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 Introduction

We are at the dawn of precision medicine, a tran-
sitional period fueled by technological advances 
in high-throughput assays for various types of 
biological data, imaging, sensors, data science, 
and computing. The application of these methods 
to large and deeply phenotyped cohorts coupled 
with our current understanding of disease patho-
genesis are moving us closer to the widespread 
development and implementation of personalized 
therapies. The adoption of precision medicine 
across pulmonary, critical care, and sleep remains 
uneven, however, as can be gleaned by contrast-
ing the reviews provided in preceding chapters. 

Here, we summarize salient findings from each 
book section and major themes related to the 
future of precision medicine research and its 
implementation.

 Genetics and Pharmacogenetics 
in Pulmonary, Critical Care, 
and Sleep Medicine

High-throughput genomic techniques have led to 
the discovery of loci linked to various pulmonary 
diseases and uncovered potential targets for drug 
development. In the case of rare diseases, where 
one or few loci confer a high proportion of dis-
ease susceptibility, substantial progress has been 
made in precision medicine. As discussed in the 
chapter on Diffuse Pulmonary Disorders, 
genotype- driven precision therapies are available 
or under study for patients with neonatal respira-
tory distress syndrome, cystic fibrosis, pulmo-
nary alveolar proteinosis, pulmonary Langerhans 
cell histiocytosis, and alpha-1 antitrypsin defi-
ciency (AATD) [1–6]. For these diseases and 
other rare ones of unknown origin, genetic evalu-
ation can proceed in a relatively straightforward 
manner thanks to the availability of genome 
sequencing. A major barrier now is that ultra- 
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rare, novel variants of uncertain significance are 
often identified via sequencing, and determining 
which of these may actually lead to observed 
traits is not straightforward [7]. Even when causal 
loci are identified, there may not be a treatment 
available. Identification of causal loci is nonethe-
less a helpful starting point that may lead to treat-
ment identification as has been demonstrated 
successfully in some cases [8]. Genetic counsel-
ors play an important role in helping patients and 
their families navigate the process of searching 
for loci linked to disease and taking actions based 
on results.

For complex diseases, although most genomic 
findings have not yet changed clinical practice, 
some may soon lead to advances in precision 
medicine. For example, genetic studies of idio-
pathic pulmonary fibrosis (IPF) have begun to 
clarify why this disease occurs and identify new 
potential therapeutic targets. Because IPF is a 
diagnosis of exclusion, assigned only after vari-
ous other conditions that present similarly have 
been ruled out, and IPF prognosis is poor, any 
clues regarding its origin are of great importance 
[9]. Further, distinguishing IPF from other inter-
stitial lung diseases matters, as currently avail-
able anti-fibrotic therapies have been studied and 
approved for IPF patients but not those with other 
fibrosing idiopathic interstitial pneumonias [9]. 
Common and rare genetic factors conferring dis-
ease risk in IPF include variants in surfactant pro-
tein C (SFTPC), surfactant protein A2 (SFTPA), 
telomerase reverse transcriptase (TERT) and 
RNA component (TERC) [10–13], and Mucin 
5B, Oligomeric Mucus/Gel-Forming (MUC5B) 
[14, 15]. Distinct genotypes found in these and 
other genes, which have implicated surfactants, 
mucociliary function, cell-cell adhesion and telo-
mere maintenance as playing important roles in 
IPF pathobiology, may determine clinical pheno-
types and novel therapies for IPF. The next stage 
is the conduct of prospective clinical trials to 
translate current IPF genetics observations into 
findings that may be implemented in clinical 
practice [16].

As demonstrated by genomics studies of 
COPD, genome-wide association studies 
(GWAS) with progressively larger sample sizes 

