
Markus Krötzsch · Daria Stepanova (Eds.)
Tu

to
ria

l
LN

CS
 1

18
10

15th International Summer School 2019
Bolzano, Italy, September 20–24, 2019
Tutorial Lectures

Reasoning Web
Explainable Artificial Intelligence



Lecture Notes in Computer Science 11810

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Markus Krötzsch • Daria Stepanova (Eds.)

Reasoning Web
Explainable Artificial Intelligence

15th International Summer School 2019
Bolzano, Italy, September 20–24, 2019
Tutorial Lectures

123



Editors
Markus Krötzsch
Technische Universität Dresden
Dresden, Sachsen, Germany

Daria Stepanova
Bosch Center for Artificial Intelligence
Renningen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-31422-4 ISBN 978-3-030-31423-1 (eBook)
https://doi.org/10.1007/978-3-030-31423-1

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9172-2601
https://orcid.org/0000-0001-8654-5121
https://doi.org/10.1007/978-3-030-31423-1


Preface

Artificial Intelligence has become the defining technology of our time. Impressive and
effective though it may be, it often defies our understanding, and hence our control.
Nevertheless, today’s main concern is not that AI might become too smart - it is far
from it - but that it often surprises us by being dangerously dumb, prejudiced, cred-
ulous, or unreliable. Fortunately, AI is an extremely rich research area, which keeps
developing in many different directions that outline ways of constructing intelligent
systems that can be understood, validated, and controlled. This is the promise of
ongoing works towards Explainable AI.

With Explainable AI as its focus topic, the 15th Reasoning Web Summer School
explored a variety of ideas being developed in this research. The lectures, given in
Bolzano, Italy, during September 20–24, 2019, brought together leading researchers in
AI and related areas. Topics ranged from explainable forms of machine learning, over
data mining, knowledge representation, and query answering, to the explanation of
complex software systems using formal methods.

These topics are not only highly relevant and timely, but also a logical next step in
Reasoning Web’s continuing evolution. Since its inception as a summer school on
reasoning in (Semantic) Web applications in 2005, Reasoning Web has developed into
a prime educational event covering many aspects of intelligent systems and attracting
young and established researchers. The 2019 edition, hosted by the Free University of
Bozen-Bolzano, marked the school’s 15th anniversary. A highlight of Reasoning Web
2019 was the integration into the Bolzano Rules and Artificial Intelligence Summit
(BRAIN), including the International Joint Conference on Rules and Reasoning
(RuleML+RR 2019), the Global Conference on Artificial Intelligence (GCAI 2019),
and DecisionCAMP 2019.

These proceedings compile tutorial papers that complement the lectures given in
Bolzano. The tutorials include in-depth surveys as well as shorter extended abstracts
that point to existing works. All papers have been written as accompanying material for
the students of the summer school, in order to deepen their understanding and to serve
as a reference for further detailed study. This volume contains the following tutorial
papers, each accompanying a lecture:

– “Classical Algorithms for Reasoning and Explanation in Description Logics,” in
which Yevgeny Kazakov (presenter) and Birte Glimm give a detailed introduction
to explainable reasoning in description logics, with the focus on tableau-based
inference algorithms and the computation of justifications.

– “Explanation-friendly Query Answering Under Uncertainty,” in which Maria
Vanina Martinez (presenter) and Gerardo I. Simari discuss their work on knowledge
representation with probabilistic and inconsistency-tolerant rule languages, and
show ways of explaining reasoning in each case.

– “Provenance in Databases: Principles and Applications,” in which Pierre Senellart
provides a short overview of provenance as a key concept for explaining answers to



database queries, as well as references to works that explore this concept for various
data models and query languages.

– “Knowledge Representation and Rule Mining in Entity-Centric Knowledge Bases,”
in which Fabian M. Suchanek (presenter), Jonathan Lajus, Armand Boschin, and
Gerhard Weikum introduce graph-like knowledge bases, overview rule mining, and
neural knowledge-base completion methods.

– “Explaining Data with Formal Concept Analysis,” in which Bernhard Ganter,
Sebastian Rudolph (presenter), and Gerd Stumme introduce the mathematical
foundations and algorithmic basics of Formal Concept Analysis, which can in
particular be applied in data mining.

– “Logic-Based Learning of Answer Set Programs,” in which Mark Law (presenter),
Alessandra Russo (presenter), and Krysia Broda discuss inductive logic program-
ming approaches that apply to the popular ASP formalism.

– “Constraint Learning: An Appetizer,” in which Stefano Teso gives a brief intro-
duction to the field of constraint learning, some of its core methods, and its rela-
tionship with other areas of machine learning.

– “A Modest Markov Automata Tutorial,” in which Arnd Hartmanns and Holger
Hermanns (presenter) give a first introduction into modeling of (systems of) soft-
ware systems, including several forms of non-deterministic behavior, and show how
to analyze such models using the MODEST toolset.

– “Explainable AI Planning (XAIP): Overview and the Case of Contrastive
Explanation,” in which Jörg Hoffmann (presenter) and Daniele Magazzeni briefly
discuss various existing types of explanations within AI planning.

Many people have contributed to the realization of this event. First and foremost, we
would like to thank the lecturers and their co-authors for their contributions, which are
the very essence of this school. Furthermore, we would like to thank the general chair
of BRAIN 2019, Diego Calvanese, and his team: Evellin Cardoso, Ana Ozaki, and
Nicolas Troquard provided support for speakers and accommodation; Julien Corman
and Andrey Rivkin coordinated the social program; Rafael Peñaloza acted as a spon-
sorship chair; and Paolo Felli managed the web pages. Special thanks are also due to
Kati Domann, who organized speaker refunds, and to Hannes Hell, who coordinated
student scholarships.

We also gratefully acknowledge the support of our sponsors. In particular, we thank
the Emerald Sponsors Free University of Bozen-Bolzano and Center for Perspicuous
Computing (CPEC), and the Platinum Sponsor Bosch. Their generous contributions
allowed us to financially support a record number of participants and to cover the cost
of participation for most lecturers. We also thank the Gold Sponsor Artificial
Intelligence Journal, Silver Sponsor Hotel Greif, and Bronze Sponsor Ontopic for their
valuable contributions. Moreover, we appreciated the assistance and professional ser-
vice provided by the Springer LNCS publishing team. Finally, thanks are due to all
participants of Reasoning Web 2019; we hope that their stay in Bolzano was most
profitable and enjoyable.

September 2019 Markus Krötzsch
Daria Stepanova

vi Preface



Organization

General Chair

Diego Calvanese University of Bozen-Bolzano, Italy

Reasoning Web Chairs

Markus Krötzsch TU Dresden, Germany
Daria Stepanova Bosch Center for Artificial Intelligence, Germany

Publicity Chairs

Livia Predoiu Free University of Bozen-Bolzano, Italy
Guohui Xiao Free University of Bozen-Bolzano, Italy

Speaker Support and Accommodation

Evellin Cardoso Free University of Bozen-Bolzano, Italy
Ana Ozaki Free University of Bozen-Bolzano, Italy
Nicolas Troquard Free University of Bozen-Bolzano, Italy

Sponsorship Chair

Rafael Peñaloza Università degli Studi di Milano Bicocca, Italy

Social Program

Julien Corman Free University of Bozen-Bolzano, Italy
Andrey Rivkin Free University of Bozen-Bolzano, Italy

Webmaster and Design

Paolo Felli Free University of Bozen-Bolzano, Italy

Program Committee

Stefan Borgwardt TU Dresden, Germany
David Carral TU Dresden, Germany
Sergey Chubanov Bosch Center for Artificial Intelligence, Germany
Tom Hanika University of Kassel, Germany
Evgeny Kharlamov University of Oslo, Sweden
Sascha Klüppelholz TU Dresden, Germany



Maximilian Marx TU Dresden, Germany
Pauli Miettinen University of Eastern Finland, Finland
Sophie Tourret Max Planck Institute for Informatics, Germany

viii Organization



Reasoning Web 2019 Sponsors

Emerald Sponsors

Free University of Bozen-Bolzano
https://www.unibz.it/

Platinum Sponsor

Bosch
https://www.bosch.com/

Silver Sponsor

Hotel Greif
https://www.greif.it/en/hotel-bolzano/1-0.
html

DFG CRC/Transregio 248 “CPEC”
https://www.perspicuous-computing.
science/

Artificial Intelligence Journal (AIJ)
https://www.journals.elsevier.com/
artificial-intelligence

Ontopic
http://ontopic.biz/

Gold Sponsor

Bronze Sponsor

https://www.unibz.it/
https://www.bosch.com/
https://www.greif.it/en/hotel-bolzano/1-0.html
https://www.greif.it/en/hotel-bolzano/1-0.html
https://www.perspicuous-computing.science/
https://www.perspicuous-computing.science/
https://www.journals.elsevier.com/artificial-intelligence
https://www.journals.elsevier.com/artificial-intelligence
http://ontopic.biz/


Contents

Classical Algorithms for Reasoning and Explanation
in Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Birte Glimm and Yevgeny Kazakov

Explanation-Friendly Query Answering Under Uncertainty . . . . . . . . . . . . . . 65
Maria Vanina Martinez and Gerardo I. Simari

Provenance in Databases: Principles and Applications . . . . . . . . . . . . . . . . . 104
Pierre Senellart

Knowledge Representation and Rule Mining in Entity-Centric
Knowledge Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Fabian M. Suchanek, Jonathan Lajus, Armand Boschin,
and Gerhard Weikum

Explaining Data with Formal Concept Analysis . . . . . . . . . . . . . . . . . . . . . 153
Bernhard Ganter, Sebastian Rudolph, and Gerd Stumme

Logic-Based Learning of Answer Set Programs . . . . . . . . . . . . . . . . . . . . . 196
Mark Law, Alessandra Russo, and Krysia Broda

Constraint Learning: An Appetizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Stefano Teso

A Modest Markov Automata Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Arnd Hartmanns and Holger Hermanns

Explainable AI Planning (XAIP): Overview and the Case of Contrastive
Explanation (Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Jörg Hoffmann and Daniele Magazzeni

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283



Classical Algorithms for Reasoning
and Explanation in Description Logics

Birte Glimm and Yevgeny Kazakov(B)

The University of Ulm, Ulm, Germany
{birte.glimm,yevgeny.kazakov}@uni-ulm.de

Abstract. Description Logics (DLs) are a family of languages designed
to represent conceptual knowledge in a formal way as a set of ontolog-
ical axioms. DLs provide a formal foundation of the ontology language
OWL, which is a W3C standardized language to represent information
in Web applications. The main computational problem in DLs is find-
ing relevant consequences of the information stored in ontologies, e.g., to
answer user queries. Unlike related techniques based on keyword search
or machine learning, the notion of a consequence is well-defined using a
formal logic-based semantics. This course provides an in-depth descrip-
tion and analysis of the main reasoning and explanation methods for
ontologies: tableau procedures and axiom pinpointing algorithms.

1 Introduction

It often happens that one needs to find some specific information on the Web.
Information can be of different kinds: a local weather report, shop opening hours,
a cooking recipe, or some encyclopedic information like the birth place of Albert
Einstein. To search for this information, one usually enters some keywords into
Web search engines and inspects Web pages that contain such keywords in the
hope that the relevant information can be found there. The modern search
engines are a little more advanced: they can also search for Web pages that
use synonyms or related keywords, they use vocabularies of terms to structure
information on the Web (e.g. schema.org1) or to disambiguate search results,
they use some machine learning techniques to rank Web pages according to
their likeliness of containing the relevant information, they use facts or knowl-
edge (e.g., extracted from Wikipedia or from internal sources such as Google’s
Knowledge Graph2) to answer some queries, and they give direct answers for
certain queries, e.g., Google.com directly answers the question “Who was US
president in 2015?” with a knowledge panel for Barack Obama. In general, how-
ever, there is no guarantee that the searched piece of information can be found,
even if a corresponding Web page exists.

Although an average Web user can live with such limitations, there are some
critical applications in which incorrect or missed results cannot be tolerated. For
1 https://schema.org/.
2 https://developers.google.com/knowledge-graph/.

c© Springer Nature Switzerland AG 2019
M. Krötzsch and D. Stepanova (Eds.): Reasoning Web 2019, LNCS 11810, pp. 1–64, 2019.
https://doi.org/10.1007/978-3-030-31423-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31423-1_1&domain=pdf
https://schema.org/
https://developers.google.com/knowledge-graph/
https://doi.org/10.1007/978-3-030-31423-1_1


2 B. Glimm and Y. Kazakov

example, if a medical patient is misdiagnosed, i.e., a correct diagnosis based on
the description of the patient’s symptoms is not found, the consequences can be
severe. Several similar examples can be given for other domains ranging from
banking to autonomous driving. Supporting such applications requires represent-
ing the knowledge in a precise and unambiguous way so that it can be correctly
processed by automated tools.

Ontology languages, such as OWL [44], offer a solution to this problem
by defining the formal syntax and semantics to describe and interpret expert
knowledge. The basic principle of ontologies is similar to Wikipedia: instead of
extracting the knowledge from general sources, such as Web pages, the knowledge
is described and curated in one place by domain experts. The main difference
between Wikipedia and ontologies is in the way how the knowledge is described.
Wikipedia pages provide mostly textual (natural language) descriptions, which
are easy to understand by humans, but difficult to process by computers. Today
Wikipedia is also partly fed from Wikidata,3 which provides a knowledge base
of facts. The Wikidata project was founded in 2012 and contains, at the time of
writing, facts about roughly 60 million entities. Ontologies go beyond a knowl-
edge base of facts and provide often complex descriptions by means of formulas;
each formula can use a limited set of constructors with well-defined meaning.

The main benefit of formal ontology languages such as OWL is that it is
possible to answer questions by combining several sources of information. For
example, if an ontology knows that ‘Albert Einstein was a physicist who was born
in Ulm,’ and that ‘Ulm is a city in Germany,’ the ontology can answer questions
like ‘Which physicists were born in Germany?’ by returning ‘Albert Einstein’ as
one of the answers. That is, an answer to a question may be obtained not only
from the explicitly stated information, but also from the (implicit) consequences.

This course is concerned with logic-based languages called Description Logics
(short: DLs) that provide the formal foundation of the ontology language OWL.
DLs are not just one language but a whole family of languages, designed to
offer a great variety of choices for knowledge-based applications. Each language
defines its own set of constructors that can be used to build the ontological
formulas, called axioms. Each axiom describes a particular aspect of the real
world; for example an axiom saying that ‘Ulm is a city in Germany’ describes
a relation between the entities ‘Ulm’ and ‘Germany’. The goal of the ontology
is to provide axioms that describe (a part of) the real world as accurately as
needed for an application. Since the real world is extremely complex, each of
these descriptions are necessarily incomplete, which means that they can be also
satisfied in situations that are different from the real world. The semantics of DL
defines an abstract notion of a model to represent such situations. If an axiom
holds in all such models, it is said to be a logical consequence of the ontology.

Of course, ontologies cannot answer questions on their own; they require
special programs that can analyze and combine axioms to obtain the answers,
called ontology reasoners. Ontology reasoners are usually able to solve several
types of reasoning problems, such as checking if there are logical contradictions

3 https://www.wikidata.org.

https://www.wikidata.org


Classical Algorithms for Reasoning and Explanation in Description Logics 3

in the ontology or finding logical consequences of a certain form. To be practi-
cally useful, the reasoning algorithms implemented in ontology reasoners need
to possess certain formal properties. An algorithm is sound if any answer that it
returns is correct. If the algorithm returns every correct answer, it is complete.
An algorithm might not return any answer if it does not terminate. If an algo-
rithm always terminates, it is also useful to know how long one needs to wait
for the answer. This can be measured using a notion of algorithmic complexity.
Generally, algorithms with lower complexity should be preferred.

Modern ontology reasoners use very sophisticated and highly optimized
algorithms for obtaining reasoning results, and often such results are counter-
intuitive or hard to understand for humans. Reasoning results may also be incor-
rect, which indicates that some axioms in the ontology must have errors. In order
to improve the user experience when working with ontologies, and, in particular,
facilitate ontology debugging, ontology development tools include capabilities for
explaining reasoning results.

Almost every year since its inception, the Reasoning Web Summer School
offered lectures focused on different topics of reasoning in DLs ranging from
overview courses [2,49,50,65] to more specialized topics such as lightweight DLs
[64], query answering [10,36,43], and non-standard reasoning problems [9,12,
59]. The purpose of this course is to provide a deeper understanding of the
key reasoning and explanation algorithms used in DLs. We provide a detailed
account on tableau procedures, which are the most popular reasoning procedures
for DLs, including questions such as soundness, completeness, termination, and
complexity. For explaining the reasoning results we look into general-purpose
axiom pinpointing procedures that can efficiently identify some or all subsets of
axioms responsible for a reasoning result. Some of these procedures can be also
used to repair unintended entailments by identifying possible subsets of axioms
whose removal breaks the entailment.

This paper is (partly) based on the course “Algorithms for Knowledge Rep-
resentation” given at the University of Ulm, and includes full proofs, detailed
examples, and simple exercises. The material should be accessible to students
of the general university (bachelor) level in technical subjects such as, but not
limited to, computer science. All relevant background, such as the basics of the
computational complexity theory is introduced as needed. The course should be
of particular interest to those who are interested in developing and implement-
ing (DL) reasoning procedures. Since the duration of this course is limited to
two lectures, we mainly focus on the basic description logic ALC, to neverthe-
less provide a detailed account on the topics of DL reasoning and explanation.
For this reason, this course does not provide a comprehensive literature survey.
For the latter, we refer the reader to previous overview courses [2,49,50,65], DL
textbooks [4,6], PhD theses [26,60] and some recent overviews [45].

2 Description Logics

Description Logics (DLs) are specialized logic-based languages designed to rep-
resent conceptual knowledge in a machine-readable form so that this information



4 B. Glimm and Y. Kazakov

can be processed by automated tools. Most DLs correspond to decidable frag-
ments of first-order logic, which is a very expressive general-purpose language,
however, with undecidable standard reasoning problems. Decidability has been
one of the key requirements for the development of DL languages; to achieve
decidability, the languages are often restricted to contain the features most essen-
tial for knowledge representation. For example, in natural language, one rarely
speaks about more than two objects at a time. For this reason, DLs usually
restrict the syntax to only unary and binary relations and to constants. Unary
relations usually specify types (or classes) of objects and are called concepts in
DLs (and classes in OWL). Binary relations specify how objects are related to
each other, and are called roles in DLs (and properties in OWL). Constants
refer to particular objects by their names. In DLs (and OWL) they are called
individuals. In this paper, we mainly focus on the basic description logic ALC
[51], which is regarded by some as the smallest sensible language for knowledge
representation. This language traditionally serves not only as the basis of more
expressive languages, but also as a relatively simple example on which the main
ideas about reasoning in DLs can be explained.

2.1 Syntax

The vocabulary of the DL ALC consists of countably-infinite sets NC of concept
names (or atomic concepts), NR of role names (or atomic roles), NI of individual
names (or individuals), logical symbols: �, ⊥, ¬, �, �, ∀, ∃, �, ≡, and structural
symbols: ‘(’, ‘)’, ‘.’. These symbols are used to construct formulas that are called
DL axioms.

Intuitively, (atomic) concepts are used to describe sets of objects. For exam-
ple, we may introduce the following atomic concepts representing the respective
sets of objects:

Human – the set of all human beings,

Male – the set of all male (not necessarily human) beings,

Country – the set of all countries.

Likewise, (atomic) roles represent binary relations between objects:

hasChild – the parent-child relation between objects,

hasLocation – a relation between objects and their (physical) locations.

Individuals represent some concrete object, for example:

germany – the country of Germany,

john – the person John.



Classical Algorithms for Reasoning and Explanation in Description Logics 5

In our examples, we usually use a convention for writing (atomic) concepts,
roles, and individuals so that one can easily tell them apart: concepts are written
starting with capital letters, while role and individual names start with a lower
case letter. In addition, we reserve single letters (possibly with decorations) A,
B for atomic concepts, r and s for (atomic) roles, a, b, c for individuals, and C,
D, E for complex concepts, which are introduced next.

The logical symbols �,⊥,¬,�,�,∀, and ∃ are used for constructing complex
concepts (or just concepts). Just like for atomic concepts, complex concepts
represent sets of objects, but these sets are uniquely determined by the sub-
concepts from which they are constructed. The set of ALC concepts can be
defined using the grammar definition:

C,D ::= A | � | ⊥ | C � D | C � D | ¬C | ∃r.C | ∀r.C. (1)

This definition means that the set of concepts (which are named by C and
D) is recursively constructed starting from atomic concepts A, top concept �,
bottom concept ⊥, by applying conjunction C � D, disjunction C � D, negation
¬C, existential restriction ∃r.C, and universal restriction ∀r.C. Intuitively, �
represents the set of all objects of the modeled domain, ⊥ the empty set of
objects, C � D the set of common objects of C and D, C � D the union of
objects in C and D, ¬C all objects that are not in C, ∃r.C all object that are
related by r to some object in C, ∀r.C all objects that are related by r to only
objects in C. For example, one can construct the following ALC-concepts:

Male � Human – the set of all male humans,

Dead � Alive – the union of all dead and all alive things,

¬Male – the set of all non-male things,

(¬Male) � Human – the set of all non-male humans,

∃hasChild.Male – all things that have a male child,

∀hasChild.Female – all things that have only female children,

Male � (∀hasChild.¬Male) – all male things all of whose children are not male.

Once complex concepts are constructed, they can be used to describe various
properties by writing axioms. In the DL ALC we consider four possible types of
axioms: a concept inclusion C � D states that every object of the concept C
must be an object of the concept D, a concept equivalence C ≡ D states that the
concepts C and D must contain exactly the same objects, a concept assertion
C(a) states that the object represented by the individual a is an object of the
concept C, and a role assertion r(a, b) states that the objects represented by the
individuals a and b are connected by the relation represented by the role r. Here
are some examples of these axioms:

Human � Dead � Alive – every human is either dead or alive,

Parent ≡ ∃hasChild.� – parents are exactly those that have some child,



6 B. Glimm and Y. Kazakov

Male(john) – John is a male,

bornIn(einstein, ulm) – Albert Einstein was born in Ulm.

Axioms are usually grouped together to form knowledge bases (or ontologies). An
ALC ontology O is simply a (possibly empty) set of ALC axioms. The axioms of
an ontology are usually split into two parts: the terminological part (short: TBox )
contains only concept inclusion and concept equivalence axioms, the assertional
part (short: ABox ) contains only concept and role assertion axioms. This dis-
tinction is often used to simplify the analysis of algorithms. For example, to
answer questions about concepts, in many cases it is not necessary to consider
the ABox, which is usually the larger part of an ontology.

Example 1. Consider the ontology O consisting of the following axioms:

Parent ≡ ∃hasChild.�,1.
GrandParent ≡ ∃hasChild.Parent,2.

hasChild(john, mary).3.

Then the TBox of O consists of the first two axioms, and the ABox of O consists
of the last axiom.

The main application of ontologies is to extract new information from the
information explicitly stated in the ontologies. For example, from the first two
axioms of the ontology O from Example 1 it follows that each grandparent
must be a parent because each grandparent has a child (who happens to be
a parent). This new information can be formalized using a concept inclusion
axiom GrandParent � Parent. Likewise, from the first and the last axiom of O
one can conclude that the object represented by the individual john must be a
parent because he has a child (mary). This piece of information can be formalized
using a concept assertion axiom Parent(john). The two new axioms are said to
be logical consequences of the ontology O.

2.2 Semantics

To be able to calculate (preferably automatically) which axioms are logical con-
sequences of ontologies and which are not, we need to define the semantics of
ontologies. So far we have defined the syntax of ontologies, which describes how
axioms in the ontologies can be constructed from various symbols. This infor-
mation is not enough to understand the meaning of concepts and axioms. In
fact, in ALC the same information can be described in many different ways. For
example, the concept Male�Human describes exactly the same set of objects as
the concept Human � Male. The axiom Human � Dead � Alive describes exactly
the same situation as the axiom Human�(¬Dead) � Alive. The formal semantics
describes how to determine the meaning of concepts and axioms, while abstract-
ing from the particular syntactic ways in which they are written down.

Like in many other logic-based formalisms (including propositional and first-
order logic), the semantics of description logics is defined using (Tarski-style



Classical Algorithms for Reasoning and Explanation in Description Logics 7

set-theoretic) interpretations. Intuitively, an interpretation describes a possible
state of the world modeled by the ontology. Formally, an interpretation is a pair
I = (ΔI , ·I) where ΔI is a non-empty set called the domain of I and ·I is
an interpretation function that assigns to each atomic concept A ∈ NC a set
AI ⊆ ΔI , to each atomic role r ∈ NR a binary relation rI ⊆ ΔI × ΔI , and
to each individual a ∈ NI an element aI ∈ ΔI . Intuitively, the domain ΔI

represents the objects that can be part of the modeled world; this can be an
infinite (and even an uncountable) set, but it must contain at least one element
because otherwise it is not possible to assign aI ∈ ΔI for a ∈ NI . Although the
interpretation function requires an assignment for every symbol of the vocabulary
(and there are infinitely many available symbols in NC , NR, and NI), when
defining interpretations for ontologies, we usually provide the values only for the
symbols present in the ontology, assuming that all other symbols are interpreted
in an arbitrary way.

Example 2. We can define an interpretation I = (ΔI , ·I) of the symbols appear-
ing in the ontology O from Example 1, for example, as follows:

– ΔI = {a, b, c},
– ParentI = {a, b}, GrandParentI = {a},
– hasChildI = {〈a, b〉, 〈b, c〉},
– johnI = a, maryI = b.

Once the interpretation is fixed, it can be recursively extended to complex
ALC concepts according to the following rules that match the respective cases
of the grammar definition (1). Assuming that the values of CI ⊆ ΔI and DI ⊆
ΔI for concepts C and D have already been determined, the interpretations of
concepts build from C and D can be computed as follows:

– �I = ΔI ,
– ⊥I = ∅,
– (C � D)I = CI ∩ DI ,
– (C � D)I = CI ∪ DI ,
– (¬C)I = ΔI \ CI ,
– (∃r.C)I = {x ∈ ΔI | ∃y : 〈x, y〉 ∈ rI & y ∈ CI},
– (∀r.C)I = {x ∈ ΔI | ∀y : 〈x, y〉 ∈ rI ⇒ y ∈ CI}.

The last two cases of this definition probably require some further clarifica-
tions. The interpretation of ∃r.C contains exactly those elements x ∈ ΔI that
are connected to some element y by a binary relation rI (i.e., 〈x, y〉 ∈ rI) such
that y ∈ CI . The interpretation of ∀r.C contains exactly those elements x ∈ ΔI

such that every element y connected from x by rI (i.e., for which 〈x, y〉 ∈ rI

holds), is a member of CI (i.e., y ∈ CI). In other words, x is rI-connected to only
elements of CI . Importantly, if an element x does not have any rI-successor,
i.e., 〈x, y〉 ∈ rI holds for no y ∈ ΔI , then x /∈ (∃r.C)I but x ∈ (∀r.C)I for every
concept C.

Example 3. Consider the interpretation I = (ΔI , ·I) from Example 2. Then:



8 B. Glimm and Y. Kazakov

– �I = {a, b, c},
– (Parent � GrandParent)I = {a},
– (Parent � GrandParent)I = {a, b},
– (¬GrandParent)I = {b, c},
– (Parent � ¬GrandParent)I = {b},

– (∃hasChild.�)I = {a, b},
– (∃hasChild.Parent)I = {a},
– (∀hasChild.Parent)I = {a, c}, (!!!)
– (∀hasChild.GrandParent)I = {c}, (!!!)
– (∀hasChild.∀hasChild.⊥)I = {b, c}.

We next define how to interpret ALC axioms. The purpose of axioms in
an ontology is to describe the characteristics of concepts, roles, and individuals
involved in these axioms. These properties hold in some interpretations and are
violated in other interpretations. For an interpretation I and an axiom α we
write I |= α if α holds (or is satisfied) in I, defined as follows:

– I |= C � D if and only if CI ⊆ DI ,
– I |= C ≡ D if and only if CI = DI ,
– I |= C(a) if and only if aI ∈ CI ,
– I |= r(a, b) if and only if 〈aI , bI〉 ∈ rI .

If it is not the case that I |= α, we write I �|= α and say that α is violated (or
not satisfied) in I. Table 1 summarizes the syntax and semantics of ALC.

Table 1. The summary of syntax and semantics of the DL ALC

Syntax Semantics

Roles:
atomic role r rI ⊆ ΔI × ΔI (given)
Concepts:
atomic concept A AI ⊆ ΔI (given)
top � ΔI

bottom ⊥ ∅
conjunction C � D CI ∩ DI

disjunction C � D CI ∪ DI

negation ¬C ΔI \ CI

existential restriction ∃r.C {x | ∃y : 〈x, y〉 ∈ rI & y ∈ CI}
universal restriction ∀r.C {x | ∀y : 〈x, y〉 ∈ rI ⇒ y ∈ CI}
Individuals:
individual a aI ∈ ΔI (given)
Axioms:
concept inclusion C � D CI ⊆ DI

concept equivalence C ≡ D CI = DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) 〈aI , bI〉 ∈ rI



Classical Algorithms for Reasoning and Explanation in Description Logics 9

Example 4. Continuing Example 3, we can determine the interpretation of the
following axioms in the defined I:

– I |= GrandParent � Parent : GrandParentI = {a} ⊆ ParentI = {a, b},
– I �|= Parent � GrandParent : ParentI = {a, b} �⊆ GrandParentI = {a},
– I |= ∃hasChild.GrandParent ≡ ⊥ : (∃hasChild.GrandParent)I = ∅ = ⊥I

– I |= (∃hasChild.Parent)(john) : johnI = a ∈ (∃hasChild.Parent)I = {a},
– I �|= hasChild(mary, john) : 〈maryI , johnI〉 = 〈b, a〉 /∈ hasChildI = {〈a, b〉},
– I |= (∀hasChild.¬Parent)(mary) : maryI = b ∈ (∀hasChild.¬Parent)I = {b, c}.

As mentioned earlier, an axiom may hold in one interpretation, but may
be violated in another interpretation. For example, the axiom A � B holds in
I = (ΔI , ·I) with ΔI = {a}, AI = BI = ∅, but is violated in J = (ΔJ , ·J )
with ΔJ = {a}, AJ = {a}, and BJ = ∅. There are, however, axioms that hold
in every interpretation. We call such axioms tautologies.

Example 5. The following ALC axioms are tautologies because they hold in every
interpretation I = (ΔI , ·I):

– C � C : because CI ⊆ CI ,
– C � � : because CI ⊆ ΔI = �I ,
– C � D � C : because (C � D)I = CI ∩ DI ⊆ CI ,
– ∀r.� ≡ � : because

(∀r.�)I = {x ∈ ΔI | ∀y : 〈x, y〉 ∈ rI ⇒ y ∈ �I = ΔI} = ΔI = �I .

– ∃r.C � ∀r.D � ∃r.(C � D): because

(∃r.C � ∀r.D)I = (∃r.C)I ∩ (∀r.D)I

= {x ∈ ΔI | ∃y : 〈x, y〉 ∈ rI & y ∈ CI} ∩
{x ∈ ΔI | ∀y : 〈x, y〉 ∈ rI ⇒ y ∈ DI}

⊆ {x ∈ ΔI | ∃y : 〈x, y〉 ∈ rI & y ∈ CI & y ∈ DI}
= {x ∈ ΔI | ∃y : 〈x, y〉 ∈ rI & y ∈ CI ∩ DI = (C � D)I}
= (∃r.(C � D))I .

The following ALC axioms are not tautologies as they do not hold in at least
one interpretation I = (ΔI , ·I):

– C � C �D: Take ΔI = {a}, CI = {a}, and DI = ∅. Then CI = {a} �⊆ ∅ =
{a} ∩ ∅ = CI ∩ DI = (C � D)I .

– ∀r.C � ∃r.C: Take ΔI = {a} and CI = rI = ∅. Then (∀r.C)I = {a} �⊆ ∅ =
(∃r.C)I .



10 B. Glimm and Y. Kazakov

– ∃r.C � ∃r.D � ∃r.(C � D): Take ΔI = {a, c, d}, CI = {c}, DI = {d},
and rI = {〈a, c〉, 〈a, d〉}. Then a ∈ (∃r.C)I because 〈a, c〉 ∈ rI and c ∈ CI .
Similarly, a ∈ (∃r.D)I since 〈a, d〉 ∈ rI and d ∈ DI . But (C � D)I =
CI ∩ DI = {c} ∩ {d} = ∅. Thus, (∃r.(C � D))I = ∅. Hence, (∃r.C � ∃r.D)I =
(∃r.C)I ∩ (∃r.D)I = {a} ∩ {a} = {a} �⊆ ∅ = (∃r.(C � D))I .

Interpretations that satisfy the axioms in an ontology will be of special inter-
est to us, because these interpretations agree with the requirements imposed by
the axioms. These interpretations are called models. Formally, an interpretation
I is a model of an ontology O (in symbols: I |= O) if I |= α for every α ∈ O.
We say that O is satisfiable if O has at least one model, i.e., if I |= O holds for
at least one interpretation I. Otherwise, we say that O is unsatisfiable.

Example 6. Consider the ontology O containing the first two axioms from Exam-
ple 1:

Parent ≡ ∃hasChild.�,1.
GrandParent ≡ ∃hasChild.Parent.2.

We can prove that O is satisfiable by presenting a simple model I = (ΔI , ·I)
of O:

– ΔI = {a},
– ParentI = GrandParentI = hasChildI = ∅,
– johnI = maryI = a.

Note that (∃hasChild.�)I = ∅ and (∃hasChild.Parent)I = ∅ since hasChildI = ∅.
Thus, ParentI = (∃hasChild.�)I and GrandParentI = (∃hasChild.Parent)I , which
implies that I satisfies both axioms in O.

Let us now extend O with the third axiom from Example 1:

hasChild(john, mary).3.

The previous interpretation I is no longer a model of O since 〈johnI , maryI〉 =
〈a, a〉 /∈ ∅ = hasChildI . This does not, however, mean that the ontology O is
unsatisfiable since we can find another interpretation J = (ΔJ , ·J ) that satisfies
all three axioms:

– ΔJ = {a},
– ParentJ = GrandParentJ = {a}, hasChildJ = {〈a, a〉},
– johnJ = maryJ = a.

It is easy to verify that (∃hasChild.�)J = (∃hasChild.Parent)J = {a}, which
proves that J still satisfies the first two axioms. Since 〈johnJ , maryJ 〉 = 〈a, a〉 ∈
{〈a, a〉} = hasChildJ , J now also satisfies the third axiom.

Besides the notion of satisfiability of ontologies, in description logics one
also considers a notion of satisfiability of concepts. We say that a concept C is



Classical Algorithms for Reasoning and Explanation in Description Logics 11

satisfiable if there exists an interpretation I such that CI �= ∅. For example, the
concept ∀r.⊥ is satisfiable because (∀r.⊥)I = ΔI �= ∅ for every interpretation I
such that rI = ∅ (and there is certainly at least one such interpretation). On the
other hand, the concept ∃r.⊥ is not satisfiable since ⊥I = ∅ and, consequently,
(∃r.⊥)I = ∅ for every I.

Sometimes the interpretation that should satisfy the concept is constrained
to be a model of a given ontology. We say that a concept C is satisfiable with
respect to an ontology O if CI �= ∅ for some I such that I |= O. Note that if
the ontology O is not satisfiable, then no concept C is satisfiable with respect
to this ontology.

Example 7. Let O = {A � ¬A}. Note that O is satisfiable in any interpretation
I such that AI = ∅ since AI = ∅ ⊆ (¬A)I = ΔI \ ∅ = ΔI . However, the
concept A is not satisfiable w.r.t. O. Indeed, assume that AI �= ∅ for some I.
Then a ∈ AI for some domain element a ∈ ΔI . But then a /∈ ΔI \ AI = (¬A)I .
Hence, AI �⊆ (¬A)I . Thus, I �|= A � ¬A. Hence, for each I such that AI �= ∅,
we have I �|= O.

We are finally ready to formally define the notion of logical entailment. We
say that O entails an axiom α (written O |= α), if every model of O satisfies
α. Intuitively this means that the axiom α should hold in every situation that
agrees with the restrictions imposed by O. Note that according to this definition,
if O is unsatisfiable then the entailment O |= α holds for every axiom α.

Example 8. Consider O = {C � ∃r.D, D � E}. We prove that O |= C � ∃r.E.
Take any I such that I |= O. We show that I |= C � ∃r.E or, equivalently, CI ⊆
(∃r.E)I . Suppose that x ∈ CI . Since I |= C � ∃r.D, we have CI ⊆ (∃r.D)I , so
x ∈ (∃r.D)I . Then there exists some y ∈ ΔI such that 〈x, y〉 ∈ rI and y ∈ DI .
Since I |= D � E, we have y ∈ DI ⊆ EI . Therefore, since 〈x, y〉 ∈ rI and
y ∈ EI we obtain x ∈ (∃r.E)I . Thus, for each x ∈ CI , we have x ∈ (∃r.E)I ,
which means that CI ⊆ (∃r.E)I or, equivalently, I |= C � ∃r.E.

2.3 Reasoning Problems

There are many situations in which one is interested in performing logical opera-
tions with ontologies, such as checking consistency or verifying entailments. Just
like computer software, ontologies are usually developed manually by humans,
and humans tend to make mistakes. For programming languages, dedicated soft-
ware tools, such as syntax checkers, compilers, debuggers, testing frameworks,
and static analysis tools help preventing and finding errors. Similar tools also
exist for ontology development.

Just like for programming languages, one usually distinguishes several types
of errors in ontologies. Syntax errors usually happen when the syntax rules for
constructing concepts and axioms described in Sect. 2.1 are not used correctly.
For example C¬D is not a correct concept according to grammar (1) since
the negation operation is unary. Syntax errors also include situations where an



12 B. Glimm and Y. Kazakov

atomic role is used in the position of an atomic concept or when the parentheses
are not balanced. Syntax errors are relatively easy to find using parsers, which
can verify that the ontology is well-formed.

It can be that the ontology is syntactically well-formed, but some of its
axioms do not make sense. For example, an ontology may contain the axiom
Father ≡ Male � Parent, in which, clearly a disjunction was accidentally used
instead of a conjunction. Although for a human the problem seems obvious, it
is hard to detect such an error using automated tools since computers do not
know the meaning of the words involved. From the computer point of view, this
axiom looks like C ≡ D � E, which is a legitimate axiom. These kinds of errors
are usually called semantic or modeling errors.

Although it is not possible to automatically detect modeling errors in gen-
eral, there are some common symptoms for such errors. For example, an incor-
rectly formulated axiom may cause a logical contradiction with other axioms in
the ontology, which makes the whole ontology unsatisfiable. Another common
symptom is unsatisfiability of atomic concepts with respect to an ontology. Each
atomic concept is usually introduced to capture a certain non-empty subset of
objects in the modeled domain. For example, the concept Parent was introduced
to capture the individuals who are parents in the real world. If an atomic con-
cept is unsatisfiable, this indicates that the modeled domain cannot correspond
to any model of the ontology. Note that, as shown in Example 7, an atomic
concept can be unsatisfiable even with respect to a satisfiable ontology.

A modeling error may also result in incorrect entailments of the ontology,
which are sometimes easier to detect than the error itself. For example, the
erroneous axiom Father ≡ Male � Parent entails the simpler concept inclusions
Male � Father and Parent � Father, which are also incorrect from the model-
ing point of view. By observing the entailed concept inclusions A � B between
atomic concepts appearing in the ontology, an ontology developer can usually
quickly identify those incorrect entailments. When the entailment O |= C � D
holds, it is often said that the concept C is subsumed by the concept D (or the
concept D subsumes the concept C) w.r.t. O. For detecting problems involv-
ing individuals, one can similarly inspect the entailed concept assertions A(a)
between atomic concepts A and individuals a appearing in the ontology. When
O |= C(a), it is often said that a is an instance of C (or C is a type of a) w.r.t.
O. Checking subsumptions and instances is not only useful for finding model-
ing errors, but also for answering queries, which is usually the main purpose of
ontologies in applications. For example, given a (complex) concept C, it is pos-
sible to query for all atomic concepts A for which the subsumption O |= C � A
holds or to query for all individuals a which are instances of C.

Thus, one can distinguish several standard reasoning problems that are of
interest in ontology-based applications:

1. Ontology satisfiability checking :
– Given: an ontology O,
– Return: yes if O is satisfiable and no otherwise.

2. Concept satisfiability checking :



Classical Algorithms for Reasoning and Explanation in Description Logics 13

– Given: an ontology O and a concept C,
– Return: yes if C is satisfiable w.r.t. O and no otherwise.

3. Concept subsumption checking :
– Given: an ontology O and a concept inclusion C � D,
– Return: yes if O |= C � D and no otherwise.

4. Instance checking :
– Given: an ontology O and a concept assertion C(a),
– Return: yes if O |= C(a) and no otherwise.

Example 9. Consider the ontology O from Example 1:

Parent ≡ ∃hasChild.�,1.
GrandParent ≡ ∃hasChild.Parent,2.

hasChild(john, mary).3.

As was shown in Example 6, this ontology has a model J = (ΔJ , ·J ) with

– ΔJ = {a},
– ParentJ = GrandParentJ = {a}, hasChildI = {〈a, a〉},
– johnJ = maryJ = a.

Therefore, the answer to the ontology satisfiability checking problem for O is
yes.

The answer to the concept satisfiability checking problem for O and concept
Parent is also yes because J |= O and ParentJ = {a} �= ∅. The same answer is
also obtained for the inputs O and GrandParent.

We next check which subsumptions hold between these concepts. The sub-
sumption Parent � GrandParent holds in J since ParentJ = {a} ⊆ {a} =
GrandParentJ , but there is another model I = (ΔI , ·I) of O in which this sub-
sumption does not hold:

– ΔI = {a, b},
– ParentI = {a}, GrandParentI = ∅, hasChildI = {〈a, b〉},
– johnI = a, maryI = b.

Indeed, ParentI = {a} = (∃hasChild.�)I . Therefore, I |= Parent ≡ ∃hasChild.�.
We further have I |= GrandParent ≡ ∃hasChild.Parent since GrandParentI = ∅ =
(∃hasChild.Parent)I . Since 〈johnI ,maryI〉 = 〈a, b〉 ⊆ {〈a, b〉} = hasChildI , we
have I |= hasChild(john,mary). Therefore, I |= O. However, ParentI = {a} �⊆
∅ = GrandParentI . Therefore, I �|= Parent � GrandParent. Since we have found a
model I of O for which the subsumption Parent � GrandParent does not hold,
we have proved that O �|= Parent � GrandParent. Therefore, the answer to the
concept subsumption checking problem for O and Parent � GrandParent is no.

The subsumption GrandParent � Parent holds in both J and I, and in
fact, in all models of O. Indeed, assume that I |= O. We will show that
GrandParentI ⊆ ParentI . To do this, take any x ∈ GrandParentI . If there is
no such x then, trivially, GrandParentI = ∅ ⊆ ParentI . Since I |= GrandParent ≡



14 B. Glimm and Y. Kazakov

∃hasChild.Parent, we have x ∈ GrandParentI = (∃hasChild.Parent)I . Hence, there
exists some y such that 〈x, y〉 ∈ hasChildI and y ∈ ParentI ⊆ ΔI = �I .
Hence x ∈ (∃hasChild.�)I . Since I |= Parent ≡ ∃hasChild.�, we have ParentI =
(∃hasChild.�)I . Hence, x ∈ ParentI . Since x ∈ GrandParentI was arbitrary, we
proved that GrandParentI ⊆ ParentI , that is, I |= GrandParent � Parent and so,
O |= GrandParent � Parent.

Finally, we check which of the individuals john and mary appearing in O
are instances of the atomic concepts Parent and GrandParent. For the model
I defined above, GrandParentI = ∅, hence, I �|= GandParent(john) and I �|=
GandParent(mary) since johnI = a /∈ ∅ = GandParentI and maryI = b /∈ ∅ =
GandParentI . Also I �|= Parent(mary) since mary = b /∈ {a} = ParentI . Hence,
the answer to the instance checking problem for O and each concept assertion
GandParent(john), GandParent(mary), and Parent(mary) is no.

The answer to the instance checking problem for O and the fourth con-
cept assertion Parent(john) is yes since I |= Parent(john) for each I |= O.
Indeed, let x = johnI and y = maryI . Since I |= hasChild(john,mary), we
have 〈x, y〉 ∈ hasChildI . Trivially, y ∈ ΔI = �I . Hence x ∈ (∃hasChild.�)I .
Since I |= Parent ≡ ∃hasChild.�, we have ParentI = (∃hasChild.�)I . Therefore,
x ∈ ParentI . Since x = johnI , we proved that I |= Parent(john) and, since I was
an arbitrary model of O, we proved that O |= Parent(john).

Exercise 1. Determine which of the individuals john and mary are instances of
the negated concepts ¬Parent and ¬GrandParent for the ontology O in Example 9.
Are there any surprises? Can you explain the unexpected answers you obtained?

In Example 9 we have solved all reasoning problems “by hand” by either
providing counter-models for entailments or proving that entailments hold for all
models. Of course, in practice, it is not expected that the ontology developers or
anybody else is going to solve these tasks manually. It is expected that these tasks
are solved by computers automatically and, preferably, quickly. The main focus
of the research in DLs, therefore, was development and analysis of algorithms
for solving reasoning problems.

We have listed four standard reasoning tasks for ontologies: (1) ontology sat-
isfiability checking, (2) concept satisfiability checking, (3) concept subsumption
checking, and (4) instance checking. Developing separate algorithms for solving
each of these problems would be too time consuming. Fortunately, it turns out,
as soon as we find an algorithm for solving one of these problems, we can solve
the remaining three too using simple modifications of this algorithm.

2.4 Reductions Between Reasoning Problems

In the remainder of this course, we are interested in measuring the computational
complexity of problems and algorithms. We also develop polynomial reductions
between the four standard reasoning problems mentioned above. Appendix A.1
provides additional material for readers who first want to refresh their knowledge
about these notions.



Classical Algorithms for Reasoning and Explanation in Description Logics 15

Ontology satisfiability
? ∃ I : I |= O

Concept satisfiability
?∃ I : I |= O & CI �= ∅

Concept non-subsumption
? |�O = C � D

Concept non-instance
? |�O = C(a)

Lemma 2

Lemma 1

Lemma 3

Lemma 4

Lemma 5

Fig. 1. An overview of reductions between the standard DL reasoning problems

Notice the similarities in the formulations of the reasoning problems 1–4 given
earlier. All problems are decision problems, i.e., they get some objects as inputs
and are expected to produce either yes or no as the output. We next apply the
common approach of formulating polynomial reductions between these reason-
ing problems: We first prove that all problems can be reduced to the ontology
satisfiability problem and then show how to reduce the ontology satisfiability
problem to all other problems. The overview of the reductions is shown in Fig. 1.
Note that for the concept subsumption and instance checking problems, we pro-
vide reductions for their complementary problems, i.e., where the answers yes
and no are swapped.

The following lemma shows how to reduce the concept satisfiability problem
to the ontology satisfiability problem. Intuitively, to check if a concept C is
satisfiable w.r.t. O, it is sufficient to extend O with a new concept assertion
C(a) and check satisfiability of the resulting ontology. Clearly, the reduction
R(〈O, C〉) = {O ∪ C(a)} can be computed in polynomial time in the size of O
plus C.

Lemma 1. Let O be an ontology, C a concept, and a an individual not appearing
in O. Then C is satisfiable w.r.t. O if and only if O ∪ {C(a)} is satisfiable.

Proof. (⇒): To prove the “only if” direction, assume that C is satisfiable w.r.t.
O. Then there exists a model I |= O such that CI �= ∅. That is, there exists some
x ∈ CI ⊆ ΔI . Let J = (ΔJ , ·J ) be a new interpretation defined as follows:

– ΔJ = ΔI ,
– AJ = AI and rJ = rI for each atomic concept A and atomic role r,
– bJ = bI for every individual b �= a,
– aJ = x ∈ CI ⊆ ΔI = ΔJ .

Clearly, J |= O since the interpretation of every symbol in O remained
unchanged, and J |= C(a) since aJ = x ∈ CI = CJ . Hence, O ∪ {C(a)} is
satisfiable.



16 B. Glimm and Y. Kazakov

(⇐): To prove the “if” directly, assume that O ∪ {C(a)} is satisfiable. Then
there exists an interpretation I such that I |= O and I |= C(a). The last implies
aI ∈ CI . Hence CI �= ∅. Consequently, C is satisfiable w.r.t. O. ��

Note that in the proof of the “only if” direction of Lemma 1, it is essential
that the individual a is fresh, i.e., it does not appear in O. If this assumption is
dropped, the lemma does not hold any longer.

Exercise 2. Give an example of an ALC ontology O and a concept assertion
C(a), with individual a appearing in O such that C is satisfiable w.r.t. O but
O ∪ {C(a)} is not satisfiable.

Exercise 3. The reduction described in Lemma 1 introduces a new individual
to the ontology, even if the original ontology did not have any individuals. This
may be undesirable if the algorithm for checking ontology satisfiability can work
only with TBoxes. Formulate a different reduction from concept satisfiability to
ontology satisfiability that does not introduce any individuals. Prove that this
reduction is correct like in Lemma 1.

Hint 1: Using a concept assertion C(a) one forces the interpretation of C to be
nonempty. Using which other axioms one can force non-emptiness of concepts?
Which concepts are always interpreted by nonempty sets? Hint 2: Similar to
fresh individuals, the reduction can use fresh atomic concepts and roles.

We next show how to reduce the problem of checking concept non-
subsumption to the problem of concept satisfiability, which, in turn, as shown
by Lemma 1, can be reduced to checking ontology satisfiability.

Lemma 2. Let O be an ontology and C, D concepts. Then O �|= C � D if and
only if C � ¬D is satisfiable w.r.t. O.

Proof. It is easy to see that the following statements are equivalent:

1. O �|= C � D,
2. There exists a model I |= O such that CI �⊆ DI ,
3. There exists a model I |= O such CI \ DI �= ∅,
4. There exists a model I |= O such (C � ¬D)I �= ∅,
5. C � ¬D is satisfiable w.r.t. O.

In particular, 3 and 4 are equivalent because:
(C � ¬D)I = CI ∩ (¬D)I = CI ∩ (ΔI \ DI) = CI \ DI . ��

The problem of checking concept (non-)subsumption can alternatively be
reduced to checking (non-)entailment of concept instances. The following lemma
proves that to check O |= C � D, one can extend O with a concept assertion
C(a) for a fresh individual a, and check if the resulting ontology entails the
concept instance D(a).

Lemma 3. Let O be an ontology, C, D concepts, and a an individual not
appearing in O. Then O |= C � D if and only if O ∪ {C(a)} |= D(a).



Classical Algorithms for Reasoning and Explanation in Description Logics 17

Proof. (⇒): To prove the “only if” direction, assume that O |= C � D. To show
that O ∪ {C(a)} |= D(a), take any model I of O ∪ {C(a)}. Since I |= O and
O |= C � D, we have CI ⊆ DI . Then, since I |= C(a), we have aI ∈ CI ⊆ DI .
Hence, I |= D(a). Since I was an arbitrary model such that I |= O ∪ {C(a)},
we have shown that O ∪ {C(a)} |= D(a).

(⇐): We prove the “if” direction by showing the contrapositive: if O �|=
C � D then O ∪ {C(a)} �|= D(a). Assume that O �|= C � D. Then there
exists a model I of O such that I �|= C � D, or, equivalently, CI �⊆ DI . This
means that there exists x ∈ CI such that x /∈ DI . Define another interpretation
J = (ΔJ , ·J ), which is identical to I on all symbols, except for the interpretation
of the individual a:

– ΔJ = ΔI ,
– AJ = AI and rJ = rI for each atomic concept A and atomic role r,
– bJ = bI for every individual b �= a,
– aJ = x ∈ CI \ DI ⊆ ΔI = ΔJ .

Clearly, J |= O since the interpretation of every symbol in O remained
unchanged. Since aJ ∈ CI \DI = CJ \DJ , we have J |= C(a) and J �|= D(a).
Thus, we found J |= O ∪ {C(a)} such that J �|= D(a), which proves that
O ∪ {C(a)} �|= D(a), as required. ��
Exercise 4. Similarly to Exercise 2, show that the condition that the individual
a used in Lemma 3 is fresh cannot be dropped. Give an example where the
statement of the lemma is not true without this condition.

As the next lemma shows, the concept instance checking problem can easily
be reduced to checking ontology satisfiability.

Lemma 4. Let O be an ontology, C a concept, and a an individual. Then O �|=
C(a) if and only if O ∪ {(¬C)(a)} is satisfiable.

Proof. It is easy to see that the following statements are equivalent:

1. O �|= C(a),
2. There exists a model I |= O such that aI /∈ CI ,
3. There exists a model I |= O such that aI ∈ (¬C)I = ΔI \ CI ,
4. O ∪ {(¬C)(a)} is satisfiable. ��

Finally, we show that the ontology satisfiability problem can easily be reduced
to the other three problems. Specifically, to check if an ontology O is satisfiable,
one can check if the concept � is satisfiable with respect to O (thus, reducing to
the concept satisfiability problem), or check if O does not entail the subsumption
� � ⊥ (thus reducing to the concept non-subsumption problem), or check if O
does not entail an instance �(a) for some individual a (thus, reducing to the
concept non-instance problem).

Lemma 5. Let O be an ontology. Then the following conditions are equivalent:



18 B. Glimm and Y. Kazakov

1. O is satisfiable,
2. � is satisfiable with respect to O,
3. O �|= � � ⊥,
4. O �|= ⊥(a) for every individual a,
5. O �|= ⊥(a) for some individual a.

Proof. Case 1 ⇒ 2: If O is satisfiable then I |= O for some I = (ΔI , ·I), then
�I = ΔI �= ∅ for some I |= O, then � is satisfiable with respect to O.

Case 2 ⇒ 3: If � is satisfiable with respect to O then there exists I |= O such
that �I �= ∅, then �I �⊆ ∅ = ⊥I , then I �|= � � ⊥, then O �|= � � ⊥ since
I |= O.

Case 3 ⇒ 4: If O �|= � � ⊥, then there exists I |= O (such that �I �⊆ ⊥I) then,
for every individual a: aI /∈ ∅ = ⊥I , hence I �|= ⊥(a), hence O �|= ⊥(a) since
I |= O.

Case 4 ⇒ 5: If O �|= ⊥(a) for every individual a then, trivially, O �|= ⊥(a) for
some individual a since the set of individuals NI is nonempty.

Case 5 ⇒ 1: If O �|= ⊥(a) for some individual a, then there exists I |= O (such
that aI /∈ ⊥I), then O is satisfiable. ��

3 Tableau Procedures

In this section, we introduce the so-called tableau procedures, which are the most
popular procedures for reasoning in DLs, particularly, for very expressive lan-
guages. Tableau procedures or variants thereof have been implemented in many
ontology reasoners, such as HermiT [42], FacT++ [62], Konclude [58], and Pellet
[56]. Intuitively, tableau procedures work by trying to construct ontology mod-
els of a particular shape, called the tree models. To simplify our exposition, in
this section we mainly focus on tableau procedures for TBox reasoning, i.e., we
assume that our ontologies do not contain concept and role assertions.

The construction of a model is governed by a number of rules that incremen-
tally expand the model by adding new domain elements and requirements that
they need to satisfy (e.g., be instances of particular concepts). To describe this
process in a convenient way, in tableau procedures one works with a different
representation of interpretations, which is called a tableau.

Definition 1. A tableau is a tuple T = (V,L), where

– V is a nonempty set of tableau nodes of T ,
– L is a labeling function that assigns:

• to every node v ∈ V a subset L(v) of concepts,
• to every pair of nodes 〈v, w〉 ∈ V × V a subset L(v, w) of roles.

A tableau T is usually drawn as a labeled graph with the set of vertices V
and the set of (directed) edges E = {〈v, w〉 ∈ V × V | L(v, w) �= ∅}, in which
every node v ∈ V is labeled with L(v) and every edge 〈v, w〉 ∈ E is labeled with
L(v, w). In what follows we assume that if L(v) or L(v, w) were not explicitly
assigned for some nodes {v, w} ⊆ V , then L(v) = L(v, w) = ∅.



Classical Algorithms for Reasoning and Explanation in Description Logics 19

Example 10. Consider the interpretation I = (ΔI , ·I) from Example 2 extended
with HumanI = {a, b}:

– ΔI = {a, b},
– HumanI = {a, b}, ParentI = {a}, GrandParentI = ∅,
– hasChildI = {〈a, b〉},
– johnI = a, maryI = b.

This interpretation can be equivalently represented by a tableau T = (V,L)
with:

– V = {a, b},
– L(a) = {Human,Parent},
– L(b) = {Human},
– L(a, b) = {hasChild}.

a
{Human,Parent}

b
{Human}

{hasChild}

This tableau is graphically illustrated on the right.

Note that according to Definition 1, tableau nodes can be labeled with arbi-
trary concepts, not necessarily with atomic ones like in Example 10. This is in
contrast to interpretations, which define only the values for atomic concepts and
roles. For interpretations, it is not necessary to define how complex concepts are
interpreted, since these values can always be calculated according to the rules
given in Sect. 2.2. For the tableau procedures, the information C ∈ L(v) repre-
sents a requirement that v ∈ CI should hold for the constructed model I. The
tableau should subsequently be expanded to satisfy all such requirements. For
example, if C � D ∈ L(v) then L(v) should be expanded by adding the concepts
C and D, since v ∈ (C�D)I implies v ∈ CI and v ∈ DI . This expansion process
is governed using dedicated tableau expansion rules.

As we have seen in Sect. 2.3, all standard reasoning problems can be reduced
to each other in polynomial time. Therefore, an algorithm for solving any of
these problems can easily be modified to solve the other problems. In the next
sections, therefore, we use tableau procedures for solving one of these problems:
concept satisfiability.

3.1 Deciding Concept Satisfiability

In this section, we formulate a simplified version of the procedure for checking
concept satisfiability that works without considering the axioms in the ontology.
That is, given an ALC concept C we need to check if there exists an interpretation
I such that CI �= ∅. Although this problem is not of much use in ontology-based
applications, it allows us to illustrate the main principles of tableau procedures.

To check satisfiability of a given concept C, we first transform it into a special
normal form, which is easier to work with.

Definition 2. An ALC concept C is in negation normal form (short: NNF) if
negation can appear in C only in the form of ¬A, where A is an atomic concept.



20 B. Glimm and Y. Kazakov

Table 2. Tableau expansion rules for checking satisfiability of ALC concepts

Rule Conditions Expansions

�-Rule D � E ∈ L(x), {D, E} �⊆ L(x) Set L(x) := L(x) ∪ {D, E}
�-Rule D � E ∈ L(x),

{D, E} ∩ L(x) = ∅
Set L(x) := L(x) ∪ {D}
or L(x) := L(x) ∪ {E}

∃-Rule ∃r.D ∈ L(x) and there is no y ∈ V

such that r ∈ L(x, y) and D ∈ L(y)

Extend V := V ∪ {y} for a new y,

set L(x, y) := {r} and L(y) := {D}
∀-Rule ∀r.D ∈ L(x), r ∈ L(x, y), D /∈ L(y) Set L(y) := L(y) ∪ {D}
⊥-Rule {A, ¬A} ⊆ L(x), ⊥ /∈ L(x) Set L(x) := L(x) ∪ {⊥}

In other words, to construct a concept in NNF, it is permitted to apply
negation only to atomic concepts. Thus, ALC concepts in NNF can be defined
by the grammar:

C,D ::= A | � | ⊥ | C � D | C � D | ¬A | ∃r.C | ∀r.C. (6)

Example 11. The concept ∀r.(¬A � ∃S.¬B) is in NNF; the concepts ¬∃r.A,
∀r.¬(A � B), and A � ∃r.¬� on the other hand are not in NNF.

Each ALC concept C can be converted to an equivalent concept in NNF by
applying simple rules to “push negation inwards” that are reminiscent of De
Morgan’s Laws:

¬(C � D) ⇒ (¬C) � (¬D), ¬¬C ⇒ C,

¬(C � D) ⇒ (¬C) � (¬D), ¬� ⇒ ⊥,

¬(∃r.C) ⇒ ∀r.(¬C), ¬⊥ ⇒ �.

¬(∀r.C) ⇒ ∃r.(¬C),

Example 12. Consider the ALC concept (∃r.A) � ¬((∃r.A) � ¬B). This concept
can be converted to NNF as follows:

(∃r.A) � ¬((∃r.A) � ¬B) ⇒ (∃r.A) � (¬(∃r.A) � ¬¬B)
⇒ (∃r.A) � (∀r.(¬A) � B).

Exercise 5. Show that the transformation of concepts to NNF described above
preserves satisfiability of concepts. That is, the input concept is satisfiable if and
only if its NNF is satisfiable. Hint: show for each transformation step C ⇒ D
that CI = DI holds for every interpretation I.

To check satisfiability of an ALC concept C in NNF, we create a new Tableau
T = (V,L) with V = {v0} and L(v0) = {C}, and apply the tableau expansion
rules from Table 2. A rule is applicable if all conditions of the rule are satisfied in
the current tableau T for certain choices of rule parameters, such as the values
of x, y or the matching concepts and roles in the labels. For example, the �-Rule



Classical Algorithms for Reasoning and Explanation in Description Logics 21

v0

(∃r.A) � (∀r.(¬A) � B),
∃r.A, ∀r.(¬A) � B,
∀r.(¬A)

v1 A, ¬A, ⊥
r

v0

(∃r.A) � (∀r.(¬A) � B),
∃r.A, ∀r.(¬A) � B,
B

v1 A

r

Fig. 2. Two possible tableau expansions for the concept C = (∃r.A) � (∀r.(¬A) � B)
due to the non-deterministic �-Rule

is applicable to a node x ∈ V if some conjunction D � E belongs to the label
L(x) of this node, but at least one of the conjuncts D or E does not belong to
L(x). In this case, T is expanded by adding new nodes or labels as specified in
the expansions part of the rules. In this case we say that the rule is applied (for
the specific choice of the rule parameters). For example, the �-Rule is applied
by adding the conjuncts D and E to the label L(x) of the node x. Note that
after applying each rule in Table 2, the rule is no longer applicable for the same
choices of rule parameters. The tableau expansion rules are applied until no rule
is applicable any longer. In this case we say that the T is fully expanded.

Example 13. Consider the concept C = (∃r.A) � (∀r.(¬A) � B) obtained by the
conversion to NNF in Example 12. We check satisfiability of C by applying the
tableau expansion rules from Table 2. Consider first the left-hand side of Fig. 2.
We initialize T = (V,L) by setting V = {v0} and L(v0) = {C}. Since C is a
conjunction, the conditions of the �-Rule are satisfied for x = v0, D = ∃r.A, and
E = ∀r.(¬A)�B. Applying this rule adds the conjuncts ∃r.A and ∀r.(¬A)�B to
L(v0). Now the conditions of the ∃-Rule are satisfied for x = v0 and ∃r.A ∈ L(v0):
note that there is no v ∈ V such that r ∈ L(v0, v). Applying this rule creates
a new node v1, and sets L(v0, v1) = {r} and L(v1) = {A}. Similarly, since
∀r.(¬A) � B ∈ L(v0), but neither ∀r.(¬A) ∈ L(v0) nor B ∈ L(v0), the �-Rule is
applicable. There are two ways this rule can be applied to T : either we add the
first disjunct ∀r.(¬A) to L(v0), or we add the second disjunct B to L(v0). It is
not necessary to add both of them. Let us chose the first disjunct and see what
happens. After we apply the �-Rule in this way, we obtain ∀r.(¬A) ∈ L(v0).
Since r ∈ L(v0, v1) and ¬A /∈ L(v1), the ∀-Rule is now applicable for x = v0,
y = v1, and ∀r.(¬A) ∈ L(v0). The application of this rule adds ¬A to L(v1).
Now we have both A and ¬A in L(v1), which satisfies the conditions of the
⊥-Rule since ⊥ /∈ L(v1). The application of the ⊥-Rule, therefore, adds ⊥ to
L(v1). After applying this rule, no further rule is applicable, so the tableau is
fully expanded.

If during the application of the �-Rule to ∀r.(¬A) � B ∈ L(v0) we, alterna-
tively, choose to add the second disjunct B to L(v0), we obtain another fully
expanded tableau without ⊥ ∈ L(v1) shown in the right-hand side of Fig. 2.

Remark 1. Note that the tableau edges in Example 13 were labeled by just a
single role r. Although Definition 1 allows for arbitrary sets of roles in edge labels,
the tableau rules for ALC, can only create singleton sets of roles. Indeed, it is easy



22 B. Glimm and Y. Kazakov

to see from Table 2, that the ∃-Rule is the only rule that can modify edge labels,
and can only set them to singleton role sets {r}. More expressive languages, such
as the DL ALCH to be considered in Exercise 10, can have additional rules that
can extend edge labels similarly to node labels, thus resulting in edge labels that
contain multiple roles.

As seen from Example 13, the result of applying the tableau expansion rules
is not uniquely determined. If we choose to apply the �-Rule by adding the first
disjunct to the label of v0, we eventually obtain a clash ⊥ ∈ L(v1). We say that
a tableau T = (V,L) contains a clash if ⊥ ∈ L(v) for some v ∈ V . Otherwise,
we say that T is clash-free. A clash means that the tableau cannot correspond
to an interpretation since ⊥ ∈ L(v) corresponds to the requirement v ∈ ⊥I = ∅,
which cannot be fulfilled. In our example, the clash was obtained as a result of
the “wrong choice” in the application of the �-Rule. When, instead, we choose
the second disjunct, a clash-free tableau can be produced. We show next how to
construct an interpretation from such a tableau.

Remark 2. Note that a clash ⊥ ∈ L(v) may be produced by other rules than the
⊥-Rule. For example, if C � ⊥ ∈ L(v), then ⊥ ∈ L(v) can be produced by the
�-Rule. Similarly, if ∃r.⊥ ∈ L(v), then the clash is produced by the ∃-Rule.

Definition 3. A tableau T = (V,L) defines an interpretation I = (ΔI , ·I)
where:

– ΔI = V ,
– AI = {x ∈ V | A ∈ L(x)} for each atomic concept A ∈ NC ,
– rI = {〈x, y〉 ∈ V × V | r ∈ L(x, y)} for each atomic role r ∈ NR.

Example 14. Consider the first tableau expansion from Example 13 (see the left
of Fig. 2). This tableau defines an interpretation I = (ΔI , ·I) with ΔI = {v0, v1},
AI = {v1}, BI = ∅, and rI = {〈v0, v1〉}. Let us calculate the values of the other
concepts appearing in the label of the tableau under this interpretation:

– (¬A)I = {v0},
– (∃r.A)I = {v0},
– (∀r.(¬A))I = {v1},

– (∀r.(¬A) � B)I = {v1},
– ((∃r.A) � (∀r.(¬A) � B))I = ∅.

As we can see, the interpretation I does not prove the satisfiability of the
concept C = (∃r.A) � (∀r.(¬A) � B), for which the tableau is constructed, since
CI = ∅.

Let us now consider the interpretation J = (ΔJ , ·J ) defined by the second
tableau expansion from Example 13 (see the right-hand side of Fig. 2): ΔJ =
{v0, v1}, AJ = {v1}, BJ = {v0}, and rJ = {〈v0, v1〉}. It is easy to see that for
this interpretation we have:



Classical Algorithms for Reasoning and Explanation in Description Logics 23

– (¬A)J = {v0},
– (∃r.A)J = {v0},
– ∀r.(¬A)J = {v1},

– (∀r.(¬A) � B)J = {v0, v1},
– ((∃r.A) � (∀r.(¬A) � B))J = {v0}.

Since CJ = {v0} �= ∅, the interpretation J proves that C is satisfiable.

The satisfiability of the concept C proved in Example 14 using the interpre-
tation for the second tableau expansion is not a coincidence. As we show next,
in general, if the tableau rules can be applied without obtaining a clash, then
each concept appearing in the label of each tableau node is satisfiable in the
corresponding model.

Remark 3. Note that each rule in Table 2, with the exception of the ⊥-Rule, can
only add concepts to the labels if they are sub-concepts of some existing concept
in the labels (to which the rule applies). Hence, every concept appearing in the
labels of tableau nodes is a sub-concept of the original concept C for which the
tableau is constructed or ⊥. In particular, each such concept is in NNF. Similarly,
only roles appearing in C can be added to the labels of the tableau edges.

Lemma 6. Let T = (V,L) be a clash-free, fully expanded tableau and I =
(ΔI , ·I) an interpretation defined by T . Then, for every v ∈ V and C ∈ L(v),
we have v ∈ CI .

Proof. By Remark 3, the concept C is in NNF. We prove the lemma by induction
on the construction of C according to the grammar definition (6):

CaseC = A ∈ L(v): In this case v ∈ CI = AI = {x | A ∈ L(x)} by definition
of I.

CaseC = �: Then, trivially v ∈ V = ΔI = �I = CI .

CaseC = ⊥ ∈ L(v): Then T has a clash, which is not possible according to the
assumption of the lemma.

CaseC = ¬A ∈ L(v): Then A /∈ L(v) since otherwise {A, ¬A} ⊆ L(v) and
⊥ ∈ L(v) since the ⊥-Rule is not applicable to T , which would again mean
that T has a clash. Since A /∈ L(v), we have v /∈ AI by definition of I. Hence,
v ∈ ΔI \ AI = (¬A)I .

CaseC = D � E ∈ L(v): Since the �-Rule is not applicable to D � E ∈ L(v),
we have D ∈ L(v) and E ∈ L(v). Then, by induction hypothesis, v ∈ DI and
v ∈ EI . Hence, v ∈ DI ∩ EI = (D � E)I = CI .

CaseC = D �E ∈ L(v): Since the �-Rule is not applicable to D �E ∈ L(v), we
have D ∈ L(v) or E ∈ L(v). Then, by induction hypothesis, v ∈ DI or v ∈ EI .
Hence, v ∈ DI ∪ EI = (D � E)I = CI .

CaseC = ∃r.D: Since the ∃-Rule is not applicable to ∃r.D ∈ L(v), there exists
some w ∈ V such that r ∈ L(v, w) and D ∈ L(w). From r ∈ L(v, w), by definition
of I, we obtain 〈v, w〉 ∈ rI . From D ∈ L(w), by induction hypothesis, we obtain
w ∈ DI . Hence, from 〈v, w〉 ∈ rI and w ∈ DI we obtain v ∈ (∃r.D)I .



