.1, which in this PVS setting is formulated as the following lemma.

102 K. Havelund and N. Shankar

sim_append_white : LEMMA

r2 = Rule_append_white(r1) IMPLIES

(EXISTS n: abs(r2) = Rule_append(n)(abs(r1))) OR abs(r2) = abs(r1)

The technique illustrated above for the first refinement step is repeated for
the next two, yielding two further theories Refinement2 and Refinement3. All
3 refinements can now be composed, and the bottom level implementation can
be shown to refine the top level specification using transitivity of the refinement
relation. This is expressed in the theory Composed Refinement below, where the
theorem ref is our main correctness criteria.

Composed_Refinement[NODES:posnat, SONS:posnat, ROOTS:posnat] : THEORY

BEGIN

ASSUMING

roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING

IMPORTING Refinement1[NODES,SONS,ROOTS]

IMPORTING Refinement2[NODES,SONS,ROOTS]

IMPORTING Refinement3[NODES,SONS,ROOTS]

IMPORTING Refine_Predicate

IMPORTING Refine_Predicate_Transitive

ref2 : LEMMA

refines[S.O_State,S.State,I2.State]

(I2.init,I2.next,I2.proj)(S.init,S.next,S.proj)

ref : THEOREM

refines[S.O_State,S.State,I3.State]

(I3.init,I3.next,I3.proj)(S.init,S.next,S.proj)

END Composed_Refinement

References

1. PVS specification and verification system. http://pvs.csl.sri.com. Accessed 03 Mar
2019

2. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82, 253–284 (1991)

3. Ben-Ari, M.: Algorithms for on-the-fly garbage collection. ACM TOPLAS 6, 333–
344 (1984)

4. Burdy, L.: B vs. Coq to prove a garbage collector. In: Boulton, R.J., Jackson, P.B.
(eds.) 14th International Conference on Theorem Proving in Higher Order Logics:
Supplemental Proceedings, pp. 85–97. September (2001)

5. Coupet-Grimal, S., Nouvet, C.: Formal verification of an incremental garbage col-
lector. J. Logic Comput. 13(6), 815–833 (2003)

6. Dijkstra, E.W., Lamport, L., Martin, A., Scholten, C.S., Steffens, E.F.M.: On-the-
fly garbage collection: an exercise in cooperation. ACM 21(11), 966–975 (1978)

http://pvs.csl.sri.com

A Refinement Proof for a Garbage Collector 103

7. Doligez, D., Gonthier, G.: Portable, unobtrusive garbage collection for multipro-
cessor systems. In: Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 70–83. ACM (1994)

8. Sandberg Ericsson, A., Myreen, M.O., Åman Pohjola, J.: A verified generational
garbage collector for CakeML. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017.
LNCS, vol. 10499, pp. 444–461. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66107-0 28

9. Gammie, P., Hosking, A.L., Engelhardt, K.: Relaxing safely: verified on-the-fly
garbage collection for x86-tso. In: ACM SIGPLAN Notices, vol. 50, pp. 99–109.
ACM (2015)

10. Gonthier, G.: Verifying the safety of a practical concurrent garbage collector. In:
Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 462–465. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 103

11. Havelund, K.: Mechanical verification of a garbage collector. In: Rolim, J., et al.
(eds.) IPPS 1999. LNCS, vol. 1586, pp. 1258–1283. Springer, Heidelberg (1999).
https://doi.org/10.1007/BFb0098007

12. Havelund, K., Shankar, N.: Experiments in theorem proving and model checking for
protocol verification. In: Gaudel, M.-C., Woodcock, J. (eds.) FME 1996. LNCS,
vol. 1051, pp. 662–681. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60973-3 113

13. Havelund, K., Shankar, N.: A mechanized refinement proof for a garbage collec-
tor. Technical report, October 1997. http://www.havelund.com/Publications/gc-
refine-report.pdf

14. Stenzel, O.: The Physics of Thin Film Optical Spectra. SSSS, vol. 44, pp. 163–180.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21602-7

15. Jackson, P.B.: Verifying a garbage collection algorithm. In: Grundy, J., Newey, M.
(eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 225–244. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055139

16. Lamport, L.: The temporal logic of actions. ACM TOPLAS 16(3), 872–923 (1994)
17. McCreight, A., Shao, Z., Lin, C., Li, L.: A general framework for certifying garbage

collectors and their mutators. In: ACM SIGPLAN Notices, vol. 42, pp. 468–479.
ACM (2007)

18. Pixley, C.: An incremental garbage collection algorithm for multi-mutator systems.
Distrib. Comput. 3, 41–50 (1988)

19. Russinoff, D.M.: A mechanically verified incremental garbage collector. Formal
Aspects Comput. 6, 359–390 (1994)

20. van de Snepscheut, J.L.A.: Algorithms for on-the-fly garbage collection revisited.
Inf. Process. Lett. 24(4), 211–216 (1987)

https://doi.org/10.1007/978-3-319-66107-0_28
https://doi.org/10.1007/978-3-319-66107-0_28
https://doi.org/10.1007/3-540-61474-5_103
https://doi.org/10.1007/BFb0098007
https://doi.org/10.1007/3-540-60973-3_113
https://doi.org/10.1007/3-540-60973-3_113
http://www.havelund.com/Publications/gc-refine-report.pdf
http://www.havelund.com/Publications/gc-refine-report.pdf
https://doi.org/10.1007/978-3-319-21602-7
https://doi.org/10.1007/BFb0055139

Synthesis of Models, Parameters and
Benchmarks

Model Repair Revamped

— On the Automated Synthesis of Markov Chains —

Milan Češka1, Christian Dehnert2, Nils Jansen3, Sebastian Junges2,
and Joost-Pieter Katoen2(B)

1 FIT, IT4I Centre of Excellence, Brno University of Technology,
Brno, Czech Republic

2 RWTH Aachen University, Aachen, Germany
katoen@cs.rwth-aachen.de

3 Radboud University, Nijmegen, The Netherlands

Abstract. This paper outlines two approaches—based on counter-
example-guided abstraction refinement (CEGAR) and counterexample-
guided inductive synthesis (CEGIS), respectively—to the automated
synthesis of finite-state probabilistic models and programs. Our CEGAR
approach iteratively partitions the design space starting from an abstrac-
tion of this space and refines this by a light-weight analysis of verification
results. The CEGIS technique exploits critical subsystems as counterex-
amples to prune all programs behaving incorrectly on that input. We
show the applicability of these synthesis techniques to sketching of proba-
bilistic programs, controller synthesis of POMDPs, and software product
lines.

1 Introduction

Model Repair. In 2011, Smolka et al. [5] coined the following model repair prob-
lem [8]: given a finite Markov chain D and a probabilistic specification ϕ such
that D �|= ϕ, find a Markov chain D′ that differs from D only in the transition
probabilities, such that D′ |= ϕ. Typical probabilistic specifications impose a
threshold on reachability probabilities, such as “is the probability to reach a
bad state at most 1/1000?” Model repair thus amounts to tweaking (some of)
the probabilities in a given Markov chain in order to obtain a chain satisfying
the specification. It can be solved using parameter synthesis [5] techniques as,
e.g., supported by the Prophesy tool [21]. An extension of model repair in which
repairs are associated a cost and a minimal-total-cost repair is to be found can
be solved by non-linear programming [5]. The scalability of model repair can be
improved in several ways: by solving a series of convex programs instead of a
non-linear program [19], by repairing abstractions of Markov chains [13], or by a
greedy approach exploiting monotonicity [32]. Particle swarm optimisation has
been used to model repair of Markov decision processes (MDPs) [14].

This work has been supported by the DFG RTG 2236 “UnRAVeL”, the ERC Advanced
Grant 787914 “FRAPPANT”, the Czech Science Foundation grant No. AUTODEV
GA19-24397S, and the IT4Innovations excellence in science project No. LQ1602.

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 107–125, 2019.
https://doi.org/10.1007/978-3-030-31514-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_7

108 M. Češka et al.

Topology Changes. In the original setting of model repair, only transition prob-
abilities are subject to change. Adding or removing transitions is not admitted.
That is to say, every possible repair keeps the topology of the Markov chain
invariant. This notion of repair is thus in fact transition probability repair. In
this paper, we take this idea a step further, and allow for amending the Markov
chain’s topology. More precisely, in addition to the possibility of modifying tran-
sition probabilities, we consider the possible deletion and/or addition of transi-
tions. Changing the topology results in varying sets of reachable states. Viewing
Markov chains as operational model for (discrete) probabilistic programs, repairs
may affect the control structure as well as the probabilistic choices. Traditional
parameter synthesis techniques are inadequate for this problem, as these tech-
niques restrict parameter expressions like 1/2−ε to range over (0, 1), i.e., exclud-
ing zero (no transition) and one (a Dirac transition). Topology changes often
come at a price; e.g., for parametric Markov chains the complexity of qualitative
(i.e., zero-one) reachability becomes NP-complete whereas in absence of topology
changes a polynomial-time algorithm suffices [15].

Synthesis. Model (or: program) repair in the aforementioned sense is a nat-
ural instance of model (or: program) synthesis [1,22,23]. Program synthesis
amounts to automatically provide an instantiated probabilistic program sat-
isfying all quantitative properties, or returns that such design does not exist.
Though the synthesis problem is undecidable in general, there are interesting
sub-cases—such as our variant of model repair—that are decidable (but com-
putationally intensive). We consider a family D of Markov chains where each
family member can be viewed as an admissible repaired version of Markov chain
D ∈ D. Families are finite and consist of finite chains. As in syntax-guided syn-
thesis, possible repairs are described by some grammar rules, either at the model
level or in some high-level description language such as the probabilistic guarded
command language [30] or the PRISM modelling language [27]. The successful
approach of program sketching [35] naturally fits within this setting. Starting
from a program sketch, i.e., a program with “holes”, it aims to obtain a program
satisfying the specification ϕ by filling the holes with possible repairs. Holes are
the unknown parts of the program and can be replaced by one of finitely many
options. All possible program sketch realisations constitute the family D. The
synthesis problems considered in this paper can be used to answer queries like:
(a) give a possible repair (if one exists)?, (b) what are all possible repairs?, and
(c) which repairs are optimal in the sense of minimising the probability to reach
a bad state? Each of these queries can be considered under the additional con-
straint of minimising the total cost of repairs, e.g., what are all possible repairs
for ϕ that are cost minimal?

Our Synthesis Approaches. A naive enumerative solution is to analyse each
individual family member, i.e., each possible amendment, or each possible hole
instantiation. This is infeasible for large families. We therefore outline two
approaches to the automated synthesis of finite-state probabilistic models: the
first one fits within the realm of counterexample-guided abstraction refinement

Model Repair Revamped 109

family

abstract to quotient

quotients verify M |= ϕ

satisfied?
refine quotient:
split family

feasible realisationunsatisfiable

pick M
Pr(M |= ϕ) (+ CE)

yes
inconclusive no

empty

(a) The CEGAR approach

Verifier

instance

reject +
CE

family properties

unsatisfiable

no instance

feasible realisation

accept

(b) The CEGIS approach

Fig. 1. CEGAR and CEGIS approaches to (feasibility) synthesis.

(CEGAR [17]) while the second approach fits within counterexample-guided
inductive synthesis (CEGIS) [36]. Full details of the approaches can be found in
[37,38]. We present both techniques at the level of Markov chains for threshold
problems on reachability problems and illustrate their usage on simple proba-
bilistic programs.

Using CEGAR. We represent all possible designs, thus the entire family, by a
single MDP. A single, initial, non-deterministic choice determines according to
which family member the MDP behaves. This technique is adopted from [16] and
originated in software product lines [18]. As the MDP can be prohibitively large,
we do not solve the synthesis problems directly on this model, but rather on an
abstraction of it—similar in spirit as repairing abstract models [13]. Verifying the
abstraction, i.e., the quotient MDP M , yields under- and over-approximations of
the min and max probability of satisfying ϕ, respectively. A repair is impossible
if e.g., the verification reveals that the min probability exceeds r for ϕ with
threshold ≤r. If the model checking is inconclusive, i.e., the abstraction is too
coarse, we iteratively refine the quotient MDP by splitting the family into sub-
families, see Fig. 1(a). The refinement is guided using the so-called inconsistent
schedulers (aka: counterexamples) that optimise the probability on the MDP.

Using CEGIS. Starting from a family, a candidate realisation D is selected and
discharged to a verifier, see Fig. 1(b). Using off-the-shelf probabilistic model-
checking techniques [3,26], it verifies whether D |= ϕ in case a solution is found.
If D �|= ϕ, a counterexample (CE) is derived which in our setting is a fragment
[41] of the realisation D that refutes ϕ. The key is that this CE is exploited
in a clever way by an SMT (satisfiability modulo theory)-based synthesiser to
rule out potentially many realisations (the dashed area in Fig. 1(b))—rather
than the just refuted realisation D—at once. Thus, in a sense counterexamples
are “extended” to a set of refuting realisations. This synthesis-verification loop
is repeated until either a satisfying realisation is found or the entire family is
pruned implying the non-existence of a realisation D |= ϕ.

110 M. Češka et al.

Design Space Partitioning. Both the CEGAR and CEGIS approach iteratively
partition the family into “good”, “bad” and inconclusive realisations. Phrased
in terms of model repair, they partition the family into repaired, failed, and
unknown Markov chains. The two approaches use complementary partitioning
strategies. Whereas the CEGAR approach starts from considering all possible
realisations, and successively splits the entire family of realisations into sub-
families, the CEGIS approach starts with a single candidate realisation, and
rules out several realisations by effectively exploiting counterexamples.

2 Preliminaries

We start with basic foundations, for details, see [3,4]. Then, we formalise the
notion of families of Markov chains, and define various synthesis problems.

2.1 Probabilistic Models and Specifications

Probabilistic Models. A probability distribution over countable set X is a function
μ : X → [0, 1] with

∑
x∈X μ(x) = μ(X) = 1. Let Distr(X) denote the set of all

distributions on X.

Definition 1 (MC). A Markov chain (MC) D = (S, s0,P) with finite set S of
states, initial state s0 ∈ S, and transition probability function P : S → Distr(S).

MCs have unique distributions over successor states at each state. A sub-Markov
chain (sub-MC) is induced by a MC and a subset of its states. For X ⊆ S, let
the set Succ(X) denote the successor states of X, i.e., Succ(X) = {t ∈ S | ∃s ∈
X. P(s, t) > 0}.

Definition 2 (sub-MC). Let MC D = (S, s0,P) and C ⊆ S a set of (critical)
states with s0 ∈ C. The sub-MC of D,C is the MC D′ = (S′, s0,P′) with
S′ = C ∪ Succ(C), and

P′(s, t) =

⎧
⎪⎨

⎪⎩

P(s, t) s ∈ C, t ∈ S

1 s ∈ Succ(C) \ C ∧ t = s

0 otherwise.

Adding non-determinism over distributions leads to Markov decision processes.

Definition 3 (MDP). A Markov decision process (MDP) is a tuple M =
(S, s0,Act ,P) where S, s0 as in Definition 1, Act is a finite set of actions, and
P : S × Act � Distr(S) is a partial transition probability function.

The available actions in s ∈ S are Act(s) = {a ∈ Act | P(s, a) �= ⊥}. An
MDP with |Act(s)| = 1 for all s ∈ S is an MC. A path of an MDP M is an
(in)finite sequence π = s0

a0−→ s1
a1−→ · · · , where si ∈ S, ai ∈ Act(si), and

P(si, ai)(si+1) �= 0 for all i ∈ N. For finite π, last(π) denotes the last state of π.
Let PathsMfin denote the set of finite paths of M . The notions of paths carry over
to MCs (actions are omitted).

Model Repair Revamped 111

Definition 4 (Scheduler). A scheduler for an MDP M = (S, s0,Act ,P) is a
function σ : PathsMfin → Act such that σ(π) ∈ Act(last(π)) for all π ∈ PathsMfin .
Scheduler σ is memoryless if last(π) = last(π′) =⇒ σ(π) = σ(π′) for all
π, π′ ∈ PathsMfin . Let ΣM denote the set of all schedulers of M.

Schedulers resolve the non-determinism over actions in the MDP. Applying
scheduler σ to an MDP M yields the induced Markov chain Mσ.

Specifications. For simplicity, we only consider reachability specifications ϕ =
P∼λ(♦G) where G ⊆ S is a set of goal states, λ ∈ [0, 1] ⊆ R is a threshold,
and ∼ ∈ {<,≤,≥, >} is a binary comparison operator. Extensions to expected
rewards, PCTL* [2], or ω-regular properties are rather straightforward.

The interpretation of ϕ for MC D is as follows. Let Prob(D,φ)(s) denote the
probability to satisfy φ = ♦G from state s ∈ S in MC D. For initial state s0,
we abbreviate Prob(D,φ)(s0) by Prob(D,φ). Then, D |= ϕ iff Prob(D,φ) ∼ λ.
The specification ϕ holds in MDP M , denoted M |= ϕ, iff it holds for the
induced MCs under all schedulers. The maximum probability to satisfy φ in
MDP M is given by a maximising scheduler σ∗ ∈ ΣM , i.e., there is no scheduler
σ′ ∈ ΣM with Prob(Mσ∗ , φ) < Prob(Mσ′ , φ). As we consider finite models,
such a maximising scheduler always exists. Minimum probabilities are defined
analogously.

2.2 Families of Markov Chains

We present our approaches on an explicit representation of a family of MCs
using a parametric transition probability function. Such an explicit representa-
tion allows to reason about practically interesting synthesis problems, see Sect. 4.

Definition 5 (Family of MCs). A family of MCs is a tuple D = (S, s0,K,P)
where S and s0 are as before, K is a finite set of discrete parameters such that
the domain of each parameter k ∈ K is Tk ⊆ S, and P : S → Distr(K).

The transition probability function of MCs maps states to distributions over
successor states. For families of MCs, this function maps states to distributions
over parameters. Instantiating each of these parameters with a value from its
domain yields a “concrete” MC, called a realisation.

Definition 6 (Realisation). A realisation of a family D = (S, s0,K,P) is a
function r : K → S where ∀k ∈ K : r(k) ∈ Tk. A realisation r yields an MC
Dr = (S, s0,P(r)), where P(r) is the transition probability matrix in which each
k ∈ K in P is replaced by r(k). Let RD denote the set of all realisations for D.

As a family D of MCs is defined over finite parameter domains, the number of
family members (i.e. realisations from RD) of D is finite, viz. |D| := |RD| =∏

k∈K |Tk|, but exponential in |K|. Subsets of RD induce so-called subfamilies
of D. While all these MCs share the same state space, their reachable states may
differ, as demonstrated by the following example.

112 M. Češka et al.

0 1 2 3 4

0.90.1

0.5

0.5

1 1

0.8

0.2

(a) Dr1 with r1(k2) = 2, r1(k3) = 2

0 1 2 3 4

0.90.1

0.5

0.5

1

0.8

1

0.2

(b) Dr2 with r2(k2) = 2, r2(k3) = 4

0 1 2 3 4

0.90.1

0.5

1 1

0.8

0.5 0.2

(c) Dr3 with r3(k2) = 3, r3(k3) = 2

0 1 2 3 4

0.90.1

0.5

1

0.5
0.8

1

0.2

(d) Dr4 with r4(k2) = 3, r4(k3) = 4

Fig. 2. The four different realisations of family D.

Example 1 (Family of MCs). Consider the family of MCs D = (S, s0,K,P)
where S = {0, . . . , 4}, s0 = 0, and K = {k0, . . . , k5} with domains Tk0 = {0},
Tk1 = {1}, Tk2 = {2, 3}, Tk3 = {2, 4}, Tk4 = {3} and Tk5 = {4}. The parametric
transition function is defined by:

P(0) = 0.5: k1 + 0.5: k2 P(1) = 0.1: k0 + 0.9: k1 P(2) = 1: k3

P(3) = 0.8: k3 + 0.2: k4 P(4) = 1: k5

We can simplify the representation by substituting the constants:

P(0) = 0.5: 1 + 0.5: k2 P(1) = 0.1: 0 + 0.9: 1 P(2) = 1: k3

P(3) = 0.8: k3 + 0.2: 3 P(4) = 1: 4

Figure 2 shows the four MCs that result from the realisations {r1, r2, r3, r4} =
RD of D. States that are unreachable from the initial state are greyed out. The
family has five states, each of which are reachable in one of the realisations. Yet,
every realisation has at most four reachable states.

2.3 Synthesis Problems

Problem 1 (Synthesis). Let D be a family of MCs and ϕ = P∼λ(φ) with φ = ♦G
for G ⊆ S. We consider the following synthesis problems:

1. Find a realisation r ∈ RD with Dr |= ϕ.
2. Partition RD into T and F with r ∈ T iff Dr |= ϕ and r ∈ F otherwise.
3. Find a realisation r∗ ∈ RD with r∗ = argmax

r∈RD
{Prob(Dr, φ)}.

The first synthesis problem (referred to as feasibility synthesis) is to determine a
realisation satisfying ϕ, provided some exists. The second problem (referred to as
threshold synthesis) is to identify the set of realisations satisfying and violating

Model Repair Revamped 113

a given specification, respectively. The feasibility synthesis problem is in a sense
just a simple instance of threshold synthesis to find one realisation r ∈ T . The
last problem (referred to as max synthesis) is to find a realisation that maximises
the reachability probability. It can be defined for minimising such probabilities
in a similar way. As our families are finite, such optimal realisations r∗ always
exist. Phrased in terms of model repair, the first problem is concerned with the
question whether a possible repair (under all admissible repairs) does exist, the
second problem partitions the realisations into those that are repaired and those
that cannot, while the last problem is about finding the repair that maximises
(or, dually, minimises) the objective. The simplest synthesis problem, feasibility,
is NP-complete [38] (for a minor extension to families).

Example 2 (Synthesis problems). Recall the family of MCs D from Example 1.
For the specification ϕ = P≥1/10(♦{4}), the solution to the threshold synthesis
problem is T = {r2, r4} and F = {r1, r3}, as the goal state 4 is not reachable for
Dr1 and Dr3 . For φ = ♦{4}, the solution to the max synthesis problem on D is
r2 or r4, as Dr2 and Dr4 almost surely reach state 1.

Remark 1. It is sometimes beneficial to consider a mild variant of the max-
synthesis problem in which the realisation r∗ is not required to achieve the
maximal reachability probability, but it suffices to be sufficiently close to it.
This notion of ε-optimal synthesis for a given 0 < ε ≤ 1 amounts to find a
realisation r∗ with Prob(Dr∗ , φ) ≥ (1−ε) · max

r∈RD
{Prob(Dr, φ)}.

2.4 Synthesis Costs

As in model repair [5], it is quite natural to associate non-negative integer costs
to the various realisation options. This enables distinguishing cheap and expen-
sive repairs. The realisation (aka: repair) costs should not be confused with the
concept of rewards in MCs; the latter impose a cost structure on the MC while
realisation costs impose costs on the realisation at hand.

Definition 7 (Realisation costs). For family D, the function c : RD → N

assigns to each realisation r of D a realisation cost c(r).

The realisation costs are deliberately defined in a rather abstract manner. Con-
crete instances may depend on the probability distribution over K, the number
of options, weighted combinations thereof, and so forth. By imposing an avail-
able budget on the possible realisations, we obtain the following cost-dependent
variants of the earlier synthesis problems.

Problem 2 (Cost-constrained synthesis). Let D be a family of MCs, ϕ and φ as
before, and B ∈ N a budget. Consider the synthesis problems:

1. Find a realisation r ∈ RD with Dr |= ϕ and c(r) ≤ B.
2. Partition RD with r ∈ T iff (Dr |= ϕ and c(r) ≤ B), and r ∈ F otherwise.
3. Find r∗ ∈ RD with r∗ = argmax

r∈RD

{Prob(Dr, φ) | c(r) ≤ B}.

114 M. Češka et al.

hole k2 either { 2, 3 }
hole k3 either { 2, 4 }
module encode
s : [0.. 4] init 0;
s = 0 -> 0.5 : s’=1 + 0.5 : s’=k2;
s = 1 -> 0.1 : s’=0 + 0.9 : s’=1;
s = 2 -> 1: s’=k3
s = 3 -> 0.2 : s’=3 + 0.8 : s’=k3;
s = 4 -> 1: s’=s
endmodule

Fig. 3. Toy-encoding of the family in Example 1.

Cost-constrained maximal synthesis does not need to have a solution; therefore
argmax ∅ equals undefined. Cost-optimal versions of the synthesis problems are:

Problem 3 (Cost-optimal synthesis). Let D be a family of MCs, ϕ and φ as
before. We consider the following cost-optimal synthesis problems:

1. Find a realisation r∗ ∈ T = {r ∈ RD | Dr |= ϕ} with c(r∗) = minr∈T {c(r)}.
2. Find a minimal-cost realisation r∗ for the max/min-synthesis problem.

Example 3 (Cost-constrained and cost-optimal synthesis). Consider our running
example, and let the cost of a realisation r be the sum of its number of reachable
states and their outgoing transitions. That is, c(r1) = 8, c(r2) = 10, c(r3) = 11,
and c(r4) = 11. For φ = ♦{4}, and budget B=10, cost-constrained max synthesis
yields r2. Lowering the budget B to 9, yields r1, while for B less than 8, no
realisation is found.

2.5 A Program Sketching Language

Probabilistic models are typically specified by means of a high-level modelling
language, such as PRISM [27], PIOA [42], JANI [9], or MODEST [7]. Let us
briefly describe how the model-based concepts translate to language concepts in
the PRISM guarded-command language. The aim is to describe families of MCs,
possible constraints on its members, and repair costs in a succinct manner. A
(basic) encoding for the family of Example 1 is given in Fig. 3.

A PRISM program consists of one or more reactive modules that may interact
with each other. Consider a single module. This is not a restriction as every
PRISM program can be flattened into this form. A module has a set of (bounded)
variables that span its state space. The possible transitions between states of a
module are described by a set of guarded commands of the form:

guard → p1 : update1 + pn : updaten

The guard is a boolean expression over the variables of the module. If the guard
evaluates to true, the module can evolve into a successor state by updating its
variables. An update is chosen according to the probability distribution given
by expressions p1 through pn. In every state enabling the guard, the evaluation
of these expressions must sum up to one.

Model Repair Revamped 115

A PRISM sketch is a program that may contain “holes”. Holes are the
unknown parts of the program and can be replaced by one of finitely many
options. A hole is of the form:

holeh either{ expr1, . . . , exprk }

where h is the hole identifier and expri is an expression over the program vari-
ables. A hole h can be used in commands in a similar way as a constant, and
may occur multiple times within a command. To distinguish cheap and expensive
options, options within a hole can have a cost:

hole h either{x1 is expr1 cost c1, . . . , xk is exprk cost ck }

where option i is named xi and has associated cost ci. Costs can be constants or
expressions that evaluate to natural numbers. The option names x1 through xn

can be used to describe constraint on realisations. These propositional formulae
over option names restrict hole instantiations, e.g.,

constraint(x1 ∨ x2) =⇒ x3

requires that whenever the options x1 or x2 are taken for some (potentially
different) holes, option x3 (for some hole) is also to be taken.

The family of realisations of a given PRISM program sketch is now obtained
by all possible substitutions of holes h by their options x1 through xn that satisfy
all specified constraints.

3 Counterexample-Guided Synthesis

Enumeration. A straightforward approach to the synthesis problems for finite
families of MCs is to just enumerate all realisations and analyse each of them
individually. This naive method is practically applicable to small- to medium-
sized families only. For more realistic settings, alternative approaches to this
baseline are needed. We present two different counterexample-guided approaches:
one based on CEGAR [17] and one on CEGIS [36].

A Bird’s Eye View on Our Two Approaches. Let us explain the intuition behind
the CEGAR and CEGIS approaches towards synthesis. Both approaches succes-
sively partition the family D into MCs satisfying ϕ and those refuting ϕ. Figure 4
illustrates this for a two-dimensional parameter space, each parameter having
five possible values. Each cell thus corresponds to a realisation. CEGAR first
checks if all realisations satisfy ϕ on a sound abstraction. Figure 4(a) shows the
situation when the verification fails, i.e. it gives an inconclusive result. This can
happen either due to the subfamily consisting of both satisfying and refuting
realisations, or because the abstraction is too coarse. In the next step, CEGAR
refines the family into two subfamilies and establishes e.g., that all members
in the subfamily represented by the first two columns refute ϕ (indicated in

116 M. Češka et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. CEGAR (a)–(d) vs. CEGIS (e)–(h) illustrated. The grid depicts a family with
two parameters, each with 5 possible values. Thus, each cell corresponds to a reali-
sation. Blue indicates a verification call that fails, green/red a covered region satisfy-
ing/refuting ϕ. The lighter shaded cells indicate realisations ruled out by counterex-
ample analysis. (Color figure online)

red in Fig. 4(b)), while verifying the remaining subfamily is again inconclusive
(Fig. 4(c)). Partitioning that subfamily reveals that the six realisations in the
lower two rows fulfil ϕ. In contrast, CEGIS starts to select a realisation r, e.g.,
the one in the lower left corner. As Dr �|= ϕ (indicated dark red in Fig. 4(e)),
the counterexample provided by the verifier rules out all realisations in the left-
most column (indicated in lighter shade). This scheme is repeated. In Fig. 4(f),
a realisation is selected (second column, lowest row), and similar to the first
case, its counterexample rules out all realisations in that column. In Fig. 4(g),
a satisfying realisation for ϕ is selected. In contrast to Fig. 4(g), (h) shows that
the analysis of counterexamples to ¬ϕ gives rise to more satisfying realisations.
Besides the selected candidate (lowest row), the counterexamples to ¬ϕ cover
the entire column.

3.1 CEGAR

We first represent the family D by a single all-in-one MDP. Selecting action ar

in the (fresh) initial state sD0 of the MDP corresponds to choosing the realisation
r ∈ RD and entering the concrete MC Dr. Let us illustrate this with our example.

Figure 5 shows the MDP MD for the family D from Example 1, where for the
sake of readability, only the transitions and states corresponding to realisations
r1 and r2 are included. Transitions to states (s, ri) are labeled with action ari

;
these action labels are omitted here. Unreachable states from the initial MDP
state sD0 are marked grey. There is a one-to-one relationship between a deter-
ministic memoryless scheduler of MDP MD and a realisation of D. Thus, model
checking MD yields extremal probabilities for all realisations of the family D.

The MDP model grows linearly with the number of family members. To
mitigate the complexity, we apply a simple abstraction where the realisation of

Model Repair Revamped 117

a state in the MDP MD is abstracted away, i.e. the item r is ignored in state
(s, r). Applying this to our running example amounts to a column-wise grouping
of states in Fig. 5. This results in the quotient MDP MD

∼ in Fig. 6. By the over-
approximation in the quotient MDP MD

∼ , a scheduler may first choose actions
ar and then ar′ . This corresponds to switching from realisation r to r′. Such
inconsistent regimes result in an MC outside the family D. There is one-to-one
relationship between consistent schedulers—those that globally stick to a single
realisation r—and the realisation of D.

sD0

(0, r2) (1, r2) (2, r2) (3, r2) (4, r2)
0.9

0.1

0.5

0.5
10.8

1

0.2

(0, r1) (1, r1) (2, r1) (3, r1) (4, r1)
0.9

0.1

0.5

0.5 1

0.8

1
0.2

1

1

Fig. 5. Reachable fragment of the all-in-one MDP MD for realisations r1 and r2.

sD0 [0]∼ [1]∼ [2]∼ [3]∼ [4]∼

0.90.10.5

0.5

1
0.8

1

0.2

0.90.10.5

0.5

10.81 0.2

1

Fig. 6. The quotient MDP MD
∼ for realisations r1 (top actions) and r2 (bottom actions)

Example 4. Consider the quotient MDP MD
∼ in Fig. 6. Transitions from previ-

ously unreachable states, marked grey before, are reachable in the quotient. The
scheduler σ on the quotient MD

∼ that picks ar1 in [2]∼ and ar2 in state [3]∼ is
inconsistent, as it behaves according to two different realisations r1 and r2.

3.2 CEGIS

We follow the typical separation of concerns as in oracle-guided inductive syn-
thesis [1,22,23]: a synthesiser selects single realisations that have not been con-
sidered before, and a verifier checks the selected realisation. Let us first focus
on the verifier. Consider our running example with ϕ = P≤2/5(♦{2}). Assume
the synthesiser picks realisation r1. The verifier then builds Dr1 and determines
Dr1 �|= ϕ. Observe that the verifier does not need the full realisation Dr1 to refute
ϕ. In fact, the paths in the fragment of Dr1 in Fig. 7(a) suffice to show that the
probability to reach state 2 exceeds 2/5. Formally, the fragment in Fig. 7(b) is a
sub-MC with critical states C = {0}. The essential property is [41]:

If a sub-MC of a MCD refutes the safety property ϕ, then D refutes ϕ too.

118 M. Češka et al.

0 1 2
0.5

0.5

(a) Fragment of r1

0 1 21 1
0.5

0.5

(b) Sub-MC of Dr1 with C = {0}

Fig. 7. Fragment and corresponding sub-MC that suffices to refute ϕ

Now observe that the considered sub-MC is part of realisation r2 too. Thus,
Dr2 �|= ϕ. This can be concluded by considering r2, D and C without constructing
Dr2 . First, take the parameters occurring in P(c) for any c ∈ C. This yields k1
and k2. The values for the other parameters thus do not affect the shape of the
sub-MC induced by C. Realisation r2 only varies from r1 in the value of k3.
Therefore, the sub-MC of Dr2 induced by C is isomorphic to the sub-MC of Dr1

induced by C. This results in concluding Dr2 �|= ϕ.
Let us generalise our observations: The verifier gets a realisation r, builds

Dr and checks whether Dr |= ϕ. If yes, then ¬ϕ is considered to seek for
other realisations satisfying ϕ1. Otherwise, some sub-MC of Dr refutes ϕ. (These
counterexamples can be constructed from MC models using techniques from
[41], or as snippets of PRISM programs using [20].) The verifier constructs the
conflict set C and checks which parameters K ′ occur on the outgoing transitions
of states in C. Each r′ with the same parameter values for K ′ can be immediately
refuted, without building the realisation Dr′ . Put in a nutshell, counterexamples
are exploited to rule out several realisations in one shot.

The main task that remains for the synthesiser is to book-keep the considered
and excluded realisations, and, heuristically select realisations that lead to small2

counterexamples, as these exclude potentially many realisations.

4 Applications

This section illustrates the potential wide applicability of probabilistic model
synthesis by providing examples from three different areas: program sketching,
software product lines, and controller synthesis for partially observable models.

4.1 Program Sketching

Background. The idea of program sketching [35] is to start with a program
sketch, a partial program in which difficult expressions, guards, and statements
are left unspecified. The hypothesis of program sketching is that programmers
often have an idea about the main control flow of the program but filling in all
low-level details is laborious and error prone. Completing these low-level details

1 Note that ¬ϕ is not a safety property, but the presented idea can be extended to
liveness properties too.

2 For some suitable measure of size.

Model Repair Revamped 119

is left to an automated synthesiser. Syntax generators are used to describe a
space of the possible code fragments that can be used to complete the program.
The synthesised program has to satisfy the specification ϕ. Program sketching
has been successfully applied to e.g., scientific programs and concurrent data
structures [1]. We show how our approaches can be applied to sketching of prob-
abilistic programs.

Concrete Challenge. Our program sketch is describing a dynamic power manager
(DPM), a key component in dynamically optimising energy consumption [6]. A
DPM controls changing the system’s power states at run time. Depending on
workload and performance constraints, it issues commands (e.g., go into sleep
mode, wake up) to the system. We consider a DPM system with two request
priorities, low and high; these priorities typically depend on the time-criticality.
Requests are placed in finite buffers (based on their priority), provided the buffers
are not full. Otherwise, the requests are lost. A similar DPM has been analysed
by probabilistic model checking [34].

Problem Statement. Our goal is to synthesise a DPM program that decides to
switch power state based on the current workload expressed in terms of the
occupancy of the low-priority and high-priority request buffers.

Approach. The starting point is a program sketch that includes partially specified
commands of the form:

gH & gL −→ 1 : state′ = X

where gH and gL are partially specified guards concerning the low-priority and
high-priority request buffer, respectively, and hole X represents an unknown
update of the DPM state. Possible code fragments to complete the commands
are e.g., in state = 1, the DPM sends a control signal to switch to an active
state, while gH (and similarly gL) indicates that the occupancy is within a given
interval, e.g., at most 50%. We synthesise the guards and updates such that the
resulting DPM control program meets a conjunction of objectives (inspired by
[22]) that constrain the expected number of lost low- and high-priority requests
and the expected energy consumption, for different thresholds λ imposed on
these expected values.

Results. The MC family has over 3 · 105 realisations, i.e., control programs. The
average realisation has more than 5000 states. We consider an unsatisfiable con-
junction of 3 properties describing a possible DPM specification. Within 20 min,
the conjunction is shown to be unsatisfiable (although each property alone is
satisfiable). An enumerative approach takes more than 20 h to show this. For a
satisfiable conjunction, we find a realisation within minutes.

4.2 Software Product Lines

Background. A software product line is (according to wikipedia) “a set of
software-intensive systems that share a common, managed set of features

120 M. Češka et al.

s

10

11

01

00

(1−fa)·(1−fb)

fa·(1−fb)

(1−fa)·fb

fa·fb

(a) Parametric MC

hole fa either { 0, 1 }
hole fb either { 0, 1 }
module encode
s : [0.. 1] init 0;
FA : [0 .. 1] init 0;
FB : [0 .. 1] init 0;
s = 0 -> 1: s’=1 & FA ’=fa & FB’=fb;
..
endmodule

(b) The PRISM encoding for the family

Fig. 8. Translating a parametric MC formulation to an encoding of a family of MCs.

satisfying the specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed way”. Products
in a software product line have different features which can be understood as
functionalities changing the behaviours of a core software system. They thus pro-
vide an elegant way to specify families of systems: every member of the family
comprises the core system and a combination of features. Randomness appears
when modelling energy consumption or failure probabilities.

Concrete Challenge. We consider the BSN (Body Sensor Network) software
product line benchmark from [33], the largest benchmark analysed by proba-
bilistic model checking with the ProFeat tool [16]. BSN describes a network of
connected sensors that send measurements to a unit identifying health-critical
situations. The family contains the various configurations of 10 binary features,
that is, whether a sensor is available or not. We are interested in the reliability
of the system, that is, in the probability that the system behaves as described.
The system is described as a parametric Markov chain:

Example 5. We consider a variation point (a state whose future behaviour
depends on the features) where depending on the availability of features Fa, Fb

the model behaves differently. For each feature, a Boolean parameter f is 1 if
the feature is active and 0 otherwise. At a variation point, the probability of
every transition is scaled by factor p, which equals f if the feature enables the
transition and 1−f otherwise. This results in parametric MC in Fig. 8(a).

Problem Statement. Find all features combinations where the induced system
does not meet a certain reliability.

Approach. The formulation in [33] is a parametric MC, and therefore seems
amenable to standard parameter synthesis in which probabilities have to be
synthesised. However, in absence of certain features, transitions are taken with
probability zero. Traditional parameter synthesis techniques do not allow for
such assignments. We translate the parametric MC into a PRISM-description of
a family, as illustrated in the following example:

Model Repair Revamped 121

Example 6. We adapt the encoding in Fig. 8(a) to an encoding in Fig. 8(b).

Results. Though this is the largest product line example used in [16], verifying
a family with just 1024 family members, with an average size of the realisation
of roughly 100 states is mostly trivial. Within seconds, we can categorise the
different realisations based on their reliability, either by our approaches or by
enumeration.

4.3 Controller Synthesis in Partially Observable Systems

Background. As a next application, we consider controller synthesis (aka: sched-
uler synthesis) in partially-observable MDPs (POMDPs, for short). A POMDP
[25] is an MDP in which an observation o(s) is associated with every state s.
POMDP controllers do not have access to the current state of the POMDP;
instead, they can only use the observations of the visited states. Thus, whereas
an MDP scheduler bases its decisions on finite paths of the form π = s0

a0−→
· · · an−1−−−→ sn, a POMDP controller does so using the observation sequence
o(π) = o(s0)

a0−→ · · · an−1−−−→ o(sn). Several paths in the underlying MDP M may
give rise to the same observation sequence. Controllers have to take this restricted
observability into account: They cannot distinguish paths with the same obser-
vation sequence. Controller synthesis for POMDPs is notoriously hard: Finding
an optimal strategy is undecidable [12] and finding an optimal memoryless strat-
egy is already NP- and SQRT-SUM hard [39]. The complexity of the problem
makes the possibility to guide the search for a strategy by means of synthesis
very interesting.

Concrete Challenge. We consider Maze, a classical motion planning problem
considered as POMDP, see e.g., [29]. A robot is put in a maze with paths sur-
rounded by walls, and its aim is to go to a goal position in the maze. The problem
is partially observable because the robot cannot perceive its true location, but
only the presence or the absence of a wall on either side of its current position.
There is a non-zero probability of slipping, so that the robot does not always
know if its last attempt to make a move had any consequence on its actual
position in the maze.

Problem Statement. The objective is to synthesise a deterministic finite-state
controller [11,29] for a Maze (of different size) with a bounded number of states
that minimises the expected time for the robot to reach the goal.

Approach. To cast this POMDP problem in our framework of families of MCs, we
adapt a recent result [24] that established a one-to-one correspondence between
finding finite memory randomised controllers in POMDPs and satisfying param-
eter valuations in parametric MCs. We sketch a controller by restricting the
memory to a fixed bound. Costs are used to penalise the complexity of the
controllers such that simple, i.e., easy implementable, finite-memory controllers

122 M. Češka et al.

result. The family describes all MCs induced by small-memory observation-based
deterministic strategies with a fixed upper bound on their amount of memory.
We are interested in the expected time to the goal. (This problem can be for-
malised by adding rewards to MDPs in the usual way.)

Results. The MC family has a bit more than 106 realisations, i.e., observation-
based strategies. The average realisation has 134 states. Among other results,
within seconds, we find the 4 strategies that were at most 2% off the maximum.
In comparison, an enumeration-based approach takes several hours, and enumer-
ating all consistent strategies of the quotient (see Sect. 3.1) takes more than an
hour.

5 Epilogue

Summary. This paper outlined two techniques for the automated synthesis of
finite-state probabilistic models or programs. The CEGAR approach takes as
a starting point an abstract representation of a family of Markov chains
and exploits inconsistent policies—policies that switch between different
realisations—to iteratively refine the design space. The CEGIS approach exploits
critical subsystems as counterexamples and uses SMT techniques to prune the
design space by analysing the counterexamples. We foresee a wide applicability
of these kind of synthesis techniques; we illustrated this by examples from pro-
gram sketching, controller synthesis, and software product lines. Both techniques
significantly outperform a naive enumerative approach and differ substantially
from the few existing approaches to synthesising probabilistic programs [10,31].
CEGAR works particularly well if the quotient MDP is succinct while CEGIS
excels the “more unsatisfiable” the synthesis problem is. CEGAR has difficulties
treating constraints on family members (which are straightforward with CEGIS),
whereas the performance of CEGIS significantly drops for synthesis problems for
which the threshold is close to the true reachability probability.

Future Work. The approaches in this paper are first stepping stones towards the
automated synthesis of probabilistic models. This topic has plenty of interesting
directions for future work. This includes synthesising infinite-state probabilistic
programs, integrating efficient parameter synthesis and model synthesis, devel-
oping adequate modeling formalisms for families of probabilistic models, and
learning algorithms for probabilistic models [28,40].

Acknowledgement. This chapter is a birthday salute to Scott Smolka on the occa-
sion of his 65th birthday. Scott’s research is extremely novel—he is always “ahead
of the pack”. He pioneered probabilistic aspects in formal modeling and verifi-
cation with his seminal works on probabilistic processes, testing pre-orders, and
approximate bisimulation. His work with Grosu on Monte Carlo model checking
emerged into (what others misnamed) statistical model checking. Scott was the
first to combine logical programming with model checking and applied formal

Model Repair Revamped 123

methods to new applications such as cardiac devices and, more recently, bird
flocking. His work has been (and still is) an enormous source of inspiration. This
paper celebrates his (and his co-authors’) work on model repair for probabilistic
models and illustrates how tweaking probabilities (as in model repair) can be
generalised towards synthesising model structures. Happy birthday, Scott!

References

1. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis.
Commun. ACM 61(12), 84–93 (2018)

2. Aziz, A., Singhal, V., Balarin, F., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It
usually works: the temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV
1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60045-0 48

3. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilis-
tic systems. Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 28

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19835-9 30

6. Benini, L., Bogliolo, A., Paleologo, G.A., Micheli, G.D.: Policy optimization for
dynamic power management. IEEE Trans. CAD Integr. Circuits Syst. 18(6), 813–
833 (1999)

7. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

8. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in
verification by AI techniques. Artif. Intell. 112(1–2), 57–104 (1999)

9. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

10. Chasins, S., Phothilimthana, P.M.: Data-driven synthesis of full probabilistic pro-
grams. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part I. LNCS, vol. 10426,
pp. 279–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-
9 14

11. Chatterjee, K., Chmelik, M., Davies, J.: A symbolic SAT-based algorithm for
almost-sure reachability with small strategies in POMDPs. In: AAAI, pp. 3225–
3232. AAAI Press (2016)

12. Chatterjee, K., Chmelik, M., Tracol, M.: What is decidable about partially observ-
able Markov decision processes with ω-regular objectives. J. Comput. Syst. Sci.
82(5), 878–911 (2016)

13. Chatzieleftheriou, G., Bonakdarpour, B., Katsaros, P., Smolka, S.A.: Abstract
model repair. Log. Methods Comput. Sci. 11(3) (2015)

14. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M.Z., Qu, H., Zhang, L.: Model
repair for Markov decision processes. In: TASE, pp. 85–92. IEEE (2013)

https://doi.org/10.1007/3-540-60045-0_48
https://doi.org/10.1007/3-540-60045-0_48
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-319-63387-9_14
https://doi.org/10.1007/978-3-319-63387-9_14

124 M. Češka et al.

15. Chonev, V.: Reachability in augmented interval Markov chains. CoRR
arXiv:1701.02996 (2017)

16. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Asp. Comput.
30(1), 45–75 (2018)

17. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

18. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Model checking
software product lines with SNIP. STTT 14(5), 589–612 (2012)

19. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in
pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 10

20. Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debug-
ging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 146–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6 11

21. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.-P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 13

22. Gerasimou, S., Tamburrelli, G., Calinescu, R.: Search-based synthesis of probabilis-
tic models for quality-of-service software engineering (T). In: ASE, pp. 319–330.
IEEE Computer Society (2015)

23. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program.
Lang. 4(1–2), 1–119 (2017)

24. Junges, S., et al.: Finite-state controllers of POMDPs using parameter synthesis.
In: UAI, pp. 519–529. AUAI Press (2018)

25. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

26. Katoen, J.P.: The probabilistic model checking landscape. In: LICS, pp. 31–45.
ACM (2016)

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

28. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn. 105(2), 255–299 (2016)

29. Meuleau, N., Kim, K., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by
searching the space of finite policies. In: UAI, pp. 417–426. Morgan Kaufmann
(1999)

30. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (1996)

31. Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of prob-
abilistic programs. In: PLDI, pp. 208–217. ACM (2015)

http://arxiv.org/abs/1701.02996
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

Model Repair Revamped 125

32. Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy app-
roach for the efficient repair of stochastic models. In: Havelund, K., Holzmann, G.,
Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295–309. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17524-9 21

33. Rodrigues, G.N., et al.: Modeling and verification for probabilistic properties in
software product lines. In: HASE, pp. 173–180. IEEE (2015)

34. Sesic, A., Dautovic, S., Malbasa, V.: Dynamic power management of a system with
a two-priority request queue using probabilistic-model checking. IEEE Trans. CAD
Integr. Circuits Syst. 27(2), 403–407 (2008)

35. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)
36. Solar-Lezama, A., Rabbah, R.M., Bod́ık, R., Ebcioglu, K.: Programming by sketch-

ing for bit-streaming programs. In: PLDI, pp. 281–294. ACM (2005)
37. Češka, M., Hensel, C., Junges, S., Katoen, J.P.: Counterexample-driven synthesis

for probabilistic program sketches. CoRR abs/1904.12371 (2019)
38. Češka, M., Jansen, N., Junges, S., Katoen, J.-P.: Shepherding hordes of Markov

chains. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 172–
190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 10

39. Vlassis, N., Littman, M.L., Barber, D.: On the computational complexity of
stochastic controller optimization in POMDPs. TOCT 4(4), 12:1–12:8 (2012)

40. Wang, J., Sun, J., Yuan, Q., Pang, J.: Learning probabilistic models for model
checking: an evolutionary approach and an empirical study. STTT 20(6), 689–704
(2018)

41. Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J., Becker, B.: Minimal counterex-
amples for linear-time probabilistic verification. Theor. Comput. Sci. 549, 61–100
(2014)

42. Wu, S., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O
automata. Theor. Comput. Sci. 176(1–2), 1–38 (1997)

https://doi.org/10.1007/978-3-319-17524-9_21
https://doi.org/10.1007/978-3-030-17465-1_10

Generating Hard Benchmark Problems
for Weak Bisimulation

Bernhard Steffen and Marc Jasper(B)

TU Dortmund University, Dortmund, Germany
{steffen,marc.jasper}@cs.tu-dortmund.de

Abstract. In this paper, we propose a method to automatically gener-
ate arbitrarily complex benchmark problems for bisimulation checking.
Technically, this method is a variant of an incremental generation app-
roach for model checking benchmarks where given benchmark scenar-
ios of controllable size are expanded to arbitrarily complex benchmark
problems. This expansion concerns both the number of parallel compo-
nents and the component sizes. Whereas our property-preserving parallel
decomposition is maintained in this variant, the alphabet extension is
flexibilized as, in contrast to temporal logics, weak bisimulation is not
sensitive to liveness properties.

