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Abstract. The automatic segmentation of retinal vessels plays an important
role in the early screening of eye diseases. However, vessels are difficult to
segment with pathological retinal images. Hence, we propose the use of deep
U-net, a new retinal vessel segmentation method based on an improved
U-shaped fully convolutional neural network. The method uses not only local
features learned from the shallow convolution layers, but also abstract features
learned from deep convolution layers. To improve the segmentation accuracy
for thin vessels, we applied Gaussian matched filtering to the U-net. The batch
normalization layer was added in the U-net network, which increased the speed
of convergence. In the training phase, a new sample amplification method called
translation-reflection was proposed to increase the proportion of blood vessels in
the training images. Results of the experiments showed that the proposed
method leads to better retinal vessel segmentation than other methods developed
in recent years do for the SE, SP, Acc, Ppv, and AUC evaluation metrics.
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1 Introduction

Diseases such as glaucoma, cataracts, and diabetes cause retinal fundus blood vessel
lesions and can cause pain and even blindness for long-term patients with these dis-
eases [1]. Manual vessel segmentation is important for the detection of these eye
diseases, but segmentation by experienced experts is cumbersome and time-consuming.
Therefore, automatic extraction of retinal blood vessels from images is particularly
important. Automatic segmentation is difficult because of inadequate contrast regions,
pathological regions, and background noise.

Recently, deep learning has been used in retinal vessel segmentation, and it has
achieved promising results [2, 3]. It classifies retinal vessel segmentation at the pixel
level, and it uses deep learning to achieve semantic segmentation and end-to-end
tuning. These convolutional neural network-based segmentation methods, in which the
size of image blocks is usually much smaller than the size of the whole image, limits
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the size of the perceptual region; this approach can only extract some local features,
thus limiting the performance of segmentation. Additionally, this type of method has a
high storage cost and computation efficiency is relatively low. To solve these problems,
Fu et al. [4] proposed a deep learning method that regarded retinal vessel segmentation
as a border extraction problem. By combining the deep convolution neural network
with a fully connected conditional random field (CRF), the fusion images of the four-
sided output vessel probability maps were input into CRF to complete the segmentation
of the whole retinal image. Luo et al. [10] and Orlando et al. [11] proposed retinal
vessel segmentation methods that used deep neural network for training and CRF for
fine tuning, and they achieved better segmentation results. However, using fully con-
nected CRFs complicates the network with many parameters, which requires high-
performance training equipment and long-term training.

Dasgupta et al. [5] proposed an end-to-end retinal vessel segmentation method in
which the retinal vessel image was divided into small pieces and the full convolution
network (FCN) was applied to segmented retinal vessels. A segmentation method
based on FCN uses a de-convolution layer to sample the feature map of the last
convolution layer to restore it to the same size as the input image; therefore, it can
classify the image at the pixel level and address the issue of semantic segmentation.
However, an FCN does not fully use the information obtained from the shallow con-
volution layers, which have smaller perception domains and can learn some local
features. A new fully convolutional neural network [6], called U-net [7], has been
successfully applied to cell image segmentation; in this study, we use deep U-net for
retinal vessel image segmentation, and propose an improved U-net-based retinal vessel
segmentation method to achieve end-to-end retinal vessel segmentation.

2 Materials and Methods

Our experimental method is outlined in Fig. 1. In the training phase, the preprocessing
processes included green channel extraction, contrast limited adaptive histogram
equalization (CLAHE), and gamma correction. Gaussian matched filtering was applied
before the network training to enhance the contrast of small blood vessels. To increase
the number of training samples, five sample amplification methods were used (i.e.,
rotation, translation, stretching, flipping, and, our newly developed method, reflection).
Amplified samples were used as the input for the deep U-net.

The network consisted of convolution layers, lower sampling layers, and upper
sampling layers, forming a left-right symmetrical, end-to-end, U-shaped network. It
used a deeper network with four levels to expand the field of perception. At each level,
the max-pooling operation was performed after the convolution layers and more
abstract features were learned by down-sampling with maximum preservation. In the
up-sampling stage, we used bilinear interpolation and the up-sampling network layer
was connected with the corresponding shallow network layer at the same level;
therefore, more information was maintained in the training process. Subsequently, we
added the batch normalization (BN) layer in the U-net network to avoid over-fitting and
to increase the speed of network convergence.
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In the test phase, the test images were preprocessed using the same processes as the
training phase. After Gaussian matched filtering, the image was input into the trained
network model, and the output of the deep U-net was the segmentation result.
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2.1 Gaussian Matched Filtering Method

Gaussian matched filtering can simulate the gray distribution of retinal vessels [12].
Our previous work [13] proved that Gaussian matched filtering can enhance small
blood vessels in the image, which can improve small blood vessel segmentation
accuracy. In our framework, the Gaussian kernels in 12 different directions are used to
filter the retinal image, and the corresponding maximum response is found as the
response value of each pixel, which is used as an input to the improved U-net. And the
segmentation accuracy of the framework with and without filtering were compared to
verify the validity of Gaussian matched filtering.