24 B. Glimm and Y. Kazakov

CaseC = ∀r.D: In order to prove that v ∈ CI = (∀r.D)I , take any w ∈ ΔI = V
such that 〈v, w〉 ∈ rI . We need to show that w ∈ DI . Since 〈v, w〉 ∈ rI , by
definition of I, we have r ∈ L(v, w). Since the ∀-Rule is not applicable to x = v,
y = w and ∀r.D ∈ L(v) = L(x), we must have D ∈ L(y) = L(w). Hence, by
induction hypothesis, w ∈ DI , as required. ��
Corollary 1. Let C be an ALC concept in NNF, and T = (V,L) a clash-free,
fully expanded tableau obtained by the tableau procedure for checking satisfiability
for C. Then C is satisfiable.

Proof. Due to the tableau initialization, and since the tableau rules in Table 2
never remove nodes or labels, we must have C ∈ L(v) for some v ∈ V . Hence,
by Lemma 6 v ∈ CI for the interpretation I defined by T . Thus, CI �= ∅ and C
is satisfiable. ��

Corollary 1 means that if we have managed to apply all tableau rules without
producing a clash for a concept C in NNF, then we have proved that C is satis-
fiable. Does converse of this property also hold? Specifically, if C is satisfiable,
is it always possible to apply the tableau rules without producing a clash? We
prove that it is indeed the case by showing that if CI �= ∅ for some interpretation
I, then we can always construct a tableau that mimics this interpretation in a
certain way.

Definition 4. We say say that a tableau T = (V,L) mimics an interpretation
I = (ΔI , ·I) if there exists a mapping τ : V → ΔI such that:

(1) for each v ∈ V and each C ∈ L(v), we have τ(v) ∈ CI , and
(2) for each 〈v, w〉 ∈ V × V and each r ∈ L(v, w), we have 〈τ(v), τ(w)〉 ∈ rI .

The mapping τ is called a mimic of T in I.
For example, if T = (V,L) is a clash-free fully expanded tableau, then T

mimics the interpretation I defined by T (cf. Definition 3) since the identity
mapping τ(v) = v ∈ V = ΔI satisfies the requirements of Definition 4. Indeed,
by Lemma 6, for every C ∈ L(v), we have τ(v) = v ∈ CI , and, by Definition 3,
for every 〈v, w〉 ∈ V × V and r ∈ L(v, w), we have 〈τ(v), τ(w)〉 = 〈v, w〉 ∈ rI .
However, a tableau T can also mimic other interpretations.

Example 15. Consider the interpretation I = (ΔI , ·I) with ΔI = {a}, AI =
BI = {a} and rI = {〈a, a〉} and the tableau T = (V,L) obtained after the second
expansion in Example 13 (see the right-hand side of Fig. 2). Then the mapping
τ : V → ΔI defined by τ(v0) = τ(v1) = a is a mimic of T in I. Indeed, it is easy
to see that AI = BI = (∃r.A)I = (∀r.(¬A)�B)I = ((∃r.A)� (∀r.(¬A)�B))I =
{a}, hence, τ(v) = a ∈ CI for every v ∈ V and every C ∈ L(v). Also, since
〈τ(v0), τ(v1)〉 = 〈a, a〉 ∈ rI , Condition (2) of Definition 4 holds for r ∈ L(v0, v1).

Note that if a tableau T = (V,L) contains a clash ⊥ ∈ L(v) for some v ∈ V ,
then T cannot mimic any interpretation I, since, otherwise τ(v) ∈ ⊥I = ∅. Note



Classical Algorithms for Reasoning and Explanation in Description Logics 25

also that T can have a mimic even if it is not fully expanded. For example, if
CI �= ∅ for some concept C and interpretation I = (ΔI , ·I), then the initial
tableau T = (V,L) with V = {v0} and L(v0) = {C} mimics I since for each
a ∈ CI �= ∅ and τ : V → ΔI defined by τ(v0) = a, we have τ(v0) ∈ CI . We
will next show that in such a case T can always be expanded so that it still
mimics I.

Lemma 7. Let T = (V,L) be a tableau that mimics an interpretation I =
(ΔI , ·I) and R be some tableau rule from Table 2 that is applicable to T . Then
R can be applied in such a way that the resulting tableau also mimics I.
Proof. Suppose that τ : V → ΔI is a mimic of T in I. We show how to apply
R and extend τ to a mimic of the expanded tableau by considering all possible
cases for R:

Case�-Rule: If the �-Rule is applicable to T , then D�E ∈ L(v) for some v ∈ V .
Since τ is a mimic of T in I, we have τ(v) ∈ (D � E)I . The application of the
�-Rule only adds D and E to L(v). To show that T still mimics I after this rule
application, it is sufficient to prove that τ(v) ∈ DI and τ(v) ∈ EI . This, clearly,
follows from τ(v) ∈ (D � E)I = DI ∩ EI .

Case�-Rule: If the �-Rule is applicable to T , then D � E ∈ L(v) for some
v ∈ V . Since τ is a mimic of T in I, we have τ(v) ∈ (D�E)I = DI ∪EI . Hence,
τ(v) ∈ DI or τ(v) ∈ EI . We show that in each of these two cases one can apply
the �-Rule so that the resulting tableau still mimics I. Indeed, if τ(v) ∈ DI , we
can apply the �-Rule by adding D to L(v). Since τ(v) ∈ DI , τ is still a mimic
of T in I after this rule application. Similarly, if τ(v) ∈ EI , we can apply the
�-Rule by adding E to L(v). Since τ(v) ∈ EI , τ remains a mimic of T in I.

Case∃-Rule: If the ∃-Rule is applicable to T , then ∃r.D ∈ L(v) for some v ∈ V .
Since τ is a mimic of T in I, we have τ(v) ∈ (∃r.D)I . The application of the
∃-Rule adds a new node w to V with L(v, w) = {r} and L(w) = {D}. To
show that T still mimics I after this rule application, we define τ(w) such that
Conditions (1) and (2) of Definition 4 hold for the two added labels. Specifically,
since τ(v) ∈ (∃r.D)I , there exists some d ∈ DI such that 〈τ(v), d〉 ∈ rI . Define
τ(w) := d. Then, since τ(w) = d ∈ DI , Condition (1) of Definition 4 holds for
D ∈ L(v). Since 〈τ(v), τ(w)〉 = 〈τ(v), d〉 ∈ rI , Condition (2) of Definition 4
holds for r ∈ L(v, w).

Case∀-Rule: If the ∀-Rule is applicable to T , then ∀r.D ∈ L(v) for some v ∈ V
and r ∈ L(v, w) for some w ∈ V . Since τ is a mimic of T in I, we have τ(v) ∈
(∀r.D)I and 〈τ(v), τ(w)〉 ∈ rI . The application of the ∀-Rule adds D to L(w). To
show that T still mimics I after the rule application, it is sufficient to prove that
τ(w) ∈ DI , which clearly follows from τ(v) ∈ (∀r.D)I and 〈τ(v), τ(w)〉 ∈ rI .

Case⊥-Rule: If the ⊥-Rule is applicable to T , then {A, ¬A} ⊆ L(v) for
some v ∈ V . Since τ is a mimic of T in I, we have τ(v) ∈ AI and τ(v) ∈
(¬A)I = ΔI \AI . Clearly, this is not possible, which means that this case cannot
occur. ��



26 B. Glimm and Y. Kazakov

Algorithm 1. A tableau algorithm for checking satisfiability ALC concepts
CSat(C): Checking satisfiability of a concept C
input : an ALC concept C
output : yes if CI �= ∅ for some interpretation I and no otherwise

1 C ← NNF(C);
2 V ← {v0}, L ← {v0 �→ {C}};
3 T ← (V,L);
4 while not FullyExpanded(T ) do
5 R ← ChooseApplicableRule(T );
6 T ← ApplyRule(T,R);

7 if ⊥ ∈ ⋃
v∈V L(v) then

8 return no;
9 else

10 return yes;

Algorithm 1 summarizes our tableau procedure for checking satisfiability of
ALC concepts. After converting the input concept to NNF (Lines 1) and ini-
tializing the tableau (Line 2–3), the algorithm continuously applies the tableau
rules from Table 2 until the tableau is fully expanded (Lines 4–6). If the resulting
tableau contains a clash (Line 7) the algorithm returns no; if not, the algorithm
returns yes.

Note that due to the �-Rule, the result of applying a rule (Line 6) is not
uniquely determined. Hence, Algorithm 1 is non-deterministic. We next show
that this algorithm solves the concept satisfiability problem for ALC, i.e., it is
correct. Recall (see Appendix A.1) that a non-deterministic algorithm A solves
a problem P : X → {yes,no} if, for each x ∈ X such that P (x) = no, each run of
A terminates with the result no, and for each x ∈ X such that P (x) = yes, there
exists at least one run for which the algorithm terminates and produces yes.
Proving correctness of a (non-deterministic) algorithm is usually accomplished
by proving several properties: (1) Soundness: if for an input x ∈ X, A returns
yes then P (x) = yes, (2) Completeness: if P (x) = yes then A returns yes for at
least one run, and (3) Termination: A terminates for every input. Soundness of
Algorithm 1 follows from Lemma 6 since the algorithm returns yes only if a clash-
free fully expanded tableau is computed. Completeness follows from Lemma 7
since, for a satisfiable concept, one can always apply the rules such that a clash
is avoided. It is thus remains to prove that Algorithm 1 always terminates.

Remark 4. It may seem that a run of Algorithm 1 is determined not only by
the choice of a possible expansion of the non-deterministic �-Rule (Line 6),
but also by the choice of which next rule to apply in case there are several
applicable rules (Line 5). However, since Lemma 7 holds for any applicable rule,
the latter choice does not have any impact on the completeness of the algorithm.
In other words, we may assume that the function ChooseApplicableRule(T )



Classical Algorithms for Reasoning and Explanation in Description Logics 27

is deterministic, i.e., it always returns the same value for the same input (unlike
function ApplyRule(T,R) for which different values need to be considered in
different runs). The choice of which next rule to apply is usually referred to as
don’t care non-determinism of the algorithm, whereas the choice of how a rule is
applied (the �-Rule in our case) is referred to as a don’t know non-determinism.

Exercise 6. The function ChooseApplicableRule(T ) of Algorithm 1 can be
defined in many different ways. If several rules are applicable to a node, e.g., the
�-Rule and the �-Rule, the function may determine which of these rules should
be applied first by specifying a rule precedence. If the same rule is applicable to
different nodes, the function, likewise, can choose to which node the rule should
be applied first. Discuss, which of these choices are more likely to result in fewer
and/or shorter runs of the tableau procedure?

In order to prove termination of Algorithm 1, we show that the size of the
tableau T that is constructed for a concept C at each step of the algorithm is
bounded by an exponential function in the size of C (the number of symbols
in C). This implies that every run of Algorithm 1 terminates after at most
exponentially many rule applications since each rule application increases the
size of the tableau. By Remark 3, each node label can contain only concepts
that are sub-concepts of C or ⊥, and each edge label can contain only roles that
appear in C. Therefore, the maximal size of the label for each node and edge
for each pair of nodes is bounded by a linear function in the size of C. We next
show that the number of different nodes of a tableau is at most exponential in
the size of C.

Definition 5. For each node v ∈ V of a tableau T = (V,L), we define its level
�(v) by induction on the rule application of the tableau procedure:

– For the node v0 created during tableau initialization we set �(v0) = 0;
– For a node w created by an application of the ∃-Rule to a node v ∈ V , we set

�(w) = �(v) + 1.

The following lemma gives a bound on the number of nodes at each level of
a tableau:

Lemma 8. Let T = (V,L) be a (possibly not fully expanded) tableau obtained
for a concept C of size n. Then for each k ≥ 0, the number of nodes v with
�(v) = k is bounded by nk.

Proof. The proof is by induction over k ≥ 0.

Case k = 0: There exists only one node v = v0 ∈ V with �(v) = 0 since all other
nodes are constructed by the ∃-Rule.

Case k > 0: Take any node w ∈ V with �(w) = k. Since k > 0, w can only be
constructed by an application of the ∃-Rule to some node v with �(v) = k − 1.
This rule has been applied to some concept ∃r.D ∈ L(v) and, after this rule
application, the ∃-Rule can no longer be applied to ∃r.D ∈ L(v). Hence, each



28 B. Glimm and Y. Kazakov

w with �(v) = k is uniquely associated with a pair 〈∃r.D, v〉 where ∃r.D is a
sub-concept of the original concept C and �(v) = k − 1. Since the number of
sub-concepts of C is bounded by n and, by the induction hypothesis, the number
of nodes v with �(v) = k − 1 is bounded by nk−1, the number of nodes w with
�(v) = k is bounded by n · nk−1 = nk. ��

Finally, we prove that the level of a tableau node cannot exceed the quantifier
depth of the input concept.

Definition 6. The quantifier depth of an ALC concept C is a number qd(C)
that is defined inductively over (1) as follows:

– qd(�) = qd(⊥) = qd(A) = 0 for each A ∈ NC ,
– qd(C � D) = qd(C � D) = max(qd(C), qd(D)),
– qd(¬C) = qd(C),
– qd(∃r.C) = qd(∀r.C) = qd(C) + 1.

Example 16.

qd(∃r.((¬A) � ∀r.B)) = qd((¬A) � ∀r.B) + 1
= max(qd(¬A), qd(∀r.B)) + 1
= max(qd(A), qd(B) + 1) + 1
= max(0, 0 + 1) + 1 = 2.

Note that qd(C) is not greater than the number of quantifier symbols (∃ or
∀) in C, which is not greater than the length of C.

Lemma 9. Let T = (V,L) be a (possibly not fully expanded) tableau obtained
for a concept C with qd(C) = q, and v ∈ V a node with �(v) = k. Then for each
D ∈ L(v), we have qd(D) ≤ q − k.

Proof. We prove the lemma by induction on the size (i.e., on the construction)
of T .

If T is created during the tableau initialization, then D = C, v = v0, and
k = 0. Hence qd(D) = qd(C) = q = q − k as required.

Otherwise, T was created by applying one of the tableau expansion rules in
Table 2. If D ∈ L(v) was not added by this rule, we can apply the induction
hypothesis to the (smaller) tableau before the rule application. Otherwise, we
consider all possible cases of such a rule that can add D ∈ L(v):

Case�-Rule: If D was added by the �-Rule, then, before this rule application,
D�E ∈ L(v) or E �D ∈ L(v) for some E. By applying the induction hypothesis
for this concept, we obtain qd(D) ≤ qd(D � E) ≤ q − k or qd(D) ≤ qd(E � D) ≤
q − k.

Case�-Rule: If D was added by the �-Rule, then, before this rule application,
D�E ∈ L(v) or E �D ∈ L(v) for some E. By applying the induction hypothesis
for this concept, we obtain qd(D) ≤ qd(D � E) ≤ q − k or qd(D) ≤ qd(E � D) ≤
q − k.



Classical Algorithms for Reasoning and Explanation in Description Logics 29

Case∃-Rule: If D was added by the ∃-Rule, then the node v was also created
by this rule and the rule was applied to some w ∈ V with ∃r.D ∈ L(w) for
some role r. Then �(v) = �(w) + 1 and, by induction hypothesis, qd(∃r.D) ≤
q − �(w) = q − (�(v) − 1) = q − k + 1. Since qd(∃r.D) = qd(D) + 1, we obtain
qd(D) = qd(∃r.D) − 1 ≤ q − k.

Case∀-Rule: If D was added by the ∀-Rule, then this rule was applied to some
w ∈ V with ∀r.D ∈ L(w) and r ∈ L(w, v). Since r ∈ L(w, v) could be only added
by the ∃-Rule, �(v) = �(w) + 1. By induction hypothesis for ∀r.D ∈ L(w), we
obtain qd(∀r.D) ≤ q−�(w) = q−(�(v)−1) = q−k+1. Since qd(∀r.D) = qd(D)+1,
we obtain qd(D) = qd(∀r.D) − 1 ≤ q − k.

Case⊥-Rule: If D = ⊥ was added by the ⊥-Rule, then, before this rule appli-
cation, we have {A, ¬A} ⊆ L(v) for some atomic concept A. By induction
hypothesis, qd(A) ≤ q − k. Hence qd(⊥) = 0 = qd(A) ≤ q − k. ��

Let T = (V,L) be a tableau constructed during a run of the tableau procedure
for a concept C with size n and qd(C) = q ≤ n. Since every node v ∈ V of a
tableau T = (V,L) always contains at least one concept D in the label, by
Lemma 9 it follows that 0 ≤ qd(D) ≤ q − �(v). Hence �(v) ≤ q holds for every
v ∈ V . Since, by Lemma 8 the number of nodes at level k is bounded by nk,
the total number of nodes in the tableau is bounded by

∑
0≤k≤q nk ≤ nq+1 =

2(log2 n)·(q+1) ≤ 2n2
.

Essentially we have shown that the tableau procedure constructs a special
kind of interpretation (represented by the tableau). The interpretations have a
tree shape: each node except for the initial node (the root of the tree) is connected
by an edge to exactly one predecessor node from which this node was created (by
an application of the ∃-Rule). The depth of the tree is bounded by the quantifier
depth of the concept C for which the tableau was constructed. The branching
degree of the tree (the maximal number of successor nodes of each node) is
bounded by the number of existential concepts occurring in C. Hence the size
of the tree is bounded exponentially in the size of C.

Exercise 7. Show that the exponential upper bound on the size of the tableau
cannot be improved. Specifically, for each n ≥ 0 construct a concept Cn of
polynomial size in n (i.e., the number of symbols in Cn is bounded by p(n)
for some polynomial function p) such that the fully expanded tableau for Cn

contains at least 2n nodes. Hint: the tableau rules should create a binary tree
of depth n. Hence by Lemma 9, qd(Cn) ≥ n. The label of each non-leaf node
should contain two different concepts of the form ∃R.D.

The exponential bound on the tableau size implies the following complexity
result:

Theorem 1. Algorithm 1 solves the concept satisfiability problem in ALC in
non-deterministic exponential time.



30 B. Glimm and Y. Kazakov

Remark 5. It is possible to make some further improvements to Algorithm 1
to prove better complexity bounds. First note that to check satisfiability of a
concept C, it is not necessary to keep the whole tableau in memory. Once all
tableau expansion rules are applied to a node (and the node is checked for the
presence of a clash), the node can be completely deleted. By processing nodes in a
depth-first manner it is, therefore, possible to store at most linearly many nodes
in memory at any given time (because the tableau has a linear depth). This
gives a non-deterministic polynomial space algorithm solving this problem. A
well-known result from complexity theory called Savitch’s theorem then implies
that there is a deterministic polynomial-space algorithm solving this problem,
which is now an optimal complexity bound for checking concept satisfiability in
ALC (see, e.g., [6, Sect. 5.1.1]).

3.2 TBox Reasoning

In this section, we extend the tableau procedure presented earlier to also take
into account TBox axioms of the ontology. Given an ALC concept C and an
ALC TBox O, our goal now is to check the satisfiability of C w.r.t. O, i.e., to
check if there exists a model I of O such that CI �= ∅.

As in the case of the previous procedure, before applying the tableau rules,
we first need to convert the input into a suitable normal form. We say that a
TBox axiom is in normal form (or is normalized) if it is a concept inclusion
axiom of the form � � D where D is a concept in NNF. Every TBox axiom can
be converted into the normal form by applying the following simple rewriting
rules:

C ≡ D ⇒ C � D, D � C,

C � D ⇒ � � ¬C � D if C �= �,

� � D ⇒ � � NNF(D) if D is not in NNF.

Exercise 8. Similarly to Exercise 5, show that TBox normalization preserves
concept satisfiability w.r.t. the TBox. That is, a concept C is satisfiable w.r.t. a
TBox O if and only if C is satisfiable w.r.t. the normalization of O. Hint: show
that for each rewrite step α ⇒ β above and each interpretation I we have I |= α
if and only if I |= β.

To take the resulting axioms into account in our tableau procedure, we need
to add an additional tableau expansion rule shown in Table 3. We can now use a
simple modification of Algorithm 1, where, in addition to a (normalized) concept
C, the input also contains a (normalized) ontology O and, in addition to the rules
in Table 2, a new rule from Table 3 can be chosen and applied at Steps 5 and 6.

Example 17. Consider C = A and O = {A � ∀r.B � ∃r.A}. We check satisfia-
bility of C w.r.t. O using the tableau procedure. The concept C is already in
NNF. The axiom in O is normalized as follows:



Classical Algorithms for Reasoning and Explanation in Description Logics 31

Table 3. The additional tableau expansion rule for handling (normalized) TBox axioms

Rule Conditions Expansions

�-Rule � � D ∈ O, D /∈ L(x) Set L(x) := L(x) ∪ {D}

A � ∀r.B � ∃r.A ⇒ � � ¬(A � ∀r.B) � ∃r.A,

⇒ � � ((¬A) � ∃r.¬B) � ∃r.A.

The tableau is initialized to T = (V,L) with V = {v0} and L(v0) = {A}, and
expanded by the following rule applications:

1. �-Rule: L(v0) := L(v0) ∪ {((¬A) � ∃r.¬B) � ∃r.A},
2. �-Rule: L(v0) := L(v0) ∪ {(¬A) � ∃r.¬B},
3. �-Rule: L(v0) := L(v0) ∪ {∃r.¬B},
4. ∃-Rule: L(v0, v1) := {r}, L(v1) := {¬B},
5. �-Rule: L(v1) := L(v1) ∪ {((¬A) � ∃r.¬B) � ∃r.A},
6. �-Rule: L(v1) := L(v1) ∪ {(¬A) � ∃r.¬B},
7. �-Rule: L(v1) := L(v1) ∪ {¬A}.

v0
A, ((¬A) � ∃r.¬B) � ∃r.A
(¬A) � ∃r.¬B, ∃r.¬B

v1
¬B, ((¬A) � ∃r.¬B) � ∃r.A
(¬A) � ∃r.¬B, ¬A

r

Fig. 3. A possible tableau expansion for C = A and O = {� � (¬A � ∃r.¬B) � ∃r.A}

Figure 3 shows the resulting tableau expansion. Note that the new �-Rule is
applied for both nodes v0 and v1 (Steps 1 and 5). Without applying this rule, no
other rule would be applicable. Note that at Step 3 we have applied the �-Rule
by adding the second disjunct ∃r.¬B to L(v0) because adding the first disjunct
¬A would result in a clash since A ∈ L(v0). The same disjunction also appears
in L(v1), but since A /∈ L(v1), we could apply the �-Rule by adding the first
disjunct ¬A to L(v1) (Step 7).

Since after Step 7 the tableau is fully expanded and does not contain a clash,
we conclude that C is satisfiable w.r.t. O.

Intuitively, the new �-Rule ensures that the interpretation I = (ΔI , ·I)
defined by T = (V,L) (see Definition 3) satisfies all axioms in the (normalized)
ontology O once all tableau rules are applied. Indeed, Lemma 6 still holds for
the extended tableau procedure, since the proof of the lemma is by induction
on the construction of a concept C ∈ L(v) and we did not add any new concept



32 B. Glimm and Y. Kazakov

constructors. Now, since T is fully expanded, for every normalized axiom � �
D ∈ O and every v ∈ V , we have D ∈ L(v) due to the �-Rule. Hence, by
Lemma 6, v ∈ DI for every v ∈ V = ΔI . Consequently, I |= � � D for each
� � D ∈ O. This implies that the extended Algorithm 1 remains sound.

Completeness of the extension of Algorithm 1 can also easily be shown. If C
is satisfiable w.r.t. O, then there exists a model I |= O such that CI �= ∅. We
extend the proof of Lemma 7 to show that in this case, one can apply the tableau
rules in such a way that T always mimics I, thus, avoiding the production of
a clash. For this we just need to update the proof with the case for the newly
added rule:

Case� − Rule: If the �-Rule is applicable to T , then D /∈ L(v) for some v ∈ V
and some � � D ∈ O. The application of the �-Rule adds only D to L(v). To
show that T still mimics I after this rule application, it is sufficient to prove
that τ(v) ∈ DI . Since � � D ∈ O and I |= O we have �I = ΔI ⊆ DI . Hence
τ(v) ∈ ΔI ⊆ DI .

Table 4. An additional expansion rule to handle TBox axioms of the form C � D

Rule Conditions Expansions

�-Rule C � D ∈ O, C ∈ L(x), D /∈ L(x) Set L(x) := L(x) ∪ {D}

Exercise 9. In order to understand why the TBox axioms require a transforma-
tion to the form � � D, suppose we generalize the normal form to also permit
axioms C � D where both C and D are in NNF, and formulate a new �-Rule
to handle axioms of this form as given in Table 4. Does the modified tableau
algorithm remain sound and complete? Which of the lemmas cannot be proved
any longer?

What happens if we only allow normalized axioms of the form � � D and
A � D where A is an atomic concept and D is a concept in NNF. Is the tableau
algorithm with the �-Rule and the �-Rule sound and complete for this case?

Exercise 10. Description logic ALCH is an extension of the description logic
ALC, in which ontologies can contain role inclusion axioms of the form r � s,
where r and s are roles. An interpretation I satisfies r � s if rI ⊆ sI .

Extend the tableau procedure by adding a new rule to handle role inclusion
axioms. Prove that this procedure is sound and complete. Use this procedure
to show that the concept C = A � ¬∃s.(A � B) � ∀r.B is unsatisfiable w.r.t.
O = {A � ∃r.A, r � s}.

We have shown that the tableau algorithm extended with the �-Rule remains
sound and complete. In order to show that it solves the concept satisfiability
problem w.r.t. TBoxes, it remains to show that it terminates for every input.
Unfortunately, the latter is not the case as shown in the next example. Intuitively,



Classical Algorithms for Reasoning and Explanation in Description Logics 33

since the �-Rule adds a concept to every node label, this new concept can, in
particular, trigger an application of the ∃-Rule, which, in turn, creates new nodes,
for which the �-Rule is applicable again.

Example 18. Consider C = A and O = {A � ∃r.A}. We check the satisfiability
of C w.r.t. O using the extended tableau procedure. The concept C is already
in NNF, so we just need to normalize the axiom in O:

A � ∃r.A ⇒ � � (¬A) � ∃r.A.

The tableau is initialized to T = (V,L) with V = {v0} and L(v0) = {A}, and
expanded as shown in Fig. 4. Notice that unlike in Example 17, if we were to
apply the �-Rule for (¬A) � ∃r.A ∈ L(v1) by choosing the first disjunct ¬A, we
would trigger a clash since L(v1) also contains A (added by ∃-Rule). Hence, the
creation of infinitely many tableau nodes cannot be avoided.

1. 
-Rule: L(v0) := L(v0)∪ {(¬A)� ∃r.A},
2. �-Rule: L(v0) := L(v0) ∪ {∃r.A},
3. ∃-Rule: L(v0, v1) := {r}, L(v1) := {A},
4. 
-Rule: L(v1) := L(v1)∪ {(¬A)� ∃r.A},
5. �-Rule: L(v1) := L(v1) ∪ {∃r.A},
6. ∃-Rule: L(v1, v2) := {r}, L(v2) := {A},
7. 
-Rule: . . .

v0
A, (¬A) � ∃r.A
∃r.A

v1
A, (¬A) � ∃r.A
∃r.A

r

v2
A, (¬A) � ∃r.A
∃r.A

r

Fig. 4. The only clash-free tableau expansion for C = A and O = {� � (¬A) � ∃r.A}

As discussed in Remark 5, to check satisfiability of a concept (also, with
respect to an ontology), it is not necessary to keep the whole tableau in memory.
We just need to verify that a clash-free tableau exists. This idea can be developed
further to regain termination of the tableau algorithm with TBoxes. Notice that
in Example 18, all nodes contain identical concepts in the labels. This means
that if a rule is applicable to one node then it can be applied in exactly the same
way to any other node with the same content. Hence, if a clash is obtained in
this node, it is also obtained in the other node. Consequently, it is not necessary
to apply the tableau rules to all nodes in order to verify that there exists a
clash-free tableau expansion. Some rule applications can be blocked.

Definition 7. A blocking condition is a function that assigns to every tableau
T = (V,L) a nonempty subset W � V of active nodes such that for every node
v1 ∈ W and every node v2 /∈ W such that L(v1, v2) �= ∅, there exists a node
w ∈ W with L(v2) ⊆ L(w). In this case we say that a node v2 is (directly)
blocked by node w. Each node in V \ W is called a blocked node.



34 B. Glimm and Y. Kazakov

Algorithm 2. A tableau algorithm for checking satisfiability of ALC con-
cepts with respect to ALC ontologies
COSat(C, O): Checking satisfiability of a concept C w.r.t. an ontology O
input : an ALC concept C, an ALC ontology O
output : yes if CI 	= ∅ for some model I of O and no otherwise

1 C ← NNF(C);
2 O ← Normalize(O);
3 V ← {v0}, L ← {v0 �→ {C}};
4 T ← (V, L);
5 while not FullyExpandedUpToBlocking(T ) do
6 R ← ChooseApplicableRule(T );
7 T ← ApplyRule(T, R);

8 if ⊥ ∈ ⋃
v∈V L(v) then

9 return no;

10 else
11 return yes;

Example 19. Let T = (V,L) be the tableau obtained after Step 6 in Example 18,
i.e., V = {v0, v1, v2}, L(v0) = L(v1) = {A, (¬A) � ∃r.A, ∃r.A}, L(v2) = {A},
and L(v0, v1) = L(v1, v2) = {r}. Then a blocking condition for T can be defined
by setting W = {v0} since for 〈v0, v1〉 ∈ E we have L(v1) ⊆ L(v0).

We leave it open, how exactly the set of active nodes of a tableau is deter-
mined, so that different blocking strategies can be used in different algorithms.
We show next that one can restrict the tableau algorithm to apply rules only to
active nodes.

Definition 8. Let T = (V,L) be a tableau with a subset W ⊆ V of active nodes.
We say that a tableau rule from Tables 2 or 3 is applicable to a node v ∈ V
if the conditions of this rule are satisfied for a mapping x �→ v. We say that a
tableau T is fully expanded up to blocking if no tableau rule is applicable to any
active node w ∈ W .

Example 20. It is easy to see that the tableau T from Example 19 with W = {v0}
is fully expanded up to blocking since no tableau rule (for the ontology O from
Example 18) is applicable to v0.

Algorithm 2 is a modification of Algorithm 1 for checking satisfiability of
concepts w.r.t. ontologies. Apart from a new step for normalization of the input
ontology (Line 1), the algorithm uses a blocking condition to verify if the tableau
is fully expanded up to blocking according to Definition 8 (Line 5), and to select
a rule applicable to an active node (Line 6). We assume that the initial node v0
always remains active.

We next show that the updated algorithm remains sound and complete. The
introduction of a blocking condition does not have any impact on completeness:



Classical Algorithms for Reasoning and Explanation in Description Logics 35

the proof of Lemma 7 (including the new case for the �-Rule) remains as before.
Soundness of the new algorithm is, however, nontrivial: if the tableau is fully
expanded with blocking, it does not mean that it is fully expanded without
blocking. To prove soundness, we modify Definition 3 by taking the blocking
condition into account:

Definition 9. A tableau T = (V,L) and a subset of active nodes W ⊆ V define
an interpretation I = (ΔI , ·I) such that:

– ΔI = W ,
– AI = {x ∈ W | A ∈ L(x)} for each atomic concept A ∈ NC ,
– rI = {〈x, y〉 ∈ W × W | ∃z ∈ V : r ∈ L(x, z) and z = y or z is blocked by y}

for each atomic role r ∈ NR.

A few comments about Definition 9 are in order. First note that this definition
coincides with Definition 3 when W = V . The definition of rI can be explained
as follows: if r ∈ L(x, z) and both nodes x and z are active, then 〈x, z〉 ∈ rI .
This corresponds to the case ‘z = y’ of the definition for rI . If x active but z is
not, then, since L(x, z) �= ∅, z should be blocked by some y ∈ W . In this case,
rI contains all such pairs 〈x, y〉. This corresponds to the case ‘z is blocked by y’
of the definition for rI . If x not active then the label r ∈ L(x, z) is ignored.

v0 A, C

v2 A, Bv1 C

v3 A

r r

r

I = (ΔI , ·I), where:
– ΔI = {v0, v2},
– AI = {v0, v2}, BI = {v2}, CI = {v0},
– rI = {〈v0, v0〉, 〈v0, v2〉, 〈v2, v2〉, 〈v2, v0〉}.

Fig. 5. A tableau with blocking (v0 and v2 are are active nodes, v1 and v3 are blocked
nodes) and the interpretation defined by this tableau

Example 21. Consider the tableau T = (V,L) illustrated on the left-hand side
of Fig. 5:

– V = {v0, v1, v2, v3},
– L(v0) = {A,C}, L(v1) = {C}, L(v2) = {A,B}, L(v3) = {A},
– L(v0, v1) = L(v0, v2) = L(v2, v3) = {r}.

Suppose that the set of active nodes is W = {v0, v2}. Note that v1 is blocked by
v0 since L(v1) = {C} ⊆ {A,C} = L(v0), v3 is blocked by v2 since L(v3) = {A} ⊆
{A,B} = L(v2), and v3 is blocked by v0 since L(v3) = {A} ⊆ {A,C} = L(v0).
Then T and W define an interpretation shown in the right of Fig. 5.



36 B. Glimm and Y. Kazakov

Let T = (V,L) be a tableau obtained by applying the tableau expansion
rules for a concept C and an ontology O. Suppose that T is fully expanded up to
blocking for W ⊆ V and does not contain a clash. Let I be the interpretation
defined by T and W according to Definition 9. Our goal is to show that I |= O
and CI �= ∅, which implies that C is satisfiable w.r.t. O. To do this, we prove
an analog of Lemma 6 for our new interpretation I.

Lemma 10. Let T = (V,L) be a clash-free, fully expanded tableau up to blocking
for W ⊆ V and I = (ΔI , ·I) an interpretation defined by T and W according to
Definition 9. Then for every v ∈ W and every C ∈ L(v), we have v ∈ CI .

Proof. Just like for Lemma 6, we prove this lemma by induction on the construc-
tion of C according to the grammar definition (6). The only changes compared
to the previous proof are those cases where the definition of rI was used:

CaseC = ∃r.D: Since the ∃-Rule is not applicable to ∃r.D ∈ L(v), there exists
some w ∈ V such that r ∈ L(v, w) and D ∈ L(w). Define an active node w′ ∈ W
as follows. If w ∈ W , we set w′ = w. Otherwise, w must be blocked by some
w′ ∈ W . Then, by the definition of rI , we have 〈v, w′〉 ∈ rI . Note also that
D ∈ L(w) ⊆ L(w′). Since w′ ∈ W , by induction hypothesis w′ ∈ DI . From
〈v, w′〉 ∈ rI and w′ ∈ DI we obtain v ∈ (∃r.D)I .

CaseC = ∀r.D: In order to prove that v ∈ CI = (∀r.D)I , take any w′ ∈
ΔI = W such that 〈v, w′〉 ∈ rI . We prove that w′ ∈ DI . Since 〈v, w′〉 ∈ rI ,
by definition of rI , there exists some w ∈ V such that r ∈ L(v, w) and either
w = w′ or w is blocked by w′. In both cases L(w) ⊆ L(w′). Since the ∀-Rule is
not applicable to ∀r.D ∈ L(v) and r ∈ L(v, w), we must have D ∈ L(w) ⊆ L(w′).
Since w′ ∈ W , from D ∈ L(w′) by induction hypothesis, we obtain w′ ∈ DI , as
required. ��
Exercise 11. Identify the places where the properties of a blocking condition
(Definition 7) have been used in the proof of Lemma 10. Can the blocking con-
dition be relaxed in such a way that more nodes of a tableau can potentially be
blocked, but the proof of Lemma 10 can be still repeated? For example, do we
really need that all concepts of L(v2) are contained in L(w)?

Finally, we consider the question of termination of Algorithm 2. Clearly,
the algorithm does not terminate for every blocking condition. For example, as
shown in Example 18, the algorithm does not terminate if all nodes are active,
i.e., W = V . Hence, we need to make some further assumptions about the
blocking condition in order to show termination.

Definition 10. The eager blocking condition (for a root node w0) assigns to
every tableau T = (V,L) a minimal (w.r.t. set inclusion) set of active nodes
W ⊆ V containing w0 that satisfies the condition of Definition 7.

Intuitively, the eager blocking condition for T = (V,L) can be implemented
as follows. We first set W = {w0}. Then, repeatedly for every v1 ∈ W and



Classical Algorithms for Reasoning and Explanation in Description Logics 37

v2 ∈ V \W such that L(v1, v2) �= ∅, check if there exists w ∈ W such that L(v2) ⊆
L(w). If there is no such element, we add v2 to W . This process continues until no
further nodes can be added. Note that the resulting set W depends on the order
in which the nodes v2 are processed. In practice, the set W can dynamically be
updated when applying tableau rules. The eager blocking condition is related to
the notion of anywhere blocking [42].

Lemma 11. Let C and O be inputs of Algorithm 2 with the combined size n
(i.e., the total number of symbols). Then each run of Algorithm 2 terminates
in at most doubly exponential time in the size of n provided an eager blocking
condition is used.

Proof. Without loss of generality, we may assume that C and O are normalized
since this step can be performed in linear time. Let T = (V,L) be a tableau
obtained during the run of the algorithm. For each node v ∈ V of the tableau,
we define its level �(n) as in Definition 5. We will prove that �(v) ≤ 2n for each
node v ∈ V .

Assume to the contrary that there exists w ∈ V with �(w) = 2n + 1. Then w
must have been created by the ∃-Rule from some v ∈ W with �(v) = �(w) − 1 =
2n, where W ⊆ V is the set of active nodes of the tableau at the moment of this
rule application. Since �(v) = 2n, there must exist nodes v0, v1, . . . , v2n = v such
that L(vi−1, vi) �= ∅ (1 ≤ i ≤ 2n). It is easy to see that vi ∈ W for all i with
0 ≤ i ≤ 2n. Indeed, otherwise there exists a maximal such i such that vi /∈ W
(0 ≤ i ≤ 2n). Since v2n = v ∈ W , then i < 2n and v0 �= vi+1 ∈ W . But then
one can remove vi+1 from W without violating the conditions of Definition 7
since L(w, vi+1) = ∅ for all w ∈ W . This contradicts our assumption that W is
a minimal set of active nodes containing v0.

Now consider the sets of concepts Si = L(vi) in the labels of vi (0 ≤ i ≤ 2n).
Since each node label can contain only concepts that appear either in C or in O
(possibly as sub-concepts) and the number of such concepts is bounded by the
total combined length n of the input, there can be at most 2n different subsets
among Si (0 ≤ i ≤ 2n). By the pigeonhole principle, there exist some indexes
i and j (0 ≤ i < j ≤ 2n) such that Si = Sj . But then node vj �= v0 can be
removed from W without violating the conditions of Definition 7 since for each
v ∈ W with L(v, vj) �= ∅, there exists w = vi ∈ W such that L(vi) ⊆ L(w)
because L(w) = L(vi) = L(vj). This again contradicts our assumption that W
is a minimal set of active nodes. The obtained contradiction, therefore, proves
that �(v) ≤ 2n for every v ∈ V .

Now, by Lemma 8, the total number of tableau nodes is bounded by
∑

0≤k≤2n nk ≤ n2n+1 = 2(log2 n)·(2n+1) ≤ 22
n2

. Since each node contains at most
n concept labels and every application of a tableau rule introduces at least one
of them, each run of Algorithm 2 terminates after at most double exponentially
many steps. ��
Theorem 2. Algorithm 2 solves the concept satisfiability problem with respect
to ontologies expressed in ALC in non-deterministic doubly exponential time.



38 B. Glimm and Y. Kazakov

As with Algorithm 1, the complexity bound provided by Algorithm 2 is not
optimal and can be improved to deterministic exponential time (see, e.g., [6,
Sect. 5.1.2]).

Note that the requirements about the blocking condition used in Lemma 11
can be relaxed. Indeed, in the proof of the lemma we only used that a node vj is
directly blocked by an ancestor node vi, i.e., a node from which vj was created
by a sequence of ∃-Rule applications.

Exercise 12 (Advanced). Is it possible to improve the upper bound shown in the
proof of Lemma 11 to single exponential time? Which additional assumptions
about the blocking condition are necessary for this? Hint: for every tableau
T = (V,L) used in the computation, consider the set of all subsets of the labels
of the nodes: P = {S ⊆ L(v) | v ∈ V }. How can this set change after a tableau
rule application? How many times can this set change during the tableau run?
What is the maximal possible number of consequent rule applications that do
not change this set?

4 Axiom Pinpointing

In Sect. 2.3, we have discussed several ontology reasoning problems and how they
can help in detecting modeling errors in ontologies. For example, inconsistency of
an ontology indicates that the modeled domain cannot match any model of the
ontology since the ontology does not have models. In Sect. 3 we have shown how
to check ontologies for consistency and solve other reasoning problems using
tableau procedures. Knowing that an ontology is inconsistent, however, does
not tell much about what exactly causes the inconsistency let alone how to
repair it.

Recall from Sect. 2.3, that all reasoning problems can be reduced to concept
subsumption checking. For example, by Lemma 5, an ontology O is unsatisfiable
if and only if O |= � � ⊥. Axiom pinpointing methods can help the user to
identify the exact axioms that are responsible for this or any other entailment.

Definition 11. A justification for an entailment O |= α is a subset of axioms
J ⊆ O such that J |= α and for every J ′ � J , we have J ′ �|= α.

In other words, a justification for an entailment O |= α is a minimal set of
axioms of the ontology that entails α. Note that since O |= α, at least one jus-
tification for the entailment exists. Indeed, either J0 = O satisfies the condition
of Definition 11, or there exits J1 � J0 such that J1 |= α. Similarly, either J1 is
a justification or there exists some J2 � J1 such that J2 |= α, etc. At some point
this process stops since O contains only finitely many axioms and Ji (i ≥ 0)
gets smaller with every step. Therefore, the last set Jk will be a justification for
O |= α.

Note that we say a justification instead of the justification. Indeed, Defi-
nition 11 does not imply that a justification must be unique as the following
example shows.



Classical Algorithms for Reasoning and Explanation in Description Logics 39

Example 22. Consider the following entailment:

O = {A � B, B � C, A � C, A � B � ⊥} |= α = A � C.

This entailment has three different justifications:

– J1 = {A � B, B � C},
– J2 = {A � C},
– J3 = {A � B, A � B � ⊥}.

Indeed, it is easy to see that Ji |= α for 1 ≤ i ≤ 3. For example, J3 |= A � C
because for every model I |= J3 we have AI ⊆ AI ∩ BI ⊆ ⊥I = ∅ ⊆ CI .
We can show that each Ji satisfies the remaining condition of Definition 11 by
enumerating all proper subsets of Ji (1 ≤ i ≤ 3):

– J1 has only the proper subsets M0 = ∅, M1 = {A � B} and M2 = {B � C},
– J2 has only the proper subset M0 = ∅,
– J3 has only the proper subsets M0 = ∅, M1 = {A � B}, and M3 = {A � B �

⊥}.

We can show that none of these subsets Mi entails α by presenting the cor-
responding counter-models Ii = (ΔIi , ·Ii) such that Ii |= Mi but Ii �|= α
(0 ≤ i ≤ 3):

– For M0 = ∅ take I0 = (ΔI0 , ·I0) with ΔI0 = {a}, AI0 = {a} and CI0 = ∅.
Clearly, I0 |= M0 but I0 �|= A � C since AI0 = {a} �⊆ ∅ = CI0 .

– For M1 = {A � B} take I1 = (ΔI1 , ·I1) with ΔI1 = {a}, AI1 = BI1 = {a},
and CI1 = ∅. Clearly, I1 |= M1 because AI1 = {a} ⊆ {a} = BI1 but
I1 �|= A � C similarly as for I0.

– For M2 = {B � C} take I2 = (ΔI2 , ·I2) with ΔI2 = {a}, AI2 = {a},
and BI2 = CI2 = ∅. Clearly, I2 |= M2 because BI2 = ∅ ⊆ ∅ = CI2 but
I2 �|= A � C similarly as for I0 and I1.

– For M3 = {A�B � ⊥} take I3 = I2 from the previous case. Clearly, I2 |= M3

because (A � B)I2 = AI2 ∩ BI2 = {a} ∩ ∅ = ∅ ⊆ ⊥I2 = ∅ but I2 �|= A � C.

How many justifications may an entailment have? The following example
shows that the number of justifications can be exponential in the size of the
ontology.

Example 23. Consider the following ontology O and α = A0 � An:

O = {Ai−1 � B � Ai, Ai−1 � C � Ai | 1 ≤ i ≤ n},

where Ai (0 ≤ i ≤ n), B, and C are atomic concepts. Note that, for each i with
1 ≤ i ≤ n, we have O |= Ai−1 � Ai because Ai−1 � B � Ai |= Ai−1 � Ai (or
Ai−1 � C � Ai |= Ai−1 � Ai). Consequently, O |= α = A0 � An. However,
there are 2n minimal subsets J ⊆ O such that J |= α. Indeed, since each axiom
Ai−1 � Ai follows from two different axioms, J must include one of them for
each i (1 ≤ i ≤ n). Hence, there are 2n possible variants for each J .



40 B. Glimm and Y. Kazakov

Algorithm 3. Minimizing entailment
Minimize(O, α): compute a justification for O |= α
input : an ontology O and an axiom α such that O |= α
output : a minimal subset J ⊆ O such that J |= α (cf. Definition 11)

1 J ← O;
2 for β ∈ O do
3 if J \ {β} |= α then
4 J ← J \ {β};

5 return J ;

Specifically, let S ⊆ {i | 1 ≤ i ≤ n} be any subset of indexes between 1 and
n. There are in total 2n such subsets. For each such subset S, define

JS = {Ai−1 � B � Ai | i ∈ S} ∪ {Ai−1 � C � Ai | i /∈ S} ⊆ O.

Clearly, JS1 �= JS2 for each S1 �= S2. Furthermore, note that for each i with 1 ≤
i ≤ n, we have JS |= Ai−1 � Ai: if i ∈ S then J � Ai−1 � B � Ai |= Ai−1 � Ai;
if i /∈ S then J � Ai−1 � C � Ai |= Ai−1 � Ai. Hence JS |= α.

To show that each JS is a justification for O |= α, it remains to show that
J ′ �|= α for every J ′ � JS . Indeed, if J ′ � JS then for some k with 1 ≤ k ≤ n,
we have Ak−1 � B � Ak /∈ JS and Ak−1 � C � Ak /∈ JS . Let I = (ΔI , ·I)
be an interpretation with ΔI = {a}, AI

i = BI = CI = {a} for 0 ≤ i < k,
and AI

i = ∅ for k ≤ i ≤ n. It is easy to see that I |= Ai−1 � B � Ai and
I |= Ai−1 � C � Ai for each i with 1 ≤ i < k or with k < i ≤ n. Indeed, if
1 ≤ i < k, then AI

i−1 = {a} ⊆ {a} ∩ {a} = (B � Ai)I = (C � Ai)I . If k < i ≤ n,
then AI

i−1 = ∅ ⊆ {a} ∩ ∅ = (B � Ai)I = (C � Ai)I . Hence, I |= J ′. Since
AI

0 = {a} �⊆ ∅ = AI
n, we have I �|= α. Consequently, J ′ �|= α.

Assuming we have an algorithm for testing entailment of axioms, e.g., the
tableau procedure described in Sect. 3, we are now concerned with the ques-
tion of how to compute justifications in particular for the entailment of concept
inclusions.

4.1 Computing One Justification

Computing one justification for O |= α is relatively easy. Starting from J = O,
we repeatedly remove axioms from J if this does not break the entailment J |= α.
At a certain point, no axioms can be removed without breaking the entailment,
which implies that J is justification for O |= α. Algorithm 3 summarizes this
idea.

Example 24. The following table shows a run of Algorithm 3 on the input O
and α from Example 22. Each row of the table shows the value of the variables
J and β in the beginning of each for-loop iteration (Lines 2–4). The last column



Classical Algorithms for Reasoning and Explanation in Description Logics 41

shows the result of the evaluation of the if-statement in Line 3. The last line
shows the (returned) value of J after the last iteration of the loop.

J β J \ {β} |=? α = A � C

{A � B, B � C, A � C, A � B � ⊥} A � B yes

{B � C, A � C, A � B � ⊥} B � C yes

{A � C, A � B � ⊥} A � C no

{A � C, A � B � ⊥} A � B � ⊥ yes

{A � C} - -

As we can see, the algorithm returns the justification J2 = {A � C}.

The correctness of Algorithm 3 relies on the fact that the entailment rela-
tion O |= α between an ontology O and an axioms α is monotonic over axiom
additions to O:

Lemma 12. Let J1 and J2 be two sets of ALC axioms such that J1 ⊆ J2, and
α an ALC axiom. Then J1 |= α implies J2 |= α.

Proof. It is equivalent to show that J2 �|= α implies J1 �|= α. If J2 �|= α then there
exists a model I |= J2 such that I �|= α. Since J1 ⊆ J2 and I |= J2, we have
I |= J1. Since I |= J1 and I �|= α, we obtain J1 �|= α, as required. ��

Note that in the proof of Lemma 12 we did not rely on any specific construc-
tors of ALC. We have only used that the entailment relation J |= α is defined
by means of interpretations, i.e., J |= α iff I |= α for every I |= J and I |= J
iff I |= β for every β ∈ J . Although most standard DLs (including those that
underpin the OWL standard) have such a classical semantics, there are some
non-monotonic DLs in which the entailment relation is defined in other ways,
e.g., as a result of performing certain operations [11,14,18]. From now on we
assume that we deal only with monotonic (classical) entailment relations. We
show that Algorithm 3 is correct in such cases.

Theorem 3. Let J be the output of Algorithm 3 for the input O and α such
that O |= α. Then J is a justification for O |= α.

Proof. Clearly, J |= α since we only assign subsets that entail α to the variable
J (in Lines 1 and 4). If J is not a justification for O |= α, by Definition 11
there exists some J ′ � J such that J ′ |= α. Since J ′ � J , there exists some β ∈
J \J ′ ⊆ O. Let J ′′ be the value of the variable J of Algorithm 3 at the beginning
of the for-loop (Line 2) when β ∈ O was processed. Since β /∈ J ′ ⊆ J ⊆ J ′′, we
have J ′ ⊆ J \ {β} ⊆ J ′′ \ {β}. Since J ′ |= α, by Lemma 12, J ′′ \ {β} |= α. Hence
β must have been removed from J ′′ at Line 4, and consequently, β /∈ J . This
contradicts β ∈ J \ J ′, which proves that there is no J ′ � J such that J ′ |= α.
Hence J is a justification for O |= α. ��



42 B. Glimm and Y. Kazakov

Finally, observe that a run of Algorithm 3 requires exactly n subsumption
tests. Hence, the complexity of computing one justification is bounded by a
linear function over the complexity of entailment checking. In particular, one
justification for concept subsumptions in ALC can be computed in exponential
time.

4.2 Computing All Justifications

A justification for O |= α contains axioms that are responsible for one reason
for the entailment. As we have seen in Examples 22 and 23, there can be several
different justifications. To repair an unwanted entailment O |= α, it is, therefore,
necessary to change an axiom in every justification of O |= α. How do we compute
all justifications?

Note that the output of Algorithm 3 depends on the order in which the
axioms in O are enumerated in the for-loop (Line 2). Different orders of the
axioms can result in different removals and, consequently, different justifications.

Example 25. Consider the run of Algorithm 3 on the input O and α from
Example 22, where the axioms in O are enumerated in the reverse order as
in Example 24.

J β J \ {β} |=? α = A � C

{A � B � ⊥, A � C, B � C, A � B} A � B � ⊥ yes

{A � C, B � C, A � B} A � C yes

{B � C, A � B} B � C no

{B � C, A � B} A � B no

{B � C, A � B} - -

In this case, the algorithm returns the justification J1 = {A � B, B � C}.

Exercise 13. For which order of axioms in O does Algorithm 3 return the justi-
fication J3 = {A � B, A � B � ⊥} from Example 22?

Exercise 14. Prove that for each justification J of an entailment O |= α there
exists some order of axioms in O for which Algorithm 3 with the input O and
α returns J .

The property stated in Exercise 14 means that for computing all justifications
of O |= α, it is sufficient to run Algorithm 3 for all possible orders of axioms in
O. Since the number of permutations of elements in an n-element set is n!,4 the

4 n! = n · (n − 1) · (n − 2) · · · 2 · 1, there are n possibilities to choose the first element,
n − 1 to choose the second element from the remaining ones, n − 2 to choose the
third one, etc.



Classical Algorithms for Reasoning and Explanation in Description Logics 43

algorithm terminates after exactly n · n! entailment tests; since n · n! ≤ nn+1 =
2(log2n)·(n+1) ≤ 2n2

, this value is bounded by an exponential function in n. As
shown in Example 23, the number of justifications can be exponential in n, so the
exponential behavior of an algorithm for computing all justifications cannot be
avoided, in general. Unfortunately, the described algorithm is not very practical
since it performs exponentially many subsumption tests for all inputs, even if,
e.g., O |= α has just one justification, which is O itself. This is because this
algorithm is not goal-directed : the computation of each next justification does
not depend on the justifications computed before.

How can we find a more goal-directed algorithm? Suppose that we have
computed a justification J1 using Algorithm 3. The next justification J2 must
be different from J1, so J2 should miss at least one axiom from J1. Hence the
next justification J2 can be found by finding β1 ∈ J1 such that O \ {β1} |= α
and calling Algorithm 3 for the input O \ {β1} and α. The next justification
J3, similarly, should miss something from J1 and something from J2, so it can
be found by finding some β1 ∈ J1 and β2 ∈ J2 such that O \ {β1, β2} |= α
and calling Algorithm 3 for the input O \ {β1, β2} and α. In general, when
justifications Ji (1 ≤ i ≤ k) are computed, the next justification can be found
by calling Algorithm 3 for the input O \ {βi | 1 ≤ i ≤ k} and α such that
βi ∈ Ji (1 ≤ i ≤ k) and O \ {βi | 1 ≤ i ≤ k} |= α. Enumeration of subsets
O \ {βi | 1 ≤ i ≤ k} can be organized using a data structure called a hitting set
tree.

Definition 12. A hitting set tree (short: HS-tree) for the entailment O |= α is
a labeled tree T = (V,E,L) with V �= ∅ such that:

1. each non-leaf node v ∈ V is labeled with a justification L(v) = J for O |= α
and, for each β ∈ J , v has an outgoing edge 〈v, w〉 ∈ E with label L(v, w) = β

2. each leaf node v ∈ V is labeled by a special symbol L(v) = ⊥.

For each v ∈ V let H(v) be the set of edge labels appearing on the path from v
to the root node of H. Then the following properties should additionally hold:

3. for each non-leaf node v ∈ V we have L(v) ∩ H(v) = ∅,
4. for each leaf node v ∈ V we have O \ H(v) �|= α.

Figure 6 shows an example of two different HS-trees for the entailment from
Example 22. Note that the justification J2 labels two different nodes of the left
tree. We next prove that every HS-tree must contain every justification at least
once.

Lemma 13. Let T = (V,E,L) be an HS-tree for the entailment O |= α. Then,
for each justification J for O |= α, there exists a node v ∈ V such that L(v) = J .

Proof. Let v ∈ V be a node with a maximal (w.r.t. set inclusion) set H(v) (see
Definition 12) such that H(v) ∩ J = ∅, i.e., for every other node w ∈ V either
H(w) ⊆ H(v) or H(w) ∩ J �= ∅. We prove that L(v) = J .



44 B. Glimm and Y. Kazakov

J1 = {A � B, B � C}

J2 = {A � C}

⊥
A � C

A � B

J2 = {A � C}

J3 = {A � B, A � B � ⊥}

⊥
A � B

⊥
A � B � ⊥

A � C

B � C

J2 = {A � C}

J3 = {A � B, A � B � ⊥}

⊥
A � B

J1 = {A � B, B � C}

⊥
A � B

⊥
B � C

A � B � ⊥

A � C

Fig. 6. Two HS-trees for O = {A � B, B � C, A � C, A � B � ⊥} |= α = A � C

Observe that since H(v) ∩ J = ∅ and J ⊆ O, we have J ⊆ O \ H(v). Since
J |= α, by monotonicity of entailment, we obtain O \ H(v) |= α. Therefore, by
Condition 4 of Definition 12, v cannot be a leaf node. Hence, L(n) = J ′ for some
justification J ′ of O |= α. If J = J ′ we have proved what is required. Otherwise,
since J is a justification for O |= α and J ′ |= α, we have J ′ �⊆ J . Hence, there
exists some β ∈ J ′ \ J . By Condition 1 of Definition 12, there exists 〈v, w〉 ∈ E
with L(v, w) = β. Furthermore, by Condition 3 of Definition 12, J ′ ∩ H(v) = ∅.
Hence, β /∈ H(v) since β ∈ J ′. Hence, H(w) = H(v) ∪ {β} �⊆ H(v) and, since
β /∈ J and H(v)∩J = ∅, we have H(w)∩J = ∅. This contradicts our assumption
that H(v) is a maximal set such that H(v) ∩ J = ∅. This contradiction proves
that L(n) = J is the only possible case. ��

We next show that each HS-tree T = (V,E,L) for an entailment O |= α
has at most exponentially many nodes in the number of axioms in O. Take any
〈v, w〉 ∈ E. Then v is not a leaf node. Hence, by Condition 1 of Definition 12,
L(v) = J for some justification J for O |= α and L(v, w) ∈ J . By Condition 3,
J ∩ H(v) = ∅. Hence L(v, w) /∈ H(v). This implies that for each node v ∈ V
each axiom β ∈ H(v) appears on the path from v to the root node exactly once.
Hence the depth of H is bounded by the maximal number of axioms in H(v),
which is bounded by the number of axioms in O. Similarly, since each non-leaf
node v has exactly one successor for every β ∈ L(v) ⊆ O, the branching factor
of H is also bounded by the number of axioms in O. This analysis gives us the
following bound on the size of T :

Lemma 14. Every HS-tree T for O |= α has at most
∑

0≤k≤n nk nodes where
n is the number of axioms in O.

Exercise 15. Prove that T has at most (n+1)! nodes. Hint: show that every path
of T from the root to the leaf has a unique sequence of axioms on the labels of
edges. Is this bound better than the bound from Lemma 14?



Classical Algorithms for Reasoning and Explanation in Description Logics 45

An HS-tree T = (V,E,L) for an entailment O |= α can be constructed as
follows. We start by creating the root node v0 ∈ V . Then we repeatedly assign
labels of nodes and edges as follows. For each v ∈ V , if L(v) was not yet assigned,
we calculate H(v). If O\H(v) �|= α, we label L(v) = ⊥ according to Condition 4
of Definition 12. Otherwise, we compute a justification J for O\H(v) |= α using
Algorithm 3 and set L(v) = J . Note that J satisfies Condition 3 of Definition 12
since J ⊆ O \ H(v). Next, for each β ∈ J , we create a successor node w of v
and label L(v, w) = β. This ensures that Condition 1 of Definition 12 is satisfied
for v. Since, by Lemma 14, H has a bounded number of nodes, this process
eventually terminates. The described algorithm is known as Reiter’s Hitting Set
Tree algorithm (or short: HST-algorithm) [22,46].

Exercise 16. Construct an HS-tree for the entailment O |= α from Example 23
for the parameter n = 2 using the HST-algorithm.

Note that we call Algorithm 3 exactly once per node. Then Lemma 14 gives
us the following bound on the number of entailment tests performed by the
HST-algorithm:

Lemma 15. An HS-tree for an entailment O |= α can be constructed using at
most

∑
1≤k≤n+1 nk entailment tests, where n is the number of axioms in O.

Note that unlike the algorithm sketched in Exercise 14, the input for each
call of Algorithm 3 depends on the results returned by the previous calls.

Exercise 17. Suppose that an entailment O |= α has a single justification J = O.
How many entailment tests will be performed by the HST-algorithm if O contains
n axioms?

The HST-algorithm can further be optimized in several ways. First, it is
not necessary to store the complete HS-tree in memory. For computing a jus-
tification J at each node v, it is sufficient to know just the set H(v). For each
successor w of v associated with some β ∈ H(v), the set H(w) can be computed
as H(w) = H(v) ∪ {β}. Hence, it is possible to compute all justifications by
recursively processing and creating the sets H(v) as shown in Algorithm 4. The
algorithm saves all justifications in a set S, which is initially empty (Line 1). The
justifications are computed by processing the sets H(v); the sets that are not
yet processed are stored in the queue Q, which initially contains H(v0) = ∅ for
the root node v0 (Line 2). The elements of Q are then repeatedly processed in a
loop (Lines 3–10) until Q becomes empty. First, we choose any H ∈ Q (Line 4)
and remove it from Q (Line 5). Then, we test whether O \ H |= α (Line 6). If
the entailment holds, this means that the corresponding node v of the HS-tree
with H(v) = H is not a leaf node. We then compute a justification J using
Algorithm 3 and add it to S (Lines 7–8). Further, for each β ∈ J , we create the
set H(w) = H(v) ∪ {β} for the corresponding successor node w of v and add
H(w) to Q for later processing (Lines 9–10). If the entailment O \ H |= α does
not hold, this means that we have reached a leaf of the HS-tree and no further
children of this node should be created.



46 B. Glimm and Y. Kazakov

Algorithm 4. Computing all justifications by the Hitting Set Tree algo-
rithm
ComputeJustificationsHST(O, α): compute all justifications for O |= α
input : an ontology O and an axiom α such that O |= α
output : the set of all minimal subsets J ⊆ O such that J |= α

1 S ← ∅;
2 Q ← {∅};
3 while Q 	= ∅ do
4 H ← choose H ∈ Q;
5 Q ← Q \ {H};
6 if O \ H |= α then
7 J ← Minimize(O \ H, α);
8 S ← S ∪ {J};
9 for β ∈ J do

10 Q ← Q ∪ {H ∪ {β}};

11 return S;

Exercise 18. Prove directly that Algorithm 4 returns all justifications for the
given entailment O |= α. For this, show that the following invariant always
holds in the main loop (Lines 3–10): if J is a justification for O |= α, then either
J ∈ S or there exists H ∈ Q such that J ⊆ O \ H.

Note that it is not specified in which order the elements should be taken from
Q in Line 4 of Algorithm 4. Indeed, correctness of the algorithm does not depend
on the order in which the sets H ∈ Q are processed. However, performance of
the algorithm may depend on this order. If the elements of Q are processed
according to the first-in-first-out (short: FIFO) strategy, i.e., we take elements
in the order in which they were inserted to the queue, this means that the nodes
of the HS-tree are processed in a breadth-first way, so the queue may contain
exponentially many unprocessed sets H at some point in time. If the elements of
Q are processed according to the last-in-first-out (short: LIFO) strategy, i.e., we
remove elements in the reversed order in which they were inserted, this means
that the nodes of the HS-tree are processed in a depth-first way, so the queue
always contains at most n2 sets (at most n sets for nodes of some tree path
plus at most n − 1 other successors for each of these nodes). Consequently, the
LIFO strategy should be more memory efficient. This optimization is related to
the optimization discussed in Remark 5, which allows for executing a tableau
procedure in polynomial space.

A few further optimizations can be used to improve the running time of Algo-
rithm 4 in certain cases. Note that some justifications can be computed multiple
times as shown for the example on the left-hand side of Fig. 6. It is possible to
detect such repetitions by checking if any justification J ∈ S computed so far is
a subset of O \ H for the currently processed set H. In this case, a (potentially



Classical Algorithms for Reasoning and Explanation in Description Logics 47

expensive) call of Algorithm 3 in Line 7 of Algorithm 4 can be avoided by reusing
J . Of course, testing J ⊆ O \H for all J ∈ S can also be expensive since S may
contain exponentially many justifications. In practice, it makes sense to perform
this test only for small J , for which the test is more likely to succeed. Another
possible repetition is when some H ∈ Q, which was already processed before,
is processed again. In this case, not only the previously computed justification
J ⊆ O \ H can be reused, but it is also not necessary to create the successor
sets H ∪ {β} for β ∈ J since also those sets should have been created before.
Of course, to check if a set H was processed before, we need to save all previ-
ously processed sets H, which is not done in the base version of Algorithm 4
since this information can increase the memory consumption of the algorithm.
Hence, this is an example of an optimization that trades memory consumption
for potentially improving the running time. Another optimization is to test if
H is a superset of some set H ′ for which the test O \ H ′ |= α was negative.
Clearly, in this case, the test O \ H |= α is negative as well by monotonicity
of the entailment, so such H can immediately be disregarded by the algorithm
without performing this test.

4.3 Computing All Repairs

The main idea of the HST-algorithm is to systematically compute two kinds of
sets: (1) justifications J for the entailment O |= α and (2) sets H that contain
one element from each justification J on a branch. The name of the algorithm
comes from the notion of a hitting set, which characterizes the latter sets.

Definition 13. Let P be a set of sets of some elements. A set H is a hitting
set for P if H ∩S �= ∅ for each S ∈ P . A hitting set H for P is minimal if every
H ′ � H is not a hitting set for P .

Intuitively, a hitting set for P is a set H that contains at least one element
from every set S ∈ P . An HS-tree is then a tree T = (V,E,L) such that for
each v ∈ V , H(v) is a hitting set of the set of justifications on the path from
v to the root of T . The leaf nodes v of T are labeled by hitting sets H(v) such
O \ H(v) �|= α. Intuitively, the set H(v) represents a set such that the removal
of H(v) from O breaks the entailment O |= α.

Definition 14. A set R is a repair for the entailment O |= α if O \ R �|= α.
A minimal repair for O |= α is a repair R such that for every R′ � R we have
O \ R |= α.

Notice some similarities between the notion of a minimal repair and the
notion of a justification (cf. Definition 11): justifications are minimal subsets of
O which entail the conclusion α, whereas minimal repairs are complements of
the maximal subsets of O which do not entail α. Notice that each repair R for
O |= α should contain one axiom from every justification J for O |= α. Indeed, if
J ∩ R = ∅ for some justification J and repair R, then J ⊆ O \ R, which violates



48 B. Glimm and Y. Kazakov

the conditions J |= α and J ⊆ O\R �|= α due to monotonicity of the entailment.
This means that every justification must be a minimal hitting set of the set of
all minimal repairs and, likewise, every minimal repair is a minimal hitting set
of the set of all justifications. This property is known as the hitting set duality
(between justifications and minimal repairs).

The HTS-algorithm can easily be extended to compute repairs in addition
to justifications. Indeed, as mentioned above, if v ∈ V is a leaf node, then H(v)
is a repair for O |= α since O \ H(v) �|= α by Condition 4 of Definition 12.

Example 26. The leaf nodes of the HS-tree on the left-hand side of Fig. 6 corre-
spond to the repairs:

R1 = {A � B, A � C},

R2 = {B � C, A � C, A � B},

R3 = {B � C, A � C, A � B � ⊥}.
Notice that the repair R2 is not minimal since R1 � R2.

A natural question is whether all repairs for the entailment will be computed
by the described extension of the HST-algorithm. This is not true for arbitrary
repairs: indeed, the whole ontology O from Example 22 is clearly a repair for
the entailment O |= α = A � C, since O \ O = ∅ �|= α because A � C is not a
tautology. However, as shown in Example 26, the repair O was not computed.
It turns out, however, that the extended HST-algorithm computes all minimal
repairs.

Exercise 19. Prove an analogy of Lemma 13 showing that if R is a minimal
repair for O |= α then each HS-tree T = (V,E,L) for O |= α contains a leaf
node v ∈ V such that H(v) = R. Hint: take a node v ∈ V with a maximal H(v)
such that H(v) ⊆ R and prove that H(v) = R for this node. Use the property
that J ∩ R �= ∅ for every justification J for O |= α.

To compute repairs using Algorithm 4, it is sufficient to add an else-block for
the test in Line 6, in which the set H for which this test fails, is added to the
set of repairs.

4.4 Computing Justifications and Repairs Using SAT Solvers

In the previous section, we have discussed the hitting set duality property
between justifications and repairs: every justification is a hitting set for the set
of all minimal repairs and every minimal repair is a hitting set of the set of all
justifications. Hitting set duality takes a prominent place in the HST-algorithm,
but we can use this property as the basis of a direct algorithm for computing
justifications and minimal repairs.

Suppose that we have already computed some set S of justifications and
some set P of minimal repairs for the entailment O |= α. How can we find
a new justification or a minimal repair? As mentioned, each new justification



Classical Algorithms for Reasoning and Explanation in Description Logics 49

Algorithm 5. Maximizing non-entailment
Maximize(O,M, α): compute a maximal subset N ⊆ O such that

M ⊆ N and N �|= α
input : an ontology O, a subset M ⊆ O, and an axiom α such that

M �|= α
output : N ⊆ O such that M ⊆ N �|= α but N ′ |= α for every N ′ with

N � N ′ ⊆ O
1 N ← M ;
2 for β ∈ O \ M do
3 if N ∪ {β} �|= α then
4 N ← N ∪ {β};

5 return N ;

must be a hitting set for P , i.e., it should contain one axiom from every repair
R ∈ P . Furthermore, it should be different from any of the previously computed
justifications, i.e., it should miss one axiom from every J ∈ S. Suppose we have
found a subset M ⊆ O satisfying these two requirements:

∀R ∈ P : M ∩ R �= ∅, (7)
∀J ∈ S : J \ M �= ∅. (8)

If M |= α, then, using Algorithm 3, we can extract a minimal subset J ′ ⊆ M
such that J ′ |= α. Note that J ′ still misses at least one axiom from each J ∈ S
since (8) is preserved under removal of axioms from M . Therefore, J ′ is a new
justification for O |= α. If M �|= α, then, similarly, by adding axioms β ∈ O to
M preserving M �|= α, we can find a maximal superset N of M (M ⊆ N ⊆ O)
such that N �|= α: see Algorithm 5. Note that (7) is preserved under additions
of elements to M , hence, R′ = O \ N is a new minimal repair for O |= α. Thus,
using any set M satisfying (7) and (8) we can find either a new justification or
a new minimal repair.

How to find a set M satisfying Conditions (7) and (8)? These conditions
require solving a rather complex combinatorial problem. Propositional (SAT)
solvers, offer a convenient and effective way of solving such problems. In the
following, we describe a propositional encoding of Conditions (7) and (8). The
interested reader can find some background information on Propositional Logic
and SAT in Appendix A.2.