Keywords: (Verification) Benchmark (Generation) ·
(Weak) Bisimulation · Modal transition system · Modal refinement ·
Modal contract · (Observable) Alphabet · Model checking ·
Parallel decomposition · Alphabet extension

1 Introduction

In July 1987, my (Bernhard’s) first official meeting with Robin Milner’s team
in Edinburgh and the starting point of my involvement in the Concurrency
Workbench project: Almost everything was strange to me, the coffee, the subject,
and the entire way of thinking, which was so different from what I was used to in
Kiel. The only concrete technological aspect I remember from this meeting is that
there was a nice algorithm by Kanellakis and Smolka for checking bisimulation,
and that its implementation would be part of my future project work. Without
bisimulation [31], its beautiful checking algorithm [25], and the Concurrency
Workbench project [8], my career would have developed quite differently. A year
later, Scott Smolka came to Edinburgh for his sabbatical and we became close
friends. We had endless discussions and were among the first who published
about probabilistic processes [40], a topic that later on developed with a pace
that I would have never expected. It was Scott who believed in it, in the same
way that he later on believed in his Monte Carlo Model Checking [16], today
subsumed by the popular statistical model checking [28].

Checking (weak) bisimulation of realistic concurrent systems is hard because
of the state explosion problem: The state spaces grow exponentially with the
c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 126–145, 2019.
https://doi.org/10.1007/978-3-030-31514-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_8

Generating Hard Benchmark Problems for Weak Bisimulation 127

number of parallel components [39]. People therefore developed technologies and
heuristics to fight state explosion [6,7,13,36]. Still, there does not exist a silver
bullet, a method/tool that is superior in all cases. Thus, choosing the best tool
for a given application scenario is very difficult.

Competitions for verification tools [1,4,20,22,26] have turned out to be a
good means to (i) better profile their strengths and weaknesses, (ii) improve
their capabilities and performance, and (iii) develop ideas for new algorithms
and heuristics. In fact, machine learning has even been applied to make predic-
tions concerning the performance of verification tools [10]. However, their pre-
diction very much depends on the availability of sufficiently many and expressive
test scenarios. In order to provide scalable and intricate test scenarios, we devel-
oped automatic generation approaches based on formal property preservation
[24,37,38] for the international Rigorous Examination of Reactive Systems
(RERS) Challenge [19,22,23].

Today, the number of tools for (weak) bisimulation checking (cf. e.g. [5,8,11])
is rather small. It is our intention to push the development of (weak) bisimulation
checkers by introducing a corresponding competition.

In this paper, we propose a method to automatically generate arbitrarily complex
benchmark problems for bisimulation checking. Technically, this method is a
variant of the incremental generation approach for model checking benchmarks
presented in [23,34,38], where given benchmark scenarios B(M,Φ) consisting
of a modal transition system (MTS) [27] specification M for some concurrent
implementation of controllable size1 together with a set of proven properties Φ
are expanded to arbitrarily complex benchmark scenarios.

As we are dealing with weak bisimulation in this paper, we consider bench-
mark problems B = (L1, L2, Σ) essentially consisting of two systems L1 and L2

in standard concurrent form [30], i.e. parallel compositions of labeled transitions
systems [32], and Σ, the observable alphabet relative to which weak bisimulation
has to be checked. Similar to the model checking case, our automated benchmark
generation algorithm for weak bisimulation starts with an initial benchmark of
controllable size and allows us to arbitrarily scale the

1. number of parallel components in L1 and L2,
2. size of the expanded parallel compositions of L1 and L2,
3. size of an individual parallel component in L1 and L2, and
4. size of the alphabets Σ(L1) and Σ(L2)

in a light-weight assumption commitment style. Bisimilarity is maintained on the
basis of modal contracts that keep track of the dependencies between transitions
required to guarantee that the decompositions into system and context com-
ponents preserves (weak) modal refinement. Important here is that weak modal
refinement reduces to weak bisimulation for systems that are totally defined, i.e.,
where the set of may and must transitions coincide. Therefore, whenever we start

1 What we mean here is that M can be conveniently model checked with state-of-the-
art technology.

128 B. Steffen and M. Jasper

with an initial benchmark that is totally defined, the result of our expansion is
guaranteed to be weakly bisimilar [21]. In fact, the modalities can be considered
here as a means to elegantly ‘juggle’ with unreachable states.

The main technical difference between the generation of benchmarks for
model checking and for weak bisimulation concerns alphabet extensions (see
Sect. 5.2). Whereas model checking benchmarks must preserve liveness proper-
ties, we do not have to care about liveness here as weak bisimulation is insensi-
tive to it. This eases the alphabet extension process because we do not have to
prohibit the introduction of divergence, i.e. infinite unobservable behavior. The
entire development is accompanied by an illustrative example.

After introducing relevant preliminaries in Sect. 2, Sect. 3 presents our notion
of parallel composition that requires synchronization whenever the alphabets of
components overlap. Section 4 introduces our notion of a benchmark problem
for weak bisimulation checking along with its hardness. Subsequently, Sect. 5
elaborates on our iterative expansion that allows to generate hard benchmark
problems, before Sect. 6 concludes this paper.

2 Preliminaries

This section introduces formal foundations that are relevant throughout this
paper. Section 2.1 covers (modal) transition systems and defines their languages.
Afterwards, Sect. 2.2 is concerned with (weak) modal refinement and (weak)
bisimulation. During this section, we focus on modalities as they are a fun-
damental aspect of our approach. Because concepts such as modal transition
systems and the corresponding refinement relation extend common notions of
labeled transition systems and bisimulation, we introduce the latter as special
instances of the former.

2.1 MTS, LTS, and Their Languages

Modal transition systems (MTSs) [27] can be seen as the formal backbone of all
approaches presented in this paper. An MTS is defined as follows (see [38]):

Definition 1 (Modal Transition System). Let S be a set of states and Σ
an alphabet of action symbols. M = (S, s0,Σ,�,���) is called a (rooted) modal
transition system (MTS) with root s0 ∈ S if the following condition holds:

� ⊆ � ⊆ (S × Σ × S)

Elements of � are called may transitions, those of � must transitions, and those
of (� \ �) may-only transitions. This paper sometimes uses the notations p

σ→T q

or (p σ→ q) ∈ T to denote a transition (p, σ, q) ∈ T . Throughout this paper, the
domain of all possible MTSs is referred to as M.

We define the operator Σ(M) =def Σ to access the alphabet of M . For any
t = (p σ→ q) ∈ �, Σ(t) =def σ is called the symbol or label of t. Operator
Σ(·) extends naturally to transition relations, Σ(T) =def

⋃
t∈T ({Σ(t)}) for any

T ⊆ (S × Σ × S).

Generating Hard Benchmark Problems for Weak Bisimulation 129

For all illustrated MTSs M within this paper, it holds that Σ(M) = Σ(�(M)),
meaning that M ’s alphabet is exactly the union of all transition labels that occur
in M . An MTS can be seen as an extension of a traditional (rooted) labeled tran-
sition system (LTS), which allows the following definition [38]:

Definition 2 (Labeled Transition System). A labeled transition system
(LTS) is an MTS M = (S, s0, Σ, �,�) with

� = �.

The language L(M) of an LTS M is defined as the language of the related
prefix-closed non-deterministic finite automaton (NFA) that results from mark-
ing all states in S as accepting.

For the property-preserving parallel decomposition explained in a later
section, the maximal language defined by an MTS is important (see [38]):

Definition 3 (Maximal Language of an MTS). Let M = (S, s0, Σ, �,�) be
an MTS. The languages L�(M) =def L((S, s0, Σ, �, �)) is called the maximal
language of M .

2.2 (Weak) Refinement and (Weak) Bisimulation

Intuitively speaking, a may transition in an MTS stands for an underspecifi-
cation and indicates a transition that may or may not be present in an actual
implementation. An MTS therefore specifies a set of LTSs. These LTSs can be
retrieved by MTS refinement [27] according to the following definition [38]:

Definition 4 (MTS Refinement). Let Mp = (Sp, s
p
0, Σp, �p,�p),Mq = (Sq,

sq
0, Σq, �q, �q) ∈ M be two MTSs. A relation ��� ⊆ (Sp × Sq) is called a refine-
ment if the following hold for all (p, q) ∈ �:

1.) ∀(p σ→ p′) ∈ �p, ∃(q σ→ q′) ∈ �q : (p′, q′) ∈ �
2.) ∀(q σ→ q′) ∈ �q, ∃(p σ→ p′) ∈ �p : (p′, q′) ∈ �

Mp refines Mq , written as Mp ��� Mq , if there exists a refinement � with
(sp

0, s
q
0) ∈ �.

Given the above, it makes sense to introduce a conjunction operator between
MTSs that, semantically, serves as set intersection (see [38]):

Definition 5 (MTS Conjunction). Let Mp = (Sp, s
p
0, Σ, �p,�p),Mq = (Sq,

sq
0, Σ, �q,�q) ∈ M be two MTSs. The conjunction

(Mp ∧ Mq) =def (Sp × Sq, (s
p
0, s

q
0), Σ, �,�)

130 B. Steffen and M. Jasper

of Mp and Mq is then defined as a commutative and associative operation satis-
fying the following operational rules with p, p′ ∈ Sp and q, q′ ∈ Sq: 2

p
σ→�p

p′ q
σ→�q

q′

(p, q) σ→� (p′, q′)

p
σ→�p

p′ q
σ→�q

q′

(p, q) σ→� (p′, q′)

p
σ→�p

p′ q
σ

	→�q

(p, q) σ→ error

Whenever an error occurs, the conjunction of Mp and Mq is undefined.

The MTS conjunction of Definition 5 guarantees that a refining MTS refines
both components [38]:

Proposition 1 (Conjunction of Refinement Constraints). Let M,Mp,
Mq ∈ M be three MTSs. If (Mp ∧ Mq) is defined, then the following holds:

(M � (Mp ∧ Mq)) ⇐⇒ (M � Mp and M � Mq)

As a result, refinements of a conjunction inherit all the properties of the com-
ponent MTSs. Our MTS decomposition methods strongly depend on this fact.

With the goal to define weak modal refinement, we introduce the common
notion of hiding (see [38]):

Definition 6 (Label Hiding). Let M = (S, s0, Σ, �,�) ∈ M be an MTS. Let
Γ ⊆ Σ be a sub-alphabet. The Γ -hiding

hideΓ (M) =def (S, s0, ((Σ \ Γ) ∪ {τ}), hideΓ (�), hideΓ (�))

of M relabels all transitions t of M such that Σ(t) ∈ Γ with the (unobservable)
special symbol τ and therefore features the following transition relations for all
T ∈ {�,�}:

hideΓ (T) = {(p, τ, q) | ∃γ ∈ Γ : (p, γ, q) ∈ T} ∪ {(p, σ, q) ∈ T | σ ∈ (Σ \ Γ)}

In order to compare two MTSs based on a certain alphabet Γ , it helps to
express that all of their symbols are hidden which are not in Γ :

Definition 7 (Label View). Let M = (S, s0, Σ, �,�) ∈ M be an MTS. Let
Γ ⊆ Σ be a sub-alphabet. Then we define the Γ view [M]

Γ
of M as follows:

[M]
Γ

=def hideΣ(M)\Γ (M)

We prepare the (standard) definition of weak MTS refinement by defining the
usual observational relation of a transition relation as in [38]:

Definition 8 (Observational Relation). Let (Σ ∪ {τ}) be an alphabet with
τ and let T ⊆ (S × (Σ ∪ {τ}) × S) be a transition relation between states in S.

2 This definition depends on the fact that each must transition is also a may transition.

Generating Hard Benchmark Problems for Weak Bisimulation 131

Let p, p′, q, q′ ∈ S. The observational relation obs(T) of T is then recursively
defined as follows:

p
ε=⇒ p

p
τ→ p′ p′ ε=⇒ q

p
ε=⇒ q

p
ε=⇒ p′ p′ σ→ q′ q′ ε=⇒ q

p
σ=⇒ q

where σ ∈ Σ, p
σ→ p′ denotes a feasible transition (p, σ, p′) ∈ T and p

σ=⇒ p′ a
feasible transition (p, σ, p′) ∈ obs(T).

The observational MTS is now simply defined by replacing the original tran-
sition relations with their observable counterparts (see [38]):

Definition 9 (Observational MTS). Let M = (S, s0, Σ, �,�) ∈ M be an
MTS. The observational MTS ω(M) of M is based on the observational
expansion of its transition relations (Definition 8):

ω(M) =def (S, s0, ((Σ \ {τ}) ∪ {ε}), obs(�), obs(�))

This is sufficient to introduce weak MTS refinement [21,38]:

Definition 10 (Weak MTS Refinement). Let M,M ′ ∈ MTS be two MTSs.
Then Weak refinement ��� is defined as follows:

(M � M ′) ⇐⇒ (ω(M) � ω(M ′))

The frequently used concept of (weak) bisimulation can now be derived from
the notion of (weak) refinement:

Definition 11 ((Weak) Bisimulation). Let L,L′ be two LTSs. Then L is
bisimilar to L′, denoted as L ∼ L′, iff L � L′. Furthermore, L is weakly
bisimilar to L′, denoted as L ≈ L′, iff L � L′.

This correspondence is based on the fact that according to Definition 2, may
and must transition relations are identical within an LTS.

3 Parallel MTS Composition

Our parallel composition operator for MTSs as introduced in [38] is reminiscent
of CSP [18] with synchronization of components on their common alphabets:

Definition 12 (Parallel MTS Composition). Let M1 = (S1, s
1
0, Σ1, �1,�1),

M2 = (S2, s
2
0, Σ2, �2,�2) ∈ M be two MTSs, and let T ∈ {�,�} identify the

type of transition. The parallel composition

(M1 || M2) =def (S1 × S2, (s10, s
2
0), Σ1 ∪ Σ2, �,�)

is then defined as a commutative and associative operation satisfying the follow-
ing operational rules with p, p′ ∈ S1 and q, q′ ∈ S2:3

p
σ→T p′ q

σ→T q′

(p, q) σ→T (p′, q′)

p
σ→T p′ σ /∈ Σ2

(p, q) σ→T (p′, q)
3 This definition again depends on the fact that each must transition is also a may

transition.

132 B. Steffen and M. Jasper

Throughout this paper, all components within a parallel composition M =
(M1 || ... || Mn) are different. This allows us to abbreviate M ′ = Mi for some
i ∈ N≤n with M ′ ∈ M in a set notation-like fashion. Moreover, similar to a
product over multiple operands, the term

∣
∣
∣
∣
Mi∈M

Mi =def (M1 || ... || Mn)
abbreviates the regular notation of parallel composition.

In the following, we begin with a running example based on an initial par-
allel composition of two LTSs. Because every LTS is also an MTS according to
Definition 2, we can use Definition 12 for the composition. More involved exam-
ples including modalities can be found in [38] and in later sections of this paper.

0

1

 a

2

 a b c

0

1

 a

2

 a b d

Fig. 1. A parallel composition (L1 || L2) of two LTSs. Transitions with the same label
have to synchronize (see Definition 12).

Example 1 (Parallel LTS Composition). Figure 1 illustrates two LTSs that are
components in a parallel composition L = (L1 || L2). The expanded LTS that
represents the semantics of this parallel composition is depicted in Fig. 2.

It has been established that || preserves refinement for both operands [38]:

Proposition 2 (Refinement Monotonicity). Let M,M ′,M ′′ ∈ M be three
arbitrary MTSs. Refining a component of a parallel composition also refines the
composition:

(M � M ′) =⇒ ((M || M ′′) � (M ′ || M ′′))

0,0

2,1

 a

2,2

 a

1,1

 a

1,2

 a

0,1

 c

0,2

 c

2,0

 d

 b

1,0

 d

 d c

Fig. 2. Expanded LTS L = (L1 || L2) that represents the semantics of the parallel
composition illustrated in Fig. 1.

Generating Hard Benchmark Problems for Weak Bisimulation 133

Note that due to the commutativity of operator || , this monotonicity holds for
both components of a composition.

4 Benchmark Scenario and Hardness

Within this paper, we focus on the generation of intricate benchmark problems
that challenge state-of-the-art approaches to weak bisimulation checking. This
section introduces our notion of such a benchmark problem and states why we
can generate problems that are hard to solve. We define a benchmark problem
(for weak bisimulation checking) as follows:

Definition 13 (Benchmark Problem). Let L1 = (L11 || ... || L1n) and L2 =
(L21 || ... || L2n) be two parallel compositions of LTSs. Let Σ ⊆ (Σ(L1)∩Σ(L2)).
Then the triple B = (L1, L2, Σ) is called a benchmark problem for weak
bisimulation checking.

The correct answer to B is ‘equivalent’ iff [L1]Σ ≈ [L2]Σ holds and ‘non-
equivalent’ otherwise (see Definitions 7 and 11).

Characteristic for these benchmark problems is their focus on a sub-alphabet
Σ: Alphabet symbols that are not in Σ are considered invisible, introducing
a notion of abstraction/projection reminiscent of temporal logic specifications,
which are, on the other hand, powerful enough to characterize systems up to
bisimulation [35].

Example 2 (Benchmark Problem). Consider the (unexpanded) parallel LTS com-
position L = (L1 || L2) depicted in Fig. 1. A trivial example of a benchmark
problem is B = (L,L, {a, c, d}). The correct answer to B is ‘equivalent’.

As an alternative, consider the LTSs L′
1 and L′

2 that are identical to L1

and L2, respectively, except for the fact that the transitions labeled with
b have been removed. As a consequence, the expanded parallel composition
L′ = (L′

1 || L′
2) is identical to the LTS depicted in Fig. 2, except that the single

transition labeled with b is missing. The correct answer to the benchmark prob-
lem B′ = (L,L′, {a, c, d}) (with L, L′ again being represented by their individual
parallel components) is ‘nonequivalent’: The root of [L′]{a,c,d} features a self loop
labeled with a whereas [L]{a,c,d} does not.

Within this paper, we present an approach to generate hard benchmark prob-
lems B = (L1, L2, Σ) that (not necessarily independently) scales the
1. number of parallel components in L1 and L2,
2. size of the expanded parallel compositions of L1 and L2,
3. size of an individual parallel component in L1 and L2, and
4. size of the alphabets Σ(L1) and Σ(L2).

In addition, it is guaranteed that generated benchmark problem B = (L1, L2, Σ)
cannot simply be decomposed, as we guarantee:

||
Li∈L

[Li]Σ 	≈ [||
Li∈L

Li]Σ

In fact, we believe that it is hard to exploit the knowledge of the generation
process for solving these benchmark problems.

134 B. Steffen and M. Jasper

5 Iterative Expansion of a Benchmark Problem

This section presents our iterative generation process of hard benchmark prob-
lems (see Sect. 4). It starts with an easy-to-solve initial benchmark problem
B = (L1, L2, Σ) according to Definition 13 which it then expands by iterating
the following three steps:

1. Split every Lij ∈ (Li1 || ... || Lin) = Li, i ∈ { 1, 2 }, into two MTSs using
property-preserving parallel decomposition (Sect. 5.1)

2. Extend the alphabet of every parallel MTS that results from the first step
using alphabet extensions (Sect. 5.2)

3. Modally refine each MTS that results from the second step (Sect. 5.3).

The degree of parallelism of the resulting parallel compositions L′
i doubles with

each iteration, and their alphabets as well as the sizes of the individual compo-
nents grow, while weak bisimulation is preserved: [Li]Σ ≈ [L′

i]Σ . In particular
we have that [L1]Σ ≈ [L2]Σ holds if and only if [L′

1]Σ ≈ [L′
2]Σ holds.

As the iteration treats each of the parallel components individually, it is
sufficient to describe how an individual parallel component is transformed.

5.1 Property-Preserving Parallel Decomposition

Although the initial components of the Li, i ∈ { 1, 2 }, are guaranteed to be
LTSs, this may change in the course of iteration. In this section, we therefore
describe how an MTS M is split into two MTSs Ms and M∗

c such that they
together refine M , i.e., (Ms || M∗

c) � M .
In fact, it is sufficient to require that the initial components are LTSs to

guarantee that each modal refinement of the component expansions (cf. step 3)
still guarantees that the expanded parallel systems L′

i, i ∈ { 1, 2 } are weakly
bisimilar to their sources Li.

In [38], modal contracts were introduced as a means of property-preserving par-
allel decomposition. This notion depends on label projection as defined below:

Definition 14 (Label Projection). Let T be a transition relation with
Σ(T) = Σ. Let Γ ⊆ Σ be a subset of Σ. We call the transition relation

αΓ (T) =def {(p
γ→ q) ∈ T | γ ∈ Γ}

the (label) projection of T onto Γ .

A Modal contract can now be defined as follows:

Definition 15 (Modal Contract (MC)). Let M = (S, s0, Σ, �,�) be an MTS
and Γ ⊆ Σ. A modal contract (MC) of M with communication alphabet
Γ (I) =def Γ is a tuple

I = (S, s0, Σ, �,�, G,R)

Generating Hard Benchmark Problems for Weak Bisimulation 135

where

– G =def αΓ (�), and
– R is a set of transitions over the alphabet Γ that do not exist in � and such

that they are not in conflict with G, meaning there do not exist two paths of
may transitions in M with the same label sequence such that one ends with a
transition in G and the other with one in R.4

Moreover G(I) =def G and R(I) =def R, and we color transitions of G(I) green
and transitions of R(I) red.

A modal contract allows to decompose an MTS as follows:

Definition 16 (Meaning of an MC). Let I = (S, s0, Σ, �,�, G,R) be an MC,

R′ =def {(p σ→ r) | q ∈ S : (p σ→ q) ∈ R}

be a redirection of transitions in R to a new (sink) state r /∈ S and

R∗ =def R′ ∪ {(r σ→ r) | σ ∈ Σ}

denote the extension of R with arbitrary subsequent behavior. Then we can define
the system MTS for I as

Ms(I) =def ((S � {r}), s0, Σ, (� ∪ R∗),�)

and the set of corresponding context MTSs for I as

MC(I) =def {M ′ | (Ms(I) || Mc(I)) � M}.

The elements of MC(I) are called admissible contexts of I.

Example 3 (Modal Contract and System Component). Figure 3 illustrates two
MCs based on the LTSs in Fig. 1 with corresponding system components. An
admissible context for each of these MCs will be generated in the following
example.

By definition, any admissible context can be composed with the system MTS
for I to construct a modally refining parallel decomposition.5 As the system MTS
for I can be constructed straightforwardly, the challenge remains how to generate
adequate admissible contexts for I.
4 Such a conflict can easily be detected via the determinization of the may automaton

of I.
5 Intuitively, an MC specifies an assume-guarantee contract [2,3,17,33] based on an

MTS M such that the parallel composition of the system MTS and a corresponding
context MTS is guaranteed to refine M . The system component makes assump-
tions about the (non-)availability of transitions to synchronize with, and the context
guarantees these assumptions.

136 B. Steffen and M. Jasper

0 c

1

 a

2

 a

 b

 a

 c

(a) MC I1 based on L1

0b

1

 a

2

 a d b d

 a

(b) MC I2 based on L2

1

0

 b

3

 a

 a

2

 a c c

 a b c

(c) Ms(I1)

1

0

 d

3

 a

2

 b

 a

 a b d

 a b d

(d) Ms(I2)

Fig. 3. (a) and (b): Two MCs I1 (The transitions 1
a→ 2 and 0

c→ 0 are colored red. All

others are colored green.) and I2 (The transitions 0
b→ 0, 0

d→ 2, and 2
a→ 2 are colored

red. All others are green.) based on L1 and L2 from Fig. 1, respectively. (c) and (d):
System components Ms(I1) and Ms(I2), respectively. (Color figure online)

Automatic Generation of Admissible Contexts

Admissible contexts play a dual role:

– As enabler: They may never prohibit a required action.
– As prohibiter: They may never allow an unwanted action.

These roles are dual, and they can be enforced separately. In fact, we can con-
struct so-called green contexts that guarantee the enabling power, and so-called
red contexts that serve for prohibition. Moreover, given red and green contexts,
admissible contexts, so-called green/red contexts, can easily be constructed via
conjunction (see Definition 5).

The construction of green and red contexts that we present in the following
tries to avoid unnecessary constraints on the structure of generated admissible
contexts. Prerequisite is the following definition:

Generating Hard Benchmark Problems for Weak Bisimulation 137

Definition 17 (Language Projection). Let Σ,Γ be two alphabets with Γ ⊆
Σ. For any word w = (σ1, ..., σn) ∈ Σ∗, the projection αΓ (w) of w onto
Γ results from skipping symbols σi /∈ Γ . This projection extends naturally to
languages.

Using this projection, we can now define the green-only context [38]:

Definition 18 (Green-Only Context Mg
c (I)). Let M ∈ M be an MTS and

let I be an MC of M (Definition 15), and Fd be the minimal DFA that describes
the prefix-closed language αΓ (I)(L�(M)). The green-only context Mg

c (I) can
then be constructed as follows on the basis of Fd:

1.) Consider all incoming and outgoing transitions of the unique non-accepting
sink state as may-only transitions.

2.) Consider all other transitions as must transitions.
3.) Disregard the property of accepting/non-accepting states.

The following lemma states the admissibility of the green-only context in the
case where R(Ig) = ∅ [38]:

Lemma 1 (Admissibility of Green-Only Context). Let M ∈ M be an
MTS. Let Ig be an MC of M (Definition 15) with R(Ig) = ∅ and Mg

c (Ig) be the
corresponding green-only context according to Definition 18. Then the following
holds:

(Ms(Ig) || Mg
c (Ig)) � M

Red-only contexts can now be constructed in a similar fashion:

Definition 19 (Red-Only Context Mr
c (I)). Let I (Definition 15) be an MC,

LR be the language of words for which a path in I exists that contains a red
transition t ∈ R, and Fd be the minimal DFA that describes the prefix-closed
language (Γ (I)∗ \ αΓ (I)(LR)) (see also Definition 17). The red-only context
Mr

c (I) can then be constructed as follows on the basis of Fd:

1.) Remove all incoming and outgoing transitions of the unique non-accepting
sink state together with this sink state itself.

2.) Consider all remaining transitions as may-only transitions.
3.) Disregard the property of accepting/non-accepting states.

The following lemma states the admissibility of a red-only context [38] in case
of G(Ir) = ∅:

Lemma 2 (Admissibility of Red-Only Context). Let M ∈ M be an MTS,
Ir be an MC of M (Definition 15) with G(Ir) = ∅, and Mr

c (Ir) be the red-only
context according to Definition 19. Then the following holds:

(Ms(Ir) || Mr
c (Ir)) � M

Green/red contexts M∗
c (I) can now simply be defined via conjunction (see [38]):

138 B. Steffen and M. Jasper

Definition 20 (Green/Red Context M∗
c (I)).

Let I be an MC with green-only context Mg
c (I) (Definition 18) and red-only con-

text Mr
c (I) (Definition 19). Then the corresponding green/red context M∗

c (I)
is defined as follows:

M∗
c (I) =def (Mr

c (I) ∧ Mg
c (I))

As green and red transitions are guaranteed to be non-conflicting (see Definition
15), the following theorem follows straightforwardly from Proposition 1 and
Lemmas 1 and 2 [38]:

0

1

 a

2

 b b c

 a b c

(a) M∗
c (I1)

0

1

 a b d

(b) M∗
c (I2)

Fig. 4. Two green/red contexts for the MCs from Example 3 (see Fig. 3). (Color figure
online)

Theorem 1 (Admissibility of Green/Red Context). Let M ∈ M be an
MTS, and I be an MC of M (Definition 15) with its green/red context M∗

c (I)
according to Definition 20. Then M∗

c (I) is well-defined and the following holds:

(Ms(I) || M∗
c (I)) � M

Note that this means that may-only transitions in the generated system and con-
text components can never trigger in the expanded parallel composition when-
ever the initial system is an LTS. This suffices to guarantee that bisimulation is
preserved in this case:

Theorem 2 (Preservation of Bisimulation). Let L be an LTS, and I be
an MC of L (Definition 15) with its green/red context M∗

c (I) according to
Definition 20. Then M∗

c (I) is well-defined and the following holds:

(Ms(I) || M∗
c (I)) ∼ L

Example 4 (Green/Red Context). Figure 4 illustrates the green/red context
MTSs M∗

c (I1) and M∗
c (I2) based on the MCs of Example 3 (see Fig. 3). Due

to Theorem 2, it follows that

(Ms(I1) || M∗
c (I1) || Ms(I2) || M∗

c (I2)) ∼ (L1 || L2).

Generating Hard Benchmark Problems for Weak Bisimulation 139

5.2 Alphabet Extension

The parallel decomposition in Sect. 5.1 enables one to increase the number of
parallel components in a composition, however it does neither increase the size of
the expanded parallel composition nor the size of that composition’s alphabet. In
order to generate hard benchmark scenarios as described in Sect. 4, we overcome
these limitations by applying alphabet extensions:

Definition 21 (Alphabet Extension (AE)). Let M ∈ M be an MTS, ΣE

be a new alphabet, i.e. (ΣE ∩ Σ(M)) = ∅, and Σ ⊆ Σ(M). An MTS M ′ =
(S, s0, Σ � ΣE , �,�) is called ΣE alphabet extension (AE) of M if it adheres
to the following two constraints:

1. The directed graph (S, {(s, s′) | (∃(s σ→ s′) ∈ �) ∧ σ ∈ ΣE}) is strongly
connected

2. ∀σ ∈ Σ. ∃s, s′ ∈ S : (s σ→ s′) ∈ �

The definition of an AE is comparably unconstrained and allows for a variety of
possible choices as illustrated in Example 5.6 Important is only that an alphabet
extension M ′ of M can never ‘block’ transitions in M if composed with it because
of the following: (i) The alphabet ΣE only occurs in M ′ and (ii) within M ′, we
can always reach every state by traversing transitions with labels from ΣE . Thus
it is straightforward to show:

Theorem 3 (Correctness of Alphabet Extension). Let M ∈ M be an
MTS, Σ ⊆ Σ(M) a sub-alphabet of M , and ME any ΣE alphabet extension of
M (Definition 21). Then we have:

hideΣE
(M || ME) ≈ M

Example 5 (Alphabet Extension). Figure 5 illustrates four different AEs, one for
each of the components of Example 4. Because of Theorem 3, it follows that
the parallel composition of (Ms(I1) || M∗

c (I1) || Ms(I2) || M∗
c (I2)) with their

AEs depicted in Fig. 5 is weakly bisimilar to (L1 || L2) (Fig. 1) when only con-
sidering the alphabet of the latter. In order to further intertwine the alphabet
extensions with the MTSs that they extend, we choose to replace them pair-
wise with their expanded parallel compositions. Figure 6 depicts the expanded
parallel composition of M∗

c (I1) with its AE that was chosen for this example.

5.3 Modal Refinement

As a last step during one iteration of our expansion, we may randomly refine each
component of the parallel composition based on modal refinement as illustrated
in Example 6. This step also allows for significant enlargement via node splitting
and loop unrolling.
6 Note that this definition of alphabet extension differs from the context extension

introduced for model checking benchmarks in [38]: Because we do not need to guar-
antee liveness properties for weak bisimulation, Floyd-like cut points that guarantee
an eventual synchronization are no longer required here.

140 B. Steffen and M. Jasper

0

1

 x1 c

2

 x2

 x1

 a

(a) AE of Ms(I1)

0

2

 x3 1

 x3

 x4

 a

 b

 x3

(b) AE of M∗
c (I1)

0

1

 x5 x6 b

(c) AE of Ms(I2)

0

1

 x7

2

 x8

3

 a

 x7

 b

 x7

 d

 x8 x8

(d) AE of M∗
c (I2)

Fig. 5. Four different alphabet extensions based on the MTSs of Example 4.

0

1
x3

2

x3

x4

3
a

x3 4b

c

5

x4

c

6

x3

7

x3

c x3

8
x3

x4

a
c

b

x3
c

b

c

x3

Fig. 6. Expanded composition of M∗
c (I1) (Fig. 4a) and its AE from Fig. 5b.

Example 6 (Modal Refinement). Consider the composition (Ms(I1) || M∗
c (I1) ||

Ms(I2) || M∗
c (I2)) (Example 4) together with their AEs from Example 5. As

shown in Example 5, we choose to group the AEs with their respective compo-
nents and partially evaluate those compositions. In general, this does not result
in LTSs. We therefore randomly refine the four resulting MTSs by eliminating
may-only transitions or implementing them as must behavior.7 The resulting
composition of LTSs is illustrated in Fig. 7.

7 Further refinement choices akin to bisimulation-preserving transformations would be
possible too.

Generating Hard Benchmark Problems for Weak Bisimulation 141

9

1

 a

4

 b

11

 x1

 b

3

 x2

6

 a

0

 x1

7

a b x1 a

 b

5

 x1

8

 x2

2

 x1

 x2

 b

 x1

10

 x1

 x2 x1

 c

8

3

 x3

2

 c

0

 b

1

 c

5

 x4

 x3

4

 b

 x3

 x3

 a

 x4

 x3

 x3

 c

7

 x3

6

 x3 c

 x3

 x4

 a c

3 d a

7

 x5 x6

 a d

2

6

 x5 x6

0

 b

d a

1

 a

4

 x5

 a

 d

5

 x5

 a

 x6

 a

 x6

 d

0

1

 x7

2

 a

3

 x8

 d

4

 x8 x7

5

 x7

6

 x8 x8

 x7

 b

7

 x7

 x7

Fig. 7. Final four LTSs that result from one iteration of our expansion. Composed in
parallel, they are weakly bisimilar to the two LTSs of Fig. 1 when only viewing the
alphabet of the latter.

Finally, the origin of alphabet symbols may be obfuscated at the end using
relabeling.

142 B. Steffen and M. Jasper

6 Conclusion

In this paper, we proposed a method to automatically generate arbitrarily com-
plex benchmark problems for bisimulation checking. Technically, this method is
a variant of an incremental generation approach for model checking benchmarks.
Using this approach, a given benchmark scenario of controllable size is expanded
to an arbitrarily complex benchmark problem, concerning both the number of
parallel components and the component sizes, in an assumption commitment
style. Whereas the property-preserving parallel decomposition is maintained in
this variant, the alphabet extension is flexibilized as, in contrast to temporal
logics, weak bisimulation is not sensitive to liveness properties.

In contrast to classical assumption commitment [2,17,33] and approaches like
the ones presented in [14,15], the iterative decomposition based on MCs scales
very well. However, admittedly, to achieve a different kind of goal because we do
not require completeness and can therefore focus on a simplistic approach [29].
This scalability, which intuitively exists due to the difference between a-posteriori
verification and correctness by construction, can be regarded as the essence of
our benchmark generation approach [12,19,37].

Our MC, an extension of MTSs following and generalizing the ideas of [9], is
specifically designed to manage the system/context relationship in a way so that
the system can be iteratively decomposed into arbitrarily many parallel com-
ponents while propagating dependencies throughout the entire system. Accord-
ingly, generated benchmark problems are dominated by deterministic compo-
nents as non-deterministic behavior in parallel components easily introduces
unwanted behavior. We are currently investigation how to overcome this limita-
tion based on a notion of context-dependent semantic determinism.

Acknowledgment. We are very grateful to Maximilian Schlüter for his implementa-
tion of the automatic context generation that was used to create the illustrations in
this paper.

References

1. Bartocci, E., et al.: First international competition on runtime verification: rules,
benchmarks, tools, and final results of CRV 2014. STTT, pp. 1–40, April 2017

2. Bauer, S.S., et al.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 3

3. Benveniste, A., Caillaud, B.: Synchronous interfaces and assume/guarantee con-
tracts. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare,
R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 233–248.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 12

4. Beyer, D.: Competition on software verification. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 38

https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1007/978-3-319-63121-9_12
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-28756-5_38

Generating Hard Benchmark Problems for Weak Bisimulation 143

5. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Progress on the state explosion
problem in model checking. In: Wilhelm, R. (ed.) Informatics. LNCS, vol. 2000, pp.
176–194. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44577-3 12

8. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: a semantics-
based tool for the verification of concurrent systems. ACM Trans. Program. Lang.
Syst. 15(1), 36–72 (1993)

9. Cleaveland, R., Steffen, B.: A preorder for partial process specifications. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 141–151. Springer,
Heidelberg (1990). https://doi.org/10.1007/BFb0039057

10. Czech, M., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Predicting rankings of
software verification tools. In: Proceedings of the 3rd ACM SIGSOFT International
Workshop on Software Analytics. SWAN 2017, pp. 23–26. ACM (2017)

11. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transfer 15(2), 89–107 (2013)

12. Geske, M., Jasper, M., Steffen, B., Howar, F., Schordan, M., van de Pol, J.: RERS
2016: parallel and sequential benchmarks with focus on LTL verification. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 787–803. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 59

13. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60761-7

14. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: Clarke,
E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 186–196. Springer,
Heidelberg (1991). https://doi.org/10.1007/BFb0023732

15. Graf, S., Steffen, B., Lüttgen, G.: Compositional minimisation of finite state sys-
tems using interface specifications. Formal Aspects Comput. 8(5), 607–616 (1996)

16. Grosu, R., Smolka, S.A.: Monte carlo model checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31980-1 18

17. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. (TOPLAS) 16(3), 843–871 (1994)

18. Hoare, C.A.R.: Communicating sequential processes. In: Hansen, P.B. (ed.) The
Origin of Concurrent Programming, pp. 413–443. Springer, New York (1978).
https://doi.org/10.1007/978-1-4757-3472-0 16

19. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu, C.: Rigor-
ous examination of reactive systems. The RERS challenges 2012 and 2013. STTT
16(5), 457–464 (2014)

20. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012. STTT 17(6), 647–657
(2015)

21. Hüttel, H., Larsen, K.G.: The use of static constructs in a model process logic.
In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp.
163–180. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51237-3 14

https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/3-540-44577-3_12
https://doi.org/10.1007/BFb0039057
https://doi.org/10.1007/978-3-319-47169-3_59
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/BFb0023732
https://doi.org/10.1007/978-3-540-31980-1_18
https://doi.org/10.1007/978-1-4757-3472-0_16
https://doi.org/10.1007/3-540-51237-3_14

144 B. Steffen and M. Jasper

22. Jasper, M., et al.: RERS 2019: combining synthesis with real-world models. In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol.
11429, pp. 101–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3 7

23. Jasper, M., Mues, M., Schlüter, M., Steffen, B., Howar, F.: RERS 2018: CTL,
LTL, and reachability. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol.
11245, pp. 433–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03421-4 27

24. Jasper, M., Steffen, B.: Synthesizing subtle bugs with known witnesses. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 235–257. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03421-4 16

25. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43–68 (1990)

26. Kordon, F., et al.: Report on the model checking contest at petri nets 2011. In:
Jensen, K., van der Aalst, W.M., Ajmone Marsan, M., Franceschinis, G., Kleijn,
J., Kristensen, L.M. (eds.) Transactions on Petri Nets and Other Models of Con-
currency VI. LNCS, vol. 7400, pp. 169–196. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35179-2 8

27. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-
8 19

28. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

29. Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation. Computer
43(6), 90–92 (2010)

30. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

31. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

32. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL 1989, pp. 179–190. ACM (1989)

33. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fundamenta Informaticae
108(1–2), 119–149 (2011)

34. Steffen, B., Jasper, M., Meijer, J., van de Pol, J.: Property-preserving generation
of tailored benchmark petri nets. In: 17th International Conference on Application
of Concurrency to System Design (ACSD), pp. 1–8, June 2017

35. Steffen, B.: Characteristic formulae. In: Ausiello, G., Dezani-Ciancaglini, M., Della
Rocca, S.R. (eds.) ICALP 1989. LNCS, vol. 372, pp. 723–732. Springer, Heidelberg
(1989). https://doi.org/10.1007/BFb0035794

36. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4 8

37. Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.: Property-driven
benchmark generation: synthesizing programs of realistic structure. Int. J. Softw.
Tools Technol. Transfer 16(5), 465–479 (2014)

https://doi.org/10.1007/978-3-030-17502-3_7
https://doi.org/10.1007/978-3-030-17502-3_7
https://doi.org/10.1007/978-3-030-03421-4_27
https://doi.org/10.1007/978-3-030-03421-4_27
https://doi.org/10.1007/978-3-030-03421-4_16
https://doi.org/10.1007/978-3-642-35179-2_8
https://doi.org/10.1007/978-3-642-35179-2_8
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0035794
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8

Generating Hard Benchmark Problems for Weak Bisimulation 145

38. Steffen, B., Jasper, M.: Property-preserving parallel decomposition. In: Aceto, L.,
Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algo-
rithms, Logics and Tools. LNCS, vol. 10460, pp. 125–145. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63121-9 7

39. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

40. Vanglabbeek, R., Smolka, S., Steffen, B.: Reactive, generative, and stratified models
of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995)

https://doi.org/10.1007/978-3-319-63121-9_7
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21

Robustness of Neural Networks
to Parameter Quantization

Abhishek Murthy1(B), Himel Das2, and Md. Ariful Islam2

1 Signify Research North Americas, Cambridge, MA, USA
amurthy.sunysb@gmail.com

2 Texas Tech University, Lubbock, TX, USA
{himel.das,ariful.islam}@ttu.edu

Abstract. Quantization, a commonly used technique to reduce the
memory footprint of a neural network for edge computing, entails reduc-
ing the precision of the floating-point representation used for the param-
eters of the network. The impact of such rounding-off errors on the
overall performance of the neural network is estimated using testing,
which is not exhaustive and thus cannot be used to guarantee the safety
of the model. We present a framework based on Satisfiability Modulo
Theory (SMT) solvers to quantify the robustness of neural networks to
parameter perturbation. To this end, we introduce notions of local and
global robustness that capture the deviation in the confidence of class
assignments due to parameter quantization. The robustness notions are
then cast as instances of SMT problems and solved automatically using
solvers, such as dReal. We demonstrate our framework on two simple
Multi-Layer Perceptrons (MLP) that perform binary classification on a
two-dimensional input. In addition to quantifying the robustness, we also
show that Rectified Linear Unit activation results in higher robustness
than linear activations for our MLPs.

Keywords: Neural networks · Edge computing ·
Parameter quantization · Robustness · Satisfiability modulo theories

1 Introduction

Neural networks entail interconnected computational nodes that transform weig-
hted combinations of their inputs using nonlinear functions. The interconnections
lead to compositional behavior at the network-level, which enables neural net-
works to approximate highly nonlinear functions as their responses. The advent
of the Backpropagation algorithm [28], the availability of large datasets [10],
and optimized hardware [9] has led to widespread success in supervised and
unsupervised learning.

Supervised learning of a neural network is the process of optimizing the
network’s parameters using reference data. Supervised learning can be used to

Research was performed with other authors at Texas Tech University.

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 146–161, 2019.
https://doi.org/10.1007/978-3-030-31514-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_9

Robustness of Neural Networks to Parameter Quantization 147

Fig. 1. Robustness analysis of neural network enables safe parameter quantization.

(i) learn classifiers, which can label an input into one of finitely many classes
and (ii) learn the more general class of regressors, which capture relationships
across continuous domains. Learning a model, also known as training, involves
formulating a loss function that quantifies the performance of the model as a
function of the parameters, and then minimizing the function using numerical
techniques over the reference data, also known as training data. Backpropagation
is the most popular class of numerical techniques used to optimize the parameters
of the modern neural networks. Unsupervised learning, on the other hand, entails
learning patterns and underlying distributions in unlabelled data.

Large networks contain millions of parameters and are trained using Graph-
ics Processing Units (GPUs). Deploying trained neural networks in real-world
production systems entails fetching the input from the user/client-device and
then passing it through the neural network, also known as the forward pass,
and obtaining the output, which could be a class-label or a regressed value, in
real time. Web services, which perform the forward pass on the cloud can utilize
the power of GPUs for time-sensitive calculations. The downside is that such
applications suffer from (i) the latency of sending the input to the remote server
and waiting for the output of the neural network and (ii) privacy concerns of
exposing potentially sensitive inputs on the network.

An alternative design involves performing the forward pass on the client
device (edge) by running the neural networks on it. This eliminates the network
latencies and also avoids exposing the user’s inputs to the network. Running
neural networks on edge devices, such as mobile phones, tablets and low-power
devices like wearables and Raspberry Pis present unique challenges. Storing the
millions of parameters in floating-point representations incurs significant mem-
ory costs and the computational power needed for the forward pass may be pro-
hobitive. Executing complex neural networks on the low computational power
and memory available on edge devices is a well-known challenge in the industry
and thus is an active area of interest.

In addition to dedicated hardware for low-power devices, the community has
evolved three main approaches to the problem of running neural networks on
resource-constrained edge devices.

1. Quantization of Parameters: The precision of the floating-point representa-
tion used to store the network parameters is reduced to lower the memory
footprint of storing the network in the memory [15].

148 A. Murthy et al.

2. Pruning : The edges, represented by the weights, between nodes that do not
significantly influence the network’s output are made 0 and thus removed
from the network, resulting in a reduction in the memory footprint [25].

3. Optimized Neural-Network Architectures: The network architecture is
designed to reduce the floating-point operations, thereby reducing the running
time of the forward pass, see [18] for an example.

These techniques have emerged using empirical benchmarking and have found
limited success in the community. Today, there are a handful of applications that
deploy neural networks on edge devices. The main reason behind this lack of
widespread success is the unpredictability of the aforementioned techniques in
preserving the performance of the network after training. Specifically, the state
of the art on estimating the impact of pruning and quantization on the network’s
accuracy is limited to testing on a finite number of test cases.

In this paper, we introduce a framework to quantify the robustness of neural
networks to parameter quantization, thereby automating the process of bounding
the change in performance of the neural network. We introduce notions of local
and global robustness of networks to parameter changes. Given a bounded per-
turbation in the parameter vector, local robustness measures the maximal change
in the confidence of class assignment for an input. Global robustness extends this
notion to the entire input-space. We cast these notions into instances of SMT
problems and solve them automatically using solvers, such as dReal [14]. See
Fig. 1 for an overview.

Robustness of neural networks has been an active area of research, but most of
the authors have focused on input perturbations, rather than parameter changes.
Our framework is focused on parameter perturbations. In summary, the main
contributions of our paper are as follows.

– An automated framework is presented for bounding the deviation in the
performance of neural networks due to parameter quantization. The frame-
work enables the implementation of deep-learning-based applications on edge
devices, like mobile phones, tablets and other embedded environments.

– We present two use-cases to demonstrate our framework: the parameters of
two small MLPs that perform binary classification are perturbed and the
robustness is analyzed using our approach.

– In addition to estimating parameter robustness, we also show that ReLU
activations are more robust than linear activations for our MLPs.

The rest of the paper is organized as follows. Section 2 presents background
on neural networks and SMT solvers. Section 3 introduces the theory of local
and global robustness to parameter perturbations and Sect. 4 details the cor-
responding SMT problem formulations. Section 5 presents the case studies and
their corresponding trained neural networks. Section 6 presents robustness anal-
ysis on the neural networks. Section 7 reviews related work and Sect. 8 presents
our conclusions and the directions for future work.

Robustness of Neural Networks to Parameter Quantization 149

2 Background

Fig. 2. Weighted averaging, followed by
nonlinear activation.

Every node of an NN performs two
operations: weighted averaging of the
inputs, and a nonlinear transformation
of the weighted sum using a so-called
activation function, see Fig. 2. Some
of the commonly used activation func-
tions are depicted in Fig. 3.

A neural network is formed by
interconnecting several such nodes
using different architectures. Each
connection from node i to node j is characterized by the weight that is used
for the output of node i for the weighted average performed at node j. Typical
architectures consists of layers of nodes connected to the nodes of the subsequent
layer. The output of the neural network is vector with each entry representing
the output of the corresponding node in the final layer. It is common to construct
the network to have k output nodes if the goal is to assign one (or more) of k
possible class assignments. Moreover, all the k values lie in [0, 1] and sum to 1.
The input is assigned the class label 0 ≤ l ≤ k − 1 if the value of the lth node is
the highest among the k outputs.

Fig. 3. Commonly used activation functions in neural networks.

We introduce notations for the parameter vector of a neural network as fol-
lows. NNp denotes an instance of the neural network with p being the vector of
parameter assignments. Given an input x, and the instance if the neural network
NNp, the vector of k outputs is returned by the function fNNp

(x). NNp(x) is
the index of the highest output and thus corresponds to the class label l assigned
to the input.

The dReal Solver

The dReal [14] tool is an SMT solver [11] for nonlinear theories over the reals. The
tool can handle first order formula defined by nonlinear real functions such as
polynomials, trigonometric functions, exponential functions, etc. It implements
the framework of δ-complete decision procedure [13], which has two possible
outputs:

150 A. Murthy et al.

– unsat: no variable assignment satisfying the formula.
– δ-sat: exists a variable assignment ξ satisfying the formula if we consider a

user-specified numerical perturbation δ ∈ Q+.

