
Chapter 4
The Nuclear RNA Exosome and Its
Cofactors

Manfred Schmid and Torben Heick Jensen

Abstract The RNA exosome is a highly conserved ribonuclease endowed with 30–
50 exonuclease and endonuclease activities. The multisubunit complex resides in
both the nucleus and the cytoplasm, with varying compositions and activities
between the two compartments. While the cytoplasmic exosome functions mostly
in mRNA quality control pathways, the nuclear RNA exosome partakes in the 30-end
processing and complete decay of a wide variety of substrates, including virtually all
types of noncoding (nc) RNAs. To handle these diverse tasks, the nuclear exosome
engages with dedicated cofactors, some of which serve as activators by stimulating
decay through oligoA addition and/or RNA helicase activities or, as adaptors, by
recruiting RNA substrates through their RNA-binding capacities. Most nuclear
exosome cofactors contain the essential RNA helicase Mtr4 (MTR4 in humans).
However, apart from Mtr4, nuclear exosome cofactors have undergone significant
evolutionary divergence. Here, we summarize biochemical and functional knowl-
edge about the nuclear exosome and exemplify its cofactor variety by discussing the
best understood model organisms—the budding yeast Saccharomyces cerevisiae,
the fission yeast Schizosaccharomyces pombe, and human cells.

Keywords RNA exosome · Nuclear RNA decay · Exosome cofactors ·
Polyadenylation · TRAMP · NEXT · PAXT

4.1 The RNA Exosome

4.1.1 The Core

The central core of the RNA exosome is barrel-shaped and composed of six RNase
PH-like proteins that form a ring. This ring associates with 3 S1/KH RNA-binding
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domain containing proteins positioned on one end of the barrel, typically pictured as
the “top” (Januszyk and Lima 2014; Liu et al. 2006; Lorentzen et al. 2007). The
structure of the resulting 9 protein subunit core complex, termed Exo9, is very
similar to eubacterial exonucleases RNase PH and PNPase, and the archaeal RNA
exosome, which all have active phosphorolytic exonuclease sites positioned in the
central cavity of a characteristic barrel-shaped structure (Januszyk and Lima 2014).
In contrast, most eukaryotic Exo9 homologs have altered active site residues, which
results in a catalytically inactive exosome core (Dziembowski et al. 2007; Liu et al.
2006). Notable exceptions are plants and some early-branching nonplant eukaryotes,
where one of the RNase PH domains has retained phosphorolytic activity (Sikorska
et al. 2017).

4.1.2 Catalytic Subunits

To compensate for the widespread loss of activity within their cores, eukaryotic
exosomes assemble with the processive 30–50 exonuclease and endonuclease Dis3
(often also referred to as Rrp44; DIS3 in humans) and the distributive 30–50 exonu-
clease Rrp6 (EXOSC10 in humans), which bind to the bottom and the top of the core
exosome, respectively (Dziembowski et al. 2007; Makino et al. 2013; Mitchell et al.
1997; Wasmuth et al. 2014; Zinder et al. 2016). Exosome complexes comprising
Dis3 or Dis3 plus Rrp6 are commonly referred to as Exo10 and Exo11, respectively.
Dis3 receives RNAs that are threaded down through the central channel of the
exosome core, whereas Rrp6 accesses RNA from the exosome top without threading
through the core structure (Kowalinski et al. 2016; Liu et al. 2016; Makino et al.
2013; Wasmuth et al. 2014; Zinder et al. 2016). Even so, Rrp6 functions are
intimately linked with the exosome core, and its position close to the entry site of
the central channel is consistent with data, suggesting that Rrp6 may control RNA
threading to Dis3 (Makino et al. 2015; Wasmuth et al. 2014). Conversely, core KH
domain proteins contribute to the binding of RNAs processed by Rrp6 (Zinder et al.
2016). In addition, Rrp6 and its partner Rrp47 provide critical binding surfaces for
exosome cofactors, such as Mtr4 (Fig. 4.1) (Falk et al. 2017a; Schuch et al. 2014).

Dis3 and Rrp6 association with the exosome core varies to some extent between
organisms and subcellular compartments. Both budding and fission yeasts possess a
single Dis3 and Rrp6 paralog, with Rrp6 being exclusively nuclear, while Dis3 is
present on both nuclear and cytoplasmic exosomes (Allmang et al. 1999; Mitchell
et al. 1997). The situation is more complex for higher eukaryotes; the human
genome, for example, encodes three different Dis3 paralogs: DIS3, “DIS3 like”
(DIS3L), and DIS3L2. While DIS3 and DIS3L inhabit nuclear and cytoplasmic
exosomes, respectively (Staals et al. 2010; Tomecki et al. 2010), DIS3L2 exercises
cytoplasmic 30–50 exonucleolytic activities independent of the core exosome (Chang
et al. 2013; Lubas et al. 2013; Malecki et al. 2013). Moreover, even though the single
human Rrp6 paralog EXOSC10 is primarily nuclear, some cytoplasmic presence has
also been reported (Brouwer et al. 2001; Lejeune et al. 2003; Tomecki et al. 2010).
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The mechanisms determining the subcellular fractioning of exosomes and which
nucleases they carry still remain to be elucidated.

