
Explanation-Friendly Query Answering
Under Uncertainty

Maria Vanina Martinez1(B) and Gerardo I. Simari2

1 Department of Computer Science, Institute for Computer Science
(UBA–CONICET), Universidad de Buenos Aires (UBA),

C1428EGA Ciudad Autonoma de Buenos Aires, Argentina
mvmartinez@dc.uba.ar

2 Department of Computer Science and Engineering,
Institute for Computer Science and Engineering (UNS–CONICET),

Universidad Nacional del Sur (UNS),
San Andres 800, 8000 Bahia Blanca, Argentina

gis@cs.uns.edu.ar

Abstract. Many tasks often regarded as requiring some form of intel-
ligence to perform can be seen as instances of query answering over
a semantically rich knowledge base. In this context, two of the main
problems that arise are: (i) uncertainty, including both inherent uncer-
tainty (such as events involving the weather) and uncertainty arising
from lack of sufficient knowledge; and (ii) inconsistency, which involves
dealing with conflicting knowledge. These unavoidable characteristics of
real world knowledge often yield complex models of reasoning; assuming
these models are mostly used by humans as decision-support systems,
meaningful explainability of their results is a critical feature. These lec-
ture notes are divided into two parts, one for each of these basic issues. In
Part 1, we present basic probabilistic graphical models and discuss how
they can be incorporated into powerful ontological languages; in Part 2,
we discuss both classical inconsistency-tolerant semantics for ontological
query answering based on the concept of repair and other semantics that
aim towards more flexible yet principled ways to handle inconsistency.
Finally, in both parts we ponder the issue of deriving different kinds of
explanations that can be attached to query results.

1 Introduction

In this article, we address query answering under two different, though related,
approaches to uncertainty: probabilistic reasoning, and inconsistency-tolerant
reasoning—as we will see, incompleteness is another dimension to uncertainty
that can be addressed by leveraging the power of ontology languages, which
are at the core of the material that we aim to cover. We focus on Datalog+/–
[17], a family of ontological languages that was born from the database theory
community extending the well-known formalism of Datalog. This family is closely
related to Description Logics (DLs); cf. Fig. 1 for a mapping of some of the basic
c© Springer Nature Switzerland AG 2019
M. Krötzsch and D. Stepanova (Eds.): Reasoning Web 2019, LNCS 11810, pp. 65–103, 2019.
https://doi.org/10.1007/978-3-030-31423-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31423-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-31423-1_2

66 M. V. Martinez and G. I. Simari

constructs in description logics to Datalog+/– formulas—note that this is meant
only to illustrate the general relationship between the two formalisms, and that
there are constructs on either side that cannot be expressed in the other, such
as number restrictions and disjunctions in Datalog+/– and predicates of arity
greater than two in DLs.

We first put these notes into context by briefly presenting some historical
details and basic aspects of explanations in AI. Then, in Sect. 2 we provide
a brief introduction to Datalog+/–, the family of ontology languages that we
use in the rest of the text. Sections 3 and 4 then describe the two main parts:
probabilistic and inconsistency-tolerant reasoning, respectively; in each case, we
conclude the section by exploring current capabilities and next steps that can
be taken towards making these formalisms explainable. Finally, in Sect. 5 we
provide a summary and discuss a roadmap for future work in these directions.

Context: A Brief Discussion about Explanations in AI
In order to put this material into context, we would like to briefly discuss the
history surrounding one of the main topics of these notes. The meaning of expla-
nation, and the related notions of explainability and interpretability, has been
studied for quite some time in philosophy and related disciplines in the social
sciences (cf. the recent work of [40] for a survey of these aspects). Essentially, this
topic is of interest to these disciplines because explanations are usually meant
to be consumed by humans—for instance, a (human) user would like to know
why a certain weather forecast is likely to be true or, more importantly, why
they are being denied a loan at the bank. In computer science, explanations
were a core aspect of the expert systems that were developed over four decades
ago [46,53]; ever since those foundational works, logic-based formalisms have
often highlighted explainability as one of the strong points of developing AI in
such a manner, contrasting with the fact that machine learning (ML) meth-
ods may in some cases perform very well but are incapable of offering users
a satisfactory explanation. Structured argumentation is a good example,1 in
which dialectical trees are produced as part of the reasoning mechanism and
can be examined by a user in order to gain insights into how conclusions are
reached [25,26]; the work of [24] also explores how belief revision operators can
be designed using argumentation-based comparisons of alternatives, which can
also be offered as explanations. As a response to this—and the success of many
ML-based approaches on concrete problems—in recent years, there has been a
strong resurgence of research into how AI (mostly ML) tools can be made to
be explainable; the term “XAI” (for explainable artificial intelligence) was thus
born. This recent explosion in popularity has already led to interesting devel-
opments; in the context of reasoning under uncertainty (of particular interest
here), the notion of balanced explanation—giving reasons both why and why not
a given answer may be correct—is especially useful [30]. We refer the interested
reader to [1,40,44] for some recent surveys developed from different points of
view.

1 Note, however, that the human aspect is not necessarily present, since the argumen-
tation process could be carried out between software agents.

Explanation-Friendly Query Answering Under Uncertainty 67

Description Logic Assertion Datalog+/– Rule
CONCEPT INCLUSION:
Restaurant � Business restaurant(X) → business(X)

CONCEPT PRODUCT:
Food × Food � TwoCourseMeal food(X), food(Y) → twoCourseMeal(X, Y)

INVERSE ROLE INCLUSION:
InPromotionIn− � Serves inPromotionIn(F, R) → serves(R, F)

ROLE TRANSITIVITY:
(LocatedIn) locatedIn(X, Y), locatedIn(Y, Z) → locatedIn(X, Z)

PARTICIPATION:
Restaurant � ∃Serves.Food restaurant(R) → ∃F serves(R, F) ∧ food(F)

DISJOINTNESS:
City � Country � ⊥ city(X), country(X) → ⊥
FUNCTIONALITY:

(LocatedIn) locatedIn(X, Y), locatedIn(X, Z) → Y = Z

Fig. 1. Translation of several different types of description logic axioms into
Datalog+/–.

From this brief analysis we can conclude that there are many aspects that
need to be further studied in order to arrive at adequate solutions to the problem
of deriving explanations. On the one hand, logic-based models have a strong
foundation that allows them to be better poised to offer explanations, but not
much research has gone in to designing explanations that can be of use to actual
users. On the other hand, ML-based solutions typically can be made to perform
quite well on certain tasks, but there inner workings are more obscure. In these
notes, we will thus focus on taking some first steps towards explaining the results
given by two approaches to reasoning under uncertainty—we cannot hope to
solve such a formidable family of problems completely just yet.

2 The Datalog+/– Family of Ontology Languages

We now present the basics of Datalog+/– [17]—relational databases, (Boolean)
conjunctive queries, tuple- and equality-generating dependencies and negative
constraints, the chase, and ontologies. The material presented in this section is
mainly based on [47], which in turn contains some material originally appearing
in [48].

2.1 Preliminary Concepts and Notations

Let us consider (i) an infinite universe of (data) constants Δ, which constitute the
“normal” domain of a database), (ii) an infinite set of (labelled) nulls ΔN (used

68 M. V. Martinez and G. I. Simari

as “fresh” Skolem terms, which are placeholders for unknown values, and can
thus be seen as a special kind of variable), and (iii) an infinite set of variables V
(used in queries, dependencies, and constraints). Different constants represent
different values (this is generally known as the unique name assumption), while
different nulls may represent the same value. We assume a lexicographic order
on Δ ∪ ΔN , with every symbol in ΔN following all symbols in Δ. We denote
with X sequences of variables X1, . . . , Xk with k � 0.

We will assume a relational schema R, which is a finite set of predicate symbols
(or simply predicates), each with an associated arity. As usual, a term t is a con-
stant, null, or variable. An atomic formula (or atom) a has the form p(t1, . . . , tn),
where p is an n-ary predicate, and t1, . . . , tn are terms. A term or atom is ground
if it contains no nulls and no variables. An instance I for a relational schema R
is a (possibly infinite) set of atoms with predicates from R and arguments from
Δ ∪ ΔN . A database is a finite instance that contains only constants (i.e., its
arguments are from Δ).

Homomorphisms. Central to the semantics of Datalog+/– is the notion of
homomorphism between relational structures. Let A = 〈X,σA〉 and B = 〈Y, σB〉
be two relational structures, where dom(A) = X and dom(B) = Y are the
domains of A and B, and σA and σB are their signatures (which are composed
of relations and functions), respectively. A homomorphism from A to B is a
function h : dom(A) → dom(B) that “preserves structure” in the following
sense:

– For each n-ary function fA ∈ σA and elements x1, ..., xn ∈ dom(A), we have:

h
(
fA(x1, ..., xn)

)
= fB

(
h(x1), ..., h(xn)

)
,

and
– for each n-ary relation RA ∈ σA and elements x1, ..., xn ∈ dom(A), we have:

if (x1, ..., xn) ∈ RA, then
(
h(x1), ..., h(xn)

) ∈ RB.

In the above statements, the superscripts used in function and relation symbols
is simply a clarification of the structure in which they are being applied. Since
we do not have function symbols, the first condition will not be necessary here
(it is satisfied vacuously).2

For the purposes of Datalog+/–, we need to extend the concept of homomor-
phism to contemplate nulls. We then define homomorphisms from a set of atoms
A1 to a set of atoms A2 as mappings h : Δ ∪ ΔN ∪ V → Δ ∪ ΔN ∪ V such that:

2 As an aside, and using concepts that will be defined shortly, the fundamental result
linking homomorphisms to conjunctive query answering over relational databases
can be informally stated as follows: let Q be a BCQ, and J be a database instance;
then, J |= Q if and only if there exists a homomorphism from the canonical database
instance IQ (essentially, an instance built using the predicates and variables from
Q) to J [5,19].

Explanation-Friendly Query Answering Under Uncertainty 69

1. c ∈ Δ implies h(c) = c,
2. c ∈ ΔN implies h(c) ∈ Δ ∪ ΔN ,
2. r(t1, . . . , tn) ∈ A1 implies h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn))) ∈ A2.

Similarly, one can extend h to a conjunction of atoms. Conjunctions of atoms
are often identified with the sets of their atoms.

2.2 Syntax and Semantics of Datalog+/–

Given a relational schema R, a Datalog+/– program consists of a finite set
of tuple-generating dependencies (TGDs), negative constraints (NCs), and
equality-generating dependencies (EGDs).

TGDs. A tuple-generating dependency (TGD) σ is a first-order (FO) rule that
allows existentially quantified conjunctions of atoms in rule heads:

σ : ∀X∀Y Φ(X,Y) → ∃Z Ψ(X,Z) with X,Y,Z ⊆ V,

where Φ(X,Y) and Ψ(X,Z) are conjunctions of atoms. Formulas Φ and Ψ are
often referred to as the body and head of σ, respectively. By analyzing the general
form of TGDs, one can see that variables in X and Y refer to objects that
are already known, while those in Z correspond to the result of so-called value
invention. For instance, in the TGD person(X) → ∃Y person(Y) ∧ father(Y,X),
variable Y refers to a new object that is a person who is the father of X.

Since TGDs with multiple atoms in the head can be converted into sets of
TGDs with only single atom in the head [14], from now on we assume that all
sets of TGDs have only a single atom in their head. An instance I for R satisfies
σ, denoted I |= σ, if whenever there exists a homomorphism h that maps the
atoms of Φ(X,Y) to atoms of I, there exists an extension h′ of h that maps
Ψ(X,Z) to atoms of I.

NCs. A negative constraint (NC) ν is a first-order rule that allows to express
negation:

ν : ∀X Φ(X) → ⊥ with X ⊆ V,

where Φ(X) a conjunction of atoms; formula Φ is usually referred to as the body
of ν. An instance I for R satisfies ν, denoted I |= ν, if for each homomorphism
h, h(Φ(X,Y)) �⊆ I holds.

EGDs. An equality-generating dependency (EGD) μ is a first-order rule of the
form:

μ : ∀XΦ(X) → Xi = Xj with Xi,Xj ∈ X ⊆ V,

where Φ(X) is conjunction of atoms; as above, formula Φ is usually referred to as
the body of μ. An instance I for R satisfies μ, denoted I |= μ, if whenever there
is a homomorphism h such that h(Φ(X,Y))⊆ I, it holds that h(Xi)= h(Xj).

In the following, we will sometimes omit the universal quantification in front
of TGDs, NCs, and EGDs, and assume that all variables appearing in their
bodies are universally quantified. We will sometimes use the words constraints
and dependencies to refer to NCs and EGDs.