We note that the satisfiability of first-order formula over the real is in general
undecidable [3]. The tool is implemented in the framework of delta-complete
analysis, which provides an algorithm for the originally undecidable problem by
using approximation (the use of δ in the analysis).

The latest version of dReal [21] now implements Optimization Modulo The-
ory (OMT) [5,29]. OMT is an extension of SMT which allows for finding models
that optimize given objectives.

3 Parameter Robustness

In this section, we present various definitions of parameter robustness analysis
for neural networks.

We begin with a definition of parameter robustness locally to an input similar
to local input robustness as presented in [4,17,20]. Note that, we consider L2

norm for distance in both parameter vector space and NN confidence space in
our definitions, but it is to possible to generalize them for other norms.

Definition 1. An NN with parameter vector p0 is (δ, ε)-parameter robust locally
at an input x0 if and only if:

∀p.|p − p0| ≤ δ =⇒ |fNNp0
(x) − fNNp

(x)| ≤ ε (1)

Definition 1 gives a quantitative measure on the change in confidence of
labeling a certain input. This definition, however, does not cover all inputs in
the input domain. The following definition address this:

Definition 2. An NN with parameter vector p0 is (δ, ε)-parameter robust glob-
ally for a input domain D if and only if:

∀x ∈ D,∀p.|p − p0| ≤ δ =⇒ |fNNp0
(x) − fNNp

(x)| ≤ ε (2)

Though the definitions of parameter robustness described above give a quan-
titative measure on the change of confidence, it does not say whether the decision
label will actually be changed. For example, if the confidence value changes pos-
itively for a given label, the decision label might remain the same, even though
ε could be higher. As a result, the above robustness measures gives only an idea
on relative change in confidence value, but not how the actual label might get
changed.

Now, we define the parameter robustness that specifies whether an actual
label of an input changes. Both local and global versions are defined as follows:

Definition 3. An NN with parameter vector p0 is locally δ-parameter robust
locally at an input x0 if and only if:

∀p.|p − p0| ≤ δ =⇒ NNp0(x0) = NNp(x0) (3)

Robustness of Neural Networks to Parameter Quantization 151

Definition 4. An NN with parameter vector p0 is locally δ-parameter robust
globally for an input domain D if and only if:

∀x ∈ D,∀p.|p − p0| ≤ δ =⇒ NNp0(x) = NNp(x) (4)

Definition 4 states that for an NN to be δ-parameter robust globally for all
input in the domain, no input cannot be mislabeled. This is rather a very strict
definition of robustness. In particular, when a quantization technique is applied
to NN, it is expected that the labels for some inputs will be changed, at least the
inputs close to the decision boundary. To incorporate this, we slightly modify
the Definition 4 as follows:

Definition 5. An NN with parameter vector p0 is locally δσ-parameter robust
globally for an input domain D if and only if:

∀x ∈ D,∀p.|p − p0| ∧ |fNNp0
(x) − l| ≥ σ ≤ δ =⇒ NNp0(x) = NNp(x) (5)

where l denotes the level set of the confidence function, which is used to label the
input, i.e, fNNp0

(x) = l represents a decision boundary.

The δσ-parameter robustness of NN is illustrated in Fig. 4. The red line rep-
resents the decision boundary and ‘−’ and ‘+’ represent the decision labels. The
yellow lines are σ distance away from the decision boundary. Definition 5 states
that all the inputs that are σ or more distance away from the decision boundary
(i.e., all the points either above the top yellow line or below the bottom yellow
line) will be labeled as same in both NNp0 and NNp. The inputs between the
yellow lines, however, may be be mislabeled, as illustrated by the points inside
the yellow circles in the figure.

Fig. 4. Illustration of δσ-parameter robustness on a two-class classifier. (Color figure
online)

152 A. Murthy et al.

4 Verification and Estimation of Parameter Robustness

In this section we will present how to verify and estimate parameter robustness
using SMT solver.

4.1 Verifying Parameter Robustness

We apply SMT solver to verify all the parameter robustness defined in Sect. 3.
The key idea is to construct a formula for each of them by the negating their
definition. The robustness property will then be verified if the SMT solver returns
unsat. The formula for all the parameter robustness given to SMT solver are
as follows (for simplicity we encode them considering a binary classification
problem):

– To verify Eq. 1, we use the following formula:

∃p.(p ≥ p0 − δ) ∧ (p ≤ p0 + δ) ∧ abs(fNNp0
(x0) − fNNp

(x0)) > ε (6)

– To verify Eq. 2, we use the following formula:

∃p, x, (p ≥ p0 − δ) ∧ (p ≤ p0 + δ) ∧ (x ≥ x) ∧ (x ≤ x̄) ∧ abs(fNNp0
(x0)

−fNNp
(x0)) > ε (7)

where we define the input domain D as a bounding box, i.e., D = [x, x̄]
– To verify Eq. 3, we use the following formula:

∃p.(p ≥ p0 − δ) ∧ (p ≤ p0 + δ) ∧ ((fNNp0
(x0) ≤ l) ∧ (fNNp

(x0) > l)
∨ (fNNp0

(x0) < l) ∧ (fNNp
(x0) ≥ l)) (8)

Here we encode NNp0(x0) = NNp(x0) as follows:

((fNNp0
(x0) ≤ l) ∧ (fNNp

(x0) ≤ l)) ∨ ((fNNp0
(x0) > l) ∧ (fNNp

(x0) > l))

That is x0 falls in the same side of the decision boundary both in NNp0 and
NNp. For the verification purpose, we consider its negation.

– To verify Eq. 4, we use the following formula:

∃p, x.(p ≥ p0 − δ) ∧ (p ≤ p0 + δ) ∧ (x ≥ x) ∧ (x ≤ x̄) ∧ ((fNNp0
(x0) ≤ l)

∧ (fNNp
(x0) > l) ∨ (fNNp0

(x0) < l) ∧ (fNNp
(x0) ≥ l)) (9)

– To verify Eq. 5, we use the following formula:

∃p, x.(p ≥ p0 − δ) ∧ (p ≤ p0 + δ) ∧ (x ≥ x) ∧ (x ≤ x̄) ∧ (abs(fNNp0
(x) − l) ≥ σ)

∧ ((fNNp0
(x0) ≤ l) ∧ (fNNp (x0) > l)) ∨ ((fNNp0

(x0) < l) ∧ (fNNp (x0) ≥ l)) (10)

We verify all the robustness properties on dReal solver [21].

Robustness of Neural Networks to Parameter Quantization 153

4.2 Estimating Maximum Parameter Robustness

For (δ, ε)-parameter robustness, we allow δ-perturbation on the parameter space
and check whether the confidence value is bounded by ε. The estimation problem
is defined as computing maximum possible value of ε for a given value of δ. We
are interested in this estimation problem, as the maximum value of ε represents
the least robustness measure for a given δ value. The estimation problem can be
formulated as an optimization problem as follows:

– ε-Estimation for (δ, ε)-parameter robustness locally at x0:

minimize
ε∈[0,ε̄]

− ε

subject to:
(p ≥ p0 − δ)
(p ≤ p0 + δ)
abs(fNNp0

(x0) − fNNp
(x0)) = ε

(11)

where, ε̄ is the maximum value of ε. Note that, instead of maximizing, ε,
we minimize its negation, as the SMT solver we used implements only the
minimization problem.

– ε-Estimation for (δ, ε)-parameter robustness globally for D = [x, x̄]:

minimize
ε∈[0,ε̄]

− ε

subject to:
(p ≥ p0 − δ)
(p ≤ p0 + δ)
(x ≥ x)
(x ≤ x̄)
abs(fNNp0

(x0) − fNNp
(x0)) = ε

(12)

Similarly, for δσ-parameter robustness, we consider estimation problem for σ.
For a given value δ, we want to maximize σ, which tells us how far away the
boundary needs to be shifted so that no input beyond it cannot be mislabeled.
We formulate this estimation problem as follows:

minimize
σ∈[0,σ̄]

− σ

subject to
(p ≥ p0 − δ)
(p ≤ p0 + δ)
(x ≥ x)
(x ≤ x̄)
abs(fNNp0

(x) − l)) = σ

(fNNp0
(x) ≤ l) ∧ ((fNNp

(x) ≤ l)) ∨ ((fNNp0
(x) > l) ∧ (fNNp

(x) > l))

(13)

where maximum value of σ̄ is the maximum value of σ.

154 A. Murthy et al.

5 Case Studies

We describe two datasets and the corresponding neural networks as case studies
for our robustness analysis framework.

(a) ReLU activation. (b) Linear activation.

Fig. 5. Two MLPs trained on the Athletes dataset.

The first dataset, known as cats, contains the height, weight, and gender of
144 domesticated cats (47 female and 97 male) [2]. The gender identification
problem entails learning a classifier to estimate if a cat is Male or Female based
on its height and weight. We present a simple one-node model that implements
logistic regression and examine its robustness.

Given the height (H) and the weight (W) of a cat, the classifier, learned using
Python Scikit-Learn 0.20.3, is given by y = sig(x), where x = c0 + c1H + c2W .
We assign the class label “Male” if the y ≥ 0.5 and “Female” otherwise.
The parameters of the model that were learned on 78% of the data were
c0 = −3.51518067, c1 = 0.07577862, and c2 = 1.18118408. The multinomial
loss function was optimized using the lbgfs algorithm [27]. The testing accuracy
on the remaining 22% was 87.5%.

A second dataset contains the official statistics on the 11, 538 athletes (6,333
men and 5,205 women) that participated in the 2016 Olympic games at Rio
de Janeiro [1]. Each row contains an id, the name, nationality, gender, date
birth, height, weight, sport of the athletes and the medals tally. The gender
identification problem entails learning an MLP to guess the gender of the athlete
based on their height and weight. We present two MLPs for this problem and
examine their robustness in the next section.

Given the height and weight of an athlete as the input, the MLPs is con-
structed using two layers: a hidden layer and an output node. Three nodes that
make up the hidden layer perform weighted averaging of the inputs and trans-
form them using a nonlinear activation. Their outputs are then fed to the output
node, which again takes a weighted average and uses the Sigmoid activation to
obtain a number between 0 and 1. If the output is greater than 0.5, the input is
assigned “Male”, otherwise it is assigned “Female”. We implemented two varia-
tions of the model. We used ReLU and linear activations in the three nodes of
the hidden layer. The two models and their parameters are illustrated in Fig. 5.

Robustness of Neural Networks to Parameter Quantization 155

Both the Cats and the Athletes examples entail linear decision boundaries that
separate the two classes. Thus, linear activation functions can be used to learn
these boundaries. In the subsequent sections, we compare the robustness of the
two activation functions.

The models were implemented in Keras and trained on a GPU-based instance
of Amazon Web Services. The training accuracy was 77.19% and 77.36% for the
ReLU and Linear versions respectively after 200 epochs.

In the next section, we apply our robustness analysis framework to examine
the effect of quantizing the parameters of the logistic regression model for the
Cats dataset and the two MLPs for the athletes dataset. Exploring the scalability
of our framework to larger models is part of our future work.

6 Results

In this section we discuss our results. For all three NNs (one for first case study
and two for second case study), we present results for (δ, ε)- and δσ-parameter
robustness both locally at an input and globally at input domain.

Table 1. Estimated values for ε and σ for (δ, ε)- and δσ-parameter robustness, respec-
tively, globally for input domains.

δ ε

CAT ATH-ReLU ATH-Linear

0.005 0.00691 0.166 0.545

0.01 0.05054 0.0825 0.219

δ σ

CAT ATH-ReLU ATH-Linear

0.005 (0.024, 0.021) (0.082, 0.076) (0.268, 0.218)

0.01 (0.052, 0.04) (0.165, 0.144) (0.44, 0.34)

Table 1 shows the estimated value of ε of (δ, ε)-parameter robustness, com-
puted using Eq. (12), and σ of δσ-parameter robustness, computed using
Eq. (13), for entire input domains. We compute them for two different δ val-
ues. The column CAT, ATH-ReLU and ATH-Linear represent the results for
cat classifier, athletic classifier with ReLU activation and athletic classifier with
Linear activation, respectively. The tuple in the table for σ represents values for
male and female class, respectively. If we compare the results of ATH-ReLU and
ATH-Linear, it is clear that the former classifier is much more robust than the
latter for δ pertubation of the parameter values.

156 A. Murthy et al.

(a) (δ, ε)-parameter robustness for δ = 0.005 (b) (δ, ε)-parameter robustness for δ = 0.01

(c) δσ-parameter robustness for δ = 0.005 (d) δσ-parameter robustness for δ = 0.01

Fig. 6. Parameter robustness analysis of Cat classifier. (Color figure online)

Figure 6 illustrates parameter robustness of the Cat classifier presented. For
(δ, ε)-parameter robustness, we choose two different δ values (0.005 and 0.01).
For both cases, we randomly chose 1000 points from the input domain. We then
computed ε for all inputs using Eq. (11). Figure 6(a,b) shows (δ, ε)-parameter
robustness locally at each randomly selected points. The blue line represents
the decision boundary of NN, whereas the colorbar represents the range of ε.
It is clear from the figures that ε value is higher in the bottom right region,
which means the region is more susceptible to be mislabeled in the perturbed
network. Note that does not mean that the input would actually be mislabeled
(see explanation in Sect. 3).

Robustness of Neural Networks to Parameter Quantization 157

Figure 6(c,d) illustrates both δ- and δσ-parameter robustness for two differ-
ent δ values. For δ-parameter robustness, we selected 1000 random inputs from
the domain. We then checked whether the input labeled will be flipped in the
perturbed network using Eq. (8). In the figures, green and red points represent
non-flippable and flippable inputs, respectively. The top (bottom) red line is gen-
erated by adding (subtracting) σ to the decision boundary, where σ is computed
using Eq. (13).

Figures 7 and 8 illustrate the parameter robustness analysis of the athletics
classifier with ReLU and Linear activation, respectively. Comparing these figures,
we can conclude that the athletics classifier with ReLU activation is much more
robust as compared to the classifier with linear activation.

(a) (δ, ε)-parameter robustness for δ = 0.005 (b) (δ, ε)-parameter robustness for δ = 0.01

(c) δσ-parameter robustness for δ = 0.005 (d) δσ-parameter robustness for δ = 0.01

Fig. 7. Parameter robustness analysis of Athletics classifier with ReLU activation.

7 Related Work

Robustness analysis of neural networks is an active area of research. In this
section, we compare and contrast some of the recent papers with our framework.
Robustness typically refers to an NN’s ability to handle perturbations in the

158 A. Murthy et al.

input data. The efforts to characterize robustness can be broadly classified into
two types: model-centric approaches and data-centric approaches.

Model-centric approaches focus on improving the problem formulation to con-
struct robust networks. Distillation training, one of the earliest attempts, entails
training one model to predict the output probabilities of another model that
was trained on an earlier, baseline standard to emphasize accuracy [16,26]. In
[8], the authors proposed a new set of attacks for the L0, L2, and L∞ distance
metrics to construct upper bounds on the robustness of neural networks and
thereby demonstrate that defensive distillation is limited in handling adversarial
examples. Adversarial perturbations, random noise, and geometric transforma-
tions were studied in [12] and the authors highlight close connections between
the robustness to additive perturbations and geometric properties of the clas-
sifier’s decision boundary, such as the curvature. Spatial Transform Networks,
which entail geometrical transformation of the a network’s filter maps were pro-
posed in [19] to improve the robustness to geometric perturbations. Recently, a
generic analysis framework CROWN was proposed to certify NNs using linear
or quadratic upper and lower bounds for general activation functions [31]. The
authors extended their work to overcome the limitation of simple fully-connected

(a) (δ, ε)-parameter robustness for δ = 0.005 (b) (δ, ε)-parameter robustness for δ = 0.01

(c) δσ-parameter robustness for δ = 0.005 (d) δσ-parameter robustness for δ = 0.01

Fig. 8. Parameter robustness analysis of Athletes classifier with linear activation

Robustness of Neural Networks to Parameter Quantization 159

layers and ReLU activations to propose CNN-Cert. The new framework can
handle various architectures including convolutional layers, max-pooling layers,
batch normalization layer, residual blocks, as well as general activation functions
and capable of certifying robustness on general convolutional neural networks [6].

Data-centric approaches entail identifying and rejecting perturbed samples,
or increasing the training data to handle perturbations appropriately. Binary
detector networks that can spot adversarial samples [22,24], and augmenting
data to reflect different lighting conditions [30] are typical examples. Addi-
tionally, robust optimization using saddle point(min-max) formulation [23] and
region-based classification by assembling information in a hypercube centered
[7] have also shown promising results. The above-mentioned approaches focus
on perturbations to data, but our framework focuses on perturbations to the
parameters with the end goal of safely implementing the neural networks on
resource-constrined platforms.

8 Conclusions and Directions for Future Work

We presented a framework to automatically estimate the impact of rounding-off
errors in the parameters of a neural network. The framework uses SMT solvers
to estimate the local and global robustness of a given network. We applied our
framework on a single-node logistic regression model and two small MLPs. We
will consider larger convolutional neural networks in the future and investigate
the scalability of our framework to larger parameter vectors. Compositional-
ity will be critical to analyzing real-world neural networks and we will explore
extending the theory of approximate bisimulation and the related Lyapunov-like
functions to our problem.

References

1. Athletes dataset. https://github.com/flother/rio2016. Accessed 19 Mar 2019
2. Cats dataset. https://stat.ethz.ch/R-manual/R-devel/library/boot/html/catsM.

html. Accessed 19 Mar 2019
3. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an

algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

4. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. In: Advances in Neural Infor-
mation Processing Systems, pp. 2613–2621 (2016)

5. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 14

6. Boopathy, A., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: CNN-Cert: an effi-
cient framework for certifying robustness of convolutional neural networks (2018).
http://arxiv.org/abs/1811.12395

https://github.com/flother/rio2016
https://stat.ethz.ch/R-manual/R-devel/library/boot/html/catsM.html
https://stat.ethz.ch/R-manual/R-devel/library/boot/html/catsM.html
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/978-3-662-46681-0_14
http://arxiv.org/abs/1811.12395

160 A. Murthy et al.

7. Cao, X., Gong, N.Z.: Mitigating evasion attacks to deep neural networks via region-
based classification (2017). http://arxiv.org/abs/1709.05583

8. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks
(2016). http://arxiv.org/abs/1608.04644

9. Chetlur, S., et al.: cuDNN: efficient primitives for deep learning (2014). http://
arxiv.org/abs/1410.0759

10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR09 (2009)

11. D’silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27(7), 1165–1178 (2008)

12. Fawzi, A., Moosavi-Dezfooli, S.M., Frossard, P.: The robustness of deep networks
- a geometric perspective. IEEE Signal Process. Mag. 34(6), 13.50–62 (2017)

13. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiabil-
ity over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31365-3 23

14. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

15. Guo, Y.: A survey on methods and theories of quantized neural networks (2018).
http://arxiv.org/abs/1808.04752

16. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
In: NIPS Deep Learning and Representation Learning Workshop (2015). http://
arxiv.org/abs/1503.02531

17. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

18. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1mb model
size (2016). http://arxiv.org/abs/1602.07360

19. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks (2015). http://arxiv.org/abs/1506.02025

20. Katz, G., Barrett, C.W., Dill, D.L., Julian, K.D., Kochenderfer, M.J.: Towards
proving the adversarial robustness of deep neural networks. In: FVAV@iFM (2017)

21. Kong, S.: The dreal4 tool (2019). https://github.com/dreal/dreal4
22. Lu, J., Issaranon, T., Forsyth, D.A.: SafetyNet: detecting and rejecting adversarial

examples robustly. CoRR abs/1704.00103 (2017). http://arxiv.org/abs/1704.00103
23. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning

models resistant to adversarial attacks. In: International Conference on Learning
Representations (2018). https://openreview.net/forum?id=rJzIBfZAb

24. Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial
perturbations. In: Proceedings of 5th International Conference on Learning Rep-
resentations (ICLR) (2017). http://arxiv.org/abs/1702.04267

25. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient transfer learning (2016). http://arxiv.org/
abs/1611.06440

26. Papernot, N., McDaniel, P.D., Wu, X., Jha, S., Swami, A.: Distillation as a defense
to adversarial perturbations against deep neural networks (2015). http://arxiv.org/
abs/1511.04508

http://arxiv.org/abs/1709.05583
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-38574-2_14
http://arxiv.org/abs/1808.04752
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/978-3-319-63387-9_1
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1506.02025
https://github.com/dreal/dreal4
http://arxiv.org/abs/1704.00103
https://openreview.net/forum?id=rJzIBfZAb
http://arxiv.org/abs/1702.04267
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1511.04508
http://arxiv.org/abs/1511.04508

Robustness of Neural Networks to Parameter Quantization 161

27. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

28. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by
back-propagating errors. Nature 323, 533–536 (1986). https://doi.org/10.1038/
323533a0

29. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 447–454.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 27

30. Sivaraman, K., Murthy, A.: Object recognition under lighting variations using pre-
trained networks. IEEE Appl. Imag. Pattern Recognit. Work. (AIPR) 2018, 1–7
(2018)

31. Zhang, H., Weng, T.W., Che, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural network
robustness certification with general activation functions (2018). http://arxiv.org/
abs/1811.00866

https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/978-3-319-21690-4_27
http://arxiv.org/abs/1811.00866
http://arxiv.org/abs/1811.00866

Model-Based Design

Model-Based Energy Characterization
of IoT System Design Aspects

Alexios Lekidis(B) and Panagiotis Katsaros

Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

{alekidis,katsaros}@csd.auth.gr

Abstract. The advances towards IoT systems with increased autonomy
support improvements to existing applications and open new perspec-
tives for other application domains. However, the design of IoT systems
is challenging, due to the multiple design aspects that need to be con-
sidered. Connectivity and storage aspects are amongst the most signif-
icant ones, as IoT devices are resource-constrained and in many cases
battery-powered. On top of them, it is also essential to consider pri-
vacy and security aspects that are linked to the protection of the IoT
system, as well as of the data exchanged through its connectivity inter-
faces. Ensuring security in an IoT system, though, is an evident need
and a complex challenge, due to its impact in the battery lifetime. In
this paper, we propose a methodology to manage energy consumption
through a model-based approach for the energy characterization of IoT
design aspects using the BIP (Behavior, Interaction, Priority) component
framework. Our approach is exemplified based on an Intelligent Trans-
port System (ITS) that uses Zolertia Zoul devices placed in traffic lights
and road signs to broadcast environmental and road hazard information
to crossing vehicles. The results allow to find a feasible design solution
that respects battery lifetime and security requirements.

Keywords: Internet of Things (IoT) · Energy characterization ·
Security · Model-based design

1 Introduction

The combination of connected intelligence in systems of the Internet of Things
(IoT) with energy-constrained devices featuring limited computational resources
poses new challenges in application design. To better control the consumption
of battery lifetime, application developers have to consider a number of design
aspects not only at the application level, but also at the system level. These
aspects include the system’s connectivity, the data processing and the data stor-
age. Furthermore, security and data privacy aspects should be also taken into
account, since the IoT has attracted the interest of malicious actors, who may

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 165–180, 2019.
https://doi.org/10.1007/978-3-030-31514-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_10

166 A. Lekidis and P. Katsaros

attempt to tamper with the provided functionality of an IoT system. Widely
known attacks as the Distributed Denial of Service (DDoS) Mirai botnet [3] on
OVH1 have recently demonstrated the feasibility of opening system ports with
default authentication credentials through remote TELNET or SSH connections.

Important risks emerge due to: (i) the available connectivity interfaces and
IoT protocol implementations and (ii) the exposed web services that allow con-
tinuous service delivery but usually are not designed with security in mind. The
former refer to the absence of security measures in IoT protocols (e.g. MQTT
[7]), which opens possibilities to eavesdrop or tamper with the exchanged data.
For the latter, the absence of security protection is due to the additive compu-
tational power and storage memory required for the implementation of security
mechanisms (e.g. encryption). This may lead to memory overflow, as well as to
considerably reduced battery lifetime.

In overall, the design of IoT systems is characterized by a high complexity due
to the multiple overlapping design aspects, which have to be taken into account
and the initial system requirements that often are not directly feasible within
the IoT system architecture. As a consequence, the system requirements are
usually refined multiple times until they converge to those that can be eventually
implemented. The overall gap in system design could be bridged by a method
for the estimation and characterization of the system’s energy life-span, with
respect to the design aspects considered in the initial system requirements.

To this end, we propose a systematic model-based approach that leverages
the Behavior, Interaction, Priority (BIP) component framework [5] towards an
energy profiling scheme for the overlapping system design aspects. Our scheme
enables the prediction of tight bounds for the various design aspects by utilzing
a software-based solution of the Contiki IoT operating system, called powertrace
[8], which are then used to include energy constraints in the BIP models [11].
Such scheme allows to overcome challenges related to energy monitoring, as it
currently requires direct hardware interactions, which in most devices are not
supported [8]. Furthermore, it provides an automated energy cost analysis for
IoT design aspects compared to manual energy consumption calculations, which
rely on the manufacturer characteristics that might also be inaccurate according
to actual system measurements [17].

The method is illustrated through an Intelligent Transport System (ITS),
i.e. an application scenario selected from one of the main IoT system domains2.
In the ITS system, road hazard and environment information are broadcasted
by infrastructure components, as traffic lights and road signs. To facilitate such
communication the infrastructure components include Zolertia Zoul modules3.
In this context, we use the system requirements defined by the European Trans-
portation Committee (ETSI)4 to evaluate the feasibility of ITS system design

1 French cloud computing company - https://ovhcloud.com.
2 https://www.technavio.com/blog/intelligent-transport-system-iot-promote-smart-

safe-urban-mobility.
3 https://zolertia.io/zoul-module/.
4 https://www.etsi.org/.

https://ovhcloud.com
https://www.technavio.com/blog/intelligent-transport-system-iot-promote-smart-safe-urban-mobility
https://www.technavio.com/blog/intelligent-transport-system-iot-promote-smart-safe-urban-mobility
https://zolertia.io/zoul-module/
https://www.etsi.org/

Model-Based Energy Characterization of IoT System Design Aspects 167

aspects that are linked to IoT connectivity protocols for data processing and
storage schemes, as well as to security protocols such as lightweight implemen-
tations of TLS and DTLS. In overall, this paper has the following contributions:

– an energy profiling technique for estimating the energy impact of various
design aspects in an IoT application;

– an energy-aware model allowing a feasible design solution for IoT applications
given the energy cost for each design aspect;

– a use case of our energy profiling technique on an ITS system deployed on
Zolertia Zoul motes.

The rest of the paper is organized as follows. Section 2 provides a brief intro-
duction to the powertrace IoT energy measuring module, as well as our previous
work on energy-aware models using the BIP framework. Section 3 illustrates the
proposed energy profiling technique for deriving estimates for the IoT system
design aspects, which are later used in Sect. 4 to evaluate the use of communi-
cation, data storage and security aspects in the ITS case study. Finally, Sect. 5
provides conclusions and perspectives for future work.

2 Background

2.1 Measuring Energy Consumption with Powetrace

Powertrace [8] is a Contiki library that allows the annotation of Contiki programs
with primitives, for monitoring the energy flow in IoT devices. It identifies four
individual operating modes that contribute to a device’s energy consumption:

– Low Power (LPM): the device is idle waiting for an event
– CPU: the device microcontroller is used for calculations/data processing
– Radio transmission (Tx): indicating data transmission
– Radio reception (Rx): indicating data reception

The energy consumption depends on the time that a device remains in each of
the above modes. To measure this time, the library provides code primitives that
can be used for every IoT device type. A data logger supporting energy analytics
is utilized to store the data. Examples of such analytics are the duty cycle or the
device lifetime. The former refers to the percentage of time that a device remains
in one operating mode, whereas the latter refers to the total time duration that
a device operates autonomously. The period that powertrace uses to measure
and log the data is user-configurable and has an impact on the performance and
accuracy of the mechanism. Finally, the energy calculation in powertrace also
supports hardware-specific parameters, such as the real-time timer (RTIMER5)
that is used to measure the hardware clock cycles of the device per second.

5 http://anrg.usc.edu/contiki/index.php/Timers#Step 5 - Introduction to rtimer.

http://anrg.usc.edu/contiki/index.php/Timers#Step_5_-_Introduction_to_rtimer

168 A. Lekidis and P. Katsaros

2.2 Energy-Aware Modeling of IoT Systems

In a related article [11] we have presented a systematic methodology to charac-
terize the impact of various application design parameters to the total energy
consumption of IoT devices. This methodology allows the estimation of tight
energy bounds for the energy consumption of an IoT application through the
use of Statistical Model Checking (SMC) [14].

Since energy consumption is closely related to connectivity design aspects,
the parameters found to have a high impact are related to IoT connectivity.
Nevertheless, energy consumption is also impacted by additional equally impor-
tant aspects and hence we focus here on revisiting the initial energy model and
associated design parameters. The identified parameters in [11] were classified
into (i) the application, (ii) the MAC and (iii) the physical network layers.

Our methodology is driven by a model for the system design that is based on
the BIP (Behavior-Interaction-Priority) [5] executable modeling language. BIP
is a particularly expressive, component-based framework with rigorous seman-
tics. It allows the construction of complex, hierarchically structured models from
atomic components, which are characterized by their behavior and interfaces.
The components are transition systems enriched with data. Transitions repre-
sent state changes from a source to a destination control location. Each time
a transition is taken, component data (variables) may be assigned new values,
which are computed by user-defined functions (in C/C++). Atomic components
are composed by layered application of interactions and priorities. Interactions
express synchronization constraints and define the transfer of data between inter-
acting components. Priorities are used to filter amongst possible interactions and
to steer system evolution so as to meet performance requirements, e.g. to express
scheduling policies. A set of atomic components can be composed into a generic
compound component by the successive application of connectors, representing
sets of interactions, and priorities.

3 Characterization of IoT System Design Aspects

In this section, we present a method (Fig. 1) to bridge the gap between IoT
system requirements and the energy impact that they have in the context of the
IoT architecture. Our method allows (1) the energy characterization of all aspects
contributing to the energy consumption and (2) the design of the application
with respect to those aspects.

Given as input a set of requirement specifications for the relevant design
aspects, and the high-level design of the application expressed in a Domain
Specific Language (DSL) [12], our method proceeds as follows:

1. Transformation for the System Model: The actions comprising this step
are two-fold. First, the Contiki code behaviour of the application modules is
specified in the DSL-based description, which is used to generate an Applica-
tion Model in BIP. This model is later enhanced with the OS/kernel model

Model-Based Energy Characterization of IoT System Design Aspects 169

Fig. 1. Design phases of the proposed method

that is formed from a library of BIP components. The two models are com-
posed by incorporating information specified in the DSL description for how
the application modules are deployed to the IoT system’s devices.

2. Code generation from IoT application templates: This step leverages
the DSL description and an XML-based configuration file with the parameters
that are presented in Sect. 3.1 that affect the energy consumption. Both are
used as inputs to instantiate Contiki code templates for the IoT application
and form an executable program for the devices.

3. Energy characterization: The analysis of powertrace execution traces is
provided to a distribution fitting technique (Sect. 3.2). This technique allows
to associate a probabilistic distribution to the data, in order to prepare them
for being injected to a BIP energy model for IoT systems. This model is
presented in [11] and includes the influential hardware/software energy con-
straints from the execution of the IoT application.

4. Calibration for the construction of an energy-aware System Model:
This step concerns with the addition of parameters to the BIP model for
the runtime characterization of the IoT application, as well as the generation
of glue code for the composition of the BIP System Model with the energy
model.

5. Energy aspect monitoring: The Calibrated BIP Model is also connected
to energy monitors (Sect. 3.3) for the design aspects of interest. This allows
the simulation-based analysis of energy consumption such that the designer
can check the feasibility of the various (combinations of) design aspects with
respect to the available resources.

6. Statistical model checking (SMC): At the end the designer can verify if
the Calibrated BIP Model satisfies the system requirements through SMC.

170 A. Lekidis and P. Katsaros

3.1 Energy-Relevant Parameters for IoT Design Aspects

Given that the connectivity aspects were covered in our previous work [11], this
section focuses on the data processing and security aspects.

Data Processing Aspects
The amount of available memory in IoT devices, allows for the implementation of
a limited number of IoT application features, with respect to those envisioned in
system requirements. The selection of which features are necessary and should
be implemented requires a characterization of their energy constraints. Given
these constraints, the main parameters that influence data processing are:

Resource Processing: Resources provide important information in IoT appli-
cations through the interaction with hardware sensors. Sensors are or are not
built-in, in which case they are mounted in the device as peripherals (e.g. Phid-
gets6 sensors for Zolertia Z1). Resource communication depends on their pro-
cessing time, which when lengthy, can lead to timeout and retransmissions on the
requester side. This increases substantially the energy consumed in processing
and transmission mode. CoAP provides a mechanism to optimize the energy con-
sumed in such scenario by acknowledging the resource request and then sending
the response when it becomes available [16]. Overall, peripheral communication
is unpredictable and thus can influence strongly IoT device energy consumption.

Routing Protocol: Many IoT applications configure edge entities to route all
data that require processing in remote cloud servers. This emerged a new type
of IoT applications, called Software-Defined Networks (SDN) [13], where control
and logic is placed on the sensors and data processing on remote cloud servers.
To allow energy-efficient data routing to cloud servers, a number of protocols
were developed with RPL [18] being the one widely used in IoT. RPL builds
an Destination Oriented Directed Acyclic Graph (DODAG) that provides the
best route from each leaf node to the edge to direct all data encapsulated in
network packets. Other routing protocols, include the cognitive RPL (CORPL)
[2], a variation of RPL for cognitive radio networks [1], as well as the Channel-
Aware Routing Protocol (CARP) [4], a non-standardized protocol that is used
for underwater communication due to its link quality considerations.

Memory Block Management: The limited memory available in IoT devices
requires new techniques to allocate memory dynamically. Apart from the com-
monly used heap memory allocation using the malloc library7, IoT systems also
employ dynamic block allocation through the mmem library8. The latter defrag-
ments the managed memory area, which in turn allows the IoT application
designer to manage the features to be implemented by estimating their block
size. Additionally, by avoiding device operations when in a low memory state, a
balanced energy consumption can be achieved.

6 http://wiki.zolertia.com/wiki/index.php/Phidgets.
7 https://en.cppreference.com/w/c/memory/malloc.
8 http://www.eistec.se/docs/contiki/a02115.html.

http://wiki.zolertia.com/wiki/index.php/Phidgets
https://en.cppreference.com/w/c/memory/malloc
http://www.eistec.se/docs/contiki/a02115.html

Model-Based Energy Characterization of IoT System Design Aspects 171

Security Aspects
Security is receiving substantial attention in IoT application development, due
to the underlying risks especially for safety-critical systems as connected vehicles
or avionics. Mechanisms as encryption or authentication offer protection against
imminent threats, though they should also have a lightweight energy footprint
to respect the constraints of IoT systems.

Security Level: The protection of IoT devices is managed by the security level
that they offer. Security levels are categorized according to the system require-
ments for security aspects. The currently available levels are:

[SL-0] No security
[SL-1] Encryption only
[SL-2] Authentication and encryption

A higher security level results in better protected schemes, but leads to higher
energy consumption. The security level is based on the system requirements.

Security Protocol: The protocols allowing secure data exchange are imple-
mented in different layers of the IoT protocol stack. Each of these protocols
contributes to a security level, but it also uses a specific communication mecha-
nism between the IoT devices. As an example, TLS uses a handshake mechanism
to establish a connection by agreeing on the connection parameters and by the
exchange of a secret cipher key. A similar procedure is applied for protocols of
other layers such as the IPsec in the IP layer. Overall, even though these pro-
tocols offer solid encryption/authentication mechanisms they introduce a sub-
stantial overhead on the energy consumption. This is due to the time that a
device remains on the processing (i.e. CPU) mode for encrypting/decrypting
the packets, as well as the additive transmissions for establishing a connection.

Session Key Size: In traditional Internet systems, security is handled through
sufficiently large key sizes through the commonly used AES encryption. Instead,
in IoT a large key size (i) would increase the processing demand for encryp-
tion/decryption of messages and (ii) would prolong the time the IoT device
remains in transmission mode, since the key should be distributed to the other
IoT devices upon connection establishment. These considerations along with the
dynamicity of the IoT environment lead to the conclusion that the key size should
be considered as an important aspect when providing security for IoT devices.

3.2 Energy Characterization

Energy characterization (step 3 in Fig. 1) is performed through distribution fit-
ting, a technique to derive models that characterize input data. In our scope,
distribution fitting considers that the target model is a probability distribution.
This technique allows to characterize the energy evolution over a certain period,
to reflect the actual energy consumption in the IoT system under study.

The technique itself is based on the randomness of input data and thus cannot
be applied to deterministic or statistically correlated data. Instead of this, the

172 A. Lekidis and P. Katsaros

data should be independent, such that one outcome of a random sample does
not affect the outcome of another. This holds for energy data as IoT devices
have asynchronous and not correlated changes, which is a consequence of relying
in event-driven operating systems as the Contiki OS [8].

The fitting process is using well-known methods, such as moments matching
and maximum likelihood. The moments matching method estimates the model
parameters by using as many moments as the number of missing parameters
of the candidate distribution. These moments depend on the probability law
that the chosen candidate distribution follows. On the other hand, maximum
likelihood finds the parameters that maximize the likelihood function. Then, the
fitted distributions are validated against the input energy data using goodness-
of-fit tests, such as the Kolmogorov-Smirnov (K-S).

An example fitted distribution characterizing the energy consumed while a
device is in Tx mode is illustrated in Fig. 2. Horizontal axis reflects the range
in which energy values can vary, whereas the vertical illustrates the Probability
Density Function (PDF). In this example, the distribution that is selected as a
best fit is Generalized Pareto with κ = 0.40227, σ = 1.6739, μ = 35.105 moments.
For energy samples given by: X = [x1, x2, ..., xn], the distribution parameters θ1
and θ2 that maximize the likelihood function are computed as follows:

L(θ1, θ2;x1, . . . , xn) =
n∏

i=1

θ1 ∗ θθ1
2

xi
θ1+1

= θ1
n ∗ θn∗θ1

2

n∏

i=1

1
xi

θ1+1
(1)

During the validation phase, the goodness-of-fit tests have given 0.09415 error
for Kolmogorov-Smirnov (K-S).

Fig. 2. Fitted energy distribution for the transmission (Tx) mode

The fitted distributions are calibrating the energy model in the form of prob-
abilistic variables. These variables take values based on a non-deterministic selec-
tion that is following the probability law of the fitted distribution.

Model-Based Energy Characterization of IoT System Design Aspects 173

3.3 Energy Aspect Monitoring

An energy aspect monitor is instantiated according to the number of aspects
that influence the IoT system. Following Sect. 3.1, these parameters lead to three
instances of the component, namely the connectivity, data processing and secu-
rity monitors. Each instance interacts with the energy model using a dedicated
BIP connector as illustrated in Fig. 3. The monitor component has two main
characteristics: (i) acting as an interaction advisor, such that when present it
can consider the energy cost of each design aspect (ii) implementing all the
required equations for evaluating if the conditions that are derived by the sys-
tem requirements are met.

Fig. 3. Energy aspect monitor interactions with energy model

The aspect monitor is initially informed when the device switches operat-
ing mode by receiving the time value of the probabilistic distribution that was
selected through the tick transition. With this value it can estimate if the con-
dition can be met or not. In the example of Fig. 3 there are two monitors (i.e.
connectivity and security) and each one evaluates a different condition:

1. Condition A (associated with connector value ca): The device is sustained for
full working day on battery power

2. Condition B (associated with connector value cb): The processing time of
security operations should not be higher than 60% of the overall duty cycle

Each condition is computed by the monitor during its own tick transition.
When the condition is met, the boolean value is set and the monitor can proceed
through the valid internal transition (connectivity monitor of Fig. 3). Otherwise,
it will remain on the deny state until satisfying the condition. On the other hand,
when the allocated time on the energy model has elapsed, it has first to interact

174 A. Lekidis and P. Katsaros

with the monitor (through the notify transition) prior of interacting with the
Contiki system model [11]. During this interaction (depicted in red in Fig. 3)
the monitor uploads the condition value, which either allows the energy model
to proceed (ca or cb = true), or notifies the energy model that the condition is
invalidated and thus the system violates the requirements. When the condition is
met as with condition A in Fig. 3, the time value counted by the tick transition of
the energy model (test) is send to the monitor through the condition connector,
which calculates the estimated energy consumption (in Joule) using the following
equation:

Eesty = Iy ∗ Vy ∗ test (2)

where in every tuple {Iy, V y}, y indicates the device’s operating mode and I, V
indicate respectively the current (in Ampere) and voltage (in Volts).

Energy Estimation
After simulating the Calibrated BIP Model, the monitor provides analytics
regarding the estimated values for energy characteristics, which differ from the
actual ones that are logged in the execution traces of Fig. 1 using the power-
trace module (Sect. 2). These characteristics cover all the IoT design aspects of
Sect. 3.1 and are given by the following equations:

Eesttotal
= Eestconn

+ Eestproc + Eestsec +
NLPM∑

i=1

ILPM ∗ VLPM ∗ ΔtLPMi
(3)

Except from the last parameter (energy in LPM mode), each of the remaining
equation parameters reflects the aspects presented in Sect. 3.1, defining their
contribution to the energy consumption. Δty indicates the time intervals in which
the device remains in an operating mode and Dy indicates the duty cycle for
each mode (y = LPM for LPM mode).

Dy =
∑Ny

i=1 Iy ∗ Vy ∗ Δtyi

Eesttotal

(4)

where Ny the relative number of occurrences that the device has visited the
operating mode y. The rest of the equation parameters are computed as:

Eestconn
=

NTx∑

j=1

ITx ∗ VTx ∗ ΔtTxj +
NRx∑

k=1

IRx ∗ VRx ∗ ΔtRxk
(5)

Eestproc =
NCPU∑

z=1

ICPU ∗ VCPU ∗ ΔtCPUz
+

NPER∑

w=1

IPER ∗ VPER ∗ ΔtPERw
(6)

Energy consumption for security aspects is linked to both connectivity and data
processing aspects, however the contribution percentage for each one varies and
depends on the energy parameters of the IoT application. Hence:

Eestsec = ΔEconn + ΔEproc (7)

Model-Based Energy Characterization of IoT System Design Aspects 175

where ΔEconn and ΔEproc indicate the additional overhead that is added
by security aspects. Finally, the device lifetime is computed by the following
equation:

lfest =
Cbatt ∗ V cc

Eesttotal

(8)

where Cbatt indicates the overall capacity of the battery for autonomous opera-
tion (in Ampere hours) and Vcc the operating voltage (in Volts).

The designer can then update the system requirements iteratively according
to the difference between the estimated model parameters and the actual ones.

4 Case-Study: Energy Characterization of ITS Design
Aspects

In this section, we illustrate our method through a case study in the smart
mobility IoT domain by presenting an Intelligent Transport System (ITS). This
case study provides environmental condition awareness to different parts of a
city through the ITS data exchange scheme defined by the ETSI EN 302 637-2
[10] and ETSI EN 302 637-3 [9] standards. The case study (Fig. 4) aims to
measuring and characterizing energy design aspects in a real ITS system that
was deployed as a prototype within our premises. Since ITS architectures handle
sensitive user-data, they require the existence of security mechanisms to prevent
attacks from malicious actors. Characteristic ITS attack examples aim to take
control of the network, such as DDoS [15], spoofing or frame replay [6]. Hence,
to protect the system against such attacks we have implemented a lightweight
security library that includes the TLS, DTLS and IPSec protocols.

Fig. 4. Topology of the ITS prototype

The deployed architecture of Fig. 4 allows Zolertia Zoul devices that are
located in certain zones to send environmental data (i.e. temperature, humidity)

176 A. Lekidis and P. Katsaros

to an Orion border router9, which is configured as data forwarder for supporting
awareness of vehicles that are about to enter these areas. Specifically, in Fig. 4
vehicles from Zone 3 are about to enter Zone 1 and 2, hence after establishing
a secure connection with the border router they ask for real-time data analytics
about the environmental conditions. The border router also runs a web-server,
where vehicles have access and can get live updates. Furthermore, the Zoul mod-
ules run the Contiki OS and are placed into ITS devices, as traffic lights and
road signs that we have configured in our prototype (Fig. 5).

Fig. 5. Deployment of the ITS prototype

4.1 Application of the Proposed Method

Step 1: Transformation for the System Model
We used the described energy-relevant parameter XML configuration along with
the DSL description to generate the BIP System Model.

Step 2: Code generation from IoT application templates
In this step, we have considered the parameters of Sect. 3 combined with the
connectivity parameters presented in [11]. The value range of all parameters
that influence energy consumption is shown in Table 1. The default value for
each parameter is specified by the ITS system requirements.

Step 3: Energy characterization
We have used the technique of Sect. 3 to derive probabilistic dsitributions, aiding
in the calibration of the Energy Model with energy constrains for the ITS case
study. The derived probabilistic distributions were found to follow the General-
ized Pareto or the Cauchy distributions. These distributions were used in Step
4 to calibrate the energy model (presented in Fig. 3).

Step 5: Energy aspect monitoring
We identified two conditions for the ITS system, that are presented in Sect. 3.
The system requirements for the ITS10 lie on the usage of security level SL-2,
9 https://zolertia.io/product/orion-router/.

10 https://www.etsi.org/e-brochure/Work-Programme/2017-2018/files/basic-html/
page17.html.

https://zolertia.io/product/orion-router/
https://www.etsi.org/e-brochure/Work-Programme/2017-2018/files/basic-html/page17.html
https://www.etsi.org/e-brochure/Work-Programme/2017-2018/files/basic-html/page17.html

Model-Based Energy Characterization of IoT System Design Aspects 177

Table 1. Parameters of the energy-aware configuration

Energy model parameter Associated aspect Default value Variation range

RDC protocol Connectivity X-MAC [Contiki-MAC, X-MAC, LPP, nullRDC]

RDC frequency Connectivity 8Hz [2–32] Hz (even number)

Packet retransmissions Connectivity 4 [0–5] ∈ Z

Service protocol Connectivity CoAP [CoAP, MQTT, HTTP]

Header size Connectivity 48 bytes [32–64] bytes (even number)

Interference Connectivity 0 [0–1] ∈ R

Resource processing Data processing Application resources:

Temperature,

Humidity

Available resources:

Temperature,

Humidity,

Motion,

Light,

Accelerometer

Routing protocol Data processing RPL [RPL, CORPL, CARP, none]

Memory block

management

Data processing Mmem [Malloc, mmem]

Security level Security SL-2 [SL-0, SL-1, SL-2, SL-3]

Security protocol Security TLS [TLS, DTLS, IPSec]

Session key size Security 256 [128, 192, 256] bits

meaning strong encryption (256-bit key size) and authentication mechanisms for
the communication (Default value in Table 1). Hence, the energy monitors for
all aspects are enabled to ensure that conditions A and B in Sect. 3 hold. As an
additional step, the estimations for possible changes in the IoT architecture can
be validated through the use of SMC in Step 6.

4.2 Experiments

In this section, we demonstrate the experiments for evaluating the aforemen-
tioned requirements. To automate these experiments we developed a tool that
given the parameter configuration XML, executes the system model for all com-
binations of parameters and saves the energy estimations that satisfy at least
one of the conditions in dedicated files. The current and voltage values that
were used for the calculation of the total energy, duty cycle and device lifetime
for Sect. 3 equations, were obtained from the IoT devices’ datasheet. The experi-
ments were conducted by leaving the Zoul devices on battery power for an entire
working day and then charging them to reach their full battery capacity.

Condition A. By experimenting with multiple variations for the parameters of
Table 1 we concluded that the largest contribution to the energy consumption
is given by the connectivity and security aspects. Specifically, the use of TLS
increases substantially the device energy consumption (Actual Energy in Fig. 6)
in the processing mode. This invalidates condition A, since the security moni-
tor allows energy consumption up to 60 Joules for sustaining the device for an
entire day of continuous operation. Hence, this scenario is excluded from the
feasible ones in the energy estimation feedback report that is returned to the
user. Instead, the experiments with 128 key size and no authentication scheme

178 A. Lekidis and P. Katsaros

allowed condition A to be satisfied (Estimated Energy in Fig. 6), as the duty
cycle in processing mode is significantly reduced.

Fig. 6. Actual energy consumption compared to the estimated

Condition B. As with condition A, B was also not met for the Zoul devices.
Additionally, the scenario that led condition A to be met i.e. 128 key size and no
authentication scheme did not satisfy condition B, since it led to a duty cycle:
DCPU = 67%. However, the combination of this scenario with an increased RDC
frequency to 32 Hz resulted in meeting condition B, as DCPU = 58%.

5 Conclusion

We presented a novel method for estimating the energy consumption for various
design aspects of IoT applications. The method is based on the principles of rig-
orous system design by using the BIP component framework. It takes as input
the application design description in a DSL and an XML-based set of energy
parameters, and generates a system model in BIP calibrated with energy con-
straints. These constraints are obtained by energy characterization mechanisms
applied to the execution traces of the deployed IoT application. The calibrated
model is then monitored through model conditions that allow to verify if the
system requirements are met and also to estimate scenarios where they can be
met. The estimations are given as feedback to the IoT system designer.