4.1.3 Lrp1 and Mpp6

In addition to the core and catalytic components, the Lrp1 (often also referred to as
Rrp47, C1D in humans) and Mpp6 (MPP6 in humans) proteins are considered
constituents of the nuclear exosome, yielding Exo13 (Makino et al. 2015; Milligan
et al. 2008; Mitchell et al. 2003; Schilders et al. 2005; Schuch et al. 2014; Wasmuth
et al. 2017). Both Lrp1 and Mpp6 are nuclear restricted and were originally proposed
to act as exosome adaptors by facilitating exosome access to specific substrates
either by direct RNA binding or by contacting specific RNP components (Milligan
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Fig. 4.1 The exosome and its cofactors in the S. cerevisiae nucleus. The major exosome cofactor in
S. cerevisiae nuclei is the TRAMP complex (Mtr4, Air1/Air2, and Trf4/Trf5), which acts in the
nucleoplasm and nucleolus. In the nucleoplasm, the NNS adaptor complex (Nrd1, Nab3, Sen1) is
important for exosome targeting of all major RNAPII transcript classes, such as CUTs,
sn/snoRNAs, and mRNAs. In nucleoli, TRAMP and the Mtr4-interacting proteins Nop53 and
Utp18 recruit the exosome for the processing of rRNA precursors and the decay of processing
by-products. TRAMP also facilitates decay of hypomodified tRNA. Asterisks denote enzymatic
activities. See text for more detail
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et al. 2008; Schilders et al. 2005). More recent structural studies position both
proteins on top of the exosome core, in close contact with Mtr4, suggesting that
they contribute to exosome core function by aiding the Mtr4–exosome interaction
and its RNA threading activity (Fig. 4.1) (Makino et al. 2015; Schuch et al. 2014;
Wasmuth et al. 2017; Falk et al. 2017a). Lrp1 binds to, and stabilizes, Rrp6,
wherefore its in vivo functions are largely overlapping those of Rrp6 (Mitchell
et al. 2003). Mpp6, on the other hand, contacts other exosome core subunits, but it
is curiously enough only associated in substoichiometric amounts, suggesting a
more specialized function (Schilders et al. 2005; Shi et al. 2015). Recently, budding
yeast Mpp6 was suggested to promote RNA threading to Dis3, whereas Mpp6
absence would result in the threading-independent decay by Rrp6 (Kim et al.
2016). Whether such an Mpp6-mediated switch in decay mechanism is general
and conserved in other organisms remains to be determined.

4.2 RNA Helicase Activities Central to Exosome Function:
Mtr4/Ski2

While the various RNA exosome assemblies outlined above in principle can bind
and degrade RNA, efficient activity and substrate recognition depend on additional
protein complexes, with RNA helicases of the Mtr4/Ski2 (MTR4 (SKIV2L2)/
SKIV2L in humans) family playing central roles (Johnson and Jackson 2013; Zinder
and Lima 2017). Binding to the top of the exosome, these proteins hand RNA
substrates to the exosome core, possibly using the RNA helicase activity to inject
the substrate for threading down to Dis3 or for presenting the RNA to Rrp6 (Falk
et al. 2017a; Halbach et al. 2013; Zinder et al. 2016). Critically, Mtr4/Ski2 are also
part of other complexes, containing so-called adaptor proteins, which serve to
directly recognize exosome substrates (see below). Despite some commonalities,
these complexes have diverged considerably within and between different eukary-
otic species. Ski2 homologs are generally cytoplasmic, while Mtr4 homologs are
nuclear (Zinder and Lima 2017). As this chapter focuses on nuclear exosome
biology, the next sections will describe the different Mtr4-containing complexes in
the three model organisms of choice.

