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Preface

The 6th International Conference on Algorithmic Decision Theory (ADT 2019), held in
October 2019 at Duke University’s Fuqua School of Business (Durham, NC, USA),
has continued in the tradition established by previous ADT conferences in providing a
unique opportunity for scientific exchange among researchers and practitioners coming
from Computer Science, Economics, and Operations Research.

ADT 2019 provided a multi-disciplinary forum for sharing knowledge in these areas
with a special focus on algorithmic issues in decision theory. Previous ADT
conferences were held in Venice, Italy (2009); Piscataway, NJ, USA (2011); Brussels,
Belgium (2013); Lexington, KY, USA (2015), and Luxembourg (2017).

Contributions to ADT 2019 addressed key topics related to decision theory, such as,
preference elicitation and aggregation, voting, games, decision making over complex
domains, social networks, and applications such as decision making for unmanned
vehicles, refugee allocation, and kidney exchanges.

The program also included three exceptional invited talks by David Pennock
(Microsoft Research), Ariel Procaccia (CMU), and Francesca Rossi (IBM Research).

The papers in this volume were presented at ADT 2019. Each submission received
three reviews by Program Committee (PC) members in a double-blind fashion. The PC
selected 10 submission as full papers and 7 short papers. Given that 31 submission
were received, the acceptance rate was approximately 54%. Two other accepted papers
were submitted only for presentation at the conference and are not contained in the
proceedings:
– Rupert Freeman, David Pennock, Dominik Peters, and Jennifer Wortman Vaughan:

“Truthful Aggregation of Budget Proposals,”
– Aleksandr M. Kazachkov and Shai Vardi: “On Tanking and Competitive Balance.”

We thank the authors for submitting and presenting their high quality recent
research results. We are also grateful to Lirong Xia for enhancing the program with an
exceptional tutorial.

We would like to thank the Program Committee and their additional reviewers for
their contribution to the program and to the paper selection process. We also thank
Alexis Tsoukiàs for his invaluable advice and support, as well as the ADT 2017
organizers (in particular Jörg Rothe), CNRS (France), and Springer. We also
appreciated using the EasyChair platform for organizing the submission and reviewing
process.

Finally, our gratitude goes to our sponsors for their generous support: Computer
Science Department and Fuqua School of Business at Duke University, and EURO
working group on Preference Handling.

July 2019 Saša Pekeč
Kristen Brent Venable
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Combining Local Search and Elicitation
for Multi-Objective Combinatorial

Optimization

Nawal Benabbou, Cassandre Leroy, Thibaut Lust(B), and Patrice Perny

Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{nawal.benabbou,cassandre.leroy,thibaut.lust,patrice.perny}@lip6.fr

Abstract. In this paper, we propose a general approach based on local
search and incremental preference elicitation for solving multi-objective
combinatorial optimization problems with imprecise preferences. We
assume that the decision maker’s preferences over solutions can be rep-
resented by a parameterized scalarizing function but the parameters are
initially not known. In our approach, the parameter imprecision is pro-
gressively reduced by iteratively asking preference queries to the deci-
sion maker (1) before the local search in order to identify a promising
starting solution and (2) during the local search but only when pref-
erence information are needed to discriminate between the solutions
within a neighborhood. This new approach is general in the sense that it
can be applied to any multi-objective combinatorial optimization prob-
lem provided that the scalarizing function is linear in its parameters
(e.g., a weighted sum, an OWA aggregator, a Choquet integral) and that
a (near-)optimal solution can be efficiently determined when preferences
are precisely known. For the multi-objective traveling salesman problem,
we provide numerical results obtained with different query generation
strategies to show the practical efficiency of our approach in terms of
number of queries, computation time and gap to optimality.

Keywords: Multi-objective combinatorial optimization ·
Local search · Preference elicitation · Minimax regret ·
Traveling salesman problem

1 Introduction

Designing efficient preference elicitation procedures to support decision making
in combinatorial domains is one of the hot topics of algorithmic decision the-
ory. On non-combinatorial domains, various model-based approaches are already
available for preference learning. The elicitation process consists in analyz-
ing preference statements provided by the decision maker (DM) to assess the
parameters of the decision model and determine an optimal solution (see, e.g.,
[5,7,9,10,14,31]). Within this stream of work, incremental approaches are of spe-
cial interest because they aim to analyze the set feasible solutions to identify the
c© Springer Nature Switzerland AG 2019
S. Pekeč and K. B. Venable (Eds.): ADT 2019, LNAI 11834, pp. 1–16, 2019.
https://doi.org/10.1007/978-3-030-31489-7_1
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2 N. Benabbou et al.

critical preference information needed to find the optimal alternative. By a care-
ful selection of preference queries, they make it possible to determine the optimal
choice within large sets, using a reasonably small number of questions, see e.g.,
[10] for an example in a Bayesian setting, and [7] for another approach based on
a progressive reduction of the uncertainty attached to the model parameters.

The incremental approach was efficiently used in various decision contexts
such as multiattribute utility theory or multicriteria decision making [8,30,34],
decision making under risk [10,17,26,32] and collective decision making [23].
However, extending these approaches for decision support on combinatorial
domains is more challenging due to the implicit definition of the set of solutions
and the huge number of feasible solutions. In order to overcome this problem,
several contributions aim to combine standard search procedures used in combi-
natorial optimization with incremental preference elicitation. Examples can be
found in various contexts such as constraint satisfaction [15], committee election
[3], matching [13], sequential decision making under risk [28,33], fair multiagent
optimization [6] and multicriteria optimization [1,19].

In multicriteria optimization, the search procedure combines the implicit
enumeration of Pareto-optimal solutions with preferences queries allowing a pro-
gressive reduction of the uncertainty attached to the parameters of the prefer-
ence aggregation model, in order to progressively focus the exploration on the
most attractive solutions. Various attempts to interleave incremental preference
elicitation methods and constructive algorithms have been proposed. The basic
principle consists in constructing the optimal solution from optimal sub-solutions
using the available preference information, and to ask new preference informa-
tion when necessary. This has been tested for greedy algorithms, for dynamic
programming, for A∗ and branch-and-bound search, see [4] for a synthesis.

In this paper we explore another way by considering non-constructive algo-
rithms. We propose to interleave the elicitation with local search for multicriteria
optimization. To illustrate our purpose, let us consider the following example:

Example 1. Let us consider the instance of the multi-objective traveling sales-
man problem (TSP) depicted in Fig. 1, including 5 nodes and two additive cost
functions to be minimized (one looks for a cycle passing exactly once through
each node of the graph and minimizing costs). Let us start a local search from

Fig. 1. An instance of the TSP with two criteria.
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the boldface tour x0 = ADBECA whose cost vector is (45, 35), using a neighbor-
hood definition based on the simple exchange of two consecutive nodes. Among the
neighbors of x0, there is x′

0 = ABDECA whose cost vector is (31, 49). Assume
that the DM declares that x0 is better than x′

0 (denoted x0 � x′
0).

Let us show what could be a local search on this instance using partial preference
information interpreted under a linear model assumption:

Using a Linear Model. We assume here that DM’s preferences can be rep-
resented by a linear model of the form: fω(y1, y2) = ωy1 + (1 − ω)y2 for some
unknown ω ∈ (0, 1), where (y1, y2) is the cost vector associated to a feasible tour.
In this case the x0 � x′

0 condition implies fω(45, 35) < fω(31, 49) and therefore
ω ∈ (0, 1/2). After this restriction of the set of possible values for ω it can easily
be checked that the optimal neighbor of x0 is solution x1 = ADBCEA of cost
(60, 20). Then by exploring the neighborhood of x1 it can easily be checked that
no other solution can improve x1 given that ω < 1/2. We get a local optimum
which is actually the optimal solution for this instance.

We can see here that, under the linear model assumption, an optimal solution
has been obtained using a single preference query. However, the linear model is
not always suitable. For example, when one looks for a compromise solution
between the two criteria, one could prefer resorting to a decision model favoring
the generation of solutions having a balanced cost vector. For this reason we
consider now another elicitation session using a non-linear weighted aggregation
function commonly used to control the balance between criterion values, namely
the Ordered Weighted Average (OWA, [22,35]).

Using the OWA Model. Now, let us assume that the DM’s preferences are
represented by a non-linear model of the form: fω(y1, y2) = ω max{y1, y2}+
(1 − ω)min{y1, y2} for some unknown ω ∈ (0, 1). In this case the x0 � x′

0 condi-
tion implies 45ω + 35(1 − ω) < 49ω + 31(1 − ω) and therefore ω ∈ (1/2, 1) (note
that although OWA is not linear in y, it is linear in ω and therefore any prefer-
ence statement translates into a linear constraint on ω). After this restriction of
the set of possible values for ω it can easily be checked that the optimal neighbor
of x0 is solution x2 = ABECDA whose cost vector is (40, 40). Then, by explor-
ing the neighborhood of x2, it can easily be checked that no other solution can
improve x2 given that ω > 1/2. We obtain a local optimum which is actually the
OWA-optimal solution for this instance, given the restriction on ω.

These simple executions of local search using partial preference information
show the potential of interactive local search combining local exploration of
neighborhoods and model-based preference elicitation. For a given class of pref-
erence models, the successive answers from the DM to preference queries make
it possible to progressively reduce the set of possible parameters and to discrim-
inate the solutions belonging to the neighborhood of solutions found so far.

The combination of preference elicitation has several specific advantages. In
particular, preference elicitation is based on very simple queries because they
involve neighbor solutions that are cognitively simpler to compare than pairs of
solutions varying in all aspects. Moreover, preference queries only involve com-
plete solutions. This provides two advantages: (1) solutions are easier to compare,
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and (2) no independence assumption is required in the definition of preferences
(no need to reason on partial descriptions under the assumption that preferences
hold everything all being equal). The latter point is of special interest when
preferences are represented by non-linear decision models. With such models,
the cost of partial solutions is a poor predictor of the actual cost of their exten-
sions. This seriously reduces possibilities of pruning sub-solutions in constructive
algorithms. Since we consider only complete solutions in local search, this prob-
lem vanishes. Another interest of studying incremental elicitation approaches in
local search is to tackle preference-based combinatorial optimization problems
for which no efficient exact algorithm is known.

The paper is organized as follows. Section 2 introduces some preliminary
background and notations. Then, we present a general interactive local search in
Sect. 3. In Sect. 4 we further specify our approach for application to the multi-
objective TSP and provide numerical tests showing the practical efficiency of
the proposed incremental elicitation process.

2 Background and Notations

In this section, we present the necessary background on multi-objective combi-
natorial optimization and regret-based incremental elicitation.

2.1 Multi-Objective Combinatorial Optimization

We consider a multi-objective combinatorial optimization (MOCO) problem
with n objectives/criteria yi, i ∈ {1, . . . , n}, that need to be minimized. This
problem can be formulated as follows: minimize

x∈X
(
y1(x), . . . , yn(x)

)
where X is

the feasible set in the decision space (e.g., for the TSP, X is the set of all Hamil-
tonian cycles). In this problem, any solution x ∈ X is associated with a vector
y(x) = (y1(x), . . . , yn(x)) ∈ R

n that gives its evaluations on all criteria. Solutions
are usually compared through their images in the objective space (also called
points) using the Pareto dominance relation: point a = (a1, . . . , an) ∈ R

n is said
to Pareto dominate point b = (b1, . . . , bn) ∈ R

n (denoted by a ≺P b) if and only
if ai ≤ bi for all i ∈ {1, . . . , n} and ai < bi for some i ∈ {1, . . . , n}. A solution
x ∈ X is said to be efficient if there is no other feasible solution x′ ∈ X such
that y(x′) ≺P y(x) and the set XE of all efficient solutions is called the efficient
set (their images are respectively called non-dominated point and Pareto front).

We assume here that the DM needs to select a single solution. Without any
preference information, we only know that her preferred solution is an element of
the efficient set. However, it is well-known that the number of efficient solutions
(and the number of non-dominated points) can be exponential in the size of
the problem (e.g., [18] for the multicriteria spanning tree problem); in such
situations, identifying the Pareto front is not enough to help the DM in making
a decision. One way to address this issue is to reduce the size of the Pareto front
by constructing a “well-represented” set; for instance, this set can be obtained
by dividing the objective space into different regions (e.g., [20]) or by using some
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approximate dominance relation (e.g., ε-dominance [21]). However, in situations
where the DM needs to select only one solution, it seems more appropriate to
refine the Pareto dominance with preferences in order to determine the optimal
solution according to the DM’s subjective preferences.

In this work, we assume that the DM’s subjective preferences can be rep-
resented by a parameterized scalarizing function fω that is linear in its pref-
erence parameters ω. For example, function fω can be a weighted sum (i.e.,
fω(a) =

∑n
i=1 ωiai), an OWA aggregator (fω(a) =

∑n
i=1 ωia(i) where a(i) ≥

. . . ≥ a(n) are the components of a sorted in non-increasing order, see e.g.
[35]) or even a Choquet integral with capacity ω (see e.g. [11,16]). In this con-
text, solution x ∈ X is preferred to solution x′ ∈ X by the DM if and only if
fω(y(x)) ≤ fω(y(x′)). Thus any solution x ∈ X that minimizes function fω is
optimal according to the DM’s preferences.

2.2 Regret-Based Incremental Elicitation

For the purpose of elicitation, we assume that preference parameters ω are not
known initially. More precisely, we are given a (possibly empty) set Θ of pref-
erence statements of type (a, b) ∈ R

n × R
n, meaning that the DM prefers point

a to point b, and we consider the set ΩΘ of all parameters ω that are compati-
ble with Θ the available preference information. Formally, set ΩΘ is defined by
ΩΘ = {ω : ∀(a, b) ∈ Θ, fω(a) ≤ fω(b)}. Note that ΩΘ is a convex polyhedron
since function fω is assumed to be linear in its parameters ω.

Our goal now is to determine the most promising solution under the param-
eter imprecision characterized by ΩΘ. To this aim, we consider the minimax
regret approach (e.g., [7]) which is based on the following definitions:

Definition 1 (Pairwise Max Regret). The Pairwise Max Regret (PMR) of
solution x ∈ X with respect to solution x′ ∈ X is:

PMR(x, x′, ΩΘ) = max
ω∈ΩΘ

{
fω(y(x)) − fω(y(x′))

}

By definition, PMR(x, x′, ΩΘ) is the worst-case loss when recommending solu-
tion x instead of solution x′ to the DM1.

Definition 2 (Max Regret). The Max Regret (MR) of solution x ∈ X is:

MR(x,X , ΩΘ) = max
x′∈X

PMR(x, x′, ΩΘ)

In other words, MR(x,X , ΩΘ) is the worst-case loss when choosing x instead of
any other solution x′ ∈ X . Finally, the minimax reget is defined as follows:

Definition 3 (Minimax Regret). The MiniMax Regret (MMR) is:

MMR(X , ΩΘ) = min
x∈X

MR(x,X , ΩΘ)

1 Note that PMR(x, x′, ΩΘ) values can be computed using a LP solver since ΩΘ is
described by linear constraints and fω is linear in its parameters ω.
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A solution x∗ ∈ X is optimal according to the minimax regret decision crite-
rion if x∗ achieves the minimax regret, i.e. if x∗ ∈ arg minx∈X MR(x,X , ΩΘ).
Recommending such a solution guarantees that the worst-case loss is mini-
mized (given the imprecision surrounding the DM’s preferences). Moreover, if
MMR(X , ΩΘ) = 0, then we know that any optimal solution for the minimax
regret criterion is necessarily optimal according to the DM’s preferences.

Note that we have MMR(X , ΩΘ′) ≤ MMR(X , ΩΘ) for any set Θ′ ⊇ Θ, as
already observed in previous works (see e.g., [5]). Thus the general principle of
regret-based incremental elicitation is to iteratively collect preference informa-
tion by asking preference queries to the DM until MMR(X , ΩΘ) drops below
a given tolerance threshold δ ≥ 0 (representing the maximum allowable gap to
optimality); if we set δ = 0, then we obtain the (optimal) preferred solution at
the end of the execution.

3 An Interactive Local Search Algorithm

For MOCO problems, regret-based incremental elicitation may induce pro-
hibitive computation times since it may require to compute the pairwise max
regrets for all pairs of distinct solutions in X (see Definitions 2 and 3). This
observation has led a group of researchers to propose a new approach consisting
in combining regret-based incremental elicitation and search by asking prefer-
ence queries during the construction of the (near-)optimal solution (e.g. [2]).
In this paper, we combine incremental elicitation and search in a different way.
More precisely, we propose an interactive local search procedure that generates
preference queries (1) before the local search to determine a promising starting
point and (2) during the local search to help identifying the best solution within
a neighborhood.

Our interactive algorithm takes as input a MOCO problem P , two thresholds
δ = (δ1, δ2), (δ1, δ2 ≥ 0), a scalarizing function fω with unknown parameters ω,
an initial set of preference statements Θ (possibly empty), and m the number of
possible starting solutions (generated at the beginning of the procedure). First,
our algorithm identifies a promising starting solution as follows:

1. A set of m admissible preference parameters ωk, k ∈ {1, . . . , m}, are randomly
generated within ΩΘ.

2. Then, for every k ∈ {1, . . . , m}, a (near-)optimal solution is determined for
the precise scalarizing function fωk using an existing efficient algorithm. Let
X0 be the set of generated solutions.

3. Finally, preference queries are generated in order to discriminate between the
solutions in X0. More precisely, while MMR(X0, ΩΘ) > δ1, the DM is asked
to compare two solutions x, x′ ∈ X0 and the set of admissible parameters
is updated by inserting the constraint fω(x) ≤ fω(x′) (or fω(x) ≥ fω(x′)
depending on her answer); once MMR(X0, ΩΘ) drops below δ1, the starting
solution x∗ is arbitrarily chosen in arg minx∈X0 MR(x,X0, ΩΘ).

Then, our algorithm moves from solution to solution by considering local
improvements. More precisely, it iterates as follows:
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1. Firstly, a set X∗ of solutions is generated from x∗ using a neighborhood
function defined on the search space; we add x∗ to X∗ and remove from X∗

any solution that is Pareto-dominated by another solution in this set.
2. Secondly, while MMR(X∗, ΩΘ) > δ2, the DM is asked to compare two solu-

tions x, x′ ∈ X∗ and ΩΘ is restricted by inserting the constraint fω(x) ≤
fω(x′) (or fω(x) ≥ fω(x′)).

3. Finally, if MR(x∗,X∗, ΩΘ) > δ2 holds, solution x∗ is then replaced by a
neighbor solution minimizing the max regret in X∗; otherwise, the algorithm
stops by returning solution x∗.

Our algorithm is called ILS for Interactive Local Search and is summarized in
Algorithm 1.

Algorithm 1. ILS
IN ↓ P : a MOCO problem; δ1, δ2: thresholds; fω: an aggregator with unknown
parameters; Θ: a set of preference statements; m: number of initial solutions.

- -| Initialization of the admissible parameters:
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≤ fω(b)}
- -| Generation of m initial solutions:
X0 ← Select&Optimize(P, ΩΘ, m)
- -| Determination of the starting solution:
while MMR(X0, ΩΘ) > δ1 do

- -| Ask the DM to compare two solutions in X0:
(x, x′) ← Query(X0)
- -| Update preference information:
Θ ← Θ ∪ {(y(x), y(x′))}
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≤ fω(b)}

end while
x∗ ← Select(arg minx∈X0 MR(x, X0, ΩΘ))
- -| Interactive Local Search:
improve ← true
while improve do

X∗ ← Neighbors(P, x∗) ∪ {x∗}
while MMR(X∗, ΩΘ) > δ2 do

- -| Ask the DM to compare two solutions in X∗:
(x, x′) ← Query(X∗)
- -| Update preference information:
Θ ← Θ ∪ {(y(x), y(x′))}
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≤ fω(b)}

end while
- -| Move to another solution:
if MR(x∗, X∗, ΩΘ) > δ2 then

x∗ ← Select(arg minx∈X∗ MR(x, X∗, ΩΘ))
else

improve ← false
end if

end while
return x∗
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Fig. 2. The graph on the left side of the figure represents an instance of the 3-objective
TSP with 6 vertices. The two others graphs give an example of a 2-opt movement: the
dashed edges of the cycle in the middle are deleted and then replaced by the dashed
edges in the right side of the figure.

Note that procedures Select&Optimize and Neighbors depend on the prob-
lem considered; for instance, for the multicriteria spanning tree problem with a
weighted sum model, the optimization part can be performed using Prim algo-
rithm [27] and the neighborhood function can be defined by edge swaps. Note
also that procedure Query(X) can implement any query generation strategy that
selects two solutions in X and asks the DM to compare them; in the numerical
section, we propose and compare different query generation strategies.

It is well-known that local search is a heuristic search that may stuck at a
locally optimal point that is not globally optimal; the problem obviously remains
when using our interactive local search. However, it is worth noting that our
algorithm with δ2 = 0 provides the same performance guarantees as the corre-
sponding local search algorithm with precise preferences. To give an example,
when using the 2-opt neighborhood function [12], our algorithm approximately
solves the TSP within a differential-approximation ratio bounded above by 1/2
(see [24] for further details); in the numerical section, we will see that the error
is even lower in practice.

For illustration purposes, we now present an execution of our algorithm on
a small instance of the multi-objective TSP:

Example 2. Consider the 3-objective TSP with 6 vertices defined by Fig. 2. In
this problem, the set X of feasible solutions is the set of all Hamiltonian cycles,
i.e. cycles that include every node exactly once. We now apply ILS algorithm
with δ = (0, 0) on this instance considering the neighborhood function defined by
2-opt swaps [12]; in other words, the neighbors of cycles are all the cycles that
can be obtained by deleting two edges and adding two other edges from the graph
(see Fig. 2 for an example).
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We assume here that the DM’s preferences can be represented by a weighted
sum with the hidden weight ω∗ = (0.2, 0.1, 0.7) and we start the execution with
an empty set of preference statements (i.e. Θ = ∅). Hence ΩΘ is initially the set
of all weighting vectors ω = (ω1, ω2, ω3) ∈ [0, 1]3 such that ω1 + ω2 + ω3 = 1.
In Fig. 3, we represent ΩΘ by the triangle ABC in the space (ω1, ω2), ω3 being
implicitly defined by ω3 = 1 − ω1 − ω2.

Identification of a Promising Starting Solution: First, we generate m = 2
weighting vectors ω1 and ω2 at random and we determine then the corresponding
optimal solutions x1 and x2. If ω1 = (0.6, 0.3, 0.1) and ω2 = (0.3, 0.6, 0.1), we
obtain the following evaluation: y(x1) = (19, 34, 30) and y(x2) = (21, 32, 27).
Let X0 = {x1, x2}. Since MMR(X0, ΩΘ) = 2 > δ1, we ask the DM to compare
x1 and x2. Since fω∗(y(x1)) = 28.2 > fω∗(y(x2)) = 26.3, the DM prefers solution
x2 to x1. Therefore we set Θ = {((21, 32, 27), (19, 34, 30))} and ΩΘ is restricted
by imposing the constraint fω(y(x2)) ≤ fω(y(x1)), i.e. ω2 ≤ −5ω1 + 3 (see
Fig. 4 where ΩΘ is represented by ABDE). Now we have MMR(X0, ΩΘ) =
MR(x2,X0, ΩΘ) = 0 ≤ δ1, and therefore x2 is chosen to be the starting solution
(i.e. x∗ = x2).

Local Search: At the first iteration step, three neighbors of x∗ are Pareto non-
dominated, and the set X∗ contains four solutions, denoted by x1, x2(= x∗),
x3 and x4 evaluated as follows: y(x1) = (23, 34, 26), y(x2) = (21, 32, 27),
y(x3) = (19, 34, 30) and y(x4) = (20, 31, 30). Since MMR(X∗, ΩΘ) = 1 > δ2,
we ask the DM to compare two solutions in X∗, say x1 and x∗. As fω∗(y(x1)) =
26.2 < fω∗(y(x∗)) = 26.3, the DM prefers x1 to x∗. Therefore we obtain
Θ = {((21, 32, 27), (19, 34, 30)), ((23, 34, 26), (21, 32, 27))} and ΩΘ is restricted
by the linear constraint fω(y(x1)) ≤ fω(y(x∗)), i.e. ω2 ≤ −ω1 + 1/3 (see Fig. 5
where ΩΘ is represented by AGF). Then we stop asking queries at this step since
we have MMR(X∗, ΩΘ) = MR(x1,X∗, ΩΘ) = 0 ≤ δ2. We move from x∗ = x2

to solution x1 for the next step (i.e., we now set x∗ = x1).
At the second iteration step, X∗ only includes three solutions denoted by

x1(= x∗), x2 and x3 with y(x1) = (23, 34, 26), y(x2) = (21, 32, 27) and
y(x3) = (19, 33, 31). Since MMR(X∗, ΩΘ) = 0 ≤ δ2, no query is gen-
erated at this step. Moreover, MR(x∗,X∗, ΩΘ) = 0 ≤ δ2 (that is x∗ ∈
arg minx∈X∗ MR(x,X∗, ΩΘ)) and x∗ is thus a local optimum (variable improve
is set to false and the while loop ends). Therefore, after two iteration steps, ILS
algorithm stops by returning the solution x∗ = x1 which is the preferred solution
in this problem. Note that only two preference queries were needed to discrimi-
nate between the 60 feasible solutions (among which 10 are Pareto-optimal).
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Fig. 3. Initial set ΩΘ. Fig. 4. ΩΘ after 1 query. Fig. 5. ΩΘ after 2 queries.

To illustrate ILS and the impact of m (the number of initial solutions), we
show the evolution of the local search on a randomly generated instance of the bi-
criteria TSP with 100 cities (see Fig. 6). The left part of the figure (m = 1) shows
that the neighborhood function enables to go straight to the optimal solution
instead of following the Pareto front. However the number of iterations can still
be very large when the starting solution is far from the optimal solution in the
objective space. The right part of the figure (m = 2) shows that the number of
iterations can be much reduced when increasing the number of possible starting
solutions and selecting the most preferred one.
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Fig. 6. Results obtained for an instance of the 2-criteria TSP.

4 Numerical Tests

In this section, we provide numerical results aiming to estimate the performance
of our algorithm. In these experiments, we use existing Euclidean instances2

2 https://eden.dei.uc.pt/∼paquete/tsp/.

https://eden.dei.uc.pt/~paquete/tsp/
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of the multi-objective TSP with 25 to 100 cities, and n = 3 to 6 objectives.
Numerical tests were performed on a Intel Core i7-8550U CPU with 16 GB of
RAM, with a program written in C++3.

4.1 Preferences Represented by a Weighted Sum

We assume here that the preferences are represented by a weighted sum fω with
imprecise weights, with an empty set of preference statements (i.e. Θ = ∅). The
answers to queries are simulated using a weighting vector ω randomly generated
before running the algorithm, using the procedure presented in [29], to guarantee
a uniform distribution of the weights.

In ILS algorithm, procedure Query(X) selects two solutions from X and then
asks the DM to compare them. We first want to estimate the impact of the query
generation strategy on the performances of ILS algorithm. To do so, we consider
the following two query generation strategies:

– Random: the set of possibly optimal solutions in X are computed and then
two of them are selected at random at each iteration step; note that the set
of possibly optimal solutions in X can be determined in polynomial time in
the size of X (see e.g., [1]).

– CSS: The Current Solution Strategy (CSS) selects a solution x∗ ∈ X that
minimizes the max regret MR(x∗,X,ΩΘ) and then the DM is asked to
compare solution x∗ with one of its adversary’s choice (i.e. a solution in
arg maxx∈X PMR(x∗, x,ΩΘ)) [7].

These strategies are compared in terms of computation time (given in seconds),
number of generated queries and the error (expressed in terms of percentage from
the optimal solution). Results averaged over 100 runs are given in Table 1 for
the instance with 50 cities. In this table, “/” means that the timeout is exceeded
(the timeout is set to 900 seconds).

Table 1. Comparison between CSS and Random strategies, 50 cities, δ = (0, 0).

CSS Random
n m time queries error time queries error
4 10 28.52 35.90 1.96 15.33 77.54 1.90
4 50 8.65 27.31 1.11 317.11 380.18 0.92
4 100 6.71 24.34 0.69 894.93 375.83 0.70
6 10 537.07 85.67 2.06 67.91 168.71 2.31
6 50 133.08 68.45 1.64 899.39 338.98 1.49
6 100 43.06 54.40 1.35 > 900 / /

3 PMRs values are computed using CPLEX Optimizer (https://www.ibm.com/
analytics/cplex-optimizer) and the optimization part of Select&Optimize is per-
formed by the exact TSP solver Concorde (http://www.math.uwaterloo.ca/tsp/
concorde).

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://www.math.uwaterloo.ca/tsp/concorde
http://www.math.uwaterloo.ca/tsp/concorde
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First, we see that the query strategy has an important impact on the quality
of the results: with the random strategy the number of queries and computation
time are much higher than with the CSS strategy, showing that preference queries
must be carefully chosen when designing incremental elicitation methods. Then
we see that ILS with CSS achieves better results when increasing the number of
possible initial solutions, in terms of computation times, queries and error (as
the selected starting solution is becoming closer to the best solution). Although
the error is very low (about less than 2%) for both strategies, the number of
queries is quite high for instances with 6 criteria (at least 54 queries). This is
due to the fact that we use the tolerance thresholds δ = (0, 0).

We now compare the results obtained with δ = (0, 0) and δ = (0.1, 0.4) (see
the left part of Table 2); we set δ1 < δ2 since the starting point selection has a
significant impact on local search performances. We also give the results obtained
by ILS when a ranking of the objectives can be provided by the DM prior to the
search (see the right part of Table 2). We vary n the number of criteria between
3 and 6, and we set m the number of initial solutions to 100.

In Table 2, we see that using strictly positive thresholds enables to reduce
both the number of queries and the computation time without having much
impact on the error. For instance, for n = 6, the error is equal to 1.35% with
δ = (0, 0) whereas it is equal to 1.77% with δ = (0.1, 0.4), while the number
of queries is reduced from 54.40 to 32.24. We also remark that knowing the
ranking of the objectives allows to further reduce the number of queries (only
23.75 queries for n = 6, with an error of 1.51%).

Table 2. Performances of ILS combined with CSS, with (left) and without the ranking
of the objectives (right), 50 cities, m = 100, 100 runs.

δ = (0, 0) δ = (0.1, 0.4)
n time queries error time queries error
3 2.67 13.50 0.20 3.81 13.65 2.01
4 6.71 24.34 0.69 8.32 19.68 1.84
5 19.96 38.38 0.96 19.30 26.21 2.08
6 43.06 54.40 1.35 36.25 32.24 1.77

δ = (0, 0) δ = (0.1, 0.4)
time queries error time queries error
2.10 10.53 0.20 2.30 9.66 0.80
5.01 17.01 0.66 4.89 13.39 1.13
14.81 25.08 0.95 10.97 19.24 1.38
31.19 34.52 1.36 29.68 23.75 1.51

In Fig. 7, we show the evolution of the number of queries according to the
number of criteria (left part, 50 cities) and number of cities (right), with δ =
(0.1, 0.4) and m = 100. We note that the number of queries evolves more or less
linearly according to the number of criteria/cities.

4.2 Preferences Represented by an OWA Aggregator

Now we assume that the DM’s preferences can be represented by an OWA aggre-
gator, with decreasing weights, favoring well-balanced solutions [35] (as the larger
weights are associated with the worst values). Contrary to the weighted sum,
when the weights ω are known, we cannot reduce the multi-objective TSP to
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Fig. 7. Evolution of the queries according to number of criteria and number of cities.

a single-objective TSP as the OWA aggregator is not a linear operator. There-
fore, to obtain the optimal solution with known weights (to be able to compute
the error), we have used a well-known linearization of the OWA operator with
decreasing weights (see [25]); for information purposes, we also provide the com-
putation time needed when solving the corresponding linear program with the
LP-solver (see “LP time”).

In Table 3, we give the results obtained by ILS combined with the CSS for the
instances with 50 cities, 3 to 6 criteria and m = 10 starting solutions (obtained
by optimizing 10 randomly generated weighted sum). The results show that the
number of queries is much reduced compared to the weighted sum, with an
error also around 2%. Moreover, we observe that using our algorithm to solve
the problem with unknown weights is much faster than using the LP-solver to
obtain the optimal solution when the weights are known. This shows that our
algorithm can be used to efficiently solve multi-objective optimization problems
with complex decision models, even for problems such that there is no efficient
algorithm for the determination of the optimal solution with known preference
parameters.

Table 3. ILS combined with CSS with OWA, 50 cities, m = 10.

= (0, 0) = (0.1, 0.4)
n LP time time queries error time queries error
3 164.80 1.14 9.96 2.31 1.19 6.16 2.41
4 330.17 1.28 10.57 1.98 1.06 6.13 2.00
5 730.19 0.98 6.40 1.17 0.83 4.09 1.42
6 7870.03 1.12 16.00 1.41 0.89 9.13 1.44

Finally, in Fig. 8, we illustrate the iterations of ILS when preferences are
represented by an OWA operator with decreasing weights (which favors well-
balanced solutions).
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Fig. 8. Results obtained for an instance of the 2-criteria TSP with OWA operator.

5 Conclusion

In this paper, we have proposed a general approach based on local search and
incremental elicitation for solving multi-objective combinatorial optimization
problems with unkown preference parameters. We have applied the method
to a NP-hard combinatorial optimization problem and we have shown that,
by combining the generation of promising starting solutions with an adaptive
preference-based local search, we are able to rapidly obtain high quality solu-
tions, even with a non-linear aggregation function like OWA. The approach can
be applied to any multi-objective combinatorial optimization problem provided
that the scalarizing function used to compare solutions is linear in its parameters.
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20. Karasakal, E., Köksalan, M.: Generating a representative subset of the nondom-
inated frontier in multiple criteria decision making. Oper. Res. 57(1), 187–199
(2009)

21. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diver-
sity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282
(2002)

22. Lesca, J., Perny, P.: LP solvable models for multiagent fair allocation problems.
ECAI 2010, 393–398 (2010)

23. Lu, T., Boutilier, C.: Robust approximation and incremental elicitation in voting
protocols. IJCAI 2011, 287–293 (2011)

24. Monnot, J., Paschos, V.T., Toulouse, S.: Approximation algorithms for the travel-
ing salesman problem. Math. Methods Oper. Res. 56(3), 387–405 (2003)
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Abstract. We investigate how robust are approval-based multiwinner
voting rules to small perturbations of the preference profiles. In partic-
ular, we consider the extent to which a committee can change after we
add/remove/swap one approval, and we consider the computational com-
plexity of deciding how many such operations are necessary to change
the set of winning committees. We also consider the counting variants
of our problems, which can be interpreted as computing the probability
that the result of an election changes after a given number of random
perturbations of the preference profile.

Keywords: Multiwinner voting · Approval voting · Robustness ·
Complexity

1 Introduction

The goal of a multiwinner election is to select a committee, i.e., a fixed-size set of
candidates, based on the opinions of the voters. For example, citizens of a country
may choose the members of their parliament, judges in a competition may select
a group of its finalists, and a company may choose the products to offer based
on the preferences of its customers; naturally, for each of these applications we
would use a different voting rule, with different properties. Unfortunately, even
the most appropriate rule may give unsatisfying results if the input votes are
distorted. Indeed, some votes may be recorded erroneously due to mistakes of
the voters or due to the mistakes of the election officials (or their machinery).
In either case, it is interesting to know the consequences of such distortions. To
address this issue, recently Bredereck et al. [5] initiated the study of robustness
of multiwinner elections to small changes in the input votes. We follow up on
their ideas, but instead of considering ordinal elections, we focus on the approval-
based ones. (In the approval setting each voter simply indicates which candidates
he or she finds acceptable; in the ordinal case, the voters rank the candidates
from the most to the least appealing one.)

Robustness in Multiwinner Elections. We are interested both in the extent
to which a winning committee can change—in the worst case—due to a small
c© Springer Nature Switzerland AG 2019
S. Pekeč and K. B. Venable (Eds.): ADT 2019, LNAI 11834, pp. 17–31, 2019.
https://doi.org/10.1007/978-3-030-31489-7_2
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perturbation of a single vote, and in computing the number of such perturbations
necessary to change the result of a specific, given election. Additionally, we are
also interested in computing the probability that introducing a given number of
(randomly selected) perturbations changes the result.

Regarding the first issue, we use the notion of the robustness level of a mul-
tiwinner rule. Bredereck at al. [5] defined it to be � if it is guaranteed that after
swapping a pair of adjacent candidates in a vote (in the ordinal election model)
the winning committee remains the same, except that up to � candidates may
be replaced (and, indeed, there are cases when this happens). In the approval
setting, instead of swapping adjacent candidates we consider:

1. adding a single approval for a single candidate,
2. removing a single approval from a single candidate, or
3. swapping a single approval in a single vote (i.e., moving it from one candidate

to the other).

In consequence, we consider three robustness level notions, one for each way of
modifying the election.

Regarding the number of perturbations needed to change the election result,
we consider three variants of the Robustness Radius problem, originally intro-
duced by Bredereck et al. [5], where we ask how many approvals have to be added,
removed, or swapped to change the election result. To compute the probability
that a number of randomly introduced perturbations change the election result,
we consider counting versions of these problems (see below).

Multiwinner Voting Rules. We obtain our results by considering the follow-
ing four voting rules: Approval Voting (AV), Satisfaction Approval Voting [4]
(SAV), approval-based Chamberlin–Courant [9,26] (CCAV), and Proportional
Approval Voting [30] (PAV). All these rules are different in their nature and
capture different types of multiwinner elections. For example, AV chooses indi-
vidually excellent candidates and can be used to select finalists of competitions,
CCAV chooses diverse committees and can be used to select products that a
company should offer to its customers [12,16], whereas PAV aims at representing
the voters proportionally [1,21] and is well-suited for parliamentary elections [6].
SAV is closest in spirit to AV, but has its own quirks. We refer to the chapters
of Kilgour [20] and Faliszewski et al. [14] for more details on multiwinner voting.

Our Results. As in the case of Bredereck et al. [5], we find that all our rules
either have robustness level 1 (so that a single small change to the voters’
preferences leads to replacing at most one candidate) or k (so that a single
change can lead to replacing the whole committee). Yet, we find two interest-
ing quirks regarding the SAV rule. First, we find that even though the rule
is polynomial-time computable, its robustness level—for the case of adding or
deleting approvals—is k; this is the first example of such a simple rule with this
behavior. The second quirk regarding SAV is that even though its robustness
level for adding and removing approvals is k, for the case of swapping approvals
it is 1.
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Table 1. Summary of our results. In the three columns marked “Robustness Level” we
provide the robustness level values for our rules; in the columns marked “Robustness
Radius” we indicated the complexity results for the Robustness Radius problem
(including its counting variant for the AV and SAV rules; these results regard adding
and removing approvals only, but not swapping them). We also indicate which of the
rules are polynomial-time computable and which are NP-hard (but these results are
not due to this paper).

Robustness level Robustness Radius (decision/counting)

Rule Winner
det

Adding
approvals

Removing
approvals

Swapping
approvals

Adding
approvals

Removing
approvals

Swapping
approvals

AV P 1 1 1 P/FP P/FP P/—

SAV P k k 1 P/#P-hard P/#P-hard P/—

CCAV NP-hard k k k NP-hard NP-hard NP-hard

FPT(m) FPT(m) FPT(m)

FPT(n) FPT(n) FPT(n)

PAV NP-hard k k k NP-hard NP-hard NP-hard

FPT(m) FPT(m) FPT(m)

FPT(n) FPT(n) FPT(n)

Regarding the Robustness Radius problem, we find that its decision vari-
ants are polynomial-time computable for AV and SAV, but become NP-hard
for CCAV and PAV. Yet, for CCAV and PAV we find simple FPT algorithms
parametrized by the number of candidates and by the number of voters. Interest-
ingly, our FPT algorithm for the approval-based Chamberlin–Courant rule (for
the parametrization by the number of voters) is much simpler than the analo-
gous algorithm of Bredereck et al. [5] for the case of ordinal elections (as they
did not consider PAV, we cannot compare the algorithms for this rule).

For AV and SAV, for which the Robustness Radius problems are in P,
we also consider their counting variants (for adding and removing approvals;
we decided not to consider approval swapping for the sake of simplicity). The
idea is as follows (we focus on adding approvals here): Let X be the number of
ways in which it is possible to add B approvals to an election without changing
the result, and let Y be the total number of ways in which it is possible to
add B approvals. The fraction X/Y gives the probability of not changing the
election result by adding B approvals uniformly at random. By computing this
probability, we can distinguish situations where perturbing the election may
possibly affect the election results but it is very unlikely, from those where we
expect the result to be changed. It turns out that our counting problems are in
FP for the AV rule, but are #P-hard for the SAV rule.1

1 The class FP contains polynomial-time computable functions and the class #P is
the analogue of NP for counting problems.
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We summarize our results in Table 1. We omit many parts of the proofs due
to limited space; in such cases, we will not repeatedly mention that the omission
is due to space restriction, but we will simply state what we omit.

Related Work. Our work is most closely related to that of Bredereck et al. [5],
which we have already discussed above. Two other closely related papers are
due to Misra and Sonar [24] and Faliszewski et al. [17]. In the former, Misra
and Sonar [24] consider the Robustness Radius problem for the case of the
Chamberlin–Courant rule, for some variants of single-peaked and single-crossing
elections and for the approval setting. Their result for the case of approval-based
Chamberlin–Courant rule is similar to ours and, to some extent, is stronger (in
particular, they require fewer approved candidates per voter and, after dropping
this restriction, they also obtain W[2]-hardness for the parametrization by the
committee size), but the advantage of our result is that in a single proof we cover
a large subfamily of Thiele rules [21,28], including CCAV and PAV.

In the latter paper, Faliszewski et al. [17] study the problem of bribery in
approval-based election, where the goal is to ensure that a particular, speci-
fied candidate becomes a member of the winning committee by either adding,
removing, or swapping approvals. Our work is similar to theirs in that we use the
same types of operations, but our problems focus on changing the set of winning
committees and not on ensuring some candidate’s victory.

Prior to the work of Bredereck et al. [5], Shiryaev et al. [27] studied the robust-
ness of single-winner elections. Specifically, they asked for the complexity of the
Destructive Swap Bribery problem, where the goal is to change the winner
of an election by making as few swaps of adjacent candidates as possible (they
considered the ordinal setting). Kaczmarczyk and Faliszewski [19] also studied a
variant of this problem, where each swap involves a specified candidate (the orig-
inal winner of the election). Other Destructive Bribery problems [13] were
studied under the name Margin of Victory [8,11,23,33] and focused on find-
ing the smallest number of votes that need to be modified to change the election
result. What makes our problem different is the focus on multi-winner approval
elections (rather than ordinal ones) and looking for any change to the winning
committee set (rather than having a specific candidate win).

Regarding the counting variant of the Robustness Radius problem, so
far relatively few authors considered counting variants of election-related prob-
lems. Two notable exceptions include the works of Hazon et al. [18] and Wojtas
et al. [32], both focused on single-winner elections (however these certainly are
not the only ones). In the former, the authors considered the problem of com-
puting the probability that a given candidate is an election winner, provided
that for each voter there is a probability distribution over the votes he or she
may cast. In the latter, the authors considered the problem of computing the
probability that a given candidate is a winner, provided that a given number of
candidates or voters is added/removed from the election.

Finally, we mention that election robustness is a broad term that is studied
in other contexts as well, e.g., in electronic voting and political science, but we
omit the discussion of this literature as it is quite distant from our work.
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2 Preliminaries

We assume basic familiarity with classic and parametrized complexity theory,
including the notions of NP-hardness and fixed-parametrized tractability (FPT).
We point to the textbooks of Papadimitriou [25] and Cygan et al. [10] for more
details on these topics. For an integer t, we write [t] to mean the set {1, . . . , t}.

Elections and Rules. An approval-based election E = (C, V ) consists of a
set of candidates C = {c1, . . . , cm} and a collection of voters V = (v1, . . . , vn),
where each voter vi ∈ V approves a subset Cvi

of candidates from C. For a
voter vi, we write |vi| to mean the number of candidates approved by this voter
(i.e. |vi| = |Cvi

|). For a candidate cj , we write V (cj) to mean the set of voters
that approve c, and we write appE(cj) to mean the cardinality of this set. We
sometimes refer to appE(cj) as the approval score of candidate cj .

An approval-based multiwinner voting rule R is a function that given an
approval-based election and an integer k ∈ [|C|] provides a family R(E, k) of
size-k committees, i.e., a family of size-k subsets of C, that tie for victory. (We
disregard the issue of tie-breaking and we consider all the provided committees
as winning; in practical applications some tie-breaking rule would, of course, be
necessary.)

Below we present several approval-based rules. Let E = (C, V ) be an election
and fix committee size k. For each of the rules we define the score that it assigns
to a given committee S; each rule selects the committees with the highest score:

Approval Voting (AV). Under the AV rule, the score of committee S is defined
as the sum of the approval scores of its members; formally we have:

scoreAVE (S) =
∑

c∈S appE(c).

Satisfaction Approval Voting (SAV). Under the SAV rule, introduced by
Brams and Kilgour [4], each voter has a single point which he or she dis-
tributes among all the candidates that he or she approves. For a candidate
c, we refer to the value

∑
v∈V (c)

1
|v| as the SAV score of c. The SAV score of

committee S is the sum of the SAV scores of its members:

scoreSAVE (S) =
∑

c∈S

(∑
v∈V (c)

1
|v|

)
.

Thiele Rules (Including CCAV and PAV). A Thiele rule for the case of
size-k committees is defined through a vector ω = (ω1, . . . , ωk) of non-negative
real numbers. The score of committee S under a Thiele rule specified by such
a vector is defined as:

scoreω-AV
E (S) =

∑
v∈V

(∑|Cv∩S|
i=1 ωi

)
.

Examples of Thiele rules include the AV rule, defined using vectors of
the form ωAV = (1, . . . , 1), the approval-based Chamberlin–Courant rule
(CCAV) [9,26], defined using vectors of the form ωCCAV = (1, 0, . . . , 0),
and the Proportional Approval Voting rule (PAV), defined using vectors
of the form ωPAV = (1, 1/2, . . . , 1/k). This family of rules was introduced
by Thiele [30], who in particular introduced the PAV rule. We are mostly
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interested in Thiele rules with polynomial-time computable vectors ω =
(ω1, ω2, . . . , ωk), such that 1 = ω1 > ω2 ≥ ω3 ≥ · · · ≥ ωk. We refer to such
rules as unit-decreasing Thiele rules. CCAV and PAV are unit-decreasing, but
AV is not.