As a proof of concept, the described method has been applied to an Intelligent
Transport System. The system consists of road signs and traffic lights that are
informing vehicles for climate conditions upon entering their area. This system
requires the presence of strong security mechanisms to respect the privacy of
exchanged data and to avoid security threats. We have verified conditions related

Model-Based Energy Characterization of IoT System Design Aspects 179

to the IoT device lifetime and the CPU duty-cycle for security mechanisms. The
results allow to provide a feasible design solution for the ITS application by
considering the energy cost of each IoT design aspect.

Currently, the energy aspect monitoring technique requires extensive tests
for all the combinations of energy parameters in each IoT application. We plan
to improve this by testing only the relevant scenarios according to the system
requirements. This will allow faster estimations for the IoT application designer.

References

1. Aijaz, A., Aghvami, A.H.: Cognitive machine-to-machine communications for
Internet-of-Things: a protocol stack perspective. IEEE Internet Things J. 2(2),
103–112 (2015)

2. Aijaz, A., Su, H., Aghvami, A.H.: CORPL: a routing protocol for cognitive radio
enabled ami networks. IEEE Trans. Smart Grid 6(1), 477–485 (2015)

3. Antonakakis, M., et al.: Understanding the mirai botnet. In: USENIX Security
Symposium, pp. 1092–1110 (2017)

4. Basagni, S., Petrioli, C., Petroccia, R., Spaccini, D.: CARP: a channel-aware rout-
ing protocol for underwater acoustic wireless networks. Ad Hoc Netw. 34, 92–104
(2015)

5. Basu, A., Bensalem, B., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE
Softw. 28(3), 41–48 (2011). https://doi.org/10.1109/MS.2011.27

6. Chim, T.W., Yiu, S., Hui, L.C., Li, V.O.: Security and privacy issues for inter-
vehicle communications in VANETs. In: 6th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks Work-
shops, 2009. SECON Workshops 2009, pp. 1–3. IEEE (2009)

7. Collina, M., Corazza, G.E., Vanelli-Coralli, A.: Introducing the QEST broker: scal-
ing the IoT by bridging MQTT and REST. In: 2012 IEEE 23rd International
Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp.
36–41. IEEE (2012)

8. Dunkels, A., Osterlind, F., Tsiftes, N., He, Z.: Software-based on-line energy esti-
mation for sensor nodes. In: Proceedings of the 4th Workshop on Embedded Net-
worked Sensors, pp. 28–32. ACM (2007). https://doi.org/10.1145/1278972.1278979

9. ETSI, E.: 302 637–3 V1. 2.2 (2014–11) Intelligent Transport Systems (ITS). Vehic-
ular Communications

10. ETSI, T.: Intelligent transport systems (its); vehicular communications; basic set
of applications; part 2: specification of cooperative awareness basic service. Draft
ETSI TS 20, 448–451 (2011)

11. Lekidis, A., Katsaros, P.: Model-based design of energy-efficient applications for
IoT systems. In: Proceedings of the 1st International Workshop on Methods and
Tools for Rigorous System Design, MeTRiD@ETAPS 2018, pp. 24–38 (2018).
https://doi.org/10.4204/EPTCS.272.3

12. Lekidis, A., Stachtiari, E., Katsaros, P., Bozga, M., Georgiadis, C.K.: Model-based
design of IoT systems with the BIP component framework. Software - Practice and
Experience (2018). https://doi.org/10.1002/spe.2568

13. Nastic, S., Sehic, S., Le, D.H., Truong, H.L., Dustdar, S.: Provisioning software-
defined IoT cloud systems. In: 2014 2nd International Conference on Future Inter-
net of Things and Cloud (FiCloud), pp. 288–295. IEEE (2014)

https://doi.org/10.1109/MS.2011.27
https://doi.org/10.1145/1278972.1278979
https://doi.org/10.4204/EPTCS.272.3
https://doi.org/10.1002/spe.2568

180 A. Lekidis and P. Katsaros

14. Nouri, A., Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A.: Sta-
tistical model checking QoS properties of systems with SBIP. Int. J. Software
Tools Technol. Transfer 17(2), 171–185 (2015). https://doi.org/10.1007/s10009-
014-0313-6

15. Parno, B., Perrig, A.: Challenges in securing vehicular networks. In: Workshop on
hot topics in networks (HotNets-IV), pp. 1–6. Maryland, USA (2005)

16. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP).
Technical reports (2014)

17. Vilajosana, X., Wang, Q., Chraim, F., Watteyne, T., Chang, T., Pister, K.S.: A
realistic energy consumption model for TSCH networks. IEEE Sens. J. 14(2), 482–
489 (2014). https://doi.org/10.1109/JSEN.2013.2285411

18. Winter, T., et al.: RPL: IPv6 routing protocol for low-power and lossy networks.
Technical report (2012)

https://doi.org/10.1007/s10009-014-0313-6
https://doi.org/10.1007/s10009-014-0313-6
https://doi.org/10.1109/JSEN.2013.2285411

A Logic-Inspired Approach
to Reconfigurable System Modelling

Alessandro Maggi1(B), Rocco De Nicola1(B), and Joseph Sifakis2(B)

1 IMT School for Advanced Studies Lucca, Lucca, Italy
{alessandro.maggi,rocco.denicola}@imtlucca.it

2 Université Grenoble Alpes, Saint-Martin-d’Hres, France
joseph.sifakis@univ-grenoble-alpes.fr

Abstract. Software systems have reached a level of complexity that
demands new approaches to software design in order to support contin-
uous adaptation to the changes in their internal and external environ-
ment. This implies the capability of capturing at design-time the dynamic
features of systems that are composed of large numbers of interact-
ing components in order to reduce the risks of undesirable interferences
and unpredictable outcomes. The L-DReAM framework (“Light Dynamic
Reconfigurable Architecture Modelling”) relies on a logic-based mod-
elling language that is expressive enough to capture different approaches
to systems coordination, reconfiguration and dynamicity. L-DReAM com-
ponents have a “loose” structure that, combined with the flexibility of
the adopted coordination language, results in a framework that can be
used to model many different computational paradigms while offering a
readable syntax easy to understand.

1 Introduction

Software systems have reached a level of complexity that calls for new approaches
to software design taking advantage of decomposition and indirection. When
applied to classes of systems that globally consist of large numbers of interact-
ing components and feature complex interaction mechanisms, the lack of rigorous
methodologies and formally grounded frameworks for modelling them increases
the risks of undesirable interferences and unpredictable outcomes. These risks
are amplified by the fact that these systems are usually distributed, heteroge-
neous, interdependent, and are operating in unpredictable environments. To cope
with these issues, software needs to be developed in such a way that systems
can continuously adapt to internal changes and to changes in their operating
environment.

The notion of reconfigurability implies the capability of capturing the
dynamic aspects of modern software already at design-time. This is even more
challenging for frameworks that aim at modelling architectures that not only
support parametric system instantiation, but also dynamic reconfiguration of
their inner structure and of their coordination patterns. Architecture modelling

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 181–201, 2019.
https://doi.org/10.1007/978-3-030-31514-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_11

182 A. Maggi et al.

languages should be expressive enough to support these features while offering an
intuitive syntax and clear design methodologies in order to foster their practical
use.

This paper introduces the L-DReAM framework, a light variant of the DReAM
framework introduced in [1] for modelling Dynamic Reconfigurable Architec-
tures. Both frameworks rely on a logic-based modelling language that is expres-
sive and powerful enough to support different approaches to coordination and all
the key features required to capture dynamicity. In L-DReAM a system is a hier-
archical structure of components. Each non-atomic component hosts a “pool” of
components and defines the coordination rules that regulate the way they inter-
act and evolve. The overall structure of systems can also change as components
can leave and join different pools. Components will thus be subject to differ-
ent coordination rules as they change their position in the hierarchy. L-DReAM
rules include an interaction constraint, modelled as a formula of the Proposi-
tional Interaction Logic (PIL) [2], and some operations allowing data transfer
as well as more complex reconfigurations of the component’s state. Parametric
coordination between classes of components is achieved through the introduc-
tion of the concepts of component types - blueprints for actual components - and
component instances created from specific types. Their coordination is charac-
terized by rules in a first order extension to PIL with quantification over instance
variables of a given type.

Differently from DReAM, in L-DReAM there is no separation between
behaviour and coordination of components. The two frameworks share a com-
mon structure characterized by an interface of ports, a store of local variables,
and a rule, but L-DReAM components are not transition systems so they do not
have control locations or transitions between them. In fact, L-DReAM rules are
used both to coordinate sub-components in a compound’s pool and to charac-
terize the behaviour and capabilities of components in general. Furthermore, the
possibility of having compounds hosting other compounds in their pool allows
to treat every element in the hierarchy uniformly, to the point where the overall
system itself is a component.

All this allows L-DReAM to be more expressive than DReAM while boasting
a more streamlined and uniform operational semantics, making it better suited
for theoretical analysis and comparison with other formalisms. Indeed, rules can
even be characterized just by predicates over local variables without the need
to define looping transitions over dummy ports and control states. This allows
using L-DReAM to model, with a minimal overhead, also data-driven systems
like, e.g., systems adopting attribute-based communication for messaging, coor-
dination and adaptation [3].

The rest of the paper is organized as follows. Section 2 presents the non-
parametric version of the framework that relies on the Propositional Interaction
Logic (PIL) that is used to model static architectures. Section 3 provides a for-
mal definition of the full L-DReAM framework where a first order extension that
allows quantification over component variables can be used to express coordi-
nation constraints. Section 4 compares the presented framework with a number

A Logic-Inspired Approach to Reconfigurable System Modelling 183

of other representatives of the category. By giving hints on how some of their
defining features can be translated into L-DReAM implementations, we further
explore the expressive power and specification flexibility of our language. The
conclusion recaps the main results of this early analysis and discusses avenues
for further development of both L-DReAM and its parent framework DReAM.

2 Non-parametric Systems

In this Section we introduce the syntax and semantics of L-DReAM in the simple
scenario of static systems with non-parametric initial configurations. This will
enable us to lay the foundation for the dynamic and parametric extension of the
framework described in Sect. 3.

The building blocks of a L-DReAM system are components, which are char-
acterized by an interface (i.e. a set of port names), a store (i.e. a set of local
variables), a pool (i.e. a set of constituent sub-components) and a behaviour
rule. We refer to components with an empty pool as atomic, whereas we call a
non-atomic component a compound (see Fig. 1).

Fig. 1. A schematic representation of a L-DReAM compound (i.e. non-atomic
component)

184 A. Maggi et al.

Definition 1 (Component). Let C, P and X respectively be the domain of
components, ports and local variable names. A component is a tuple c =
(P,X,C, r) with

– interface P ⊆ P: finite set of ports;
– store X ⊆ X : finite set of local variables;
– pool C ⊆ C: finite set of constituent components;
– rule r: constraint built according to the syntax in (1) characterizing the

behaviour of the component and the coordination between constituents of its
pool.

The state of component c is the tuple s =
(
σ,C, {si}ci∈C

)
, where σ is the valu-

ation function for the set of local variables X, σ : X �→ V, and {si}ci∈C is the
set of states of the components in the pool of c. We will use S to denote the set
of all states. It is assumed that the sets of ports and local variables of different
components are disjoint. Furthermore, we do not allow any component to belong
to its own pool or to the pools of two different compounds.

In the rest of the paper we will adopt a “dot” notation to highlight elements
associated to specific components, e.g. c.p will refer to a port p in the interface
of c, c.X the set of local variables of c, and c.s the state of c.

Behaviour and coordination of components are realized only through
L-DReAM rules, which are expressed in PILOps [1]. PILOps formulas are con-
structed by combining terms with either the conjunction operator & or the dis-
junction operator ‖. Each term is essentially a guarded command composed of
a PIL formula, which encodes a constraint on ports involved in interactions and
on states of the associated components, and a set of operations to be performed
when the formula is satisfied. The syntax for non-parametric L-DReAM rules is
thus defined as follows:

(L-DReAM rule) r ::= Ψ → Δ | r1 & r2 | r1 ‖ r2

(PIL formula) Ψ ::= true | p | π | ¬Ψ | Ψ1 ∧ Ψ2

(set of operations) Δ ::= ∅ | {δ} | Δ1 ∪ Δ2 (1)

where:

– operators & and ‖ are associative and commutative, and & has higher prece-
dence than ‖;

– π : S �→ {true, false} is a state predicate;
– δ : S �→ S is an operation that transforms the state s of a component.

The models of the logic are interactions A, i.e. finite subsets of the uni-
verse of port names P such that no two ports belong to the same component.
To determine whether an interaction is admissible for a given L-DReAM rule,
we define a satisfaction relation parametrized by the state s of the component
“owning” the rule. This relation ignores operations and essentially translates
the L-DReAM rule to a PIL formula by substituting terms Ψ → Δ with Ψ and

A Logic-Inspired Approach to Reconfigurable System Modelling 185

changing operators &,‖ with the logical ∧,∨. The resulting formula will be a
conjunction/disjunction of port names and state predicates that can be checked
against A and s.

Formally, the satisfaction relation is defined by the following set of rules:

A |=s Ψ → Δ if A |=s Ψ
A |=s r1 & r2 if A |=s r1 and A |=s r2
A |=s r1 ‖ r2 if A |=s r1 or A |=s r2
A |=s true for any A
A |=s p if p ∈ A
A |=s π if π(s) = true
A |=s Ψ1 ∧ Ψ2 if A |=s Ψ1 and A |=s Ψ2

A |=s ¬Ψ if A �s Ψ

(2)

Given an admissible interaction A for a component c in state s, the operations
to be performed under A, s are either:

– for rules combined with “&”: all the associated operations if the relevant PIL
formulas hold for (A, s) or none at all if at least one formula does not;

– for rules combined with “‖”: a maximal union of operations having the rele-
vant PIL formulas satisfied by (A, s).

Formally, the set of operations �r�A,s to be performed for r under (A, s) is defined
according to the following rules:

�Ψ → Δ�A,s =

{
Δ if A |=s Ψ

∅ otherwise

�r1 & r2�A,s =

{
�r1�A,s ∪ �r2�A,s if A |=s r1 and A |=s r2

∅ otherwise

�r1 ‖ r2�A,s = �r1�A,s ∪ �r2�A,s (3)

Two rules r1, r2 are equivalent if, for any interaction A and component state s,
�r1�A,s = �r2�A,s.

At this stage we are considering operations δ to be only assignments on local
variables of components involved in an interaction, allowing transfer of data
between them. The syntax is of the form x := f , where x is the local variable
subject to the assignment and f : Vk �→ V is a function on local variables
y1, . . . , yk (yi ∈ X) on which the assigned value depends.

We can define the evolution of a L-DReAM component c with the following
operational semantics rule:

∀ci ∈ c.C : ci.s
A−→ ci.s

′ c.s′ =
(
c.σ, c.C, {ci.s

′}ci∈c.C

)

A |=c.s′ c.r c.s′′ = �c.r�A,c.s′ (c.s′)

c.s
A−→ c.s′′

(4)

that can be intuitively understood as follows: component c changes state from
c.s to c.s′′ through interaction A provided that every component ci in its pool

186 A. Maggi et al.

changes state to ci.s
′ through A, and that c.s′′ is the state of c reached from c.s′

(i.e. the initial state c.s of c with the updated states of components in its pool) by
applying the operations to be performed for A, c.s′ when A is a model of the rule
c.r under state c.s′. Rule (4) applies to any component. For atomic components
with empty pools, the intermediate state will be equal to the initial state, i.e.
s ≡ s′. For compounds, it is worth pointing out that A must be an admissible
interaction both for the component c, and recursively for every sub-component
in the pool of c (and every sub-component in the pool of each sub-component of
c, etc.).

A system model can be seen as a hierarchical tree structure where the leaves
are atomic components and the rest of the nodes are compounds that aggregate
child components in their pools. As such, the system itself is the root compound
of this structure, and by applying rule (4) to it we can characterize the evolution
of the whole system. Note that we did not explicitly define a notion of “scope” on
port names and local variables, but we shall assume that the rule of a component
will only mention ports/variables belonging to itself or to those components
downward in the hierarchy.

The configuration Γ of a system coincides with the state of the root com-
pound c0:

Γ = c0.s ≡ (c0.σ, c0.C, c0.C.s) (5)

where c0.C.s = {c.s | c ∈ c0.C} is the set of states of the pool of c0 and �c ∈
C s.t. c0 ∈ c.C.

Axioms for L-DReAM rules. The following axioms hold for L-DReAM rules:

& is associative, commutative and idempotent (6)
Ψ1 → Δ1 & Ψ2 → Δ2 = Ψ1 ∧ Ψ2 → Δ1 ∪ Δ2 (7)
r & true → ∅ = r (8)
‖ is associative, commutative and idempotent (9)
Ψ1 → Δ ‖ Ψ2 → Δ = Ψ1 ∨ Ψ2 → Δ (10)
Ψ → Δ1 ‖ Ψ → Δ2 = Ψ → Δ1 ∪ Δ2 (11)
false → Δ ‖ r = r (12)
Absorption: r1 ‖ r2 = r1 ‖ r2 ‖ r1 & r2 (13)
Distributivity: r & (r1 ‖ r2) = r & r1 ‖ r & r2 (14)
Normal disjunctive form (DNF): (15)
Ψ1 → Δ1 ‖ Ψ2 → Δ2 = Ψ1 ∧ ¬Ψ2 → Δ1 ‖ Ψ2 ∧ ¬Ψ1 → Δ2 ‖ Ψ1 ∧ Ψ2 → Δ1 ∪ Δ2

The operator & is the extension of conjunction with neutral element true →
∅ and ‖ is the extension of the disjunction with an absorption (13) and distribu-
tivity axiom (14). The DNF is obtained by application of the axioms, and there
is no conjunctive normal form.

Example 1 (Server with two Nodes). Let us model a simple portion of a system
where we have a Server component that, given some input data, accepts requests

A Logic-Inspired Approach to Reconfigurable System Modelling 187

to process it and returns a result. Furthermore, we assume that the requested
computation can be easily parallelized, therefore our Server component will use
two distinct computational Nodes to perform the operations.

Since the Nodes are effectively an integral part of the Server from an exter-
nal point of view, we will model them as atomic components belonging to the
Server’s pool. Their specification will be:

Nodek = ({receivek, returnk} , {datak, resultk} , ∅, rk)

meaning that:

– the interface consists of two ports: receivek (to signal that Nodek can receive
new data from the Server) and returnk (to send back the result of the com-
putation to the Server);

– the store has two local variables: datak (storing the data to be processed) and
resultk (storing the results of the computation);

– the pool of the Nodes is empty (i.e., they are atomic components).

Let f(x) be the function representing the computation that each Node has to
perform on input x. Rules rk can be defined as follows:

rk = datak = null ∧ receivek → resultk :=null

‖
datak
= null ∧ returnk → resultk := f(datak); datak :=null

‖
¬receivek ∧ ¬returnk → ∅

This means that the Nodes can:

– receive new input data when the variable used to store it is empty (null),
resetting the variable that will store the result;

– return the results when some input data is present, assigning it to the appro-
priate local variable and resetting the input data;

– avoid participating in an interaction (negation of all their ports with no asso-
ciated operation).

Note that a transfer of values between components is achieved by accessing their
respective stores through assignment operations. In this particular instance rk
does not involve any transfer of data, as the specification of the Nodes simply
assumes that someone can assign values to the datak variables and read values
from resultk.

The component that will actually perform such operations is the Server:

Server = ({acceptReq, returnRes} , {input, output} , {Node1, Node2} , rs)

meaning that:

– the interface of the Server consists of two ports: acceptReq (to accept new
requests) and returnRes (to notify that the response to the request is ready);

188 A. Maggi et al.

– the store of the Server has two local variables: input (storing all the data to
be processed) and output (storing the complete results of the computation);

– the pool of the Server contains Node1 and Node2.

Let split(x, k) be a functions that given an input value x splits it into two chunks
and returns the k-th, and merge(x, y) one that does the opposite returning a
value by merging x and y. Rule rs can be specified as follows:

rs = input = null ∧ acceptReq → output :=null

‖
input
= null ∧ output = null ∧ receive1 ∧ receive2

→ data1 := split (input, 1) ; data2 := split (input, 2)
‖
input
= null ∧ output = null ∧ return1 ∧ return2

→ output :=merge (result1, result2)
‖
input
= null ∧ output
= null ∧ returnRes → input :=null

‖
¬acceptReq ∧ ¬returnRes ∧

∧

k=1,2

¬receivek ∧ ¬returnk → ∅

We can describe the behaviour of the Server induced by the rule rs as follows:

– it can accept a request (acceptReq) when its variable storing the input is not
initialized (input = null), resetting at the same time the output variable;

– when its input variable has a value (input
= null) and output is empty
(output = null), it can have both Node1 and Node2 synchronize through their
receivek ports, initializing their datak local variables, or through returnk

ports, assigning to output the value obtained by merging the individual results
of the Nodes;

– it can signal that the response to the original request is ready (returnRes)
when both input and output variables are initialized, resetting the input
variable in the process;

– it can skip participating in an interaction (negation of all ports with no oper-
ation).

Let us consider a concrete case where the f(x) that the Nodes compute
is a simple “character count” function (returning the number of characters in
x excluding spaces), and the merge(x, y) is the sum x + y. To represent the
evolution of a system where its root component is the Server, we will start from
a configuration where its input variable is already initialized:

Server.s0 =
({input �→ “hello DReAM!”, output �→ null} , {Node1, Node2} ,

{Node1.s0, Node2.s0}
)

Nodek.s0 = ({datak �→ null, resultk �→ null} , ∅, ∅)

A Logic-Inspired Approach to Reconfigurable System Modelling 189

From here we evaluate which valid interaction A can transform the current state
of the system according to (4). Since the premise requires that A can transform
the state of the Nodes first, we check for interactions satisfying r1, r2 over the
interfaces of Node1, Node2. Given that datak = null for k = [1, 2], the results
are {receive1}, {receive2}, and {receive1, receive2}. Of these three interactions,
only one can model the Server’s rule rs, that is {receive1, receive2}. There are
no other admissible interactions in the current state, so this is the one that is
performed.

The operations that will be carried out are first the ones derived from Nodes’
rules rk:

�rk�A,Nodek.s0 = {resultk :=null}
Given the choice for the initial state Nodek.s0 having already resultk = null,
the intermediate state of the system Server.s′

0 produced by the execution of the
operations �rk�A,Nodek.s0 will be identical to Server.s0.

Finally we evaluate the operations that will be carried out according to the
Server’s rule rs:

�rs�A,Server.s′
0

= {data1 := split(input, 1); data2 := split(input, 2)}
By applying the operations to Server.s′

0 we obtain the new state Server.s1:

Server.s1 =
({input �→ “hello DReAM!”, output �→ null} , {Node1, Node2} ,

{Node1.s1, Node2.s1}
)

Node1.s1 = ({data1 �→ “hello”, result1 �→ null} , ∅, ∅)
Node2.s1 = ({data2 �→ “DReAM!”, result2 �→ null} , ∅, ∅)

In the new state, the only admissible interaction is now {return1, return2}.
At Node level, each one will perform:

resultk := f(datak); datak :=null (16)

given that f (“hello”) = 5 and f (“DReAM !”) = 6. The intermediate state
Server.s′

1 will be:

Server.s′
1 =

({input �→ “hello DReAM!”, output �→ null} , {Node1, Node2} ,

{Node1.s
′
1, Node2.s

′
1}

)

Node1.s
′
1 = ({data1 �→ null, result1 �→ 5} , ∅, ∅)

Node2.s
′
1 = ({data2 �→ null, result2 �→ 6} , ∅, ∅)

Finally the Server will perform output := 11 given that merge
(
result1,

result2
)

= 5 + 6 = 11, producing the new state Server.s2:

Server.s2 =
({input �→ “hello DReAM!”, output �→ 11} , {Node1, Node2} ,

{Node1.s
′
1, Node2.s

′
1}

)

Now the Server can synchronize with an external “client” component through
the returnRes port and start over. ��

190 A. Maggi et al.

2.1 Disjunctive and Conjunctive Styles

The problem of designing a system that has to evolve through a set of given
interactions in L-DReAM can be approached in many ways, as there are multiple
- possibly infinite - ways of writing rules that, for a given initial configuration,
produce equivalent systems. In [1] we described two very distinct styles that
can be adopted when defining the rules describing interactions which we call
disjunctive and conjunctive.

The disjunctive style approach is to start from an initial rule which does not
allow any interaction for the component. From this “false” rule, the capabilities
of the component are incrementally extended by using the disjunction operator ‖
to combine rules that model individual interaction patterns. In other words, each
sub-rule can describe an interaction in its entirety. Example 1 uses this style.

The conjunctive style approach starts from the opposite premise, i.e., con-
sidering that any interaction is allowed. From this “true” rule, the capabilities
of the component are incrementally restricted by using the conjunction operator
& to combine rules that model individual contributions to interaction patterns
and the relevant requirements that must hold. A minimal contribution to a rule
written in conjunctive style needs to combine two L-DReAM rules: one expresses
which ports of the component are offered for participation in the interaction, the
other under which conditions they will participate and which operations will be
performed as a result. More concretely, the two rules will be:

– ¬Ψ → ∅: if the component is not involved in terms of its offering (Ψ), do not
perform any operation;

– Ψ ∧ Ψr → Δ: when the interaction and the current state of the component
satisfy both the offer (Ψ) and the requirements (Ψr), perform Δ.

To express this structure in a more concise way, we introduce the conjunctive
term as follows:

Ψ � Ψr → Δ = (¬Ψ → ∅ ‖ Ψ ∧ Ψr → Δ) (17)

A L-DReAM rule can be written in conjunctive style by using conjunctive
terms as sub-rules, joined via the & operator.

Example 2 (Server with two Nodes - conjunctive style). We will now revisit
Example 1 and define coordination rules adopting the conjunctive style.

Rules rk of Nodes can be redefined as follows:

r′
k =receivek � datak = null → resultk :=null

&
returnk � datak
= null → resultk := f(datak); datak :=null

A Logic-Inspired Approach to Reconfigurable System Modelling 191

The Server rule rs can be rewritten in the conjunctive form r′
s:

r′
s =acceptReq � input = null → output :=null

&

receive1 � receive2 ∧ input
= null ∧ output = null

→ data1 := split (input, 1)
&
receive2 � receive1 ∧ input
= null ∧ output = null

→ data2 := split (input, 2)

&
return1 ∧ return2 � input
= null ∧ output = null

→ merge (result1, result2)
&

return1 � return2 → ∅
&
return2 � return1 → ∅

&
returnRes � input
= null ∧ output
= null → input :=null

Notice that each sub-rule in the disjunctive rule rs coordinating Node1 and
Node2 has been decomposed in the two highlighted conjunctive sub-rules in
r′
s. For instance, receivek � receive′

k ∧ input
= null ∧ output = null →
datak := split (input, k) models the constraint from the perspective of Nodek,
whose receivek port is being offered for interaction. Accordingly, the assign-
ment datak := split (input, k) modifies only the store of Nodek as it is - in
principle - related to the offering port. The conjunctive term having as offer
return1 ∧ return2 characterizes instead an internal behaviour of the Server
that needs to merge the individual results of the Nodes to produce the output,
and as such it is isolated in a separate sub-rule. ��

3 Parametric Architectures and Dynamic Systems

Now we expand the language introduced in Sect. 2 allowing L-DReAM to describe
dynamic system architectures with an arbitrary (finite) number of components.

To have a modelling language with sufficient expressive power to describe
classes of systems with an arbitrary number of components while supporting
dynamic reconfiguration of their structure, L-DReAM is enriched on three fronts:

1. The concepts of component type and component instance are introduced in
order to decouple the architecture specification from the instanced system;

192 A. Maggi et al.

2. A first-order extension, with quantifiers over component instances, of the logic
used in (1) is considered;

3. Appropriate operations to create and delete component instances, and to
migrate them from one pool to another are introduced.

Definition 2 (Component type). Let C, P and X respectively be the domain
of components, ports and local variable names. A component type is a tuple
t = (P,X, r) where:

– interface P ⊆ P is a finite set of ports;
– store X ⊆ X is a finite set of local variables;
– rule r is a constraint built according to the syntax in (1) that characterizes

the behaviour of the component instances of this type and the coordination
between constituents of their pools.

A component type can be considered as the blueprint for actual components of
a L-DReAM system, which we refer to as component instances.

Definition 3 (Component instance). Let Iid be the domain of instance iden-
tifiers and t = (P,X, r) be a component type. A component instance c of type t,
identified by i ∈ Iid, is a component as defined in (Definition 1) with set of ports
P , local variables X whose corresponding references in the rule r are indexed
with i:

c = t [i] = (P [i] ,X [i] , C, r [P [i] /P] [X [i] /X]) (18)

It is assumed that each instance is characterized by a unique identifier, regardless
of its type.

Notice that even though we do not require interfaces and stores of different
component types to be disjoint sets, the assumption of uniqueness of instance
identifiers ensures that interfaces and stores of actual component instances are
always disjoint.

In order to have rules sufficiently expressive to model the interactions between
arbitrary component instances without any prior knowledge of their identifiers,
we equip the language for specifying L-DReAM rules with first-order logic quan-
tifiers in the form of component instance variable declarations. The syntax in (1)
then becomes:

(L-DReAM rule) r ::=Ψ → Δ | D
{
r
} | r1 & r2 | r1 ‖ r2

(declaration) D ::=∀c : c∗.t | ∃c : c∗.t where c ∈ c∗.C
(PIL formula) Ψ ::= true | p | π | ¬Ψ | Ψ1 ∧ Ψ2

(set of operations) Δ ::= ∅ | {δ} | Δ1 ∪ Δ2 (19)

A declaration of the form ∀c : c∗.t can be understood as the definition of a
variable name c representing component instances of type t in the pool of the
component instance c∗. If the scope of a declaration in a rule of a component
instance is its own pool, then we simply omit the reference to it and write

A Logic-Inspired Approach to Reconfigurable System Modelling 193

∀c : t instead. Similarly, if we do not want to restrict the type of the component
instance in the declaration, we simply omit it and write ∀c : c∗ (or ∀c if the scope
of the variable c is the pool of the same component). ∃c : c∗.t can be interpreted
similarly.

Note that ports p and predicates π in PIL formulas can now be parametric
with respect to the instance variables defined in the enclosed declaration (e.g. a
rule with a declaration ∀c : t can refer to a port p of all component instances c
that match the declaration, using the dot notation c.p).

Under the assumption that L-DReAM systems have a finite number of com-
ponent instances, each declaration in the rule of a component instance can be
removed by transforming the rule itself into a combination of rules (via the &
and ‖ operators for the universal and existential quantifiers, respectively) where
the instance variable is replaced with the actual component instances of the
given type in the given pool. We refer to this transformation as the declaration
expansion

〈
r
〉
s

of rule r of a component instance with state s = (σ,C,C.s),
which is formally defined by the following rules:

〈
Ψ → Δ

〉
s

= Ψ → Δ
〈∀c : c∗.t

{
r
}〉

s
= &

t[i]∈c∗.C
r [t [i] /c]

〈∀c : c∗{r
}〉

s
= &

∀t

〈∀c : c∗.t
{
r
}〉

s

〈∃c : c∗.t
{
r
}〉

s
=

�

t[i]∈c∗.C

r [t [i] /c]

〈∃c : c∗{r
}〉

s
=

�

∀t

〈∃c : c∗.t
{
r
}〉

s

〈
r1 & r2

〉
s

=
〈
r1

〉
s

&
〈
r2

〉
s〈

r1 ‖ r2
〉
s

=
〈
r1

〉
s

‖ 〈
r2

〉
s

(20)

where r [t [i] /c] is the rule r after applying the substitution of the instance vari-
able c with the actual instance t [i].

Example 3 (Server with n Nodes - declaration expansion). Let us expand Exam-
ples 1 and 2 by considering a scenario where we have a variable pool of Nodes
that the Server can use to handle the computation.

We will define the component types Server and Node as follows:

Server = ({acceptReq, returnRes} , {input, output, nodesReady} , rs)
Node = ({receive, return} , {id, data, result} , rn)

where we introduced the local variables nodesReady and id to keep track of the
number and identifier of Node instances ready to process their Server’s input.

194 A. Maggi et al.

Consider now a system with the same initial configuration described in Exam-
ple 1, where we have one Server instance - Server[0] - and two Node instances
- Node[1], Node[2]. The initial state s0 of Server[0] will be:

Server[0].s0 =
({input �→ “hello DReAM!”, output �→ null, nodesReady �→ 2} ,

{Node[1], Node[2]} , {Node[1].s0, Node[2].s0}
)

Let us define a fragment r of rule rs of the Server component type modelling
how Nodes are fed input data to be processed using the conjunctive style:

r = ∀c : Node
{
c.receive � input
= null ∧ output = null ∧ nodesReady > 0

→ c.data := split (input, nodesReady, c.id)
}

where we extended the split function in order to parametrize the splitting degree
with nodesReady. The declaration expansion of rule r under state Server[0].s0
is performed by generating a new rule for each Node instance in the pool of
Server and substituting it in place of the instance variable c:

〈
r
〉
s0

≡Node[1].receive � input
= null ∧ output = null ∧ nodesReady > 0

→ Node[1].data := split (input, nodesReady,Node[1].id)
&
Node[2].receive � input
= null ∧ output = null ∧ nodesReady > 0

→ Node[2].data := split (input, nodesReady,Node[2].id)

��
To encompass this additional step of declaration expansion in the description

of the behaviour of a L-DReAM component, the inference rule (4) used to describe
the operational semantics of the non-parametric version of the language needs
to be modified accordingly:

∀ci ∈ c.C : ci.s
A−→ ci.s

′ c.s′ =
(
c.σ, c.C, {ci.s

′}ci∈c.C

)

A |=c.s′
〈
c.r

〉
c.s′ c.s′′ = �

〈
c.r

〉
c.s′�A,c.s′ (c.s′)

c.s
A−→ c.s′′

(21)

Rule (21) now requires that, at each state of a component instance, the problem
of finding an interaction that satisfies its coordination rule is solved after it is
reduced to the static, non-parametric case by expanding the declarations.

Since the higher-order language now allows to express constraints without
prior knowledge of the individual component instances in a system, reconfig-
uration operations are extended in order to allow dynamic variations in the
population of component instances. We thus have three new operations:

– c′ = create (t, c): to create a new component instance of type t, add it to the
pool of component instance c, and bind it to the instance variable c′ (which
can be omitted if no further manipulation of the created instance is required);

A Logic-Inspired Approach to Reconfigurable System Modelling 195

– delete (c): to delete the component instance c;
– migrate (c, c′): to migrate component instance c to the pool of c′ (removing

it from the pool where it previously belonged).

Example 4 (Server with dynamic instantiation of Nodes). Recall the extended
scenario presented by Example 3. We will now integrate the definition of the
Server and Node component types with their L-DReAM rules using the con-
junctive style. Rule rn of the type Node will be essentially the same as rk in
Example 2:

rn = receive � data = null → result :=null

&
return � data
= null → result := f(data); data :=null

Since all the ports and local variables mentioned in rn will be local to each Node
instance, no scoping or quantification is needed.

On the other hand rs will now have to deal with an arbitrary number of nodes.
Recall that the service that we want our Server to provide is the “character
count” function. Let us define rs as the conjunction of the following six sub-
rules r1& . . . &r6:

r1 = ∀c : Node
{
acceptReq � input = null

→ output :=null; delete (c) ;nodesReady := nodesReady − 1
}

Rule r1 implements the output reset of the Server as in the non-parametric case
of Example 2, but it also deletes every Node instance updating the nodesReady
local variable.

r2 = input
= null ∧ nodesReady = 0 � true

→ nodesReady := input/5;

FOR
(
i = 1..length(input)/5

)
DO

(
c = create (Node, self) ; c.id := i

)

Rule r2 is completely new to the parametric variant, and it is used to create as
many Node instances as needed (e.g. in this case one every five characters in
input). The “FOR

(
. . .

)
DO

(
. . .

)
” statement used here has the usual semantics

of iterative loops over an integer index, where we are also using the latter to
initialize the local variable id of the newly created instance.

r3 = ∀c : Node
{
c.receive � input
= null ∧ output = null ∧ nodesReady > 0

→ c.data := split (input, nodesReady, c.id)
}

Rule r3 is exactly the same rule as r discussed in Example 3 describing how
Nodes receive input data from the Server.

r4 = ∀c : Node
{
c.return � input
= null ∧ output = null

→ output := output + c.result
}

196 A. Maggi et al.

Rule r4 characterizes how processed data is collected by the Server by accumu-
lating the results in its output local variable.

r5 = returnRes � input
= null ∧ output
= null → input :=null

Rule r5 is left unchanged from the non-parametric case.

r6 =∀c : Node
{∀c′ : Node

{
c.receive � c′.receive → ∅}}

&

∀c : Node
{∀c′ : Node

{
c.return � c′.return → ∅}}

Lastly, r6 enforces strong synchronization between all Node instances when inter-
acting through the receive and return ports. ��

4 L-DReAM Encoding of Other Coordination Languages

The “loose” characterization of individual components and the freedom to hier-
archically compose them makes L-DReAM extremely flexible and capable of
describing a variety of systems and programming paradigms.

Consider for example a labelled transition system (S,L, T) defined over the
states S, labels L and transitions T ⊂ S × L × S. One of the possible modelling
of an LTS as a L-DReAM atomic component c = (P,X, ∅, r) is the following:

– every label l ∈ L has a corresponding port pl ∈ P ;
– every state s ∈ S has a corresponding (boolean) local variable xs ∈ X;
– for every transition (si, li, s′

i) ∈ T there is a rule r =
�
i

(
xsi ∧ pli →

xsi := false;xs′
i
:= true;

)
.

L-DReAM can also be used in an imperative, sequential fashion. To do so, one
possibility is to simply add a “program counter” local variable pc in the store
of each component type and conjunct the appropriate predicate over it in the
requirements of each conjunctive term describing its behaviour:

rseq = &
i

Ψi � Ψ ′
i ∧ pc = i → Δi ∪ {pc := pc + 1} (22)

More generally, by using the conjunctive style L-DReAM can be used as an
endogenous coordination language comparable to process calculi relying on a
single associative parallel composition operator. Consider for instance the CCS
[4] process P0 defined as the parallel composition of two processes P1 and P2

that can synchronize over the actions q and u:

P0 = P1 | P2

P1 = q.ū.0 P2 = q̄.u.0

A Logic-Inspired Approach to Reconfigurable System Modelling 197

where 0 is the inaction. To translate this simple system in L-DReAM we define
three components ci, each one modelling the process Pi:

c0 = ({τ} , ∅, {c1, c2} , r0)
c1 = ({q, ū} , {pc1} , ∅, r1)
c2 = ({q̄, u} , {pc2} , ∅, r2)

Rules r1, r2 will model a simple sequential process according to (22):

r1 = q � pc1 = 1 → pc1 := 2
&
ū � pc1 = 2 → pc1 := 3

r2 = q̄ � pc2 = 1 → pc2 := 2
&
u � pc2 = 2 → pc2 := 3

The rule r0 of the root component c0 will instead characterize the semantics of
the CCS parallel composition, which provides that two parallel processes can syn-
chronize over the matching actions (in this case represented by the interactions
{q, q̄} and {u, ū}) causing the system to perform an internal action τ :

r0 = τ � (q ∧ q̄) ∨ (u ∧ ū) → ∅

Notice that r0 still allows interleaving between c1 and c2 just like for P0.
Another way of modelling communicating sequential processes in L-DReAM

is to equip every component with two ports in, out and characterize the com-
munication channel (or the action label in CCS) with a specific local variable
chan. This allows to model even more complex calculi like π-calculus [5] and one
of its main features: channel mobility. Let us consider a simple process that we
will call again P0, representing the parallel composition of three processes P1,
P2 and P3:

P0 = P1 | P2 | P3

P1 = q(x).x̄ 〈v〉 .0 P2 = q̄ 〈u〉 .0 P3 = u(y).0

The idea is that P1 wants to communicate with P3, but initially can only com-
municate with P2. Through the output/input pair of actions q̄ 〈u〉 and q(x), P2

can send the channel u to P1 which then allows it to send a message to P3 by
binding u to x.

To represent this system in L-DReAM, we will first define the root component
type t0 as before:

t0 = ({τ} , ∅, r0)

198 A. Maggi et al.

To model the other processes, we will instead define three component types t1,
t2 and t3:

t1 = ({in, out} , {pc, chan, val, x} , r1)
t2 = ({in, out} , {pc, chan, val} , r2)
t3 = ({in, out} , {pc, chan, y} , r3)

Rules r1, r2 and r3 will again model sequential processes, but will now also
handle channel names and value output:

r1 = in � pc = 1 → chan := “q”; pc := 2
&
out � pc = 2 → x := val; chan := x; val := “v”; pc := 3

r2 = out � pc = 1 → chan := “q”; val := “u”; pc := 2
r3 = in � pc = 1 → chan := “u”; pc := 2

The assignments on the chan variable here are used to indicate the channel name
associated with the preceding interaction constraint, while the val variable is
used to store the channels being passed.

Synchronization and actual value passing is instead implemented by rule r0
of the root component c0:

r0 = ∃c
{∃c′{c.in ∧ c′.out � τ → ∅}}

&

∀c
{∃c′{c.in � c′.out ∧ c.chan = c′.chan → c.val := c′.val

}}

This rule characterizes both the behaviour of the root component type t0 - which
performs τ if two instances of any type interact via ports in and out - and the
coordination between components in its pool - i.e., for one to interact with port
in there must be another one participating with port out and also having the
same values for their local variables chan. For the sake of simplicity, we are
omitting further parts of rule r0 to enforce only binary synchronization between
component instances.

L-DReAM can be also used to encode many other process algebras relying on
more complex and flexible strategies to realize communication and coordination
between components than simple channels matching. For instance, specifications
written with the AbC calculus [3,6] can be translated to L-DReAM preserving
most of the features of the source language.

In AbC, a system is a set of parallel components equipped with a set of
attributes. Communication happens in a broadcast fashion with the caveat that
only components that satisfy some predicates over specific attributes do receive
the message given that also the sender satisfies other predicates. The core actions
of the language that characterize its communication paradigm are the input and
output actions:

(input) Π1 (x̃)

(output) (Ẽ)@Π2

A Logic-Inspired Approach to Reconfigurable System Modelling 199

where x̃ is a sequence of “placeholders” for the received values and Ẽ is a
sequence of expressions representing the values being sent. Π are predicates,
which can be defined over attributes only (i.e. for output actions) or also over
received values (i.e. for input actions). A simple example of matching input/out-
put actions in AbC could be:

– (x > 1 ∧ color = blue)(x, y): bind two values to variables x, y from messages
having x > 1 and coming from components with attribute color equal to blue;

– (2, 0)@(color = red): send values 2, 0 to all components with attribute color
equal to red.

Broadcast communication can be easily implemented in L-DReAM. To main-
tain uniformity with AbC where actions are defined at component level, we can
adopt the conjunctive style and define two rules that implement its input/output
actions:

(input) ∀c
{∃c′{c.in � c′.out ∧ Π1(c′.Ẽ) → c.x̃ := c′.Ẽ

}}

(output) ∀c
{∃c′{c.out � c′.in ∧ Π2 → ∅}}

where we assume that:

– the interface of all component types includes two ports in, out;
– the store of all component types contains local variables describing attributes,

values being passed through messages, and the variables that are bound to
values being passed;

– the predicates Π1,Π2 are equivalent to the respective AbC counterparts, with
the appropriate references to local variables modelling attributes and values
being passed.

Going back to the simple example mentioned above, we could translate the given
pair of input/output actions as:

(x > 1 ∧ color = blue)(x, y)
↓

∀c
{∃c′{c.in � c′.out ∧ c′.x > 1 ∧ c′.color = blue → c.x := c′.x; c.y := c′.y

}}

(2, 0)@(color = red)
↓

∀c
{∃c′{c.out � c′.in ∧ c′.color = red → ∅}}

There are many more nuances to AbC that we are not representing here, such
as the fact that the in action is blocking while the out action is not. To model
this, we need to combine the previously mentioned encoding of the in and out
actions with the approach described earlier to simulate sequential processes in
L-DReAM.

Obviously, since L-DReAM is based on DReAM [1], specifications written using
the latter can be seamlessly translated to the former. Component types and

200 A. Maggi et al.

instances in DReAM correspond to atomic component types and instances of
L-DReAM. DReAM’s motifs - which represent dynamic architectures with their
own coordination rules and are parametrized with a map data structure - are
translated to L-DReAM in the form of composite components with only atomic
component instances in their pools and an appropriate local variable to imple-
ment their map. The L-DReAM rules of compounds implementing motifs will
be exactly the same as their DReAM counterparts, except for operations and
predicates involving the maps, which will have an implementation that depends
on the way the map is represented in L-DReAM. Finally the overall DReAM
system will be a L-DReAM root component having all the other compounds in
its pool. The rule of the root component has also to appropriately implement
the migration term of the DReAM system - a coordination rule that defines how
component instances are transferred from one motif to another.

5 Conclusion and Related Work

The L-DReAM framework we have presented allows to describe dynamic recon-
figurable systems by focusing on the interaction patterns between constituent
components from an abstracted point of view. It supports different styles of
interaction constraint definition, including conjunctive and disjunctive styles.
Complex architectures can be incrementally constructed from atomic compo-
nents to higher-degrees of compounds. These characteristics make L-DReAM
very flexible and expressive, as it is capable of encoding many languages and
frameworks based on very different coordination paradigms.

As its name suggests, L-DReAM draws heavily from its parent framework
DReAM, sharing the entirety of its theoretical foundation but offering a simpler,
more abstract structure. These characteristics make it more suitable for an in-
depth study on the relationship between conjunctive and disjunctive styles that
will be the subject of future work. On the other hand some features currently
exclusive to L-DReAM - such as the unbounded hierarchical structure of com-
pounds - will be backported to DReAM and integrated in its Java executable
environment under development.

L-DReAM, and DReAM before it, draws inspiration from two very different
coordination languages: BIP [2] and Dy-BIP [7].

BIP is a mature framework that leverages connectors to model interactions
among components and define the computation flow between them. System defi-
nitions can be parametric, but connectors remain essentially “static” and defined
from a somewhat “global” perspective by matching ports from different compo-
nents. This restriction allows BIP to synthesize very efficient executable runtimes
from system specifications, but prevents it from modelling dynamic systems
effectively.

Dy-BIP was introduced with the intent of addressing the efficient specifica-
tion of dynamic systems sharing some ground theory and terminology with BIP.
It uses previous work on the encoding of BIP connectors with PIL, but instead
of specifying them from a global perspective it adopts a more “compositional”

A Logic-Inspired Approach to Reconfigurable System Modelling 201

approach by attaching interaction constraints to the ports of components. From
these, a global interaction constraint is built at each system state as the conjunc-
tion of individual constraints, and the interaction that is performed is a solution
to it.

L-DReAM adopts a coordination language that, just like Dy-BIP, is built
on the foundation of PIL, but gives the user more freedom on how to use it.
In fact, the disjunctive style described in Sect. 2.1 relates closely to the exoge-
nous approach used by BIP for connectors definition. On the other hand, it is
easy to show that coordination rules written as the conjunction of conjunctive
terms of the form p � Ψ → Δp can be easily mapped to transitions of indi-
vidual components having p in their interface. This matches closely the Dy-BIP
approach, where Ψ is the interaction constraint associated with port p.

A similar “hybrid” approach inspired by the BIP framework and aimed at
aiding the design of dynamic systems is DR-BIP [8]. It combines a PIL-based con-
straint language to define interactions that is fully compositional with another
layer that handles reconfiguration with semantics inspired by guarded com-
mands. While DR-BIP shares the same conceptual framework with L-DReAM,
its structured approach based on motifs and maps makes it more comparable to
DReAM.

References

1. De Nicola, R., Maggi, A., Sifakis, J.: DReAM: dynamic reconfigurable architecture
modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp.
13–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5 2

2. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP.
IEEE Trans. Comput. 57(10), 1315–1330 (2008)

3. Alrahman, Y.A., De Nicola, R., Loreti, M.: On the power of attribute-based commu-
nication. In: Proceedings of the Formal Techniques for Distributed Objects, Com-
ponents, and Systems - FORTE 2016 - 36th IFIP WG 6.1 International Conference,
pp. 1–18 (2016)

4. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

5. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

6. Alrahman, Y.A., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, SAC 2015, pp. 1840–1845. ACM, New York (2015)

7. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using
Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS,
vol. 7306, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30564-1 1

8. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises in programming
dynamic reconfigurable systems: methodology and solution in DR-BIP. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 304–320. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03424-5 20

https://doi.org/10.1007/978-3-030-03424-5_2
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-642-30564-1_1
https://doi.org/10.1007/978-3-642-30564-1_1
https://doi.org/10.1007/978-3-030-03424-5_20

Data-Driven Design

Topological Interpretation of Interactive
Computation

Emanuela Merelli1(B) and Anita Wasilewska2

1 Department of Computer Science, University of Camerino, Camerino, Italy
emanuela.merelli@unicam.it

2 Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
anita@cs.stonybrook.edu

Abstract. It is a great pleasure to write this tribute in honor of Scott
A. Smolka on his 65th birthday. We revisit Goldin, Smolka hypothesis
that persistent Turing machine (PTM) can capture the intuitive notion
of sequential interaction computation. We propose a topological setting
to model the abstract concept of environment. We use it to define a
notion of a topological Turing machine (TTM) as a universal model for
interactive computation and possible model for concurrent computation.

