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Abstract. Constraints are ubiquitous in artificial intelligence and oper-
ations research. They appear in logical problems like propositional sat-
isfiability, in discrete problems like constraint satisfaction, and in full-
fledged mathematical optimization tasks. Constraint learning enters the
picture when the structure or the parameters of the constraint satis-
faction/optimization problem to be solved are (partially) unknown and
must be inferred from data. The required supervision may come from
offline sources or gathered by interacting with human domain experts
and decision makers. With these lecture notes, we offer a brief but self-
contained introduction to the core concepts of constraint learning, while
sampling from the diverse spectrum of constraint learning methods,
covering classic strategies and more recent advances. We will also dis-
cuss links to other areas of AI and machine learning, including concept
learning, learning from queries, structured-output prediction, (statisti-
cal) relational learning, preference elicitation, and inverse optimization.

Keywords: Machine learning · Constraint satisfaction ·
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1 Introduction

Constraint learning is the task of acquiring constraint satisfaction or optimiza-
tion problems from examples of solutions and non-solutions or other types of
supervision. This document overviews selected topics in constraint learning and
has no ambition of completeness. More specifically, we will discuss learning
of hard constraints, which implicitly define a satisfaction problem; learning of
soft constraints, where competing constraints are assigned different preferences;
and interactive learning of hard or soft constraints, where the learning algo-
rithm obtains supervision by interacting with an oracle (e.g. a human expert,
a non-expert, a measurement apparatus). For a more in-depth guide to con-
straint learning and related areas, we refer the interested reader to the works by
O’Sullivan [35], Bessiere et al. [9], Lombardi et al. [30], and De Raedt et al. [15].
Further pointers to the literature are provided in Sect. 6.

Why Constraint Learning?

Constraints are extremely popular from a modeling perspective, and appear in all
sort of satisfaction and optimization problems in both artificial intelligence and
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operations research. Plenty of frameworks for modelling and solving problems
involving constraints exist, from propositional satisfiability (SAT) and linear
programming (LP), to constraint satisfaction [42], to more sophisticated alter-
natives that combine combinatorial and numerical elements, like mixed-integer
linear programming (MILP). Given a formal specification of a constraint satis-
faction or optimization problem of interest, it is often sufficient to feed it to an
appropriate solver to obtain an appropriate solution1.

A major bottleneck of this setup is that obtaining a formal constraint theory
is non-obvious: designing an appropriate, working constraint satisfaction or opti-
mization problem requires both domain and modeling expertise. For this reason,
in many cases a modeling expert is hired and has to interact with domain expert
to acquire informal requirements and turn them into a valid constraint theory.
This process is can be expensive and time consuming.

The idea is then to replace or assist this process by acquiring a constraint
theory directly from examples. In the simplest setting, when learning hard
constraints—which implicitly define constraint satisfaction models like propo-
sitional concepts [54], satisfiability modulo theory formulas [5], and general con-
straint theories over discrete variables [9]—one is given a data set of positive and
negative configurations and searches for a theory that covers (i.e. classifies as fea-
sible) all of the positive examples and none of the negative ones. At its core, this
is a form of concept learning [9]. Several variants and extensions of this setup
have been proposed, including learning of soft constraints [41], which can be
violated and are assigned different degrees of importance, and full-fledged opti-
mization problems [36]. In the following, we will briefly cover the most prominent
of these settings.

Of course, in practice the learned constraint theory may be approximate or
wrong. In this case, two things can occur: either more data is provided and
the theory is refined accordingly, or a human expert can revise the model via
inspection and debugging. Here the goal is not to replace human experts, but
rather to aid them by generating a reasonable initial theory consistent with
all available supervision. Notice that in some settings the model does not have
to be perfect. For instance, in recommendation the goal is to acquire a soft
constraint theory that knows enough about the preferences of the target user
to be able to provide reasonable personalized recommendations: so long as the
model manages to identify some interesting products, the goal is met [39]. In this
case, approximate models are acceptable and no human intervention is needed.

Dimensions of Constraint Learning

Formalisms and approaches to constraint learning can be roughly grouped based
on three criteria:

1 One should of course keep in mind that many constrained satisfaction/optimization
problems can be NP-hard, so obtaining a solution in an acceptable time may still be
tricky; see below for some examples.
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(a) The type of constraints being learned. One can learn hard constraints, which
define pure satisfaction models, soft constraints, which implicitly define opti-
mization models, or (in principle) both. We will consider approaches to
learning hard and soft constraints in Sects. 3 and 4, respectively. There is
essentially no literature on learning both hard and soft constraints, so we
will skip this topic.