Let us discuss CCAV, PAV, and Thiele rules in some more detail. Intuitively,
under the CCAV rule a voter assigns score 1 to a committee if he or she approves
at least one member of this committee, and assigns score 0 otherwise (so a voter
is satisfied with a committee if it contains a candidate that the voter can see as
his or her representative). Under the PAV rule, the appreciation of a voter for
a committee increases with the number of its members that he or she approves,
but the more members a voter approves, the smaller is the increase of his or
her appreciation for the committee. The form of the vector used by PAV makes
the rule suitable for parliamentary elections [1] and, indeed, it can be seen as
a generalization of the D’Hondt apportionment method used in parliamentary
elections in many countries [6].

There are polynomial-time algorithms for computing the winning commit-
tees under the AV and SAV rules [2], but the problem of deciding if there is a
committee with at least a given score is NP-hard for CCAV [22,26], PAV [2,28],
and many other Thiele rules (but there is a number of algorithmic workarounds,
including approximation algorithms [7,29] and FPT algorithms [3,15]).

Robustness Notions. We adapt the definitions of Bredereck et al. [5] to the
setting of approval voting. By the Add operation, we mean adding an approval
for a given candidate in a given vote, by the Remove operation we mean remov-
ing an approval from some candidate in a given vote, and by the Swap operation
we mean moving an approval from one candidate to another in a given vote.

For each operation Op ∈ {Add,Remove,Swap} we say that a multiwin-
ner rule R is �-Op-Robust if performing a single operation of type Op, in a
given election, leads to replacing at most � members of the winning committee.
Formally, we have the following definition (the robustness level notion used by
Bredereck et al. [5] was the same, except that they considered ordinal elections
and the operation of swapping adjacent candidates in a preference order).

Definition 1. Let R be a voting rule and let Op ∈ {Add, Remove, Swap} be
an operation type. We say that the Op-robustness level of R is � (R is �-Op-
robust) if � is the smallest number such that for each election E = (C, V ) each
committee size k, k ≤ |C|, and each election E′ obtained from E by applying a
single Op operation the following holds: For each committee W ∈ R(E, k) there
exists a committee W ′ ∈ R(E′, k) such that |W ∩ W ′| ≥ k − �.

By a slight abuse of notation, we will often speak of k-Op-Robustness to mean
that a single Op operation may lead to replacing the whole committee. We are
also interested in Bredereck et al.’s [5] Robustness Radius problem.

Definition 2. Let R be a voting rule and let Op ∈ {Add,Remove,Swap} be
an operation type. In the R-Op-Robustness-Radius problem we are given an
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approval election E = (C, V ), a committee size k, an integer B, and we ask if
by applying a sequence of B operations of type Op it is possible to obtain an
election E′ such that R(E, k) �= R(E′, k).

In addition to the above problems, we also consider their counting variants
(for the Add and Remove operations), where we consider the number of ways
in which B operations of a given type can be performed so that the result of the
election does not change.2

3 Robustness Levels

In this section we analyze the robustness levels of our rules. We first consider
the AV rule, which is 1-robust for each operation type.

Proposition 1. AVrule is 1-Op-Robust for each Op ∈ {Add,Remove,
Swap}.

The case of SAV is more intricate as the rule is k-Add-robust and k-Remove-
robust, but 1-Swap-robust. Intuitively, adding or removing a single approval can
affect the scores of many candidates so, in consequence, it can lead to replacing
the whole committee. On the other hand, swapping an approval affects the scores
of at most two candidates.

Proposition 2. SAVis k-Add-robust, k-Remove-robust, and 1-Swap-robust.

Proof. We consider the case of adding an approval only. Let us fix some commit-
tee size k and let A = {a1, . . . , ak} and B = {b1, . . . , bk} be two disjoint sets of
candidates. We form an election with candidate set C = A ∪ B and two voters,
v1 and v2, such that v1 approves all the candidates from A and v2 approves all
the candidates from B.

Each candidate has SAV score 1/k and, in particular, A is one of the winning
committees. Yet, if we add an approval for b1 to the vote of v1, then the scores
of all the candidates in A decrease to 1/k+1, whereas the scores of the candidates
in B remain unchanged (or increase, as in the case of b1). In consequence, B
becomes the unique winning SAV committee. This completes the proof. �	

For the case of unit-decreasing Thiele rules (including CCAV and PAV), we
find that they all are k-robust for each operation type. Our proof uses a single
profile (parametrized by the committee size) for all the considered rules.

Proposition 3. Every unit-decreasing Thiele rule is k-Op-robust for each Op ∈
{Add,Remove,Swap}.

2 Since it is easy to compute the total number of ways of performing B operations of
a given type, from the computational complexity point of view it is irrelevant if we
count the cases where the result changes or does not change , but the latter approach
simplifies our proofs.
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4 Complexity of the Robustness Radius Problems

In this section we focus on the complexity of the R-Op-Robustness-Radius
problems for adding, removing, and swapping approvals. For the rules where our
decision problems are polynomial-time solvable, we also consider the complexity
of the respective counting problems. For the rules where the decision problems
are NP-hard, we seek FPT algorithms.

4.1 The AV Rule: Polynomial-Time Algorithms

We start by considering the AV rule. In this case we have polynomial-time algo-
rithms for all our decision and counting problems.

Theorem 1. AV-Op-Robustness-Radius is in P for each Op ∈ {Add,
Remove,Swap}.
Theorem 2. The problem of counting the number of ways in which B approvals
can be added (removed) without changing the set of AV winning committees is
in FP.

Proof. We focus on the case of adding approvals (the case of removing approvals
is similar). Let E = (C, V ) be an approval-based election, where C =
{c1, . . . , cm} and V = (v1, . . . , vn), and let k be the committee size. For each
candidate ci, let zi = appE(ci) be its approval score. Without loss of generality,
we assume that z1 ≥ z2 ≥ · · · ≥ zm. Our goal is to count the number of ways
in which it is possible to add B approvals to the election so that the result does
not change.3 We consider two cases, either there is a unique winning committee
in E or there are several winning committees.

Single Winning Committee. There is a unique winning committee, W =
{c1, . . . , ck}, in election E exactly if zk > zk+1. We need to count the num-
ber of ways of adding B approvals so that afterwards each member of W has
higher approval score than each candidate outside of W . To this end, for each
�, u ∈ [n] we define the following two values:

1. f(�, u) is the number of ways of adding B approvals so that each member of
W has approval score at least � and each candidate outside of W has approval
score at most u.

2. g(�, u) is defined analogously to f(�, u), except that we also require that at
least one member of W has approval score equal to �.

Our algorithm should output the value
∑n

�=0

∑
u<� g(�, u) as it covers all

possibilities of adding B approvals so that each member of W has higher score
than each candidate outside of W without double-counting. To compute the
values g(�, u) in polynomial-time, we proceed as follows. First, we note that for
each �, u ∈ [n], we have that g(�, u) = f(�, u) − f(� + 1, u).4 This is so because

3 We assume that it is, indeed, possible to add B approvals, i.e., z1+· · ·+zm ≤ nm−B.
4 For each u ∈ [n], we take f(n + 1, u) to be equal to f(n, u) in this formula.
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subtracting f(� + 1, u) removes from consideration all the cases where all the
members of W have more than � approvals. Second, we note that values f(�, u)
can be computed using dynamic programming (we omit the proof).

Several Winning Committees. We omit the proof due to limited space. �	

4.2 The SAV Rule: Easy Decision Problems, Hard Counting Ones

Let us now move on to the case of the SAV rule. The decision variants of our
three problems are still polynomial-time computable for this rule.

Theorem 3. SAV-Op-Robustness-Radius is in P For each Op ∈
{Add,Remove,Swap}.
Proof. We consider the case of removing approvals only. Let E = (C, V ) be an
input election, k be the committee size, and B be the number of operations that
we can perform. We first consider the case that there is a unique SAV winning
committee X (we omit the case of multiple winning committees).

Let Y = C \ X be the set of candidates that do not belong to X. Since X
is the unique winning committee, each of its members has a strictly higher SAV
score than each of the candidates in Y . To change the election result, we must
remove up to B approvals so that there are two candidates, x ∈ X and y ∈ Y ,
such that y has at least as high SAV score as x (indeed, if this were not the case
then the winning committee certainly would not change, and if it is the case
then either there is some winning committee that contains y or there is some
winning committee that does not contain x; in either case, the election result
changes). Thus it suffices to try all pairs of candidates x ∈ X and y ∈ Y and
test if by removing B approvals we can ensure that y’s SAV score is greater or
equal to that of x.

Fix candidate x ∈ X and candidate y ∈ Y . Let Δ(y, x) mean the difference
between the SAV score of y and the SAV score of x (in the original election we
have Δ(y, x) < 0; we aim to make it non-negative). We partition our election
into four voter groups: (1) the voters who approve neither x nor y, (2) the voters
who approve y but not x, (3) the voters who approve x but not y, (4) the voters
who approve both x and y.

Note that there is no point in removing approvals from voters in Group 1,
and for voters in Group 3 one should remove approvals for x only. Our algorithm
proceeds as follows. First, we guess three non-negative integers, B2, B3, and B4,
such that B2+B3+B4 = B. Then we execute the following steps: (a) We choose
B4 voters from Group 4 who approve the fewest candidates and remove their
approvals for x (these voters now join Group 2); (b) We find B3 voters from
Group 3 who approve as few voters as possible and remove the approval for x
from each of them; (c) We execute the following operation B2 times: We find a
voter from Group 2 that approves the fewest candidates (but not only y) and
remove an approval from him or her (but not regarding y).

If at any point during this algorithm there are not enough voters in a given
group to perform a given operation, we disregard this guess of B2, B3, and B4.
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We accept if for some guess we reach a stage where Δ(y, x) ≥ 0 and we reject if
this never happens. We omit the simple, but somewhat tedious, argument that
our strategy is correct. �	

In contrast to the case of the AV rule, for SAV the problems of counting the
number of ways in which B approvals can be added or removed without changing
the election result are #P-hard. We show this by giving a Turing reduction from
the classic #P-hard problem, #Perfect-Matchings [31].

Theorem 4. The problem of counting the number of ways in which approvals
can be added (removed) without changing the set of SAV winning committees is
#P-hard.

Proof. We consider adding approvals only. We give a reduction from #Perfect-
Matchings, where we are given a bipartite graph G and we ask how many
perfect matchings it has. We write V (G) and U(G) to denote the two sets of
vertices in the graph, and we write E(G) to denote its set of edges (so each edge
from E(G) connects vertex from V (G) with some vertex from U(G)).

Let n = |V (G)| = |U(G)| be the number of vertices in each part of the input
graph (if V (G) and U(G) were of different cardinality, then there would be no
perfect matching in our graph). We form an election E = (C, V ) as follows. We let
the candidate set be C = U(G)∪V (G)∪D, where D is a set of dummy candidates.
Whenever we form a new voter who approves some dummy candidates, these
dummy candidates are unique for this voter and are not approved by the other
ones (thus, whenever we speak of a voter approving some dummy candidates,
we implicitly create new dummy candidates). We create two groups of voters:

1. For each edge e = {u, v} ∈ E(G), we form a voter ve who approves vertex
candidates u and v, and n−2 dummy candidates (thus, this voter contributes
1/n points to the SAV scores of u and v). We refer to the voters in this group
as to the edge voters.

2. For each vertex candidate x ∈ U(G)∪V (G), we form sufficiently many voters
who each approve x and n − 1 dummy candidates, so that the SAV score of
x is exactly 2 (we add at most 2n voters for each vertex candidate; note that
the edge voters contribute at most 1 point to the SAV score of each vertex
candidate). We refer to the voters in this group as to the filler voters.

We set the size of the committee to be k = 1. In our election, each vertex
candidate has SAV score 2 and each dummy candidate has SAV score 1/n. Thus
the winning committees are exactly the singleton subsets of V (G) ∪ U(G).

We will show that the number of ways in which it is possible to add n
approvals to our election without changing the set of winning committees is of
the form f(G) · M(G), where M(G) is the number of perfect matchings of G
and f(G) is an easily computable function. This suffices to show #P-hardness of
our problem. The intuition is that we can add n approvals without changing the
set of winning committees if and only if these approvals are added to the edge
voters that correspond to a perfect matching (this way we decrease the scores of
all the vertex candidates equally). Let us now consider what happens after we
add some n approvals:



Robustness of Approval-Based Multiwinner Voting Rules 27

Some vertex candidate obtains an additional approval. Let us assume
that some vertex candidate x obtains an additional approval in some vote
v (either a filler vote or an edge vote). Further, let i − 1 be the number of
other candidates that also obtain an additional approval in this vote. Thus,
x’s score increases by 1

n+i due to the additional approval. By adding the
remaining n − i approvals, we can decrease x’s score by at most n−i

n(n+1) . This
is so, because adding a single approval to a vote where x is already approved
decreases x’s score by at most 1

n − 1
n+1 = 1

n(n+1) (this happens when we add
a single approval to an edge or filler vote where x is approved; adding two
approvals to such a vote decreases the score by 1

n − 1
n+2 = 1

n(n+2) , which is
less than 2 · 1

n(n+1) ; in general, adding some j approvals decreases x’s score by
a lesser value than adding single approvals to j votes where x has originally
been approved). However, we have that:

1
n+i − (n − i) · 1

n(n+1) = n+i2

n(n+1)(n+i) > 0.

This means that after adding approvals, x’s score is greater than 2. Yet, by
adding n approvals it is impossible to increase the scores of more than n of
the 2n vertex candidates. This means that if some vertex candidate obtains
an additional approval, then the set of winning committees changes.

Some dummy vertex obtains an additional approval in a filler vote.
If some dummy candidate obtains an additional approval in a filler vote,
then the score of the single vertex candidate who is approved in this vote
decreases.5 The remaining n − 1 additional approvals can lead to decreasing
the scores of at most 2(n − 1) vertex candidates (e.g., if we add approvals
in the edge votes only) so there is at least one vertex candidate whose score
does not decrease. In consequence, the set of winning committees changes.

Approvals are added only for dummy candidates in the edge votes.
Adding an approval for a dummy candidate in an edge vote ve decreases the
scores of the vertex candidates incident to e by exactly 1

n(n+1) . Thus the only
possibility that we add n approvals and the scores of all the vertex candi-
dates remain the same (but decreased) is that we add approvals to dummy
candidates in n edge votes that form a perfect matching (simple counting
arguments show that if we add two approvals to some edge vote or if the edge
votes do not form a perfect matching, then some vertex candidate’s score
does not decrease).

Let M be the number of perfect matchings in our graph. By the above rea-
soning, for each perfect matching we have exactly (|D|− (n−2))n ways to add n
approvals in our election so that the set of winning committees does not change
(for each edge from the matching, in the corresponding vote we can add an
approval for one of the |D| − (n − 2) dummy candidates that are not approved
there). Thus, given a solution for our problem, it is easy to obtain the number
of perfect matchings in the input graph. �	
5 From the previous case we know that it is possible to increase the score of this vertex

candidate to the original value by adding some approval for him or her.
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4.3 Unit-Decreasing Thiele Rules: Hardness and FPT Algorithms

For the case of unit-decreasing Thiele rules, all our decision problems are NP-
hard (and, so, there is no point in considering their counting variants), but we
obtain FPT algorithms for the parametrizations by the number of candidates
and the number of voters. We start with the NP-hardness result. All the results
in this section apply to CCAV and PAV.

Theorem 5. Let R be a unit-decreasing Thiele rule and let Op be an operation
in {Add,Remove,Swap}. R-Op-Robustness-Radius is NP-hard.

Proof. We consider the case of the Swap operation only and we give a reduction
from the classic NP-complete problem Exact-Cover-By-3-Sets (X3C). Our
input X3C instance consists of a set E = {e1, ..., e3k} of 3k elements and a family
S = {S1, ..., Sm} of 3-element subsets of E . The question is if there exists a family
Scov ⊆ S of exactly k sets such that each e ∈ E belongs to exactly one set in Scov.

Let us consider committees of size k and let ω = (1, α, ω3, . . . , ωk) be the vec-
tor that specifies the unit-decreasing Thiele rule R for this setting. By definition,
we have 1 > α. Let � be the constant � 3

1−α�. We form election E = (C, V ) as fol-
lows. Let A = {a1, ..., am} and B = {b1, ..., bk} be two sets of candidates, where
the candidates in A correspond to the sets from S, and the candidates from B
form a default winning committee. We let the candidate set of our election be
C = A ∪ B and we have the following voter groups (see Fig. 1):

1. We introduce voters v1, . . . , v3k who correspond to the elements from the set E
(we refer to them as the element voters). Each voter vi approves candidate
b�i/3� and exactly those candidates aj for whom it holds that element ei

belongs to the set Sj .
2. We introduce the set of voters W = {wi,j,l | i ∈ [m], j ∈ [k], l ∈ [�]}, whose

role is to form a mutual exclusion gadget regarding the winning committees
(see details below). For each i ∈ [m], j ∈ [k], l ∈ [�], wi,j,l approves ai and bj .

3. We introduce the set of voters W a = {wa
i,j,l | i ∈ [m], j ∈ [m − k], l ∈ [�]},

whose role is to balance the scores of candidates in A and B. For each i ∈
[m], j ∈ [m − k], l ∈ [�], wa

i,j,l approves ai.
4. We introduce voters z1, z2 who we use to control which committee wins. Both

voters in Z approve b1.

We show that B is the unique winning committee in election E. To this end,
we first note that members of a given size-k committee S can receive at most
3k approvals from the element voters, km� approvals from the voters in the sets
W ∪W a, and 2 approvals from the voters in Z. Thus, a size-k committee S must
have scoreω-AV

E (S) ≤ 3k + km� + 2 (and for the equality to hold, it must be the
case that each voter approves exactly one committee member). Since one can
verify that scoreω-AV

E (B) = 3k+km�+2, B is a winning committee. Furthermore,
B is a unique winning committee. To see this, let Y be some winning committee
different from B. Note that Y must include candidate b1 as this is the only way
to get points from the voters in Z. For the sake of contradiction, suppose that
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Y also contains some candidate ai ∈ A. However, this means that there are �
voters in W who approve both ai and b1. By definition of the unit-decreasing
Thiele rules, the score that committee Y receives from the 2� approvals that
these voters grant to ai ad b1 is at most � + α� < 2� and, so, the total score of
committee Y is lower than 3k + mk� + 2. Thus, we have that R(E, k) = {B}.

a1 a2 a3 a4 b1 b2
v1 ◦ ◦
v2 ◦ ◦ ◦
v3 ◦ ◦ ◦ ◦
v4 ◦ ◦ ◦ ◦
v5 ◦ ◦ ◦
v6 ◦ ◦

w1,1,[�] © ©
w1,2,[�] © ©
w2,1,[�] © ©
w2,2,[�] © ©
w3,1,[�] © ©
w3,2,[�] © ©
w4,1,[�] © ©
w4,2,[�] © ©
wa

1,1,[�] ©
wa

1,2,[�] ©
wa

2,1,[�] ©
wa

2,2,[�] ©
wa

3,1,[�] ©
wa

3,2,[�] ©
wa

4,1,[�] ©
wa

4,2,[�] ©
z1 ◦
z2 ◦

Fig. 1. Example of an
election used in the
proof of Theorem 5, for
X3C instance six ele-
ments {e1, . . . , e6} and
sets S1 = {e1, e2, e3},
S2 = {e3, e4, e5},
S3 = {e4, e5, e6}, and
S4 = {e2, e3, e4}. Sym-
bol ◦ represents an
approval for a candidate
from a given voter, and
© represents � approvals
coming from a group of
voters.

We now show that it is possible to change the set of
winning committees with a single approval swap if and
only if the answer for our input X3C instance is yes.

(−→) Suppose that an exact cover Scov exists for
our input X3C instance and let X be a size-k committee
corresponding to Scov (i.e., X contains members of A
that correspond to the sets in Scov).

We note that scoreω-AV
E (X) = 3k+km�. To see this,

note that as X corresponds to a set cover, it receives 3k
points from the element voters, each of the k candidates
in X is approved by k� voters from W , and is approved
by (m − k)� voters from W a; each of these approvals
translates to a single point because the voters in these
groups do not approve more than one member of X
each. Finally, there are no approvals for members of X
from the voters in Z.

We form election E′ by swapping z2’s approval from
b1 to some member of X, so we have scoreω-AV

E (X) =
3k + km� + 1. One can also verify that scoreω-AV

E (b) =
3k + km� + 1. As a consequence (and following similar
reasoning as a few paragraphs above) we see that both
X and A are winning committees. In other words, a sin-
gle approval swap sufficed to change the set of winning
committees.

(←−) We omit the details of the other direction. �	
Fortunately, there are FPT algorithms for our prob-

lems for the parametrizations by the numbers of candi-
dates and voters. The algorithms are inspired by those
of Faliszewski et al. [17], but require some technical
twists.

Theorem 6. Let R be a unit-decreasing Thiele rule
and let Op be an operation in {Add,Remove,Swap}.
There are FPT algorithms for R-Op-Robustness-
Radius both for the parametrization by the number of
candidates and for the parametrization by the number
of voters.
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5 Conclusion and Further Work

We have adapted the robustness framework of Bredereck et al. [5] to the approval
setting. We have shown that the robustness levels of our rules are either 1 or k
(so small perturbations of the votes are either guaranteed to have minor effect
only, or may completely change the results), and we have studied the complexity
of deciding if a given number of perturbations can change election results.

Acknowledgements. This work was partially supported by the AGH University and
the “Doktorat Wdrozeniowy” program of the Polish Ministry of Science and Higher
Education.
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Abstract. It is often the case that economic mechanisms can have hid-
den characteristics with unexpected consequences in practice. This is
especially true when real-world budgets come into play. For instance,
the infamous German and British 3G spectrum auctions that generated
revenue so successfully that cellular service providers delayed the rollout
of 3G networks for lack of funds.

We contribute a piece of the puzzle by characterizing the space
of deterministic, dominant-strategy incentive compatible, individually
rational, and Pareto-optimal combinatorial auctions where efficiency
does not hold. We examine a model with two players and k nonidentical
items (2k outcomes), multidimensional types, private values, nonnegative
prices, and quasilinear preferences for the players with one relaxation -
one of the players is subject to a publicly-known budget constraint.

We show that if it is publicly known that the valuation for the largest
bundle is more than the budget for at least one of the players then the fol-
lowing are true. (a) VCG does not fulfill the basic properties of determin-
istic, dominant-strategy incentive compatible, individual rationality and
Pareto optimality when the all-item bundle is not arbitrarily allocated.
(b) Of the dictatorial solutions, only a single family of non-trivial dicta-
torial mechanisms fulfills the above basic properties. (c) Weakening the
public knowledge assumption results in no VCG nor dictatorship mecha-
nisms that fulfill the properties. Our characterization of the non-efficient
space for deterministic budget-constrained combinatorial auctions is sim-
ilar in spirit to that of [20] for Bayesian single-item constrained efficiency
auctions.
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Incentive compatibility

c© Springer Nature Switzerland AG 2019
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1 Introduction

The inclusion of budgets and heterogeneity when designing economic mecha-
nisms better characterizes many real world problems such as commonly studied
bandwidth (combinatorial) auctions. However, this inclusion greatly complicates
design and the outcomes of such mechanisms can be difficult to predict. Consider
the unexpected result of the German and British 3G radio spectrum auctions
in early 2000. In these auctions telecom companies overspent to the point of
depleting the funds needed to roll out 3G networks, resulting in a delayed 3G
rollout. However, a change in the auction mechanism or even the market con-
ditions could have created the opposite effect of companies paying nothing for
spectrum rights or a single company acquiring all of the spectrum rights. These
types of outcomes are not limited to spectrum auctions and could easily occur
in an automated globalized supply chain. The drive for lean globalized supply
chains has substantially increased competition among suppliers and driven down
margins. As such, some suppliers try to win business though they are incapable
of funding the contracted quantity/quality of procured goods, which introduces
the confounding factor of players’ budgets to the problem of characterizing the
outcome of practical auctions.

We contribute a piece of the overall puzzle by characterizing the space of
deterministic, dominant-strategy incentive compatible (IC), individually ratio-
nal, and Pareto-optimal combinatorial auctions where efficiency does not hold.
We examine a model with two players and k nonidentical items (2k outcomes),
multidimensional types, private values, nonnegative prices, and quasilinear pref-
erences for the players with one relaxation - one of the players is subject to a
publicly-known budget constraint. This setting is somewhat more complex than
that of common auction literature as it adds budgets and heterogeneity, which
more accurately describe mechanisms used in practice.

The phenomena in the German and British 3G radio spectrum auctions as
well as the present day proliferation of suppliers highlights the potential gap
between willingness to pay and ability to pay, and the potential of better under-
standing how budget constraints affect auction outcomes. Further consider that
most goods are not sold in uniform bundles or used independent of other items.
Though blocks of radio bandwidth are apparently uniform they are not identi-
cal, as well can be said for goods in supply chain auctions which are bundled to
fulfill diverse bills of materials. The addition of the seemingly minor dimension
of heterogeneity profoundly affects auction design complexity.

Our result characterizes a space where efficient outcomes do not exist in this
context. For instance, the characterization answers whether and under which
conditions it is possible for a small telecommunications company to compete
meaningfully with better financed companies in a bandwidth auction.

[20] showed that in a Bayesian setting where one indivisible item is for sale
there exists a threshold value such that if the players have a valuation that is
more than the threshold then the solution is inefficient, Bayesian IC, and individ-
ually rational in expectation. [18] showed for the two item case, that there exists
a unique family of dictatorial solutions in deterministic combinatorial auctions
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that are dominant-strategy IC, individually rational, and Pareto-optimal with
publicly-known budget-constraints and publicly known high valuations. More-
over it was shown [11] that if trivial dictatorial mechanisms, i.e., dictatorial
mechanisms with zero revenue, are ruled out by a natural anonymity property
then an impossibility of design is revealed and there is no deterministic combi-
natorial auction that is dominant-strategy IC, individually rational, and Pareto
optimal where players have publicly-known budget constraints and the all-item
bundle is nonarbitrarily allocated (a property termed nonarbitrary hoarding),
in a model with multiple nonidentical items and nonnegative prices. Therefore,
some additional public knowledge needs to be assumed to allow a large space
of mechanisms to exist other than the trivial dictatorial mechanism. Indeed [19]
characterized the combinatorial efficiency space in the aforementioned setting
assuming that it is a public knowledge that at least one of the players value the
k-item bundle less than the constrained player’s budget. [19] proved that VCG
[6,13,24] is the only mechanism that fulfills the above properties.

More specifically, in this paper we assume the negation of the public knowl-
edge assumed in [19] and prove that no VCG mechanism exists under this
assumption. Nevertheless we show that if it is publicly known that at least one of
the players values the k-item bundle more than the constrained player’s budget,
the player has non zero value for all other bundles and the allocation of the k-item
bundle is nonarbitrary, i.e., no trivial dictatorial mechanism is considered1, then
there exists a single family of dictatorial mechanisms that is dominant-strategy
IC, individually rational and Pareto optimal. Furthermore any weakening of our
suggested public assumption results in a space with no dictatorial mechanisms
at all in addition to no VCG mechanisms. In other words we prove the minimal
public knowledge assumption under which (non-trivial) dictatorial mechanisms
that fulfill the above desired properties exist and the VCG mechanism does not
exist. Our dictatorial mechanisms are a natural extension of Arrow’s definition
of a dictatorial social welfare function to a monetary domain and differs from
Groves dictatorial mechanisms as negative prices are not included in our model.

There are classic as well as recent results showing that dictatorship (or
sequential dictatorship) is the only mechanism that is not subject to individual
manipulations and is Pareto optimal in mechanism design models without assum-
ing quasilinearity (See e.g. [1,10,23]) Arrow’s seminal impossibility [1] shows
that for unrestricted domains (at least three possible outcomes) under determin-
ism and transitivity axioms, independence of irrelevant alternatives (IIA), and
Pareto-optimality conditions, every social choice function must be a dictatorship
or imposed. However, the conditions of Arrow’s theorem as well as the condi-
tions of [10,23] can be satisfied when the requirement for unrestricted domains is
relaxed, as was shown for one dimensional domains such as single peaked. While
the possibility/impossibility of maintaining Arrow’s desired properties is known
for the whole space of the nonmonetary domain of preferences, much is yet left
to be understood when restricting attention to the assumption of side payments
and transferable currency.

1 The formal definition of the nonarbitrary allocation is defer to Sect. 2.
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Throughout the paper we assume deterministic mechanisms. To understand
the role of determinism in our result one must look into the literature of nonde-
terministic constrained auctions such as [20]. [20]’s work defines the properties of
constrained-efficient auctions, i.e., maximizing the expected social welfare under
Bayesian incentive compatibility and budget-constrained players. [20] states that
the domains of efficiency and inefficiency are determined by a threshold value.
The computation of the threshold value makes use of expectation and allows
for allocations with negative utility for the players. Therefore [20]’s threshold
cannot be used in an individually rational deterministic setting. The domains
of inefficiency that can be concluded from our analysis are determined by the
budget. The immediate implication of the budget as the threshold of inefficiency
is that the budget cannot be a privately known value but must be publicly
known. As such, in our deterministic setting the budget is publicly known much
like [7,9,16], and [11]; while in [4,20]’s nondeterministic setting the budgets are
privately known.

1.1 Our Contribution

As the complication introduced by budgets and heterogenous goods makes char-
acterizing the space necessarily complex, this section presents a summary of the
result and its implications, informed speculation on possible inferences and a
concrete example demonstrating the base result. In summery we show that if
it is publicly known that the valuation for the largest bundle is more than the
budget for at least one of the players then the following are true. (a) VCG does
not fulfill the basic properties of deterministic, dominant-strategy IC, individ-
ual rationality and Pareto optimality when the all-item bundle is not arbitrarily
allocated. (b) Of the dictatorial solutions, only a single family of non-trivial dic-
tatorial mechanisms fulfills the above basic properties. (c) Weakening the public
knowledge assumption results in no VCG nor dictatorship mechanisms that fulfill
the properties. Our characterization of the non efficient space for deterministic
budget-constrained combinatorial auctions is similar in spirit to that of [20] for
Bayesian single-item constrained efficiency auctions.

In general terms we show that in our setting one of the following outcomes will
arise. If the value of the budget-limited player is more than his own budget, either
the player with the unlimited budget (practically speaking) will be allocated all of
the goods for the budget of the limited player or the players will share the goods
and both will potentially pay nothing. On the other hand, if the player with an
unlimited budget values the goods more than the budget-limited player is able to
pay then the players share the goods and both will potentially pay nothing.

We also speculate that the general space of dominant-strategy IC combi-
natorial auctions with budgets most likely includes only VCG and dictatorial
mechanisms. Also, it appears that the dictatorial aspect depends on the intro-
duction of budgets. We draw the above conclusion as the research community
has indications to believe that the general space of dominant-strategy IC com-
binatorial auctions without budgets includes only VCG mechanisms. Therefore,
the discovery of dictatorial mechanisms in our study is most likely brought about
by our inclusion of players with budgets.



36 R. Gonen and A. Lerner

As an example illustrating this result, consider two telecommunications com-
panies T1 and T2 that are competing for bandwidth in a region with k distinct
broadcast bands. Company T1 has a limited budget b to spend on bandwidth.
On the other hand company T2 is a large telecommunications company with
practically unlimited funds to spend on the discussed region. If company T1 val-
ues taking control of all the bandwidth available in the region more than b then
T2’s bandwidth allocation will be determined and priced such that it receives
its most beneficial bandwidth allocation potentially for free, regardless of any
high values stated by company T1. The applicability of the results is the indi-
cation to the auction designer under what circumstances the outcome might be
less desirable, such as zero revenue or dict allocation if he wishes to maintain
the common economic properties. Given that in practice some participants are
budget constrained and most practical mechanism design problems call for good
heterogeneity.

We explicitly study a model with two players. Indeed there may be a gap
between the two player model and a model with more than two players, i.e.,
with more possible outcomes. However, the literature tends to indicate that an
outcome space as large as the 2k model’s can capture the complexity of the
outcome of the n player k items model (for any finite n and k) of the multi-
dimensional combinatorial auction possibility space. This level of applicability
was indicated by Roberts’ characterization of the complete preference domain
space [22]. In Roberts’ result a three-outcome model captures the complexity of
the whole n-outcome possibility space of the preference multidimensional space
for any finite n. Hence, we believe that extending our model to more players
(where one of them is budget constrained) will maintain the unique dictatorial
solution when it is publicly known that at least one of the players values the
k-item bundle more than the constrained player’s budget, has non zero value for
all other bundles and the allocation of the k-item bundle is nonarbitrary. We
leave the extension of our proof for future research.

1.2 Prior Literature

It is well known that in quasilinear environments with a complete preference
domain over at least three outcomes and non-constrained players, only VCG
mechanisms (and weighted VCG) ([6,13,24]) satisfy the dominant-strategy IC
property [22]2. Nevertheless when preferences are subject to free disposal and no
externalities are assumed, as is common in combinatorial auctions, then the pos-
sibility space of dominant-strategy IC combinatorial auctions in the multidimen-
sional type model is not yet defined. Several papers investigate computationally
feasible dominant-strategy IC (but inefficient) auctions with one-dimensional
private values e.g. [17] as well as with multidimensional private-value settings
with some additional restrictions on the preference space [8].

2 In quasilinear environments only Groves mechanisms satisfy the dominant-strategy
IC and Pareto optimal properties ([12,14]).
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In recent years several papers studied budget-constrained combinatorial auc-
tions. [7] showed that there does not exist a deterministic auction that is individ-
ually rational, dominant-strategy IC, and Pareto optimal with potentially nega-
tive prices and privately known budgets, even when players are one-dimensional
types. [9] showed that the same impossibility holds for one-dimensional types
with different items and publicly known multi-item demand. [16] also showed
the same impossibility with publicly known budgets if multidimensional types
(two identical items with three outcomes) are considered.

[7,9,16] allow negative prices to exist. This means that some players are paid
for participation in the auction, either by the mechanism or by the other play-
ers. Practical auction implementations usually can not afford or are unwilling to
consider paying bidders for their participation nor are they interested in encour-
aging side payments among the participants. Therefore, similar to [20]’s and
[11]’s model we chose to assume that all prices are nonnegative. This assumption
narrows down the domain of possible allocations in comparison to the potential
negative prices model with multidimensional types. Nevertheless, some of the
mechanisms that fulfill the three properties of dominant strategy IC, individu-
ally rational, and Pareto optimal in the nonnegative price model are not included
in the mechanism space that fulfills the same properties in the negative price
model. The reason for the above derives from the Pareto optimality property.
Since the model with nonnegative prices has a smaller set of possible allocations
there exist situations where a mechanism does not fulfill the Pareto optimal
property in the model with negative prices but does fulfill the Pareto optimal
property in the model with nonnegative prices.

[7] also characterizes the possibility space of dominant-strategy incentive
compatibility and Pareto optimal budget-constrained combinatorial auction
mechanisms. [7]’s characterization is restricted to one-dimensional types and
therefore their possibility space characterization does not imply the possibility
space in our model with multidimensional types. More specifically, [7] showed
that for multi-unit demand and identical items, Ausubel’s clinching auction,
which assumes public budgets and additive valuations, uniquely satisfies the
properties described above. In a similar model with small randomized modifica-
tion [4] showed that [7]’s result can be obtained with private budgets. Similarly
Ausubel’s clinching auction was concluded by [9] for one-dimensional types with
different items and publicly known multi-item demand. For unit-demand players
with private values and budget constraints in the one-dimensional types model
there are several deterministic mechanisms that fulfill the properties of IC and
Pareto optimality (see e.g. [2]). In nondeterministic mechanisms with a one-
dimensional types model (one indivisible unit) [20] characterizes constrained-
efficiency mechanisms, which are mechanisms that maximize the expected social
welfare under Bayesian incentive compatibility and budget constraints in a non-
negative price model.

There are few other works that focus on revenue maximization under budget
constraints in a single-item auctions settings (e.g. [3,5,15,21]).
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2 Notation and Definitions

We consider combinatorial auction mechanisms with k different types of items
and 2 players. Let N = {1, 2} be the set of players and C = {c1, · · · , ck} be the
set of items. Let B be the set of all subsets of items, that is, B = 2C .

Each player i has a private value vi(B) for every bundle B ∈ B drawn from
a valid valuation space Vi

3, i.e., players are multi-minded and have different
private values for different bundles of the items. We denote player i’s private
values by a 2k-tuple: Vi = {vi(B)|B ∈ B}. We assume that vi(∅) = 0, that is,
for both players the valuation of the empty bundle is zero. We also assume that
vi(B′) ≤ vi(B) whenever B′ ⊆ B, meaning free disposal: for both players the
allocation of an extra item can not reduce their valuation (the usual assump-
tion in combinatorial auctions). As players are multi-minded and have different
private values for different bundles of the items, a player i may have a separate
arbitrary value for each of the 2k possible outcomes. This means our valuation
space is a multidimensional valuation space and the players have multidimen-
sional valuations.

We assume that player 1 has a limited budget b1 while player 2 has an
unlimited budget for acquiring the items and these budgets are publicly known
information.

We denote the auction mechanism
F (V1, V2, b1) = (B1, B2, p(B1), p(B2)) where Bi is the bundle allocated to

player i and p(Bi) is the price of the bundle Bi. We assume that all the prices
are nonnegative, i.e., p(Bi) ≥ 0 for i = {1, 2}. We also assume that the auction
mechanism F (V1, V2, b1) can produce at least 2k − 1 outcomes, i.e., there exist
at least 2k − 1 inputs with different outputs.

Definition 1. The utilities of player 1, player 2 and the auctioneer are defined
as follows:
Player 1’s utility is

u1(F (V1, V2, b1)) =
{

v1(B1) − p(B1) if p(B1) ≤ b1
−∞ otherwise

Player 2’s utility is u2(F (V1, V2, , b1)) = v2(B2) − p(B2).
The auctioneer’s utility is ua(F (V1, V2, b1)) = p(B1) + p(B2).

For simplicity of notation, whenever F, V1, V2 and b1 are clear from the context
we denote ui(F (V1, V2, b1)) by ui.

Definition 2. Allocation Space
We say that a mechanism is limited to an allocation space AS = (B1, B2 =
C −B1, p(B1), p(B2)), if the feasible outcome space is restricted to AS regardless
of the valuations.

3 Along the paper we consider valuation spaces where not all valuations are included
in the valuation space.
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Definition 3. Dictatorial
An auction mechanism F (V1, V2, b1) is called a dictatorial mechanism if there
exists a player i ∈ {1, 2} (the dictator) such that given the allocation space AS,
F maximizes the utility of the dictator regardless of the other player’s valuations.
Formally, F (V1, V2, b1) = (B1, B2, p(B1), p(B2)) is a dictatorial mechanism given
AS, and player i is the dictator if:

∀(V1, V2) ∈ (V1,V2), F (V1, V2, b1) ∈ AS and

(∀Vi ∈ Vi, and ∀(B′
1, B

′
2, p(B′

1), p(B′
2)) ∈ AS),

(vi(Bi) − p(Bi) ≥ vi(B′
i) − p(B′

i))

Our definition of a dictatorial mechanism is a natural extension of Arrow’s
dictatorial social welfare function to a monetary domain. To understand the
connection between our definition of a dictatorial mechanism and Arrow’s dicta-
torial definition consider [1]’s definition: “A social welfare function is said to be
“dictatorial” if there exists an individual i such that for all x and y, xPiy implies
xPy regardless of the ordering of all individuals other than i, where P is the
social preference relation corresponding to those orderings.” Arrow’s definition
implies that the dictator determines the outcome regardless of the other players’
preferences similar to the way our dictator determines the outcome allocation
regardless of the other player’s preferences, though in a monetary domain. As our
model is in the monetary domain our definition also adds the monetary aspect
and implies that the dictator’s payment is independent of the other player’s
preferences.

In the paper we will consider only dictatorship mechanisms that are Pareto
Optimal (see definition 6) and therefore they will all be of the following form: The
mechanism first maximizes the utility of the dictator and then the mechanism
selects an allocation that maximizes the utility of the other player from the
allocations the dictator is indifferent to.

We next define the four properties under which [11]’s impossibility holds:
Individual Rationality (IR), Nonarbitrary Hoarding, Pareto Optimality and
Truthfulness.

Definition 4. Property 1: Individual Rationality (IR)
An auction mechanism F (V1, V2, b1) is called individually rational if for every
player i, ui(F (V1, V2, b1)) ≥ 0. Specifically, the following must hold:

1. v1(B1) − p(B1) ≥ 0 and p(B1) ≤ b1 (IR of Player 1)
2. v2(B2) − p(B2) ≥ 0 (IR of Player 2)

Note that the auctioneer’s utility is nonnegative from our assumption that all
the prices are nonnegative.

Definition 5. Property 4: Truthfulness
An auction mechanism F (V1, V2, b1) is called Truthful if none of the two players
can increase his own utility by reporting false valuations. That is, given the true
valuations (V1, V2) ∈ (V1 ×V2), for every (V ′

1 , V
′
2) ∈ (V1 ×V2) the following hold:
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– u1(F (V1, V
′
2 , b1)) ≥ u1(F (V ′

1 , V
′
2 , b1))

– u2(F (V ′
1 , V2, b1)) ≥ u2(F (V ′

1 , V
′
2 , b1))

Definition 6. Property 3: Pareto Optimality (PO)
An auction mechanism F is called Pareto optimal if for every input

(V1, V2, b1), such that (V1, V2) in (V1 ×V2), there is no allocation (B′
1, B

′
2, p(B′

1),
p(B′

2)) such that all the following inequalities hold, with at least one strong
inequality:

– u1(B′
1, p(B′

1), B
′
2, p(B′

2)) ≥ u1(F (V1, V2, b1))

– u2(B′
1, p(B′

1), B
′
2, p(B′

2)) ≥ u2(F (V1, V2, b1))

– ua(B′
1, p(B′

1), B
′
2, p(B′

2)) ≥ ua(F (V1, V2, b1))

At first glance it may seem that our definition of PO may ask too much of
the mechanism by including the auctioneer’s utility. Several papers include the
auctioneer’s utility in the PO definition (e.g. [7]). We included the auctioneer’s
utility to allow a larger space of mechanisms to exist. In the case of dictatorial
mechanisms if only the buyers’ utility is included in the PO definition then any
mechanism that does not give both players a price of exactly 0 is not PO.

We denote the following mechanism as a trivial mechanism.
F (V1, V2, b1) = (B1 = C − B2, B2, p(B1) = p(B2) = 0), s.t. each of the two
players can be the dictator. The dictator is allocated the most valued bundle
and the other player is allocated the most valued bundle from the dictator’s
indifference set and they both pay zero.

The trivial mechanism is the only dictatorial mechanism that satisfies the
three properties of IR, Pareto optimality and truthfulness as was shown in [11].
The property of nonarbitrary hoarding that was first presented in [11] aims
to eliminate the trivial mechanism. With the nonarbitrary hoarding property
assumed there is no mechanism that satisfies the four properties of IR, Pareto
optimality, truthfulness and nonarbitrary hoarding.

Definition 7. Property 2: Nonarbitrary Hoarding
Given V = {V1, V2}, a general set of private valuations in V1 × V2; and B1

and B2, the output bundles of F (V1, V2, b1). An auction mechanism F is called
nonarbitrary hoarding if the following two conditions hold:

1. If B2 = {c1, · · · , ck}
then v2(c1, · · · , ck) ≥ min{b1, v1(c1, · · · , ck)}.

2. If B1 = {c1, · · · , ck}
then min{b1, v1(c1, · · · , ck)} ≥ v2(c1, · · · , ck).

Intuitively, a mechanism fulfills nonarbitrary hoarding if whenever all k items are
allocated to a single player, the player is chosen nonarbitrarily, i.e., according to
the valuations of the two players and the budget. Furthermore the player chosen
has to be able to afford the k-item bundle more than the other player. Note that
the property of nonarbitrary hoarding does not require if and only if. That is,
a mechanism can maintain nonarbitrary hoarding even when v2(c1, · · · , ck) ≥
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min{b1, v1(c1, · · · , ck)} and player 2 is not allocated the k-item bundle, or when
min{b1, v1(c1, · · · , ck)} ≥ v2(c1, · · · , ck) and player 1 is not allocated the k-item
bundle.

As discussed in Sect. 1 in order to circumvent [11] impossibility, some addi-
tional public knowledge needs to be assumed. We define four possible publicly
known restrictions on the valuations space:

R1 v1(c1, · · · , ck) < b1
R2 v2(c1, · · · , ck) < b1
R3 (v1(c1, · · · , ck) ≥ b1) and (∃ 0 < m ≤ b1, s.t. (∀B 
= ∅, v1(B) ≥ m))
R4 v2(c1, · · · , ck) > b1 and (∃ 0 < m ≤ b1, s.t. (∀B 
= ∅, v2(B) ≥ m))

R3 and R4 means that the player is completely multi minded that is to say
that the player has a non zero value for every bundle that is not the empty set.

3 Impossibility Space - No VCG Mechanisms

[19] proved that if one of restrictions R1 or R2 is publicly known then the only
mechanism that satisfies the four properties is an efficient mechanism with VCG
prices. In what follows we show that in the negation valuation space of R1 or
R2 there does not exist a VCG mechanism that fulfills the four properties of
truthfulness, IR, PO, and nonarbitrary hoarding.

Claim 1. If we do not assume public knowledge of R1 or R2, as assumed in
[19], that is, we do not assume that v1(c1, · · · , ck) < b1 or v2(c1, · · · , ck) < b1,
then the unique VCG mechanism proven in [19] for the domain will not satisfy
the three properties of: IR, PO, and truthfulness.

Proof of Claim 1. Suppose that both v1(c1, · · · , ck) and v2(c1, · · · , ck) are
not restricted to be lower than b1. Consider the following valuations for B /∈ ∅:
v2(c1, · · · , ck) = b1 + ε s.t. ε < b1/4 and v2(B 
= (c1, · · · , ck)) = b1 − ε

v1(c1, · · · , ck) = 2b1 and v1(B, 
= (c1, · · · , ck)) = b1
Then, the allocation B1 = (c1, · · · , ck) with VCG prices, does not satisfy

IR for player 1 as p(B1 = (c1, · · · , ck)) = v2(c1, · · · , ck) > b1 and player 1 is
budget constrained . Any allocation (B1, C − B1), such that B2 
= (c1, · · · , ck)
with VCG prices is not IR for player 2 as v2(B2) = b1 − ε and the VCG price is
v1(c1, · · · , ck) − v1(C − B2) = 2b1 − b1 = b1 > v2(B2).