To formulate the propositional encoding, we assign to each axiom β ∈ O a
fresh propositional variable pβ . Then, every interpretation I determines a set
M = M(I) = {β ∈ O | pI

β = 1} of axioms whose corresponding propositional
variable is true. We construct a propositional formula F such that F I = 1 if and
only if M(I) satisfies (7) and (8) for the given sets S of justifications and P of
minimal repairs. Thus, to find a subset M satisfying (7) and (8), it is sufficient
to find a model I of F and compute M(I). We define F as follows:



50 B. Glimm and Y. Kazakov

F = F (S, P ) =
∧

J∈S

∨

β∈J

¬pβ ∧
∧

R∈P

∨

β∈R

pβ . (9)

Example 27. Let O be the ontology from Example 22. We assign propositional
variables to axioms from O as follows:

– A � B � p1,
– B � C � p2,

– A � C � p3,
– A � B � ⊥ � p4.

Let S be the set of justifications J1 and J2 from Example 22 and P a set
containing only repair R1 from Example 26. Then according to (9) we have:

F = F (S, P ) = (¬p1 ∨ ¬p2) ∧ (¬p3) ∧ (p1 ∨ p3).

F has a model I with pI
1 = 1 and pI

2 = pI
3 = pI

4 = 0, which gives M(I) = {A �
B}.

Once the set M determined by a model I of F is found, we can extract either
a new justification J or a new repair R from M by minimizing entailment using
Algorithm 3 or maximizing non-entailment using Algorithm 5. After that, we
can update F according to (9) and compute a new model of F , if there exist
any.

Example 28. Continuing Example 27, observe that M(I) = {A � B} �|= α =
A � C. By running Algorithm 5 for O, M = M(I) and α we compute N as
follows:

N β M ∪ {β} |=? α = A � C

{A � B} B � C yes
{A � B} A � C yes
{A � B} A � B � ⊥ yes
{A � B} - -

Hence, R = O \ N = {B � C, A � C, A � B � ⊥} is a new minimal repair
for O |= α (repair R3 from Example 26). After we add this repair to P and re-
compute F according to (9), we obtain a formula with an additional conjunct:

F = F (S, P ) = (¬p1 ∨ ¬p2) ∧ (¬p3) ∧ (p1 ∨ p3) ∧ (p2 ∨ p3 ∨ p4).

The interpretation I from Example 27 is no longer a model for F , but we can
find a new model I of F with pI

1 = pI
4 = 1 and pI

2 = pI
3 = 0. For this model, we

have M(I) = {A � B, A � B � ⊥} |= α. By running Algorithm 3 for M and α,
we obtain a new justification J = {A � B, A � B � ⊥} (justification J3 from
Example 22). The new justification, when added to S, gives us another conjunct
for F :



Classical Algorithms for Reasoning and Explanation in Description Logics 51

Algorithm 6. Computing all justifications using a SAT solver
ComputeJustificationsSAT(O, α): compute all justifications for

O |= α
input : ontology O and axiom α such that O |= α
output : the set of all minimal subsets J ⊆ O such that J |= α

1 S ← ∅;
2 F ← �;
3 while ∃ I : F I = 1 do
4 I ← choose I : F I = 1;
5 M ← {β | pI

β = 1};
6 if M |= α then
7 J ← Minimize(M,α);
8 S ← S ∪ {J};
9 F ← F ∧ ∨{¬pβ | β ∈ J};

10 else
11 N ← Maximize(O,M, α);
12 F ← F ∧ ∨{pβ | β ∈ O \ N};

13 return S;

F = F (S, P ) = (¬p1 ∨ ¬p2) ∧ (¬p3) ∧ (¬p1 ∨ ¬p4) ∧ (p1 ∨ p3) ∧ (p2 ∨ p3 ∨ p4).

This formula F is now unsatisfiable.

Note that if F is unsatisfiable, then S already contains all justifications for
O |= α and P contains all minimal repairs. Indeed, if S does not contain some
justification J for O |= α then M = J clearly satisfies (7) and (8), hence,
the interpretation I = I(M) defined by pI

α = 1 if and only if α ∈ M , is a
model of F . Similarly, if P does not contain some minimal repair R for O |= α,
then M = O \ R satisfies (7) and (8), hence, the interpretation I = I(M) is
likewise a model of F . To conclude, either F is satisfiable and from its model
we can compute a new justification or a minimal repair and extend F with the
corresponding conjunct or F is unsatisfiable, in which case we have computed
all justifications and minimal repairs.

Algorithm 6 summarizes the described procedure for computing all justifica-
tions using a SAT solver. We start by creating an empty set S of justifications
(Line 1) and a formula F that is always true (Line 2). Then, in a loop (Lines 3–
12), as long as F is satisfiable (which is checked using a SAT solver), we take
any model I of F (Line 4), extract the corresponding set M = M(I) that it
defines (Line 5), and check the entailment M |= α. If the entailment holds, using
Algorithm 3 we compute a justification for M |= α (Line 7), which, by mono-
tonicity of entailment, is also a justification for O |= α. This justification is then
added to S (Line 8) and F is extended with a new conjunct for this justification
according to (9) (Line 9). If the entailment does not hold, we compute a maximal



52 B. Glimm and Y. Kazakov

superset N of M such that N �|= α using Algorithm 5 (Line 11) and extend F
with the corresponding conjunct for the new repair R = O \ N according to (9)
(Line 12). As soon as F becomes unsatisfiable, we return the set S of computed
justifications (Line 13).

Example 29. Consider the entailment O |= α from Example 22 and propositional
encoding of axioms in O from Example 27. The following table shows a run of
Algorithm 6 for the inputs O and α. Every row in this table corresponds to
one iteration of the while-loop (Lines 3–12). The first column gives the value of
the interpretation I for F computed in this iteration. The second column shows
the value of M computed for this interpretation and whether the entailment
M |= α holds. The third column shows the result of minimizing the entailment
or maximizing the non-entailment using Algorithms 3 and 5. The last column
shows the conjunct that is added to F for the corresponding justification or
repair.

pI
1 pI

2 pI
3 pI

4 M |=? α min(M) |= α/max(M) �|= α C

0 0 0 0 ∅ �|= α {A  B} �|= α p2 ∨ p3 ∨ p4

0 1 0 0 {B  C} �|= α {B  C, A � B  ⊥} �|= α p1 ∨ p3

1 1 0 0 {A  B, B  C} |= α {A  B, B  C} |= α ¬p1 ∨ ¬p2

0 0 1 1 {A  C, A � B  ⊥} |= α {A  C} |= α ¬p3

1 0 0 1 {A  B, A � B  ⊥} |= α {A  B, A � B  ⊥} |= α ¬p1 ∨ ¬p4

Algorithm 6 can be easily turned into an algorithm for computing repairs (in
addition or instead of justifications), by saving the repairs O\N for N computed
in Line 11.

Let us briefly discuss similarities and differences between Algorithm 4 and
Algorithm 6. Both algorithms work by systematically exploring subsets of O and
minimizing entailments from such subset to compute justifications. Algorithm 4
constructs such subsets (O \ H) manually by removing one axiom appearing
in the previously computed justification (if there is any) in all possible ways.
Algorithm 6 enumerates such subsets M with a help of a SAT solver. The main
difference is that Algorithm 4 may encounter the same subsets many times (on
different branches), whereas the propositional encoding used in Algorithm 6
ensures that such subsets never repeat. The following example shows a situation
where Algorithm 4 performs exponentially many iterations of the while-loop,
whereas Algorithm 6 has only quadratically many iterations.

Example 30. Consider axioms βi = A � B � Di, γi = B � C � Di (1 ≤ i ≤ n),
and the ontology O = {βi, γi | 1 ≤ i ≤ n}, where A, B, C, and Di (1 ≤ i ≤ n)
are atomic concepts. Clearly O |= α = A � C. Furthermore, there are exactly
n2 justifications for O |= α: Jij = {βi, γj} (1 ≤ i, j ≤ n) and exactly 2 minimal
repairs: R1 = {βi | 1 ≤ i ≤ n}, R2 = {γj | 1 ≤ j ≤ n}. Hence Algorithm 6 will
perform exactly n2 + 2 + 1 calls to a SAT solver with a formula F of the size at



Classical Algorithms for Reasoning and Explanation in Description Logics 53

most c · (n2 · 2 + 2 · n) for some constant c.5 On the other hand, each HS-tree
T = (V,E,L) for O |= α has at least 2n nodes. Indeed, every non-leaf node
v ∈ V must be labeled by some L(v) = Jij with 1 ≤ i, j ≤ n, which contains
two axioms. Hence every non-leaf node of v ∈ V must have two successor nodes
(see Condition 1 of Definition 12). For every leaf node v ∈ V , the value H(v)
must be a repair for O |= α, so H(v) must be a super-set of either R1 or R2.
Hence H(v) contains at least n elements, which means that the path from v to
the root of T has at least n edges. Therefore, T is a binary tree whose leafs have
the level n or higher. Hence T has at least 2n nodes.

Of course, an iteration of Algorithm 4 cannot be directly compared to an
iteration of Algorithm 6. Both iterations use at most one call to Algorithm 3,
but Algorithm 6 may also require a call to Algorithm 5, as well as checking sat-
isfiability of F . The latter requires solving an NP-compete problem, for which
no polynomial algorithm is known so far. In order to check satisfiability of F ,
a SAT solver usually tries several (in worst-case exponentially many) proposi-
tional interpretations until a model of F is found. As each such interpretation
I corresponds to a subset M(I) ⊆ O, this process can be compared to the enu-
meration of subsets in Algorithm 4. However, a SAT solver usually implements
a number of sophisticated optimizations, which make the search for models very
efficient in practice, whereas the subset enumeration strategy used Algorithm 4
is rather simplistic. Hence Algorithm 6 is likely to win in speed. On the other
hand, Algorithm 6 requires saving all justifications (and minimal repairs) in the
propositional formula F , which might result in a formula of exponential size,
if the number of such justifications or repairs is exponential. In this regard,
Algorithm 4 could be more memory efficient since saving (all) justifications is
optional (see the discussion at the end of Sect. 4.2). Hence both algorithms have
their own advantages and disadvantages.

5 Summary and Outlook

In this course, we have looked in-depth into the most common algorithms for
reasoning and explanation in Description Logics. We have seen that the develop-
ment of such algorithms is a complicated process already for the relatively simple
DL ALC. To show correctness of algorithms, one usually needs to prove several
theoretical properties, such as soundness, completeness and termination. The
algorithmic complexity analysis is helpful to understand the worst-case behavior
of algorithms and to compare different algorithms across several dimensions such
as (non-deterministic) time and space complexity. Identifying the exact compu-
tational complexity for various DLs and reasoning problems has, therefore, been
one of the central research topics in DLs. The DL Complexity Navigator6 pro-
vides an interactive overview of many of these results.

5 The conjuncts for Jij in F consist of two negated propositional variables, the con-
junct for R1 and R2 in F consist of n propositional variables.

6 http://www.cs.man.ac.uk/∼ezolin/dl/.

http://www.cs.man.ac.uk/~ezolin/dl/


54 B. Glimm and Y. Kazakov

Proving correctness and complexity results often requires understanding of
model-theoretic properties of the languages. As we have seen in Sect. 3, for rea-
soning with ALC ontologies, it is sufficient to restrict the search to a special
kind of tree model represented by tableaux. This so-called tree model property
was argued to be one of the main reasons for decidability and the relatively
low complexity of Modal Logics, the siblings of Description Logics [66]. For pure
ALC concept satisfiability, i.e., without background ontologies, it is sufficient to
consider tree models of a bounded depth (Sect. 3.1). With additional background
ontologies, the tree models are no longer finite and special blocking techniques
are required to ensure termination of tableau algorithms (Sect. 3.2). When mov-
ing to very expressive DLs, such as SROIQ [29] (the language underpinning
the OWL 2 Direct Semantics), eventually the tree model property is lost and
proving termination of tableau procedures, while still ensuring soundness and
completeness, becomes increasingly difficult. It is not very surprising that when
increasing the expressivity of languages, i.e., when adding new ways to construct
concepts and axioms, the complexity of the reasoning problems increases as well.
For example, the time complexity of all standard reasoning problems in SROIQ
becomes non-deterministic doubly exponential [31], whereas it is “only” deter-
ministic exponential for ALC (see the remark after Theorem 2).

The theoretical analysis of algorithms does not always give an accurate pre-
diction about their practical performance. Often a situation that triggers the
worst-case behavior of an algorithm represents some corner case, which rarely
appears in practice. When it comes to practical efficiency, some other proper-
ties of algorithms become more important. For example, despite a relatively
high algorithmic complexity (see Theorems 1 and 2), tableau algorithms remain
among the fastest DL reasoning algorithms to date. This phenomenon can be
explained by a range of optimization techniques that have been developed for
tableau algorithms in the past two decades.

All state-of-the-art tableau reasoners, e.g., FaCT++ [62], HermiT [42], Kon-
clude [58], MoRE [48], and Pellet [56], apply a significant range of optimizations.
The optimizations can be categorized into those for preprocessing, consistency
checking, and for higher level reasoning tasks. Examples of higher level reason-
ing tasks are classification, where one computes all subsumption relationships
between atomic concepts or materialization, where one extends the ontology,
for each individual (pair of individuals), with assertions to capture the atomic
concepts (roles) of which the individual (the pair of individuals) is an instance.

Most reasoning systems preprocess the input ontologies. The simplest form
of preprocessing is the presented conversion into negation normal form (Defi-
nition 2 in Sect. 3), which is not used for improving performance, but rather
to allow for using fewer tableau rules. Other standard preprocessing optimiza-
tions include lexical normalization and simplification, which aim at identifying
syntactic equivalences, contradictions and tautologies [4, Sect. 9.5]. A well-known
and very important optimization for improving performance is absorption, which
aims at rewriting general concept inclusion axioms to avoid non-determinism in
the tableau algorithm. For example, here we suggested to convert an axiom of



Classical Algorithms for Reasoning and Explanation in Description Logics 55

the form A � B � C into � � ¬A � ¬B � C to allow for handling them with the
�-Rule. This introduces, however, a non-deterministic decision for each axiom
and each node. Instead, practical tableau systems use a variant of the �-Rule
introduced in Table 4 restricted to atomic concepts on the left-hand side, i.e.,
for an axiom of the form A � C in the ontology, a node with A in its label,
but C not in its label, the node’s label is extended with C. With this rule, one
can transform A � B � C into A � ¬B � C, which already reduces the amount
of non-determinism. Binary absorption [30] further allows for a conjunction of
(two) atomic concepts on the left-hand side of a general concept inclusion, i.e.,
one can completely avoid the non-deterministic decisions for our example axiom
A � B � C. Further absorption techniques include role absorption [61], nominal
absorption [55], and partial absorption [57].

As outlined in Sect. 3, consistency checking is the core reasoning task of a
tableau-based reasoner. Since these checks typically occur very often, many opti-
mizations are known including model merging techniques [24], lazy unfolding,
semantic branching, boolean constraint propagation, dependency directed back-
tracking and backjumping, and caching. We refer interested readers to the DL
Handbook [4, Sect. 9] for a more detailed descriptions of the latter optimiza-
tions. The HermiT reasoner further tries to reduce non-determinism by com-
bining hypertableau [8] and hyper-resolution [47] techniques. In order to reduce
the size of the tableau, modern DL reasoners several blocking strategies such as
anywhere blocking [42] or core blocking [19].

Higher level reasoning tasks are usually reduced to a multitude of consistency
checks such that they benefit from the optimizations of this task as much as pos-
sible. Many OWL reasoners, solve the classification problem using an Enhanced
Traversal (ET) classification algorithm [5] similar to the one used in early descrip-
tion logic reasoners. To construct a concept hierarchy, the algorithm starts with
the empty hierarchy and then iteratively inserts each concept from the ontol-
ogy into the hierarchy. Each insertion step typically requires one or more sub-
sumption tests—checks whether a subsumption relationship holds between two
concepts—in order to determine the proper position of a class in the hierar-
chy constructed thus far. A more recent alternative to the ET algorithm is the
known/possible set classification approach [20].

Despite the wide range of implemented optimization techniques, the rea-
soning performance might not be sufficient for some applications. The OWL 2
standard addresses this by introducing so-called OWL profiles [41], which are
fragments of OWL 2 that restrict the allowed constructors in order to allow for
tractable reasoning procedures. For example, the OWL 2 EL profile (based on
the Description Logic EL, a fragment of ALC) allows for a one-pass classification
of ontologies, i.e., repetitive subsumption tests are not needed. Some reasoners,
e.g., Konclude, combine tableau procedures with tractable algorithms for han-
dling those parts of an ontologies that are in the OWL 2 EL profile. Similarly,
MoRe combines the (hyper-)tableau reasoner HermiT with the specialized OWL
2 EL reasoner ELK [34].



56 B. Glimm and Y. Kazakov

Many optimizations try to avoid unnecessary operations by making algo-
rithms more goal-directed and thus reducing the search space. We have seen sev-
eral examples of such optimizations in Sect. 4 when considering algorithms for
computing justifications and repairs. Such optimizations typically do not reduce
the worst case complexity of algorithms but they can significantly improve their
behavior in typical cases. For example, Algorithm 3 for computing one justifi-
cation, in practice, does not start with the whole ontology J = O (Line 3), but
with a subset J ⊆ O such that J |= α. If a small subset J like this is found, the
number of subsequent entailment tests performed by the algorithm can signifi-
cantly be reduced. The initial subset J can be found, for example, by starting
with J = ∅ and repeatedly adding to J axioms from O until J |= α. This part of
the algorithm, called the expansion phase, requires additional entailment tests.
To find a J that is as small as possible, one usually tries to first add axioms
that are most likely to cause the entailment J |= α, e.g., the axioms β ∈ O
that contain symbols from α or from the previously added axioms in J . The
initial subset J ⊆ O such that J |= α can also be found using algorithms for
computing modules of ontologies. A (logical) module of O for a set of symbols Σ
is a subset M ⊆ O such that for every axiom β formulated using only symbols
in Σ, if O |= β then M |= β. In our case we are interested in Σ consisting
of all symbols in α. Some types of modules, e.g., locality-based modules can be
computed in polynomial time without performing any subsumption tests [16]. It
is also possible to reduce the number of entailment tests when minimizing the
entailment J |= α by removing several axioms at a time instead of one axiom
like in Algorithm 3. Further details of optimization techniques for computing
justifications can be found in the PhD thesis of Horridge [26].

Another way to optimize an algorithm is to use an existing “off-the-shelf”
tool that is already optimized for solving a certain class of problems. One of
the most popular examples of such tools are SAT solvers. In Sect. 4.4 we have
shown how SAT solvers can be used for computing justifications and repairs (see
Algorithm 6). This algorithm or variations thereof are implemented in several
tools such as EL+SAT [53,67], EL2MUS [1], and SATPin [39]. The SAT solvers
used in these tools are not only only used to find new candidate subsets M
for justifications or complements of repairs, but also to check the entailments
O |= α. This has been possible by using different, consequence-based algorithms
for reasoning with ontologies. In contrast to tableau algorithms, consequence-
based algorithms do not construct (representations of) models, but instead derive
logical consequence of axioms using a number of dedicated inference rules. Thus,
to prove the entailment O |= α, it is sufficient to show how the axiom α can be
derived using these rules and the axioms in O. Each inference step α1, . . . , αn � α
used in this derivation can be encoded as a propositional formula pα1 ∧ · · · ∧
pαn

→ pα, thus reducing DL entailment to propositional (Horn) entailment.
Consequence-based procedures have been first formulated for the simple DL
EL to show that entailment in this language can be solved in polynomial time
[13]. The above mentioned tools for computing justifications are targeted to this



Classical Algorithms for Reasoning and Explanation in Description Logics 57

language. Since then, consequence-based procedures have also been extended to
more expressive (even non-polynomial) DLs [3,7,15,32,54].

One of the benefits of consequence-based algorithms is that they can be used
to provide better explanations for the obtained reasoning results. Justification
for entailments O |= α tell which axioms of the ontology are responsible for the
entailment, but not how the entailed axiom was obtained from them. This limita-
tion has been mainly due to the black-box nature of the tableau-based reasoning
algorithms: since tableau algorithms are based on constructing models, they
cannot provide information supporting positive entailment tests O |= α since in
such cases no counter-model for the entailment O |= α exists (see Lemma 2). In
contrast, consequence-based algorithms can provide explanations for entailment
in the form of derivations (or proofs). In practice, computing derivations for a
given subsumption has not been an easy task because if in addition to computing
all consequences, we also save all inference steps by which they were produced,
the amount of memory required to store all this information can double. A
goal-directed procedure for generation of inferences [33] can be used to mitigate
this problem. The (black-box) algorithms for computing justifications have also
been extended to provide some inference steps that derive (simple) intermediate
conclusions, which can improve understanding of explanations [27,28].

Ontologies and the reasoning techniques described in this course are suc-
cessfully employed in many domains, e.g., to reason over the environment of
(autonomous) cars [17,68], in information integration tasks [35,38], or, most
prominently, in medicine, life sciences, and bio-informatics [21,25,63]. The stan-
dardization efforts of the World Wide Web Consortium (W3C) for the DL-
based Web Ontology Language OWL have certainly helped in promoting the
use of logic-based knowledge representation and reasoning. While modern search
engines have picked up the ideas of using structured or formal knowledge, this is
often not in the form OWL (or DL) ontologies. For example, Google’s knowledge
graph and Facebook’s Social Graph are based on proprietary formats. The same
holds for Wikidata, although Semantic Web standards are also supported (e.g.,
a SPARQL [23] query interface and data dumps in the Resource Description
Format (RDF) [52] are available). We attribute this to several reasons: While
large companies such as Google recognized the importance of structured knowl-
edge, they rather use their proprietary formats, possibly for business reasons. A
contributing challenge is also that even the tractable fragments of DLs do not
offer the performance required at Web scale. Furthermore, the knowledge in the
Web is inherently inconsistent, which is challenging for logic-based approaches.
DLs and OWL also lack features that are important for some applications. For
example, Wikidata captures when a fact was true, e.g., the former German chan-
cellor Helmut Kohl was married to Hannelore Kohl from 1960 to 2001. This is
difficult to model using DLs since roles can only relate two elements, but research
to address these issues is on-going [37,40]. Summing up, it is widely accepted
today that structuring and formalizing knowledge is important and that signifi-
cant advances were made in the last years; nevertheless, research is still needed
in several directions.



58 B. Glimm and Y. Kazakov

A Appendix

For the convenience of interested readers, in this appendix we recap some back-
ground material used in this course, such as the basic notions for describing
the (theoretical) complexity of algorithms, and the propositional satisfiability
problem.

A.1 Computational Complexity

A decision problem (for an input set X) is simply a mapping P : X → {yes,no}.
Note that X can be an arbitrary set of objects. For example, for the concept
subsumption problem, X consists of all possible pairs 〈O, C � D〉 where the first
component is an ontology O and the second component is a concept subsumption
C � D. An algorithm A solves (or decides) a decision problem P for X, if A
accepts each value x ∈ X as input, terminates for all these values, and returns
the (correct) result A(x) = P (x).

There are several dimensions according to which one can measure the com-
putational complexity of problems and algorithms. We say that an algorithm
A has an (upper) time complexity f(n) if for each input x ∈ X with the size
(e.g., the number of symbols) n, the algorithm A terminates after at most f(n)
steps. A problem P for X is solvable in time f(n) if there exists an algorithm
A that solves P and has the time complexity f(n). We say that a problem P is
solvable in polynomial time if there exists a polynomial function f(n) such that
P is solvable in time f(n). A problem P is solvable in exponential time (doubly
exponential time, . . . ) if there exists a polynomial function f(n) such that P is
solvable in time 2f(n) (22

f(n)
, . . . ). Analogously to the algorithmic time com-

plexity, one can define the algorithmic space complexity : a problem P for X is
solvable in space f(n) if there exists an algorithm A that solves P such that for
each input x ∈ X with the size n, the algorithm A uses at most f(n) units of
memory at every step of the computation.

Another dimension of the computational complexity is based on the notion of
a non-deterministic computation. An algorithm A is said to be non-deterministic
if the result of some operations that it can perform is not uniquely determined.
Thus, the algorithm can produce different results for different runs even with the
same input. A non-deterministic algorithm A solves a problem P for X if, for
each x ∈ X such that P (x) = no, each run of A terminates with the result no,
and for each x ∈ X such that P (x) = yes, there exists at least one run for which
the algorithm terminates and produces yes. The intuition is that, if one has an
unlimited number of identical computers, then one can solve the problem P by
starting the algorithm A in parallel on all of these computers; if P (x) = yes, one
of them is guaranteed to return yes (provided the results of all non-deterministic
instructions are chosen at random).

The time and space complexity measures are also extended to non-
deterministic algorithms. For example, a non-deterministic algorithm A has the
(upper) time complexity f(n) if, for every input x ∈ X of the size n, every run of
A terminates after at most f(n) steps. We say that a problem P for X is solvable



Classical Algorithms for Reasoning and Explanation in Description Logics 59

in non-deterministic time f(n) if there exists a non-deterministic algorithm A
that solves P and has the time complexity f(n). Thus, a problem P is solvable
in non-deterministic polynomial (exponential, doubly exponential, . . . ) time if P
is solvable in non-deterministic time f(n), where f(n) is a polynomial (expo-
nential, doubly exponential) function. The non-deterministic space complexity
is defined similarly.

A common way to solve a problem is to reduce it to another problem, for
which a solution is known. A decision problem P1 : X → {yes,no} is (many-one)
reducible to a decision problem P2 : Y → {yes,no} if there exists an algorithm
R : X → Y (that takes an input from X and produces an output from Y ) such
that for every x ∈ X, we have P1(x) = P2(R(x)). In this case the algorithm R is
called a reduction from P1 to P2. Depending on the time or space complexity of
the algorithm R (i.e., the maximal number of steps or memory units consumed
for inputs of size n), the complexity bounds of the problems are also transferred
by the reduction. Usually one is interested in polynomial reductions, where the
number of steps for computing each R(x) is bounded by a polynomial function
in the size of x. In this case, if the complexity of P2 is polynomial, exponen-
tial, or doubly exponential (for deterministic or non-deterministic, time or space
complexity), then P1 has the same complexity as P2.

A.2 Propositional Logic and SAT

The vocabulary of Propositional Logic consists of a countably infinite set P of
propositional variables, Boolean constants: � (Verum), ⊥ (Falsum), and Boolean
operators: ∧ (conjunction), ∨ (disjunction), ¬ (negation) and → (implication).
Propositional formulas are constructed from these symbols according to the
grammar:

F,G ::= p | � | ⊥ | F ∧ G | F ∨ G | ¬F | F → G, (10)

where p ∈ P . A propositional interpretation I assigns to each propositional vari-
able p ∈ P a truth value pI ∈ {1, 0} (1 means ‘true’, 0 means ‘false’) and is
extended to other propositional formulas by induction over the grammar defini-
tion (10) as follows:

– �I = 1 and ⊥I = 0 for each I,
– (F ∧ G)I = 1 if and only if F I = 1 and GI = 1,
– (F ∨ G)I = 1 if and only if F I = 1 or GI = 1,
– (¬F )I = 1 if and only if F I = 0,
– (F → G)I = 1 if and only if F I = 0 or GI = 1.

If F I = 1 then we say that I is a model of F (or F is satisfied in I). We
say that F is satisfiable if F has at least one model; otherwise F is unsatisfi-
able. A propositional satisfiability problem (short: SAT ) is the following decision
problem:

– Given: a propositional formula F ,



60 B. Glimm and Y. Kazakov

– Return: yes if F is satisfiable and no otherwise.

SAT is a classical example of a non-deterministic polynomial (short: NP)
problem: it can be solved using an algorithm that non-deterministically choses a
propositional interpretation I, computes (in polynomial time) the value F I and
returns yes if F I = 1 and no if F I = 0. It can be shown that each problem solv-
able by a non-deterministic polynomial algorithm has a polynomial reduction
to SAT, which means that SAT is actually an NP-complete problem. Currently,
the most efficient algorithms for solving SAT are based on (extensions of) the
Davis-Putnam-Logemann-Loveland (short: DPLL) procedure, which systemati-
cally explores interpretations in a goal-directed way. A program that implements
an algorithm for solving SAT is called a SAT-solver. Usually a SAT-solver not
only decides satisfiability of a given propositional formula F , but can also output
a model of F in case F is satisfiable.

References

1. Arif, M.F., Menćıa, C., Marques-Silva, J.: Efficient MUS enumeration of horn for-
mulae with applications to axiom pinpointing. CoRR abs/1505.04365 (2015)

2. Baader, F.: Description logics. In: Tessaris, S., et al. (eds.) Reasoning Web 2009.
LNCS, vol. 5689, pp. 1–39. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03754-2 1

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp.
364–369 (2005)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications, 2nd
edn. Cambridge University Press, Cambridge (2007)

5. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.J.: An empiri-
cal analysis of optimization techniques for terminological representation systems.
Appl. Intell. 4(2), 109–132 (1994)

6. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

7. Bate, A., Motik, B., Grau, B.C., Cucala, D.T., Simancik, F., Horrocks, I.:
Consequence-based reasoning for description logics with disjunctions and number
restrictions. J. Artif. Intell. Res. 63, 625–690 (2018)

8. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J.,
Pereira, L.M., Orlowska, E. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61630-6 1

9. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic
knowledge bases. In: Pan, J.Z., et al. (eds.) Reasoning Web 2016. LNCS, vol. 9885,
pp. 156–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49493-7 5

10. Bienvenu, M., Ortiz, M.: Ontology-mediated query answering with data-tractable
description logics. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS,
vol. 9203, pp. 218–307. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21768-0 9

11. Bonatti, P.A., Faella, M., Petrova, I.M., Sauro, L.: A new semantics for overriding
in description logics. Artif. Intell. 222, 1–48 (2015)

https://doi.org/10.1007/978-3-642-03754-2_1
https://doi.org/10.1007/978-3-642-03754-2_1
https://doi.org/10.1007/3-540-61630-6_1
https://doi.org/10.1007/978-3-319-49493-7_5
https://doi.org/10.1007/978-3-319-21768-0_9
https://doi.org/10.1007/978-3-319-21768-0_9


Classical Algorithms for Reasoning and Explanation in Description Logics 61

12. Botoeva, E., Konev, B., Lutz, C., Ryzhikov, V., Wolter, F., Zakharyaschev, M.:
Inseparability and conservative extensions of description logic ontologies: a sur-
vey. In: Pan, J.Z., et al. (eds.) Reasoning Web 2016. LNCS, vol. 9885, pp. 27–89.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49493-7 2

13. Brandt, S.: Polynomial time reasoning in a description logic with existential restric-
tions, GCI axioms, and - what else? In: de Mántaras, R.L., Saitta, L. (eds.) Pro-
ceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004),
pp. 298–302. IOS Press (2004)

14. Casini, G., Straccia, U.: Defeasible inheritance-based description logics. J. Artif.
Intell. Res. 48, 415–473 (2013)

15. Cucala, D.T., Grau, B.C., Horrocks, I.: Consequence-based reasoning for descrip-
tion logics with disjunction, inverse roles, number restrictions, and nominals. In:
Lang, J. (ed.) Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI 2018), pp. 1970–1976. ijcai.org (2018)

16. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: theory and practice. J. Artif. Intell. Res. 31, 273–318 (2008)

17. Feld, M., Müller, C.: The automotive ontology: managing knowledge inside the
vehicle and sharing it between cars. In: Proceedings of the 3rd International Confer-
ence on Automotive User Interfaces and Interactive Vehicular Applications, Auto-
motiveUI 2011, pp. 79–86. ACM, New York (2011). http://doi.acm.org/10.1145/
2381416.2381429

18. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A non-monotonic description
logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

19. Glimm, B., Horrocks, I., Motik, B.: Optimized description logic reasoning via core
blocking. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp.
457–471. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-
1 39

20. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to
ontology classification. J. Web Semant. 14, 84–101 (2012)

21. Golbreich, C., Zhang, S., Bodenreider, O.: The foundational model of anatomy in
OWL: experience and perspectives. J. Web Semant. 4(3), 181–195 (2006)

22. Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in
Reiter’s theory of diagnosis. In: Readings in Model-Based Diagnosis, pp. 49–53.
Morgan Kaufmann Publishers Inc. (1992)

23. Group, T.W.W. (ed.): SPARQL 1.1 Overview. W3C Recommendation, 21 March
2013. http://www.w3.org/TR/sparql11-overview/

24. Haarslev, V., Möller, R., Turhan, A.-Y.: Exploiting pseudo models for TBox and
ABox reasoning in expressive description logics. In: Goré, R., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 61–75. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45744-5 6

25. Hoehndorf, R., Dumontier, M., Gkoutos, G.V.: Evaluation of research in biomedical
ontologies. Briefings Bioinform. 14(6), 696–712 (2012)

26. Horridge, M.: Justification based explanation in ontologies. Ph.D. thesis, University
of Manchester, UK (2011)

27. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1 21

28. Horridge, M., Parsia, B., Sattler, U.: Justification oriented proofs in OWL. In:
Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 354–369.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0 23

https://doi.org/10.1007/978-3-319-49493-7_2
http://doi.acm.org/10.1145/2381416.2381429
http://doi.acm.org/10.1145/2381416.2381429
https://doi.org/10.1007/978-3-642-14203-1_39
https://doi.org/10.1007/978-3-642-14203-1_39
http://www.w3.org/TR/sparql11-overview/
https://doi.org/10.1007/3-540-45744-5_6
https://doi.org/10.1007/978-3-540-88564-1_21
https://doi.org/10.1007/978-3-642-17746-0_23


62 B. Glimm and Y. Kazakov

29. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty,
P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings 10th International Conference
on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67.
AAAI Press (2006)

30. Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for
description logics. In: Proceedings of the 19th International Workshop on Descrip-
tion Logics (DL 2006), vol. 189. CEUR (2006)

31. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Brewka, G., Lang, J.
(eds.) Proceedings of the 11th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2008), pp. 274–284. AAAI Press (2008)

32. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In: Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI
2009), pp. 2040–2045. IJCAI (2009)

33. Kazakov, Y., Klinov, P.: Goal-directed tracing of inferences in EL ontologies. In:
Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 196–211. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11915-1 13

34. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: ELK: a reasoner for OWL EL ontologies.
System description, University of Oxford (2012)

35. Kharlamov, E., et al.: Ontology based data access in statoil. Web Semant. Sci.
Serv. Agents World Wide Web 44, 3–36 (2017)

36. Kontchakov, R., Zakharyaschev, M.: An introduction to description logics and
query rewriting. In: Koubarakis, M., et al. (eds.) Reasoning Web 2014. LNCS,
vol. 8714, pp. 195–244. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10587-1 5

37. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: rea-
soning on knowledge graphs. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm,
Sweden, 13–19 July 2018. pp. 5309–5313. ijcai.org (2018). https://doi.org/10.
24963/ijcai.2018/743

38. Maier, A., Schnurr, H.-P., Sure, Y.: Ontology-based information integration in the
automotive industry. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 897–912. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39718-2 57

39. Manthey, N., Peñaloza, R., Rudolph, S.: Efficient axiom pinpointing in EL using
SAT technology. In: Lenzerini, M., Peñaloza, R. (eds.) Proceedings of the 29th
International Workshop on Description Logics (DL 2016). CEUR Workshop Pro-
ceedings, vol. 1577. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1577/paper 33.
pdf

40. Motik, B.: Representing and querying validity time in RDF and OWL: a logic-based
approach. J. Web Semant. 12, 3–21 (2012). https://doi.org/10.1016/j.websem.
2011.11.004

41. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.):
OWL 2 Web Ontology Language: Profiles. W3C Recommendation, 27 October
2009. http://www.w3.org/TR/owl2-profiles/

42. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
J. Artif. Intell. Res. 36, 165–228 (2009)

43. Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In:
Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 1–53.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33158-9 1

44. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 27 October 2009. http://www.w3.org/TR/owl2-overview/

https://doi.org/10.1007/978-3-319-11915-1_13
https://doi.org/10.1007/978-3-319-10587-1_5
https://doi.org/10.1007/978-3-319-10587-1_5
https://doi.org/10.24963/ijcai.2018/743
https://doi.org/10.24963/ijcai.2018/743
https://doi.org/10.1007/978-3-540-39718-2_57
https://doi.org/10.1007/978-3-540-39718-2_57
http://ceur-ws.org/Vol-1577/paper_33.pdf
http://ceur-ws.org/Vol-1577/paper_33.pdf
https://doi.org/10.1016/j.websem.2011.11.004
https://doi.org/10.1016/j.websem.2011.11.004
http://www.w3.org/TR/owl2-profiles/
https://doi.org/10.1007/978-3-642-33158-9_1
http://www.w3.org/TR/owl2-overview/


Classical Algorithms for Reasoning and Explanation in Description Logics 63

45. Peñaloza, R.: Explaining axiom pinpointing. In: Lutz, C., Sattler, U., Tinelli, C.,
Turhan, A.-Y., Wolter, F. (eds.) Description Logic, Theory Combination, and All
That. LNCS, vol. 11560, pp. 475–496. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-22102-7 22

46. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

47. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math.
1(3), 227–234 (1965)

48. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: modular combination
of OWL reasoners for ontology classification. In: Cudré-Mauroux, P., et al. (eds.)
ISWC 2012. LNCS, vol. 7649, pp. 1–16. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-35176-1 1

49. Rudolph, S.: Foundations of description logics. In: Polleres, A., et al. (eds.) Reason-
ing Web 2011. LNCS, vol. 6848, pp. 76–136. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23032-5 2

50. Sattler, U.: Reasoning in description logics: basics, extensions, and relatives. In:
Antoniou, G., et al. (eds.) Reasoning Web 2007. LNCS, vol. 4636, pp. 154–182.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74615-7 2

51. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. J. Artif. Intell. 48, 1–26 (1991)

52. Schreiber, G., Raimond, Y. (eds.): RDF 1.1 Primer. W3C Working Group Note,
24 June 2014. http://www.w3.org/TR/rdf11-primer/

53. Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics
via horn-SAT encoding and conflict analysis. In: Schmidt, R.A. (ed.) CADE 2009.
LNCS (LNAI), vol. 5663, pp. 84–99. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02959-2 6

54. Simanč́ık, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond horn
ontologies. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011), pp. 1093–1098. AAAI Press/IJCAI (2011)

55. Sirin, E.: From wine to water: optimizing description logic reasoning for nominals.
In: Proceedings of the 10th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2006), pp. 90–99. AAAI Press (2006)

56. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

57. Steigmiller, A., Glimm, B., Liebig, T.: Optimised absorption for expressive
description logics. In: Proceedings of the 27th International Workshop on
Description Logics (DL 2014). CEUR Workshop Proceedings, vol. 1193. CEUR-
WS.org (2014). https://www.uni-ulm.de/fileadmin/website uni ulm/iui.inst.090/
Publikationen/2014/StGL14b.pdf

58. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. Web
Semant. 27–28, 78–85 (2014)

59. Straccia, U.: All about fuzzy description logics and applications. In: Faber, W.,
Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 1–31. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21768-0 1

60. Tobies, S.: Complexity results and practical algorithms for logics in knowledge
representation. Ph.D. thesis, RWTH Aachen, Germany (2001)

61. Tsarkov, D., Horrocks, I.: Efficient reasoning with range and domain constraints.
In: Proceedings of the 17th International Workshop on Description Logics (DL
2004), vol. 104. CEUR (2004)

https://doi.org/10.1007/978-3-030-22102-7_22
https://doi.org/10.1007/978-3-030-22102-7_22
https://doi.org/10.1007/978-3-642-35176-1_1
https://doi.org/10.1007/978-3-642-35176-1_1
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1007/978-3-540-74615-7_2
http://www.w3.org/TR/rdf11-primer/
https://doi.org/10.1007/978-3-642-02959-2_6
https://doi.org/10.1007/978-3-642-02959-2_6
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2014/StGL14b.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2014/StGL14b.pdf
https://doi.org/10.1007/978-3-319-21768-0_1


64 B. Glimm and Y. Kazakov

62. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771 26

63. Tudorache, T., Nyulas, C.I., Noy, N.F., Musen, M.A.: Using semantic web in ICD-
11: three years down the road. In: Alani, H., et al. (eds.) ISWC 2013. LNCS,
vol. 8219, pp. 195–211. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41338-4 13

64. Turhan, A.-Y.: Reasoning and explanation in EL and in expressive description
logics. In: Aßmann, U., Bartho, A., Wende, C. (eds.) Reasoning Web 2010. LNCS,
vol. 6325, pp. 1–27. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15543-7 1

65. Turhan, A.-Y.: Introductions to description logics – a guided tour. In: Rudolph,
S., Gottlob, G., Horrocks, I., van Harmelen, F. (eds.) Reasoning Web 2013. LNCS,
vol. 8067, pp. 150–161. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39784-4 3

66. Vardi, M.Y.: Why is modal logic so robustly decidable? In: Immerman, N., Kolaitis,
P.G. (eds.) Descriptive Complexity and Finite Models, Proceedings of a DIMACS
Workshop 1996, Princeton, New Jersey, USA, 14–17 January 1996. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, vol. 31, pp. 149–183.
DIMACS/AMS (1996)

67. Vescovi, M.: Exploiting SAT and SMT techniques for automated reasoning and
ontology manipulation in description logics. Ph.D. thesis, University of Trento,
Italy (2011). http://eprints-phd.biblio.unitn.it/477/

68. Zhao, L., Ichise, R., Mita, S., Sasaki, Y.: Core ontologies for safe autonomous
driving. In: Villata, S., Pan, J.Z., Dragoni, M. (eds.) Proceedings of the ISWC 2015
Posters & Demonstrations Track co-located with the 14th International Semantic
Web Conference (ISWC-2015), Bethlehem, PA, USA, 11 October 2015. CEUR
Workshop Proceedings, vol. 1486. CEUR-WS.org (2015). http://ceur-ws.org/Vol-
1486/paper 9.pdf

https://doi.org/10.1007/11814771_26
https://doi.org/10.1007/978-3-642-41338-4_13
https://doi.org/10.1007/978-3-642-41338-4_13
https://doi.org/10.1007/978-3-642-15543-7_1
https://doi.org/10.1007/978-3-642-15543-7_1
https://doi.org/10.1007/978-3-642-39784-4_3
https://doi.org/10.1007/978-3-642-39784-4_3
http://eprints-phd.biblio.unitn.it/477/
http://ceur-ws.org/Vol-1486/paper_9.pdf
http://ceur-ws.org/Vol-1486/paper_9.pdf


Explanation-Friendly Query Answering
Under Uncertainty

Maria Vanina Martinez1(B) and Gerardo I. Simari2

1 Department of Computer Science, Institute for Computer Science
(UBA–CONICET), Universidad de Buenos Aires (UBA),

C1428EGA Ciudad Autonoma de Buenos Aires, Argentina
mvmartinez@dc.uba.ar

2 Department of Computer Science and Engineering,
Institute for Computer Science and Engineering (UNS–CONICET),

Universidad Nacional del Sur (UNS),
San Andres 800, 8000 Bahia Blanca, Argentina

gis@cs.uns.edu.ar

Abstract. Many tasks often regarded as requiring some form of intel-
ligence to perform can be seen as instances of query answering over
a semantically rich knowledge base. In this context, two of the main
problems that arise are: (i) uncertainty, including both inherent uncer-
tainty (such as events involving the weather) and uncertainty arising
from lack of sufficient knowledge; and (ii) inconsistency, which involves
dealing with conflicting knowledge. These unavoidable characteristics of
real world knowledge often yield complex models of reasoning; assuming
these models are mostly used by humans as decision-support systems,
meaningful explainability of their results is a critical feature. These lec-
ture notes are divided into two parts, one for each of these basic issues. In
Part 1, we present basic probabilistic graphical models and discuss how
they can be incorporated into powerful ontological languages; in Part 2,
we discuss both classical inconsistency-tolerant semantics for ontological
query answering based on the concept of repair and other semantics that
aim towards more flexible yet principled ways to handle inconsistency.
Finally, in both parts we ponder the issue of deriving different kinds of
explanations that can be attached to query results.

1 Introduction

In this article, we address query answering under two different, though related,
approaches to uncertainty: probabilistic reasoning, and inconsistency-tolerant
reasoning—as we will see, incompleteness is another dimension to uncertainty
that can be addressed by leveraging the power of ontology languages, which
are at the core of the material that we aim to cover. We focus on Datalog+/–
[17], a family of ontological languages that was born from the database theory
community extending the well-known formalism of Datalog. This family is closely
related to Description Logics (DLs); cf. Fig. 1 for a mapping of some of the basic
c© Springer Nature Switzerland AG 2019
M. Krötzsch and D. Stepanova (Eds.): Reasoning Web 2019, LNCS 11810, pp. 65–103, 2019.
https://doi.org/10.1007/978-3-030-31423-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31423-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-31423-1_2


66 M. V. Martinez and G. I. Simari

constructs in description logics to Datalog+/– formulas—note that this is meant
only to illustrate the general relationship between the two formalisms, and that
there are constructs on either side that cannot be expressed in the other, such
as number restrictions and disjunctions in Datalog+/– and predicates of arity
greater than two in DLs.

We first put these notes into context by briefly presenting some historical
details and basic aspects of explanations in AI. Then, in Sect. 2 we provide
a brief introduction to Datalog+/–, the family of ontology languages that we
use in the rest of the text. Sections 3 and 4 then describe the two main parts:
probabilistic and inconsistency-tolerant reasoning, respectively; in each case, we
conclude the section by exploring current capabilities and next steps that can
be taken towards making these formalisms explainable. Finally, in Sect. 5 we
provide a summary and discuss a roadmap for future work in these directions.

Context: A Brief Discussion about Explanations in AI
In order to put this material into context, we would like to briefly discuss the
history surrounding one of the main topics of these notes. The meaning of expla-
nation, and the related notions of explainability and interpretability, has been
studied for quite some time in philosophy and related disciplines in the social
sciences (cf. the recent work of [40] for a survey of these aspects). Essentially, this
topic is of interest to these disciplines because explanations are usually meant
to be consumed by humans—for instance, a (human) user would like to know
why a certain weather forecast is likely to be true or, more importantly, why
they are being denied a loan at the bank. In computer science, explanations
were a core aspect of the expert systems that were developed over four decades
ago [46,53]; ever since those foundational works, logic-based formalisms have
often highlighted explainability as one of the strong points of developing AI in
such a manner, contrasting with the fact that machine learning (ML) meth-
ods may in some cases perform very well but are incapable of offering users
a satisfactory explanation. Structured argumentation is a good example,1 in
which dialectical trees are produced as part of the reasoning mechanism and
can be examined by a user in order to gain insights into how conclusions are
reached [25,26]; the work of [24] also explores how belief revision operators can
be designed using argumentation-based comparisons of alternatives, which can
also be offered as explanations. As a response to this—and the success of many
ML-based approaches on concrete problems—in recent years, there has been a
strong resurgence of research into how AI (mostly ML) tools can be made to
be explainable; the term “XAI” (for explainable artificial intelligence) was thus
born. This recent explosion in popularity has already led to interesting devel-
opments; in the context of reasoning under uncertainty (of particular interest
here), the notion of balanced explanation—giving reasons both why and why not
a given answer may be correct—is especially useful [30]. We refer the interested
reader to [1,40,44] for some recent surveys developed from different points of
view.

1 Note, however, that the human aspect is not necessarily present, since the argumen-
tation process could be carried out between software agents.



Explanation-Friendly Query Answering Under Uncertainty 67

Description Logic Assertion Datalog+/– Rule
CONCEPT INCLUSION:
Restaurant � Business restaurant(X) → business(X)

CONCEPT PRODUCT:
Food × Food � TwoCourseMeal food(X), food(Y ) → twoCourseMeal(X, Y )

INVERSE ROLE INCLUSION:
InPromotionIn− � Serves inPromotionIn(F, R) → serves(R, F )

ROLE TRANSITIVITY:
(LocatedIn) locatedIn(X, Y ), locatedIn(Y, Z) → locatedIn(X, Z)

PARTICIPATION:
Restaurant � ∃Serves.Food restaurant(R) → ∃F serves(R, F ) ∧ food(F )

DISJOINTNESS:
City � Country � ⊥ city(X), country(X) → ⊥
FUNCTIONALITY:

(LocatedIn) locatedIn(X, Y ), locatedIn(X, Z) → Y = Z

Fig. 1. Translation of several different types of description logic axioms into
Datalog+/–.

From this brief analysis we can conclude that there are many aspects that
need to be further studied in order to arrive at adequate solutions to the problem
of deriving explanations. On the one hand, logic-based models have a strong
foundation that allows them to be better poised to offer explanations, but not
much research has gone in to designing explanations that can be of use to actual
users. On the other hand, ML-based solutions typically can be made to perform
quite well on certain tasks, but there inner workings are more obscure. In these
notes, we will thus focus on taking some first steps towards explaining the results
given by two approaches to reasoning under uncertainty—we cannot hope to
solve such a formidable family of problems completely just yet.

2 The Datalog+/– Family of Ontology Languages

We now present the basics of Datalog+/– [17]—relational databases, (Boolean)
conjunctive queries, tuple- and equality-generating dependencies and negative
constraints, the chase, and ontologies. The material presented in this section is
mainly based on [47], which in turn contains some material originally appearing
in [48].

2.1 Preliminary Concepts and Notations

Let us consider (i) an infinite universe of (data) constants Δ, which constitute the
“normal” domain of a database), (ii) an infinite set of (labelled) nulls ΔN (used



68 M. V. Martinez and G. I. Simari

as “fresh” Skolem terms, which are placeholders for unknown values, and can
thus be seen as a special kind of variable), and (iii) an infinite set of variables V
(used in queries, dependencies, and constraints). Different constants represent
different values (this is generally known as the unique name assumption), while
different nulls may represent the same value. We assume a lexicographic order
on Δ ∪ ΔN , with every symbol in ΔN following all symbols in Δ. We denote
with X sequences of variables X1, . . . , Xk with k � 0.

We will assume a relational schema R, which is a finite set of predicate symbols
(or simply predicates), each with an associated arity. As usual, a term t is a con-
stant, null, or variable. An atomic formula (or atom) a has the form p(t1, . . . , tn),
where p is an n-ary predicate, and t1, . . . , tn are terms. A term or atom is ground
if it contains no nulls and no variables. An instance I for a relational schema R
is a (possibly infinite) set of atoms with predicates from R and arguments from
Δ ∪ ΔN . A database is a finite instance that contains only constants (i.e., its
arguments are from Δ).

Homomorphisms. Central to the semantics of Datalog+/– is the notion of
homomorphism between relational structures. Let A = 〈X,σA〉 and B = 〈Y, σB〉
be two relational structures, where dom(A) = X and dom(B) = Y are the
domains of A and B, and σA and σB are their signatures (which are composed
of relations and functions), respectively. A homomorphism from A to B is a
function h : dom(A) → dom(B) that “preserves structure” in the following
sense:

– For each n-ary function fA ∈ σA and elements x1, ..., xn ∈ dom(A), we have:

h
(
fA(x1, ..., xn)

)
= fB

(
h(x1), ..., h(xn)

)
,

and
– for each n-ary relation RA ∈ σA and elements x1, ..., xn ∈ dom(A), we have:

if (x1, ..., xn) ∈ RA, then
(
h(x1), ..., h(xn)

) ∈ RB.

In the above statements, the superscripts used in function and relation symbols
is simply a clarification of the structure in which they are being applied. Since
we do not have function symbols, the first condition will not be necessary here
(it is satisfied vacuously).2

For the purposes of Datalog+/–, we need to extend the concept of homomor-
phism to contemplate nulls. We then define homomorphisms from a set of atoms
A1 to a set of atoms A2 as mappings h : Δ ∪ ΔN ∪ V → Δ ∪ ΔN ∪ V such that:

2 As an aside, and using concepts that will be defined shortly, the fundamental result
linking homomorphisms to conjunctive query answering over relational databases
can be informally stated as follows: let Q be a BCQ, and J be a database instance;
then, J |= Q if and only if there exists a homomorphism from the canonical database
instance IQ (essentially, an instance built using the predicates and variables from
Q) to J [5,19].



Explanation-Friendly Query Answering Under Uncertainty 69

1. c ∈ Δ implies h(c) = c,
2. c ∈ ΔN implies h(c) ∈ Δ ∪ ΔN ,
2. r(t1, . . . , tn) ∈ A1 implies h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn))) ∈ A2.

Similarly, one can extend h to a conjunction of atoms. Conjunctions of atoms
are often identified with the sets of their atoms.

2.2 Syntax and Semantics of Datalog+/–

Given a relational schema R, a Datalog+/– program consists of a finite set
of tuple-generating dependencies (TGDs), negative constraints (NCs), and
equality-generating dependencies (EGDs).

TGDs. A tuple-generating dependency (TGD) σ is a first-order (FO) rule that
allows existentially quantified conjunctions of atoms in rule heads:

σ : ∀X∀Y Φ(X,Y) → ∃Z Ψ(X,Z) with X,Y,Z ⊆ V,

where Φ(X,Y) and Ψ(X,Z) are conjunctions of atoms. Formulas Φ and Ψ are
often referred to as the body and head of σ, respectively. By analyzing the general
form of TGDs, one can see that variables in X and Y refer to objects that
are already known, while those in Z correspond to the result of so-called value
invention. For instance, in the TGD person(X) → ∃Y person(Y ) ∧ father(Y,X),
variable Y refers to a new object that is a person who is the father of X.

Since TGDs with multiple atoms in the head can be converted into sets of
TGDs with only single atom in the head [14], from now on we assume that all
sets of TGDs have only a single atom in their head. An instance I for R satisfies
σ, denoted I |= σ, if whenever there exists a homomorphism h that maps the
atoms of Φ(X,Y) to atoms of I, there exists an extension h′ of h that maps
Ψ(X,Z) to atoms of I.

NCs. A negative constraint (NC) ν is a first-order rule that allows to express
negation:

ν : ∀X Φ(X) → ⊥ with X ⊆ V,

where Φ(X) a conjunction of atoms; formula Φ is usually referred to as the body
of ν. An instance I for R satisfies ν, denoted I |= ν, if for each homomorphism
h, h(Φ(X,Y)) �⊆ I holds.

EGDs. An equality-generating dependency (EGD) μ is a first-order rule of the
form:

μ : ∀XΦ(X) → Xi = Xj with Xi,Xj ∈ X ⊆ V,

where Φ(X) is conjunction of atoms; as above, formula Φ is usually referred to as
the body of μ. An instance I for R satisfies μ, denoted I |= μ, if whenever there
is a homomorphism h such that h(Φ(X,Y))⊆ I, it holds that h(Xi)= h(Xj).

In the following, we will sometimes omit the universal quantification in front
of TGDs, NCs, and EGDs, and assume that all variables appearing in their
bodies are universally quantified. We will sometimes use the words constraints
and dependencies to refer to NCs and EGDs.



70 M. V. Martinez and G. I. Simari

Programs and Ontologies. A Datalog+/– program Σ is a finite set ΣT ∪ ΣNC ∪
ΣE of TGDs, NCs, and EGDs. The schema of Σ, denoted R(Σ), is the set of
predicates occurring in Σ. A Datalog+/– ontology KB = (D, Σ) consists of a
finite database D and a Datalog+/– program Σ. The following example illus-
trates a simple Datalog+/– ontology, used in the sequel as a running example.

Example 1. Consider the ontology KB = (D,Σ), where D and Σ = ΣT ∪ ΣE

are defined as follows:
ΣT = { r1 : restaurant(R) → business(R),

r2 : restaurant(R) → ∃F food(F ) ∧ serves(R,F ),
r3 : restaurant(R) → ∃C cuisine(C) ∧ restaurantCuisine(R,C),
r4 : business(B) → ∃C city(C) ∧ locatedIn(B,C),
r5 : city(C) → ∃D country(D) ∧ locatedIn(C,D)},

ΣE = { locatedIn(X,Y ), locatedIn(X,Z) → Y = Z},

D = { food(bifeDeChorizo), food(soupAlOignon),
foodType(meat), foodType(soup),
cuisine(argentine), cuisine(french),
restaurant(laCabrera), restaurant(laTartine),
city(buenosAires), city(paris),
country(argentina), country(france),
locatedIn(laCabrera, buenosAires),
serves(laCabrera, bifeDeChorizo), serves(laTartine, soupeAlOignon)}.

This ontology models a very simple knowledge base for restaurants—it could
be used, for instance, as the underlying model in an online recommendation and
reviewing system (e.g., in the style of TripAdvisor or Yelp). �

Models. The conjunction of the first-order sentences associated with the rules of
a Datalog+/– program Σ is denoted ΣP . A model of Σ is an instance for R(Σ)
that satisfies Σp. For a database D for R, and a set of TGDs Σ on R, the set
of models of D and Σ, denoted mods(D,Σ), is the set of all (possibly infinite)
instances I such that:

1. D ⊆ I, and
2. every σ ∈Σ is satisfied in I (i.e., I |= Σ).

The ontology is consistent if the set mods(D,Σ) is not empty.
The semantics of Σ on an input database D, denoted Σ(D), is a model I of

D and Σ such that for every model I ′ of D and Σ there exists a homomorphism
h such that h(I) ⊆ I ′; such an instance is called universal model of Σ w.r.t.
D. Intuitively, a universal model contains no more and no less information than
what the given program requires.

In general, there exists more than one universal model of Σ w.r.t. D, but the
universal models are (by definition) the same up to homomorphic equivalence,
i.e., for each pair of universal models M1 and M2, there exist homomorphisms



Explanation-Friendly Query Answering Under Uncertainty 71

h1 and h2 such that h1(M1) ⊆ M2 and h2(M2) ⊆ M1. Thus, Σ(D) is unique
up to homomorphic equivalence.

2.3 Conjunctive Query Answering

We now introduce conjunctive query answering for Datalog+/–. A conjunctive
query (CQ) over R has the form:

q(X) = ∃YΦ(X,Y),

where Φ(X,Y) is a conjunction of atoms (consisting also possibly of equalities,
but not inequalities) involving variables in X and Y, and possibly constants, but
without nulls, and q is a predicate not occurring in R. A Boolean CQ (BCQ)
over R is a CQ of the form q(), often written as the set of all its atoms, with-
out quantifiers. As mentioned above for the basic components of the language,
formulas q and Φ are sometimes referred to as the head and body of the query,
respectively.

The set of answers to a CQ q(X)= ∃YΦ(X,Y) over an instance I,
denoted q(I), is the set of all tuples t over Δ, for which there exists a homo-
morphism h : X∪Y→ Δ ∪ ΔN such that h(Φ(X,Y))⊆ I and h(X)= t. The
answer to a BCQ q() over a database instance I is Yes, denoted D |= q, if q(I) �= ∅.

Formally, query answering under TGDs, i.e., the evaluation of CQs and BCQs
on databases under a set of TGDs is defined as follows. The set of answers to
a CQ q over a database D and a set of TGDs Σ, denoted ans(q,D,Σ), is the
set of all tuples t such that t ∈ q(I) for all I ∈mods(D,Σ). The answer to a
BCQ q over D and Σ is Yes, denoted D ∪ Σ |= q, if ans(q,D,Σ) �= ∅. Note that
for query answering, homomorphically equivalent instances are indistinguish-
able, i.e., given two instances I and I ′ that are the same up to homomorphic
equivalence, q(I) and q(I ′) coincide. Therefore, queries can be evaluated on any
universal model.

The decision problem of CQ answering is defined as follows: given a database
D, a set Σ of TGDs, a CQ q, and a tuple of constants t, decide whether t ∈
ans(q,D,Σ).

For query answering of BCQs in Datalog+/– with TGDs, adding negative
constraints is computationally easy, as for each constraint ∀XΦ(X)→ ⊥ one only
has to check that the BCQ ∃XΦ(X) evaluates to false in D under Σ; if one of
these checks fails, then the answer to the original BCQ q is true, otherwise the
constraints can simply be ignored when answering the BCQ q.

Adding EGDs over databases with TGDs along with negative constraints
does not increase the complexity of BCQ query answering as long as they are
non-conflicting [17]. Intuitively, this ensures that, if the chase (described next)
fails (due to strong violations of EGDs), then it already fails on the database,
and if it does not fail, then whenever “new” atoms are created in the chase by
the application of the EGD chase rule, atoms that are logically equivalent to the
new ones are guaranteed to be generated also in the absence of the EGDs, guar-
anteeing that EGDs do not influence the chase with respect to query answering.



72 M. V. Martinez and G. I. Simari

Therefore, from now on, we assume that all the fragments of Datalog+/– have
non-conflicting rules.

There are two main ways of processing rules to answer queries: forward chain-
ing (the chase) and backward chaining, which uses the rules to rewrite the query
in different ways with the aim of producing a query that directly maps to the
facts. The key operation is the unification between part of a current goal (a con-
junctive query or a fact) and part of a rule. Here, we will only cover the chase
procedure, which is described next.

The TGD Chase. Query answering under general TGDs is undecidable [9]
and the chase is used as a procedure to do query answering for Datalog+/–.
Given a program Σ with only TGDs (see [17] for further details and for an
extended chase with also EGDs), Σ(D) can be defined as the least fixpoint of a
monotonic operator (modulo homomorphic equivalence). This can be achieved
by exploiting the chase procedure, originally introduced for checking implication
of dependencies, and for checking query containment [28]. Roughly speaking, it
executes the rules of Σ starting from D in a forward chaining manner by inferring
new atoms, and inventing new null values whenever an existential quantifier
needs to be satisfied. By “chase”, we refer both to the procedure and to its
output.

Let D be a database and σ a TGD of the form Φ(X,Y) → ∃ZΨ(X, Z). Then,
σ is applicable to D if there exists a homomorphism h that maps the atoms of
Φ(X,Y) to atoms of D. Let σ be applicable to D, and h1 be a homomorphism
that extends h as follows: for each Zj ∈ Z, h1(Zj) = zj , where zj is a “fresh”
null, i.e., zj ∈ ΔN , zj does not occur in D, and zj lexicographically follows all
other nulls already introduced. The application of σ on D adds to D the atom
h1(Ψ(X,Z)) if not already in D. The chase rule described above is also called
oblivious.

The chase algorithm for a database D and a set of TGDs Σ consists of an
exhaustive application of the TGD chase rule in a breadth-first (level-saturating)
fashion, which outputs a (possibly infinite) chase for D and Σ.

Formally, the chase of level up to 0 of D relative to Σ, denoted chase0(D,Σ),
is defined as D, assigning to every atom in D the (derivation) level 0. For every
k � 1, the chase of level up to k of D relative to Σ, denoted chasek(D,Σ), is
constructed as follows: let I1, . . . , In be all possible images of bodies of TGDs
in Σ relative to some homomorphism such that (i) I1, . . . , In ⊆ chasek−1(D,Σ)
and (ii) the highest level of an atom in every Ii is k − 1; then, perform every
corresponding TGD application on chasek−1(D,Σ), choosing the applied TGDs
and homomorphisms in a (fixed) linear and lexicographic order, respectively, and
assigning to every new atom the (derivation) level k. The chase of D relative
to Σ, denoted chase(D,Σ), is defined as the limit of chasek(D,Σ) for k → ∞.
This, possibly infinite chase, is a universal model of D and Σ, i.e., there is a
homomorphism from chase(D,Σ) onto every B ∈mods(D,Σ) [17]—Fig. 2 pro-
vides an illustration. Thus, BCQs q over D and Σ can be evaluated on the chase
for D and Σ, i.e., D ∪Σ |= q is equivalent to chase(D,Σ) |= q. We will assume



Explanation-Friendly Query Answering Under Uncertainty 73

Fig. 2. The chase procedure yields a data structure—also commonly referred to as the
chase—that allows to answer queries to a Datalog+/– ontology; it is a universal model,
which means that it homomorphically maps to all possible models of the ontology.

that the nulls introduced in the chase are named via Skolemization—this has
the advantage of making the chase unique; ΔN is therefore the set of all possible
nulls that may be introduced in the chase.

Example 2. Figure 3 shows the application of the chase procedure over the
Datalog+/– ontology from Example 1. As an example, the TGD r1 is appli-
cable in D, since there is a mapping from atoms restaurant(laCabrera) and
restaurant(laTartine) to the body of the rule. The application of r1 generates
atoms business(laCabrera) and business(laTartine).

Consider the following BCQ:

q()= ∃X restaurant(laTartine) ∧ locatedIn(laTartine,X),

asking if there exists a location for restaurant laTartine. The answer is Yes;
in the chase, we can see that after applying TGDs r1 and r4, we obtain the
atom locatedIn(laTartine, z6), where z6 is a null—we would also obtain the same
answer, if we ask for restaurant laCabrera, because atom locatedIn(laCabrera, z5)
is also produced.

Now, consider the CQ:

q′(X,Y )= restaurant(X) ∧ locatedIn(X,Y );



74 M. V. Martinez and G. I. Simari

Fig. 3. The chase for the ontology in Example 1. The atoms in boxes with thicker
border are part of the database, while those with dotted lines correspond to atoms
with null values (denoted with zi). The arrows point to the mapping of z5 to the
constant “buenosAires” during the chase procedure.

in this case, we only obtain one answer, namely (laCabrera, buenosAires), since
null z5 eventually maps to buenosAires. In the case of laTartine, we do not
obtain an answer corresponding to the city where it is located: we know there
exists a city, but we cannot say which one it is; in every model of KB , z6 may
take a different value from the domain. This can be seen in the chase (a uni-
versal model of KB), since z6 does not unify with a constant after “chasing” D
with Σ. �

Computational Complexity. The following complexity measures, partially
proposed by Vardi [49], are commonly adopted in the literature:



Explanation-Friendly Query Answering Under Uncertainty 75

– The combined complexity of CQ answering is calculated by considering all the
components—the database, the set of dependencies, and the query—as part
of the input.

– The bounded-arity combined complexity (or ba-combined complexity) is calcu-
lated by assuming that the arity of the underlying schema is bounded by an
integer constant. In the context of DLs, the combined complexity is equiva-
lent to the ba-combined complexity, since the arity of the underlying schema
is at most two. In practical applications, the schema is usually small, and it
can safely be assumed to be fixed—therefore, in this case the arity is also
fixed.

– The fixed-program combined complexity (or fp-combined complexity) is calcu-
lated by considering the set of constraints to be fixed.

– The data complexity is calculated by taking only the database as input.

Some key facts about complexity and decidability of query answering with TGDs:
(i) under general TGDs, the problem is undecidable [9], even when the query
and set of dependencies are fixed [14]; (ii) the two problems of CQ and BCQ
evaluation under TGDs are logspace-equivalent [13]; and (iii) the query output
tuple (QOT) problem (as a decision version of CQ evaluation that asks if a
tuple belongs to the output) and BCQ evaluation are AC0-reducible to each
other. Given the last two points, we focus only on BCQ evaluation, and any
complexity results carry over to the other problems.

2.4 Datalog+/– Fragments: In Search of Decidability and
Tractability

We now briefly discuss different restrictions that are designed to ensure decid-
ability and tractability of conjunctive query answering with TGDs. While the
addition of existential quantifiers in the heads of rules accounts for the “+” in
Datalog+/–, these restrictions account for the “–”.

Generally, restrictions can be classified into either abstract (semantic) or
concrete (syntactic) properties. Three abstract properties are considered in [6]:
(i) the chase is finite, yielding finite expansion sets (fes); (ii) the chase may
not halt but the facts generated have a tree-like structure, yielding bounded
tree-width sets (bts); and (iii) a backward chaining mechanism halts in finite
time, yielding finite unification sets (fus). Other abstract fragments are: (iv)
parsimonious sets (ps) [33], where the main property for this class is that the
chase can be precociously terminated, and (v) weakly-chase-sticky TGDs [39]
that considers information about the finiteness of predicate positions (positions
are infinite if there is an instance D for which an unlimited number of different
values appear in that position during the chase).

The main conditions on TGDs that guarantee the decidability of CQ answer-
ing are: (i) guardedness [13,15], (ii) stickiness [16], and (iii) acyclicity—each
of these classes has a “weak” counterpart: weak guardedness [14], weak sticki-
ness [16], and weak acyclicity [22,23]. Finally, other classes that fall outside this
main classification are Full TGDs (those that do not have existentially quantified



76 M. V. Martinez and G. I. Simari

variables), Tame TGDs [27] (a combination of the guardedness and sticky-join
properties), and Shy TGDs [33] (the shyness property holds if during the chase
procedure nulls do not meet each other to join but only to propagate—nulls thus
propagate from a single atom).

We refer the reader to [48] and [47] for a more complete discussion of known
classes, a summary of the currently known containment relations between classes,
and summaries of known complexity results.

3 Query Answering over Probabilistic Knowledge Bases

We begin by addressing query answering under probabilistic uncertainty. In
Sect. 3.1 we provide a very brief overview of some well-known probabilistic graph-
ical models; Sect. 3.2 is devoted to presenting the basics of the probabilistic
Datalog+/– model, and finally Sect. 3.3 outlines paths towards deriving expla-
nations to query answers over this framework.

3.1 Brief Overview of Basic Probabilistic Graphical Models

In the spirit of making this document relatively self-contained, we now provide a
quick introduction to a few basic probabilistic graphical models. Such models are
essentially ways to specify joint probability distributions over a set of random
variables, based on graph structures—they will come into play when defining
the semantics of Probabilistic Datalog+/– (cf. Sect. 3.2).

For each of the models, we assume we have a (finite) set of random vari-
ables X = {X1, . . . , Xn}. Each random variable Xi may take on values from a
finite domain Dom(Xi). A value for X = {X1, . . . , Xn} is a mapping x : X →⋃n

i=1 Dom(Xi) such that x(Xi) ∈ Dom(Xi); the domain of X, denoted Dom(X),
is the set of all values for X. We are generally interested in modeling the joint
probability distribution over all values in x ∈ Dom(X), which we denote Pr(x).
We thus have that 0 � Pr(x) � 1 for all x ∈ Dom(X), and

∑
x∈X Prx = 1.

Bayesian Networks. A Bayesian Network (BN, for short) is comprised of: (i)
A directed acyclic graph in which each node corresponds to a single random
variable in X (and vice versa). If there is an edge from Xi to Xj , we say that Xi

is a parent of Xj—this represents a direct dependence between the two variables.
(ii) A conditional probability distribution Pr(Xi|Parents(Xi)) for each node Xi,
also sometimes called a node probability table.