4.3 S. cerevisiae

4.3.1 The TRAMP and NNS Complexes

The S. cerevisiae Trf4–Air2–Mtr4 polyadenylation (TRAMP) and Nrd1–Nab3–
Sen1 (NNS) complexes were among the first nuclear exosome cofactors to be
discovered (Fig. 4.1) (LaCava et al. 2005; Vanacova et al. 2005; Wyers et al.
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2005). TRAMP consists of Mtr4, the poly(A) polymerase Trf4, and the
RNA-binding protein Air2. Trf4 and Air2 can be replaced by their paralogs Trf5
and Air1, yielding different possible TRAMP compositions (LaCava et al. 2005;
Vanacova et al. 2005; Wyers et al. 2005). Current evidence suggests that at least a
subset of these different TRAMP complexes are present in vivo and serve partially
nonoverlapping functions (San Paolo et al. 2009; Schmidt et al. 2012). The molec-
ular contribution of TRAMP complexes to exosome activity is believed to involve
the addition of short A-tails to RNA 30 ends by the Trf4/5 enzymes (Schmidt and
Butler 2013; Zinder and Lima 2017). Consistently, in wild-type cells, TRAMP
targets can be found carrying short (~4 nt) oligo(A) tails, which are lost in Trf4/5
mutants but accumulate upon exosome inactivation (Jia et al. 2011; Tuck and
Tollervey 2013; Wlotzka et al. 2011). These short unstructured tails are then
suggested to facilitate the loading of RNA 30 ends by Mtr4 to promote the exosomal
threading of otherwise structured RNAs. The Zn-finger containing Air1/2 proteins
may provide RNA-binding capacity to the TRAMP complex, while also promoting
overall complex stability through cooperative binding with Trf4/5 to Mtr4 (Falk
et al. 2014; Hamill et al. 2010).

In budding yeast, TRAMP engages in a wide variety of nuclear exosome func-
tions, including the decay of aberrant tRNA, processing of rRNA precursors, and
decay of processing by-products (Schmidt and Butler 2013). In these cases, the
combined adenylation and helicase activities of TRAMP may allow for the decay of
otherwise highly structured substrates resilient to exosomal attack. Moreover,
TRAMP also targets RNA polymerase II (RNAPII) products, e.g., facilitating
decay of the so-called cryptic unstable transcripts (CUTs; see below) and the 30

trimming of snRNA and snoRNA precursors (Schmidt and Butler 2013). These latter
exosome substrates are unlikely to be highly structured, reflecting that TRAMP
might also serve as an RNA-binding adaptor, in addition to its role as enzymatic
activator.

How does TRAMP get in contact with RNA? At least some targeting capacity is
likely to be mediated by direct RNA contacts via the Air proteins (Holub et al. 2012;
Schmidt and Butler 2013; Schmidt et al. 2012). However, in the case of RNAPII-
produced substrates, target recognition is often mediated by the NNS complex
through the sequence-specific RNA-binding domains of the Nrd1 and Nab3 proteins
(Tudek et al. 2014; Vasiljeva and Buratowski 2006; Wlotzka et al. 2011). Nrd1
further contains a so-called C-terminal domain (CTD) interaction domain (CID),
which specifically binds the Ser5P phosphorylated CTD of the largest subunit of
RNAPII, while also directly binding to the TRAMP complex component Trf4
(Gudipati et al. 2008; Tudek et al. 2014; Vasiljeva et al. 2008). Hence, the NNS
complex associates with both, early elongating RNAPII, and the TRAMP and
exosome complexes (Fig. 4.1). In doing so, it serves two functions: (1) promoting
transcription termination of RNAPII from short transcription units (TUs), and
(2) channeling 30 ends derived from such termination events for TRAMP/
exosome-mediated trimming or decay (Arigo et al. 2006; Gudipati et al. 2008;
Schulz et al. 2013; Steinmetz et al. 2006; Thiebaut et al. 2006; Tudek et al. 2014).
The contemporary view suggests that NNS function relies on the binding of Nrd1
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and Nab3 to their respective RNA recognition sites during early transcription
(Porrua and Libri 2015). This likely involves the interaction of Nrd1 with RNAPII,
since the CTD Ser5-P modification is most prominent at TU 50 ends. Since the
helicase activity of Sen1 can promote the disassembly of RNAPII transcription
complexes in vitro (Porrua and Libri 2013), this explains the termination function
of the NNS complex. After transcription termination, NNS supposedly “hands” the
resulting transcript to the RNA exosome via the Nrd1–Trf4 interaction (Tudek et al.
2014). However, disruption of this interaction causes only a moderate stabilization
of NNS targets (Tudek et al. 2014). Moreover, Nrd1/Nab3 can directly contact the
exosome components Mpp6 and Rrp6 independent of TRAMP (Fasken et al. 2015;
Kim et al. 2016). Thus, TRAMP appears to not be strictly required for exosome
association with NNS targets but may rather serve to promote degradation of
transcripts that are not directly amenable to exosomal decay.