Therefore the only allocation is B2 = (c1, · · · , ck), for the price
min {b1, v1(c1, · · · , ck)} = b1.

But this allocation is not PO as any allocation of non-empty bundles for the
two players (B1, C − B1) with the prices: p(B1) = b1 − ε and p(B2) = 2ε, will be
better for both players and the auctioneer .
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4 Possibility Space - Dictatorial Mechanisms

In this section we study the valuation spaces for which there exist dictatorial
mechanisms that satisfy the four properties of IR, Pareto optimality, truthfulness
and nonarbitrary hoarding. In the next two subsections we investigate the effect
of public knowledge of one player’s restricted valuation space. In Subsect. 4.1 we
assume that the fact that V1 satisfies restriction R3 is publicly known and prove
that of the dictatorial solutions, only a single family of non-trivial dictatorial
mechanisms fulfills the above basic properties. In the presented family the only
possible dictator is player 2 and the family has 2k feasible outcomes. Further-
more we prove that R3 is the minimal restriction on V1 that allows nontrivial
mechanism solutions.

In Subsect. 4.2 we assume that it is publicly known that V2 satisfies restriction
R4 and prove that of the dictatorial solutions, only a single family of non-trivial
dictatorial mechanisms fulfills the above basic properties. In the presented family
the only possible dictator is player 1 and the family has 2k −1 feasible outcomes.

4.1 When R3 Is Publicly Known

In this subsection we study the effect of R3 as public knowledge, i.e., (v1(c1, · · · ,
ck) ≥ b1) and (∃ 0 < m ≤ b1, s.t. (∀B 
= ∅, v1(B) ≥ m)). The main theorem of
this subsection follows.

Theorem 1. Given that restriction R3 is publicly known:

1. Of the dictatorial solutions there exists a single family of nontrivial dictato-
rial mechanisms that satisfies the four properties of IR, Pareto optimality,
truthfulness and nonarbitrary hoarding.

2. The family is unique up to a price parameter y and a valuation parameter
m > 0, 0 ≤ y ≤ m ≤ b1, such that ∀B1 
= ∅, p(B1) = y.

3. Player 2 is the sole dictator.
4. p(B2 = {c1, · · · , ck}) = b1, and p(B2 
= {c1, · · · , ck}) = 0.
5. For any weaker restriction on player 1’s valuations, there is no nontrivial

dictatorial mechanism that satisfies the properties of IR, Pareto optimality,
truthfulness and nonarbitrary hoarding.

Proof of Theorem 1. We prove the theorem with the help of the following
lemmas:

– Lemma 1 proves that in any dictatorial mechanism that satisfies the four
properties, all the 2k − 2 nonempty partitions of C between two players must
be feasible outcomes.

– Lemma 2 proves that if R3 is publicly known then in addition the two alloca-
tions of the k-item bundle to each player must also be feasible outcomes.

– Lemma 3 proves that if R3 is publicly known, then player 1 can not be the
dictator .
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– Lemma 4 proves the uniqueness of the prices. I.e., for any dictatorial mech-
anism with 2k outcomes that does not apply the following price structure at
least one of the properties is violated . y is a parameter, s.t., m ≥ y ≥ 0.

p(B1) =
{

0 If B1 = ∅
y Otherwise

p(B2) =
{

b1 If B2 = {c1, · · · , ck}
0 Otherwise

– Lemma 5 proves that given that restriction R3 is publicly known, the dicta-
torial mechanism with 2k feasible outcomes that applies the price structure
defined in Lemma 4 and in which player 2 is the dictator, satisfies all of the
four properties.

– Lemma 6 proves that restriction R3 is the minimal restriction on player 1’s
valuations that results in a mechanism with strictly positive prices that satis-
fies the four properties.

Lemma 1. In any dictatorship that satisfies the properties of IR, Pareto opti-
mality, truthfulness and nonarbitrary hoarding, all of the 2k − 2 nonempty par-
titions of C between two players must be feasible outcomes.

The proof of Lemma 1 is omitted due to space limitations.

Lemma 2. Given that restriction R3 is publicly known, in any dictatorial mech-
anism that satisfies the properties the outcomes (B1 = {c1, · · · , ck}, B2 =
∅, p(B1), p(B2) = 0) and (B′

1 = ∅, B′
2 = {c1, · · · , ck}, p(B′

1) = 0, p(B′
2)) must

also be feasible.

The proof of Lemma 2 is omitted due to space limitations. In the following lemma
we study the identity of the dictator .

Lemma 3. If R3 is publicly known then Player 1 can not be the dictator.

Proof of Lemma 3.1. Suppose to the contrary that R3 is publicly known and
player 1 is the dictator. Consider the following situation.

∀B 
= {c1, · · · , ck}, v1(c1, · · · , ck) − b1 > v1(B), v2(c1, · · · , ck) > b1. Then
from player 1’s IR we conclude that p(B1 = {c1, · · · , ck}) ≤ b1, and therefore
player 1’s utility from the k-item bundle, even for the highest price of b1, is
strictly higher than his utility from any other bundle even if this bundle is given
for free. Therefore, as player 1 is the dictator, any dictatorial mechanism must
allocate B1 = {c1, · · · , ck}. However, this allocation contradicts nonarbitrary
hoarding as min{b1, v1(c1, · · · , ck)} = b1 < v2(c1, · · · , ck).

In the following lemma we define a price structure and prove that for any
other price structure at least one of the properties is violated .

Lemma 4. Let 0 ≤ y ≤ m be a constant parameter and consider the following
price structure:

p(B1) =
{

0 If B1 = ∅
y Otherwise
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p(B2) =
{

b1 If B2 = {c1, · · · , ck}
0 Otherwise

Given that restriction R3 is publicly known, any dictatorial mechanism that
applies a price structure different from the above price structure, violates at least
one of the properties.

We prove Lemma 4 with the help of the following five claims. The proofs of
the claims are omitted due to space limitations.

Claim 2. The price paid by player 2 for any given bundle must be a constant .

Claim 3. For every i ∈ {1, 2}, If Bi ⊆ B′
i then p(Bi) ≤ p(B′

i)

Proof of Claim-3.1. This follows directly from truthfulness and free disposal .

Claim 4. p(B2 = {c1, · · · , ck}) = b1

Claim 5. ∀B2 
= {c1, · · · , ck}, p(B2) = 0

Claim 6. ∀B1 
= ∅, m ≥ p(B1) = y ≥ 0.

In the following lemma we prove that the dictatorship with 2k outcomes with
player 2 as the dictator and the price structure defined in Lemma 4 satisfies the
four properties.

Lemma 5. The dictatorial mechanism defined in Theorem 1 satisfies the four
properties of IR, truthfulness, Pareto optimality, and nonarbitrary hoarding.

The proof of Lemma 5 is omitted due to space limitations.
[19] showed that if there is no public knowledge of the players’ valuations

then there is no mechanism that satisfies the four properties of IR, truthfulness,
Pareto optimality, and nonarbitrary hoarding . [19] further showed that if it is
publicly known that v1(c1, · · · , ck) < b1 then the only mechanism that satisfies
the four properties is the efficient mechanism with VCG prices4. Therefore, if
there is a restriction on V1 that supports a dictatorial mechanism it must be at
least v1(c1, · · · , ck) ≥ b1.

The slightest weakening of R3 is therefore R3’ v1(c1, · · · , ck) ≥ b1 and ∃B1 
=
∅, and (∃ 0 < m ≤ b1, s.t. (∀B 
 ⊆B1 v1(B) ≥ m)). Meaning that player 1’s
valuation for at least one bundle B1 is not bounded from below .

Lemma 6. If R3’ is publicly known then there is no dictatorial mechanism that
satisfies the properties of IR, truthfulness, nonarbitrary hoarding and Pareto
optimality.

The proof of Lemma 6 is omitted due to space limitations.

4 Note that from free disposal v1(c1, · · · , ck) < b1 ⇒ ∀B, v1(B) < b1.
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4.2 When R4 Is Publicly Known

In this subsection we study the effect of R4 as public knowledge, i.e.,
v2(c1, · · · , ck) > b1 and (∃ 0 < m ≤ b1, s.t. (∀B 
= ∅, v2(B) ≥ m)).

The main theorem in this subsection is Theorem 2:

Theorem 2. Given that restriction R4 is publicly known:

1. Of the dictatorial solutions, there exists a single family of nontrivial dicta-
torial mechanisms that satisfies the four properties of IR, Pareto optimality,
truthfulness and nonarbitrary hoarding, with 2k − 1 feasible outcomes. The
only outcome that is not feasible is allocating an empty bundle to player 2.

2. Player 1 is the sole dictator.
3. The family is unique up to a price parameter x and a valuation parameter

m > 0, 0 ≤ x ≤ m ≤ b1, such that ∀B2 
= ∅, p(B2) = x.
4. ∀B1, p(B1) = 0.

Proof of Theorem 2. We prove the theorem with the help of the following
lemmas.

– Lemma 1 proved that in any dictatorial mechanism that satisfies the four
properties, all the 2k − 2 nonempty partitions of C between two players must
be feasible outcomes.

– Lemma 7 proves that if R4 is publicly known then in addition the allocation
of the k-item bundle to player 2 must also be feasible and the allocation of an
empty bundle to player 2 can not be feasible.

– Lemma 8 proves that if R4 is publicly known, and player 2 is the dictator,
then the only dictatorial mechanism that satisfies the four properties is the
trivial mechanism.

– Lemma 9 proves that there exists a unique family of nontrivial dictatorial
mechanisms with player 1 as the dictator that satisfies the four properties.

Lemma 7. Given that restriction R4 is publicly known in any dictatorial mecha-
nism that satisfies the properties of IR, truthfulness, Pareto optimality, and nonar-
bitrary hoarding, the outcome (B1 = ∅, B2 = {c1, · · · , ck}, p(B1) = 0, p(B2)) must
also be feasible and the outcome (B1 = {c1, · · · , ck}, B2 = ∅, p(B1), p(B2) = 0) can
not be feasible.

Proof of Lemma 7.1. Suppose that the outcome B2 = {c1, · · · , ck} is not
feasible. Consider the valuations ∀B 
= {c1, · · · , ck},

v2(c1, · · · , ck) > v2(B), v1(c1, · · · , ck) = b1 − ε, v1(B 
= {c1, · · · , ck}) = 0.
Then from R4 we conclude that the allocation B2 = ∅ contradicts nonarbi-

trary hoarding. Any other allocation
(B1 /∈ {∅, {c1, · · · , ck}}, B2 = C − B1, p(B1), p(B2)) is not Pareto optimal

as allocating B′
2 = {c1, · · · , ck} for p(B2) is strictly better for player 2 while

the auctioneer and player 1 are indifferent to the two alternatives. The outcome
(B1 = {c1, · · · , ck}, B2 = ∅, p(B1), p(B2) = 0) can not be feasible as it contradicts
nonarbitrary hoarding since v2(c1, · · · , ck) > b1 ≥ min{b1, v1(c1, · · · , ck)}.
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In the following lemma we prove that if R4 is publicly known the only
dictatorial mechanism dictated by player 2 is the trivial mechanism, where
p(B1) = p(B2) = 0.

Lemma 8. Given that restriction R4 is publicly known and that player 2 is the
dictator, the only dictatorial mechanism that satisfies the properties of IR, truth-
fulness, Pareto optimality, and nonarbitrary hoarding is the trivial mechanism.

We prove Lemma 8 with the help of the following five claims. The proofs of
the claims are omitted due to space limitations.

Claim 7. 0 ≤ p(B2 = {c1, · · · , ck}) = x ≤ b1.

Claim 8. If R4 is publicly known then ∀B2, B′
2 /∈ {{c1, · · · , ck}, ∅} p(B2) =

p(B′
2).

Claim 9. ∀B2 
= {c1, · · · , ck}, p(B2) = 0.

Claim 10. If R4 is publicly known, and player 2 is the dictator then
∀B1, p(B1) = 0.

To complete the proof of Lemma 8 we claim that if R4 is publicly known
then x = 0, i.e., any dictatorial mechanism must be the trivial mechanism with
p(B1) = p(B2) = 0.

Claim 11. If R4 is publicly known then x = 0.

Lemma 9. Given that R4 is publicly known, there exists a unique family of
nontrivial dictatorial mechanisms with player 1 as the dictator that satisfies the
four properties.

The proof of Lemma 9 is omitted due to space limitations.

5 Concluding Remarks

Our result takes a step toward showing that the characterization of determinis-
tic budget-constrained combinatorial auctions is structurally similar to Maskin’s
seminal work characterizing the Bayesian budget-constrained single-item auc-
tions. Maskin showed that if the players have a valuation above a certain thresh-
old then the solution is inefficient (lottery among dictators), Bayesian, IC, and
IR in expectation. [19] proved that if R1 or R2 is publicly known then the only
mechanism that satisfies the four properties is an efficient mechanism with VCG
prices.

We contribute a piece of the puzzle by proving that in the negation of R1 or
R2 (Maskin’s equivalent to over the threshold) there does not exist an efficient
mechanism with VCG prices that fulfills the four properties. We also prove that
in the negation of R1 and R2 (i.e. R3 and R4) there are dictatorial mechanisms
that fulfill the four properties. We also show the minimality of R3 (R3’) in which
no efficient or dictatorial mechanisms exist.
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We speculate that the general space of dominant-strategy IC combinatorial
auctions with budgets most likely includes only VCG and dictatorial mecha-
nisms. It appears that the dictatorial aspect depends on the introduction of bud-
gets. We draw the above conclusion as the research community has indications
to believe that the general (multidimensional) space of dominant-strategy IC
combinatorial auctions without budgets includes only VCG mechanisms. There-
fore, the discovery of dictatorial mechanisms in our study is most likely brought
about by our inclusion of players with budgets.
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Abstract. Due to the nature of autonomous Unmanned Aerial Vehicles
(UAV) missions, it is important that the decisions of a UAV stay consis-
tent with the priorities of an operator, while at the same time allowing
them to be easily audited and explained. We therefore propose a multi-
layer decision engine that follows the logic of an operator and integrates
its preferences through a Multi-Criteria Decision Aiding model. We also
propose an incremental approach to elicit the operator’s preferences, in
view of minimizing his/her cognitive fatigue during this task.

Keywords: Incremental preference elicitation ·
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1 Introduction

Autonomous Unmanned Aerial Vehicles (UAVs) are capable of carrying out var-
ious types of missions (military or civilian). Throughout the mission, they may
face multiple choices and have to make many decisions without any human input.
This decision making task requires that multiple, potentially conflicting, criteria
are taken into account in order to achieve the mission’s and the operator’s objec-
tives. In addition, in order to increase his/her confidence in the UAV’s behavior,
its decisions should be consistent with the priorities of the operator.
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Previous research has focused primarily on the decision making of
autonomous UAVs through the perspective of trajectory calculation taking into
account different constraints and objectives, by using optimization techniques
[2,4,13]. Recently, deep learning techniques have also been used to tackle deci-
sion problems of autonomous UAVs, as,for example, the path planning problem
[7] or the selection of high level directives [14,21]. In [16] the authors suggest
to integrate the operator’s perspective into the calculation of trajectories for
autonomous UAVs, and propose to use techniques from the field of Multi-Criteria
Decision Aiding to model the operator’s preferences. They ground their proposal
on the hypothesis that an operator will trust the behavior of an autonomous UAV
if it makes decisions that are consistent with his/her priorities.

We start from the same observation as [16], but propose to integrate the
preferences of the operator even more deeply in the various decision making
tasks of autonomous UAVs. We therefore develop in this contribution:

– a multi-layer decision engine for autonomous UAVs, which mimics the logic
adopted by operators during a non-autonomous mission,

– the integration of a Multi-Criteria Decision Aiding (MCDA) model, called
Simple Ranking Method using Reference Profiles (SRMP) [18], into this deci-
sion engine, which allows the autonomous UAV to select the appropriate
high-level action to be executed during the mission,

– an incremental preference elicitation approach to tune the SRMP decision
model according to the preferences of the operator, while minimizing his/her
cognitive fatigue during the learning process.

We also validate the interest of our proposal through a simulator, in which we
can test the influence of different operator profiles on the UAV’s behaviour.

The article is structured in the following way. Section 2 provides a state of
the art on existing work. Section 3 presents an overview of the proposed multi-
layer decision making engine while a description of the considered preference
model is given in Sect. 4, next to our proposal for an incremental preference
elicitation procedure. A validation of our proposal, is then presented in Sect. 5,
before finishing with some concluding remarks and perspectives in Sect. 6.

2 State of the Art

2.1 Decisions in Autonomous UAVs

From a general point of view, an established body of work exists which focuses on
trajectory calculation while taking into account different constraints and objec-
tives. Blackmore et al. [4] present an approach to calculate the optimal trajectory
in the presence of obstacles and uncertain information, while Kabama et al. [13]
illustrate an approach to calculate the optimal trajectory for combat UAVs by
avoiding radars. Some approaches also address the calculation of the trajectory
in a non-convex environment with uncertainties [2].

Delmerico et al. [7] propose the use of Convolutional Neural Networks
(CNNs), for path planning in the context of collaborative search and rescue
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missions. Deep learning is also used to present a solution for UAV localiza-
tion and cross-view localization of images in [22]. Concerning the UAV naviga-
tion task, some advances have led to the application of CNNs in order to map
images to high-level behavior directives (e.g., turn left, turn right, rotate left, and
rotate right) [14,21]. Due to resource limitations, the learned model is executed
off-board, on the GPU of an external laptop. The work presented by Tipaldi
and Glielmo [25] integrates Markovian Decision Processes (MDP) for spacecraft
reconfiguration in order to deal with the uncertainty in the outcome of actions
and is applied to autonomous mission planning and execution.

Using a drone with a high level of autonomy to perform a mission requires
that the human operator has a high degree of confidence in the capacity of the
drone to make the “right” decisions. This observation motivated Narayan et al.
[16] to integrate preferences into the calculation of the objective function in
order to generate trajectories that more accurately represent the preferences of
an operator. For that they use a decision model from the field of Multi-Criteria
Decision Aiding.

2.2 Multi-Criteria Decision Aiding and (incremental) Preference
Elicitation

In this article, we start from the same observation as [16], but propose to inte-
grate the operator’s preferences into higher level decisions rather than the calcu-
lation of trajectories, as, e.g., the choice between decision actions that the drone
has to perform, as landing, returning to the base, aborting the mission, skipping
a waypoint, etc.

Multi-Criteria Decision Aiding (MCDA) [19] is the study of decision prob-
lems and methods which may be used in order to assist a decision maker (DM)
in reaching a decision when faced with a set of so-called alternatives (or decision
actions), described via multiple, often conflicting, criteria. Two main method-
ological schools have been proposed to support DMs facing a multi-criteria deci-
sion problem: outranking methods and multi-attribute value theory (MAVT). In
our autonomous UAV context, the DM is the operator, whose preference model
is integrated into the drone and is guiding its decisions.

The preference parameters of MCDA decision models can be given directly
by the DM through a direct preference elicitation approach. However, such an
approach is usually too difficult to implement in practice, as the DM needs
to have a very good understanding of the MCDA model. Therefore, a second
approach is to start from partial knowledge on the output of the method. This
indirect preference elicitation has received much attention from researchers, as
for example in the seminal works of Jacquet-Lagreze et al. [12] in the MAVT
context and of Ngo The et al. [24] in the outranking context. These techniques
generally determine in one shot the parameters configuration compatible with
the input provided by the DM, and are therefore not incremental by nature.

Incremental preference elicitation focuses on learning the parameters of a
decision model in a streaming setting. Incremental learning algorithms receive
learning data sequentially, one by one or chunk by chunk, and use this data with
the previously learned model to produce a new, better one, that encapsulates
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information held by the data seen so far. Regarding this progressiveness, in the
MAVT context, Durbach [9] and Lahdelma et al. [15] use an index that quantifies
the volume of the polyhedron of the constraints specifying the possible value
functions. Holloway et al. [11] show the importance of the order of the pair-wise
comparisons in decreasing the number of questions for reducing the cognitive
effort of the DM. Ciomek et al. [6] present a set of heuristics to minimize the
number of elicitation questions and prioritize them in the context of single choice
decision problems. In the same context, Benabbou et al. [3] select a set of pair-
wise questions using a minimax regret strategy.

An incremental elicitation of the parameters of MCDA models should reduce
the cognitive effort of the DM, as he/she is facing only to a limited number
of questions. As we will show in this article, the decision model that we are
integrating into autonomous UAVs is learned incrementally before the mission,
and it is important that the operator is not overly stressed during this phase.

3 Onboard Multi-layer Decision Engine

The starting point of our proposal is the hypothesis that an operator will trust
the behavior of an autonomous UAV if it makes decisions, which are consistent
with his/her priorities. Our proposal differs from more classical mission planning
through its ability to react to unanticipated events and the integration of the
operator’s preferences in the decision engine of the drone. Furthermore, we also
propose a decision model which can be easily explained and whose outcomes
(decisions) are easily interpretable, so that the operator can validate the decision
engine implemented in the UAV.

Consequently we focus on the logic adopted by the operator during a mission,
in order to define the model of the autonomous decision engine. We first suppose
that, in the context of manned aerial vehicles, the human operator does not
make decisions continuously during the flight, but that the decision making act is
triggered by events (e.g. the appearance of an obstacle, a breakdown, a significant
change in weather conditions . . . ). Second, still in a non-autonomous context,
we also suppose that when operators have to deal with a complex decision,
triggered by an event, they tend to decompose it into a sequence of sub-decisions.
Consequently, in case of such an event, the operator will take into consideration
possible trajectories (i.e. which is a sub-decision) while choosing a high level
action (e.g. land, continue the mission, skip a waypoint, . . . ).

Following this reasoning, we propose to decompose the decision-making pro-
cess of the autonomous UAV during the mission into two layers (Fig. 1).

Layer 1 is for monitoring the mission progress and all the information that
might impact its success. Based on the occurrence of certain events, the second
layer may be triggered. These events could be related to the UAV’s environment
(e.g. a change of the flight zone, the appearance of an obstacle, the detection
of heavy rainfall, a mechanical breakdown, . . . ) or to risk levels (e.g. exceeding
a certain threshold of risk towards the drone, the mission, or the environment,
. . . ). While we do not tackle this topic in our current proposal, a series of rules
or even a preference model, that is previously tuned to the perspective of an
operator, may be integrated into the drone.
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Fig. 1. Proposed multi-layer decision engine

Layer 2 consists in determining which high-level action (e.g. takeoff, con-
tinue, skip one or more waypoints, return to base, loiter, land, . . . ) is the best
answer to the risks generated by the event from the first layer. The evaluation
of these actions is supplied by the context [1] but also by the trajectories that
the drone will take. The context, which is taken into account within the second
layer, is a set of elements that describes the UAV’s environment. It can include
information about the mission, its objective (e.g. to monitor a target, protect
a convoy, . . . ) or its current state. Other information related to the drone are
also included in this context which are given by the UAV’s onboard sensors. The
sensor outputs can be used directly (e.g. GPS coordinates, altitude) or they can
be processed before, while other information regarding its surroundings can also
be used (flight zone map, invisibility zone, weather conditions). A trajectory cal-
culation module is also included, and can, for example, be implemented through
the work of [16], where the computation is based on the operator’s preferences.

In our case, we have retained four such consequences, or criteria, that a
high-level action might have (but they could be more diverse):

– energy consumption [10], corresponding to the amount of energy left to com-
plete the mission after executing the selected action,

– risk to the drone [20], i.e. the risk associated with flying over different areas
such as forests, sea, military zones,

– risk to the environment, such as people, buildings, in the case of a crash,
– mission progress, which is a weighted percentage of the achieved sub-

objectives.

Each operator may view these elements, i.e. the consequences of the possible
decision actions, differently. As a result, a model of the operator’s preferences
has to be constructed prior to the mission. We propose to rank the different
decision actions with respect to their evaluations on the multiple criteria and
the preferences of the operator by integrating a multi-criteria decision model.
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4 The Multi-Criteria Decision Aiding Model

As already mentioned, the DM is the operator, whose preferences must be mod-
eled before including them in the decision engine of the autonomous drone. To
guarantee a certain level of trust in the UAV’s decision making process, the pref-
erence model and its consequences should be presented to the operator in order
to be validated beforehand. It is therefore of high importance that this model is
easy to explain to a non-expert of MCDA and that the decision recommenda-
tions (the recommended UAV actions which will ultimately influence the UAV’s
behavior) can be easily justified. We chose to implement a method called SRMP
(Simple Ranking Method using Reference Profiles). This choice is motivated by
the following 3 reasons: both qualitative and quantitative criteria can be easily
integrated; the output is a pre-order of the alternatives, as the UAV may have to
choose the second, or third-best alternative, in case he’s not able to execute the
best one; the output can be explained through a series of rules to the operator.
The last point is of particular interest due to the critical nature of the decisions
that an autonomous drone must make during operation.

4.1 Simple Ranking Method Using Reference Profiles (SRMP)

SRMP has originally been proposed by [18] and theoretically studied and char-
acterized axiomatically by [5]. Reference points are used in the comparison of
two alternatives: a is considered as strictly preferred to b if and only if the
outranking relation between a and the reference point is “stronger” than the
outranking relation between b and the reference point. Let us now show how
this is implemented more formally.

We denote with A a set of n alternatives and with M = {1, . . . , m} the
indexes of m criteria. The evaluation of an alternative a ∈ A on criterion j ∈ M
is denoted with aj .

The SRMP method is defined by several preference parameters which need
to be identified beforehand. These parameters are:

– the reference profiles: P = {ph, h = 1, . . . , k} where ph = {ph1 , . . . , phj , . . . , phm}
corresponds to the evaluations of ph on all criteria and phj �j plj ,∀h, l ∈
{1, . . . , k}, h > l, and �j representing the preferential pre-order on the values
of criterion j;

– the lexicographic order of the profiles: σ, which corresponds to a permutation
on 1, . . . , k;

– the criteria weights: w1, w2, . . . , wm, where wj ≥ 0 and
∑

j∈M

wj = 1

SRMP consists of a three-steps procedure as follows:

1. compute C(a, ph) = {j ∈ M : aj �j phj } with a ∈ A, h = 1, . . . , k, the set of
criteria on which alternative a is at least as good as profile ph.

2. compare all pairs of alternatives a, b ∈ A to the reference profiles in order to
define the following relations:
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– a �ph b ⇔ ∑

j∈C(ai,ph)

wj >
∑

j∈C(b,ph)

wj

– a ∼ph b ⇔ ∑

j∈C(ai,ph)

wj =
∑

j∈C(b,ph)

wj

3. rank two alternatives a, b ∈ A by sequentially considering the relations
�pσ(1) ,�pσ(2) , . . . ,�pσ(k) (according to the lexicographic order σ):

– a is preferred to b iff:

(a �pσ(1) b) or

(a ∼pσ(1) b and a �pσ(2) b) or

. . .

(a ∼pσ(1) b and . . . and a ∼pσ(k−1) b and a �pσ(k) b)

– a is indifferent to b iff: a ∼pσ(1) b and . . . and a ∼pσ(k) b

4.2 Illustrative Example

Let us show on a small example how the UAV could use this SRMP model to
make decisions. Imagine that the UAV has to select among 3 high level actions
x, y and z, like for example “land”, “loiter” and “skip a waypoint”, once the
second layer of our decision engine has been triggered.

Fig. 2. SRMP example

Table 1. Evaluations of the alter-
natives and SRMP parameters.

R E M

x Low 80% 20%

z Medium 20% 50%

y High 55% 90%

p1 High 35% 40%

p2 Low 70% 80%

σ{1, 2}

With each of these actions, a trajectory is associated, which has been cal-
culated beforehand by the trajectory calculation module. The three actions are
evaluated on three criteria, the risk (R), the energy consumption (E) and the
mission progress (M), and the result is presented in Table 1. The preference
parameters of the SRMP model, which model the preferences of an operator,
are also given in this table. They have been learned from a prior preference
elicitation process such as the one we will present in Sect. 4.3.
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The two reference profiles allow to define three intervals on the performances
on each criterion: better than p2; between p1 and p2; worse than p1. This allows
to identify intervals of performances as illustrated in Fig. 2, such that: “good”
performances are above p2, “intermediate” performances are between p1 and p2

on each criterion, “insufficient” performances are below p1 on each criterion.
Let us now follow the steps presented earlier to rank the three alternatives

x, y and z. First we compute C(a, ph) = {j ∈ M : aj � phj }, ∀a ∈ A = {x, y, z},
h ∈ {1, 2}, M = {R,E,M} and then compare each alternative to the others
by using the profiles ph, and finally rank the alternatives by considering the
lexicographic order σ = {1, 2}

p1: ∑
j∈C(x,p1) wj = 1/3 + 1/3 + 0 = 2/3

∑
j∈C(y,p1) wj = 1/3 + 1/3 + 1/3 = 1

∑
j∈C(z,p1) wj = 1/3 + 0 + 1/3 = 2/3

⎫
⎬

⎭
⇒

y �p1 x
y �p1 z
x ∼p1 z

p2: ∑
j∈C(x,p2) wj = 1/3 + 1/3 + 0 = 2/3

∑
j∈C(z,p2) wj = 0 + 0 + 0 = 0

}

⇒ x �p2 z

The final ranking is thus y � x � z, hence y is globally the best alternative,
followed by x and then z. This result can be explained to the operator in the
following way: y is better than all other alternative because it does not have any
“insufficient” evaluations, while x and z have one “insufficient” evaluation on
criterion M, respectively E; x is better than z because it has “good” evaluations
on criteria R and E while z does not have any “good” evaluations. The drone
will thus implement decision y and its corresponding trajectory.

4.3 Incremental Preference Elicitation for SRMP Models

Olteanu et al. propose in [17] to learn the preference parameters of SRMP mod-
els from a set of pairwise comparisons of alternatives given by a DM in one
iteration. They thus formulate SRMP preference elicitation as a Mixed Integer
linear Program (MIP), and show that to obtain an expressive preference model,
this learning algorithm requires quite a few pairwise comparisons of alternatives
as inputs.

In order to reduce the cognitive effort of the operator during the preference
elicitation process, we propose an incremental learning process for SRMP models
presented in Fig. 3, which should reduce the number of pairwise comparisons of
alternatives that the operator has to evaluate. This process is performed before
the mission, and its output (the preference parameters of the SRMP model)
is then integrated into the second layer of our decision engine to configure the
SRMP algorithm presented in Sect. 4.1. The input of the learning process is a
database D of pairs of alternatives/decision actions (typically, two actions among
which the autonomous UAV would have to choose during a mission). At each
iteration a heuristic selects a pair of alternatives (a, b) from D and the operator
expresses his/her preferences by answering a pair-wise comparison question: do
you strictly prefer alternative a to alternative b, b to a, or are you indifferent
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Fig. 3. Incremental learning process

between a and b? Then they are added as a supplementary constraint in the
MIP which infers the new SRMP model parameters. This procedure is repeated,
as depicted by the continuous arrow until a “good enough” preference model
is obtained. Note that in our approach we do not take into consideration any
uncertainty in the operator’s preferences.

The selection heuristic that we propose in this article, and which we name
Hmp, works as follows. The first iteration is a random selection of a pair of
alternatives from D. Then, at each iteration i, we use the preference model Mi−1

generated in the previous iteration to select the next pair of alternatives. The
idea is to select a pair which, in the current model Mi−1 uses the highest possible
number of profiles in its comparison (ideally a pair considered as indifferent by
Mi−1). By confronting the operator with such a pair, we hope that his/her
answer will generate a new constraint for the MIP which will reduce the size of
the search space, and thus the possible values that the preference parameters
may take.

Table 2. Hmp penalty function

Penalty Proposition

1 (a ∼pσ(1) b and . . . and a ∼pσ(k) b)

2 (a ∼pσ(1) b and . . . and a ∼pσ(k−1) b and a �pσ(k) b)

. . . . . .

k (a ∼pσ(1) b and a �pσ(2) b)

k + 1 (a �pσ(1) b)

We start by selecting a pair (a, b) that is indifferent using Mi−1. This means
that for (a, b) all the k profiles have been tested in the SRMP procedure, and
model Mi−1 was not able to say whether a is preferred to b or b is preferred to
a. If there is no such indifferent pair, a pair that uses k profiles in Mi−1 to be
discriminated will be selected. If no such pair exists, we search for a pair using
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k−1 profiles, and so on, until reaching the case of one profile. To model this more
formally, let us associate an integer penalty score with the logical propositions of
Table 2. For each pair (a, b) ∈ D we associate the penalty of the first proposition
which is true in the sequence from Table 2. Finally, the Hmp heuristic selects a
pair (a, b) from D that minimizes this penalty.

In order to validate empirically that the Hmp selection heuristic allows to
find a good preference model with a limited number of pairwise comparisons, we
perform some experiments, and compare it to a random selection of the pairs
from the database (we call this heuristic Hrnd).

These experiments follow the incremental learning process presented in Fig. 3
with an additional test phase to evaluate the quality of the obtained SRMP
model. A database D of 100 pairs of alternatives is used as input for the pro-
posed heuristic. Hmp selects a pair of alternatives from D at each iteration. The
operator of Fig. 3 is replaced for our experiments with a randomly generated
SRMP model Mop. It is used to compare pairs of alternatives, which in turn
generate a new constraints for model Mi.

To test the quality of a model, we generated a test database Dtest composed
of 5000 alternatives. These alternatives are ranked both by the original SRMP
model Mop and the current one Mi. The quality of Mi is then evaluated through
Kendall ’s rank correlation measure τ between these two rankings. τ measures
the correlation of two rankings, and varies between 1 and −1. If both rankings
are identical then τ = 1, while if they are completely inverted then τ = −1.

We execute this process for 100 different artificial databases D, composed
each of 100 pairs of alternatives, for different problem sizes (m = 3, 5, 7). We
also fix the number of profiles to 2. This generates 3 problem configurations
which we call (2P 3C), (2P 5C) and (2P 7C) (for k profiles and m criteria).

Each of the plots in Fig. 4 depicts the average value of the Kendall tau across
the 100 different artificial databases as a function of the number of pairwise
comparisons submitted to Mop. For example, for problems containing 3 criteria,
after asking the Mop to compare 40 pairs of alternatives, selected with the Hmp
heuristic, we can obtain on average a preference model which ranks the test data
quite similarly to the way Mop (τ ∼ 85%).

What we can observe here is that the Kendall τ increases when adding new
preferences of the operator (i.e. pairs of alternatives). The plots show that the
Hmp heuristic dominates the Hrnd one, which is confirmed by Kolmogorov-
Smirnov statistical tests allowing to compare two samples [8]. We also notice
that for the first few iterations both curves (Hmp and Hrnd) behave similarly
(for the different problem sizes), which is due to the small number of learning
pairs involved, and which tend to produce not very expressive SRMP models.
Then, both curves separate clearly in favour of Hrnd. For the last few iterations,
the curves become again similar, which is explained by the fact that the set of
learning pairs is almost the same, independently of the selection heuristic (D is
finite and fixed to 100 pairs of alternatives).

The standard deviations associated with the average values depicted in these
figures are small (on average ∼0.075 for 2P 3C for both Hmp and Hrnd, ∼0.095
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Fig. 4. Average Kendall tau for 2P 3C, 2P 5C and 2P 7C

for 2P 5C for both Hmp and Hrnd, and ∼0.109 for 2P 7C for both Hmp and
Hrnd) and they also decrease with the addition of more learning pairs. They
have not been included in these illustrations for these reasons.

This result can be used in a practical case and gives an answer to the research
question which is how many learning pairs/iterations are needed to achieve a
“good“ SRMP model with an objective to reduce the cognitive effort of the
operator. An SRMP model is considered as a “good” one by the operator if this
model can reach a given Kendall tau value. Once this valus is given we use the
average Kendall tau curves to find the number of pairs required to reach τ .

For example, Fig. 5 depicts the average Kendall tau for 2P 3C where the
operator fixed τ = 0.9 we can see that we need about 48 learning pairs by using
the Hmp heuristic while about 72 for the Hrnd heuristic.

5 Experimental Validation of the Decision Model

In order to validate our proposal we developed a program which simulates the
flight of a UAV containing the previously presented decision engine. The graph-
ical user interface (GUI) of the simulator is presented in Fig. 6.

The modeled autonomous UAV is a Watchkeeper Unmanned Aircraft Sys-
tem from Thales [23], represented by a point which is submitted to physical
constraints. The simulated UAV is able to navigate through a set of waypoints
and execute different high-level actions (e.g. take off, loiter, . . .). The simulator
is also able to evaluate these actions on different criteria presented in Sect. 3.
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Fig. 6. Graphical user interface for the autonomous UAV simulator (Color figure
online)
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The GUI presented in Fig. 6 is composed of four parts. The left panel plots
the details of the mission (different waypoints (as red crosses) and mission map).
It also shows two maps of the risk associated with the UAV and the environ-
ment respectively, which allow the evaluation of the risk of a trajectory using a
weighted average of the risk of the different zones overflown by the drone. The
top right box provides information about the current waypoint and the next
ones, as well as information on the current speed and the amount of energy left.
The middle right box presents a history of the executed actions. Finally, the
bottom right panel shows the evaluations of all the possible high-level actions
for the current waypoint. The SRMP model is executed in the background in
order to decide which action will be chosen next (highlighted in green).

To illustrate our work, we provide here an example, where the UAV has to
accomplish a mission consisting of flying through a set of nine waypoints and
taking photos at each of them. We suppose that for waypoints 1, 5 and 6, these
photos are missed, which requires the UAV to loiter for a second shot in order to
complete the mission at 100%. We execute the mission according to two different
operator profiles, represented by two different sets of preference parameters.

Table 3. Preference parameters for the two operators.

Operator 1 Operator 2

RUAV REnv E M RUAV REnv E M

p1 High v.high 30% 30% High v.high 30% 30%

p2 Low Medium 60% 99% Low Medium 60% 70%

w 0.1 0.1 0.1 0.7 0.25 0.25 0.25 0.25

σ {2, 1} {2, 1}

The first operator is mainly focusing on completing the mission, placing as
secondary objectives the risk and the fuel consumption. The incremental pref-
erences elicitation phase (Sect. 4.3) leads to the SRMP parameters presented
in the left half of Table 3. The second second operator gives a more uniform
importance to the mission completeness, risks and fuel consumption objectives.
Those preference parameters are summarized in the right half of Table 3, and
have again been obtained using our incremental elicitation process.

As expected the UAV configured with first operator’s preferences accom-
plishes the mission with success, as shown in Fig. 7 on the left, by flying through
all the waypoints and loitering at waypoints 1, 5 and 6 in order to take another
round of photos, without taking into account the risk linked to the underlying
zones. The right side of Fig. 7 shows the execution of the mission with respect
to the preferences of the second operator. We can observe that the UAV, even if
only one photo was taken at waypoints 5 and 6, did not loiter (because it con-
sidered it too risky to fly again over the same zone), and even skipped waypoint
6 (for the same reason).
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Fig. 7. Mission simulation with the preferences of operators 1 and 2

6 Conclusion and Perspectives

In this work, we propose a new approach for integrating an operator’s perspective
within the decision engine of autonomous UAVs, through a multi-layer decision
engine, a traceable MCDA technique and an incremental process which mini-
mizes the cognitive effort of the operator during the preference elicitation. Divid-
ing the decision process of the autonomous UAV into several layers allows us to
integrate the perspective of the operator in different elements of the autonomous
decision making process, and thus provides an autonomy of the UAV guided by
the preferences of a human operator. Depending on the characteristics of the
decision problem (as for example the number of considered criteria), the reso-
lution of the MIP which is used iteratively in the elicitation process can take
some time. This could limit its use in practice in an incremental elicitation
process, which motivates us to study in a next step approximate algorithms
(meta-heuristics) for the determination of the parameters of the SRMP model.
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Abstract. In recent work, Aziz et al. [4] consider refugee allocation as a match-
ing problem, akin to the well-known hospitals-residents problem. They consider
a wide range of stability conditions. Hedonic games are a well-studied class of
coalition formation games, that encompass the classical matching problems. We
propose a transformation of the Refugee Allocation Problem as formulated by
Aziz et al. [4] into the setting of hedonic games, parametrized by a set exten-
sion rule. We show that different set extension rules lead to different stability
concepts, derived from the central concept of core stability in hedonic games,
mirroring some of the stability concepts proposed by Aziz et al. [4].

Keywords: Matching problem · Hedonic game · Refugee allocation

1 Introduction

Matching problems have long been of central importance in economics. Gale and Shap-
ley [14] were the first to study the stable matching (or stable marriage) problem: There
are n male and n female players, the males rank the females according to their prefer-
ences and the females rank the males according to their preferences, the goal being to
form man-woman couples in a “stable” manner. Since their seminal paper, the concept
of stable matchings has been famously used in the U.S. National Residents Matching
Program to place medical school students into hospital residency training programs as
well as to model aspects of labor markets more broadly (see the work of Roth and
Sotomayor [25], Hatfield and Milgrom [16], and Roth [24] for introductions to the
topic). As a consequence, many extensions and generalizations of the classical prob-
lems have been studied. For example, the stable roommate problem [18] does not have
a bipartite structure as the stable matching problem does: There are 2n unisex play-
ers, each ranking the other players according to their preferences, and all possible pairs
are feasible. Another generalization proposed by Alkan [1] considers three “genders”
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S. Pekeč and K. B. Venable (Eds.): ADT 2019, LNAI 11834, pp. 65–80, 2019.
https://doi.org/10.1007/978-3-030-31489-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31489-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-31489-7_5


66 B. Kuckuck et al.

(say, men, women, and dogs) who each rank the other “genders,” and now we are look-
ing for stable threesomes. Aziz et al. [4] propose yet another such extension involv-
ing heterogeneous, multi-dimensional demands and capacities, which they frame as a
problem of assigning refugee families to localities (based on earlier work by Biró and
McDermid [9] and Delacrétaz et al. [11]). Their approach will be central to this paper.

Coalition formation games have likewise long played an important role in eco-
nomics and game theory. More recently, hedonic games have provided a popular basic
framework for studying questions of computational complexity surrounding stability
(see the book chapters by Aziz and Savani [5] and Elkind and Rothe [13] and the sur-
vey by Woeginger [26] for more background and pointers to the literature).

In particular, Woeginger [26] and Aziz [2] discuss how classical matching problems
such as the stable matching problem, the stable roommate problem, and the stable three-
some problem mentioned above can be reformulated as hedonic games. This approach
has the advantage that it makes concepts and results from the theory of hedonic games –
such as various types of stability – applicable to these matching problems.

In this paper, we translate the refugee allocation problem of Aziz et al. [4] to the
framework of hedonic games. We compare their concepts of stability to well-known
stability notions from hedonic games, showing how different ways of translating pref-
erences over individual agents to preferences over sets of agents to some extent mirror
the difference in stability concepts considered in Aziz et al. [4].

This paper is organized as follows: In Sect. 2, we provide the basic notions and
definitions from matching theory, focusing on stability notions. In particular, we define
the refugee allocation problem of Aziz et al. [4] in detail and consider various properties
of allocations. We present the refugee allocation problem in the fairly general context
of what we call matching problems with feasibility constraints. Most of the definitions
from Aziz et al. [4] readily generalize to this context and are potentially interesting not
just in the narrower model of refugee allocation problems.

In Sect. 3, we give the needed notions from the theory of hedonic games and then
formulate the refugee allocation problem of Aziz et al. [4] as a hedonic game. To this
end, we also need to consider set extensions so as to lift preferences over a set to prefer-
ences over all its subsets. Next, we present the technical results of this paper, regarding
stability in refugee allocation and the corresponding hedonic games.

Finally, we conclude in Sect. 4 with a brief outlook on future work.

2 Basics

In this section, we describe the refugee allocation problems introduced by Aziz et al. [4]
and then define various properties of refugee allocation problems including their stabil-
ity. We first give a more general definition of a matching problem with arbitrary feasi-
bility constraints, since virtually all of the notions used in Aziz et al. [4] readily gen-
eralize to this context. See, e.g., [15,19] for similar (but not directly comparable) gen-
eral matching problems with constraints, or [16,22,23,25] for an overview of matching
problems with complex preferences.
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2.1 Matching Problems with Feasibility Constraints

A matching problem with feasibility constraints (FeaCoMP) is a tuple M = (F,L,�,Φ)
where F is a finite set of refugee families, L is a finite set of localities, Φ = (Φl)l∈L
is a tuple of feasibility sets Φl ⊆ 2F , closed under taking subsets, for each l ∈ L
specifying which sets of families may be assigned to locality l, and, finally, � =
((� f ) f∈F ,(�l)l∈L) is a preference profile, consisting of weak orders � f over L∪{ /0}
for each f ∈ F and weak orders �l over F∪{ /0} for each l ∈ L. In all of these orderings,
/0 (which we assume to be an element of neither F nor L) is to be interpreted as a dummy
element, separating the acceptable choices for each family or locality, which are ranked
above /0, from the unacceptable ones, which are ranked below /0. If all of the �p with
p ∈ F ∪L are in fact total orders, we say that M is a FeaCoMP without indifferences.

We will denote for a weak order (or, more generally, a quasi-order) � on a set X
the corresponding indifference relation by ∼ (i.e., for x,y ∈ X it holds that x ∼ y if and
only if x � y and y � x) and the corresponding strict order by � (i.e., for x,y ∈ X it
holds that x � y if and only if x � y and not y � x). A map π : F → L∪{ /0} is called
an allocation for M as above, where π( f ) = /0 is used to indicate that f is not allocated
to any locality. We will usually abbreviate the set π−1({l}) of families allocated to a
locality l ∈ L by π−1(l). Formally, such a map is a subset π ⊆ F × (L∪{ /0}), and so
we will occasionally use the notation ( f , l) ∈ π to denote f ∈ F being a family with
l = π( f ). An allocation π for M is called feasible if π−1(l) ∈ Φl for all l ∈ L. If the
FeaCoMP is clear from the context we simply say that Y ⊆ F is feasible for l ∈ L if
Y ∈ Φl .