2.2 Image Amplification

Image amplification is usually required to enrich training samples because there are
usually too few samples of retinal blood vessel segmentation images. In addition to the
common image expansion methods, such as rotation, translation, stretching, and flip-
ping, we used a new method, translation-reflection. When the translation amplification
was performed, the images with 40 pixels translated in both horizontal and vertical
directions always contained large background pixels. To overcome this problem, we
use the reflection transformation along symmetrical axis of blood vessel distribution
and its vertical direction at the circle boundary of the image. Therefore, the background
parts were filled with vessel pixels of the symmetrical image, which increased the
proportion of blood vessels in the image and moderately reduced the imbalance of
positive and negative samples.
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2.3 The Proposed Architecture: Improved Deep U-Net

The image samples after augmentation were input into the improved deep U-net, which
extended the receptive field with a deeper network and extracted more abstract features.

(1). Deep U-Net Network. The deep U-net network structure is shown in Fig. 2. C1,
C2, C3 ...C18 are all convolution layers. The max-pooling operation was per-
formed with a 2 * 2 filter kernel for the M1, M2, M3, and M4 down-sampling
layers; the maximum was preserved for deepening feature learning. Bilinear
interpolation was performed for the up-sampling layers U1, U2, U3, and U4. To
increase the spatial dimension of the structured output, the up-sampling layers,
Ul, U2, U3, and U4, were connected with the corresponding shallow network
layers, C8, C6, C4, and C2, using the concat mode, which merged the feature
maps from the shallow and deep layers. Two 1 * 1 convolution kernels were used
in convolution layer C19. In the last layer, the software maximum was used for
classification.

(2). Batch Normalization. When the network becomes deeper, there are more
parameters that need to be learned. In the U-net network training process, when
the parameters of the previous layer changed, the data distribution received by the
subsequent network layers also changed. With the deepening of the network, this
change amplified, thus affecting the convergence rate of the network. To over-
come this problem, a BN operation [14] was introduced before ReLLU activation
after convolution layers C1, C3, C5, C7, and C9, so the network layer data were
normalized to a uniform distribution; this had minimal effect on the latter layers
and it avoided slow network convergence caused by learning a different data
distribution. Moreover, BN is very effective for gradient feedback transmission
and has the effect of regularization, which prevents the network from over-fitting
the data.

We chose a relatively large initial learning rate because the BN layer had an effect
on the convergence speed of the network, so we did not need to adjust the learning rate
incrementally. The convergence rates of the networks with and without BN were
compared. We compared the convergence speeds of network training with BN and
Dropout, a stochastic regularization strategy commonly used to prevent over-fitting of
deep networks.

2.4 Databases and Evaluation Metrics

The retinal images used in the experiments were from the Digital Retinal Images for
Vessel Extraction (DRIVE) and the Structured Analysis of the Retina (STARE)
databases. The preprocessing processes included green channel extraction, CLAHE,
and the gamma correction, which differentiate blood vessel from the background. In the
evaluation of blood vessel segmentation methods, we used sensitivity (Se), specificity
(Sp), accuracy (Acc), precision rate (Ppv), and the area under receiver operating
characteristic curve (AUC) to evaluate the proposed method and compare it with other
methods. Where, Sensitivity (Se) represents the proportion of correctly segmented
vascular pixels in the total number of vascular pixels in the standard image, Specificity
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(Sp) represents the proportion of non-vascular pixels correctly segmented in the seg-
mented image in the total number of non-vascular pixels in the standard image, The
precision rate (Ppv) represents the proportion of vascular pixels correctly segmented in
the segmented image in the total number of vascular pixels segmented.

3 Result

3.1 The Effect of Translation-Reflection Transformation

Of the 4000 images selected from the training samples, the images after translation-
reflection transformation accounted for 0, 1/4, 1/2, and 3/4 of the total samples. After
network training, the segmentation accuracy of the test set was calculated. The results
of the experiment are shown in Table 1.

The segmentation accuracy of the test set clearly increased with increasing
translation-reflection samples, which shows that increasing the content of blood vessels
(positive samples) in the image with translation-reflection transformation helps to
distinguish blood vessels from the background in the whole training network. When the
number of translation-reflection samples increased to 3000, the segmentation accuracy
slightly decreased, indicating that the proportion of translation-reflection samples was
not an improvement. It is necessary to work with other amplification methods to
expand the network’s ability to identify blood vessels in various situations. In subse-
quent experiments, we used Sample distribution.