One of the advantages of the BN model is that the graph structure encodes
the probabilistic dependence between variables. For instance, each variable is
independent of its non-descendents if we are given values for its parents. There-
fore, the probability for any value x = (x1, ..., xn) ∈ Dom(X) can be computed
as follows:

Pr(x1, ..., xn) =
n∏

i=1

Pr
(
xi | par-val(Xi)

)
,



Explanation-Friendly Query Answering Under Uncertainty 77

where par-val(Xi) denotes the values of the variables in Parents(Xi). More-
over, the absence of an edge between nodes represents conditional independence
between the corresponding variables—the details of how such independence is
characterized are non-trivial, and we refer the interested reader to the vast
amount of material on BNs (cf. [41] for one of the earliest sources). Knowing
the details behind variable (in)dependence is of great value if one is interested
in tractable algorithms for computing probabilities, since the probability of the
conjunction of independent variables is simply the product of their probabilities.

The most common problems (or probabilistic queries) associated with BNs
are the following:

– PE (Probability of evidence, also known as inference): Compute the proba-
bility of a group of variables having a specific value. This problem is #P-
complete.

– MAP (Maximum A posteriori Probability): Given evidence e over variables
E ⊂ X, and variables Y ⊆ X−E, compute the value of y of Y that maximizes
Pr(Y = y|E). This problem is NPPP-complete in its decision version.

– MPE (Most Probable Explanation): Given evidence, find the assignment of
values to the rest of the variables that has the highest probability. This prob-
lem is NP-complete in its decision version.

Even though all of these problems are computationally intractable in general,
there exist special cases for which they can be solved in polynomial time, either
exactly or approximately.

Markov Random Fields. A Markov Random Field (MRF) [41] (sometimes
also referred to as Markov Network) is a probabilistic model that is similar to a
Bayesian network (BN) in that it includes a graph G = (V,E) in which each node
corresponds to a variable, but, differently from a BN, the graph is undirected; in
an MRF, two variables are connected by an edge in G iff they are conditionally
dependent. Furthermore, the model contains a potential function φi for each
(maximal) clique in the graph; potential functions are non-negative real-valued
functions of the values of the variables in each clique (called the state of the
clique). Here, we assume the log-linear representation of MRFs, which involves
defining a set of features of such states; a feature is a real-valued function of
the state of a clique (we only consider binary features in this work). Given a
value x ∈ Dom(X) and a feature fj for clique j, the probability distribution
represented by an MRF can be computed as follows:

P (X = x) =
1
Z

exp

⎛

⎝
∑

j

wj · fj(x)

⎞

⎠ ,

where j ranges over the set of cliques in the graph G, and wj = log φj(x{j})
(here, x{j} is the state of the j-th clique in x). The term Z is a normalization
constant to ensure that the values given by the equation above are in [0, 1] and



78 M. V. Martinez and G. I. Simari

sum to 1; it is given by:

Z =
∑

x∈Dom(X)

exp

⎛

⎝
∑

j

wj · fj(x)

⎞

⎠ .

Probabilistic inference in MRFs is intractable (#P-complete); however, approx-
imate inference mechanisms, such as Markov Chain Monte Carlo (discussed
briefly below), have been developed and successfully applied to problems in
practice.

Markov Logic. Markov Logic Networks (MLNs) [45], also sometimes referred
to as Markov Logic, combine first-order logic with Markov Random Fields. The
main idea behind MLNs is to provide a way to soften the constraints imposed
by a set of classical logic formulas. Instead of considering possible worlds that
violate some formulas to be impossible, we wish to make them less probable.
An MLN is a finite set L of pairs (Fi, wi), where Fi is a formula in first-order
logic, and wi is a real number. Such a set L, along with a finite set of constants
C = {c1, . . . , cm}, defines a Markov network ML,C that contains: (i) one binary
node corresponding to each element of the Herbrand base of the formulas in L
(i.e., all possible ground instances of the atoms), where the node’s value is 1 iff
the atom is true; and (ii) one feature for every possible ground instance of a
formula in L. The value of the feature is 1 iff the ground formula is true, and
the weight of the feature is the weight corresponding to the formula in L. From
this characterization and the description above of the graph corresponding to an
MN, it follows that ML,C has an edge between any two nodes corresponding to
ground atoms that appear together in at least one formula in L. Furthermore,
the probability of x ∈ Dom(X) in ML,C and thus in the MLN is defined by
P (X = x) = 1

Z exp(
∑

j wj ·nj(x)), where nj(x) is the number of ground instances
of Fj made true by x, and Z is defined analogously as above. This formula can
be used in a generalized manner to compute the probability of any setting of a
subset of random variables X ′ ⊆ X, as we show below.

Example 3. Consider the following simple MLN:

ψ1: (p(X) ⇒ q(X), 0.5),
ψ2: (p(X) ⇒ r(X), 2),
ψ3: (s(X) ⇒ r(X), 4).

Suppose we have s single constant a; grounding the formulas above relative to
set of constants {a}, we obtain the set of ground atoms

{p(a), q(a), r(a), s(a)}.

Similarly, if we had two constants, a and b, we would get:

{p(a), q(a), r(a), s(a), p(b), q(b), r(b), s(b)}.



Explanation-Friendly Query Answering Under Uncertainty 79

Fig. 4. The graphical representation of the MRF for the MLN from Example 3 (instan-
tiated with set of constants {a, b}). There is one Boolean random variable for each
ground atom in the grounding of the formulas ψ1, ψ2, and ψ3 with respect to the set
of constants. The dotted lines show the different cliques in the graph.

The graphical representation of the MRFs corresponding to these groundings
are shown in Fig. 4.

Consider the former (with respect to a single constant). This MRF represents
a probability distribution over the possible Boolean values for each node. Given
that there are four ground atoms, there are 24 = 16 possible settings of the
variables in the MRF; Fig. 5 shows all such possible settings, along with other
information used to compute probabilities. The normalizing factor Z is the sum
of the probabilities of all worlds, which is computed as shown above by summing
the exponentiated sum of weights times the number of ground formulas satisfied
(equivalent to summing e to the power of each number in the “potential” column
in Fig. 5), yielding Z ≈ 5593.0623. Similarly, the probability that a formula, such
as p(a)∧ q(a)∧¬s(a), holds is the sum of the probabilities that all the satisfying
worlds hold, which in this case corresponds to the worlds 13 and 15 (cf. Fig. 5);
the resulting probability is e4.5+e0.5

5593.0623 ≈ 0.0265. �

Markov Chains. Lastly, we wish to briefly mention a somewhat different model
that is geared towards dynamically evolving systems. A Markov Chain (MC, for
short), is a stochastic process {Xn}, with n ∈ N ∪ {0}—essentially, an MC is
a sequence of states, or values of variables. The Markov property holds if it is
always the case that given n ∈ N ∪ {0} and states x0, x1, ..., xn, xn+1, we have:

Pr(Xn+1 = xn+1 |Xn = xn, ...,X0 = x0) = Pr(Xn+1 = xn+1 |Xn = xn).

That is, the distribution of conditional probability of future states only depends
on the current state; this property is also sometimes referred to as memoryless.

MCs can be represented as sequences of graphs where the edges of graph n
are labeled with the probability of going from one state at moment n to other
states at moment n + 1:

Pr(Xn+1 = x |Xn = xn).



80 M. V. Martinez and G. I. Simari

λi p(a) q(a) r(a) s(a) Satisfies Potential Probability

1 false false false false ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
2 false false false true ψ1, ψ2 0.5 + 2 = 2.5 e2.5/Z ≈ 0.002
3 false false true false ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
4 false false true true ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
5 false true false false ψ1, ψ2 0.5 + 2 = 2.5 e2.5/Z ≈ 0.002
6 false true false true ψ1, ψ2 0.5 + 2 = 2.5 e2.5/Z ≈ 0.002
7 false true true false ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
8 false true true true ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
9 true false false false 0 e0/Z ≈ 0
10 true false false true 0 e0/Z ≈ 0
11 true false true false ψ2, ψ3 2 + 4 = 6 e6/Z ≈ 0.072
12 true false true true ψ2, ψ3 2 + 4 = 6 e6/Z ≈ 0.072
13 true true false false ψ1, ψ3 0.5 + 4 = 4.5 e4.5/Z ≈ 0.016
14 true true false true ψ1 0.5 e0.5/Z ≈ 0
15 true true true false ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119
16 true true true true ψ1, ψ2, ψ3 0.5 + 2 + 4 = 6.5 e6.5/Z ≈ 0.119

Fig. 5. Details of how to compute potentials for each possible setting of the random
variables (worlds) of the MRF for the MLN from Example 3 (grounded with a single
constant).

The same information can be represented via a transition matrix M where

M [i, j] = Pr(Xn+1 = xj |Xn = xi).

Taking the power of this matrix with itself iteratively, we can answer queries
regarding the probability that the system will be in a certain state after several
time steps. One of the most important classes of MCs are the ones for which a
stationary distribution exists—one that is invariant over time—since they repre-
sent stable stochastic processes.

One of the most important applications of MCs is as the basis of the Markov
Chain Monte Carlo (MCMC) family of algorithms, which are random walk-
based traversals of the state space that can be used to sample from an unknown
probability distribution, thus arriving at approximations of the distribution itself
or of queries of interest.

Brief Comparison Among Models. As a quick comparison of the strengths
and weaknesses of the four models that we introduced above, we can point out
a few salient aspects:

– Bayesian Networks are useful when identified dependencies are acyclic, and
information is available regarding conditional dependencies (i.e., the structure
of the graph, plus the probability tables).

– Markov Random Fields are more flexible in that they allow cycles and proba-
bilities are derived from weights. The disadvantage associated with the latter
is that the relationship between weights and probabilities is not always clear.



Explanation-Friendly Query Answering Under Uncertainty 81

– Markov Logic Networks are essentially first order templates for MRFs; their
main strength with respect to them is that a model can be derived given a
set of constants, which can change depending on the situation in which it is
intended for.

– One of the main applications of Markov Chains is as the basis of Markov Chain
Monte Carlo (MCMC) methods that can be used to approximate unknown
distributions, or distributions that are specified by other models like Bayesian
Networks or Markov Random Fields that are intractable to compute exactly,
or dynamical systems for which a closed form solution may not be possible.

As we will see in the next section, these and other probabilistic models can
be leveraged as part of extended logic-based languages in order to deal with
uncertainty in a principled manner.

Learning Models from Data. There are many, many different approaches
and algorithms available for automatically or semi-automatically deriving these
and other probabilistic models from available data—even a cursory treatment
is outside the scope of this work. We refer the reader to the vast literature on
these topics that has been developing for many years; good starting points can
be found at [8] and [50].

3.2 Probabilistic Datalog+/–

In this section, considering the basic setup from Sects. 2 and 3.1, we introduce
the syntax and the semantics of probabilistic Datalog+/–.

Syntax
As in Sect. 2, we assume an infinite universe of (data) constants Δ, an infinite
set of labeled nulls ΔN , and an infinite set of variables V. Furthermore, as in
Sect. 3.1, we assume a finite set of random variables X. Informally, a probabilistic
Datalog+/– ontology consists of a finite set of probabilistic atoms, probabilis-
tic TGDs, probabilistic negative constraints, and probabilistic separable EGDs,
along with a probabilistic model that yields a full joint distribution over the
values in ×|X|

i=1dom(Xi).
We first define probabilistic annotations and more specifically worlds. Intu-

itively, a probabilistic annotation λ is an assignment of values xi to random
variables Xi, representing the event in the probabilistic model where the Xi’s
have the value xi. In particular, a world assigns a value to each random variable.
In general, we use true and false to refer to the values 1 and 0 of Boolean random
variables, respectively; furthermore, to simplify notation, we use X and ¬X to
denote X = true and X = false, respectively.

Definition 1. A (probabilistic) annotation λ is a (finite) set of expressions
Xi =xi, where Xi ∈ X, xi ∈Dom(Xi), and the Xi’s are pairwise distinct. If
|λ|= |X|, then λ is a world. We denote by worlds(M) the set of all worlds of a
probabilistic model M .



82 M. V. Martinez and G. I. Simari

We next attach probabilistic annotations λ to classical Datalog+/– formulas
F to produce annotated formulas F : λ. Intuitively, F holds whenever the event
associated with λ occurs. Note that whenever a random variable’s value is left
unspecified in a probabilistic annotation, the variable is unconstrained; in par-
ticular, a formula annotated with an empty probabilistic annotation means that
the formula holds in every world. As we discuss in detail in Sect. 3.2, this kind
of annotation works much in the same way as in many other probabilistic for-
malisms where possible worlds are induced via probabilistic distributions coming
from outside the model; typical examples are the independent choice logic [42],
P-LOG [7], and background variables in Bayesian networks (where probabilities
come from exogenous events) [41].

Definition 2. If a is an atom, σT is a TGD, σNC is a negative constraint, σE

is an EGD, and λ is a probabilistic annotation, then: (i) a : λ is a probabilistic
atom; (ii) σT : λ is a probabilistic TGD; (iii) σNC : λ is a probabilistic (negative)
constraint; and (iv) σE : λ is a probabilistic EGD. We also refer to probabilistic
atoms, TGDs, (negative) constraints, and EGDs as annotated formulas. Anno-
tated formulas of the form F : {} are abbreviated as F .

We are now ready to define the notion of a probabilistic Datalog+/– ontology.

Definition 3. A probabilistic Datalog+/– ontology is a pair Φ = (O,M),
where O is a finite set of probabilistic atoms, TGDs, (negative) constraints,
and EGDs, and M is a probabilistic model.

Loosely vs. Tightly Coupled Ontologies. There are two ways in which probabilistic
annotations can be combined with formulas: in loosely coupled ontologies, anno-
tations cannot refer to elements in the ontology (the scope of variables reaches
only the ontology or the annotation). As can be seen in the results in [29], this
is an advantage from the complexity point of view, since the cost of computing
probabilities in the probabilistic model does not grow with the database; how-
ever, it also represents a limitation in expressive power of the formalism. On the
other hand, in tightly coupled probabilistic Datalog+/– variables in annotations
can be shared with those in Datalog+/– formulas; an early version of this idea
can be found in [34], which develops the same concept for EL++ ontologies.

The annotation of Datalog+/– formulas offers a clear modeling advantage
by separating the two tasks of ontological modeling and of modeling the uncer-
tainty around the axioms in the ontology. More precisely, in our formalism, it is
possible to express the fact that the probabilistic nature of an ontological axiom
is determined by elements that are outside of the domain modeled by the ontol-
ogy. The probabilistic distribution of events (and existence of certain objects,
for instance as part of a heuristic process) is a separate concern relative to the
knowledge encoded in the “classical part” of the ontology.

In the rest of this section, we will resort to the following as a running example.



Explanation-Friendly Query Answering Under Uncertainty 83

α1 : a(x1) : {p(a), s(a)}
α2 : b(x2) : {p(a), s(a), ¬r(a)}
α3 : d(x3) : {p(a), q(a), ¬s(a)}

σ1 : a(X) → c(X) : {r(a)}
σ2 : b(X) → d(X) : {q(a)}
σ3 : a(X) → ∃Y p(X, Y )

υ1 : a(X) ∧ b(Y ) → X = Y
υ2 : b(X) ∧ c(X) → ⊥

Fig. 6. The probabilistic Datalog+/– ontology from Example 4.

Example 4. Let the Datalog+/– ontology O = (D,ΣT ∪ ΣE ∪ ΣNC ) be given
by the database D, set of TGDs ΣT , set of EGDs ΣE , and set of (negative)
constraints ΣNC :

D = {a(x1), b(x2), d(x3)};
ΣT = {σ1 : a(X) → c(X), σ2 : b(X) → d(X), σ3 : a(X) → ∃Y p(X,Y )};
ΣE = {υ1 : a(X) ∧ b(Y ) → X = Y };

ΣNC = {υ2 : b(X) ∧ c(X) → ⊥}.

Furthermore, consider the MLN M from Example 3. The annotated formulas in
Fig. 6 are the result of annotating the formulas in the Datalog+/– ontology with
expressions assigning true or false to a subset of the random variables that arise
from the atoms described above: {p(a), q(a), r(a), s(a)}. Recall that annotated
formulas F : {} are abbreviated as F ; they hold irrespective of the setting of the
random variables. �

As described next, worlds induce certain subontologies of a probabilistic
Datalog+/– ontology, according to whether or not they satisfy the annotation
of each formula.

Definition 4. Let Φ = (O,M) be a probabilistic Datalog+/−− ontology and λ
be a world. Then, the (non-probabilistic) Datalog+/−− ontology induced from
Φ by λ, denoted Oλ, is the set of all Fi such that λi ⊆ λ for some Fi : λi ∈ O;
any such Fi is relevant in λ.

In the sequel, we consider only probabilistic Datalog+/– ontologies Φ =
(O,M) in which the EGDs in every induced ontology Oλ are separable from
the TGDs in Oλ.

The notion of decomposition of a probabilistic ontology provides a convenient
way of referring to its constituent subontologies with respect to the worlds.



84 M. V. Martinez and G. I. Simari

Definition 5. Let Φ = (O,M) be a probabilistic Datalog+/−− ontology. Then,
the decomposition (or decomposed form) of Φ, denoted decomp(Φ), is defined as
follows:

decomp(Φ) = ([Oλ1 , . . . , Oλn
],M),

where worlds(M) = {λ1, . . . , λn}. To simplify notation, we assume that the
worlds are ordered according to a lexicographical order of the values of the vari-
ables, and therefore the i-th ontology in a decomposition corresponds to the i-th
world in this ordering.

Example 5. Consider the probabilistic Datalog+/– ontology Φ = (O,M), with
O = (D,Σ), from Example 4. There are 16 worlds, so the decomposition of Φ
has the form

decomp(Φ) =
(
[Oλ1 , . . . , Oλ16 ],M

)
.

For example, the world λ16 is determined by {p(a), q(a), r(a), s(a)}, while
λ14 is determined by {p(a), q(a),¬ r(a), s(a)}. It is then easy to see that
Oλ16 = ({α1}, Σ) and Oλ14 = ({α1, α2}, Σ − {σ1}). �

We now define the canonical composition, the inverse of the decomposition.

Definition 6. Let Ψ = ([Oλ1 , . . . , Oλn
],M) be a probabilistic Datalog+/−−

ontology in decomposed form. Then, the canonical composition of Ψ , denoted
decomp−1(Ψ), is the probabilistic Datalog+/−− ontology Φ = (

⋃n
i=1{F : λi |

F ∈ Oλi
},M).

Example 6. Let Φdecomp = ([Oλ1 , . . . , Oλ16 ],M) be the probabilistic ontol-
ogy in decomposed form from Example 5. Although it is easy to verify that
decomp−1(Φdecomp) yields an ontology that is equivalent to Φ (from Exam-
ple 4), this ontology actually contains several instances of the same for-
mula, each with different annotations. For example, the atom α1 appears four
times, with the annotations {p(a), q(a),¬r(a),¬s(a)}, {p(a), q(a), ¬r(a), s(a)},
{p(a), q(a), r(a),¬s(a)}, and {p(a), q(a), r(a), s(a)}, respectively. �

Semantics
Towards the semantics of probabilistic Datalog+/– ontologies, we first define
classical interpretations and the satisfaction of annotated formulas in such inter-
pretations. The former consist of a database and a world in the probabilistic
model, while the latter is done by interpreting F : λ as F ⇐ λ̂ (or equivalently
F ∨ ¬λ̂), where λ̂ =

∧
Xi=xi∈λ Xi =xi.

Definition 7. A classical interpretation I = (D, v) consists of a database D and
a value v ∈D(X). We say that I satisfies an annotated formula F : λ, denoted
I |= F : λ, iff D |= F whenever v(Xi)= xi for all Xi =xi ∈ λ.

We next define probabilistic interpretations Pr as finite probability distri-
butions over classical interpretations, and the probability of formulas and their
satisfaction in such Pr , as usual. Here, formulas are either annotated formu-
las (including classical Datalog+/– formulas as a special case) or events in the



Explanation-Friendly Query Answering Under Uncertainty 85

probabilistic model (i.e., Boolean combinations of expressions Xi = xi, where
Xi ∈X and xi ∈Dom(Xi)). Furthermore, we define the satisfaction of proba-
bilistic Datalog+/– ontologies in Pr , where (i) all annotated formulas in the
ontology are satisfied by Pr , and (ii) the probabilities that Pr assigns to worlds
coincide with those of the probabilistic model.

Definition 8. A probabilistic interpretation Pr is a probability distribution Pr
over the set of all classical interpretations such that only a finite number of
classical interpretations are mapped to a non-zero value. The probability of a
formula φ, denoted Pr(φ), is the sum of all Pr(I) such that I |= φ. We say
that Pr satisfies (or is a model of) φ iff Pr(φ)= 1. Furthermore, Pr is a model
of a probabilistic Datalog+/– ontology Φ= (O,M) iff: (i) Pr |=φ for all φ ∈O,
and (ii) Pr(λ̂)=PrM (λ̂) for all λ ∈worlds(M), where λ̂ is defined as above, and
PrM is the probability in the model M .

Here, we are especially interested in computing the probabilities associated
with ground atoms in a probabilistic Datalog+/– ontology, as defined next. Intu-
itively, the probability of a ground atom is defined as the infimum of the prob-
abilities of that ground atom under all probabilistic interpretations that satisfy
the probabilistic ontology.

Definition 9. Let Φ be a probabilistic Datalog+/– ontology, and a be a ground
atom constructed from predicates and constants in Φ. The probability of a in Φ,
denoted PrΦ(a), is the infimum of Pr(a) subject to all probabilistic interpreta-
tions Pr such that Pr |= Φ.

Based on this notion, we can define several different kinds of probabilistic
queries, as discussed next.

Queries to Probablistic Datalog+/– Ontologies
There are three kinds of queries that have been proposed in this model [29,35].
We now present a brief introduction to each of them, assuming we are given a
probabilistic Datalog+/– ontology Φ= (O,M).

– Threshold queries ask for the set of all ground atoms that have a probability
of at least p, where p is specified as an input of the query. So, the answers
to threshold query Q = (Φ, p) (with p ∈ [0, 1]) is the set of all ground atoms a
with PrΦ(a) � p.

– Ranking queries request the ranking of atomic consequences based on their
probability values. So, the answer to a ranking query Q = rank(KB) is a
tuple ans(Q) =

〈
a1, . . . , an

〉
such that {a1, . . . , an} are all of the atomic

consequences of Oλ for any λ ∈ Worlds(M), and i < j ⇒ PrKB (ai) �
PrKB (aj).

– Finally, probabilistic conjunctive queries are exactly as defined in Sect. 2,
except that its answers are accompanied by the probability value with which
it is entailed by Φ.

The following example illustrates each of these queries using the running
example.



86 M. V. Martinez and G. I. Simari

Example 7. Consider the probabilistic Datalog+/– ontology Φ = (O,M) from
Example 4, and the threshold query Q = (Φ, 0.15). As seen in Example 5, and
referring back to Fig. 5 for the computation of the probabilities, we have that
PrΦ(a(x1)) =≈ 0.191 and PrΦ(d(x3)) = 0.135. Therefore, the former belongs to
the output, while the latter does not.

The answer to query rank(KB) is: 〈a(x1), c(x1), d(x3), b(x2), d(x2)〉. Finally,
the answer to probabilistic conjunctive query Q(X) = a(X)∧c(X) is (x1, 0.191).

�

3.3 Towards Explainable Probabilistic Ontological Reasoning

As we discussed above, probabilistic Datalog+/– is an extension of “classical”
Datalog+/– with labels that refer to a probabilistic model—essentially, there are
two sub-models that are in charge of representing knowledge about the domain,
and these models can be either loosely or tightly coupled, depending on whether
or not they share objects. So, the question we would like to pose now is “What
constitutes an explanation for a query to a probabilistic Datalog+/– knowledge
base?”. As discussed in Sect. 1, the answer to this question will depend heavily
on whom the explanation is intended for, the application domain, the specific
formalism being used, and the kind of query. Note that there is some initial
work [18] on some variants of this problem as a generalization of MAP/MPE
queries (which were developed as kinds of explanations for probabilistic models)
for the special case of tuple-independent probabilistic databases.

Therefore, here we will focus on foundational aspects of designing expla-
nations for probabilistic Datalog+/–; the discussion will generally apply to all
queries presented on Page 20, unless stated otherwise. The basic building blocks
of reasoning with probabilities in our formalism are the following:

– The annotated chase structure: The extension of the chase, the main
algorithm used to answer queries in classical Datalog+/–, in order to take
into account probabilistic annotations is the annotated chase, a structure
that essentially keeps track of the probabilistic annotations required for each
step to be possible [29]. There two basic ways in which this can be done:

• Annotate each node with a Boolean array of size |Worlds(M)|; during the
execution of the chase procedure, annotations are propagated as infer-
ences are made. This is best for cases in which: (i) the number of worlds
is not excessively large, since the space used by the chase structure will
grow by a factor of |Worlds(M)|; or (ii) when a sampling-based approach
to approximate the probabilities associated with query answers is used,
since in this case the size of each array can be reduced to (a function of)
the number of samples.
Another advantage of this approach is that for models under which query-
ing the probability of a specific world is tractable (often referred to as
tractable probabilistic models), the Boolean array representation can be
used to clearly obtain either the exact or approximate probability mass
associated with each node of interest.



Explanation-Friendly Query Answering Under Uncertainty 87

• Annotate each node with a logical formula expressing the conditions that
must hold for the node to be inferrable. This approach is more compact
than the array-based method, since the size of the formulas are bounded
by the length of the derivation (at most the depth of the deepest span-
ning tree associated with the chase graph) and the length of the original
annotations in the probabilistic ontology. On the other hand, extracting
the specific worlds that make up the probabilistic mass associated with a
given atom (or set of atoms for a query) is essentially equivalent to solv-
ing a #SAT problem; for tractable probabilistic models there is a greater
chance of performing feasible computations, though the structure of the
resulting logical formula depends greatly on how rules interact—this is
the topic of ongoing work.

By analyzing the resulting data structure, one can extract a clear map of how
the probability of an atom is derived; this is discussed next.

– Probabilities of atomic formulas: The annotated chase yields several tools
that facilitate the provision of an explanation for the probability of an atom:

• Different derivation paths leading to the same result (or summaries).
• Examples of branches, perhaps highlighting well-separated ones to show

variety.
• Common aspects of worlds that make up most of the probability mass

(such as atoms in the probabilistic model that appear in most derivations).
In all cases, if we wish to provide a balanced explanation (as discussed above)
we can also focus on the dual situation, i.e., showing the cases in which the
atom in question is not derived. Note that all of these elements are available
independently of the specific probabilistic model used in the KB—depending
on the characteristics of the chosen model, other data might be available as
well.

– Probabilities of more complex queries: The previous point covered the
most basic probabilistic query (probability of atomic formulas); clearly, the
same approach is useful for threshold queries, which can be answered simply
by computing the probabilities of all atomic consequences and checking if
their associated probabilities exceed the threshold.
As discussed in the previous section, we have two other kinds of queries:

• Probabilistic conjunctive queries: The basic building blocks described for
atomic queries can be leveraged for the more complex case of conjunctive
queries. Depending on the kind of annotated chase graph used (as dis-
cussed above), the probability of a set of atoms that must be true at once
can be derived from that of each individual member. Opportunities for
explanations of why a query is derived or not derived may also include,
for instance, selecting one or more elements of the conjunction that are
responsible for lowering the resulting probability of the query.

• Ranking queries: The fundamental component of the result of a ranking
query is the relationship between the probabilities of atoms—the most
important question to answer regarding explanations of such results is:
for a given pair of atoms (a, b) such that a is ranked above b, why is it



88 M. V. Martinez and G. I. Simari

a > b and not b > a? The basic elements discussed above can be used to
shed light on this aspect.

Finally, sampling-based methods (for instance, taking into account a subset
of the worlds chosen at random) yield probability intervals instead of point
probabilities—the width of the resulting interval will be a function of the
number and probability mass of the worlds taken into account vs. those left
out [35]. So, explanations can involve examples or summaries of how the
probability mass gets to a minimum (lower bound) and, conversely, why the
maximum (upper bound) is not higher.

There is much work to be done in developing effective algorithms to lever-
age these and other building blocks for deriving explanations for probabilistic
queries. Furthermore, developing adequate user interfaces so that the resulting
explanations are useful is also a highly non-trivial task.

4 Inconsistency-Tolerant Query Answering with
Datalog+/–

In this section we discuss a general approach to inconsistency-tolerant query
answering in Datalog+/–; the material in this section is based mainly on [36].

We now discuss semantics for inconsistency-tolerant query answering that are
based on the ideas of [2] but from the perspective of the area of belief change,
which is an area of AI that is closely related to the management of inconsis-
tent information, aiming to adequately model the dynamics of the knowledge
that constitutes the set of beliefs of an agent when new information comes up.
In [31], kernel consolidations are defined based on the notion of an incision
function. Given a knowledge base KB that needs to be consolidated (i.e., KB is
inconsistent), the set of kernels is defined as the set of all minimal inconsistent
subsets of KB . For each kernel, a set of sentences is removed (i.e., an “incision” is
made) such that the remaining formulas in the kernel are consistent; note that it
is enough to remove any single formula from the kernel because they are minimal
inconsistent sets. The result of consolidating KB is then the set of all formulas
in KB that are not removed by the incision function. In this work, we present
a framework based on a similar kind of functions to provide alternative query
answering semantics in inconsistent Datalog+/– ontologies. The main difference
in our proposal is that incisions are performed over inconsistent subsets of the
ontology that are not necessarily minimal.

We analyze three types of incision functions that correspond to three different
semantics for query answering in inconsistent Datalog+/– ontologies: (i) consis-
tent answers or AR semantics [2,32], widely adopted in relational databases
and DLs, (ii) intersection semantics or IAR, which is a sound approximation
of AR [32], and (iii) a semantics first proposed in [36] that relaxes the require-
ments of AR semantics, allowing it to be computed in polynomial time for some
fragments of Datalog+/–, without compromising the quality of the answers as
much as the IAR semantics does, by allowing a certain budget within which the
answers can be computed.



Explanation-Friendly Query Answering Under Uncertainty 89

We first define the notion of a culprit relative to a set of constraints, which
is informally a minimal (under set inclusion) inconsistent subset of the database
relative to the constraints. Note that we define culprits relative to both nega-
tive constraints and EGDs, as ΣNC contains all EGDs written as NCs, as we
mentioned above.

Definition 10 (Culprit). Given a Datalog+/– ontology KB = (D,ΣT ∪ΣE ∪
ΣNC), a culprit in KB relative to ΣE∪ΣNC is a set c ⊆ D such that mods(c,ΣT ∪
IC) = ∅ for some IC ⊆ ΣE ∪ΣNC, and there is no c′ ⊂ c such that mods(c′, ΣT ∪
IC) = ∅. We denote by culprits(KB) the set of culprits in KB relative to
ΣE ∪ ΣNC.

Note that we may also refer to culprits(KB , IC) whenever we want to make
the point that IC is an arbitrary set of constraints or to identify a specific subset
of ΣE ∪ ΣNC. The following example shows a Datalog+/– ontology that we will
use as a running example through out the chapter.

The following example shows a simple Datalog+/– ontology; the language
and standard semantics for query answering in Datalog+/– ontologies is recalled
in the next section.

Example 8. A (guarded) Datalog+/– ontology KB = (D,ΣT ∪ΣE∪ΣNC) is given
below. Here, the formulas in ΣT are tuple-generating dependencies (TGDs),
which say that each person working for a department is an employee (σ1), each
person that directs a department is an employee (σ2), and that each person
that directs a department and works in that department is a manager (σ3). The
formulas in ΣNC are negative constraints, which say that if X supervises Y ,
then Y cannot be a manager (υ1), and that if Y is supervised by someone in a
department, then Y cannot direct that department (υ2). The formula υ3 ∈ΣE is
an equality-generating dependency (EGD), saying that the same person cannot
direct two different departments.

D = {directs(john, d1), directs(tom, d1), directs(tom, d2),
supervises(tom, john), works in(john, d1), works in(tom, d1)};

ΣT = {σ1 : works in(X, D) → emp(X), σ2 : directs(X, D) → emp(X),
σ3 : directs(X, D) ∧ works in(X, D) → manager(X)};

ΣNC = {υ1 : supervises(X, Y ) ∧ manager(Y ) → ⊥,
υ2 : supervises(X, Y ) ∧ works in(X, D) ∧ directs(Y, D) → ⊥};

ΣE = {υ3 : directs(X, D) ∧ directs(X, D′) → D = D′}.

We can easily see that this ontology is inconsistent. For instance, the atoms
directs(john, d1) and works in(john, d1) trigger the application of σ3, producing
manager(john), but that together with supervises(tom, john) (which belongs to
D) violates υ1. The set of culprits relative to ΣE ∪ ΣNC are:

c1 = {supervises(tom, john), directs(john, d1),works in(john, d1)},
c2 = {supervises(tom, john), directs(john, d1),works in(tom, d1)},
c3 = {directs(tom, d1), directs(tom, d2)} . �



90 M. V. Martinez and G. I. Simari

We construct clusters by grouping together all culprits that share elements.
Intuitively, clusters contain only information involved in some inconsistency rel-
ative to Σ, i.e., an atom is in a cluster relative to Σ iff it is in contradiction with
some other set of atoms in D.

Definition 11 (Cluster [38]). Given a Datalog+/– ontology KB = (D,ΣT ∪
ΣNC) and IC ⊆ ΣNC, two culprits c, c′ ∈ culprits(KB , IC) overlap, denoted
c Θ c′, iff c∩ c′ �= ∅. Denote by Θ∗ the equivalence relation given by the reflexive
and transitive closure of Θ. A cluster is a set cl =

⋃
c∈e c, where e is an equiv-

alence class of Θ∗. We denote by clusters(KB , IC) (resp., clusters(KB)) the set
of all clusters in KB relative to IC (resp., IC = ΣNC ).

Example 9. The clusters for KB in the running example are cl1 = c3 and cl2 =

c1 ∪ c2 (cf. Example 8 for culprits c1, c2, and c3). �
We now recall the definition of incision function from [31], adapted for

Datalog+/– ontologies. Intuitively, an incision function selects from each cluster
a set of atoms to be discarded such that the remaining atoms are consistent
relative to Σ.

Definition 12 (Incision Function). Given a Datalog+/– ontology
KB = (D,Σ), an incision function is a function χ that satisfies the following
properties:

(1) χ(clusters(KB)) ⊆ ⋃
cl∈clusters(KB) cl, and

(2) mods(D − χ(clusters(KB)), Σ) �= ∅.

Note that incision functions in [31] do not explicitly require condition (2)
from Definition 12; instead, they require the removal of at least one sentence
from each α-kernel. The notion of α-kernel [31] translates in our framework to
a minimal set of sentences in D such that, together with Σ, entails the sentence
α, where KB = (D,Σ). Culprits are then, no more than minimal subsets of D
that, together with Σ, entail ⊥. Here, χ produces incisions over clusters instead,
therefore, condition (2) is necessary to ensure that by making the incision, the
inconsistency is resolved.

4.1 Relationship with (Classical) Consistent Answers

In the area of relational databases, the notion of repair was used in order to
identify the consistent part of a possibly inconsistent database. A repair is a
model of the set of integrity constraints that is maximally close, i.e., “as close as
possible” to the original database. Repairs may not be unique, and in the general
case, there can be a very large number of them. The most widely accepted
semantics for querying a possibly inconsistent database is that of consistent
answers [2].

We now adapt one notion of repair from [32] to Datalog+/– ontologies
KB = (D,Σ). Intuitively, repairs are maximal consistent subsets of D. We also
show that BCQ answering under the consistent answer semantics is co-NP-
complete for guarded and linear Datalog+/– in the data complexity.



Explanation-Friendly Query Answering Under Uncertainty 91

Definition 13 (Repair). A repair for KB = (D,Σ) is a set D′ such that (i)
D′ ⊆D, (ii) mods(D′, Σ) �= ∅, and (iii) there is no D′′ ⊆D such that D′ ⊂ D′′

and mods(D′′, Σ) �= ∅. We denote by DRep(KB) the set of all repairs for KB .

Example 10. The Datalog+/– ontology KB in Example 8 has six repairs:
r1 = {directs(john, d1), supervises(tom, john), directs(tom, d1),manager(tom, d1)},
r2 = {directs(john, d1), supervises(tom, john), directs(tom, d2),manager(tom, d1)},
r3 = {directs(john, d1), directs(tom, d1),works in(john, d1),works in(tom, d1),

manager(tom, d2)},
r4 = {directs(john, d1), directs(tom, d2),works in(john, d1),works in(tom, d1),

manager(tom, d2)},
r5 = {supervises(tom, john), directs(tom, d1),works in(john, d1),

works in(tom, d1),manager(tom, d1)},
r6 = {supervises(tom, john), directs(tom, d2),works in(john, d1),

works in(tom, d1),manager(tom, d1)}. �

Repairs play a central role in the notion of consistent answer for a query
to an ontology, which are intuitively the answers relative to each ontology built
from a repair. The following definition adapts the notion of consistent answers,
defined in [32] for Description Logics, for Datalog+/– ontologies.

Definition 14 (Consistent Answers – AR Semantics). Let KB = (D,Σ)
be a Datalog+/– ontology, and Q be a BCQ. Then, Yes is a consistent answer
for Q to KB , denoted KB |=AR Q, iff it is an answer for Q to each KB ′ = (D′, Σ)
with D′ ∈DRep(KB).

Example 11. Consider the ontology KB from our running example. The atom
emp(john) can be derived from every repair, as each contains either the atom
works in(john, d1) or the atom directs(john, d1). Thus, BCQ Q= emp(john) is
true under the consistent answer semantics. �

In accordance with the principle of minimal change, incision functions that
make as few changes as possible when applied the set of clusters are called
optimal incision functions.

Definition 15 (Optimal Incision Function). Given a Datalog+/– ontology
KB = (D,Σ), an incision function χ is optimal iff for every B ⊂ χ(clusters(KB)),
it holds that mods(D − B,Σ) = ∅.

The following theorem shows the relationship between an optimal incision
function and repairs for a Datalog+/– ontology KB = (D,Σ). More concretely,
every repair corresponds to the result of removing from D all ground atoms
according to some optimal incision χ(clusters(KB)) and vice versa.

Theorem 1. Let KB = (D,Σ) be a Datalog+/– ontology. Then, D′ is a repair,
i.e., D′ ∈DRep(KB), iff there exists an optimal incision function χopt such that
D′ = D − χopt(clusters(KB)).



92 M. V. Martinez and G. I. Simari

4.2 Relationship with IAR Semantics

An alternative semantics that considers only the atoms that are in the intersec-
tion of all repairs was presented in [32] for DL-Lite ontologies. This semantics
yields a unique way of repairing inconsistency; the consistent answers are intu-
itively the answers that can be obtained from that unique set. Here, we define
IAR for Datalog+/– ontologies.

Definition 16 (Intersection Semantics – IAR). Let KB = (D,Σ) be a Da-
talog+/– ontology, and Q be a BCQ. Then, Yes is a consistent answer for Q to
KB under IAR, denoted KB |=IAR Q, iff it is an answer for Q to KBI = (DI , Σ),
where DI =

⋂ {D′ | D′ ∈ DRep(KB)}.

Example 12. Consider the ontology KB = (D,Σ) from the running exam-
ple. Analyzing the set of all its repairs, it is easy to verify that DI =
{manager(tom, d1)}. �

The following theorem shows the relationship between the incision function
χall, which is defined by χall(clusters(KB)) =

⋃
cl∈clusters(KB) cl, and consis-

tent answers under the IAR semantics. Intuitively, answers relative to IAR can
be obtained by removing from D all atoms participating in some cluster, and
answering the query using the resulting database.

Theorem 2. Let KB = (D,Σ) be a Datalog+/– ontology, and Q be a BCQ.
Then, KB |=IAR Q iff (D −χall(clusters(KB)) ∪ Σ |= Q.

4.3 Lazy Answers

In the following, we present a different semantics for consistent query answering
in Datalog+/– ontologies. The motivation to seek for a different semantics comes
from different reasons: first is the fact that computing the AR semantics is too
expensive for any reasonable-sized Datalog+/– ontology, and second, the IAR
semantics is unnecessarily restrictive in the set of answers that can be obtained
from a query. The k-lazy semantics is an alternative to classical consistent query
answering in Datalog+/– ontologies; the intuition behind lazy answers is that,
given a budget (the k parameter), a maximal set of consistent answers (maximal
relative to the k) can be computed, which are at least as complete as those that
can be obtained under IAR.

We first define the notion of k-cut of clusters. Let χk-cut be a function defined
as follows for cl ∈ cluster(KB):

χk-cut(cl) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{C1, . . . , Cm} m � 1, Ci ⊂ cl, |Ci| � k,
s.t. mods(cl − Ci, Σ) �= ∅
and � ∃C′

i s.t. C′
i ⊂ C and

mods(cl − C′
i, Σ) �= ∅};

{cl} if no such Ci exists.

(1)

Intuitively, given a cluster cl, its k-cut χk-cut(cl) is the set of minimal subsets of
cl of cardinality at most k, such that if they are removed from cl, what is left is
consistent with respect to Σ.



Explanation-Friendly Query Answering Under Uncertainty 93

We next use the k-cut of clusters to define a new type of incision functions,
called k-lazy functions, as follows.

Definition 17. Let KB = (D,Σ) be a Datalog+/– ontology, and k � 0. A k-lazy
function for KB is defined as χlazy(k, clusters(KB)) =

⋃
cl∈clusters(KB) ccl, where

ccl ∈ χk-cut(cl).

The above k-lazy functions are indeed incision functions.

Proposition 1. Let KB = (D,Σ) be a Datalog+/– ontology, and k � 0. All k-
lazy functions for KB are incision functions.

The function χlazy is the basis of lazy repairs, as defined next. Intuitively,
k-lazy repairs are built by analyzing ways in which to remove at most k atoms
in every cluster.

Definition 18 (k-Lazy Repair). Let KB = (D,Σ) be a Datalog+/– ontology,
and k � 0. A k-lazy repair for KB is any set D′ = D − χlazy(k, clusters(KB)),
where χlazy(k, clusters(KB)) is a k-lazy function for KB . LRep(k,KB) denotes
the set of all such repairs.

Example 13. Consider again our running example and the clusters in KB from
Example 9. Let k = 1, then we have that

χ1-cut(cl1) = {d1 : {directs(tom, d1)}, d2 : {directs(tom, d2)}},

and that

χ1-cut(cl2) = {e1 : {supervises(tom, john)}, e2 : {directs(john, d1)}}.

There are four possible incisions: ins1 = d1 ∪ e1, ins2 = d1 ∪ e2, ins3 = d2 ∪ e1,
and ins4 = d2 ∪ e2. Thus, there are four 1-lazy repairs, with lrepi = D − insi; for
example,

lrep1 = {directs(john, d1), directs(tom, d2),works in(john, d1),

works in(tom, d1),manager(tom, d1)}.

�

We can now define k-lazy answers for a query Q as the set of atoms that are
derived from every k-lazy repair.

Definition 19 (k-Lazy Answers). Let KB = (D,Σ) be a Datalog+/– ontol-
ogy, Q be a BCQ, and k � 0. Then, Yes is a k-lazy answer for Q to KB ,
denoted KB |=k-LCons Q, iff it is an answer for Q to each KB ′ = (D′, Σ) with
D′ ∈LRep(k,KB).

Note that k-LCons is used to identify the consistency-tolerant query answer-
ing semantics corresponding to k-lazy repairs. The following proposition states
some properties of k-lazy repairs and lazy answers: each lazy repair is consistent
relative to Σ, and only atoms that contribute to an inconsistency are removed
by a k-lazy function for KB .



94 M. V. Martinez and G. I. Simari

Proposition 2. Let KB = (D,Σ) be a Datalog+/– ontology, and k � 0. Then,
for every D′ ∈LRep(k,KB), (a) mods(D′, Σ) �= ∅, and (b) if β ∈ D and β �∈ D′,
then there exists some B ⊆D such that mods(B,Σ) �= ∅ and mods(B ∪
{β}, Σ)= ∅.

Proposition 2 shows that lazy repairs satisfy properties that are desirable
for any belief change operator to have [31]. However, the incisions performed by
function χlazy(k, clusters(KB)) are not always minimal relative to set inclusion;
i.e., if there is no subset of a cluster of size at most k that satisfies the conditions
in Definition 1, then the whole cluster is removed, and therefore not every lazy
repair is a repair.

The AR semantics from Definition 14 is a cautious semantics to query answer-
ing, since only answers that can be entailed from every repair are deemed consis-
tent. Traditionally, the alternative to this semantics is a brave approach, which
in our framework would consider an answer as consistent if it can be entailed
from some repair. In the case of Example 13 with k = 1, works in(john, d1) and
works in(tom, d1) are lazy consequences of KB , which are clearly not consistent
consequences of KB . However, a brave approach for query answering would allow
both supervise(tom, john) and directs(john, d1) as answers. In this respect, lazy
answers are a compromise between brave and cautious approaches: although it
is “braver” than the cautious approach, it does not allow to derive mutually
inconsistent answers.

Proposition 3. Let KB = (D,Σ) be a Datalog+/– ontology, Q be a CQ, and
ansLCons(k,Q,D,Σ) be the set of lazy answers for Q given k. Then, for any
k � 0, mods(ansLCons(k,Q,D,Σ), Σ) �= ∅.

The next proposition shows that the same property holds if we consider the
union of k-lazy answers for different values of k.

Theorem 3. Let KB = (D,Σ) be a Datalog+/– ontology and Q be a CQ. Then,
for any k � 0, mods(

⋃
0�i�k ansLCons(i, Q,D,Σ), Σ) �= ∅.

Theorem 3 shows that lazy answers can be used to obtain answers that are
not consistent answers but are nevertheless consistent as a whole. We refer to
this as the union-k-lazy semantics.

The next proposition shows the relationships between AR, IAR, and the lazy
semantics.

Proposition 4. Let KB = (D,Σ) be a Datalog+/– ontology, and Q be a BCQ.
Then, (a) if KB |=IAR Q, then KB |=k-LCons Q, for any k � 0, and (b) KB |=IAR

Q iff KB |=0-LCons Q. Furthermore, there is k � 0 such that KB |=AR Q iff
KB |=k-LCons Q.

Clearly, Proposition 4 entails that if we take the union of the lazy answers
up to the k from the proposition, then the resulting set of lazy answers is com-
plete with respect to AR. Example 14 shows that, in our running example, the
2-lazy answers correspond exactly to the consistent answers.



Explanation-Friendly Query Answering Under Uncertainty 95

Example 14. In Example 13, if k = 2, then we have that χ2-cut(cl1)= χ1-cut(cl1)
and χ2-cut(cl2)= χ1-cut(cl2)∪{{works in(tom, d1), works in(john, d1)}}. We can
easily see that LRep(2,KB) = DRep(KB). �

The following (simpler) example shows the effects of changing the value of k
as well as the results from Theorem 3.

Example 15. Consider the CQ Q(X,Y ) = p(X) ∧ q(Y ) and the following
Datalog+/– ontology KB = (D,Σ):

D = {p(a), p(b), p(c), p(d), p(e), p(f), q(g), q(h), q(i), q(j)};
ΣT = {};
ΣNC = {p(a) ∧ p(b) → ⊥, p(b) ∧ p(d) → ⊥, p(d) ∧ p(e) → ⊥, p(d) ∧ p(f) → ⊥

q(g) ∧ q(h) → ⊥, q(h) ∧ q(i) → ⊥}
The set of clusters in KB is clusters(KB , Σ) = {cl1 : {p(a), p(b), p(d), p(e), p(f)},
cl2 : {q(g), q(h), q(i)}. For k = 0, the only 0-lazy repair is lrep0 = {p(c), q(j)},
which coincides with DI ; the set of 0-lazy answers (and the answers under IAR)
to Q(X,Y ) is {p(c), q(j)}.

For k = 1, note that there is no way of removing one element from cl1 making
the rest consistent; therefore, the only possible cut removes the whole cluster.
On the other hand, there is one 1-cut for cl2, namely {q(h)}. Therefore, we have
only one 1-lazy repair lrep1 = {p(c), q(j), q(i), q(g)}. The set of 1-lazy answers
to Q(X,Y ) is {p(c), q(j), q(i), q(g)}.

With k = 2, we have two possible 2-cuts for cl1 and two for cl2, this is,
χ2-cut(cl1) = {{p(a), p(d)}, {p(b), p(d)}} and χ2-cut(cl2) = {{q(h)}, {q(g), q(i)}}.
In this case there are four 2-lazy repairs and the set of 2-lazy answers to Q(X,Y )
is {p(c), p(e), p(f), q(j)}.

For k = 3, we have χ3-cut(cl1) = {{p(a), p(d)}, {p(b), p(d)}, {p(b), p(e), p(f)}}
and χ3-cut(cl2) = χ2-cut(cl2) = {{q(h)}, {q(g), q(i)}}. The set of 3-lazy repairs
coincide with the set of repairs and therefore the set of 3-lazy answers to Q(X,Y )
is the set of consistent answers, namely {p(c), q(j)}.

Finally,
⋃

0�i�3 ansLCons(i, Q,D,Σ) = {p(c), q(j), q(i), q(g), p(e), p(f)},
which is clearly consistent relative to ΣNC. �

After the formal presentation of lazy answers, based on the concept of inci-
sion functions, we can now provide an algorithm that computes lazy answers to
conjunctive queries to Datalog+/– ontologies. In [36], an algorithm to compute
lazy answers to conjunctive queries is provided; the algorithm uses the concept
of finite chase graph [17] for a given ontology KB = (D,Σ), which is a graph
consisting of the necessary finite part of chase(D,Σ) relative to query Q, i.e.,
the finite part of the chase graph for D and Σ such that chase(D,Σ) |= Q.
The idea of the algorithm is pretty straight forward, it first computes the set
of clusters in KB , and next, for each cluster, function χk-cut is constructed by
removing each possible subset (of size at most k) of the cluster in turn and
checking if the remaining tuples are consistent (and that the subset in question
is not a superset of an incision already found). A lazy repair then arises from
each such possible combination by removing the incisions from D. The answer



96 M. V. Martinez and G. I. Simari

is finally computed using these repairs. Thought [36] proposes also an algorithm
to compute clusters and kernels, there exists several algorithms in the literature
to efficiently compute kernels in propositional logic that can be leveraged for
Datalog+/– ontologies [43,51,52].

Lazy answers are based on a budget that restricts the size of removals that
need to be made in a set of facts in order to make it consistent—if the budget is
large enough, then we go to the trouble of considering all possible ways of solving
the conflicts within the budget, but if it is not enough then we get rid of all the
sentences that are involved in that particular conflict. If we think of the problem
of querying inconsistent KBs as a reasoning task for an intelligent agent, then
the value of the budget would be a bound on its reasoning capabilities (more
complex reasoning can thus be afforded with higher budgets). On the other hand,
considering clusters instead of culprits (or kernels) allows to identify a class of
incision functions that solve conflicts from a global perspective; for more details
on the relation of cluster incision functions and kernel incision functions cf. [20].

The key points that differentiates the k-lazy semantics from the Ar and its
approximations is reflected in the fact that the set of repairs and the set of k-lazy
repairs do not coincide in general, unless k is such that it forces to consider all
the possible ways to solve the conflicts. This allows to consider answers that are
not consistent answers in the sense of AR semantics but that are consistent with
respect to the way conflicts are solved given the provided budget.

4.4 Towards Explainable Inconsistency-Tolerant Query Answering

Inconsistency-tolerant semantics for query answering provide a way to reason in
logical knowledge bases in the presence of inconsistency. This is an important
advantage over classical query answering processes, where answers may become
meaningless. In this sense, the presence of inconsistency in the knowledge base
remains transparent to the user that is issuing the query, which is, arguably, a
good property as it does not disrupt the process. However, as these tools are
often used to aid in the process of making decisions for different application
domains (it may be an automated system itself the one that makes decisions
based on the answers obtained from the knowledge base), it seems reasonable to
try to provide information that complements the set of answers and helps the
user understand why they obtained that set of answers and, particularly, if there
was some piece of information, related to their query, that is subject to logical
conflicts and how that affected the computed answers, especially if the answer
was negative or did not include an individual that was expected.

For instance, suppose the user asks if the query q() = ∃Xp(X) is true and
they get the answer No. It is only natural to pose the following question:

“Was it the case that there is no possible way to derive p(X) from the
knowledge base, so the answer is No in every possible repair, or was it
the case that q is true in some repairs but false in others, such that the
semantics cannot assure its truth value”.



Explanation-Friendly Query Answering Under Uncertainty 97

This distinction may be significant depending on the implications of the answer
and how it is used. With this example in mind, given a Datalog+/– ontology
(D,Σ) and a query Q, a natural question that one may be interested in asking
for explanatory purposes is:

“What makes Q true under some semantics S?”, or alternatively
“What makes Q false under some semantics S?”.

The work of [11] proposes the notion of explanation for positive and negative
query answers under the brave, AR, and IAR semantics, for Description Logics.
An explanation for a query Q in this case is based on causes for Q, which are
sets of facts from the original knowledge base that yield Q; this means that, in
terms of Datalog+/–, causes are subsets of the D that together with Σ yield Q.
Positive explanations for the brave semantics (the answer is true in some repair)
is any cause for Q, that is, any consistent subset of D that entails the query
by means of Σ. For the IAR semantics, an explanation is any cause of Q that
does not participate in any contradiction. In the case of AR it is not enough to
provide just one set of facts that are a cause of the query, as different repairs
may use different causes. Therefore, they provide explanations in the form of
(minimal) disjunctions of causes that cover all repairs (every cause belongs to
at least one repair and for each repair there is one cause in the set).

Explanations for negative answers for Q under AR are minimal subsets of
D such that together with any cause for Q yield an inconsistency. On the other
hand, explanations for negative answers under IAR it is only necessary to ensure
that every cause is contradicted by some consistent subset of D, which is enough
to show that no cause belongs to all repairs. The proposal is accompanied by a
computational complexity study of the difficulty of the decision problems related
to checking and computing the different types of explanations. Most of these
problems are polynomial for the case of explanations for positive and negative
answers under brave and IAR. Not surprisingly, explanations in both cases under
the AR semantics are intractable.

The notion of explanation, both for positive and negative answers, are
directly translatable for k-Lazy answers. In particular, incisions correspond to
explanations for negative answers. If we look at Example 14 and take query
Q() = p(e) for k = 1, we have that KB �|=1-LCons Q and the reason for that
is that the only possible 1-cut for cl1 includes p(e) (in the general case we can
actually see that the incision contradicts every possible cause of p(e)).

In addition, this proposal can provide other types of answers in relation
to explaining the behavior of the semantics. Other interesting questions may
include:

1. What is the smallest k needed to make Q true under both k-lazy and union-
k-lazy semantics?

2. What are the causes that make Q change its truth value from k to k+1 under
the k-lazy semantics (either from true to false or the other way around)?

3. If Q is true under (union-) k-lazy semantics for some k � 0 but it is not
a consistent answer, what are the causes for this behavior? This question



98 M. V. Martinez and G. I. Simari

actually elaborates on the previous one, as we can try to find for which k′ � k
the truth value of Q changes, and find the reason by comparing k′-cuts against
k′ + 1-cuts.

If we try to answer question (1) for Example 14 and Q() = p(e), we find that
the smallest k is 2, which means that p(e) is involved in some inconsistency (it
belongs or can be derived from a cluster) and that the conflict is such that it is
necessary to remove two atoms at the same time from the cluster, so that p(e)
appears or survives. Note that this number is actually related to the fact that
there is a chain of conflicts: p(a)∧p(b) → ⊥, p(b)∧p(d) → ⊥, and p(d)∧p(e) → ⊥.
In this way we can use causes, together with NCs and incisions, to complement
the required explanations and can show explanations that are local to specific k’s.

Finally, we will show examples of how argumentation theory can help in the
construction of meaningful explanations for inconsistency-tolerant query answer-
ing. As mentioned in the introduction, argumentation provides a natural dialogic
structure and mechanism as part of the reasoning process and that can, in princi-
ple, be examined by a user in order to understand both why and how conclusions
(answers) are reached.

The work in [4], proposes explanations as a set of logical arguments support-
ing the query. Without going into the fine details, an argument can be seen as
a set of premises (facts) that derives a conclusion by means of a logical theory,
or in the case of Datalog+/– a set of TGDs. In this context, we can think of
causes of a query, defined by [11], as arguments that entail or support the entail-
ment of the query. Conversely, we can build arguments that contradict some
sentence, and these can be used as reasons against a query or, more generally,
explanations for negative answers. For more details on argumentation we refer
the reader to [21,25]. All the examples of explanation proposals mentioned so far
can be considered as argument-based explanations, depending on the richness of
the language and the framework, different notions of argument and counterar-
guments can be constructed as a means for explanations.

The proposals mentioned above provide arguments for and against conclu-
sions but in a static way, after the user inquiry for explanations the system
retrieves and shows the set of explanations. Alternative, it is possible to exploit
the dynamical characteristics of argumentation frameworks in order to create an
interactive explanation mechanism. In [3], the notion of dialectical explanations
is developed where it is assumed that the explanation is an interactive process
with the system where a dialogue is established. The idea is that the explainer
(e.g., the system) aims to make an explainee (e.g., the user) understand why a
query Q is or is not entailed by the query answering semantics. It is shown that
the query answering process can be represented as such a dialogue, in which
arguments for and against the entailment of the query are identified, analyzed,
and weighed among each other. A query is entailed under a specific semantics if
and only if the dialectical process ends with a winning argument in favor of the
query. That work develops this dialectical process for the ICR semantics [10],
which is a sound approximation of AR and generalizes IAR. In [3], the proposal
is extended for the brave and IAR semantics.



Explanation-Friendly Query Answering Under Uncertainty 99

In this same spirit, [37] introduces an inconsistency-tolerant semantics for Da-
talog+/– ontologies query asnwering based on defeasible argumentative reason-
ing, which allows consequences to represent statements whose truth can be chal-
lenged. The proposal incorporates argumentation theory within the Datalog+/–
query answering process itself. This process has the ability of considering rea-
sons for and against potential conclusions and deciding which are the ones that
can be obtained (warranted) from the knowledge base. This provides the pos-
sibility of implementing different inconsistency-tolerant semantics depending on
the comparison criterion selected, all within the same framework, and as part of
the query answering process. Indeed, the paper shows that most inconsistency-
tolerant semantics that are based on the notion of repair (AR and the family
of semantics that approximates it), as well as other such as the k-support and
k-defeater semantics [12], can be obtained within this framework. This proposal
has two advantages; first, it is not necessary to use and compute elements that
are outside of the logic, such as repairs, kernels, clusters, incisions, etc., as the
query answering engine is inconsistency-tolerant in itself. Second, the argumenta-
tive process underlying the query answering task allows to compute the answers
and the required explanations at the same time. This means that there is, in
principle, not extra cost for computing explanations, as happens also in [3].
Of course, there is the potential of creating a more complex explanatory mecha-
nism exploiting other elements that are explicitly built within the argumentative
process.

5 Discussion and Future Research Directions

Querying and managing incomplete and inconsistent information in an automatic
and systematic way is becoming more and more necessary in order to cope with
the amount of information that feeds the systems that are used to make decisions
in a wide variety of domains, from product or service recommendation systems
to medical or political applications. In order to build automated systems that
aid humans in the process of making decisions in such a way that they improve
their performance and understanding, proper explanations and interpretability of
results are of the utmost importance. As we mentioned before, what is considered
a good or reasonable explanation—or explanation process—strongly depends on
the application domain and the particular problem the user is trying to solve
based on the system’s results.

Being able to produce adequate and meaningful explanations from automated
systems is about being able to trust their results. This kind of trust is important
from the system’s functional point of view, but also important from a regula-
tory perspective. As it has already being discussed in different forums, such as
the European General Data Protection Regulation,3 users (or subjects) of auto-
mated data processing have the right “to obtain human intervention, to express
his or her point of view, to obtain an explanation of the decision reached after

3 https://eugdpr.org/.

https://eugdpr.org/


100 M. V. Martinez and G. I. Simari

such assessment and to challenge the decision”. Such legal (and social) require-
ments clearly set the stage for discussions and further research efforts regarding
adequate explanation models, mechanisms, and tools.

In this work we drafted some ideas on how to exploit the potential of knowl-
edge based AI systems in order to produce meaningful explanations for query
answering in the presence of uncertain information, where the uncertainty may
arise from a probabilistic model or from the presence of inconsistency. After
these first steps, it becomes clear that the road to designing and implement-
ing explainable tools based on these and other formalisms is long; the roadmap
includes the following activities, among others:

– Research different kinds of explanations for each type of query that can be
posed to the system, making full use of the knowledge encoded in the models.

– Related to the previous point, take into account the actual users of the sys-
tem, for whom the explanations are generated. This includes many different
human-centered aspects, such as effective interfaces that don’t overwhelm the
user, and conveying full transparency in order to gain the user’s trust.

– Design explanation techniques that allow a level of detail to be set, so as to
support the wide range between novice and expert users, as well as different
levels of privacy and clearance (in terms of security).

– Study the relationship between explainability and human-in-the-loop
systems—for instance, it is possible for users to only require explanations
for certain parts of a result, or only an explanation of why the result wasn’t
one that they were expecting.

– Explore how explainability relates to the vast body of work in software
auditing—clearly, explanations might not only be required at query time,
but at a later stage when other interested parties are reviewing the system’s
outputs.

– Ensure computational tractability: producing explanations should not be an
excessive computational burden.

Each of these tasks can be considered a research and development program in
its own right; we envision progress to continue being made slowly but steadily
from ad hoc approaches to well-founded developments in the future.

Acknowledgments. This work was partially supported by funds provided by CON-
ICET, Agencia Nacional de Promoción Cient́ıfica y Tecnológica, Universidad Nacional
del Sur (UNS), Argentina, and by the EU H2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement 690974 for the project “MIREL:
MIning and REasoning with Legal texts”.

References

1. Alonso, J.M., Castiello, C., Mencar, C.: A bibliometric analysis of the explain-
able artificial intelligence research field. In: Medina, J., et al. (eds.) IPMU 2018.
CCIS, vol. 853, pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-91473-2 1

https://doi.org/10.1007/978-3-319-91473-2_1
https://doi.org/10.1007/978-3-319-91473-2_1


Explanation-Friendly Query Answering Under Uncertainty 101

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of PODS, pp. 68–79 (1999)

3. Arioua, A., Croitoru, M.: Dialectical characterization of consistent query expla-
nation with existential rules. In: FLAIRS: Florida Artificial Intelligence Research
Society (2016)

4. Arioua, A., Tamani, N., Croitoru, M.: Query answering explanation in inconsistent
datalog+/− knowledge bases. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner,
R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 203–219. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-22849-5 15

5. Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms
and unions of conjunctive queries. J. ACM (JACM) 53(2), 208–237 (2006)

6. Baget, J., Mugnier, M., Rudolph, S., Thomazo, M.: Walking the complexity lines
for generalized guarded existential rules. In: Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pp. 712–717 (2011)

7. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In:
Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 21–33.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24609-1 5

8. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University
Press, Cambridge (2012)

9. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even,
S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg
(1981). https://doi.org/10.1007/3-540-10843-2 7

10. Bienvenu, M.: Inconsistency-tolerant conjunctive query answering for simple
ontologies. In: Kazakov, Y., Lembo, D., Wolter, F. (eds.) Proceedings of DL, vol.
846. CEUR-WS.org (2012)

11. Bienvenu, M., Bourgaux, C., Goasdoue, F.: Explaining inconsistency-tolerant query
answering over description logic knowledge bases. In: Proceedings of AAAI 2016,
pp. 900–906. AAAI Press (2016)

12. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: Proceedings of IJCAI, pp. 775–781 (2013)

13. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. In: Proceedings of the International Conference
on Principles of Knowledge Representation and Reasoning (KR), pp. 70–80 (2008)

14. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. (JAIR) 48, 115–174 (2013)

15. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. In: Proceedings of the ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), pp. 77–86
(2009)

16. Cal̀ı, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the
query answering problem. Artif. Intell. J. (AIJ) 193, 87–128 (2012)

17. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

18. Ceylan, İ.İ., Borgwardt, S., Lukasiewicz, T.: Most probable explanations for prob-
abilistic database queries. In: Proceedings of IJCAI, pp. 950–956 (2017)

19. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Proceedings of the ACM Symposium on Theory of Com-
puting (STOC), pp. 77–90 (1977)

20. Deagustini, C.A.D., Mart́ınez, M.V., Falappa, M.A., Simari, G.R.: Improving
inconsistency resolution by considering global conflicts. In: Straccia, U., Cal̀ı, A.

https://doi.org/10.1007/978-3-319-22849-5_15
https://doi.org/10.1007/978-3-540-24609-1_5
https://doi.org/10.1007/3-540-10843-2_7


102 M. V. Martinez and G. I. Simari

(eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 120–133. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11508-5 11

21. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–357 (1995)

22. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003.
LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36285-1 14

23. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theoret. Comput. Sci. 336(1), 89–124 (2005)

24. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Explanations, belief revision and
defeasible reasoning. Artif. Intell. 141(1–2), 1–28 (2002)

25. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: delp-servers, contextual
queries, and explanations for answers. Argument Comput. 5(1), 63–88 (2014)

26. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: an argumentative app-
roach. TPLP 4(1–2), 95–138 (2004)

27. Gottlob, G., Manna, M., Pieris, A.: Combining decidability paradigms for existen-
tial rules. Theory Practice Logic Program. (TPLP) 13(4–5), 877–892 (2013)

28. Gottlob, G., Orsi, G., Pieris, A., Šimkus, M.: Datalog and its extensions for seman-
tic web databases. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012.
LNCS, vol. 7487, pp. 54–77. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33158-9 2

29. Gottlob, G., Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Query answering under
probabilistic uncertainty in datalog+/- ontologies. Ann. Math. Artif. Intell. 69(1),
37–72 (2013)

30. Grover, S., Pulice, C., Simari, G.I., Subrahmanian, V.S.: BEEF: balanced English
explanations of forecasts. IEEE Trans. Comput. Soc. Syst. 6(2), 350–364 (2019)

31. Hansson, S.O.: Semi-revision. J. Appl. Non-Classical Logic 7, 151–175 (1997)
32. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant

semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010.
LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15918-3 9

33. Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable Datalog
programs. In: Proceedings of the International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), pp. 13–23 (2012)

34. Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Heuristic ranking in tightly
coupled probabilistic description logics. In: Proceedings of UAI 2012, pp. 554–563
(2012)

35. Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Exact and approximate
query answering in tightly coupled probabilistic datalog+/-. Forthcoming (2019)

36. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in
Datalog+/- ontologies. In: Proceedings of ECAI, pp. 558–563 (2012)

37. Martinez, M.V., Deagustini, C.A.D., Falappa, M.A., Simari, G.R.: Inconsistency-
tolerant reasoning in datalog± ontologies via an argumentative semantics. In: Baz-
zan, A.L.C., Pichara, K. (eds.) IBERAMIA 2014. LNCS (LNAI), vol. 8864, pp.
15–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12027-0 2

38. Martinez, M.V., Pugliese, A., Simari, G.I., Subrahmanian, V.S., Prade, H.: How
dirty is your relational database? An axiomatic approach. In: Proceedings of
ECSQARU, pp. 103–114 (2007)

https://doi.org/10.1007/978-3-319-11508-5_11
https://doi.org/10.1007/3-540-36285-1_14
https://doi.org/10.1007/3-540-36285-1_14
https://doi.org/10.1007/978-3-642-33158-9_2
https://doi.org/10.1007/978-3-642-33158-9_2
https://doi.org/10.1007/978-3-642-15918-3_9
https://doi.org/10.1007/978-3-642-15918-3_9
https://doi.org/10.1007/978-3-319-12027-0_2


Explanation-Friendly Query Answering Under Uncertainty 103

39. Milani, M., Bertossi, L.: Tractable query answering and optimization for extensions
of weakly-sticky Datalog+/-. arXiv:1504.03386 (2015)

40. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

41. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference (1988)

42. Poole, D.: The independent choice logic for modelling multiple agents under uncer-
tainty. Artif. Intell. 94(1–2), 7–56 (1997)

43. Ribeiro, M.M., Wassermann, R.: Minimal change in AGM revision for non-classical
logics. In: Principles of Knowledge Representation and Reasoning: Proceedings
of the Fourteenth International Conference, KR 2014, 20–24 July 2014, Vienna,
Austria (2014)

44. Richardson, A., Rosenfeld, A.: A survey of interpretability and explainability in
human-agent systems. In: XAI Workshop on Explainable Artificial Intelligence, pp.
137–143 (2018)

45. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136
(2006)

46. Shortliffe, E.H., Davis, R., Axline, S.G., Buchanan, B.G., Green, C.C., Cohen,
S.N.: Computer-based consultations in clinical therapeutics: explanation and rule
acquisition capabilities of the mycin system. Comput. Biomed. Res. 8(4), 303–320
(1975)

47. Simari, G.I., Molinaro, C., Martinez, M.V., Lukasiewicz, T., Predoiu, L.: Ontology-
Based Data Access Leveraging Subjective Reports. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-65229-0

48. Tifrea-Marciuska, O.: Personalised search for the social semantic web. Ph.D. thesis,
Department of Computer Science, University of Oxford (2016)

49. Vardi, M.Y.: The complexity of relational query languages (extended abstract).
In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp.
137–146 (1982)

50. Wainwright, M.J., Jordan, M.I., et al.: Graphical models, exponential families, and
variational inference. Found. Trends R© Mach. Learn. 1(1–2), 1–305 (2008)

51. Wang, S., Pan, J.Z., Zhao, Y., Li, W., Han, S., Han, D.: Belief base revision for
datalog+/- ontologies. In: Kim, W., Ding, Y., Kim, H.-G. (eds.) JIST 2013. LNCS,
vol. 8388, pp. 175–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06826-8 14

52. Wassermann, R.: An algorithm for belief revision. In: Proceedings of the Seventh
International Conference Principles of Knowledge Representation and Reasoning,
KR 2000, 11–15 April 2000, Breckenridge, Colorado, USA, pp. 345–352 (2000)

53. White, C.C.: A survey on the integration of decision analysis and expert systems
for decision support. IEEE Trans. Syst. Man Cybern. 20(2), 358–364 (1990)

http://arxiv.org/abs/1504.03386
https://doi.org/10.1007/978-3-319-65229-0
https://doi.org/10.1007/978-3-319-06826-8_14
https://doi.org/10.1007/978-3-319-06826-8_14


Provenance in Databases: Principles
and Applications

Pierre Senellart1,2,3(B)

1 DI ENS, ENS, CNRS, PSL University, Paris, France
pierre@senellart.com
2 Inria, Paris, France

3 LTCI, Télécom Paris, IP Paris, Paris, France

Abstract. Data provenance is extra information computed during
query evaluation over databases, which provides additional context about
query results. Several formal frameworks for data provenance have been
proposed, in particular based on provenance semirings. The provenance
of a query can be computed in these frameworks for a variety of query
languages. Provenance has applications in various settings, such as prob-
abilistic databases, view maintenance, or explanation of query results.
Though the theory of provenance semirings has mostly been developed
in the setting of relational databases, it can also apply to other data
representations, such as XML, graph, and triple-store databases.