Exosome removal of NNS-targeted transcripts is highly efficient, and typically,
these RNAs are only revealed in NNS-, TRAMP-, or exosome-depleted cells, hence
their nomenclature as CUTs (Neil et al. 2009; Wyers et al. 2005; Xu et al. 2009). The
RNA sequence motifs recognized by Nrd1 and Nab3 are short and abundantly
present in the S. cerevisiae genome but conspicuously absent from the coding strand
of protein-coding genes (Cakiroglu et al. 2016; Schulz et al. 2013). This explains
how the NNS complex discriminates the numerous RNAs produced by spurious
transcription, either bidirectionally from gene promoters or antisense to mRNAs,
from protein-coding transcripts. At sn/snoRNA TUs, NNS activity facilitates the
production of short stable RNAs. This is presumably due to the highly structured and
protein-bound nature of mature sn/snoRNAs, which stops RNA exosome progress
after its initial removal (processing) of the unstructured 30 extensions (Coy et al.
2013). CUTs do not assemble stable structures and are thus completely decayed.

Although the NNS and TRAMP complexes were long believed to target only
ncRNAs, recent data revealed NNS and Mtr4 interaction with a host of mRNAs
whose expression changes in response to glucose depletion (Bresson et al. 2017).
This suggests the interesting possibility that mRNAs can be targeted for nuclear
decay and that this can be regulated in a stimulus-specific manner. Such potential
re-purposing of the NNS complex from ncRNA to mRNA targeting is consistent
with an earlier study, showing that Nrd1 is dephosphorylated during nutrient deple-
tion and that this influences nutrient-dependent protein-coding gene expression
(Darby et al. 2012). However, whether Nrd1/Mtr4 mRNA targeting elicits decay
and if so, how such regulation may occur remains to be determined.

4.3.2 Nucleolar Exosome Cofactors

In addition to its role in TRAMP, S. cerevisiae Mtr4 also interacts directly with the
nucleolar proteins Nop53 and Utp18 (Fig. 4.1, “NUCLEOLUS”). This occurs
through the so-called arch domain of Mtr4, which binds a conserved short sequence
motif, the arch interaction motif (AIM) (Falk et al. 2017b; Thoms et al. 2015).
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Nop53 is a component of nuclear ribosomal pre-60S particles, which contain 5.8S
rRNA precursors, and its interaction with Mtr4 is required for the exosomal trim-
ming of 30 extensions of 5.8S pre-rRNAs. Utp18, instead, is part of ribosomal
pre-90S particles and takes part in the release, and Mtr4-dependent decay, of the
nonfunctional 50 external transcribed spacer (50ETS) (Thoms et al. 2015). Interest-
ingly, TRAMP is also implicated in 50ETS removal (Houseley and Tollervey 2006),
but the functional relationship between Mtr4’s action in the context of TRAMP and
together with Utp18 has not been disentangled. Assembly of the TRAMP complex
does not depend on the Mtr4 arch domain, and it is therefore possible that Utp18
recruits Mtr4 as part of the TRAMP complex for 50ETS decay (Falk et al. 2017b;
Thoms et al. 2015). At the same time, there are nonessential direct contacts between
the Mtr4 arch domain and Air2 within TRAMP (Falk et al. 2017b), suggesting that
Air2 and Utp18 interactions with Mtr4p influence each other to control 50ETS decay.

4.4 S. pombe

4.4.1 TRAMP

The composition of the fission yeast TRAMP complex is overall similar to its
budding yeast paralog with subunits Cid14 (homologous to Trf4/5), Air1, and
Mtr4 (Fig. 4.2, “NUCLEOLUS”) (Keller et al. 2010). Compared to S. cerevisiae,
S. pombe TRAMP appears to be a more specialized exosome cofactor, still impli-
cated in the processing or decay of nucleolar substrates but with a less general role in
the nucleoplasm (Larochelle et al. 2012; Win et al. 2006). Consistently, a functional
analog of the S. cerevisiae NNS complex has not been identified (Lemay et al. 2016;
Wittmann et al. 2017). Instead, Cid14 and the exosome subunit Rrp6 were shown to
be involved in RNAi-independent heterochromatin formation processes, pointing
toward a still ill-defined link between decay of heterochromatin-derived transcripts
and the deposition of chromatin marks (Buhler et al. 2007; Keller et al. 2010; Reyes-
Turcu et al. 2011; Wang et al. 2008).