70 M. V. Martinez and G. I. Simari

Programs and Ontologies. A Datalog+/– program Σ is a finite set ΣT ∪ ΣNC ∪
ΣE of TGDs, NCs, and EGDs. The schema of Σ, denoted R(Σ), is the set of
predicates occurring in Σ. A Datalog+/– ontology KB = (D, Σ) consists of a
finite database D and a Datalog+/– program Σ. The following example illus-
trates a simple Datalog+/– ontology, used in the sequel as a running example.

Example 1. Consider the ontology KB = (D,Σ), where D and Σ = ΣT ∪ ΣE

are defined as follows:
ΣT = { r1 : restaurant(R) → business(R),

r2 : restaurant(R) → ∃F food(F) ∧ serves(R,F),
r3 : restaurant(R) → ∃C cuisine(C) ∧ restaurantCuisine(R,C),
r4 : business(B) → ∃C city(C) ∧ locatedIn(B,C),
r5 : city(C) → ∃D country(D) ∧ locatedIn(C,D)},

ΣE = { locatedIn(X,Y), locatedIn(X,Z) → Y = Z},

D = { food(bifeDeChorizo), food(soupAlOignon),
foodType(meat), foodType(soup),
cuisine(argentine), cuisine(french),
restaurant(laCabrera), restaurant(laTartine),
city(buenosAires), city(paris),
country(argentina), country(france),
locatedIn(laCabrera, buenosAires),
serves(laCabrera, bifeDeChorizo), serves(laTartine, soupeAlOignon)}.

This ontology models a very simple knowledge base for restaurants—it could
be used, for instance, as the underlying model in an online recommendation and
reviewing system (e.g., in the style of TripAdvisor or Yelp). �

Models. The conjunction of the first-order sentences associated with the rules of
a Datalog+/– program Σ is denoted ΣP . A model of Σ is an instance for R(Σ)
that satisfies Σp. For a database D for R, and a set of TGDs Σ on R, the set
of models of D and Σ, denoted mods(D,Σ), is the set of all (possibly infinite)
instances I such that:

1. D ⊆ I, and
2. every σ ∈Σ is satisfied in I (i.e., I |= Σ).

The ontology is consistent if the set mods(D,Σ) is not empty.
The semantics of Σ on an input database D, denoted Σ(D), is a model I of

D and Σ such that for every model I ′ of D and Σ there exists a homomorphism
h such that h(I) ⊆ I ′; such an instance is called universal model of Σ w.r.t.
D. Intuitively, a universal model contains no more and no less information than
what the given program requires.

In general, there exists more than one universal model of Σ w.r.t. D, but the
universal models are (by definition) the same up to homomorphic equivalence,
i.e., for each pair of universal models M1 and M2, there exist homomorphisms

Explanation-Friendly Query Answering Under Uncertainty 71

h1 and h2 such that h1(M1) ⊆ M2 and h2(M2) ⊆ M1. Thus, Σ(D) is unique
up to homomorphic equivalence.

2.3 Conjunctive Query Answering

We now introduce conjunctive query answering for Datalog+/–. A conjunctive
query (CQ) over R has the form:

q(X) = ∃YΦ(X,Y),

where Φ(X,Y) is a conjunction of atoms (consisting also possibly of equalities,
but not inequalities) involving variables in X and Y, and possibly constants, but
without nulls, and q is a predicate not occurring in R. A Boolean CQ (BCQ)
over R is a CQ of the form q(), often written as the set of all its atoms, with-
out quantifiers. As mentioned above for the basic components of the language,
formulas q and Φ are sometimes referred to as the head and body of the query,
respectively.

The set of answers to a CQ q(X)= ∃YΦ(X,Y) over an instance I,
denoted q(I), is the set of all tuples t over Δ, for which there exists a homo-
morphism h : X∪Y→ Δ ∪ ΔN such that h(Φ(X,Y))⊆ I and h(X)= t. The
answer to a BCQ q() over a database instance I is Yes, denoted D |= q, if q(I) �= ∅.

Formally, query answering under TGDs, i.e., the evaluation of CQs and BCQs
on databases under a set of TGDs is defined as follows. The set of answers to
a CQ q over a database D and a set of TGDs Σ, denoted ans(q,D,Σ), is the
set of all tuples t such that t ∈ q(I) for all I ∈mods(D,Σ). The answer to a
BCQ q over D and Σ is Yes, denoted D ∪ Σ |= q, if ans(q,D,Σ) �= ∅. Note that
for query answering, homomorphically equivalent instances are indistinguish-
able, i.e., given two instances I and I ′ that are the same up to homomorphic
equivalence, q(I) and q(I ′) coincide. Therefore, queries can be evaluated on any
universal model.

The decision problem of CQ answering is defined as follows: given a database
D, a set Σ of TGDs, a CQ q, and a tuple of constants t, decide whether t ∈
ans(q,D,Σ).

For query answering of BCQs in Datalog+/– with TGDs, adding negative
constraints is computationally easy, as for each constraint ∀XΦ(X)→ ⊥ one only
has to check that the BCQ ∃XΦ(X) evaluates to false in D under Σ; if one of
these checks fails, then the answer to the original BCQ q is true, otherwise the
constraints can simply be ignored when answering the BCQ q.

Adding EGDs over databases with TGDs along with negative constraints
does not increase the complexity of BCQ query answering as long as they are
non-conflicting [17]. Intuitively, this ensures that, if the chase (described next)
fails (due to strong violations of EGDs), then it already fails on the database,
and if it does not fail, then whenever “new” atoms are created in the chase by
the application of the EGD chase rule, atoms that are logically equivalent to the
new ones are guaranteed to be generated also in the absence of the EGDs, guar-
anteeing that EGDs do not influence the chase with respect to query answering.

72 M. V. Martinez and G. I. Simari

Therefore, from now on, we assume that all the fragments of Datalog+/– have
non-conflicting rules.

There are two main ways of processing rules to answer queries: forward chain-
ing (the chase) and backward chaining, which uses the rules to rewrite the query
in different ways with the aim of producing a query that directly maps to the
facts. The key operation is the unification between part of a current goal (a con-
junctive query or a fact) and part of a rule. Here, we will only cover the chase
procedure, which is described next.

The TGD Chase. Query answering under general TGDs is undecidable [9]
and the chase is used as a procedure to do query answering for Datalog+/–.
Given a program Σ with only TGDs (see [17] for further details and for an
extended chase with also EGDs), Σ(D) can be defined as the least fixpoint of a
monotonic operator (modulo homomorphic equivalence). This can be achieved
by exploiting the chase procedure, originally introduced for checking implication
of dependencies, and for checking query containment [28]. Roughly speaking, it
executes the rules of Σ starting from D in a forward chaining manner by inferring
new atoms, and inventing new null values whenever an existential quantifier
needs to be satisfied. By “chase”, we refer both to the procedure and to its
output.

Let D be a database and σ a TGD of the form Φ(X,Y) → ∃ZΨ(X, Z). Then,
σ is applicable to D if there exists a homomorphism h that maps the atoms of
Φ(X,Y) to atoms of D. Let σ be applicable to D, and h1 be a homomorphism
that extends h as follows: for each Zj ∈ Z, h1(Zj) = zj , where zj is a “fresh”
null, i.e., zj ∈ ΔN , zj does not occur in D, and zj lexicographically follows all
other nulls already introduced. The application of σ on D adds to D the atom
h1(Ψ(X,Z)) if not already in D. The chase rule described above is also called
oblivious.

The chase algorithm for a database D and a set of TGDs Σ consists of an
exhaustive application of the TGD chase rule in a breadth-first (level-saturating)
fashion, which outputs a (possibly infinite) chase for D and Σ.

Formally, the chase of level up to 0 of D relative to Σ, denoted chase0(D,Σ),
is defined as D, assigning to every atom in D the (derivation) level 0. For every
k � 1, the chase of level up to k of D relative to Σ, denoted chasek(D,Σ), is
constructed as follows: let I1, . . . , In be all possible images of bodies of TGDs
in Σ relative to some homomorphism such that (i) I1, . . . , In ⊆ chasek−1(D,Σ)
and (ii) the highest level of an atom in every Ii is k − 1; then, perform every
corresponding TGD application on chasek−1(D,Σ), choosing the applied TGDs
and homomorphisms in a (fixed) linear and lexicographic order, respectively, and
assigning to every new atom the (derivation) level k. The chase of D relative
to Σ, denoted chase(D,Σ), is defined as the limit of chasek(D,Σ) for k → ∞.
This, possibly infinite chase, is a universal model of D and Σ, i.e., there is a
homomorphism from chase(D,Σ) onto every B ∈mods(D,Σ) [17]—Fig. 2 pro-
vides an illustration. Thus, BCQs q over D and Σ can be evaluated on the chase
for D and Σ, i.e., D ∪Σ |= q is equivalent to chase(D,Σ) |= q. We will assume

Explanation-Friendly Query Answering Under Uncertainty 73

Fig. 2. The chase procedure yields a data structure—also commonly referred to as the
chase—that allows to answer queries to a Datalog+/– ontology; it is a universal model,
which means that it homomorphically maps to all possible models of the ontology.

that the nulls introduced in the chase are named via Skolemization—this has
the advantage of making the chase unique; ΔN is therefore the set of all possible
nulls that may be introduced in the chase.

Example 2. Figure 3 shows the application of the chase procedure over the
Datalog+/– ontology from Example 1. As an example, the TGD r1 is appli-
cable in D, since there is a mapping from atoms restaurant(laCabrera) and
restaurant(laTartine) to the body of the rule. The application of r1 generates
atoms business(laCabrera) and business(laTartine).

Consider the following BCQ:

q()= ∃X restaurant(laTartine) ∧ locatedIn(laTartine,X),

asking if there exists a location for restaurant laTartine. The answer is Yes;
in the chase, we can see that after applying TGDs r1 and r4, we obtain the
atom locatedIn(laTartine, z6), where z6 is a null—we would also obtain the same
answer, if we ask for restaurant laCabrera, because atom locatedIn(laCabrera, z5)
is also produced.

Now, consider the CQ:

q′(X,Y)= restaurant(X) ∧ locatedIn(X,Y);

74 M. V. Martinez and G. I. Simari

Fig. 3. The chase for the ontology in Example 1. The atoms in boxes with thicker
border are part of the database, while those with dotted lines correspond to atoms
with null values (denoted with zi). The arrows point to the mapping of z5 to the
constant “buenosAires” during the chase procedure.

in this case, we only obtain one answer, namely (laCabrera, buenosAires), since
null z5 eventually maps to buenosAires. In the case of laTartine, we do not
obtain an answer corresponding to the city where it is located: we know there
exists a city, but we cannot say which one it is; in every model of KB , z6 may
take a different value from the domain. This can be seen in the chase (a uni-
versal model of KB), since z6 does not unify with a constant after “chasing” D
with Σ. �

Computational Complexity. The following complexity measures, partially
proposed by Vardi [49], are commonly adopted in the literature:

Explanation-Friendly Query Answering Under Uncertainty 75

– The combined complexity of CQ answering is calculated by considering all the
components—the database, the set of dependencies, and the query—as part
of the input.

– The bounded-arity combined complexity (or ba-combined complexity) is calcu-
lated by assuming that the arity of the underlying schema is bounded by an
integer constant. In the context of DLs, the combined complexity is equiva-
lent to the ba-combined complexity, since the arity of the underlying schema
is at most two. In practical applications, the schema is usually small, and it
can safely be assumed to be fixed—therefore, in this case the arity is also
fixed.

– The fixed-program combined complexity (or fp-combined complexity) is calcu-
lated by considering the set of constraints to be fixed.

– The data complexity is calculated by taking only the database as input.

Some key facts about complexity and decidability of query answering with TGDs:
(i) under general TGDs, the problem is undecidable [9], even when the query
and set of dependencies are fixed [14]; (ii) the two problems of CQ and BCQ
evaluation under TGDs are logspace-equivalent [13]; and (iii) the query output
tuple (QOT) problem (as a decision version of CQ evaluation that asks if a
tuple belongs to the output) and BCQ evaluation are AC0-reducible to each
other. Given the last two points, we focus only on BCQ evaluation, and any
complexity results carry over to the other problems.

2.4 Datalog+/– Fragments: In Search of Decidability and
Tractability

We now briefly discuss different restrictions that are designed to ensure decid-
ability and tractability of conjunctive query answering with TGDs. While the
addition of existential quantifiers in the heads of rules accounts for the “+” in
Datalog+/–, these restrictions account for the “–”.