(b) The technique used to represent and search over the set of candidate con-
straints or constraint theories. We will consider both search-based and
syntax-guided synthesis approaches for learning hard constraints in Sect. 3,
as well as optimization-based approaches in Sects. 4 and 5.

(c) Whether learning occurs from a pre-existing data set (passive learning) or by
interactively asking questions to an oracle (interactive learning). Section 5 is
dedicated to this last setting.

In the next Section, we proceed by introducing a simple, general formalism for
expressing hard and soft constraint theories.

2 Constraint Theories

There are a number of successful formalisms for modeling and solving constraint
programming problems [42]. In this overview we will restrict ourselves to a very
general but minimal notation, to avoid as much overhead as possible.

Let us start by establishing some basic notation. In the following, variables
will be written in upper-case X, constants in lower-case x, and value assignments
X = x. For simplicity, all variables will take values in the same domain X ⊂ Z or
X = R, unless otherwise specified. Vectors of variables will be written in upper-
case bold X = (X1, . . . , Xn) and total value assignments X1 = x1∧. . .∧Xn = xn

simply as X = x. Total assignments are also called configurations. The indicator
function 1 {ϕ} evaluates to 1 if condition ϕ holds and to 0 otherwise. Throughout
the paper, we will use the terms “model”, “constraint theory”, and “constraint
satisfaction/optimization problem” interchangeably.

In our simple framework, a constraint theory (or constraint network [9]) is
defined by a set of variables X and by a set of constraints c1, . . . , cm. A constraint
with n arguments cj(X1, . . . , Xn) distinguishes between feasible and infeasible
configurations. For instance, the constraint cj(X1,X2) = X1∨X2, where X1 and
X2 are Boolean, specifies that the configurations (true, true), (true, false),
and (false, true) are feasible, while (false, false) is not. A constraint with
n arguments can be more formally defined as an n-ary relation [9], but we will
leave such technicalities aside. Further, constraints over continuous variables
are also possible, e.g., consider the linear constraint 2X1 − 3X2 ≤ 15 or the
mixed non-linear constraints ¬Slim =⇒ (H < 110) ∨ (π · R2 ≥ 1000), where
X1,X2,H,R ∈ R and Slim is Boolean. The set of constraints c1, . . . , cm is usually
implicitly conjoined, but keep in mind that this does not hold for soft constraint
theories; see Sects. 4 for some counter-examples.

In this overview, we will consider different kinds of constraint theories over
both discrete and continuous variables, including:
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– Propositional logic theories (or formulas) consist of Boolean variables, X =
{true, false}, combined with the usual logical connectives: conjunction ∧,
disjunction ∨, and negation ¬. Propositional formulas are most often encoun-
tered in conjunctive or disjunctive normal form. An example may be:

(Saturday ∨ Sunday) ∧ Sunny ∧ ¬Bored ∧ ¬Sick

which is a possible definition for the concept of “fun weekend”. The main
inference task is satisfiability (SAT) [21], where the goal is to find a total
value assignment X = x that renders the theory true. Extensions include
MAX-SAT and weighted MAX-SAT, which will be discussed later.

– Constraint networks [9] leverage pure propositional logic to general discrete
variables and arbitrary constraints, for instance inequality relations ≤, =, 	=,
. . . and global constraints like all-different. Inference is once again a form of
satisfaction.

– Satisfiability modulo theories (SMT for short) extend propositional logic with
one or more decidable theories T [5]. For instance, satisfiability modulo linear
real arithmetic (SMT(LRA)) combines logic with linear arithmetic over the
reals, and therefore introduces continuous variables and arbitrary linear con-
straints over them. An example SMT(LRA) formula for describing a happy
outdoor weekend is:

(Saturday ∨ Sunday) ∧ (Rain + SoilHumidity ≤ 2)

Other decidable theories include linear integer arithmetic, bit-vectors, and
uninterpreted functions, but we will stick to LRA for simplicity. In this case
inference is also a form of satisfaction.