Keywords: Provenance · Databases

1 Introduction

This short paper provides a very high-level overview of the principles and appli-
cations of provenance in databases. A more in-depth but still accessible presen-
tation of the same concepts can be found in [21]; we also refer the reader to the
other references listed in this paper.

We first briefly define data provenance in Sect. 2, then highlight a few example
applications in Sect. 3 before discussing provenance over databases that are not
in the classical relational setting in Sect. 4.

2 Provenance

The main task in data management is query evaluation: given a database D (in
some structured form) and a query q (from some class), compute the result of the
query over the database, q(D). In the most commonly used setting of relational
databases [1], for example, a database is a collection of named tables, a query
can be expressed in the SQL query language, and the result of a query is a table.

However, in a number of applications (see examples in Sect. 3), knowing the
query result is not enough: it is also useful to obtain extra information about
c© Springer Nature Switzerland AG 2019
M. Krötzsch and D. Stepanova (Eds.): Reasoning Web 2019, LNCS 11810, pp. 104–109, 2019.
https://doi.org/10.1007/978-3-030-31423-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31423-1_3&domain=pdf
http://orcid.org/0000-0002-7909-5369
https://doi.org/10.1007/978-3-030-31423-1_3


Provenance in Databases: Principles and Applications 105

this result, where it comes from, or how it has been computed. We call this
extra information data provenance [5,8]. Provenance management deals with
the computation of data provenance.

Data provenance can take multiple forms, depending on what kinds of infor-
mation is required. A good and simple example of this is Boolean provenance,
a notion introduced in [19] under a different terminology. Let X be a set of
Boolean variables (variables that can be set to the values 0 or 1). We assume
that every valuation ν of the variables of X, when applied to the database D,
defines a new database ν(D). For example, if D is a relational database, every
tuple of D can be associated with a different variable of X, and then ν(D) is
simply the subdatabase of D formed only of tuples whose associated variable is
set to 1 by ν. Then, by definition, the provenance of an element t in the query
result q(D) (e.g., in the relational setting, a tuple t ∈ q(D)) is the function from
valuations of X to {0, 1}:

ν �→
{

1 if t ∈ q(ν(D))
0 otherwise.

Boolean provenance is useful because the Boolean provenance of t in q(D) is
sufficient to determine the presence of t in any database of the form ν(D). In
other words, if the Boolean provenance can be efficiently computed, it is possible
to answer many kinds of hypothetical questions about what the output of the
query q is over other databases than the database D.

Boolean provenance is special in that it can be defined quite abstractly, inde-
pendently of a query language or even a precise data model. This definition,
however, does not yield an efficient computation. A seminal paper on data prove-
nance [17] has shown that, if we restrict the data model to relational databases
and the query language to the positive relational algebra (the SELECT-FROM-
WHERE core of SQL), Boolean provenance is simply a particular case of semir-
ing provenance, and all forms of semiring provenances can be computed effi-
ciently under the same restrictions. A semiring is an algebraic structure with
two operators, ⊕ and ⊗, verifying some axioms; when semirings are used for
provenance, the ⊕ operator corresponds to different possible ways of producing
a given result (e.g., with union and duplicate elimination in the relational alge-
bra), while ⊗ is used to indicate different information that need to be combined
to produce a result (e.g., with joins and cross products). Semiring provenance,
which is parameterized by an arbitrary commutative semiring – Boolean prove-
nance corresponds to a parameterization by the semiring of Boolean functions –,
captures most existing provenance formalisms, and yields multitude applications.
See [17,21] for precise definitions.

3 Example Applications

We now list a few important applications of different forms of data provenance.
The list is by no means restrictive, see, e.g., [21] for other examples.



106 P. Senellart

Probabilistic databases. Probabilistic databases [23] are probability distribu-
tions over regular databases, these distributions being represented in some
compact format. The central question in probabilistic databases is probabilis-
tic query evaluation, namely computing the probability that a query is satis-
fied over a database. It turns out [18,23] that this problem can be solved using
Boolean provenance: first, assign Boolean variables to the input database, and
assign probabilities to these variables in a way consistent with the probabil-
ity distribution; second, compute the Boolean provenance of the query; third,
compute the probability that the Boolean provenance, seen as a Boolean func-
tion, evaluates to 1. This last part is intractable in general (#P-hard) but is
amenable to techniques from the field of knowledge compilation [10,22].

View maintenance and view update. In databases, materialized views are
stored representations of the result of a given query. If the original database
is updated (e.g., through the deletion of some tuples), the materialized view
needs to be maintained so as to reflect the new output of the query, hope-
fully without fully recomputing it; this is the view maintenance problem.
Conversely, it should be possible (at least in simple situations) to issue an
update (e.g., a deletion) over the content of the materialized view, and that
this update be propagated to the original database; this is the view update
problem. Both these problems can be solved using data provenance: View
maintenance under deletions can be solved by maintaining the Boolean prove-
nance of the view, and deleting tuples whose provenance evaluates to 0 once
the variables associated to original deleted tuples are set to 0. View update
under deletions can be solved using why-provenance [6], a form of semiring
provenance.

Explanation of query results. Different forms of provenance can also be
used to present a user with explanation of query results: where-provenance
[5] can explain where a particular data value in the output comes from; why-
provenance [5] which data inputs have been combined to produce a query
result; how-provenance [17] how the entire result was constructed; why-not
provenance [7] why a particular result was not produced. Though why- and
how- provenance can be computed in the framework of semiring provenance,
where- and why-not provenance require different techniques.

Provenance Management Systems. In order to support such applications, a num-
ber of provenance management systems have been designed. We restrict the dis-
cussion here to general-purpose provenance management in database systems,
and not in other settings, such as scientific workflows [11]. Perm [16] modifies the
internals of a now-obsolete PostgreSQL relational database management system
to add support for computation of provenance. This design, unfortunately, had
made it hard to maintain the system and to deploy it in modern environments.
GProM [4] and ProvSQL [22] are two more recent provenance management sys-
tems which address this issue in two different ways: GProM is implemented as
a middleware between the user and a database system, queries being rewritten
on the fly to compute provenance annotations; ProvSQL is implemented as a
lightweight add-on to PostgreSQL, which can be deployed on an existing Post-



Provenance in Databases: Principles and Applications 107

greSQL installation. GProM and ProvSQL both support provenance computa-
tion in various provenance semirings; ProvSQL also is a probabilistic database
system, computing probabilities from the Boolean provenance. See the discussion
in [22] for a comparison of the main features of GProM and ProvSQL.

4 Beyond Relational Provenance

Most research on provenance (and in particular on semiring provenance) has
been carried out in the common setting of relational databases for the simple
query language of the positive relational algebra. Extensions to richer query
languages, and to different data models, are possible, though sometimes with
different approaches.

Non-monotone queries. Semiring provenance can only capture the provenance
of monotone queries, such as those of the positive relational algebra. Moving
to non-monotone queries and the full relational algebra requires considering
semirings with monus [2,14], where the monus � operator is used to represent
negative information.

Aggregation. In order to capture the provenance of aggregation operators (such
as sum or count), it is necessary to move from semirings to semimodules over
the scalars that are the aggregation values [3].

Recursive queries. To add support for query languages involving recursion
(such as Datalog), it is necessary to add constraints on to which semirings
are considered: depending on these constraints (e.g., ω-continuity [17], absorp-
tivity [12], existence of a � operator [20]), different algorithms can be used to
compute the provenance.

XML databases. XML databases organize information in a hierarchical, tree-
like manner. Queries over XML databases typically resemble tree patterns
to be matched over the tree database. Semiring provenance concepts can be
extended to this setting in a quite straightforward manner [13].

Graph databases. In graph databases, data is represented as a labeled, anno-
tated graph, and queries make it possible to ask for the existence of a path
between two nodes with constraints on its labels. Graph queries are inher-
ently recursive, and require similar techniques as to support Datalog queries
over relational databases [20].

Triple stores. Triple stores model information using the Semantic Web stan-
dard of subject–predicate–object triples. Queries, for example expressed in
the standard SPARQL query language, represent complex patterns of triples.
Negation is an important feature of Semantic Web languages, so semirings
with monus are also deployed in this setting [9]; these semirings with monus
must also verify additional axioms imposed by the semantics of SPARQL [15].

5 Outlook

The principles of provenance management in databases are now well-understood.
The framework of provenance semirings, in particular, has revealed to be very



108 P. Senellart

fruitful. It also lends itself to a number of extensions beyond the positive rela-
tional algebra, as discussed in Sect. 4; some of these extensions are not fully
fleshed out, however, and still require more work. Some other areas are in need
of more research: for instance, on how updates in databases should interact with
provenance annotations; or on how to combine provenance computation with effi-
cient query processing. However, there are now enough foundations to build and
optimize concrete provenance management systems (starting with the existing
software, in particular, GProM and ProvSQL), and to apply them to real-world
use cases.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Amer, K.: Equationally complete classes of commutative monoids with monus.
Algebra Universalis 18(1), 129–131 (1984)

3. Amsterdamer, Y., Deutch, D., Tannen, V.: Provenance for aggregate queries. In:
PODS (2011)

4. Arab, B.S., Feng, S., Glavic, B., Lee, S., Niu, X., Zeng, Q.: GProM - a swiss army
knife for your provenance needs. IEEE Data Eng. Bull. 41(1), 51–62 (2018)

5. Buneman, P., Khanna, S., Tan, W.C.: Why and where: a characterization of data
provenance. In: ICDT (2001)

6. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations
through views. In: PODS (2002)

7. Chapman, A., Jagadish, H.V.: Why not? In: SIGMOD (2009)
8. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how, and

where. Found. Trends Databases 1(4), 379–474 (2009)
9. Damásio, C.V., Analyti, A., Antoniou, G.: Provenance for SPARQL queries. In:

Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 625–640.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1 39

10. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res.
17(1), 229–264 (2002)

11. Davidson, S.B., et al.: Provenance in scientific workflow systems. IEEE Data Eng.
Bull. 30(4), 44–50 (2007)

12. Deutch, D., Milo, T., Roy, S., Tannen, V.: Circuits for Datalog provenance. In:
ICDT (2014)

13. Foster, J.N., Green, T.J., Tannen, V.: Annotated XML: queries and provenance.
In: PODS (2008)

14. Geerts, F., Poggi, A.: On database query languages for K-relations. J. Appl. Logic
8(2), 173–185 (2010)

15. Geerts, F., Unger, T., Karvounarakis, G., Fundulaki, I., Christophides, V.: Alge-
braic structures for capturing the provenance of SPARQL queries. J. ACM 63(1),
7 (2016)

16. Glavic, B., Alonso, G.: Perm: processing provenance and data on the same data
model through query rewriting. In: ICDE, pp. 174–185 (2009)

17. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS
(2007)

18. Green, T.J., Tannen, V.: Models for incomplete and probabilistic information.
IEEE Data Eng. Bull. 29(1), 17–24 (2006)

https://doi.org/10.1007/978-3-642-35176-1_39


Provenance in Databases: Principles and Applications 109

19. Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

20. Ramusat, Y., Maniu, S., Senellart, P.: Semiring provenance over graph databases.
In: TaPP (2018)

21. Senellart, P.: Provenance and probabilities in relational databases: from theory to
practice. SIGMOD Rec. 46(4), 5–15 (2017)

22. Senellart, P., Jachiet, L., Maniu, S., Ramusat, Y.: ProvSQL: provenance and prob-
ability management in PostgreSQL. PVLDB 11(12), 2034–2037 (2018)

23. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Morgan & Clay-
pool (2011)



Knowledge Representation and Rule
Mining in Entity-Centric Knowledge

Bases

Fabian M. Suchanek1(B), Jonathan Lajus1, Armand Boschin1,
and Gerhard Weikum2

1 Telecom Paris, Institut Polytechnique de Paris, Paris, France
{suchanek,jlajus,aboschin}@enst.fr

2 Max Planck Institute for Informatics, Saarbrücken, Germany
weikum@mpi-inf.mpg.de

Abstract. Entity-centric knowledge bases are large collections of facts
about entities of public interest, such as countries, politicians, or movies.
They find applications in search engines, chatbots, and semantic data
mining systems. In this paper, we first discuss the knowledge represen-
tation that has emerged as a pragmatic consensus in the research com-
munity of entity-centric knowledge bases. Then, we describe how these
knowledge bases can be mined for logical rules. Finally, we discuss how
entities can be represented alternatively as vectors in a vector space, by
help of neural networks.

1 Introduction

1.1 Knowledge Bases

When we send a query to Google or Bing, we obtain a set of Web pages. However,
in some cases, we also get more information. For example, when we ask “When
was Steve Jobs born?”, the search engine replies directly with “February 24,
1955”. When we ask just for “Steve Jobs”, we obtain a short biography, his birth
date, quotes, and spouse. All of this is possible because the search engine has a
huge repository of knowledge about people of common interest. This knowledge
takes the form of a knowledge base (KB).

The KBs used in such search engines are entity-centric: they know indi-
vidual entities (such as Steve Jobs, the United States, the Kilimanjaro, or the
Max Planck Society), their semantic classes (such as SteveJobs is-a computer-
Pioneer, SteveJobs is-a entrepreneur), relationships between entities (e.g., Steve-
Jobs founded AppleInc, SteveJobs hasInvented iPhone, SteveJobs hasWonPrize
NationalMedalOfTechnology, etc.) as well as their validity times (e.g., SteveJobs
wasCEOof Pixar [1986,2006]).

The idea of such KBs is not new. It goes back to seminal work in Artificial
Intelligence on universal knowledge bases in the 1980s and 1990s, most notably,
the Cyc project [41] at MCC in Austin and the WordNet project [19] at Princeton

c© Springer Nature Switzerland AG 2019
M. Krötzsch and D. Stepanova (Eds.): Reasoning Web 2019, LNCS 11810, pp. 110–152, 2019.
https://doi.org/10.1007/978-3-030-31423-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31423-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-31423-1_4


Knowledge Representation and Rule Mining in Entity-Centric KB 111

University. These knowledge collections were hand-crafted and manually curated.
In the last ten years, in contrast, KBs are often built automatically by extracting
information from the Web or from text documents. Salient projects with publicly
available resources include KnowItAll (UW Seattle, [17]), ConceptNet (MIT,
[44]), DBpedia (FU Berlin, U Mannheim, & U Leipzig, [40]), NELL (CMU,
[9]), BabelNet (La Sapienza, [58]), Wikidata (Wikimedia Foundation, [77]), and
YAGO (Telecom Paris & Max Planck Institute, [70]). Commercial interest in
KBs has been strongly growing, with projects such as the Google Knowledge
Graph [15] (including Freebase [6]), Microsoft’s Satori, Amazon’s Evi, LinkedIn’s
Knowledge Graph, and the IBM Watson KB [20]. These KBs contain many
millions of entities, organized in hundreds to hundred thousands of semantic
classes, and hundred millions of relational facts between entities. Many public
KBs are interlinked, forming the Web of Linked Open Data [5].

1.2 Applications

KBs are used in several applications, including the following:

Semantic Search and Question Answering. Both the Google search
engine [15] and Microsoft Bing1 use KBs to give intelligent answers to queries,
as we have seen above. They can answer simple factual questions, provide movie
showtimes, or show a list of “best things to do” at a travel destination. Wolfram
Alpha2 is another prominent example of a question answering system. The IBM
Watson system [20] used knowledge from a KB to win against human champions
in the TV quiz show Jeopardy.

Intelligent Assistants. Chatbots such as Apple’s Siri, Amazon’s Alexa,
Google’s Allo, or Microsoft’s Cortana aim to help a user achieve daily tasks.
The bots can, e.g., suggest restaurants nearby, answer simple factual questions,
or manage calendar events. The background knowledge that the bots need for
this work usually comes from a KB. With embodiments such as Amazon’s Echo
system or Google Home, such assistants will share more and more people’s homes
in the future. Other companies, too, are experimenting with chat bots that treat
customer requests or provide help to users.

Semantic Data Mining. Daily news, social media, scholarly publications, and
other Web contents are the raw inputs for analytics to obtain insights on busi-
ness, politics, health, and more. KBs can help to discover and track entities and
relationships in order to generate opinion maps, informative recommendations,
and other kinds of intelligence towards decision making. For example, we can
mine the gender bias from newspapers, because the KB knows the gender of
people (see [71] for a survey). There is an entire domain of research dedicated
to “predictive analytics”, i.e., the prediction of events based on past events.

1 http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/.
2 https://wolframalpha.com.

http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
https://wolframalpha.com


112 F. M. Suchanek et al.

1.3 Knowledge Representation and Rule Mining

In this article, we first discuss how the knowledge is usually represented in
entity-centric KBs. The field of knowledge representation has a long history, and
goes back to the early days of Artificial Intelligence. It has developed numerous
knowledge representation models, from frames and KL-ONE to recent variants
of description logics. The reader is referred to survey works for comprehensive
overviews of historical and classical models [62,67]. In this article, we discuss
the knowledge representation that has emerged as a pragmatic consensus in the
research community of entity-centric knowledge bases.

In the second part of this article, we discuss logical rules on knowledge bases.
A logical rule can tell us, e.g., that if two people are married, then they (usually)
live in the same city. Such rules can be mined automatically from the knowledge
base, and they can serve to correct the data or fill in missing information. We
discuss first classical Inductive Logic Programming approaches, and then show
how these can be applied to the case of knowledge bases.

In the third part of this article, we discuss an alternative way to represent
entities: as vectors in a vector space. Such so-called embeddings can be learned by
neural networks from a knowledge base. The embeddings can then help deduce
new facts – much like logical rules.

2 Knowledge Representation

2.1 Entities

2.1.1 Entities of Interest
The most basic element of a KB is an entity. An entity is any abstract or concrete
object of fiction or reality, or, as Bertrand Russell puts it in his Principles of
Mathematics [81]:

Definition 1 (Entity): An entity is whatever may be an object of thought.

This definition is completely all-embracing. Steve Jobs, the Declaration of
Independence of the United States, the Theory of Relativity, and a molecule of
water are all entities. Events (such as the French Revolution), are entities, too.
An entity does not even have to exist: Harry Potter, e.g., is a fictional entity.
Phlogiston was presumed to be the substance that makes up heat. It turned out
to not exist – but it is still an entity.

KBs model a part of reality. This means that they choose certain entities
of interest, give them names, and put them into a structure. Thus, a KB is a
structured view on a selected part of the world. KBs typically model only distinct
entities. This cuts out a large portion of the world that consists of variations,
flows and transitions between entities. Drops of rain, for instance, fall down, join
in a puddle and may be splattered by a passing car to form new drops [66]. KBs
will typically not model these phenomena. This choice to model only discrete
entities is a projection of reality; it is a grid through which we see only distinct



Knowledge Representation and Rule Mining in Entity-Centric KB 113

things. Many entities consist of several different entities. A car, for example,
consists of wheels, a bodywork, an engine, and many other pieces. The engine
consists of the pistons, the valves, and the spark plug. The valves consist again
of several parts, and so on, until we ultimately arrive at the level of atoms or
below. Each of these components is an entity. However, KBs will typically not be
concerned with the lower levels of granularity. A KB might model a car, possibly
its engine and its wheels, but most likely not its atoms. In all of the following,
we will only be concerned with the entities that a KB models.

Entities in the real world can change gradually. For example, the Greek
philosopher Eubilides asks: If one takes away one molecule of an object, will
there still be the same object? If it is still the same object, this invites one to
take away more molecules until the object disappears. If it is another object, this
forces one to accept that two distinct objects occupy the same spatio-temporal
location: The whole and the whole without the molecule. A related problem is
the question of identity. The ancient philosopher Theseus uses the example of a
ship: Its old planks are constantly being substituted. One day, the whole ship
has been replaced and Theseus asks, “Is it still the same ship?”. To cope with
these problems, KBs typically model only atomic entities. In a KB, entities can
only be created and destroyed as wholes.

2.1.2 Identifiers and Labels
In computer systems (as well as in writing of any form), we refer to entities by
identifiers.

Definition 2 (Identifier): An identifier for an entity is a string of characters
that represents the entity in a computer system.

Typically, these identifiers take a human-readable form, such as ElvisPresley
for the singer Elvis Presley. However, some KBs use abstract identifiers. Wiki-
data, e.g., refers to Elvis Presley by the identifier Q303, and Freebase by
/m/02jq1. This choice was made so as to be language-independent, and so as
to provide an identifier that is stable in time. If, e.g., Elvis Presley reincarnates
in the future, then Q303 will always refer to the original Elvis Presley. It is
typically assumed that there exists exactly one identifier per entity in a KB. For
what follows, we will not distinguish identifiers from entities, and just talk of
entities instead.

Entities have names. For example, the city of New York can be called “city
of New York”, “Big Apple”, or “Nueva York”. As we see, one entity can have
several names. Vice versa, the same name can refer to several entities. “Paris”,
e.g., can refer to the city in France, to a city of that name in Texas, or to a
hero of Greek mythology. Hence, we need to carefully distinguish names – single
words or entire phrases – from their senses – the entities that they denote. This
is done by using labels.

Definition 3 (Label): A label for an entity is a human-readable string that
names the entity.



114 F. M. Suchanek et al.

If an entity has several labels, the labels are called synonymous. If the same
label refers to several entities, the label is polysemous. Not all entities have
labels. For example, your kitchen chair is clearly an entity, but it probably does
not have any particular label. An entity that has a label is called a named entity.
KBs typically model mainly named entities. There is one other type of entities
that appears in KBs: literals.

Definition 4 (Literal): A literal is a fixed value that takes the form of a string
of characters.

Literals can be pieces of text, but also numbers, quantities, or timestamps.
For example, the label “Big Apple” for the city of New York is a literal, as is
the number of its inhabitants (8,175,133).

2.2 Classes

2.2.1 Classes and Instances
KBs model entities of the world. They usually group entities together to form a
class:

Definition 5 (Class): A class (also: concept, type) is a named set of entities
that share a common trait. An element of that set is called an instance of the
class.

Under this definition, the following are classes: The class of singers (i.e., the
set of all people who sing professionally), the class of historical events in Latin
America, and the class of cities in Germany. Some instances of these classes
are, respectively, Elvis Presley, the independence of Argentina, and Berlin. Since
everything is an entity, a class is also an entity. It has (by definition) an identifier
and a label.

Theoretically, KBs can form classes based on arbitrary traits. We can, e.g.,
construct the class of singers whose concerts were the first to be broadcast by
satellite. This class has only one instance (Elvis Presley). We can also construct
the class of left-handed guitar players of Scottish origin, or of pieces of music
that the Queen of England likes. There are several theories as to whether humans
actually build and use classes, too [46]. Points of discussion are whether humans
form crisp concepts, and whether all elements of a concept have the same degree
of membership. For the purpose of KBs, however, classes are just sets of entities.

It is not always easy to decide whether something should be modeled as an
instance or as a class. We could construct, e.g., for every instance a singleton
class that contains just this instance (e.g., the class of all Elvis Presleys). Some
things of the world can be modeled both as instances and as classes. A typical
example is iPhone. If we want to designate the type of smartphone, we can
model it as an instance of the class of smartphone brands. However, if we are
interested in the iPhones owned by different people and want to capture them
individually, then iPhone should be modeled as a class. A similar observation
holds for abstract entities such as love. Love can be modeled as an instance of



Knowledge Representation and Rule Mining in Entity-Centric KB 115

the class emotion, where it resides together with the emotions of anger, fear,
and joy. However, when we want to model individual feelings of love, then love
would be a class. Its instances are the different feelings of love that different
people have. It is our choice how we wish to model reality.

A pragmatic test of whether something should be modeled as a class is as
follows: If we are interested in the plural form of a word or phrase, then we
should model it as a class. If we talk, e.g., about “iPhones”, then we model
several instances of iPhones, and hence iPhone should be a class. If we only
talk about “iPhone” along with other brand names (such as “HTC One”), then
iPhone may well be considered an instance. Analogously, if we talk of “love” only
in singular, then we may model it as an instance, along with other emotions. If
we talk of “loves” (as in “Elvis had many loves during his time as a star”), then
love is the set of all love affairs – and thus a class. The reason for this test is
that only countable nouns can be classes, and only countable nouns can be put
into plural. Another method to distinguish classes from instances is to say “An
X”, or “Every X”. If that is possible, then X is best modeled as a class, because
it can have instances. For example, it is possible to say “a CEO”, but not “a
Steve Jobs”. Hence, ceo should be a class, and SteveJobs should not. If we can
say “This is X”, then X is an instance – as in “This is Steve Jobs”. If we can
say “X is a Y”, then X is an instance of Y – as in “Steve Jobs is a CEO”.

A particular case are mass nouns like “milk”. The word “milk” (in the sense
of the liquid) does not have a plural form. Therefore, we could model it as an
instance (e.g., as an instance of the class of liquids). However, if we are interested
in individual servings of milk, such as bottles of milk, then we can model it as a
class, servingOfMilk.

Some KBs do not make the distinction between classes and instances (e.g.,
the SKOS vocabulary, [84]). In these KBs, everything is an entity. There is,
however, usually a “is more general than” link between a more special entity and
a more general entity. Such a KB may contain, e.g., the knowledge that iPhone
is more special than smartphone, without worrying whether one of them is a
class. The distinction between classes and instances adds a layer of granularity.
This granularity is used, e.g., to define the domains and ranges of relations, as
we shall see in Sect. 2.3.

2.2.2 Taxonomies
Definition 6 (Subsumption): Class A is a subclass of class B if A is a subset
of B.

For example, the class of singers is a subclass of the class of persons, because
every singer is a person. We also say that the class of singers is a specialization
of the class of persons, or that singer is subsumed by or included in person. Vice
versa, we say that person is a superclass or a generalization of the class of singers.
Technically speaking, two equivalent classes are subclasses of each other. This
is the way the RDFS standard models subclasses [83]. We say that a class is a
proper subclass of another class, if the second contains more entities than the
first. We use the notion of subclass here to refer to proper subclasses only.



116 F. M. Suchanek et al.

It is important not to confuse class inclusion with the relationship between
parts and wholes. For example, an arm is a part of the human body. That does
not mean, however, that every arm is a human body. Hence, arm is not a subclass
of body. In a similar manner, New York is a part of the US. That does not mean
that New York would be a subclass of the US. Neither New York nor the US are
classes, so they cannot be subclasses of each other.

Class inclusion is transitive: If A is a subclass of B, and B is a subclass of C,
then A is a subclass of C. For example, viper is a subclass of snake, and snake
is a subclass of reptile. Hence, by transitivity, viper is also a subclass of reptile.
We say that a class is a direct subclass of another class, if there is no class in the
KB that is a superclass of the former and a subclass of the latter. When we talk
about subclasses, we usually mean only direct subclasses. The other subclasses
are transitive subclasses. Since classes can be included in other classes, they can
form an inclusion hierarchy – a taxonomy.

Definition 7 (Taxonomy): A taxonomy is a directed graph, where the nodes
are classes and there is an edge from class X to class Y if X is a proper direct
subclass of Y.

The notion of taxonomy is known from biology. Zoological or botanic species
form a taxonomy: tiger is a subclass of cat. cat is a subclass of mammal, and
so on. This principle carries over to all other types of classes. We say, e.g., that
internetCompany is a subclass of company, and that company is a subclass of
organization, etc. Since a taxonomy models proper inclusion, it follows that the
taxonomic graph is acyclic: If a class is the subclass of another class, then the
latter cannot be a subclass of the former. Thus, a taxonomy is a directed acyclic
graph. A taxonomy does not show the transitive subclass edges. If the graph
contains transitive edges, we can always remove them. Given a finite directed
acyclic graph with transitive edges, the set of direct edges is unique [2].

Transitivity is often essential in applications. For example, consider a
question-answering system where a user asks for artists that are married to
actors. If the KB only knew about Elvis Presley and Priscilla Presley being in
the classes rockSinger and americanActress, the question could not be answered.
However, by reasoning that rockSingers are also singers, who in turn are artists
and americanActresses being actresses, it becomes possible to give this correct
answer.

Usually (but not necessarily), taxonomies are connected graphs: Every node
in the graph is, directly or indirectly, linked to every other node. Usually, the
taxonomies have a single root, i.e., a single node that has no outgoing edges. This
node identifies the most general class, of which every other class is a subclass.
In zoological KBs, this may be class animal. In a person database, it may be
the class person. In a general-purpose KB, this class has to be the most general
possible class. In YAGO and Wordnet, the class is entity. In the RDF standard,
it is called resource [82]. In the OWL standard [85], the highest class that does
not include literals is called thing.

Some taxonomies have at most one outgoing edge per node. Then, the tax-
onomy forms a tree. The biological taxonomy, e.g., forms a tree, as does the Java



Knowledge Representation and Rule Mining in Entity-Centric KB 117

class hierarchy. However, there can be taxonomies where a class has two distinct
direct superclasses. For example, if we have the class singer and the classes of
woman and man, then the class femaleSinger has two superclasses: singer and
woman. Note that it would be wrong to make singer a subclass of man and
woman (as if to say that singers can be men or women). This would actually
mean that all singers are at the same time men and women.

When a taxonomy includes a “combination class” such as FrenchFe-
maleSingers, then this class can have several superclasses. FrenchFemaleSingers,
e.g., can have as direct superclasses FrenchPeople, Women, and Singers. In a
similar manner, one entity can be an instance of several classes. Albert Einstein,
e.g., is an instance of the classes physicist, vegetarian, and violinPlayer.

When we populate a KB with new instances, we usually try to assign them
to the most specific suitable class. For example, when we want to place Bob
Dylan in our taxonomy, we would put him in the class americanBluesSinger, if
we have such a class, instead of in the class person. However, if we lack more
specific information about the instance, then we might be forced to put it into
a general class. Some named entity recognizers, e.g., distinguish only between
organizations, locations, and people, which means that it is hard to populate
more specific classes. It may also happen that our taxonomy is not specific
enough at the leaf level. For example, we may encounter a musician who plays the
Arabic oud, but our taxonomy does not have any class like oudPlayer. Therefore,
a class may contain more instances than the union of its subclasses. That is,
for a class C with subclasses C1, . . . , Ck, the invariant is ∪i=1..kCk ⊆ C, but
∪i=1..kCk = C is often false.

2.2.3 Special Cases
Some KBs assign literals to classes, too. For example, the literal “Hello” can
be modeled as an instance of the class string. Such literal classes can also form
taxonomies. For example, the class nonNegativeIntegers is a subclass of the class
of integers, which is again a subclass of the more general class numbers.

We already observed that classes are entities. Thus, we can construct classes
that contain other classes as instances. For example, we can construct the class
of all classes class ={car, person, scientist, ...}. This leads to awkward questions
about self-containment, reminiscent of Bertrand Russel’s famous set of sets that
do not include themselves. The way this is usually solved [82] is to distinguish
the class (as an abstract concept) from the extension of the class (the set of its
instances). For example, the class of singers is the abstract concept of people
who sing. Its extension is the set {Elvis, Madonna, ...}. In this way, a class is not
a set, but just an abstract entity. Therefore, the extension of a class can contain
another class. This is, however, a rather theoretical problem, and in what follows,
we will not distinguish classes from their extensions.

To distinguish classes from other entities, we call an entity that is neither a
class nor a literal an instance or a common entity.



118 F. M. Suchanek et al.

2.3 Relations

2.3.1 Relations and Statements
KBs model also relationships between entities:

Definition 8 (Relation): A relationship (also: relation) over the classes
C1, ..., Cn is a named subset of the Cartesian product C1 × ... × Cn.

For example, if we have the classes person, city, and year, we may construct
the birth relationship as a subset of the cartesian product person × city × year.
It will contain tuples of a person, their city of birth, and their year of birth.
For example, 〈ElvisPresley, Tupelo, 1935〉 ∈ birth. In a similar manner, we can
construct tradeAgreement as a subset of country × country × commodity. This
relation can contain tuples of countries that made a trade agreement concerning
a commodity. Such relationships correspond to classical relations in algebra or
databases.

As always in matters of knowledge representation (or, indeed, informatics in
general), the identifier of a relationship is completely arbitrary. We could, e.g.,
call the birth relationship k42, or, for that matter, death. Nothing hinders us to
populate the birth relationship with tuples of a person, and the time and place
where that person ate an ice cream. However, most KBs aim to model reality,
and thus use identifiers and tuples that correspond to real-world relationships.

If 〈x1, ..., xn〉 ∈ R for a relationship R, we also write R(x1, ..., xn). In the
example, we write birth(ElvisPresley, Tupelo, 1935). The classes of R are called
the domains of R. The number of classes n is called the arity of R. 〈x1, ..., xn〉
is a tuple of R. R(x1, ..., xn) is called a statement, fact, or record. The elements
x1, ..., xn are called the arguments of the facts. Finally, a knowledge base, in its
simplest form, is a set of statements. For example, a KB can contain the relations
birth, death and marriage, and thus model some of the aspects of people’s lives.

2.3.2 Binary Relations
Definition 9 (Binary Relation): A binary relation is a relation of arity 2.

Examples of binary relations are birthPlace, friendOf, or marriedTo. The
first argument of a binary fact is called the subject, and the second argument is
called the object of the fact. The relationships are sometimes called properties.
Relationships that have literals as objects, and that have at most one object per
subject are sometimes called attributes. Examples are hasBirthDate or hasISBN.
The domain of a binary relation R ⊂ A × B is A, i.e., the class from which the
subjects are taken. B is called the range of R. For example, the domain of birth-
Place is person, and its range is city. The inverse of a binary relation R is a
relation R−1, such that R−1(x, y) iff R(x, y). For example, the inverse relation
of hasNationality (between a person and a country) is hasNationality− (between
a country and a person) – which we could also call hasCitizen.

Any n-ary relation R with n > 2 can be split into n binary relations. This
works as follows. Assume that there is one argument position i that is a key,



Knowledge Representation and Rule Mining in Entity-Centric KB 119

i.e., every fact R(x1, ..., xn) has a different value for xi. In the previously intro-
duced 3-ary birth relationship, which contains the person, the birth place, and
the birth date, the person is the key: every person is born only once at one
place. Without loss of generality, let the key be at position i = 1. We introduce
binary relationships R2, ..., Rn. In the example, we introduce birthPlace for the
relation between the person and the birth place, and birthDate for the relation
between the person and the birth year. Every fact R(x1, ..., xn) gets rewrit-
ten as R2(x1, x2), R3(x1, x3), R4(x1, x4), ..., Rn(x1, xn). In the example, the fact
birth(Elvis,Tupelo,1935) gets rewritten as birthPlace(Elvis,Tupelo) and birth-
Date(Elvis,1935). Now assume that a relation R has no key. As an example,
consider again the tradeAgreement relationship. Obviously, there is no key in
this relationship, because any country can make any number of trade-agreements
on any commodity. We introduce binary relationships R1, ...Rn for every argu-
ment position of R. For tradeAgreement, these could be country1, country2 and
tradeCommodity. For each fact of R, we introduce a new entity, an event entity.
For example, if the US and Brazil make a trade-agreement on coffee, trade-
Agreement(Brazil,US,Coffee), then we create coffeeAgrBrUs. This entity repre-
sents the fact that these two countries made this agreement. In general, every fact
R(x1, ..., xn) gives rise to an event entity ex1,...,xn. Then, every fact R(x1, ..., xn)
is rewritten as R1(ex1,...,xn, x1), R2(ex1,...,xn, x2), ..., Rn(ex1,...,xn, xn). In the
example, country1(coffeeAgrBrUs, Brazil), country2(coffeeAgrBrUs, US), trade-
Commodity(coffeeAgrBrUs, Coffee). This way, any n-ary relationship with n > 2
can be represented as binary relationships. For n = 1, we can always invent a
binary relation hasProperty, and use the relation as an additional argument. For
example, instead of male(Elvis), we can say hasProperty(Elvis, male).

The advantage of binary relationships is that they can express facts even if
one of the arguments is missing. If, e.g., we know only the birth year of Steve
Jobs, but not his birth place, then we cannot make a fact with the 3-ary relation
birth ⊂ person × city × year. We have to fill the missing arguments, e.g., with null
values. If the relationship has a large arity, many of its arguments may have to
be null values. In the case of binary relationships, in contrast, we can easily state
birthDate(SteveJobs, 1955), and omit the birthPlace fact. Another disadvantage
of n-ary relationships is that they do not allow adding new pieces of information a
posteriori. If, e.g., we forgot to declare the astrological ascendant as an argument
to the 3-ary relation birth, then we cannot add the ascendant for Steve Job’s birth
without modifying the relationship. In the binary world, in contrast, we can
always add a new relationship birthAscendant. Thus, binary relationships offer
more flexibility. This flexibility can be a disadvantage, because it allows adding
incomplete information (e.g., a birth place without a birth date). However, since
knowledge bases are often inherently incomplete, binary relationships are usually
the method of choice.

2.3.3 Functions
Definition 10 (Function): A function is a binary relation that has for each
subject at most one object.



120 F. M. Suchanek et al.

Typical examples for functions are birthPlace and hasLength: Every person
has at most one birth place and every river has at most one length. The relation
ownsCar, in contrast, is not a function, because a (rich) person can own multiple
cars. In our terminology, we call a relation a function also if it has no objects
for certain subjects, i.e., we include partial functions (such as deathDate).

Some relations are functions in time. This means that the relation can have
several objects, but at each point of time, only one object is valid. A typical
example is isMarriedTo. A person can go through several marriages, but can
only have one spouse at a time (in most systems). Another example is has-
NumberOfInhabitants for cities. A city can grow over time, but at any point of
time, it has only a single number of inhabitants. Every function is a function in
time.

A binary relation is an inverse function, if its inverse is a function. Typical
examples are hasCitizen (if we do not allow double nationality) or hasEmail-
Address (if we talk only about personal email addresses that belong to a single
person). Some relations are both functions and inverse functions. These are iden-
tifiers for objects, such as the social security number. A person has exactly one
social security number, and a social security number belongs to exactly one per-
son. Functions and inverse functions play a crucial role in entity matching: If
two KBs talk about the same entity with different names, then one indication
for this is that both entities share the same object of an inverse function. For
example, if two people share an email address in a KB about customers, then
the two entities must be identical.

Some relations are “nearly functions”, in the sense that very few subjects have
more than one object. For example, most people have only one nationality, but
some may have several. This idea is formalized by the notion of functionality [69].
The functionality of a relation r in a KB is the number of subjects, divided by
the number of facts with that relation:

fun(r) :=
|{x : ∃y : r(x, y)}|
|{x, y : r(x, y)}|

The functionality is always a value between 0 and 1, and it is 1 if r is a function.
It is undefined for an empty relation.

We usually have the choice between using a relation and its inverse rela-
tion. For example, we can either have a relationship isCitizenOf (between a
person and their country) or a relationship hasCitizen (between a country and
its citizens). Both are valid choices. In general, KBs tend to choose the relation
with the higher functionality, i.e., where the subject has fewer objects. In the
example, the choice would probably be isCitizenOf, because people have fewer
citizenships than countries have citizens. The intuition is that the facts should
be “facts about the subject”. For example, the fact that two authors of this
paper are citizens of Germany is clearly an important property of the authors
(it appears on the Wikipedia page of the last author). Vice versa, the fact that
Germany is fortunate enough to count these authors among its citizens is a much
less important property of Germany (it does not appear on the Wikipedia page
of Germany).



Knowledge Representation and Rule Mining in Entity-Centric KB 121

2.3.4 Relations with Classes
In Sect. 2.2.3, we have introduced the class class, which contains all classes.
This allows us to introduce the relationship between an instance and its class:
type ⊂ entity × class. We can now say type(Elvis, singer).3 We also introduce
subclassOf ⊂ class × class, which is the relationship between a class and its super-
classes. For example, subclassOf(singer, person). In the same way as we have
introduced the class of all classes, we can introduce the class of all relations.
We call this class property. With this, we can define the relationship between
a binary relation and its domain: domain ⊂ property × class. We can now say
domain(birthPlace, person). Analogously, we introduce range ⊂ property × class,
so that we can say range(birthPlace, city). This way, an entire KB, with its rela-
tions and schema information, can be written as binary relationships. There is
no distinction between data and meta-data – the KB describes itself.

In some cases, we have the choice whether to model something as a rela-
tionship or as a class. For example, to say that Berlin is located in Germany,
we can either say locatedIn(Berlin, Germany) or type(Berlin, germanCity), or
both. There is no definite agreement as to which method is the right way to go,
but there are advantages and disadvantages for each of them. If the entities in
question can have certain properties that other entities cannot have, then it is
useful to group them into a class. Practically speaking, this means that as soon
as there is a relationship that has these entities as domain or range, the entities
should become a class. For example, if we model Landkreise (the German equiv-
alent of regions), then we can have inLandkreis ⊂ germanCity ×Landkreis. No
city other than German cities can be in a Landkreis. Thus, it is useful to have
the class germanCity. If, however, German cities behave just like all other cities
in our KB, then a class for them is less useful. In this spirit, it makes sense to
have a class for scientists (who have a graduation university), or digital cameras
(which have a resolution), but less so for male scientists or Sony cameras.

However, if we want to express that an entity stands in a relationship with
another entity, and if that other entity has itself many relationships, then it is
useful to use a relational fact. This allows more precise querying. For example,
German cities stand in a relationship with Germany. Germany is located in
Europe, and it is one of the German speaking countries. Thus, by saying located-
In(Berlin, Germany), we can query for cities located in European countries and
for German-speaking cities, without introducing a class for each of them. In
this spirit, it makes sense to use the relational modeling for German cities or
American actors, but much less so for, say, zoological categories such as mammals
or reptiles. Sometimes neither choice may have strong arguments in favor, and
sometimes both forms of modeling together may be useful.

3 We can even say type(class, class), i.e., class is an instance of class.



122 F. M. Suchanek et al.

2.4 Knowledge Bases

2.4.1 Completeness and Correctness
Knowledge bases model only a part of the world. In order to make this explicit,
one imagines a complete knowledge base K∗ that contains all entities and facts
of the real world in the domain of interest. A given KB K is correct, if K ⊆ K∗.
Usually, KBs aim to be correct. In real life, however, large KBs tend to contain
also erroneous statements. YAGO, e.g., has an accuracy of 95%, meaning that
95% of its statements are in K∗ (or, rather, in Wikipedia, which is used as
an approximation of K∗). This means that YAGO still contains hundreds of
thousands of wrong statements. For most other KBs, the degree of correctness
is not even known.

A knowledge base is complete, if K∗ ⊆ K (always staying within the domain of
interest). The closed world assumption (CWA) is the assumption that the KB at
hand is complete. Thus, the CWA says that any statement that is not in the KB
is not in K∗ either. In reality, however, KBs are hardly ever complete. Therefore,
KBs typically operate under the open world assumption (OWA), which says that
if a statement is not in the KB, then this statement can be either true or false
in the real world.

KBs usually do not model negative information. They may say that Caltrain
serves the city of San Francisco, but they will not say that this train does not
serve the city of Moscow. While incompleteness tells us that some facts may be
missing, the lack of negative information prevents us from specifying which facts
are missing because they are false. This poses considerable problems, because the
absence of a statement does not allow any conclusion about the real world [60].

2.5 The Semantic Web

The common exchange format for knowledge bases is RDF/RDFS [82]. It spec-
ifies a syntax for writing down statements with binary relations. Most notably,
it prescribes URIs as identifiers, which means that entities can be identified in a
globally unique way. To query such RDF knowledge bases, one can use the query
language SPARQL [86]. SPARQL borrows its syntax from SQL, and allows the
user to specify graph patterns, i.e., triples where some components are replaced
by variables. For example, we can ask for the birth date of Elvis by saying
“SELECT ?birthdate WHERE { 〈Elvis〉 〈bornOnDate〉 ?birthdate }”.

To define semantic constraints on the data, RDF is extended by OWL [85].
This language allows specifying constraints such as functions or disjointness of
classes, as well as more complex axioms. The formal semantics of these axioms
is given by Description Logics [3]. These logics distinguish facts about instances
from facts about classes and axioms. The facts about instances are called the A-
Box (“Assertions”), and the class facts and axioms are called the T-Box (“The-
ory”). Sometimes, the term ontology is used to mean roughly the same as T-Box.
Description Logics allow for automated reasoning on the data.

Many KBs are publicly available online. They form what is known as the
Semantic Web. Some of these KBs talk about the same entities – with differ-



Knowledge Representation and Rule Mining in Entity-Centric KB 123

ent identifiers. The Linked Open Data project [5] aims to establish links between
equivalent identifiers, thus weaving all public KBs together into one giant knowl-
edge graph.

2.6 Challenges in Knowledge Representation

Knowledge representation is a large field of research, which has received ample
attention in the past, and which still harbors many open questions. Some of
these open issues in the context of knowledge bases are the following.

Negative Information. For some applications (such as question answering or
knowledge curation), it is important to know whether a statement is not true. As
we have seen, KBs usually do not store negative information, and thus the mining
of negative information is an active field of research. In some cases, axioms can
help deducing negative information. For example, if some relation is a function,
and if one object is present, then it follows that all other objects cannot be in the
relation. In other cases, a variant of the closed world assumption can help [55].

Completeness. Today’s KBs do not store the fact that they are complete in
some domains. For example, if the KB knows all children of Barack Obama, then
it would be helpful to store that the KB is complete on the children of Obama.
Different techniques for storing completeness information have been devised (see
[60] for a survey), and completeness can also be determined automatically to
some degree [23,38,65], but these techniques are still in their infancy.

Correctness. Some KBs (e.g., NELL or YAGO) store a probability value with
each statement, indicating the likelihood that the statement is correct. There is
an ample corpus of scientific work on dealing with such probabilistic knowledge
bases, but attaching probabilities to statements is currently not a universally
adopted practice.

Provenance. Some KBs (e.g., Wikidata, NELL and YAGO) attach provenance
information to their statements, i.e., the source where the statement was found,
and the technique that was used to extract it. This information can be used to
debug the KB, to justify the statements, or to optimize the construction process.
Again, there is ample literature on dealing with provenance (see [4] for a survey
of works in artificial intelligence, databases, and the Semantic Web) – although
few KBs actually attach provenance information.

Time and Space. Some KBs (e.g., Wikidata and YAGO) store time and space
information with their facts. Thus, they know where and when a fact happened.
This is often achieved by giving each fact a fact identifier, and by making state-
ments about that fact identifier. Other approaches abound [21,28,33,62,80].
They include, e.g., the use of 5-ary facts, the introduction of a sub-property
for each temporal statement, or the attachment of time labels.

Facts about Facts. We sometimes wish to store not just the time of a state-
ment, but more facts about that statement. For example, we may want to store
the correctness or provenance of a fact, but also the authority who vouches for



124 F. M. Suchanek et al.

the fact, access rights to the fact, or beliefs or hypotheses (as in “Fabian believes
that Elvis is alive”). RDF provides a mechanism called reification for this pur-
pose, but it is clumsy to use. Named Graphs [10] and annotations [76] have been
proposed as alternatives. Different other alternatives are surveyed in [4]. Newer
approaches attach attributes to statements [37,47].

Textual Extension. The textual source of the facts often contains additional
subtleties that cannot be captured in triples. It can therefore be useful to add
the textual information into the KB, as it is done, e.g., in [87].

NoRDF. For some information (such as complex events, narratives, or larger
contexts), the representation as triples is no longer sufficient. We call this the
realm of NoRDF knowledge (in analogy to NoSQL databases). For example,
it is clumsy, if not impossible, to represent with binary relations the fact that
Leonardo diCaprio was baptized “Leonardo” by his mother, because she visited
a museum in Italy while she was still pregnant, and felt that the baby kicked
while she saw a work of Leonardo DaVinci.

Commonsense Knowledge. Properties of everyday objects (e.g. that spiders
have eight legs) and general concepts are of importance for text understanding,
sentiment analysis, and object recognition in images and videos. This line of
knowledge representation is well covered in classical works [41,62], and is lately
also enjoying attention in the KB community [72,73].

Intensional Knowledge. Commonsense knowledge can also take the form of
rules. For example, if a doctoral student is advised by a professor, then the
university of graduation will be the employer of the professor. Again, this type
of knowledge representation is well covered in classical works [41,62], and recent
approaches have turned to using it for KBs [11,25,26]. This type of intensional
knowledge is what we will now discuss in the next section.

3 Rule Mining

3.1 Rules

Once we have a knowledge base, it is interesting to look out for patterns in the
data. For example, we could notice that if some person A is married to some
person B, then usually B is also married to A (symmetry of marriage). Or we
could notice that, if, in addition, A is the parent of some child, then B is usually
also a parent of that child (although not always).

We usually write such rules using the syntax of first-order logic. For example,
we would write the previous rules as:

marriedTo(x, y) ⇒ marriedTo(y, x)

marriedTo(x, y) ∧ hasChild(x, z) ⇒ hasChild(y, z)

Such rules have several applications: First, they can help us complete the KB.
If, e.g., we know that Elvis Presley is married to Priscilla Presley, then we can



Knowledge Representation and Rule Mining in Entity-Centric KB 125

deduce that Priscilla is also married to Elvis – if the fact was missing. Second,
the rules can help us disambiguate entities and correct errors. For example, if
Elvis has a child Lisa, and Priscilla has a different child Lisa, then our rule
could help find out that the two Lisa’s are actually a single entity. Finally, those
frequent rules give us insight about our data, biases in the data, or biases in the
real world. For example, we may find that European presidents are usually male
or that Ancient Romans are usually dead. These two rules are examples of rules
that have not just variables, but also entities:

type(x,AncientRoman) ⇒ dead(x)

We are now interested in discovering such rules automatically in the data. This
process is called Rule Mining. Let us start with some definitions. The components
of a rule are called atoms:

Definition 11 (Atom): An atom is of the form r(t1, . . . , tn), where r is a rela-
tion of arity n (for KBs, usually n = 2) and t1, . . . tn are either variables or
entities.

In our example, marriedTo(x, y) is an atom, as is marriedTo(Elvis, y). We
say that an atom is instantiated, if it contains at least one entity. We say that it
is grounded, if it contains only entities and no variables. A conjunction is a set
of atoms, which we write as A = A1 ∧ ... ∧ An. We are now ready to combine
atoms to rules:

Definition 12 (Rule): A Horn rule (rule, for short) is a formula of the form
B ⇒ h, where B is a conjunction of atoms, and h is an atom. B is called the
body of the rule, and h its head.

For example, marriedTo(x, y) ⇒ marriedTo(y, x) is a rule. Such a rule is
usually read as “If x is married to y, then y is married to x”. In order to apply
such a rule to specific entities, we need the notion of a substitution:

Definition 13 (Substitution): A substitution is a function that maps vari-
ables to entities or to other variables.

For example, a substitution σ can map σ(x) = Elvis and σ(y) = z – but
not σ(Elvis) = z. A substitution can be generalized straightforwardly to atoms,
sets of atoms, and rules: if σ(x) = Elvis, then σ(marriedTo(Priscilla, x)) =
marriedTo(Priscilla, Elvis). With this, an instantiation of a rule is a variant of
the rule where all variables have been substituted by entities (so that all atoms
are grounded). If we substitute x = Elvis and y = Priscilla in our example rule,
we obtain the following instantiation:

marriedTo(Elvis, Priscilla) ⇒ marriedTo(Priscilla, Elvis)

Thus, an instantiation of a rule is an application of the rule to one concrete case.
Let us now see what rules can predict:



126 F. M. Suchanek et al.

Lisa

PriscillaElvis Barack Michelle

Sasha Malia

hasChild hasChild hasChild hasChild

marriedTo marriedTo

Fig. 1. Example KB

Definition 14 (Prediction of a rule): The predictions P of a rule B ⇒ h in
a KB K are the head atoms of all instantiations of the rule where the body atoms
appear in K. We write K ∧ (B ⇒ h) |= P . The predictions of a set of rules are
the union of the predictions of each rule.

For example, consider the KB in Fig. 1. The predictions of the rule
marriedTo(x, y) ∧ hasChild(y, z) ⇒ hasChild(x, z) are hasChild(Priscilla,
Lisa), hasChild(Elvis, Lisa), hasChild(Barack, Sasha), hasChild(Barack, Malia),
hasChild(Michelle, Sasha), hasChild(Michelle, Malia). This is useful, because
two of these facts are not yet in the KB.

Logic. From a logical perspective, all variables in a rule are implicitly universally
quantified (over every entity defined in the KB). Thus, our example rule is more
explicitly written as

∀x, y, z : marriedTo(x, y) ∧ hasChild(y, z) ⇒ hasChild(x, z)

It can be easily verified that such a rule is equivalent to the following disjunction:

∀x, y, z : ¬marriedTo(x, y) ∨ ¬hasChild(y, z) ∨ hasChild(x, z)

While every Horn rule corresponds to a disjunction with universally quantified
variables, not every such disjunction corresponds to a Horn rule. Only those
disjunctions with exactly one positive atom correspond to Horn rules. In prin-
ciple, we could mine arbitrary disjunctions, and not just those that correspond
to Horn rules. We could even mine arbitrary first-order expressions, such as
∀x : person(x) ⇒ ¬(underage(x) ∧ adult(x)). For simplicity, we stay with Horn
rules in what follows, and point out when an approach can be generalized to
disjunctions or arbitrary formulae.

3.2 Rule Mining

3.2.1 Inductive Logic Programming
We now turn to mining rules automatically from a KB. This endeavor is based
on Inductive Reasoning. To reason by induction is to expect that events that
always appeared together in the past will always appear together in the future.
For example, inductive reasoning could tell us: “All life forms we have seen so



Knowledge Representation and Rule Mining in Entity-Centric KB 127

far need water. Therefore, all life forms in general need water.”. This is the fun-
damental principle of empirical science: the generalization of past experiences
to a scientific theory. Of course, inductive reasoning can never deliver the log-
ical certitude of deductive reasoning. This is illustrated by Bertrand Russel’s
analogy of the turkey [61]: The turkey is fed every day by its owner, and so
it comes to believe that the owner will always feed the turkey – which is true
only until Christmas day. The validity and limitations of modeling the reality
using inductive reasoning are a debated topic in philosophy of science. For more
perspectives on the philosophical discussions, we refer the reader to [29] and
[31]. In the setting of KBs, inductive reasoning is formalized as Inductive Logic
Programming [51,57,63]:

Definition 15 (Inductive Logic Programming): Given a background
knowledge B (in general, any first order logic expression; in our case: a KB),
a set of positive example facts E+, and a set of negative example facts E−,
Inductive Logic Programming (ILP) is the task of finding an hypothesis h (in
general, a set of first order logic expressions; in our case: a set of rules) such
that ∀e+ ∈ E+ : B ∧ h |= e+ and ∀e− ∈ E− : B ∧ h |= e−.

This means that the rules we seek have to predict all positive examples (they
have to be complete), and they may not predict a negative example (they have
to be correct). For example, consider again the KB from Fig. 1 as background
knowledge, and let the sets of examples be:

E+ = {isMarriedTo(Elvis, Priscilla), isMarriedTo(Priscilla, Elvis),
isMarriedTo(Barack, Michelle), isMarriedTo(Michelle, Barack)}

E− = {isMarriedTo(Elvis, Michelle), isMarriedTo(Lisa, Barack),
isMarriedTo(Sasha, Malia)}

Now consider the following hypothesis:

h = {isMarriedTo(x, y) ⇒ isMarriedTo(y, x)}
This hypothesis is complete, as every positive example is a prediction of the rule,
and it is correct, as no negative example is predicted.

The attentive reader will notice that the difficulty is now to correctly deter-
mine the sets of positive and negative examples. In the ideal case the positive
examples should contain any fact that is true in the real world and the negative
examples contain any other fact. Thus, in a correct KB, every fact is a positive
example.

Definition 16 (Rule Mining): Given a KB, Rule Mining is the ILP task with
the KB as background knowledge, and every single atom of the KB as a positive
example.

This means that the rule mining will find several rules, in order to explain
all facts of the KB. Three problems remain: First, we have to define the set of
negative examples (Sect. 3.2.2). Second, we have to define what types of rules
we are interested in (Sect. 3.2.3). Finally, we have to adapt our mining to cases
where the rule does not always hold (Sect. 3.2.4).



128 F. M. Suchanek et al.

3.2.2 The Set of Negative Examples
Rule mining needs negative examples (also called counter-examples). The prob-
lem is that KBs usually do not contain negative information (Sect. 2.6). We can
think of different ways to generate negative examples.

Closed World Assumption. The Closed World Assumption (CWA) says that
any statement that is not in the KB is wrong (Sect. 2.4.1). Thus, under the
Closed-World Assumption, any fact that is not in the KB can serve as a neg-
ative example. The problem is that these may be exactly the facts that we
want to predict. In our example KB from Fig. 1, we may want to learn the
rule marriedTo(x, y) ∧ hasChild(y, z) ⇒ hasChild(x, z). For this rule, the fact
hasChild(Barack, Malia) is a counter-example. However, this fact is exactly what
we want to predict, and so it would be a counter-productive counter-example.

Open World Assumption. Under the Open-World Assumption (OWA), any
fact that is not in the KB can be considered either a negative or a positive exam-
ple (see again Sect. 2.4.1). Thus the OWA does not help in establishing counter-
examples. Without counter-examples, we can learn any rule. For example, in
our KB, the rule type(x, person) ⇒ marriedTo(x, Barack) has a single positive
example (for x = Michelle), and no counter-examples under the Open World
Assumption. Therefore, we could deduce that everyone is married to Barack.

Partial Completeness Assumption. Another strategy to generate negative
examples is to assume that entities are complete for the relations they already
have. For example, if we know that Michelle has the children Sasha and Malia,
then we assume (much like Barack) that Michelle has no other children. If, in
contrast, Barack does not have any children in the KB, then we do not conclude
anything. This idea is called the Partial-Completeness Assumption (PCA) or
the Local Closed World Assumption [25]. It holds trivially for functions (such as
hasBirthDate), and usually [26] for relations with a high functionality (such as
hasNationality). The rationale is that if the KB curators took the care to enter
some objects for the relation, then they will most likely have entered all of them,
if there are few of them. In contrast, the assumption does usually not hold for
relations with low functionality (such as starsInMovie). Fortunately, relations
usually have a higher functionality than their inverses (see Sect. 2.3.3). If that is
not the case, we can apply the PCA to the object of the relation instead.

Random Examples. Another strategy to find counter-examples is to generate
random statements [50]. Such random statements are unlikely to be correct, and
can thus serve as counter-examples. This is one of the methods used by DL-
Learner [30]. As we shall see in Sect. 4.3.1, it is not easy to generate helpful
random counter-examples. If, e.g., we generate the random negative example
marriedTo(Barack,USA), then it is unlikely that a rule will try to predict this
example. Thus, the example does not actually help in filtering out any rule. The
challenge is hence to choose counter-examples that are false, but still reasonable.
The authors of [55] describe a method to sample negative statements about
semantically connected entities by help of the PCA. We will also revisit the
problem in the context of representation learning (Sect. 4.3.1).



Knowledge Representation and Rule Mining in Entity-Centric KB 129

3.2.3 The Language Bias
After solving the problem of negative examples, the next question is what kind
of rules we should consider. This choice is called the language bias, because it
restricts the “language” of the hypothesis. We have already limited ourselves to
Horn Rules, and in practice we even restrict ourselves to connected and closed
rules.

Definition 17 (Connected rules): Two atoms are connected if they share a
variable, and a rule is connected if every non-ground atom is transitively con-
nected to one another.

For example, the rule presidentOf(x, America) ⇒ hasChild(Elvis, y) is not
connected. It is an uninteresting and most likely wrong rule, because it makes a
prediction about arbitrary y.

Definition 18 (Closed rules): A rule is closed if every variable appears in at
least two atoms.

For example the rule marriedTo(x, y) ∧ worksAt(x, z) ⇒ marriedTo( y, x)
is not closed. It has a “dangling edge” that imposes that x works somewhere.
While such rules are perfectly valid, they are usually less interesting than the
more general rule without the dangling edge.

Finally, one usually imposes a limit on the number of atoms in the rule. Rules
with too many atoms tend to be very convoluted [26]. That said, mining rules
without such restrictions is an interesting field of research, and we will come
back to it in Sect. 3.5.

3.2.4 Support and Confidence
One problem with classical ILP approaches is that they will find rules that apply
to very few entities, such as marriedTo(x, Elvis) ⇒ hasChild(x, Lisa). To avoid
this type of rules, we define the support of a rule:

Definition 19 (Support): The support of a rule in a KB is the number of
positive examples predicted by the rule.

Usually, we are interested only in rules that have a support higher than a
given threshold (say, 100). Alternatively, we can define a relative version of sup-
port, the head coverage [25], which is the number of positive examples predicted
by the rule divided by the number of all positive examples with the same rela-
tion. Another problem with classical ILP approaches is that they will not find
rules if there is a single counter-example. To mitigate this problem, we define
the confidence:

Definition 20 (Confidence): The confidence of a rule is the number of posi-
tive examples predicted by the rule (i.e., the support of the rule), divided by the
number of examples predicted by the rule.



130 F. M. Suchanek et al.

This notion depends on how we choose our negative examples. For instance,
under the CWA, the rule marriedTo(x, y) ∧ hasChild(y, z) ⇒ hasChild(x, z) has
a confidence of 4/6 in Fig. 1. We call this value the standard confidence. Under
the PCA, in contrast, the confidence for the example rule is 4/4. We call this
value the PCA confidence. While the standard confidence tends to “punish” rules
that predict many unknown statements, the PCA confidence will permit more
such rules. We present in AppendixA the exact mathematical formula of these
measures.

In general, the support of a rule quantifies its completeness, and the con-
fidence quantifies its correctness. A rule with low support and high confidence
indicates a conservative hypothesis and may be overfitting, i.e. it will not gener-
alize to new positive examples. A rule with high support and low confidence, in
contrast, indicates a more general hypothesis and may be overgeneralizing, i.e.,
it does not generalize to new negative examples. In order to avoid these effects
we are looking for a trade-off between support and confidence.

Definition 21 (Frequent Rule Mining): Given a KB K, a set of posi-
tive examples (usually K), a set of negative examples (usually according to an
assumption above) and a language of rules, Frequent rule mining is the task of
finding all rules in the language with a support and a level of confidence superior
to given thresholds.

3.3 Rule Mining Approaches

Using substitutions (see Definition 13), we can define a syntactical order on rules:

Definition 22 (Rule order): A rule R ≡ (B ⇒ h) subsumes a rule R′ ≡
(B′ ⇒ h′), or R is “more general than” R′, or R′ “is more specific than” R,
if there is a substitution σ such that σ(B) ⊆ B′ and σ(h) = h′. If both rules
subsume each other, the rules are called equivalent.

For example, consider the following rules:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

hasChild(x, y) ⇒ hasChild(z, y) (R0)
hasChild(Elvis, y) ⇒ hasChild(Priscilla, y) (R1)

hasChild(x, y) ⇒ hasChild(z, Lisa) (R2)
hasChild(x, y) ∧ marriedTo(x, z) ⇒ hasChild(z, y) (R3)

marriedTo(v1, v2) ∧ hasChild(v1, v3) ⇒ hasChild(v2, v3) (R4)
hasChild(x, y) ∧ marriedTo(z, x) ⇒ hasChild(z, y) (R5)

The rule R0 is more general than the rule R1, because we can rewrite the variables
x and z to Elvis and Priscilla respectively. However R0 and R2 are incompa-
rable as we cannot choose to bind only one y and not the other in R0. The rules
R3, R4 and R5 are more specific than R0. Finally R3 is equivalent to R4 but not
to R5.

Proposition 23 (Prediction inclusion): If a rule R is more general than a
rule R′, then the predictions of R′ on a KB are a subset of the predictions of R.
As a corollary, R′ cannot have a higher support than R.



Knowledge Representation and Rule Mining in Entity-Centric KB 131

This observation gives us two families of rule mining algorithms: top-down
rule mining starts from very general rules and specializes them until they become
too specific (i.e., no longer meet the support threshold). Bottom-up rule mining,
in contrast, starts from multiple ground rules and generalizes them until the
rules become too general (i.e., too many negative examples are predicted).

3.3.1 Top-Down Rule Mining
The concept of specializing a general rule to more specific rules can be traced
back to [63] in the context of an exact ILP task (under the CWA). Such
approaches usually employ a refinement operator, i.e. a function that takes a rule
(or a set of rules) as input and returns a set of more specific rules. For example,
a refinement operator could take the rule hasChild(y, z) ⇒ hasChild(x, z) and
produce the more specific rule marriedTo(x, y)∧hasChild(y, z) ⇒ hasChild(x, z).
This process is iterated, and creates a set of rules that we call the search space
of the rule mining algorithm. On the one hand, the search space should contain
every rule of a given rule mining task, so as to be complete. On the other hand,
the smaller the search space is, the more efficient the algorithm is.

Usually, the search space is pruned, i.e., less promising areas of the search
space are cut away. For example, if a rule does not have enough support, then
any refinement of it will have even lower support (Proposition 23). Hence, there
is no use refining this rule.

AMIE. AMIE [25] is a top-down rule mining algorithm that aims to mine any
connected rule composed of binary atoms for a given support and minimum level
of confidence in a KB. AMIE starts with rules composed of only a head atom
for all possible head atoms (e.g., ⇒ marriedTo(x, y)). It uses three refinement
operators, each of which adds a new atom to the body of the rule.

The first refinement operator, addDanglingAtom, adds an atom composed of
a variable already present in the input rule and a new variable.

Some refinements of: ⇒ hasChild(z, y) (Rh)

are:

⎧
⎨

⎩

hasChild(x, y) ⇒ hasChild(z, y) (R0)
marriedTo(x, z) ⇒ hasChild(z, y) (Ra)
marriedTo(z, x) ⇒ hasChild(z, y) (Rb)

The second operator, addInstantiatedAtom, adds an atom composed of a vari-
able already present in the input rule and an entity of the KB.

Some refinements of: ⇒ hasChild(Priscilla, y) (R′
h)

are:

⎧
⎨

⎩

hasChild(Elvis, y) ⇒ hasChild(Priscilla, y) (R1)
hasChild(Priscilla, y) ⇒ hasChild(Priscilla, y) (R�)
marriedTo(Barack, y) ⇒ hasChild(Priscilla, y) (R⊥)



132 F. M. Suchanek et al.

The final refinement operator, addClosingAtom, adds an atom composed of two
variables already present in the input rule.

Some refinements of: marriedTo(x, z) ⇒ hasChild(z, y) (Ra)

are:

⎧
⎨

⎩

hasChild(x, y) ∧ marriedTo(x, z) ⇒ hasChild(z, y) (R3)
marriedTo(z, y) ∧ marriedTo(x, z) ⇒ hasChild(z, y) (Rα)
marriedTo(x, z) ∧ marriedTo(x, z) ⇒ hasChild(z, y) (R2

a)

As every new atom added by an operator contains at least a variable present
in the input rule, the generated rules are connected. The last operator is used
to close the rules (for example R3), although it may have to be applied several
times to actually produce a closed rule (cf. Rules Rα or R2

a).
The AMIE algorithm works on a queue of rules. Initially, the queue contains

one rule of a single head atom for each relation in the KB. At each step, AMIE
dequeues the first rule, and applies all three refinement operators. The resulting
rules are then pruned: First, any rule with low support (such as R⊥) is discarded.
Second, different refinements may generate equivalent rules (using the closing
operator on R0 or Ra, e.g., generates among others two equivalent “versions”
of R3). AMIE prunes out these equivalent versions. AMIE+ [26] also detects
equivalent atoms as in R� or R2

a and rewrites or removes those rules. There are
a number of other, more sophisticated pruning strategies that estimate bounds
on the support or confidence. The rules that survive this pruning process are
added to the queue. If one of the rules is a closed rule with a high confidence, it
is also output as a result. In this way, AMIE enumerates the entire search space.

The top-down rule mining method is generic, but its result depends on the
initial rules and on the refinement operators. The operators directly impact
the language of rules we can mine (see Sect. 3.2.3) and the performance of the
method. We can change the refinement operators to mine a completely different
language of rules. For example, if we don’t use the addInstantiatedAtom oper-
ator, we restrict our search to any rule without instantiated atoms, which also
drastically reduce the size of the search space4.

Apriori Algorithm. There is an analogy between top-down rule mining and
the Apriori algorithm [1]. The Apriori algorithm considers a set of transactions
(sales, products bought in a supermarket), each of which is a set of items (items
bought together, in the supermarket analogy). The goal of the Apriori algorithm
is to find a set of items that are frequently bought together.

These are frequent patterns of the form P ≡ I1(x)∧· · ·∧ In(x), where I(t) is
in our transaction database if the item I has been bought in the transaction t.
Written as the set (called an “itemset”) P ≡ {I1, . . . , In}, any subset of P forms
a “more general” itemset than P , which is at least as frequent as P . The Apriori
algorithm uses the dual view of the support pruning strategy: Necessarily, all

4 Let |K| be the number of facts and |r(K)| the number of relations in a KB K. Let d
be the maximal length of a rule. The size of the search space is reduced from O(|K|d)
to O(|r(K)|d) when we remove the addInstantiatedAtom operator.



Knowledge Representation and Rule Mining in Entity-Centric KB 133

patterns more general than P must be frequent for P to be frequent5. The
refinement operator of the Apriori algorithm takes as input all frequent itemsets
of size n and generate all itemsets of size n+1 such that any subset of size n is a
frequent itemset. Thus, Apriori can be seen as a top-down rule mining algorithm
over a very specific language where all atoms are unary predicates.

The WARMR algorithm [13], an ancestor of AMIE, was the first to adapt
the Apriori algorithm to rule mining over multiple (multidimensional) relations.

