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Abstract. Model-based approaches to AI are well suited to explainabil-
ity in principle, given the explicit nature of their world knowledge and
of the reasoning performed to take decisions. AI Planning in particu-
lar is relevant in this context as a generic approach to action-decision
problems. Indeed, explainable AI Planning (XAIP) has received interest
since more than a decade, and has been taking up speed recently along
with the general trend to explainable AI. In the lecture, we provide an
overview, categorizing and illustrating the different kinds of explanation
relevant in AI Planning; and we outline recent works on one particular
kind of XAIP, contrastive explanation. This extended abstract gives a
brief summary of the lecture, with some literature pointers. We empha-
size that completeness is neither claimed nor intended; the abstract may
serve as a brief primer with literature entry points.

1 Explainable AI Planning: Overview

The need for explainable AI (XAI) first became prominent in Machine Learn-
ing, where the lack of understandable decision rationales is particularly daunting.
Model-based techniques are fundamentally better suited to providing explana-
tions, yet their explainability has traditionally not received much interest. This
has changed with the XAI trend. In particular, research on explainable AI plan-
ning (XAIP) has received increasing interest in recent years. One culminating
point of this trend is the nascent series of XAIP workshops1 at the International
Conference on Automated Planning and Scheduling (ICAPS).

As is natural for a nascent area, at this time the XAIP landscape is still
in the making. XAIP has attracted interest from researchers with widely dif-
ferent backgrounds and points of view, and it is too early to give a conclusive
systematization into sub-topics and issues of interest. A roadmap for XAIP was

1 See the 2019 edition at https://kcl-planning.github.io/XAIP-Workshops/ICAPS
2019.
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proposed by Fox et al. [10], categorizations have been attempted [16], and a sys-
tematization of possible objectives has just been published [6]. XAIP includes
topics ranging from epistemic logic to machine learning, and techniques rang-
ing from domain analysis to plan generation and goal recognition. Nevertheless,
some major themes have emerged, that we refer to here as plan explanation,
contrastive explanation, human factors, and model reconciliation.

Plan explanation is the oldest branch of XAIP. It aims at helping humans
to understand the inner workings of a plan suggested by the system (e. g.,
[1,2,13,17,20,24,27]). This involves, in particular, the transformation of planner
output into forms that humans can easily understand; the description of causal
and temporal relations between individual plan steps; and the design of inter-
faces, in particular suitable dialogue systems, supporting human interaction and
understanding.

In contrastive explanation, the aim is to answer user questions of the kind
“Why do you suggest to do A here? (rather than B which seems more appro-
priate to me)”. This is a frequent form of question as highlighted by a recent
analysis [19] of lessons to be learned for XAI from social sciences. Answers to
such questions take the form of reasons why A is preferable over B. Contrastive
explanation is the major focus of this lecture, so we discuss it in more detail in
Sects. 2 and 3.

Human factors research naturally has to be a major component of XAIP,
whose ultimate aim is to communicate with human users. Manuela Veloso and
her team investigate verbalizations describing the robot experience and inten-
tions to human users [22]. Other work [29] focuses on a human’s interpretation
of plans. Learning is used to create a model of the interpretation, which is then
used to measure the explicability and predictability of plans. A recent proposal
is to combine cognitive measures with epistemic planning [21]. Many works, also
ones cited here as belonging to other themes, include human factors research to
varying degrees.

In model reconciliation, the focus is on the agent vs. human having different
world models. The explanation must then identify and reconcile the relevant
model differences. This has been intensively investigated in the last years [4,
15,23,28], with mature results and outreach to the robotics [7] and multi-agent
communities [12].

There are of course various works on XAIP, or relating to XAIP, that do not
fit into this categorization. To name but a few examples: Göbelbecker et al. [11]
proposed a framework for “excuses”, which can be viewed as explanations why
a planning task is unsolvable; Smith [25] put forward the challenge of planning
as an iterative process, which among others requires explanation facilities; and
some work has considered particular forms of communication like lying [5].

2 Contrastive Explanations

As mentioned, an important type of questions in Explainable Planning are con-
trastive questions, of the form “Why action A instead of action B?”. These
questions arise when the planner is suggesting something different from what
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the user would expect. In such a scenario, one way to address this type of ques-
tion is to allow the user to compare the plan suggested by the planner with what
she/he was expecting. These are contrastive explanations that can highlight the
differences between the decisions that have been made by the planner and what
the user would expect, as well as to provide further insight into the model and
the planning process. A detailed analysis of contrastive explanations in AI has
been proposed by Tim Miller in [18].

Some recent work introduced contrastive explanations for Explainable Plan-
ning. In particular, in [14] contrastive questions are compiled into constraints
that form a hypothetical model. Such a hypothetical model can be used to gen-
erate the hypothetical plan that the user would expect and from here the con-
trastive explanation can be presented to the user. The work focuses on temporal
planning and presents domain-independent compilations.

Another related line of work focuses on providing contrastive explanations
as a service [3]. Here the idea is to create a wrapper around an existing planner
and use automatic compilations of user questions into models. In this way, the
explanations are generated using the same planner already used by the user, and
this increases the user confidence in the explanations provided.

In the lecture we give an overview of recent progress on using contrastive
explanations for Explainable Planning.

3 Contrastive Explanation of Plan Space Through
Plan-Space Dependencies

We finally consider a line of work, conducted by the authors, starting from the
idea to answer questions “Why does the plan π start with action A rather than
B?” by generating a new plan π′ starting with B and highlighting undesirable
properties of π′. A weakness of this approach is that there may be differences
between π and π′ unrelated to the use of A vs. B. Many comparison aspects
(e. g. which other actions are used, or which “soft” objectives are satisfied) may
be affected by arbitrary decisions in the planner’s search. Therefore, the idea is
to replace the existential answer generating a single alternative plan π′ with a
universal answer pertaining to all possible such alternatives.

This can be done at the level of plan properties: Boolean functions on plans
that capture aspects of plans the user cares about (whether or not the plan
starts with a particular action, whether or not a particular soft objective is
satisfied, etc). Given a set of plan properties, one can determine dependencies
across these properties, i. e., plan-space entailments: a plan property p entails
another property p′ if every plan that satisfies p also satisfies p′. A user question
“Why does the current plan π satisfy p rather than q?” can then be answered
in terms of the properties q′ not true in π but entailed by q: things that will
necessarily change when satisfying q.

We put forward, and explain in the lecture, a generic framework for this
kind of analysis, as well as an instantiation and experiments in the context of
oversubscription planning [8,26] where resources are insufficient to achieve all
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goals, and plan properties of obvious interest are those goals achieved by a plan.
A first paper on this approach is published at XAIP’19 and serves as a reference
for the reader interested in details [9].
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