– Linear programs (LP) include both a linear objective function of real variables
and a set of implicitly conjoined linear constraints [52]. An LP in canonical
form is written as:

max
x

f�x

s.t. a�
j x ≤ bj ∀j = 1, . . . , m

Here f is a constant vector that defines the (gradient of) the objective func-
tion while a1, . . . ,am and b1, . . . , bm specify m linear constraints. Mixed-
integer linear programs (MILP) have the same form, but allow both contin-
uous and integer variables.
Notice that, for both LPs and MILPs, inference is a form of optimization
rather than satisfaction, that is, the model specifies not only a feasible space
(like in standard satisfaction) but also a score over alternative feasible con-
figurations.

Of course there are many other kinds of constraint theories, e.g., in database
systems and spreadsheet software. In this case, variables can be strings or other
objects. However, we will not consider these further, and refer the interested
reader to [17,26] instead.
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3 Learning Hard Constraints

Warmup: Learning k-CNF Theories

Let us start from the simplest constraint learning problem: learning a k-CNF
formula. Such formulas are the conjunction of clauses (disjunctions) with at most
k literals each, where a literal is either a variable or its negation. For instance,
happy weekends are captured by the 2-CNF formula (Saturday ∨ Sunday) ∧
¬Rainy ∧ ¬ImminentDeadline.

Now, let there be a hidden k-CNF theory ϕ∗. Given a set of example con-
figurations labeled based on whether they are feasible with respective to ϕ∗

(positive) or not (negative), we want to recover ϕ∗ from the data only. Valiant’s
algorithm is a classic strategy to achieve this goal. The idea is simple. First,
build the set of all candidate clauses of length at most k over the variables X.
Then, taking each positive example in turn, remove from the set of candidates
all of the clauses that are inconsistent with the example. This makes sure that,
upon scanning over all positive examples, the set of candidates only contains
clauses consistent with the data set. Upon termination, the learned formula is
retrieved by taking the conjunction of all surviving clauses.

Despite its simplicity, Valiant’s algorithm is PAC (probabilistically approx-
imately correct) algorithm, meaning that the probability over all random data
sets that the algorithm works is arbitrarily high so long as there are enough
examples [54]. However, in order to work, Valiant’s algorithm requires two key
assumptions2: (a) the data set must be noiseless, i.e., there must be no measure-
ment errors on the variables and no corruption on the labels, and (b) the hidden
concept ϕ∗ must be a k-CNF formula, which is not always known in advance.
This is the so-called realizable setting. If these assumptions are not satisfied,
then the algorithm gives unreliable results.

Encoding and Searching the Space of Candidates

Let us focus on discrete variables only for the time being. During learning, it
is convenient to sort the space of candidate theories according to the generality
relation �g. A constraint c is said to be more general than a constraint c′, written
c �g c′, if and only if the feasible set of c contains the feasible set of c′, that is:

c �g c′ ⇐⇒ ∀x . (x |= c′) =⇒ (x |= c)

If c is more general than c′, then c′ is more specific than c, and vice versa. The
generality relation induces a lattice over both constraints and constraint theories,
which is perhaps the most common way to structure the space of candidates.

Once the set of candidates is given, the question becomes how to efficiently
find a candidate theory compatible with the observed examples. In this sense,

2 There are other technical assumptions over the distribution of the examples, which
will be ignored for simplicity.
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Valiant’s algorithm can be viewed as a generate-and-test algorithm: it enumer-
ates all candidates and then discards all of the ones incompatible with the data.
In doing so, it keeps track of the most specific candidate theory. Beyond Valiant’s
algorithm, there exist notable examples of generate-and-test learners, led by the
impressive ModelSeeker [7] approach to acquiring global constraints. But let us
briefly consider alternative search strategies too.

There are three classic approaches to searching the space of candidates, all
based on the above lattice structure:

– General-to-specific (aka top-down) approaches start from the most general
concept (namely, true) and gradually specialize it according to the examples
by introducing extra constraints that exclude the observed negatives from the
feasible space of the learned theory.

– Specific-to-general (aka bottom-up) approaches, unsurprisingly, do the con-
verse: they start from a most specific theory or set of theories and incre-
mentally generalize them. It is often the case that the most specific theory
is simply the disjunction of all positive examples—which, unless the data is
inconsistent, excludes all negative examples. Generalization then boils down
to removing constraints or removing conditions from constraints so to enlarge
the feasible space of the candidate theory, while keeping all negatives outside
of it.