and increased coverage of genetic variants have 
been useful to identify reproducible disease risk 
loci. The largest COPD GWAS to date, consist-
ing of 35,735 COPD cases defined by moderate 
to very severe airflow limitation and 222,076 
controls with data on more than 6 million genetic 
variants, identified 82 genome-wide significant 
loci, at least 60 of which replicated in an indepen-
dent cohort [17]. Effect sizes of these loci were 
relatively small (odds ratios 1.06–1.21) and 
together accounted for 7.0% of the COPD pheno-
typic variance, indicating that individual GWAS 
results are unlikely to serve as biomarkers. 
However, the identification of novel drug targets 
and pathways that may lead to the discovery of 
COPD endotypes is made possible by the study 
of these genes, as suggested by subsequent func-
tional work of COPD-associated genes such as 
family with sequence similarity 13 member A 
(FAM13A), cholinergic receptor nicotinic alpha 3 
subunit (CHRNA3), cholinergic receptor nico-
tinic alpha 5 subunit (CHRNA5), hedgehog inter-
acting protein (HHIP), and matrix 
metallopeptidase 12 (MMP12). Beyond the many 
common variant associations identified for 
COPD, it is worth noting that the most validated 
genetic risk factor that accounts for 1–5% of 
COPD cases is the SERPINA1 variant that results 
in alpha-1 antitrypsin deficiency (AATD) [18]. 
Because this variant has not been identified via 
GWAS, further studies on the role of rare variants 
in subtypes of COPD may yield insights into 
other rare endotypes.

In the case of asthma, the most well-known 
and highly replicated genetic association signal is 
within the 17q21 locus, spanning genes ORMDL 
sphingolipid biosynthesis regulator 3 (ORMDL3) 
and gasdermin B (GSDMB) [19–21]. Although 
the exact mechanisms via which these genes are 
related to asthma is not yet known, functional 
studies are making progress in understanding 
their role in disease pathogenesis: overexpression 
of either ORMDL3 or GSDMB in mouse bron-
chial epithelium leads to increased airway remod-
eling and responsiveness [22, 23], and GSDMB 
protein induces pyroptosis of airway epithelia 
cells during inflammation [24]. Various immune 
pathway genes have also been associated with 
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asthma, and contrasting association results 
obtained with specific asthma endotypes and 
other allergic diseases has helped clarify molecu-
lar processes that are unique versus shared across 
these conditions. Much work remains to yield 
novel therapies or identify novel genetics mark-
ers that are specific to asthma endotypes on the 
basis of GWAS findings.

In contrast to IPF, asthma and COPD, lung 
cancer is primarily caused by environmental 
exposures, such as tobacco smoke, that cause 
non-inherited somatic mutations [25]. While her-
itable genetic factors may influence individual 
response to environmental exposures and play a 
direct role in a minority of lung cancer cases, 
studies of somatic mutations have been the focus 
of much work and have advanced precision medi-
cine for some types of lung cancer. Specifically, 
targeted treatments for various mutations 
involved in non-small cell lung cancer (NSCLC), 
which accounts for approximately 85% of all 
cases [26], have been identified. Notable exam-
ples include mutations of epidermal growth fac-
tor receptor (EGFR), anaplastic lymphoma 
kinase (ALK), and ROS Proto-Oncogene 1, 
Receptor Tyrosine Kinase (ROS1) [27, 28]. 
Testing of specific mutations that drive lung 
tumorigenesis where there is a chemotherapeutic 
drug available to target cells that harbor that 
mutation is currently recommended, and high- 
throughput sequencing has enabled the continued 
detection of additional driver mutations that con-
tribute to lung cancer development and progres-
sion [29]. Many questions remain in lung cancer, 
including gaining traction on small cell lung can-
cer (SCLC), which is characterized by rapid 
growth, early metastasis, high molecular com-
plexity, a large number of mutations in each 
tumor, and a very low 2-year survival rate [30, 
31], as well as the identification of a broader 
range of mutations in NSCLC.

With the exception of lung cancer loci that 
have targeted drugs, few pharmacogenetic loci 
have been identified and widely replicated for 
most respiratory diseases. This is due in part to 
the limited number of large cohorts with appro-
priate and similarly captured drug response mea-
sures, which make studying these traits 

particularly challenging. Pharmacogenomics 
studies of bronchodilator and glucocorticoid 
response have been conducted for people with 
asthma and COPD, under the rationale that inter- 
individual variability in the response to these 
drugs has a genetic component and that genetic 
variants may be useful to predict drug response 
or their side effects. Early reports from candidate 
gene studies of Adrenoceptor Beta 2 (ADRB2), 
the primary receptor target of β2-agonists, found 
that variants of this gene were associated with 
bronchodilator response in people with asthma or 
COPD, but more recent meta-analysis have found 
few or no consistent associations between geno-
type and treatment response in COPD [32] and 
asthma [33]. Although some promising GWAS 
associations have been measured and are sup-
ported by functional data, such as 
spermatogenesis- associated serine-rich 2 like 
(SPATS2L) with bronchodilator response [34] 
and glucocorticoid-induced 1 (GLCCI1) with 
inhaled corticosteroid response [35], overall, 
pharmacogenetic studies over the past decade 
have failed to deliver medically actionable 
results, and it is unlikely that common genetic 
variants will serve as biomarkers of β2-agonist or 
steroid responsiveness [36].