Generally, restrictions can be classified into either abstract (semantic) or
concrete (syntactic) properties. Three abstract properties are considered in [6]:
(i) the chase is finite, yielding finite expansion sets (fes); (ii) the chase may
not halt but the facts generated have a tree-like structure, yielding bounded
tree-width sets (bts); and (iii) a backward chaining mechanism halts in finite
time, yielding finite unification sets (fus). Other abstract fragments are: (iv)
parsimonious sets (ps) [33], where the main property for this class is that the
chase can be precociously terminated, and (v) weakly-chase-sticky TGDs [39]
that considers information about the finiteness of predicate positions (positions
are infinite if there is an instance D for which an unlimited number of different
values appear in that position during the chase).

The main conditions on TGDs that guarantee the decidability of CQ answer-
ing are: (i) guardedness [13,15], (ii) stickiness [16], and (iii) acyclicity—each
of these classes has a “weak” counterpart: weak guardedness [14], weak sticki-
ness [16], and weak acyclicity [22,23]. Finally, other classes that fall outside this
main classification are Full TGDs (those that do not have existentially quantified

76 M. V. Martinez and G. I. Simari

variables), Tame TGDs [27] (a combination of the guardedness and sticky-join
properties), and Shy TGDs [33] (the shyness property holds if during the chase
procedure nulls do not meet each other to join but only to propagate—nulls thus
propagate from a single atom).

We refer the reader to [48] and [47] for a more complete discussion of known
classes, a summary of the currently known containment relations between classes,
and summaries of known complexity results.

3 Query Answering over Probabilistic Knowledge Bases

We begin by addressing query answering under probabilistic uncertainty. In
Sect. 3.1 we provide a very brief overview of some well-known probabilistic graph-
ical models; Sect. 3.2 is devoted to presenting the basics of the probabilistic
Datalog+/– model, and finally Sect. 3.3 outlines paths towards deriving expla-
nations to query answers over this framework.

3.1 Brief Overview of Basic Probabilistic Graphical Models

In the spirit of making this document relatively self-contained, we now provide a
quick introduction to a few basic probabilistic graphical models. Such models are
essentially ways to specify joint probability distributions over a set of random
variables, based on graph structures—they will come into play when defining
the semantics of Probabilistic Datalog+/– (cf. Sect. 3.2).

For each of the models, we assume we have a (finite) set of random vari-
ables X = {X1, . . . , Xn}. Each random variable Xi may take on values from a
finite domain Dom(Xi). A value for X = {X1, . . . , Xn} is a mapping x : X →⋃n

i=1 Dom(Xi) such that x(Xi) ∈ Dom(Xi); the domain of X, denoted Dom(X),
is the set of all values for X. We are generally interested in modeling the joint
probability distribution over all values in x ∈ Dom(X), which we denote Pr(x).
We thus have that 0 � Pr(x) � 1 for all x ∈ Dom(X), and

∑
x∈X Prx = 1.

Bayesian Networks. A Bayesian Network (BN, for short) is comprised of: (i)
A directed acyclic graph in which each node corresponds to a single random
variable in X (and vice versa). If there is an edge from Xi to Xj , we say that Xi

is a parent of Xj—this represents a direct dependence between the two variables.
(ii) A conditional probability distribution Pr(Xi|Parents(Xi)) for each node Xi,
also sometimes called a node probability table.

One of the advantages of the BN model is that the graph structure encodes
the probabilistic dependence between variables. For instance, each variable is
independent of its non-descendents if we are given values for its parents. There-
fore, the probability for any value x = (x1, ..., xn) ∈ Dom(X) can be computed
as follows:

Pr(x1, ..., xn) =
n∏

i=1

Pr
(
xi | par-val(Xi)

)
,

Explanation-Friendly Query Answering Under Uncertainty 77

where par-val(Xi) denotes the values of the variables in Parents(Xi). More-
over, the absence of an edge between nodes represents conditional independence
between the corresponding variables—the details of how such independence is
characterized are non-trivial, and we refer the interested reader to the vast
amount of material on BNs (cf. [41] for one of the earliest sources). Knowing
the details behind variable (in)dependence is of great value if one is interested
in tractable algorithms for computing probabilities, since the probability of the
conjunction of independent variables is simply the product of their probabilities.

The most common problems (or probabilistic queries) associated with BNs
are the following:

– PE (Probability of evidence, also known as inference): Compute the proba-
bility of a group of variables having a specific value. This problem is #P-
complete.

– MAP (Maximum A posteriori Probability): Given evidence e over variables
E ⊂ X, and variables Y ⊆ X−E, compute the value of y of Y that maximizes
Pr(Y = y|E). This problem is NPPP-complete in its decision version.

– MPE (Most Probable Explanation): Given evidence, find the assignment of
values to the rest of the variables that has the highest probability. This prob-
lem is NP-complete in its decision version.

Even though all of these problems are computationally intractable in general,
there exist special cases for which they can be solved in polynomial time, either
exactly or approximately.

Markov Random Fields. A Markov Random Field (MRF) [41] (sometimes
also referred to as Markov Network) is a probabilistic model that is similar to a
Bayesian network (BN) in that it includes a graph G = (V,E) in which each node
corresponds to a variable, but, differently from a BN, the graph is undirected; in
an MRF, two variables are connected by an edge in G iff they are conditionally
dependent. Furthermore, the model contains a potential function φi for each
(maximal) clique in the graph; potential functions are non-negative real-valued
functions of the values of the variables in each clique (called the state of the
clique). Here, we assume the log-linear representation of MRFs, which involves
defining a set of features of such states; a feature is a real-valued function of
the state of a clique (we only consider binary features in this work). Given a
value x ∈ Dom(X) and a feature fj for clique j, the probability distribution
represented by an MRF can be computed as follows:

P (X = x) =
1
Z

exp

⎛

⎝
∑

j

wj · fj(x)

⎞

⎠ ,

where j ranges over the set of cliques in the graph G, and wj = log φj(x{j})
(here, x{j} is the state of the j-th clique in x). The term Z is a normalization
constant to ensure that the values given by the equation above are in [0, 1] and

78 M. V. Martinez and G. I. Simari

sum to 1; it is given by:

Z =
∑

x∈Dom(X)

exp

⎛

⎝
∑

j

wj · fj(x)

⎞

⎠ .

Probabilistic inference in MRFs is intractable (#P-complete); however, approx-
imate inference mechanisms, such as Markov Chain Monte Carlo (discussed
briefly below), have been developed and successfully applied to problems in
practice.

Markov Logic. Markov Logic Networks (MLNs) [45], also sometimes referred
to as Markov Logic, combine first-order logic with Markov Random Fields. The
main idea behind MLNs is to provide a way to soften the constraints imposed
by a set of classical logic formulas. Instead of considering possible worlds that
violate some formulas to be impossible, we wish to make them less probable.
An MLN is a finite set L of pairs (Fi, wi), where Fi is a formula in first-order
logic, and wi is a real number. Such a set L, along with a finite set of constants
C = {c1, . . . , cm}, defines a Markov network ML,C that contains: (i) one binary
node corresponding to each element of the Herbrand base of the formulas in L
(i.e., all possible ground instances of the atoms), where the node’s value is 1 iff
the atom is true; and (ii) one feature for every possible ground instance of a
formula in L. The value of the feature is 1 iff the ground formula is true, and
the weight of the feature is the weight corresponding to the formula in L. From
this characterization and the description above of the graph corresponding to an
MN, it follows that ML,C has an edge between any two nodes corresponding to
ground atoms that appear together in at least one formula in L. Furthermore,
the probability of x ∈ Dom(X) in ML,C and thus in the MLN is defined by
P (X = x) = 1

Z exp(
∑

j wj ·nj(x)), where nj(x) is the number of ground instances
of Fj made true by x, and Z is defined analogously as above. This formula can
be used in a generalized manner to compute the probability of any setting of a
subset of random variables X ′ ⊆ X, as we show below.

Example 3. Consider the following simple MLN:

ψ1: (p(X) ⇒ q(X), 0.5),
ψ2: (p(X) ⇒ r(X), 2),
ψ3: (s(X) ⇒ r(X), 4).

Suppose we have s single constant a; grounding the formulas above relative to
set of constants {a}, we obtain the set of ground atoms

{p(a), q(a), r(a), s(a)}.

Similarly, if we had two constants, a and b, we would get:

{p(a), q(a), r(a), s(a), p(b), q(b), r(b), s(b)}.

Explanation-Friendly Query Answering Under Uncertainty 79

Fig. 4. The graphical representation of the MRF for the MLN from Example 3 (instan-
tiated with set of constants {a, b}). There is one Boolean random variable for each
ground atom in the grounding of the formulas ψ1, ψ2, and ψ3 with respect to the set
of constants. The dotted lines show the different cliques in the graph.

The graphical representation of the MRFs corresponding to these groundings
are shown in Fig. 4.

Consider the former (with respect to a single constant). This MRF represents
a probability distribution over the possible Boolean values for each node. Given
that there are four ground atoms, there are 24 = 16 possible settings of the
variables in the MRF; Fig. 5 shows all such possible settings, along with other
information used to compute probabilities. The normalizing factor Z is the sum
of the probabilities of all worlds, which is computed as shown above by summing
the exponentiated sum of weights times the number of ground formulas satisfied
(equivalent to summing e to the power of each number in the “potential” column
in Fig. 5), yielding Z ≈ 5593.0623. Similarly, the probability that a formula, such
as p(a)∧ q(a)∧¬s(a), holds is the sum of the probabilities that all the satisfying
worlds hold, which in this case corresponds to the worlds 13 and 15 (cf. Fig. 5);
the resulting probability is e4.5+e0.5

5593.0623 ≈ 0.0265. �

Markov Chains. Lastly, we wish to briefly mention a somewhat different model
that is geared towards dynamically evolving systems. A Markov Chain (MC, for
short), is a stochastic process {Xn}, with n ∈ N ∪ {0}—essentially, an MC is
a sequence of states, or values of variables. The Markov property holds if it is
always the case that given n ∈ N ∪ {0} and states x0, x1, ..., xn, xn+1, we have:

Pr(Xn+1 = xn+1 |Xn = xn, ...,X0 = x0) = Pr(Xn+1 = xn+1 |Xn = xn).

That is, the distribution of conditional probability of future states only depends
on the current state; this property is also sometimes referred to as memoryless.

MCs can be represented as sequences of graphs where the edges of graph n
are labeled with the probability of going from one state at moment n to other
states at moment n + 1:

Pr(Xn+1 = x |Xn = xn).

80 M. V. Martinez and G. I. Simari

λi p(a) q(a) r(a) s(a) Satisfies Potential Probability

1 false false false false ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
2 false false false true ψ1, ψ2 0.5 + 2 = 2.5 e2.5/Z ≈ 0.002
3 false false true false ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
4 false false true true ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
5 false true false false ψ1, ψ2 0.5 + 2 = 2.5 e2.5/Z ≈ 0.002
6 false true false true ψ1, ψ2 0.5 + 2 = 2.5 e2.5/Z ≈ 0.002
7 false true true false ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
8 false true true true ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
9 true false false false 0 e0/Z ≈ 0
10 true false false true 0 e0/Z ≈ 0
11 true false true false ψ2, ψ3 2 + 4 = 6 e6/Z ≈ 0.072
12 true false true true ψ2, ψ3 2 + 4 = 6 e6/Z ≈ 0.072
13 true true false false ψ1, ψ3 0.5 + 4 = 4.5 e4.5/Z ≈ 0.016
14 true true false true ψ1 0.5 e0.5/Z ≈ 0
15 true true true false ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
16 true true true true ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119

Fig. 5. Details of how to compute potentials for each possible setting of the random
variables (worlds) of the MRF for the MLN from Example 3 (grounded with a single
constant).

The same information can be represented via a transition matrix M where

M [i, j] = Pr(Xn+1 = xj |Xn = xi).

Taking the power of this matrix with itself iteratively, we can answer queries
regarding the probability that the system will be in a certain state after several
time steps. One of the most important classes of MCs are the ones for which a
stationary distribution exists—one that is invariant over time—since they repre-
sent stable stochastic processes.

One of the most important applications of MCs is as the basis of the Markov
Chain Monte Carlo (MCMC) family of algorithms, which are random walk-
based traversals of the state space that can be used to sample from an unknown
probability distribution, thus arriving at approximations of the distribution itself
or of queries of interest.

Brief Comparison Among Models. As a quick comparison of the strengths
and weaknesses of the four models that we introduced above, we can point out
a few salient aspects:

– Bayesian Networks are useful when identified dependencies are acyclic, and
information is available regarding conditional dependencies (i.e., the structure
of the graph, plus the probability tables).