Keywords: Persistent Turing machine · Topological environment ·
Topological Turing machine

1 Introduction

In 2004, Scott A. Smolka worked with Dina Goldin1 and colleagues on a for-
mal framework for interactive computing; the persistent Turing machine (PTM)
was at the heart of their formalization [1–3]. A PTM is a Turing machine (TM)
dealing with persistent sequential interactive computation a class of computa-
tions that are sequences (possibly infinite) of non-deterministic 3-tape TMs. A
computation is called sequential interactive computation because it continuously
interacts with its environment by alternately accepting an input string on the
input-tape and computing on the work-tape a corresponding output string to
be delivered on the output-tape. The computation is persistent, meaning that
the content of the work-tape persists from one computation step to the next by
ensuring a memory function.

The definition of PTM was based on Peter Wegner’s interaction theory devel-
oped to embody distributed network programming.

Interaction is more powerful than rule-based algorithms for computer problem

solving, overturning the prevailing view that all computing is expressible as

algorithms [4,5].

1 The work was developed in connection of the celebration of Paris Kanellakis for his
50th birthday. They were his first and last Ph.D student.

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 205–224, 2019.
https://doi.org/10.1007/978-3-030-31514-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_12

206 E. Merelli and A. Wasilewska

Since in this framework interactions are more powerful than rules-based algo-
rithms they are not expressible by an initial state described in a finite terms.
Therefore, one of the four Robin Gandy’s principles (or constraints) for com-
putability is violated, as stated in [6]. The need to relax such constraints allows
one to think that interactive systems might have a richer behavior than algo-
rithms, or that algorithms should be seen from a different perspective. Although
PTM makes the first effort to build a TM that accepts infinite input, we strongly
support the idea that the interaction model should also include the formal char-
acterization of the notion of environment.

In this paper, we focus on Smolka et al. original point of view on persis-
tent and interactive computation. We revisit and formalize a concept of com-
putational environment for PTM following Avi Wigderson’s machine learning
paradigm in [7].

Many new algorithms simply ‘create themselves’ with relatively little
intervention from humans, mainly through interaction with massive data2.

We use the notion of computational environment to define class of abstract
computable functions as sets of relations between inputs and outputs of PTM.
The computational environment depends on time and space. It can evolve and
so the effectiveness of these functions depends on a given moment and a given
context.

Computational environment is defined in terms of ambient space. The ambi-
ent space is a generalization of a notion of ambient manifold introduced in [8]
to describe the topological quantum computation model.

We do it in such a way that the infinite computation can be reduced to
a set of relations, constrained within its ambient space by loops of non-linear
interactions. The ambient space is not necessarily a vector space, hence there
is a problem of linearity and non-linearity of computation. The non-linearity
originated from the shape that can be associated to the ambient space, which
can be obtained by the topological analysis of the set of data provided by the real
environment. Figure 1 shows the synthesis of this concept. The ambient space
and PTM can be thought as mathematical representation of complex systems,
merely defined as systems composed of many non-identical elements, constituent
agents living in an environment and entangled in loops of non-linear interactions.

We built a topological PTM to model both the behavior of an interactive
machine and its computational environment. The main idea of the generaliza-
tion is that output-tape is forced to be connected to the input-tape through a
feedback loop. The latter can be modeled in a way that the input string can
be affected by the last output strings, and by the current state of the compu-
tational environment. A state of a topological PTM becomes a set of input and
output relations constrained to an environment whose geometric representation
formally defines the context of the computation. If many topological PTMs
share the same computational environment, the computation becomes a stream
of interactions of concurrent processes, which at higher dimension can be seen
2 https://www.ias.edu/ideas/mathematics-and-computation.

https://www.ias.edu/ideas/mathematics-and-computation

Topological Interpretation of Interactive Computation 207

as a collection of streams, such as an n-string braid as examined in topologi-
cal quantum information [8]. In this scenario, the computational environment,
envisaged as a discrete geometric space, may even evolve while computations
take place.

The informal description given above depicts the environment. We define it
as follows. Given a PTM, let X be a set of its input and output strings. Since
the computational environment depends on time and space. In this case the
time is represented by collection of steps. For each step i in time, we define an
equivalence relation ∼i on X such that inputi in X there exists an operator fi
such that fi(inputi) = outputi.

In classical Turing machine the set of operators fi is given, called rules or
transformations. Our goal is to build an environment where this set of functions
fi can be discovered. Each element of X represents a transition from one state
of the machine to a next guided by the operator fi (unknown for the model)
constrained over the computational environment. The mathematical objects we
are looking for should reflect the collective properties of the set X in a natural
way to support the discovery of the set of operators fi. These operators allow
us to represent X as a union of quotient spaces of the set of equivalence classes
X/ ∼i of all the feasible relations hidden in X. The resulting functional matrix
of fi, also called interaction matrix, represents the computational model or what
we called the learnt algorithm [9].

In order to characterize the set of operators {fi}, we decided to analyze the
set X of environmental data by a persistent homology, a procedure used in topo-
logical data analysis (TDA). TDA is a subarea of the computational topology
that filters the optimal space among simplicial complexes [10]. A simplicial com-
plex can be seen as a generalization of the notion of graph, where the relations
are not binary between vertices, but n-ary among simplices. A simplex expresses
any relation among points. For example, a 0-dimensional simplex is a unary rela-
tion of a single point, a 1-dimensional simplex is a binary relation of two points
(a line), a 2-dimensional simplex is a three points relation (a full triangle), and
so on. For the interested reader, Appendix 1 gives some useful definitions for
algebraic and computational topology. Although a simplicial complex allows us
to shape the environment as a discrete topological space, the new model of PTM
also requires to express the feedback loop between the output at step i with the
input at the next step i + 1 of the computation. To this end, we follow a recent
approach proposed in the context of big data and complex systems for embed-
ding a set of correlation functions (e.g. the encoding of a given data set) into
a field theory of data which is relied on a topological space naturally identified
with a simplicial complex [11]. The resulting mathematical structure is a fiber
bundle [12], whose components are summarized in Fig. 1.

The framework consists of three topological spaces B,H,G, and one projec-
tion map π. The base space B, the set of input/output strings embedded in a
simplicial complex; the fiber H, the set of all possible computations (the set of
fi) constrained by the ‘gauged’ transformations over the base point PB of the
fiber; the total space G of the fiber bundle obtained by the product of the other

208 E. Merelli and A. Wasilewska

Fig. 1. Example of topological interpretation of computation. The base space B is a
two-dimensional handlebody of genus 3, such as a trifold. The small red circles around
some points of the fiber space H indicate the presence of states that make the com-
putation inconsistent. The violet lines over the base space B show the corresponding
unfeasible paths to be avoided due to the topological constraints imposed by the base
space. The non-linear transformations of the fibers states, induced by the projection
map π over the simplicial complex, guarantees the choice of the admissible paths with
respect to the topology of the base space. The lines marked with a black cross cor-
respond to inconsistent states of the system, which do not exist in the topological
interpretation. The picture at the bottom right corner is an example of computation,
it refers to the notion of contextuality [18], informally a family of data – a piece of infor-
mation – which is locally consistent and globally inconsistent. (Color figure online)

two spaces (G = B × H), and the projection map π : G → G/H that allows
us to go from the total space G to the base space B obtained as a quotient
space of the fiber H. In Fig. 1, the π projection map is represented by dashed
lines and used to discover if the geometry of the base space can constrain the
ongoing computation in order to predict and avoid unfeasible transformations,
the red lines in the figure. In our model, the obstructions that characterize the
ambient space and constraint the computation are represented by the presence
of n-dimensional holes (n > 1) in the geometry of the topological space. In
our framework the holes represent the lack of specific relations among input
and output of topological Turing machine. It means that the topological space,
in our representation as simplicial complex, has a non trivial topology. As an

Topological Interpretation of Interactive Computation 209

example, in Fig. 1, the base space B is two-dimensional handlebody of genus 3.
The formal description of the proposed approach rests on three pillars: (i) alge-
braic and computational topology for modeling the environment as a simplicial
space B; (ii) field theory to represent the total space G of the machine as a
system of global coordinates that changes according to the position PB of the
observer respect to the reference space H, and (iii) formal languages to enforce
the semantic interpretation of the system behaviour into a logical space of geo-
metric forms, in terms of operators fi that here we call correlation functions in
the space of the fiber H.

Consequently, an effective PTM is nothing but a change of coordinates, con-
sistently performed at each location according to the ‘field action’ representing
the language recognized by the machine.

While the algorithmic aspect of a computation expresses the effectiveness of
the computation, the topological field theory constraints the effectiveness of a
computation to a specific environment where the computation might take place
at a certain time in space.

It is right here to recall Landin’s metaphor of the ball and the plane,
introduced to describe the existence of a double link between a program and
machine [13]:

One can think of the ball as a program and the plane as the machine on which it

runs. ... the situation is really quite symmetric; each constrains the other [14].

Alan Turing himself, in his address to the London Mathematical Society in
1947, said

. . . if a machine is expected to be infallible, it cannot also be intelligent [15].

It is becoming general thinking that intelligence benefits from interaction and
evolves with something similar to adaptability checking [9]. Accordingly, the
PTM, and its topological interpretation seem to be a good starting point for
modeling concurrent processes as interactive TMs [19]. Also considering that
the set of PTMs reveals to be isomorphic to a general class of effective tran-
sition systems as proved in Smolka et al. in [1]. This result allows to make the
hypothesis that the PTM captures the intuitive notion of sequential interactive
computation [2], in analogy to the Church-Turing hypothesis that relates Turing
machines to algorithmic computation.

Computation. Turing, Church, and Kleene independently formalized the
notion of computability with the notion of Turing machine, λ-calculus, partial
recursive functions. Turing machine manipulates strings over a finite alphabet,
λ-calculus manipulate λ-terms, and μ-recursive functions manipulate natural
numbers. The Church-Turing thesis states that

every effective computation can be carried out by a Turing machine or
equivalently a certain informal concept (algorithm) corresponds to a certain

mathematical object (Turing machine) [16].

210 E. Merelli and A. Wasilewska

The demonstration lies on the fact that the three notions of computability
are formally equivalent. In particular, the Turing machine is a model of compu-
tation like a finite states control unit with an unbounded tape used to memorize
strings of symbols. A deterministic sequence of computational steps transforms
a finite input string in the output string. For each step of the computation, a
Turing machine contains all the information for processing input in output, an
algorithmic way to computing a function, those functions that are effectively
computable. The Universal TM is the basic model of all effectively computable
functions, formally defined by a mathematical description.

Definition 1 (Turing machine). A Turing machine (TM) is M = 〈Q,Σ,P〉,
– Q is a finite set of states;
– Σ is a finite alphabet containing the blank symbol #; L and R are special

symbols.
– P ⊆ Q × Σ × Σ × Q × {L,R}, the set of configurations of M.

A computation is a chain of elements of P such that the last one cannot be
linked to any possible configuration of P.

The multi-tape Turing machine is a TM equipped with an arbitrary number k
of tapes and corresponding heads.

Definition 2 (k-tape Turing machine). A non-deterministic k-tape TM is
a quadruple 〈Q,Σ,P, s0〉, where

– Q is a finite set of states; s0 ∈ Q is the initial state and h /∈ Q is the halting
state.

– Σ is a finite alphabet containing the blank symbol #. L and R are special
symbols.

– P ⊆ Q × Σk × (Q ∪ {h}) × (Σ ∪ {L,R})k is the set of configurations.

The machine makes a transition from its current configuration (state) to a new
one (possibly the halt state h). For each of the k tapes, either a new symbol is
written at the current head position or the position of the head is shifted by one
location to the left (L) or right (R).

The above definitions of TMs do not take into account the notion of environ-
ment; the input is implicitly represented in the configurations P of M machine
modulo feasible relations. The objective of this contribution is to represent the
environment explicitly in a way such that the admissible relations are natu-
rally determined. Our view is supported by a recent, even though not formal,
definition of computation.

Computation is the evolution process of some environment via a sequence of simple

and local steps [7].

Topological Interpretation of Interactive Computation 211

A Computational Environment is the base space over which the process of
transformation of an input string happens. For the TM, an environment is any
configuration of P of a machine M, from the initial one to the final one. It is
a closed set – represented by the functional matrix, – whose feasible relations
should be known a priori to assure the algorithmic aspect of the computation.
Indeed, in TM the environment does not evolve, it remains unchanged during
the computation.

If we consider the environment as an open set - the set of configurations
may changes along the way due to computation - accordingly, the set of feasible
relations may change. As Sect. 3 describes, one way to capture this variation
is to associate a topology to the space of all possible configurations and use
the global invariants of the space to classify the relations in categories whose
elements are isomorphic to those of some model of computation, such as the TM.
In this setting, the local steps (feasible relations) – the functional matrix – are
affected by global topology. As a consequence, the evolution of an environment
corresponds to a change of the topological invariants. Then the classical TM
is equivalent to working with a space of states whose topology is trivial, which
allows the process of transformation to run linearly.

While an interactive computation takes into account the non-linearity of the
computation due to the structure of the transformations characterizing it. The
non-linearity is implied by the topology of the base space B, and induced by
the semi-direct product factorization of the transformation group, the simplicial
analog of the mapping class group, denoted by GMC .

In the viewpoint of computation as a process, the global context induces
non-linear interactions among the processes affecting the semantic domain of
the computation. The semantic object associated to TM, that is the function
that TM computes, or the formal language that it accepts, becomes an interac-
tive transition system for a PTM. In the topological setting it changed into the
pair of 〈function, structure〉, entangled as a unique object. The function repre-
sents the behavior and the structure the context. Formally represented by the
fiber subgroup in the semi-direct product form of the group of computations
(connected to process algebra), denoted by GAC , and GMC the group of self-
mapping of the topological spaces (the environmentself-transformations algebra,
i.e. automorphisms which leave the topology invariant), quotient by the set of
feasible relations. The new semantic object, a gauge group G = GAC ∧ GMC ,
provides another way to understand the meaning of contextuality [17], as a tool
to distinguish effective computation from interactive computations. That is to
identify configurations that are ‘locally consistent, but globally inconsistent’, as
shown in Fig. 1 and informally summarised in the following sentence

Contextuality arises where we have a family of data which is locally consistent
but globally inconsistent.

Section 3 introduces the new interpretation. We leave the formal definition
and full formalization of the theory corresponding to the group of computations
for an evolving environment as future work.

212 E. Merelli and A. Wasilewska

2 Interactive Computation

In this section, we recall the definition of the persistent Turing Machine, PTM as
defined by Smolka et al. in [1] and the related notion of environment introduced
in their earlier work [2]. We introduce the definitions needed to support the
construction of a new topological model that is a generalization of the PTM.
The new model allows one to re-interpret the classic scheme of computability,
which envisages a unique and complete space of problems.

The PTM provides a new way of interpreting TM computation, based on
dynamic stream semantics (comparable to behavior as a linear system). A PTM
is a non-deterministic 3-tape TM (N3TM) that performs an infinite sequence of
classical TM computations. Each such computation starts when the PTM reads
input from its input-tape and ends when the PTM produces an output on its
output-tape. The additional work-tape retains its content from one computa-
tional step to the next to carry out the persistence.

Definition 3 (Smolka, Goldin Persistent Turing machine). A persistent
Turing machine (PTM) is a N3TM having a read-only input-tape, a read/write
work-tape, and a write-only output-tape.

Let wi and w0 denote the content of the input and output tapes, respectively,
while w and w′ the content of work-tape, and # empty content, then

– an interaction stream is an infinite sequence of pairs of (wi, wo) representing
a computation that transforms wi in wo;

– a macrostep of PTM is a computation step denoted by w
wi/wo−−−−→ w′, that

starts with w and ends with w′ on the work-tape and transforms wi in wo;
– a PTM computation is a sequence of macrosteps.

w
wi/µ−−−→ sdiv denotes a macrostep of a computation that diverges (that is a

non-terminating computation); sdiv is a particular state where each divergent
computations falls, and μ is special output symbol signifying divergence; μ /∈ Σ.

Moreover, the definition of the interactive transition system (ITS) equipped
with three notions of behavioral equivalence – ITS isomorphism, interactive
bisimulation, and interaction stream equivalence – allows them to determine
the PTMs equivalence.

Definition 4 (Interactive transition system). Given a finite alphabet Σ
not containing μ, an ITS over Σ is a triple 〈S,m, r〉 where

– S ⊆ Σ∗ ∪ {sdiv} is the set of states;
– m ⊆ S × Σ∗ × S × (Σ∗ ∪ {μ}) is the transition relation;
– r denotes the initial state.

It is assumed that all the states in S are reachable from r. Intuitively, a transition
〈s, wi, s

′, wo〉 of an ITS states that while the machine is in the state s and having
received the input string wi from the environment, the ITS transits to state s′

and output wo.

Topological Interpretation of Interactive Computation 213

Unfortunately, the sake of space economy forced to omit most of the results;
we only recall Theorem 24, Theorem 32 and Thesis 50 (in the sequel renumbered
Theorem 1, Theorem 2 and Thesis 1, respectively) and address the reader eager
for more information to the original article [1].

Theorem 1. The structures 〈M,=ms〉 and 〈T,=iso〉 are isomorphic.

Theorem 1 states that there exists a one-to-one correspondence between the class
of PTMs, denoted by M up to macrostep equivalence, denoted by =ms, and the
class of ITSs, denoted by T up to isomorphism, denoted by =iso.

Theorem 2. If a PTM M has unbounded nondeterminism, then M diverges.

Theorem 2 states that a PTM M diverges if there exists some w ∈ reach(M),
wi ∈ Σ∗ such that there is an infinite number of wo ∈ Σ∗∪{μ}, w′ ∈ Σ∗∪{sdiv},

such that w
wi/wo−−−−→ w′.

Thesis 1. Any sequential interactive computation can be performed by a PTM.

Like the Church-Turing Thesis, Thesis 1 cannot be proved. Informally,
each step of a sequential interactive computation, corresponding to a single
input/output-pair transition, is algorithmic. Therefore, by the Church-Turing
Thesis, each step is computable by a TM. A sequential interactive computation
may be history-dependent, so state information must be maintained between
steps. A PTM is just a TM that maintains state information on its work-tape
between two steps. Thus, any sequential interaction machine can be simulated
by a PTM with possibly infinite input.

The PTM Environment. In her earlier work [2], D. Goldin proposed a notion
of environment to highlight that the class of behaviors captured by the TM, the
class of algorithmic behaviors, is different from that represented by the PTM
model, the sequential interactive behaviors. The conceptualization of the envi-
ronment provides the observational characterization of PTM behaviors given by
the input-output streams. In fact, given two different environments O1 and O2

and a PTM M, the behavior of M observed by interacting with an environment
O1 can be different if observed by interacting with O2. Also, given two machines
M1 and M2 and one environment O, if the behaviors of the two machines are
equal (one can be reduced to the other), they must be equivalent in O. This
claim gives the go-ahead to Theorem 3. Any environment O induces a partition-
ing of M into equivalence classes whose members appear behaviorally equivalent
in O; the set of equivalence classes is denoted by βo. Indeed, the equivalences of
the behaviors of two PTMs can be expressed by the language represented in the
set of all interaction streams.

Let B(M) denote the operator that extracts the behavior of a given machine
M, and O(M) a mapping that associates any machine M to the class of the
behaviors feasible for the environment O. Therefore, each machine can be clas-
sified by analyzing its interaction streams with the two operators, B and O.

214 E. Merelli and A. Wasilewska

Definition 5 (Environment). Given a class M of PTMs and a set of suitable
domains βO, that is the set of equivalence classes of feasible behaviours. An
environment O is a mapping from machines to some domains O : M → βO and
the following property holds:

∀ M1,M2 ∈ M, if B(M1) = B(M2) then O(M1) = O(M2)

When O(M1) �= O(M2), we say that M1 and M2 are distinguishable in O;
otherwise, we say that M1 and M2 appear equivalent in O.

Theorem 3. Let Θ denote the set of all possible environments. The environ-
ments in Θ induce an infinite expressiveness hierarchy of PTM behaviors, with
TM behaviors at the bottom of the hierarchy.

So far, we have assumed that all the input streams are all feasible. However,
this is not a reasonable assumption for the context in which interactive machines
normally run. Typically an environment can be constrained and limited by some
obstructions when generating the output streams. In our view, this is the case
where the space of all possible configurations lies on a topological space with not
trivial topology. In order to contribute to this theory, in the following we will
tackle the issue of specifying these constraints, and relating them to the PTM
model.

3 Topological Interpretation of Interactive Computation

Topological Environment. This section deals with the notion of topological
environment as an integral part of the model of topological computation. In
a classical TM the environment is not represented (Definition 1), whereas in a
PTM the environment is a mapping between the class of PTMs and their feasible
domains. As described above the two functions B and O permit to identified the
behavior of a PTM machine by observing its stream of interactions. In this case
the environment O is a static mapping that associates machines with an equiva-
lent behavior B(M) to the same equivalence class. In this case the environment
plays the role of an observer. In our approach the environment is part of the
system that evolves together with the behavior of the machine over time step i.
The environment constrains the behavior of a machine PTM so as the output
generated by the machine affects the evolution of the environment.

To detect dynamic changes in the environment, we propose to define a
dynamic analysis of the set of all the interactions streams available at any sin-
gle PTM computation step i. Since interaction streams are infinite sequences of
pairs of the form (wi, wo) representing the input and output strings of PTMs
computation step i, we use the set P of PTM configurations to represent them.

The resulting model of computation consists of two components entangled
and coexisting during the interactive computation, a functional unit of compu-
tation and a self-organizing memory.

In our model, the infinite input of the PTM should be seen as a feedback
loop of a dynamic system. Its functional behavior is represented by a class T

Topological Interpretation of Interactive Computation 215

of ITS constrained by the information contained in the self-organizing memory
associated with the notion of topological environment. The data structure used
to store information is the simplicial complex SP , that is a topological space S
constructed over the set of PTM configuration P. The SP is equipped with a
finite presentation in terms of homology groups whose relations are fully repre-
sentable. In this view the PTM functional behavior can be determined by SP
modulo ITS isomorphism. We operate in a discrete setting where full information
about topological space is inherent in their simplicial representation. Appendix 1
provides some useful definitions for algebraic and computational topology.

Definition 6 (Topological environment). Given the set of PTM configura-
tions Pi available at a given time i, the topological environment is the simplicial
complex SPi

constructed over Pi.

The topological environment SP , as any topological space is equipped with
a set of invariants that are important to understand the characteristics of the
space. For the sake of simplicity we will refer to topological space as a contin-
uous space. The n-dimensional holes, the language of paths, the homology and
the genus are topological invariants. The n-dimensional holes are determined
during the process of filtration, called persistent homology, that is used to con-
struct a topological space starting from a set of points. The numbers of holes
and their associated dimensions are determined by the homology structure fully
represented by the homology groups associated with a topological space. Also
the homology is a topological invariant of the space, it is always preserved by
homeomorphisms of the space.

A path S is a continuous function f : [0, 1] → S from the unit interval to S.
Paths are oriented, thus f(0) is the starting point and f(1) is the end-point, if
we label the starting point v and the end-point v′, we call f a path from v to
v′ as shown in Fig. 2-(a). Two paths a and b, that is two continuous functions,
from a topological space S to a topological space S ′ are homotopic if one can be
continuously deformed into the other. Being homotopic is an equivalence relation
on the set of all continuous functions from S to S ′. The homotopy relation is
compatible with function composition.

Therefore, it is interesting to study the effect of the existence of holes (at
any dimension) in a topological space S (for simplicity the discussion is made
thinking of S as a 2D surface) built from the space of configurations P where
a sequential interactive computation takes place as a sequential composition of
paths. Figures 2-(b) and -(c) show the composition of two paths a and b, and the
proof that they are not homotopic, respectively. Given two-cycle paths, a and b,
with a point in common in x, if the composition of the two paths ab or ba is not
commutative, the two composed paths are not equivalent. In this case, the two
cycle paths, a and b can be considered the generators of a topological space with
one 2-dimensional hole, as shown in Fig. 3. Each generator represents a distinct
class of paths, [a] those going around the neck, and [b] those around the belt of
the torus, respectively.

216 E. Merelli and A. Wasilewska

a
b

x

•

>

>

|v〉 |v′〉• •

a

b

• • •
•

•

•

•

•

•

•

x
x

x

x

x

x

|v〉 |v′〉

|v′〉 |v〉

a b

b a

Fig. 2. (a) homotopic paths a ∼ b; (b) composition of paths ab; (c) not homotopic
paths ab � ba

Computable Functions and Topological Space. We start taking into
account those classes of problems whose computable functions are defined over a
space S endowed with a trivial topology, and it is a Vector Space. Figure 4 shows
how an algorithmic computation A associated with the function fA : S → S,
evolves over S, representing the space of the states. Each state v is defined by
a vector that moves over S driven by the configurations of the TM. In Fig. 4,
from left to right, the first two pictures represent a successful computation and a
computation with an infinite loop, respectively. When the algorithm moves the
vector towards a boundary, see the last picture, the computation is deadlocked.
This happens because S has not been defined globally. In fact, the boundary
breaks the translational symmetry. If we allow the boundary to disappear by
adding an extra-relation, global in nature, we obtain a global topology that is
not trivial – the space is characterized by a not empty set of n-dimensional holes
(n ≥ 2). Figure 5 shows how the computation with a deadlock on the plane could
have succeeded if the manifold of the space is a torus.

Figure 6 shows how we can transform a rectangle, 2-dimensional space S
homomorphic to 2-manifold with boundary, into a cylinder and then into a torus
by adding two relations among the generators of the manifold P that will be
proved to be without boundary.

Topological Interpretation of Interactive Computation 217

a
b

x

•
b

a

x•

Fig. 3. From cycling paths to generators of a space S

Fig. 4. (a) successful computation, (b) computation with an infinite loop, (c) compu-
tation with a deadlock.

Hence, we proceed to analyze those classes of problems whose computable
functions are defined over a space S endowed with non-trivial topology. The
class of functions FS effectively computable over a space S, and for each single
function fA ∈ FS and a couple of points v, v′ ∈ S, we associate a computation
fA(v) = v′, as a path that connects the two points v and v′ in the space S. The
path can be semantically interpreted as an interaction stream.

In Fig. 7, the first two pictures from left to right, show that a close path π in
a surface that starts and ends to a fixed point PB is homotopic to 0; it means
that any π can be reduced to the point PB . The class of behavioral equivalence
to τ denoted by [π] belongs to space or subspace space with trivial topology
g = 0 (g is the genus). The other pictures show irreducible paths belonging to
space with a topological genus g �= 0. E.g. if g = 1, i.e. is a torus there are three
different classes of behaviors: (i) the set of closed paths homotopic to 0. In this
case, we are given a local interpretation and we are not aware that at the global
level the genus can be different from 0; (ii) the set of closed paths homotopic to
the first generator a of the homology group of the topological space S. The cycle

218 E. Merelli and A. Wasilewska

|v〉

|v′〉

Fig. 5. A deadlocked computation on the plane may successes over a space with non-
trivial topology.

fixed on the base point PB can be used to reduce any path going around the
belt of the torus to a by a continuous deformation; (iii) similar to the previous
set, but the paths are homotopic to the second generator b of S. The cycle fixed
on the base point PB goes around the belt of the torus. The last picture shows
the composition of paths.

The interpretation of interaction streams over a SP is indeed nothing but
its identification with an element of the path algebra corresponding to a quiver
representation of the transformation group G of S, say Q (or, more generally, a
set of quivers, over some arbitrary ring). The different ways to reach any point
p ∈ P from PB generate a path algebra A whose elements are describable words
in a language L. Any point of P can be related to any other point by a group
element. By selecting a point p0 of P as a unique base point, every point of P is
in one-to-one correspondence with an element of such group GMC ≈ MCG, the
simplicial analog of the mapping class group. GMC is a group of transformations
which do not change the information hidden in the data, such as the group of
diffeomorfisms that do not change the topology of the base space. MCG is an
algebraic invariant of a topological space, that is a discrete group of symmetries.
Since the algebras manipulate the data, the transformations applied to space
are ‘processes’ carried on through the fiber, which is the representation space
of the process algebra. Whenever Q can give the representation of the algebra,
the algebra can be exponentiated to a group GAP and t a gauge group. We
have now all the ingredients for defining a fiber bundle enriched with a group
G = GAP ∧ GMC , called gauge group, (see Fig. 1). Summarizing, fiber bundle
is the mathematical structure that allows us to represent computation and its
context (the environment) as a unique model. In terms of TM, the context
represents the transition function, also called the functional matrix.

While the algorithmic aspect of a computation expresses the effectiveness of
the computation, the topology provides a global characterization of the

environment.

Topological Interpretation of Interactive Computation 219

a

b

a

b

A) B)

C)

b

a
x•

D)

Fig. 6. The pictures (A–D) summarize the main steps to transform a space S of PTM
into a topological space SP . The construction is obtained by gluing together – put
in relation – the two boundaries of the space S, a and b respectively, which become
the generators a and b of the new space SP . The topological space SP , finite but not
limited, naturally supports the notion of the environment of PTM.

Both the computation and the environment can be represented as groups (alge-
bras), and their interaction is captured as the set of accessible transformations
of the semi-direct product of the two groups, carrying constrained by the restric-
tions imposed by topology. Incidentally, it is this set of constraints together with
the semidirect product structure that implies the non-linearity of the process.

Definition 7 (Topological Turing machine). A Topological Turing machine
(TTM) is a group G consisting of all interaction streams generated by the group
of PTMs entangled with the group of all transformations of the topological space
SP preserving the topology. Formally G = GAP ∧ GMC , where GAP is the group
of PTMs and GMC the simplicial analog of the mapping class group.

Proposition 1. If G is automatic, the associated language L is regular. Since
the representations of G can then be constructed in terms of quivers Q with
relations induced by the corresponding path algebra induced by PTMs, the syntax
of L is fully contained in T and its semantics in M.

Definition 8 (Constrained interactive computation). An interactive com-
putation is constrained if it is defined over a topological space SP and it is an
element of the language of paths of SP .

Theorem 4. Any constrained interactive computation is an effective computa-
tion for a TTM.

Thesis 2. Any concurrent computation can be performed by a TTM.

220 E. Merelli and A. Wasilewska

α•PB α•PB

λ

•
PB

PB

γ

Fig. 7. A class of behaviors over a torus α close paths, λ path around the neck, μ path
around the belt, γ complex path

4 Final Remarks

In 2013, Terry Tao in his blog [20] posted this question: if there is any computable
group G which is “Turing complete” in the sense that the halting problem for
any Turing machine can be converted into a question of the above form. In other
words, there would be an algorithm which, when given a Turing machine T ,
would return (in a finite time) a pair xT , yT of elements of G with the property
that xT , yT generate a free group in G if and only if T does not halt in finite
time. Or more informally: can a ‘group’ be a universal Turing machine?

Acknowledgements. E. M. thanks Mario Rasetti for bringing her to conceive a new
way of thinking about computer science and for numerous and lively discussions on
topics related to this article; and Samson Abramsky with his group for insightful con-
versations on the topological interpretation of contextuality and contextual seman-
tics. E. M. and A. W. thank the anonymous referees for suggesting many significant
improvements.

Funding statements. We acknowledge the financial support of the Future and Emerg-

ing Technologies (FET) programme within the Seventh Framework Programme (FP7)

for Research of the European Commission, under the FP7 FET-Proactive Call 8 -

DyMCS, Grant Agreement TOPDRIM, number FP7-ICT-318121.

Topological Interpretation of Interactive Computation 221

Appendix 1: Definitions of Algebraic and Computational
Topology

Definition 9. Topology
A topology on a set X is a family T ⊆ 2X such that

– If S1, S2 ∈ T, then S1 ∩ S2 ∈ T (equivalent to: If S1, S2, . . . , Sn ∈ T then
∩n
i=1Si ∈ T)

– If {Sj |j ∈ J} ⊆ T, then ∪j∈JSj ∈ T.
– ∅,X ∈ T.

Definition 10. Topological spaces
The pair (X,T) of a set X and a topology T is a topological space. We will often
use the notation X for a topological space X, with T being understood.

Definition 11. Simplices
Let u0, u1, ..., uk be points in R

d. A point x =
∑k

i=0 λiui is an affine combination
of the ui if the λi sum to 1. The affine hull is the set of affine combinations.
It is a k-plane if the k+1 points are affinely independent by which we mean
that any two affine combinations, x=

∑k
i=0 λiui and y =

∑k
i=0 μiui are the same

iff λi = μi for all i. The k+1 points are affinely independent iff the k vectors
ui . . . u0, for 1 ≤ i ≤ k, are linearly independent. In R

d we can have at most
d linearly independent vectors and therefore at most d+1 affinely independent
points.
k-simplex is the convex hull of k+1 affinely independent points, σ =

{
u0, u1,

u2, ...uk

}
. We sometimes say the ui span σ. Its dimension is dimσ = k. Any

subset of affinely independent points is again independent and therefore also
defines a simplex of lower dimension.

Definition 12. Face
A face of σ is the convex hull of a non-empty subset of the ui and it is proper
if the subset is not the entire set. We sometimes write τ ≤ σ if τ is a face and
τ < σ if it is a proper face of σ. Since a set of k+1 has 2k+1 subsets, including
empty set, σ has 2k+1 − 1 faces, all of which are proper except for σ itself. The
boundary of σ, is the union of all proper faces.

Definition 13. Simplicial complexes
A simplical complex is a finite collection of simplices K such that σ ∈ K and τ ∈
K, and σ, σ0 ∈ K implies σ ∩ σ0 is either empty or a face of both.

Definition 14. Filtration
A filtration of a complex K is a nested sequence of subcomplex, ∅ = K0 ⊆ K1 ⊆
K2 ⊆ ⊆ Km = K. We call a complex K with a filtration a filtered complex.

222 E. Merelli and A. Wasilewska

Definition 15. Chain group
The k-th chain group of a simplicial complex K is 〈Ck(K),+〉, let F be a field.
The F−linear space on the oriented k-simplices, where [σ] = −[τ] if σ = τ
and σ and τ have different orientations. An element of Ck(K) is a k-chain,∑

q nq[σq], nq ∈ Z, σq ∈ K.

A simplicial complex (left) and not valid simplicial complex (right).

A simplicial complex and its simplices.

Definition 16. Boundary homomorphism
Let K be a simplicial complex and σ ∈ K,σ = [v0, v1, ..., vk]. The boundary
homomorphism ∂k : Ck(K) → Ck−1(K) is ∂kσ =

∑
i(−1)i[v0, v1, ..., v̂i, ..., vn]

where v̂i indicates that vi is deleted from the sequence.

Definition 17. Cycle and boundary
The k-th cycle group is Zk = ker∂k. A chain that is an element of Zk is a k-
cycle. The k-th boundary group is Bk = im∂k+1. A chain that is an element of
Bk is a k-boundary. We also call boundaries bounding cycles and cycles not in
Bk nonbounding cycles.

Definition 18. Homology group
The k-th homology group is Hk = Zk/Bk = ker∂k/im∂k+1

If z1 = z2 +Bk, z1, z2 ∈ Zk, we say z1 and z2 are homologous and denote it with
z1 ∼ z2

Topological Interpretation of Interactive Computation 223

Definition 19. k-th Betti number
The k-th Betti number Bk of a simplicial complex K is the dimension of the k-th
homology group of K. Informally, β0 is the number of connected components, β1

is the number of two-dimensional holes or ”handles” and β2 is the number of
three-dimensional holes or “voids” etc. . . .

Definition 20. Invariant
A topological invariant is a property of a topological space which is invariant
under homeomorphisms. Betti numbers are topological invariants.

Definition 21. Genus
The genus is a topological invariant of a close (oriented) surface. The connected
sum of g tori is called a surface with genus g. genus refers to how many ‘holes’
the donut surface has.

As an example, a torus is homeomorphic to a sphere with a handle. Both of
them have just one hole (handle). The sphere has g = 0 and the torus has g = 1.

References

1. Goldin, D.Q., Smolka, S.A., Attie, P.C., Sondereggera, E.L.: Turing machines, tran-
sition systems, and interaction. In: Information and Computation 194, 2004. -
ENTCS Vol. 52, No. 1, Elsevier (2001)

2. Goldin, D.Q.: Persistent turing machines as a model of interactive computation.
In: Schewe, K.-D., Thalheim, B. (eds.) FoIKS 2000. LNCS, vol. 1762, pp. 116–135.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46564-2 8

3. Goldin, D.Q., Smolka, S.A., Wegner, P.: Interacting Computation: The New
Paradigm. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-34874-3

4. Wegner, P.: Why Intera is More P Than Algorit. CACM, vol. 40, No. 5. ACM
(1997)

5. Wegner, P.: Interactive foundations of computing. TCS, vol. 192. Elsevier (1998)
6. Gandy, R.O.: Church’s thesis and principles for mechanisms. In: Barwise, J.,

Keisler, H.J., Kunen, K. (eds.) The Kleene Symposium. North-Holland Publishing
Company (1980)

7. Wigderson, A.: Mathematics and Computation. IAS, Draft (March 2018)
8. Garrone, S., Marzuoli, A., Rasetti, M.: Spin networks, quantum automata and link

invariants. J. Phys. Conf. Ser. 33, 95 (2006)
9. Merelli, E., Pettini, M., Rasetti, M.: Topology driven modeling: the IS metaphor.

Nat. Comput. 14(3), 421–430 (2015)
10. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)
11. Rasetti, M., Merelli, E.: Topological field theory of data: mining data beyond com-

plex networks. In: Contucci, P. (ed.) Advances in Disordered Systems. Random
Processes and Some Applications. Cambridge University Press, Cambridge (2016)

12. Steenrod, N.: The topology of Fiber Bundles. Princeton Mathematical Series.
Princeton University Press, Princeton (1951)

13. Landin, P.J.: A Program Machine Symmetric Automata Theory. In: Meltzer and
Michie (ed.) Machine Intelligence, Vol. 5. Edinburgh University Press (1969)

14. Abramsky, S.: An algebraic characterisation of concurrent composition.
ArXiv:1406.1965v1 (2014)

https://doi.org/10.1007/3-540-46564-2_8
https://doi.org/10.1007/3-540-34874-3
http://arxiv.org/abs/1406.1965v1

224 E. Merelli and A. Wasilewska

15. Turing, A.M.: Lecture to the London Mathematical Society, 20 February 1947.
Quoted in Carpenter, B.E., Doran, R.W. (eds.), A. M. Turing’s Ace Report of
1946 (1946)

16. Lewis, H., Papadimitriou, C.H.: Elements of the Theory of Computation, 2nd edn.
Prentice Hall, Upper Saddle River (1998)

17. Abramsky, S.: Contextuality: at the borders of paradox. In: Landry, E. (ed.) Cat-
egories for the Working Philosophers (2017)

18. Abramsky, S.: Contextual semantics: from quantum mechanics to logic, databases,
constraints, and complexity. ArXiv:1406.7386v1 (2014)

19. Abramsky, S.: What are the Fundamental Structures of Concurrency? We still
don’t know! Electronic Notes in Theoretical Computer Science vol. 162 (2006)

20. Mathoverflow. https://mathoverflow.net/questions/88368/can-a-group-be-a-
universal-turing-machine

http://arxiv.org/abs/1406.7386v1
https://mathoverflow.net/questions/88368/can-a-group-be-a-universal-turing-machine
https://mathoverflow.net/questions/88368/can-a-group-be-a-universal-turing-machine

Conformal Predictions for Hybrid System
State Classification

Luca Bortolussi1,4, Francesca Cairoli1, Nicola Paoletti2(B),
and Scott D. Stoller3

1 Department of Mathematics and Geosciences, Università di Trieste, Trieste, Italy
2 Department of Computer Science, Royal Holloway, University of London,

Egham, UK
nclpltt@gmail.com

3 Department of Computer Science, Stony Brook University, Stony Brook, USA
4 Modelling and Simulation Group, Saarland University, Saarbrücken, Germany

Abstract. Neural State Classification (NSC) [19] is a scalable method
for the analysis of hybrid systems, which consists in learning a neural
network-based classifier able to detect whether or not an unsafe state
can be reached from a certain configuration of a hybrid system. NSC has
very high accuracy, yet it is prone to prediction errors that can affect sys-
tem safety. To overcome this limitation, we present a method, based on
the theory of conformal prediction, that complements NSC predictions
with statistically sound estimates of prediction uncertainty. This results
in a principled criterion to reject potentially erroneous predictions a pri-
ori, i.e., without knowing the true reachability values. Our approach is
highly efficient (with runtimes in the order of milliseconds) and effective,
managing in our experiments to successfully reject almost all the wrong
NSC predictions.

1 Introduction

Hybrid systems, i.e., systems characterized by the interaction between discrete
(digital) and continuous (physical) components, are a central model for many
cyber-physical system applications, from avionics to biomedical devices [1]. For-
mal verification of hybrid systems typically boils down to solving a hybrid
automata (HA) reachability checking problem [13]: given a model M of the
system expressed as an HA and a set of unsafe states U of M, check whether U
is reached in any (time-bounded) path from a set of initial states. HA reachability
checking is undecidable in general [13], a difficulty that current HA reachability
checking algorithms address by over-approximating the set of reachable states.
These algorithms are computationally very expensive, and thus, usually limited
to design-time (offline) analysis.

This material is based on work supported in part by NSF Grants CNS-1421893 and
CCF-1414078 and ONR Grant N00014-15-1-2208.

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 225–241, 2019.
https://doi.org/10.1007/978-3-030-31514-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_13

226 L. Bortolussi et al.

Motivated by the need to make HA reachability checking more efficient and
suitable for online analysis, Phan et al. [19] recently proposed Neural State Clas-
sification (NSC), an approach for approximating reachability checking using deep
neural networks (DNNs). Their work shows that it is possible to train, using
examples computed via suitable HA model checkers, DNN-based state classifiers
that approximate the result of reachability checking with very high accuracy. For
any state s of the HA, such a classifier labels s as positive if an unsafe state is
reachable from s within a given time bound; otherwise, s is labeled as negative.

The key advantage of this approach is its efficiency. Neural state classifiers
indeed run in constant time and space, because the computation is not directly
affected by the size and complexity of the HA model or specification, but only
by the complexity of the chosen DNN architecture.

The main drawback is that DNNs for NSC (like any other machine learn-
ing model) are subject to classification errors, the most important being false
negatives, i.e., when the DNN classifies a state as negative while it is actually
positive. While Phan et al.’s work allows estimation of the classification accuracy
for a region of states (i.e., the probability that a state in the region is wrongly
classified), it does not provide any indication about the reliability of single-point
predictions, i.e., DNN predictions on individual HA states whose true reacha-
bility value is unknown. This limits the applicability of NSC for online analysis,
where state classification errors can compromise the safety of the system. This
is in contrast with methods like smoothed model checking [4], which leverages
Gaussian Processes and Bayesian statistics to quantify uncertainty, but on the
other side faces severe scalability issues as the dimension of the system increases.

The aim of this work is to equip NSC with rigorous methods for quantify-
ing the reliability of single-point predictions. For this purpose, we investigate
Conformal Prediction (CP) [22], a method that provides statistical guarantees
on the predictions of machine learning models. Importantly, CP requires only
very mild assumptions on the data (i.e., exchangeability, a weaker version of the
independent and identically distributed assumption).

By applying CP, we estimate two statistically sound measures of NSC pre-
diction uncertainty, confidence and credibility. Informally, the confidence of a
prediction is the probability that a reachability prediction for an HA state s cor-
responds to the true reachability value of s. Credibility quantifies how a given
state is likely to belong to the same distribution as the training data.

Using confidence and credibility, we show how to derive criteria for anomaly
detection, that is, for rejecting NSC predictions that are likely to be erroneous.
The key advantage of such an approach is that predictions are rejected on rigor-
ous statistical grounds, and we show experimentally its superiority with respect
to discrimination based on the DNN’s class likelihood. Furthermore, computa-
tion of CP-based confidence and credibility is very efficient (approximately 3 ms
in our experiments), which makes our method suitable for online analysis.

Conformal Predictions for Hybrid System State Classification 227

In summary, the main contributions of this paper are the following:

– We extend the framework of neural state classification with conformal pre-
diction to quantify the reliability of NSC predictions.

– We derive criteria for anomaly detection based on CP to reject unreliable
NSC predictions.

– We evaluate our method on three hybrid automata models showing that,
with adequate choices of confidence and credibility thresholds, our method
successfully rejects almost all prediction errors: over a total of 30,000 test
samples, our method successfully rejected 43 out of 44 errors.

The paper is structured as follows. Sections 2 and 3 provide background on
neural state classification and conformal prediction, respectively. In Sect. 4, we
introduce our CP-based measures of prediction reliability. Results of the exper-
imental evaluation are given in Sect. 5. Related work is discussed in Sect. 6.
Section 7 offers concluding remarks.

2 Neural State Classification for Hybrid System
Reachability

Neural state classification seeks to solve the State Classification Problem
(SCP) [19], a generalization of the reachability checking problem for hybrid
systems. Let B = {0, 1} be the set of Boolean values. Given an HA M with
state space S(M), time bound T , and set of unsafe states U ⊂ S(M), the SCP
problem is to find a state classifier, i.e., a function F ∗ : S(M) −→ B such that
for all s ∈ S(M), F ∗(s) = 1 if M |= Reach(U, s, T), i.e., if it is possible for M,
starting in s, to reach a state in U within time T ; F ∗(s) = 0 otherwise. A state
s ∈ S(M) is called positive if F ∗(s) = 1. Otherwise, s is negative.

Neural State Classification [19] offers an approximate solution to the SCP
based on machine learning models, deep neural networks (DNNs) in particular.
The NSC method is summarized in Fig. 1. The state classifier is trained using
supervised learning, where the training examples are derived by sampling the
state space according to some distribution and labelling the sampled states with
the corresponding reachability values. The latter are computed by invoking an
oracle, e.g., an hybrid system model checker [11]. The approach can handle
parametric HA, by encoding parameters as additional inputs to the classifier.

Fig. 1. Overview of the NSC approach (diagram from [19]).

228 L. Bortolussi et al.

NSC supports arbitrary state distributions. In [19], the following distributions
and corresponding sampling methods are considered:

– Uniform sampling, where every state is equi-probable.
– Dynamics-aware sampling, which is based on the probability that a state is

visited in any time-bounded evolution of the system, where such probabili-
ties are estimated by performing isotropic random walks of the HA (i.e., by
uniformly sampling the non-deterministic choices during the HA simulation).

– Balanced sampling, which seeks to draw a balanced number of positive and
negative states. This is useful when U is a small portion of S(M), in which
case uniform sampling would produce imbalanced datasets with an insufficient
number of positive samples, leading to classifiers with poor accuracy. For this
purpose, in [19] the authors introduce a new method for the construction and
simulation of reverse hybrid automata. Indeed, arbitrary numbers of positive
samples can be generated by simulating the reverse HA starting from an
unsafe state [19].

The performance of a trained classifier is evaluated by computing the empiri-
cal accuracy, rate of false positives (FPs), and rate of false negatives (FNs) using,
as commonly done in supervised learning, test datasets of samples unseen during
training. Inspired by statistical model checking [14], NSC also applies sequential
hypothesis testing [23] to certify that a classifier meets prescribed accuracy, FN,
or FP levels on unseen data, up to some given confidence level. Albeit useful,
these kinds of statistical guarantees are, however, only applicable to regions of
the HA state space, and as such, cannot be used to quantify the reliability of
single-point predictions. The present paper aims to solve this very problem.

NSC includes two methods to reduce FNs: threshold selection, which adjusts
the DNN’s classification threshold to favor FPs over FNs, and a more advanced
technique called falsification-guided adaptation that iteratively re-trains the clas-
sifier with false negatives found through adversarial sampling, i.e., by solving
a non-linear optimization problem that maximizes the disagreement between
DNN-predicted and true reachability values.

In [19], the authors applied NSC to six nonlinear hybrid system bench-
marks, achieving an accuracy of 99.25% to 99.98%, and a false-negative rate of
0.0033 to 0, which was further reduced to 0.0015 to 0 by applying falsification-
guided adaptation. While, with such performance, NSC can derive nearly perfect
approximations of the HA reachability function, it does not provide a recipe for
rejecting uncertain predictions a priori, i.e., without knowing the true reacha-
bility value. Our work extends NSC in this direction.

3 Conformal Prediction for Neural Networks

Conformal Prediction (CP) [22] is a flexible framework built on top of any tra-
ditional supervised machine learning model, called in CP the underlying model.

In this section, we describe CP in relation to a generic classification problem
(of which NSC is an instance), where we denote with X the set of inputs and

Conformal Predictions for Hybrid System State Classification 229

with Y = {y1, . . . , yc} the set of classification labels (or classes). The underlying
classification model is a function h : X −→ [0, 1]c mapping inputs into a vector
of class likelihoods, such that the class predicted by h corresponds to the class
with the highest likelihood. For a generic input xi, we will denote with yi the
true label of xi and with ŷi the label predicted by h (i.e., the label with highest
likelihood). Further, we will often use the notation x∗ to indicate test points
whose true label is unknown.

The interpretation of CP is two-fold. On one hand, conformal predictors
output prediction regions, instead of single point predictions. In the case of clas-
sification, given a test point xi and a significance level ε ∈ (0, 1), the prediction
region of xi, Γ ε

i ⊆ Y , is a set of labels guaranteed to contain the true label yi

with probability 1 − ε. We call this the global interpretation of CP.
On the other hand, given a prediction ŷi ∈ Y for xi, we can compute the

minimum value of ε such that the prediction region Γ ε
i contains only ŷi. The

corresponding probability 1 − ε is called the confidence of the predicted label
ŷi. Along with the confidence, CP allows computing another measure, called
credibility, which indicates how suitable the training data are for the current
prediction. Therefore, CP complements each prediction, on a new input, with a
measure of confidence and a measure of credibility. We call this the point-wise
interpretation of CP.