 Biomarkers in Pulmonary, Critical 
Care, and Sleep Medicine

As described in several chapters, the search for, 
and discovery of, biomarkers has led to the evolu-
tion of syndrome definitions from symptom-cen-
tered diagnoses to more precise definitions based 
on genetics and other molecular changes. In pul-
monary infections, the development of metage-
nomic testing has led to the identification of 
specific pathogens associated with illness in chil-
dren without a previously identifiable pathogen 
[37]. The combination of metagenomics with 
novel sequencing platforms has also facilitated 
the analysis of sputum samples to identify bacte-
rial pathogens with a turnaround time of 6 hours 
[38]. Additional expansion of these methods will 
enable rapid diagnosis and therapeutic changes in 
real time, rather than on culture-based methods, 

28 Summary and Future Applications of Precision Medicine in Pulmonary, Critical Care, and Sleep…



420

the current standard. Further, a deeper under-
standing of pathogens associated with infections 
is transforming how we prescribe and de-escalate 
therapy with antibiotics, which is of particular 
importance in the setting of increasing antibiotic 
resistance worldwide [39].

The search for biomarkers related to chronic 
airways obstruction has shown promise to dis-
cover endotypes of asthma, COPD and asthma- 
COPD overlap (ACO). Although COPD and 
asthma are considered distinct diseases, they 
share clinical manifestations, such as airway 
inflammation and obstruction. Consequently, 
the therapies used in their management overlap, 
as they are directed towards reducing airway 
inflammation and reversing bronchoconstric-
tion. Some biomarkers have been developed for 
Type 2-driven asthma, while some for non-Type 
2 asthma, COPD and ACO are only in the early 
stages of development. For example, eosino-
phils are used to predict therapeutic response 
and guide treatment in both asthma and COPD 
[40–42], including targeted treatments such as 
mepolizumab [43]. IgE, which correlates with 
the presence and severity of asthma, is another 
widely used biomarker that has driven the 
development of biologics like omalizumab 
[44]. With the exception of COPD related to 
AATD, no COPD-specific endotypes with clini-
cally relevant treatments exist. Plasma fibrino-
gen qualified as the first FDA-approved 
biomarker for COPD, to be used for patient 
selection for enrollment into clinical trials to 
enrich for those who are at risk of disease wors-
ening [45]. While identifying elevated plasma 
levels of fibrinogen as a biomarker is a step for-
ward, fibrinogen lacks disease specificity and 
does not establish an endotype. Biomarker 
studies of asthma and COPD have made evident 
that no single gene or molecular biomarker will 
be sufficient to differentiate endotypes of these 
complex and multifactorial diseases. In fact, 
biomarker panels incorporating multiple mark-
ers in combination have shown increased effi-
cacy over single biomarkers. Accurate and 
reproducible endotyping would be of great util-
ity for the study and management of chronic 
airways obstructive diseases, enabling the 

development of treatments that target specific 
dysregulated pathways.

As is the case for obstructive airway dis-
ease, interstitial lung disease (ILD) refers to a 
large group of complex and highly heteroge-
neous diseases. Although shared characteris-
tics of those with ILD include changes to the 
lung interstitium, distorted pulmonary archi-
tecture, and altered gas exchange ability of the 
lung, various molecular pathways underlie 
these traits. There are no molecular biomarkers 
in widespread clinical use for ILD, including 
IPF, although several exciting candidates are 
under study. For both IPF and non-IPF ILD, 
there is an urgent need to identify and validate 
biomarkers for early diagnosis, and monitor 
disease progression and outcomes [46]. Among 
the promising biomarkers for ILD and/or IPF 
are: 1) surfactant protein A (SFTPA) and sur-
factant protein D (SFTPD) [47], which are also 
supported by genetics studies [12, 48]; 2) telo-
mere length, supported by the observations 
that a) telomere shortening is associated with 
cell death of airway epithelial cells and could 
explain the occurrence of disease in older indi-
viduals [49] and b) association of mutations in 
telomerase reverse transcriptase (encoded by 
the TERT gene) and telomerase RNA (encoded 
by TERC) that lead to abnormal telomere 
shortening have been observed in 8–15% of 
patients with familial pulmonary fibrosis [50, 
51]; and 3) matrix metallopeptidase 7 (MMP7), 
the most studied and validated biomarker in 
IPF, whose elevated levels are associated with 
disease in multiple compartments (e.g., BAL, 
serum, lung tissue) and is related to extracel-
lular matrix remodeling and fibroproliferation 
[52–56].