2.2 Refugee Allocation Problems

When considering decision problems about FeaCoMPs, there is of course the problem
(shared with hedonic games, which we consider later), that representing the feasibility
sets might require space exponential in the number of families. Hence, for computa-
tional questions, we will usually have to find efficient representations for (particular
families of) FeaCoMPs first. Refugee allocation problems, as defined by Aziz et al. [4]
can be regarded as one such representation. A refugee allocation problem (RAP, for
short), in the sense of Aziz et al. [4], is represented by a tuple R = (F,L,�,S,d,c),
where F , L, and � are as in the definition of FeaCoMPs above, S is a finite set of ser-
vices, d = (dsf )( f ,s)∈F×S specifies the demand dsf ∈ N0 each family f ∈ F has for each
service s ∈ S, c= (csl )(l,s)∈L×S specifies the capacity each locality l ∈ L has for service
s ∈ S. Given a RAP R as above, we denote by d f = (dsf )s∈S the vector of demands for
a family f ∈ F and by cl = (csl )s∈S the vector of service capacities for a locality l ∈ L.
The matching problem with feasibility constraints represented by R = (F,L,�,S,d,c)
is M (R ) = (F,L,�,F ) where we define the feasibility sets Fl for each l ∈ L by letting
Y ∈ Fl for Y ⊆ 2F if and only if ∑ f∈Y dsf ≤ csl for all s ∈ S (or ∑ f∈Y d f ≤ cl , for short).

The hospitals-residents problem appears as the special case where S is a singleton
set (the only service that hospitals supply to residents being a position), and all demand
vectors equal to (1) (each resident requiring exactly one position).
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2.3 Properties of Allocations

A common property studied in matching problems is individual rationality, demanding
that a matching only contain pairs of agents that consider each other acceptable.

Definition 1. An allocation π for a FeaCoMPM = (F,L,�,Φ) is individually rational
if it holds for all ( f , l) ∈ π that l � f /0 and f �l /0.

Another important quality for a matching to be considered desirable is that no local-
ity l has unused service capacities while there are still families that could feasibly join
l and would prefer to do so. Aziz et al. [4] call this property non-wastefulness:

Definition 2. A feasible allocation π for the FeaCoMPM = (F,L,�,Φ) is wasteful if
there exists a pair ( f , l)∈ F×L such that l � f π( f ) as well as f �l /0 and π−1(l)∪{ f}
is feasible for l. Otherwise, π is non-wasteful.

Finding allocations that are merely individually rational and non-wasteful is easy
(considering the families in turn, put each family in its favorite locality among those
which find it acceptable and still have room). Aziz et al. [4] define a large number of
stability concepts, all specializing to the classic stability concept for hospitals-residents
problems in the single-service-equal-demands case. In general, an allocation is called
stable if there is no pair of a family and a location which are currently not matched
to each other, but would be able and inclined to deviate—a so-called blocking pair.
The differences in stability concepts stem from the question of how to define “able and
inclined.” For example, would a locality consider (and be allowed to) remove several
currently allocated families in favor of a preferred family, or just one? Would it do so
even if it meant a larger strain on its service capacities? In the following we will present
two of the stability concepts Aziz et al. [4] defined: stability and weak stability.

For weak stability, we assume that a pair ( f , l) ∈ F ×L blocks an allocation π if f
prefers l to its assigned locality under π and the locality l favors f over at least one of
its currently assigned families, f ′, and could accommodate f once it removes f ′.

Definition 3. Let π be a feasible allocation for a FeaCoMPM = (F,L,�,Φ). We call
( f , l) ∈ F ×L a strongly blocking pair for π if the following holds: (i) l � f π( f ) and
(ii) there is an f ′ ∈ π−1(l) such that f �l f ′ and (π−1(l)\{ f ′})∪{ f} is feasible for l.
We call π weakly stable if π is non-wasteful and individually rational and there is no
strongly blocking pair for π.

For the stronger notion of stability, we say a pair ( f , l) ∈ F×L blocks an allocation
π if f prefers l to its assigned locality under π and the locality l could accommodate f
once it removes all of its currently assigned families, which it likes less than f .

Definition 4. Let π be a feasible allocation for a FeaCoMPM = (F,L,�,Φ). We call
( f , l) ∈ F×L a blocking pair for π if the following holds: (i) l � f π( f ) and (ii) there is
a set Y ⊆ π−1(l) such that f �l f ′ for all f ′ ∈Y and (π−1(l)\Y )∪{ f} is feasible for l.
We call π stable if π is non-wasteful and individually rational and there is no blocking
pair for π.
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Aziz et al. [4] also consider further stability notions that use an external master
list. These stability notions assume that a locality can only swap a previously assigned
family f ′ for a preferred family f if f is higher on the master list than f ′.

Definition 5. LetM = (F,L,�,Φ) be a FeaCoMP, let �M be a weak order on F, and
let π be a feasible allocation for M . We call ( f , l) ∈ F × L a strong blocking pair
respecting �M if (i) l � f π( f ), and (ii) there is an f ′ ∈ π−1(l) such that f �l f ′, f �M

f ′, and (π−1(l) \ { f ′})∪ { f} is feasible for l; and we call ( f , l) ∈ F × L a blocking
pair respecting �M if (i) l � f π( f ), and (ii) there is a set Y ⊆ π−1(l) such that f �l f ′
and f �M f ′ for all f ′ ∈ Y and (π−1(l)\Y )∪{ f} is feasible for l. The allocation π is
stable (respectively, weakly stable) with respect to master list �M if π is individually
rational, non-wasteful, and there does not exist a blocking pair (respectively, a strong
blocking pair) with respect to �M.

The notion of weak stability with respect to a master list is interesting, because Aziz
et al. [4] show that an allocation satisfying this condition exists and can be found in
polynomial time for any RAP and any master list �M with the restriction that f ∼M f ′
only holds if the demand vectors d f and d f ′ are identical.

In the case of FeaCoMPs we can replace this restriction as follows:

Proposition 1. LetM = (F,L,�,Φ) be a FeaCoMP and let �M be a weak order on F.
Assume that the following exchangeability property holds: If l ∈ L is a locality, Y ∈ Φl

is feasible for l, and f ′ ∈ Y , f ∈ F are families with f ∼M f ′, then (Y \ { f ′})∪ { f}
is likewise feasible for l. Then there exists a feasible allocation for M which is weakly
stable with respect to �M.

Such an allocation can be found by using the HFPDA algorithm proposed by Aziz
et al. [4] and the proof of stability is virtually identical to the case for RAPs given in
that paper, so we do not repeat it here.

3 A Fresh Look at the RAP

Based on the work of Delacrétaz et al. [11], Aziz et al. [4] considered the refugee allo-
cation problem as a generalization of the hospitals-residents problem and established
positive results by making suitable assumptions. Our goal is to formulate the refugee
allocation problem (and matching problems with feasibility constraints, more gener-
ally) in another well-studied framework, namely in the context of hedonic games, which
provides potential for further extensions and results. The fact that matching problems
may be considered as hedonic (or NTU-)games is well-known and this connection has
often been employed successfully (see, e.g., [7,8,12,21,26]). For more background on
hedonic games, we refer to the book chapters by Aziz and Savani [5] and Elkind and
Rothe [13] and to the survey by Woeginger [26].

3.1 Hedonic Games

A hedonic game is a pair H = (P,�) consisting of a finite set of players (or agents)
P = {p1, . . . , pn} and a preference profile � = (�p)p∈P, where �p represents the
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preference list of agent p. A preference list �p is a quasi-ordering1 over the set
{k ∈ 2P | p ∈ k} of all possible coalitions containing p.

The outcome or goal of such a game is to form a coalition structure or partition
Γ = {k1, . . . ,km} of P (i.e., P= k1 ∪·· ·∪ km and for all i, j ∈ {1, . . . ,m}, i 
= j, we have
ki ∩ k j = /0). Denote by Γ(p) the unique coalition containing p in Γ.

We are interested in forming stable coalition structures. Among the many stability
concepts known for hedonic games, we are in particular interested in the notion of core
stability.

Definition 6. Let H be a hedonic game and Γ a coalition structure regarding H . Then
k̂ ⊆ P is a blocking coalition if (∀p ∈ k̂ : k̂ �p Γ(p)) ∧ (∃p̂ ∈ k̂ : k̂ �p̂ Γ(p̂)). Γ is core
stable if there is no blocking coalition.

For our purposes, we need to extend the common notion of hedonic game by the
attribute of feasible coalitions, see, e.g., the work of Igarashi and Elkind [17]: A hedonic
game with feasible coalitions is a triple H F = (P,F ,�), still with players P but in
addition with a set F ⊆ 2P of feasible coalitions, containing all the singleton coalitions
{p} for p ∈ P. The preference profile �= (�p)p∈P now consists of quasi-orderings �p

only over {k ∈ F | p ∈ k}. Likewise, a coalition structure Γ of P must now consist of
feasible coalitions only, i.e., k ∈ F for each k ∈ Γ. For the notion of core stability, this
means that a new coalition k̂ /∈ Γ can put a coalition structure Γ at risk only if k̂ itself is
feasible. Core stability implies individual stability, which implies individual rationality.

Definition 7. Let H F be a hedonic game with feasible coalitions and Γ a coalition
structure regarding H F . Then Γ is called individually rational if there does not exist a
player p ∈ P such that if {p} �p Γ(p) for all p ∈ P. Furthermore, Γ is called individ-
ually stable if there do not exist a player p ∈ P and a coalition k ∈ Γ ∪{ /0} such that
(i) k∪{p} ∈ F , (ii) k∪{p} �p Γ(p), and (iii) for all p̂ ∈ k it holds that k∪{p} �p̂ k.
Finally, k̂ ∈ F is a blocking coalition for Γ if

(∀p ∈ k̂ : k̂ �p Γ(p)
) ∧ (∃p̂ ∈ k̂ : k̂ �p̂

Γ(p̂)
)
, and Γ is core stable if there is no blocking coalition in F .

3.2 RAP as a Hedonic Game

Now we can represent a RAP or, more generally, a FeaCoMP M = (F,L,�,Φ) as a
hedonic game: The players are the refugee families and the localities. The coalitions
will each consist either of a locality and the set of refugee families assigned to it or of
a single (unassigned) family. Accordingly, only such coalitions are defined as feasible.
Next, we have to define the preference profile for each locality and each refugee family.
The original preference lists � are weak orderings over single players; we, however,
will need (quasi-)orderings over coalitions. We approach this issue differently for the
refugee families and for the localities. Since a refugee family in our model only has
preferences over localities (not over other families), we assume that it is indifferent
among all coalitions that feature the same locality. For the localities it is a bit more

1 In the literature it is common to assume that the preferences are at least weak orders; however,
we will have to consider also orders that are not complete.
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difficult to define a preference over its feasible coalitions. The feasible coalitions con-
taining l consist of l along with a set of refugee families. So, from a preference list of
l over F we have to create a preference list over the set of feasible subsets of F . This
is commonly referred to as a set extension of the ordering �l . We take a closer look
at concrete set extension rules in the subsequent section. Here, we simply consider a
set extension rule Ξ to be a function mapping any quasi-ordering � on a set X to a
quasi-ordering �Ξ on 2X .

Definition 8. LetM =(F,L,�,Φ) be a FeaCoMP and Ξ be a set extension rule. Define
the associated hedonic game H (M ,Ξ) = (P,F ,��) as follows:

(a) P= F ∪L.
(b) A coalition k ⊆ P is in F if it is either of the form { f} with f ∈ F or it contains

exactly one locality l ∈ L and a subset of families F ′ ⊆F (which can also be empty)
such that F ′ is feasible for l: F = {{ f} | f ∈ F}∪{{l}∪F ′ | F ′ is feasible for l}.

(c) For f ∈ F, a weak order ��
f is defined as follows: For any two feasible coalitions

of the form k = {l, f}∪F ′ and k̂ = {̂l, f}∪F ′′ with l, l̂ ∈ L and F ′,F ′′ ⊆ F \{ f},
we set k��

f k̂ ⇐⇒ l � f l̂. Furthermore, k��
f { f} ⇐⇒ k� f /0, and { f} ��

f k ⇐⇒
/0 � f k.

(d) For l ∈ L, we define a quasi-order ��
l as follows: For any two feasible coalitions of

the form k = {l}∪F ′ and k̂ = {l}∪F ′′ with F ′,F ′′ ⊆ F we set k ��
l k̂ ⇐⇒ (∃ f ∈

F ′′ : /0 �l f )∨ ((∀ f ∈ F ′ : f �l /0)∧ (F ′ �Ξ
l F ′′)). In words: The locality l is indif-

ferent between all coalitions that contain at least one family which is inacceptable
to l, and strictly prefers all other coalitions to these; the coalitions containing only
acceptable families are ordered according to the set extension rule Ξ.

If R is a RAP, we write H (R ,Ξ) instead of H (M (R ),Ξ) to denote the hedonic
game associated to M = M (R ). If π is a feasible allocation for the FeaCoMP M ,
then Γ = {{l}∪π−1(l) | l ∈ L} ∪ {{ f} | f ∈ F, π( f ) = /0} is a feasible partition for
H (M ,Ξ). We call Γ the coalition structure associated with (or corresponding to) π.
Furthermore, we call π Ξ-core-stable for M if Γ is core stable for H (M ,Ξ).

3.3 Set Extensions

There are many ways to extend an ordering over the elements of a set X to an ordering
over the subsets of X (see Barberá et al. [6] for an extensive survey). Each of these yields
a particular way for how to obtain a hedonic game from a FeaCoMP. We are going to use
two particular set extensions, both of which are natural and well-known. The “universal
responsive set extension” is sometimes just called the “responsive set extension”; what
we call the “top-oriented set extension” does not seem to have a consensus name, but it
does appear, e.g., in the guise of “lexicographic” utilities or choice functions [3,10].

Definition 9 (universal responsive set extension). Let � be a weak order over X. The
universal responsive set extension ℜ is defined for all A,B ⊆ X by: A �ℜ B ⇐⇒ there
exists an injective mapping ι : B → A with ι(b) � b for all b ∈ B.
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Definition 10 (top-oriented set extension). Let � be a total order over a finite set X.
Define the scoring vector s =

(
1
20 , 1

21 , 1
22 , . . . , 1

2|X |−1

)
=

(
1, 1

2 , 1
4 , . . . , 1

2|X |−1

)
, the rank of

y ∈ X by r(y,�) = |{ŷ ∈ X | ŷ � y}|+ 1, and the value (or utility) of a set Y ⊆ X
according to� by ω�,s(Y ) =∑y∈Y sr(y,�). The top-oriented set extension �top is defined
by ∀A,B ∈ 2X : A �top B ⇐⇒ ω�,s(A) ≥ ω�,s(B). Note that �top is again a total order.

Lemma 1. Let � be a total order over a finite set X. For all A, B ⊆ X it holds that
A �top B ⇐⇒ ∃a ∈ A\B : ∀b ∈ B\A : a � b.

Proof. First, note that we may reduce to the case where A and B are disjoint, since
ω�,s(A) > ω�,s(B) holds if and only if ω�,s(A \ B) = ω�,s(A) − ω�,s(A ∩ B) >
ω�,s(B)− ω�,s(A∩B) = ω�,s(B \ A). Now let a′ = max�(A) and b′ = max�(B). If
a′ � b′, we have a � b for all b ∈ B and with i = r(a,�) we have that ω�,s(A) ≥
si= 2−i+1 ≥ ∑|X |−1

j=i 2− j ≥ω�,s(B), and so A�B. By symmetry, b′ � a′ implies B�A. ��

3.4 Stability in RAPs, FeaCoMPs, and Hedonic Games

With our interpretation of FeaCoMPs as hedonic games we can now apply stability
concepts in hedonic games to FeaCoMPs and RAPs in particular. Since our translation
depends on the choice of a set extension rule, we obtain various stability concepts in
this way. We will see that some of these correspond precisely to the stability concepts
studied by Aziz et al. [4].

We call a quasi-ordering � on the power set 2X of some set X strictly monotonic if
it holds that A � B for all A,B ∈ 2X with A � B. We call a set extension rule Ξ strictly
monotonic if �Ξ is strictly monotonic for all quasi-orderings �.

Lemma 2. Let Ξ be a set extension rule. Let M = (F,L,�,Φ) be a FeaCoMP and π

a feasible allocation for M . Let Γ be the coalition structure of H (M ,Ξ) associated
with π. Then (i) π is individually rational forM if and only if Γ is individually rational
for H (M ,Ξ) and (ii) if Ξ is strictly monotonic then π is individually rational and non-
wasteful forM if and only if Γ is individually stable for H (M ,Ξ).

Proof. Statement (i) is clear from our definitions, since every p ∈ F ∪L strictly prefers
the singleton coalition {p} to all coalitions containing an inacceptable agent.

This in particular implies that Γ is not individually stable if π is not individually
rational. Assume π is wasteful. That means that there exists some pair ( f , l) ∈ F ×L so
that f , who is acceptable for l, strictly prefers l over π( f ) and π−1(l)∪{ f} is feasible
for l. Let k = {l} ∪ π−1(l), so k ∈ Γ. Furthermore, k ∪ { f} ∈ F , k ∪ { f} ��

f Γ( f ),
and for all f ′ ∈ k∩F it holds that k∪{ f} ∼�

f ′ k. Finally, the fact that f �l /0 and the
monotonicity of Ξ imply that k∪{ f} ��

l k.
Conversely, assume that Γ is not individually stable. Then let p ∈ F ∪ L and k ∈

Γ∪{ /0} such that k∪{p} ∈F , k∪{p} ��
p Γ(p) and k∪{p} ��

p′ k for all p′ ∈ k. If k= /0,
then Γ is not individually rational, so by (i), π is not individually rational. So we may
assume that k 
= /0, meaning that l ∈ k for some l ∈ L. If k contains some family that is
inacceptable for l, then again π is not individually rational, so we may assume that this
is not the case. Now consider first the case that p∈ L. But then, since k∪{p} is feasible,
we must have p = l ∈ k. But then k ∪ {p} = Γ(p), contradicting k ∪ {p} ��

p Γ(p).
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Second, consider the case that p ∈ F . Then k∪{p} ��
p Γ(p) implies that or l �p π(p).

Furthermore, since {l} ∪ π−1(l)∪ {p} = k∪ {p} ∈ F , we have that π−1(l)∪ {p} is
feasible for l. Finally, the fact that k∪{p} ��

l k shows that p is acceptable for l. Thus
we have proven that π is wasteful. ��

Since core stability implies individual stability, the following corollary is an imme-
diate consequence of the above lemma.

Corollary 1. Let Ξ be a strictly monotonic set extension rule. LetM = (F,L,�,Φ) be
a FeaCoMP and π a feasible allocation forM .

If π is Ξ-core stable then π is individually rational and non-wasteful.

Theorem 1. LetM = (F,L,�,Φ) be a FeaCoMP without indifferences and π a feasi-
ble allocation for M . Then π is stable if and only if π is top-core stable (i.e., Ξ-core
stable, where Ξ = top is the top-oriented set extension).

Proof. Let H = H (M , top) = (F ∪L,F ,��) be the hedonic game corresponding to
M , using the top-oriented set extension and let Γ be the partition corresponding to π.

Fig. 1. Illustrating the proof of Theorem 1

Assume first that Γ is not core stable. We will show that π is not stable. Let k ∈ F
be a blocking coalition for Γ, i.e., for all p ∈ k it holds that k ��

p Γ(p) and there is
some player p̂ ∈ k such that k ��

p̂ Γ(p̂). Then k cannot consist of a single family, as that
implies that π is not individually rational (whence we are done).

So k= {l}∪X for some l ∈ L and X ⊆ F . Also, Γ(l) = {l}∪π−1(l). Furthermore, it
holds that k ��

l Γ(l). If there exists an f ∈ π−1(l) with /0 �l f , then π is not individually
rational and we are done. Otherwise, X �top

l π−1(l). It cannot hold that X = π−1(l),
since that would mean that k = Γ(l) ∈ Γ, so no member of k would strictly prefer k to
their current coalition. It follows that X �top

l π−1(l). By Lemma 1, this means that there
is a family f̂ ∈ X \π−1(l) such that

f̂ �l f for all f ∈ π−1(l)\X . (1)

We now show that ( f̂ , l) is a blocking pair for π (see left side of Fig. 1). First, note that
f̂ ∈ k, so k ��

f̂
Γ( f̂ ), meaning (unless π is not individually rational) l � f̂ π( f̂ ). Since

f̂ /∈ π−1(l), we have l 
= π( f̂ ), so in fact, l � f̂ π( f̂ ), by the assumption that all the
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preferences are total. Next, let Y = π−1(l) \X ⊆ π−1(l). By (1), we have that f̂ �l f
for all f ∈Y . Finally, it holds that (π−1(l)\Y )∪{ f̂} ⊆ (π−1(l)\Y )∪X = X . Since k=
{l}∪X ∈F , the set X is feasible for l, and then, a fortiori, so is (π−1(l)\Y )∪{ f̂} ⊆ X .
This shows that ( f̂ , l) is a blocking pair for π, so π is not stable.

Conversely, assume that π is not stable. If π is not individually rational or wasteful,
then Corollary 1 and the fact that the top-oriented set extension is strictly monotonic
show that Γ is not core stable. So we need only consider the case that there exists
a blocking pair ( f̂ , l) satisfying the following: (i) l � f̂ π( f̂ ), and (ii) there is a set

Y ⊆ π−1(l) such that f̂ �l f for all f ∈ Y and (π−1(l) \Y )∪{ f̂} is feasible for l (see
right side of Fig. 1). Let X̂ = (π−1(l) \Y )∪{ f̂}. Now we show that k̂ = X̂ ∪{l} is a
blocking coalition for Γ. First note that (ii) above guarantees that X̂ is feasible for l, so
k̂ ∈ F .

For all f ∈ π−1(l) it holds by definition that k̂ ∼�
f Γ( f ). Furthermore, (i) above

implies that k̂ ��
f̂

Γ( f̂ ). Finally, the fact that f̂ �l f for all f ∈ Y implies that X̂ �top
l

π−1(l), by Lemma 1, so k̂ ��
l Γ(l). Therefore, k̂ is a blocking coalition for Γ. ��

Proposition 2. LetM be a FeaCoMP and π a feasible allocation forM . If π is ℜ-core
stable (i.e., Ξ-core stable with Ξ = ℜ is the universal responsive set extension), then π

is weakly stable.

Fig. 2. Illustrating the proof of Proposition 2

Proof. Let H =H (M ,ℜ) = (F∪L,F ,��) be the hedonic game corresponding to M ,
using the universal responsive set extension and let Γ be the partition corresponding to
π. Assume that π is not weakly stable. If π is wasteful or not individually rational, then
π is not ℜ-core stable, by Corollary 1 and the fact that ℜ is strongly monotonic. So,
suppose that there exists a strong blocking pair ( f , l) ∈ F ×L, i.e., that the following
holds: (i) l � f π( f ), and (ii) there is an f ′ ∈ π−1(l) such that f �l f ′ and (π−1(l) \
{ f ′})∪ { f} is feasible for l. Now Γ(l) = {l} ∪ π−1(l) where π−1(l) ⊆ F is a set of
families acceptable to l. Let

k = (Γ(l)\{ f ′})∪{ f} = {l}∪ ((π−1(l)\{ f ′})∪{ f}).
We will show that k is a blocking coalition for Γ (see Fig. 2). Firstly, we have f �l

f ′ �l /0, hence k contains only families acceptable to l. Furthermore, by the definition
of the universal responsive set extension, (π−1(l)\{ f ′})∪{ f} �ℜ

l π−1(l) and, hence,
k��

l Γ(l). Moreover, l � f π( f ) implies that k��
f Γ( f ). Finally, for all f̃ ∈ π−1(l)\{ f ′}
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it holds that k ∼ f̃ Γ( f̃ ) (since k and Γ( f̃ ) contain the same locality l). This shows that k
is a blocking coalition for Γ. ��

However, weak stability does not imply ℜ-core stability in general, not even for
RAPs, as we can see in the following counterexample.

Example 1 (weak stability 
⇒ ℜ-core stability). Let R = (F,L,�,S,d,c) be a RAP with
F = { f1, f2, f3, f4}, L = {l1, l2}, S = {s1,s2}, and the preferences, needs, and service
capacities are as follows:

l2 � f1 l1 � f1 /0, d1 = (1,2), l2 � f2 l1 � f2 /0, d2 = (2,1),
l1 � f3 l2 � f3 /0, d3 = (3,0), l1 � f4 l2 � f4 /0, d4 = (0,3),

f4 �l1 f3 �l1 f2 �l1 f1 �l1 /0, f1 �l2 f2 �l2 f3 �l2 f4 �l2 /0, c1 = c2 = (3,3).

We use the universal set extension rule ℜ for translating R into a hedonic game H F =
H (R ,ℜ) = (P,F ,�), where

P= F ∪L= { f1, f2, f3, f4, l1, l2}, � = (��
f1
,��

f2
,��

f3
,��

f4
,��

l1
,��

l2
).

The modified preference lists of the refugee families fi with i ∈ {1,2} and f j with
j ∈ {3,4} consist of three indifference classes each:

{ fi, l2} ∼�
fi · · · ∼�

fi { f1, f2, f3, f4, l2} ��
fi { fi, l1} ∼�

fi · · · ∼�
fi { f1, f2, f3, f4, l1} ��

fi { fi},

{ f j, l1} ∼�
f j · · · ∼�

f j { f1, f2, f3, f4, l1} ��
f j { f j, l2} ∼�

f j · · · ∼�
f j { f1, f2, f3, f4, l2} ��

f j { f j}.

For the localities, certain coalitions will be incomparable with respect to the
extended preferences, but we can visualize these preferences as a Hasse diagram:

��
l1

: { f3, f4, l1}

{ f1, f2, l1}

{ f1, l1}

{ f2, l1}

{ f3, l1}

{ f4, l1}

{l1}

�

��
l2

: { f1, f2, l2}

{ f3, f4, l2}{ f1, l2}

{ f2, l2}

{ f3, l2}

{ f4, l2}

{l2}

�

The following is a feasible allocation for R : π = {( f1, l1),( f2, l1),( f3, l2),( f4, l2)}.
The corresponding partition Γ for H F is Γ = {k1,k2} with k1 = { f1, f2, l1} and
k2 = { f3, f4, l2} (see Fig. 3).

It is easy to check that π is individually rational (all the localities and families find
each other acceptable anyway) and non-wasteful (all capacities are exhausted in π).

There do exist pairs preferring each other over their partners in π—namely ( f1, l2),
( f2, l2), ( f3, l1), ( f4, l1)—but none of these are strongly blocking, since no locality can
make room for another family by ejecting just one currently assigned family. Hence, π

is weakly stable.
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Fig. 3. Illustrating Counterexample 1

However, Γ is not core stable (and so π is not ℜ-core stable). Indeed, consider the
coalition { f3, f4, l1} = k̂ ∈ F . Then

1. k̂ ��
f3
k2 = Γ( f3) since l1 � f3 l2,

2. k̂ ��
f4
k2 = Γ( f4) since l1 � f4 l2, and

3. for X = Γ(l1) \ {l1} = { f1, f2)}, X̂ = k̂ \ {l1} = { f3, f4} there exists an injective
mapping ι : X → X̂ with ι( f ) �l1 f for all f ∈ X , namely by letting ι( f1) = f3 and
ι( f2) = f4.

Thus k̂ is a blocking coalition for Γ.

Theorem 2. Let M be a FeaCoMP without indifferences and π a feasible allocation.
Then π is ℜ-core stable if π is stable.

Proof. Let H = H (M ,ℜ) = (F ∪L,F ,��) be the hedonic game corresponding to a
FeaCoMP M = (F,L,�,Φ), using the universal responsive set extension and let Γ be
the partition corresponding to π. Assume that M is not core stable. Then there exists
a blocking coalition k ∈ F for Γ, i.e., for all p ∈ k it holds that k ��

p Γ(p) and there is
some player p̂ ∈ k such that k ��

p̂ Γ(p̂). Since k ∈ F , this coalition either consists of a
single refugee family f or it contains exactly one locality. In the first case, it must hold
that f = p̂. But then { f} = k ��

f Γ( f ) implies that /0 � f π( f ), so π is not individually
rational and hence not stable. In the second case, we have k= {l}∪X for some l ∈ L and
X ⊆ F and it holds that k ��

l Γ(l). Write Γ(l) = {l}∪X ′ with X ′ ⊆ F . If Γ(l) contains a
family that is inacceptable to l, then π is not individually rational and hence not stable.
Otherwise, the definition of ��

l yields that X �ℜ
l X ′. That means there exists an injective

mapping ι : X ′ → X with ι(p) �l p for all p ∈ X ′. Without loss of generality, we may
assume that ι( f ) = f for all f ∈ X ′ ∩X and ι( f ) ∈ X \X ′ for all f ∈ X ′ \X . Since k is
blocking for Γ, we cannot have k ∈ Γ. Hence, k 
= Γ(l), meaning X 
= X ′.

If X ′ ⊆ X , then X \X ′ 
= /0, so pick any f ∈ X \X ′. Note that Γ(l)∪{ f} is a feasible
coalition, since it is a subset of the feasible coalition k. Furthermore, f /∈ X ′ means
that f /∈ Γ(l), so π( f ) 
= l. But k ��

f Γ( f ) implies that l � f π( f ). By the assumption
that there are no indifferences in the preferences of the RAP R , we have l � f π( f ),
so Γ(l)∪{ f} ��

f Γ( f ). We also have X ′ ∪ { f} �ℜ
l X ′, so Γ(l)∪{ f} �ℜ

l Γ(l). For all
f ′ ∈ X ′ we have that Γ(l)∪{ f} ∼�

f ′ Γ(l). This shows that Γ is not individually stable
and hence wasteful by Corollary 1.

It remains to consider the case that X ′ \X 
= /0. Let f ′ be the family most preferred
by l among all families in Y = X ′ \X and let f = ι( f ′)∈ X \X ′. We will show that ( f , l)
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is a blocking pair for π. Firstly, since k is a blocking coalition, k ��
f Γ( f ), meaning that

l � f π( f ). Since f /∈ X ′, we have l 
= π( f ) and the assumption that all the preferences
of the FeaCoMP M are strict implies that l � f π( f ). Next, note that f = ι( f ′) �l f ′
and since f ∈ X and f ′ /∈ X , we have f 
= f ′. By the assumption that the preferences
of the FeaCoMP M are strict, we then have f �l f ′, and by the choice of f ′ it follows
that f �l f̃ for all f̃ ∈ Y . Furthermore, (π−1(l) \Y )∪ { f} = (X ′ \ (X ′ \X))∪ { f} =
(X ∩X ′)∪{ f} ⊆ X , so (π−1(l) \Y )∪{ f} is feasible for l, since X is. This completes
the proof that ( f , l) is a blocking pair for π. ��

However, ℜ-core stability does not imply stability in general, not even for RAPs, as
we can see in the following counterexample.

Example 2 (ℜ-core stable 
⇒ stable). Let R = (F,L,�,S,d,c) be a RAP with four
families F = { f1, f2, f3, f4}, two localities L = {l1, l2}, a single service S = {s1}, and
preferences, needs, and service capacities given as follows:

l1 � f1 l2, l2 � fi l1, d1 = (2), di = (1) for i ∈ {2,3,4},

f1 �l j f2 �l j f3 �l j f4, c1 = (3), c2 = (2) for j ∈ {1,2}.

We use the universal set extension rule Ξ = ℜ for translating R into a hedonic game
H F =H (R ,Ξ) = (P,F ,�):

P= F ∪L= { f1, f2, f3, f4, l1, l2}, � = (��
f1
,��

f2
,��

f3
,��

f4
,��

l1
,��

l2
).

The extended preference lists of the refugee families f1 and fi with i ∈ {2,3,4}
consist of three indifference classes each:

{ f1, l1} ∼�
f1 · · · ∼�

f1 { f1, f2, f3, f4, l1} ��
f1 { f1, l2} ∼�

f1 · · · ∼�
f1 { f1, f2, f3, f4, l2} ��

f1 { f1},

{ fi, l2} ∼�
fi · · · ∼�

fi { f1, f2, f3, f4, l2} ��
fi { fi, l2} ∼�

fi · · · ∼�
fi { f1, f2, f3, f4, l2} ��

fi { fi}.

The Hasse diagrams for the localities’ extended preferences look as follows:

��
l1

:{ f1, f2, l1} { f2, f3, f4, l1}

{ f2, f3, l1}

{ f2, f4, l1}

{ f3, f4, l1}

{ f1, f3, l1}

{ f1, f4, l1}

{ f1, l1}

{ f2, l1}

{ f3, l1}

{ f4, l1}

{l1}

� ��
l2

:{ f1, l2} { f2, f3, l2}

{ f2, f4, l2}

{ f3, f4, l2}{ f2, l2}

{ f3, l2}

{ f4, l2}

{l2}

�
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Let us now consider the outcome π = {( f1, l2),( f2, l1),( f3, l1),( f4, l1)}, which is
feasible for R , and the corresponding partition Γ = {k1,k2} with k1 = { f2, f3, f4, l1}
and k2 = { f1, l2} for H F (see Fig. 4). The outcome π is not stable. Namely, ( f1, l1) is a
blocking pair, because

(i) l1 � f1 l2 = π( f1) and
(ii) taking Y = { f2, f3, f4} ⊆ π−1(l1) it holds that ∀ f ∈ Y : f1 �l1 f and (π−1(l1) \

Y )∪{ f1} = { f1, l1} is feasible for l1.

Fig. 4. Illustrating Counterexample 2

However, Γ is core stable, respectively π is ℜ-core stable, because there exists no
blocking coalition k̂ ∈ F . To see this, note that such a coalition would have to contain
a locality (no family is better off alone than it is in π). Consider first the case that k̂ is
a coalition containing l1. For k̂ �l1 Γ(l1) = {l1, f2, f3, f4} to hold, there would have to
be an injective map from { f2, f3, f4} to k̂ \ {l1}. In particular, k̂ would have to contain
at least three families. But other than k1 there is no feasible coalition containing l1 and
at least three families.

Next, consider the case that k̂ is a coalition containing l2. For k̂ �l2 Γ(l2) = { f1, l2}
to hold, there would have to be an injective map ι : { f1} → k̂\{l2} with ι( f1)�l2 f1. But
since f1 is this locality’s preferred family, this would imply that ι( f1) = f1, so f1 ∈ k̂.
But f1 already exhausts the capacities of l2, so k̂ would have to be Γ(l2), which is not
blocking.

4 Conclusions

We have proposed a way of transforming the refugee allocation problem as considered
by Aziz et al. [4] into the context of hedonic games. This transformation is parametrized
by a set extension rule, leading to different variants of individual and core stability. We
studied how these notions relate to the various stability concepts introduced in Aziz et
al. [4]. Since hedonic games have been studied in much detail and in many variants, this
opens the door to various extensions of the refugee allocation model. First of all, there
are many more set extension rules (see, e.g., the book chapter by Barberá et al. [6] for an
extensive survey) than the two we picked here, reflecting different ways of interpreting
the priorities of localities when rating sets of families. Further afield, one might consider
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looking beyond preferences of localities that are induced by individual-level preferences
or incorporating the presence or absence of other families in the preferences of families.

From the viewpoint we elaborated on in this paper, RAPs together with a set exten-
sion rule can be considered as a compact representation for a particular, interesting class
of hedonic games, so the computational complexity of stability in such games merits
studying. Of course, the results by McDermid and Manlove [20] and Aziz et al. [4] on
NP-hardness of deciding existence of stable resp. weakly stable allocations are a step
in this direction, but it is possible that more general statements can be made for larger
classes of set extensions or for other compact representations of FeaCoMPs.
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Abstract. We study the computational complexity of envy minimization and
maximizing the social welfare of graph-envy-free allocations in social networks.
Besides the already known NP-completeness of finding allocations with maximal
utilitarian social welfare we prove that NP-completeness is in general also given
for the egalitarian social welfare and the Nash product. Moreover, we focus on
an extended model, based on directed social relationship graphs and undirected
social trading graphs, and analyze the computational complexity of reaching a
graph-envy-free allocation by trades with so-called don’t care agents and without
money.

Keywords: Fair division · Social welfare optimization · Social network

1 Introduction

Studying the computational complexity of finding fair allocations of indivisible
resources is the main task in multiagent resource allocation, which is a subtopic of
computational social choice (see the book chapters by Lang and Rothe [15] or Bouveret,
Chevaleyre and Maudet [6] or the survey by Chevaleyre et al. [8] for an overview).

A common model is given by some resources and a number of agents who are
equipped with preference orders or utility functions. A central authority is then asked
to compute an allocation that maximizes social welfare. A slightly different setting is
the house market approach [1] where each agent initially starts with a single resource
and is then encouraged to swap their resources under some constraints as long as fair-
ness properties are satisfied. A major drawback of these approaches is the absence of
information about relationships between two agents. Social networks, introduced as
negotiation topology by Chevaleyre et al. [9], are a simple way to describe if two agents
are allowed to trade with each other one or to model hierarchies about the agents.

Based on these terms, Gourvès et al. [11] studied a house market model where
trades are only allowed between neighbors in an underlying social network. They ana-
lyzed the computational complexity of finding a given allocation or checking whether
a distinguished resource is reachable by rational trades (that means no trading partner
has a disadvantage after the swap) without any kind of money, respecting several undi-
rected graph classes. However, they leave some open questions about the allocation
reachability problem that were answered by Bentert et al. [3].
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Bredereck et al. [7] were interested in the computational complexity of several prob-
lems on graph-envy-free allocations in directed social networks. They showed, amongst
other things, that it is NP-complete to check whether there is a graph-envy-free alloca-
tion that maximizes utilitarian social welfare in acyclic social networks. Several other
fairness criteria such as so-called epistemic envy-freeness were studied on social net-
works by Aziz et al. [2]. Unlike previous papers that use agents as vertices in social
networks, Bouveret et al. [5] address networks on resources instead of agents.

We show that the problem of maximizing social welfare for graph-envy-free alloca-
tions is also hard for other social welfare measures, including egalitarian social welfare
and the Nash product. We also look at so-called don’t care agents that are allowed to
defy the rational constraint of trades but are relevant to graph-envy-freeness, and ana-
lyze how hard it is to find a graph-envy-free allocation by rational trades with at most
one don’t care agent. This setting is based on the one studied by Gourvès et al. [11]
but uses a directed social network that does not necessarily need to be the same as the
undirected one.

The structure of this paper is as follows: In Sect. 2, we briefly describe the basic
model and its extension to social networks. Section 3 is concerned with the computa-
tional complexity of finding graph-envy-free allocations with maximal social welfare.
Finally, we show in Sect. 4 that it is NP-hard to find a graph-envy-free allocation by
rational trades if we allow at least one so-called don’t care agent. We conclude in Sect. 5
and outline some directions of future research.

2 Preliminaries

Let A = {a1, . . . ,an} be a finite set of agents and R = {r1, . . . ,rm} a finite set of
resources. A preference profile �= (�1, . . . ,�n) for A and R consists of n linear orders
(i.e., transitive trichotomous binary relations), where �i expresses agent ai’s prefer-
ences over 2R. When clear from context, we sometimes omit the subscript i from �i.
An ordinal allocation setting is defined as a triple (A,R,�).

A cardinal allocation setting (A,R,U) is defined analogously, except that the profile
� of linear orders is replaced by a profile U = (u1, . . . ,un) of utility functions ui : 2R →
Q, where ui(B) denotes agent ai’s utility from receiving the bundle B ⊆ R of resources
and Q is the set of rational numbers (though we could use any ordered set instead). For
notational convenience, we will also write u(ai, ·) = ui(·), i.e., all n utility functions are
collected in a single two-ary function u : A×2R → Q. A utility function u is additive if
it can be written as

u(a,B) = ∑
r∈B

u(a,{r})

for every agent a ∈ A and every bundle B ⊆ R of resources. If u(a,{r}) ∈ {0,1} holds
for all agents a ∈ A and every resource r ∈ R, we call u a binary utility function.

An allocation is defined as a map π : A → 2R with π(ai)∩π(a j)= /0 for any ai,a j ∈ A
with ai �= a j, i.e., π(ai) is the bundle of resources assigned to agent ai under π, and we
assume that resources cannot be shared among several agents. We also require complete
allocations, i.e., R =

⋃
ai∈A π(ai), and we denote by ΠA,R the set of all possible complete

allocations.
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To evaluate and compare the social welfare of allocations, we make use of
(Bergson–Samuelson) social welfare functions sw : ΠA,R → Q (see [4]): sw(π) gives
the social welfare of allocation π. The following three concrete social welfare functions
are the most important ones:

1. utilitarian social welfare, defined by swu(π) = ∑
ai∈A

u(ai,π(ai)), gives the sum of

individual utilities of all agents;
2. egalitarian social welfare, defined by swe(π) = min

ai∈A
(u(ai,π(ai))), gives the utility

of the agent who is worst off (and therefore can also be seen as some measure of
fairness); and

3. Nash product social welfare, defined by swN(π) = ∏
ai∈A

u(ai,π(ai)), gives the product

of individual utilities of all agents, which can be seen as some sort of compromise
between utilitarian and egalitarian social welfare because it is monotonic like swu

and “balanced” like swe.

A social trading network is an undirected graph GT = (A,ET ), where vertices are
identified with agents and an edge e ∈ ET represents an allowed way for the two incident
agents to trade the resources currently allocated to them. The expansion ((A,R,�),GT )
of an ordinal allocation setting (A,R,�) to a social trading network GT = (A,ET ) is
called an extended ordinal allocation setting.

A directed graph GR = (A,ER) is called a social relationship network. In a similar
way, we define extended cardinal allocation settings as ((A,R,U),GR) with a social
relationship network GR.

Definition 1 (trade). Let (A,R,�) be an ordinal allocation setting and ai,a j ∈ A be
two agents. A trade between ai and a j is a pair (π,π′) such that π,π′ ∈ ΠA,R are two
allocations for which the following statements hold:

1. π(ai) = π′(a j) and π(a j) = π′(ai)
2. π(a�) = π′(a�) for all a� ∈ A\{ai,a j}.

We will also make use of the more explicit notation ((ai,π(ai)),(a j,π(a j))) from
which we can derive the resulting allocation π′. We will restrict trades on allocations
π,π′ with |π(ai)| = |π′(ai)| = 1 for all agents ai.

Two properties a trade is required to satisfy are validity and rationality.

Definition 2. A trade (π,π′) between ai and a j is valid if ai and a j are neighbors in GT .
It is rational if π′(ai) �i π(ai) and π′(a j) � j π(a j), i.e., both agents prefer the new
bundle they receive under π′ to the old one assigned to them under π.

We now define envy-freeness in a social relationship network.

Definition 3 (graph-envy-free allocation [7,9]). Let A be a set of agents, GR = (A,ER)
a social relationship network, and ((A,R,U),GR) an extended cardinal allocation
setting.
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1. An allocation π is (weakly) graph-envy-free if for two agents ai,a j ∈ A, where a j is
a successor of ai in GR, the following holds: u(ai,π(ai)) ≥ u(ai,π(a j)).

2. If the above inequality is strict, π is a strong graph-envy-free allocation.

We assume that the reader is familiar with the basic notions of computational com-
plexity such as the complexity classes P and NP, polynomial-time many-one reducibil-
ity, and the related notions of NP-hardness and NP-completeness. A detailed introduc-
tion and more background can be found, e.g., in the textbooks by Papadimitriou [17],
Rothe [18], and Garey and Johnson [10].

3 Social Welfare on Graph-Envy-Free Allocations

In this section we are interested in the computational complexity of (the decision prob-
lems associated with) optimizing social welfare of graph-envy-free allocations. First,
we define one of the decision problems that we will study.

GEF-NASH-PRODUCT-SOCIAL-WELFARE-OPTIMIZATION (GEF-NSWO)

Given: An extended cardinal allocation setting ((A,R,U),G) with a social relation-
ship network G (i.e., G is a directed graph) and a natural number K.

Question: Does there exist a graph-envy-free allocation π with swN(π) ≥ K?

By replacing the social welfare function swN above by swu and swe, respectively,
we get the problems GEF-USWO and GEF-ESWO. GEF-USWO is known to be NP-
complete for directed acyclic graphs and three-valued utility functions [7, Proposition
4] but is in P for binary utility functions and acyclic social relationship networks [7,
Proposition 5]. We show that NP-completeness also holds for egalitarian social wel-
fare and directed graphs restricted to acyclic graphs. Under weaker assumptions about
utility functions and allocations, we can also show that the result holds for the Nash
product. For both results, we make use of the well-known strongly NP-complete prob-
lem EXACT-COVER-BY-3-SETS [14].1

EXACT-COVER-BY-3-SETS (X3C)

Given: A set B = {b1, . . . ,b3m} for a natural number m and a collection S =
{S1, . . . ,Sn} of subsets Si ⊆ B with |Si| = 3 for each i, 1 ≤ i ≤ n.

Question: Does there exist an exact cover of B, i.e., does there exist an index set I ⊆
{1, . . . ,n} with |I| = m such that B =

⋃
i∈I Si is a disjoint union?

Our reductions are based on special subgraphs Ci (called 3-center groups) for every
set Si ∈ S , where the three elements in Si are represented by three center nodes.

1 Garey and Johnson [10] define a problem to be strongly NP-complete if it is NP-complete
even when each of its numerical parameters is bounded by a polynomial in the length of the
input. That implies that, unless P = NP, strongly NP-complete problems cannot have fully
polynomial-time approximation schemes nor pseudo-polynomial-time algorithms.
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Definition 4 (3-center group). Let V = {a1,a2,a3,d,y} be a set of five agents. A 3-
center group is a directed graph C = (V,EC) with edges

EC = {(y,ai),(ai,d) |1 ≤ i ≤ 3}.

Agent d is called the decision maker and a1, a2, and a3 are called the center agents.

The main goal then is the construction of utility values for every agent such that the
decision maker can be used to decide for i ∈ I or i �∈ I. If she decides for i �∈ I, her three
predecessor agents must be allocated resources that are not constructed from the base
elements in B. For i ∈ I, the center agents can be allocated only resources from B∩Si.

Theorem 1. GEF-ESWO is strongly NP-complete even if the social network is
acyclic, the utility values are restricted to {0,1,2} and |A| = |R| holds.

Proof. Membership of GEF-ESWO in NP is easy to see. To prove NP-hardness, we
provide a reduction from X3C. Let (B,S) with B = {b1, . . . ,b3m} and S = {S1, . . . ,Sn}
with Si = {S(i,1),S(i,2),S(i,3)} be an instance of X3C. Construct a GEF-ESWO
instance ((A,R,U),G,K) with A = {atop}∪{a(i, j) |1 ≤ i ≤ n and 1 ≤ j ≤ 3}∪{xi |1 ≤
i ≤ n}∪{yi |1 ≤ i ≤ n} and R = {rtop}∪RB ∪RY ∪RD ∪RT ∪RF , where R is given by

RB = {rB
j |1 ≤ j ≤ 3m}, RD = {rD

j |1 ≤ j ≤ 3n−3m}, RT = {rT
i |1 ≤ i ≤ m},

RF = {rF
i |1 ≤ i ≤ n−m}, and RY = {rY

i |1 ≤ i ≤ n}.