Importantly, CP does not require prior probabilities, unlike Bayesian meth-
ods, but only that data is exchangeable (a weaker version of the classic i.i.d.
assumption). We now provide a brief description of the method, but we refer
to [22] for a detailed introduction.

Let Z = X × Y . The main ingredients of CP are: a nonconformity function
f : Z → R, a set of labelled examples Z ′ ⊆ Z, an underlying model h trained
on (a subset of) Z ′, and a statistical test. The nonconformity function f(z)
measures the “strangeness” of an example z = (xi, yi), i.e., the deviation between
the label yi and the corresponding prediction h(xi). A natural choice for f is
f(z) = Δ(h(xi), yi), where Δ is a suitable distance1. As explained below, f(z) is
used to construct prediction regions in CP. In general, any function f : Z → R

will result in valid regions. However, a good nonconformity function, i.e. one that
produces tight prediction regions, should give low scores to correctly predicted
inputs, and large scores to misclassified inputs. See Sect. 3.2 for details about
the nonconformity function definition.

3.1 CP Algorithm

Given a set of examples Z ′ ⊆ Z, a test input x∗ ∈ X, and a significance level
ε ∈ (0, 1), a conformal predictor computes a prediction region Γ ε

∗ for x∗ as
follows.

1. Divide Z ′ into a training set Zt, and calibration set Zc. Let q = |Zc| be the
size of the calibration set.

2. Train a model h using Zt.
1 The choice of Δ is not very important, as long as it is symmetric.

230 L. Bortolussi et al.

3. Define a nonconformity function f((xi, yi)) = Δ(h(xi), yi), i.e., choose a met-
ric Δ to measure the distance between h(xi) and yi (see Sect. 3.2).

4. Apply f(z) to each example z in Zc and sort the resulting nonconformity
scores {α = f(z) | z ∈ Zc} in descending order: α1 ≥ · · · ≥ αq.

5. Compute the nonconformity scores αj
∗ = f((x∗, yj)) for the test input x∗ and

each possible label j ∈ {1, . . . , c}. Then, compute the smoothed p-value

pj
∗ =

|{zi ∈ Zc : αi > αj
∗}|

q + 1
+ θ

|{zi ∈ Zc : αi = αj
∗}| + 1

q + 1
, (1)

where θ ∈ U [0, 1] is a tie-breaking random variable. Note that pj
∗ represents

the portion of calibration examples that are at least as nonconforming as the
tentatively labelled test example (x∗, yj).

6. Return the prediction region

Γ ε
∗ = {yj ∈ Y : pj

∗ > ε}. (2)

Note that steps 1–4 have to be performed only once, while 5–6 for every test
point x∗2.

The idea behind the above procedure is use a statistical test to check if
(x∗, yj) is particularly nonconforming compared to the calibration examples.
The rationale is to estimate Q, the unknown distribution of f(z), by applying
f(z) to calibration examples, then to compute αj

∗ for every possible label yj and
test for the null hypothesis αj

∗ ∼ Q. We reject the null hypothesis when the
p-value associated to αj

∗ is smaller than the significance level ε. That is, we do
not include yj in Γ ε

∗ if it appears unlikely that f((x∗, yj)) ∼ Q. The prediction
region therefore contains all the labels for which we could not reject the null
hypothesis. This is an application of the Neyman-Pearson theory for hypothesis
testing and confidence intervals [15].

Note that in Eq. 1 by setting θ to a random value between 0 and 1, we
compute a so-called smoothed p-value. The main difference between a standard
p-value (where θ = 1) and a smoothed p-value is that in the latter situation, we
treat the borderline cases where αi = αj more carefully. Instead of increasing
the p-value by 1

q for each αi = αj , we increase it by a random amount between
0 and 1

q . It has been proven that any smoothed conformal predictor is exactly
valid, whereas a general conformal predictor is only conservative; see [22] for a
complete treatment.

3.2 Nonconformity Function

In general, the nonconformity function is a measurable function with type f :
Z → R. A nonconformity function is well-defined if it assigns low scores to

2 The approach we use is known in literature as inductive CP. The original CP app-
roach, also called transductive CP, requires retraining the model for each new test
sample and does not use a calibration set. See [18].

Conformal Predictions for Hybrid System State Classification 231

correctly predicted inputs and high scores to wrong predictions. It is typically
based on the underlying machine learning model h, and defined by

f((xi, yi)) = Δ(h(xi), yi),

where Δ is some function that measures the prediction error of h. Recall that, for
an input x ∈ X, the output of h is a vector of class likelihoods, which we denote
by h(x) = [Ph(y1|x), . . . , Ph(yc|x)]. For classification problems, a common choice
for Δ is

Δ(h(xi), yi) = 1 − Ph(yi|xi), (3)

where Ph(yi|xi) is the likelihood of class yi when the model h is applied on xi.
Note that such defined Δ induces a well-defined nonconformity function. Indeed
if h correctly predicts yi for input xi, then the corresponding likelihood Ph(yi|xi)
is high (the highest among all classes) and the resulting nonconformity score is
low. The opposite holds when h does not predict yi.

Using (3) also guarantees that the resulting p-values (see Eq. 1) preserve
the ordering of the class likelihoods predicted by model h. This means that,
for example, the class with the lowest likelihood will also be the class with the
smallest p-value, and the class with the highest likelihood will result in the
largest p-value. This property ensures that the prediction regions are consistent
with the classification predicted by h.

In our experiments we use (3) as nonconformity function. Other functions
designed specifically for neural networks have been proposed in [18]. However,
our results showed no significant differences between the latter and (3).

3.3 Confidence and Credibility

We now describe the measures of confidence and credibility, which are point-wise
measures, i.e., derived from individual predictions.

Let us first notice that the regions Γ ε for different ε values are nested: when
ε1 ≥ ε2, we have that Γ ε1 ⊆ Γ ε2 . Indeed, for an input x∗, if we choose an ε
lower than the p-values of all the classes (ε < minj=1,...,c pj

∗), then the region Γ ε

will necessarily contain all the class labels. On the opposite, as ε increases, fewer
and fewer classes will have their p-value higher than ε, until the region becomes
empty (when ε ≥ maxj=1,...,c pj

∗).
The confidence of a point x∗ ∈ X, 1 − γ∗, is a measure of how likely our

prediction for x∗ is compared to all other possible classifications (according to
the calibration set). It is computed as one minus the smallest value of ε for which
the conformal region is a single label, i.e. the second largest p-value γ∗:

1 − γ∗ = sup{1 − ε : |Γ ε
∗ | = 1}.

The credibility, c, is an indicator of how suitable the training data are to
classify that example. In practice, it is the smallest ε for which the prediction
region is empty, i.e. the highest p-value according to the calibration set.

c∗ = inf{ε : |Γ ε
∗ | = 0}.

232 L. Bortolussi et al.

A high confidence, 1 − γ∗, means that there is no likely alternative to the
point prediction, whereas a low credibility means that even the point prediction is
unlikely. Therefore, if c∗ is close to zero, the test example x∗ is not representative
of the data set.

If we consider γ∗, i.e., one minus the confidence, and c∗, the credibility, we
obtain the range I∗ of ε values for which we are sure that the corresponding
prediction region contains a single label: I∗ = [γ∗, c∗) ⊆ [0, 1]. We stress that
the class contained in the singleton prediction region corresponds to the model
prediction ŷ∗. This is a consequence of the chosen nonconformity function (3), by
which the ordering of class likelihoods is preserved in the corresponding p-values
(as discussed in Sect. 3.2).

Confidence and Credibility in Binary Classification. When Y = {0, 1},
as in NSC, the conformal classifier outputs, for each input point x∗, two prob-
abilities: p0∗ and p1∗. Suppose p1∗ > p0∗ (the same reasoning applies if p0∗ > p1∗),
which implies that the predicted class is 1. We define confidence as 1 − p0∗, and
credibility as p1∗. We call the interval I∗ = [p0∗, p

1
∗) the confidence-credibility inter-

val. It contains all values of ε for which we are sure that the prediction region
contains a single label (in this case, Γ ε = {1}, ∀ε ∈ I∗).

4 Measures of Prediction Reliability

Confidence and credibility can be used as uncertainty metrics. They measure
how much a prediction h(x), made by the underlying model, can be trusted. We
will leverage both the global and the point-wise interpretations of CP in order to
generate a statistically valid acceptance criterion. The following measures and
acceptance criterion are described in relation to a test set X∗ ⊆ X of unseen
input points, i.e., whose true label is unknown. Let K = |X∗| be the size of the
test set. Moreover, we will assume the case of binary classification, which is the
one relevant for NSC.

4.1 Global Interpretation

Recall the global interpretation of CP: given a significance level ε, constant along
X∗, the conformal classifier produces regions Γ ε for each test input x∗ ∈ X∗ that
guarantee a global error probability of ε across the entire test set X∗. We say
that the CP algorithm makes an error, at point x∗, if the prediction set at this
point does not contain the true label. The most interesting prediction regions
are those containing only a single class label, referred to as singleton regions,
since empty and double (Γ ε = {0, 1}) regions have little actionable information.
A singleton region containing the output prediction of h makes an error, i.e., Γ ε

contains the wrong label, if that point is misclassified by h. An empty prediction
region for x at significance level ε is equivalent to the case that x has credibility
less than ε (low credibility) in the point-wise interpretation of CP, whereas a
double region for x corresponds to having confidence smaller than 1 − ε (low
confidence) in the point-wise interpretation.

Conformal Predictions for Hybrid System State Classification 233

4.2 Acceptance Criterion

The p-values returned by the CP algorithm can be interpreted as anomaly mea-
sures. In binary classification, the two p-values of a test point x∗, p0∗ and p1∗ (see
Eq. 1), coincide with γ∗ and c∗, respectively. The rationale behind our accep-
tance criterion is that every unseen point x∗ is required to have both values
of confidence, 1 − γ, and credibility, c, sufficiently high in order to accept the
classification made by h with a particular certainty level α. The derivation of α
is shown later in this section.

Our acceptance criterion works as follows. First, a value for the significance
level ε, fixed along the entire test set, has to be chosen. As discussed in the
previous section, ε represents the global error probability that we are willing
to accept. The next step is to apply the conformal algorithm and obtain a
confidence-credibility interval, I∗, for each test point x∗ ∈ X∗. We accept the
prediction of model h for x∗ if and only if ε ∈ I∗, i.e., if γ∗ ≤ ε < c∗. Note that
the latter condition implies that we only accept singleton prediction regions, i.e.,
such that |Γ ε

∗ | = 1 (see Sect. 3.3). Otherwise, if credibility is smaller than ε or
confidence is smaller than 1 − ε, we reject the prediction of h for x∗. In other
words, these uncertainty measures indicate if a prediction is trustworthy or not.
As explained below, the certainty level α is determined by the chosen ε and the
ratio of rejected points.

We now discuss how to derive α. With the acceptance criterion introduced
above, we are sure to accept only singleton prediction regions, rejecting points
with non-informative regions (empty and double regions). Since ε gives the error
probability in relation to any test point (which might or might not be accepted),
it gives no guarantees on the error of accepted predictions alone. For this purpose,
we provide a revised error probability estimate, ε̂, for accepted predictions only,
i.e., that does not consider the rejected points. The certainty level α that we
seek to obtain is defined as 1 − ε̂.

To compute ε̂, we follow the approach of [16]. Given a significance level ε, let
P ε(e), P ε(s) and P ε(d) be respectively the fraction of empty, single and double
prediction regions observed on a test set with K examples (P ε(e) + P ε(s) +
P ε(d) = 1). Overall, the expected number of errors is E = εK. Since double
predictions are never erroneous (they always contain the true label) and empty
predictions are always erroneous (they never do), we can rewrite the expected
number of errors as:

εK = ε̂ · KPε(s) + KPε(e) ⇒ ε̂ =
ε − Pε(e)

Pε(s)
. (4)

Thus, ε̂ represents the expected error rate over the K ·Pε(s) singleton predictions.
In other words, ε̂ is the error probability on accepted predictions.

5 Experimental Evaluation

To evaluate the proposed method for NSC with CP-based anomaly detection,
an experimental evaluation was conducted on a selection of the hybrid-system

234 L. Bortolussi et al.

Fig. 2. Calibration scores α1 ≥ · · · ≥ αq for the neuron (left), pendulum (center) and
cruise (right) models for a calibration set size of q = |Zc| = 6,000. Histograms in the
second row show the distributions of the calibration scores on a log-scale.

case studies considered in NSC (see [19] for details): a model of the spiking
neuron action potential [9], the classic inverted pendulum on a cart, and a cruise
controller [9].

Experimental Settings. We consider the same settings used in NSC for training
sigmoid DNNs [19]. NSC neural networks were learned using MATLAB’s train
function, with the Levenberg-Marquardt backpropagation algorithm optimiz-
ing the mean square error loss function, and the Nguyen-Widrow initialization
method for the NN layers. The classifier is a DNN with 3 hidden layers, each
consisting of 10 neurons with the Tan-Sigmoid activation function, and an out-
put layer with 1 neuron with the Log-Sigmoid activation function. With such
DNN architecture, the only output of the underlying model is the likelihood of
class 1, which we denote with o1, that is, the likelihood that a hybrid automaton
state is positive, i.e., leads to a safety violation. The likelihood of class 0 is given
by o0 = 1 − o1.

We consider training datasets of 14,000 samples and calibration sets of q =
|Zc| = 6,000 samples. Training of the DNNs is very fast, taking 2 to 7 s. The
test set contains 10,000 points. The CP algorithm was implemented in Python.
Computation of confidence and credibility is very efficient, and takes around 30 s
for the entire test set, approximately 3 ms per point.

5.1 Calibration Scores

We conduct a detailed analysis of the distribution of calibration scores, which
depends both on the case study at hand and on the underlying model. The
DNNs trained for NSC approximate the output of reachability checking with
very high accuracy. Therefore, the scores α1, . . . , αq are close to zero for most

Conformal Predictions for Hybrid System State Classification 235

Fig. 3. Landscape of confidence (left) and credibility (right) values along the entire
state space of the two-dimensional case-studies: spiking neuron (top) and inverted
pendulum (bottom). Red dots indicate false-negatives, black dots false-positives. (Color
figure online)

of the points in Zc (see Fig. 2). Recall that the p-values of an unseen test point
x∗ count the number of calibration scores greater than that of x∗. Credibility
is the p-value associated with the class predicted by h, for which we expect
a small score and therefore a high p-value. On the contrary, γ is the p-value
associated to the other (non-predicted) class, for which we expect a larger score.
However, given the high accuracy of h, the number of large calibration scores,
i.e., scores significantly greater than zero, is very small. Therefore, the fraction
of calibration scores determining γ is not very sensitive to changes in the value
of the nonconformity score of x∗, α∗. On the contrary, credibility is extremely
sensitive to small changes in α∗. In general, the sensitivity of confidence w.r.t.
α∗ increases as the accuracy of h decreases, and vice versa for credibility.

5.2 Performance Evaluation

Figures 3 and 4 show the landscapes of confidence and credibility for the three
case studies. Notice that both measures are able to detect the input regions with
higher uncertainty, i.e., regions where misclassification occurs. However, given
the high accuracy of our DNNs, credibility results in an extremely sensitive
measure, as previously discussed. Indeed, we observe drastic drops in credibility
values even for regions that return correct predictions. In these areas the DNN
is classifying properly but with lower accuracy with respect to areas with higher

236 L. Bortolussi et al.

Fig. 4. The cruise controller model has a four-dimensional input space. Four points
were misclassified by the DNN, and they all have coordinate x4 = 5.0. The figure
shows two dimensional sections ((x1, x2)-plane) at the x3 coordinates of the four mis-
classified points and with x4 = 5.0. The confidence landscapes are on top; the credibility
landscapes are below them. Red dots indicate false-negatives, black dots false-positives.
(Color figure online)

credibility. Confidence values, on the other hand, span in an extremely narrow
interval close to 100%.

5.3 Benefit of Conformal Predictions

The key advantage of our approach is that predictions are rejected on rigorous
statistical grounds. We experimentally compare it with a naive approach based
on the DNN output.

We define the naive uncertainty metric as the difference between the likeli-
hoods of the two classes, that is, |o0 − o1|. Intuitively, small differences should
indicate uncertain predictions. Although this simple approach does not provide

Conformal Predictions for Hybrid System State Classification 237

Fig. 5. Experimental superiority of conformal predictions over naive discrimination
based on the DNN class likelihood. Top: Confidence-credibility pairs for the test
datasets. The horizontal dashed line indicates the empirical and qualitative choice
of ε. Bottom: Values of the naive uncertainty metric for the test datasets. In both
cases (top and bottom) the true test labels were used to check the performances of
the uncertainty metrics a posteriori. Green dots indicate properly classified points, red
dots misclassified points. (Color figure online)

any statistical guarantee, we may still look for a rejection threshold that allows
us to reject the misclassified examples and keep the overall rejection rate low.
However, Fig. 5 (bottom) shows that this naive metric is not sufficiently discrim-
inative, especially for the spiking neuron model. This supports our claim that
a more principled method to measure uncertainty and define rejection criteria
is needed. On the contrary, Fig. 5 (top) shows that the values of confidence-
credibility pairs for misclassified points are easily separated from the major-
ity of properly classified points. Furthermore, the distribution of points in the
confidence-credibility plane helps us choose the proper value for ε, which leads
to a statistically significant measure of uncertainty.

238 L. Bortolussi et al.

Table 1. For each case study, a significance level ε was chosen qualitatively from Fig. 5
(top), ignoring the colors, as we should not know the true labels of test points. We
computed the fractions of empty, single and double prediction regions occurring along
the entire test set. The sum Pε(e)+Pε(d) gives the ratio of points rejected. α = 1− ε̂ is
the statistical certainty level for accepted points/predictions. The last column counts
how many errors, among all the errors made by the classifier in the test set, were not
rejected by our criterion.

Model ε Pε(e) + Pε(d) α # accepted errors

Neuron 0.000175 4.78% 0.9998 0/31

Pendulum 0.000167 0.84% 0.9983 0/7

Cruise 0.000170 0.55% 0.9998 1/6

Table 1 summarizes the experimental performance of our rejection criterion
on the three hybrid automata models. Setting an adequate threshold is very
important. We choose the value of 1− ε that better distinguishes between points
with low confidence and points with high confidence, shown with horizontal lines
in Fig. 5 (top). We successfully reject almost all prediction errors, with an overall
rejection rate between 0.5% and 5%. The certainty value α is always greater
than 99.83%, which demonstrates that our approach only accepts predictions
that have very small probability of being incorrect.

6 Related Work

Even though research on reachability checking of hybrid systems [1,13] has
produced effective verification algorithms and tools [7,10,11], comparably lit-
tle has been done to make these algorithms efficient for online analysis. Existing
approaches are limited to restricted classes of models [8], or require handcrafted
optimization of the HA’s derivatives [2], or are efficient only for low-dimensional
systems and simple dynamics [21]. NSC [19] (introduced in Sect. 2) overcomes
these limitations because, by employing machine learning models, it is fully auto-
mated and its performance is not affected by the model size or complexity.

Applications of machine learning in verification include parameter synthe-
sis of stochastic systems [5], techniques for inferring temporal logic specifica-
tions from examples [3], synthesis of invariants for program verification [12], and
reachability checking of Markov decision processes [6].

A related approach to NSC is smoothed model checking [4], where Gaussian
processes [20] are used to approximate the satisfaction function of stochastic
models, i.e., mapping model parameters into the satisfaction probability of some
specification. Smoothed model checking leverages Bayesian statistics to quantify
prediction uncertainty, but faces scalability issues as the dimension of the system
increases. On the contrary, our method for quantifying the reliability of NSC

Conformal Predictions for Hybrid System State Classification 239

predictions is very efficient, because its performance is nearly equivalent to that
of the underlying machine learning model3.

In Bayesian approaches to uncertainty/confidence estimation, one has to
assume a prior distribution, which is often chosen arbitrarily. However, in order
to guarantee accurate confidence values, the correct priors must be known. In
fact, if the prior is incorrect, the confidence values have no theoretical base.
The CP framework instead provides confidence information based only on the
standard i.i.d. or exchangeability assumption. Avoiding Bayesian assumptions
makes CP conclusions more robust to different underlying data distributions. In
[17] the authors show empirically that the performance of CP is close to Bayes
when the prior is known to be correct. Unlike Bayes, the CP method still gives
accurate confidence values even when different data distributions are considered.

7 Conclusion

We applied the theory of conformal predictions to endow the neural state clas-
sification approach with a criterion to reject unreliable predictions, predictions
that can lead safety-critical state classification errors. Our criterion leverages two
statistically sound measures of uncertainty, i.e., confidence and credibility. By
accepting only predictions that satisfy specific confidence and credibility thresh-
olds, our criterion is conservative and allows making safe choices with respect to
any state classifier, independently of the classifier’s accuracy. In the experiments,
our criterion successfully rejected almost all classification errors, and doing so
very efficiently, with an average runtime of 3 ms per sample.

In future work, we will investigate automated methods to derive the rejec-
tion thresholds for confidence and credibility, and how to use this approach in
an active learning framework to improve accuracy, reduce false negatives, and
reduce the rejection rate.

References

1. Alur, R.: Formal verification of hybrid systems. In: 2011 Proceedings of the Ninth
ACM International Conference on Embedded Software (EMSOFT), pp. 273–278.
IEEE (2011)

2. Bak, S., Johnson, T.T., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. In: 2014 IEEE Real-Time Systems Symposium (RTSS), pp. 138–
148. IEEE (2014)

3. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of
temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS,
vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10512-3 3

3 Our approach reduces to computing two p-values. Each p-value is derived by com-
puting a nonconformity score, which requires one execution of the underlying model,
and one search over the array of calibration scores.

https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1007/978-3-319-10512-3_3

240 L. Bortolussi et al.

4. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

5. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear tem-
poral properties of stochastic models. In: TACAS, pp. 396–413 (2018)

6. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

8. Chen, X., Sankaranarayanan, S.: Model predictive real-time monitoring of lin-
ear systems. In: 2017 IEEE Real-Time Systems Symposium (RTSS), pp. 297–306.
IEEE (2017)

9. Chen, X., Schupp, S., Makhlouf, I.B., Ábrahám, E., Frehse, G., Kowalewski, S.:
A benchmark suite for hybrid systems reachability analysis. In: Havelund, K.,
Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 408–414. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 29

10. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

11. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

12. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using deci-
sion trees and implication counterexamples. ACM SIGPLAN Not. 51(1), 499–512
(2016)

13. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

14. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
RV 2010. LNCS, vol. 6418, pp. 122–135. Springer (2010)

15. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer, New York
(2006). https://doi.org/10.1007/0-387-27605-X

16. Linusson, H., Johansson, U., Boström, H., Löfström, T.: Reliable confidence predic-
tions using conformal prediction. In: Bailey, J., Khan, L., Washio, T., Dobbie, G.,
Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9651, pp. 77–88.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31753-3 7

17. Melluish, T., Saunders, C., Nouretdinov, I., Vovk, V.: The typicalness framework:
a comparison with the Bayesian approach. Royal Holloway, University of London
(2001)

18. Papadopoulos, H.: Inductive conformal prediction: theory and application to neural
networks. In: Tools in Artificial Intelligence. InTech (2008)

19. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural
state classification for hybrid systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 422–440. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 25

20. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning, vol.
1. MIT Press, Cambridge (2006)

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-17524-9_29
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/0-387-27605-X
https://doi.org/10.1007/978-3-319-31753-3_7
https://doi.org/10.1007/978-3-030-01090-4_25
https://doi.org/10.1007/978-3-030-01090-4_25

Conformal Predictions for Hybrid System State Classification 241

21. Sauter, G., Dierks, H., Fränzle, M., Hansen, M.R.: Lightweight hybrid model check-
ing facilitating online prediction of temporal properties. In: Proceedings of the 21st
Nordic Workshop on Programming Theory, pp. 20–22 (2009)

22. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic learning in a random world
(2005)

23. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–
186 (1945)

Control Synthesis Through Deep Learning

Doron Peled1(B), Simon Iosti2, and Saddek Bensalem2

1 Department of Computer Science, Bar Ilan University, 52900 Ramat Gan, Israel
doron.peled@gmail.com

2 University Grenoble Alpes VERIMAG, 38410 Saint Martin d’Hères, France

Abstract. Deep learning has gained unprecedented rapid popularity in
computer science in recent years. It is used in tasks that were previously
considered highly challenging for computers, such as speech and image
recognition and natural language processing. While deep learning is often
associated with complicated tasks, we look at the much more mundane
task of refining a system behavior through control that is constructed
with the use of learning techniques. We compare the use of deep learning
for this task with other techniques such as automata learning and genetic
programming.

1 Introduction

The use of machine learning (ML), and in particular, deep learning (DL), facil-
itated a huge leap in the capabilities of computers. DL is often used for speech
recognition, natural language processing, image recognition, playing games like
Chess [19] and Go [18] and more. We are interested in obtaining intuition about
the suitability and effectiveness of different machine learning approaches to
improve systems performance.

We look at reactive systems that interact with black box environments, both
representable as finite state machines. In order to enforce some constraint that
improves the combined system/environment performance, we want to construct a
controller that limits the allowed behaviors of the system. We consider different
learning mechanisms for the task of constructing such a controller: automata
learning (AL), deep learning (DL) and genetic programming (GP).

The problem studied here is related to reinforcement learning [14], where
a software agent needs to operate efficiently with respect to its environment.
In this case, the agent, which is often modeled as a probabilistic structure (a
Markov Decision Process) needs to be synthesized. Because the executions of
the system are not bounded, reinforcement learning is often aiming to minimize
the sum of rewards (discounted according to their distance from the start of the
execution) obtained during the execution.

D. Peled–The research performed by this author was partially funded by Israeli Science
Foundation grant 1464/18: “Efficient Runtime Verification for Systems with Lots of
Data and its Applications”.

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 242–255, 2019.
https://doi.org/10.1007/978-3-030-31514-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_14

Control Synthesis Through Deep Learning 243

We compare three different types of learning for generating controllers.
Automata learning [1] uses experiments to learn the structure of a black box
automaton, in our case, the environment. Using AL allows separating the learn-
ing of a model for the environment from constructing a controller. Based on
the provided model of the system and the learned model of the environment, a
goal-dependent algorithm can be used to check the possibility of controlling the
system to achieve its goal, and if so, to construct the controller. Exact automata
learning can be achieved under some strong assumptions, e.g., a bound on the
number of states that are required to model it. It incurs a very high complex-
ity (exponential in the size of the environment). Alternatively, one can perform
the learning in a stepwise manner, in the style of black box checking [16]: at
some point, a learned model of the environment is assumed for constructing the
controller. The executions of the controlled system with the environment are
monitored for checking whether they satisfy the control goal; violating execu-
tions may be used in further learning a more accurate model.

Deep learning [6] can be used to train a neural network to control the system
based on experiments. The controller is represented using a (recursive) neural
network. It is constructed directly, without learning the environment first: grad-
ually refining the controller using experiments performed on the combination of
the controlled system and the environment. Deep learning uses a loss function
that drives the gradient descent-based training process. Because the environment
is not explicitly learned, the constructed controller is not guaranteed to achieve
the control goal in every possible situation. On the other hand, the learning pro-
cess can be resumed when the control goal is (observed to be) violated or due
to a change in the behavior of the environment.

Genetic programming [13] uses evolutionary process that involves generating,
combining and mutating candidate solutions. A fitness value, typically returning
a value between 0 and 100, estimates the quality of the solution. For synthesiz-
ing a controller, the fitness can be calculated based on multiple experiments
performed on the controlled system that interacts with the environment. Here
too, we do not learn first a model for the environment, and there is no guarantee
that the control goal is uniformly achieved (hence re-learning may be required).

The structures of the loss functions used in DL, and the fitness function used
in GP, are dramatically different. But in both cases, there is no direct corre-
spondence between the imposed control goal and the used functions. They are
selected based on experience and trial-and-error experiments. For the control
problem described here, we will present a set of small examples consisting of
system/environment pairs. Each such pair demonstrates some aspect or diffi-
culty that is expected in the synthesis of a controller. This allows us to test the
suitability of the selected loss or fitness function for the learning task.

The qualitative comparison presented here is based on our experience with
automata learning of finite systems and applying model checking to it [7,16] and
with genetic programming for program synthesis [3,12]. In addition, we have
been conducting experiments consisting of using DL for training a controller for
the system/environment interaction using the DyNet system [15]. We are still

244 D. Peled et al.

short of presenting conclusive experimental results, but instead concentrate on
comparing the merits and pitfalls of different learning techniques for achieving
control in a qualitative way.

2 Preliminaries

We use a simple model that still demonstrates some strengths and weaknesses
of the different learning techniques. A finite state system dynamically offers
one of its currently available actions to the environment; if the environment
can currently perform this action, the system and the environment progress
synchronously making a successful interaction. Otherwise, the interaction fails
and only the environment progresses. The system is not a-priori aware of the
actions that are allowed at a particular moment by the environment, but is
informed of the success or failure status of an attempted interaction.

System and Environment

We study systems that can be modeled as finite state automata:
Let A = (G, ι, T, δ) be an automaton, where

– G is a finite set of states with ι ∈ G its initial state.
– T is a finite set of actions (often called the alphabet).
– δ : (G×T) → T ∪{⊥} is a transition function, where ⊥ stands for undefined.

We denote en(g) = {t|t ∈ T ∧ δ(g, t) �= ⊥} i.e., en(g) is the set of actions
enabled at the state g.

For simplicity of the discussion, we assume that en(g) �= ∅.
We consider the asymmetric combination of automata, As|Ae, where As =

(Gs, ιs, T, δs) is the system automaton, and Ae = (Ge, ιe, T, δe) is the environ-
ment automaton, with a joint set of actions T . These automata operate syn-
chronously starting with their initial state. The system automaton offers an
action that is enabled from its current state. If this action is enabled also from
the current state of the environment automaton, then the system and the envi-
ronment synchronize and change their respective states, making a successful
interaction. If this action is not enabled by the environment, the system remains
at its current state, and the environment chooses some enabled action and moves
according to it. This is a failed interaction. After a failed attempt, the system
may offer the same or a different action. Note the asymmetry here: the system
offers a single enabled action, whereas the environment concurs with this choice,
if this is one of its currently enabled options (but the system may not be aware
of what is currently enabled by the environment). An execution is an alternating
sequence

〈gs1, ge1〉〈ts1, te1〉〈gs2, ge2〉〈ts2, te2〉 . . .

satisfying the following conditions:

– gs1 = ιs and ge1 = ιe [Initialization.]

Control Synthesis Through Deep Learning 245

– tsi ∈ en(gsi) and tei ∈ en(gei) [The selected actions are enabled.]
– gei+1 = δe(gei , t

e
i) [The environment follows its transition function.]

– tsi ∈ en(gei) iff tsi = tei [If the system selects an action enabled by the envi-
ronment, synchronize.]

– If tsi = tei [When synchronizing,]
• then gsi+1 = δs(gsi , t

s
i) [the system follows its transition function.]

• else gsi+1 = gsi [Otherwise, the environment progresses, the system does
not move.]

Supervisory Control

Supervisory control theory studies the superimposition of a system with a con-
troller that restricts its behavior so that the combination guarantees additional
properties [20]. A system, represented by a finite automaton A, guarantees that
all its behaviors L(A) satisfy a specification property ϕ. When both L(A) and
ϕ are represented as languages over the same alphabet as A, the requirement is
that L(A) ⊆ ϕ.

A controller C, a finite automaton itself, is superimposed with A: it reads
the state of A and restricts the possible transitions that A can take from the
current state, see Fig. 1. The combined system C/A satisfies

L(C/A) ⊆ L(A). (1)

Consequently C/A satisfies the property ϕ. Moreover, the controller is designed
such that the composition is constructed in a way that would satisfy an additional
goal ψ, i.e.,

L(C/A) ⊆ ψ. (2)

Formally, a controller is an automaton C = (S, i,G, ρ,D, Γ), where

– S is a finite set of states, with i ∈ S the initial state.
– G is the input to this automaton. Note that G coincides with the states of

the controlled automaton A.
– ρ : S × G → S is the partial transition function.
– D is a set of output values.
– Γ : S → D is the output function.

The output values are used to restrict the behavior of a system automaton
A at the current state. There are several possibilities, including the following:

Probabilistic. D is a set of probability distributions over T , where for each
d ∈ D, d : T → [0, 1], where Σt∈T d(t) = 1. In this case, d represents the proba-
bility for choosing the currently enabled actions of A. The composition C/A is
a Markov Chain, and the enabled actions en(g) in the current state g of A are
selected with probabilities according to Γ (g), where Γ (g)(t) = 0 for t �∈ en(g).

Deterministic. D ⊆ T . Each element of D is an action. In this case, the control
allows exactly one action to be taken.

246 D. Peled et al.

A

C
Reads
state

Controls choice
between actions

Fig. 1. A controller C superimposed with a system A

Multiple Choice. D ⊆ 2T . The controller allows multiple choices from the
current state (this can be used to minimize the size of the controller, in particular
when each state of the system only enables one of these possibilities).

We are interested in constructing a controller for the system, imposing some
further goal (property) on the interaction of the controlled system and the envi-
ronment. The definition of C/A guarantees that

L((C/As)|Ae) ⊆ L(As|Ae) (3)

corresponding to Formula (1). Thus, the interaction of the controlled system and
the environment preserves the specification ϕ of the uncontrolled interaction. On
top of that, we want to achieve an additional goal, e.g.,

L((C/As)|Ae) ⊆ ψ (4)

corresponding to Formula (2).

Control Objectives. There are different types of goals that can be desired from
the interaction between the controlled system and the environment. The goal can
be imposed on all the possible behaviors, e.g., that there are no more than three
failed interactions in any execution, or based on a probabilistic expected value
of failures. It can be given using different formalisms, e.g., linear temporal logic,
based on the states or the actions of the system. Alternatively, it can be given as
a sum, or discounted sum of penalties (e.g., due to failed interactions) or rewards
on various events during the execution.

3 Control and Machine Learning

We are interested here in providing control to a system that interacts with an
unknown environment. Pnueli and Rosner [17] studied a related problem, where
all the executions of a system need to guarantee some temporal specification
goal, regardless of the behavior of the environment. Their model is somewhat
different from ours (the system and the environment progress in turns). They
provided a synthesis algorithm that is based on converting the specification into
an automaton over infinite words, determinizing it, and finding a game strategy

Control Synthesis Through Deep Learning 247

(when one exists) that enforces the given specification. A deterministic strategy
may not be sufficient in case the goal is defined in terms of a probabilistic expected
value; consider for example the (somewhat non-intuitive) goal that the expected
number of failures is greater than 1 and smaller than 2.

We will restrict ourselves to goals related to the number of failed interactions
allowed. The goals will be described as restrictions on the number of failures over
all the executions rather than dealing with the probabilistic expected values. To
avoid issues related to infinite number of failures (e.g., the use of restricted
sums of rewards/penalties related to failures), we assume that the goal provides
a given finite limit to the number of failures allowed. Moreover, we can use
designated states where the number of permitted failures is counted between
their subsequent occurrences (i.e., the failure counter is reset each time one of
these states occurs).

Control and Automata Learning of the Environment

Automata learning methods, e.g., based on Angluin’s algorithm [1,10], or a
probabilistic extension of it [5], can be used to learn the structure of a finite
state environment through experiments that interact with it. The conditions for
achieving exact learning are quite demanding, e.g., knowing an upper bound on
the size of the representation of the environment, and being able to reset the
environment to its initial state for multiple experiments. The complexity of the
learning process is exponential in the size of the learned automaton.

After learning a model for the environment automaton Ae, we need to decide
whether a controller C can be constructed such that (C/As)|Ae satisfies the
additional goal that we want to impose. When possible, an algorithm, which
is goal dependent [4], is used to construct a controller based on As and Ae.
Changes to the structure of the environment may require the re-learning of Ae.
However, the re-learning process does not necessarily have to start from scratch,
and some infrastructure that was prepared for the previous model (in particular,
the distinguishing and the accessing sequences used in the algorithm [1]) can be
used to speed up the new automata learning phase [7].

Consider now several cases of systems and learned environment automaton.
In Example permitted in Fig. 2, the system allows both actions a and b. If it
decides to offer the action a (b, respectively), whereas the environment offers b
(a, respectively), it waits for the next step of the environment, while the envi-
ronment progresses. A controller, which would guarantee that the system never
makes an attempt to interact that will fail, has the same structure as the envi-
ronment, as in Fig. 2. I.e., it has three states, restricting the system to the single
sequence (abb)∗. The set of actions denoted adjacent to states in the figure rep-
resent the ones allowed from that state.

248 D. Peled et al.

g1
a b

bb

a s1

s3

s2e1 e2

e3

{b}{a}

{b}

g1

g1 g1

Fig. 2. permitted: System (left), Environment (middle) and Controller (right)

In Example schedule in Fig. 3, the controller must make sure that the system
will never choose an a. Otherwise, after interacting on a, the environment will
progress to e3, and no successful interaction with b will be available further. A
controller with one state that always allows {b, c}, i.e., never allows a, is sufficient
to guarantee that no failure ever occurs.

g2 g3

g1 e1

e2 e3

e4

ab b

c

b c c a

a
System

Environment

Fig. 3. schedule: The control needs to avoid the initial choice of interaction a

In Example cases in Fig. 4, we want to restrict the number of failures to at
most two. The system is obliged to try an a from its initial state. The environ-
ment allows initially only b or c. Hence, the interaction will fail, the system will
stay at the same state and the environment will progress to e2 or to e3, according
to its choice. The choice is not visible to the system (the system is only aware
that the interaction failed). After the failed first a, a is again the only action
that is offered by the system. The controller knows whether a failed again. If
this is not the case, the environment is in its left branch, and it will further offer
(ba)∗. Otherwise, it knows that the environment is in its right branch and will
offer ac∗.

Control Synthesis Through Deep Learning 249

e1

e2 e3

b c

ab

e5e4

c a

s1

s2

s3 s4

s5

g1

g2 g1

g1g2

g1

{a}

{a}

{a}

{c}

{b}

g1

g2

a cb

Fig. 4. cases: Needs to check if a succeeded

In Example strategy in Fig. 5, the system offers initially only the interaction
a, which necessarily fails, and the environment will make a choice that is invisible
to the system. After that, the system and the environment will synchronize on
an a. At this point, if the system chooses, by chance, an action that immediately
succeeds (b or c, respectively), it will necessarily lead to ending up in self loops
that are incompatible (at g3 and s7, or at g4 and s6, respectively), and no
further interaction will be available. On the other hand, if the system chooses
an interaction that fails, it must subsequently repeat the same choice of action,
which will lead to compatible loops (g3 and s6, or g4 and s7), and there will be
no further failures; flipping to the other choice after a failure will lead again to
the incompatible loops.

Unfortunately, no controller can guarantee to restrict the number of fail-
ures to two (or any finite number) in every execution. However, a weaker goal,
restricting the number of failures with some probability, which depends on the
probability p of the environment to choose b over c from its initial state, can be
achieved. If we can learn the probability p, we could guarantee restricting the
number of failures to two in at least max(p, 1 − p) ≥ 0.5 of the cases.

4 Control and Deep Learning

When the requirements for automata learning are not met, one can try to apply
reward-driven learning techniques such as deep learning or genetic programming.
These methods can be used to train a controller to improve (increase the reward
involved in) the interactions between the system and the environment based on
the feedback of experiments.

250 D. Peled et al.

g1 e1

b

g2

a c

b c

b c

g3 g4

b c

bc

e2 e3

a a

e4 e5

e6 e7

Fig. 5. strategy: Fail next, or succeed and fail forever

In our examples, the goal is to limit the failed interactions that occur between
designated system states. For a gentle introduction to deep learning (with an
emphasis on natural language processing applications), see e.g., [6].

Unlike automata learning, the learning is not performed by obtaining first
a model for the environment (an automaton, a Markov Chain or a Markov
Decision Process). Instead, it directly trains a neural network (using standard
deep learning algorithms and packages) to act as the controller C.

We use a neural network for representing a controller that changes its state
based on its observed system state. The output of the controller is based both
on the new input, and on a summary of the rest of the input so far. Recursive
Neural Networks (RNN) are a more sensible choice of network structure than
feed-forward neural networks, since they allow efficient treatments of sequential
information. An RNN combines the previous outputs with the new inputs in
order to provide the next output. Then, C is based on an RNN representation.
The training is done based on a loss function that reflects a distance of the
tested behavior from the goal. This can be, in our examples, the number of
failed interactions, or a discounted sum of the interactions.

One challenge, in using deep learning for the task of constructing a controller,
is that the controller needs, in some way, to encode the structure of an automa-
ton. In principle, the controller needs to provide improved behavior that is not
limited to the finite lengths of the sequences used for training. Consider Exam-
ple permitted in Fig. 2. The learned RNN needs to represent a simple repeti-
tive behavior. The learned controller will still behave in a cyclic way, even for

Control Synthesis Through Deep Learning 251

executions that are longer than the training examples. In Example scheduler
in Fig. 3, the learned RNN needs simply to constantly block the action a.

The Example cases in Fig. 4 is more complicated and requires learning an
RNN that represents the behavior of an automaton with two different loops.

A main obstacle in training the RNNs in our setup is that the correspondence
between the property that they need to enforce, and the loss function that is used
for the training, is far from being clear. Experience with training neural networks
is of course of great importance here. However, finding a direct relationship
between the control goals and the loss functions seems rather implausible. We
use a set of pre-constructed system/environment pairs. In our experimentation,
as part of the process for modifying and refining the used loss function, we try to
train RNNs to achieve the desired goals for these examples before dealing with
more general systems and environments. Indeed, the examples shown in this
section are part of a larger set of examples that we use for experiments. We are
currently conducting further experiments on different examples with DyNet [15].

5 Control and Genetic Programming

During the 1970s, Holland [9] established the field known as Genetic Algorithms
(GA). Individual candidate solutions are represented as fixed length strings of
bits, corresponding to chromosomes in biological systems. Candidates are evalu-
ated using a fitness function; fitness approximates the distance of the candidate
from a desired solution. Genetic algorithms evolve a set of candidates into a
successor set. Each such set forms a generation, and there is no backtracking.
Candidates are usually represented as fixed length strings. The progress from
one generation to the next one is done according to one of the following three
cases:

Reproduction. Part of the candidates are selected to propagate from one gen-
eration to the subsequent one. The reproduction is done at random, with proba-
bility relative to the relation between the fitness of the individual candidate and
the average of fitness values in the current generation.

Crossover. Some pairs of the candidates, selected at random for reproduction,
are combined using the crossover operation. This operation takes bits from two
parent solutions and combines them into a new solution, which potentially inher-
its useful attributes from their parents.

Mutation. This operation randomly alters the content of a small number of
bits from candidates, selected for reproduction (this can also be done after per-
forming crossover). One can decide on mutating each bit separately with some
probability.

The different candidates in a single generation have a combined effect on
the search; progress tends to promote, improve and combine candidates that are
better than others in the same generation. The process of selecting candidates
from the previous generation and deciding whether to apply crossover or muta-
tion continues until we complete a new generation. All generations are of some

252 D. Peled et al.

predefined fixed size N . This can be, typically, a number between 50 and 500.
Genetic algorithms perform the following steps:

1. Randomly generate N initial candidates.
2. Evaluate the fitness of the candidates.
3. If a satisfactory solution is found, or the number of generations created

exceeds a predefined limit (say hundreds or a few thousands), terminate.
4. Select candidates for reproduction using randomization, proportional to the

fitness values and apply crossover or mutation on some of them, again using
randomization, until N candidates are obtained.

5. Go to step 2.

If the algorithm does not terminate with a satisfying solution after a predefined
limit on the number of generations, we can restart it with a new random seed,
or change the way in which we calculate the fitness function.

Genetic programming, suggested by Koza [13], is a direct successor of genetic
algorithms. Each individual organism represents a computer program. Programs
are represented by variable length structures, such as syntax trees or a sequences
of instructions. Each node is classified as code, Boolean, condition or expression.
Leaf nodes are variables or constants, and other nodes have successors according
to their type. The genetic operations need to respect typing restrictions, e.g.,
integer expressions cannot be exchanged with Boolean expressions.

Crossover is performed on a pair of syntax trees by selecting a subtree rooted
with the same node type in each tree, and then swapping between them. This
results in two new programs, each having parts from both of its parents. There
are several kinds of mutation transformations on syntax trees. First, a node
that roots a subtree is selected at random. In replacement mutation, the selected
subtree is discarded and replaced with a randomly generated subtree of the same
type. Similarly insertion, reduction and deletion mutations can be applied.

Genetic programming can be applied for generating a controller C for the
system As. As in the case of DL, we are constructing C directly, rather than first
learning Ae and then designing an appropriate control, as in the case of automata
learning. Each generation of the genetic process consists of a population of can-
didate controllers. The first generation is constructed based on randomness. The
progress from generation to generation is made through reproduction and muta-
tions, guided by the fitness. The fitness reflects, in our examples, the number of
failed synchronizations.

The fitness value for a candidate controller is determined by testing multi-
ple randomly generated sequences of the combination (C/As)|Ae of the con-
trolled system and the environment. There are different ways of combin-
ing the results of these tests into a single fitness value. A somewhat naive,
but simple to implement solution, is to average a fitness calculated sepa-
rately for each such sequence. There is a clear trade-off between the num-
ber of tests made and the accuracy of the fitness. One can use statistical
model checking [21] to calculate probabilities of different outcomes of the con-
trolled system. For example, one can estimate the probability of having no
failures, one to three failures, and more than three failures, with a given

Control Synthesis Through Deep Learning 253

statistical error. Then these results are combined to form a single fitness value.
A common problem in statistical model checking is called rare events [11], where
some set of behaviors can appear with a very small probability. In the case of
learning a controller, this means that we may not obtain a perfect controller
that guarantees to enforce the required goal on all of the executions. However,
we can monitor the executions, and if a violation occurs, can resume the learn-
ing process. The violating executions can be accumulated and used in repeated
learning phases to test the candidate controllers.

For the control automata, we define the following types of mutations:

Change a Transition. Choose randomly a state to mutate and redirect one of
its outgoing edges.

Change Probabilities. In case of a controller that provides probabilistic rec-
ommendation for the next action, choose a state and assign new distribution on
choosing the actions from it.

Add a State. Generate a new state and connect it to the other states in the
automaton graph.

Delete a State. Choose randomly a state, delete it from the automaton and
assign a random target state for each edge that previously led to it.

Sub-automaton. Create new sub-automaton. Choose one of the states and
delete all states with index larger than it. Grow a new automaton with some
number of states and merge it to the remaining states of the original automaton.

As in the case of using deep learning, because we do not know the struc-
ture of the system, there is no strong indication on where to stop the genetic
process. Example strategy in Fig. 5 cannot have a controller that guarantees
that the number of successful interactions will be no more than 2. Thus, the
genetic process should stop when the improvement between the different genera-
tions diminishes. One can repeat the genetic process several times with different
random seeds to try to alleviate local maxima of the fitness function.

6 Discussion

We discussed three learning approaches that can be used to construct a con-
troller that will restrict interaction offered by a finite state system to its environ-
ment. Automata learning provides the tightest control results. When the struc-
ture of the environment is learned, one can apply algorithms to check whether
the control goal is achievable, and in that case construct an optimal controller.
However, the conditions to apply automata learning are quite demanding and
the complexity is high.

Deep learning can be used under considerably weaker conditions; e.g., we do
not even need to know a bound on the number of states required to represent
the environment. On the other hand, we do not expect to construct an optimal
controller. In fact, we may not even know whether we have finished the learning

254 D. Peled et al.

process or came close to finishing it. The training is based on test sequences.
Training can resume at a later point if the possibility of better performance or
a small change in the environment is suspected. The use of genetic program-
ming also allows constructing a controller directly. Here again, we may not know
whether we reached a near optimal controller or a local maxima in our search.

Compared to the impressive use cases of deep learning, such as image recog-
nition, translating natural languages, autonomous driving or playing games, the
learning-based control synthesis problem that we considered here seems much
simpler. However, it allows studying the principles and effect of different learn-
ing techniques. Our long term goal is to use deep learning for constructing dis-
tributed schedulers for systems with concurrent processes that will lower the
number of failed interactions between the participating processes. In this case,
the environment of each concurrent thread is the collection of all other threads,
interacting with it. This can then be compared with an alternative approach [2]
for constructing schedulers that is based on distributed knowledge [8].

Acknowledgement. The authors would like to thank Yoav Goldberg, for useful dis-
cussions on deep learning and comments on an early draft of the paper.