– Version space approaches keep track of the whole set of candidates at once.
The version space (VS) is indeed defined as the set of all theories that are
consistent with respect to the dataset [33], and it is the sub-lattice (induced
by the generality relation �g) between a set of most-general (top) and most-
specific (bottom) candidates.
In a discrete setting, VS learners leverage incremental bi-directional search,
whereby an initial estimate of the VS is incrementally refined iterating over
all examples, and for each example checking whether the most general theory
wrongly covers it (if it is negative) or whether the most specific candidate
wrongly excludes it (if it is positive). In either case the VS is updated.
We note in passing that version spaces are not restricted to discrete variables,
and that they are used in recent algorithms for both active learning [20] and
preference elicitation [12].

In more general terms, learning of hard constraints can be viewed simply as a
search problem, and therefore any search algorithm can in principle be used,
including stochastic local search, genetic algorithms, etc.

It is worth remarking that, in most cases of interest, the set of candidates is
exponential in the number of variables. For instance, for k-CNF, given v vari-
ables one can build 2v literals, and thus (2v)k potential clauses out of them.
Learning approaches use smart strategies to avoid enumerating such a humon-
gous set. Perhaps the simplest solution is to leverage the generality relation, by
automatically excluding all constraints that are more general than an already
excluded one. Alternative approaches include restricting the space of hypothe-
ses by introducing background knowledge, e.g., by restricting the value of k or
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the initial set of candidates. Providing constraint templates to be filled in, as in
sketching [48], is also an option. A sensible alternative is to compactly represent
the space of candidates using a satisfaction or optimization problem. This strat-
egy is at the core of syntax-guided synthesis (SyGuS) [1,2], a general framework
for designing programs from specifications and examples. Two notable exam-
ples of SyGuS are the celebrated constraint learning Conacq [8], which encodes
the version space using a propositional formula, and Incal [27], an approach for
learning SMT(LRA) theories from examples that extends SyGuS to continuous
variables.

4 Learning Soft Constraints

Soft constraints are a powerful tool for dealing with conflicting requirements,
uncertain inputs, and imperfect specifications. Intuitively, soft constraints intro-
duce two new rules: first, it is not mandatory to satisfy soft constraints, and
second, some soft constraints are more important than others [10,42]. There-
fore, if two soft constraints are incompatible, the most preferable one should be
satisfied.

Soft Constraints with Linear Preferences

In their most general form, preferences over soft constraints can be encoded as a
binary relation. Although very flexible, in the worst case encoding a relation over
m soft constraints requires m2 parameters. This is very cumbersome both when
manually designing the constraint theory and when learning it from examples.

For this reason, we will focus on a more agile alternative, where the absolute
importance of a constraint is determined by an objective function associated
to it. The overall quality of a configuration is then given by the sum of the
importances of the soft constraints that it satisfies. More formally, a theory in
this form includes:

– m soft constraints s1, . . . , sm, each associated to an objective function wj :
X → R, j = 1, . . . ,m, and

– k hard constraints h1, . . . , hk that must be satisfied.

Finding the most preferable (aka optimal or highest scoring) configuration x∗

is accomplished by maximizing the total weight fw (x) of the soft constraints it
satisfies3, as follows:

x∗ = argmax
x

fw (x) :=
m∑

j=1

wj(x)1 {x |= sj} (1)

s.t. x |= hj ∀j = 1, . . . , k (2)

3 Notice that the optimal configuration may not be unique, and that all optima have
the same score.
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The computational complexity of this inference problem depends on the type
of constraints and objective functions appearing above, but in most cases of
interest (like MAX-SAT below) it is NP -hard or beyond.

Although more general alternatives exist, such as semiring-based con-
straints [10], we will stick to our simple framework because: (1) it captures many
prominent settings, from weighted maximum satisfiability (weighted MAX-SAT)
up to optimization modulo theories [44], and (2) soft constraint theories in the
above format can be easily learned with high-quality machine learning algo-
rithms, as discussed next.

Learning Weighted MAX-SAT from Annotated Configurations

In weighted MAX-SAT, the soft constraints s1, . . . , sm are arbitrary logic formu-
las and the per-constraint objective functions are constants wj(x) ≡ wj ∈ R. In
the simplest case, no hard constraints are present. Inference boils down to finding
a configuration x that maximizes the total weight of the satisfied formulas:

max
x

fx(x) :=
m∑

j=1

wj1 {x |= sj} (3)

This problem is notoriously NP-complete, but in can be solved efficiently in
many practical cases [21].