– Markov Random Fields are more flexible in that they allow cycles and proba-
bilities are derived from weights. The disadvantage associated with the latter
is that the relationship between weights and probabilities is not always clear.

Explanation-Friendly Query Answering Under Uncertainty 81

– Markov Logic Networks are essentially first order templates for MRFs; their
main strength with respect to them is that a model can be derived given a
set of constants, which can change depending on the situation in which it is
intended for.

– One of the main applications of Markov Chains is as the basis of Markov Chain
Monte Carlo (MCMC) methods that can be used to approximate unknown
distributions, or distributions that are specified by other models like Bayesian
Networks or Markov Random Fields that are intractable to compute exactly,
or dynamical systems for which a closed form solution may not be possible.

As we will see in the next section, these and other probabilistic models can
be leveraged as part of extended logic-based languages in order to deal with
uncertainty in a principled manner.

Learning Models from Data. There are many, many different approaches
and algorithms available for automatically or semi-automatically deriving these
and other probabilistic models from available data—even a cursory treatment
is outside the scope of this work. We refer the reader to the vast literature on
these topics that has been developing for many years; good starting points can
be found at [8] and [50].

3.2 Probabilistic Datalog+/–

In this section, considering the basic setup from Sects. 2 and 3.1, we introduce
the syntax and the semantics of probabilistic Datalog+/–.

Syntax
As in Sect. 2, we assume an infinite universe of (data) constants Δ, an infinite
set of labeled nulls ΔN , and an infinite set of variables V. Furthermore, as in
Sect. 3.1, we assume a finite set of random variables X. Informally, a probabilistic
Datalog+/– ontology consists of a finite set of probabilistic atoms, probabilis-
tic TGDs, probabilistic negative constraints, and probabilistic separable EGDs,
along with a probabilistic model that yields a full joint distribution over the
values in ×|X|

i=1dom(Xi).
We first define probabilistic annotations and more specifically worlds. Intu-

itively, a probabilistic annotation λ is an assignment of values xi to random
variables Xi, representing the event in the probabilistic model where the Xi’s
have the value xi. In particular, a world assigns a value to each random variable.
In general, we use true and false to refer to the values 1 and 0 of Boolean random
variables, respectively; furthermore, to simplify notation, we use X and ¬X to
denote X = true and X = false, respectively.

Definition 1. A (probabilistic) annotation λ is a (finite) set of expressions
Xi =xi, where Xi ∈ X, xi ∈Dom(Xi), and the Xi’s are pairwise distinct. If
|λ|= |X|, then λ is a world. We denote by worlds(M) the set of all worlds of a
probabilistic model M .

82 M. V. Martinez and G. I. Simari

We next attach probabilistic annotations λ to classical Datalog+/– formulas
F to produce annotated formulas F : λ. Intuitively, F holds whenever the event
associated with λ occurs. Note that whenever a random variable’s value is left
unspecified in a probabilistic annotation, the variable is unconstrained; in par-
ticular, a formula annotated with an empty probabilistic annotation means that
the formula holds in every world. As we discuss in detail in Sect. 3.2, this kind
of annotation works much in the same way as in many other probabilistic for-
malisms where possible worlds are induced via probabilistic distributions coming
from outside the model; typical examples are the independent choice logic [42],
P-LOG [7], and background variables in Bayesian networks (where probabilities
come from exogenous events) [41].

Definition 2. If a is an atom, σT is a TGD, σNC is a negative constraint, σE

is an EGD, and λ is a probabilistic annotation, then: (i) a : λ is a probabilistic
atom; (ii) σT : λ is a probabilistic TGD; (iii) σNC : λ is a probabilistic (negative)
constraint; and (iv) σE : λ is a probabilistic EGD. We also refer to probabilistic
atoms, TGDs, (negative) constraints, and EGDs as annotated formulas. Anno-
tated formulas of the form F : {} are abbreviated as F .

We are now ready to define the notion of a probabilistic Datalog+/– ontology.

Definition 3. A probabilistic Datalog+/– ontology is a pair Φ = (O,M),
where O is a finite set of probabilistic atoms, TGDs, (negative) constraints,
and EGDs, and M is a probabilistic model.

Loosely vs. Tightly Coupled Ontologies. There are two ways in which probabilistic
annotations can be combined with formulas: in loosely coupled ontologies, anno-
tations cannot refer to elements in the ontology (the scope of variables reaches
only the ontology or the annotation). As can be seen in the results in [29], this
is an advantage from the complexity point of view, since the cost of computing
probabilities in the probabilistic model does not grow with the database; how-
ever, it also represents a limitation in expressive power of the formalism. On the
other hand, in tightly coupled probabilistic Datalog+/– variables in annotations
can be shared with those in Datalog+/– formulas; an early version of this idea
can be found in [34], which develops the same concept for EL++ ontologies.

The annotation of Datalog+/– formulas offers a clear modeling advantage
by separating the two tasks of ontological modeling and of modeling the uncer-
tainty around the axioms in the ontology. More precisely, in our formalism, it is
possible to express the fact that the probabilistic nature of an ontological axiom
is determined by elements that are outside of the domain modeled by the ontol-
ogy. The probabilistic distribution of events (and existence of certain objects,
for instance as part of a heuristic process) is a separate concern relative to the
knowledge encoded in the “classical part” of the ontology.

In the rest of this section, we will resort to the following as a running example.

Explanation-Friendly Query Answering Under Uncertainty 83

α1 : a(x1) : {p(a), s(a)}
α2 : b(x2) : {p(a), s(a), ¬r(a)}
α3 : d(x3) : {p(a), q(a), ¬s(a)}

σ1 : a(X) → c(X) : {r(a)}
σ2 : b(X) → d(X) : {q(a)}
σ3 : a(X) → ∃Y p(X, Y)

υ1 : a(X) ∧ b(Y) → X = Y
υ2 : b(X) ∧ c(X) → ⊥

Fig. 6. The probabilistic Datalog+/– ontology from Example 4.

Example 4. Let the Datalog+/– ontology O = (D,ΣT ∪ ΣE ∪ ΣNC) be given
by the database D, set of TGDs ΣT , set of EGDs ΣE , and set of (negative)
constraints ΣNC :

D = {a(x1), b(x2), d(x3)};
ΣT = {σ1 : a(X) → c(X), σ2 : b(X) → d(X), σ3 : a(X) → ∃Y p(X,Y)};
ΣE = {υ1 : a(X) ∧ b(Y) → X = Y };

ΣNC = {υ2 : b(X) ∧ c(X) → ⊥}.

Furthermore, consider the MLN M from Example 3. The annotated formulas in
Fig. 6 are the result of annotating the formulas in the Datalog+/– ontology with
expressions assigning true or false to a subset of the random variables that arise
from the atoms described above: {p(a), q(a), r(a), s(a)}. Recall that annotated
formulas F : {} are abbreviated as F ; they hold irrespective of the setting of the
random variables. �

As described next, worlds induce certain subontologies of a probabilistic
Datalog+/– ontology, according to whether or not they satisfy the annotation
of each formula.

Definition 4. Let Φ = (O,M) be a probabilistic Datalog+/−− ontology and λ
be a world. Then, the (non-probabilistic) Datalog+/−− ontology induced from
Φ by λ, denoted Oλ, is the set of all Fi such that λi ⊆ λ for some Fi : λi ∈ O;
any such Fi is relevant in λ.

In the sequel, we consider only probabilistic Datalog+/– ontologies Φ =
(O,M) in which the EGDs in every induced ontology Oλ are separable from
the TGDs in Oλ.

The notion of decomposition of a probabilistic ontology provides a convenient
way of referring to its constituent subontologies with respect to the worlds.

84 M. V. Martinez and G. I. Simari

Definition 5. Let Φ = (O,M) be a probabilistic Datalog+/−− ontology. Then,
the decomposition (or decomposed form) of Φ, denoted decomp(Φ), is defined as
follows:

decomp(Φ) = ([Oλ1 , . . . , Oλn
],M),

where worlds(M) = {λ1, . . . , λn}. To simplify notation, we assume that the
worlds are ordered according to a lexicographical order of the values of the vari-
ables, and therefore the i-th ontology in a decomposition corresponds to the i-th
world in this ordering.

Example 5. Consider the probabilistic Datalog+/– ontology Φ = (O,M), with
O = (D,Σ), from Example 4. There are 16 worlds, so the decomposition of Φ
has the form

decomp(Φ) =
(
[Oλ1 , . . . , Oλ16],M

)
.

For example, the world λ16 is determined by {p(a), q(a), r(a), s(a)}, while
λ14 is determined by {p(a), q(a),¬ r(a), s(a)}. It is then easy to see that
Oλ16 = ({α1}, Σ) and Oλ14 = ({α1, α2}, Σ − {σ1}). �

We now define the canonical composition, the inverse of the decomposition.

Definition 6. Let Ψ = ([Oλ1 , . . . , Oλn
],M) be a probabilistic Datalog+/−−

ontology in decomposed form. Then, the canonical composition of Ψ , denoted
decomp−1(Ψ), is the probabilistic Datalog+/−− ontology Φ = (

⋃n
i=1{F : λi |

F ∈ Oλi
},M).

Example 6. Let Φdecomp = ([Oλ1 , . . . , Oλ16],M) be the probabilistic ontol-
ogy in decomposed form from Example 5. Although it is easy to verify that
decomp−1(Φdecomp) yields an ontology that is equivalent to Φ (from Exam-
ple 4), this ontology actually contains several instances of the same for-
mula, each with different annotations. For example, the atom α1 appears four
times, with the annotations {p(a), q(a),¬r(a),¬s(a)}, {p(a), q(a), ¬r(a), s(a)},
{p(a), q(a), r(a),¬s(a)}, and {p(a), q(a), r(a), s(a)}, respectively. �

Semantics
Towards the semantics of probabilistic Datalog+/– ontologies, we first define
classical interpretations and the satisfaction of annotated formulas in such inter-
pretations. The former consist of a database and a world in the probabilistic
model, while the latter is done by interpreting F : λ as F ⇐ λ̂ (or equivalently
F ∨ ¬λ̂), where λ̂ =

∧
Xi=xi∈λ Xi =xi.

Definition 7. A classical interpretation I = (D, v) consists of a database D and
a value v ∈D(X). We say that I satisfies an annotated formula F : λ, denoted
I |= F : λ, iff D |= F whenever v(Xi)= xi for all Xi =xi ∈ λ.

We next define probabilistic interpretations Pr as finite probability distri-
butions over classical interpretations, and the probability of formulas and their
satisfaction in such Pr , as usual. Here, formulas are either annotated formu-
las (including classical Datalog+/– formulas as a special case) or events in the

Explanation-Friendly Query Answering Under Uncertainty 85

probabilistic model (i.e., Boolean combinations of expressions Xi = xi, where
Xi ∈X and xi ∈Dom(Xi)). Furthermore, we define the satisfaction of proba-
bilistic Datalog+/– ontologies in Pr , where (i) all annotated formulas in the
ontology are satisfied by Pr , and (ii) the probabilities that Pr assigns to worlds
coincide with those of the probabilistic model.

Definition 8. A probabilistic interpretation Pr is a probability distribution Pr
over the set of all classical interpretations such that only a finite number of
classical interpretations are mapped to a non-zero value. The probability of a
formula φ, denoted Pr(φ), is the sum of all Pr(I) such that I |= φ. We say
that Pr satisfies (or is a model of) φ iff Pr(φ)= 1. Furthermore, Pr is a model
of a probabilistic Datalog+/– ontology Φ= (O,M) iff: (i) Pr |=φ for all φ ∈O,
and (ii) Pr(λ̂)=PrM (λ̂) for all λ ∈worlds(M), where λ̂ is defined as above, and
PrM is the probability in the model M .

Here, we are especially interested in computing the probabilities associated
with ground atoms in a probabilistic Datalog+/– ontology, as defined next. Intu-
itively, the probability of a ground atom is defined as the infimum of the prob-
abilities of that ground atom under all probabilistic interpretations that satisfy
the probabilistic ontology.

Definition 9. Let Φ be a probabilistic Datalog+/– ontology, and a be a ground
atom constructed from predicates and constants in Φ. The probability of a in Φ,
denoted PrΦ(a), is the infimum of Pr(a) subject to all probabilistic interpreta-
tions Pr such that Pr |= Φ.

Based on this notion, we can define several different kinds of probabilistic
queries, as discussed next.

Queries to Probablistic Datalog+/– Ontologies
There are three kinds of queries that have been proposed in this model [29,35].
We now present a brief introduction to each of them, assuming we are given a
probabilistic Datalog+/– ontology Φ= (O,M).