References

1. Angluin, D.: Learning regular sets from queries and counter examples. Inf. Comput.
75(2), 87–106 (1987)

2. Basu, A., Bensalem, S., Peled, D.A., Sifakis, J.: Priority scheduling of distributed
systems based on model checking. Formal Meth. Syst. Des. 39(3), 229–245 (2011)

3. Bu, L., Peled, D., Shen, D., Zhuang, Y.: Genetic synthesis of concurrent code using
model checking and statistical model checking. In: Gallardo, M.M., Merino, P.
(eds.) SPIN 2018. LNCS, vol. 10869, pp. 275–291. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94111-0 16

4. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn.
Springer, Berlin (2008). https://doi.org/10.1007/978-0-387-68612-7

5. Dean, T.L., et al.: Inferring finite automata with stochastic output functions and
an application to map learning. In: Proceedings of the 10th National Conference
on Artificial Intelligence, San Jose, CA, USA, 12–16 July 1992, pp. 208–214 (1992)

6. Goldberg, Y.: Synthesis lectures on human language technologies. Neural Network
Methods for Natural Language Processing. Morgan & Claypool Publishers, San
Rafael (2017)

7. Groce, A., Peled, D.A., Yannakakis, M.: Adaptive model checking. Logic J. IGPL
14(5), 729–744 (2006)

8. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. In: Proceedings of the Third Annual ACM Symposium on Principles
of Distributed Computing, Vancouver, B.C., Canada, 27–29 August 1984, pp. 50–
61 (1984)

9. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

https://doi.org/10.1007/978-3-319-94111-0_16
https://doi.org/10.1007/978-3-319-94111-0_16
https://doi.org/10.1007/978-0-387-68612-7

Control Synthesis Through Deep Learning 255

10. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

11. Jegourel, C., Legay, A., Sedwards, S.: An effective heuristic for adaptive importance
splitting in statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014. LNCS, vol. 8803, pp. 143–159. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45231-8 11

12. Katz, G., Peled, D.: Synthesizing, correcting and improving code, using model
checking-based genetic programming. STTT 19(4), 449–464 (2017)

13. Koza, J.R.: Complex adaptive systems. Genetic programming - on the Program-
ming of Computers by Means of Natural Selection. MIT Press, Cambridge (1993)

14. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

15. Neubig, G., et al.: Dynet: The dynamic neural network toolkit. CoRR (2017).
arXiv:1701.03980

16. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Automata, Lang.
Comb. 7(2), 225–246 (2002)

17. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, 11–13 January 1989, pp. 179–190 (1989)

18. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

19. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. CoRR (2017). arXiv:1712.01815

20. Wonham, W.M., Ramadge, P.J.: Modular supervisory control of discrete-event
systems. MCSS 1(1), 13–30 (1988)

21. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-662-45231-8_11
https://doi.org/10.1007/978-3-662-45231-8_11
http://arxiv.org/abs/1701.03980
http://arxiv.org/abs/1712.01815
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

Runtime Verification

The Cost of Monitoring Alone

Luca Aceto1,2 , Antonis Achilleos2(B) , Adrian Francalanza3 ,
Anna Ingólfsdóttir2 , and Karoliina Lehtinen4

1 Gran Sasso Science Institute, L’Aquila, Italy
luca.aceto@gssi.it

2 Reykjavik University, Reykjavík, Iceland
{luca,antonios,annai}@ru.is

3 University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

4 University of Liverpool, Liverpool, UK
karoliina.lehtinen@liverpool.ac.uk

Abstract. We compare the succinctness of two monitoring systems
for properties of infinite traces, namely parallel and regular monitors.
Although a parallel monitor can be turned into an equivalent regular
monitor, the cost of this transformation is a double-exponential blowup
in the syntactic size of the monitors, and a triple-exponential blowup
when the goal is a deterministic monitor. We show that these bounds
are tight and that they also hold for translations between corresponding
fragments of Hennessy-Milner logic with recursion over infinite traces.

Keywords: Monitors · Runtime Verification ·
Hennessy Milner logic with recursion · State complexity ·
Determinization · Logical fragments

1 Introduction

Runtime Verification [8,13] is a lightweight verification technique where a com-
putational entity that we call a monitor is used to observe a system run in order
to verify a given property. In this paper we formalize properties in Hennessy-
Milner logic with recursion (recHML) [16] due to its ability to embed a variety
of widely used logics such as LTL and CTL, thus guaranteeing a good level of
generality for our monitorability and monitor synthesis results. Furthermore,
as recHML has both branching- and linear-time semantics, we can use it to
express (and verify) a property either of a system behaviour as a whole [1,14],
or of the current system run, encoded as a trace of events [4]—see also, for
example, [9,11,17] for earlier work on the monitoring of trace properties, mainly
expressed in LTL.

This research was partially supported by the projects “TheoFoMon: Theoretical Foun-
dations for Monitorability” (grant number: 163406-051) and “Epistemic Logic for Dis-
tributed Runtime Monitoring” (grant number: 184940-051) of the Icelandic Research
Fund, by the BMBF project “Aramis II” (project number: 01IS160253) and the EPSRC
project “Solving parity games in theory and practice” (project number: EP/P020909/1).

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 259–275, 2019.
https://doi.org/10.1007/978-3-030-31514-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_15&domain=pdf
http://orcid.org/0000-0002-2197-3018
http://orcid.org/0000-0002-1314-333X
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0001-8362-3075
http://orcid.org/0000-0003-1171-8790
https://doi.org/10.1007/978-3-030-31514-6_15

260 L. Aceto et al.

To address the case of verifying trace properties, we introduced in [4] a class
of monitors that consist of multiple parallel components that analyze the same
system trace. These were called parallel monitors in [4] and were allowed to
combine the respective verdicts reached at individual (parallel) monitors into
one. In the same paper, it was determined that this monitoring system has the
same monitoring power as its restriction to a single monitoring component, as
used in [1,14], called regular monitors. However, the cost of the translation from
the “parallel” monitoring system to the regular fragment, as given in [4], is doubly
exponential with respect to the syntactic size of the monitors. Furthermore, if
the goal is a deterministic regular monitor [2,3], then the resulting monitor is
quadruply-exponentially larger than the original, parallel one, in [4].

In this paper, we show that the double-exponential cost for translating from
parallel to equivalent regular monitors is tight. Furthermore, we improve on the
translation cost from parallel monitors to equivalent deterministic monitors to
a triple-exponential, and we show that this bound is tight. We define monitor
equivalence in two ways, the first one stricter than the second. For the first
definition, two monitors are equivalent when they reach the same verdicts for the
same finite traces, while for the second one it suffices to reach the same verdicts
for the same infinite traces. We prove the upper bounds for a transformation
that gives monitors that are equivalent with respect to the stricter definition,
while we prove the lower bounds with respect to transformations that satisfy the
less strict definition. Therefore, our bounds hold for both definitions of monitor
equivalence. This treatment allows us to derive stronger results, which yield
similar bounds for the case of logical formulae, as well.

In [4], we show that, when interpreted over traces, mxHML, the fragment of
recHML that does not use least fixed points, is equivalent to the syntactically
smaller safety fragment sHML. That is, every mxHML formula can be trans-
lated to a logically equivalent sHML formula. Similarly to the aforementioned
translation of monitors, this translation of formulae results in formulae that are
syntactically at most doubly-exponentially larger than the original formulae. We
show that this upper bound is tight.

The first four authors have worked on the complexity of monitor transfor-
mations before in [2,3], where the cost of determinizing monitors is examined.
Similarly to [2,3], in [4], but also in this paper, we use results and techniques
from Automata Theory and specifically about alternating automata [10,12].

The case of monitors—parallel or regular—is interesting, as these are objects
that are not quite (alternating) automata and not quite CCS processes, though
they resemble, and can be represented as, both (see [2], Fig. 2 and Corollary 1).
The most significant difference between CCS processes and monitors is due to the
monitor verdicts, which lead to specific kinds of monitor equivalences. In contrast
to finite automata, monitors can accept or reject an input string, or even reach no
verdict, and furthermore, monitor verdicts persist for all extensions of the input.
See also [2] for further discussion and comparisons between (regular) monitors
and automata.

The Cost of Monitoring Alone 261

The Rest of the Paper is Structured as Follows: In Sect. 2, we introduce the
necessary background on monitors and recHML on infinite traces, as these were
used in [4]. In Sect. 3, we describe the monitor translations that we mentioned
above, and we provide upper bounds for these, which we prove to be tight in
Sect. 4. In Sect. 5, we extrapolate these bounds to the case where we translate
logical formulae, from mxHML to sHML. In Sect. 6, we conclude the paper.
Omitted proofs can be found in the extended version [5].

2 Preliminaries

Monitors are expected to monitor for a specification, which, in our case, is written
in recHML. We use the linear-time interpretation of the logic recHML, as it
was given in [4]. According to that interpretation, formulae are interpreted over
infinite traces.

2.1 The Model and the Logic

We assume a finite set of actions α, β, . . . ∈ Act with distinguished silent action
τ . We also assume that τ �∈ Act and that μ ∈ Act∪{τ}, and refer to the actions
in Act as visible actions (as opposed to the silent action τ). The metavariables
t, s ∈ Trc = Actω range over (infinite) sequences of visible actions, which
abstractly represent system runs. We also use the metavariable T ⊆ Trc to
range over sets of traces. We often need to refer to finite traces, denoted as
u, r ∈ Act∗, to represent objects such as a finite prefix of a system run, or to
traces that may be finite or infinite (finfinite traces, as they were called in [4]),
denoted as g, h ∈ Act∗ ∪Actω. A trace (resp., finite trace, resp., finfinite trace)
with action α at its head is denoted as αt (resp., αu, resp., αg). Similarly a trace
with a prefix u is written ut.

Fig. 1. recHML syntax and linear-time semantics

262 L. Aceto et al.

Fig. 2. Monitor syntax and semantics. We omit the obvious symmetric rules.

The logic recHML [7,16], a reformulation of the μ-calculus [15], assumes
a countable set LVar (with X ∈ LVar) of logical variables, and is defined as
the set of closed formulae generated by the grammar of Fig. 1. Apart from the
standard constructs for truth, falsehood, conjunction and disjunction, the logic
is equipped with possibility and necessity modal operators labelled by visible
actions, together with recursive formulae expressing least or greatest fixpoints;
formulae min X.ϕ and max X.ϕ bind free instances of the logical variable X in ϕ,
inducing the usual notions of open/closed formulae and formula equality up to
alpha-conversion.

We interpret recHML formulae over traces, using an interpretation function
�−�ρ that maps formulae to sets of traces, relative to an environment ρ : LVar →
2fTrc, which intuitively assigns to each variable X the set of traces that are
assumed to satisfy it, as defined in Fig. 1. The semantics of a closed formula ϕ
is independent of the environment ρ and is simply written �ϕ�. Intuitively, �ϕ�
denotes the set of traces satisfying ϕ. For a formula ϕ, we use l(ϕ) to denote the
length of ϕ as a string of symbols.

2.2 Two Monitoring Systems

We now present two monitoring systems, parallel and regular monitors, that
were introduced in [1,4,14]. A monitoring system is a Labelled Transition System

The Cost of Monitoring Alone 263

(LTS) based on Act, the set of actions, that is comprised of the monitor states,
or monitors, and a transition relation. The set of monitor states, Mon, and the
monitor transition relation, −→⊆ (Mon × (Act ∪ {τ}) × Mon), are defined in
Fig. 2. There and elsewhere, � ranges over both parallel operators ⊕ and ⊗.
When discussing a monitor with free variables (an open monitor) m, we assume
it is part of a larger monitor m′ without free variables (a closed monitor), where
every variable x appears at most once in a recursive operator. Therefore, we
assume an injective mapping from each monitor variable x to a unique monitor
px, of the form recx.m that is a submonitor of m′.

The suggestive notation m
μ−−→ n denotes (m,μ, n) ∈−→; we also write m � μ−−→

to denote ¬(∃n. m
μ−−→ n). We employ the usual notation for weak transitions and

write m =⇒ n in lieu of m(τ−→)∗n and m
μ
=⇒ n for m =⇒ · μ−−→ · =⇒ n. We write

sequences of transitions m
α1=⇒ · · · αn=⇒ mn as m

s=⇒ mn, where s = α1 · · · αn.
The monitoring system of parallel monitors is defined using the full syntax and
all the rules from Fig. 2; regular monitors are parallel monitors that do not use
the parallel operators ⊗ and ⊕. Regular monitors were defined and used already
in [1] and [14], while parallel monitors were defined in [4]. We observe that the
rules RecF and RecB are not the standard recursion rules from [1] and [14],
but they are equivalent to these rules [2,4] and useful for our arguments.

A transition m
α−−→ n denotes that the monitor in state m can analyse the

(external) action α and transition to state n. Monitors may reach any one of
three verdicts after analysing a finite trace: acceptance, yes, rejection, no, and
the inconclusive verdict end. We highlight the transition rule for verdicts in
Fig. 2, describing the fact that from a verdict state any action can be analysed
by transitioning to the same state; verdicts are thus irrevocable. Rule Par states
that both submonitors need to be able to analyse an external action α for their
parallel composition to transition with that action. The rules in Fig. 2 also allow
τ -transitions for the reconfiguration of parallel compositions of monitors. For
instance, rules VrC1 and VrC2 describe the fact that, whereas yes verdicts
are uninfluential in conjunctive parallel compositions, no verdicts supersede the
verdicts of other monitors in a conjunctive parallel composition. The dual applies
for yes and no verdicts in a disjunctive parallel composition, as described by rules
VrD1 and VrD2. Rule VrE applies to both forms of parallel composition and
consolidates multiple inconclusive verdicts. Finally, rules TauL and its omitted
dual TauR are contextual rules for these monitor reconfiguration steps.

Definition 1 (Acceptance and Rejection). We say that m rejects (resp.,
accepts) u ∈ Act∗ when m

u=⇒ no (resp., m
u=⇒ yes). We similarly say that

m rejects (resp., accepts) t ∈ Actω if ∃u, s such that m rejects (resp., accepts)
some prefix of t.

Just like for formulae, we use l(m) to denote the length of m as a string of
symbols. In the sequel, for a finite nonempty set of indices I, we use

∑
i∈I mi to

denote any combination of the monitors in {mi | i ∈ I} using the operator +.
The notation is justified, because + is commutative and associative with respect
to the transitions that a resulting monitor can exhibit. For each j ∈ I, mj is

264 L. Aceto et al.

called a summand of
∑

i∈I mi (and the term
∑

i∈I mi is called a sum of mj).
The regular monitors in Fig. 2 have an important property, namely that their
state space, i.e., the set of reachable states, is finite (see Remark 1). On the other
hand, parallel monitors can be infinite-state, but they are convenient when one
synthesizes monitors. However, the two monitoring systems are equivalent (see
Proposition 2). For a monitor m, reach(m) is the set of monitor states reachable
through a transition sequence from m.

Lemma 1 (Verdict Persistence, [4,14]). v
u=⇒ m implies m = v.

Lemma 2. Every submonitor of a closed regular monitor m can only transition
to submonitors of m.

Remark 1. An immediate consequence of Lemma 2 is that regular monitors are
finite-state. This is not the case for parallel monitors, in general. For example,
consider parallel monitor mτ = recx.(x⊗(a.yes + b.yes)). We can see that there
is a unique sequence of transitions that can be made from mτ :

mτ
τ−→ x⊗(a.yes+ b.yes) τ−→ mτ⊗(a.yes+ b.yes)
τ−→ (x⊗(a.yes+ b.yes))⊗(a.yes+ b.yes)
τ−→ (mτ⊗(a.yes+ b.yes))⊗(a.yes+ b.yes) −→ · · ·

One basic requirement that we maintain on monitors is that they are not
allowed to give conflicting verdicts for the same trace.

Definition 2 (Monitor Consistency). A monitor m is consistent when
there is no finite trace s such that m

s=⇒ yes and m
s=⇒ no.

We identify a useful monitor predicate that allows us to neatly decompose
the behaviour of a parallel monitor in terms of its constituent sub-monitors.

Definition 3 (Monitor Reactivity). We call a monitor m reactive when for
every n ∈ reach(m) and α ∈ Act, there is some n′ such that n

α=⇒ n′.

The following lemma states that parallel monitors behave as expected with
respect to the acceptance and rejection of traces as long as the consitituent
submonitors are reactive.

Lemma 3 ([4]). For reactive m1 and m2:

– m1⊗m2 rejects t if and only if either m1 or m2 rejects t.
– m1⊗m2 accepts t if and only if both m1 and m2 accept t.
– m1⊕m2 rejects t if and only if both m1 and m2 reject t.
– m1⊕m2 accepts t if and only if either m1 or m2 accepts t.

The following example, which stems from [4], indicates why the assumption
that m1 and m2 are reactive is needed in Lemma 3.

The Cost of Monitoring Alone 265

Example 1. Assume that Act = {a, b}. The monitors a.yes+b.no and recx.(a.x+
b.yes) are both reactive. The monitor m = a.yes⊗b.no, however, is not reactive.
Since the submonitor a.yes can only transition with a, according to the rules
of Fig. 2, m cannot transition with any action that is not a. Similarly, as the
submonitor b.no can only transition with b, m cannot transition with any action
that is not b. Thus, m cannot transition to any monitor, and therefore it cannot
reject or accept any trace.

In general, we are interested in reactive parallel monitors, and the parallel
monitors that we use will have this property.

2.3 Automata, Languages, Equivalence

In [4], we describe how to transform a parallel monitor to a verdict equivalent
regular one. This transformation goes through alternating automata [10,12].
For our purposes, we only need to define nondeterministic and deterministic
automata.

Definition 4 (Finite Automata). A nondeterminitic finite automaton (NFA)
is a quintuple A = (Q,Act, q0, δ, F), where Q is a finite set of states, Act is
a finite alphabet (here it coincides with the set of actions), q0 is the starting
state, F ⊆ Q is the set of accepting, or final states, and δ ⊆ Q × Act × Q is
the transition relation. An NFA is deterministic (DFA) if δ is a function from
Q × Act to Q.

Given a state q ∈ Q and a symbol α ∈ Act, δ returns a set of possible
state where the NFA can transition, and we usually use q′ ∈ δ(q, α) instead of
(q, α, q′) ∈ δ. We extend the transition relation to δ∗ : Q × Act∗ → 2Q, so
that δ∗(q, ε) = {q} and δ∗(q, αs) =

⋃{δ∗(q′, s) | q′ ∈ δ(q, α)}. We say that the
automaton accepts s ∈ Act∗ when δ∗(q0, s) ∩ F �= ∅, and that it recognizes
L ⊆ Act∗ when L is the set of strings accepted by the automaton.

Definition 5 (Monitor Language Recognition). A monitor m recognizes
positively (resp., negatively) a set of finite traces (i.e., a language) L ⊆ Act∗

when for every s ∈ Act∗, s ∈ L if and only if m accepts (resp., rejects) s. We
call the set that m recognizes positively (resp., negatively) La(m) (resp., Lr(m)).
Similarly, we say that m recognizes positively (resp., negatively) a set of infinite
traces L ⊆ Actω when for every t ∈ Actω, t ∈ L if and only if m accepts (resp.,
rejects) t.

Observe that, by Lemma1, La(m) and Lr(m) are suffix closed for each m.

Lemma 4. The set of infinite traces that is recognized positively (resp., nega-
tively) by m is exactly La(m) · Actω (resp., Lr(m) · Actω).

Proof. The lemma is a consequence of verdict-persistence (Lemma 1). ��
To compare different monitors, we use a notion of monitor equivalence from

[3] that focusses on how monitors can reach verdicts.

266 L. Aceto et al.

Definition 6 (Verdict Equivalence). Monitors m and n are verdict equiva-
lent, denoted as m �v n, if La(m) = La(n) and Lr(m) = Lr(n).

One may consider the notion of verdict-equivalence, as defined in Definition 6
to be too strict. After all, verdict-equivalence is defined with respect to finite
traces, so if we want to turn a parallel monitor into a regular or deterministic
monitor, the resulting monitor not only needs to accept and reject the same
infinite traces, but it is required to do so at the same time the original parallel
monitor does. However, one may prefer to have a smaller, but not tight monitor,
if possible, as long as it accepts the same infinite traces.

Definition 7 (ω-Verdict Equivalence). Monitors m and n are ω-verdict
equivalent, denoted as m �ω n, if La(m) · Actω = La(n) · Actω and Lr(m) ·
Actω = Lr(n) · Actω.

From Lemma4 we observe that verdict equivalence implies ω-verdict equivalence.
The converse does not hold, because no �ω

∑

α∈Act
α.no, but no ��v

∑

α∈Act
α.no.

Definition 8 ([2]). A closed regular monitor m is deterministic iff every sum
of at least two summands that appears in m is of the form

∑
α∈A α.mα, where

A ⊆ Act.

Example 21. The monitor a.b.yes+a.a.no is not deterministic while the verdict
equivalent monitor a.(b.yes+ a.no) is deterministic.

2.4 Synthesis

There is a tight connection between the logic from Sect. 2.1 and the monitoring
systems from Sect. 2.2. Ideally, we would want to be able to synthesize a monitor
from any formula ϕ, such that the monitor recognizes �ϕ� positively and Trc\�ϕ�
negatively. However, as shown in [4], neither goal is possible for all formulae.
Instead, we identify the following fragments of recHML.

Definition 9 (MAX and MIN Fragments of recHML). The greatest-
fixed-point and least-fixed-point fragments of recHML are, respectively, defined
as:

ϕ,ψ ∈ mxHML ::= tt | ff | ϕ∨ψ | ϕ∧ψ | 〈α〉ϕ | [α]ϕ | max X.ϕ

ϕ, ψ ∈ mnHML ::= tt | ff | ϕ∨ψ | ϕ∧ψ | 〈α〉ϕ | [α]ϕ | min X.ϕ

Definition 10 (Safety and co-Safety Fragments of recHML). The safety
and co-safety fragments of recHML are, respectively, defined as:

ϕ,ψ ∈ sHML ::= tt | ff | ϕ ∧ ψ | [α]ϕ | max X.ϕ

ϕ, ψ ∈ cHML ::= tt | ff | ϕ ∨ ψ | 〈α〉ϕ | min X.ϕ

The Cost of Monitoring Alone 267

The fragments sHML and cHML allow a much restricted syntax with respect
to mxHML and mnHML. Whereas the second pair of logics allows both diamond
and box modalities, and disjunctions as well as conjunctions, the fragments from
Definition 10 allow only either boxes and conjunctions, or diamonds and disjunc-
tions. Surprisingly, the two pairs of logical fragments can respectively express
exactly the same trace properties [4], though the extended syntax provided by
Definition 9 makes it easier to write such properties. For more on these fragments
and how they relate to monitors and monitorability, we refer the reader to [14]
and [4].

Theorem 1 (Monitorability and Maximality, [4]).

1. For every ϕ ∈ mxHML (resp., ϕ ∈ mnHML), there is a reactive parallel
monitor m, such that l(m) = O(l(ϕ)) and Lr(m) ·Actω = Actω\�ϕ� (resp.,
La(m) · Actω = �ϕ�).

2. For every reactive parallel monitor m, there are ϕ ∈ mxHML and ψ ∈
mnHML, such that l(ϕ), l(ψ) = O(l(m)), Lr(m) · Actω = Actω\�ϕ�, and
La(m) · Actω = �ψ�.

3. For every ϕ ∈ sHML (resp., ϕ ∈ cHML), there is a regular monitor m, such
that l(m) = O(l(ϕ)) and Lr(m) · Actω = Actω\�ϕ� (resp., La(m) · Actω =
�ϕ�).

4. For every regular monitor m, there are ϕ ∈ sHML and ψ ∈ cHML, such that
l(ϕ), l(ψ) = O(m), Lr(m) · Actω = Actω\�ϕ�, and La(m) · Actω = �ψ�.

We say that a logical fragment is monitorable for a monitoring system, such
as parallel or regular monitors, when for each of the fragment’s formulae there is
a monitor that detects exactly the satisfying or violating traces of that formula.
One of the consequences of Theorem 1 is that the fragments defined in Defini-
tions 9 and 10 are semantically the largest monitorable fragments of recHML
for parallel and regular monitors, respectively. As we will see in Sect. 3, every par-
allel monitor has a verdict equivalent regular monitor (Propositions 3 and 4), and
therefore all formulae in mnHML and mxHML can be translated into equivalent
cHML and sHML formulae respectively, as Theorem 4 later on demonstrates.
However, Theorem5 shows that the cost of this translation is significant.

3 Monitor Transformations: Upper Bounds

In this section we explain how to transform a parallel monitor into a regular or
deterministic monitor, and what is the cost in monitor size of this transformation.
The various relevant transformations, including some from [2] and [10,12], are
summarized in Fig. 3, where each edge is labelled with the best-known worst-case
upper bounds for the cost of the corresponding transformation in Fig. 3 (AFA
abbreviates alternating finite automaton [10]). As we see in [2,3] and in Sect. 4,
these bounds cannot be improved significantly.

Proposition 1 ([4]). For every reactive parallel monitor m, there are an alter-
nating automaton that recognizes La(m) and one that recognises Lr(m).

268 L. Aceto et al.

parallel
monitor

AFA

regular
monitor

NFA DFA

deterministic
monitor

O(n)

O(2n)

2O(n·2n)

O(n)

O(2n)

2O(n)

2O(2n)

2O(n logn)

Fig. 3. Monitor transformations and costs

Proof. The construction from [4, Proposition 3.6] gives an automaton that has
the submonitors of m as states. The automaton’s transition function corresponds
to the semantics of the monitor. As it is demonstrated in [4], the assumption
that m is reactive is necessary. ��
Corollary 1 (Corollary 3.7 of [4]). For every reactive and closed parallel
monitor m, there are an NFA that recognises La(m) and an NFA that recog-
nises Lr(m), and each has at most 2l(m) states.

Proposition 2. For every reactive and closed parallel monitor m, there exists
a verdict equivalent regular monitor n such that l(n) = 2O(l(m)·2l(m)).

Proof. Let Aa
m be an NFA for La(m) with at most 2l(m) states, and let Ar

m

be an NFA for Lr(m) with at most 2l(m) states, which exist by Corollary 1.
From these NFAs, we can construct regular monitors ma

R and mr
R, such that

ma
R recognizes La(m) positively and mr

R recognizes Lr(m) negatively, and
l(ma

R), l(m
r
R) = 2O(l(m)·2l(m)) [3, Theorem 2]. Therefore, ma

R + mr
R is regular

and verdict equivalent to m, and l(ma
R + mr

R) = 2O(l(m)·2l(m)). ��
The constructions from [4] include a determinization result, based on [2].

Theorem 2 (Corollary 3 of [3]). For every consistent closed regular monitor
m, there is a deterministic monitor n such that n �v m and l(n) = 22

O(l(m))
.

Proposition 3 (Proposition 3.11 of [4]). For every consistent reactive and
closed parallel monitor m, there is a verdict equivalent deterministic regular mon-

itor n such that l(n) = 22
2

O(l(m)·2l(m))
.

However, the bound given by Proposition 3 for the construction of determin-
istic regular monitors from parallel ones is not optimal, as we promptly observe.

Proposition 4. For every consistent reactive and closed parallel monitor m,
there is a deterministic monitor n such that n �v m and l(n) = 22

2O(l(m))

.

In the following Sect. 4, we see that the upper bounds of Propositions 2 and
4 are tight, even for monitors that can only accept or reject, and even when

The Cost of Monitoring Alone 269

the constructed regular or deterministic monitor is only required to be ω-verdict
equivalent to the starting one, and not necessarily verdict equivalent, to the
original parallel monitor. As we only need to focus on acceptance monitors,
in the following we say that a monitor recognizes a language to mean that it
recognizes the language positively.

4 Lower Bounds

We now prove that the transformations of Sect. 3 are optimal, by proving the
corresponding lower bounds. For this, we introduce a family of suffix-closed lan-
guages Lk

A ⊆ {0, 1, e, $,#}∗. Each Lk
A is a variation of a language introduced in

[10] to prove the 22
o(n)

lower bound for the transformation from an alternating
automaton to a deterministic one. In this section, we only need to consider closed
monitors, and as such, all monitors are assumed to be closed.

A variation of the language that was introduced in [10] is the following:

Lk
V = {u#w#v$w | u, v ∈ {0, 1,#}∗, w ∈ {0, 1}k}.

An alternating automaton that recognizes Lk
V can nondeterministically skip

to the first occurrence of w and then verify that for every number i between 0
and k − 1, the i’th bit matches the i’th bit after the $ symbol. This verification
can be done using up to O(k) states, to count the position i of the bit that
is checked. On the other hand, a DFA that recognizes Lk

V must remember all
possible candidates for w that have appeared before $, and hence requires 22

k

states. We can also conclude that any NFA for Lk
V must have at least 2k states,

because a smaller NFA could be determinized to a smaller DFA.

A Gap Language. For our purposes, we use a similar family Lk
A of suffix-closed

languages, which are designed to be recognized by small parallel monitors, but
such that each regular monitor recognizing Lk

A must be “large”. We fix two num-
bers l, k ≥ 0, such that k = 2l. First, we observe that we can encode every string
w ∈ {0, 1}k as a string a1α1a2α2 · · · akαk ∈ {0, 1}(l+1)·k, where a1a2 · · · ak is a
permutation of {0, 1}l and for all i, αi ∈ {0, 1}. Then, aiαi gives the information
that for j being the number with binary representation ai, the j’th position of
w holds bit αi. Let pos = {i

∣
∣0 < i ≤ k}, and

W =
{

a1α1 · · · akαk ∈ {0, 1}(l+1)·k ∣
∣ for all 1 ≤ i ≤ k, αi ∈ {0, 1} and

ai ∈ {0, 1}l, and a1 · · · ak ∈ {0, 1}l!

}

.

Let w,w′ ∈ W , where w = a1α1a2α2 · · · akαk and w′ = b1β1b2β2 · · · bkβk, and
for 1 ≤ i ≤ k, ai, bi ∈ {0, 1}l and αi, βi ∈ {0, 1}. We define w ≡ w′ to mean that
for every i, j ≤ k, ai = bj implies αi = βj . Let a = α0 . . . αl−1 ∈ {0, 1}l; then,
enc(a) = bin(0)α0 . . . bin(l − 1)αl−1 is the ordered encoding of a, where bin(i) is
the binary encoding of i. Then, w ∈ W is called an encoding of a if w ≡ enc(a).

Let Σ = {0, 1,#} and Σ$ = Σ ∪ {$}. Then,

Lk
A = {u#w#v$u′#w′#$v′ | u, v′ ∈ Σ∗

$, u′, v ∈ Σ∗, w, w′ ∈ W, and w ≡ w′}.

270 L. Aceto et al.

In other words, a finite trace is in Lk
A exactly when it has a substring of the

form #w#v$u′#w′#$, where w and w′ are encodings of the same string and
there is only one $ between them. Intuitively, # is there to delimit bit-strings
that may be elements of W , and $ delimits sequences of such bit-strings. So,
the language asks if there are two such consecutive sequences where the last
bit-string of the second sequence comes from W and matches an element from
the first sequence. We observe that Lk

A is suffix-closed.

Lemma 5. u ∈ Lk
A if and only if ∀t. ut ∈ Lk

A · Σω
$.

Conventions. For the conclusions of Lemma 3 to hold, monitors need to be
reactive. However, a reactive monitor can have a larger syntactic description
than an equivalent non-reactive one, e.g., α.yes vs α.yes + β.end + γ.end, when
Act = {α, β, γ}. This last monitor is also verdict equivalent to α.yes + end. In
the following, for brevity and clarity, whenever we write a sum s of a monitor of
the form α.m, we will mean s + end, which is reactive, so it can be safely used
with a parallel operator, and is verdict equivalent to s. We use set-notation for
monitors: for A ⊆ Act, A.m stands for

∑
α∈A α.m (or

∑
α∈A α.m + end under

the above convention). Furthermore, we define {0, 1}0.m = m and {0, 1}i+1.m =
0.{0, 1}i.m + 1.{0, 1}i.m. Notice that l({0, 1}i.m) = 2i · l(m) + 5 · (2i − 1). We
can also similarly define T.m for T ⊆ {0, 1}i.

Auxiliary Monitors. We start by defining auxiliary monitors. Given a (closed)
monitor m, let

skip#(m) := recx.((0.x + 1.x +#.x)⊕#.m),
next#(m) := recx.(0.x + 1.x +#.m),
next$(m) := recx.(0.x + 1.x +#.x + $.m), and

skip_last(m) := recx.(0.x + 1.x +#.x +#.(m⊗rec y.(0.y + 1.y +#.$.yes))).

These monitors read the trace until they reach a certain symbol, and then they
activate submonitor m. We can think that skip#(m) nondeterministically skips
to some occurrence of # that comes before the first occurence of $; next#(m) and
next$(m) respectively skip to the next occurence of # and $; and skip_last(m)
skips to the last occurence of # before the next occurence of #$.

Lemma 6. skip#(m) accepts g iff there are u and h, such that u#h = g, m
accepts h, and u ∈ {0, 1,#}∗.

The following lemmata are straightforward and explain how the remaining
monitors defined above are used.

Lemma 7. next#(m) accepts g iff there are u and h, such that u#h = g, m
accepts h, and u ∈ {0, 1}∗.

Lemma 8. next$(m) accepts g iff there are u and h, such that u$h = g, m
accepts h, and u ∈ {0, 1,#}∗.

The Cost of Monitoring Alone 271

Lemma 9. skip_last(m) accepts g iff there are u, r, and h, such that
u#r#$h = g, m accepts r#$h, r ∈ {0, 1}∗, and u ∈ {0, 1,#}∗.

The following monitors help us ensure that a bit-string from {0, 1}(l+1)·k is
actually a member of W . Monitor all ensures that all bit positions appear in
the bit-string; no_more(u) assures us that the bit position u does not appear
any more in the remainder of the bit-string; and unique ensures that each bit
position appears at most once. Monitor perm combines these monitors together.

all := ⊗{recx.({0, 1}l+1.x ⊕ u.{0, 1}.yes) | u ∈ {0, 1}l};

for u ∈ {0, 1}l,

no_more(u) := recx.
(
#.yes+ ({0, 1}l \ {u}).{0, 1}.x

)
;

unique := recx.

⎛
⎝#.yes+

⎛
⎝{0, 1}l+1.x ⊗

∑

u∈{0,1}l

u.{0, 1}.no_more(u)

⎞
⎠

⎞
⎠ ; and

perm := all ⊗ unique.

The purpose of perm is to ensure that a certain block of bits before the
appearance of the # symbol is a member of the set W : it accepts w# exactly
when w is a sequence of blocks of bits with length exactly l+1 (by unique) and
for every a ∈ {0, 1}l there is some α ∈ {0, 1} such that aα is one of these blocks
(by all), and that for each such a only one block is of the form aα′ (by unique).

Lemma 10. perm accepts g iff w# is a prefix of g, for some w ∈ W .

Lemma 11. l(perm) = O(k2).

Given a block u of l + 1 bits, monitor find(u) accepts a sequence of blocks
of l + 1 bits w exactly when u is one of the blocks of w:

find(u) := recx.(u.yes+ ({0, 1}l+1 \ {u}).x).

Lemma 12. For u ∈ {0, 1}l+1, find(u) accepts g if and only if there is some
r ∈ ({0, 1}l+1)∗, such that ru is a prefix of g.

For u ∈ {0, 1}l+1, match(u) ensures that right before the second occurrence
of $, there is a #w#, where w ∈ ({0, 1}l+1)+ and u is a (l + 1)-bit-block in w.

match(u) := next$(skip_last(find(u))).

Lemma 13. For u ∈ {0, 1}l+1, match(u) accepts g if and only if there are
r$r′#w#$h = g, such that r, r′ ∈ Σ∗, w ∈ {0, 1}∗, and there is a prefix w′u of
w, such that w′ ∈ ({0, 1}l+1)∗.

272 L. Aceto et al.

Recognizing Lk
A with a Parallel Monitor. We can now define a parallel acceptance-

monitor of length O(k2) that recognizes Lk
A. Monitor matching ensures that

every one of the consecutive blocks of l + 1 bits that follow, also appears in the
block of bits that appears right before the occurrence of #$ that follows the
next $ (and that there is no other $ between these $ and #$). Therefore, if what
follows from the current position in the trace and what appears right before that
occurence of #$ are elements w,w′ of W , matching ensures that w ≡ w. Then,
mk

A nondeterministically chooses an occurence of #, it verifies that the block of
bits that follows is an element w of W that ends with #, and that what follows
is of the form v$u′#w′#$v′, where u′, v ∈ Σ∗, w′ ∈ W, and w ≡ w′, which
matches the description of Lk

A.

matching :=recx.
∑

u∈{0,1}l+1

u.(x ⊗ match(u))

mk
A :=skip# (perm ⊗ next$(skip_last(perm)) ⊗ matching)

Lemma 14. mk
A recognizes Lk

A and l(mk
A) = O(k2).

Proof. The lemma follows from this section’s previous lemmata and from count-
ing the sizes of the various monitors that we have constructed. ��
Lemma 15. If m is a deterministic monitor that recognizes Lk

A · Σω
$, then

|m| ≥
((

22
k−1 − 1

)
!
)2

= 2Ω
(
22

k−1+k
)

.

Theorem 3 gathers our conclusions about Lk
A.

Theorem 3. For every k > 0, Lk
A is recognized by an alternating automaton of

O(k2) states and a parallel monitor of length O(k2), but by no DFA with 2o(2k)

states and no deterministic monitor of length 2o(22
k−1+k). Lk

A · Σω
$ is recognized

by a parallel monitor of length O(k2), but by no deterministic monitor of length
2o(22

k−1+k).

Proof. Lemma 14 informs us that there is a parallel monitor m of length O(k2)
that recognizes Lk

A. Therefore, it also recognizes Lk
A · Σω

$. Proposition 1 tells
us that m can be turned into an alternating automaton with l(m) = O(k2)
states that recognizes Lk

A. Lemma15 yields that there is no deterministic monitor

of length 2o(22
k−1+k) that recognizes that language. From [3], we know that if

there were a DFA with 2o(2k) states that recognizes Lk
A, then there would be a

deterministic monitor of length 22
o(2k)

that recognizes Lk
A, which, as we argued,

cannot exist. ��

Hardness for Regular Monitors. Proposition 3 does not guarantee that the
2O(n·2n) upper bound for the transformation from a parallel monitor to a non-
deterministic regular monitor is tight. To prove a tighter lower bound, let Lk

U be

The Cost of Monitoring Alone 273

the language that includes all strings of the form #w1#w2# · · ·#wn$w where
for i = 1, . . . , n, wi ∈ W , and w ∈ {0, 1,#, $}∗, and for every i < n, wi encodes
a string that is smaller than the string encoded by wi+1, in the lexicographic
order.

Lemma 16. u ∈ Lk
U if and only if ∀t. ut ∈ Lk

U · Σω
$.

We describe how Lk
U can be recognized by a parallel monitor of size O(k2).

The idea is that we need to compare the encodings of two consecutive blocks of
l + 1 bits. Furthermore, a string is smaller than another if there is a position in
these strings, where the first string has the value 0 and the second 1, and for
every position that comes before that position, the bits of the two strings are
the same. We define the following monitors:

smaller =
∑

u∈{0,1}l

⎛

⎜
⎜
⎝

find(u0) ⊗ next#(find(u1))
⊗⊗

r<u

∑

b∈{0,1}
(find(rb) ⊗ next#(find(rb)))

⎞

⎟
⎟
⎠

last = recx.(0.x + 1.x + $.yes)
mU = recx.(next#(perm ⊗ (last ⊕ (smaller ⊗ x))))

Proposition 5. mU recognizes Lk
U (and Lk

U · Σω
$) and |mU | = O(k2). Every

regular monitor that recognizes Lk
U or Lk

U · Σω
$ must be of length 2Ω(2k).

5 Logical Consequences

We now turn our attention back from the two monitoring systems to the corre-
sponding logical fragments. We observe that the bounds that we have proved in
the previous sections also apply when we discuss formula translations. A version
of Theorem 4 was proven in [4], but without complexity bounds.

Theorem 4. For every ϕ ∈ mnHML (resp., ϕ ∈ mxHML), there is some
ψ ∈ cHML (resp., ψ ∈ sHML), such that l(ψ) = 2O(l(m)·2l(m)) and �ϕ� = �ψ�.

Proof. We prove the case for ϕ ∈ mnHML, as the case for ϕ ∈ mxHML is
similar. By Theorem1, we know that there is a reactive parallel monitor m, such
that La(m) · Actω = �ϕ� and l(m) = O(l(ϕ)). By Proposition 2, we know that
there is a regular monitor n, such that La(n) = La(m) and l(n) = 2O(l(m)·2l(m)).
We can then see that l(n) = 2O(l(ϕ)·2l(ϕ)). According to Theorem 1, there is a
formula ψ ∈ cHML, such that �ψ� = La(n) · Actω = La(m) · Actω = �ϕ�, and
l(ψ) = O(l(n)), yielding that l(ψ) = 2O(l(ϕ)·2l(ϕ)). ��

The cost of the construction in the proof of Theorem 4 is due to the regu-
larization of the monitor. Our lower bounds—and specifically Proposition 5—
demonstrate that this construction is optimal, because a better construction of
ψ would lower the cost of regularization via the synthesis functions.

274 L. Aceto et al.

Theorem 5. There is some ϕ ∈ mxHML, such that for every ψ ∈ sHML, if

�ϕ� = �ψ�, then l(ψ) = 2Ω
(
2
√

l(ϕ)
)
.

Proof (Sketch). Otherwise, we could regularize mU from Sect. 4 more efficiently
than Proposition 5 allows, by first turning mU to ϕ ∈ mxHML, then to ψ ∈
sHML, and finally to a regular monitor m. ��
Remark 2. We observe that to prove Theorem 5, it was necessary to prove Propo-
sition 5 for regular monitors that are ω-verdict equivalent, and not just verdict
equivalent, to mU . The reason is that in the proof of Theorem 5, the monitor m
that monitors for ψ is ω-verdict equivalent to mU and there is no guarantee that
it is, in fact, verdict equivalent to mU .

Remark 3. In [2], the authors define a deterministic fragment of sHML, which
they then show to be equivalent to the full sHML. We can claim analogous
bounds for translating formulae into this smaller fragment, using similar argu-
ments to those used above. We omit a full exposition of this claim.

6 Conclusion

We determined the cost of turning a parallel monitor into an equivalent regular,
or deterministic, monitor. As a result, we saw that, over infinite traces, mxHML
is doubly-exponentially more succinct than sHML.

Regular monitors were introduced in [14] to monitor for sHML over pro-
cesses. The cost of determinization of regular monitors was examined in [2,3].
Aceto et al. in [6] used a similar determinization process on formulae in the
context of enforcement.

In [4], we also synthesized tight monitors, which are monitors that reach a
verdict as soon as they have analyzed enough information from the trace, and
not later. It is often important to reach a verdict as soon as possible, but it is
also important to not burden a monitored system with a very large monitor.
Therefore, it would also be of interest to determine how much it costs to turn
a parallel or regular monitor into a verdict-equivalent tight monitor. This is a
topic that we leave for future work.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: Monitoring for silent
actions. In: Lokam, S., Ramanujam, R. (eds.) FSTTCS. LIPIcs, vol. 93, pp.
7:1–7:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2017)

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.:
Determinizing monitors for HML with recursion. CoRR abs/1611.10212 (2016).
http://arxiv.org/abs/1611.10212

http://arxiv.org/abs/1611.10212

The Cost of Monitoring Alone 275

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: On
the complexity of determinizing monitors. In: Carayol, A., Nicaud, C. (eds.) CIAA
2017. LNCS, vol. 10329, pp. 1–13. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60134-2_1

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. Proc.
ACM Program. Lang. 3, 52:1–52:29 (2019). https://doi.org/10.1145/3290365.
https://dl.acm.org/citation.cfm?id=3290365

5. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: The cost of
monitoring alone. CoRR abs/1902.05152 (2019). http://arxiv.org/abs/1902.05152

6. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforce-
ment via suppressions. In: Schewe, S., Zhang, L. (eds.) 29th International Con-
ference on Concurrency Theory (CONCUR 2018). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 118, pp. 34:1–34:17. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/
LIPIcs.CONCUR.2018.34. http://drops.dagstuhl.de/opus/volltexte/2018/9572

7. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge Univ. Press, New York (2007). https://
doi.org/10.1017/cbo9780511814105

8. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5_1

9. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 1–64 (2011). https://doi.org/10.1145/
2000799.2000800

10. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981). https://doi.org/10.1145/322234.322243

11. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transf. 14(3), 349–382 (2012). https://doi.
org/10.1007/s10009-011-0196-8

12. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata∗.
Int. J. Comput. Math. 35(1–4), 117–132 (1990). https://doi.org/10.1080/
00207169008803893

13. Francalanza, A., et al.: A foundation for runtime monitoring. In: RV, pp. 8–29
(2017). https://doi.org/10.1007/978-3-319-67531-2_2

14. Francalanza, A., Aceto, L., Ingolfsdottir, A.: Monitorability for the Hennessy–
Milner logic with recursion. Form. Methods Syst. Des. 51(1), 87–116 (2017).
https://doi.org/10.1007/s10703-017-0273-z

15. Kozen, D.C.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27,
333–354 (1983). https://doi.org/10.1016/0304-3975(82)90125-6

16. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recur-
sion. Theor. Comput. Sci. (TCS) 72(2), 265–288 (1990). https://doi.org/10.
1016/0304-3975(90)90038-J. http://www.sciencedirect.com/science/article/pii/
030439759090038J

17. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040_38

https://doi.org/10.1007/978-3-319-60134-2_1
https://doi.org/10.1007/978-3-319-60134-2_1
https://doi.org/10.1145/3290365
https://dl.acm.org/citation.cfm?id=3290365
http://arxiv.org/abs/1902.05152
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
http://drops.dagstuhl.de/opus/volltexte/2018/9572
https://doi.org/10.1017/cbo9780511814105
https://doi.org/10.1017/cbo9780511814105
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/322234.322243
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1080/00207169008803893
https://doi.org/10.1080/00207169008803893
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1016/0304-3975(90)90038-J
http://www.sciencedirect.com/science/article/pii/030439759090038J
http://www.sciencedirect.com/science/article/pii/030439759090038J
https://doi.org/10.1007/11813040_38

Runtime Verification of Parametric
Properties Using SMEDL

Teng Zhang(B), Ramneet Kaur, Insup Lee, and Oleg Sokolsky

University of Pennsylvania, Philadelphia, PA 19104, USA
{tengz,ramneetk,lee,sokolsky}@cis.upenn.edu

Abstract. Parametric properties are typical properties to be checked
in runtime verification (RV). As a common technique for parametric
monitoring, trace slicing divides an execution trace into a set of sub
traces which are checked against non-parametric base properties. An
efficient trace slicing algorithm is implemented in MOP. Another RV
technique, QEA further allows for nested use of universal and existential
quantification over parameters. In this paper, we present a methodology
for parametric monitoring using the RV framework SMEDL. Trace slicing
algorithm in MOP can be expressed by execution of a set of SMEDL
monitors. Moreover, the semantics of nested quantifiers is encoded by a
hierarchy of monitors for aggregating verdicts of sub traces. Through case
studies, we demonstrate that SMEDL provides a natural way to monitor
parametric properties with more potentials for flexible deployment and
optimizations.

Keywords: Runtime verification · Parametric property ·
Trace slicing · SMEDL

1 Introduction

Runtime verification (RV) is a technique for monitoring correctness of systems.
The objective of RV is to use runtime monitors to check properties against a run
of a system (referred as a target system) which can be abstracted as an event
trace from the execution or the logging information. Usually, the event stream
delivered to a monitor carries data bound to event parameters. The property
may depend not only on event order in the trace but also on parameter values
of events.

Example 1: unsafeMapIter [26]. An iterator of a collection created from a
map is not allowed to be used after the map has been updated. The prop-
erty that points out the violation of it can be described as a parametric regu-
lar expression: createC (m, c)updateM (m)∗createI (c, i)useI (i)∗updateM (m)+useI (i)

This work is supported in part by the Air Force Research Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA) under contract FA8750-16-C-
0007 and by ONR SBIR contract N00014-15-C-0126.

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 276–293, 2019.
https://doi.org/10.1007/978-3-030-31514-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_16

Runtime Verification of Parametric Properties Using SMEDL 277

where createC (m, c) denotes creation of a collection c, the key set of a map m;
createI (c, i) is creation of iterator i from c; updateM (m) is update of m; and
useI (i) is use of i.

To monitor parametric properties, an efficient trace slicing algorithm is imple-
mented in the MOP framework [26]. A parametric event trace is sliced into sub
traces according to event parameters. Each sub trace is then checked against a
non-parametric property. The property of the whole trace is obtained by aggre-
gation of verdicts from all sub traces. QEA [4] further supports nested use of
universal or existential quantifiers over parameters.

In [33], we presented a general RV framework SMEDL. A monitoring sys-
tem in SMEDL is composed of a set of monitor instances communicating with
each other using events, forming a monitor network. Instances can be created
dynamically by binding monitor parameters with values. A scalable monitor net-
work can not only describe multiple types of properties such temporal properties
and numeric properties but also provides a flexible and intuitive way for monitor
deployment [32], which is vital for balancing between the overhead of monitoring
and timeliness of getting verdicts.

In this paper, we will further use SMEDL to describe and check paramet-
ric properties. We will present a transformation from MOP to SMEDL through
an example of a MOP specification. The trace slicing algorithm can be repre-
sented by execution and evolution of a monitor network. We then will present
that the semantics of nested quantifiers in QEA can be described by a hierarchy
of SMEDL monitors aggregating verdicts from sub traces. Due to its flexibil-
ity in specifying monitors and communications, SMEDL may check parametric
properties with more potentials for flexible deployment and optimizations.