Let us now consider perhaps the simplest possible learning scenario. We
assume that there is a latent, unknown weighted MAX-SAT problem with param-
eters w∗ ∈ R

m. We cannot observe this latent model, but we do know the dic-
tionary of soft constraints s1, . . . , sm. Further, we are given a data set of exam-
ple configurations x1, . . . ,xn annotated with their own scores according to the
unknown theory, i.e., yi =

∑
j w∗

j1 {xi |= sj} for all i = 1, . . . , n. The configu-
rations xi are assumed to be sampled at random according to some underlying
distribution, and no implicit guarantee is given as for their quality.

The goal of learning is to induce a model w that behaves similarly to the
latent one w∗. For the time being, we will consider a model good so long as
the estimated parameter vector w scores the examples similarly to the hidden
model. Since we have access to the value of the true objective function yi for all
example configurations, finding an appropriate parameter vector can be cast as
a regression problem, namely:

ŵ = argminw∈Rm

∑n
k=1(yi − fw (xi))2 (4)

Now, notice that the function fw (x) is linear with respect to the basis defined
by the indicator functions {1 {x |= sj} : j = 1, . . . ,m}. This means that Eq. 4
can be cast as linear regression and solved using standard regression techniques.

A very nice property of this setup is that linear regression works well even
if the supervision yi is moderately corrupted, and it provides a bridge to robust
regression techniques for different kinds of noise.
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One should keep in mind, however, that supervision on the per-instance scores
yi may not be readily available. This happens for instance when eliciting prefer-
ences from decision makers, who may be unable to state a numerical score. For
this reason, we consider two alternative forms of supervision, namely pairwise
rankings and input-output pairs, and show how to learn soft constraint theories
from them.

Learning from Rankings

Let us start from pairwise rankings. In this case, we are given n pairs of config-
urations {(xi,x

′
i) : i = 1, . . . , n}, where each pair is implicitly ranked according

to the preference relation xi � x′
i ⇔ fw∗(xi) ≥ fw∗(x′

i). The goal of learning is
then to find a parameter vector w that ranks all of the example pairs correctly,
or more formally:

find w (5)
s.t. fw (xi) − fw (x′

i) ≥ 0 ∀i = 1, . . . , n (6)

The above constraint can be shown to be linear (in the indicators) by rewrit-
ing it as

∑m
j=1 wj(1 {xi |= sj} − 1 {x′

i |= sj}) ≥ 0. Notice that, even though
the model is acquired from ranking data, we use it to compute high-scoring
configurations, as per Eq. 3.

One issue with the above formulation is that simply conforming to the super-
vision does not guarantee that the learned vector w generalizes well to unseen
pairs. This means that the learned function fw may fail to rank the true optima
above all other configurations. In order to address this, following principles from
statistical learning theory [43,55], it is customary to look for a vector w that
correctly ranks all pairs by the largest possible margin, that is:

max
w ,µ≥0

μ (7)

s.t. μ ≤ fw (xi) − fw (x′
i) ∀i = 1, . . . , n (8)

where μ ∈ R measures the margin. It turns out that maximizing μ is geometri-
cally equivalent to minimizing the (squared) Euclidean norm of w ([43], Chap. 1),
and so the above can be rewritten as the following quadratic convex optimization
problem:

min
w

1
2
‖w‖22 (9)

s.t. fw (xi) − fw (x′
i) ≥ 0 ∀i = 1, . . . , n (10)

Finally, if the observations xi are noisy or their rankings are inconsistent, as it
the case when the examples define cycles like x1 � x2 � . . . � x1, then it may
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be impossible to find a non-zero vector w that simultaneously satisfies Eq. 10
for all examples. A common solution is to introduce slack variables ξi ∈ R that
measure the “degree of violation” for every example k = 1, . . . , n:

min
w ,ξ

1
2
‖w‖22 +

λ

2

s∑

k=1

ξi (11)

s.t. fw (xi) − fw (x′
i) ≥ ξi ∀i = 1, . . . , n (12)

This is the well-known formulation of ranking support vector machine (SVM),
a now classical machine learning algorithm for learning to rank, originally con-
ceived for ranking results in search engines [23]. The constant λ ≥ 0 controls
the trade-off between generalization (first term) and error on the training set
(second term), and it is assumed to be given.