In addition to nucleic acid and protein bio-
markers, imaging biomarkers have been adopted 
as diagnostic and therapeutic response tools, 
especially in lung cancer [57]. However, as illus-
trated in the chest imaging chapter, precision 
imaging is becoming an invaluable tool for the 
study and phenotyping of patients with chronic 
lung diseases such as COPD [58]. Therefore, the 
integration of biospecimen-derived and imaging 
biomarkers has the potential to transform disease 
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classification and therapeutics. For IPF, detection 
of interstitial lung abnormalities via imaging are 
the best, albeit limited, approach for early detec-
tion of fibrosis [59, 60]. Another example of how 
imaging can be used for patient phenotyping is 
the use of machine learning to evaluate cardiac 
MRI changes of right ventricle (RV) failure in 
pulmonary hypertension, as work has demon-
strated that patients with loss of effective contrac-
tion in the septum and free wall of the RV, along 
with reduced basal longitudinal motion, have 
worse RV failure. The combination of these car-
diac MRI findings with traditional clinical char-
acteristics and hemodynamics led to improved 
survival prediction and showed better separation 
of median survival between high- and low-risk 
groups [61]. Therefore, imaging integration with 
clinical characteristics improves patient identifi-
cation and outcome prediction.

 Phenotyping in Pulmonary, Critical 
Care, and Sleep Medicine

Phenotyping of pulmonary, critical care, and 
sleep-related conditions has become intertwined 
with the search for omics and imaging- based 
biomarkers. Although progress in phenotyping 
is made possible by the identification of bio-
markers, the identification of biomarkers is 
made easier when distinct phenotypes of people 
are captured. Thus, phenotyping using clinical 
data and approaches besides high-throughput 
omics and imaging techniques remains relevant 
in precision medicine. The challenge of disease 
heterogeneity was salient for the complex con-
ditions described, including IPF, COPD, sepsis, 
and acute respiratory distress syndrome 
(ARDS). The combination of deep phenotyping 
and identification of molecular profiles that 
characterize pathophysiologically heteroge-
neous conditions is currently the best approach 
to drug discovery. For example, the use of blood 
eosinophil count is a promising predictive bio-
marker of clinical response to inhaled cortico-
steroids in COPD [62–64]. Much work remains 
in the identification of more specific biomarkers 
and therapies for COPD and other diseases, as 

can be gleaned from the chapters focused on 
complex respiratory conditions.

Sepsis and ARDS each cause substantial 
morbidity and mortality, and precision medi-
cine approaches are sorely needed to improve 
outcomes related to them. Their study is chal-
lenged not only by disease heterogeneity but 
also by the fact that the entire course of disease 
is measured in days to weeks rather than months 
to years. Promising results from large-scale 
gene expression and targeted proteomics 
plasma studies suggest that biologically distinct 
patterns of expression may identify differential 
response to routine treatments applied in the 
intensive care unit (ICU). In sepsis, a gene 
expression signature with dysregulated adap-
tive immune signaling has evidence for a dif-
ferential response to systemic steroid therapy 
[65, 66], whereas in ARDS, a hyperinflamma-
tory pattern identified in plasma using targeted 
proteomics was favorably associated with ran-
domized interventions including high positive 
end-expiratory pressure, volume conservative 
fluid therapy, and simvastatin therapy [67–70]. 
In the case of pulmonary arterial hypertension 
(PAH), a whole blood transcriptomic classifier 
led to the identification of a specific signature 
in vasodilator-responsive PAH that differenti-
ates it from non-responsive PAH [71]. 
Replication of these critical care and PAH find-
ings and the conduct of prospective studies 
evaluating expression signatures may lead to 
clinically useful results.