– Threshold queries ask for the set of all ground atoms that have a probability
of at least p, where p is specified as an input of the query. So, the answers
to threshold query Q = (Φ, p) (with p ∈ [0, 1]) is the set of all ground atoms a
with PrΦ(a) � p.

– Ranking queries request the ranking of atomic consequences based on their
probability values. So, the answer to a ranking query Q = rank(KB) is a
tuple ans(Q) =

〈
a1, . . . , an

〉
such that {a1, . . . , an} are all of the atomic

consequences of Oλ for any λ ∈ Worlds(M), and i < j ⇒ PrKB (ai) �
PrKB (aj).

– Finally, probabilistic conjunctive queries are exactly as defined in Sect. 2,
except that its answers are accompanied by the probability value with which
it is entailed by Φ.

The following example illustrates each of these queries using the running
example.

86 M. V. Martinez and G. I. Simari

Example 7. Consider the probabilistic Datalog+/– ontology Φ = (O,M) from
Example 4, and the threshold query Q = (Φ, 0.15). As seen in Example 5, and
referring back to Fig. 5 for the computation of the probabilities, we have that
PrΦ(a(x1)) =≈ 0.191 and PrΦ(d(x3)) = 0.135. Therefore, the former belongs to
the output, while the latter does not.

The answer to query rank(KB) is: 〈a(x1), c(x1), d(x3), b(x2), d(x2)〉. Finally,
the answer to probabilistic conjunctive query Q(X) = a(X)∧c(X) is (x1, 0.191).

�

3.3 Towards Explainable Probabilistic Ontological Reasoning

As we discussed above, probabilistic Datalog+/– is an extension of “classical”
Datalog+/– with labels that refer to a probabilistic model—essentially, there are
two sub-models that are in charge of representing knowledge about the domain,
and these models can be either loosely or tightly coupled, depending on whether
or not they share objects. So, the question we would like to pose now is “What
constitutes an explanation for a query to a probabilistic Datalog+/– knowledge
base?”. As discussed in Sect. 1, the answer to this question will depend heavily
on whom the explanation is intended for, the application domain, the specific
formalism being used, and the kind of query. Note that there is some initial
work [18] on some variants of this problem as a generalization of MAP/MPE
queries (which were developed as kinds of explanations for probabilistic models)
for the special case of tuple-independent probabilistic databases.

Therefore, here we will focus on foundational aspects of designing expla-
nations for probabilistic Datalog+/–; the discussion will generally apply to all
queries presented on Page 20, unless stated otherwise. The basic building blocks
of reasoning with probabilities in our formalism are the following:

– The annotated chase structure: The extension of the chase, the main
algorithm used to answer queries in classical Datalog+/–, in order to take
into account probabilistic annotations is the annotated chase, a structure
that essentially keeps track of the probabilistic annotations required for each
step to be possible [29]. There two basic ways in which this can be done:

• Annotate each node with a Boolean array of size |Worlds(M)|; during the
execution of the chase procedure, annotations are propagated as infer-
ences are made. This is best for cases in which: (i) the number of worlds
is not excessively large, since the space used by the chase structure will
grow by a factor of |Worlds(M)|; or (ii) when a sampling-based approach
to approximate the probabilities associated with query answers is used,
since in this case the size of each array can be reduced to (a function of)
the number of samples.
Another advantage of this approach is that for models under which query-
ing the probability of a specific world is tractable (often referred to as
tractable probabilistic models), the Boolean array representation can be
used to clearly obtain either the exact or approximate probability mass
associated with each node of interest.

Explanation-Friendly Query Answering Under Uncertainty 87

• Annotate each node with a logical formula expressing the conditions that
must hold for the node to be inferrable. This approach is more compact
than the array-based method, since the size of the formulas are bounded
by the length of the derivation (at most the depth of the deepest span-
ning tree associated with the chase graph) and the length of the original
annotations in the probabilistic ontology. On the other hand, extracting
the specific worlds that make up the probabilistic mass associated with a
given atom (or set of atoms for a query) is essentially equivalent to solv-
ing a #SAT problem; for tractable probabilistic models there is a greater
chance of performing feasible computations, though the structure of the
resulting logical formula depends greatly on how rules interact—this is
the topic of ongoing work.

By analyzing the resulting data structure, one can extract a clear map of how
the probability of an atom is derived; this is discussed next.

– Probabilities of atomic formulas: The annotated chase yields several tools
that facilitate the provision of an explanation for the probability of an atom:

• Different derivation paths leading to the same result (or summaries).
• Examples of branches, perhaps highlighting well-separated ones to show

variety.
• Common aspects of worlds that make up most of the probability mass

(such as atoms in the probabilistic model that appear in most derivations).
In all cases, if we wish to provide a balanced explanation (as discussed above)
we can also focus on the dual situation, i.e., showing the cases in which the
atom in question is not derived. Note that all of these elements are available
independently of the specific probabilistic model used in the KB—depending
on the characteristics of the chosen model, other data might be available as
well.

– Probabilities of more complex queries: The previous point covered the
most basic probabilistic query (probability of atomic formulas); clearly, the
same approach is useful for threshold queries, which can be answered simply
by computing the probabilities of all atomic consequences and checking if
their associated probabilities exceed the threshold.
As discussed in the previous section, we have two other kinds of queries:

• Probabilistic conjunctive queries: The basic building blocks described for
atomic queries can be leveraged for the more complex case of conjunctive
queries. Depending on the kind of annotated chase graph used (as dis-
cussed above), the probability of a set of atoms that must be true at once
can be derived from that of each individual member. Opportunities for
explanations of why a query is derived or not derived may also include,
for instance, selecting one or more elements of the conjunction that are
responsible for lowering the resulting probability of the query.

• Ranking queries: The fundamental component of the result of a ranking
query is the relationship between the probabilities of atoms—the most
important question to answer regarding explanations of such results is:
for a given pair of atoms (a, b) such that a is ranked above b, why is it

88 M. V. Martinez and G. I. Simari

a > b and not b > a? The basic elements discussed above can be used to
shed light on this aspect.

Finally, sampling-based methods (for instance, taking into account a subset
of the worlds chosen at random) yield probability intervals instead of point
probabilities—the width of the resulting interval will be a function of the
number and probability mass of the worlds taken into account vs. those left
out [35]. So, explanations can involve examples or summaries of how the
probability mass gets to a minimum (lower bound) and, conversely, why the
maximum (upper bound) is not higher.

There is much work to be done in developing effective algorithms to lever-
age these and other building blocks for deriving explanations for probabilistic
queries. Furthermore, developing adequate user interfaces so that the resulting
explanations are useful is also a highly non-trivial task.

4 Inconsistency-Tolerant Query Answering with
Datalog+/–

In this section we discuss a general approach to inconsistency-tolerant query
answering in Datalog+/–; the material in this section is based mainly on [36].

We now discuss semantics for inconsistency-tolerant query answering that are
based on the ideas of [2] but from the perspective of the area of belief change,
which is an area of AI that is closely related to the management of inconsis-
tent information, aiming to adequately model the dynamics of the knowledge
that constitutes the set of beliefs of an agent when new information comes up.
In [31], kernel consolidations are defined based on the notion of an incision
function. Given a knowledge base KB that needs to be consolidated (i.e., KB is
inconsistent), the set of kernels is defined as the set of all minimal inconsistent
subsets of KB . For each kernel, a set of sentences is removed (i.e., an “incision” is
made) such that the remaining formulas in the kernel are consistent; note that it
is enough to remove any single formula from the kernel because they are minimal
inconsistent sets. The result of consolidating KB is then the set of all formulas
in KB that are not removed by the incision function. In this work, we present
a framework based on a similar kind of functions to provide alternative query
answering semantics in inconsistent Datalog+/– ontologies. The main difference
in our proposal is that incisions are performed over inconsistent subsets of the
ontology that are not necessarily minimal.

We analyze three types of incision functions that correspond to three different
semantics for query answering in inconsistent Datalog+/– ontologies: (i) consis-
tent answers or AR semantics [2,32], widely adopted in relational databases
and DLs, (ii) intersection semantics or IAR, which is a sound approximation
of AR [32], and (iii) a semantics first proposed in [36] that relaxes the require-
ments of AR semantics, allowing it to be computed in polynomial time for some
fragments of Datalog+/–, without compromising the quality of the answers as
much as the IAR semantics does, by allowing a certain budget within which the
answers can be computed.

Explanation-Friendly Query Answering Under Uncertainty 89

We first define the notion of a culprit relative to a set of constraints, which
is informally a minimal (under set inclusion) inconsistent subset of the database
relative to the constraints. Note that we define culprits relative to both nega-
tive constraints and EGDs, as ΣNC contains all EGDs written as NCs, as we
mentioned above.

Definition 10 (Culprit). Given a Datalog+/– ontology KB = (D,ΣT ∪ΣE ∪
ΣNC), a culprit in KB relative to ΣE∪ΣNC is a set c ⊆ D such that mods(c,ΣT ∪
IC) = ∅ for some IC ⊆ ΣE ∪ΣNC, and there is no c′ ⊂ c such that mods(c′, ΣT ∪
IC) = ∅. We denote by culprits(KB) the set of culprits in KB relative to
ΣE ∪ ΣNC.

Note that we may also refer to culprits(KB , IC) whenever we want to make
the point that IC is an arbitrary set of constraints or to identify a specific subset
of ΣE ∪ ΣNC. The following example shows a Datalog+/– ontology that we will
use as a running example through out the chapter.

The following example shows a simple Datalog+/– ontology; the language
and standard semantics for query answering in Datalog+/– ontologies is recalled
in the next section.

Example 8. A (guarded) Datalog+/– ontology KB = (D,ΣT ∪ΣE∪ΣNC) is given
below. Here, the formulas in ΣT are tuple-generating dependencies (TGDs),
which say that each person working for a department is an employee (σ1), each
person that directs a department is an employee (σ2), and that each person
that directs a department and works in that department is a manager (σ3). The
formulas in ΣNC are negative constraints, which say that if X supervises Y ,
then Y cannot be a manager (υ1), and that if Y is supervised by someone in a
department, then Y cannot direct that department (υ2). The formula υ3 ∈ΣE is
an equality-generating dependency (EGD), saying that the same person cannot
direct two different departments.

D = {directs(john, d1), directs(tom, d1), directs(tom, d2),
supervises(tom, john), works in(john, d1), works in(tom, d1)};

ΣT = {σ1 : works in(X, D) → emp(X), σ2 : directs(X, D) → emp(X),
σ3 : directs(X, D) ∧ works in(X, D) → manager(X)};

ΣNC = {υ1 : supervises(X, Y) ∧ manager(Y) → ⊥,
υ2 : supervises(X, Y) ∧ works in(X, D) ∧ directs(Y, D) → ⊥};

ΣE = {υ3 : directs(X, D) ∧ directs(X, D′) → D = D′}.

We can easily see that this ontology is inconsistent. For instance, the atoms
directs(john, d1) and works in(john, d1) trigger the application of σ3, producing
manager(john), but that together with supervises(tom, john) (which belongs to
D) violates υ1. The set of culprits relative to ΣE ∪ ΣNC are:

c1 = {supervises(tom, john), directs(john, d1),works in(john, d1)},
c2 = {supervises(tom, john), directs(john, d1),works in(tom, d1)},
c3 = {directs(tom, d1), directs(tom, d2)} . �

90 M. V. Martinez and G. I. Simari

We construct clusters by grouping together all culprits that share elements.
Intuitively, clusters contain only information involved in some inconsistency rel-
ative to Σ, i.e., an atom is in a cluster relative to Σ iff it is in contradiction with
some other set of atoms in D.

Definition 11 (Cluster [38]). Given a Datalog+/– ontology KB = (D,ΣT ∪
ΣNC) and IC ⊆ ΣNC, two culprits c, c′ ∈ culprits(KB , IC) overlap, denoted
c Θ c′, iff c∩ c′ �= ∅. Denote by Θ∗ the equivalence relation given by the reflexive
and transitive closure of Θ. A cluster is a set cl =

⋃
c∈e c, where e is an equiv-

alence class of Θ∗. We denote by clusters(KB , IC) (resp., clusters(KB)) the set
of all clusters in KB relative to IC (resp., IC = ΣNC).

Example 9. The clusters for KB in the running example are cl1 = c3 and cl2 =

c1 ∪ c2 (cf. Example 8 for culprits c1, c2, and c3). �
We now recall the definition of incision function from [31], adapted for

Datalog+/– ontologies. Intuitively, an incision function selects from each cluster
a set of atoms to be discarded such that the remaining atoms are consistent
relative to Σ.