4.4.2 MTREC

To engage in nuclear activities outside of nucleoli, the fission-yeast specific
nucleoplasmic-residing Mtr4 paralog, called Mtr4-like 1 (Mtl1), forms a tight
complex with the Zn-finger protein Red1 (Fig. 4.2). This dimer then interacts with
numerous other proteins to form higher-order complexes termed MTREC (Mtl1–
Red1 core) or NURS (nuclear RNA silencing) (Egan et al. 2014; Lee et al. 2013;
Zhou et al. 2015). Red1 is required for MTREC’s association with the S. pombe
exosome, supposedly compensating for Mtl1’s loss of a specific N-terminal domain
required for Mtr4:Rrp6/Lsd1 interaction (Schuch et al. 2014; Zhou et al. 2015). The
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MTREC complex comprises a number of other proteins, including Red5, Iss10,
Mmi1, poly(A)-binding protein Pab2, poly(A) polymerase Pla1, and the nuclear
mRNA 50 cap-binding complex (nCBC) proteins (Egan et al. 2014; Lee et al. 2013;
Zhou et al. 2015) (Fig. 4.2). The presence of Pla1 and Pab2 in MTREC might
provide a means to add and recognize A-tails of MTREC targets, independent of
TRAMP. At the same time, Pla1 (and probably Pab2) are also required for the
production of regular mRNAs that normally need to avoid nuclear decay. How this
distinction is achieved is presently under intense investigation (see below).

MTREC should not be seen as a single well-defined complex, but rather com-
prises a number of functionally distinct subcomplexes associating around the Mtl1–
Red1 core (Fig. 4.2). Mtl1 also engages in a Red1-independent complex with the
Nrl1 and Ctr1 proteins, which interact with the splicing machinery and seem to be
specifically involved in exosomal decay of unspliced transcripts, including those
containing so-called cryptic introns (Lee et al. 2013; Zhou et al. 2015).

Interestingly, homologs of many MTREC components are also cofactors of the
human RNA exosome (Table 4.1) and several harbor RNA-binding domains, which
might contribute to target recognition. An example is the sequence-specific
RNA-binding protein Mmi1, which serves a highly specific role in the targeting of
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Fig. 4.2 The exosome and its cofactors in the S. pombe nucleus. Mtl1 and Red1 form the core of
the major exosome cofactors in the S. pombe nucleoplasm. MTREC comprises Mtl1–Red1 and a
number of other protein complexes, including nCBC (Cbc1, Cbc2, Ars2); a subcomplex comprising
Mmi1 and Iss10; a subcomplex of Pab2, Rmn1, and Red5; and the poly(A) polymerase Pla1.
MTREC targets include meiosis-specific RNAs during vegetative growth but also other RNAPII-
derived transcripts, such as CUTs. In addition to MTREC, Mtl1 is part of a complex including Ctr1
and Nrl1, which also binds the exosome and is involved in decay of unspliced RNAs. The S. pombe
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the nucleolus where it is involved in rRNA processing. Utp18 and Nop53 homologs contain AIM
domains and are conserved, and therefore also likely to act as exosome cofactors via Mtr4. Asterisks
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Table 4.1 Exosome components and cofactors

Complex S. cerevisiae S. pombe Human Domains

Exo13 Csl4 Csl4 EXOSC1 S1

Rrp4 Rrp4 EXOSC2 S1/KH

Rrp40 Rrp40 EXOSC3 S1/KH

Rrp41 Rrp41 EXOSC4 RNase PH

Rrp46 Rrp46 EXOSC5 RNase PH

Mtr3 Mtr3 EXOSC6 RNase PH

Rrp42 Rrp42 EXOSC7 RNase PH

Rrp43 Rrp43 EXOSC8 RNase PH

Rrp45 Rrp45 EXOSC9 RNase PH

Rrp6 Rrp6 EXOSC10 30–50 exonuclease (RNase D)
Dis3
(Rrp44)

Dis3 DIS3, DIS3L 30–50 exonuclease (RNase II), PIN
endonuclease domain

Lrp1
(Rrp47)

Cti1 C1D (LRP1) C1D

Mpp6 Mpp6 MPP6 –

Mtr4 Mtr4 Mtr4
Mtl1

MTREX (MTR4,
SKIV2L2)

ATP-dependent RNA helicase

TRAMP Trf4, Trf5 Cid14 PAPD5 (TRF4-2) poly(A) polymerase

Air1, Air2 Air1 ZCCHC7 (AIR1) Zn-knuckle

NNS Nrd1 Seb1# ? SCAF4, SCAF8 RRM, CID

Nab3 Nab3# ? RALY RRM

Sen1 Sen1# SETX (ALS4,
AOA2)#

ATP-dependent RNA helicase

NEXT RBM7 RRM

ZCCHC8 Zn-finger

nCBC ? Cbc2
(Cbp20)

Cbc2 NCBP2 (CBP20) RRM

? Sto1
(Cbp80)

Cbc1 NCBP1 (CBP80) –

Pir2 SRRT (ARS2) Zn-finger

ZC3H18 Zn-finger

MTREC/
PAXT

Red1 ZFC3H1 Zn-finger

Red5 ? ZC3H3 Zn-finger

Mmi1 ? YTHDF1/2/3 YTH domain

Iss10 ZFC3H1 N
terminus

–

Rmn1 ? RBM26,
RBM27

RRM

Pap1 Pla1 ? PAPOLA,
PAPOLG

Poly(A) polymerase

Pab2 PABPN1 RRM (poly(A) binding)