Table 1. The effect of translation-reflection transformation

Amplification methods Sample Sample Sample Sample
distributionl | distribution2 | distributio3 distribution4

Rotation, translation, 4000 3000 2000 1000

stretching and flipping

Translation-reflection 0 1000 2000 3000

Acc 0.9653 0.9681 0.9713 0.9711

3.2 Merging the Gaussian Matched Filtering with the U-Net Network

The segmentation result using Gaussian matched filtering of retinal images as training
samples is clearly closer to the blood vessel graph manually segmented by experts
(Fig. 3). For example, in the red ellipse 2, Gaussian matched filtering successfully
segmented the cross-vessel while the method without Gaussian matched filtering
clearly did not segment the cross-vessel. Gaussian matched filtering can also improve
the segmentation accuracy of small blood vessels. The micro-vessels in red ellipse 1 are
not segmented without Gaussian matched filtering and during manual segmentation by
an expert. However, Gaussian matched filtering provided a better result. In our specific
region of interest, the segmentation results using Gaussian matched filtering distinguish
the edge of this area (i.e., the position shown in the blue box); this also shows that
using the images processed by Gaussian matched filtering on training samples has
improved segmentation.
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The evaluation of the Gaussian matched filtering is shown in Table 2. Each index
of the non-Gaussian matched filtering is smaller than the index of the Gaussian mat-
ched filtering, which indicates that the Gaussian matched filtering method can effec-
tively improve the accuracy of vessel segmentation.

Table 2. The evaluation index

Se Sp Acc Ppv AUC
Non-Gaussian matched filtering | 0.8018 | 0.9846 | 0.9685 | 0.8335 | 0.9814
With Gaussian matched filtering | 0.8206 | 0.9891 | 0.9743 | 0.8788 | 0.9838

Fig. 3. Segmentation results of one example image (a) original image; (b) ground truth;
(c) segmentation results of an image without Gaussian matched filtering; and (d) segmentation
results of an image using Gaussian matched filtering (the red ellipses indicate specific areas
where we compared the four images. The blue squares indicate specific areas where we compared
the methods with or without Gaussian matched filtering (Color figure online)

3.3 Analysis for Batch Normalization

The results of the comparison between BN and Dropout are shown in Fig. 4. The green
curve represents the training process of the network using Dropout. The red curve
represents the training process of the improved U-net network with BN layers. The blue
curve represents the accuracy of the training process after introducing the BN layers.
The network using Dropout shows decreasing loss after 300 iterations. However, the
convergence speed improved after adding BN layers and the loss stabilized to less than
0.1 after iterations less than 300; this can avoid over-fitting and save training time.

3.4 Comparison with Other Methods

Table 3 shows the comparison of our proposed vessel segmentation method with other
deep learning methods [3, 5, 8, 9]. The results in Table 3 show that our proposed
method is superior to the methods we studied for the SE, SP, Acc, Ppv, and AUC
evaluation metrics. Our proposed algorithm applied a better training dataset and used
an improved deep U-net network to obtain more abstract features, which combined
shallow information to obtain better segmentation.

Our method may also be helpful for some difficult cases. It can achieve good results
in the segmentation of small vessels, vessels in lesion images, and vessels with central
reflection, as shown in Fig. 5. Figure 5(a) is an image with many small blood vessels in
the vicinity of the macula; the reflex arcs near the optic disc were successfully
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identified as non-blood vessels using our method (e.g., the blue ellipse in Fig. 5(a)).
Figure 5(b) shows successful separation of blood vessels from the background for an
image containing a lesion using our proposed method, and our method did not
incorrectly identify the lesion area as a dense vessel patch, which is a common error in
traditional feature extraction methods. Figure 5(c) shows that our method identified the
vessels with central reflex.
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Fig. 4. The training curve before and after Fig. 5. Segmentation images with small
adding batch normalization blood vessels, lesions, and vessel central
reflex (Color figure online)

Table 3. Comparative results of recent works on retinal vessel segmentation

Methods Se Sp Acc Ppv AUCROC)
2nd human Observer |0.7760|0.9724 | 0.9472 | - -

Martina et al. [3] 0.7276 | 0.9785 | 0.9466 | — 0.9749
Dasgupta et al. [5] 0.7691 | 0.9801 | 0.9533 | 0.8498 | 0.9744
Luo [8] - - 0.9600 | — -

Xie [9] 0.7761 | 0.9800 | 0.9536

The proposed method | 0.8206 | 0.9891 | 0.9743 | 0.8788 | 0.9838

4 Conclusions

We proposed and tested a retinal blood vessel segmentation method based on an
improved U-net network. to segment blood vessels of retinal images quickly and
accurately. We used a new sample amplification method, which increased the pro-
portion of blood vessels in the image after translation using reflection transformation;
this reduced the imbalance between positive and negative samples in the image. By
introducing BN layers in the U-net network, we prevented over-fitting, and the con-
vergence speed of the network was also accelerated. In addition, the combination of the
deep U-net network and traditional Gaussian matched filtering improved the accuracy
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of the segmentation. This method achieved end-to-end vascular segmentation of the
whole retinal image. Furthermore, it produced accurate results, and the efficiency of
network training improved; it also achieved good results in the segmentation of small
vessels, lesion images, and vessels with central reflex.
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