Although earlier works focused on solving the above optimization problem
(OP) in the dual (cf. [40]), current state-of-the-art approaches rely on gradient-
based optimization in the primal [46]. Practitioners need not worry about these
details, since efficient (ranking) SVM solvers are included by default in most
machine learning libraries, like scikit-learn [37] and Weka [19].

Learning from Input-Output Pairs

Input-output pairs are another popular form of supervision. Let U and V par-
tition the set of variables (i.e., X = U ∪ V , U ∩ V = ∅). The intuition is that
the variables U act as inputs and thus are always known and fixed, while V are
outputs and can be optimized over.

The data set, in this case, consists of n input-output pairs {(ui,vi) : i =
1, . . . , n}, where for any partial assignment ui, the output vi is chosen optimally
w.r.t. the latent parameters w∗, that is:

vi = argmax
v

fw∗(ui ◦ vi) (13)

Here ◦ indicates vector concatenation. This kind of supervision is common in
machine learning tasks that require to learn a map from structured inputs to
structured outputs, like text parsing (where a sentence u is mapped to a parse
tree v) or image segmentation (an image u is mapped to a set of labeled segments
v), but it is also used in constraint learning, where the distinction between input
and output variables is less well-defined [51].

In order to learn from input-output pairs, we adapt the training procedure
of structured-output support vector machines (SSVM) [53], see [24] for a gentler
introduction. Given an example (ui,vi) and an arbitrary vector w, let v′ be the
output of Eq. 4 when using ui as input and w as parameters. Also, let Δ(vi,v

′)
be a distortion function4 that measures the difference between the correct output
vi and the predicted one v′.
4 For technical reasons, the distortion is often assumed to lie in the range [0, 1], see [32].
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The intuition behind structured-output SVMs is that the vector w should be
chosen so that, for any example, the predicted output has low distortion. This
can be formalized as follows5:

max
w ,ξ

1
2
‖w‖22 +

λ

2

s∑

k=1

ξi (14)

s.t. fw (ui ◦ vi) − fw (ui ◦ v′′) ≥ Δ(vi,v
′′) − ξi ∀v′′ 	= vi ∀i = 1, . . . , n (15)

The objective function is the same as for ranking data. The constraint, on the
other hand, is much more complex: it requires the correct output vi to be scored
higher than any alternative output v′′ 	= vi by a margin proportional to the
distortion. This takes care of enforcing an appropriate margin between vi and
the predicted output v′ too. The per-example slacks ξi allow for scoring mistakes
in noisy data sets.

The similarity to learning to rank is striking, but solving this optimization
problem is trickier, because the number of alternative outputs v′ can be very
(exponentially) large. This means that Eq. 15 has to be enforced over an enor-
mous amount of configurations. In order to solve this OP, the most straight-
forward approach is to employ cutting planes, which we will not discuss. We
refer the interested reader to [24] instead.

Learning more General Constraint Theories

A striking property of the OPs described in the previous sections is that they
are relatively agnostic to the particular choice of constraints and per-constraint
objective functions. Indeed, regression-based learning has been used to learn
arbitrary weighted CSPs [41], and SSVM-based learning for learning Optimiza-
tion Modulo Theories [51]. In this last case, the restriction that the per-constraint
objective functions wj(x) are constant is lifted—although the learning algorithm
remains essentially unchanged.

5 Interactive Learning

Applications where supervision is scarce and expensive are not well suited for
offline learning, because there are often too few examples to learn a reasonably
accurate model. In this case, a sensible thing to do is to acquire supervision
directly from an oracle by asking informative questions. This allows the learning
algorithm to optimize the performance/example ratio, and thus to acquire good
models at a small cost.

Notice that the oracle may be a human subject, like when eliciting constraints
(knowledge) from a domain expert [41] or preferences from an end-user [39], or

5 There exist several variants of structured-output SVM, here we opt for the simpler
one; see the references for more details.
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a full-fledged scientific apparatus, as in automated scientific experiments [25].
In the first case, the goal is to extract a (soft or hard) constraint theory from a
domain expert, who is otherwise unable to formalize and model her knowledge
upfront. The second case captures applications like interactive recommender
systems, where very little expertise (or patience!) can be expected of the human
counterpart, and any request for supervision has to be designed so to be easy to
understand and answer.