3.3.2 Bottom-Up Rule Mining
As the opposite of a refinement operator, one can define a generalization oper-
ator that considers several specific rules, and outputs a rule that is more
general than the input rules. For this purpose, we will make use of the
observation from Sect. 3.1 that a rule b1 ∧ ... ∧ bn ⇒ h is equivalent to
the disjunction ¬b1 ∨ · · · ∨ ¬bn ∨ h. The disjunction, in turn, can be writ-
ten as a set {¬b1, . . . ,¬bn, h} – which we call a clause. For example, the
rule marriedTo(x, y) ∧ hasChild(y, z) ⇒ hasChild(x, z) can be written as the
clause {¬marriedTo(x, y),¬hasChild(y, z), hasChild(x, z)}. Bottom-up rule min-
ing approaches work on clauses. Thus, they work on universally quantified dis-
junctions – which are more general than Horn rules. Two clauses can be combined
to a more general clause using the “least general generalization” operator [57]:

Definition 24 (Least general generalization): The least general generaliza-
tion (lgg) of two clauses is computed in the following recursive manner:

– The lgg of two terms (i.e., either entities or variables) t and t′ is t if t = t′

and a new variable xt/t′ otherwise.
– The lgg of two negated atoms is the negation of their lgg.
– The lgg of r(t1, . . . , tn) and r(t′1, . . . , t

′
n) is r(lgg(t1, t′1), . . . , lgg(tn, t′n)).

– The lgg of a negated atom with a positive atom is undefined.
– Likewise, the lgg of two atoms with different relations is undefined.
– The lgg of two clauses R and R′ is the set of defined pair-wise generalizations:

lgg(R,R′) = {lgg(li, l′j) : li ∈ R, l′j ∈ R′, and lgg(li, l′j) is defined}
For example, let us consider the following two rules:

hasChild(Michelle, Sasha) ∧ marriedTo(Michelle, Barack)
⇒ hasChild(Barack, Sasha) (R)

hasChild(Michelle,Malia) ∧ marriedTo(Michelle, x)
⇒ hasChild(x,Malia) (R′)

In the form of clauses, these are

{¬hasChild(Michelle, Sasha), ¬marriedTo(Michelle, Barack),
hasChild(Barack, Sasha)} (R)

{¬hasChild(Michelle,Malia), ¬marriedTo(Michelle, x),
hasChild(x,Malia)} (R′)

5 Instead of: if a rule is not frequent, none of its refinements can be frequent.



134 F. M. Suchanek et al.

Now, we have to compute the lgg of every atom of the first clause with every
atom of the second clause. As it turns out, there are only 3 pairs where the lgg
is defined:

lgg(¬hasChild(Michelle, Sasha),¬hasChild(Michelle,Malia))
= ¬lgg(hasChild(Michelle, Sasha), hasChild(Michelle,Malia))
= ¬hasChild(lgg(Michelle,Michelle), lgg(Sasha,Malia))
= ¬hasChild(Michelle, xSasha/Malia)

lgg(¬marriedTo(Michelle, Barack),¬marriedTo(Michelle, x))
= ¬marriedTo(Michelle, xBarack/x)

lgg(hasChild(Barack, Sasha), hasChild(x,Malia))
= hasChild(xBarack/x, xSasha/Malia)

This yields the clause

{¬hasChild(Michelle, xSasha/Malia), ¬marriedTo(Michelle, xBarack/x),
hasChild(xBarack/x, xSasha/Malia)}

This clause is equivalent to the rule

hasChild(Michelle, x) ∧ marriedTo(Michelle, y) ⇒ hasChild(x, y)

Note that the generalization of two different terms in an atom should result in
the same variable as the generalization of these terms in another atom. In our
example, we obtain only two new variables xSasha/Malia and xBarack/x. In this
way, we have generalized the two initial rules to a more general rule. This can
be done systematically with an algorithm called GOLEM.

GOLEM. The GOLEM/RLGG algorithm [51] creates, for each positive example
e ∈ E+, the rule B ⇒ e, where B is the background knowledge. In our case, B is
the entire KB, and so a very long conjunction of facts. The algorithm will then
generalize these rules to shorter rules. More precisely, the relative lgg (rlgg) of a
tuple of ground atoms (e1, . . . , en) is the rule obtained by computing the lgg of
the rules B ⇒ e1, ..., B ⇒ en. We will call a rlgg valid if it is defined and does
not predict any negative example.

The algorithm starts with a randomly sampled pair of positive examples
(e1, e2) and selects the pair for which the rlgg is valid and predicts (“covers”)
the most positive examples. It will then greedily add positive examples, chosen
among a sample of “not yet covered positive examples”, to the tuple – as long as
the corresponding rlgg is valid and covers more positive examples. The resulting
rule will still contain ground atoms from B. These are removed, and the rule is
output. Then the process starts over to find other rules for uncovered positive
examples.

Progol and Others. More recent ILP algorithms such as Progol [49], HAIL [59],
Imparo [36] and others [34,88] use inverse entailment to compute the hypothesis



Knowledge Representation and Rule Mining in Entity-Centric KB 135

more efficiently. This idea is based on the observation that a hypothesis h that
satisfies B ∧ h |= E+ should equivalently satisfy B ∧ ¬E+ |= ¬h (by logical
contraposition). The algorithms work in two steps: they will first construct an
intermediate theory F such that B ∧ ¬E+ |= F and then generalize its negation
¬F to the hypothesis h using inverse entailment.

3.4 Related Approaches

This article cannot give a full review of the field of rule mining. However, it is
interesting to point out some other approaches in other domains that deal with
similar problems:

OWL. OWL is a Description logic language designed to define rules and con-
straints on the KB. For example, an OWL rule can say that every person must
have a single birth date. Such constraints are usually defined upfront by domain
experts and KB architects when they design the KB. They are then used for auto-
matic reasoning and consistency checks. Thus, constraints prescribe the shape of
the data, while the rules we mine describe the shape of the data. In other words,
constraints are used deductively – instead of being found inductively. As such,
they should suffer no exception. However, rule mining can provide candidate
constraints to experts when they want to augment their theory [30].

Probabilistic ILP. As an extension of the classic ILP problem, Probabilistic
ILP [12] aims to find the logical hypothesis h that, given probabilistic background
knowledge, maximizes the probability to observe a positive example, and mini-
mizes the probability to observe a negative example. In our case, it would require
a probabilistic model of the real world. Such models have been proposed for some
specific use cases [38,90], but they remain an ongoing subject of research.

Graph Mining and Subgraph Discovery. Subgraph discovery is a well stud-
ied problem in the graph database community (see [27] Part 8 for a quick
overview). Given a set of graphs, the task is to mine a subgraph that appears in
most of them. Rule mining, in contrast, is looking for patterns that are frequent
in the same graph. This difference may look marginal, but the state-of-the-art
algorithms are very different and further work would be needed to determine
how to translate one problem to the other.

Link Prediction. Rules can be used for link prediction, i.e., to predict whether
a relation links two entities. This task can also be seen as a classification problem
([27] Part 7): given two entities, predict whether there is a relation between them.
A notable work that unites both views [39] uses every conjunction of atoms (a
possible body for a rule, which they call a “path”) as a feature dimension for
this classification problem. We will extensively present a more recent approach
to this problem in Sect. 4.

3.5 Challenges in Rule Mining

Today, Horn rules can be mined efficiently on large KBs [68]. However, many
challenges remain.



136 F. M. Suchanek et al.

Negation. KBs usually do not contain negative information. Therefore, it is
difficult to mine rules that have a negated atom in the body or in the head, such
as marriedTo(x, y)∧y = z ⇒ ¬marriedTo(x, z). Newer approaches use a variant
of the PCA [55], class information [22], or new types of confidence measures [16].

External Information. Since KBs are both incomplete and lacking negative
information, it is tempting to add in data from other sources to guide the rule
mining. One can e.g., add in information about cardinalities [56], or embeddings
computed on text [32].

Numerical Rules. We can imagine rules that detect numerical correlations
(say, between the population of a city and the size of its area), bounds on
numerical values (say, on the death year of Ancient Romans), or even complex
numerical formulae (say, that the ratio of inhabitants of the capital is larger in
city states) [18,24,48].

Scaling. While today’s algorithms work well on large KBs, they do less well
once we consider rules that do not just contain variables, but also entities. Fur-
thermore, KBs grow larger and larger. Thus, scalability remains a permanent
problem. It can be addressed, e.g., by smarter pruning strategies, paralleliza-
tion, or by precomputing cliques in the graph of the KB.

4 Representation Learning

After having discussed symbolic representations of entities and rules, we now
turn to subsymbolic representations. In this setting, entities are represented not
as identifiers with relations, but as numerical vectors. Facts are predicted not by
logical rules, but by computing a score for fact candidates.

4.1 Embedding

The simplest way to represent an entity as a vector is by a one-hot encoding :

Definition 25 (One-hot encoding): Given an ordered set of objects S =
{o1, ...on}, the one-hot encoding of the object oi is the vector h(oi) ∈ R

n that
contains only zeros, and a single one at position i.

For example, in our KB in Fig. 1, we have 7 entities. We can easily order
them, say alphabetically. Then, Barack is the first entity, and hence his one-hot
encoding is

(
1 0 0 0 0 0 0

)T (where the T just means that we wrote the vector
horizontally instead of vertically). Such representations are not particularly use-
ful, because they do not reflect any semantic similarity: The vector of Barack
has the same distance to the vector of Michelle as to the vector of Lisa.

Definition 26 (Embedding): An n-dimensional embedding for a group of
objects (e.g. words, entities) is an injective function that maps each object to a
vector in R

n, so that the intrinsic relations between the objects are maintained.



Knowledge Representation and Rule Mining in Entity-Centric KB 137

For example, we want to embed the entity Barack in such a way that his
vector is close to the vector of Michelle, or maybe to the vectors of other politi-
cians. Embeddings can also be used for words of natural language. In that case,
the goal is to find an embedding where the vectors of related words are close. For
example, the vector of the word “queen” and the vector of “king” should be close
to each other. An ideal word embedding would even permit arithmetic relations
such as v(king) − v(man) + v(woman) = v(queen) (where v(·) is the embed-
ding function). This means that removing the vector for “man” from “king”,
and adding “woman” should yield the vector for “queen”. Vectors are usually
denoted with bold letters.

Embeddings are interesting mainly for two reasons: first they lower the
dimensions of object representations. For example, there may be millions of
entities in a KB, but they can be embedded in vectors of a few hundred dimen-
sions. It is typically easier for down-stream tasks to deal with vectors than with
sets of this size. Second, the structure of the embedding space makes it possible
to compare objects that were incomparable in their original forms (e.g. it is now
easy to define a distance between entities or between words by measuring the
euclidean distance between their embeddings).

There are many ways to compute embeddings. A very common one is to use
neural networks, as we shall discuss next.

4.2 Neural Networks

4.2.1 Architecture
We start our introduction to neural networks with the notion of an activation
function:

Definition 27 (Activation Function): An activation function is a non-linear
real function.

Typical examples of activation functions are the hyperbolic tangent, the sig-
moid function σ : x �→ (1 + e−x)−1 and the rectified linear unit function ReLU:
x �→ max(0, x). Although these functions are defined on a single real value, they
are usually applied point-wise on a vector of real values. For example, we write
σ(〈x1, ..., xn〉) to mean 〈σ(x1), ..., σ(xn)〉. Neural networks consist of several lay-
ers with such activation functions:

Definition 28 (Layer): In the context of neural networks, a layer is a function
� : Ri → R

j that is either linear or the composition of a linear function and an
activation function (i and j are non-zero naturals).

Thus, a layer is a function that takes as input a vector v ∈ R
i, and does two

things with it. First, it applies a linear function to v, i.e., it multiplies v with
a matrix W ∈ R

i × R
j (the weight matrix ). This yields W · v ∈ R

j . Then, it
applies the activation function to this vector, which yields again a vector of size
j. We can now compose the layers to neural networks:



138 F. M. Suchanek et al.

Definition 29 (Neural Network): In its simplest form (that of a Multilayer
perceptron), a neural network is a function g : Rn → R

p, such that g is a com-
position of layers. The parameters p, n and the intermediate dimensions of the
layers are non-zero naturals.

x1

x2

x3

x4

y1

y2

z

Fig. 2. Example of a one-hidden-layer network.

Figure 2 shows a one-hidden-layer network that takes as input vectors x ∈ R
4

and outputs real values z ∈ R
1. The function g of the network can be decomposed

as g = �2 ◦ �1 where �1 : R4 → R
2 is the hidden layer and �2 : R2 → R

1 is the
output layer. Let us now see how such a network computes its output. Let us
assume that the weight matrix of the first layer is A, that the weight matrix of
the second layer is B and that the input is x:

x =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ , A =

(
0.4 0.5 −0.3 0.1
0.8 −0.6 0.4 0.2

)

, B =
(
0.5 −0.6

)
(1)

If both layers use the sigmoid activation function σ, we can compute the result
of the first layer as y = �1(x) = σ(A · x), and the result of the second layer (and
thus of the entire network) as z = �2(y) = σ(B · y):

y = σ

⎛

⎜
⎜
⎝

(
0.2 0.5 −0.3 0.1
0.8 −0.6 0.4 0.2

)

.

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ = σ

((
0.5

−0.6

))

=
(

σ(0.5)
σ(−0.6)

)

≈
(

0.62
0.35

)

(2)

z = σ

(
(
0.5 −0.7

)
.

(
0.62
0.35

))

= σ
((

0.063
))

=
(
σ(0.063)

) ≈ (
0.51

)
(3)

Figure. 3 shows this computation graphically. The function computed by the
network is g = �2 ◦ �1 = σ ◦ b ◦ σ ◦ a, where a and b are linear functions defined
by the matrices A and B.



Knowledge Representation and Rule Mining in Entity-Centric KB 139

σ

σ

σ

0

1

0

0

0.5

−0.6

0.62

0.35

0.5

−0.7
0.063 0.51

0.2
0.8

0.5
−0.6

−0.3
0.4

0.2
0.1

x

y

z

Fig. 3. Example of a one-hidden-layer network with computations.

4.2.2 Training
We want the neural network to compute an embedding of KB entities and rela-
tions. For this, we first have to understand how neural networks can perform
supervised learning tasks. In supervised learning, we are interested in approx-
imating some function f : Rp �→ R

k. We do not know f . We only know some
datapoints of f : {(xi, αi) ∈ R

p × R
k|i = 0, . . . , n}, with f(xi) = αi for any i.

The goal is to find the best estimation of f . With our notations, we would like
to find the neural network whose function f̂ approximates f .

We first decide on an architecture of the neural network. We already know
how many input nodes it has (namely p), and how many output nodes it has
(namely k). We just have to decide how many hidden layers it has (typically a
single one for simple tasks), and what the activation functions are (the sigmoid
function is a popular choice). Then, we initialize the weight matrices of the layers
randomly. Training the network model now means adapting the weight matrices
for each layer so that f̂(xi) = αi for all datapoints (or at least for as many
as possible). This is achieved using gradient descent: for each sample xi of the
dataset, a loss is computed (comparing the output f̂(xi) to the true value αi)
and the weights are updated in the opposite direction of the gradient of the sum
of the losses with respect to the weights of the network.

Interestingly, neural networks can be trained for many functions between
vectors. It has been proven that the range of functions neural networks can
approximate is very large and grows very rapidly with the depth (number of
layers) of the network [74]. This is a big strength of these models.

4.2.3 Embeddings
Let us now see how we can use neural networks to compute an m-dimensional
embedding function for a set of objects S = {o1, ..., on}. The input to the net-
work will be the one-hot encoding of the object, i.e., we need n input nodes.
In the ideal case, the neural network would directly output a vector of size m
(the embedding). Then, however, we would not know how to train the network,
because we have no given embeddings to compare to. Therefore, we use a trick:
We do not let the network compute the embedding directly, but a function whose



140 F. M. Suchanek et al.

output we know. For example, suppose the objects are people, and suppose we
know the gender of the people (1 for female, 0 for male, or anything in between).
We build a network with a single hidden layer of size m and an output layer of
size 1 (because we want to predict a single value, the gender). Figure 2 shows
such a network for n = 4 and m = 2.

Then we train the network to predict the gender of each person (i.e., we find
the weights so that f̂(oi) = 1 if oi is female, etc.). In our example from Fig. 3,
we have trained the network so that the object o2 has a gender value of 0.51.
Interestingly, after training, the first layer of the network is often a very good
embedding function. In our example, the embedding of x =

(
0 1 0 0

)T would be

y =
(
0.62 0.35

)T .
Why is that a good choice? We first observe that the embedding function

has the right dimensions: it maps a one-hot encoded vector of dimension n to
a vector of dimension m, as desired (v : Rn �→ R

m). Then, we observe that the
second layer (which computes the gender) bases its computation purely on the
outputs of the first layer (the sigmoid of the embedding). Therefore, the out-
put of the hidden layer provided enough information to reconstitute the gender,
i.e., our embedding maintains the crucial information. Selecting a hidden layer
as embedding comes down to dividing the network in two parts: the first layer
computes features (the components of y) that should capture the information
relevant for the application it is trained on; the second layer computes the value
f̂(x) using only those extracted features contained in y. This division makes it
intuitive that if the training task is well-chosen, the computed features should
capture interesting aspects of the data and constitute a good embedding candi-
date. Note that even if we are interested only in y it is still necessary to train
the entire network as we can only evaluate the performance of the embedding
by comparing f̂ to f .

The method that creates an embedding (in our case: a neural network) is
often called a model. We will now see how to create models for facts in KBs.

4.3 Knowledge Base Embeddings

If we want to embed a KB, we can either embed entities, relations, or facts.
Most models in the literature embed entities and relations together. These mod-
els take as input a fact of a subject s, a relation r and an object o as one-
hot encoded vectors, which are concatenated together to one long vector with
three 1s. Let’s take as example the knowledge base from Fig. 1. This KB has 7
entities (Barack, Michelle, Sasha, Malia, Elvis, Priscilla Lisa) and 2 relations
(marriedTo, hasChild). To feed the fact marriedTo(Barack, Michelle) into the
model, we create the one-hot encoded vectors and concatenate them to one long
vector: (

(
1 0 0 0 0 0 0

)
,
(
1 0

)
,
(
0 1 0 0 0 0 0

)
)T . The output of the model will be

a scoring function:

Definition 30 (Scoring Function): In the context of knowledge base embed-
dings, a scoring function maps a fact r(s, o) to a real-valued score.



Knowledge Representation and Rule Mining in Entity-Centric KB 141

The score of a fact is an estimate of the true theoretical and unknown function
deciding whether the fact is true. Obviously, the score should be high for the
facts in a correct KB (Sect. 2.4.1). In certain probabilistic contexts, the score
can be interpreted as the likelihood of the fact to be true. We denote the scoring
function of the fact r(s, o) by fr (s,o).

As for the embeddings we already saw, models are divided in two parts: the
first one which links the one-hot encoded vectors to the embeddings r, s and o
and the second part which computes fr (s,o). We now have to train the model
to predict whether an input fact is true (has a high score) or not (has a low
score). Once the model is trained, we will be able to read off the embeddings
from the weight matrix of one of the hidden layers.

Let us now see where we can find training data. For the true facts, the KB
obviously provides lots of datapoints. However, if we just train the model on
positive facts, it will just learn to always predict a high score. This is the same
problem we already saw in Sect. 3.2.2. Therefore, we also need to provide negative
facts:

Definition 31 (Negative fact): Given a fact r(s, o) from a KB, a negative
fact is a statement r(s′, o′) that is not in the KB.

The process of generating negative fact is called negative sampling and is
detailed in Sect. 4.3.1. For now, let us just assume that we have such negative
facts at our disposal. To train the network, we use a loss function:

Definition 32 (Loss function): A loss function � is a function from R
2 to R.

We will apply the loss function to the score fr (s,o) that the network com-
puted for a true fact r(s, o) and the score fr (s′,o′) that the network computed
for a negative fact r(s′, o′). Naturally, the two scores should be very different:
the first score should be high, and the second one should be low. If the two scores
are close, the network is not trained well. Therefore, the loss function �(x1, x2)
should be larger the closer x1 and x2 are. The logistic loss or the margin loss
are usual examples. They are defined respectively in Eqs. 4 and 5, where γ is a
parameter, and ηz = 1 if z is the score for a positive example and ηz = −1 if z
is the score for a negative example:

(x, y) �→ log(1 + exp(−ηx × x)) + log(1 + exp(−ηy × y)) (4)
(x, y) �→ max(0, γ + ηx × x + ηy × y) (5)

Definition 33 (Training): Training a knowledge base embedding model is find-
ing the best parameters of the model (and then the best embeddings) so that the
scoring function fr (s,o) is maximized for true facts and minimized for negative
ones.

Training is done by minimizing the sum of loss functions by gradient descent
over a training set of facts. The sum is usually computed as follows, where r(s, o)



142 F. M. Suchanek et al.

is a fact, r(s′, o′) is a negative fact generated from r(s, o) (c.f. Sect. 4.3.1), and �
a loss function:

L =
∑

(s,r,o)∈K
� (fr (s,o), fr (s′,o′)) (6)

4.3.1 Negative Sampling
Let us now see how we can generate the negative facts for our model. Feeding
negative samples to the model is vital during training. If the model was only
trained on true samples, then it could minimize any loss by trivially returning a
large score for any fact it is fed with. This is the same problem that we already
saw in Sect. 3.2.2, and in principle the same considerations and methods apply
here as well. In the context of knowledge base embeddings, the generation of
negative facts is usually done by negative sampling. Negative sampling is the
process of corrupting a true fact’s subject or object in order to create a wrong
statement. This is very related to the Partial Completeness Assumption that we
already saw in Sect. 3.2.2: If we have a fact hasChild(Michelle, Sasha), then any
variant of this fact with a different object is assumed to be a wrong statement
– unless it is already in the KB. For example, we would generate the negative
facts hasChild(Michelle, Elvis) and hasChild(Michelle, Barack).

It has been observed that the quality of the resulting embedding highly
depends on the quality of the negative sampling. Thus, we have to choose wisely
which facts to generate. Intuitively, negative samples introduce repulsive forces
in the embedding space so that entities that are not interchangeable in a fact
should have embeddings far away from each other. It is of course easy to generate
negative facts, simply by violating type constraints. For example, we can gener-
ate hasChild(Michelle, USA), which is certain to be a false statement (due to the
domain and range constraints, see Sect. 2.3.2). Then, however, we run into the
zero loss problem [78]: The model learns to compute a low score for statements
that are so unrealistic that they are not of interest anyway. It will not learn to
compute a low score for statements such as hasChild(Michelle, Lisa), which is
the type of statements that we are interested in.

We thus have to choose negative facts that are as realistic as possible. As
training goes on, we will provide the model with negative samples that are closer
and closer to true facts, in order to adjust in a finer way the embeddings. To this
end, various methods have been presented. One of them uses rules on the types
of entities in order to avoid impossible negative facts such as hasChild(Michelle,
USA) [42]. Another more complex method is adversarial negative sampling [78].

4.3.2 Shallow Models
Shallow models rely on the intuition that for a given fact r(s, o), we would like
the vectors s+r and o to be close in the embedding space. For example, we would
like the vectors Barack + marriedTo and Michelle to be close. There are
two ways to define “close”: The vectors can have a small vector difference (which
is what translational models aim at) or they can have a small angle between them
(which is what semantic-matching models do). The simplest translational model



Knowledge Representation and Rule Mining in Entity-Centric KB 143

is TransE [8]. Its scoring function is simply the opposite of the distance between
s + r and o: fr (s,o) = −||s + r − o|| (where || · || is either the 1-norm or
the 2-norm). Maximizing this scoring function for true facts and minimizing it
for negative facts leads to embeddings that should verify the simple arithmetic
equation s + r ≈ o.

Let us now see how a network can be made to compute this score. As an
example, let us embed in R

3 the KB of Fig. 1 with TransE and the 2-norm. The
network to this end is shown in Fig. 4.

0

0

0

0

1

0

0

e1,1

e2,1

e3,1

0

0

0

0

0

e1,2

e2,2

e3,2

1

0

r1,1

r2,1

r3,1

e1,1 + r1,1 − e1,2

e2,1 + r2,1 − e2,2

e3,1 + r3,1 − e3,2

f2
r (s, o) fr(s, o)

s

r

o

fe(s)

fe(o)

fr(r)

Legend

η : x x2

ρ : x
√

x

First layer:
Getting the embeddings

Rest of the network:
Computing the scoring function

0

1

+ −

(e1,1 + r1,1 − e1,2)2

(e2,1 + r2,1 − e2,2)2

(e3,1 + r3,1 − e3,2)2

+

Fig. 4. Graphical representation of the TransE Model (with 2-norm) applied to the fact
marriedTo(Barack,Michelle) for Fig. 1, with s = (1 0 0 0 0 0 0)T , o = (0 1 0 0 0 0 0)T

and r = (1 0)T .

The network takes as input a fact r(s, o), i.e., the concatenation of the one-
hot encodings of s, r, and o. The first layer computes the embeddings of these
items. The trick is that we will use not a single weight matrix for the first layer,
but two: One weight matrix E ∈ R

3×7 to compute the embedding of entities s
and o and one weight matrix R ∈ R

3×2 to compute the embedding of relations r.
Thus, when we train the network, we will learn the same matrix (and thus the
same embeddings) for entities independently of their roles (as subject or object
of the facts). We use no activation function in the first layer (or the identity



144 F. M. Suchanek et al.

function but it is not really an activation function as it is linear). Thus, the first
layer computes simply, for a given fact r(s, o), the embeddings E · h(s), R · h(r)
and E · h(o) where h is the one-hot encoding function.

The next layer of the network will add the embeddings of s and r, i.e., it
will take as input two 3-dimensional vectors, and produce as output a single
3-dimensional vector. This can be done by a simple matrix multiplication of the
concatenated vectors with a fixed matrix, as shown here:

⎛

⎝
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎞

⎠ .

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1

a2

a3

b1
b2
b3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎝
a1 + b1
a2 + b2
a3 + b3

⎞

⎠ (7)

Thus, this hidden layer of the network has no parameter to be trained – it
just performs a sum operation with a fixed weight matrix. Therefore, Fig. 4 just
shows a

⊕
. We use the same trick again to compute the difference between the

sum of the embeddings of s and r (which is a vector in R
3), and the embedding

of o (also a vector in R
3).

The next layer receives as input the 3-dimensional vector s+r−o, and it has
to produce the value fr (s,o) = −||s + r − o||2. For this purpose, we first have
to square every component of the vector. This can be done by a hidden layer
with 3 input nodes and 3 output nodes. The weight matrix is just the identity
matrix: It has only zeroes, and one’s in the diagonal, i.e., it just passes every
value from an input node to the corresponding output node. This matrix also
remains constant during the training. The activation function η just squares the
value for each node. The next hidden layer receives a vector of size 3, and adds
up the components (as we have done before). The final layer just applies the
activation function ρ : x �→ −√

x.
Thus, the model computes, for an input fact r(s, o), the score fr (s,o) =

−||s + r − o||2. It suffices to train this model on positive and negative facts
to adjust the weights so that this score is high for positive facts, and low for
negative ones.

Limitations of the TransE Model. Although TransE yields promising
results, it does not work well for one-to-many, many-to-one or many-to-
many relations. As an example, consider the relation wrote. This is a one-
to-many relation because one author can write several books: the facts
wrote(Albert Camus, La Peste) and (wrote(Albert Camus, L’étranger) are both
true. The TransE approach tends to return the same embeddings for the books of
an author (i.e., La Peste and L’étranger), because they are almost interchange-
able for the loss function, they have very few facts to distinguish them.

This limitation has been overcome by adding a relation-specific projection
step. Entities should be projected into a relation-specific subspace before the
translation happens. Let pr be a relation-specific projection, i.e., a linear function



Knowledge Representation and Rule Mining in Entity-Centric KB 145

from entity embeddings to vectors of possibly smaller size (projecting into a sub-
space). Then we want pr(s)+r and pr(o) to be close (in distance or in similarity).
Since a projection is a linear operation, it just adds another layer in the network
after the first one (which returns the embeddings) and before the computation
of the scoring function starts.

If, in our previous example, all entities are projected into a subspace that
is specific to wrote, the projections of the books could all be the same. We can
thus arrive at the desired arithmetic relations between the projected entities
without forcing all books to have the same embedding. This idea has given
rise to various refinements of the TransE model, depending on the projections
considered. Here are a couple of the methods that followed TransE: TransH
(projections on hyperplanes), TransR (projections on any type of subspace),
TransD (projections with dynamic mapping matrices built both from entities
and relations) [35,43,79].

We mainly presented translational models because they are the most intuitive
ones, but semantic models achieve good results as well. The first such model
(RESCAL [54]) lacks some representation capacity (as TransE) and was later
refined to more complex models such as DistMul, HolE, ComplEx, ANALOGY
[45,53,75,89].

4.3.3 Deep Models
Deeper architectures have also been introduced with the hope that hidden lay-
ers can capture more complex interaction patterns between entities and relations
(and then estimate more complex scoring functions). In such models, the first
part of the network (which, in shallow networks, just maps facts to their embed-
dings or their projections) now adds additional layers (possibly numerous) that
receive as inputs the embeddings, and produce as outputs some extracted fea-
tures. The second part of the network now computes the scoring function from
the features extracted by the first part of the network and not directly from the
embedding (or its projection) as in shallow models. The scoring function also
becomes a parameter of the model (to be trained) and is not defined a priori
anymore (in TransE for example it was only a distance between s+ r and o).
Note that we often loose the interpretability of the scoring function in this pro-
cess. Examples of such methods are SME, NTN, and MLP [7,15,64] and more
recent ones that include convolutional structures ConvE, ConvKB [14,52].

4.3.4 Fact Prediction
Commonly, authors compare the performance of their embedding methods on
two tasks: fact checking and link prediction. Fact checking is simply deciding
whether a given fact is true or false. To see how the embedding performs on
this task, we train the network on a portion of the KB (i.e., on a subset of the
facts) in which all entities and relations appear at least once. Then, we check for
each fact from the KB that the network has not seen during training whether
the network computes a score that is higher than a threshold (i.e., whether the



146 F. M. Suchanek et al.

network correctly assumes the fact to be true). The thresholds are determined
on a validation set extracted from the training set.

Link prediction is a bit more complex. Again, we train the network on a por-
tion of the KB. For a given fact r(s, o) that the network did not see during train-
ing, the value of the scoring function fr(s, e) (resp. fr(e, o)) is computed with
the model for all entities e. This allows ranking candidate entities by decreasing
order of scoring function. Then we count the share of unseen facts that the model
manages to recover when the object (resp. subject) is hidden. Such evaluations
are usually done under the Closed World Assumption (Sect. 2.4.1): If the net-
work predicts a fact that is not in the KB, this is counted against the network
– although the fact may be true but just unknown to the KB.

Thus, link prediction amounts to predicting facts – much like rules predict
facts (Sect. 3.1). The difference is that rules are explicit: they tell us which cir-
cumstances lead to a prediction. Networks are not: they deduce new facts from
the overall similarity of the facts. Another difference is that a rule does not know
about the other rules: The confidence of a prediction does not increase if another
rule makes the same prediction. Networks, in contrast, combine evidence from
all types of correlations, and may thus assign a higher score to a fact for which
is has more evidence.

4.4 Challenges in Representation Learning

While representation learning for knowledge graphs has made big advances these
recent years, some challenges remain to be tackled:

Generalization of Performances. Current models tend to have performances
that do not generalize well from one dataset to the other. Most methods are
heuristics executing a more or less intuitive approach. A theory that could
explain the variation of performance is missing.

Negative Sampling. Finding realistic negative facts remains a challenge in
knowledge base embedding – much like in rule mining (Sect. 3.5). Here, we could
use logical constraints. For example, if we know that Lisa cannot have more than
two parents, then we could use hasChild(Michelle, Lisa) as a negative fact.

Dealing with Literals. Most current methods consider literals as monolithic
entities. Thus, they are unable to see, e.g., that the date “2019-01-01” is close
to the date “2018-12-31”, or that the number “99” is close to the number “100”.
Such knowledge could lead to more accurate fact scoring functions.

Scalability. The development of massive KBs such as Wikidata requires algo-
rithms to be able to scale. There is still room for improvement here: Embedding
methods are usually tested on the FB15k dataset, which counts only 500 thou-
sand facts – while Wikidata counts more than 700 million.

5 Conclusion

In this article, we have investigated how entities, relations, and facts in a knowl-
edge base can be represented. We have seen the standard knowledge represen-



Knowledge Representation and Rule Mining in Entity-Centric KB 147

tation model of instances and classes. We have also seen an alternative repre-
sentation of entities, as embeddings in a vector space. We have then used these
representations to predict new facts – either through logical rules (by the help
of rule mining), or through link prediction (with the help of neural networks).

Many challenges remain: the knowledge representation of today’s KBs
remains limited to subject-relation-object triples (Sect. 2.6). In Rule Mining, we
have only just started looking beyond Horn Rules (Sect. 3.5). In Knowledge Base
Embeddings, we have to learn how to generate more realistic negative examples
(Sect. 4.4). This is one of the areas where the Semantic Web community and the
Machine Learning community can have fruitful interchanges.

A Computation of Support and Confidence

Notation. Given a logical formula φ with some free variables x1, . . . , xn, all
other variables being by default existentially quantified, we define:

#(x1, . . . , xn) : φ := |{(x1, . . . , xn) : φ(x1, . . . , xn) is true}|

We remind the reader of the two following definitions:

Definition 14 (Prediction of a rule): The predictions P of a rule B ⇒ h in
a KB K are the head atoms of all instantiations of the rule where the body atoms
appear in K. We write K ∧ (B ⇒ h) |= P .

Definition 19 (Support): The support of a rule in a KB is the number of
positive examples predicted by the rule.

A prediction of a rule is a positive example if and only if it is in the KB. This
observation gives rise to the following property:

Proposition 34 (Support in practice): The support of a rule B ⇒ h is the
number of instantiations of the head variables that satisfy the query B ∧ h. This
value can be written as:

support(B ⇒ h(x, y)) = #(x, y) : B ∧ h(x, y)

Definition 20 (Confidence): The confidence of a rule is the number of positive
examples predicted by the rule (the support of the rule), divided by the number
of examples predicted by the rule.

Under the CWA, all the predicted examples are either positive examples or
negative examples. Thus, the standard confidence of a rule is the support of the
rule divided by the number of prediction of the rule, written:

std-conf(B ⇒ h(x, y)) =
#(x, y) : B ∧ h(x, y)

#(x, y) : B



148 F. M. Suchanek et al.

Assume h is more functional than inverse functional. Under the PCA, a
predicted negative example is a prediction h(x, y) that is not in the KB, such
that, for this x there exists another entity y′ such that h(x, y′) is in the KB.
When we add the predicted positive examples, the denominator of the PCA
confidence becomes:

#(x, y) : (B ∧ h(x, y)) ∨ (B ∧ ¬h(x, y) ∧ ∃y′.h(x, y′))

We can simplify this logical formula to deduce the following formula for
computing the PCA confidence:

pca-conf(B ⇒ h(x, y)) =
#(x, y) : B ∧ h(x, y)

#(x, y) : B ∧ ∃y′.h(x, y′)

References

1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules.
In: Proceedings of the 20th International Conference on Very Large Data Bases,
VLDB, vol. 1215, pp. 487–499 (1994)

2. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM J. Comput. 1(2), 131–137 (1972)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook. Cambridge University Press, Cambridge
(2003)

4. Bienvenu, M., Deutch, D., Suchanek, F.M.: Provenance for web 2.0 data. In: Jonker,
W., Petković, M. (eds.) SDM 2012. LNCS, vol. 7482, pp. 148–155. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32873-2 10

5. Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web. In:
WWW (2008)

6. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: SIGMOD
(2008)

7. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy func-
tion for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2014)

8. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translat-
ing embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L.,
Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 26, pp. 2787–2795. Curran Associates Inc. (2013)

9. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E., Mitchell, T.:
Toward an architecture for never-ending language learning. In: AAAI (2010)

10. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust.
In: WWW (2005)

11. Chen, Y., Wang, D.Z., Goldberg, S.: Scalekb: scalable learning and inference over
large knowledge bases. In: VLDBJ (2016)

12. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Induc-
tive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78652-8 1

https://doi.org/10.1007/978-3-642-32873-2_10
https://doi.org/10.1007/978-3-540-78652-8_1


Knowledge Representation and Rule Mining in Entity-Centric KB 149

13. Dehaspe, L., De Raedt, L.: Mining association rules in multiple relations. In:
Lavrač, N., Džeroski, S. (eds.) ILP 1997. LNCS, vol. 1297, pp. 125–132. Springer,
Heidelberg (1997). https://doi.org/10.1007/3540635149 40

14. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowl-
edge graph embeddings. In: Proceedings of the 32nd AAAI Conference on Arti-
ficial Intelligence (AAAI 2018), New Orleans, LA, USA, vol. 32, February 2018.
arXiv: 1707.01476

15. Dong, X.L., et al.: Knowledge vault: a web-scale approach to probabilistic knowl-
edge fusion. In: The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2014, New York, NY, USA, 24–27 August 2014,
pp. 601–610 (2014)

16. Duc Tran, M., d’Amato, C., Nguyen, B.T., Tettamanzi, A.G.B.: Comparing rule
evaluation metrics for the evolutionary discovery of multi-relational association
rules in the semantic web. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S.,
Garćıa-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 289–305. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-77553-1 18

17. Etzioni, O., et al.: Web-scale information extraction in knowitall. In: WWW (2004)
18. Fanizzi, N., d’Amato, C., Esposito, F., Minervini, P.: Numeric prediction on owl

knowledge bases through terminological regression trees. Int. J. Semant. Comput.
6(04), 429–446 (2012)

19. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

20. Ferrucci, D., et al.: Building Watson: an overview of the DeepQA project. AI Mag.
31(3), 59–79 (2010)

21. Fisher, M.D., Gabbay, D.M., Vila, L.: Handbook of Temporal Reasoning in Arti-
ficial Intelligence. Elsevier, Amsterdam (2005)

22. Gad-Elrab, M.H., Stepanova, D., Urbani, J., Weikum, G.: Exception-enriched rule
learning from knowledge graphs. In: Groth, P., et al. (eds.) ISWC 2016. LNCS,
vol. 9981, pp. 234–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46523-4 15

23. Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting complete-
ness in knowledge bases. In: WSDM (2017)

24. Galárraga, L., Suchanek, F.M.: Towards a numerical rule mining language. In:
AKBC Workshop (2014)

25. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule min-
ing under incomplete evidence in ontological knowledge bases. In: WWW (2013)

26. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. In: VLDBJ (2015)

27. Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explor. Newsl. 7(2),
3–12 (2005)

28. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing time into RDF. IEEE
Trans. Knowl. Data Eng. 19(2), 207–218 (2007)

29. Hawthorne, J.: Inductive logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, spring 2018 edition
(2018)

30. Hellmann, S., Lehmann, J., Auer, S.: Learning of owl class descriptions on very
large knowledge bases. Int. J. Semant. Web Inf. Syst. (IJSWIS) 5(2), 25–48 (2009)

31. Henderson, L.: The problem of induction. In: Zalta, E.N. (ed.) The Stanford Ency-
clopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2019
edition (2019)

https://doi.org/10.1007/3540635149_40
http://arxiv.org/abs/1707.01476
https://doi.org/10.1007/978-3-319-77553-1_18
https://doi.org/10.1007/978-3-319-46523-4_15
https://doi.org/10.1007/978-3-319-46523-4_15


150 F. M. Suchanek et al.

32. Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule
learning from knowledge graphs guided by embedding models. In: Vrandečić, D.,
et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 72–90. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00671-6 5

33. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: a spatially and tem-
porally enhanced knowledge base from wikipedia. Artif. Intell. 194, 28–61 (2013)

34. Inoue, K.: Induction as consequence finding. Mach. Learn. 55(2), 109–135 (2004)
35. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic

mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Vol. 1: Long Papers), pp. 687–696, Beijing, China. Associa-
tion for Computational Linguistics, July 2015

36. Kimber, T., Broda, K., Russo, A.: Induction on failure: learning connected horn
theories. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI),
vol. 5753, pp. 169–181. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04238-6 16

37. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: rea-
soning on knowledge graphs. In: IJCAI (2018)

38. Lajus, J., Suchanek, F.M.: Are all people married? Determining obligatory
attributes in knowledge bases. In: WWW (2018)

39. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a
large scale knowledge base. In: Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pp. 529–539. Association for Computational
Linguistics (2011)

40. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted
from wikipedia. Semant. Web J. 6(2), 167–195 (2015)

41. Lenat, D.B., Guha, R.V.: Building Large Knowledge-Based Systems; Representa-
tion and inference in the Cyc Project. Addison-Wesley Longman Publishing Co.
Inc., Boston (1989)

42. Lerer, A., et al.: PyTorch-BigGraph: a large-scale graph embedding system. In:
Proceedings of The Conference on Systems and Machine Learning, March 2019.
arXiv: 1903.12287

43. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial
Intelligence, February 2015

44. Liu, H., Singh, P.: Conceptnet. BT Tech. J. 22(4), 211–226 (2004)
45. Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings.

In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference
on Machine Learning, International Convention Centre, Sydney, Australia, 06–11
Aug 2017, vol. 70, pp. 2168–2178. PMLR (2017)

46. Margolis, E., Laurence, S.: Concepts. In: Zalta, E.N. (ed.) The Stanford Encyclo-
pedia of Philosophy. Stanford (2014)

47. Marx, M., Krötzsch, M., Thost, V.: Logic on mars: ontologies for generalised prop-
erty graphs. In: IJCAI (2017)

48. Melo, A., Theobald, M., Völker, J.: Correlation-based refinement of rules with
numerical attributes. In: FLAIRS (2014)

49. Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13(3–4), 245–
286 (1995)

50. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods.
J. Log. Program. 19, 629–679 (1994)

https://doi.org/10.1007/978-3-030-00671-6_5
https://doi.org/10.1007/978-3-642-04238-6_16
https://doi.org/10.1007/978-3-642-04238-6_16
http://arxiv.org/abs/1903.12287


Knowledge Representation and Rule Mining in Entity-Centric KB 151

51. Muggleton, S., Feng, C.: Efficient induction of logic programs. Citeseer (1990)
52. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model

for knowledge base completion based on convolutional neural network. In: Proceed-
ings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, vol. 2 (Short Papers),
pp. 327–333 (2018). arXiv: 1712.02121

53. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs.
In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp.
1955–1961, February 2016

54. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning
on multi-relational data. In: Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML 2011, pp. 809–816. Omni-
press, Bellevue 92011)

55. Ortona, S., Meduri, V.V., Papotti, P.: Robust discovery of positive and negative
rules in knowledge bases. In: ICDE (2018)

56. Pellissier Tanon, T., Stepanova, D., Razniewski, S., Mirza, P., Weikum, G.:
Completeness-aware rule learning from knowledge graphs. In: d’Amato, C., et al.
(eds.) ISWC 2017. LNCS, vol. 10587, pp. 507–525. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68288-4 30

57. Plotkin, G.: Automatic methods of inductive inference (1972)
58. Ponzetto, S., Navigli, R.: BabelNet: the automatic construction, evaluation and

application of a wide-coverage multilingual semantic network. Artif. Intell. 193,
217–250 (2012)

59. Ray, O., Broda, K., Russo, A.: Hybrid abductive inductive learning: a generali-
sation of progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI),
vol. 2835, pp. 311–328. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39917-9 21

60. Razniewski, S., Suchanek, F.M., Nutt, W.: But what do we actually know? In:
AKBC Workshop (2016)

61. Russell, B.: The Problems of Philosophy. Barnes & Noble, New York City (1912)
62. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall,

Upper Saddle River (2002)
63. Shapiro, E.Y.: Inductive inference of theories from facts. Yale University, Depart-

ment of Computer Science (1981)
64. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor net-

works for knowledge base completion. In: Burges, C.J.C., Bottou, L., Welling, M.,
Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Process-
ing Systems, vol. 26, pp. 926–934. Curran Associates Inc. (2013)

65. Soulet, A., Giacometti, A., Markhoff, B., Suchanek, F.M.: Representativeness of
knowledge bases with the generalized Benford’s law. In: Vrandečić, D., et al. (eds.)
ISWC 2018. LNCS, vol. 11136, pp. 374–390. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00671-6 22

66. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole, Boston (2000)

67. Staab, S., Studer, R. (eds.): Handbook on Ontologies. International Handbooks on
Information Systems. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-92673-3

68. Stepanova, D., Gad-Elrab, M.H., Ho, V.T.: Rule induction and reasoning over
knowledge graphs. In: d’Amato, C., Theobald, M. (eds.) Reasoning Web 2018.
LNCS, vol. 11078, pp. 142–172. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00338-8 6

http://arxiv.org/abs/1712.02121
https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1007/978-3-540-39917-9_21
https://doi.org/10.1007/978-3-540-39917-9_21
https://doi.org/10.1007/978-3-030-00671-6_22
https://doi.org/10.1007/978-3-030-00671-6_22
https://doi.org/10.1007/978-3-540-92673-3
https://doi.org/10.1007/978-3-540-92673-3
https://doi.org/10.1007/978-3-030-00338-8_6
https://doi.org/10.1007/978-3-030-00338-8_6


152 F. M. Suchanek et al.

69. Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: probabilistic alignment of rela-
tions, instances, and schema. In: VLDB (2012)

70. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago - a core of semantic knowledge.
In: WWW (2007)

71. Suchanek, F.M., Preda, N.: Semantic culturomics. In: VLDB Short Paper Track
(2014)

72. Tandon, N., de Melo, G., De, A., Weikum, G.: Knowlywood: mining activity knowl-
edge from hollywood narratives. In: CIKM (2015)

73. Tandon, N., de Melo, G., Suchanek, F.M., Weikum, G.: WebChild: harvesting and
organizing commonsense knowledge from the web. In: WSDM (2014)

74. Telgarsky, M.: Representation benefits of deep feedforward networks. arXiv [cs],
September 2015. arXiv: 1509.08101

75. Trouillon, T., Nickel, M.: Complex and holographic embeddings of knowledge
graphs: a comparison. arXiv [cs, stat], July 2017. arXiv: 1707.01475

76. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated rdf. ACM Trans. Com-
put. Logic 11(2), 10 (2010)

77. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

78. Wang, P., Li, S., Pan, R.: Incorporating GAN for negative sampling in knowledge
representation learning. In: Thirty-Second AAAI Conference on Artificial Intelli-
gence, April 2018

79. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence,
June 2014

80. Welty, C., Fikes, R., Makarios, S.: A reusable ontology for fluents in owl. In: FOIS
(2006)

81. Whitehead, A.N., Russell, B.: Principia mathematica (1913)
82. Word Wide Web Consortium. RDF Primer (2004)
83. Word Wide Web Consortium. RDF Vocabulary Description Language 1.0: RDF

Schema (2004)
84. Word Wide Web Consortium. SKOS Simple Knowledge Organization System

(2009)
85. Word Wide Web Consortium. OWL 2 Web Ontology Language (2012)
86. Word Wide Web Consortium. SPARQL 1.1 Query Language (2013)
87. Yahya, M., Barbosa, D., Berberich, K., Wang, Q., Weikum, G.: Relationship queries

on extended knowledge graphs. In: WSDM (2016)
88. Yamamoto, A.: Hypothesis finding based on upward refinement of residue hypothe-

ses. Theoret. Comput. Sci. 298(1), 5–19 (2003)
89. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations

for learning and inference in knowledge bases. In: Proceedings of the International
Conference on Learning Representation (ICLR), December 2014. arXiv: 1412.6575

90. Zupanc, K., Davis, J.: Estimating rule quality for knowledge base completion with
the relationship between coverage assumption. In: Proceedings of the 2018 World
Wide Web Conference, pp. 1073–1081. International World Wide Web Conferences
Steering Committee (2018)

http://arxiv.org/abs/1509.08101
http://arxiv.org/abs/1707.01475
http://arxiv.org/abs/1412.6575


Explaining Data with Formal
Concept Analysis

Bernhard Ganter1 , Sebastian Rudolph1(B) , and Gerd Stumme2

1 TU Dresden, Dresden, Germany
{bernhard.ganter,sebastian.rudolph}@tu-dresden.de

2 Uni Kassel, Kassel, Germany
stumme@cs.uni-kassel.de

Abstract. We give a brief introduction into Formal Concept Analysis,
an approach to explaining data by means of lattice theory.

Keywords: Formal Concept Analysis · Data visualization ·
Attribute logic

1 Introduction

Formal Concept Analysis (FCA) is a mathematical discipline which attempts to
formalize aspects of human conceptual thinking. For cognitive reasons, humans
tend to form categories for objects and situations they encounter in the real
world. These groups, defined based on commonalities between their elements,
can then be given a name, referred to, and reasoned about in their entirety. They
can be ordered by the level of generality or specificity giving rise to what is called
“conceptual hierarchies” or “taxonomies”. FCA provides a very simplified, yet
powerful and elegant formalization of the notion of “concept” by means of lattice
theory.

Over the last four decades, FCA has developed in a versatile scientific field,
yielding novel approaches to data visualization and data mining. It greatly con-
tributed to the development of data science and can be seen as a bottom-up
approach to explain data by means of hierarchical clustering techniques.

Here, we provide a gentle introduction into the basics of FCA. Thereby,
we will omit mathematical proofs of the presented theorems and lemmas; the
interested reader may consult [4] for more details.

2 TL;DR – Formal Concept Analysis in a Nutshell

This section is meant to be an ‘appetizer’. It provides a brief overview over
Formal Concept Analysis, in order to allow for a better understanding of the
overall picture. To this end, this section introduces the most basic notions of
Formal Concept Analysis, namely formal contexts, formal concepts, and concept
lattices. These definitions will be repeated and discussed in more detail later on.
c© Springer Nature Switzerland AG 2019
M. Krötzsch and D. Stepanova (Eds.): Reasoning Web 2019, LNCS 11810, pp. 153–195, 2019.
https://doi.org/10.1007/978-3-030-31423-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31423-1_5&domain=pdf
http://orcid.org/0000-0003-0767-1379
http://orcid.org/0000-0002-1609-2080
http://orcid.org/0000-0002-0570-7908
https://doi.org/10.1007/978-3-030-31423-1_5


154 B. Ganter et al.

Formal Concept Analysis (FCA) was introduced as a mathematical theory
modeling the notion of ‘concepts’ in terms of lattice theory. To come up with a
formal description of concepts and their constituents, extensions and intensions,
FCA starts by defining (formal) contexts.

Definition 1. A (formal) context is a triple K := (G,M, I), where G is a set
whose elements are called objects, M is a set whose elements are called attributes,
and I is a binary relation between G and M (i. e., I ⊆ G×M), where (g,m) ∈ I
is read “object g has attribute m”. ♦

This definition captures the basic and immediately graspable idea of a collection
of entities, each of which might or might not have certain properties. At the
same time, this notion is generic enough to be applicable to a vast variety of
situations.

On another note, the interested reader might notice that formal contexts are
closely related to bipartite graphs (where both objects and attributes are nodes
in the graph and edges are connecting each object with its attributes). This link
enables the study of bipartite graphs using FCA and, likewise, FCA can profit
from known results developed for bipartite graphs.

Figure 1 shows a formal context where the object set G comprises all airlines
of the Star Alliance group and the attribute set M lists their destinations.1 The
binary relation I is given by the cross table and describes which destinations are
served by which Star Alliance member.

Definition 2. For an object set A ⊆ G, let

A′ := {m ∈ M | ∀g ∈ A : (g,m) ∈ I}
and, for an attribute set B ⊆ M , let

B′ := {g ∈ G | ∀m ∈ B : (g,m) ∈ I}.

A (formal) concept of a formal context (G,M, I) is a pair (A,B) with A ⊆ G,
B ⊆ M , A′ = B and B′ = A. The sets A and B are called the extent and the
intent of the formal concept (A,B), respectively. The subconcept–superconcept
relation ≤ is formalized by

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B1 ⊇ B2).

The set of all formal concepts of a formal context K together with the order
relation ≤ always constitutes a complete lattice,2 called the concept lattice of K
and denoted by B(K). ♦

Figure 2 visualizes the concept lattice of the context in Fig. 1 by means of a line
diagram. In a line diagram, each node represents a formal concept. A concept
1 Note that the underlying data is somewhat outdated, if not to say antiquated.
2 I. e., for each subset of concepts, there is always a unique greatest common subcon-

cept and a unique least common superconcept.



Explaining Data with Formal Concept Analysis 155

Air Canada
Air New Zealand
All Nippon Airways
Ansett Australia
The Austrian Airlines Group
British Midland
Lufthansa
Mexicana
Scandinavian Airlines
Singapore Airlines
Thai Airways International
United Airlines
VARIG

La
tin

 A
m

er
ic

a
E

ur
op

e
C

an
ad

a
A

si
a 

P
ac

ifi
c

M
id

dl
e 

E
as

t
A

fr
ic

a
M

ex
ic

o
C

ar
ib

be
an

U
ni

te
d 

S
ta

te
s

Fig. 1. A formal context about the destinations of the Star Alliance members

United StatesAsia Pacific

Canada

Europe

Africa

Middle East

Latin America

Caribbean

Mexico

Ansett Australia

British Midland

All Nippon Airways

Air New Zealand

The Austrian Airlines Group
Singapore Airlines

Mexicana

Thai Airways International

Scandinavian Airlines

VARIG

United Airlines

Air Canada

Lufthansa

Fig. 2. The concept lattice of the context in Fig. 1



156 B. Ganter et al.

c1 is a subconcept of a concept c2 if and only if there is a path of descending
edges from the node representing c2 to the node representing c1. The name of an
object g is always attached to the node representing the smallest concept with g
in its extent; dually, the name of an attribute m is always attached to the node
representing the largest concept with m in its intent. We can read the context
relation from the diagram because an object g has an attribute m if and only if
the concept labeled by g is a subconcept of the one labeled by m. The extent
of a concept consists of all objects whose labels are attached to subconcepts,
and, dually, the intent consists of all attributes attached to superconcepts. For
example, the concept labeled by ‘Middle East’ has {Singapore Airlines, The
Austrian Airlines Group, Lufthansa, Air Canada} as extent, and {Middle East,
Canada, United States, Europe, Asia Pacific} as intent.

High up in the diagram, we find the destinations which are served by most of
the members: Europe, Asia Pacific, and the United States. For instance, besides
British Midland and Ansett Australia, all airlines are serving the United States.
Those two airlines are located at the top of the diagram, as they serve the fewest
destinations—they operate only in Europe and Asia Pacific, respectively.

The further we go down in the concept lattice, the more globally operating are
the airlines. The most destinations are served by the airlines close to the bottom
of the diagram: Lufthansa (serving all destinations besides the Caribbean) and
Air Canada (serving all destinations besides Africa). Also, the further we go
down in the lattice, the lesser served are the destinations. For instance, Africa,
the Middle East, and the Caribbean are served by relatively few Star Alliance
members.

Dependencies between the attributes can be described by implications. For
attribute sets X,Y ⊆ M , we say that the implication X → Y holds in the
context, if each object having all attributes in X also has all attributes in Y .
For instance, the implication {Europe, United States} → {Asia Pacific} holds
in the Star Alliance context. It can be read directly from the line diagram: the
largest concept having both ‘Europe’ and ‘United States’ in its intent (i. e., the
concept labeled by ‘All Nippon Airways’ and ‘Air New Zealand’) also has ‘Asia
Pacific’ in its intent. Similarly, one can detect that the destinations ‘Africa’ and
‘Canada’ together imply the destination ‘Middle East’ (and also ‘Europe’, ‘Asia
Pacific’, and ‘United States’).

Concept lattices can also be visualized using nested line diagrams. For obtain-
ing a nested line diagram, one splits the set of attributes in two parts, and obtains
thus two formal contexts with identical object sets. For each formal context, one
computes its concept lattice and a line diagram. The nested line diagram is
obtained by enlarging the nodes of the first line diagram and by drawing the
second diagram inside. The second lattice is used to further differentiate each
of the extents of the concepts of the first lattice. Figure 3 shows a nested line
diagram for the Star Alliance context. It is obtained by splitting the attribute set
as follows: M = {Europe, Asia Pacific, Africa, Middle East} ∪ {United States,
Canada, Latin America, Mexico, Caribbean}. The order relation can be read by
replacing each of the lines of the large diagram by eight parallel lines linking



Explaining Data with Formal Concept Analysis 157

Non-American Destinations
American Destinations

Europe
Asia Pacific

Africa Middle East

United States

Canada Latin America

Mexico

Caribbean

Mexicana
Ansett AustraliaBritish Midland

Air New Zealand
All Nippon Airways

Thai Airways International

United Airlines

Air Canada

Scandinavian Airlines

VARIG

Singapore Airlines
The Austrian Airlines Group

Lufthansa

Fig. 3. A nested diagram of the concept lattice in Fig. 2



158 B. Ganter et al.

corresponding nodes in the inner diagrams. The concept lattice given in Fig. 2 is
embedded (as a join–semilattice) in this diagram, it consists of the solid nodes.
The concept mentioned above (labeled by ‘Middle East’) is for instance repre-
sented by the left-most solid node in the lower right part.

The solid concepts are referred to as ‘realized concepts’, as, for each of them,
the set of all attributes labeled above is an intent of the formal context. The non-
realized concepts are not only displayed to indicate the structure of the inner
scale, but also because they indicate implications: Each non-realized concept
indicates that the attributes in its intent imply the attributes contained in the
largest realized concept below. For instance, the first implication discussed above
is indicated by the non-realized concept having as intent ‘Europe’ and ‘United
States’, it is represented by the empty node below the concept labeled by ‘British
Midland’. The largest realized sub-concept below is the one labeled by ‘All Nip-
pon Airways’ and ‘Air New Zealand’—which additionally has ‘Asia Pacific’ in its
intent. Hence the implication {Europe, United States} → {Asia Pacific} holds.
The second implication from above is indicated by the non-realized concept left
of the concept labeled by ‘Scandinavian Airlines’, and the largest realized con-
cept below, which is the one labeled by ‘Singapore Airlines’ and ‘The Austrian
Airlines Group’.

This section gave a short introduction to the core notions of FCA. We will
discuss most of them (and more advanced topics) in more detail in the remainder
of this chapter.

3 Concept Lattices

Formal Concept Analysis studies how objects can be hierarchically grouped
together according to their common attributes. One of the aspects of FCA thus
is attribute logic, the study of possible attribute combinations. Most of the time,
this will be very elementary. Those with a background in Mathematical Logic
might say that attribute logic is just Propositional Calculus, and thus Boolean
Logic, or even a fragment of this. Historically, the name Propositional Logic is
misleading: Boole himself used the intuition of attributes (“signs”) rather than
of propositions. So in fact, attribute logic goes back to Boole.

But our style is different from that of logicians. Our logic is contextual, which
means that we are interested in the logical structure of concrete data (of the
context). Of course, the general rules of mathematical logic are important for
this and will be utilized.

3.1 Formal Contexts and Cross Tables

Definition 3. A Formal Context (G,M, I) consists of two sets G and M and
of a binary relation I ⊆ G×M . The elements of G are called the objects, those
of M the attributes of (G,M, I). If g ∈ G and m ∈ M are in relation I, we
write (g,m) ∈I or g I m and read this as “object g has attribute m”. ♦



Explaining Data with Formal Concept Analysis 159

The simplest format for writing down a formal context is a cross table:
we write a rectangular table with one row for each object and one column for
each attribute, having a cross in the intersection of row g with column m iff
(g,m) ∈ I. The simplest data type for computer storage is that of a bit matrix.3

Note that the definition of a formal context is very general. There are no
restrictions about the nature of objects and attributes. We may consider physical
objects, or persons, numbers, processes, structures, etc. – virtually everything.
Anything that is a set in the mathematical sense may be taken as the set of
objects or of attributes of some formal context. We may interchange the rôle
of objects and attributes: if (G,M, I) is a formal context, then so is the dual
context (M,G, I−1) (with (m, g) ∈I−1: ⇐⇒ (g,m) ∈I). It is also not necessary
that G and M are disjoint, they need not even be different.

On the other hand, the definition is rather restrictive when applied to real
world phenomena. Language phrases like “all human beings” or “all chairs” do
not denote sets in our sense. There is no “set of all chairs”, because the decision
if something is a chair is not a matter of fact but a matter of subjective inter-
pretation. The notion of “formal concept” which we shall base on the definition
of “formal context” is much, much narrower than what is commonly understood
as a concept of human cognition. The step from “context” to “formal context”
is quite an incisive one. It is the step from “real world” to “data”. Later on,
when we get tired of saying “formal concepts of a formal context”, we will some-
times omit the word “formal”. But we should keep in mind that it makes a big
difference.

3.2 The Derivation Operators

Given a selection A ⊆ G of objects from a formal context (G,M, I), we may
ask which attributes from M are common to all these objects. This defines an
operator that produces for every set A ⊆ G of objects the set A↑ of their common
attributes.

Definition 4. For A ⊆ G, we let

A↑ := {m ∈ M | g I m for all g ∈ A}.

Dually, we introduce for a set B ⊆ M of attributes

B↓ := {g ∈ G | g I m for all m ∈ B}.

These two operators are the derivation operators for (G,M, I). ♦

The set B↓ denotes thus the set consisting of those objects in G that have (at
least) all the attributes from B.
3 It is not easy to say which is the most efficient data type for formal contexts. This

depends, of course, on the operations we want to perform with formal contexts.
The most important ones are the derivation operators, to be defined in the next
subsection.



160 B. Ganter et al.

Usually, we do not distinguish the derivation operators in writing and use
the notation A′, B′ instead. This is convenient, as long as the distinction is not
explicitly needed.

If A is a set of objects, then A′ is a set of attributes, to which we can apply
the second derivation operator to obtain A′′ (more precisely: (A↑)↓), a set of
objects. Dually, starting with a set B of attributes, we may form the set B′′,
which is again a set of attributes. We have the following simple facts:

Proposition 1. For subsets A,A1, A2 ⊆ G we have

1. A1 ⊆ A2 ⇒ A′
2 ⊆ A′

1,
2. A ⊆ A′′,
3. A′ = A′′′.

Dually, for subsets B,B1, B2 ⊆ M we have

1’. B1 ⊆ B2 ⇒ B′
2 ⊆ B′

1,
2’. B ⊆ B′′,
3’. B′ = B′′′.

The reader may confer to [4] for details and proofs. The mathematically inter-
ested reader may notice that the derivation operators constitute an (antitone)
Galois connection between the (power sets of the) sets G and M .

The not so mathematically oriented reader should try to express the state-
ments of the Proposition in common language. We give an example: Statement
1. says that if a selection of objects is enlarged, then the attributes which are
common to all objects of the larger selection are among the common attributes
of the smaller selection. Try to formulate 2 and 3 in a similar manner!

3.3 Formal Concepts, Extent and Intent

In what follows, (G,M, I) always denotes a formal context.

Definition 5. (A,B) is a formal concept of (G,M, I) iff

A ⊆ G, B ⊆ M, A′ = B, and A = B′.

The set A is called the extent while the set B is called the intent of the formal
concept (A,B). ♦

According to this definition, a formal concept has two parts: its extent and its
intent. This follows an old tradition in philosophical concept logic, as expressed
in the Logic of Port Royal, 1654 [2], and in the International Standard ISO 704
(Terminology work – Principles and methods, translation of the German Stan-
dard DIN2330).

The description of a concept by extent and intent is redundant, because each
of the two parts determines the other (since B = A′ and A = B′). But for many
reasons this redundant description is very convenient.



Explaining Data with Formal Concept Analysis 161

When a formal context is written as a cross table, then every formal concept
(A,B) corresponds to a (filled) rectangular subtable, with row set A and column
set B. To make this more precise, note that in the definition of a formal context,
there is no order on the sets G or M . Permuting the rows or the columns of a cross
table therefore does not change the formal context it represents. A rectangular
subtable may, in this sense, omit some rows or columns; it must be rectangular
after an appropriate rearrangement of the rows and the columns. It is then easy
to characterize the rectangular subtables that correspond to formal concepts:
they are full of crosses and maximal with respect to this property.

Lemma 2. (A,B) is a formal concept of (G,M,I) iff A ⊆ G, B ⊆ M , and A and
B are each maximal (with respect to set inclusion) for the property A × B ⊆ I.

A formal context may have many formal concepts. In fact, it is not difficult
to come up with examples where the number of formal concepts is exponential
in the size of the formal context. The set of all formal concepts of (G,M, I) is
denoted

B(G,M, I),

or just B if the context is known and fixed. Later on we shall discuss an algorithm
to compute all formal concepts of a given formal context.

3.4 Conceptual Hierarchy

Formal concepts can be (partially) ordered in a natural way. Again, the definition
is inspired by the way we usually order concepts in a subconcept–superconcept
hierarchy: “Dog” is a subconcept of “mammal”, because every dog is a mammal.
Transferring this to formal concepts, the natural definition is as follows:

Definition 6. Let (A1, B1) and (A2, B2) be formal concepts of (G,M, I). We
say that (A1, B1) is a subconcept of (A2, B2) (and, equivalently, that (A2, B2)
is a superconcept of (A1, B1)) iff A1 ⊆ A2. We use the ≤-sign to express this
relation and thus have

(A1, B1) ≤ (A2, B2) : ⇐⇒ A1 ⊆ A2.

The set B of all formal concepts of (G,M, I), ordered by the relation ≤ – that
is, the structure (B,≤) – is denoted

B(G,M, I)

and is called the concept lattice of the formal context (G,M, I). ♦

We will see in a bit, why the structure is called lattice. Arguably, this definition
is natural, but irritatingly asymmetric. What about the intents? Well, a look at
Proposition 1 shows that for concepts (A1, B1) and (A2, B2)

A1 ⊆ A2 is equivalent to B2 ⊆ B1.



162 B. Ganter et al.

Therefore

(A1, B1) ≤ (A2, B2) : ⇐⇒ A1 ⊆ A2 ( ⇐⇒ B2 ⊆ B1).

The concept lattice of a formal context is a partially ordered set. We recall the
formal definition of such a partial ordered set in the following.

Definition 7. A partially ordered set is a pair (P,≤) where P is a set, and
≤ is a binary relation on P (i. e., ≤ is a subset of P × P ) which is

1. reflexive (x ≤ x for all x ∈ P ),
2. anti-symmetric (x ≤ y and y ≤ x imply x = y for all x, y ∈ P ), and
3. transitive (x ≤ y and y ≤ z imply x ≤ z for all x, y, z ∈ P ).

We write x ≥ y for y ≤ x, and x < y for x ≤ y with x �= y. ♦

Partially ordered sets appear frequently in mathematics and computer sci-
ence. Observe that we do not assume a total order, which would require the
additional condition x ≤ y or y ≤ x for all x, y ∈ P . Concept lattices have addi-
tional properties beyond being partially ordered sets, that is why we call them
‘lattices’. This will be the topic of the next section.

3.5 Concept Lattice Diagrams

The concept lattice of (G,M, I) is the set of all formal concepts of (G,M, I),
ordered by the subconcept–superconcept order. Ordered sets of moderate size
can conveniently be displayed as order diagrams, sometimes also referred to
as line diagrams. We explain how to read such a concept lattice line diagram by
means of an example given in Fig. 4. Later on, we will discuss how to draw such
diagrams.

Figure 4 refers to the following situation: Think of two squares of equal size
that are drawn on paper. There are different ways to arrange the two squares:
they may be disjoint (i. e., have no point in common), may overlap (i. e., have
a common interior point), may share a vertex, an edge or a line segment of the
boundary (of length > 0), they may be parallel or not.

Figure 4 shows a concept lattice unfolding these possibilities. It consists of
twelve formal concepts, represented by the twelve small circles in the diagram.
The names of the six attributes are given. Each name is attached to one of
the formal concepts and is written slightly above the respective circle. The ten
objects are represented by little pictures; each showing a pair of unit squares.
Again, each object is attached to exactly one formal concept; the picture rep-
resenting the object is drawn slightly below the circle representing the object
concept.

Some of the circles are connected by edges. These express the concept order.
With the help of the edges, we can read from the diagram which concepts are
subconcepts of which other concepts, and which objects have which attributes.
To do so, one has to follow ascending paths in the diagram.



Explaining Data with Formal Concept Analysis 163

common vertexparallel

common
segment

common edge

overlap

disjoint

Fig. 4. A concept lattice diagram. The objects are pairs of unit squares. The attributes
describe their mutual position.

For example, consider the object . From the corresponding circle we can
reach, via ascending paths, four attributes: “common edge”, “common segment”,
“common vertex”, and “parallel”. does in fact have these properties, and does
not have any of the others: the two squares are neither “disjoint” nor do they
“overlap”.

Similarly, we can find those objects that have a given attribute by following
all descending paths starting at the attribute concept. For example, to find all
objects which “overlap”, we start at the attribute concept labeled “overlap” and
follow the edges downward. We can reach three objects (namely , , and ,
the latter symbolizing two squares at the same position). Note that we cannot
reach , because only at concept nodes it is allowed to make a turn.

With the same method, we can read the intent and the extent of every
formal concept in the diagram. For example, consider the concept circle labeled

. Its extent consists of all objects that can be reached from that circle on

an descending path. The extent therefore is
{ , }

. Similarly, we find by
an inspection of the ascending paths that the intent of this formal concept is
{overlap, parallel}.

The diagram contains all necessary information. We can read off the objects,
the attributes, and the incidence relation I. Thus we can perfectly reconstruct



164 B. Ganter et al.

the formal context (i. e., “the original data”) from the diagram.4 Moreover, for
each formal concept we can easily determine its extent and intent from the
diagram.

So in a certain sense, concept lattice diagrams are perfect. But there are, of
course, limitations. Take another look at Fig. 4. Is it correct? Is it complete? The
answer is that, since a concept lattice faithfully unfolds the formal context, the
information displayed in the lattice diagram can be only as correct and complete
as the formal context is. In our specific example it is easy to check that the given
examples in fact do have the properties as indicated. But a more difficult problem
is if our selection of objects is representative. Are there possibilities to combine
two squares, that lead to an attribute combination not occurring in our sample?
We shall come back to that question later.

3.6 Supremum and Infimum

Can we compute with formal concepts? Yes, we can. The concept operations
are however quite different from addition and multiplication of numbers. They
resemble more of the operations greatest common divisor and least common mul-
tiple, that we know from integers.