Sleep medicine is one of the most data-rich 
fields in medicine because of the increasing con-
duct of sleep studies that include remote collec-
tion of data from positive airway pressure (PAP) 
devices. The use of sophisticated analytical 
methods to identify distinct patterns of data cap-
tured during sleep has led to the characterization 
of distinct obstructive sleep apnea endotypes 
associated with adverse cardiovascular events 
[72]. Machine learning and computational tools 
[73, 74] are being further leveraged to develop 
better classification methods for various sleep 
disorders. These advances in phenotyping cou-
pled to the discovery of biomarkers may yield 
striking changes in sleep precision medicine.

28 Summary and Future Applications of Precision Medicine in Pulmonary, Critical Care, and Sleep…
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 The Role of Sensors, Wearables 
and Health Information 
Technologies in Pulmonary, Critical 
Care, and Sleep Medicine

Along with efforts to capture molecular, imaging 
and phenotype data using traditional clinical and 
research approaches, precision medicine captures 
additional complementary data on the environ-
ment, behavior, patient-reported symptoms and 
outcomes, and medication use. The latter are 
made possible by advances in health information 
and sensor technologies, which have resulted in 
the creation of a wide range of mobile health 
(mHealth) platforms for disease self- 
management, research, and inclusion of novel 
data streams into provider-facing applications 
[75]. The use of these platforms has tremendous 
potential to benefit patients, providers, and the 
entire healthcare system although their docu-
mented clinical utility has not been established in 
most cases. While over 325,000 mobile applica-
tions (apps) are currently available, most are lim-
ited to providing information [76], and a relatively 
small proportion are dedicated to respiratory 
health. Functions provided by respiratory apps 
include medical education, messaging, diary 
logs, disease self-management, and educational 
games [77]. One of the largest mobile health 
tracking studies thus far was the Asthma Mobile 
Health Study. This project demonstrated the fea-
sibility of using a mobile app to monitor asthma 
symptoms, but the lessons learned at study com-
pletion apply to most mobile health efforts: sus-
taining initial enthusiasm of an app is very 
difficult, there is selection bias in those enrolling 
and providing information, and data security con-
cerns limit some subjects’ willingness to share 
data [78]. Wearables, devices worn on the body 
to track bodily functions, have become a part of 
daily life. Most wearables are worn on a wrist or 
chest with functions that include tracking exer-
cise, weight loss, sleep, and coping with stress 
[79]. Incorporating wearable data into respiratory 
studies may be an effective way to capture addi-
tional subject data to aid in phenotyping. Use of 
these technologies is still in the early stages, and 
despite some early progress, several barriers must 

be overcome before mHealth is widely adopted 
and recommended by healthcare providers.

Concern for pollution’s effect on health and 
broad demand for accessible environmental mon-
itoring have led researchers and manufacturers to 
develop a number of low-cost, portable pollution 
sensors that are able to capture increasingly finer- 
scaled geographic differences in pollution. Such 
sensors broaden the scope of environmental stud-
ies that are possible: rather than rely on measures 
taken by regulatory monitors that are not able to 
account for the spatial and temporal heterogene-
ity of personal exposures, we are nearly able to 
measure individual exposure profiles. Although 
pollution measurements taken with low-cost sen-
sors are less accurate and reliable than reference 
monitors, several studies have shown the feasibil-
ity and validity of using them to capture air pollu-
tion information across an area by deploying 
sensors in fixed-location networks, attaching 
them to vehicles, placing them in indoor spaces, 
and having people wear them to monitor personal 
exposures [80–82]. Ultimately, capturing per-
sonal exposure measures and integrating them 
into health monitoring tools will lead to improved 
precision medicine.