– Ctr1 ? CCDC174 –

Nrl1 ? NRDE2 –

(continued)
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meiosis-specific mRNAs during S. pombe vegetative growth (Harigaya et al. 2006).
This silencing is partly achieved by the posttranscriptional decay of these transcripts
mediated by Mmi1–MTREC binding to cognate sites in the target RNAs and their
subsequent handover to the nuclear exosome (Chen et al. 2011; Harigaya et al. 2006;
Yamashita et al. 2012). In addition to posttranscriptional decay, silencing of meiosis-
specific genes involves the formation of heterochromatic islands around affected
loci, and the MTREC complex is involved in the deposition of repressive chromatin
marks (Egan et al. 2014; Lee et al. 2013). This activity is independent on Cid14 and
therefore provides a unique link between RNA decay and heterochromatin formation
in S. pombe that has not been reported in other organisms.

4.5 Human

4.5.1 TRAMP

A TRAMP-like complex, although still poorly characterized, also exists in human
cells and is composed of MTR4, the poly(A) polymerase PAPD5, and the Zn-finger
protein ZCCHC7 (Lubas et al. 2011). This complex, hTRAMP, localizes to nucleoli,
and its depletion mainly results in phenotypes affecting nucleolar substrates (Lubas
et al. 2011), which is consistent with the presence of distinct adaptor complexes
serving exosome functions in the nucleoplasm. This yields a conceptually similar
setup as for S. pombe (Fig. 4.3). MTR4 also interacts with other nucleolar proteins,
such as NVL, which promotes pre-rRNA processing, and the human homologs of
S. cerevisiae Nop53 and Utp18, suggesting that these proteins are also exosome
cofactors in human rRNA metabolism (Lubas et al. 2011; Yoshikatsu et al. 2015).

Table 4.1 (continued)

Complex S. cerevisiae S. pombe Human Domains

– Utp18 ? Utp18 ? UTP18
(WDR50)

WDR40, AIM

Nop53 ? Rrp16 ? NOP53
(GLTSCR2)

AIM

– ? Rix7 ? Rix7 NVL (NVL2) AAA ATPase

List of exosome components and cofactors from S. cerevisiae, S. pombe, and human cells. Listed
are standard gene names from the S. cerevisiae and S. pombe genome databases (www.
yeastgenome.org and www.pombase.org) as well as approved symbols for human genes from the
“HUGO” Gene Nomenclature Committee (www.genenames.org). Alternative, commonly used
names are in parenthesis. Sequence homologs which are not proposed to have a functional
connection with the nuclear RNA exosome are marked with “#,” and sequence homologs where
a functional connection to the exosome is possible but not yet demonstrated are marked with “?”
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4.5.2 NEXT

The nuclear exosome targeting (NEXT) complex is presently the best-characterized
human exosome adaptor complex. It consists of the RNA-binding protein RBM7,
linked to MTR4 by the Zn-finger protein ZCCHC8 (Lubas et al. 2011) (Fig. 4.3).
NEXT facilitates the exosomal decay of many promoter-upstream transcripts
(PROMPTs, also called upstream antisense (ua)RNAs) and other labile ncRNAs,
like enhancer RNAs (eRNAs) (Lubas et al. 2011, 2015; Meola et al. 2016). More-
over, it mediates the exosomal trimming of 30-end extensions of snRNAs, snoRNAs,
and histone-encoding mRNAs (Lubas et al. 2011, 2015).
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Fig. 4.3 The exosome and its cofactors in the human cell nucleus. Human exosome cofactors
NEXT (MTR4, ZCCHC8, and RBM7) and PAXT (MTR4, ZFC3H1, and PABPN1) are present in
the nucleoplasm. PAXT targets poly(A)+ lncRNAs, including the subclass hosting intronic
snoRNAs (“sno-host RNA”), and mRNAs. NEXT facilitates decay of numerous unstable tran-
scripts (i.e., some PROMPTs, eRNAs, and spliced-out introns) and the 30 processing of
pre-snRNAs, pre-snoRNAs, and replication-dependent histone (RDH)-encoding mRNAs. Both
PAXT and NEXT bind to the CBCA complex (CBC80, CBC20, ARS2) via the protein ZC3H18,
but a functional role of CBCA in exosomal decay has primarily been shown for NEXT targets.
Cofactors in human nucleoli include hTRAMP (MTR4, ZCCHC7, PAPD5) and the MTR4-
interacting protein NVL. In addition, human MTR4 associates with NOP53 and UTP18, suggesting
a conserved role of these proteins, even though the AIM domain is only conserved in NOP53.
Nucleolar cofactors facilitate pre-rRNA processing and decay of processing by-products. Asterisks
denote enzymatic activities. Question marks are used to symbolize that roles of UTP18 and NOP53
have not been demonstrated in humans. See text for more detail