Definition 8. Let (M,≤) be a partially ordered set, and A be a subset of M .
A lower bound of A is an element s of M with s ≤ a, for all a ∈ A. An
upper bound of A is defined dually. If there exists a largest element in the set
of all lower bounds of A, then it is called the infimum (or meet) of A. It is
denoted inf A or

∧
A. The supremum (or join) of A (sup A,

∨
A) is defined

dually. For A = {x, y}, we write also x ∧ y for their infimun, and x ∨ y for their
supremum. ♦

Lemma 3. For any two formal concepts (A1, B1) and (A2, B2) of some formal
context we obtain

– the infimum (greatest common subconcept) of (A1, B1) and (A2, B2) as

(A1, B1) ∧ (A2, B2) := (A1 ∩ A2, (B1 ∪ B2)′′),

– the supremum (least common superconcept) of (A1, B1) and (A2, B2) as

(A1, B1) ∨ (A2, B2) := ((A1 ∪ A2)′′, B1 ∩ B2).

It is not difficult to prove that what is suggested by this definition is in
fact true: (A1, B1) ∧ (A2, B2) is in fact a formal concept (of the same context),
(A1, B1)∧ (A2, B2) is a subconcept of both (A1, B1) and (A2, B2), and any other
common subconcept of (A1, B1) and (A2, B2) is also a subconcept of (A1, B1) ∧
(A2, B2). Similarly, (A1, B1) ∨ (A2, B2) is a formal concept, it is a superconcept
of (A1, B1) and of (A2, B2), and it is a subconcept of any common superconcept
of these two formal concepts.
4 This reconstruction is assured by the Basic Theorem given below.



Explaining Data with Formal Concept Analysis 165

With some practice, one can read off infima and suprema from the lattice
diagram. Choose any two concepts from Fig. 4 and follow the descending paths
from the corresponding nodes in the diagram. There is always a highest point
where these paths meet, that is, a highest concept that is below both, namely, the
infimum. Any other concept below both can be reached from the highest one on
a descending path. Similarly, for any two formal concepts there is always a lowest
node (the supremum of the two), that can be reached from both concepts via
ascending paths. And any common superconcept of the two is on an ascending
path from their supremum.

3.7 Complete Lattices

The operations for computing with formal concepts, infimum and supremum, are
not as weird as one might suspect. In fact, we obtain with each concept lattice
an algebraic structure called a “lattice”, and such structures occur frequently in
mathematics and computer science. “Lattice theory” is an active field of research
in mathematics. A lattice is an algebraic structure with two operations (called
“meet” and “join” or “infimum” and “supremum”) that satisfy certain natural
conditions:5

Definition 9. A partially ordered set V := (V,≤) is called a lattice, if their
exists, for every pair of elements x, y ∈ V , their infimum x ∧ y as well as their
supremum x ∨ y. ♦

We shall not discuss the algebraic theory of lattices in this lecture. Many
universities offer courses in lattice theory, and there are excellent textbooks.6

Concept lattices have an additional nice property: they are complete lat-
tices. This means that the operations of infimum and supremum do not only
work for an input consisting of two elements, but for arbitrary many. In other
words: each collection of formal concepts has a greatest common subconcept and
a least common superconcept. This is even true for infinite sets of concepts. The
operations “infimum” and “supremum” are not necessarily binary, they work for
any input size.

Definition 10. A partially ordered set V := (V,≤) is a complete lattice, if
for every set A ⊆ V , there exists its infimum

∧
V and its supremum

∨
A. ♦

Note that the definition requests the existence of infimum and supremum
for every set A, hence also for the empty set A := Ø. Following the definition,
we obtain that

∧
Ø has to be the (unique) largest element of the lattice. It is

denoted by 1V. Dually,
∨

Ø has to be the smallest element of the lattice; it is
denoted by 0V.

5 Unfortunately, the word “lattice” is used with different meanings in mathematics.
It also refers to generalized grids.

6 An introduction to lattices and order by B. Davey and H. Priestley is particularly
popular among CS students.



166 B. Ganter et al.

The arbitrary arity of infimum and supremum is very useful, but will make
essentially no difference for our considerations, because we shall mainly be con-
cerned with finite formal contexts and finite concept lattices. Well, this is not
completely true. In fact, although the concept lattice in Fig. 4 is finite, its ten
objects are representatives for all possibilities to combine two unit squares. Of
course, there are infinitely many such possibilities. It is true that we shall con-
sider finite concept lattices, but our examples may be taken from an infinite
reservoir.

3.8 The Basic Theorem of FCA

We give now a mathematically precise formulation of the algebraic properties
of concept lattices. The theorem below is not difficult, but basic for many other
results. Its formulation contains some technical terms that we have not men-
tioned so far.

In a complete lattice, an element is called supremum-irreducible if it can-
not be written as a supremum of other elements, and infimum-irreducible if it
can not be expressed as an infimum of other elements. It is very easy to locate the
irreducible elements in a diagram of a finite lattice: the supremum-irreducible
elements are precisely those from which there is exactly one edge going down-
ward. An element is infimum-irreducible if and only if it is the start of exactly
one upward edge. In Fig. 4, there are precisely nine supremum-irreducible con-
cepts and precisely five infimum-irreducible concepts. Exactly four concepts have
both properties, they are doubly irreducible.

A set of elements of a complete lattice is called supremum-dense, if every
lattice element is a supremum of elements from this set. Dually, a set is called
infimum-dense, if the infima that can be computed from this set exhaust all
lattice elements.

The notion of isomorphism defined next essentially captures the idea of two
lattices being the same up to a renaming of the elements.

Definition 11. Two lattices V and W are isomorphic (V ∼= W), if there exists
a bijective mapping ϕ : V → W with x ≤ y ⇐⇒ ϕ(x) ≤ ϕ(y). The mapping ϕ
is then called lattice isomorphism between V and W. ♦

Now we have defined all the terminology necessary for stating the main the-
orem of Formal Concept Analysis.

Theorem 4 (The Basic Theorem of Formal Concept Analysis). The
concept lattice of any formal context (G,M, I) is a complete lattice. For an arbi-
trary set {(Ai, Bi) | i ∈ J} ⊆ B(G,M, I) of formal concepts, the supremum is
given by

∨

i∈J

(Ai, Bi) =

(

(
⋃

i∈J

Ai)′′,
⋂

i∈J

Bi

)



Explaining Data with Formal Concept Analysis 167

and the infimum is given by

∧

i∈J

(Ai, Bi) =

(
⋂

i∈J

Ai, (
⋃

i∈J

Bi)′′
)

.

A complete lattice L is isomorphic to B(G,M, I) precisely if there are mappings
γ̃ : G → L and μ̃ : M → L such that γ̃(G) is supremum-dense and μ̃(M) is
infimum-dense in L, and for all g ∈ G and m ∈ M

g I m ⇐⇒ γ̃(g) ≤ μ̃(m).

In particular, L ∼= B(L,L,≤).

The theorem is less complicated than it may first seem. We give some expla-
nations below. Readers in a hurry may skip these and continue with the next
section.

The first part of the theorem gives the precise formulation for infimum and
supremum of arbitrary sets of formal concepts. The second part of the theorem
gives (among other information) an answer to the question if concept lattices
have any special properties. The answer is “no”: every complete lattice is (iso-
morphic to) a concept lattice. This means that for every complete lattice, we
must be able to find a set G of objects, a set M of attributes and a suitable
relation I, such that the given lattice is isomorphic to B(G,M, I). The theorem
does not only say how this can be done, it describes in fact all possibilities to
achieve this.

In Fig. 4, every object is attached to a unique concept, the corresponding
object concept. Similarly for each attribute there corresponds an attribute con-
cept. These can be defined as follows:

Definition 12. Let (G,M, I) be some formal context. Then

– for each object g ∈ G the corresponding object concept is

γg := ({g}′′, {g}′),

– and for each attribute m ∈ M the attribute concept is given by

μm := ({m}′, {m}′′).

The set of all object concepts of (G,M, I) is denoted γG, the set of all attribute
concepts is μM . ♦
Using Definition 5 and Proposition 1, it is easy to check that these expressions
in fact define formal concepts of (G,M, I).

We have that γg ≤ (A,B) ⇐⇒ g ∈ A. A look at the first part of the Basic
Theorem shows that each formal concept is the supremum of all the object
concepts below it. Therefore, the set γG of all object concepts is supremum-
dense. Dually, the attribute concepts form an infimum-dense set in B(G,M, I).
The Basic Theorem says that, conversely, any supremum-dense set in a complete



168 B. Ganter et al.

lattice L can be taken as the set of objects and any infimum-dense set be taken
as a set of attributes for a formal context with concept lattice isomorphic to L.

We conclude with a simple observation that often helps to find errors in
concept lattice diagrams. The fact that the object concepts form a supremum-
dense set implies that every supremum-irreducible concept must be an object
concept (the converse is not true). Dually, every infimum-irreducible concept
must be an attribute concept. This yields the following rule for concept lattice
diagrams:

Proposition 5. Given a formal context (G,M, I) and a finite order diagram,
labeled by the objects from G and the attributes from M . For g ∈ G let γ̃(g)
denote the element of the diagram that is labeled with g, and let μ̃(m) denote the
element labeled with m. Then the given diagram is a correctly labeled diagram of
B(G,M, I) if and only if it satisfies the following conditions:

1. The diagram is a correct lattice diagram,
2. every supremum-irreducible element is labeled by some object,
3. every infimum-irreducible element is labeled by some attribute,
4. g I m ⇐⇒ γ̃(g) ≤ μ̃(m) for all g ∈ G and m ∈ M .

The definitions of lattices and complete lattices are self-dual: If (V,≤) is a
(complete) lattice, then (V,≤)d := (V,≥) is also a (complete) lattice. If a the-
orem holds for a (complete) lattice, then the ‘dual theorem’ also holds, i. e.,
the theorem where all occurrences of ≤,∨,∧,

∨
,
∧

,0V,1V etc. are replaced by
≥,∧,∨,

∧
,
∨

,1V,0V, resp.
For concept lattices, their dual can be obtained by “flipping” the formal

context:

Lemma 6. Let (G,M, I) be a formal context and B(G,M, I) its concept lattice.
Then (B(G,M, I))d ∼= B(M,G, I−1), with I−1 := {(m, g) | (g,m) ∈ I}.

3.9 Computing All Concepts of a Context

There are several algorithms that help drawing concept lattices. We shall discuss
some of them below. But we find it instructive to start by some small examples
that can be drawn by hand. For computing concept lattices, we will investigate
a fast algorithm later. We start with a naive method before proceeding to a
method which is suitable for manual computation.

In principle, it is not difficult to find all the concepts of a formal context.
The following proposition summarizes the naive possibilities of generating all
concepts.

Lemma 7. Each concept of a context (G,M, I) has the form (X ′′,X ′) for some
subset X ⊆ G and the form (Y ′, Y ′′) for some subset Y ⊆ M . Conversely, all
such pairs are concepts. Every extent is the intersection of attribute extents and
every intent is the intersection of object intents.



Explaining Data with Formal Concept Analysis 169

The first part of the lemma suggests a first algorithm for computing all con-
cepts: go through all subsets X of G and record (X ′′,X ′) as concept (skipping
duplicates). However, this is rather inefficient, and not practicable even for rel-
atively small contexts. The second part of the proposition at least yields the
possibility to calculate the concepts of a small context by hand.

The following method is more efficient, and is recommended for computations
by hand. It is based on the following observations:

1. It suffices to determine all concept extents (or all concept intents) of (G,M, I),
since we can always determine the other part of a formal concept with the
help of the derivation operators.

2. The intersection of arbitrary many extents is an extent (and the intersection
of arbitrary intents is an intent). This follows easily from the formulae given
in the Basic Theorem. By the way: a convention that may seem absurd on
the first glance allows to include in “arbitrary many” also the case “zero”.
The convention says that the intersection of zero intents equals M and the
intersection of zero extents equals G.

3. One can determine all extents from knowing all attribute extents {m}′, m ∈
M (and all intents from all object intents {g}′, g ∈ G) because every extent
is an intersection of attribute extents (and every intent is the intersection
of object intents). This follows from the fact that the attribute concepts are
infimum-dense and the object concepts are supremum-dense.

These observations give rise to the following procedure.

Instruction for determining all formal concepts
of a small formal context

1. Initialize a list of concept extents. To begin with, write for each attribute
m ∈ M the attribute extent {m}′ to this list (if not already present).

2. For any two sets in this list, compute their intersection. If the result is a
set that is not yet in the list, then extend the list by this set. With the
extended list, continue to build all pairwise intersections.

3. If for any two sets in the list their intersection is also in the list, then
extend the list by the set G (provided it is not yet contained in the list).
The list then contains all concept extents (and nothing else).

4. For every concept extent A in the list compute the corresponding intent
A′ to obtain a list of all formal concepts (A,A′) of (G,M, I).

Example 1. We illustrate the method by means of an example from elementary
geometry. The objects of our example are seven triangles. The attributes are five
standard properties that triangles may or may not have:



170 B. Ganter et al.

Triangles

abbreviation coordinates diagram
T1 (0,0) (6,0) (3,1) ����

T2 (0,0) (1,0) (1,1)
�

�

T3 (0,0) (4,0) (1,2) ����

T4 (0,0) (2,0) (1,
√

3) ����

T5 (0,0) (2,0) (5,1) ���				

T6 (0,0) (2,0) (1,3) 


�

�
T7 (0,0) (2,0) (0,1) ��

Attributes

symbol property
a equilateral
b isoceles
c acute angled
d obtuse angled
e right angled

We obtain the following formal context

a b c d e

T1 × ×
T2 × ×
T3 ×
T4 × × ×
T5 ×
T6 × ×
T7 ×

Following the above instruction, we proceed:

1. Write the attribute extents to a list.

No. extent found as
e1 := {T4} {a}′

e2 := {T1, T2, T4, T6} {b}′

e3 := {T3, T4, T6} {c}′

e4 := {T1, T5} {d}′

e5 := {T2, T7} {e}′

2. Compute all pairwise intersections, and



Explaining Data with Formal Concept Analysis 171

3. add G.

No. extent found as
e1 := {T4} {a}′

e2 := {T1, T2, T4, T6} {b}′

e3 := {T3, T4, T6} {c}′

e4 := {T1, T5} {d}′

e5 := {T2, T7} {e}′

e6 := Ø e1 ∩ e4

e7 := {T4, T6} e2 ∩ e3

e8 := {T1} e2 ∩ e4

e9 := {T2} e2 ∩ e5

e10 := {T1, T2, T3, T4, T5, T6, T7} step 3

4. Compute the intents.

Concept No. (extent , intent)
1 ({T4} , {a, b, c})
2 ({T1, T2, T4, T6} , {b})
3 ({T3, T4, T6} , {c})
4 ({T1, T5} , {d})
5 ({T2, T7} , {e})
6 (Ø , {a, b, c, d, e})
7 ({T4, T6} , {b, c})
8 ({T1} , {b, d})
9 ({T2} , {b, e})

10 ({T1, T2, T3, T4, T5, T6, T7} , Ø)

We have now computed all ten formal concepts of the triangles–context. The
last step can be skipped if we are not interested in an explicit list of all concepts,
but just in computing a line diagram.

3.10 Drawing Concept Lattices

Based on one of the lists 3 or 4, we can start to draw a diagram. Before doing
so, we give two simple definitions.

Definition 13. Let (A1, B1) and (A2, B2) be formal concepts of some formal
context (G,M, I). We say that (A1, B1) is a proper subconcept of (A2, B2)
(written as (A1, B1) < (A2, B2)), if (A1, B1) ≤ (A2, B2) and (A1, B1) �= (A2, B2).
We call (A1, B1) a lower neighbour of (A2, B2) (written as (A1, B1) ≺
(A2, B2)), if (A1, B1) < (A2, B2), but no formal concept (A,B) of (G,M, I)
exists with (A1, B1) < (A,B) < (A2, B2). ♦



172 B. Ganter et al.

Instruction how to draw a line diagram of a small concept lattice

5. Take a sheet of paper and draw a small circle for every formal concept,
in the following manner: a circle for a concept is always positioned higher
than the all circles for its proper subconcepts.

6. Connect each circle with the circles of its lower neighbors.
7. Label with attribute names: attach the attribute m to the circle repre-

senting the concept ({m}′, {m}′′).
8. Label with object names: attach each object g to the circle representing

the concept ({g}′′, {g}′).

We now follow these instructions.

5. Draw a circle for each of the formal concepts:

6

1

9 8 7

5 2 4 3

10

6. Connect circles with their lower neighbours:

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�
�
�
�
�
�
�



Explaining Data with Formal Concept Analysis 173

7. Add the attribute names:
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�
�
�
�
�
�
�

a

b cde

8. Determine the object concepts

object g object intent {g}′ no. of concept
T1 {b, d} 8
T2 {b, e} 9
T3 {c} 3
T4 {a, b, c} 1
T5 {d} 4
T6 {b, c} 7
T7 {e} 5

and add the object names to the diagram:

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�
�
�
�
�
�
�

a

b cde

T1T2

T3

T4

T5

T6

T7

Done! Usually it takes some attempts before a nice, readable diagram is achieved.
Finally we can make the effort to avoid abbreviations and to increase the read-
ability. The result is shown in Fig. 5.



174 B. Ganter et al.

equilateral

isoceles

acute angled

obtuse angled

right angled

Fig. 5. A diagram of the concept lattice of the triangle context.

3.11 Clarifying and Reducing a Formal Context

There are context manipulations that simplify a formal context without chang-
ing the diagram, except for the labeling. It is usually advisable to do these
manipulations first, before starting computations.

The simplest operation is clarification, which refers to identifying “equal
rows” of a formal context, and “equal columns” as well. What is meant is that if
a context contains objects g1, g2, . . . with {gi}′ = {gj}′ for all i, j, that is, objects
which have exactly the same attributes, then these can be replaced by a single
object, the name of which is just the list of names of these objects. The same
can be done for attributes with identical attribute extent.

Definition 14. We say that a formal context is clarified if no two of its object
intents are equal and no two of its attribute extents are equal. ♦

A stronger operation is reduction, which refers to omitting attributes that
are equivalent to combinations of other attributes (and dually for objects). For
defining reduction it is convenient to work with a clarified context.

Definition 15. An attribute m of a clarified context is called reducible if
there is a set S ⊆ M of attributes with {m}′ = S′, otherwise it is irreducible.
Reduced objects are defined dually. A formal context is called reduced, if all
objects and all attributes are irreducible. ♦

{m}′ = S′ means that an object g has the attribute m if and only if it has
all the attributes from S. If we delete the column m from our cross table, no
essential information is lost because we can reconstruct this column from the
data contained in other columns (those of S). Moreover, deleting that column
does not change the number of concepts, nor the concept hierarchy, because
{m}′ = S′ implies that m is in the intent of a concept if and only if S is



Explaining Data with Formal Concept Analysis 175

contained in that intent. The same is true for reducible objects and concept
extents. Deleting a reducible object from a formal context does not change the
structure of the concept lattice.

It is even possible to remove several reducible objects and attributes simul-
taneously from a formal context without any effect on the lattice structure, as
long as the number of removed elements is finite.

Definition 16. Let (G,M, I) be a finite context, and let Girr be the set of
irreducible objects and Mirr be the set of irreducible attributes of (G,M, I). The
context (Girr,Mirr, I ∩ Girr × Mirr) is the reduced context corresponding to
(G,M, I).

For a finite lattice L let J(L) denote the set of its supremum-irreducible
elements and let M(L) denote the set of its infimum-irreducible elements. Then
(J(L),M(L),≤) is the standard context for the lattice L. ♦

Proposition 8. A finite context and its reduced context have isomorphic concept
lattices. For every finite lattice L there is (up to isomorphism) exactly one reduced
context, the concept lattice of which is isomorphic to L, namely its standard
context.

3.12 Additive and Nested Line Diagrams

In this section, we discuss possibilities to generate line diagrams both automati-
cally or by hand. A list of some dozens of concepts may already be quite difficult
to survey, and it requires practice to draw good line diagrams of concept lattices
with more than 20 elements.

The best and most versatile form of representation for a concept lattice is a
well-drawn line diagram. It is, however, tedious to draw such a diagram by hand
and one would wish an automatic generation by means of a computer. We know
quite a few algorithms to do this, but none which provides a general satisfac-
tory solution. It is by no means clear which qualities make up a good diagram.
It should be transparent, easily readable and should facilitate the interpreta-
tion of the data represented. How this can be achieved in each individual case
depends, however, on the aim of the interpretation and on the structure of the
lattice. Simple optimization criteria (minimization of the number of edge cross-
ings, drawing in layers, etc.) often bring about results that are unsatisfactory.
Nevertheless, automatically generated diagrams are a great help: they can serve
as the starting point for drawing by hand. Therefore, we will describe simple
methods of generating and manipulating line diagrams by means of a computer.

3.12.1 Additive Line Diagrams
We will now explain a method where a computer generates a diagram and offers
the possibility of improving it interactively. Programming details are irrelevant
in this context. We will therefore only give a positioning rule which assigns
points in the plane to the elements of a given ordered set (P,≤). If a and b are
elements of P with a < b, the point assigned to a must be lower than the point



176 B. Ganter et al.

assigned to b (i.e., it must have a smaller y-coordinate). This is guaranteed by
our method. We will leave the computation of the edges and the checking for
undesired coincidences of vertices and edges to the program. We do not even
guarantee that our positioning is injective (which of course is necessary for a
correct line diagram). This must also be checked if necessary.

Definition 17. A set representation of an ordered set (P,≤) is an order
embedding of (P,≤) in the power-set of a set X, i.e., a map

rep : P → P(X)

with the property
x ≤ y ⇐⇒ repx ⊆ rep y.

♦

An example of a set representation for an arbitrary ordered set (P,≤) is the
assignment

X := P, a �→ {x | x < a}.

In the case of a concept lattice,

X := G, (A,B) �→ A

is a set representation.

X := M, (A,B) �→ M \ B

is another set representation, and both can be combined to

X := G ∪̇ M, (A,B) �→ A ∪ (M \ B).

It is sufficient to limit oneself to the irreducible objects and attributes.
For an additive line diagram of an ordered set (P,≤) we need a set rep-

resentation rep : P → P(X) as well as a grid projection

vec : X → R
2,

assigning a real vector with a positive y-coordinate to each element of X. By

pos p := n +
∑

x∈rep p

vec x

we obtain a positioning of the elements of P in the plane. Here, n is a vector
which can be chosen arbitrarily in order to shift the entire diagram. By only
allowing positive y–coordinates for the grid projection we make sure that no
element p is positioned below an element q with q < p.

Every finite line diagram can be interpreted as an additive diagram with
respect to an appropriate set representation. For concept lattices we usually
use the representation by means of the irreducible objects and/or attributes.



Explaining Data with Formal Concept Analysis 177

The resulting diagrams are characterized by a great number of parallel edges,
which improves their readability. Experience shows that the set representation
by means of the irreducible attributes is most likely to result in an easily inter-
pretable diagram. Figure 5 for instance was obtaining by selecting the irreducible
attributes for the set representation.

Since the second set representation given above is somehow unnatural, we
introduce for this purpose the dual set representation.

Definition 18. A dual set representation of an ordered set (P,≤) is an
order–inversing embedding of (P,≤) in the power-set of a set X, i.e., a map

rep ′ : P → P(X)

with the property
x ≤ y ⇐⇒ rep ′x ⊇ rep ′y.

♦

Now
X := M, rep ′ : (A,B) �→ B

is a dual set representation. We request now that the grid projection allows
only negative y–coordinates. The following shows that the two ways are indeed
equivalent: Let vec′ : X → R

2 be given by vec′(m) := (−x,−y) where vec(m) =
(x, y) for all m ∈ X. Then all y–coordinates are indeed negative. We obtain then
the following equality:

pos(A,B) = n +
∑

m∈M\B
vec(m)

= n +
∑

m∈M

vec(m) +
∑

m∈B

− vec(m)

= n′ +
∑

m∈B

vec ′(m)

= pos ′(A,B)

where n′ := n +
∑

m∈M vec(m).
It is particularly easy to manipulate these diagrams: If we change – the set

representation being fixed – the grid projection for an element x ∈ X, this means
that all images of the order filter {p ∈ P | x ∈ rep p} are shifted by the same
distance and that all other points remain in the same position. In the case of the
set representation by means of the irreducibles these order filters are precisely
principal filters or complements of principal ideals, respectively. This means that
we can manipulate the diagram by shifting principal filters or principal ideals,
respectively, and leaving all other elements in position.

Even carefully constructed line diagrams loose their readability from a certain
size up, as a rule from around 50 elements up. One gets considerably further with
nested line diagrams which will be introduced next. However, these diagrams do
not only serve to represent larger concept lattices. They offer the possibility to
visualize how the concept lattice changes if we add further attributes.



178 B. Ganter et al.

3.12.2 Nested Line Diagrams
Nested line diagrams permit a satisfactory graphical representation of some-
what larger concept lattices. The basic idea of the nested line diagram consists
of clustering parts of an ordinary diagram and replacing bundles of parallel lines
between these parts by one line each. Thus, a nested line diagram consists of
ovals, which contain clusters of the ordinary line diagram and which are con-
nected by lines. In the simplest case, two ovals which are connected by a simple
line are congruent. Here, the line indicates that corresponding circles within the
ovals are direct neighbors, resp.

Furthermore, we allow that two ovals connected by a single line do not neces-
sarily have to be congruent, but they may each contain a part of two congruent
figures. In this case, the two congruent figures are drawn in the ovals as a “back-
ground structure”, and the elements are drawn as solid circles if they are part of
the respective substructures. The line connecting the two boxes then indicates
that the respective pairs of elements of the background shall be connected with
each other. An example is given in Fig. 6. It is a screenshot of a library informa-
tion system which was set up for the library of the Center on Interdisciplinary
Technology Research of Darmstadt University of Technology.

Nested line diagrams originate from partitions of the set of attributes. The
basis is the following theorem:

Theorem 9. Let (G,M, I) be a context and M = M1 ∪ M2. The map

(A,B) �→ (((B ∩ M1)′, B ∩ M1) , ((B ∩ M2)′, B ∩ M2))

is a supremum-preserving order embedding of B(G,M, I) in the direct product
of B(G,M1, I ∩ G × M1) and B(G,M2, I ∩ G × M2). The component maps

(A,B) �→ ((B ∩ Mi)′, B ∩ Mi)

are surjective on B(G,Mi, I ∩ G × Mi).

In order to sketch a nested line diagram, we proceed as follows: First of all,
we split up the attribute set: M = M1 ∪ M2. This splitting up does not have
to be disjoint. More important for interpretation purposes is the idea that the
sets Mi bear meaning. Now, we draw line diagrams of the subcontexts Ki :=
(G,Mi, I ∩ G × Mi), i ∈ {1, 2} and label them with the names of the objects
and attributes, as usual. Then we sketch a nested diagram of the product of
the concept lattices B(Ki) as an auxiliary structure. For this purpose, we draw
a large copy of the diagram of B(K1), representing the lattice elements not by
small circles but by congruent ovals, which contain each a diagram of B(K2).

By Theorem 9 the concept lattice B(G,M, I) is embedded in this product as
a

∨
-semilattice. If a list of the elements of B(G,M, I) is available, we can enter

them into the product according to their intents. If not, we enter the object
concepts the intents of which can be read off directly from the context, and form
all suprema.

This at the same time provides us with a further, quite practicable method of
determining a concept lattice by hand: split up the attribute set as appropriate,



Explaining Data with Formal Concept Analysis 179

America

G e r m a n y
Important Industrial Countries

Europe

Federal Republic*

GDR*

G e r m a n y *
Eastern Germany*

834

106

9

9 2

32
1

4

71

32 2

27

2
51

5
6

Jahrbuch Arbeit und Technik 1991 : Schwe

3

8

145

64

20

36

1

John von Neumann and Norbert Wiener : Fr33

1

68

1
5

Fig. 6. Nested line diagram of a library information system

determine the (small) concept lattices of the subcontexts, draw their product
in form of a nested line diagram, enter the object concepts and close it against
suprema. This method is particularly advisable in order to arrive at a useful
diagram quickly.

4 Closure Systems

The algorithm that will be one central theme of our course was developed for
concept lattices, but can be rephrased without reference to Formal Concept
Analysis. The reason is that the algorithm essentially relies on a single prop-
erty of concept lattices, namely that the set of concept intents is closed under



180 B. Ganter et al.

intersections. The technique can be formulated for arbitrary intersection closed
families of sets, that is, for closure systems. Readers who are familiar with closure
systems but not with Formal Concept Analysis may prefer this approach.

But note that this means no generalization. We will show that closure systems
are not more general than systems of concept intents.

4.1 Definition and Examples

Closure systems occur frequently in mathematics and computer science. Their
definition is very simple, but not very intuitive when encountered for the first
time. The reason is their higher level of abstraction: closure systems are sets of
sets with certain properties.

Let us recall some elementary notions how to work with sets of sets. For
clarity, we shall normally use small latin letters for elements, capital latin letters
for sets and calligraphic letters for sets of sets. Given a (nonempty) set S of sets,
we may ask

– which elements occur in these sets? The answer is given by the union of S,
denoted by ⋃

S := {x | x ∈ S for some S ∈ S}.
– which elements occur in each of these sets? The answer is given by the inter-
section of S, denoted by

⋂
S := {x | x ∈ S for every S ∈ S}.

Some confusion with this definition is caused by the fact that a set of sets
may (of course) be empty. Applying the above definition to the case S := Ø is
no problem for the union, since

⋃
Ø = {x | x ∈ S for some S ∈ S} = {x | false} = Ø.

But there is a problem for the intersection, because the condition “x ∈ S for
every S ∈ S” is satisfied by all x (because there is nothing to be satisfied). But
there is no set of all x; such sets are forbidden in set theory, because they would
lead to contradictions.

For the case S = Ø the intersection is defined only with respect to some base
set M . If we work with the subsets of some specified set M (as we often do, for
example with the set of all attributes of some formal context), then we define

⋂
Ø := M.

A set M with, say, n elements, has 2n subsets. The set of all subsets of a set
M is denoted P(M) and is called the power set of the set M . To indicate that
S is a set of subsets of M , we may therefore simply write S ⊆ P(M).

A closure system on a set M is a set of subsets that contains M and is closed
under intersections.



Explaining Data with Formal Concept Analysis 181

Definition 19. A closure system on a set M is a set C ⊆ P(M) satisfying

– M ∈ C, and
– if D ⊆ C, then

⋂ D ∈ C.

♦

Definition 20. A closure operator ϕ on M is a map P(M) → P(M) assign-
ing a closure ϕX ⊆ M to each set X ⊆ M , which is

monotone: X ⊆ Y ⇒ ϕX ⊆ ϕY ,
extensive: X ⊆ ϕX, and
idempotent: ϕϕX = ϕX.

(Conditions to be satisfied for all X,Y ⊆ M .) ♦

Closure operators are frequently met: their axioms describe the natural prop-
erties of a generating process. We start with some generating set X, apply the
generating process and obtain the generated set, ϕX, the closure of X. Such
generating processes occur in fact in many different variants in mathematics
and computer science.

Closure systems and closure operators are closely related. In fact, there is
a natural way to obtain from each closure operator a closure system and vice
versa. It works as follows:

Lemma 10. For any closure operator, the set of all closures is a closure system.
Conversely, given any closure system C on M , there is for each subset X of M a
unique smallest set C ∈ C containing X. Taking this as the closure of X defines
a closure operator. The two transformations are inverse to each other.

Thus closure systems and closure operators are essentially the same. We can
add to this:

Theorem 11. A closure system C on a set M can be considered as a complete
lattice, ordered by set inclusion ⊆. The infimum of any subfamily D ⊆ C is equal
to

⋂ D, and the supremum is the closure of
⋃ D. Conversely, we can find for

any complete lattice L a closure system that is isomorphic to L.

So closure systems and complete lattices are also very closely related. It comes
as no surprise that concept lattices fit well into this relationship. It follows from
the Basic Theorem (Theorem 4) that the set of all concept intents of a formal
context is closed under intersections and thus is a closure system on M . Dually,
the set of all concept extents always is a closure system on G. The corresponding
closure operators are just the two operators X �→ X ′′ on M and G, respectively.

Conversely, given any closure system C on a set M , we can construct a formal
context such that C is the set of concept intents. It can be concluded from
the Basic Theorem that for example (C,M,�) is such a context. In particular,
whenever a closure operator on some set M is considered, we may assume that
it is the closure operator A �→ A′′ on the attribute set of some formal context
(G,M, I).



182 B. Ganter et al.

Thus, closure systems and closure operators, complete lattices, systems of
concept intents, and systems of concept extents: all these are very closely related.
It is not appropriate to say that they are “essentially the same”, but it is true
that all these structures have the same degree of expressiveness; none of them is a
generalization of another. A substantial result proved for one of these structures
can usually be transferred to the others, without much effort.

4.2 The Next Closure Algorithm

We present a simple algorithm that solves the following task: For a given closure
operator on a finite set M , it computes all closed sets.

There are many ways to achieve this. Our algorithm is particularly simple.
We shall discuss efficiency considerations below.

We start by endowing our base set M with an arbitrary linear order, so that

M = {m1 < m2 < · · · < mn},

where n is the number of elements of M . Then every subset S ⊆ M can conve-
niently be described by its characteristic vector

εS : M → {0, 1},

given by

εS(m) :=

{
1 if m ∈ S

0 if m /∈ S
.

For example, if the base set is

M := {a < b < c < d < e < f < g},

then the characteristic vector of the subset S := {a, c, d, f} is 1011010. In con-
crete examples we prefer to write a cross instead of a 1 and a blank or a dot
instead of a 0, similarly as in the cross tables representing formal contexts. The
characteristic vector of the subset S := {a, c, d, f} will therefore be written as

× . × × . × . .

Using this notation, it is easy to see if a given set is a subset of another given
set, etc.

The set P(M) of all subsets of the base set M is naturally ordered by the
subset-order ⊆. This is a complete lattice order, and (P(M),⊆) is called the
power set lattice of M . The subset-order is a partial order. We can also intro-
duce a linear or total order of the subsets, for example the lexicographic or
lectic order ≤, defined as follows: Let A,B ⊆ M be two distinct subsets. We
say that A is lectically smaller than B, if the smallest element in which A and
B differ belongs to B. Formally,

A < B : ⇐⇒ ∃i.(i ∈ B ∧ i /∈ A ∧ ∀j < i(j ∈ A ⇐⇒ j ∈ B)).



Explaining Data with Formal Concept Analysis 183

For example {a, c, e, f} < {a, c, d, f}, because the smallest element in which the
two sets differ is d, and this element belongs to the larger set. This becomes even
more apparent when we write the sets as vectors and interprete them as binary
numbers:

1 0 1 0 1 1 0
�

1 0 1 1 0 1 0 .

Note that the lectic order extends the subset-order, i.e.,

A ⊆ B ⇒ A ≤ B.

The following notation is helpful:

A <i B : ⇐⇒ i ∈ B ∧ i /∈ A ∧ ∀j < i (j ∈ A ⇐⇒ j ∈ B)).

In words: A <i B iff i is the smallest element in which A and B differ, and i ∈ B.

Proposition 12. 1. A < B if and only if A <i B for some i ∈ M .
2. If A <i B and A <j C with i < j, then C <i B.

We consider a closure operator

A �→ A′′

on the base set M . To each subset A ⊆ M it yields7 its closure A′′ ⊆ M . Our
task is to find a list of all these closures. In principle, we might just follow the
definition, compute for each subset A ⊆ M its closure A′′ and include that in the
list. The problem is that different subsets may have identical closures. So if we
want a list that contains each closure exactly once, we will have to check many
times if a computed closure already exists in the list. Moreover, the number of
subsets is exponential: a set with n elements has 2n subsets. The naive algorithm
“for each A ⊆ M , compute A′′ and check if the result is already listed” therefore
requires an exponential number of lookups in a list that may have exponential
size.

A better idea is to generate the closures in some predefined order, thereby
guaranteeing that every closure is generated only once. The reader may guess
that we shall generate the closures in lectic order. We will show how to com-
pute, given a closed set, the lectically next one. Then no lookups are necessary.
Actually, it will not even be necessary to store the list. For many applications it
will suffice to generate the list elements on demand. Therefore we do not have
to store exponentially many closed sets. Instead, we shall store just one!

To find the next closure we define for A ⊆ M and mi ∈ M

A ⊕ mi := ((A ∩ {m1, . . . ,mi−1}) ∪ {mi})′′.

7 For our algorithm it is not important how the closure is computed.



184 B. Ganter et al.

We illustrate this definition by an example: Let A := {a, c, d, f} and mi := e.

↓
× . × × . × . .

We first remove all elements that are greater or equal mi from A:

↓
× . × × . . . .

Then we insert mi

↓
× . × × × . .

and form the closure. Since we have not yet specified the closure operator ·′′
(i. e., we have not given a formal context), the example stops here with

A ⊕ e = {a, c, d, e}′′.

Proposition 13. 1. If i /∈ A then A < A ⊕ i.
2. If B is closed and A <i B then A ⊕ i ⊆ B, in particular A ⊕ i ≤ B.
3. If B is closed and A <i B then A <i A ⊕ i.

Theorem 14. The smallest closed set larger than a given set A ⊂ M with
respect to the lectic order is

A ⊕ i,

i being the largest element of M with A <i A ⊕ i.

Now we are ready to give the algorithm for generating all extents of a given
context (G,M, I): The lectically smallest extent is ∅′′. For a given set A ⊂ G
we find the lectically next extent by checking all elements i of G \ A, starting
from the largest one and continuing in a descending order until for the first time
A <i A ⊕ i. A ⊕ i then is the “next” extent we have been looking for. These
three steps are made explicit in Figs. 7, 8 and 9.

Algorithm First Closure
Input: A closure operator X �→ X ′′ on a finite set M .
Output: The closure A of the empty set.
begin

A := Ø′′;
end.

Fig. 7. First Closure.



Explaining Data with Formal Concept Analysis 185

Algorithm Next Closure
Input: A closure operator X �→ X ′′ on a finite set M ,

and a subset A ⊆ M .
Output: A is replaced by the lectically next closed set.
begin

i := largest element of M;

i := succ(i);
success := false;

repeat

i := pred(i);
if i /∈ A then

begin

A := A ∪ {i};
B := A′′;
if B \ A contains no element < i then

begin

A:= B;

success := true;

end;

end else A := A \ {i};
until erfolg or i = smallest element of M.

end.

Fig. 8. Next Closure.

Algorithm All Closures
Input: A closure operator X �→ X ′′ on a finite set M .
Output: All closed sets in lectic order.
begin

First Closure;

repeat

Output A;

Next Closure;

until not success;
end.

Fig. 9. Generating all closed sets.

5 Implications

Have another look at the concept lattice shown in Fig. 4. The six attributes
describe how two unit squares can be placed with respect to each other. Each of
the ten objects is a pair of unit squares, representing a possible placement. These
ten pairs are representatives for an infinite set of possible positions that such
pairs of squares may have. It is not stated, but perhaps expected by the reader,
that these ten examples cover all possible combinations of the given attributes.



186 B. Ganter et al.

Such a situation occurs often: attributes are given, but objects are not known,
or too many to handle them completely. We then have to study the possible
attribute combinations, the attribute logic of the respective situation.

Let M be some set. We shall call the elements of M attributes, so as if we
consider a formal context (G,M, I). However we do not assume that such a
context is given or explicitly known.

Definition 21. An implication between attributes in M is an expression
of the form A → B where A and B are subsets of M . The set A is the premise
of the implication and B is its conclusion.

A subset T ⊆ M respects an implication A → B if A �⊆ T or B ⊆ T . We
then also say that T is a model of the implication A → B, and denote this
by T |= A → B. T respects a set L of implications if T respects every single
implication in L. The implication A → B holds in a set {T1, T2, . . .} of subsets
if each of these subsets respects A → B. With

Imp{T1, T2, . . .}

we denote the set of all implications that hold in {T1, T2, . . .}. ♦

5.1 Implications of a Formal Context

Now let us consider the special case of implications of a formal context.

Definition 22. A → B holds in a context (G,M, I) if every object intent
respects A → B, that is, if each object that has all the attributes in A also
has all the attributes in B. We then also say that A → B is an implication of
(G,M, I). ♦

Proposition 15. An implication A → B holds in (G,M, I) if and only if B ⊆
A′′, which is equivalent to A′ ⊆ B′. It then automatically holds in the set of all
concept intents as well.

An implication A → B holds in (G,M, I) if and only if each of the implications

A → m, m ∈ B,

holds (A → m is short for A → {m}). We can read this off from a concept lattice
diagram in the following manner: A → m holds if the infimum of the attribute
concepts corresponding to the attributes in A is less or equal than the attribute
concept for m, formally if

∧
{μa | a ∈ A} ≤ μm.

A → B holds in (G,M, I) if
∧

{μa | a ∈ A} ≤
∧

{μb | b ∈ B}.



Explaining Data with Formal Concept Analysis 187

5.2 Semantic and Syntactic Implication Inference

As we will see, it is not necessary to store all implications of a formal context. We
will discuss how implications can be derived from already known implications.
First we discuss which kind of inference we want to model. This is given by the
so-called semantical inference. Then we discuss a calculus (syntactic inference),
and argue that the calculus is correct and complete with respect to our semantics.

5.3 When Does An Implication Follow from Other Implications
(Semantically)?

Proposition 16. If L is a set of implications in M , then

ModL := {T ⊆ M | T respects L}
is a closure system on M . If L is the set of all implications of a context, then
ModL is the system of all concept intents.

The respective closure operator

X �→ L(X)

can be described as follows: For a set X ⊆ M , let

XL := X ∪
⋃

{B | A → B ∈ L, A ⊆ X}.

Form the sets XL, XLL, XLLL, . . . until8 a set L(X) := XL...L is obtained with
L(X)L = L(X). Later on we shall discuss how to do this computation efficiently.

It is not difficult to construct, for any given set L of implications in M ,
a formal context such that ModL is the set of concept intents of this formal
context. In fact, (ModL,M,�) will do.

Definition 23. An implication A → B follows (semantically) from a set L
of implications in M if each subset of M respecting L also respects A → B. A
family of implications is called closed if every implication following from L is
already contained in L. A set L of implications of (G,M, I) is called complete,
if every implication that holds in (G,M, I) follows from L. ♦

In other words: An implication A → B follows semantically from L if it holds
in every model of L.

5.4 When Does an Implication Follow from Other Implications
(Syntactically)?

The semantic definition of implication inference has a syntactic counterpart. We
can give sound and complete inference rules (known as Armstrong rules [1])
and an efficient algorithm for inference testing.
8 If M is infinite, this may require infinitely many iterations.



188 B. Ganter et al.

Proposition 17. A set L of implications in M is closed if and only if the fol-
lowing conditions are satisfied for all W,X, Y, Z ⊆ M :

1. X → X ∈ L,
2. If X → Y ∈ L, then X ∪ Z → Y ∈ L,
3. If X → Y ∈ L and Y ∪ Z → W ∈ L, then X ∪ Z → W ∈ L.

Readers with a background in Computational Logic may prefer a different
notation of these Armstrong rules:

X → X
,

X → Y

X ∪ Z → Y
,

X → Y, Y ∪ Z → W

X ∪ Z → W
.

The proposition says that a set of implications is the set of all implications of
some context if and only if it is closed with respect to these rules. In other words,
an implication follows from other implications if and only if it can be derived
from these by successive applications of these rules. In particular, semantic and
syntactic inference are the same.

However, these rules do not always suggest the best proof strategy. Instead,
we may note the following:

Proposition 18. An implication X → Y follows from a list L of implications
if and only if Y ⊆ L(X).

We give an algorithm that efficiently computes the closure L(X) for any given
set X. Such algorithms are used in the theory of relational data bases for the
study of functional dependencies.

We can give a rough complexity estimation of the algorithm in Fig. 10. Except
for manipulations of addresses, the main effort is to apply the implications. Each
implication is applied at most once, and each application requires a simple set
operation. Therefore the time required by the closure algorithm is essentially
linear in the size of the input L.

Summarizing these considerations we learn that implication inference is easy:
to check if an implication X → Y follows from a list L of implications, it suffices
to check if Y ⊆ L(X) (by Proposition 18), and this can be done in time linear
in the size of the input.

In other words: implications are easy to use, much easier than many other
logical constructs. This may be a reason why implications are popular, and
perhaps be part of an explanation why our simple theory of formal concepts is
so useful.

5.5 The Stem Base

The number of implications that hold in a given situation can be very large.
For example, if there is only one closed set, M , then every implication holds. If
M has n elements, then these are some 22n implications. But this is ridiculous,
because all these implications can be inferred from a single one, namely from
∅ → M .



Explaining Data with Formal Concept Analysis 189

Algorithm Closure
Input: A list L =: [L[1], . . . ,L[n]] of implications in M

and a set X ⊆ M .
Output: The closure L(X) of X.

begin

for all x ∈ M do

begin

avoid[x] := {1, . . . , n};
for i := 1 to n do with A → B := L[i]

if x ∈ A then avoid[x] :=avoid[x] \ {i};
end;

used imps :=Ø;

old closure :={−1}; (∗ some element not in M ∗);
new closure := X;

while new closure �= old closure do

begin

old closure := new closure;
T := M \new closure;
usable imps :=

⋂
x∈T avoid[x];

use now imps := usable imps \ used imps;
used imps := usable imps;
for all i ∈ use now imps with A → B := L[i] do

new closure := new closure ∪ B;

end;

L(X) :=new closure;
end.

Fig. 10. Algorithm Closure.

We see from this trivial example that the set of all implications of a given
formal context may be highly redundant. It is a natural question to ask for a
small implicational base, from which everything else follows. More precisely we
ask, for any given formal context (G,M, I), for a list L of implications that is

– sound (i.e., each implication in L holds in (G,M, I)),
– complete (i.e., each implication that holds in (G,M, I) follows from L), and
– non-redundant (i.e., no implication in L follows from other implications in L).

It is easy to see that (for finite M) such sets L exist. We may start with some
sound and complete set of implications, for example, with the set of all implica-
tions that hold in (G,M, I). We then can successively remove redundant impli-
cations from this set, until we obtain a sound, complete, non redundant set.

But this is an unrealistic procedure. We therefore look for a better way to
construct an implicational base. Duquenne and Guigues [5] have shown that
there is a natural choice, the stem base.

The following recursive definition is rather irritating at the first glance. We
define a pseudo-closed set to be a set which is not closed, but contains the closure
of every pseudo-closed proper subset.



190 B. Ganter et al.

Definition 24. Let X �→ X ′′ be a closure operator on the finite set M . We call
a subset P ⊆ M pseudo-closed, if (and only if)

– P �= P ′′, and
– if Q ⊂ P is a pseudo-closed proper subset of P , then Q′′ ⊆ P .

♦

This is a valid recursive definition. It is not circular, because the pseudo-
closed set Q must have fewer elements than P , because it is a proper subset.9

Reformulating this definition for formal contexts, we obtain the following
definition.

Definition 25. Let (G,M, I) be a formal context with M finite. A subset P ⊆
M is a pseudo intent of (G,M, I) iff

– P is not a concept intent, and
– if Q ⊂ P is a pseudo-closed proper subset of P , then there is some object

g ∈ G such that Q ⊆ g′ but P �⊆ g′.

♦

Theorem 19. Let M be finite and let X �→ X ′′ be some closure operator on M .
The set of implications

{P → P ′′ | P pseudo-closed}

is sound, complete, and non redundant.

The implication set in the theorem deserves a name. It is sometimes called
the Duquenne–Guigues–base. We simply call it the stem base of the closure
operator (or the stem base of a given formal context, if the closure operator is
given that way). In practice one uses a slightly different version of the stem base,
namely

{P → P ′′ \ P | P pseudo-closed}.

The stem base is not the only implicational base, but it plays a special rôle.
For example, no implicational base can consist of fewer implications, as the next
proposition shows:

Proposition 20. Every sound and complete set of implications contains, for
every pseudo closed set P , an implication A → B with A′′ = P ′′.

9 ‘Recursive’ is meant here with respect to set inclusion. Compare with the following
recursive definition: A natural number is prime iff it is greater than 1 and not divisible
by any smaller prime number.



Explaining Data with Formal Concept Analysis 191

5.6 Computing the Stem Base

As before, consider a closure operator X �→ X ′′ on a finite set M . We start with
a harmless definition:

Definition 26. A set Q ⊆ M is •-closed if it contains the closure of every
•-closed set that is properly contained in Q.

Formally, Q is •-closed iff for each •-closed set Q0 ⊂ Q with Q0 �= Q we have
Q′′

0 ⊆ Q. ♦

This is a simple (but convenient) renaming, as the next proposition shows.

Proposition 21. A set is •-closed iff it is either closed or pseudo-closed.

Observe that if Q contains the closure of every •-closed subset, then Q must be
closed.

The first crucial step towards finding pseudo-closed sets is this:

Proposition 22. The intersection of •-closed sets is •-closed.
In other words: the •-closed sets form a closure system. We have described
an algorithm to compute, for a given closure operator, all closed sets. We can
apply this algorithm for computing all •-closed sets, provided that we can access
the corresponding closure operator. This is easy. We prepare the result with a
proposition that is an immediate consequence of Definition 26.

Proposition 23. Q is •-closed iff Q satisfies the following condition:

If P ⊂ Q, P �= Q, is pseudo-closed, then P ′′ ⊆ Q.

Proposition 23 shows how to find the quasi closure of an arbitrary set S ⊆ M :
As long as the condition in the proposition is violated, we (are forced to) extend
the set S, until we finally reach a fixed point.

Let L be the stem base10. Define, for X ⊆ M ,

XL•
:= X ∪

⋃
{P ′′ | P → P ′′ ∈ L, P ⊂ X,P �= X},

iterate by forming
XL•L•

,XL•L•L•
, . . .

until a set
L•(X) := XL•L•...L•

is obtained that satisfies
L•(X) = L•(X)L•

.

Proposition 24. L•(X) is the smallest •-closed set containing X (Fig. 11).



192 B. Ganter et al.

Algorithm L•–Closure
Input: A list L =: [L[1], . . . ,L[n]] of implications in M

and a set X ⊆ M .
Output: The closure L(X) of X.

begin

for all x ∈ M do

begin

avoid[x] := {1, . . . , n};
for i := 1 to n do with A → B := L[i]

if x ∈ A then avoid[x] :=avoid[x] \ {i};
end;

used imps :=Ø;

old closure :={−1}; (∗ some element not in M ∗);
new closure := X;

while new closure �= old closure do

begin

old closure := new closure;
T := M \ new closure;
usable imps :=

⋂
x∈T avoid[x] ∩ ⋃

x∈new closure avoid[x];
use now imps := usable imps \ used imps;
used imps := usable imps;
for all i ∈ use now imps with A → B := L[i] do

new closure := new closure ∪ B;

end;

L(x) :=new closure;
end.

Fig. 11. Computing the L•–Closure.

Note that in order to find the quasi closure, we use only pseudo-closed sets
which are contained in the closure and therefore in particular are lectically
smaller than the quasi closure. Thus, the same result is obtained if L is a sub-
set of the stem base, containing those implications P → P ′′ for which P is
pseudo-closed and lectically smaller than L•(X).

Now it is easy to give an algorithm to compute all pseudo-closed sets for
a given closure operator. We use the Next Closure algorithm applied to the
closure system of •-closed sets. For short, we shall refer to this as the next
quasi closure after a given set A, next L• closure(A). This produces all
•-closed sets in lectic order. We record only those which are not closed. This
yields a list of all pseudo-closed sets.

Since the •-closed sets are generated in lectic order, we have, at each step,
the full information about the lectically smaller pseudo-closed sets. We have
seen that this suffices to compute the “quasi closure” operator. The algorithm
in Fig. 12 uses a dynamic list L. Whenever a pseudo-closed set P is found, the

10 The reader might wonder why we use the stem base to construct the stem base. As
we shall see soon, this works, due to the recursive definition of the stem base.



Explaining Data with Formal Concept Analysis 193

corresponding implication P → P ′′ is included in the list. Since the pseudo-
closed sets are found in lectic order, this makes sure that at any step we have
sufficient information to compute the quasi closure.

Algorithm Stem base
Input: A closure operator X �→ X ′′ on a finite set M ,

for example given by a formal context (G,M, I).
Output: The stem base L

begin

L := Ø;

A := Ø;

while A �= M do

begin

if A �= A′′ then L := L ∪ {A → A′′};
A := next L• closure(A);

end;

end.

Fig. 12. Computing the stem base for a given closure operator.

Example 2. We compute the stem base for the context of triangles given in
Example 1. The steps are shown in Fig. 13. The first column contains all quasi
closed sets, in lectic order. The pseudo-closed sets are precisely those which are
not closed (see middle column). Each pseudo-closed set gives rise to an entry in
the stem base (last column, short form).

•-closed set closed ? stem base implication
Ø yes

{e} yes
{d} yes

{d, e} no {d, e} → {a, b, c}
{c} yes

{c, e} no {c, e} → {a, b, d}
{c, d} no {c, d} → {a, b, e}

{b} yes
{b, e} yes
{b, d} yes
{b, c} yes

{a} no {a} → {b, c}
{a, b, c} yes

{a, b, c, d, e} yes

Fig. 13. Steps in the stem base algorithm



194 B. Ganter et al.

Since the closure operator is given in terms of a formal context, we may
speak of quasi intents and pseudo intents instead of •-closed sets or pseudo-
closed sets. We see that the algorithm generates all quasi intents to find the
stem base. In other words, to compute all pseudo intents we also compute all
intents, possibly exponentially many. This looks like a rather unefficient method.
Unfortunately, we do not know of a better strategy. It is an open problem to
find a better algorithm for the stem base. In practice, the algorithm is not fast,
but nevertheless very useful.

6 Conclusion

Much more can be said about FCA, here we only dealt with the foundations of
the discipline. Over the past decades, the field has expanded in many directions.
We give a few examples of central topics in FCA which weren’t discussed here.

– Conceptual Scaling. One can argue that formal contexts are only able to
represent very limited information (essentially yes/no). The idea to allow for
proper entries in the tables rather than just crosses or blanks leads to the
notion of multi-valued contexts which are closer to database tables typically
encountered in practice. A very generic method to make the machinery of
FCA applicable to data represented as multi-valued contexts is called con-
ceptual scaling, where this data is transformed back into plain formal contexts.

– Association Rules. Real world data is often noisy and error-prone. In
order to still extract meaningful implicational information from such data,
one needs to formalize the notion of implications which do not hold always
(but often). Association rules are such implications that come with two val-
ues, support (the fraction of all objects where the implication is applicable
and valid) and confidence (the fraction of objects satisfying the implication
among all objects where it is applicable). For association rules, one can again
characterize semantic and syntactic consequences and establish implicational
bases [7].

– Triadic FCA. The readers might ask themselves, why the incidence relation
used to characterize data in FCA is a binary one. Couldn’t it have a higher
arity? Indeed, people have investigated triadic FCA [6], where the incidence
relation is a ternary one between objects, attributes and conditions. Some of
the notions of FCA can be nicely generalized to the triadic case (and even to
incidence relations of higher arity, giving rise to polyadic FCA [8]) but others
are specific to the binary case.

– Attribute Exploration. Sometimes the data of a domain is only partially
recorded in a formal context, but there are experts who know the full domain
of interest. In that case, algorithms exist which can complete the context and
determine all the implications in an interactive process, where an expert is
repeatedly asked questions about the domain [3].

Acknowledgments. We are grateful for the valuable feedback from the anonymous
reviewers, which helped greatly to improve this work. Special thanks to Thomas Feller



Explaining Data with Formal Concept Analysis 195

for his very careful proof-reading. This work has been funded by the European Research
Council via the ERC Consolidator Grant No. 771779 (DeciGUT).

References

1. Armstrong, W.: Dependency structures of data base relationships. In: Proceedings
of IFIP Congress, pp. 580–583 (1974)

2. Arnauld, A., Nicole, P.: La logique ou l’art de penser—contenant, outre les règles
communes, plusieurs observations nouvelles, propres à former le jugement. Ch.
Saveux, Paris (1668)

3. Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49291-8

4. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1997)

5. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives resul-
tant d’un tableau de données binaires. Mathématiques et Sciences Humaines 95,
5–18 (1986)

6. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis,
G., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS-ConceptStruct 1995. LNCS, vol.
954, pp. 32–43. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60161-
9 27

7. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques, Infor-
matique et Sciences Humaines 113(29), 35–55 (1991)

8. Voutsadakis, G.: Polyadic concept analysis. Order J. Theory Ordered Sets Appl.
19(3), 295–304 (2002)

https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/3-540-60161-9_27
https://doi.org/10.1007/3-540-60161-9_27


Logic-Based Learning of Answer Set
Programs

Mark Law, Alessandra Russo(B), and Krysia Broda

Department of Computing, Imperial College London, London, UK
{mark.law09,a.russo,k.broda}@imperial.ac.uk

Abstract. Learning interpretable models from data is stated as one of
the main challenges of AI. The goal of logic-based learning is to com-
pute interpretable (logic) programs that explain labelled examples in the
context of given background knowledge. This tutorial introduces recent
advances of logic-based learning, specifically learning non-monotonic
logic programs under the answer set semantics. We introduce several
learning frameworks and algorithms, which allow for learning highly
expressive programs, containing rules representing non-determinism,
choice, exceptions, constraints and preferences. Throughout the tuto-
rial, we put a strong emphasis on the expressive power of the learning
systems and frameworks, explaining why some systems are incapable of
learning particular classes of programs.

Keywords: Non-monotonic Inductive Logic Programming ·
Generality of learning frameworks · Learning Answer Set Programs

1 Introduction

Over the last decade we have witnessed a growing interest in Machine Learn-
ing. In recent years Deep Learning has been demonstrated to achieve high-levels
of accuracy in data analytics, signal and information processing tasks, bring-
ing transformative impact in domains such as facial, image, speech recognition,
and natural language processing. They have best performance on computational
tasks that involve large quantities of data and for which the labelling process and
feature extraction would be difficult to handle. However, they also suffer from
two main drawbacks, which are crucial in the context of cognitive computing.
They are not capable of supporting AI solutions that are good at more than one
task. They are very effective when applied to single specific tasks (e.g. recognition
of specific clues, objects in images, natural language translation). But applying
the same technology from one task to another within the same class of problems
would often require retraining, causing the system to possibly forget how to solve
a previously learned task. Secondly, and most importantly, they are not trans-
parent. Operating primarily as black boxes, deep learning approaches are not
amenable to human inspection and human feedbacks, and the learned models

c© Springer Nature Switzerland AG 2019
M. Krötzsch and D. Stepanova (Eds.): Reasoning Web 2019, LNCS 11810, pp. 196–231, 2019.
https://doi.org/10.1007/978-3-030-31423-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31423-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-31423-1_6


Logic-Based Learning of Answer Set Programs 197

are not explainable, leaving the humans agnostic of the cognitive and learn-
ing process performed by the system. This lack of transparency hinders human
comprehension, auditing of the learned outcomes, and human active engage-
ment into the learning and reasoning processes performed by the AI systems.
This has become an increasingly important issue in view of the recent General
Data Protection Regulation (GDPR) which requires actions taken as a result of
a prediction from a learned model to be justified.

Within the last decade, there has been a growing interest in Machine Learn-
ing approaches whose learned models are explainable and human interpretable.
The last ten years have witnessed a tremendous advancement in the field of logic-
based machine learning, also referred to as Inductive Logic Programming (ILP)
[28,30], where the goal is the automated acquisition of knowledge (expressed as
a logic program) from given (labelled) examples and existing background knowl-
edge. The main advantage of these machine learning approaches is that the
learned knowledge can be easily expressed into plain English and explained to a
human user, so facilitating a closer interaction between humans and the machine.
Although a well established field since the early ’90s [28], logic-based machine
learning has traditionally addressed the task of learning knowledge expressible
in a very limited form [29] (definite clauses). Our logic-based machine learning
systems [2,7,21] have extended this field to a wider class of formalisms for knowl-
edge representation, captured by the answer set programming (ASP) semantics
[14]. This ASP formalism is truly declarative, and due to its non-monotonicity
it is particularly well suited to common-sense reasoning [9,13,27]. It allows con-
structs such as choice rules, hard and weak constraints, and support for default
inference and default assumptions. Choice rules and weak constraints are partic-
ularly useful for modelling human preferences, as the choice rules can represent
the choices available to the user, and the weak constraints can specify which
choices a human prefers. The typical workflow in ASP is that a real world prob-
lem is encoded as an ASP program, whose answer sets – a special subset of the
models of the program – correspond to the solutions of the original problem.
Because of its expressiveness and efficient solving, ASP is also increasingly gain-
ing attention in industry [10]; for example, in decision support systems [31], in
e-tourism [38] and in product configuration [43].

In the recent years we have made fundamental contributions to the field of
ILP by extending it to the learning of the full class of ASP programs [7,21,25,
33,36,40] and this tutorial provides an introduction to these results and to the
general field of learning under the answer set semantics. In general, ASP pro-
grams can have one, many or even no answer sets. Early approaches to learning
ASP programs can mostly be divided into two categories: brave learners aim to
learn a program such that at least one answer set covers the examples; on the
other hand, cautious learners aim to find a program which covers the examples
in all answer sets. Most of the early ASP-based ILP systems were brave, and
several of these are presented in Sect. 3 of this tutorial. In [21], we showed that
some ASP programs cannot be learned using either the brave or the cautious set-
tings, and in fact a combination of both brave and cautious semantics is needed.



198 M. Law et al.

This was the original motivation for the Learning from Answer Sets family of
frameworks, which we have developed since then and have been shown to be
able to learn any ASP program. Section 4 presents these Learning from Answer
Sets frameworks and discusses the associated ILASP algorithms. The generality
of the main ASP-based ILP frameworks was investigated, with the aim being
to formally define the classes of problems that can be solved by each of these
learning frameworks has also been investigated [25]. We re-present and discuss
the main results of this investigation in Sect. 4.

The above is all presented in the context of learning tasks where all examples
are assumed to be perfectly labeled, meaning that any inductive solution of a
task must cover every example of that task. In practice, of course, examples
are unlikely to be perfectly labeled. In real datasets, it is likely that there is
noise, and a more realistic approach is to search for a hypothesis that covers the
majority of examples, and balances the example coverage against the complexity
of the hypothesis – dramatically increasing the hypothesis complexity in order
to cover a few more examples is undesirable, as these examples may well be
incorrectly labeled. We end the tutorial by discussing how ILP frameworks can
be extended to learn from noisy examples.

The rest of this document is structured as follows. In the next section we
recall the background material necessary for this tutorial. Section 3 covers the
early approaches to learning under the answer set semantics. Section 4 introduces
the more recent advances including the Learning from Answer Sets frameworks,
the generality results for the frameworks and extensions for learning from noisy
examples. Much of the material in this tutorial is based on [20].

2 Background

In this section we introduce the background material used in the tutorial.

2.1 Answer Set Programming

Given any atoms h, h1, . . . , hk, b1, . . . , bn, c1, . . . , cm, a rule h : - b1, . . . , bn, not c1,
. . . , not cm is called a normal rule, with h as the head and b1, . . . , bn, not c1, . . . ,
notcm (collectively) as the body (“not” represents negation as failure); a con-
straint is a rule : - b1, . . . , bn, not c1, . . . , not cm; and a choice rule is a rule of
the form l{h1, . . . , hk}u : - b1, . . . , bn, not c1, . . . , not cm where l{h1, . . . , hk}u is
called an aggregate. In an aggregate l and u are integers and hi, for 1 ≤ i ≤ k,
are atoms. For example, when learning a policy, we may need to learn that
in a specific scenario, sc1, at least one of a set of possible actions, a1, . . . , an,
must be executed. This can be expressed in ASP with the following choice rule:
1{execute(a1), . . . , execute(an)}n : - holds(sc1). This expresses that in a model
whenever the scenario sc1 is true, it must be the case that between 1 and n
atoms execute(a1), . . . , execute(an) are also true. In other words, whenever the
scenario holds, at least one (but possibly more) of the actions must be executed.



Logic-Based Learning of Answer Set Programs 199

A rule R is called safe if every variable in R occurs in at least one posi-
tive literal in the body of R. For example, the rules p(X) : - q(Y), not r(Y) and
p : - q, not r(X) are not safe, as X does not occur in any positive literal in their
respective body. Unless otherwise specified, an ASP program P is a finite set of
safe normal rules, constraints and choice rules.

Given an ASP program P , the Herbrand Base of P , denoted as HBP , is the
set of ground (variable free) atoms that can be formed from the predicates and
constants that appear in P . The subsets of HBP are called the (Herbrand) inter-
pretations of P . Informally, a model of an ASP program P , called Answer Set of
P , is defined in terms of the notion of reduct of P , which is in turn constructed
by applying four transformation steps (described below) to the grounding of
P . As shown below. a reduct is a definite program. A model of a definite pro-
gram is an interpretation I that makes every rule in the program true, and a
model is minimal if it is the smallest such interpretation. Let’s see how the
reduct of an ASP program is constructed. We said that it uses the grounding
of the program, so we can consider just the grounding of a given program P .
A ground aggregate l{h1, . . . , hk}u is said to be satisfied by an interpretation I
if and only if l ≤ |I ∩ {h1, . . . , hk}| ≤ u. As we restrict our programs to sets of
normal rules, constraints and choice rules, we use the simplified definitions of
the reduct for choice rules presented in [23]. Given a program P and an Her-
brand interpretation I ⊆ HBP , the reduct P I is constructed from the grounding
of P using the following four transformation steps: from the grounding of P
we first remove rules whose bodies contain the negation of an atom in I; sec-
ondly, we remove all negative literals from the remaining rules; thirdly, we set
⊥ (note ⊥ /∈ HBP ) to be the head to every constraint, and in every choice
rule whose head is not satisfied by I we replace the head with ⊥; and finally,
we replace any remaining choice rule l{h1, . . . , hm}u : - b1, . . . , bn with the set of
rules {hi : - b1, . . . , bn | hi ∈ I ∩ {h1, . . . , hm}}. Any I ⊆ HBP is an answer set
of P if it is the minimal model of the reduct P I . We denote an answer set of a
program P with A and the set of answer sets of P with AS(P ). A program P is
said to be satisfiable (resp. unsatisfiable) if AS(P ) is non-empty (resp. empty).

ASP also allows optimisation over the answer sets according to weak con-
straints. These are rules of the form :∼ b1, . . . , bm, not bm+1, . . . , not bn.[w@l,
t1, . . . , tk] where b1, . . . , bn are atoms called (collectively) the body of the
rule, and w, l, t1 . . . tk are all terms with w called the weight and l the pri-
ority level. We refer to [w@l, t1, . . . , tk] as the tail of the weak constraint. A
ground instance of a weak constraint W is obtained by replacing all variables
in W with ground terms. We assume that all weights and levels of all ground
instances of weak constraints are integers. Unlike other ASP rules, weak con-
straints do not affect what is (or is not) an answer set of a program. Instead,
they create an ordering �P over AS(P ), specifying which answer sets are “pre-
ferred” to others. Informally, at each priority level l, satisfying weak constraints
with level l means discarding any answer set that does not minimise the sum of
the weights of the ground weak constraints (with level l) whose bodies are satis-
fied. Higher levels are minimised first. For example, the two weak constraints



200 M. Law et al.

:∼ mode(L, walk), distance(L, D).[D@2, L] and :∼ cost(L, C).[C@1, L] express a
preference ordering over alternative journeys. The first constraint (at priority
2) expresses that the total walking distance (the sum of the distances of journey
legs whose mode of transport is walk) should be minimised, and the second con-
straint expresses that the total cost of the journey should be minimised. As the
first weak constraint has a higher priority level than the second, it is minimised
first – so given a journey j1 with a higher cost than another journey j2, j1 is
still preferred to j2 so long as the walking distance of j1 is lower than that of
j2. The set ord(P ) captures the ordering of interpretations induced by P and
generalises the �P relation, so it not only includes 〈A1, A2, <〉 if A1 �P A2, but
includes tuples for each binary comparison operator (<,>,=,≤,≥ and �=).

2.2 Inductive Logic Programming

The most common setting for ILP is called learning from entailment, where a
task consists of a background knowledge B (a pre-defined logic program, defining
concepts which may be useful), and two sets of examples (usually atoms) called
the positive and negative examples, E+ and E−, respectively. The goal is to
find a hypothesis H such that ∀e ∈ E+, B ∪ H |= e and ∀e ∈ E−, B ∪ H �|= e.
When learning definite logic programs, the notion of entailment (|=) is usually
entailment in the unique minimal Herbrand model of B ∪ H, but we will see
that under the answer set semantics, it is interesting to explore the use of other
notions of entailment.

Usually, the search for hypotheses is bounded by a hypothesis space, which
is the set of all rules allowed to appear in H. In an ILP task, the expressivity of
the hypothesis space is defined by a notion of language bias of the task. Mode
declarations are a popular means of characterising the language bias [30]. They
specify which literals may appear in the head and in the body of a hypothesis.
Given a language bias the full hypothesis space, also called search space and
denoted with SM , is given by the finite set of all the rules that can be con-
structed according to the given bias. A language bias can be defined as a pair
of mode declarations 〈Mh,Mb〉, where Mh (resp. Mb) are called the head (resp.
body) mode declarations. Each mode declaration mh (resp. mb) is a literal whose
abstracted arguments are either +t or −t or #t, for some constant t (referred to
as a type). Informally, a literal is said to be compatible with a mode declaration
m if every instance of +t and −t in m has been replaced with a variable, and
every #t with a constant of type t. We say that a variable occurs as an input
(resp. output) variable of type t if it replaces an argument +t (resp. −t). Given
a mode bias M , SM is the set of all rules which are compatible with the mode
declarations M .

Definition 1. Given a set of mode declarations M = 〈Mh,Mb〉, a normal rule
R is in the search space SM if and only if (i) the head of R is compatible with
a mode declaration in Mh; (ii) each body literal of R is compatible with a mode
declaration in Mb; (iii) every input variable in the body of R occurs earlier in R,
either as an input variable in the head, or an output variable in the body; and
(iv) no variable occurs with two different types.



Logic-Based Learning of Answer Set Programs 201

In the input to most ILP systems a mode declaration is written as atom
class(recall, m), where class is either #modeh or #modeb, specifying whether
the mode declaration m is in Mh or Mb. The recall is an optional integer argu-
ment, which puts an upper bound on the number of times the mode declaration
can be used in a single rule. In many ILP systems, the types of variables are
“enforced” by adding an extra “type” atom to the body for each variable; for
instance, for a variable V of type bird, the atom bird(V) is added.