Definition 12 (Incision Function). Given a Datalog+/– ontology
KB = (D,Σ), an incision function is a function χ that satisfies the following
properties:

(1) χ(clusters(KB)) ⊆ ⋃
cl∈clusters(KB) cl, and

(2) mods(D − χ(clusters(KB)), Σ) �= ∅.

Note that incision functions in [31] do not explicitly require condition (2)
from Definition 12; instead, they require the removal of at least one sentence
from each α-kernel. The notion of α-kernel [31] translates in our framework to
a minimal set of sentences in D such that, together with Σ, entails the sentence
α, where KB = (D,Σ). Culprits are then, no more than minimal subsets of D
that, together with Σ, entail ⊥. Here, χ produces incisions over clusters instead,
therefore, condition (2) is necessary to ensure that by making the incision, the
inconsistency is resolved.

4.1 Relationship with (Classical) Consistent Answers

In the area of relational databases, the notion of repair was used in order to
identify the consistent part of a possibly inconsistent database. A repair is a
model of the set of integrity constraints that is maximally close, i.e., “as close as
possible” to the original database. Repairs may not be unique, and in the general
case, there can be a very large number of them. The most widely accepted
semantics for querying a possibly inconsistent database is that of consistent
answers [2].

We now adapt one notion of repair from [32] to Datalog+/– ontologies
KB = (D,Σ). Intuitively, repairs are maximal consistent subsets of D. We also
show that BCQ answering under the consistent answer semantics is co-NP-
complete for guarded and linear Datalog+/– in the data complexity.

Explanation-Friendly Query Answering Under Uncertainty 91

Definition 13 (Repair). A repair for KB = (D,Σ) is a set D′ such that (i)
D′ ⊆D, (ii) mods(D′, Σ) �= ∅, and (iii) there is no D′′ ⊆D such that D′ ⊂ D′′

and mods(D′′, Σ) �= ∅. We denote by DRep(KB) the set of all repairs for KB .

Example 10. The Datalog+/– ontology KB in Example 8 has six repairs:
r1 = {directs(john, d1), supervises(tom, john), directs(tom, d1),manager(tom, d1)},
r2 = {directs(john, d1), supervises(tom, john), directs(tom, d2),manager(tom, d1)},
r3 = {directs(john, d1), directs(tom, d1),works in(john, d1),works in(tom, d1),

manager(tom, d2)},
r4 = {directs(john, d1), directs(tom, d2),works in(john, d1),works in(tom, d1),

manager(tom, d2)},
r5 = {supervises(tom, john), directs(tom, d1),works in(john, d1),

works in(tom, d1),manager(tom, d1)},
r6 = {supervises(tom, john), directs(tom, d2),works in(john, d1),

works in(tom, d1),manager(tom, d1)}. �

Repairs play a central role in the notion of consistent answer for a query
to an ontology, which are intuitively the answers relative to each ontology built
from a repair. The following definition adapts the notion of consistent answers,
defined in [32] for Description Logics, for Datalog+/– ontologies.

Definition 14 (Consistent Answers – AR Semantics). Let KB = (D,Σ)
be a Datalog+/– ontology, and Q be a BCQ. Then, Yes is a consistent answer
for Q to KB , denoted KB |=AR Q, iff it is an answer for Q to each KB ′ = (D′, Σ)
with D′ ∈DRep(KB).

Example 11. Consider the ontology KB from our running example. The atom
emp(john) can be derived from every repair, as each contains either the atom
works in(john, d1) or the atom directs(john, d1). Thus, BCQ Q= emp(john) is
true under the consistent answer semantics. �

In accordance with the principle of minimal change, incision functions that
make as few changes as possible when applied the set of clusters are called
optimal incision functions.

Definition 15 (Optimal Incision Function). Given a Datalog+/– ontology
KB = (D,Σ), an incision function χ is optimal iff for every B ⊂ χ(clusters(KB)),
it holds that mods(D − B,Σ) = ∅.

The following theorem shows the relationship between an optimal incision
function and repairs for a Datalog+/– ontology KB = (D,Σ). More concretely,
every repair corresponds to the result of removing from D all ground atoms
according to some optimal incision χ(clusters(KB)) and vice versa.

Theorem 1. Let KB = (D,Σ) be a Datalog+/– ontology. Then, D′ is a repair,
i.e., D′ ∈DRep(KB), iff there exists an optimal incision function χopt such that
D′ = D − χopt(clusters(KB)).

92 M. V. Martinez and G. I. Simari

4.2 Relationship with IAR Semantics

An alternative semantics that considers only the atoms that are in the intersec-
tion of all repairs was presented in [32] for DL-Lite ontologies. This semantics
yields a unique way of repairing inconsistency; the consistent answers are intu-
itively the answers that can be obtained from that unique set. Here, we define
IAR for Datalog+/– ontologies.

Definition 16 (Intersection Semantics – IAR). Let KB = (D,Σ) be a Da-
talog+/– ontology, and Q be a BCQ. Then, Yes is a consistent answer for Q to
KB under IAR, denoted KB |=IAR Q, iff it is an answer for Q to KBI = (DI , Σ),
where DI =

⋂ {D′ | D′ ∈ DRep(KB)}.

Example 12. Consider the ontology KB = (D,Σ) from the running exam-
ple. Analyzing the set of all its repairs, it is easy to verify that DI =
{manager(tom, d1)}. �

The following theorem shows the relationship between the incision function
χall, which is defined by χall(clusters(KB)) =

⋃
cl∈clusters(KB) cl, and consis-

tent answers under the IAR semantics. Intuitively, answers relative to IAR can
be obtained by removing from D all atoms participating in some cluster, and
answering the query using the resulting database.

Theorem 2. Let KB = (D,Σ) be a Datalog+/– ontology, and Q be a BCQ.
Then, KB |=IAR Q iff (D −χall(clusters(KB)) ∪ Σ |= Q.

4.3 Lazy Answers

In the following, we present a different semantics for consistent query answering
in Datalog+/– ontologies. The motivation to seek for a different semantics comes
from different reasons: first is the fact that computing the AR semantics is too
expensive for any reasonable-sized Datalog+/– ontology, and second, the IAR
semantics is unnecessarily restrictive in the set of answers that can be obtained
from a query. The k-lazy semantics is an alternative to classical consistent query
answering in Datalog+/– ontologies; the intuition behind lazy answers is that,
given a budget (the k parameter), a maximal set of consistent answers (maximal
relative to the k) can be computed, which are at least as complete as those that
can be obtained under IAR.

We first define the notion of k-cut of clusters. Let χk-cut be a function defined
as follows for cl ∈ cluster(KB):

χk-cut(cl) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{C1, . . . , Cm} m � 1, Ci ⊂ cl, |Ci| � k,
s.t. mods(cl − Ci, Σ) �= ∅
and � ∃C′

i s.t. C′
i ⊂ C and

mods(cl − C′
i, Σ) �= ∅};

{cl} if no such Ci exists.

(1)

Intuitively, given a cluster cl, its k-cut χk-cut(cl) is the set of minimal subsets of
cl of cardinality at most k, such that if they are removed from cl, what is left is
consistent with respect to Σ.

Explanation-Friendly Query Answering Under Uncertainty 93

We next use the k-cut of clusters to define a new type of incision functions,
called k-lazy functions, as follows.

Definition 17. Let KB = (D,Σ) be a Datalog+/– ontology, and k � 0. A k-lazy
function for KB is defined as χlazy(k, clusters(KB)) =

⋃
cl∈clusters(KB) ccl, where

ccl ∈ χk-cut(cl).

The above k-lazy functions are indeed incision functions.

Proposition 1. Let KB = (D,Σ) be a Datalog+/– ontology, and k � 0. All k-
lazy functions for KB are incision functions.

The function χlazy is the basis of lazy repairs, as defined next. Intuitively,
k-lazy repairs are built by analyzing ways in which to remove at most k atoms
in every cluster.

Definition 18 (k-Lazy Repair). Let KB = (D,Σ) be a Datalog+/– ontology,
and k � 0. A k-lazy repair for KB is any set D′ = D − χlazy(k, clusters(KB)),
where χlazy(k, clusters(KB)) is a k-lazy function for KB . LRep(k,KB) denotes
the set of all such repairs.

Example 13. Consider again our running example and the clusters in KB from
Example 9. Let k = 1, then we have that

χ1-cut(cl1) = {d1 : {directs(tom, d1)}, d2 : {directs(tom, d2)}},

and that

χ1-cut(cl2) = {e1 : {supervises(tom, john)}, e2 : {directs(john, d1)}}.

There are four possible incisions: ins1 = d1 ∪ e1, ins2 = d1 ∪ e2, ins3 = d2 ∪ e1,
and ins4 = d2 ∪ e2. Thus, there are four 1-lazy repairs, with lrepi = D − insi; for
example,

lrep1 = {directs(john, d1), directs(tom, d2),works in(john, d1),

works in(tom, d1),manager(tom, d1)}.

�

We can now define k-lazy answers for a query Q as the set of atoms that are
derived from every k-lazy repair.

Definition 19 (k-Lazy Answers). Let KB = (D,Σ) be a Datalog+/– ontol-
ogy, Q be a BCQ, and k � 0. Then, Yes is a k-lazy answer for Q to KB ,
denoted KB |=k-LCons Q, iff it is an answer for Q to each KB ′ = (D′, Σ) with
D′ ∈LRep(k,KB).

Note that k-LCons is used to identify the consistency-tolerant query answer-
ing semantics corresponding to k-lazy repairs. The following proposition states
some properties of k-lazy repairs and lazy answers: each lazy repair is consistent
relative to Σ, and only atoms that contribute to an inconsistency are removed
by a k-lazy function for KB .

94 M. V. Martinez and G. I. Simari

Proposition 2. Let KB = (D,Σ) be a Datalog+/– ontology, and k � 0. Then,
for every D′ ∈LRep(k,KB), (a) mods(D′, Σ) �= ∅, and (b) if β ∈ D and β �∈ D′,
then there exists some B ⊆D such that mods(B,Σ) �= ∅ and mods(B ∪
{β}, Σ)= ∅.

Proposition 2 shows that lazy repairs satisfy properties that are desirable
for any belief change operator to have [31]. However, the incisions performed by
function χlazy(k, clusters(KB)) are not always minimal relative to set inclusion;
i.e., if there is no subset of a cluster of size at most k that satisfies the conditions
in Definition 1, then the whole cluster is removed, and therefore not every lazy
repair is a repair.

The AR semantics from Definition 14 is a cautious semantics to query answer-
ing, since only answers that can be entailed from every repair are deemed consis-
tent. Traditionally, the alternative to this semantics is a brave approach, which
in our framework would consider an answer as consistent if it can be entailed
from some repair. In the case of Example 13 with k = 1, works in(john, d1) and
works in(tom, d1) are lazy consequences of KB , which are clearly not consistent
consequences of KB . However, a brave approach for query answering would allow
both supervise(tom, john) and directs(john, d1) as answers. In this respect, lazy
answers are a compromise between brave and cautious approaches: although it
is “braver” than the cautious approach, it does not allow to derive mutually
inconsistent answers.

Proposition 3. Let KB = (D,Σ) be a Datalog+/– ontology, Q be a CQ, and
ansLCons(k,Q,D,Σ) be the set of lazy answers for Q given k. Then, for any
k � 0, mods(ansLCons(k,Q,D,Σ), Σ) �= ∅.

The next proposition shows that the same property holds if we consider the
union of k-lazy answers for different values of k.

Theorem 3. Let KB = (D,Σ) be a Datalog+/– ontology and Q be a CQ. Then,
for any k � 0, mods(

⋃
0�i�k ansLCons(i, Q,D,Σ), Σ) �= ∅.

Theorem 3 shows that lazy answers can be used to obtain answers that are
not consistent answers but are nevertheless consistent as a whole. We refer to
this as the union-k-lazy semantics.

The next proposition shows the relationships between AR, IAR, and the lazy
semantics.

Proposition 4. Let KB = (D,Σ) be a Datalog+/– ontology, and Q be a BCQ.
Then, (a) if KB |=IAR Q, then KB |=k-LCons Q, for any k � 0, and (b) KB |=IAR

Q iff KB |=0-LCons Q. Furthermore, there is k � 0 such that KB |=AR Q iff
KB |=k-LCons Q.

Clearly, Proposition 4 entails that if we take the union of the lazy answers
up to the k from the proposition, then the resulting set of lazy answers is com-
plete with respect to AR. Example 14 shows that, in our running example, the
2-lazy answers correspond exactly to the consistent answers.