 Precision Therapies in Pulmonary, 
Critical Care, and Sleep Medicine

In parallel to the advances in genomics, bio-
markers, and phenotyping, therapeutics have 
improved by specific knowledge of underlying 
molecular changes associated with distinct dis-
eases. Of pulmonary diseases, precision medi-
cine advances are most notable in lung cancer, 
for which, as mentioned above, some so-called 
driver mutations can be targeted with specific 
chemotherapeutic agents. The demonstration 
that patients with NSCLC with activating muta-
tions in EGFR could be successfully treated with 
the tyrosine kinase inhibitor gefitinib [83], led to 
the search for other specific mutations in NSCLC 
that could be drug targets. The subsequent iden-
tification of ALK and development of ALK 
inhibitors [84], as well as many other oncogenic 
drivers, has been associated with improved out-
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comes in lung cancer over the last 15 years [85]. 
Efforts to identify driver mutations in lung can-
cer continue, and greater personalized 
approaches to cancer therapy will result from an 
improved understanding of lung tumor evolu-
tion, by allowing physicians to anticipate which 
lung tumors will develop resistance to chemo-
therapeutic agents and which lung tumors have a 
propensity to recur or metastasize. Cystic fibro-
sis has also made significant advances in targeted 
therapies. The development of cystic fibrosis 
transmembrane conductance regulator (CFTR) 
modulators that correct for specific deficiencies 
in the CFTR channel [86–88] are a first genera-
tion of drugs that can potentially transform this 
devastating disease. Advances in lung cancer and 
cystic fibrosis offer hope that other domains of 
pulmonary, critical care, and sleep medicine may 
soon have precise therapeutics, based on knowl-
edge of specific molecular changes that charac-
terize diseases.

Lung transplantation, used as a rescue therapy 
for patients with advanced lung disease, requires 
close monitoring to identify allograft rejection. 
Identification of allograft rejection is currently 
based on clinical signs and invasive procedures, 
such as lung biopsy, and thus, novel methods to 
improve detection of allograft rejection would 
greatly improve care of patients after transplanta-
tion. A promising non-invasive approach to iden-
tify early rejection may be the quantification of 
donor-derived cell-free DNA, as a study demon-
strated that subjects with average levels in the 
upper tertile had a 6.6-fold higher risk of devel-
oping allograft failure [89]. This and other bio-
marker studies may soon improve management 
of immunosuppression.

Mechanical ventilation is a life-saving inter-
vention used to treat patients in the ICU that 
requires immediate attention to patient tolerance 
and real-time adjustments to minimize the risk of 
ventilator-induced injury and ventilator dyssyn-
chrony [90]. Thus, mechanical ventilation is one 
of the most important practices in the ICU that is 
personalized to maximize the benefit of physio-
logic support while avoiding harm to patients. 
The sophisticated design of modern ventilators 
has enabled safer practice of telemedicine in the 

ICU by allowing clinicians to evaluate patients 
remotely through video streams. Tele-ICU prac-
tices have also facilitated the redesign of care 
processes to improve outcomes in critical care 
[91], a demonstration of the power of thoughtful 
design of clinical interventions that use 
telemedicine.

Cigarette smoking is a key risk factor for mul-
tiple pulmonary diseases, particularly COPD 
and lung cancer. Consequently, smoking cessa-
tion is an essential intervention in clinical prac-
tice. Despite evidence of increased interest in 
quitting smoking over the past few decades 
(49.2% in 2000 versus 55.4% in 2015), success-
ful quitting happens in less than 10% of smokers 
in the United States according to the Centers for 
Disease Control and Prevention [92]. Although 
these outcomes are multifactorial, pharmacoge-
netics of nicotine plays a role. Both GWAS and 
candidate gene studies have identified loci asso-
ciated with response to smoking cessation 
agents. Specifically, there is evidence that poly-
morphisms in cytochrome genes (CYP2A6, 
CYP2B6), which are involved in nicotine metab-
olism, and cholinergic receptors (CHRNA3, 
CHRNA4, CHRNA5, CHRNB4) are associated 
with nicotine replacement therapy outcomes [93, 
94]. Pharmacogenomic profiling may thus serve 
as an adjunctive measure in the selection of 
smoking cessation strategies [94].

 Ongoing and Future Efforts 
in Pulmonary, Critical Care, 
and Sleep Precision Medicine

Several large studies are underway to identify 
endotypes for various pulmonary, critical care, 
and sleep conditions. A notable initiative aimed 
at driving precision medicine is the U.S. National 
Heart, Lung, and Blood Institute (NHLBI)’s 
Trans-Omics for Precision Medicine (TOPMed) 
Program. The early phase of this program 
included the generation of whole-genome 
sequencing data for patients with well-defined 
clinical phenotypes and outcomes from earlier 
NHLBI-funded studies [95]. As the program has 
continued, the subjects sequenced are increas-
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ingly diverse and various layers of omics data are 
being incorporated. Results from TOPMed are 
expected to lay a foundation for precision medi-
cine to substantially improve in several complex 
respiratory diseases.