4 The Nuclear RNA Exosome and Its Cofactors 123



Human snRNAs and histone-encoding mRNAs are produced from autonomous
TUs using specialized transcription termination mechanisms based on the Integrator
and CPSF complexes, respectively (Guiro and Murphy 2017; Marzluff and Koreski
2017). In contrast, most human snoRNAs are hosted within the introns of
pre-mRNAs and pre-ncRNAs, where from they are produced by the trimming of
excised intron 50 ends by the exonuclease XRN2 and 30 ends by the exosome (Valen
et al. 2011). RBM7 Individual-nucleotide resolution Cross-Linking and Immuno-
Precipitation (iCLIP) experiments demonstrated that the protein promiscuously
contacts RNAs in a manner unlikely to involve sequence-specific target recognition
(Lubas et al. 2015). Thus, RBM7 binding appears to only be consequential in
combination with the presence of an unprotected 30-end. At the same time, RBM7
also interacts with the splicing factor SF3B2 (also termed SAP145), which likely
underlies the enriched binding of RBM7 to intronic 30 ends and explains how NEXT
facilitates the exosomal decay of intronic regions (Falk et al. 2016).

Interestingly, RBM7 gets phosphorylated upon cellular UV damage, which
debilitates the ability of the protein to bind RNA without otherwise affecting
NEXT complex integrity (Blasius et al. 2014; Tiedje et al. 2015). This provides a
first characterization of a posttranslational modification of an RNA exosome cofac-
tor, and a further delineation of its physiological consequence(s) and mechanistic
background will be revealing for how nuclear RNA decay might be regulated in
response to external stimuli.

4.5.3 PAXT

A third human MTR4-containing complex assembles around the stable MTR4–
ZFC3H1 dimer (Meola et al. 2016). ZFC3H1 and MTR4 depletions both lead to
the accumulation of the mature products of some snoRNA host genes as well as
numerous other nuclear transcripts (Meola et al. 2016; Ogami et al. 2017). Many
ZFC3H1-specific targets are also stabilized upon depletion of the nuclear poly(A)-
binding protein PABPN1, and exosomal decay depends on their polyadenylation by
the canonical poly(A) polymerase PAP prompting the idea of a so-called
PAP-mediated RNA decay (PPD) pathway (Beaulieu et al. 2012; Bresson and
Conrad 2013; Bresson et al. 2015; Meola et al. 2016). The PPD pathway was
originally suggested to primarily affect ncRNAs, but transcriptome-wide analysis
of ZFC3H1 and PABPN1 inactivation indicated that mRNAs are also frequently
targeted (Meola et al. 2016; Silla et al. 2018). Taken all evidence together, the
emerging picture suggests that PABPN1 binding to RNA poly(A) tails will lead to
recruitment of the exosome via MTR–ZFC3H1 unless the RNA manages to escape
the nucleus (Meola and Jensen 2017). Consistently, PABPN1 associates with MTR4
in a ZFC3H1-dependent manner (Meola et al. 2016), yet, this interaction is less
robust than that of the core MTR4–ZFC3H1 dimer, inspiring the proposition of a
“poly(A) exosome targeting” (PAXT) connection, comprising MTR4, ZFC3H1, and
PABPN1 (Meola et al. 2016) (Fig. 4.3). The term “connection” recognizes that this
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is not a stable complex and the suboptimal binding of PABPN1 may indeed help
explain how stable polyadenylated transcripts evade decay (see below).

ZFC3H1 and PABPN1 are the human homologs of the S. pombe Red1 and Pab2
MTREC components, suggesting an overall conserved function between PAXT and
MTREC in the decay of polyadenylated nuclear RNA, including mRNA.

4.5.4 The Nuclear RNA Cap-Binding Complex

Both NEXT and PAXT components can be physically bridged to the nuclear 50

cap-binding complex (nCBC) and nCBC proteins also co-IP the nuclear exosome
(Andersen et al. 2013; Lubas et al. 2011; Meola et al. 2016). The link between
NEXT/PAXT and the nCBC is mediated by the ZC3H18 protein, which further
binds to the nCBC proteins Cbp20 and Cbp80 (also termed NCBP1 and NCBP2) via
the protein ARS2 (also termed SRRT) (Giacometti et al. 2017) (Fig. 4.3). Individual
depletion of all of these proteins leads to the stabilization of some nuclear exosome
substrates, suggesting that nCBC in some instances contribute to exosome recruit-
ment (Andersen et al. 2013; Iasillo et al. 2017). In addition, nCBC and ARS2, but
neither ZC3H18 nor NEXT, are required for the efficient termination of RNAPII
transcription at PROMPT, snRNA, and histone mRNA TUs, which suggests an
active coupling between transcription termination and decay (Andersen et al. 2013;
Iasillo et al. 2017). This is reminiscent of budding yeast NNS activity, which also
promotes transcription termination before offering substrates to the exosome for
decay. nCBC components are also part of S. pombe MTREC (Egan et al. 2014; Lee
et al. 2013; Zhou et al. 2015), suggesting an omnipresent role of the RNA 50 cap in
facilitating nuclear 30–50 decay. While this at first sight seems counterproductive due
to the unwanted targeting of capped RNAs with functional roles in the cell, it may
indeed provide an important connection, enabling the quality control of capped
transcripts.