Explanation-Friendly Query Answering Under Uncertainty 95

Example 14. In Example 13, if k = 2, then we have that χ2-cut(cl1)= χ1-cut(cl1)
and χ2-cut(cl2)= χ1-cut(cl2)∪{{works in(tom, d1), works in(john, d1)}}. We can
easily see that LRep(2,KB) = DRep(KB). �

The following (simpler) example shows the effects of changing the value of k
as well as the results from Theorem 3.

Example 15. Consider the CQ Q(X,Y) = p(X) ∧ q(Y) and the following
Datalog+/– ontology KB = (D,Σ):

D = {p(a), p(b), p(c), p(d), p(e), p(f), q(g), q(h), q(i), q(j)};
ΣT = {};
ΣNC = {p(a) ∧ p(b) → ⊥, p(b) ∧ p(d) → ⊥, p(d) ∧ p(e) → ⊥, p(d) ∧ p(f) → ⊥

q(g) ∧ q(h) → ⊥, q(h) ∧ q(i) → ⊥}
The set of clusters in KB is clusters(KB , Σ) = {cl1 : {p(a), p(b), p(d), p(e), p(f)},
cl2 : {q(g), q(h), q(i)}. For k = 0, the only 0-lazy repair is lrep0 = {p(c), q(j)},
which coincides with DI ; the set of 0-lazy answers (and the answers under IAR)
to Q(X,Y) is {p(c), q(j)}.

For k = 1, note that there is no way of removing one element from cl1 making
the rest consistent; therefore, the only possible cut removes the whole cluster.
On the other hand, there is one 1-cut for cl2, namely {q(h)}. Therefore, we have
only one 1-lazy repair lrep1 = {p(c), q(j), q(i), q(g)}. The set of 1-lazy answers
to Q(X,Y) is {p(c), q(j), q(i), q(g)}.

With k = 2, we have two possible 2-cuts for cl1 and two for cl2, this is,
χ2-cut(cl1) = {{p(a), p(d)}, {p(b), p(d)}} and χ2-cut(cl2) = {{q(h)}, {q(g), q(i)}}.
In this case there are four 2-lazy repairs and the set of 2-lazy answers to Q(X,Y)
is {p(c), p(e), p(f), q(j)}.

For k = 3, we have χ3-cut(cl1) = {{p(a), p(d)}, {p(b), p(d)}, {p(b), p(e), p(f)}}
and χ3-cut(cl2) = χ2-cut(cl2) = {{q(h)}, {q(g), q(i)}}. The set of 3-lazy repairs
coincide with the set of repairs and therefore the set of 3-lazy answers to Q(X,Y)
is the set of consistent answers, namely {p(c), q(j)}.

Finally,
⋃

0�i�3 ansLCons(i, Q,D,Σ) = {p(c), q(j), q(i), q(g), p(e), p(f)},
which is clearly consistent relative to ΣNC. �

After the formal presentation of lazy answers, based on the concept of inci-
sion functions, we can now provide an algorithm that computes lazy answers to
conjunctive queries to Datalog+/– ontologies. In [36], an algorithm to compute
lazy answers to conjunctive queries is provided; the algorithm uses the concept
of finite chase graph [17] for a given ontology KB = (D,Σ), which is a graph
consisting of the necessary finite part of chase(D,Σ) relative to query Q, i.e.,
the finite part of the chase graph for D and Σ such that chase(D,Σ) |= Q.
The idea of the algorithm is pretty straight forward, it first computes the set
of clusters in KB , and next, for each cluster, function χk-cut is constructed by
removing each possible subset (of size at most k) of the cluster in turn and
checking if the remaining tuples are consistent (and that the subset in question
is not a superset of an incision already found). A lazy repair then arises from
each such possible combination by removing the incisions from D. The answer

96 M. V. Martinez and G. I. Simari

is finally computed using these repairs. Thought [36] proposes also an algorithm
to compute clusters and kernels, there exists several algorithms in the literature
to efficiently compute kernels in propositional logic that can be leveraged for
Datalog+/– ontologies [43,51,52].

Lazy answers are based on a budget that restricts the size of removals that
need to be made in a set of facts in order to make it consistent—if the budget is
large enough, then we go to the trouble of considering all possible ways of solving
the conflicts within the budget, but if it is not enough then we get rid of all the
sentences that are involved in that particular conflict. If we think of the problem
of querying inconsistent KBs as a reasoning task for an intelligent agent, then
the value of the budget would be a bound on its reasoning capabilities (more
complex reasoning can thus be afforded with higher budgets). On the other hand,
considering clusters instead of culprits (or kernels) allows to identify a class of
incision functions that solve conflicts from a global perspective; for more details
on the relation of cluster incision functions and kernel incision functions cf. [20].

The key points that differentiates the k-lazy semantics from the Ar and its
approximations is reflected in the fact that the set of repairs and the set of k-lazy
repairs do not coincide in general, unless k is such that it forces to consider all
the possible ways to solve the conflicts. This allows to consider answers that are
not consistent answers in the sense of AR semantics but that are consistent with
respect to the way conflicts are solved given the provided budget.

4.4 Towards Explainable Inconsistency-Tolerant Query Answering

Inconsistency-tolerant semantics for query answering provide a way to reason in
logical knowledge bases in the presence of inconsistency. This is an important
advantage over classical query answering processes, where answers may become
meaningless. In this sense, the presence of inconsistency in the knowledge base
remains transparent to the user that is issuing the query, which is, arguably, a
good property as it does not disrupt the process. However, as these tools are
often used to aid in the process of making decisions for different application
domains (it may be an automated system itself the one that makes decisions
based on the answers obtained from the knowledge base), it seems reasonable to
try to provide information that complements the set of answers and helps the
user understand why they obtained that set of answers and, particularly, if there
was some piece of information, related to their query, that is subject to logical
conflicts and how that affected the computed answers, especially if the answer
was negative or did not include an individual that was expected.

For instance, suppose the user asks if the query q() = ∃Xp(X) is true and
they get the answer No. It is only natural to pose the following question:

“Was it the case that there is no possible way to derive p(X) from the
knowledge base, so the answer is No in every possible repair, or was it
the case that q is true in some repairs but false in others, such that the
semantics cannot assure its truth value”.

Explanation-Friendly Query Answering Under Uncertainty 97

This distinction may be significant depending on the implications of the answer
and how it is used. With this example in mind, given a Datalog+/– ontology
(D,Σ) and a query Q, a natural question that one may be interested in asking
for explanatory purposes is:

“What makes Q true under some semantics S?”, or alternatively
“What makes Q false under some semantics S?”.

The work of [11] proposes the notion of explanation for positive and negative
query answers under the brave, AR, and IAR semantics, for Description Logics.
An explanation for a query Q in this case is based on causes for Q, which are
sets of facts from the original knowledge base that yield Q; this means that, in
terms of Datalog+/–, causes are subsets of the D that together with Σ yield Q.
Positive explanations for the brave semantics (the answer is true in some repair)
is any cause for Q, that is, any consistent subset of D that entails the query
by means of Σ. For the IAR semantics, an explanation is any cause of Q that
does not participate in any contradiction. In the case of AR it is not enough to
provide just one set of facts that are a cause of the query, as different repairs
may use different causes. Therefore, they provide explanations in the form of
(minimal) disjunctions of causes that cover all repairs (every cause belongs to
at least one repair and for each repair there is one cause in the set).

Explanations for negative answers for Q under AR are minimal subsets of
D such that together with any cause for Q yield an inconsistency. On the other
hand, explanations for negative answers under IAR it is only necessary to ensure
that every cause is contradicted by some consistent subset of D, which is enough
to show that no cause belongs to all repairs. The proposal is accompanied by a
computational complexity study of the difficulty of the decision problems related
to checking and computing the different types of explanations. Most of these
problems are polynomial for the case of explanations for positive and negative
answers under brave and IAR. Not surprisingly, explanations in both cases under
the AR semantics are intractable.

The notion of explanation, both for positive and negative answers, are
directly translatable for k-Lazy answers. In particular, incisions correspond to
explanations for negative answers. If we look at Example 14 and take query
Q() = p(e) for k = 1, we have that KB �|=1-LCons Q and the reason for that
is that the only possible 1-cut for cl1 includes p(e) (in the general case we can
actually see that the incision contradicts every possible cause of p(e)).

In addition, this proposal can provide other types of answers in relation
to explaining the behavior of the semantics. Other interesting questions may
include:

1. What is the smallest k needed to make Q true under both k-lazy and union-
k-lazy semantics?

2. What are the causes that make Q change its truth value from k to k+1 under
the k-lazy semantics (either from true to false or the other way around)?

3. If Q is true under (union-) k-lazy semantics for some k � 0 but it is not
a consistent answer, what are the causes for this behavior? This question

98 M. V. Martinez and G. I. Simari

actually elaborates on the previous one, as we can try to find for which k′ � k
the truth value of Q changes, and find the reason by comparing k′-cuts against
k′ + 1-cuts.

If we try to answer question (1) for Example 14 and Q() = p(e), we find that
the smallest k is 2, which means that p(e) is involved in some inconsistency (it
belongs or can be derived from a cluster) and that the conflict is such that it is
necessary to remove two atoms at the same time from the cluster, so that p(e)
appears or survives. Note that this number is actually related to the fact that
there is a chain of conflicts: p(a)∧p(b) → ⊥, p(b)∧p(d) → ⊥, and p(d)∧p(e) → ⊥.
In this way we can use causes, together with NCs and incisions, to complement
the required explanations and can show explanations that are local to specific k’s.

Finally, we will show examples of how argumentation theory can help in the
construction of meaningful explanations for inconsistency-tolerant query answer-
ing. As mentioned in the introduction, argumentation provides a natural dialogic
structure and mechanism as part of the reasoning process and that can, in princi-
ple, be examined by a user in order to understand both why and how conclusions
(answers) are reached.

The work in [4], proposes explanations as a set of logical arguments support-
ing the query. Without going into the fine details, an argument can be seen as
a set of premises (facts) that derives a conclusion by means of a logical theory,
or in the case of Datalog+/– a set of TGDs. In this context, we can think of
causes of a query, defined by [11], as arguments that entail or support the entail-
ment of the query. Conversely, we can build arguments that contradict some
sentence, and these can be used as reasons against a query or, more generally,
explanations for negative answers. For more details on argumentation we refer
the reader to [21,25]. All the examples of explanation proposals mentioned so far
can be considered as argument-based explanations, depending on the richness of
the language and the framework, different notions of argument and counterar-
guments can be constructed as a means for explanations.

The proposals mentioned above provide arguments for and against conclu-
sions but in a static way, after the user inquiry for explanations the system
retrieves and shows the set of explanations. Alternative, it is possible to exploit
the dynamical characteristics of argumentation frameworks in order to create an
interactive explanation mechanism. In [3], the notion of dialectical explanations
is developed where it is assumed that the explanation is an interactive process
with the system where a dialogue is established. The idea is that the explainer
(e.g., the system) aims to make an explainee (e.g., the user) understand why a
query Q is or is not entailed by the query answering semantics. It is shown that
the query answering process can be represented as such a dialogue, in which
arguments for and against the entailment of the query are identified, analyzed,
and weighed among each other. A query is entailed under a specific semantics if
and only if the dialectical process ends with a winning argument in favor of the
query. That work develops this dialectical process for the ICR semantics [10],
which is a sound approximation of AR and generalizes IAR. In [3], the proposal
is extended for the brave and IAR semantics.

Explanation-Friendly Query Answering Under Uncertainty 99

In this same spirit, [37] introduces an inconsistency-tolerant semantics for Da-
talog+/– ontologies query asnwering based on defeasible argumentative reason-
ing, which allows consequences to represent statements whose truth can be chal-
lenged. The proposal incorporates argumentation theory within the Datalog+/–
query answering process itself. This process has the ability of considering rea-
sons for and against potential conclusions and deciding which are the ones that
can be obtained (warranted) from the knowledge base. This provides the pos-
sibility of implementing different inconsistency-tolerant semantics depending on
the comparison criterion selected, all within the same framework, and as part of
the query answering process. Indeed, the paper shows that most inconsistency-
tolerant semantics that are based on the notion of repair (AR and the family
of semantics that approximates it), as well as other such as the k-support and
k-defeater semantics [12], can be obtained within this framework. This proposal
has two advantages; first, it is not necessary to use and compute elements that
are outside of the logic, such as repairs, kernels, clusters, incisions, etc., as the
query answering engine is inconsistency-tolerant in itself. Second, the argumenta-
tive process underlying the query answering task allows to compute the answers
and the required explanations at the same time. This means that there is, in
principle, not extra cost for computing explanations, as happens also in [3].
Of course, there is the potential of creating a more complex explanatory mecha-
nism exploiting other elements that are explicitly built within the argumentative
process.