The main questions that arise when designing an interactive learning algo-
rithm are of course what kind of questions should be asked to the oracle, and
how to pick good questions. The answer to both questions is very application-
and oracle-specific, as we will see in the following.

Interactive Learning of Hard Constraints

The most straightforward approach to learning hard constraints is to trivially
select each candidate constraint hj in turn, j = 1, . . . , m, and ask the oracle
whether it appears in the latent constraint theory. Unfortunately, this naive
approach is not very useful, as it requires to consider all constraints, which can
be exponentially many in the number of variables. This procedure is therefore
unfeasible even for theories of modest size, especially if the oracle is a human
being.

A more appropriate procedure is to use membership constraints. In this set-
ting, the learner chooses an instance x and asks the user whether it satisfies the
hidden theory or not. This setup stands at the core of query-based learning [4],
a venerable and sound approach to learning. Alternative query types will be
considered later on.

Now, what is the best way to choose the query configuration x? Before pro-
ceeding, let us assume a realizable scenario, i.e., that (a) the set of hypotheses
includes the latent concept, and (b) that the oracle always answers correctly.
This is the case, for instance, if the learning problem is well engineered and the
oracle is a human domain expert, e.g., an employee who has a vested interest
in answering the questions asked by the algorithm. Under these (rather strong)
assumptions, one can resort to halving approaches, which roughly work as fol-
lows.

Learning is interactive. At all iterations, the learner keeps track of the set
of candidate theories that are consistent with respect to all answers observed so
far—i.e., the version space. The intuition is that, in each iteration, the algorithm
chooses a configuration x so that, regardless of the answer to the membership
query, the version space is reduced as much as possible. In the best possible
scenario, the version space halves at each iteration, and therefore ideally the
number of queries necessary to find the correct concept is approximately log2 |H|,
where H is the set of candidate hypotheses.

Unfortunately, this theoretically appealing approach has several flaws. First,
keeping track of the version space can be quite complicated. The best approaches
to date make use of rather convoluted schemas [8] or only store the most general
and most specific candidate theories in the version space [9]. Second, it turns out
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that in many interesting cases, choosing the (approximately) optimal instance
x is computationally intractable [31]. A simple approximation to this schema
is to choose an instance x that reduces the version space by some amount.
This is accomplished in [9] by choosing an instance whose feasibility the most
general and the most specific theories in the current version space disagree on.
Therefore, if it turns out that x is feasible, the most specific hypothesis is wrong
and it must be generalized. On the other hand, if x is actually unfeasbile, the
converse is true and the most general hypothesis must be specialized. Thus, this
strategy guarantees that the version space reduces at each iteration, and that it
eventually contains only concepts that match all examples.

Interactive Learning of Soft Constraints

Consider the following toy application: A user wishes to buy a custom PC. The
PC is assembled from individual components: CPU, HDD, RAM, etc. Valid PC
configurations must satisfy constraints, e.g. CPUs only work with compatible
motherboards [50]. In this setting, one is tasked with constructing a PC config-
uration x that is both palatable to the customer and compatible with any hard
constraints, e.g., that the CPU and the motherboard should be compatible.

As above, we cast this kind of problems as learning a weighted CSP that
captures the preferences of the customer, and that can be used to generate high-
scoring

In the following, we will consider three queries of three common kinds:

– Scoring queries. In this case, the oracle is asked to provide the true numerical
score of configuration x chosen by the learner.
Queries of this type make sense when interacting with very precise oracles,
such as measurement devices in automated scientific experiments [25], but not
as much when interacting with human oracles. Indeed, it is very difficult—
even for domain experts—to provide precise or approximate numerical scores.
This is why most scoring systems use discrete ratings, such as star ratings.
Regardless, depending on the application, other query types may be easier to
answer.

– Ranking queries. In this case, the query consists of two unlabeled configura-
tions x and x′, and the oracle is tasked with indicating the most preferable
of the two, i.e., whether fw∗(x) ≥ fw∗(x′) holds.
These queries have found ample application in interactive preference elicita-
tion and recommendation tools [39].