As noted in the chapter on Precision Medicine 
for All, an important limitation of precision 
medicine now is the lack of information on 
minority populations [96]. For example, despite 
significant advances in the understanding of the 
human genome and decreased sequencing costs, 
only 22% of GWAS participants are non-Euro-
pean [97]. Because some observed racial/ethnic 
and sex disparities in respiratory disease preva-
lence and severity may have a genetic basis, 
genetics and other omics studies must include 
diverse groups to inform precision medicine 
efforts. In addition to this issue being addressed 
by large studies such as TOPMed, individual 
researchers and healthcare providers need to be 
aware of the limitations of precision medicine 
approaches that result from studies based on 
non-diverse populations.

Translating genetic associations to disease 
understanding remains a major challenge, as the 
number of loci obtained via GWAS and next- 
generation sequencing studies outpaces the abil-
ity of functional studies to identify biological 
mechanisms. Factors that contribute to the slow 
translation include: 1) the time-consuming nature 
of functional studies given the need to tailor 
experiments to a particular complex disease phe-
notype and type of polymorphisms in a genomic 
region; 2) in order to test genes and variants for 
function, complex diseases have to be simplified 
into assays that may not capture the cell-specific, 
developmental, or environmental context neces-
sary for functional elucidation of gene/variant 
function; and 3) several loci of interest are in 
gene deserts or genes with no annotated function, 
making the design of functional experiments 
even more difficult. Ongoing efforts to identify 
cell types using single-cell methods for expres-
sion, protein, and other molecular quantitative 
trait loci (e.g., splicing, histone modification) 
across various conditions and using high- 
throughput assays to annotate variant effects [98] 
will increase our understanding of genetic asso-

ciations. Some of these issues extend to other 
biomarkers even though they are “closer to phe-
notype” than genetic variants.

Beyond validating the accuracy of biomark-
ers, key issues related to their widespread use are 
establishing their practicality, availability, and 
cost-effectiveness [99]. Non-invasive biomarkers 
are more practical for clinical use than invasive 
ones [100], and thus, finding biomarkers in read-
ily obtained bio-samples to represent more inva-
sive ones may be a necessary step for some 
conditions such as fibrotic lung diseases. As 
stated in the chapter on Implementing COPD 
Precision Medicine in Clinical Practice, the fact 
that clinically valuable COPD genetic findings 
related to AATD are not yet readily adopted in 
clinical practice, raises an important consider-
ation for implementation of genetic findings. 
Education and advances in regulatory processes 
are critical if we want to witness the full promise 
of precision medicine.

For precision medicine to thrive, current and 
future trainees in the specialty need to be aware of 
the principles of precision medicine, how these 
influence our current understanding of disease 
biology, diagnostics and therapeutics, and how 
they will transform pulmonary, critical care, and 
sleep medicine. Education in precision medicine 
cannot be overlooked and needs to be incorporated 
in fellowship training curricula, as well as educa-
tional conferences. The chapter on education for 
the practice of precision medicine expounds these 
ideas and provides guidance on a path forward.

 Conclusion

Precision medicine is advancing with the avail-
ability and improvement of high-throughput 
assays for various types of biological data, imag-
ing, sensors, data science and computing. Some 
rare pulmonary diseases and lung cancer already 
have personalized therapies available, while most 
complex respiratory, critical care, and sleep con-
ditions are in the early stages of precision medi-
cine. The study of highly heterogeneous diseases 
with large and deeply phenotyped cohorts is lead-
ing to the discovery of genetic and other molecu-
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lar biomarkers that underlie distinct phenotypes. 
As early examples show, the identification of 
reproducible endotypes that leverage a broad 
range of data for each person leads to a better 
understanding of disease pathobiology, thereby 
enabling successful preventive strategies and 
novel drug discovery. The widespread implemen-
tation of precision medicine will require inclu-
sion of diverse individuals in research and clinical 
studies, consideration of cost-effectiveness of 
novel interventions, and improved education of 
healthcare providers.
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