The additive utility functions are defined by

α{rB
� }

a(i, j) = 1 (1 ≤ i ≤ n and 1 ≤ j ≤ 3 and b� ∈ Si),

α{r}
a(i, j) = 1 (1 ≤ i ≤ n and 1 ≤ j ≤ 3 and r ∈ RT ),

α{r}
a(i, j) = 2 (1 ≤ i ≤ n and 1 ≤ j ≤ 3 and r ∈ RD ∪RF),

α{r}
yi = 2 (1 ≤ i ≤ n and r ∈ RY ),

α{r}
xi = 1 (1 ≤ i ≤ n and r ∈ RT ∪RF),

α{rtop}
atop = 2,

and 0 otherwise. Set K = 1 as a threshold and define the directed social relationship
network G = (A,E) with edge set

E = {(atop,yi) |1 ≤ i ≤ n} ∪
{(yi,a(i, j)),(a(i, j),xi) |1 ≤ i ≤ n and 1 ≤ j ≤ 3}.

(see Fig. 1).
Note that, due to u(a, /0)= 0 for all a ∈ A and |A|= 5n+1= |R|, exactly one resource

must be allocated to every agent. Since the transformation, as described above, can be
done in polynomial time, it remains to show that (B,S) is a yes-instance of X3C if and
only if ((A,R,U),G,K) is a yes-instance of GEF-ESWO.
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From left to right, suppose that (B,S) is a yes-instance of X3C. Thus there is an
index set I ⊆ {1, . . . ,n} with |I| = m such that B =

⋃
i∈I Si is a disjoint union. Let I =

{1, . . . ,n}\ I and define two bijective functions

µ1 : I → {1, . . . ,m} and µ2 : I → {1, . . . ,n−m}.

atop

y1 · · · yn

a(1,1) a(1,2) a(1,3) a(n,1) a(n,2) a(n,3)

x1 xn

Fig. 1. The social relationship network for the proof of Theorem 1 with n 3-center groups

Define the allocation:

π(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{rtop} if a = atop

{rY
i } if a = yi for an 1 ≤ i ≤ n

{rB
S(i, j)

} if a = a(i, j) and i ∈ I

{rD
z } if a = a(i, j) and i ∈ I (for 1 ≤ z ≤ 3(n−m))

{rT
µ1(i)

} if a = xi and i ∈ I

{rF
µ2(i)

} if a = xi and i ∈ I

such that every resource is allocated to exactly one agent. Since every agent a gets a
resource of value at least 1, we have u(a,π(a))≥ 1, and it follows that swe(π)≥ K = 1.

We show that this allocation is graph-envy-free. Due to u(atop,π(atop)) = 2 and the
fact that all utility values are at most 2, we do not have further restrictions on any child
node. Since every agent yi gets a utility value of 2, there again are no further restrictions
and, moreover, there is no conflict with their parent node atop. The agents a(i, j) either
receive a resource from RB or from RD, which means that the utility values are in {1,2}:

1. For i ∈ I and a ∈ {a(i,1),a(i,2),a(i,3)}, we have u(a,π(a)) = 1. Their single child xi

gets a resource from RT , which yields utility values of 1.
2. For i ∈ I and a ∈ {a(i,1),a(i,2),a(i,3)}, we have u(a,π(a)) = 2. Their single child xi

gets a resource from RF , which yields utility values of 2.

From right to left, suppose that ((A,R,U),G,K) is a yes-instance of GEF-ESWO.
Then there exists a graph-envy-free allocation π with swe(π) ≥ K = 1.

First, observe that u(a, /0) = 0 holds for every agent a ∈ A. That means every agent
must be allocated at least one resource.

Since u(atop,r) = 1 only holds for r = rtop, we conclude that π(atop) = rtop is
another necessary condition. Also note that agents xi have a utility value greater than 0
only if they receive items from RT ∪RF .
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It is clear that the three center nodes in a 3-center-group {xi,yi,a(i,1),a(i,2),a(i,3)}
must allocate a utility value of 2 if their leaf xi receive a resource from RF . Due to
|RD| = 3n − 3m and |RF | = n − m, it follows that all resources from RD must be dis-
tributed between these center nodes. So it remains to focus on the remaining m 3-center-
groups. As all resources from RD were allocated as stated above, we have to distribute
all resources from RB to the center agents in 3-center groups who are not allocated any
resource yet. Since u(a(i, j),rp) = 1 if and only if p ∈ Si, there must be an exact cover,
which completes the proof. �

GEF-ESWO is NP-complete for three-valued functions. Therefore, in general
GEF- j-RANK-DICTATOR, which is defined as follows:2

GEF- j-RANK-DICTATOR

Given: An extended cardinal allocation setting ((A,R,U),G) with a social relation-
ship network G (i.e., G is a directed graph) and a natural number K.

Question: Does there exist a graph-envy-free allocation π with v∗
j(π) ≥ K?

is also an NP-complete problem. Heinen et al. [12,13] studied the corresponding prob-
lem j-RANK-DICTATOR where we don’t have a social relationship network and ask
simply for allocations (instead of graph-envy-free allocations) π such that v∗

j(π) meets
or exceeds a given value K.

The reduction from the proof of Theorem 1 with a K exponential in n can be used
to prove NP-completeness of GEF-NSWO for three-valued utility functions restricted
to integer numbers as well. However, we can even show strong NP-completeness for
the Nash product if we allow rational utility values. To this end, we make use of a
consequence of the inequality of the arithmetic mean and the geometric mean, which is
stated in the following lemma.

Lemma 1. Let x1, . . . ,xn be nonnegative numbers satisfying ∑n
i=1 xi ≤ n. Then

n
∏
i=1

xi ≤ 1,

where equality holds if and only if x1 = · · · = xn = 1.

The proof of Theorem 2 itself is based again on a reduction from X3C.

Theorem 2. GEF-NSWO is strongly NP-complete even if the underlying social rela-
tionship network is acyclic and |A| = |R| holds.

Proof. Membership of GEF-NSWO in NP is again obvious. For proving NP-hardness,
we reuse the same idea as for GEF-ESWO. Let (B,S) be a given instance of X3C with
B = {b1, . . . ,b3m} and S = {S1, . . . ,Sn} and construct a GEF-NSWO instance with

A = {atop}∪{a(i, j) |1 ≤ i ≤ n and 1 ≤ j ≤ 3}∪{xi |1 ≤ i ≤ n}∪{yi |1 ≤ i ≤ n}
R = {rtop}∪RY ∪RB ∪RD ∪RT ∪RF ,

2 We need some notation to define this problem. Let v(π) = (ui(πi))1≤i≤n be the utility vector
induced by an allocation π. Let v∗(π) be the vector that results from v(π) by sorting all entries
nondecreasingly. In particular, v∗

1(π) is the utility of a worst-off agent and thus expresses egal-
itarian social welfare; v∗

�n/2�(π) is the utility of a median-off agent; and v∗
n(π) is the utility of a

best-off agent and thus expresses so-called elitist social welfare.
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where the resource set is given by

RB = {rB
j |1 ≤ j ≤ 3m}, RD = {rD

j |1 ≤ j ≤ 3n−3m}, RT = {rT
i |1 ≤ i ≤ m},

RF = {rF
i |1 ≤ i ≤ n−m}, and RY = {rY

i |1 ≤ i ≤ n}.

Note that |A| = 5n+1 = |R| and construct the additive utility functions, defined by the
following coefficients:

α{rB
� }

a(i, j) = 1 (1 ≤ i ≤ n and 1 ≤ j ≤ 3 and b� ∈ Si),

α{r}
a(i, j) = 1 (1 ≤ i ≤ n and 1 ≤ j ≤ 3 and r ∈ RT ),

α{r}
a(i, j) = 2 (1 ≤ i ≤ n and 1 ≤ j ≤ 3 and r ∈ RD ∪RF),

α{r}
xi = 1 (1 ≤ i ≤ n and r ∈ RT ),

α{r}
xi =

1
8

(1 ≤ i ≤ n and r ∈ RF),

α{r}
yi = 1 (1 ≤ i ≤ n and r ∈ RY ),

α{rtop}
atop = 1

and 0 otherwise. Let G = (A,E) with

E = {(atop,yi) |1 ≤ i ≤ n}∪{(yi,a(i, j)),(a(i, j),xi) |1 ≤ i ≤ n and 1 ≤ j ≤ 3}.

be the directed social relationship network and set K = 1. The transformation, as
described above, can be done in polynomial time. So it remains to show that (B,S) is a
yes-instance of X3C if and only if ((A,R,U),G,K) is a yes-instance of GEF-NSWO.

From left to right, suppose that (B,S) is a yes-instance of X3C. Thus there is an
index set I ⊆ {1, . . . ,n} with |I| = m such that B =

⋃
i∈I Si is a disjoint union. By using

the same allocation π as in the proof for GEF-ESWO, we get a graph-envy-free allo-
cation and the Nash product reaches the threshold:

swN(π) = ·11+m+n ·13m ·23n−3m ·
(

1
8

)n−m

= 23(n−m) ·2−3(n−m) = 1 ≥ K.

From right to left, suppose that (B,S) is a no-instance of X3C. Thus there is no
index subset I ⊆ {1, . . . ,n} such that B =

⋃
i∈I Si with |Si| = 3 is a disjoint union. Let

Î with |Î| < m be a largest index subset such that
⋃

i∈Î Si is a disjoint union. We try to
reach the optimal Nash product and show that we will never reach the threshold K = 1.

It is easy to see that π(atop) = rtop and π(yi) ∈ RY are necessary for preventing
swN(π) = 0. Since every xi only generates a utility value greater than zero if they get
resources from RT ∪ RF and |RT ∪ RF | = n holds, it is clear that these resources must
be distributed among these agents. We have n − m resources in RF . Distribute these
n − m resources among n − m agents xi with i �∈ Î and collect their indices in a set I′.
All predecessors a(i,1),a(i,2),a(i,3) (i ∈ I′) have to receive items from RD so as to prevent
graph-envy. After that, there is no resource left in RD, due to |RD| = 3(n−m). By now
we have
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swN(π) = 1m+n+1 ·23n−3m ·
(

1
8

)n−m

· ∏
i∈{1,...,n}\I′

3

∏
j=1

u(a(i, j),π(a(i, j))).

We show that the last product never reaches 1. First note that only resources from
RB are currently unallocated. Collect all agents occurring in this product in a set Â with
|Â| = 3m. By using ∑i∈Â u(âi,π(âi)) ≤ |Â| for π(âi) ∈ RB and Lemma 1, it follows that
∏i∈Â u(âi,π(âi)) ≤ 1, where equality holds only if all utility values are 1. Due to the
construction of the utility functions and |Î| < m, there remains at least one center agent
that cannot generate a utility value of 1: Assume, for the sake of contradiction, that each
a ∈ Â generates a utility value of 1 if only resources from RB are available. Then there
must be a partition of RB into m disjoint subsets with cardinality 3, since resources are
assumed to be nonshareable. This, however, contradicts |Î| < m. �

For proving strong NP-hardness of GEF-ESWO and GEF-NSWO, we needed at
least two utility values greater than zero to enable the decision maker to make a decision.
We now show that both problems are solvable in polynomial time if the utility functions
are binary.

Algorithm 1. GEF-ESWO and GEF-NSWO for binary utility functions
Require: Extended cardinal allocation setting ((A,R,U),GR) with |A|= |R| normalized additive

binary utility functions and directed social relationship network GR
1: Create a bipartite graph GB = (A∪R,EB) with {a,r} ∈ EB iff u(a,{r}) = 1
2: M := MAXIMUMMATCHING(GB)
3: U := 0
4: if |M| = |R| then
5: U := 1
6: end if
7: return U

Theorem 3. GEF-ESWO and GEF-NSWO are in P for binary utility functions,
acyclic social relationship networks, and |A| = |R|.
Proof. Since all arguments in this proof are true for both egalitarian social welfare and
the Nash product, we only give a proof for the Nash product and show that Algorithm 1
solves GEF-NSWO in polynomial time. First, note the following equivalence: There
is an allocation π with u(a,π(a)) = 1 for all agents a ∈ A if and only if there is an
allocation π′ with swN(π′) = 1.

If M is a perfect matching (i.e., 2|M| = |A∪R|), an allocation π with u(a,π(a)) = 1
for all agents a ∈ A can be derived from M. So the maximal Nash product is 1. Obvi-
ously, this allocation is graph-envy-free. If no perfect matching exists, at least one agent
remains without any resource or gets a resource r with u(a,r) = 0. So only allocations
with swN(π) �= 1 are possible. Since |A| = |R| and all utility functions are normalized
(i.e., α/0

a = 0 for all agents a ∈ A), swN(π) ≥ 2 is not possible (independent of whether
graph-envy-freeness is fulfilled or not), for otherwise we would need at least |A|+ 1
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resources. That means we only can get allocations π with swN(π) = 0. As it does not
matter how the allocation is constructed, we can set π(a) = R for an agent without
incoming edges and π(a′) = /0 for all other agents a′ �= a, provided that the social rela-
tionship network is acyclic. Finding a maximal matching and checking if a graph is
acyclic can be done in polynomial time, so our algorithm runs in polynomial time. �

4 Graph-Envy-Free Allocations Through Rational Trades

It is easy to see that there are allocation settings that cannot reach a graph-envy-free
allocation. In this section, we analyze the effects of allowing don’t care agents, distin-
guished agents in A who are not forced to do rational trades (though they still may be
subject to graph envy).

DONT-CARE-AGENT-TRADE-BASED-GEF-ALLOCATION

Given: An ordinal allocation setting (A,R,�) with an (undirected) social trading net-
work GT = (A,ET ), a (directed) social relationship network GR = (A,ER), an
initial allocation π0, and a natural number K.

Question: Does there exist a graph-envy-free allocation π that is reachable from π0 with
at most K don’t care agents, i.e., agents who are not forced to do rational
trades?

As described in the previous section, a social relationship network GR represents
a hierarchy of agents, whereas social trading networks GT encode which agents are
trusted trading partners. We first observe that GT = G′

R (where G′
R is the undirected

adaption of GR) will be a rather strict assumption that some situations cannot be mod-
eled with: Consider a group of two teams with two group leaders, L1 and L2, and two
members, M1 and M2, where the hierarchy is encoded in a directed graph with edges
from Li to Mi (i ∈ {1,2}). Then Li envies member Mi if Mi gets a resource that Li

finds better than her initial one. Moreover, assume that only workers and only leaders
are allowed do any trade among themselves. If the social trading network would be the
undirected adaption of the social relationship network, then Li either trades with Mi or
cannot envy Mi.

Theorem 4. DONT-CARE-AGENT-TRADE-BASED-GEF-ALLOCATION is an NP-
hard problem, even if the underlying social trading network is a star.

Proof. For proving NP-hardness, we again provide a reduction from the well-known
strongly NP-complete problem X3C. Let (B,S) be an instance of X3C with B =
{b1, . . . ,b3m} and S = {S1, . . . ,Sn}, where each element in Si is denoted by S(i, j)
for 1 ≤ j ≤ 3. Construct a DONT-CARE-AGENT-TRADE-BASED-GEF-ALLOCATION

instance ((A,R,�),GT ,GR,π0,K) with A=A0 ∪AC ∪AD
1 ∪AD

2 ∪AV ∪AW ∪AX ∪AY ∪AZ

and R = R0 ∪RB ∪RG ∪RD
1 ∪RD

2 ∪RE ∪RC ∪RN ∪RS ∪RT , where
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A0 = {ai, j |1 ≤ i ≤ n and 1 ≤ j ≤ 3}, AC = {ci |1 ≤ i ≤ n},

AD
1 = {d1

i |0 ≤ i ≤ n}, AD
2 = {d2

i |1 ≤ i ≤ 3n−1},

AW = {wi |1 ≤ i ≤ n}, AX = {xi |1 ≤ i ≤ n},

AY = {yi |1 ≤ i ≤ n}, AV = {vi |1 ≤ i ≤ 3n−3m}, and

AZ = {zi |1 ≤ i ≤ 3m},

and
R0 = {ρi, j |1 ≤ i ≤ n and 1 ≤ j ≤ 3}, RB = {βi |1 ≤ i ≤ 3m},
RG = {γi |1 ≤ i ≤ 3n−3m}, RD

1 = {δ1
i |0 ≤ i ≤ n−1},

RD
2 = {δ2

i |0 ≤ i ≤ 3n−1}, RC = {χi |1 ≤ i ≤ n},
RN = {νi |1 ≤ i ≤ n}, RS = {σi |1 ≤ i ≤ n},
RT = {τi |1 ≤ i ≤ m}, and RE = {εi |1 ≤ i ≤ n−m},

and the ordinal preference profiles are defined as follows (omitting the subscripts of �
for readability):

zq : δ2
q−1 � βq � ·· ·

ai, j : βS(i,1) � βS(i,2) � βS(i,3) � τ1 � ·· · � τm �
γ1 � ·· · � γ3n−3m � ε1 � ·· · � εn−m � ρi, j � ·· ·

vt : δ2
3m+t−1 � γt

d2
s : ρ1,1 � ·· · � ρn,3 � δ2

s � ·· ·
wo : δ1

o−1 � τo � τm � ·· · � τ1 � εn−m � ·· · � ε1 � ·· ·
wm+p : δ1

m+p−1 � εp � εn−m � ·· · � ε1 � τ1 � ·· · � τm � ·· ·

d1
0 : ρ1,1 � ·· · � ρn,3 � ν1 � ·· · � νn � δ1

0 � ·· ·

d1
� : σ1 � ·· · � σn � χ� � δ1

� � ·· ·

d1
n : σ1 � ·· · � σn � χn � δ2

0 � ·· ·
xi : τ1 � ·· · � τm � ε1 � ·· · � εn−m � χi � σi � ·· ·
yi : νi � ·· ·
ci : χi � ·· ·

with p ∈ {1, . . . ,n − m}, i ∈ {1, . . . ,n}, q ∈ {1, . . . ,3m}, t ∈ {1, . . . ,3n − 3m},
s ∈ {1, . . . ,3n − 1}, o ∈ {1, . . . ,m}, and � ∈ {1, . . . ,n − 1}. Since don’t care agents are
relevant for graph-envy-freeness, we need the preferences of d1

0 .
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Construct the directed social relationship network GR = (A,ER) with edge set

ER = {(yi,ai, j),(ai, j,xi) |1 ≤ i ≤ n and 1 ≤ j ≤ 3} ∪
{(d1

0 ,yi) |1 ≤ i ≤ n} ∪ {(z1,d
1
i ) |0 ≤ i ≤ n} ∪

{(zi,zi−1) |2 ≤ i ≤ 3m} ∪ {(v1,d
2
i ),(d

2
i ,z3m) |1 ≤ i ≤ 3n−1} ∪

{(vi,vi−1) |2 ≤ i ≤ 3n−3m} ∪ {(xi,ci),(d1
i ,ci) |1 ≤ i ≤ n}∪

{(wi,wi−1) | 2 ≤ i ≤ n}∪{(w1,v3n−3m)}

(see Fig. 2) and the undirected social trading network GT = (A,ET ), which is con-
structed as a star with the don’t care agent d1

0 as its center node. Furthermore, the initial
allocation π0 is given in Table 1.

wn

.

w1

v3n−3m

.

v1

d2
1 · · · d2

3n−1

z3m

.

z1

d1
1 · · · · · · d1

n

d1
0

y1 · · · yn

a1,1 a1,2 a1,3 an,1 an,2 an,3

x1 xn

c1 cn

Fig. 2. The social relationship network GR = (A,ER) for the proof of Theorem 4

The main idea in this construction is to introduce n 3-center groups with decision
maker yi and center agents ai,1,ai,2,ai,3, where the agents ai, j are forced to receive one
of the 3m resources resulting from the base set B if their leaf xi gets an item from RT .
Resources from RT indicate that i ∈ S, and RE indicates i �∈ I. Since ci will never do a
trade, xi are required to get items from RE ∪ RT (|AX | = |RE ∪ RT | = n). This will help
us in the second part of this proof.
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Table 1. Initial allocation π0 for the proof of Theorem 4

a π0(a)

ai, j ρi, j for 1 ≤ i ≤ n and 1 ≤ j ≤ 3

d1
i δ1

i for 0 ≤ i ≤ n−1

d1
n δ2

0

d2
i δ2

i for 1 ≤ i ≤ 3n−1

vi γi for 1 ≤ i ≤ 3n−3m

w j τ j for 1 ≤ j ≤ m

w� εm−� for m+1 ≤ � ≤ n

xi σi for 1 ≤ i ≤ n

yi νi for 1 ≤ i ≤ n

zi βi for 1 ≤ i ≤ 3m

ci χi for 1 ≤ i ≤ n

We show that ((A,R,�),GT ,GR,π0,K) is a yes-instance of DONT-CARE-AGENT-
TRADE-BASED-GEF-ALLOCATION if and only if (B,S) is a yes-instance of X3C.

From right to left, suppose that (B,S) is a yes-instance of X3C and let I be the index
set of an exact cover of B, i.e., a subset of {1, . . . ,n} with |I| = m such that B =

⋃
i∈I Si

is a disjoint union. We show that the following allocation π is reachable from π0:

1. π(xi) ∈ RT if i ∈ I and π(xi) ∈ RE otherwise;
2. π(ai, j) = rS(i, j) for i ∈ I and 1 ≤ j ≤ 3;
3. π(ai, j) ∈ RG for i ∈ I and 1 ≤ j ≤ 3;
4. every agent in AD

1 gets one of her top resources;
5. every agent in AD

2 gets one of her top 3n resources; and
6. all other agents get their most preferred resource.

Obviously, this is a graph-envy-free allocation.
Starting from π0, perform the following trades:

((wi,π0(wi)),(d1
0 ,δ1

i−1)), ((d1
0 ,π0(wi)),(x j,σ j)), ((d1

0 ,σ j),(d1
i ,δ1

i ))

for i = 1, . . . ,n−1 and

((wn,π0(wn)),(d1
0 ,δ1

n−1)), ((d1
0 ,π0(wn)),(x j,σ j)), ((d1

0 ,σ j),(d1
n ,δ2

0)),

where π(xi) ∈ RT if and only if i ∈ I. The resulting allocation satisfies the first property
of the list above.

Further, do the following steps:

((zi,βi),(d1
0 ,δ2

i−1)), ((d1
0 ,βi),(a j,�,ρ j,�)), ((d1

0 ,ρ j,�),(d2
i ,δ2

i ))

for i = 1, . . . ,3n and

((vp,γ j),(d1
0 ,δ2

3m+p−1)), ((d1
0 ,γp),(a j,�,ρ j,�)), ((d1

0 ,ρ j,�),(d2
3m+p,δ

2
3m+p))
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for p = 1, . . . ,3n−3m−1 and

((v3n−3m,γ3n−3m),(d1
0 ,δ2

3n−1)), ((d1
0 ,γ3n−3m),(a j,�,ρ j,�))

in a way that property 2 and 3 of the list above are satisfied.
After these steps, every agent in AD

2 has a resource from R0, every agent in AD
1

(except d1
0) has a resource from RS, d1

0 is allocated a ρi, j, and all other agents receive
their most preferred resource, which shows that the remaining properties are satisfied.

From left to right, suppose that (B,S) is a no-instance of X3C and assume that
((A,R,�),GT ,GR,π0,K) is a yes-instance of DONT-CARE-AGENT-TRADE-BASED-
GEF-ALLOCATION.

Since agent ci receives χi, every agent xi must receive resources from RT or RE to
avoid graph-envy. Then every agent ai, j must get resources from RB if π(xi) ∈ RT holds
for their child node xi. If an agent xi gets a resource from RE , agent ai, j is forced to be
allocated resources from RB or RG. Due to |RB| = 3|RT |, we conclude:

1. ai, j must receive a resource from RB if their child node xi gets resources from RT .
2. ai, j must receive a resource from RG if their child node xi gets resources from RE .

We show that this constraint is always violated if we start with a no-instance of X3C.
Due to the constructed preferences and the fact that xi has to get items from RT ∪ RE ,
we can only distribute resources to the agents from A0 after we selected (by trades)
which 3-center groups represents a Si with i ∈ I. So we trade as long as d1

0 receives δ2
0

and distribute the resources from RT ∪ RE to the agents from AX . Now, the only agent
who is allowed to trade with d1

0 is z1, which gives β1 to d1
0 . If there is an i ∈ I such

that b1 ∈ Si, it can be allocated to an agent in the 3-center group of Si. If this is not the
case, d1

0 will not find a sequence of trades such that property 1 above is satisfied. As
this is a required condition, we will never find a graph-envy-free allocation. The latter
case will not necessarily occur for β1, but there is a β j for that d1

0 cannot find a trading
partner (for otherwise we would have started with a yes-instance of X3C). Thus there
is no graph-envy-free allocation. �

5 Conclusions and Open Questions

We have shown strong NP-completeness of the problems of deciding whether there is
a graph-envy-free allocation in a social network such that egalitarian social welfare or
the Nash product exceed a given threshold. The key idea was the construction of sev-
eral 3-center groups, where every decision maker determines which resources must be
allocated to her predecessors. This can be done with three-valued utility functions for
GEF-EWSO, whereas GEF-NSWO needs at least four-valued utility functions. Addi-
tionally we pointed out that a missing decision possibility between two different utility
values greater than 0, as appearing in binary utility functions, lead to polynomial time
solvable problems. In addition, we have shown NP-hardness of the problem of whether
a graph-envy-free allocation can be reached by trades in the presence of don’t care
agents. An interesting topic of future research would be to find out how the computa-
tional complexity of GEF-ESWO is affected if we restrict the problem to binary utility
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functions but allow |A| < |R|. This also applies to GEF-NSWO; moreover, it is also
open how hard the problem becomes if we require, as in Theorem 1, restrictions on the
utility functions. Furthermore, it would be interesting to study the complexity of more
general social welfare measures like the Lorenz curve [16]. Another interesting task for
future research would be to determine whether DONT-CARE-AGENT-TRADE-BASED-
GEF-ALLOCATION is an NP-complete problem.3
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Abstract. Aggregating votes that are preference orders over candi-
dates or alternatives is a fundamental problem of decision theory and
social choice. We study this problem in the setting when alternatives
are described as tuples of values of attributes. The combinatorial spaces
of such alternatives make explicit enumerations of alternatives from the
most to the least preferred infeasible. Instead, votes may be specified
implicitly in terms of some compact and intuitive preference representa-
tion mechanism. In our work, we assume that votes are given as lexico-
graphic preference trees and consider two preference-aggregation prob-
lems, the winner problem and the evaluation problem. We study them
under the assumption that positional scoring rules are used for aggrega-
tion. In particular, we consider k-Approval and b-Borda, a generalized
Borda rule, and we discover new computational complexity results for
them.

1 Introduction

Preferences are an essential component of decision making, social choice, knowl-
edge representation, and constraint satisfaction. Fundamental problems of pref-
erence reasoning are to aggregate individual preference orders of a group of agents
(the votes of agents in the group) into a consensus best candidate (the winner),
and to identify candidates with strong consensus support from the group (“good”
alternatives). These problems have been studied extensively in social choice [1].
Aggregation methods known as positional scoring rules, which include such well-
known rules as plurality, k-approval and Borda, are among the best understood
and the most widely used ones [4].

When the number of alternatives is small, the simplest and most effective way
to describe a preference order (a vote) is to enumerate the alternatives from the
most to the least preferred. Moreover, given a collection of such votes, for many
aggregation rules, including all that are based on positional scoring, computing
winners and “good” candidates is easy — it can be done in polynomial time.
The situation changes when alternatives are characterized in terms of attributes
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(or issues), and are specified by tuples of attribute values. Spaces of such alter-
natives, often called combinatorial domains, are large. Indeed, the number of
alternatives grows exponentially with the number of attributes. This large size
of combinatorial domains brings up two problems. First, it is no longer feasible
to describe votes by enumerating alternatives in the order of preference. Thus,
formalisms offering compact and intuitive representations of votes are needed.
Several such preference formalisms have been developed over the years including
penalty logic [5], possibilistic logic [6], conditional preference networks (CP-nets)
[3], and variations of lexicographic preference trees and forests [2,12–14]. Second,
when votes are given as expressions in some preference formalism, computing
the winner or a “good” candidate is no longer easy. In fact, it is known that for
many preference formalisms these problems are NP-hard even when positional
scoring rules are used to aggregate votes. Issue-by-issue aggregation addresses
the computational hardness problem but often leads to results different from
those obtained by applying common voting rules [7].

In this paper, we assume that votes are represented as lexicographic prefer-
ence trees, or LP-trees, for short [2], and that they are aggregated by some simple
positional scoring rule such as k-Approval and b-Borda, a generalized Borda rule.
Given this setting, we study the problem of computing the best alternative, and
its related problem to decide whether an alternative with the score exceeding a
given threshold (a “good” alternative) exists. We refer to the former problem as
the winner problem and to the latter one as the evaluation problem. LP-trees
are the votes to aggregate. Depending on the structure of the trees and whether
local preferences at any node rely on evaluations of ancestor nodes, LP-trees are
classified into unconditional importance and unconditional preference (UI-UP)
trees, unconditional importance and conditional preference (UI-CP) trees, con-
ditional importance and unconditional preference (CI-UP) trees, and conditional
importance and conditional preference (CI-CP) trees.

These problems have been studied in the literature and turn out often com-
putationally hard. For k-approval, for some specific values of k (e.g., exactly half
of the number of the alternatives), both problems are in P across all four classes;
however, for some other, they are NP-hard and NP-complete, respectively, for
all classes of trees [10]. For the standard Borda rule, the winner problem and the
evaluation problem are in P for UI-UP trees, but are NP-hard and NP-complete,
for all other classes [10]. For all four classes of LP-trees, deciding if a given out-
come is a Condorcet winner is coNP-hard [10]. Liu and Truszczynski [11] showed,
for (k, l)-Approval, a two level approval rule, that the two problems are NP-hard
and NP-complete for all four classes, when k and l are of some specific values.

Our main contributions are algorithms and complexity results for the winner
and the evaluation problems when votes are specified as LP-trees aggregated
by two positional scoring rules: k-approval and b-Borda. Specifically, for the k-
approval rule, we propose polynomial time algorithms to solve these problems for
all classes of LP-trees, when k intuitively is within a polynomial difference from
half of the number of alternatives. For the b-Borda rule, a generalized Borda
rule, we prove NP-hardness of the two problems for all classes of LP-trees for
every fixed positive integer b.
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2 Technical Preliminaries

A vote over a set X of alternatives (or outcomes) is a strict total order � on
X . In this work, we consider votes over alternatives from combinatorial domains
determined by a set A of p binary attributes X1,X2, . . . , Xp, with each attribute
Xi having a binary domain D(Xi) = {0i, 1i}. The combinatorial domain in
question is then the set X (A) = D(X1) × D(X2) × . . . × D(Xp). If A is implied
by the context, we write X instead of X (A). Let o ∈ X be an alternative. We will
use o(Xi) to denote the value of attribute Xi in o, and o|S the partial alternative
projected from o to S ⊆ A.

Clearly, the cardinality of X (A) is 2p. Thus, even for relatively small values
of p, eliciting precise orders over all alternatives and representing them directly
may be infeasible. Instead, in cases when votes have some structure, they often
can be represented compactly by means of intuitive “preference expressions” in
logical or graphical formalisms [3,8,9].

In this work we focus on one such formalism, lexicographic preference trees or
LP-trees, for short [2]. An LP-tree over a set A of p binary attributes X1, . . . , Xp

is a binary tree. Each non-leaf node t is labeled by an attribute from A, denoted
by Iss(t). Every non-leaf node t has two outgoing edges, each labeled by a distinct
value in D(Iss(t)). The two outgoing edges represent the preference information
over D(Iss(t)): the value labeling the left edge is preferred to the value labeling
the right. Leaf nodes are empty boxes. In addition, we require that each attribute
appears exactly once on each path from the root to a leaf.

Intuitively, the attribute labeling the root of an LP-tree is of highest impor-
tance. Alternatives with the more preferred value of that attribute are preferred
over alternatives with the other (less preferred) value. The two subtrees further
refine that ordering. The left subtree determines the ranking of alternatives in
the more preferred “upper half” and the right subtree determines the ranking of
alternatives in the less preferred “lower half.” In each case, the same principle
is used recursively, with the attribute labeling the root of the subtree being the
most important one. The attributes labeling the roots of the subtrees need not
be the same (the relative importance of attributes may depend on values for
their “ancestor” attributes labeling the nodes on the path to the root).

Given an alternative o = x1x2 . . . xp, we find its preference rank in T by
traversing the LP-tree from the root to a leaf. When at node t labeled with the
attribute Xi, we follow down to the left subtree if xi is preferred. Otherwise,
we follow down to the right subtree. In this way, we end up in a unique leaf of
the tree. Let us denote its label by r(o). We take r(o) as the preference rank of
o and say that an alternative o is (strictly) preferred (in T ) to an alternative
o′ precisely when r(o) < r(o′) (informally, alternatives with lower ranks are
preferred to those that are ranked higher). In this way, T defines a vote (a total
order).

To illustrate these concepts, let us consider an example setting with three
binary attributes describing meal alternatives. The Appetizer can be either salad
(s) or soup (u), the Entree could be either beef (b) or fish (f), and the Drink
could be beer (r) or wine (w). Looking at the LP-tree in Fig. 1a, we see that
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the most important attribute is Entree (at the root) with fish preferred over
beef. Among meal alternatives with fish entree, the most important attribute is
Drink, for which wine is preferred to beer. Same preference among meals with
beef entree. Similar reasoning applies to the rest of the tree. Clearly, the most
preferred meal alternative is salad, fish and wine.
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Fig. 1. Unconditional importance LP-trees

A full representation of an LP-tree requires as much space as an explicit
enumeration of the preference order. However, sometimes LP trees can be rep-
resented in a much more concise way. For instance, if for some node t, its two
subtrees are identical (that is, the corresponding nodes are assigned the same
attribute), they can be collapsed to a single subtree, with the same assignment
of attributes to nodes. This subtree is now a single child of its parent and it
is neither left nor right, as it is associated with each of the two values of its
parent node attribute. To retain the preference information, at each node t′ of
the subtree we place a conditional preference table, and each preference in it
specifies the preferred value for the attribute labeling t′ given the value of the
attribute labeling t. In the extreme case when for every node its two subtrees
are identical, the tree can be collapsed to a path.

We now formally extend the definition of an LP-tree to cover the case with
collapsed subtrees. From now on, an LP-tree is a tree in which every node except
for the leaves has either two children, the left child and the right child, or a single
“straight down” child, representing the collapse of the subtrees. The nodes are



New Complexity Results on Aggregating Lexicographic Preference Trees 101

labeled with attributes and, as before, we assume that each attribute appears
exactly once on each path from the root to a leaf. Further, each node in an LP-
tree is assigned a conditional preference table (CPT) compensating for the loss in
the structure due to the collapse higher in the tree. To specify these conditional
preferences, we define Par(t) ⊆ one(t) to be the set of parent nodes of t, where
one(t) denotes the set of ancestor nodes of t with just one child.

We can now introduce a useful classification of LP-trees. If for every node
t in an LP-tree, Par(t) = ∅, all (local) preferences are unconditional and all
CPTs consist of a single entry. Such trees are called unconditional preference
LP-trees (or UP trees, for short). Similarly, LP-trees with all non-leaf nodes
having exactly one child, are called an unconditional importance LP-trees (UI
trees, for short). Combining these characteristics leads to four classes of collapsed
LP-trees: unconditional importance and unconditional preference LP-trees (UI-
UP trees), unconditional importance and conditional preference trees (UI-CP
trees), conditional importance and unconditional preference trees (CI-UP trees),
and conditional importance and conditional preference trees (CI-CP trees). CI-
CP trees are most expressive, capturing all LP-trees, UI-UP trees are the least
expressive of the four collapsed types.
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Fig. 2. Conditional importance LP-trees

We present examples of UI trees in Fig. 1 and CI trees in Fig. 2.
For an LP-tree T of any class, we denote by |T | the size of T , that is, the

total size of CPT’s associated with the nodes in T . The size of a CPT of a node
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is the total size of rows in it, each of which is measured as the number of values
in the condition plus 1 for the preferred value in the domain of the attribute
labeling the node. Particularly, the size of an UI-UP LP-tree is the number of
nodes in it.

Finally, we recall the concept of a profile and of a positional scoring rule. A
set of votes over a domain X (collected from, say, n voters) is called a profile. The
size of a profile is the total size of the votes inside it. Among many rules proposed
to aggregate a profile into a single preference ranking representing the group,
positional scoring rules have received particular attention. For profiles over a
domain with h alternatives, a scoring vector is a sequence w = (w0, . . . , wh−1)
of integers such that w0 ≥ w1 ≥ . . . ≥ wh−1 and w0 > wh−1. Given a vote v
with the alternative o in position i (0 ≤ i ≤ h − 1), the score of o in v is given
by sw(o, v) = wi. Given a profile P of votes and an alternative o, the score of o
in P is given by

sw(o, P ) =
∑

v∈P

sw(o, v).

These scores determine the ranking generated from P by the scoring vector w
(assuming, as is common, some independent tie breaking rule). In this paper we
consider two positional scoring rules:

1. k-approval: (1, . . . 1, 0, . . . 0) with k, 1 ≤ k ≤ 2p the number of 1’s
2. b-Borda: (2p−b − 1, 2p−b − 2, . . . , 1, 0, . . . , 0) with 0 ≤ b < p

We see that the traditional Borda rule is 0-Borda, and that (p-1)-Borda is
the Plurality rule.

3 Computing Ranks

We now show how to compute the rank of an outcome in an LP-tree (possibly
in the collapsed form). For our algorithms and complexity results (membership
proofs) it is important that we can compute ranks (and so, also scores) of out-
comes in polynomial time.

Given an LP-tree T over A = {X1, . . . , Xp} and an outcome o ∈ X (A), the
computation of the rank r(o, T ) of o in T is given below, where we write rt(T )
for the root of a tree T .

First, we set r = 0 and T ′ = T that represent the rank we are computing
and the subtree under consideration, respectively. Second, for i from 1 to p, we
repeatedly perform the next three steps: (1). Set Y = iss(rt(T ′)), and identify
the preference rule in the CPT of form o|iss(Par(rt(T ′))) : y > y′; (2). If o(Y ) �=
y, update r = r + 2p−i; (3). If rt(T ′) has a single subtree T ′

s, update T ′ = T ′
s;

otherwise, rt(T ′) has two subtrees T ′
l (left subtree, preferred) and T ′

r (right
subtree, less preferred), then we update T ′ = T ′

l if o(Y ) = y, or T ′ = T ′
r if

o(Y ) = y′.
Clearly, this algorithm applies to any of the four classes of LP-trees, and the

running time of this algorithm is O(p), for it walks down the LP-tree from the
root to a leaf and the height of the tree is bounded by O(p).
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Now that ranks are computed, calculating the scores of an outcome for k-
approval and b-Borda is now straightforward. Specifically,

1. k-approval: skApp(o, T ) = 1, if r(o, T ) < k; 0, otherwise.
2. b-Borda: sbB(o, T ) = 2p−b − 1 − r(o, T ), if r(o, T ) < 2p−b; 0, otherwise.

For example, the rank of meal alternative with soup, fish and beer in the UI-CP
tree in Fig. 1d is 2, the summation of 0 (fish is the more preferred), 23−2 (beer
is the less preferred given fish), and 0 (soup is the more preferred given fish).
In the full representation in Fig. 1c, we clearly see our alternative reaches the
third leaf counted from the left-most one. Therefore, its 4-Approval score and
its 1-Borda score are both 1.

4 The Problems and Their Complexity

From now on, we only consider positional scoring rules without the scoring vec-
tors explicitly given, rather defined by a polynomial time algorithm that returns
the score of an outcome based on the rank of it and the total number of out-
comes. Clearly, Both k-Approval and b-Borda fit in this category. This is so
because the scoring vectors for combinatorial domains on which LP-trees are
specified are of size exponential in p, making our aggregation problems solvable
in time polynomial in this sheer size.

Let us fix such a positional scoring rule D. Given a profile P , the winner
problem under D is to compute an alternative o ∈ X with the maximum score
sD(o, P ). Similarly, given a profile P and a positive integer R, the evaluation
problem for D asks if there exists an alternative o ∈ X such that sD(o, P ) ≥ R.
In each case, sD(o, P ) =

∑
T∈P

sD(o, T ).

We apply the voting rules listed above to profiles consisting of LP-trees. We
distinguish four classes of profiles, UI-UP, UI-CP, CI-UP and CI-CP, depending
on the type of LP-trees they consist of.

4.1 k-Approval

If k = 2p−1 the evaluation problem is in P for all four classes of profiles of
LP-trees [9]. However, the problem is NP-complete, again for all four types of
profiles, when k = α · 2p where α is a rational number of form a/2p for any
integer 1 ≤ a < 2p and α �= 1/2 [10]. Clearly, in each case where the evaluation
problem is NP-complete, the winner problem is NP-hard.

Extending the above polynomial time result for 2p−1-Approval, we show that,
for all of the four classes {UI,CI}-{UP,CP} of profiles, the two problems stay in
P for all values k that differ from 2p−1 by a polynomial in p. In other words, for
every k ∈ [2p−1 − f(p), 2p−1 + f(p)], where f(p) is a polynomial in p such that
0 < f(p) < 2p−1, both the winner and the evaluation problems for k-approval
can be solved by polynomial time algorithms. The next two results address the
two cases for k, respectively.
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Theorem 1. Let f(p) be a polynomial in p such that 0 < f(p) < 2p−1 for
all p ≥ 1. The winner problem under k-approval, where k = 2p−1 + f(p), for
any profile of LP-trees of any class in {UI,CI}-{UP,CP}, can be solved in time
polynomial in the size of the profile.

Proof. For an outcome o, we write s(o) and s′(o) for the k-approval and 2p−1-
approval scores of o in the profile P of any of the four classes. Since k ≥ 2p−1,
s(o) ≥ s′(o) holds for every outcome o.

Next, we write Pi for the set of votes (LP-trees) in P whose roots are labeled
with Xi (i = 1, . . . , p). We define bi,0 to be the number of votes in Pi with 0
preferred to 1 at the root and, similarly, bi,1 to be the number of votes in Pi with
1 preferred to 0 at the root. Clearly, for an outcome o = 〈o1, . . . op〉, we have

s′(o) =
p∑

i=1

εi(o),

where εi(o) = bi,0 if oi = 0, and εi(o) = bi,1 if oi = 1.
Let us define xi = 0, if bi,0 > bi,1, xi = 1, if bi,1 > bi,0, and xi = ∗, otherwise.

(Symbol ‘∗’ can be either 0 or 1.) In the first case, picking 0 for position i
maximizes the contribution of the votes in Pi to the 2p−1-approval score (and
picking 1 is strictly worse). In the second case, the situation is dual. In the third
case, the choice of the value for position i does not affect the 2p−1-approval
score. Thus, the tuple 〈x1, . . . xp〉 is a description of all those tuples that have
the largest 2p−1-approval score votes in the profile P ; they are those tuples that
can be obtained from 〈x1, . . . xp〉 by arbitrarily instantiating ∗’s with 0’s and 1’s.

Let S be the set of all outcomes o such that s(o) > s′(o). Clearly, every
outcome o ∈ S must be ranked between 2p−1 and 2p−1 + f(p) in some tree
of P . Thus, we can construct S by taking the union

⋃
T∈P

{o ∈ X : 2p−1 <

r(o, T ) ≤ 2p−1 + f(p)}. We see that |S| ≤ nf(p). Since p and n are bounded by
size(P ), |S| = O(h(size(P ))), for some polynomial h. Hence, the construction of
S takes time polynomial in size(P ). Importantly, for every outcome o not in S,
s(o) = s′(o).

Let o′ be an outcome in S with the maximum k-approval score (o′ can be
computed in polynomial time in size(P )), and let o′′ be any outcome obtained
by instantiating all ∗’s in 〈x1, . . . , xp〉 to 0’s and 1’s (also can be computed in
time O(size(P ))). Then, there are the following two cases for their k-approval
scores s(o′) and s(o′′).

(1). If s(o′) ≥ s(o′′), then for every outcome o /∈ S, s(o′) ≥ s(o′′) ≥ s′(o′′) ≥
s′(o) = s(o), and (by the choice of o′), for every o ∈ S, s(o′) ≥ s(o). Thus, o′ has
the largest k-approval score among all outcomes.

(2). If s(o′′) > s(o′), then for every o ∈ S, s(o′′) > s(o) (by the choice of o′),
and for every o /∈ S, s(o′′) = s′(o′′) ≥ s′(o) = s(o). Thus, in this case, o′′ has the
largest k-approval score among all outcomes.

Therefore, to compute the winner under k-approval for 2p−1 ≤ k ≤ 2p−1 +
f(p), all we need is to compute the above-mentioned o′ and o′′ in polynomial
time and return one of them with the bigger k-approval score. �



New Complexity Results on Aggregating Lexicographic Preference Trees 105

Theorem 2. Let f(p) be a polynomial in p such that 0 < f(p) < 2p−1 for
all p ≥ 1. The winner problem under k-approval, where k = 2p−1 − f(p), for
any profile of LP-trees of any class in {UI,CI}-{UP,CP}, can be solved in time
polynomial in the size of the profile.

Proof. We will use s′ and s in the same sense as above. However, since now
k ≤ 2p−1, s′(o) ≥ s(o) holds for every outcome o. We define A to be the set
of all outcomes o such that s′(o) > s(o). Clearly, for every outcome o not in
A, s′(o) = s(o). As before, the set A can be computed in time bounded by a
polynomial in size(P ). If A contains every outcome (that is, |A| = 2p), then
we compute an outcome with the highest k-approval score by computing the
k-approval scores of all outcomes in A and selecting the one with the highest
score. Since the size of A is polynomial in the size of the profile, the task takes
polynomial time (in the size of the profile).

The case when |A| < 2p is harder. To address it, let us assume that we have
computed the set B of top |A|+1 outcomes according to their s′-score (the 2p−1-
approval score), as well as an outcome o in B ∪A with the maximum k-approval
score (s-score).