– Improvement queries. In this case, the algorithm chooses a single configuration
x and asks the oracle to provide an improved version x̄. Notice that the
improvement is allowed to be small or partial [47].
It is easy to see that the pair (x̄,x) implicitly defines a pairwise ranking of
the form x̄ � x, and so the supervision is the same as for ranking queries. It
is important to notice that, however, the interaction itself is different. Indeed,
improvement queries only require the human oracle to observe and analyze
a single configuration (rather than two), and synergize very well with direct
manipulation interfaces like those used in computer-assisted design.
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Notice that scoring queries lead to collecting a large data set of scoring informa-
tion, and thus learning can be cast in terms of linear regression. In the other two
cases, the collected data set contains pairwise ranking information, and therefore
learning boils down to learning to rank. Thus the techniques discussed in the
previous section can be immediately applied to the interactive case: it is just a
matter of solving a regression, ranking, or structured-output learning every time
a new answer is achieved. Although not entirely principled, this approach tends
to work well in practice.

The question is, again, how to pick the right query. Ideally, the most infor-
mative question should be chosen. Unfortunately, evaluating the true informa-
tiveness of a query based on the information available during learning is tricky.
A very simple solution is to choose a configuration x (or a pair of configura-
tions) that is maximally uncertain according to the model. More specifically, an
instance is uncertain if the entropy of the response variable (e.g. of the score, for
scoring queries) is large. Measures based on the margin are also common [45].
The major down-side of uncertainty sampling is that the uncertainty provided
by the model may be misleading, e.g., for instance if the learned theory is “over-
confident”. It is therefore customary to combine uncertainty sampling with other
strategies that lessen its reliance on the model’s estimates [45].

6 Further Reading

Learning and Optimization. The interplay between machine learning and sat-
isfaction/optimization is not limited to constraint learning. In most of machine
learning (excluding a large chunk of its Bayesian side), learning is framed as
the task of optimizing some regularized loss function with respect to the data
set [55]—hence the centrality of optimization in ML. Nowadays, the most pop-
ular solution approach are gradient descent techniques [29], but one should not
forget that there are a plethora of valid alternatives, cf. [11,49]. Some learning
frameworks go one step further, and make use of declarative constraint pro-
gramming to model and solve learning tasks like program synthesis and pattern
mining [2,18]. Another link between ML and optimization occurs in probabilistic
graphical models, structured-output prediction, and constraint learning, where
computing a prediction for an unseen instance is itself an optimization prob-
lem. There is also abundant literature on speed-up learning, i.e., on leveraging
machine learning techniques for improving the run-time of satisfaction and opti-
mization solvers; see for instance [22] for a method to accelerate branch & bound
in mixed-integer linear programming solvers. It is easy to spot a recursion here:
machine learning could in principle be used to accelerate an optimization step
which is itself part of a learning problem. While true, diminishing returns make
it difficult to exploit this loop.

Learning Hard Constraints. The task of acquiring hard constraints is surprisingly
close to concept learning [54] and binary classification: in all of these, the learner
has to acquire a hidden concept from examples. The main difference is whether
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the model in question is a constraint theory, and whether it is used in a purely
predictive manner or also for inspection, interpretation, debugging, etc. A major
advantage of constraints is that they can be verified by domain experts either
manually or with appropriate tools—and modified, if necessary. Verification of
models learned from data is often a required to guarantee the proper functioning
of the model [3], and indeed verification techniques are being actively researched
for non constraint-based models like neural networks [13].

From a search perspective, learning hard constraints is also closely related to
feature selection, pattern mining, and structure learning of probabilistic graph-
ical models [28]—e.g. Bayesian networks and Markov networks. All these tasks
revolve around efficiently encoding and searching a very large set of candidates,
and often employ similar techniques, e.g., version spaces, variants of grafting [38],
and syntax-guided synthesis [6], albeit often under different names. Inductive
logic programming, where the task is to learn first-order theories [34], can be
handled analogously, but it involves even larger search spaces.

Learning soft constraints. As for soft constraints, we focused on learning tech-
niques rooted in statistical learning theory and empirical risk minimization [55]
and max-margin methods like support vector machines [43]. Learning from input-
output examples stands at the core of structured-output prediction [24] and
learning to search [14]. One link that is seldom made is to inverse (combina-
torial) optimization, where the goal is to adjust a pre-existing (combinatorial)
optimization model such that it adheres to a set of known optimal solutions.
Unsurprisingly, this field has slowly been drifting closer to the structured-output
setting, and these two problems have recently been tackled using similar strate-
gies, see for instance [47] and [16].
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