5 Discussion and Future Research Directions

Querying and managing incomplete and inconsistent information in an automatic
and systematic way is becoming more and more necessary in order to cope with
the amount of information that feeds the systems that are used to make decisions
in a wide variety of domains, from product or service recommendation systems
to medical or political applications. In order to build automated systems that
aid humans in the process of making decisions in such a way that they improve
their performance and understanding, proper explanations and interpretability of
results are of the utmost importance. As we mentioned before, what is considered
a good or reasonable explanation—or explanation process—strongly depends on
the application domain and the particular problem the user is trying to solve
based on the system’s results.

Being able to produce adequate and meaningful explanations from automated
systems is about being able to trust their results. This kind of trust is important
from the system’s functional point of view, but also important from a regula-
tory perspective. As it has already being discussed in different forums, such as
the European General Data Protection Regulation,3 users (or subjects) of auto-
mated data processing have the right “to obtain human intervention, to express
his or her point of view, to obtain an explanation of the decision reached after

3 https://eugdpr.org/.

https://eugdpr.org/

100 M. V. Martinez and G. I. Simari

such assessment and to challenge the decision”. Such legal (and social) require-
ments clearly set the stage for discussions and further research efforts regarding
adequate explanation models, mechanisms, and tools.

In this work we drafted some ideas on how to exploit the potential of knowl-
edge based AI systems in order to produce meaningful explanations for query
answering in the presence of uncertain information, where the uncertainty may
arise from a probabilistic model or from the presence of inconsistency. After
these first steps, it becomes clear that the road to designing and implement-
ing explainable tools based on these and other formalisms is long; the roadmap
includes the following activities, among others:

– Research different kinds of explanations for each type of query that can be
posed to the system, making full use of the knowledge encoded in the models.

– Related to the previous point, take into account the actual users of the sys-
tem, for whom the explanations are generated. This includes many different
human-centered aspects, such as effective interfaces that don’t overwhelm the
user, and conveying full transparency in order to gain the user’s trust.

– Design explanation techniques that allow a level of detail to be set, so as to
support the wide range between novice and expert users, as well as different
levels of privacy and clearance (in terms of security).

– Study the relationship between explainability and human-in-the-loop
systems—for instance, it is possible for users to only require explanations
for certain parts of a result, or only an explanation of why the result wasn’t
one that they were expecting.

– Explore how explainability relates to the vast body of work in software
auditing—clearly, explanations might not only be required at query time,
but at a later stage when other interested parties are reviewing the system’s
outputs.

– Ensure computational tractability: producing explanations should not be an
excessive computational burden.

Each of these tasks can be considered a research and development program in
its own right; we envision progress to continue being made slowly but steadily
from ad hoc approaches to well-founded developments in the future.

Acknowledgments. This work was partially supported by funds provided by CON-
ICET, Agencia Nacional de Promoción Cient́ıfica y Tecnológica, Universidad Nacional
del Sur (UNS), Argentina, and by the EU H2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement 690974 for the project “MIREL:
MIning and REasoning with Legal texts”.

References

1. Alonso, J.M., Castiello, C., Mencar, C.: A bibliometric analysis of the explain-
able artificial intelligence research field. In: Medina, J., et al. (eds.) IPMU 2018.
CCIS, vol. 853, pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-91473-2 1

https://doi.org/10.1007/978-3-319-91473-2_1
https://doi.org/10.1007/978-3-319-91473-2_1

Explanation-Friendly Query Answering Under Uncertainty 101

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of PODS, pp. 68–79 (1999)

3. Arioua, A., Croitoru, M.: Dialectical characterization of consistent query expla-
nation with existential rules. In: FLAIRS: Florida Artificial Intelligence Research
Society (2016)

4. Arioua, A., Tamani, N., Croitoru, M.: Query answering explanation in inconsistent
datalog+/− knowledge bases. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner,
R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 203–219. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-22849-5 15

5. Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms
and unions of conjunctive queries. J. ACM (JACM) 53(2), 208–237 (2006)

6. Baget, J., Mugnier, M., Rudolph, S., Thomazo, M.: Walking the complexity lines
for generalized guarded existential rules. In: Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pp. 712–717 (2011)

7. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In:
Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 21–33.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24609-1 5

8. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University
Press, Cambridge (2012)

9. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even,
S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg
(1981). https://doi.org/10.1007/3-540-10843-2 7

10. Bienvenu, M.: Inconsistency-tolerant conjunctive query answering for simple
ontologies. In: Kazakov, Y., Lembo, D., Wolter, F. (eds.) Proceedings of DL, vol.
846. CEUR-WS.org (2012)

11. Bienvenu, M., Bourgaux, C., Goasdoue, F.: Explaining inconsistency-tolerant query
answering over description logic knowledge bases. In: Proceedings of AAAI 2016,
pp. 900–906. AAAI Press (2016)

12. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: Proceedings of IJCAI, pp. 775–781 (2013)

13. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. In: Proceedings of the International Conference
on Principles of Knowledge Representation and Reasoning (KR), pp. 70–80 (2008)

14. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. (JAIR) 48, 115–174 (2013)

15. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. In: Proceedings of the ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), pp. 77–86
(2009)

16. Cal̀ı, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the
query answering problem. Artif. Intell. J. (AIJ) 193, 87–128 (2012)

17. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

18. Ceylan, İ.İ., Borgwardt, S., Lukasiewicz, T.: Most probable explanations for prob-
abilistic database queries. In: Proceedings of IJCAI, pp. 950–956 (2017)

19. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Proceedings of the ACM Symposium on Theory of Com-
puting (STOC), pp. 77–90 (1977)

20. Deagustini, C.A.D., Mart́ınez, M.V., Falappa, M.A., Simari, G.R.: Improving
inconsistency resolution by considering global conflicts. In: Straccia, U., Cal̀ı, A.

https://doi.org/10.1007/978-3-319-22849-5_15
https://doi.org/10.1007/978-3-540-24609-1_5
https://doi.org/10.1007/3-540-10843-2_7

102 M. V. Martinez and G. I. Simari

(eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 120–133. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11508-5 11

21. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–357 (1995)

22. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003.
LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36285-1 14

23. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theoret. Comput. Sci. 336(1), 89–124 (2005)

24. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Explanations, belief revision and
defeasible reasoning. Artif. Intell. 141(1–2), 1–28 (2002)

25. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: delp-servers, contextual
queries, and explanations for answers. Argument Comput. 5(1), 63–88 (2014)

26. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: an argumentative app-
roach. TPLP 4(1–2), 95–138 (2004)

27. Gottlob, G., Manna, M., Pieris, A.: Combining decidability paradigms for existen-
tial rules. Theory Practice Logic Program. (TPLP) 13(4–5), 877–892 (2013)

28. Gottlob, G., Orsi, G., Pieris, A., Šimkus, M.: Datalog and its extensions for seman-
tic web databases. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012.
LNCS, vol. 7487, pp. 54–77. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33158-9 2

29. Gottlob, G., Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Query answering under
probabilistic uncertainty in datalog+/- ontologies. Ann. Math. Artif. Intell. 69(1),
37–72 (2013)

30. Grover, S., Pulice, C., Simari, G.I., Subrahmanian, V.S.: BEEF: balanced English
explanations of forecasts. IEEE Trans. Comput. Soc. Syst. 6(2), 350–364 (2019)

31. Hansson, S.O.: Semi-revision. J. Appl. Non-Classical Logic 7, 151–175 (1997)
32. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant

semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010.
LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15918-3 9

33. Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable Datalog
programs. In: Proceedings of the International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), pp. 13–23 (2012)

34. Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Heuristic ranking in tightly
coupled probabilistic description logics. In: Proceedings of UAI 2012, pp. 554–563
(2012)

35. Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Exact and approximate
query answering in tightly coupled probabilistic datalog+/-. Forthcoming (2019)

36. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in
Datalog+/- ontologies. In: Proceedings of ECAI, pp. 558–563 (2012)

37. Martinez, M.V., Deagustini, C.A.D., Falappa, M.A., Simari, G.R.: Inconsistency-
tolerant reasoning in datalog± ontologies via an argumentative semantics. In: Baz-
zan, A.L.C., Pichara, K. (eds.) IBERAMIA 2014. LNCS (LNAI), vol. 8864, pp.
15–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12027-0 2

38. Martinez, M.V., Pugliese, A., Simari, G.I., Subrahmanian, V.S., Prade, H.: How
dirty is your relational database? An axiomatic approach. In: Proceedings of
ECSQARU, pp. 103–114 (2007)

https://doi.org/10.1007/978-3-319-11508-5_11
https://doi.org/10.1007/3-540-36285-1_14
https://doi.org/10.1007/3-540-36285-1_14
https://doi.org/10.1007/978-3-642-33158-9_2
https://doi.org/10.1007/978-3-642-33158-9_2
https://doi.org/10.1007/978-3-642-15918-3_9
https://doi.org/10.1007/978-3-642-15918-3_9
https://doi.org/10.1007/978-3-319-12027-0_2

Explanation-Friendly Query Answering Under Uncertainty 103

39. Milani, M., Bertossi, L.: Tractable query answering and optimization for extensions
of weakly-sticky Datalog+/-. arXiv:1504.03386 (2015)

40. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

41. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference (1988)

42. Poole, D.: The independent choice logic for modelling multiple agents under uncer-
tainty. Artif. Intell. 94(1–2), 7–56 (1997)

43. Ribeiro, M.M., Wassermann, R.: Minimal change in AGM revision for non-classical
logics. In: Principles of Knowledge Representation and Reasoning: Proceedings
of the Fourteenth International Conference, KR 2014, 20–24 July 2014, Vienna,
Austria (2014)

44. Richardson, A., Rosenfeld, A.: A survey of interpretability and explainability in
human-agent systems. In: XAI Workshop on Explainable Artificial Intelligence, pp.
137–143 (2018)

45. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136
(2006)

46. Shortliffe, E.H., Davis, R., Axline, S.G., Buchanan, B.G., Green, C.C., Cohen,
S.N.: Computer-based consultations in clinical therapeutics: explanation and rule
acquisition capabilities of the mycin system. Comput. Biomed. Res. 8(4), 303–320
(1975)

47. Simari, G.I., Molinaro, C., Martinez, M.V., Lukasiewicz, T., Predoiu, L.: Ontology-
Based Data Access Leveraging Subjective Reports. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-65229-0

48. Tifrea-Marciuska, O.: Personalised search for the social semantic web. Ph.D. thesis,
Department of Computer Science, University of Oxford (2016)

49. Vardi, M.Y.: The complexity of relational query languages (extended abstract).
In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp.
137–146 (1982)

50. Wainwright, M.J., Jordan, M.I., et al.: Graphical models, exponential families, and
variational inference. Found. Trends R© Mach. Learn. 1(1–2), 1–305 (2008)

51. Wang, S., Pan, J.Z., Zhao, Y., Li, W., Han, S., Han, D.: Belief base revision for
datalog+/- ontologies. In: Kim, W., Ding, Y., Kim, H.-G. (eds.) JIST 2013. LNCS,
vol. 8388, pp. 175–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06826-8 14

52. Wassermann, R.: An algorithm for belief revision. In: Proceedings of the Seventh
International Conference Principles of Knowledge Representation and Reasoning,
KR 2000, 11–15 April 2000, Breckenridge, Colorado, USA, pp. 345–352 (2000)

53. White, C.C.: A survey on the integration of decision analysis and expert systems
for decision support. IEEE Trans. Syst. Man Cybern. 20(2), 358–364 (1990)

http://arxiv.org/abs/1504.03386
https://doi.org/10.1007/978-3-319-65229-0
https://doi.org/10.1007/978-3-319-06826-8_14
https://doi.org/10.1007/978-3-319-06826-8_14

	Explanation-Friendly Query Answering Under Uncertainty
	1 Introduction
	2 The Datalog+/– Family of Ontology Languages
	2.1 Preliminary Concepts and Notations
	2.2 Syntax and Semantics of Datalog+/–
	2.3 Conjunctive Query Answering
	2.4 Datalog+/– Fragments: In Search of Decidability and Tractability

	3 Query Answering over Probabilistic Knowledge Bases
	3.1 Brief Overview of Basic Probabilistic Graphical Models
	3.2 Probabilistic Datalog+/–
	3.3 Towards Explainable Probabilistic Ontological Reasoning

	4 Inconsistency-Tolerant Query Answering with Datalog+/–
	4.1 Relationship with (Classical) Consistent Answers
	4.2 Relationship with IAR Semantics
	4.3 Lazy Answers
	4.4 Towards Explainable Inconsistency-Tolerant Query Answering

	5 Discussion and Future Research Directions
	References