4.6 Nuclear Decay vs. RNA Export

An emerging concept in RNA biology suggests that nuclear RNA decay, as
described above, is in competition with RNA nuclear export, to prevent the cyto-
plasmic appearance of too many nonfunctional molecules. In line with this notion,
there are clear indications that nuclear exosome cofactors impact RNA export. This
is perhaps best exemplified by the nCBC and ARS2 (forming the CBCA complex),
which also actively facilitates RNA export by interacting with the “phosphorylated
adaptor for RNA export” (PHAX) protein (Giacometti et al. 2017; Hallais et al.
2013). Interestingly, this interaction is mutually exclusive with the binding of
ZC3H18 to the CBC, which would otherwise bridge the CBCA complex to the
exosome adaptors NEXT and PAXT (Giacometti et al. 2017). Moreover, the nuclear
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mRNA export factor ALYREF binds at transcript 50- and 30-ends via interactions
with the nCBC and PABPN1, respectively (Fan et al. 2017; Shi et al. 2017). As
described above, both nCBC and PABPN1 also interact with PAXT and/or NEXT,
indicating that RNA association with exosome cofactors is generally mutually
exclusive with binding of export factors. Consistent with this idea, the PAXT
component ZFC3H1 appears to be capable of retaining RNA exosome substrates
in the nucleus, as upon depletion of ZFC3H1, numerous PAXT targets are now
found in the cytoplasm where they may even engage in translation (Ogami et al.
2017; Silla et al. 2018). This ability of ZFC3H1 to counter untimely RNA export
appears to reach beyond simply preventing the binding of export factors as exosome
substrates accumulating in exosome-depleted cells concentrate in ZFC3H1-
dependent subnuclear aggregates (Silla et al. 2018). ZFC3H1 contains long low
complexity regions, suggesting a direct role of ZFC3H1 in forming such foci, which
probably reflect RNP complexes formed to prevent their unsolicited export from the
nucleus.

But what then decides how RNAs are chosen for decay or export? Targeting of
polyadenylated RNAs for exosomal decay mediated by PAXT or MTREC involves
PABP recruitment, which occurs not only on exosome targets but also on to stable
mRNAs. This conundrum has inspired the so-called nuclear timer model, where
PABPs serve to initially protect poly(A) tailed RNA only later to elicit decay of
transcripts that remain nuclear (Libri 2010; Meola and Jensen 2017). Mechanisti-
cally, this could be achieved through transient interactions of PABPN1/Pab2 with
MTR4–ZFC3H1/Mtl1–Red and the exosome, leading to the slow assembly of a
decay-promoting complex and avoiding decay of timely exported mRNAs (Meola
et al. 2016).

4.7 Concluding Remarks

The nuclear RNA exosome partakes in the processing and/or decay of virtually all
types of transcripts. Being able to handle such diverse tasks depends on exosome
interaction with a number of adapter proteins as described above. This places the
RNA exosome as a central player in cellular RNA metabolism. It may therefore
come as no surprise that the RNA exosome and some of its cofactors have been
linked to various disease states. For example, the exosome subunit DIS3 is recur-
rently found mutated in multiple myeloma, and mutations in several exosome core
subunits are linked to inherited neurodegenerative diseases (Morton et al. 2017;
Robinson et al. 2015). In addition, the RNA exosome and its cofactors also figure in
the arms races occurring between viruses and their hosts. This is exemplified by
influenza viruses, which, on one hand, have been shown to actively hijack the
nuclear RNA exosome to produce RNA fragments required for priming transcription
of their genomes (Rialdi et al. 2017), while, on the other hand, the cellular defense
against other types of RNA viruses involves export of hTRAMP proteins to the
cytoplasm to aid in the decay of viral RNA (Molleston et al. 2016). Although still
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immature, these examples provide a glimpse of the central role of the nuclear RNA
exosome in cell biology. While the composition and function of basic exosome
machinery is now reasonably understood, much still remains to be learned about the
regulation and cellular function of the various exosome cofactors and their relation to
cell physiology in different systems.
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