We claim that o is an outcome with the maximum k-approval score over
all outcomes. Indeed, consider an arbitrary outcome o′. If o′ ∈ B ∪ A, then
s(o) ≥ s(o′) (by the way o was selected). Thus, let us assume that o′ /∈ B ∪ A.
Since |B| > |A|, there is at least one outcome o′′ ∈ B \ A. Because o′′ ∈ B,
s(o) ≥ s(o′′). Moreover, since o′′ /∈ A, s(o′′) = s′(o′′) and, since o′′ ∈ B and
o′ /∈ B, s′(o′′) ≥ s′(o′). Finally, since o′ /∈ A, s′(o′) = s(o′). Combining these
four inequalities, we obtain that s(o) ≥ s(o′). Thus, the claim follows.

Clearly, |B∪A| ≤ 2|A|+1 is bounded by a polynomial in size(P ). Thus, once
B is computed, finding an alternative in B ∪A with the highest k-approval score
can be done in time polynomial in size(P ). To complete the proof, it suffices
then to show how to compute B in polynomial time.

To this end, for each i = 1, . . . , p, we set di = |bi,0 − bi,1| (bi,0 and bi,1 are as
in the previous proof). We also select any outcome that has the highest s′-score
(we explained in the previous proof how to compute it in polynomial time) and
denote it by o. Finally, we compute the score s′(o).

Let S ⊆ {1, . . . , p} be a set of attribute indices, and let oS be an alternative
obtained from o by “flipping” its values in positions in S. Every alternative
can be described in these terms. This is useful as the s′-score of oS is easy to
compute. Namely, we have

s′(oS) = s′(o) − w(S),

where w(S) =
∑

i∈S di is the weight of S.
It follows that B consists of |A|+1 smallest-weight subsets of {1, . . . , p}. We

will now show that given a list D = {d1, d2, . . . , dp} (di ≥ 0, for i = 1, . . . , p) and
an integer t, the t + 1 smallest-weight subsets of {1, . . . , p} can be computed in
time bounded by a polynomial in p and t.
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Let r be an integer such that 2r ≥ t + 1. Let us assume that Lr is the set of
t + 1 smallest-weight subsets of {1, . . . , r}. Let

L′
r+1 = Lr ∪ {S ∪ {r + 1} : S ∈ Lr}

and let Lr+1 be the collection of t+1 smallest-weight subsets S of L′
r+1. We will

show that Lr+1 contains t+1 smallest-weight subsets S of {1, . . . , r+1}. Indeed,
let us consider S ⊆ {1, . . . , r + 1} such that S /∈ L′

r+1. If S ⊆ {1, . . . , r}, then
S /∈ Lr. Thus, w(S) ≥ w(S′), for every S′ ∈ Lr. If r+1 ∈ S, then S = R∪{r+1},
for some R ⊆ {1, . . . , r}. Since S /∈ L′

r+1, R /∈ Lr. Thus, w(R) ≥ w(R′), for every
R′ ∈ Lr and so, w(S) = w(R ∪ {r + 1}) ≥ w(R′ ∪ {r + 1}) for all R′ ∈ Lr. In
each case, it follows that there are at least t + 1 sets S′ in L′

r+1 such that
w(S) ≥ w(S′). Thus for every S′ ∈ Lr+1, w(S) ≥ w(S′).

Clearly, the list Lp consists of |A| + 1 smallest weight subsets of {1, . . . , p}.
Thus, it can be taken for B. To compute it, we first find the smallest r such that
2r ≥ |A|+1 (such an r exists as we are now considering the case when |A| < 2p).
We then construct the collection U of all subsets of {1, . . . , r} (this collection
has no more than 2|A| elements and can be constructed in time bounded by a
polynomial in p and |A|). Next, we construct Lr by selecting from U its |A| + 1
smallest-weight elements. Since |U | ≤ 2|A|, this task also can be accomplished
in polynomial time (in p and |A|).

From now on, we construct Lr+1, Lr+2, . . . Lp recursively, as described above.
Since each step of the construction can be accomplished by the same polynomial-
time algorithm (form the collection L′, select its |A|+1 smallest-weight elements
to form the next L), and since the number of steps is bounded by p, the total
time needed to construct B (Lp) is bounded by a polynomial in p and |A|. �

4.2 b-Borda

The rule b-Borda is a generalized Borda rule with the scoring vector (2p−b −
1, 2p−b − 2, . . . , 1, 0, . . . , 0). If b = 0, b-Borda, or 0-Borda, is reduced to the stan-
dard Borda rule. For the most restrictive case of UI-UP profiles, the evaluation
and winner problems for 0-Borda rule are in P; for the other three classes of
profiles, they are NP-complete and NP-hard respectively [9,10].

However, when b > 0, we show that for every fixed value of b, the winner and
the evaluation problems under b-Borda are NP-hard and NP-complete, respec-
tively, no matter what the type of LP-trees used in the profiles. The cases of
UI-CP, CI-UP and CI-CP trees are handled by a fairly direct reduction from
the corresponding problems under the standard Borda rule. The case of UI-UP
profiles requires a different argument (the winner and the evaluation problems
under the standard Borda rule are, as we noted, in P). We start with the latter.

Theorem 3. The evaluation problem under 1-Borda for the class of UI-UP pro-
files over p > 1 binary attributes is NP-complete.
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Proof. We show that the evaluation problem is NP-complete. The membership
in NP is obvious. The NP-hardness follows from a polynomial reduction from
the 2-MINSAT1 problem.

Given a 2-MINSAT instance (Φ, l), where Φ consists of 2-clauses C1, . . . , Cm

over variables I = {X1, . . . , Xp}, we construct an instance of our problem as
follows.

First, we introduce a new binary variable Xq and define the set of attributes
A by setting A = {X1, . . . , Xp,Xq}.

Second, for each Ci ∈ Φ, we now build a set Pi of 12 UI-UP LP-trees over
A. As an example, w.l.o.g, let Ci be ¬X2 ∨ X4

2. The fragment of the profile
determined by Ci is given by the multi-set

Pi = {Bi1 , Bi2 , Bi1 , Bi2 , Bi1 , Bi2 , B
′
i1 , B

′
i2 , B

′′
i1 , B

′′
i2 , B

′′
i1 , B

′′
i2},

where the trees Bi1 , Bi2 , B
′
i1

, B′
i2

, B′′
i1

, and B′′
i2

are shown in Fig. 3. (Note that
in each of these trees the dotted edge represents the subtree from X2 to Xp−1

where preferences are unanimous and given as the label right next to the dotted
edge.) In other words, the profile Pi contains three copies of Bi1 and Bi2 , one
copy of B′

i1
and B′

i2
, and two copies of B′′

i1
and B′′

i2
. We define the overall profile

P as the collection of all profiles Pi, 1 ≤ i ≤ m. That is, P =
⋃

1≤i≤m Pi. Clearly,
we have 12 · m UI-UP LP-trees in the profile P .

Finally, we set the threshold value R = 15a · (m − l) + 3a · l, where we use a
to denote 2p−1.

Let o be an outcome over A. Let B be a UIUP tree over A, Xj the
most important attribute of B. We define the 1-Borda score of o in tree B,
denoted by s1B(o,B), to be 0 if outcome o has the non-preferred value on
Xj ; sBorda(B|A\{Xj} , o|A\{Xj}), otherwise. We now compute the 1-Borda score
of o according to whether it satisfies Xq and Ci. If o |= Xq ∧ ¬Ci, that is,
o |= Xq ∧ X2 ∧ ¬X4, we have

s1B(o, Pi) = (2p − 1 + 2p−1 + 1) ∗ 3︸ ︷︷ ︸
three copies of Bi1 and Bi2

+ (0)︸︷︷︸
B′

i1
and B′

i2

+ (2p − 1 + 2p−1 + 1) ∗ 2︸ ︷︷ ︸
two copies of B′′

i1
and B′′

i2

= 15a.

If o |= Xq ∧ Ci, we need to consider three cases:
(1). If o |= Xq ∧ ¬X2 ∧ X4, we have

s1B(o, Pi) = (0) ∗ 3
︸ ︷︷ ︸

three copies of Bi1 and Bi2

+(2p − 1 + 2p−1 + 1)
︸ ︷︷ ︸

B′
i1

and B′
i2

+ (0) ∗ 2
︸ ︷︷ ︸

two copies of B′′
i1

and B′′
i2

= 3a.

1 Given a set Φ of n 2-clauses {C1, . . . , Cn} over a set of propositional variables
{X1, . . . , Xp}, and a positive integer l (l ≤ n), decide whether there is a truth
assignment that satisfies at most l clauses in Φ.

2 We will build Pi according to what Ci contains: the two atoms in Ci are the labels
of the top two levels of trees, and whether the atom is negated affects the preference
on that atom.
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X2 12 > 02

X4 04 > 14

X1 11 > 01

Xp 1p > 0p

Xq 1q > 0q

1 > 0

(a) Bi1

X2 12 > 02

X4 04 > 14

X1 01 > 11

Xp 0p > 1p

Xq 1q > 0q

0 > 1

(b) Bi2

X2 02 > 12

X4 14 > 04

X1 11 > 01

Xp 1p > 0p

Xq 1q > 0q

1 > 0

(c) B′
i1

X2 02 > 12

X4 14 > 04

X1 01 > 11

Xp 0p > 1p

Xq 1q > 0q

0 > 1

(d) B′
i2

X4 04 > 14

X2 12 > 02

X1 11 > 01

Xp 1p > 0p

Xq 1q > 0q

1 > 0

(e) B′′
i1

X4 04 > 14

X2 12 > 02

X1 01 > 11

Xp 0p > 1p

Xq 1q > 0q

0 > 1

(f) B′′
i2

Fig. 3. Construction UI-UP trees in the proof of Theorem 3

(2). If o |= Xq ∧ ¬X2 ∧ ¬X4, we have

s1B(o, Pi) = (0) ∗ 3︸ ︷︷ ︸
three copies of Bi1 and Bi2

+ (2p−1 − 1 + 1)︸ ︷︷ ︸
B′

i1
and B′

i2

+ (2p−1 − 1 + 1) ∗ 2︸ ︷︷ ︸
two copies of B′′

i1
and B′′

i2

= 3a.

(3). If o |= Xq ∧ X2 ∧ X4, we have

s1B(o, Pi) = (2p−1 − 1 + 1) ∗ 3︸ ︷︷ ︸
three copies of Bi1 and Bi2

+ (0)︸︷︷︸
B′

i1
and B′

i2

+ (0)︸︷︷︸
two copies of B′′

i1
and B′′

i2

= 3a.
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Thus, for o |= Xq ∧ Ci, we have s1B(o, Pi) = 3a.
Similarly, we can compute that s1B(o, Pi) < 15a, if o |= ¬Xq ∧ ¬Ci; and

s1B(o, Pi) < 3a, if o |= ¬Xq ∧ Ci.
We now show that there exists an outcome over A with 1-Borda score at

least R if and only if there exists an assignment over I that satisfies at most l
clauses in Φ.
(⇐) We assume there is an assignment v over I satisfying at most l clauses in
Φ. Define an outcome o = (v, 1q). It is clear that s1B(o, P ) ≥ R.
(⇒) We assume there is an outcome o over A such that s1B(o, P ) ≥ R. If
o |= ¬Xq, we could flip the value on Xq from 0q to 1q, and obtain o′ such that
s1B(o′, P ) > s1B(o, P ) ≥ R. Assuming o′|I satisfies l′ (l′ > l) clauses in Φ, we
have that s1B(o′, P ) = 15a · (m − l′) + 3a · l′ > R; thus, l′ < l. A contradiction!
Otherwise, if o |= Xq, we are done. �
Theorem 4. Let b be an arbitrary integer such that b > 1. The evaluation
problem under b-Borda for the class of UI-UP profiles over p > b binary attributes
is NP-complete.

Proof. Clearly, the problem is in NP. To show it is NP-hard, we reduce to this
problem the NP-complete problem we proved in Theorem 3, for which we call
1 -Bordaev

UI -UP .
Given an instance 〈A, P, l〉 of 1 -Bordaev

UI -UP , where A = {X1, . . . , Xp} is a
set of p attributes, P = 〈T1, . . . , Tm〉 is a profile of m UI-UP trees over A, and
l is a positive integer, we construct an instance 〈A′, P ′, l′〉 of our problem as
follows.

We first build A′ = {X1, . . . , Xp, Y1, . . . , Yb−1} with b − 1 new attributes Yi.
Then, for each Ti ∈ P , we build T ′

i to be Y1� . . . Yb−1�Ti, and we get P ′ =
{T ′

1, . . . , T
′
m}. Lastly, we set l′ = l.

Let o be an arbitrary outcome over A. We consider outcome o′ over A′ such
that o′|A = o and o′(Yi) = 1 for all Yi. For any tree Ti ∈ P , we let r(o, Ti)
and r(o′, T ′

i ) be the ranks of o and o′ in Ti and T ′
i , respectively. Let Xi1 be

the root attribute in Ti. The 1-Borda score s1B(o, Ti) = 2p−1 − 1 − r(o, Ti),
if o(Xi1) is the preferred value of Xi1 ; s1B(o, T ) = 0, otherwise. We also have
the b-Borda score sbB(o′, T ′

i ) = 2p+b−1−b − 1 − r(o′, T ′
i ) = 2p−1 − 1 − r(o′, T ′

i );
sbB(o′, T ′

i ) = 0, otherwise. Because we know r(o, Ti) = r(o′, T ′
i ), we derive that

s1B(o, Ti) = sbB(o′, T ′
i ).

It is simple to see that there is an outcome with 1-Borda score at least l for
profile P if and only if there is an outcome with b-Borda score at least l′ for
profile P ′. �
Theorem 5. Let b be an arbitrary integer such that b ≥ 1. The evaluation
problem under b-Borda for the class of CI-UP (UI-CP and CI-CP, respectively)
profiles over p > b binary attributes is NP-complete.

Proof. We only show an argument for the class CI-UP. The reasoning for other
two types of profiles is similar. Moreover, we only show that the evaluation prob-
lem (under the restriction to profiles consisting of CI-UP trees) is NP-complete.
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Indeed, it directly implies that the corresponding variant of the winner problem
is NP-hard.

As in other arguments before, the membership in the class NP is evident.
Thus, we focus on the hardness part of the argument. To show NP-hardness,
we construct a reduction from the evaluation problem under standard Borda
when profiles consist of CI-UP trees (0 -Bordaev

CI -UP , for short). That problem is
known to be NP-complete [9].

Given an instance 〈A, P, l〉 of 0 -Bordaev
CI -UP , where A is a set of p attributes

X1, . . . , Xp, P = 〈T1, . . . , Tm〉 is a profile of m CI-UP trees over A, and l is a
positive integer, we construct an instance 〈A′, P ′, l′〉 of our problem as follows.

First, we define A′ = {Y1, . . . , Yc,X1, . . . , Xp}, where Y1, . . . , Yc are new
attributes. Second, we construct a UI-UP tree T built of c nodes labeled Y1, . . . Yc

(from top to bottom), with the node labeled with Yi having a local preference
1 > 0. Then, for each Ti ∈ P , 1 ≤ i ≤ m, we form a CI-UP tree T ′

i by connecting
the bottom node of T (the one labeled wit Yc) by a “straight-down” edge to the
root of Ti. We define P ′ = {T ′

1, . . . , T
′
m}. Finally, we set l′ = l.

Similar to the proof of Theorem 4, it is straightforward to verify that under
the profile P there is an alternative with the standard Borda score of at least l
if and only if under the profile P ′ there is an alternative with the b-Borda score
of at least l′. �

In Table 1, we summarize the results we obtained for k-Approval with k =
2p−1 ± f(p) for every polynomial 0 < f(p) < 2p−1, and for b-Borda for every
fixed integer b > 0. (Whenever the evaluation problem is NP-complete, the
corresponding winner problem is NP-hard.)

Table 1. Complexity results

UP CP
UI P (Thms 1&2) P (Thms 1&2)
CI P (Thms 1&2) P (Thms 1&2)

(a) (2p−1±f(p))-Approval for 0<f(p)<2p−1

UP CP
UI NPC (Thms 3&4) NPC (Thm 5)
CI NPC (Thm 5) NPC (Thm 5)

(b) b-Borda for b > 0

5 Conclusions and Future Work

Aggregating votes specified as LP-trees leads to interesting theoretical and prac-
tical problems. In particular, the complexity of the winner and evaluation prob-
lems for positional scoring rules is far from being completely understood. First
results on the topic were provided by Lang et al. [9,10]. Our results on some of
the open problems include new complexity results for special cases of k-Approval
and for a generalized Borda rule, called b-Borda. Specifically, we find that, for all
of the four classes of LP-trees (UI-UP, UI-CP, CI-UP, and CI-CP), the winner
and evaluation problems are in P under the k-Approval rules for k being any
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integer within a difference of f(p) from 2p−1, where f(p) is a polynomial of the
number of attributes p, and that the two problems are NP-hard under b-Borda
for every b such that 0 < b < p. However, a full understanding of what makes a
positional scoring rule hard remains an open problem.

In the future work, we propose to conduct an empirical study of computa-
tional tools (e.g., Maximum Satisfiability and Answer Set Programming solvers)
to aggregate votes given in the form of LP-trees.

Acknowledgments. The work of the second author was supported by the NSF grant
IIS-1618783.
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Abstract. Consider a fixed voting rule r. In the Possible President
problem, we are given an election where the candidates are partitioned
into parties, and the problem is to determine if, given a party P, it is
possible for every party to nominate a candidate such that the nominee
from P is a winner of the election that is obtained by restricting the votes
to the nominated candidates. In previous work on this problem, proposed
by [10], it was established that Possible President is NP-hard even
when the voting rule is Plurality and the election is restricted to single-
peaked votes. In this contribution, we initiate a study of the parame-
terized complexity of the problem. Our main result is that for a natural
choice of parameter (namely the number of parties), the problem is W[2]-
hard in general but is FPT on the 1D-Euclidean domain. On the other
hand, if we parameterize by the size of the largest party, we encounter
para-NP-hardness even on profiles that are both single-peaked and single-
crossing. This strengthens previously established hardness results. We
also show a polynomial time result for the related Necessary Presi-
dent problem on single-crossing elections.

1 Introduction

We consider an election scenario where the candidates are split into parties,
and every party is asked to nominate a candidate. The votes, while originally
preference orders over all alternatives, are now restricted to the nominees and
the voting rule is employed on this smaller profile to determine the winner. The
decision that the parties now have to make is: which nominee gives them their
best shot in the election?

Note that unless all votes rank all candidates from a party consecutively,
choices of nominees can lead to significant differences in outcome. For example,
assume that the voting rule at play is Plurality, and consider an election where
a � x � b for 5 votes and b � x � a for 4 votes and x � b � a for one vote.
Suppose the parties were given by P := {a,b} and Q := {x}. Although the election
projected on P shows both candidates as being equally competent, it is clear
that P should nominate a to (co-)win the election. Beyond toy illustrations, the
history of political elections is rich in speculation—if not evidence—concerning
the influence of choices of nominations on the final outcomes.

c© Springer Nature Switzerland AG 2019
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There are two natural interpretations for how the parties address this ques-
tion, depending on how much information they have about the other nominations
and their degree of optimism about the information that they do not have. Let
P denote an arbitrary but fixed party in this setting. On one extreme, note that
if members of P are aware of the nominations made by all the other parties, then
the choice for P is straightforward. Indeed, let’s say that a candidate c from the
party P is strong in a vote v if c is ranked higher in v than the highest ranked
nominee from the other parties. The potential plurality score of a candidate c

is the number votes for which the candidate is strong. The party should nomi-
nate any of the candidates that enjoy the highest potential plurality score—this
would clearly be their best bet.

On the other hand, assuming access to this type of information is not a
realistic starting point, so we now consider the other end of the spectrum, where
we have no information about nominees from the other parties. Here, two natural
questions arise: the first is to ask if P has any chance at all of winning the election,
and the other is to ask if P is guaranteed to win the election. Specifically, the
former question asks if there is any choice of nominees of the other parties for
which the party P has a winning candidate to nominate. In the latter, we ask
if P has a winning candidate no matter which candidates are nominated by the
other parties. The questions, dubbed Possible President and Necessary
President respectively, were introduced and studied by [10]. We now turn to
a summary of their results. For a broader perspective on questions associated
with nominations, uncertainty and strategic behavior, we refer the reader to the
discussion in [10] as well as the Handbook of Computational Social Choice [3].

1.1 Related Work and Our Results

We briefly outline here the results obtained by [10] to establish the context for
this contribution, which can be thought of as a follow-up addressing comple-
mentary questions and expanding the scope of some prior results. We refer the
reader to the next section for the definitions of the terms used here. In the con-
text of the Pluarlity voting rule, it was established that Possible President
is NP-complete and that Necessary President is coNP-complete, even when
the size of the largest party is two. These hardness results motivated the study of
the problems on restricted domains. It turned out that Necessary President
was polynomially solvable on single-peaked profiles, while in stark contrast, Pos-
sible President remained NP-complete on 1D-Euclidean profiles, which are a
subclass of profiles that are both single-peaked and single-crossing.

Finally, it was also established that Possible President admits a polyno-
mial time algorithm if the elections are restricted to single-peaked profiles where
the candidates of any party appear consecutively on the societal axis. Note that
this assumption does not force the candidates belonging to the same party to
appear consecutively on the votes1, which makes this algorithm an interesting
intermediate result.
1 In this case, note that the outcome of the election does not depend on who is nomi-

nated.



114 N. Misra

Given the hardness of Possible President on restricted domains even for
the plurality voting rule, one is compelled to look further into the source of this
hardness. There are two counter-balancing elements at play here: the first is the
number of parties involved and the other is the sizes of the individual parties.
From [10], we already know that the problem remains hard even when all parties
have sizes two or less, which is a sharp hardness threshold (note that dealing
with parties of size one amounts to asking for winner determination). What
about the other extreme, when the number of parties is a constant? Indeed, one
might even make the case that this would be a reasonable assumption for many
application scenarios, including that of several types of political elections. Note
that here we could simply try all possible choice of nominees from the parties
and maintain a reasonable running time, and this would work for any voting rule
that admits efficient winner determination. We remark here that for the rest of
our discussion, we fix Plurality as our choice of voting rule, unless mentioned
otherwise.

To dig deeper into the question of whether the problem is easier when the
number of parties is small, we invoke the framework of parameterized complexity
(we refer readers to [5] for a comprehensive introduction to this approach). In
particular, we ask if Possible President is FPT when parameterized by the
number of parties. While we will elaborate shortly on our resolution of this
question, we summarize for now by saying that the answer is in the negative for
general instances, although we are able to obtain a FPT algorithm for the case
of 1D-Euclidean profiles.

Let us return to the issue of small party sizes for a moment. Given that the
situation of “many small parties” is hard to handle in general, then it is natural
to ask if there is some algorithmic advantage when we assume this situation in the
context of restricted domains. We demonstrate here that Possible President
remains NP-complete on profiles that are both single-peaked and single-crossing,
even when each party has at most two candidates. Therefore, we continue to
witness the sharp threshold on restricted domains as well.

Finally, we also briefly consider the Necessary President problem. Recall
that this problem is coNP-complete in general but in P for single-peaked profiles
(with no requirements for how the candidates appear on the societal axis). As a
complementary consideration, we show that the problem is also in P for single-
crossing profiles with no additional requirements.

1.2 Methodology

We now describe our results more explicitly and briefly overview the tools used to
obtain them. For the Possible President problem in the context of Plurality,
we have the following results.

� When parameterized by the number of parties (say t), the Possible Presi-
dent problem is in XP and also W[1]-hard (see Theorem 1).

� When restricted to profiles that are 1D-Euclidean, the problem is FPT param-
eterized by t (see Theorem 2).



On the Parameterized Complexity of Party Nominations 115

� When parameterized by the size of the largest party (say �), the Possible
President problem is para-NP-hard, even when constrained to profiles that
are both single-peaked and single-crossing (see Theorem 3).

The first result is obtained by a fairly natural reduction from a variant of
dominating set, a standard W[2]-hard problem. The second result is inspired by
the dynamic programming used in [10] for the case of profiles that are single-
peaked where the candidates that are from the same party appear consecutively
on the societal axis. The accuracy of DP approach employed here is driven by
both the single-peaked and single-crossing properties of the profiles. The “single-
crossing” aspect of 1D-Euclidean profiles allows us say that the votes where the
nominee of a party is favored over all others form a consecutive chunk, which
gives us a mechanism for anchoring the DP. Exploiting our allowance for a FPT
running time, we guess the sequence in which the parties win over the votes
(leading to t! possibilities). Finally, the “single-peaked” aspect of the profile,
because of which the plurality score of any candidate is influenced only by its
immediate neighbors, allows us to formulate an appropriate recurrence. While
the algorithmic framework used here is standard, the details do require some
attention.

The third result is a reduction from SAT, not unlike the one used by [10] to
show NP-hardness on general instances. However, we reduce from a particular
variant of SAT that allows us to control the structure of the reduced instance.
This variant, called LSAT, was introduced in [1] and has been used recently in
other reductions concerning structured profiles [13].

We also consider the Necessary President problem briefly, in the context
of single-crossing profiles, and obtain a polynomial-time algorithm in this setting.
Here we use an overall framework that is standard for such problems, while
exploiting the single-crossing property—in a manner similar to what was said of
the 1D-Euclidean profiles previously—to obtain an efficient algorithm.

� The Necessary President problem, when restricted to single-crossing pro-
files, is in P (see Theorem 4). The analogous result—namely that Nec-
essary President is in P when restricted to single-peaked profiles—was
shown in [10].

2 Preliminaries

In this section, we summarize the definitions and notations that we will need
subsequently. We refer the reader to [3] for a comprehensive introduction to the
study of elections in a computational setting.

2.1 Notations and Definitions

For a positive integer �, we denote the set {1, . . . , �} by [�]. We first define some
general notions relating to voting rules. An election comprises of candidates and
voters. Let V = {v1, . . . , vn} be a set of n voters and C = {c1, . . . , cm} be a set of
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m candidates. If not mentioned otherwise, we denote the set of candidates, the
set of voters, the number of candidates, and the number of voters by C, V, m,
and n respectively.

Every voter vi has a preference �i which is a complete order over the set C

of candidates. We say voter vi prefers a candidate x ∈ C over another candidate
y ∈ C if x �i y. We denote the set of all preferences over C by L(C). The n-tuple
(�i)i∈[n] ∈ L(C)n of the preferences of all the voters is called a profile. Note
that a profile, in general, is a multiset of linear orders. For a subset M ⊆ [n],
we call (�i)i∈M a sub-profile of (�i)i∈[n]. For a subset of candidates D ⊆ C, we
use P|D to denote the projection of the profile P on the candidates in D alone.
We abuse notation and use V to denote both the set of voters and the profile
associated with them, whenever the distinction is clear from the context.

A domain is a set of profiles. Below, we describe what it means for a profile to
belong to certain well-studied domains. As a matter of terminology, and usually
in the context of computational problems, we often say that an election has a
certain property (e.g, the election is single-peaked) to refer to the fact that the
voter profile of that election instance belongs to the corresponding domain. We
refer the reader to the recent survey of [8] for a detailed overview of structured
preferences.

Single-Peaked. A preference profile is said be single-peaked if there exists an
ordering σ over the candidates C such that the preference of every voter v has the
following structure: v has a favorite candidate c (sometimes called the “peak” for
v), and the further away a candidate d �= c is from c in σ, the less it is preferred
by the voter v. The notion of single-peaked preferences was introduced by [2]
and a formal definition is as follows. It is well-known that it is possible to check
if a given election is single-peaked in polynomial time (see, for instance, [9]).

Definition 1 (Single-peaked). A preference � ∈ L(C) over a set of candi-
dates C is called single-peaked with respect to an order �′∈ L(C) if, for every
pair of candidates x,y ∈ C, we have x � y whenever we have either c �′ x �′ y

or y �′ x �′ c, where c ∈ C is the candidate at the first position of �. A profile
P= (�i)i∈[n] is called single-peaked with respect to an order �′∈ L(C) if �i is
single-peaked with respect to �′ for every i ∈ [n].

Single-Crossing. A preference profile is said to belong to the single-crossing
domain if it admits a permutation of the voters such that for any pair of can-
didates a and b, there is an index j[(a,b)] such that either all voters vj with
j < j[(a,b)] prefer a over b and all voters vj with j > j[(a,b)] prefer b over a,
or vice versa. The notion was introduced in [12,14] The formal definition is as
follows.

Definition 2 (Single-crossing). A profile P= (�i)i∈[n] of n preferences over
a set C of candidates is called a single-crossing profile if there exists a permuta-
tion σ of [n] such that, for every pair of distinct candidates x,y ∈ C, whenever we
have x �σ(i) y and x �σ(j) y for two integers i and j with 1 � σ(i) < σ(j) � n,
we have x �σ(k) y for every σ(i) � k � σ(j).
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1D-Euclidean. A preference profile is said to belong to the 1D-Eucidean domain
if the voters and candidates can be arranged on a line such that the preference
of any voter v is determined by the distances of the candidates from the v: in
particular, v prefers alternative c to d if the distance of v to c is smaller than
the distance to d. Profiles that are 1D-Euclidean are single-peaked and single-
crossing, but the converse is not true [4,7]. 1D-Euclidean profiles can also be
recognized in polynomial time [6,11].

Definition 3 (1D-Euclidean). A profile P = (�i)i∈[n] of n preferences over
a set C of candidates is called a 1D-Eucidean single-peaked profile if there exists
a function f : C ∪ [n] → R such that for each voter t ∈ [n] and each pair of
candidates ci, cj ∈ C, it holds that ci �t cj if and only if |f(vt) − f(ci)| <

|f(vt) − f(cj)|.

2.2 Problem Definitions

We now formally define the notions of a possible and necessary president, and
the natural computational problems associated with them. These definitions
were introduced in [10]; we reproduce them below for completeness.

Definition 4. Let r be a fixed voting rule, and let E = (C,V) be an election
where we are also given a partition of the set of candidates C into parties P =
{P1, . . . ,Pt}. A subset of candidates N ⊆ C is called a set of nominees if |N∩Pi| =
1 for all i ∈ [t].

� A party Pw is said to have an possible president if there is a set of nominees
N ⊆ C such that r(N,V |N) contains a member of Pw.

� A party Pw is said to have an necessary president if there is a candidate
c ∈ Pw such that for any set of nominees N which contains c, r(N,V |N)
contains c.

If a party Pw has only one candidate, say p, then we abuse terminology
and say that p is a possible (respectively, necessary) president to refer to the
fact that Pw has a possible (respectively, necessary) president. We now turn to
the formulation of r-Possible President, which is the computational problem
associated with the notion of a possible president.

r-Possible President
Input: An election E = (C,V) along with a split of C into t parties
P = {P1, . . . ,Pt}, and an integer w ∈ [t].
Question: Does Pw admit a possible president?

The r-Necessary President problem is defined analogously. We use � to
denote the size of the largest party in an instance of either problem, while t

denotes the number of parties in the input. We focus entirely on the Plurality
voting rule where the winners are the candidates ranked on the first place by the
largest number of voters. The score of a candidate c is the number of voters that
rank it first. We assume the nonunique-winner model, so if there are multiple
candidates with the highest score, then we declare all of them as winners.
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3 Possible President

In this section, we focus on Plurality-Possible President. First, we establish
some results about the parameterized complexity of the problem on general
domains when parameterized by the number of parties.

3.1 Parameterized Complexity Results

In this subsection we establish our results for Plurality-Possible President
when parameterized by the number of parties. For the W[1]-hardness result, we
will reduce from Multicolored Red-Blue Dominating Set (abbreviated
m-RBDS), which is well-known to be a complete problem for W[2] (see [5]) and
is defined as follows. The input is a bipartite graph G = (V = (R ∪ B),E) and
a partition of the vertex set R into k parts given by R = 	k

i=1Ri. The question
is if G admits a set S of size k whose intersection with Ri is exactly one for all
i ∈ [k] and is such that every vertex in B has a neighbor in S.

Theorem 1. The Plurality-Possible President problem admits an algorithm
with running time O∗(mt) and is W[1]-hard when parameterized by t.

Proof. Towards the algorithm, guess the set of nominees. If we use mi to denote
the number of candidates in the party Pi, then the running time of this brute-
force approach is given by O(mt) using the standard relationship between arith-
metic geometric means. To establish W[1]-hardness, we reduce from Multicol-
ored Red-Blue Dominating Set. Consider an instance of m-RBDS given
by:

(G = ((R ∪ B),E);R = R1 	 R2 	 · · · 	 Rt; t).

Let R := {r1, . . . , rm} and B := {b1, . . . ,bn}. We now describe the reduced
instance of Plurality-Possible President. For each vertex ri ∈ R, introduce a
candidate ci. Let the parties be given by the partition of the m-RBDS instance—
in other words, for each j ∈ [t], all candidates corresponding to vertices in Rj

form the party Pj. Also introduce two new candidates p and q, both of whom
form their own (singleton) parties. We use C to denote the set of candidates
corresponding to vertices in R. Let σ be an arbitrary but fixed ordering over C.
For a subset D ⊆ C, the sequence given by elements of D ordered according to
σ is denoted by

−→
D .

We now describe the votes. For each k ∈ [n], let Sk denote the subset of
candidates corresponding to vertices in N(bk), and introduce the vote vk given
by:

vk :
−→
Sk � q � −−−−→

C \ Sk � p.

Further, define the votes gp and gq as:

gp : p � q � −→
C and gq : q � p � −→

C .
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The reduced instance comprises of the votes vj for j ∈ [n], and n copies
each of the votes gp and gq. We ask if p is a possible president. The proof of
equivalence is fairly straightforward from the construction and is similar in spirit
to the proof of NP-hardness shown in [10]. We defer the details here to a full
version of this paper. 
�

We now turn to the case of 1D-Euclidean preferences. Recall that in this
scenario, the voters and candidates can be arranged on a line such that the
preference of any voter v is given by set of candidates sorted in increasing order
of distances from v. Recall that Plurality-Possible President is known to be
NP-hard even in this restricted setting. The next result claims that, on the other
hand, the problem is FPT when parameterized by the number of candidates.
Before the formal description of our algorithm, we sketch the main ideas involved
and also introduce some useful terminology.

Recall that an instance of Plurality-Possible President is given by (E =
(C,V);C = (P1	· · ·	Pt);w). Let f denote the 1D-Euclidean embedding of C∪V

on R. Let the images of C ∪ V under f be given by:

sf := x1 � x2 � . . . � xn+m.

For the sake of discussion, let N ⊆ C be a set of nominees and let sN denote
the ordering of N that is consistent with sf. Now, let sP

N denote the sequence
of parties corresponding to candidates in sN: in other words, if the ith nominee
belongs to Pj, then the ith element of sP

N is Pj. We call sP
N the party order

of N. Our algorithm will essentially guess this order (note that there are t!
possibilities). The party order helps anchor a dynamic program which is similar
(in spirit) to the approach proposed in [10] for single-peaked preferences under
the assumption that the candidates of any party appear consecutively on the
societal axis.

Now, we turn to an observation about the behavior of a solution in the 1D-
Euclidean setting. For a nominee c ∈ N, let Vc be the set of voters for whom c is
preferred over any other nominee in N. Note that the plurality score of c in the
election (C,V |N) will be |Vc|. For a party Pj, let vjL and vjR denote the leftmost
and rightmost voters from Vc with respect to f, where c is the nominee from
Pj. We claim that if vj is a voter that is sandwiched between vjL and vjR in the
embedding, then v must also prefer c over any other nominee in N. This follows
from the single-crossing nature of the voter order derived from the embedding.
We formalize this claim below.

Claim. If vj ∈ V is such that f(vjL) � f(vj) � f(vjR), then vj ∈ Vc.

Proof. Indeed, suppose not. Let d ∈ N be such that v prefers d over c. Combined
with the assumptions in the claim, we have that:

c �jL d,d �j c and c �jR d,

contradicting the single-crossing nature of the profile—recall that the vot-
ers are single-crossing in the order of their appearance in the 1D-Euclidean
embedding. 
�
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The claim above motivates the following definition. We say that the influence
of a party Pj is given by the interval (Lj,Rj) where:

Lj = f(vjL) and Rj = f(vjR).

Also, if c is the nominee of a party P, then we refer to |Vc| as the strength of the
party P. We are now ready to provide a high-level description of our approach.
We begin by guessing the nominee of the party Pw, the influence of Pw, and the
party order of the solution. For k ∈ [n+m], we introduce the following notation:

� Let Ik = (Ck,Vk) denote the restriction of the election (C,V) to the first k

entities in sf, that is:

Ck = C ∩ {f−1(xi) | 1 � i � k};

Vk = V ∩ {f−1(xi) | 1 � i � k}.

� Analogously, let Jk = (C′
k,V ′

k) denote the restriction of the election (C,V)
to the last (m − k + 1) entities in sf.

Suppose c� ∈ Pw is the guessed nominee from Pw, and let (Lw,Rw) denote
the assumed influence of Pw. We use S to denote the strength of Pw—note that
this is determined once the influence is fixed. Let sP denote the guessed party
order—by renaming, assume that this is order is given by P1,P2, . . . ,Pt. We will
also assume, for ease of discussion, that w is neither 1 nor t, noting that it
is straightforward to handle these “edge cases” separately. We now ask if it is
possible to choose nominees N such that:

� c ∈ N,
� For any i, j ∈ [t] such that i < j, f(ci) < f(cj), where ci and cj denote the

nominees of parties Pi and Pj, respectively, and
� The strength of any party is at most S.

Let PL (respectively, PR) denote the parties that occur to the left (respec-
tively, right) of Pw. Note that the second condition above implies that for a party
P ∈ PL, the nominee of P belongs to CLw−1 and similarly, for a party P ∈ PR,
the nominee of P belongs to CRw+1. We answer the question above separately
for the elections ILw−1 and JRw+1. Our discussion will focus on resolving the
instance ILw−1. The details for JRw+1 are analogous. We use dynamic program-
ming and begin by specifying the entries and semantics of the table. For each
1 � i, �1, �2,� Lw − 1, and 1 � j � w − 1, define:

T[k, i, �1, �2] =
{

1 if (�) holds,
0 otherwise,

where (�) states that there exists nominees d1, . . . ,di from parties P1, . . . ,Pi,
each with strength at most S, such that f(d1) < f(d2) < · · · < f(di), and further:

x�1 � f(di) � x�2 .
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We expect that the reader will find this definition to be mostly along expected
lines, possibly except for the last condition. We briefly describe the intuition for
the requirement imposed on f(di). To this end, note that the standard way to
compute T[k, i, �1, �2] would be by a recursive formulation which exhaustively
examines all reasonable possibilities for the nominee of the party Pi and its
influence, and then attempt to “patch” the choice made with the solution of
an appropriate subproblem. However when we invoke a recursively smaller sub-
problem, we need to “remember” that the influence of the party Pi has ended,
and in particular, we need to ensure that we choose a candidate close enough to
voters on the extreme right. In other words, for the subproblem that we appeal
to when we recurse, we will ensure that voters do not find the chosen candidate
from Pi (now no longer represented in the instance) closer to them compared to
the candidate we are going to choose from Pi−1. By insisting that the candidate
chosen from Pi−1 is to the right of x�1 , we can enforce this by a careful choice of
x�1 . The requirement for staying to the left of x�2 is analogous: here, the intent is
to guard the influence of Pi (or equivalently, prevent an unintended extension of
the influence of Pi−1). Specifically, this condition will help us with ensuring that
the candidate chosen from Pi−1 does not influence some of the deleted voters.

Now, recall that Lw is the assumed extent of the leftward influence of the party
Pw. Let d1 denote the distance between c� and the rightmost voter on the 1D-
Euclidean ordering that is to the left of Lw. Further, among all candidates who are
embedded to the right of f(c�)−2d1, let c′ denote the leftmost and let f(c′) = x�1 .
Similarly, let d2 denote the distance between c� and the leftmost voter to the right
of Lw. Among all candidates who are embedded to the left of f(v)−d2, let c′′ denote
the rightmost and let f(c′′) := x�2 . Then observe that we have a solution to the
left half of our problem if and only if T[Lw − 1,w − 1, �1, �2] = 1.

We are now ready to describe the recursive formulation for T[k, i, �1, �2].
When i = 1 we compute the values of T directly any combination of values for k

and �1, �2. These entries constitute the base case of the recursion. Observe that
these values are easy to compute: the strength of any nominee from P1 is equal
to the number of voters in the instance Ik, and it is therefore straightforward
to check if the strength of P1 exceeds S or not. Since any candidate from P1

has the same strength, the conditions associated with �1, �2 is merely checked
by inspection: so T[k, 1, �1, �2] resolves to 1 if there exists some c ∈ P1 such that
x�1 � f(c) � x�2 and |Vk| � S.

Now consider T[k, i, �1, �2] for i � 2. We use Qi to denote the set of all
legitimate choices for a nominee from the party Pi. Note that a candidate q ∈ Pi

belongs to Qi if and only if x�1 � f(q) � x�2 and q ∈ Ck. If Qi = ∅, then
T[k, i, �1, �2] = 0. Otherwise, for q ∈ Qi, let xjq := f(q) and let j′q be the smallest
index for which f−1(xj′) ∈ V and the number of voters mapped to the right of xj′

q

(inclusive) is at most S. Intuitively, j′q denotes the furthest permissible extent of
the influence of Pi. We claim that the following recurrence holds:

T[k, i, �1, �2] = ∨q∈Qi
T[k − j′q, i − 1, �q

1 , �q
2 ],

where the values of �
q
1 , �q

2 are chosen appropriately based on f(q) and j′q. Note
that the computation of T[k, i, �1, �2] depends on values of T for smaller i, making
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the recurrence well-defined when combined with the base case above. We are now
ready to summarize this discussion in the following result.

Theorem 2. The Plurality-Possible President is FPT when parameterized
by t when the input election is 1D-Euclidean.

Proof (Sketch). Our algorithm examines all possible choices of the nominee of
the party Pw, the influence of Pw, and the party order of the solution. Note that
this gives rise to at most O(mn2t!) possible scenarios to handle. For each guess,
we proceed by employing the dynamic programming approach outlined above. It
is easy to see that the DP tables have polynomially many entries and each entry
can be updated in constant time. The correctness follows from the fact that
the recurrence proposed above is an exhaustive examination of all possibilities.
Owing to space constraints, we defer a formal proof of correctness to the full
version of this paper. 
�

3.2 The Case of Small Parties

In this section, we show the hardness of computing a possible president on pro-
files that are 1D-Euclidean (and consequently both single-peaked and single-
crossing), even when the size of each party is at most two. This strengthens
the NP-hardness result shown in [10] for 1D-Euclidean preferences, although the
hard instances constructed there involved large parties. The work of [10] also
had a separate reduction for parties of size two by a reduction from Satisfi-
ability but with no apparent structure. We perform a reduction in the same
spirit but by starting from a structured variant of Satisfiability to achieve
the 1D-Euclidean representation.

The variant of SAT we alluded to above is called Linear SAT (abbreviated
LSAT). In an LSAT instance, each clause has at most three literals, and further
the literals of the formula can be sorted such that every clause corresponds to
at most three consecutive literals in the sorted list, and each clause shares at
most one of its literals with another clause, in which case this literal is extreme
in both clauses. The hardness of LSAT was shown in [1]. In fact, by studying
the reduced instance, one may assume that a “hard” instance of LSAT has the
following structure: the first 2q clauses have two literals each and are of the
following form:

Ai = {si, �i},Bi = {�i, ti}; 1 � i � q,

where si, �i, and ti denote literals, while the remaining p clauses (denoted by
C1, . . . ,Cp) have three literals each and are mutually disjoint from each other
as well as the first 2q clauses. For ease of description, we will assume that the
LSAT formula that we reduce from has this particular structure. We are now
ready to describe our reduction.

Theorem 3. The Plurality-Possible President problem remains NP-
complete on 1D-Euclidean profiles, even when every party has at most two
members.
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Proof. Let φ be an instance of LSAT as described above. We first describe the
construction of the election for to φ, then argue the equivalance, and finally
demonstrate that the suggested profile admits a 1D-Euclidean representation.

First, let us introduce the candidate c, whom we refer to as the contender
candidate. The contender candidate belongs to a party where she is the sole
member. There are exactly two voters who place c at the top. The ordering of
the remaining candidates can be arbitrary.

For every clause Ai, Bi, and Cj, we introduce candidates αi, βi and γj (note
that i ∈ [q] and j ∈ [p]). We refer to these candidates as rivals, and every
rival candidate belongs to a party where she is the sole member. For every rival
candidate, we will introduce exactly two voters that has the rival candidate as
his top preference. The ordering of the remaining candidates can be arbitrary.

We also introduce a candidate for every literal (we refer to these as guards)
and a voter for every clause. For every variable x of φ, we let the candidates
corresponding to x and x form the party Px. The voter corresponding to any
clause places the candidates corresponding to literals that belong to C at the
top of his preference list in an arbitrary order immediately followed by the rival
candidate corresponding to the clause. The ordering of the remaining candidates
can be arbitrary. This completes the construction of the instance. The spirit of
our argument for equivalance is similar to the one in [10].

In the forward direction, let τ be a satisfying assignment for φ. Nominate
from each party Px the variable that was set to True by τ. All other parties are
singletons so their nominations are forced. Now consider the Plurality scores of
the candidates. The score of the contender is exactly three, since all voters other
than the ones who placed her on top have rivals preferred over the contenders.
The score of any guard is at most two, since every literal appears in at most
two clauses, and the plurality score of a nominated guard is equal to the number
of clauses that she appears in. It is easily verified that the score of any rival
candidate is exactly two.

In the reverse direction, let N be a fixed choice of nominations. Observe
that irrespective of the nature of N, the contender has a final Plurality score
of exactly two, and every rival candidate has a Plurality score of at least two.
We now define τ as the assignment that mimics the choices of nominations from
parties corresponding to variables: if x is nominated from Px, τ(x) = 1 and if x is
nominated from Px, then τ(x) = 0. We claim that τ is a satisfying assignment for
φ. Suppose not, and in particular, let C be a clause that is not satisfied. Then, by
construction, the voter corresponding to C contributes one to the Plurality score
of the rival candidate corresponding to C, preventing the contender candidate
from being a cowinner.

We now turn to an informal description of the underlying 1D-Euclidean
structure of the constructed instance. We place the literals corresponding to
the clauses Ci’s in close clusters that are far apart from each other, and we also
place w at a point far away from the clause clusters. We place the clauses cor-
responding to the Ai’s and Bi’s as shown in Fig. 1, and it is easily verified that
one can come up with a placement of voters that gives us an instance with all
the properties demanded by the construction described above. 
�
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Fig. 1. A 1D-Euclidean representation for the clauses Ai and Bi. Observe that a voter
placed at the blue circle on the left would have �i � ti � βi as his top three candidates,
while a voter placed at the red circle on the right would have �i � si � αi as his top
three preferences, as desired.