The paper is organized as follows. Section 2 gives definitions of SMEDL
and introduces MOP and QEA. Section 3 presents a transformation algorithm
from MOP to SMEDL and illustrates how to check parametric properties using
SMEDL monitors. Section 4 presents how to construct SMEDL monitors to
express nested quantifiers in QEA. Section 5 presents the related work and Sect. 6
concludes the paper and presents the future work.

2 Preliminaries

2.1 Overview of SMEDL

A SMEDL specification contains a set of monitor specifications and an archi-
tecture description that captures patterns of communication between them. The
relation between a SMEDL specification and a monitor network is illustrated in
Fig. 1. During execution, each monitor can be instantiated as monitor instances
multiple times with different parameters, either statically during startup of the
target system or dynamically at runtime, in response to receiving creation events.
The event communication and creation of instances within the monitor network
is controlled by a global wrapper according to the architecture description.

278 T. Zhang et al.

Fig. 1. SMEDL overview

Single Monitor. A SMEDL monitor is a collection of scenarios. Each sce-
nario is an EFSM (Extended Finite State Machine) [33] in which the transi-
tions are performed by reacting to events. Scenarios interact with each other
using shared state variables or by triggering execution of other scenarios through
raised events. There are three types of events: imported, exported and internal.
Imported events, which are responsible for triggering the execution of a moni-
tor, are raised from the target system or by other monitors; exported events are
raised within the monitor and sent to other monitors; internal events are used
to trigger transitions, but are only seen and processed within the monitor. Each
transition is labeled with a triggering event and attached to a guard condition
and a list of actions to be executed after the transition. Actions on transitions
can raise events and update state variables. A monitor may have a set of typed
parameters for identification. Multiple instances are created by binding param-
eters with actual values. The detailed syntax and semantics of a monitor was
presented in [34].

Architecture Description and Monitor Network. The architecture
description defines the event communication pattern among monitors, which
consists of a set of monitor interfaces and event connection specifications. The
interface of an monitor contains the name, parameter list, imported events and
exported events of that monitor. If an imported event is labeled as a creation
event, it can be used to create a instance of that monitor. When multiple
instances exist, a finer control on delivery of events is desirable. For instance,
we could specify that an event raised by an instance of monitor A is sent to
instances of monitor B having the same value on the first parameter. This is
achieved by event connection specifications.

An event connection specification is a tuple (SrcMon,SrcEv ,TarMon,
TarEv ,PatternExprs), which specifies how a source event SrcEv exported from
a source monitor SrcMon is delivered to a target monitor TarMon as its imported
event TarEv. Note that SrcMon is empty if SrcEv is sent from the target system.
Each parameter of a monitor or an event corresponds to an index according to its
position in the parameter list, starting from 0. Each element of PatternExpr is a
tuple (targetIdx , source, sourceIdx), meaning that the parameter value of TarMon
with index targetIdx must be matched to the parameter value of source with index
sourceIdx. source can be either SrcMon or SrcEv.

Runtime Verification of Parametric Properties Using SMEDL 279

For example, an event connection specification that describes event deliv-
ery from e1 (x , y) of mon1 〈a〉 to e2 (x ′, y ′) of mon2 〈b, c〉 is defined as
(mon1 , e1 ,mon2, e2, ps) where ps is {(0,mon1 , 0), (1, e1 , 0)}. Note that (x, y) is
the formal parameter list of e1 ; a is the formal parameter of mon1 and so on.
When an event instance e1 (x1 , y1) is sent from an monitor instance mon1 (a1),
only one monitor instance of mon2 , mon2 (a1 , x1) receives it as e2 (x1 , y1) as ps
specifies that the first and second parameter of mon2 are respectively matched
to the first parameter of mon1 and e1. e2 is instantiated by parameters of e1.

If there is no instance of mon2 parameterized with (a1 , x1) and e2 is a
creation event for mon2, mon2 (a1 , x1) will be created. Note that if TarEv is a
creation event, corresponding PatternExprs must specify mapping relations to
all parameters of TarMon. If PatternExprs is empty, each raised SrcEv is sent
to all existing instances of TarMon.

The overall flow of event processing conducted by a monitor network is illus-
trated in Fig. 2. The global wrapper receives/outputs events from/to the environ-
ment and controls event dispatch to monitor instances and creation of instances
using the architecture description. Two shared data structures, InnerQueue and
OutputQueue are used to store events that are to be consumed within the mon-
itor network and sent to the environment. The execution of the global wrapper
begins with an event from the environment put into the InnerQueue. The global
wrapper waits for the next incoming event from the environment after all events
in the InnerQueue have been consumed and events in the OutputQueue have
been sent to the environment.

Fig. 2. Architecture of a monitor network

The pseudocode for the global wrapper is shown in Algorithm1, parame-
terized by the architecture description. monTypeList is the list of all monitors
used for checking the property. Initially, an imported event e is sent from the
environment into InnerQueue to trigger the execution of the global wrapper.
The global wrapper pulls out the event (denoted as curE) at the frontend of
InnerQueue. curE is mapped to the event in m (denoted as ev) in matchIn-
ComingEvent by looking up the architecture description. Monitors that cannot

280 T. Zhang et al.

handle curE are filtered out before traversing monTypeList. Process consume
dispatches ev to all compatible instances of m. The set of raised events ies and
oes are then put into the InnerQueue and OutputQueue based on whether they
are to be consumed within the monitor network. Note that all raised events carry
the parameter information of corresponding instances which have raised them.
If there is no compatible instance and ev is a creation event, an instance of m is
created from ev. After all events in the InnerQueue have been handled, events
in the OutputQueue will be sent to the environment or raised as alarms. It is
worth noting that consume is an abstract representation of monitor execution.
Moreover, we leave implementation flexibility in the algorithm. For instance, no
order is defined in monTypeList . In Sect. 3, we impose a specific order among
monitors in monTypeList to implement the trace slicing algorithm in MOP.

Algorithm 1. Global wrapper for parametric monitoring
1: InnerQueue ← {e},OutputQueue ← {}
2: procedure globalStep(archDescription)
3: monTypeList ← monitors declared in archDescription
4: while InnerQueue �= ∅ do
5: curE ← retrieveFromQueue(InnerQueue)
6: for m ∈ filter(monTypeList , curE , archDescription) do
7: ev ← matchInComingEvent(curE , m, archDescription)
8: (ies, oes) ← consume(m, archDescription, ev)
9: enQueue(InnerQueue, ies)

10: enQueue(OutputQueue, oes)

11: sendEvents(OutputQueue)

2.2 Overview of MOP

MOP is a monitoring framework supporting description of properties by multiple
logical formalisms. In this paper, we only consider properties that are synthesized
into FSMs (Finite State Machines). One can specify different ways of reporting
verdicts and handling violations or validations of properties. A MOP monitor
Mmop〈Xmop〉 contains two parts. Xmop is the parameter set and Mmop is an
finite state machine (FSM).

MOP implements an efficient trace slicing algorithm [11] for parametric moni-
toring, which is independent of the base monitor for checking the non-parametric
property. The algorithm maintains a mapping Δ from bindings to current states
in the base monitor. A binding is a partial function Xmop ⇁ Val from parameters
to values. Val represents the set of all possible values for Xmop. Parameters of
all parametric events are from Xmop. We denote e〈θ〉 as an event parameterized
by the binding θ.

When an event e〈θ〉 arrives, the algorithm will update states of all exist-
ing bindings which has equal or more information than θ using e. If dom(θ1)
(the domain of θ1) is the subset of dom(θ2) and θ1(x) = θ2(x) for all x
∈ dom(θ1), we say θ1 has equal or less information than θ2 , denoted as θ1 � θ2.

Runtime Verification of Parametric Properties Using SMEDL 281

If Δ(θ) is undefined (and e is defined as a creation event in MOP), the algorithm
will define Δ(θ) using the state updated from Δ(θ′) by e where θ′ is the largest
binding in dom(Δ) that has less information than Δ(θ). New bindings can also
be created from extending existing bindings in Δ that are compatible with θ.
Two bindings θ1 and θ2 are compatible with each other when θ1(x) is equal to
θ2(x) for all x ∈ dom(θ1) ∩ dom(θ2). The combination between two bindings θ1
and θ2 is defined as follows: if θ1 and θ2 are compatible, θ1 � θ2(x) = θ1(x) if
x ∈ dom(θ1); θ1 � θ2(x) = θ2(x) if x ∈ dom(θ2); θ1 � θ2(x) is undefined if x is
undefined in θ1 and θ2. The algorithm will always extend the binding with more
information in e to generate the new binding. The detailed description for the
slicing algorithm is in [11]. The notations introduced here will be reused in the
rest of the paper.

SMEDL vs. MOP. In MOP, the mechanism for creating and updating param-
eter instances is controlled by the slicing algorithm which is independent of the
monitor specification. Partially instantiated monitor instances are maintained in
the algorithm. By contrast, SMEDL realizes parametric monitoring at the level
of the semantics of monitor network. All monitor instances are created with full
instantiation. In Sect. 3, we present a transformation from a MOP specification
to a set of SMEDL monitors connecting through events. The idea is to ana-
lyze the structure of a parametric FSM in MOP and generate SMEDL monitors
that are to be fully instantiated by creation events. The information of how to
extend and update bindings is encoded in the single monitor specifications and
the architecture description. The architecture description guarantees that events
are only sent to compatible monitor instances.

2.3 Overview of QEA

QEA (Quantified Event Automata) is a formalism for parametric monitoring.
A QEA is a pair 〈Λ,E〉 where E is an Event Automaton and Λ ∈ ({∀,∃} ×
vars(E) × Guard)∗ is a list of quantifiers with guards. An Event Automaton
(EA) is an EFSM in which transitions are enriched with guard and assignments
to variables; vars(E) is the set of variable names appearing in E. In this paper,
we focus on the semantics of nested quantifiers [4,27]. QEA also uses trace slicing
to accomplish parametric monitoring. The acceptance for a parametric property
for QEA is defined in [4], as illustrated below. In the terminology of QEA, a
ground trace contains events of which all parameters are bound to concrete
values; Dom(τ)(x) returns the derived domain for the parameter x in the trace
τ ; θ1 † θ2 overrides the value in θ1 by θ2; g(θ) is the guard condition over the
quantified variable; E(θ) is an event automaton E with its variables instantiated
by θ; τ ↓E(θ) is the projection of a trace τ over E(θ); L(E(θ)) is the set of traces
accepted by E(θ).

Definition 1 (Acceptance in QEA). A QEA accepts a ground trace τ if τ
|=〈〉 Λ.E where |=θ is defined as

282 T. Zhang et al.

τ |=θ (∀x : g)Λ′.E iff ∀ d∈Dom(τ)(x), if g(θ†〈x → d〉) then τ |=θ†〈x→d〉 Λ′.E.
τ |=θ (∃x : g)Λ′.E iff there exists d∈Dom(τ)(x), if g(θ † 〈x → d〉) then

τ |=θ†〈x→d〉 Λ′.E.
τ |=θ ε.E iff τ ↓E(θ)∈ L(E(θ)).

Bindings are generated by inductively traversing the derived domain of each
variable in the nested quantifiers. When a full binding is created, the verdict is
retrieved from the corresponding event automaton. The aggregation of the result
is decided by which quantifier is used for a parameter variable. The interpretation
of nested quantifiers in QEA leads to one significance difference between QEA
and MOP in generating bindings: QEA records any binding that can be built
from the derived domain that has a non-empty projection. For example, if e(θ)
arrives where θ = 〈x → x1, y → y1〉 and there is a binding θ1 = 〈y → y2, z → z1〉
(y1 �= y2), a new binding θ′ = 〈x → x1, y → y2, z → z1〉 would be created with
e adding to its trace projection.

SMEDL vs. QEA. QEA has a uniform algorithm to handle the semantics of
nested quantifiers. However, if the property indicates relations between quan-
tified variables by events which cannot be described by the guard condition,
bindings that do not comply with the relations may be generated. In Sect. 4,
we will show that the semantics of nested quantifiers can be encoded through
hierarchical aggregation monitors in SMEDL. Moreover, we will demonstrate
that SMEDL can check the property involving the relation between quantified
variables by properly generating monitor instances.

3 Implementation of Trace Slicing in SMEDL

This section presents how to use SMEDL to implement the trace slicing algo-
rithm in MOP. Through an example, we first present a transformation from an
FSM-based MOP monitor into a set of SMEDL monitors. Then, we propose
the detailed design of the global wrapper mentioned in Sect. 2.1 and demon-
strate that a monitor network in SMEDL controlled by the global wrapper can
correctly monitor parametric properties.

We present a transformation from an FSM-based MOP monitor to a SMEDL
specification based on the Example 1 in Sect. 1. Recall that Example 1 states
a property UnsafeMapIter that an iterator of a collection must not be used
after the corresponding map of that collection is updated. UnsafeMapIter has a
parameter set with three variables: map(m), collection(c) and iterator(i). The
FSM definition is illustrated in Fig. 3. The shaded states are accepting states,
meaning there is no violation of the property. Note that the original FSM is
complete (which means for each event in the alphabet of the FSM, there exists
at least one transition triggered by the event from all states of that FSM) while
self-looping transitions are omitted for clearer illustration. The process of con-
structing a set of SMEDL monitors corresponding to UnsafeMapIter are pre-
sented below.

Runtime Verification of Parametric Properties Using SMEDL 283

Fig. 3. FSM definition of UnsafeMapIter

Recall that when a SMEDL monitor instance is created, all its parameters
should be bound to a value. As a result, multiple monitors with different param-
eters are necessary. In UnsafeMapIter, there are four events, createC (m, c),
updateM (m), createI (c, i) and useI (i). All possible combinations of parameter
variables include 〈m〉, 〈i〉, 〈m, c〉, 〈c, i〉, 〈m, i〉 and 〈m, c, i〉. Generally, a SMEDL
monitor should be created for each combination. However, since createC (m, c)
is the only event that can start a trace [26], only two bindings 〈m, c〉 and 〈m, c, i〉
will be generated and maintained in MOP. Two SMEDL monitors, mc〈m, c〉 and
mci〈m, c, i〉 are to be constructed.

The specifications of mc and mci are illustrated in Fig. 4. mc is responsible
for storing all seen value pairs of (m, c) carried by createC. When mc receives
createI (c, i), createM2 (i) is raised to trigger creation of a new instance of mci
carrying the value of (m, c, i). Note that createM2 (i) only carries i because mci
knows which instance of mc has raised it. mci then checks whether useI (i)
happens after updateM (m).

To construct SMEDL monitors from an FSM specification, the first step
is to map states in the FSM into states in the SMEDL specifications. In
UnsafeMapIter, m and c are bound in state 2 while i is further bound in state
3, 4 and 5. As a result, we map state 2 into mc and state 3, 4 and 5 into mci.
In the rest of the paper, we assume that corresponding states between the FSM
and the SMEDL specifications have the same name.

Then, the transitions in the FSM are mapped into SMEDL monitors. If the
source and target state of a transition in the FSM carry the same parameter
information, then it can be directly mapped to the corresponding SMEDL spec-
ification. For instance, transition 8 and 9 in mci are mapped from transition 3
and 4 in the FSM definition. If a transition tr : s1 → s2 by an event e has the
source and target state with different parameter information θ1 and θ2, there are
two cases. If θ1 is empty, a transition from the initial state s to s2 is generated
in the SMEDL monitor m〈θ2〉. For instance, transition 5 in mc is mapped from
transition 1 in the FSM. If θ1 is not empty, two transitions are generated. One is
in m〈θ1〉 from s1 to s1 triggered by e with raising an event re. Another one is in
m′〈θ2〉 from the initial state s to s2, triggered by re. For instance, transition 6
in mc and transition 7 mci are generated from transition 2 in the FSM. Omitted
transitions in the FSM are also mapped to mc and mci in the same way. We
could also further optimize mc and mci by removing unnecessary transitions.

284 T. Zhang et al.

For instance, mc does not need to receive useI or updateM while mci does not
need to receive createI and createC.

Finally, the communication is specified in the architecture description.
The communication between mc and mci is specified as: 〈mc, createM2,mci,
createM2, ps〉 where ps is

{〈0,mc, 0〉, 〈1,mc, 1〉, 〈2, createM2 , 0〉}. Note that
the two createM2 in the architecture description represent the exported
event of mc and the imported event of mci and ps specifies that m and
c of mci are from the first and second parameter of mc while i is from
the first parameter of createM2. The communication between mc and the
environment is defined as: (1) 〈null, createC,mc, createC, ps1 〉 where ps1 is
{〈0, createC, 0〉, 〈1, createC, 1〉}; (2) 〈null, createI,mc, createI, {〈1 ,createI , 0 〉}〉,
respectively specifying how createC and createI are sent to mc.

Fig. 4. SMEDL definition of UnsafeMapIter

The monitor design and connection specified in the architecture description
statically describe how bindings are created or extended by other bindings. To
fully implement the trace slicing algorithm, we need to impose an order to ele-
ments in monTypeList in Algorithm 1 according to the relation � over monitor
parameters: if θ2 � θ1, m〈θ1〉 is placed before m′〈θ2〉 in monTypeList. Note that
no two monitors in monTypeList will have identical parameter list. A monitor
with more parameter information (which means in the front of monTypeList)
will be executed before the one with less parameter information. Corresponding
raised events will also be placed in the InnerQueue following this order. This
ensures that an instance will be created by the creation event carrying the most
parameter information, complying with the slicing algorithm that always creates
a new binding by extending the most informative binding if possible.

We use an event trace τ : updateM〈m1〉, createC〈m1, c1〉, createC〈m2, c2〉,
createI〈c1, i1〉, useI〈i1〉 [26] to illustrate the execution of the global wrapper.
The state evolution of mc and mci is given in Table 1. Since updateM is not
the creation event of mc or mci, no instance is created. When createC〈m1, c1〉
and createC〈m2, c2〉 arrive, two instances of mc are created and transitioned to
state 2. createI〈c1, i1〉 triggers the creation of mci〈m1, c1, i1〉 by sending cre-
ateM2 (i1) to mci. mci〈m1, c1, i1〉 is in state 3 after creation. useI〈i1〉 is sent to
mci〈m1, c1, i1〉 and a self-looping transition is executed. It is worth noting that
no instance of mci〈m2, c2, i1〉 is created. This indicates that SMEDL can not
only implement the trace slicing but provide a flexible way for optimization.

Runtime Verification of Parametric Properties Using SMEDL 285

Table 1. State update of SMEDL monitors given τ

updateM(m1) createC(m1,c1) createC(m2,c2) createI(c1,i1) useI(i1)

∅ mc〈m1, c1〉:2 mc〈m1, c1〉:2
mc〈m2, c2〉:2

mc〈m1, c1〉:2
mc〈m2, c2〉:2
mci〈m1, c1, i1〉:3

mc〈m1, c1〉:2
mc〈m2, c2〉:2
mci〈m1, c1, i1〉:3

In the more general case, one monitor may have more than one creation
event and a subset of them may be raised reacting to an incoming event. We
modify the property UnsafeMapIter, changing the parameters of createI to
〈m, c, i〉 and trying to catching the illegal behavior that createI arrives before
createC. The SMEDL specification is illustrated in Fig. 5(a). Suppose a setting
in which there is an instance mc〈m1, c1〉 and no instance mci〈m1, c1, i1〉. When
createI〈m1, c1, i1〉 is sent to mc and mci, it will first trigger the execution of mci
before mc because it has more parameter information than mc, as presented
below. As a result, a new instance mci〈m1, c1, i1〉 is created and transitioned
to state 5. However, it is not consistent with the semantics of the slicing algo-
rithm, which would create mci〈m1, c1, i1〉 by createM2 raised from mc〈m1, c1〉
by createI〈m1, c1, i1〉. To achieve the desired result, the SMEDL specification
is modified as shown in Fig. 5(b), which removes createI as a creation event of
mci. Instead, createI is a creation event of mc, corresponding to transition 11.
This modification guarantees that an instance of mci can always be created by
the correct event.

Fig. 5. Modification of SMEDL definition of UnsafeMapIter

286 T. Zhang et al.

We test the SMEDL specification in Fig. 5(b) using two traces τ1 : createI
〈m1, c1, i1〉 and τ2 : createC〈m1, c1〉, createI〈m1, c1, i1〉. For τ1, mc〈m1, c1〉 and
mci〈m1, c1, i1〉 are created in state s and state 5. For τ2, mc〈m1, c1〉 and
mci〈m1, c1, i1〉 are in state 2 and state 3.

4 Expressing Quantifiers in SMEDL

This section further explores expressing parametric properties with nested quan-
tifiers introduced in QEA. We first propose a methodology to implement aggre-
gation using a SMEDL monitor network through Example 2 below. Then we use
a modified version of Example 2 to illustrate the flexibility of SMEDL to imple-
ment aggregation when the relation between parameters needs to be considered.
The SMEDL specifications for Example 2 (also Example 4 below) are available
online1.

Example 2: candidateSelection [4]. For every voter there must exist a party that
the voter is a member of, and the voter must rank all candidates for that party.
The QEA specification is shown in Fig. 6, which contains two parts, the dec-
laration of nested quantifiers and an event automaton (EA). There are three
quantified variables, v(voter), c(candidate) and p(party) and three paramet-
ric events member, candidate and rank. The third parameter r of rank is an
unquantified variable. The shaded circles in the EA represent accepting states.
Self-looping transitions are omitted. To simplify the presentation, we impose a
restriction on event order of traces: all candidate events always happen after all
member events and all rank events happen after all candidate events.

Fig. 6. QEA specification for candidate selection

The EA is transformed into a set of SMEDL monitors using the same pro-
cess proposed in Sect. 3, as illustrated in Fig. 7. When fed with event trace τ3 :
member(tom, red), member(ali, blue), candidate(jim, red), candidate(flo, red),
candidate(don, blue), rank(tom, jim, 1), rank(ali, don, 1), corresponding state
evolution for the monitor network is shown in Table 2. Compared with bind-
ings generated by execution of QEA in [4], fewer instances are generated.

1 https://github.com/tengz2019/parametricSMEDL.

https://github.com/tengz2019/parametricSMEDL

Runtime Verification of Parametric Properties Using SMEDL 287

Fig. 7. SMEDL monitors for candidate selection

Table 2. State update of SMEDL monitors given τ3

member(t,r) member(a,b) candidate(j,r) candidate(f,r) candidate(d,b) rank(t,j,1) rank(a,d,1)

mvp〈t, r〉:2 mvp〈t, r〉:2
mvp〈a, b〉:2

mvp〈t, r〉:2
mvp〈a, b〉:2
mvcp〈t, j, r〉:3

mvp〈t, r〉:2
mvp〈a, b〉:2
mvcp〈t, j, r〉:3
mvcp〈t, f, r〉:3

mvp〈t, r〉:2
mvp〈a, b〉:2
mvcp〈t, j, r〉:3
mvcp〈t, f, r〉:3
mvcp〈a, d, b〉:3

mvp〈t, r〉:2
mvp〈a, b〉:2
mvcp〈t, j, r〉:4
mvcp〈t, f, r〉:3
mvcp〈a, d, b〉:3

mvp〈t, r〉:2
mvp〈a, b〉:2
mvcp〈t, j, r〉:4
mvcp〈t, f, r〉:3
mvcp〈a, d, b〉:4

For example, there is a binding 〈v : a, p : r, c : j〉 : candidate(j, r) in QEA
(all values are abbreviated to the initial alphabet) but not in SMEDL. This
binding does not influence the verdict of the property for τ3 because ali is not a
member of red and the property only requires the existence of a party.

The architecture is illustrated in Fig. 8. The high level idea is to use a hierar-
chy of aggregation monitors to implement the semantics of nested quantifiers. For
each quantified variable, an aggregation monitor is constructed which receives
checking results from other monitor instances and aggregates them using log-
ical operations such as conjunction or disjunction. Each mvcp〈v, c, p〉 instance
checks whether the voter v belonging to the party p has ranked the candidate
c in the trace and sends the result in resultVCP to collectC . Moreover, when a
new instance of mvcp is created, a countC event is raised and sent to collectC .
collectC 〈v , p〉 is the conjunction of all verdicts from instances of mvcp matching
v and p to check whether all candidates of p have been ranked by v. By calcu-
lating disjunction on all verdicts from collectC matching v, collectP 〈v〉 further
checks whether there exists a party to which v belongs that all candidates of p
have been ranked by v. Finally, collectV 〈〉 is the conjunction of verdicts collected
from all instances of collectP to compute the verdict for the property. Event end
is used to trigger outputting verdicts from mvcp. It is also sent to collectV in
case the trace is empty. From mvcp to collectP , each monitor sends two types of
events to its downstream neighbor. One type is to count number of instances of
the upstream monitor while another type carries the verdict for each instance.
In this way, the downstream monitor knows whether it has already received all
verdicts from its upstream monitor.

288 T. Zhang et al.

Fig. 8. Architecture for candidate selection

To justify the correctness of the structure above, we need to prove that (1)
the generated mvcp instances are sufficient to check the property and (2) the
structure of aggregation monitors correctly implement the semantics of nested
quantifiers. For (1), instances of mvcp only contains all tuples of 〈v, c, p〉 sat-
isfying the relation that v is a member of p and c is a candidate of p, which
is sufficient for checking the property. For (2), collectC guarantees that given
a voter and a party, the verdicts for all candidates belonging to the party are
aggregated by conjunction, complying with the semantics of ∀c. Similarly, we
could justify that collectP implements ∃c. For each voter, if there exist candi-
dates for a party to which the voter belongs, collectV collects the verdict from
the corresponding collectP . If all parties to which the voter belongs do not have
candidate, collectV does not need to check that voter because no instance of
mvcp is instantiated with the voter and mvp only contains accepting states. As
a result, collectV implements ∀v by conjunction over verdicts from all collectP .
As mentioned above, fewer bindings are generated by SMEDL monitors than
QEA, which illustrates that SMEDL has good efficiency in memory use.

Furthermore, by using the hierarchy structure, SMEDL can implement the
semantics of nested quantifiers where quantified variables are related to each
other using events. Two properties modified from candidateSelection are given
below.

Example 3. For each voter and for each party that the voter is a member of, the
voter must rank all candidates for that party.

Example 4. Each voter must belong to each party and he/she must rank all
candidates for that party.

The same architecture illustrated in Fig. 8 can be used to monitor Example 3,
except that collectP is a conjunction over verdicts from collectC instead of dis-
junction. Example 4 is different from Example 3 in the sense that the moni-
tor needs to check whether each voter is bound with all parties appearing in
the trace. The architecture for monitors checking Example 4 is shown in Fig. 9.

Runtime Verification of Parametric Properties Using SMEDL 289

countPFront〈p〉 and countP〈〉 work together to count the domain of the party in
the trace and send it to collectPUniv〈v〉 (conjunction version of collectP) to check
whether v is the member of all parties. collectC is created using createVP because
the monitor needs to check whether member is received for all parties given each
voter. Moreover, end triggers the output of countP , which triggers collectC to
send the verdict to collectPUniv . This order ensures that collectPUniv can get
the number of parties before receiving verdicts from collectC .

Recall that the binding 〈v : a, p : r, c : j〉 : candidate(j, r) is generated in
τ3 for the original QEA specification. This would lead to violation of Example 3
even if the voter ali does not belong to red. To monitor it using QEA, apart
from changing existential quantifier to universal one for p, we also need to add
restriction to p in the guard condition or modify EA by setting state 1 as an
accepting state.

Through examples presented above, we demonstrate that SMEDL is capable
of describing and checking parametric properties with nested quantifiers while
generating fewer bindings. Moreover, the hierarchy of aggregation monitors is
flexible to describe relation between quantified variables. As a future work, we
will propose a general process to generate aggregation monitors for parametric
properties.

Fig. 9. Modification of architecture for candidate selection

5 Related Work

Apart from MOP and QEA, there have been a considerable number of stud-
ies about handling data in RV. In [1], Allan et al. present Tracematches
in AspectJ [24] to support event matching with values of parameters. RV-
monitor [25] and Movec [12] use the trace slicing algorithm proposed in [11]
to support parametric monitoring. In [3], Ballarin presents a generalization of
the slicing algorithm in [11] to support slicing with patterns and constraints.
Larva [14] and its derived tool polyLarva [13] and Valour [2] support parametric
monitoring by dynamic creation of monitor instances. But all parameters are
quantified by universal quantifier.

290 T. Zhang et al.

Several formalisms of temporal logic have been proposed for parametric mon-
itoring such as JLO [30], LTL-FO+ [20], LTLFO [10], MFOTL [9], Monitor Mod-
ulo Theories [16]. Rule-based RV technique is expressive to support data param-
eterization [5,8], from which a lot of tools and techniques have been derived such
as LogScope [6], TraceContract [7], LogFire [22] and data automata [21]. There
are also more research on exploring the relation between specification techniques
for parametric monitoring. In [28] Reger et al. present a subset of syntactic frag-
ments in first-order temporal logic that are sliceable and transform them into
automata for slicing. In [29], a transformation from QEA to rule-based system
is presented and differences between these two techniques with respect to para-
metric monitoring are highlighted.

In [18], Goubault-Larrecq and Olivain present Orchids, an intrusion detection
tool. Monitors can by dynamically spawned reacting to possible beginnings of
attacks. In [19], TOPL automata is presented based on register automata [23]
for runtime verification of systems with unbounded resource generation. The key
features of TOPL automata are use of registers and non-determinism. In [31],
Yamagata et al. present a formalism CSPE for monitoring concurrent systems.
Parametric properties are expressed by recursive parametric processes. Lola [15]
is a stream-based language for monitoring of synchronous systems. In [17], Lola
2.0 is presented for complex security properties. Parameterized stream templates
and dynamic stream generation are added to the language to better support
parametric monitoring.

6 Discussion and Conclusion

In this paper, we compared the approach to parametric monitoring adopted in
SMEDL with well established frameworks of MOP and QEA. Through a trans-
formation from MOP and QEA-inspired specification to SMEDL, we showed how
SMEDL can reproduce monitoring behavior of these frameworks. In addition,
SMEDL does not encode quantifiers in its semantics but rather implements them
as additional aggregator monitors. We note that the size of monitoring speci-
fications in SMEDL can grow as we avoid partial instantiations with multiple
monitors. We believe that we can resort to monitor templates and automatic
transformation to compensate for the increased specification size. In our future
work we will study whether this affects the usability of our approach. Also note
that communication between monitors is necessary in our approach, which may
affect the efficiency of monitoring. At the same time, communicating monitors
allow us to exploit the structure of the problem through distributed deployment
of monitors, improving efficiency when monitoring large-scale systems. Carefully
exploring this balance is also the subject of future work.

We are formalizing the transformation algorithm from MOP and QEA to
SMEDL with correctness proof. We will also formally compare the expressiveness
and parametric monitoring algorithm between SMEDL and MOP, QEA and
other techniques. A preliminary prototype of the method presented in this paper
has been completed. However, the work to implement the tools necessary to
automatically generate and deploy the monitors is still in progress.

Runtime Verification of Parametric Properties Using SMEDL 291

References

1. Allan, C., et al.: Adding trace matching with free variables to AspectJ. In: ACM
SIGPLAN Notices, vol. 40, pp. 345–364. ACM (2005)

2. Azzopardi, S., Colombo, C., Ebejer, J.P., Mallia, E., Pace, G.J.: Runtime verifica-
tion using VALOUR (2017)

3. Ballarin, C.: Two generalisations of Roşu and Chen’s trace slicing Algorithm A.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 15–30.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 3

4. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quan-
tified event automata: towards expressive and efficient runtime monitors. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 9

5. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 5

6. Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis of log files. J.
Aerosp. Comput. Inf. Commun. 7(11), 365–390 (2010)

7. Barringer, H., Havelund, K.: TraceContract: a Scala DSL for trace analysis.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 7

8. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
from Eagle to RuleR. J. Log. Comput. 20(3), 675–706 (2010)

9. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. J. ACM (JACM) 62(2), 15 (2015)

10. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1 4

11. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski,
S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2 23

12. Chen, Z., Wang, Z., Zhu, Y., Xi, H., Yang, Z.: Parametric runtime verification of C
programs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
299–315. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 17

13. Colombo, C., Francalanza, A., Mizzi, R., Pace, G.J.: polyLarva: runtime verifi-
cation with configurable resource-aware monitoring boundaries. In: Eleftherakis,
G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 218–232.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33826-7 15

14. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03240-0 13

15. d’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: 12th
International Symposium on Temporal Representation and Reasoning, TIME 2005,
pp. 166–174. IEEE (2005)

16. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Int. J. Softw.
Tools Technol. Transf. 18(2), 205–225 (2016)

https://doi.org/10.1007/978-3-319-11164-3_3
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-642-40787-1_4
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1007/978-3-662-49674-9_17
https://doi.org/10.1007/978-3-662-49674-9_17
https://doi.org/10.1007/978-3-642-33826-7_15
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13

292 T. Zhang et al.

17. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9 10

18. Goubault-Larrecq, J., Olivain, J.: A smell of Orchids. In: Leucker, M. (ed.) RV
2008. LNCS, vol. 5289, pp. 1–20. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89247-2 1

19. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verification
based on register automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013.
LNCS, vol. 7795, pp. 260–276. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36742-7 19

20. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

21. Havelund, K.: Monitoring with data automata. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014. LNCS, vol. 8803, pp. 254–273. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-45231-8 18

22. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transf. 17(2), 143–170 (2015)

23. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

24. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 18

25. Luo, Q., et al.: RV-Monitor: efficient parametric runtime verification with simul-
taneous properties. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 285–300. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 24

26. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. Int. J. Softw. Tools Technol. Transf. 14(3), 249–
289 (2012)

27. Reger, G.: Automata based monitoring and mining of execution traces. Ph.D.
thesis, University of Manchester (2014)

28. Reger, G., Rydeheard, D.: From first-order temporal logic to parametric trace
slicing. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 216–
232. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3 14

29. Reger, G., Rydeheard, D.: From parametric trace slicing to rule systems. In:
Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 334–352. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 19

30. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electron. Notes Theor.
Comput. Sci. 144(4), 109–124 (2006)

31. Yamagata, Y., et al.: Runtime monitoring for concurrent systems. In: Falcone,
Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 386–403. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46982-9 24

32. Zhang, T., Eakman, G., Lee, I., Sokolsky, O.: Flexible monitor deployment for
runtime verification of large scale software. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11247, pp. 42–50. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03427-6 6

https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.1007/978-3-662-45231-8_18
https://doi.org/10.1007/978-3-662-45231-8_18
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/978-3-319-11164-3_24
https://doi.org/10.1007/978-3-319-11164-3_24
https://doi.org/10.1007/978-3-319-23820-3_14
https://doi.org/10.1007/978-3-030-03769-7_19
https://doi.org/10.1007/978-3-319-46982-9_24
https://doi.org/10.1007/978-3-030-03427-6_6
https://doi.org/10.1007/978-3-030-03427-6_6

Runtime Verification of Parametric Properties Using SMEDL 293

33. Zhang, T., Gebhard, P., Sokolsky, O.: SMEDL: combining synchronous and asyn-
chronous monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol.
10012, pp. 482–490. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9 32

34. Zhang, T., et al.: Correct-by-construction implementation of runtime monitors
using stepwise refinement. In: Feng, X., Müller-Olm, M., Yang, Z. (eds.) SETTA
2018. LNCS, vol. 10998, pp. 31–49. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99933-3 3

https://doi.org/10.1007/978-3-319-46982-9_32
https://doi.org/10.1007/978-3-319-46982-9_32
https://doi.org/10.1007/978-3-319-99933-3_3
https://doi.org/10.1007/978-3-319-99933-3_3

Short Abstracts

Logic in the Time of Cancer:
Causality and Clocks in Cancer

Bud Mishra(B)

New York University, New York, NY, USA

Extended Abstract

A critical translational goal of cancer research is to prevent, control and cure
cancer, and to do so by understanding cancer etiology better. The fact that
cancer is a genomic disease with a progressive dynamics has been known for
some time, but since the causal (etiological) explanations have shifted con-
siderably over time, there is yet to emerge a consensus about how to tackle
it. Were cancer a purely viral disease, it might have been possible to address
it by identifying the (retro)virus and by preventing it, vaccinating against it
or by interfering with the mechanisms at its disposal (e.g., reverse transcrip-
tion). Were it a strictly genomic (mutational) disease, involving (driver) muta-
tions in handful of key genes (e.g., functionalizing oncogenes or dysfunctional-
izing tumor-suppressor genes), it might have been possible to formulate ther-
apies by identifying such mutations, with drugs to control genomic instability
(e.g., synthetic lethality or telomerase or topoisomerase involved in copying and
disentangling genomes) or via gene-therapy. Were it simply endowed with a
just a handful of possible trajectories consisting of succession of driver muta-
tions, it might have been possible to find bottle-neck mutations (e.g., VEGF
mutations involved with angiogenesis) and then inhibiting progression of these
trajectories beyond a critical point, using one or combination of handful of drugs
(e.g., Avastin) – or even better, to detect (non-invasively) the initiating muta-
tions of these trajectories (e.g., EGFR or KRAS/NRAS) and treating the patient
with suitable drugs (possibly universal therapies that work even when the tis-
sue of origin remains unknown). Were the phenotypes (e.g., Cancer Hallmarks)
associated with these driver mutations and their effects directly inferrable, it
might have been possible to terminate or decelerate cancer’s progression via
appropriate drugs or immunotherapy in order to delay the arrival of metastatic
phenotype–a fatal hallmark. Were the evolutionary landscapes of the phenotype-
space to vary from patient to patient or tissue-type to tissue-type, it might have
been possible to “cluster” individualized models by the germ-line genome, tumor
genome, methylation patterns, HLA type and tissue of origin to personalize the
therapy. Were the progression dynamics of cancer merely co-evolution of tumor
and stroma, modulated by the host immune-system, it might have been com-
pletely prevented, contained and reversed by immune enhancement, immuno-
therapy, and cancer vaccines, targeting both adaptive and innate immune sys-
tem, while avoiding adverse auto-immune response and immune resistance.
c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 297–298, 2019.
https://doi.org/10.1007/978-3-030-31514-6

https://doi.org/10.1007/978-3-030-31514-6

298 B. Mishra

While the logical analysis of such an etiological structure of the disease
remains to be rigorously developed, it seems necessary that this logic must
be able to address time, heterogeneity and micro-environment, involved in a
reiterative selection processes, shifting balance (Haldane-Wright) in each stage.
There are reasons to be optimistic as necessary ingredients for such a devel-
opment are imminent, for following reasons: (1) Mathematical logic (namely,
probabilistic propositional modal logic) is a mature field and the fragments that
are needed are available along with rigorous and efficient decision and model
checking algorithms. (2) Data sources (patient, model animal, organoid, cell-
line, and in-silico data) are being made openly available and collected via single-
cell, single-molecule genome and transcriptome mapping and sequencing at a
high-throughput and inexpensively. (3) Systems-biology, data-science and so-
called, artificial-intelligence (AI, ML, RL and statistical inference) tools can be
made rigorous and reproducible in order to build models (e.g., Kripke Struc-
tures for Modal Logic) that could shed light on the underlying somatic evolution
(e.g., using Suppes’ prima-facie causality). (4) Literature on cancer can be mined
to create annotations and ontologies (e.g., COSMIC) that can generate hypothe-
ses that could be rigorously validate/refuted, further enriching not only the
ontologies but also the epistemology of the models.

Towards Real-Time Program Analysis
Based on Nested Timed Automata

Shoji Yuen1(B), Guoqiang Li2, and Mizuhito Ogawa3

1 Nagoya University, Nagoya, Japan
yuen@i.nagoya-u.ac.jp

2 Shanghai Jiao Tong University, Shanghai, China
li-gq@cs.sjtu.edu.cn

3 Japan Advanced Institute of Science and Technology, Nomi, Japan
mizuhito@jaist.ac.jp

We have been investigating a model called “Nested Timed Automata” [1], which
is an extension of timed automata with recursive structure. A location may
recursively invoke a new instance of timed automata with a transition labelled
by push and resume with a pop transition. Besides global clocks common to all
timed automata, each timed automaton may have local clocks. Local clocks are
pushed and popped according to the nested structure of timed automata. The
state reachability from the initial state is shown to be decidable [1] when local
clocks work as regular clocks while in the stack. With a single global clock, the
reachability problem is decidable even if local clocks are frozen in the stack [2].
Based on these results, a program with clocks local to a context can be analysed
with respect to time passage. Moreover, even if the local clocks may be frozen
while in the stack, we see how these results can be applied to the safety analysis
of more structured real-time programs.

References

1. Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Formal Modeling
and Analysis of Timed Systems - 11th International Conference, FORMATS 2013,
Buenos Aires, Argentina, 29–31 August 2013. Proceedings, pp. 168–182 (2013)

2. Li, G., Ogawa, M., Yuen, S.: Nested timed automata with frozen clocks. In: For-
mal Modeling and Analysis of Timed Systems - 13th International Conference,
FORMATS 2015, Madrid, Spain, 2–4 September 2015, Proceedings, pp. 189–205
(2015)

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, p. 299, 2019.
https://doi.org/10.1007/978-3-030-31514-6

https://doi.org/10.1007/978-3-030-31514-6

Author Index

Aceto, Luca 259
Achilleos, Antonis 259

Bensalem, Saddek 242
Bishop, Martin 35
Bortolussi, Luca 225

Cairoli, Francesca 225
Češka, Milan 107
Cherry, Elizabeth M. 9
Cleaveland, Rance 1

Das, Himel 146
De Nicola, Rocco 181
Dehnert, Christian 107

Fenton, Flavio H. 9
Francalanza, Adrian 259

Glimm, James 35

Havelund, Klaus 73
Holzmann, Gerard J. 51

Ingólfsdóttir, Anna 259
Iosti, Simon 242
Iravanian, Shahriar 9
Islam, Md. Ariful 146

Jansen, Nils 107
Jasper, Marc 126
Junges, Sebastian 107

Kaboudian, Abouzar 9
Katoen, Joost-Pieter 107
Katsaros, Panagiotis 165

Kaur, Ramneet 276
Kim, Soojin 35

Lee, Insup 276
Lehtinen, Karoliina 259
Lekidis, Alexios 165
Li, Guoqiang 299
Lim, Hyunkyung 35

Maggi, Alessandro 181
McMillan, Kenneth L. 57
Merelli, Emanuela 205
Mishra, Bud 297
Murthy, Abhishek 146

Ogawa, Mizuhito 299

Paoletti, Nicola 225
Peled, Doron 242

Shankar, Natarajan 73
Shiferaw, Yohannes 9
Sifakis, Joseph 181
Sokolsky, Oleg 276
Steffen, Bernhard 126
Stoller, Scott D. 225

Velasco-Perez, Hector Augusto 9

Wasilewska, Anita 205

Yuen, Shoji 299

Zhang, Teng 276
Zuck, Lenore D. 57

	Preface
	Personal Notes for Scott
	Contents
	Scott Smolka and Me
	Abstract
	1 Introduction
	2 My First Encounter with Scott
	3 Our First Meeting
	4 1989–1998 BSB (Before Stony Brook)
	5 I Go to Stony Brook, and We Start a Company
	6 The Big Project Era
	7 Coda
	References

	Analysis of Complex Biological Systems
	A Comprehensive Comparison of GPU Implementations of Cardiac Electrophysiology Models
	1 Introduction
	2 Methods
	2.1 Models
	2.2 Numerical Methods

	3 Comparison of GPU Implementations
	3.1 MATLAB
	3.2 OpenACC
	3.3 Python Numba Implementation
	3.4 TensorFlow Implementation
	3.5 WebGL and Abubu.js Implementation
	3.6 NVIDIA CUDA Implementation

	4 Discussion and Conclusion
	References

	From Automated MRI Scan to Finite Elements
	1 Introduction
	2 The Automated Algorithm
	2.1 Segmentation
	2.2 Surface Mesh
	2.3 Vessel Wall Thickness
	2.4 Volume Mesh
	2.5 Fiber Orientation

	3 Ionic Model
	4 Discussion
	References

	Program Analysis
	Formalizing Requirements Is Hard
	1 Introduction
	2 The Charm of Informality
	2.1 Visualizing Requirements

	3 Graphs and Sets
	3.1 Rule-Based Model Checking

	4 Conclusion
	References

	Invisible Invariants Are Neither
	1 Introduction
	1.1 The Problem of Generalization

	2 Modeling Systems
	2.1 A Basic Transition System
	2.2 Accommodating Fairness

	3 Discharging the Premises
	4 Hypotheses Discovery: Classical Invisible Invariants
	5 An Abstract Interpretation Discovery
	6 Epilogue
	References

	A Refinement Proof for a Garbage Collector
	1 Introduction
	2 Additional Related Work
	3 Transition Systems and Refinement Mappings
	4 The Algorithm
	4.1 The Memory
	4.2 The Mutator
	4.3 The Collector

	5 The Specification
	6 The Refinement Steps
	6.1 First Refinement : Introducing Colours
	6.2 Second Refinement : Colouring by Propagation
	6.3 Third Refinement : Propagation by Scans

	7 Observations
	A Formalization in PVS
	A.1 Transition Systems and Their Refinement
	A.2 The Specification
	A.3 The First Refinement

	B The Proof in PVS
	B.1 Function Lemmas
	B.2 Invariant Lemmas
	B.3 The Refinement Lemma

	References

	Synthesis of Models, Parameters and Benchmarks
	Model Repair Revamped
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Models and Specifications
	2.2 Families of Markov Chains
	2.3 Synthesis Problems
	2.4 Synthesis Costs
	2.5 A Program Sketching Language

	3 Counterexample-Guided Synthesis
	3.1 CEGAR
	3.2 CEGIS

	4 Applications
	4.1 Program Sketching
	4.2 Software Product Lines
	4.3 Controller Synthesis in Partially Observable Systems

	5 Epilogue
	References

	Generating Hard Benchmark Problems for Weak Bisimulation
	1 Introduction
	2 Preliminaries
	2.1 MTS, LTS, and Their Languages
	2.2 (Weak) Refinement and (Weak) Bisimulation

	3 Parallel MTS Composition
	4 Benchmark Scenario and Hardness
	5 Iterative Expansion of a Benchmark Problem
	5.1 Property-Preserving Parallel Decomposition
	5.2 Alphabet Extension
	5.3 Modal Refinement

	6 Conclusion
	References

	Robustness of Neural Networks to Parameter Quantization
	1 Introduction
	2 Background
	3 Parameter Robustness
	4 Verification and Estimation of Parameter Robustness
	4.1 Verifying Parameter Robustness
	4.2 Estimating Maximum Parameter Robustness

	5 Case Studies
	6 Results
	7 Related Work
	8 Conclusions and Directions for Future Work
	References

	Model-Based Design
	Model-Based Energy Characterization of IoT System Design Aspects
	1 Introduction
	2 Background
	2.1 Measuring Energy Consumption with Powetrace
	2.2 Energy-Aware Modeling of IoT Systems

	3 Characterization of IoT System Design Aspects
	3.1 Energy-Relevant Parameters for IoT Design Aspects
	3.2 Energy Characterization
	3.3 Energy Aspect Monitoring

	4 Case-Study: Energy Characterization of ITS Design Aspects
	4.1 Application of the Proposed Method
	4.2 Experiments

	5 Conclusion
	References

	A Logic-Inspired Approach to Reconfigurable System Modelling
	1 Introduction
	2 Non-parametric Systems
	2.1 Disjunctive and Conjunctive Styles

	3 Parametric Architectures and Dynamic Systems
	4 L-DReAM Encoding of Other Coordination Languages
	5 Conclusion and Related Work
	References

	Data-Driven Design
	Topological Interpretation of Interactive Computation
	1 Introduction
	2 Interactive Computation
	3 Topological Interpretation of Interactive Computation
	4 Final Remarks
	References

	Conformal Predictions for Hybrid System State Classification
	1 Introduction
	2 Neural State Classification for Hybrid System Reachability
	3 Conformal Prediction for Neural Networks
	3.1 CP Algorithm
	3.2 Nonconformity Function
	3.3 Confidence and Credibility

	4 Measures of Prediction Reliability
	4.1 Global Interpretation
	4.2 Acceptance Criterion

	5 Experimental Evaluation
	5.1 Calibration Scores
	5.2 Performance Evaluation
	5.3 Benefit of Conformal Predictions

	6 Related Work
	7 Conclusion
	References

	Control Synthesis Through Deep Learning
	1 Introduction
	2 Preliminaries
	3 Control and Machine Learning
	4 Control and Deep Learning
	5 Control and Genetic Programming
	6 Discussion
	References

	Runtime Verification
	The Cost of Monitoring Alone*-10pt
	1 Introduction
	2 Preliminaries
	2.1 The Model and the Logic
	2.2 Two Monitoring Systems
	2.3 Automata, Languages, Equivalence
	2.4 Synthesis

	3 Monitor Transformations: Upper Bounds
	4 Lower Bounds
	5 Logical Consequences
	6 Conclusion
	References

	Runtime Verification of Parametric Properties Using SMEDL
	1 Introduction
	2 Preliminaries
	2.1 Overview of SMEDL
	2.2 Overview of MOP
	2.3 Overview of QEA

	3 Implementation of Trace Slicing in SMEDL
	4 Expressing Quantifiers in SMEDL
	5 Related Work
	6 Discussion and Conclusion
	References

	Short Abstracts
	Logic in the Time of Cancer: Causality and Clocks in Cancer
	Towards Real-Time Program Analysis Based on Nested Timed Automata
	References

	Author Index