4 Necessary President

In this section, we switch our focus to the Plurality-Necessary President
problem. It is established that the problem is coNP-complete in general and
also in P on single-peaked profiles. We address the question of the complexity of
Plurality-Necessary President on single-crossing profiles, and show that the
problem admits a polynomial-time algorithm in this setting as well.

Theorem 4 (� ). Plurality-Necessary President is in P if the input election
is single-crossing.

For lack of space, we provide here an informal summary of the main ideas
in lieu of a detailed proof. As is typical for these problems, our strategy is to
guess a nominee c from the party Pw and a rival candidate d, which allows us to
focus on the following question: is there a set of nominees that ensures that the
final plurality score of d exceeds that of c? Towards addressing this question,
we show an analog of Claim 3.1 for single-crossing profiles. In particular, it is
easy to show the following: if N is a set of nominees and c ∈ N, then the set
of voters that rank c higher than any of the other nominees form a consecutive
block in the single-crossing order. Given this, we can also guess the start and end
points of the blocks corresponding to c and d. After suitable sanity checks, what
we now need to ensure is the following: for any vote v that does not appear in
the blocks corresponding to c or d, we must choose at least one valid candidate
among those that are ranked higher than c by v (a candidate is valid if it is
not ranked higher than c or d in their blocks). This is expressed naturally as a
hitting set type requirement, but is easily checked because of the very special
nature of the profile and the restrictions imposed by the guesses made so far.

5 Concluding Remarks

Our contribution offers a parameterized complexity perspective on the Plurality-
Possible President problem. We state here two pertinent directions. Is
Plurality-Possible President FPT when parameterized by t on single-peaked
domains, or single-crossing domains, or domains that are both single-peaked
and single-crossing? What is the parameterized complexity of the problem when
parameterized by the number of voters?
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Abstract. Stackelberg Games are gaining importance in the last years
due to the raise of Adversarial Machine Learning (AML). Within this
context, a new paradigm must be faced: in classical game theory, inter-
vening agents were humans whose decisions are generally discrete and
low dimensional. In AML, decisions are made by algorithms and are
usually continuous and high dimensional, e.g. choosing the weights of a
neural network. As closed form solutions for Stackelberg games gener-
ally do not exist, it is mandatory to have efficient algorithms to search
for numerical solutions. We study two different procedures for solving
this type of games using gradient methods. We study time and space
scalability of both approaches and discuss in which situation it is more
appropriate to use each of them. Finally, we illustrate their use in an
adversarial prediction problem.

Keywords: Game theory · Adversarial machine learning ·
Adjoint method · Automatic differentiation

1 Introduction

Over the last decade, the introduction of machine learning applications in numer-
ous fields has grown tremendously. In particular, applications in security settings
have grown substantially, [20]. In this domain, it is frequently the case that the
data distribution at application time is different of the training data distribution,
thus violating one of the key assumptions in machine learning. This difference
between training and test distributions generally comes from the presence of
adaptive adversaries who deliberately manipulate data to avoid being detected.

The field of Adversarial Machine Learning (AML) studies, among other
things, how to guarantee the security of machine learning algorithms against
adversarial perturbations [2]. A possible approach consists of modelling the inter-
action between the learning algorithm and the adversary as a game in which
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one agent controls the predictive model parameters while the other manipulates
input data. Several different game theoretic models of this problem have been
proposed, as reviewed in [28]. In particular, [5] view adversarial learning as a
Stackelberg game in which, a leader (she), the defender in the security jargon,
makes her decision about choosing the parameters in a learning model, and,
then, the follower or attacker (he), after having observed the leader’s decision,
chooses an optimal data transformation.

Mathematically, finding Nash equilibria of such Stackelberg games requires
solving a bilevel optimization problem, which, in general cannot be undertaken
analytically, [26], and numerical approaches are required. However, standard
techniques are not able to deal with continuous and high dimensional decision
spaces, as those appearing in AML applications.

In this paper, we propose two procedures to solve Stackelberg games in the
new paradigm of AML and study their time and space scalability. In particular,
one of the proposed solutions scales efficiently in time with the dimension of the
decision space, at the cost of more memory requirements. The other scales well
in space, but requires more time. The paper is organized as follows: in Sect. 2 we
define Stackelberg games. Section 3 presents the proposed solution methods as
well as a discussion of the scalability of both approaches. The proposed solutions
are illustrated with an AML experiment in Sect. 4. Finally, we conclude and
present some lines for future research.

2 Stackelberg Games

We consider a class of sequential games between two agents: the first one makes
her decision, and then, after having observed the decision, the second one imple-
ments his response. These games have received various names in the literature
including sequential Defend-Attack [4] or Stackelberg [10,27] games. As an exam-
ple, consider adversarial prediction problems, [5]. In them, the first agent chooses
the parameters of a certain predictive model; the second agent, after having
observed such parameters, chooses an optimal data transformation to fool the
first agent as much as possible, so as to obtain some benefit.

As we focus on applications of Stackelberg games to AML, we restrict our-
selves to the case in which the Defender (D) chooses her defense α ∈ R

n and,
then, the Attacker (A) chooses his attack β ∈ R

m, after having observed α. The
corresponding bi-agent influence diagram, [11], is shown in Fig. 1. The dashed
arc between nodes D and A reflects that the Defender choice is observed by the
Attacker. The utility function of the Defender, uD(α, β), depends on both, her
decision, and the attacker’s decision. Similarly, the Attacker’s utility function has
the form uA(α, β). In this type of games, it is assumed that the Defender knows
uA(α, β). This assumption is known as the common knowledge hypothesis.

Mathematically, finding Nash equilibrium of Stackelberg games requires solv-
ing a bilevel optimization problem, [1]. The defender’s utility is called upper level
or outer objective function while the attacker’s one is referred to as lower level
or inner objective function. Similarly, the upper and lower level optimization
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Fig. 1. The two-player sequential decision game with certain outcome.

problems, correspond to the defender’s and the attacker’s problem, respectively.
These problems are also referred to as outer and inner problems.

It is generally assumed that the attacker will act rationally in the sense
that he will choose an action that maximizes his utility, [8], given the disclosed
defender’s decision α. Assuming that there is a unique global maximum of the
attacker’s utility for each α, and calling it β∗(α), a Stackelberg equilibrium is
identified using backward induction: the defender has to choose α∗ that maxi-
mizes her utility subject to the attacker’s response β∗(α). Mathematically, the
problem to be solved by the defender is

arg max
α

uD[α, β∗(α)]

s.t. β∗(α) = arg max
β

uA(α, β).
(1)

Thepair (α∗, β∗(α∗)) is aNashequilibriumandasub-gameperfect equilibrium[14].
When the attacker problem has more than one global maximum, several types

of equilibrium have been proposed. The two more important are the optimistic
and the pessimistic solutions, [26]. In an optimistic position, the defender expects
the attacker to choose the optimal solution which gives the higher upper level
utility. On the other hand, the pessimistic approach suggests that the defender
should optimize for the worst case attacker solution. In this paper, we just deal
with the case in which the inner utility has a unique global maximum.

3 Solution Method

Bilevel optimization problems can rarely be solved analytically. Indeed even
extremely simple instances of bilevel problems have been shown to be NP-hard,
[16]. Thus, numerical techniques are required. Several classical and evolutionary
approaches have been proposed to solve (1), as reviewed by [26]. When the inner
problem adheres to certain regularity conditions, it is possible to reduce the
bilevel optimization problem to a single level one replacing the inner problem
with its Karush-Kuhn-Tucker (KKT) conditions. Then, evolutionary techniques
could be used to solve this single-level problem, thus making possible to relax
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the upper level requirements. As, in general, this single-level reduction is not fea-
sible, several other approaches have been proposed, such as nested evolutionary
algorithms or metamodeling-based methods. However, most of these approaches
lack scalability: increasing the number of upper level variables produces an expo-
nential increase on the number of lower level tasks required to be solved being
thus impossible to apply these techniques to solve large scale bilevel problems
as the ones appearing in the context of AML.

In [5] the authors face the problem of solving Stackelberg games in the AML
context. However, they focus on a very particular type of game which can be
reformulated as a quadratic program. In this paper, we provide more general
procedures to solve Stackelberg games that are useful in the AML paradigm in
which decision spaces are continuous and high dimensional. To this end, we focus
on gradient ascent techniques to solve bilevel optimization problems.

Let us assume that for any α the solution of the inner problem is unique. This
solution defines an implicit function β∗(α). Thus, problem (1) may be viewed
solely in terms of the defender decisions α. The underlying idea behind gradient
ascent techniques is the following: given a defender decision α ∈ R

n a direction
along which the defender’s utility increases while maintaining feasibility must be
found, and then, we move α in that direction. Thus, the major issue of ascent
methods is to find the gradient of uD(α, β∗(α)). In [18] the authors provide
a method to approximate such gradient that work for relatively large classical
optimization problems but it is clearly insufficient to deal with the typical bilevel
problems appearing in AML.

Recently, [7] proposed forward and reverse-based methods for computing the
gradient of the validation error in certain hyperparamenter optimization prob-
lems that appear in Deep Learning. Structurally, hyperparameter optimization
problems are similar to Stackelberg games. We adapt their methodology to this
domain. In particular we propose two alternative approaches to compute the
gradient of uD[α, β∗(α)] with different memory and running time requirements.
We refer to these approaches as backward and forward solutions, respectively.

Notation. For the sake of clarity, we use the following notation: the gradient
will be denoted as dx; the partial derivative as ∂x. Similarly, second partial
derivatives will be denoted as ∂2

x and ∂x∂y. We shall use this notation indistinctly
for the unidimensional and multidimensional cases. For instance, if f(x, y) is a
scalar function, x is a p-dimensional vector and y is a q-dimensional vector, then
∂2

xf(x, y) is the p × p matrix whose (i, j) entry is ∂xi
∂xj

f(x, y), where xi is the
i-th component of the vector x. Similarly, ∂x∂yf(x, y) is a p × q matrix whose
i, j entry is ∂xi

∂yj
f(x, y).

3.1 Backward Solution

We propose here a new gradient ascent approach to solve the bilevel problem
(1) whose running time scales well with the defender’s decision space dimension.
In particular, we propose to approximate problem (1) by the following PDE-
constrained optimization problem, [15]
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arg max
α

uD [α, β(α, T )]

s.t. ∂tβ(α, t) = ∂βuA[α, β(α, t)]
β(α, 0) = 0.

(2)

The idea is formalized in the next proposition, that can be proved using the
results in [3].

Proposition 1. Suppose that the following assumptions hold

1. The attacker problem, the inner problem in (1), has a unique solution β∗(α)
for each defender decision α.

2. For all ε > 0 and all α,

inf
‖β−β∗(α)‖2

2>ε
〈β − β∗(α), ∂βuA[α, β]〉 > 0.

If β(α, t) satisfies the differential equation

∂tβ(α, t) = ∂βuA[α, β(α, t)] (3)

then β(α, t) → β∗(α) as t → ∞, with rate O (
1
t

)
.

The idea in (2) is thus to constrain the trajectories β(α, t) to satisfy (3) and
approximate the defender’s problem using β(α, T ) with T � 1, instead of β∗(α).

We propose solving problem (2) using gradient ascent and the adjoint
method, [24], to compute the total derivative of the defender utility function
with respect to her decision. The adjoint method defines an adjoint function
λ(t) satisfying the adjoint equation

dtλ(t) = −λ(t) ∂2
βuA[α, β(α, t)]. (4)

In terms of the adjoint function, the derivative of the defender utility with respect
to her decision would be written as

dαuD[α, β(α, T )] = ∂αuD[α, β(α, T )] −
∫ T

0

λ(t)∂α∂βuA[α, β(α, t)] dt. (5)

In AppendixA, we prove that if λ(t) satisfies the adjoint equation (4), the deriva-
tive of the defender utility can be written as in (5).

Algorithmically, we can proceed by discretizing (4) via Euler method, and
approximate the derivative (5) discretizing the integral on the left hand side.
This leads to Algorithm 1. Once we are able to compute this derivative, we can
solve the defender’s problem using gradient ascent.

Regarding its complexity, note that by basic facts of Automatic Differentia-
tion (AD), [12], if τ(n,m) is the time required to evaluate uD(α, β) and uA(α, β),
then computing derivatives of these functions requires time O(τ(n,m)). Thus the
first for loop in Algorithm1 requires time O(Tτ(n,m)). In the second loop, we
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Algorithm 1. Approximate total derivative of defender utility function with
respect to her decision using the backward solution
1: procedure Approximate Derivative using Backward Method(α, T )
2: β0(α) = 0
3: for t = 1, 2, . . . , T do

4: βt(α) = βt−1(α) + η∂βuA(α, β)
∣
∣
∣
βt−1

5: end for
6: λT = −∂βuD(α, β)

∣
∣
∣
βT

7: dαuD = ∂αuD[α, βT (α)]
8: for t = T − 1, T − 2, . . . , 0 do

9: dαuD = dαuD − λt+1∂α∂βuA(α, β)
∣
∣
∣
βt

10: λt = λt+1

[

I − ∂2
βuA(α, β)

∣
∣
∣
βt

]

11: end for
12: return dαuD

13: end procedure

need to compute second derivatives, which appear always multiplying the vec-
tor λt. By basic results of AD, Hessian vector products have the same time
complexity as function evaluations. Thus in our case, we can compute second
derivatives in time O(τ(n,m)) being the time complexity of the second for loop
O(Tτ(n,m)). Thus, overall, Algorithm1 runs in time O(Tτ(n,m)). Regarding
space complexity, as it is necessary to store the values of βt(α) produced in the
first loop for later usage in the second one, if σ(n,m) is the space requirement for
storing each βt(α), then O(Tσ(n,m)) is the space complexity of the backward
algorithm.

In certain applications where space complexity is critical, the backward solu-
tion could be infeasible as, within each iteration, it requires storing the whole
trace βt(α). In this particular cases, the forward solution proposed in the next
section, solves this issue at a cost of loosing time scalability.

3.2 Forward Solution

In this case, we approximate (1) by

arg max
α

uD [α, βT (α)]

s.t βt(α) = βt−1(α) + ηt∂βuA(α, β)
∣
∣
∣
βt−1

t = 1, . . . , T

β0(α) = 0.

(6)

The idea here is that, for each defense α, we condition on a dynamical system
that under certain conditions converges to β∗(α), the optimal solution for the
attacker when the defender plays α. Thus, we can approximate the defender’s
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utility by uD [α, βT (α)], with T � 1. This idea is formalized in the next propo-
sition that can be proved using the results of [3].

Proposition 2. Suppose that the following assumptions hold

1. The attacker problem (the inner problem in (1)) has a unique solution β∗(α)
for each defender decision α.

2. For all ε > 0 and α

inf
‖β−β∗(α)‖2

2>ε
〈β − β∗(α), ∂βuA[α, β]〉 > 0

3. For some A,B > 0 and all α

‖∂βuA[α, β]‖22 ≤ A + B‖β − β∗(α)‖22
If for all t, βt(α) satisfies

βt(α) = βt−1(α) + η∂βuA(α, β)
∣
∣
∣
βt−1

(7)

Then, βt(α) converges to β∗(α), with rate O (
1
t

)
.

We propose solving problem (6) using gradient ascent. To that end, we need
to compute dαuD(α, βT (α)). Using the chain rule we have

dαuD[α, βT (α)] = ∂αuD[α, βT (α)] + ∂βT
uD[α, βT (α)] dαβT (α)

To obtain dαβT (α), we can sequentially compute dαβt(α) taking derivatives in (7)

dαβt(α) = dαβt−1(α) + ηt−1

[
∂α∂βuA(α, β)

∣
∣
∣
βt−1

+ ∂2
βuA(α, β)

∣
∣
∣
βt−1

dαβt−1(α)
]

This induces a dynamical system in dαβt(α) that can be iterated in parallel to
the dynamical system in βt(α). The whole procedure is described in Algorithm 2.
Once we are able to compute this derivative, we can solve the defender’s problem
using gradient ascent.

Regarding time complexity, note that the bottleneck in Algorithm2 is that
we need to compute second derivatives of uA(α, β). In particular, computing
∂2

βuA(α, β) requires time O(mτ(m,n)) as it requires computing m Hessian vec-
tor products, one with each of the m the unitary vectors. On the other hand,
computing ∂α∂βuA(α, β) requires computing n Hessian vector products and thus
time O(nτ(m,n)), while if we compute the derivative in the other way, first
we derive with respect to β and then with respect to α, the time complex-
ity is O(mτ(m,n)). Thus, we derive first with respect to the variable with the
biggest dimension. Then, the time complexity of computing ∂α∂βuA(α, β) is
O(min(n,m)τ(m,n)). Finally, as ∂2

βuA(α, β) and ∂α∂βuA(α, β) could be com-
puted in parallel, then the overall time complexity of the forward solution is
O(max[min(n,m),m]Tτ(m,n)) = O(mTτ(m,n)). Regarding space, as in this
case the values βt(α) are overwritten at each iteration, we do not need to store
all of them and the overall space complexity is O(σ(m,n)).
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Algorithm 2. Approximate total derivative of defender utility function with
respect to her decision using the forward solution.
1: procedure Approximate Derivative using Forward Method(α, T )

2: β0(α) = 0
3: dαβ0(α) = 0

4: for t = 1, 2, . . . , T do

5: βt(α) = βt−1(α) + η∂βuA(α, β)
∣
∣
∣
βt−1

6: dαβt(α) = dαβt−1(α) + ηt−1

[

∂α∂βuA(α, β)
∣
∣
∣
βt−1

+ ∂2
βuA(α, β)

∣
∣
∣
βt−1

dαβt−1(α)

]

7: end for

8: dαuD = ∂αuD[α, βT (α)] + ∂βT
uD[α, βT (α)] dαβT (α)

9: return dαuD

10: end procedure

4 Experiments

We illustrate now the proposed approaches. We start with a conceptual exam-
ple in which we empirically test the scalability properties of both algorithms.
Then, we apply the algorithms to solve a problem in the context of adversarial
regression.

All the code used for these examples has been written in python using the
pytorch library for Automatic Differentiation, [23]; and is available at https://
github.com/roinaveiro/GM SG.

4.1 Conceptual Example

We use a simple example to illustrate the scalability of the proposed approaches.
Consider that the attacker’s and defender’s decisions are both vectors in R

n.
The attacker’s utility takes the form uA(α, β) = −∑n

i=1 3(βi − αj)2 and the
defender’s one is uD(α, β) = −∑n

i=1(7αi +β2
j ). In this case, the equilibrium can

be computed analytically using backward induction: for a given defense α ∈ R
n

we see that β∗(α) = α; substituting in the outer problem, the equilibrium is
reached at α∗

j = −3.5, β∗
j (α∗) = −3.5 with j = 1, . . . ,m.

We apply the proposed methods to this problem to test their scalability
empirically. The parameters were chosen as follows: the learning rate η of Algo-
rithms 1 and 2 was set to 0.1; similarly, the learning rate of the gradient ascent
used to solve the outer problem was also set to 0.1. Finally, all gradient ascents
were run for T = 40, enough to reach convergence.

Figure 2 shows running times for increasing number of dimensions of the
decision spaces (in this problem both the attacker’s and the defender’s decision
space have the same dimension). As we discussed, the forward running time
increases linearly with the number of dimensions while the backward solution
remains approximately constant. This obviously comes at the cost of having
more memory requirements, as in Algorithm 1 we need to store the whole trace
βt(α). Thus, in problems where the dimension of β is very large the memory

https://github.com/roinaveiro/GM_SG
https://github.com/roinaveiro/GM_SG
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Fig. 2. Backward and Forward running times versus the dimension of decision spaces.

cost of the backward solution would become prohibitive and we would need to
switch to the forward solution, as long as the dimension of α is small enough. In
contrast, if the dimension of α is very big, the forward solution would become
infeasible in time, thus being the backward optimal provided that the dimension
of β is such that it is possible to store the whole trace βt(α).

4.2 An Application to Adversarial Regression

Problem Statement. We illustrate an application of the proposed methodol-
ogy to adversarial regression problems, [13]. They are a specific class of prediction
games, [5], played between a learner of a regression model and a data generator,
who tries to fool the learner modifying input data at application time, inducing
a change between the data distribution at training and test time, with the aim
of confusing the data generator and attain a benefit.

Given a feature vector x ∈ R
p and its corresponding target value y ∈ R,

the learner’s decision is to choose the weight vector w ∈ R
p of a linear model

fw(x) = x�w, that minimizes the theoretical costs at application time, given by

θl(w, p̄, cl) =
∫

cl(x, y)(fw(x) − y)2 dp̄(x, y),

where cl(x, y) ∈ R
+ reflects instance-specific costs and p̄(x, y) is the data distri-

bution at test time. To do so, the learner has a training matrix X ∈ R
n×p and

a vector of target values y ∈ R
n, that is a sample from distribution p(x, y) at

training time.
The data generator aims at changing features of test instances to induce a

transformation in the data distribution from p(x, y) to p̄(x, y). Let z(x, y) be
the data generator’s target value for instance x with real value y, i.e. he aims
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at transforming x to make the learner predict z(x, y) instead of y. The data
generator aims at choosing the transformation that minimizes the theoretical
costs given by

θd(w, p̄, cd) =
∫

cd(x, y)(fw(x) − z(x, y))2 dp̄(x, y) + Ωd(p, p̄)

where Ωd(p, p̄) is the incurred cost when transforming p to p̄ and cd(x, y) are
instance specific costs.

As the theoretical costs defined above depend on the unknown distributions
p and p̄, we focus on their regularized empirical counterparts, given by

θ̂l(w, X̄, cl) =
n∑

i=1

cl,i(fw(x̄i) − yi)2 + Ωl(fw),

θ̂d(w, X̄, cd) =
n∑

i=1

cd,i(fw(x̄i) − zi)2 + Ωd(X, X̄).

In addition, we assume that the learner acts first, choosing a weight vector w.
Then the data generator, after observing w, chooses his optimal data transfor-
mation. Thus, the problem to be solved by the learner is

arg min
w

θ̂l(w, T (X,w, cd), cl)

s.t. T (X,w, cd) = arg min
X′

θ̂d(w,X ′, cd),
(8)

where T (X,w, cd) is the attacker’s optimal transformation for a given choice w
of weight vector. (8) has the same form as (1), except that it is formulated in
terms of costs rather than utilities. In addition, it is easy to see that if Ωd(X, X̄)
is equal to the squared Frobenius norm of the difference matrix ‖X − X̄‖2F , then
the attacker’s problem has a unique solution. Thus, we can use the proposed
solution techniques to look for Nash equilibria in this type of game, taking care
of performing gradient descent instead of gradient ascent, as we are minimizing
costs here.

Experimental Results. We apply the results to the UCI white wine dataset,
[6]. This contains real information about 4898 wines, that consists of 11 quality
indicators plus a wine quality score.

RJ and RD are two competing wine brands. RD has implemented a system to
automatically measure wine quality using a regression over the available quality
indicators: each wine is described by a vector of 11 entries, one per quality indi-
cator. Wine quality ranges between 0 and 10. RJ , aware of the actual superiority
of its competitor’s wines, decides to hack RD’s system by manipulating the value
of several quality indicators, to artificially decrease RD’s quality rates. However,
RD is aware of the possibility of being hacked, and decides to use adversarial
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methods to train its system. In particular, RD models the situation as a Stack-
elberg game. It is obvious that the target value of his enemy is z(x, y) = 0 for
every possible wine. In addition, RD was able to filter some information about
RJ ’s wine-specific costs cd,i.

As basic model, a regular ridge regression, [9], was trained using eleven
principal components as features. The regularization strength was chosen using
repeated hold-out validation, [17], with ten repetitions. As performance metric
we used the root mean squared error (RMSE), estimated via repeated hold-out.

We compare the performance of two different learners against an adversary
whose wine specific costs cd,i are fixed: The first one, referred to as Nash, assumes
that the wine specific costs are common knowledge and plays Nash equilibria of
the Stackelberg game defined in (8). The second learner, refer to as raw, is a
non adversarial one and uses a ridge regression model. To this end, we split the
data in two parts, 2/3 for training purposes and the remaining 1/3 for test. The
training set is used to compute the weights w of the regression problem. Those
weights are observed by the adversary, and used to attack the test set. Then,
the RMSE is computed using this attacked test set and the previously computed
weights.

In order to solve (8), we use the backward solution method of Sect. 3.1 due to
its better time scalability. The hyperparameters were chosen as follows: number
of epochs T to compute the gradient in Algorithm1, 100; the learning rate η in
this same Algorithm, was set to 0.01. Within the gradient descent optimization
used to optimize the defender’s cost function, the number of epochs was set to
350 and the learning rate to 10−6. Finally, we assumed that the wine specific
costs were the same for all instances and called the common value cd. We studied
how cd affects the RMSE for different solutions.

Notice that, in this case, the dimension of the attacker’s decision space is
huge. He has to modify the training data to minimize his costs. If there are k
instances in the training set, each of dimension n, the dimension of the attacker’s
decision space is n × k. In this case k = 3263 (2/3 of 4898) and n = 11. Thus
the forward solution is impractical in this case, and we did not compute it.
We show in Fig. 3, the RMSE for different values of the wine specific cost. We
observe that Nash outperforms systematically the adversary unaware regression
method. In the limit cd → 0, we see that θ̂d(w, X̄, cd) → Ωd(X, X̄). Thus, in
this situation, the adversary will not manipulate the data. Consequently Nash
and ridge regression solutions will coincide, as shown in Fig. 3. However, as cd

increases, data manipulation is bigger, and the RMSE of the adversary unaware
method also increases. On the other hand, the Nash solution RMSE remains
almost constant.

We have also computed the average and standard deviation of training times.
In an Intel Core i7-3630UM, 2.40 GHz 8 computer, the average training time is
131.6 s with 2.7 s standard deviation. This corresponds approximately to 2.66 s
per outer epoch. Each outer epoch involves running Algorithm1 with 100 inner
epochs.



Gradient Methods for Solving Stackelberg Games 137

Fig. 3. Performance comparison.
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Finally, to illustrate convergence of the proposed approach, we solve (8) using
gradient descent with the backward method for 20 different random initializa-
tions of the defender’s decisions ω. Results are depicted in Fig. 4. As can be seen,
all paths converge with less than 150 epochs.

5 Discussion

The demand for scalable solutions of Stackelberg Games has increased in the last
years due to the use of such games to model confrontations within Adversarial
Machine Learning problems. In this paper, we have focused on gradient methods
for solving Stackelberg Games, providing two different approaches to compute
the gradient of the defender’s utility function: the forward and backward solu-
tions. In particular, we have shown that the backward solution scales well in
time with the defender’s decision space dimension, at a cost of more memory
requirements. On the other hand, the forward solution scales poorly in time with
this dimension, but well in space.

We have provided empirical support of the scalability properties of both
approaches using a simple example. In addition, we have solved an AML problem
using the backward solution in a reasonable amount of time. In this problem, the
defender’s decision space is continuous with dimension 11. The attacker’s deci-
sion space is also continuous with dimension O(104), as we showed in Sect. 4.2.
To the best of our knowledge, none of previous numerical techniques for solving
Stackelberg games could deal, in reasonable time, with such high dimensional
continuous decision spaces.

Apart from scalability properties, a major advantage of the proposed frame-
work is that it could be directly implemented in any Automatic Differentiation
library such as PyTorch (the one used in this example) or TensorFlow, and thus
benefit from the computational advantages of such implementations.

We could extend the framework in several ways. First, as we discussed, the
backward solution has poor space scalability. This is generally not an issue in
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most applications. Nevertheless, if space complexity is critical it is possible to
reduce it at a cost of introducing a numerical error, as proposed in [19] in hyper-
parameter optimization problems. Instead of storing the whole trace βt(α) in the
first for loop of Algorithm1 to use it in the second loop, we could sequentially
undo its gradient update at each step of the second for loop. Obviously, this
would introduce some numerical error.

Another possible line of work would be to extend the framework to deal with
Bayesian Stackelberg games, that are widely used to model situations in AML in
which there is not common knowledge of the adversary’s parameters. In this line,
the ultimate goal would be to apply the proposed algorithms to solve Adversarial
Risk Analyisis (ARA, [25]) problems in AML, [22].

Throughout the paper, we have focused on exact gradient methods. However,
it would be interesting to extend the proposed algorithms to work with stochastic
gradient methods. In addition, in [21] the authors propose several variants of
Gradient Ascent to solve saddle point problems. It could be worth investigating
how to extend such techniques to general Stackelberg Games.

Finally, we highlight that one of the most important contributions of the
paper is the derivation of the backward solution formulating the Stackelberg
game (1) as a PDE-constrained optimization problem and using the adjoint
method. This provides a general and scalable framework that could be used to
seek for Nash equilibria in other types of sequential games. Exploring this, is
another possible line of future work.

A Proof of the Adjoint Method

The Lagrangian of problem (2) is

L = uD[α, β(α, T )] +
∫ T

0

λ(t) {dtβ(α, t) − ∂βuA[α, β(α, t)]} dt + μβ(α, 0).

As the constraints hold, by construction we have that dαL = dαuD and

dαL = ∂αuD[α, β(α, T )] + ∂βuD[α, β(α, T )] dαβ(α, T ) + μ dαβ(α, 0) (9)

+

∫ T

0
λ(t)

{

dt dαβ(α, t)− ∂α∂βuA[α, β(α, t)]− ∂2
βuA[α, β(α, t)] dαβ(α, t)

}

dt.

Integrating by parts, we have

∫ T

0

λ(t) dt dαβ(α, t) dt = [λ(t) dαβ(α, t)]T0 −
∫ T

0

dtλ(t) dαβ(α, t) dt

Inserting this in (9) and grouping the terms conveniently we have

dαL = ∂αuD[α, β(α, T )] +
{

∂βuD[α, β(α, T )] + λ(T )
}

dαβ(α, T ) + {μ − λ(0)}dαβ(α, 0)

+

∫ T

0

{

− dtλ(t)− λ(t)∂2
βuA[α, β(α, t)]

}

dαβ(α, t)− λ(t)∂α∂βuA[α, β(α, t)] dt
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Since the constraints hold, we may choose freely the Lagrange multipliers. In
particular, we may choose them so that we can avoid calculating the derivatives
of β(α, t) with respect to α (as this is computationally expensive). Thus, we have
that λ satisfies the adjoint equation

dtλ(t) = −λ(t)∂2
βuA[α, β(α, t)]

with λ(T ) = −∂βuD[α, β(α, T )], and μ = λ(0). Using this, the derivative is
computed as

dαL = ∂αuD[α, β(α, T )] −
∫ T

0

λ(t)∂α∂βuA[α, β(α, t)] dt
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11. González-Ortega, J., Insua, D.R., Cano, J.: Adversarial risk analysis for bi-agent

influence diagrams: an algorithmic approach. Eur. J. Oper. Res. 273(3), 1085–1096
(2019)

12. Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of
algorithmic differentiation, vol. 105 (2008)

13. Großhans, M., Sawade, C., Brückner, M., Scheffer, T.: Bayesian games for adver-
sarial regression problems. In: International Conference on Machine Learning, pp.
55–63 (2013)

14. Heap, S.H., Varoufakis, Y.: Game Theory. Routledge, London (2004)
15. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Con-

straints, vol. 23. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-
8839-1

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-1-4020-8839-1
https://doi.org/10.1007/978-1-4020-8839-1


140 R. Naveiro and D. R. Insua

16. Jeroslow, R.G.: The polynomial hierarchy and a simple model for competitive
analysis. Math. Program. 32(2), 146–164 (1985)

17. Kim, J.H.: Estimating classification error rate: repeated cross-validation, repeated
hold-out and bootstrap. Comput. Stat. Data Anal. 53(11), 3735–3745 (2009)

18. Kolstad, C.D., Lasdon, L.S.: Derivative evaluation and computational experience
with large bilevel mathematical programs. J. Optim. Theory Appl. 65(3), 485–499
(1990)

19. Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter opti-
mization through reversible learning. In: International Conference on Machine
Learning, pp. 2113–2122 (2015)

20. McDaniel, P., Papernot, N., Celik, Z.B.: Machine learning in adversarial settings.
IEEE Secur. Priv. 14(3), 68–72 (2016)

21. Mokhtari, A., Ozdaglar, A., Pattathil, S.: A unified analysis of extra-gradient and
optimistic gradient methods for saddle point problems: Proximal point approach.
arXiv preprint arXiv:1901.08511 (2019)

22. Naveiro, R., Redondo, A., Insua, D.R., Ruggeri, F.: Adversarial classification: an
adversarial risk analysis approach. Int. J. Approx. Reason. 113, 133–148 (2019)

23. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)
24. Pontryagin, L.S.: Mathematical Theory of Optimal Processes. Routledge, London

(2018)
25. Rios Insua, D., Rios, J., Banks, D.: Adversarial risk analysis. J. Am. Stat. Assoc.

104(486), 841–854 (2009)
26. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to

evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–
295 (2018)

27. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press, Cambridge (2011)

28. Vorobeychik, Y., Kantarcioglu, M.: Adversarial machine learning. Synth.
Lect. Artif. Intell. Mach. Learn. 12(3), 1–169 (2018). https://doi.org/10.2200/
S00861ED1V01Y201806AIM039

http://arxiv.org/abs/1901.08511
https://doi.org/10.2200/S00861ED1V01Y201806AIM039
https://doi.org/10.2200/S00861ED1V01Y201806AIM039


Interactive Elicitation of a Majority Rule
Sorting Model with Maximum

Margin Optimization
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Abstract. We consider the problem of eliciting a model for ordered clas-
sification. In particular, we consider Majority Rule Sorting (MR-sort), a
popular model for multiple criteria decision analysis, based on pairwise
comparisons between alternatives and idealized profiles representing the
“limit” of each category.

Our interactive elicitation protocol asks, at each step, the decision
maker to classify an alternative; these assignments are used as training
set for learning the model. Since we wish to limit the cognitive burden
of elicitation, we aim at asking informative questions in order to find a
good approximation of the optimal classification in a limited number of
elicitation steps. We propose efficient strategies for computing the next
question and show how its computation can be formulated as a linear
program. We present experimental results showing the effectiveness of
our approach.

Keywords: Preference elicitation · Ordinal classification ·
Incremental elicitation · MR-sort · Simulations

1 Introduction

There are several situations where it is necessary to classify objects, defined
on several criteria, into ordered classes (for example, credit ratings, evaluating
students, hotel categorization, etc). Such ordinal classification problems, also
called multi-criteria sorting, have been considered by ELECTRE TRI [16,19], a
popular method from the field of multi-criteria decision analysis that has been
successfully applied to several domains.

Majority Rule Sorting (MR-sort) [15] is a simplified version of ELECTRE
TRI belonging to a class of “non compensatory” decision models that have been
c© Springer Nature Switzerland AG 2019
S. Pekeč and K. B. Venable (Eds.): ADT 2019, LNAI 11834, pp. 141–157, 2019.
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axiomatized by Bouyssou and Marchant [5]. The remarkable characteristic of the
MR-sort procedure is that its classifications are readily explainable to the users.
In MR-sort an alternative is assigned to a category when it is “at least as good
as” an idealized profile describing the category’s lower “limit” and “not better”
than the category’s upper limit. The limit profiles encode the characteristics that
an alternative should have in order to be assigned to a particular class according
to the decision maker (for example: a 4-stars hotel should have rooms of at least
a certain size, it should have a swimming pool, a 5 star hotel should have a
classy restaurant, etc). The relation comparing alternatives and limit profiles is
based on a weighted majority rule (in Sobrie et al. [21] a non linear model for
combining the weights is considered).

In order to use MR-sort in practice, it is necessary to undertake a preference
elicitation phase in order to assess the parameters of the model. The “classi-
cal” approach to elicitation consists in a fine grained assessment of the model
parameters; however since it is often not reasonable to directly ask the decision
maker about the values of the parameters of the model, we adopt an incremental
elicitation approach and we assume that the decision maker can easily classify
one given alternative into one of the categories; the information provided by the
user can be used to update the model and provide a better result. The intuition
is that, by selectively choosing which items the decision maker could classify,
we could retrieve a good approximation of the “correct” model of the decision
maker (DM) even with a small number of examples. We also stress that the
information provided by the user may be noisy, as she may have made a mistake
in assessing the right category for the alternative.

In this paper we adopt max-margin optimization, whose main principle is the
following. The currently known assignments of items to categories are encoded
by a set of inequalities on the feasible parameters; a shared non-negative margin
is introduced as a decision variable that is maximized in the objective function.
Noisy feedback is addressed by relaxing the constraints using slack variables and
adding a penalty term in the objective function for violated constraints. In this
paper, we propose an incremental approach for eliciting the parameters of a MR-
sort model; at each step of the elicitation procedure, the system asks a question
to the user and the question is specifically chosen in order to be as “informative”
as possible. Our main algorithm repeatedly uses the max-margin optimization
routine with two goals (1) to make an estimation of the model parameters given
the current information (2) to determine a measure of uncertainty associated
with a potential question. For the second goal, we consider different strategies
based on computing the maximum-margin a posteriori (considering the different
answers that the decision maker could give).

We now provide a brief discussion about related works. Reasoning with pref-
erences [7] is an important issue in artificial intelligence. Several researchers have
dealt with the problem of dealing with an incompletely specified preference model
and with the issue of preference elicitation [4,6,24,27]. In the machine learning
community, approaches for preference learning have been proposed [10], includ-
ing approaches for ordinal classification (see Chapter 8 in [17], and, for instance
[9] and [11]).



Interactive Elicitation of a Majority Rule Sorting Model 143

Our work is stimulated by recently proposed approaches for eliciting multi-
attribute utility functions using maximum-margin optimization [25,26] in con-
figuration problems. The maximum-margin optimization that we adopt has been
used (with some variations) in previous works [21,22] that tackled the problem
of learning the weights of a MR-sort model; these works, however, did not con-
sider incremental elicitation. Bennabou et al. [2,3] recently proposed interactive
elicitation methods based on minimax regret for ordinal classification problems
(with a related but different model); these methods however have the incon-
venience that they are not tolerant to errors in the responses of the decision
maker.

The paper is structured as follows. After some background in Sect. 2, we
present MR-sort model in Sect. 3 and the interactive elicitation in Sect. 4. We
then discuss our experimental results in Sect. 5 and provide some final comments
and directions for future work in Sect. 6.

2 Background

We consider a set X of m items that are evaluated with respect to a set of criteria
C = {criterion1, . . . , criterionn}. Criteria associate items with a performance
evaluation; (with little abuse of notation, we use x to refer to both the item and
its evaluation vector). The evaluation of x is a vector (x1, x2, . . . , xn) ∈ E1 ×
. . . En. The sets E1, . . . , En are totally ordered and represent the space of criteria
evaluations. Indeed we are interested in ordinal classification methods that allow
the criteria evaluations to be defined on scales not necessarily numerical, and
that can differ among the criteria. We use [m] to denote the set {1, . . . , m}.

MR-sort [15] is a multi-criteria ordinal classification method allowing to
assign alternatives to ordered categories. The set of categories is denoted by
C = {C1, C2, . . . , Cp}. Categories are ordinal, C1 being the worst and Cp

the best one. Each category Ch is characterized by two “fictitious” items
bh = (bh

1 , ..., bh
n) ∈ E1 × . . . En and bh+1 = (bh+1

1 , ..., bh+1
n ) ∈ E1 × . . . En; these

are called the limit profiles of Ch and we denote by B = {b1, b2 . . . , bp+1} the
set of such limit profiles. Limit profiles play the role of the lower and the upper
bounds of the category Ch; limit profiles of higher categories dominate the lower
ones: ∀k = 1, . . . , n, bi+1

k ≥k bi
k and ∃j, bi+1

j >k bi
j , where ≥k is the binary

relation on the evaluations on the criterionk. There are two special limit pro-
files, b1 and bp+1 that are defined as the minimum and the maximum values:
b1 = (b11, ..., b

1
n), such that ∀i, b1i = minx∈X(xi) (resp. bp+1 = (bp+1

1 , ..., bp+1
n ),

such that bp+1
i = maxx∈X(xi)). To fully specify a MR-sort model we need to

associate each criterion cri with a numerical weight wi, that intuitively repre-
sents its importance. A parameter λ is called the majority threshold, whose role
will become clear below.

The procedure for making assignments is based on pairwise comparisons
between objects of X and limit profiles. An alternative x is assigned to the
category Ch if it is “at least as good as” the lower limit profile bh and it is not
“at least as good as” the upper limit profile bh+1 according to a binary relation
�. Indifference: x ∼ y ⇐⇒ x � y and y � x.
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x → Ch ⇐⇒ x � bh and x � bh+1 (1)

where x → Ch means that alternative x is assigned to category Ch. An item
x that is indifferent to the upper limit profile of the best category (x ∼ bp+1,
meaning x � bp+1 and x � bp+1) is assigned to Cp. The binary relation �⊆
(E1 × . . . En) × (E1 × . . . En) is based on the weighted majority principle:

x � bh ⇐⇒
∑

i:xi≥ibhi

wi ≥ λ (2)

Example. Assume that we have 5 hotels (x, y, z, t, u) defined on n = 3 criteria
(cost, comfort, quality of the restaurant). Our aim is to assign our hotels into
p = 3 categories (C1: 1 star, C2: 2 stars, C3: 3 stars). The MR-sort model
parameters are: λ = 0.55, w = (0.2, 0.5, 0.3). The criteria evaluation scale is
between 0 and 5 (5 being the best score) for criterion1 and criterion2; the scale
for criterion3 is between 0 and 10. Table 1 presents the performances of the
limit profiles and the alternatives; Table 2 their comparisons using � and the
assignments of alternatives.

Table 1. Performance of limit profiles
b1, b2, b3, b4 and alternatives x, y, z, t, u

criterion1 criterion2 criterion3

b1 0 0 0

b2 2 2 4

b3 4 4 8

b4 5 5 10

x 1 2 3

y 3 3 8

z 1 5 8

t 1 3 10

u 1 2 1

Table 2. Comparison between
alternatives and profiles and
final assignments.

b1 b2 b3 b4 Assignment

x � � � � C1

y � � � � C2

z � � � � C3

t � � � � C2

u � � � � C1

Note that the MR-sort method allows the use of heterogeneous scales since
the only information being useful for the relation � is an ordinal one. Hence, a
problem with only ordinal scales or with different types of scales (interval one,
ratio one and ordinal one) can be handled without difficulty by an MR-sort
model.

3 Learning a MR-Sort Model from Assignments

We assume that we are given some assignments of alternatives to categories.
In this work we assume that limit profiles are given. In the following, we first
introduce the notion of possible and necessary categories, and then we present a
maximum-margin optimization for learning the parameters of a MR-sort model.



Interactive Elicitation of a Majority Rule Sorting Model 145

3.1 Possible Categories

Let A be the set of alternatives whose category is known and LS the “learning
set” (pairs of alternatives and categories): LS = {(x,Ch), x ∈ A, x → Ch}. From
LS, assuming an underlying MR-sort model, we can reason about the weights
that are consistent with the current knowledge. According to Eqs. (1) and (2),
an assignment of the type x

DM−−→ Ch (made by the decision maker) corresponds
to imposing the linear constraints:

∑

i:xi≥bhi

wi ≥ λ (3)

∑

i:xi≥bh+1
i

wi < λ (4)

Let Θ(LS) be set of parameters that are compatible with the learning set LS,
satisfying constraints (3) and (4) for all pairs in LS, and the requirements that
the weights are non negative and normalized.

When dealing with partially specified preference models, it is typical to reason
about possible and necessary preference information [13]. In our context, given an
alternative and its performance evaluation we can reason about the parameters
that are consistent with the current knowledge.

Now, given an item x ∈ A, we define the set of possible categories PC(x; LS)
as the set of categories such that there is an instantiation of the parameters
θ = {w1, . . . , wn, λ} consistent with the assignment given the previously known
assignments LS.

PC(x; LS) = {Ci ∈ C | ∃θ ∈ Θ(LS) : x
θ−→ Ci}

where we write x
θ−→ Ci to emphasize the dependency between the parameters θ

and the assignment. If there is only one possible category, i.e. |PC(x)| = 1, then
it means that the alternative has to be necessarily assigned to the only category
in PC (assuming that the model is consistent with the learning set; in Sect. 3.2
we discuss how to handle inconsistencies). In practice it is possible that a partial
knowledge about the parameters allows us to determine in which categories we
have to place several alternatives. We anticipate that the concept of possible
categories plays an important role in our elicitation strategies (see Sect. 4.2).

3.2 Maximum Margin Optimization

We now address the problem of learning the parameters θ = {w1, . . . , wn, λ} of a
MR-sort model (given a set of learning assignments) with a linear program. We
assume that we are given as input the following values: the number of criteria
n, the number of categories p, and the limit profiles bh for each h ∈ [p]. Our
goal is to assess the weights w and the majority threshold λ, that are decision
variables for the optimization problem. In order to discriminate between different
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choices for the parameters, the first step is to introduce a shared margin μ as
an additional decision variable. The first linear program (LP) assumes that the
data in LS is perfectly consistent with the MR-sort model.

μ∗ = max μ (5)

s.t.
∑

i:xi,≥bhi

wi ≥ λ + μ ∀(x,Ch) ∈ LS (6)

∑

i:xi≥bh+1
i

wi ≤ λ − μ ∀(x,Ch) ∈ LS (7)

n∑

i=1

wi = 1 (8)

μ ∈ R (9)
wi ≥ 0 ∀i ∈ [n] (10)

Constraints (6) and (7) correspond to Eqs. (3) and (4) with the inclusion of the
shared margin μ. Note that later in Sect. 4.2 we will use μ∗(LS) to denote the
application of the LP above to find the value of the best compatible margin.

We observe that in general there may be occasional inconsistencies in user
feedback, or simply the data may not be compatible with a MR-sort model. The
“typical” way to handle this is to introduce slack variables (whose sum we aim
at minimizing); this idea goes back to the UTA approach [14] and several later
models [1,12]. We formalize the problem of finding the weights of a MR-sort
model (given a set of learning assignments) with the following linear program.

m∗ = max μ − α
∑

(x,Ch)∈LS

ξi,j (11)

s.t.
∑

i:xi,≥bhi

wi + ξx,h ≥ λ + μ ∀(x,Ch) ∈ LS (12)

∑

i:xi≥bh+1
i

wi − ξx,h ≤ λ − μ ∀(x,Ch) ∈ LS (13)

n∑

i=1

wi = 1 (14)

μ ∈ R (15)
ξx,h ≥ 0 ∀(x,Ch) ∈ LS (16)
wi ≥ 0 ∀i ∈ [n] (17)

The variables are the following: λ ∈ [0, 1], wi ∈ [0, 1]∀i ∈ [n], μ ∈ [0, 1] and ξx,h ∈
[0, 1] ∀x ∈ LS such that x assigned to Ch. We use a parameter α to express the
“cost” of violating a constraint representing assignments from the learning set.
The objective (Eq. 11) is to maximize the shared margin μ (that we want to
maximize) minus the sum of the constraints violations ξi,j (that we want to
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minimize). In order to be able to handle the inconsistency in the user’s answers
we add a slack variable (ξx,h) for each x ∈ A and for each h ∈ {1, . . . , p}.
Constraint 12 and constraint 13 handle the conditions related to the assignments
of the alternatives in the learning set LS. Constraint 14 enforces that the weights
are normalized.

4 Incremental MR-sort

Algorithm 1. The MR-sort-Inc algorithm. K is the number of questions, X the
set of alternatives, C the set of categories, LS (LS = {(x,Ch), x ∈ A, x → Ch})
learning assignments, s the strategy.
1: Procedure MR-sort-Inc(K,X,C,LS,s)
2: for j ← 1, . . . , K do
3: Compute m∗(LS) and associated w∗ and λ∗ with linear program
4: Classify items in X \ A using w∗ and λ∗

5: Compute classification error � This is only possible in simulations
6: for x ∈ X \ A do � Evaluate items to decide next question
7: for Ci ∈ C do
8: LS′ ← LS ∪ {x → Ci} � Include additional assignment
9: vi(x) ← m∗(LS′) � Compute margin a posteriori

10: end for
11: Ss(x) ← aggregate v(x) according to strategy s
12: end for
13: x∗ ← arg maxx(Ss(x)) � Decide what to ask next
14: Cx∗ ← Answer(x∗ →?) � Ask question to DM
15: LS ← LS ∪ {(x∗, Cx∗)}
16: end for
17: return w∗, λ∗

In this section, we provide an elicitation method for an ordinal classification
problem assuming that the preferences can be modeled by MR-sort.

4.1 Main Framework

Our elicitation procedure starts with a small learning set LS to which we add
one-by-one new assignment examples. We ask questions of the type “In which
category should x be assigned to?”; it is crucial to select “informative” items to
ask about, in order to quickly converge (in few interaction cycles) to a good
classification model.

We remind that a MR-sort model is defined by the following parameters: the
weights (w1, . . . , wn), the limit profiles (b1, . . . , bp+1) and majority threshold λ.
We fix the limit profiles before the beginning of the elicitation. In the experiments
below the limit profiles are chosen in a way to evenly partition the criteria scale.
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The main steps of our approach are presented in Algorithm 1. Briefly, we start
with some data from the learning set LS (learning alternatives A and their
classification) and we include them as constraints in our linear program (LP).
Given the learning set, we can estimate the weights w∗ and λ∗ using the linear
program; in simulations we can also evaluate the classification error. After that,
we test the assignment of each unassigned item to each category and retrieve
the margin values obtained when using the optimization routine with each of the
additional assignments. This gives us a vector of margins “a posteriori”, that are
aggregated differently depending on the “strategy” (different strategies will be
discussed in the following section), giving a score for each item. The item having
the highest score is chosen: the user is asked about the assignment of that item
and the learning set is augmented. This procedure continues until a stopping
condition (in our experiments when we reach a fixed number of questions, but in
real applications termination may be left to the user). The last linear program
contains all the assignments of the computed learning set, hence it provides the
weights that we are looking for.

Example. We apply our incremental elicitation algorithm to the running exam-
ple. Suppose that we only know the assignment of alternative x (LS = {(x,C1)})
and we want to ask just one question to the user. We first set the limit pro-
files: b1 = (0, 0, 0), b2 = (53 , 5

3 , 10
3 ), b3 = (103 , 10

3 , 20
3 ), b4 = (5, 5, 10). Our goal

is to learn λ and a weight vector w′ which will assign the remaining alterna-
tives to categories as close as possible to the ones presented on page 4. For
this, according to our algorithm, we compute the score of alternatives y, z, t, u
(Ss(y),Ss(z),Ss(t),Ss(u)) and ask the assignment of the alternative having the
highest score. We add this new constraint to LS and find the weight vector w∗

corresponding to the largest margin. Using w∗, we can find the current best
assignment of the remaining alternatives and compute1 an error measure using
the true assignments given on page 4 and the one that we find using w∗.

4.2 Question Selection Strategies

In the following we present several strategies to select the next question to ask
to the user. These strategies are used within our interactive elicitation paradigm
described in Algorithm 1. The proposed strategies makes use of the max-margin
optimization programs (discussed above in Subsect. 3.2) to identify informative
questions.

Most Uncertain. With this strategy, we aim to ask the DM to classify the most
uncertain item in X\A, that is the item that is compatible (according to the con-
straints derived from the known assignments of the learning set) with the highest
number of categories. The score that this strategy assigns to an alternative x is
given by the cardinality of the set of possible categories: SMU(x) = |PC(x; LS)|.
1 This step is of course only to be performed in simulations, in real use of the procedure

the classification error will not be known.
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The computation of the set PC(x) for an item x makes use of the linear
program for learning the parameters of a MR-sort without the slack variables
(Eqs. 5–10). For each category Ci, we then constrain the item x to be assigned
to Ci and simply check whether the margin is non negative; indeed μ∗(LS ∪
(x,Ci)) > 0 if and only if Ci is a possible category (Ci ∈ PC(x; LS)). The score
of this strategy can be compactly written as:

SMU(x) = |PC(x; LS)| =
p∑

i=1

H[μ∗(LS ∪ (x,Ci))]

where H(·) is the step function.

Example. Consider the problem presented in the running Example. We suppose
that we know the performance of each alternative, and the assignment of x,
while the other assignments are unknown. Assume that we want to ask just one
question. As before, we fix b′1 = (0, 0, 0), b′2 = (53 , 5

3 , 10
3 ), b′3 = (103 , 10

3 , 20
3 ), b′4 =

(5, 5, 10). Table 3 presents the SMU of all the remaining alternatives (step 3).

Table 3. Number of possible categories for the example of hotel categorization.

Alternatives PC(x; LS) SMU

y {C2, C3} 2

z {C1, C3} 2

t {C1, C2, C3} 3

u {C1} 1

As a result we ask the assignment of alternative t to the user. The user will
answer C2 to this question (coherent with Example 2) and the constraint related
to t → C2 will be added to the LP. After the inclusion of the constraint t → C2

in LS, we find our final weight vector w∗, such as w∗ = (0.266, 0.366, 0.366).
Even if w′ is different from the weight vector of Example 2 (w = (0.2, 0.5, 0.3)),
after our incremental elicitation we find the same assignments for y, z, u (i.e.
y → C2, z → C3 and u → C1).

Sum-of-Margin Strategy. The problem of the most-uncertain strategy is that,
roughly speaking, it is agnostic to whether a potential assignment is consistent
with large portions of the parameter space or just with small area. The intuition
of sum-of-margin is to use the value of the objective function of the LP as a
surrogate measure of the “degree” of satisfaction of an assignment x → Ch.
Intuitively, we should ask about items that may fit well into several different
categories. We also include the possibility that some constraints can be violated,
therefore make use of the second LP (Eqs. 11–17), with the penalty variables ξ
for violated assignments of the learning set.
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Considering an alternative x ∈ X \ A, we evaluate the penalized margin m∗

adding the assignment x → Ci for all i ∈ [p] and construct the following vector:

v(x) = (m∗(LS ∪ (x,C1)), . . . , m∗(LS ∪ (x,Cp))).

In order to aggregate this vector into a single numerical measure, we adopt the
sum. Hence, the score of the alternative x is computed as

SΣ(x) =
p∑

i=1

vi(x) =
p∑

i=1

m∗(LS ∪ (x,Ci)).

Table 4. The score obtained by the different items in the hotel categorization example
using the heuristics sum-of-maring (left) and entropy (right)

Example. Consider again the running example. Table 4 (in the left) presents the
SΣ of alternatives {y, z, t, u}. As the example shows, the best question is to ask
about t, the second best question is to ask about z, then y, and finally u. We
note a disagreement of MU and sum-of-margin about the ranking of z and y.

Entropy. This strategy adopts the notion of entropy to assess the uncertainty
for a given alternative. As the strategy sum-of-margin, we calculate m∗ which
represents the maximum penalized margin if we assign the alternative x to the
category Ci, for all i ∈ [p]. We then combine these values in an evaluation vector
v′ that filters out negative values (assigning them a zero value) and we normalize
so that the values sum up to one:

v′
i(x) =

R(m∗(LS ∪ (x,Ci))∑p
j=1 R(m∗(LS ∪ (x,Cj))
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where R(·) is the ramp function. We then apply the entropy to calculate the
final score of the alternative.

SE(x) = −
∑

i∈[p]:v′
i(x)>0

v′
i(x) log(v′

i(x))

Intuitively this method should favour asking about items whose uncertainty is
the greatest in an information-theoretic sense, considering the vector v′ (com-
posed of normalized non-negative margin values) as a surrogate measure for the
probability distribution of the category of x (i.e. how likely is x to be in each of
the categories).

Example. We consider again our example on hotel categorization. We now apply
the entropy strategy; Table 4 (on the right) presents the score SE of all the
alternatives. Item t has the highest score, then z and y are tied in the second
position; u is last.

Random Strategy. As a baseline, we consider the random selection of an
object x from X \ A. Utilizing this strategy is equivalent to use a non incre-
mental elicitation procedure with |LS| + K (LS being the initial learning set of
Algorithm 1 and K being the number of questions) alternatives in the learning
set.

Note that all our strategies have the same computational complexity:
O(Kmp) (resp. number of questions, alternatives, categories).

5 Experiments

We implemented our incremental MR-sort algorithm using Java API of CPLEX
for solving the LP.2 We performed simulations aimed at evaluating the effec-
tiveness of the proposed elicitation strategies with two data-sets: a synthetic
data-set fully represented by a MR-sort model, and a data-set from the UCI
machine learning repository [8].

Synthetic Data-Set. For the first part of our experiments, the input data was
generated randomly using a uniform distribution on the space of evaluations.

We include only one assignment, chosen at random in LS. The steps of the
simulation are as follows:

i. Using a uniform distribution for each of the parameters, we generate the per-
formance table of alternatives, a vector of weight w, the majority threshold
λ. The limit profiles are chosen to evenly partition the range of evaluation
values. These parameters fully specify the decision maker; we call this model
M . We then apply the MR-sort method in order to find the assignments of
the generated alternatives; these assignments constitute the “ground truth”.

2 All experiments were run on a 2.9 GHz Intel, Core i7 and 16 Giga of RAM.
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ii. We apply our incremental elicitation Algorithm1 using the assignments of
some alternatives of M as learning assignments. We apply incremental MR-
sort by asking questions to the user based on the proposed strategies, simu-
lating a decision maker who answers according to the results of the M . We
generate as output a vector of weight w∗ representing the DM’s preferences.

iii. Using the assumed limit profiles and the learned weight vector w∗ and the
majority threshold λ∗, we obtain our learned model M that provides the
assignments of the remaining alternatives.

iv. At the end we calculate an error rate based on the difference between the
assignments of the true model M and the learned model M .

We iterate these steps 50 times and we evaluate the classifications obtained
with the different methods according to the average classification error AEk =∑

x∈X errk(x)/m where m is the number of alternatives and k ∈ {1, 2}. The

value errk(x) = d(Ci, Cj) is the magnitude of error when x
M−→ Ci and x

M−→ Cj

(the true model assigns x to Ci while the learned model M assigns it to Cj).
err1 adopts a 0/1 loss as distance, while err2 considers the displacement between
the assignments, that is d(Ci, Cj) = |i−j|.

Figure 1 presents the results of our simulations (for more results see Figs. 4,
5 and 6 in the appendix). Note that the random strategy performs very poorly,
while all three strategies (maximum uncertainty, sum of margin, entropy) have
reasonably good performance. Not surprisingly, the higher the number of cate-
gories, the quicker we converge, since there is more uncertainty with more cat-
egories. Conversely, the higher the number of criteria the less quickly the inter-
action converges. The results with respect to AE2 are quite satisfying since they
show that, after few questions have been answered, our procedure makes few
assignment mistakes and these mistakes concern consecutive categories most of
the times.

Fig. 1. AE2 based on number of questions with m = 100, n = 5, p = 2, p = 3, p = 4,
|LS| = 1 and 50 iterations
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UCI Car. We performed simulations based on Car data-set. There are 1728 items
defined on 6 categorical attributes (that we interpret as ordinal); the items are
partitioned in 4 categories: unacceptable (65 items), acceptable (1210), good
(384) and very good (69). We converted the qualitative (ordinal) attributes to
numeric attributes and we set the criteria rating scale between 1 and 4. The steps
of the simulation are: (i). We first compute the best error rate that we could have
if all the data was included in LS. (ii). We ask questions until we reach this error
percentage. We started to test on 300 alternatives chosen randomly and we start
by including in the learning set only one assignment taken randomly.

In order to find the best error percentage, we call it P ∗, we include all the
data in LS and we vary the value of λ. We obtain P ∗ when λ is between 0.7 and
0.75. In this case the err1 = 18.86% (err2 being 0.24). So we aim to reach this
percentage by asking the minimum number of questions. Our simulations showed
that fixing the value of λ makes faster the convergence, we show in Figs. 2, 3 the
comparison between the 4 strategies where λ is fixed to 0.7.

Fig. 2. AE1 based on number of questions with m = 300, n = 6, p = 4, |LS| = 1 and
50 iterations

Fig. 3. AE2 based on number of questions with m = 300, n = 6, p = 4, |LS| = 1 and
50 iterations
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Fig. 4. Classification error AE1 based on number of questions with m = 100, n = 4,
p = 2, p = 3, p = 4, |LS| = 1 and 50 iterations

Fig. 5. AE2 based on number of questions with m = 100, n = 4, p = 2, p = 3, p = 4,
|LS| = 1 and 50 iterations

Fig. 6. AE1 based on number of questions with m = 100, n = 5, p = 2, p = 3, p = 4,
|LS| = 1 and 50 iterations
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With the random strategy we observe that the variation of error according
to number of questions is not monotonous and we don’t approach to P ∗ by
asking 10 questions. On the other hand, the strategies maximum uncertainty
and sum of margin are closer to P ∗ starting from 6th question. The strategy
maximum uncertainty stops after the 7th question because it hangs in case of
inconsistency. We notice that the assignments errors are almost always between
consecutive categories; Fig. 3 shows the performance with respect to the second
metric.

6 Conclusions

MR-sort is an attractive method for ordinal classification that offers the advan-
tage of allowing the use of heterogeneous scales (mixing ordinal and cardinal
scales). In this paper we presented an incremental elicitation procedure for
the parameters (weights and threshold) of MR-sort. Our approach relies on a
maximum-margin optimization that aims at satisfy as well as possible the known
assignments, following approaches proposed in the literature for non-interactive
learning of MR-sort and variations [15,21,22]. The novelty of this paper con-
sists in showing how the optimization can be used to evaluate the uncertainty
associated to the items whose category is not known yet; the choice of the next
question is based on evaluating the margin a posteriori (the value of maximum-
margin optimization when adding a possible response to a question). Based on
this intuition we proposed several strategies for selecting the next question to
ask. We evaluated the proposed interactive elicitation procedure comparing the
performance of the different strategies showing that the procedure quickly con-
verges to the real optimal classification in very few interaction cycles.

We highlight that one important limitation of our framework is that we
expect the decision maker to provide us with the limit profiles of the different
categories. In future works we will relax this assumption considering techniques
to elicit as well the limit profiles (either in a preliminary step or in an integrated
approach), therefore providing a complete method for interactive elicitation of
a MR-sort model. This task will be challenging, since previous works on (non
incremental) elicitation of MR-sort have shown that, while it is possible to intro-
duce integer variables [15] the resulting optimization is computationally very
demanding and not scalable; therefore randomized heuristics [20,23] have been
proposed.

We are also interested in performing simulation to compare our approach
to other elicitation frameworks, as the recent work of Olteanu [18], and the
approaches based on minimax regret [2,3], in realistic settings. We plan to
investigate the connection between our approach and the field of machine learn-
ing. First, maximum-margin bears much similarity to Support Vector Machines
(SVM). Second, ordinal classification has also been studied in machine learn-
ing. Third, there is strong similarity between incremental elicitation and active
learning.
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Finally, another important direction is to elicit the preferences of several
users, providing methods that can exploit the similarity between users, as in
Teso et al. [26].
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Indirect organ exchange programs match pairs of incompatible donors and recip-
ients with other pairs. The problem is typically phrased as a graph, for which we
must find a maximal clearing; i.e., a set of disjoint cycles maximizing the number
of organ recipients. Many maximal matchings exist, leaving the problem open to
secondary optimization according to other criteria, including biological predic-
tors of success [2], social issues [6], and logistic concerns [1]. To provide decision
support for multi-criteria optimization where humans must remain in the loop,
e.g., due to ethical concerns, we propose to provide decision-makers with the
full range of Pareto optimal solutions. Because Pareto fronts of multi-criteria
optimization problems may be exponential in the size of the instance, we focus
on providing a representative subset, in the form of an ε-Pareto set, or ε-cover.

Definition 1. ([3] ε-Pareto set). Let I be an instance of N -criteria minimiza-
tion. An ε-Pareto set Pε of I is a set of feasible solutions to I that approximately
dominate every other feasible solution to I. I.e, for each p = (p1, . . . , pN ), there
exists c = (c1, . . . , cN ) in Pε such that for all i ∈ [N ], ci ≤ (1 + ε)pi. When this
inequality holds, we say that p is ε-covered, or ε-dominated, by c.

Computing minimal ε-covers is NP -hard [3]. Therefore, we seek an approx-
imation to the minimal set. In the general, two-objective case, the best
PTAS provides a 3-approximation [5], although some special cases admit a 2-
approximation [3].
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Algorithm 1. Computes an ε-cover S of
bi-criteria optimization instance I, and an
upper bound εmax on the MCE of I.

xmin = Optimize (0, I)
ymin = Optimize (1, I)
S = {xmin, ymin}, εmax = 0
Q.enqueue(TR(xmin, ymin))
while Q �= {} and

Unex-MCE(Q.top()) > εmax do
t = Q.dequeue()
s = Optimize (t, I)
if s /∈ S then

S = S ∪ {s}
Q.enqueue(TR(left(t, S), s))
Q.enqueue(TR(s, right(t, S)))

else
εmax = max {εmax,Ex-MCE(t)}

end if
end while
return S, εmax

We characterize another general
procedure (Algorithm 1) for find-
ing ε-covers in the two-objective
case. Algorithm 1 uses a series of
linear trade-offs between the cri-
teria to approximate the Pareto
front, returning an ε-Pareto set S,
and an upper bound εmax on the
ε value provided by S. When com-
pared to minimal ε-covers provid-
ing this upper bound, simulated
organ exchanges indicate that the
algorithm is typically less than a
factor of three of the minimum for
εmax. Algorithm 1 uses several sub-
routines. Optimize(t, I) returns
the maximal matching minimizing
Ct = (1 − t)x1 + tx2, where x1 and
x2 are the values of the optimiza-
tion criteria. TR(s1, s2) returns the

value of t such that Ct(s1) = Ct(s2). Left(t) and Right(t) return the nearest
points in S to the left and right, respectively, of the solution related to t.1

Ex-MCE and Unex-MCE relate to the stopping condition and the order
in which trade-off values are used by Optimize. Each accepts two adjacent
points from S: s1, s1. Ex-MCE returns the minimum ε value for which all pos-
sible Pareto-optimal solutions between s1 and s2 would be covered. This upper
bound can be improved if there are no convex solutions between s1 and s2, Ex-
MCE returns this improved bound. Together these minimum covering epsilon
values provide an upper bound for the true ε value of the cover provided by
Algorithm 1.2

The notion of using an ε-cover is in line with recent work by McElfresh
et al. [4] that calls for a division of labor for organ exchanges, involving poli-
cymakers, who decide on, and are held accountable for, the objectives pursued
in situations like kidney exchange; and technicians, who provide recommenda-
tions based on the chosen objectives, but who are required to remain unbiased,
and maintain informed neutrality. Our experiments show that ε-covers may be
a feasible, informed neutrality-preserving alternative for technicians who must
simplify the choice for policymakers.

1 Note that every solution s in S is related to the value of t which discovered it; s
being optimal for Ct.

2 It’s important to note that Algorithm 1 can only produce an ε-cover made of convex
solutions, and cannot produce a cover for arbitrarily small ε.
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Abstract. Voting rules aggregate multiple individual preferences in
order to make a collective decision. Commonly, these mechanisms are
expected to respect a multitude of different notions of fairness and reli-
ability, which must be carefully balanced to avoid inconsistencies. We
present an approach for the sound and flexible design of voting rules from
composable modules. Formal composition rules guarantee social choice
properties from properties of the individual components. The approach
can be applied to many voting rules from the literature.

Keywords: Social choice · Formal correctness · Modular design

1 Introduction

In an election, voters cast ballots to express individual preferences about eli-
gible alternatives. From these preferences, a collective decision, i.e., a set of
elected alternatives, is determined using a voting rule. Voting rules are com-
monly designed to meet various expectations for fairness and reliability, but no
one general rule caters for every requirement, and every rule shows paradoxi-
cal behavior for some situation [1]. The axiomatic method permits the analysis
of desired behavior by comparing and characterizing voting rules via rigorous
guarantees in the form of formal properties. Designing voting rules towards such
properties is generally challenging as their trade-off is inherently difficult and
error-prone.

Contribution. We present an approach for the systematic and formal design of
voting rules from compact composable modules with formal properties guaran-
teed by construction. This work gives the core component type and compositional
structures, e.g., for sequential, parallel and loop composition, and illustrates how
composition rules formally establish common social choice properties.

2 Property-Oriented Composition of Voting Rules

Electoral Modules. The foundation of our approach are electoral modules,
a generalization of voting rules. Voting rules elect a set of alternatives from a
c© Springer Nature Switzerland AG 2019
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profile, i.e., a sequence of ranked ballots, and a nonempty set of alternatives A.
Electoral modules are more general as they do not need to make final decisions,
but instead partition A into elected, rejected and deferred alternatives. Hence,
if an electoral module always produces a nonempty set of elected alternatives
Aelected , it directly induces a voting rule which elects Aelected .

Compositional Structures. Our approach’s core structures are sequential,
parallel and loop composition, as well as the revision of decisions by prior mod-
ules. When composing two electoral modules m � n sequentially, the second
module n only decides on alternatives which m defers and cannot reduce the
alternatives already elected or rejected. A parallel composition m||an delegates
the two set-triples of m and n to an aggregator a, another component type which
combines two such triples into one triple. Moreover, we may revise choices from
prior modules and defer them for further decisions using a revision structure ↓.
Finally, a loop composition m �t reiterates a module m sequentially until either
m’s iteration reaches a fixed point, or a termination condition t holds, i.e., a
component type which is simply a predicate on a triple of sets of alternatives.

A Simple Example. The well-known Baldwin’s rule [2] can be sequentially
composed with a loop structure of a module eliminating the alternative with the
lowest Borda score and terminating when only one alternative remains, and a
module which elects all deferred alternatives. This construction directly estab-
lishes, e.g., the Pareto property and Condorcet consistency as the loop may never
reject a Condorcet winner and always rejects Pareto-dominated alternatives.

3 Related Work, Conclusion and Outlook

Related Work. Our electoral modules are based on less-formal components for
hierarchical electoral systems from [4]. Other work designs voting rules less mod-
ularly for statistically guaranteeing social choice properties by machine learning
[7]. Prior modular approaches target verification [5] or declarative combinations
of voting rules [3], but ignore social choice properties. Specific compositional
structures as presented in [6] are readily expressible by our structures.

Conclusion. Our approach enables flexible and intuitive compositions of voting
rules from a small number of structures with precise and general interfaces, easily
extended with further modules. This allows to formally establish common social
choice properties from given component properties by rigorous composition rules.

Outlook. A formally verified application of our approach is underway.

References

1. Arrow, K.J.: Social Choice and Individual Values. Yale University, 3rd edn. (2012)
2. Baldwin, J.M.: The technique of the Nanson preferential majority system of election.

Royal Society of Victoria 39, (1926)



166 K. Diekhoff et al.

3. Charwat, G., Pfandler, A.: Democratix: A Declarative Approach to Winner Deter-
mination. In: Walsh, T. (ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. 253–269.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23114-3 16

4. Grilli di Cortona, P.: Evaluation & Optimization of Electoral Systems. SIAM (1999)
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Abstract. Voting and elections are among the most common meth-
ods of making collective decisions. The voters express their preferences
regarding the candidates, and a voting rule aggregates them to provide
the final election winner. We believe that to better understand elections,
it is important to consider also the rationales behind the voters’ individ-
ual preferences when aggregating them. To do this, we need to model
and execute elections in such a way that the “rationality” is not optional
or subjective. In this paper we propose to extend the traditional election
model with information about the reasons for voters’ choices.

1 The Model

We first briefly recall the approval-based election model and then extend it.
An approval election E = (C, V ) consists of a set of candidates C = {c1, . . . , cm}
and a collection of voters V = (v1, . . . , vn). Each voter vi has an approval set
Ai that consists of those candidates from C that vi approves of. The approval
score of candidate cj , denoted scoreE(cj), is defined as the number of voters
that approve cj . Formally, scoreE(cj) = |{vi ∈ V | cj ∈ Ai}|. The set of approval
winners, denoted R(E), consists of those candidates that receive the highest
approval score in a given election. Typically, we expect to have only a single
winner, but we have to take into account the possibility of ties. In practice, tie-
breaking mechanisms are used when this happens, but in this paper we disregard
this issue.

In an active candidate model, we assume that the candidates take the action
of announcing the issues that they intend to address when in the office, and the
voters judge if these agendas are sufficiently convincing for them to grant their
approvals.

We are given a set of candidates C = {c1, . . . , cm}, a set of voters V =
(v1, . . . , vn), and a set P of political positions. Each candidate ci is associated
with a position p(ci) ∈ P, and each voter vi has an evaluation function fi : P →
{True,False} that specifies if the candidate approves a given position or not.
The set Ai of the candidates approved by voter vi is:

Ai = {cj | fi(p(cj)) = True}.
c© Springer Nature Switzerland AG 2019
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This model allows us to formulate variants of the classic Possible Winner
problems, see e.g., the works of [Konczak and Lang, 2005; Xia and Conitzer,
2011], but perhaps in a somewhat more realistic format.

Definition 1. In the Possible Winner with Active Candidates (PWAC)
problem, we are given an election E = (C, V,P), where C is a set of candidates,
V is a collection of voters (with their functions for evaluating positions), and P
is a set of possible positions; the input also contains the preferred candidate cp.
Each candidate c ∈ C is associated with a set Pc of positions that he or she may
assume. We ask if it is possible to associate each candidate c ∈ C with a position
from Pc, so that cp is a winner of the resulting election.

The active candidate model is appealing because it seems to be capturing the
natural dynamics present in political elections: The candidates announce the
platforms on which they run, and each voter individually evaluates each of them.

Single-Peaked Elections. Consider an election where taxation level is the main
issue. The set of possible positions of the candidates is P = [0, 1]. Each candidate
cj announces his or her ideal taxation level p(cj) ∈ [0, 1]. Each voter also has
his or her interval [ai, bi] ⊆ [0, 1] of acceptable taxation levels. Voter vi approves
candidate cj if p(cj) ∈ [ai, bi]. Formally, each evaluation function fi is defined as
follows (for each x ∈ [0, 1]):

fi(x) =

{
True, if x ∈ [ai, bi],
False, otherwise.

We choose to model the sets of possible candidate positions in the PWAC
problem so that for each candidate c, Pc is an interval [xc, yc]. In this case, our
problem is polynomial-time computable.

Theorem 1. For the active candidate model, the PWAC problem is in P.

Proof. For the possible winner problem it suffices to choose the position of the
preferred candidate so that it is approved by as many candidates as possible,
and the positions of the remaining candidates to be approved by as few voters as
possible. If in consequence cp has at least as high approval score as every other
candidate, then we accept. Otherwise we reject. Computing positions of the
candidates is easy: Indeed, it boils down to finding a point from a given interval
that intersect either as many as possible or as few as possible given intervals;
this is a classic problem that can be solved by a simple greedy algorithm.

2 Summary

In addition to active candidates, we also intend to propose an active voter model,
in which it is the voters that are represented with a set of issues they care about.
A voter then approves of a candidate if that candidate satisfies (most) of the
issues the voter cares about. In addition to the possible winners, we can also
study necessary winners. It is also natural to consider both rational election
models and explore further issues of strategic behavior.
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Abstract. One of the most extensively studied preference representa-
tions is conditional preference networks (CP-nets). For even some simple
types of CP-nets the problem of determining dominance, which of two
alternatives is better, is NP-hard. In order to overcome this difficulty we
propose a method of approximating CP-nets which is inspired by another
preference representation, lexicographic preferences. We show that CP-
nets dominance can be approximated in polynomial time and present
several results on the accuracy of the approximation.

Keywords: CP-nets · Lexicographic preference · Dominance
approximation

1 Introduction

In real world decision making problems, agents may have complex preferences
over large sets of alternatives. In order to reason over such domains efficiently,
an agent’s preferences need to be represented compactly. One method of pref-
erence representation is through conditional preference networks (CP-nets) [2].
CP-nets have a number of useful properties both of practical and theoretical
interest. However, some preference reasoning tasks for CP-nets are computation-
ally hard. In particular, the task to determine the preference relation between
two alternatives, commonly referred to as the dominance problem, is known to
be NP-hard for some rather simple cases of CP-nets [2] and PSPACE-complete in
general [3]. In order to handle this intractability we present a preference relation
which approximates the CP-net and can be computed in polynomial time.

Our approach approximates dominance for an acyclic CP-net in polynomial
time by exploiting the implicit attribute importance information contained in
a CP-net’s dependency graph along with the CP-net’s conditional preference
tables. We extract this importance information in order to build a representation
which resembles a lexicographic preference model. A similar approach has been
used by Ahmed and Mouhoub [1] in order to help solve constrained optimiza-
tion problems with CP-nets. Our definition of dominance using this importance
information is inspired by work from Yaman, Walsh, Littman, and desJardins [4].
Their paper dealt with, among other concerns, lexicographic preference models
which had equally important attributes.
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2 Approach

Our approach centers around the generation of importance rankings which are
consistent with a CP-net’s dependency graph G = (V,E). An importance rank-
ing is consistent if r(a) < r(b) if (a, b) ∈ E. Combining an importance ranking
with the CP-net’s CPTs allows us to define the following preference relation
�r,T :

Definition 1. Given a CP-net G = (V,E), a consistent ranking r, and CPTs
T from G, α �r,T β if for some attribute a ∈ V we have α[a] �T β[a], for all
b ∈ V such that r(b) ≤ r(a) we have α[b] �T β[b], and for all c ∈ V such that
r(c) < r(a) we have α[c] = β[c].

This preference relation has two important properties. The first is that for two
alternatives α and β if α � β according to the original CP-net then α �r,T β, for
any consistent r. Secondly, if the two alternatives are incomparable according to
�r,T then they must be incomparable according to the original CP-net.

When the preference relation � of a CP-net is approximated by �r,T errors
may arise only when two alternatives are comparable by �r,T , but are incom-
parable according to the original CP-net. We can also show that if there is no
consistent r such that α and β are incomparable then all consistent rankings
agree as to which alternative is preferred. This means that if we can consider all
consistent rankings then we can build a more accurate approximation than that
given by any single consistent ranking. This aggregation can be in computed in
polynomial time with respect to the size of the CP-net by building a consistent
ranking which finds two given alternatives incomparable. This approach does
have the restriction that the CP-net used must be acyclic, as there is no con-
sistent ranking for a cyclic CP-net. A key difference between this approach and
some other heuristics/approximations is the ability to show incomparability and
thus potentially better reflect the original CP-net.
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Motivation. A thriving e-democracy [8] will have to address the choice of
officers, committees, parameters (e.g., interest rate), budgets, and legislation.
Today, social choice theory addresses each of these settings independently, offer-
ing different elicitation and aggregation methods for each, thus making the prac-
tical realization of an e-democracy untenable. In addition, current theory focuses
on the act of voting, practically ignoring the need for an egalitarian process for
determining which alternatives to vote upon. Here, we present a unifying frame-
work for all these social choice settings with a uniform elicitation and aggregation
method, which is egalitarian in that voters cast both proposals and votes.

Inspired by the spatial model [3], facility location [4], and the use of met-
rics and distances in social choice (e.g.,[1,2,5,6,9]), we view each social choice
setting as a metric space. Votes as well as proposals represent ideal points of
the voters and the distance from them induces rankings over alternatives. We
explore Condorcet aggregation and a continuum of solution concepts, ranging
from minimizing the sum of distances to minimizing the maximum distance.

A voting rule must be simple to be acceptable, hence we do not expect these
sophisticated aggregation methods to determine the final decision. Rather, they
may aid a deliberative process by articulating the tentative joint will of the
voters, inspiring voters’ change of mind (ideal points) as well as the formation
of coalitions behind this or other ideal points. Ultimately, we expect an ideal
point to be elected only if it has explicit majority support. We hope to employ
the results presented here as a uniform foundation for e-democracy across the
entire spectrum of social choice settings it would face.

Formal Model. Our model consists of a metric space (X, d), where X is a set
of elements and d : X ×X → R is a metric function. We assume n voters, where
voter i provides her ideal element vi ∈ X; we infer i’s ranking as follows: Voter i
prefers x to y whenever d(vi, x) < d(vi, y). An aggregation method R gets a set
of n votes V over a metric space (X, d) and returns a point R ∈ X as the winner.
A Condorcet winner is an element x ∈ X that is not majority beaten. For 1 ≤
p < ∞, we define the Lp estimator of V : Lp(V ) := argminx∈X

∑
i∈[n] d(vi, x)p,

and define L∞(V ) := argminx∈X maxi{d(x, vi)}. To guarantee uniqueness, we
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define: L̃p(V ) := limq→p Lq(V ); notice that, as
∑

i∈[n] d(vi, x)p is continuous,

L̃p(V ) ⊆ Lp(V ). We consider axiomatic properties: (1) an aggregation method
R is majoritarian if |{vi ∈ V : vi = w}| ≥ |V |/2 implies that w ∈ R(V ). (2)
R is monotone if for each V = {v1, . . . , vn−1, v} and a co-winner w ∈ R(V ) it
holds that w ∈ R(V ′), where V ′ = {v1, . . . , vn−1, v

′} and v′ = w.

Table 1. Summary of our main results. Each block of rows corresponds to a setting,
with rows in the block corresponding to aggregation methods.

Setting Aggregation Solution Unique Complexity Majoritarian Monotonicity
Plurality Condorcet Plurality no linear yes yes
Elections ˜Lp(V ) Plurality no linear yes yes

1D Condorcet Median for n ∈ Nodd linear yes yes
Single ˜Lp(V ) Median for p = 1 yes linear for p = 1, 2,∞ only for p = 1 only for p = 1
Winner Average for p = 2 efficient for p  = 1, 2,∞

Mid-range for p = ∞
Continuous Condorcet no no ? yes yes
Budgeting ˜Lp(V ) yes yes linear for p = 2 only for p = 1 no

efficient for p  = 2
Social Condorcet no no ? yes yes

Welfare ˜Lp(V ) yes no NP-hard for p = 1,∞ only for p = 1 only for p = 1
Functions
Committee Condorcet no no ? yes yes
Elections ˜Lp(V ) yes for p = 1, n ∈ Nodd linear for p = 1 only for p = 1 only for p = 1

NP-hard for p = ∞
Participatory Condorcet no no ? yes yes
Legislation ˜Lp(V ) yes no NP-hard for p = 1,∞ only for p = 1 only for p = 1

Settings. For each setting, we specify a corresponding metric space (X, d): (1)
Plurality elections with alternatives A corresponds to X = A and d(x, y) = 1
for x �= y and d(x, x) = 0. (2) 1-dimensional elections with alternatives X ⊂ R

corresponds to X = A and d(x, y) = |x − y|. (3) Continuous participatory
budgeting, where a dollar is to be split among m alternatives, corresponds to
X = {(v1, ..., vm) ∈ R

m | vi ≥ 0 and
∑

i vi = 1} and d(x, y) = ‖x − y‖ =√∑
i |xi − yi|2. (4) Social welfare functions corresponds to X being the set of

relevant permutations with swap distance d. (5) Committee elections, where a
subset of A is to be elected, corresponds to X ⊆ 2A and d(x, y) is the symmetric
difference between x and y. (6) Participatory legislation, where strings of size
≤ � over an alphabet Σ are to be aggregated into a single string, corresponds to
X = Σ∗ and d(x, y) is a weighted-Levenshtein distance, i.e., the minimum cost
of transforming x to y, where insert/delete cost 1 and a swap costs 1/�2.



174 G. Shahaf et al.

References

1. Anshelevich, E., Bhardwaj, O., Elkind, E., Postl, J., Skowron, P.: Approximating
optimal social choice under metric preferences. AI 264, 27–51 (2018)

2. Elkind, E., Faliszewski, P., Slinko, A.: Distance rationalization of voting rules. Soc.
Choice Welfare 45(2), 345–377 (2015)

3. Enelow, J.M., Hinich, M.J.: The spatial theory of voting: An introduction (1984)
4. Feldman, M., Fiat, A., Golomb, I.: On voting and facility location. In: Proceedings

of the 2016 ACM Conference on Economics and Computation, pp. 269–286 (2016)
5. Meir, R., Procaccia, A.D., Rosenschein, J.S.: Algorithms for strategyproof classifi-

cation. Artif. Intell. 186, 123–156 (2012)
6. Procaccia, A.D., Rosenschein, J.S.: The distortion of cardinal preferences in voting.

In: Proceedings of CIA ’06, pp. 317–331 (2006)
7. Shahaf, G., Shapiro, E., Talmon, N.: Aggregation over metric spaces: Proposing

and voting in elections, budgeting, and legislation. arXiv preprint arXiv:1806.06277
(2018)

8. Shapiro, E.: Point: foundations of e-democracy. Commun. ACM 61(8), 31–34 (2018)
9. Skowron, P., Elkind, E.: Social choice under metric preferences: scoring rules and

STV. In: Proceedings of AAAI ’17, pp. 706–712 (2017)

http://arxiv.org/abs/1806.06277


Application of Boolean Logic to Natural
Language Complexity in Political Discourse

Austin Taing(B), Judy Goldsmith, and Justin Wedeking

University of Kentucky, Lexington, KY 40506, USA
austin.taing@uky.edu

This study employs several well-studied measures of linguistic complexity and
proposes a new one to examine whether politicians change their language to
become more or less difficult to parse in different situations. We use 27,500 press
releases from the US Senate between 2004–2008 and examine election cycles
and natural disasters (hurricanes) as situations in which politicians’ language
may change. We calculate the syntactic complexity and readability of each press
release, and propose a new measure, logical complexity, to investigate classical
Boolean logic as a measure of linguistic complexity. In our sample, language
becomes more complex in coastal senators’ press releases concerning hurricanes,
but we see no significant change for election cycles. Our measure shows similar
results to those of the well-established ones, showing that logical complexity is
a useful lens for measuring linguistic complexity.

Experimental Setup. We employ two categories of well-studied linguistic com-
plexity measures: syntactic complexity and readability. They establish a baseline
for comparison with our logical complexity measure. The syntactic complexity
measures used are clauses per sentence, T-unit length, and complex T ratio. We
use T-units as defined by Hunt [3] as a base information unit for the text. These
measures focus on the amount of information presented per unit. The readability
measures used are Flesh Reading Ease [1] and Automated Readability Index [4],
which represent more theoretical and practical approaches to text readability,
respectively.

We propose and test logical complexity, defined as the number of logical
operation keywords per T-unit in a given text. This treats each T-unit as a
logical predicate and seeks to identify how many elements are present in each;
this represents the length of a Boolean formula representing that T-unit. This
study uses a collection of transcripts of press releases from the offices of the
US Senate from 2004–2008 [2]. We examine two groups of senators: the election
group and the coastal group. The election group consists of senators up for
re-election in 2006, and compares their press releases during the election cycle
of that year, January through October, with the rest of their press releases.
The coastal group consists of senators of states along the Southeast coast which
saw significant hurricanes during the years represented, comparing press releases
concerning hurricanes (identified by keywords) and those not.

Results. Using the syntactic complexity and readability measures, we found
no significant trend in language complexity changes for the election group. The
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coastal group showed a consistent trend of increased complexity in hurricane-
related press releases across the readability measures and T-unit length. These
graphs are shown in Fig. 1. However, this trend did not extend to the other
syntactic complexity measures. The results of our logical complexity measure
were very similar to those of the other measures.

Fig. 1. T-length, ARI, and logical complexity for coastal group

Conclusion. Our experiment tested the logical complexity against well-known
measures of linguistic complexity. We used all of the measures to investigate
whether politicians’ language becomes simpler when discussing natural disasters
or during election cycles. f We saw that our logical complexity measure gave
similar results to well-established complexity measures, especially the readabil-
ity measures, which is fairly surprising; our definition of logical complexity uses
structures of syntactic complexity, T-units, rather than the more general struc-
tures employed by readability measures. These results imply that our measure
does reasonably well in determining the complexity of text. We assert then that
while this study serves primarily as a proof of concept, the results suggest that
Boolean logic can serve as a useful basis for practical examination of language
complexity.
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The field of Multi-Criteria Decision Aiding (MCDA) seeks to help decision-
makers (DMs) facing difficult decisions when multiple, often conflicting, crite-
ria are considered [3]. Evaluations of alternatives on multiple criteria may vary
according to different application contexts. However, in MCDA, decision alter-
natives are usually evaluated on multiple criteria for a specific context [1]. The
preferences of the DM may also be considerably different for each of these con-
texts. To provide more accurate recommendations, the decision aiding process
take these contexts into account.

We focus on the sorting problem in MCDA, and propose an extension of
MR-Sort [2,4] to deal with alternatives evaluated on multiple criteria and across
multiple contexts, which we call MR-Sort-C. The proposed approach considers
each context as an MR-Sort sub-problem, providing an intermediate classifica-
tion of an alternative with respect to it, and then uses these classifications as
evaluations for an overall MR-Sort model, which then provides the final classifi-
cation.

Let us consider a finite set of alternatives A, a finite set of criteria indexes
J = {1, ...,m} and a finite set of context indexes T = {1, ..., n}.

For each MR-Sort sub-model (one for each t ∈ T ), we define a majority thresh-
old λt ∈]0.5, 1], a set of criteria weights wt,j ∈ [0, 1],∀j ∈ J with

∑
j∈J wt,j = 1,

and category profiles evaluations bt,h,j ,∀t ∈ T,∀h ∈ 1..kt + 1,∀j ∈ J . Each cat-
egory ct,h, t ∈ T, h ∈ Kt of the tth sub-model is delimited in the criteria space
by a lower frontier bt,h−1 and an upper one bt,h. Furthermore the frontier per-
formances are non-decreasing. i.e . bt,h,j � bt,h−1,j∀t, h, j ∈ T × {1..kt + 1} × J .
Two rules to assign an alternative to a class may be found in the literature:
the pessimistic and the optimistic rules. We will use the first as it is the most
commonly used. An alternative a is therefore assigned to the highest possible
category such that a outranks its lower frontier but not its upper frontier. An
alternative a is said to outrank another (in our case a category limit) if and only
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if there is a sufficient coalition of criteria supporting the assertion that a is at
least as good as the other alternative. For each sub-model with t ∈ T , we define
local concordance indices (Ct,j(a, bt,h)) between an alternative a and a category
profile bt,h, as well as a global one (Ct(a, bt,h)):

Ct,j(a, bt,h) =
{

1, if gt,j(a) � bt,h,j
0, otherwise. Ct(a, bt,h) =

∑
j∈J

wt,jCt,j(a, bt,h) (1)

In order to determine whether they are sufficient in order to validate an
outranking situation, we compare global concordances to the majority thresholds
λt. We define for each sub-model the St relations as:

aSt bt,h ⇐⇒ Ct(a, bt,h) � λt,∀t ∈ T,∀h ∈ 1..kt + 1 (2)

Using these outranking relations, we can now define the assignment rule of
the MR-Sort sub-models. An alternative a is assigned to category ct,h,∀t ∈ T .
The results of these assignments, for all sub-models t ∈ T , will then form the
aggregated evaluations of the alternatives, which will then be used in the global
model:

a ∈ ct,h ⇐⇒ aSt bt,handa �St bt,h+1 gt(a) = h ⇐⇒ a ∈ ct,h,∀t ∈ T (3)

We define the overall MR-Sort model using a majority threshold λ̄ ∈]0.5, 1],
criteria weights w̄t ∈ 0, 1,∀t ∈ T with

∑
t∈T

w̄t = 1, and category profiles eval-

uations b̄t,h,∀t ∈ T,∀h ∈ 1..k + 1. Similarly to the MR-Sort sub-models, each
category c̄h, h ∈ {1, ..., k} of the top-model is delimited in the criteria space by
a lower frontier b̄h−1 and an upper one b̄h and the frontier performances are
non-decreasing. i.e . b̄h,t � b̄h−1,t,∀h, t ∈ {1..kt + 1} × T . We define a local con-
cordance index C̄t, a global concordance index C̄ and an outranking relation S̄,
replacing the model parameters with the ones defined above and the alternative
evaluations with the ones in Equation 3:

C̄t(a, b̄h) =
{

1, if gt(a) � b̄h,t
0, otherwise. C̄(a, b̄h) =

∑
t∈T

w̄tC̄t(a, b̄h) (4)

a S̄ b̄h ⇐⇒ C̄(a, bh) � λ̄,∀h ∈ 1..k + 1 (5)

An alternative will then be assigned to a category c̄h if and only if a S̄ b̄h and
a � S̄ b̄h+1. This step gives the overall assignment of the alternative, according to
the MR-Sort-C model.

An indirect inference approach for constructing the entire MR-Sort-C model
from assignment examples based only on the overall category has also been devel-
oped using a mixed-integer linear program. The algorithm has been tested over
artificially constructed benchmarks, however, due to its complexity, may only be
used on small problem instances. Nevertheless, the precision of the model is at
least as good as that of the classical MR-Sort model (for which the criteria have



Integrating Multiple Contexts into Multi-criteria Majority-Rule Sorting 179

been duplicated along the various contexts). Compared to that model, the MR-
Sort-C model also provides more readable descriptions of the final assignments,
through a hierarchical perspective.
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