The notion of mode bias given in Definition 1 is commonly used in the ILP
literature, but it is not universal. ILASP uses a different notion of mode bias,
which we will not present in this tutorial. We refer the reader to https://www.
doc.ic.ac.uk/∼ml1909/ILASP/language biases 2018.pdf for further details. For
simplicity, all the ILASP learning tasks presented in this paper will include an
explicit hypothesis space defined in terms of sets of ASP (choice) rules and
constraints rather than using a declarative mode bias.

2.3 Complexity Theory

We assume the reader is familiar with the fundamental concepts of complexity,
such as Turing machines and reductions; for a detailed explanation, see [34].
P is the class of all problems which can be solved in polynomial time by a
Deterministic Turing Machine (DTM); ΣP

0 = ΠP
0 = ΔP

0 = P; ΔP
k+1 = PΣP

k

is the class of all problems which can be solved by a DTM in polynomial time
with a ΣP

k oracle. ΣP
k+1 = NPΣP

k is instead the class of all problems which can
be solved by a non-deterministic Turing Machine in polynomial time with a ΣP

k

oracle. Finally, ΠP
k+1 = co-NPΣP

k is the class of all problems whose complement
can be solved by a non-deterministic Turing Machine in polynomial time with
a ΣP

k oracle. ΣP
1 and ΠP

1 are NP and co-NP (respectively). Note, NP is the
class of problems which can be solved by a non-deterministic Turing machine
in polynomial time and co-NP is the class of problems whose complement is in
NP . DP is the class of problems that can be mapped to a pair of problems D1

and D2 such that D1 ∈ NP and D2 ∈ co-NP . It is well known that the following
inclusions hold: P ⊆ NP ⊆ DP ⊆ ΔP

2 ⊆ ΣP
2 and P ⊆ co-NP ⊆ DP ⊆ ΔP

2 ⊆
ΠP

2 [34].

3 Early Approaches to Logic-Based Learning Under
the Answer Set Semantics

In ASP, there can be one, many or even no answer sets of a program. This leads
to two different standard notions of entailment under the answer set semantics:
brave entailment and cautious entailment. Consider, for instance, the following
ASP program P = {1{p, q}1 : - r. r. : - not p, r.}. This program would accept
exactly one answer set A = {r, p}. In this case r and p would be entailed bravely
and cautiously. If the first choice rule was instead replaced with 1{p, q}2 : - r.,
the program would accept two answer sets A1 = {r, p} and A2 = {r, p, q}. In

https://www.doc.ic.ac.uk/~ml1909/ILASP/language_biases_2018.pdf
https://www.doc.ic.ac.uk/~ml1909/ILASP/language_biases_2018.pdf


202 M. Law et al.

this case r would be cautiously entailed but q would be only bravely entailed.
If the additional constraint : - r was added to P , then the new program would
have no answer set.

These two different notions of entailment naturally lead to two different
frameworks for learning from entailment under the answer set semantics: cau-
tious induction and brave induction. Early approaches to ILP under the answer
set semantics tended to adopt cautious induction1 [16,39,42], as this is closer
to standard learning from entailment, where examples must be covered in every
model. In [41], it was argued that in some cases cautious induction can be too
strong as it would require that all positive examples must be true in all answer
sets of a given background knowledge and learned hypothesis (this is illustrated
in Example 2). In those cases a weaker form of induction – brave induction –
is needed. It was in [41] that the notions of brave and cautious induction were
first defined. Brave induction defines an inductive task where all of the examples
should be covered in at least one answer set (i.e. entailed under brave entail-
ment in ASP). Note that there should be at least one answer set that covers
every example (rather than at least one answer set for each example). There-
fore, brave induction cannot specify other brave learning tasks such as enforcing
that two examples are both bravely entailed, but not necessarily in the same
answer set (as brave induction requires all examples to be covered in the same
answer set). In some cases, for instance, we might want to learn a hypothesis
that would require to cover some positive example(s) in an answer set and other
positive example(s) in other answer sets (of the same learned hypothesis when
added to a given background knowledge). These examples would still be bravely
entailed but brave induction would not be able to solve tasks requiring such type
of coverage. Furthermore, brave induction can only reason about what should
be true in at least one answer set of a learned hypothesis (together with the
background knowledge). Therefore it cannot reason about what should be true
in all answer sets of a program. For this reason, brave induction is incapable of
learning constraints.

3.1 Cautious Induction

Cautious induction, first presented in [41], defines a learning task in which all
examples should be covered in every answer set (i.e. entailed under cautious
entailment in ASP) and B ∪ H should be satisfiable (have at least one answer

1 As the notions had not been defined at the time, they did not call it cautious induc-
tion, but the definitions are the same.



Logic-Based Learning of Answer Set Programs 203

set)2. Note that the satisfiability condition is crucial to avoid trivial solutions
such as “: - .”, which eliminate all answer sets.

Definition 2. A cautious induction (ILPc) task Tc is a tuple 〈B,SM , 〈E+,
E−〉〉, where B is an ASP program, SM is a set of ASP rules and E+ and
E− are sets of ground atoms. A hypothesis H ⊆ SM is an inductive solution of
Tc, written H ∈ ILPc(T ), if and only if AS(B ∪ H) �= ∅ and ∀A ∈ AS(B ∪ H),
E+ ⊆ A and E− ∩ A = ∅.
Example 1. Consider the ILPc task T = 〈B,SM , 〈E+, E−〉〉, where:

B =

⎧
⎪⎪⎨

⎪⎪⎩

bird(X) : - penguin(X).
bird(X) : - sparrow(X).
penguin(b1).
sparrow(b2).

⎫
⎪⎪⎬

⎪⎪⎭

E+ = {flies(b2)}
E− = {flies(b1)}

SM =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h1 :
h2 :

h3 :
h4 :

flies(X) : - bird(X).
flies(X) : - bird(X),

not penguin(X).
0{flies(X)}1 : - bird(X).
0{flies(X)}1 : - bird(X),

not penguin(X).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

The background knowledge B has only one answer set A = {penguin(b1),
sparrow(b2), bird(b1), bird(b2)}.

– ∅ �∈ ILPc(T ) as B has exactly one answer set, and it does not contain
flies(b2).

– {h1} �∈ ILPc(T ) as B ∪ {h1} has exactly one answer set, A ∪ {flies(b1)},
which contains the negative example.

– {h2} ∈ ILPc(T ) as B ∪ {h2} has exactly one answer set, A ∪ {flies(b2)}
which contains the positive example flies(b2) but not the negative example
flies(b1).

– {h3} and {h4} are not in ILPc(T ), as they both have answer sets (when
combined with B) that do not cover the examples. Specifically, B ∪ {h3} has
three answer sets: A1 = A, A2 = A∪{flies(b1)}, and A3 = A∪{flies(b2)}.
It is clearly not the case that all these three answer sets include the positive
example and do not include the negative example. Similarly, B∪{h4} has two
answer sets, A1 = A and A2 = A∪{flies(b2)} which also do not all include
the positive example.

Limitations of Cautious Induction. Enforcing that examples are covered in
every answer set is sometimes too strong a requirement, as shown in the following
example.

2 The original definitions of brave and cautious induction did not consider atoms
which should not be present in an answer set (negative examples). Publicly available
algorithms that realise brave induction, on the other hand, do allow for negative
examples. We therefore upgrade the definitions in this tutorial to allow negative
examples. Note that a negative example e can be easily simulated by adding a rule
a : - not e to the background knowledge and giving a as a positive example (where
a is a new atom that does not appear anywhere in the original task).



204 M. Law et al.

Example 2. Consider the background knowledge B = ∅ and the hypothesis space
SM =

{
h1 : p : - not q. ; h2 : q : - not p.

}
. There are only two atoms (p and q)

in the Herbrand base of B∪SM . It is impossible to construct an ILPc task T with
background knowledge B and hypothesis space SM , whatever example from the
Herbrand base we consider, that would accept {h1, h2} as solution and does not
accept the empty set as solution. This can be seen as follows. Given that there
are only two atoms (p and q) in the Herbrand base of B∪SM , there are only two
atoms which would be meaningful as examples. Neither of them can be given as
a positive example as for each atom there is an answer set of B ∪ {h1, h2} that
does not contain it. Similarly, neither can be given as a negative example, as
for each atom there is an answer set that contains it. This means that the only
ILPc task T such that {h1, h2} ∈ ILPc(T ) is 〈B,SM , 〈∅, ∅〉〉. But, clearly for this
task, as there are no examples in T , the empty set, ∅, would be also an inductive
solution of T , and it would be the one that, in practice, caution ILP systems
would return as they would always search for the shortest possible hypothesis.
This means that no examples can be given such that a cautious induction system
would return {h1, h2}, showing that caution induction is too restrictive.

3.2 Brave Induction

Brave induction (ILPb) was also formalised in [41]. It defines an inductive task
in which all of the examples should be covered in at least one answer set (i.e.
entailed under brave entailment in ASP). Note that there should be at least one
answer set that covers every example (rather than at least one answer set for
each example).

Definition 3. A brave induction (ILPb) task Tb is a tuple 〈B,SM , 〈E+, E−〉〉,
where B is an ASP program, SM is a set of ASP rules and E+ and E− are sets
of ground atoms. A hypothesis H ⊆ SM is an inductive solution of Tb, written
H ∈ ILPb(T ), if and only if ∃A ∈ AS(B∪H) such that E+ ⊆ A and E−∩A = ∅.
Example 3. Consider the ILPb task T = 〈B,SM , 〈E+, E−〉〉, where B, SM , E+

and E− are defined as in Example 2:

B =

⎧
⎪⎪⎨

⎪⎪⎩

bird(X) : - penguin(X).
bird(X) : - sparrow(X).
penguin(b1).
sparrow(b2).

⎫
⎪⎪⎬

⎪⎪⎭

E+ = {flies(b2)}
E− = {flies(b1)}

SM =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h1 :
h2 :

h3 :
h4 :

flies(X) : - bird(X).
flies(X) : - bird(X),

not penguin(X).
0{flies(X)}1 : - bird(X).
0{flies(X)}1 : - bird(X),

not penguin(X).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

– ∅ �∈ ILPb(T ) as B has exactly one answer set, and it does not contain
flies(b2).

– {h1} �∈ ILPb(T ) as B ∪ {h1} has exactly one answer set, and it contains
flies(b1).

– {h2}, {h3}, {h4} ∈ ILPb(T ) as each of B ∪ {h2}, B ∪ {h3} and B ∪ {h4} has
the answer set {penguin(b1), sparrow(b2), bird(b1), bird(b2), flies(b2)},
which contains flies(b2) but does not contain flies(b1).



Logic-Based Learning of Answer Set Programs 205

Limitations of Brave Induction. Brave induction can only reason about
what should be true in at least one answer set of a program. It cannot reason
about what should be true in all answer sets of a program. For this reason,
brave induction is incapable of learning constraints, as illustrated in the following
example. In particular, any solution of an ILPb task T that includes a constraint
is still a solution of T if the constraint is removed, indicating that brave induction
omits searching for constraints when learning a solution.

Example 4. Consider the background knowledge B = {0{p}1.} and a hypothesis
space SM , containing only the constraint : - p., SM = {p.}.There is only one atom
(p) in the Herbrand base of B ∪ SM . We show that it is impossible to construct
a brave induction task Tb, with background knowledge B and hypothesis space
SM, whatever example from the Herbrand base we consider, that accepts {: - p.}
as solution and does not accept the empty set as solution. This can be seen as
follows. Given that there is only one atom (p) in the Herbrand base of B ∪ SM ,
there is then one atom which would be meaningful as an example. It must be
given as a negative example (as B ∪ {: - p.} has only one answer set, and it does
not contain p). But B ∪ ∅ also covers this negative example, as it also has the
answer set ∅, which does not contain p. Therefore for any ILPb task that accepts
the constraint {: - p.} as a solution, ∅ is also a solution, meaning that in practice
brave induction systems (searching for the shortest hypothesis) will never return
the constraint as (part of) a solution.

XHAIL. One of the first logic-based machine learning systems under the answer
set programming semantics is the eXtended Hybrid Abductive Inductive Learn-
ing (XHAIL) [36], which generalises the HAIL [35,37] algorithm, defined for
definite clauses, in order to solve ILPb tasks for ASP programs with negation as
failure. Similarly to HAIL, XHAIL combines abductive and deductive inference.
Abductive inference is an ampliative form of inference, as it generates knowl-
edge that is not included in the premises of the inference process. Specifically,
abduction is the process of reasoning from examples (observations) to possible
causes. An abductive inference task takes as input a background knowledge, a
set of abducibles (i.e., ground atoms that are not defined in the background
knowledge) and set of examples and returns as output possible explanations (i.e.
cases in syllogistic terms), also called abductive solutions, that together with
the background knowledge, entail (i.e. explain) the examples. It differs from
inductive inference in the fact that explanations do not require a process of
generalisation during the inference process, whereas induction aims at discov-
ering new general rules from samples (positive and negative) of cases. In other
words, abduction is the process of explanation – reasoning from effects to pos-
sible causes, whereas induction is the process of generalisation – reasoning from
specific cases to general hypothesis.

The XHAIL learning system computes inductive solutions in three phases: an
abductive phase; a deductive phase; and an inductive phase. The abductive step
takes as abducibles ground atoms that conform with the modeh of the language
bias of the given task and computes as abductive solution a set of abducible



206 M. Law et al.

atoms, Δ, such that B ∪ Δ |=b (
∧

E+) ∧ (
∧{ not e | e ∈ E−}). An abductive

solution becomes the heads of (ground instances of) rules in the final hypothesis.
Next, in the deductive phase, XHAIL computes the set of all ground literals that
could go in the body of the rules in the hypothesis. Each of these body atoms b
is such that B ∪ Δ |=b b and b is a ground instance of an atom that conforms to
at least one modeb declaration. The sets of ground rules with the heads from Δ
and with bodies consisting of literals computed in the deductive phase is referred
to as the (ground) Kernel Set K.

Example 5 (from [36]). Consider the ILPb task T = 〈B,SM , 〈E+, E−〉〉, where
B, M , E+ and E− are as follows:

B =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bird(X) : - penguin(X).
bird(a).
bird(b).
bird(c).
penguin(d).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

M =

⎧
⎨

⎩

#modeh(flies(+bird))
#modeb(penguin(+bird))
#modeb(not penguin(+bird))

⎫
⎬

⎭

E+ =

⎧
⎨

⎩

flies(a),
flies(b),
flies(c)

⎫
⎬

⎭
E− =

{
flies(d)

}

One abductive explanation of the examples is Δ = {flies(a), flies(b),
flies(c)}. This leads to the ground Kernel Set:

K =

⎧
⎨

⎩

flies(a) : - not penguin(a).
flies(b) : - not penguin(b).
flies(c) : - not penguin(c).

⎫
⎬

⎭

The unground Kernel Set that conforms to the mode bias and the declaration
of input variables is given by:

K =
{
flies(X) : - not penguin(X).

}

Note that although there are other potential body literals that are entailed by
B ∪Δ and that are declared to be mode body predicates (i.e., penguin(d)) they
are not added to the ground Kernel Set as they do not form part of a ground
instance of a rule that conforms to the mode declarations. According to the
declaration of input variables in the language bias body literals need to have the
same variable as the one that appears in the head of the rule. The ground literal,
penguin(d), for instance, cannot be added to any of the three ground rules of
the ground Kernel Set. This is because the unground version of the Kernel Set
would give an unground rule with penguin(Y) in the body, which violates the
input variable constraint of the mode body declaration: an input variable in a
mode body predicate must either appear in the head predicate of the rule, or
appear as output variable in another body atom. In the mode declaration M
given above, variables are only input variables, so any variable that appears in
a body predicate must appear in the head predicate of the rule.



Logic-Based Learning of Answer Set Programs 207

The final step of the XHAIL algorithm – the inductive step – computes a
hypothesis H that conforms to the mode declarations, subsumes the unground
Kernel Set and bravely entails the examples. This phase is also supported by an
abductive inference process that takes as background knowledge a “transformed”
unground Kernel Set, as abducibles ground instances of a predicate use, and as
observation the same of examples used in the first phase. The abductive answer
determines the literals in the body of the rules of the Kernel Set that need to
be maintained in order for the examples to be covered.

Example 6. Consider again the unground Kernel Set computed in Example 5.
This is transformed in the following ASP program:

⎧
⎨

⎩

flies(X) : - use(1, 0), try(1, 1, X).
try(1, 1, X) : - bird(X), not use(1, 1).
try(1, 1, X) : - bird(X), use(1, 1), not penguin(X).

⎫
⎬

⎭

The first and second arguments of each of the meta-level atoms use and try
indicate respectively a unique identifier for the object-level rules (starting from
1) in the unground kernel Set, and a unique identifier for the literal in each of
these rules (starting from 0 as identifier of the head atom). So, use(1, 0) means
that the head atom flies(X) is being used (i.e. it is in the hypothesis). The
try atoms are for testing whether the rule body is satisfied. If the head is being
used, then flies(X) is true in two cases: (1), the literal not penguin(X) is not
in the hypothesis (indicated by the first try rule); or (2), not penguin(X) is
true (represented by the second try rule).

The transformed Kernel Set is augmented with the choice rule 0{use(1, 0),
use(1, 1)}2. This phase computes an abductive solution. In the above example,
XHAIL uses an ASP solver to compute the smallest abductive answer using the
transformed Kernel Set, and this answer gives then hypothesis that subsumes the
Kernel Set, conforms to the mode declarations and bravely entails the examples.
In the above example, the abductive solution generated during the inductive
phase would be Δi = {use(1, 1)}, which indicates that in the final hypothesis,
constituted just by the first rule, the first body literal will have to be kept in
order to cover the examples correctly.

One major difference between HAIL and XHAIL is that HAIL uses a cover
loop approach, whereas XHAIL does not. This is due to the nonmonotonicity
of negation as failure: in a cover loop approach, examples that were covered in
previous iterations of the cover loop may not be covered in future iterations.

As in general there are many possible abductive solutions Δ, and not all Δ’s
lead to inductive solutions, XHAIL employs an iterative deepening approach,
ordering the Δ’s by size and terminating after processing the shortest Δ that
leads to a solution. In general, this may not lead to the optimal solution being
found, as there may be a large Δ that leads to a shorter hypothesis (e.g. with
more individual rules, but fewer overall literals).

INSPIRE. Inspire [18], is an ILP system based on XHAIL, but with some
modifications to aid scalability. The main modification is that some rules are



208 M. Law et al.

“pruned” from the Kernel Set before the XHAIL’s inductive phase. Both XHAIL
and Inspire use a meta-level ASP program to perform the inductive phase, and
the ground Kernel Set is generalised into a first order Kernel Set (using the mode
declarations to determine which arguments of which predicates should become
variables). Inspire prunes rules that have fewer than Pr instances in the ground
Kernel Set (where Pr is a parameter of Inspire). The intuition is that if a rule is
necessary to cover many examples then it is likely to have many ground instances
in the Kernel Set. Clearly this is an approximation, so Inspire is not guaranteed
to find the optimal hypothesis in the inductive phase. In fact, as XHAIL is not
guaranteed to find the optimal inductive solution of the task (as it may pick the
“wrong” abductive solution), this means that Inspire may be even further from
computing optimal solutions.

ILED. ILED [17] is an incremental algorithm, based on XHAIL. It is targeted
at learning Event Calculus [19] theories and, therefore, its examples are slightly
different in that they are grouped into time windows. The examples are processed
one at a time and at each timepoint the hypothesis is revised so that it covers
all examples in all windows that have been processed so far.

ILED has been shown to be much more scalable than XHAIL when processing
large numbers of examples divided into time windows [17]. On the other hand,
like XHAIL, ILED is not guaranteed to find the optimal solution of a task. In
fact, this incompleteness with respect to optimal solutions is more severe in ILED
than in XHAIL, as it can also occur because of the incremental nature of the
algorithm. Although at each step the revision may be optimal, the combination
of every revision may result in a longer hypothesis than could have been found
if all examples had been processed together.

ASPAL. The algorithms presented so far follow a bottom-up approach for
searching for solutions within a given hypothesis space specified by a language
bias. In the cases of XHAIL, ILED and INSPIRE the algorithms compute first
a most specific (set of) clauses that cover the examples, which constitute the
“bottom element” of the search space, and then try to generalise it searching
for more general solutions within the search space. But alternative approaches
to the search for inductive solutions have been proposed in the literature. These
are referred to as meta-level approaches with top-down search. An example of
such algorithms is the Top-directed Abductive Learning (TAL) system [6]. This
system solves an ILP task by automatically translating it into a semantically
equivalent abductive inference task, whose background knowledge is given by
the background knowledge of the learning task augmented with meta-level rep-
resentation of the hypothesis space, and the observation to explain is given, as
in XHAIL, by the conjunction of the examples. The inference process performs
a top-down abductive search [32] for abductive solutions that explain the obser-
vation. Such an abductive solution is then translated back into rules that are
guaranteed to correspond to an inductive solution of the original brave inductive
task. The transformation relies upon a one-to-one mapping that translates each



Logic-Based Learning of Answer Set Programs 209

(normal) rule of the hypothesis space into a meta-level representation and uses
a “meta-program”, called top theory, that captures possible ways of construct-
ing such rules in terms of their meta-level representation. The main advantage
of this approach is its ability to solve ILP tasks that require recursive rules as
solutions or rules that are interdependent (e.g., predicates that appear in the
body of a rule can also appear in the head of another rule belonging to the same
solution). However, a drawback of this approach is its scalability. The abductive
reasoning engine used by TAL is implemented in Prolog. As such, it suffers from
redundant inference steps, which causes its computational time to be affected
by the size of the hypothesis space and the number of examples of a given ILP
task.

The ASPAL [7] algorithm is a brave induction system that aims at addressing
the limitations of the TAL system by using an ASP implementation: as in TAL,
an ILP task is translated into a meta-level program, but in ASPAL this is an ASP
program. Given an ILPb task Tb = 〈B,SM , 〈E+, E−〉〉, where SM is defined by
a given set of mode declarations M , the first step is to compute a set of skeleton
rules SkM . These are the set of rules R, such that there is an R′ ∈ SM , where
each constant in R′ is replaced by a placeholder variable in R.

Example 7. Consider the mode declarations M .

M =
{

#modeh(penguin(+bird))
#modeb(2, not can(+bird,#ability))

}

The first argument of the mode body declaration is called the recall and it
expresses the constraint that this mode declaration can be used at most twice
per rule in the hypothesis space. There are three skeleton rules:

SkM =

⎧
⎨

⎩

penguin(X) : - bird(X)
penguin(X) : - bird(X), not can(X, C1)
penguin(X) : - bird(X), not can(X, C1), not can(X, C2)

⎫
⎬

⎭

Note that the hypothesis space SM consists of the rules in SkM but where
C1 and C2 have been replaced with constants of type ability.

Each skeleton rule R ∈ SkM is associated with a unique meta-level atom
rule(Rid, C1, . . . , Cn), denoted as Rmeta, where C1, . . . , Cn are the “constant place-
holder” variables in R. For each rule R′ ∈ SM , we similarly write R′

meta to denote
the ground atom representing R′ (where each “constant placeholder” variable
has been replaced with a constant of the correct type). Informally, consider for
example the second rule penguin(X) : - bird(X), not can(X, C1) in SkM . Its asso-
ciated meta-level atom would be rule(2, C1). Now assuming, for the sake of the
argument, that ability(fly) is true in the background knowledge of the given
learning task, the ASPAL computation may given rise for instance to a ground
instance rule(2, f ly), which would then be used by ASPAL to generate the cor-
responding rule R′ ∈ SM given by penguin(X) : - bird(X), not can(X, fly) in the
final inductive solution.



210 M. Law et al.

Using this notion of skeleton rules, the ASPAL system automatically con-
structs an ASP meta-level representation of a learning task by adding to the
background theory B of the learning task, the set of skeleton rules, each aug-
mented with an additional body literal given by the associated meta-level atom.
These meta-level atoms are considered to be abducible and their truth is deter-
mined by a choice rule which is used by the ASP solver to select the minimal
number of such atoms (corresponding to the minimal number of rules R′ ∈ SM )
so that the examples of the given learning task are covered. This is captured
formally by the following definition.

Definition 4. Let T be the ILPb task 〈B,SM , 〈{e+1 , . . ., e+n }, {e−
1 , . . ., e−

m }〉〉,
where SM is characterised by the set of mode declarations M . Let SkM be the
set of skeleton rules derivable from M . The ASPAL meta-representation is the
program consisting of the following components:

– B
– h : - b1, . . . brl, Rmeta, for each rule R ∈ SkM , where R is the rule

h : - b1, . . . , brl.
– A choice rule 0{ab1, . . . , abk}k., where {ab1, . . ., abk}={Rmeta | R∈SkM}3
– The rule goal : - e+1 , . . . , e+n , not e−

1 , . . . , not e−
m .

– The constraint : - not goal.

We refer to the answer sets of this meta representation as meta-level answer
sets, and the answer sets of B ∪ H as object-level answer sets. Each meta-level
answer set A represents a single hypothesis H (defined by the rule atoms in
A). Each meta-level answer set also contains exactly one object-level answer set
of B ∪ H that contains all of the positive examples and none of the negative
examples (enforced by the goal constraint).

Example 8. Consider the ILPb task T = 〈B,SM , E+, E−〉, where SM is charac-
terised by the mode declarations in Example 7.

B =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

bird(a).
bird(b).
can(a, fly).
can(b, swim).
ability(fly).
ability(swim).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

E+ = {penguin(b)} E− = {penguin(a)}

The ASPAL meta-level representation is shown in Fig. 1. Note that each
skeleton rule R has been appended with the atom Rmeta, where each of the
arguments other than the identifier Rid is a variable representing a place-
holder for a constant. The choice rule on the other hand contains atoms R′

meta,
3 This is a slight simplification. In the ASPAL algorithm, this is a choice rule using

conditional literals, in order to delegate the grounding of the possible constants to
the ASP solver. The ground version of ASPAL’s choice rule is identical to the one
presented in this definition.



Logic-Based Learning of Answer Set Programs 211

bird(a).
bird(b).
can(a, fly).
can(b, swim).
ability(fly).
ability(swim).

penguin(X) : - bird(X), rule(1).
penguin(X) : - bird(X), not can(X, C1), rule(2, C1).
penguin(X) : - bird(X), not can(X, C1), not can(X, C2), rule(3, C1, C2).

0{rule(1), rule(2, fly), rule(2, swim), rule(3, fly, swim)}4.

goal : - penguin(b), not penguin(a).
: - not goal.

Fig. 1. The ASPAL meta-level representation for the learning task in Example 8.

generated by instantiating the constant placeholder variable with all possi-
ble constant values allowed by the constant type. In this way each ground
R′ is an instance of a skeleton rule R. The answer sets of this program
can be mapped to the ILPb inductive solutions of the task Tb. For exam-
ple, the answer set {bird(a), bird(b), can(a, fly), can(b, swim), ability(fly),
ability(swim), penguin(b), rule(2, fly), goal} shows that the hypothesis
{penguin(X) : - bird(X), not can(X, fly).} is a solution of the ILPb task T .

In the ASPAL algorithm, this meta representation is combined with an opti-
misation statement (similar to weak constraints in ASP), which orders the meta-
level answer sets by the length of the hypothesis that they represent. This optimi-
sation statement is equivalent to adding a weak constraint :∼ Rmeta.[|R|@1, Rmeta]
for each R in SkM , which means that the total penalty paid by a meta-level
answer set at priority level 1 is the length of the hypothesis generated from
the answer set. Note that when computing |R| the “type” atoms in R (such as
bird(X) in the rule above) are not counted.

ASPAL has been proven to be sound and complete with respect to the opti-
mal inductive solutions of any brave induction task [5]. This means that, unlike
XHAIL and XHAIL-based algorithms, ASPAL is guaranteed to return an opti-
mal inductive solution of any brave induction task (resources permitting).

RASPAL. ASPAL scales poorly with respect to the size of ground(B∪SM ) [2].
One of the main factors in the size of this ground program is the number of body
literals that are allowed to appear in a rule in the hypothesis space. RASPAL [2]
addresses this limitation by iteratively refining a hypothesis until all of the exam-
ples in an ILPb task are covered. At each step, the number of literals that are
allowed to be added to the hypothesis is restricted, meaning that the ground-
ing in RASPAL is often significantly smaller than the meta-level program in



212 M. Law et al.

ASPAL. In [1] it was shown that RASPAL significantly outperforms ASPAL on
some learning tasks with large problem domains and large hypothesis spaces.

3.3 Induction of Stable Models

Induction of stable models [33] (ILPsm), generalises ILPb, in order to allow
conditions to be set over multiple answer sets. The examples of an ILPsm task
are partial interpretations.

Definition 5. A partial interpretation e is a pair of sets of atoms 〈einc, eexc〉.
We refer to einc and eexc as the inclusions and exclusions respectively. An inter-
pretation I is said to extend e if and only if einc ⊆ I and eexc ∩ I = ∅.
Example 9. Consider the partial interpretation e = 〈{p, q}, {r, s}〉.
– {p} does not extend e, as it does not contain q.
– {p, q, r} does not extend e, as it contains r.
– {p, q} extends e, as it contains all of e’s inclusions, and none of e’s exclusions.
– {p, q, t} extends e, as it contains all of e’s inclusions, and none of e’s exclu-

sions.

Induction of stable models is formalised in Definition 6.

Definition 6. An induction of stable models (ILPsm) task Tsm is a tuple 〈B,
SM , 〈E〉〉, where B is an ASP program, SM is the hypothesis space and E is a
set of example partial interpretations. A hypothesis H is an inductive solution of
Tsm if and only if H ⊆ SM and ∀e ∈ E, ∃A ∈ AS(B∪H) such that A extends e.

Note that a brave induction task can be thought of as a special case of
induction of stable models (with |E| = 1 and the inclusions and exclusions of
the only partial interpretation example being the positive and negative examples
of the brave task, respectively).

Example 10. Consider the ILPsm task T = 〈B,SM , 〈E〉〉, where:

B = ∅
SM =

{
h1 :
h2 :

p : - not q.
q : - not p.

} E =
{ 〈{p}, {q}〉,

〈{q}, {p}〉
}

{h1, h2} is the only subset of the hypothesis space that is an inductive
solution of T , as it is the only hypothesis that has answer sets that extend both
of the examples.

Note that, although induction of stable models is a generalisation of brave
induction, it is still incapable of learning constraints. This is because, similarly
to brave induction, it can only give examples of what should be (in) an answer
set, rather than examples of what should not be an answer set.



Logic-Based Learning of Answer Set Programs 213

4 Learning from Answer Sets and ILASP

In the previous section, we presented the main frameworks for learning ASP
programs, which fall into two categories: either the examples must be covered in
at least one answer set of the learned program (brave induction [41] and induction
of stable models [33]), or the examples must be covered in every answer set of
the learned program (cautious induction [41]). Work on using brave induction
(such as [36] and [7]) has often only considered learning stratified programs4.
In general, however, ASP programs can have one, many or even no answer sets.
Example 11 presents a program H describing the rules of Sudoku, and shows
that no brave induction, induction of stable models or cautious induction task
could possibly have H as an optimal solution.

Example 11. Consider a background knowledge B that contains definitions of
the structure of a 4x4 Sudoku grid; i.e. definitions of cell, same row, same col
and same block (where same row, same col and same block are true only for
two different cells in the same row, column or block).

B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cell((1, 1)). cell((1, 2)). . . . cell((4, 4)).
same row((X1, Y), (X2, Y)) : - cell((X1, Y)), cell((X2, Y)), X1 �= X2.
same col((X, Y1), (X, Y2)) : - cell((X, Y1)), cell((X, Y2)), Y1 �= Y2.
block((1, 1), 1). block((1, 2), 1). block((2, 1), 1). block((2, 2), 1).
block((3, 1), 2). block((3, 2), 2). block((4, 1), 2). block((4, 2), 2).
block((1, 3), 3). block((1, 4), 3). block((2, 3), 3). block((2, 4), 3).
block((3, 3), 4). block((3, 4), 4). block((4, 3), 4). block((4, 4), 4).
same block(C1, C2) : - block(C1, B), block(C2, B), C1 �= C2.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

One hypothesis H that describes the correct rules of Sudoku is as follows:

H =

⎧
⎪⎪⎨

⎪⎪⎩

1{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).
: - same row(C1, C2), value(C1, V), value(C2, V).
: - same col(C1, C2), value(C1, V), value(C2, V).
: - same block(C1, C2), value(C1, V), value(C2, V).

⎫
⎪⎪⎬

⎪⎪⎭

Let SM be a set of rules which contains the rules in H (for the purposes
of this example, it does not matter which other rules it contains). There is no
ILPb, ILPsm or ILPc task such that H is a solution, and no subset of H is a
solution. In practice, as ILP systems tend to search for a solution that is as short
as possible (called an optimal solution), no system for ILPb, ILPsm or ILPc will
return H as the solution. We now show that no task exists, for any of the three
frameworks, for which H is an optimal solution.

– Assume that there is an ILPb task Tb with background knowledge B such
that H is a solution of Tb. Then there must be at least one answer set of

4 Both XHAIL [36] and ASPAL [7] support learning non-stratified programs, but the
background knowledge and hypothesis space of each of the example tasks in [36]
and [7] is stratified.



214 M. Law et al.

B ∪ H that contains all of the positive examples of Tb and none of the
negative examples of Tb. But this answer set must also be an answer set
of B ∪ {1{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).}, as
the constraints in H only rule out answer sets. Hence, H ′ = {1{value(C, 1),
value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).} must also be an inductive
solution of Tb. As H ′ is shorter than H, this means that H cannot possibly
be an optimal solution of Tb.

– The argument for ILPsm is similar to ILPb. Assume there is an ILPsm task
Tsm with background knowledge B such that H is a solution of Tsm. Then
for each example e, there must be at least one answer set Ae of B ∪ H,
such that Ae extends e. In each case, Ae must also be an answer set of
B∪{1{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).}, as the
constraints in H only rule out answer sets. Hence, the hypothesis H ′ =
{1{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}1 : - cell(C).} must also
be an inductive solution of Tsm. As H ′ is shorter than H, this means that H
cannot possibly be an optimal solution of Tsm.

– If we use ILPc to learn H, we have to give examples which are either true in
every answer set of B ∪ H, or false in every answer set. Therefore, we could
not give any meaningful examples about the value predicate – for each atom
value(x, y) (where x and y range from 1 to 4), there is at least one answer
set of B ∪ H that contains value(x, y) and at least one that does not; this
means that if value(x, y) is given as either a positive or negative example, H
will not be a solution of the task. This means that for any ILPc task Tc =
〈B,SM , E+, E−〉 such that H is a solution, E+ ⊆ {a | ∀A ∈ AS(B), a ∈ A}
and E− ⊆ {a | ∀A ∈ AS(B), a �∈ A}. Hence, for any such task, ∅ must be a
solution of Tc, meaning that H cannot be an optimal solution.

The problem with using either brave or cautious induction to learn general
ASP programs is that brave induction can only reason about what should be
true in at least one answer set of the learned program, which can be far too weak
a condition, and cautious induction can only express what should be true in all
answer sets of a program, which can be far too strong a condition. Furthermore,
examples in both frameworks are atoms. In ASP it is common [9] to represent a
problem such that the answer sets are solutions (see Fig. 2(a)). In order to learn
ASP programs, examples should therefore be of what should (or should not) be
an answer set of the program (Fig. 2(b)). In the context of learning the rules
of Sudoku using the representation in Example 11, this corresponds to giving
examples of Sudoku grids rather than the values of individual cells.

In practice, there may be some atoms whose values are unknown before learn-
ing. It is therefore more practical to consider learning from partial interpretations
rather than full interpretations. This setting, under the answer set semantics, is
the basis of the Learning from Answer Sets framework.

A learning from answer sets task consists of an ASP background knowledge
B, a hypothesis space and sets of positive and negative partial interpretation
examples. The goal is to find a hypothesis H that has at least one answer set
(when combined with B) that extends each positive example, and no answer set



Logic-Based Learning of Answer Set Programs 215

Real world
problem

Answer Set
Program Answer Set

Real world
solution

(a)

Real world
hypothesis

Learned
Answer Set
Program

Examples
of answer

sets

Real world
examples

(b)

Fig. 2. (a) Shows the general paradigm of answer set programming [4]; (b) shows the
general idea of Learning from Answer Sets.

that extends any negative examples. Note that each positive example could be
extended by a different answer set of the learned program.

Definition 7. A Learning from Answer Sets (ILPLAS) task is a tuple T =
〈B,SM , 〈E+, E−〉〉 where B is an ASP program, SM a set of ASP rules and E+

and E− are finite sets of partial interpretations. A hypothesis H ⊆ SM is an
inductive solution of T if and only if:

1. ∀e+ ∈ E+∃A ∈ AS(B ∪ H) such that A extends e+

2. ∀e− ∈ E−�A ∈ AS(B ∪ H) such that A extends e−

Example 12. Consider the problem of learning the definition of what it means
for a graph to be Hamiltonian.5 The background knowledge B defines what it
means to be a graph, up to size 4.

B =

⎧
⎨

⎩

1{size(1), size(2), size(3), size(4)}1.
node(1..S) : - size(S).
0{edge(N1, N2)}1 : - node(N1), node(N2).

⎫
⎬

⎭

The answer sets of B exactly represent the graphs of size 1 to 4. For exam-
ple, the answer set {size(4), node(1), node(2), node(3), node(4), edge(1, 2),
edge(2, 3), edge(3, 4), edge(4, 1)} represents the graph G:

1 2

3 4

The program H can be used to determine whether a graph is Hamiltonian
or not. The answer sets of B ∪ H correspond exactly to the Hamiltonian graphs
of size 1 to 4.

5 A graph is Hamiltonian if it contains a cycle that visits each node exactly once.



216 M. Law et al.

H =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0{in(V0, V1)}1 : - edge(V0, V1).
reach(V0) : - in(1, V0).
reach(V1) : - in(V0, V1), reach(V0).
: - node(V0), not reach(V0).
: - in(V0, V1), in(V0, V2), V1! = V2.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The graph G can be represented as a partial interpretation 〈{size(4), edge(1, 2),
edge(2, 3), edge(3, 4), edge(4, 1)}, {edge(1, 1), edge(1, 3), edge(1, 4),
edge(2, 1), edge(2, 2), edge(2, 4), edge(3, 1), edge(3, 2), edge(3, 3), edge(4, 2),
edge(4, 3), edge(4, 4)}〉.

Given sufficient positive and negative examples of Hamilton graphs, it is
possible to learn the hypothesis H using the ILASP system for solving ILPLAS

tasks. Similarly to the Sudoku program in Example 11, it is impossible to learn
H with any of the previous frameworks.

Since the original ILPLAS framework was introduced in [21], it has been
extended in several ways. The rest of this section presents each of these
extensions.

4.1 Preference Learning in ASP

Preference Learning has received much attention over the last decade from within
the machine learning community. A popular approach to preference learning is
learning to rank [11,12], where the goal is to learn to rank any two objects given
some examples of pairwise preferences (indicating that one object is preferred to
another). While in previous work ILP systems such as TILDE [3] and Aleph [44]
have been applied to preference learning [8,15], this has addressed learning rat-
ings, such as good, poor and bad, rather than rankings over the examples. Rat-
ings are not expressive enough if we want to find an optimal solution as we may
rate many objects as good when some are better than others. ASP, on the other
hand, allows the expression of preferences through weak constraints.

Weak constraints do not affect what is, or is not, an answer set of a program.
Instead, they create a preference ordering over the answer sets of a program; i.e.
they allow us to specify which answer sets are preferred to other answer sets.
Example 13 shows how a set of preferences can be encoded as weak constraints.

Example 13. Consider the problem of using a user’s preferences over alterna-
tive journeys, in order to select the optimal journey. Let A, B, C and D
be the journeys represented by the following sets of attributes. Each journey
is split into a number of legs, in which a single mode of transport is used.



Logic-Based Learning of Answer Set Programs 217

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

leg mode(1, bus),
leg crime rating(1, 2),
leg distance(1, 4000),
leg mode(2, walk),
leg crime rating(2, 5),
leg distance(2, 1000)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(B)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

leg mode(1, bus),
leg crime rating(1, 2),
leg distance(1, 400),
leg mode(2, bus),
leg crime rating(2, 4),
leg distance(2, 3000)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(C)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

leg mode(1, bus),
leg crime rating(1, 5),
leg distance(1, 2000),
leg mode(2, walk),
leg crime rating(2, 1),
leg distance(2, 2000)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(D)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

leg mode(1, walk),
leg crime rating(1, 2),
leg distance(1, 500),
leg mode(2, bus),
leg crime rating(2, 4),
leg distance(2, 3000)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(A)

The following weak constraints H give a preference ordering to the journeys A
to D.

H =

⎧
⎨

⎩

:∼ leg mode(L, walk), leg crime rating(L, C), C > 4.[1@3, L, C]
:∼ leg mode(L, bus).[1@2, L]
:∼ leg mode(L, walk), leg distance(L, D).[D@1, L, D]

⎫
⎬

⎭

The first weak constraint in H means that the user would like to avoid walking
through an area with a crime rating higher than 4. A journey pays a penalty
of 1 at priority level 3 for each leg of the journey that involves walking though
such an area. As there is no weak constraint in H with a priority level higher
than 3, this preference is the most important. The second weak constraint (at
priority level 2) means that the user would like to take as few buses as possible.
The third weak constraint (at priority level 1) means that the user would like
to minimise the distance that they have to walk. Note that, as a penalty of the
distance is paid for each leg where the user has to walk, the total penalty is
equal to the total walking distance of the journey. Given these preferences, A is
the best journey, followed by D, then C and then B.

The hypothesis in Example 13 could be learned by giving examples of which
journeys are preferred to which other journeys. For the preferences to be learned
as weak constraints, this would require examples of pairs of answer sets, such
that the first is preferred to the second. In fact, each ordering example contains
two partial interpretations, rather than two complete answer sets. Examples can



218 M. Law et al.

also be given with any of the operators <, ≤, =, �=, > or ≥. The < operator, for
example, indicates that the first partial interpretation is preferred to the second;
whereas the = operator specifies that the two partial interpretations are equal.

Definition 8. An ordering example is a tuple o = 〈e1, e2, op〉 where e1 and e2
are partial interpretations and op is a binary comparison operator (<,>,=,≤,≥
or �=).

As ordering examples contain two partial interpretations, rather than two full
interpretations, there are two possible semantics to give to the examples. The
brave semantics indicates that there should be at least one pair of answer sets
extending the pair of partial interpretations, which are ordered according to the
operator. The cautious semantics, on the other hand, indicates that every pair
of answer sets that extend the pair of partial interpretations should be ordered
according to the operator.

Definition 9. Let o = 〈e1, e2, op〉 be an ordering example. An ASP program P
bravely respects o iff ∃A1, A2 ∈ AS(P ) such that all of the following conditions
hold: (i) A1 extends e1; (ii) A2 extends e2; and (iii) 〈A1, A2, op〉 ∈ ord(P ). P
cautiously respects o iff �A1, A2 ∈ AS(P ) such that all of the following condi-
tions hold: (i) A1 extends e1; (ii) A2 extends e2; and (iii) 〈A1, A2, op〉 �∈ ord(P ).

Definition 10 defines the notion of Learning from Ordered Answer Sets
(ILPLOAS).

Definition 10. A Learning from Ordered Answer Sets task is a tuple T =
〈B,SM , 〈E+, E−, Ob, Oc〉〉 where B is an ASP program, SM is a set of ASP
rules, E+ and E− are finite sets of partial interpretations and Ob and Oc are
finite sets of ordering examples over E+ called brave and cautious orderings. A
hypothesis H ⊆ SM is an inductive solution of T if and only if:

1. H ∈ ILPLAS(〈B,SM , 〈E+, E−〉〉)
2. ∀o ∈ Ob B ∪ H bravely respects o
3. ∀o ∈ Oc B ∪ H cautiously respects o

Note that the orderings are only over positive examples. The justification
behind this restriction is that there does not appear to be any scenario where a
hypothesis would need to respect an ordering of a pair of partial interpretations
that are not extended by any pair of answer sets of B ∪ H.

Example 14. Recall the journey preferences in Example 13. Consider the back-
ground knowledge B, which defines a set of possible journeys.

B =

⎧
⎪⎪⎨

⎪⎪⎩

1{leg(1), . . . , leg(5)}5.
1{leg mode(L, walk), leg mode(L, bus)}1 : - leg(L).
1{leg crime rating(L, 1), . . . , leg crime rating(L, 4000)}1 : - leg(L).
1{leg distance(L, 0), . . . , leg distance(L, 4000)}1 : - leg(L).

⎫
⎪⎪⎬

⎪⎪⎭

Journeys A to D of Example 13 can be represented by the four positive
examples eA to eD.



Logic-Based Learning of Answer Set Programs 219

〈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

leg mode(1, walk),
leg crime rating(1, 2),
leg distance(1, 500),
leg mode(2, bus),
leg crime rating(2, 4),
leg distance(2, 3000)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎨

⎩

leg(3),
leg(4),
leg(5)

⎫
⎬

⎭

〉

(eA)

〈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

leg mode(1, bus),
leg crime rating(1, 2),
leg distance(1, 400),
leg mode(2, bus),
leg crime rating(2, 4),
leg distance(2, 3000)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎨

⎩

leg(3),
leg(4),
leg(5)

⎫
⎬

⎭

〉

(eC)

〈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

leg mode(1, bus),
leg crime rating(1, 2),
leg distance(1, 4000),
leg mode(2, walk),
leg crime rating(2, 5),
leg distance(2, 1000)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎨

⎩

leg(3),
leg(4),
leg(5)

⎫
⎬

⎭

〉

(eB)

〈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

leg mode(1, bus),
leg crime rating(1, 5),
leg distance(1, 2000),
leg mode(2, walk),
leg crime rating(2, 1),
leg distance(2, 2000)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎨

⎩

leg(3),
leg(4),
leg(5)

⎫
⎬

⎭

〉

(eD)

As these positive examples completely represent each journey, there is exactly
one answer set of B that extends each example. Therefore there is no distinc-
tion between brave and cautious orderings in this case. Recall from Example 13
that journey A was preferred to journey D, which was preferred to journey C,
which was preferred to journey B. This means that to learn the preferences in
Example 13, we could give the orderings 〈eA, eD, <〉, 〈eD, eC , <〉 and 〈eC , eB , <〉
as either brave or cautious orderings.

4.2 Context-Dependent Learning from Answer Sets

Common to previous ILP frameworks is the underlying assumption that hypothe-
ses should cover the examples with respect to one fixed given background knowl-
edge. But, in practice, some examples may be context-dependent – different
examples may need to be covered using different background knowledges. The
journey preferences in Example 13 can be extended, for example, with contextual
information (e.g. the weather).



220 M. Law et al.

Example 15. Reconsider the background knowledge and examples from Exam-
ple 14. It may be that certain attributes of a journey are context-dependent ; for
instance, weather conditions may be important. Any of the ordering examples o
in Example 14 could be extended with a context such as C = {raining.}. This
would mean that for a brave ordering o, there should be a pair of answer sets
of B ∪ H ∪ C that extends the partial interpretations in o and that respects the
ordering (w.r.t. the weak constraints in B ∪ H ∪ C).

In fact, the definition of a context-dependent ordering example given in this
tutorial is slightly more general than in Example 15, as each partial interpre-
tation in a context-dependent ordering example can have its own context. We
will see that in addition to representing genuine contextual information, in some
cases, contexts can be used in order to partition the background knowledge into
pieces that are relevant to particular examples. We now formalise the notion of
context-dependent examples. Similarly to ILPLOAS examples, these are of two
types: partial interpretations and ordering examples.

Definition 11. A context-dependent partial interpretation (CDPI) is a pair
e = 〈epi, ectx〉, where epi is a partial interpretation and ectx is an ASPch pro-
gram (i.e. an ASP program with no weak constraints), called a context. Given a
program P , an interpretation I is said to be an accepting answer set of e w.r.t.
P if and only if I ∈ AS(P ∪ ectx) and I extends epi. P is said to accept e if
there is at least one accepting answer set of e w.r.t. P .

Definition 12. A context-dependent ordering example (CDOE) o is a tuple
〈〈e1pi, e

1
ctx〉, 〈e2pi, e

2
ctx〉, op〉, where the first two elements are CDPIs and op is a

binary comparison operator (<,>,=,≤,≥ or �=). Given a CDOE o = 〈e1, e2, op〉,
inverse(o) = 〈e1, e2, op−1〉, where <−1 is ≥, ≤−1 is >, =−1 is �=, �=−1 is =, >−1

is ≤ and ≥−1 is >. A pair of interpretations 〈I1, I2〉 is said to be an accepting
pair of answer sets of o wrt a program P if all of the following conditions hold:
(i) I1 is an accepting answer set of 〈e1pi, e

1
ctx〉; (ii) I2 is an accepting answer

set of 〈e2pi, e
2
ctx〉; and (iii) 〈I1, I2, op〉 ∈ ord(P,AS(P ∪ e1ctx) ∪ AS(P ∪ e2ctx)). A

program P is said to bravely respect o if there is at least one accepting pair of
answer sets of o. P is said to cautiously respect o if there is no accepting pair
of answer sets of inverse(o).

Definition 13. A Context-dependent Learning from Ordered Answer Sets
(ILP context

LOAS ) task is a tuple T = 〈B,SM , 〈E+, E−, Ob, Oc〉〉 where B is an ASP
program, SM is a set of ASP rules, E+ and E− are finite sets of CDPIs, and Ob

and Oc are finite sets of CDOEs over E+ called, respectively, brave and cautious
orderings. A hypothesis H ⊆ SM is an inductive solution of T if and only if:

1. ∀e ∈ E+, B ∪ H accepts e
2. ∀e ∈ E−, B ∪ H does not accept e
3. ∀o ∈ Ob, B ∪ H bravely respects o
4. ∀o ∈ Oc, B ∪ H cautiously respects o

Example 16. Reconsider the journey preference learning task of Example 14.
The contextual information in Example 15 can be added to the examples e1 and



Logic-Based Learning of Answer Set Programs 221

e2, to show the preference “in the case that it is raining e1 is preferred to e2,
but otherwise it is the other way around” with the context dependent ordering
examples o1 and o2:

o1 =
〈〈

e1,
{
raining.

}〉
,
〈
e2,

{
raining.

}〉
, <

〉

o2 = 〈〈e2, ∅〉 , 〈e1, ∅〉 , <〉

4.3 ILASP

Inductive Learning of Answer Set Programs (ILASP) is a collection of algorithms
for solving ILPLAS , ILPLOAS and ILP context

LOAS tasks. Similarly to ASPAL, each
ILASP algorithm makes use of meta-level ASP programs. As we will see in
Sect. 4.4, deciding whether a hypothesis is a solution of one of the ILPb tasks
solved by ASPAL is NP -complete in the propositional case, whereas the same
decision problem for the tasks solved by ILASP is DP -complete. For this reason,
ILASP 1 and 2 do not encode the search for solutions in a single meta-level ASP
program (solving such a program is NP -complete in the propositional case), but
instead employ an iterative algorithm, where a meta-level ASP program is solved
repeatedly with new constraints added in each iteration, until the optimal answer
sets of the meta-level program correspond to the optimal inductive solutions of
the task.

The details of ILASP’s meta-level programs are beyond the scope of this tuto-
rial6. For the purposes of this tutorial, all the reader needs to know is that given
any ILPLAS , ILP context

LAS or ILP context
LOAS task T , both ILASP1(T ) and ILASP2(T )

return an optimal solution of T (resources permitting, of course).

Relevant Examples and ILASP2i. The ILASP1 and ILASP2 algorithms
both scale poorly with respect to the number of examples as the number of rules
in the grounding of their meta-level ASP programs is proportional to the number
of examples. The ILASP2i algorithm [24] solves a task iteratively, by building
up a set of relevant examples. The idea is that in real tasks, many examples may
be similar and may therefore be covered by exactly the same set of hypotheses.
If this is the case, it is sufficient to consider only a small set of examples that
are representative of the full set – these are the relevant examples. ILASP2i
constructs this set iteratively, by assuming that its current relevant example set
is completely representative of the full set, and using ILASP2 to solve the task
with only those examples. If the assumption holds, then the hypothesis returned
by ILASP2 will be an inductive solution of the full task. If not, then there must
be at least one example which is not covered by the hypothesis returned by
ILASP2 – this is added to the relevant example set before the next iteration.7

6 Details of the encodings can be found in [20–22].
7 In Algorithm 1.1 the set Relevant is a pair of sets of examples, the first set being rel-

evant positive examples and the second set relevant negative examples. The notation
on Line 5 means to add example re to the appropriate set, depending on whether it
is a positive or a negative example.



222 M. Law et al.

The findRelevantExample method is used to check whether a given hypothesis
H is an inductive solution of the full task; if it is, then it returns nil (as there
are no relevant examples to find); otherwise, it returns an example which is not
covered by H.

Algorithm 1.1. ILASP2i
1: procedure ILASP2i(〈B, SM , E+, E−〉)
2: Relevant = 〈∅, ∅〉; H = ∅;
3: re = findRelevantExample(〈B, SM , E+, E−〉, H);
4: while re �= nil do
5: Relevant << re;
6: H = ILASP2(〈B, SM , Relevant〉);
7: if H == nil then
8: return UNSATISFIABLE;
9: else

10: re = findRelevantExample(〈B, SM , E+, E−〉, H);
11: end if
12: end while
13: returnH;
14: end procedure

In some ways, ILASP2i can be thought of as a non-monotonic variation on
the idea of a cover-loop with three major differences: (1) just because an example
is covered in one iteration, it is not guaranteed to be covered in future iterations
(unless it is added to the set of relevant examples); (2) the learning starts from
scratch in each iteration (rather than iteratively building a hypothesis); and (3)
the full set of relevant examples is considered in each iteration (rather than a
single current seed example).

4.4 The Complexity and Generality of Learning Answer Set
Programs

Throughout this tutorial, we have discussed the six main frameworks for learning
under the answer set semantics. As we introduced the early learning frameworks,
we discussed some of their limitations, such as the fact that systems based on
brave induction are unable to learn constraints. These limitations were some of
the original motivations of the later frameworks such as ILPLAS .

Although we have already demonstrated that there are programs which can
be learned by ILPLAS based systems that cannot be learned by systems based
on earlier frameworks, it is more interesting to consider exactly which classes
of programs can be learned by each framework. The aim is to characterise the
class of ASP programs that a framework is capable of learning, if given sufficient
examples. Language biases tend, in general, to impose their own restrictions on
the classes of program that can be learned. They are primarily used to aid the
performance of the computation, rather than to capture intrinsic properties of



Logic-Based Learning of Answer Set Programs 223

a learning framework. In this chapter we will therefore consider learning tasks
with unrestricted hypothesis spaces: hypotheses can be constructed from any set
of normal rules, choice rules and hard and weak constraints. We assume each
learning framework F to have a task consisting of a pair 〈B,EF 〉, where B is
the (ASP) background knowledge and EF is a tuple consisting of the examples
for this framework; for example ELAS

8 = 〈E+, E−〉 where E+ and E− are sets
of partial interpretations.

In [25], the generality of the six main frameworks was investigated and three
new measures of generality were presented, based on which of the hypotheses a
framework can distinguish from other hypotheses. Roughly speaking, a hypothe-
sis H1 can be distinguished from another hypothesis H2 (with respect to a given
background knowledge B) if there is at least one set of examples E such that
B∪H1 satisfies every example in E and B∪H2 does not. The following definition
formalises the one-to-one-distinguishability class of a learning framework.

Definition 14. The one-to-one-distinguishability class of a learning framework
F (denoted D1

1(F)) is the set of tuples 〈B,H1,H2〉 of ASP programs for which
there is at least one task TF = 〈B,EF 〉 such that H1 ∈ ILPF (TF ) and H2 �∈
ILPF (TF ). For each 〈B,H1,H2〉 ∈ D1

1(F), TF is said to distinguish H1 from
H2 with respect to B.

Note that the one-to-one-distinguishability relationship is not symmetric; i.e
there are pairs of hypotheses H1 and H2 such that, given a background knowledge
B, H1 can be distinguished from H2, but H2 can not be distinguished from H1.
This is illustrated by Example 17.

Example 17. Consider a background knowledge B that defines the concepts of
cell, same block, same row and same column for a 4x4 Sudoku grid (see Exam-
ple 11).

Let H1 be the incomplete description of the Sudoku rules:

1 { value(C, 1), value(C, 2), value(C, 3), value(C, 4) } 1 :- cell(C).

:- value(C1, V), value(C2, V), same_row(C1, C2).

:- value(C1, V), value(C2, V), same_col(C1, C2).

Also let H2 be the complete description of the Sudoku rules:

1 { value(C, 1), value(C, 2), value(C, 3), value(C, 4) } 1 :- cell(C).

:- value(C1, V), value(C2, V), same_row(C1, C2).

:- value(C1, V), value(C2, V), same_col(C1, C2).

:- value(C1, V), value(C2, V), same_block(C1, C2).

ILPb can distinguish H1 from H2 with respect to B. This can be seen using
the task 〈B, 〈{value((1, 1), 1), value((2, 2), 1)}, ∅〉〉. On the other hand, ILPb

cannot distinguish H2 from H1. Whatever examples are given in a learning task
to learn H2, it must be the case that E+ ⊆ A and E− ∩ A = ∅, where A is an
answer set of B ∪ H2. But answer sets of B ∪ H2 are also answer sets of B ∪ H1.
So A is also an answer set of B ∪ H1, which implies that H1 satisfies the same
examples and is a solution of the same learning task.
8 Note that to avoid cumbersome notation, we denote this ELAS rather than EILPLAS .



224 M. Law et al.

Table 1 gives conditions which are both sufficient and necessary for a tuple
〈B,H,H1〉 to appear in the one-to-one-distinguishability class of each learning
framework.9 Proofs of the correctness of these conditions are given in [25]. The
conditions show that the following orderings hold:

– D1
1(ILPb) = D1

1(ILPsm) ⊂ D1
1(ILPLAS) ⊂ D1

1(ILPLOAS) ⊂ D1
1(ILP context

LOAS )
– D1

1(ILPc) ⊂ D1
1(ILPLAS)

Table 1. A summary of the sufficient and necessary conditions in each learning frame-
work for a hypothesis H1 to be distinguishable from another hypothesis H2 with respect
to a background knowledge B.

Framework F Sufficient/necessary condition for 〈B, H1, H2〉 to be in D1
1(F)

ILPb AS(B ∪ H1) �⊆ AS(B ∪ H2)

ILPsm AS(B ∪ H1) �⊆ AS(B ∪ H2)

ILPc AS(B ∪H1) �= ∅∧ (AS(B ∪H2) = ∅∨ (Ec(B ∪H1) �⊆ Ec(B ∪H2)))

ILPLAS AS(B ∪ H1) �= AS(B ∪ H2)

ILPLOAS (AS(B ∪ H1) �= AS(B ∪ H2)) ∨ (ord(B ∪ H1) �= ord(B ∪ H2))

ILP context
LOAS (B ∪ H1 �≡s B ∪ H2) ∨ (∃C ∈ ASPch s.t.

ord(B ∪ H1 ∪ C) �= ord(B ∪ H2 ∪ C))

If we view one-to-one-distinguishability as a measure of the generality of a
learning framework, then ILPb, ILPsm and ILPc are each strictly less general
than ILPLAS , and ILPLOAS and ILP context

LOAS are more general still.

The One-to-Many-Distinguishability Class of a Learning Framework.
In practice, an ILP task has a search space of possible hypotheses, and it is
important to know the cases in which one particular hypothesis can be distin-
guished from the rest. In what follows, we analyse the conditions under which
a learning framework can distinguish a hypothesis from a set of other hypothe-
ses. This corresponds to the notion of one-to-many-distinguishability class of a
learning framework, which is a generalisation of the notion of the one-to-one-
distinguishability class.

Definition 15. The one-to-many-distinguishability class of a learning frame-
work F (denoted D1

m(F)) is the set of all tuples 〈B,H, {H1, . . . , Hn}〉 such that
there is a task TF that distinguishes H from each Hi with respect to B.

9 In Table 1 the following two notations are used. For programs P and Q the relation
P ≡s Q means that for any program R AS(P ∪ R) = AS(Q ∪ R) and for a program
P Ec(BP ) is the set of conjunctions of literals in every answer set of P .



Logic-Based Learning of Answer Set Programs 225

Given two frameworks F1 and F2, we say that F1 is at least as (resp. more)
D1

m-general as (resp. than) F2 if D1
m(F2) ⊆ D1

m(F1) (resp. D1
m(F2) ⊂ D1

m(F1)).
The one-to-many-distinguishability class tells us the circumstances in which

a framework is general enough to distinguish some target hypothesis from a
set of unwanted hypotheses. Note that, although the tuples in a one-to-many-
distinguishability class that have a singleton set as the third argument corre-
spond to the tuples in a one-to-one-distinguishability class of that framework, it
is not always the case that if F1 is more D1

m-general than F2 then F1 is also more
D1

1-general than F2. For example, we will see that ILPsm is more D1
m-general

than ILPb, but we have already seen that the ILPb and ILPsm are equally
D1

1-general.

Example 18. D1
m(ILPb) ⊂ D1

m(ILPsm). We can see this as follows. Firstly,
clearly D1

m(ILPb) ⊆ D1
m(ILPsm), as any ILPb task can be trivially mapped

into an ILPsm task. Thus, it remains to show that D1
m(ILPb) �= D1

m(ILPsm).
Consider the programs B = ∅, H = {1{heads, tails}1.}, H1 = {heads.}

and H2 = {tails.}. 〈B,H, {H1,H2}〉 ∈ D1
m(ILPsm) (〈B, 〈{〈{tails}, ∅〉,

〈{heads}, ∅〉}〉〉 distinguishes H from H1 wrt the background knowledge B).
We now show that there is no task Tb = 〈B, 〈E+, E−〉〉 such that H ∈ ILPb(Tb)
and {H1,H2} ∩ ILPb(Tb) = ∅.

Assume for contradiction that there is such a task Tb. As H ∈ ILPb(Tb)
and AS(B ∪ H) = {{heads}, {tails}}, E+ ⊂ {heads, tails} and E− ⊂
{heads, tails} (neither can be equal to {heads, tails} or H would not be
a solution).

Case 1: E+ = ∅
Case a: E− = ∅

Then H1 and H2 would be inductive solutions. This is a contradiction
as {H1,H2} ∩ ILPb(Tb) = ∅.

Case b: E− = {heads}
Then H2 would be an inductive solution of Tb. Contradiction.

Case c: E− = {tails}
Then H1 would be an inductive solution of Tb. Contradiction.

Case 2: E+ = {heads}
heads �∈ E− as otherwise the task would have no solutions (and we know
that H is a solution). In this case H1 would be an inductive solution
(regardless of what else is in E−). Contradiction.

Case 3: E+ = {tails}
Similarly to above case, tails �∈ E− as otherwise the task would have no
solutions. In this case H2 would be an inductive solution (regardless of
what else is in E−). Contradiction.

Hence, there is no such task Tb = 〈B, 〈E+, E−〉〉 such that H ∈ ILPb(Tb)
and {H1,H2} ∩ ILPb(Tb) = ∅. So, D1

m(ILPb) �= D1
m(ILPsm).

In [25], it is shown that the following orderings hold.



226 M. Law et al.

– D1
m(ILPb) ⊂ D1

m(ILPsm) ⊂ D1
m(ILPLAS) ⊂ D1

m(ILPLOAS) ⊂
D1

m(ILP context
LOAS )

– D1
m(ILPc) ⊂ D1

m(ILPLAS)

[25] presents a further measure of generality, many-to-many-
distinguishability. The many-to-many-distinguishability class of a framework is
used to analyse which sets of hypotheses can be distinguished from other sets of
hypotheses. However, the many-to-many-distinguishability class is outside the
scope of this tutorial.

Complexity. Given the differences in generality between the various learning
frameworks, an obvious question to ask is whether there is any price to pay in
terms of computational complexity when using the more general frameworks.
In this section, we consider three common decision problems when using the
learning frameworks:

– Verification: deciding whether a given hypothesis is an inductive solution of
a given learning task.

– Satisfiability: deciding whether a given learning task has any inductive solu-
tions.

– Optimum Verification: deciding whether a given hypothesis is an optimal
inductive solution of a given learning task.

Table 2 gives the complexity results for propositional versions of each of the
learning frameworks (where the background knowledge, contexts of examples
and hypothesis space is restricted to propositional ASP). Proofs of the results
in Table 2 can be found in [20]. Interestingly despite the great difference in the
generality of the various frameworks, for each of the three decision problems,
ILP context

LOAS has the same complexity as ILPc. The complexity of both ILPb

and ILPsm is lower than any of the other frameworks, which suggests that
in applications where the increased generality of the other frameworks is not
needed, ILPsm may be more suitable. It should be noted that ILASP may still
be used to solve such tasks – ILPLAS tasks with no negative examples are
equivalent to ILPsm tasks.

4.5 Learning Answer Set Programs from Noisy Examples

The learning from answer sets frameworks have recently been upgraded to sup-
port learning from noisy examples [26]. In this section, we present a general-
isation of the idea to give a general way of upgrading any non-noisy learning
framework with a notion of penalised examples. There are already several algo-
rithms, predating these formal definitions, which adopt the approach of penal-
ising examples (e.g. XHAIL [36] and Inspire [18]).

Given any learning framework ILPF covered in this tutorial (ILPb, ILPc,
ILPLAS , etc) a task of the penalised framework n(ILPF ) is of the same form
as tasks for ILPF , other than the fact that each example is of the form e@p,



Logic-Based Learning of Answer Set Programs 227

Table 2. A summary of the complexity of the various learning frameworks. Verification
corresponds to deciding whether a given hypothesis is a solution of a given learning
task. Satisfiability corresponds to deciding whether a learning task has any solutions
at all. Optimum verification corresponds to deciding whether a given hypothesis is the
optimal (shortest) solution of a given task.

Framework Verification Satisfiablity Optimum verification

ILPb NP -complete NP -complete DP -complete

ILPsm NP -complete NP -complete DP -complete

ILPc DP -complete ΣP
2 -complete ΠP

2 -complete

ILPLAS DP -complete ΣP
2 -complete ΠP

2 -complete

ILPLOAS DP -complete ΣP
2 -complete ΠP

2 -complete

ILP context
LOAS DP -complete ΣP

2 -complete ΠP
2 -complete

where e is an example of the previous framework and p is either ∞ (meaning
the example must be covered) or it is a positive integer representing the penalty
for not covering that example. This penalty is also often called a weight for the
example.

Given any task T and hypothesis H, the score of H w.r.t. T , written S(H,T ),
is equal to |H|+ ∑

e@p∈U

p where U is the set of examples in T that are not covered

by H. In the case of brave induction (where each answer set of B ∪ H might
suggest that different examples are covered), S(H,T ) is assigned the minimum
possible score. In the case of cautious induction, for the penalty of a hypothesis
to be finite, it must also be satisifiable when it is combined with the background
knowledge. The inductive solutions of a task are the hypotheses with a finite
score. The optimal inductive solutions are the set of inductive solutions which
minimise the score.

Example 19. Consider an extension of the ILPb task from Example 3, T ′ =
〈B,SM , 〈E+, E−〉〉, where:

B =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

bird(X) : - penguin(X).
bird(X) : - sparrow(X).
penguin(b1).
penguin(b2).
penguin(b3).
sparrow(b4).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

E+ = {flies(b1)@2, flies(b4)@2}
E− = {flies(b2)@2, flies(b3)@2}

SM =

⎧
⎨

⎩

h1 :
h2 :

flies(X) : - bird(X).
flies(X) : - bird(X),

not penguin(X).

⎫
⎬

⎭

– S(∅, T ′) = |∅| + 4 = 4.
– S({h1}, T ′) = |{h1}| + 4 = 5 (recall that the type atom bird(X) does not

count towards the length of the rule).
– S({h2}, T ′) = |{h2}| + 2 = 4.
– S({h2}, T ′) = |{h1, h2}| + 4 = 7.

This task has two optimal inductive solutions: ∅ and {h2}. The choice of
penalty for the examples is important. If each of the examples in this task had



228 M. Law et al.

penalty 1, ∅ would have been optimal; whereas if the penalties had all been 3,
{h2} would have been optimal.

Note that we have used an extremely small hypothesis space here to keep
things simple. In reality, the hypothesis space would usually be much bigger!

The ASPAL encoding shown in the previous section can be extended to solve
noisy tasks. This is achieved using weak constraints to represent the penalties
of the examples. The XHAIL and ILASP systems have also been extended to
handle noise in a similar way by using optimisation in ASP. ASPAL and ILASP
are both guaranteed to find an optimal inductive solution of any task; however,
as shown in Example 20 XHAIL may not.

Example 20. Consider the following noisy task, in the XHAIL input format:

p(X) :- q(X, 1), q(X, 2).
p(X) :- r(X).
s(a). s(b). s2(b).
t(1). t(2).

#modeh r(+s).
#modeh q(+s2, +t).
#example not p(a)=50.
#example p(b)=100.

This corresponds to a hypothesis space that contains two facts F1 = r(X),
F2 = q(X, Y) (in XHAIL, these facts are implicitly “typed”, so the first fact,
for example, can be thought of as the rule r(X) : - s(X)). The two examples have
penalties 50 and 100 respectively. There are four possible hypotheses: ∅, F1, F2

and F1 ∪ F2, with scores 100, 51, 1 and 52 respectively. XHAIL terminates and
returns F1, which is a suboptimal hypothesis.

The issue is with the first step. The system finds the smallest abductive
solution, {r(b)} and as there are no body declarations in the task, the kernel
set contains only one rule: r(b) : - s(b). XHAIL then attempts to generalise to a
first order hypothesis that covers the examples. There are two hypotheses which
are subsets of a generalisation of r(b) (F1 and ∅); as F1 has a lower score than
∅, XHAIL terminates and returns F1. The system does not find the abductive
solution {q(b, 1), q(b, 2)}, which is larger than {r(b)} and is therefore not chosen,
even though it would eventually lead to a better solution than {r(b)}.

It should be noted that XHAIL does have an iterative deepening feature for
exploring non-minimal abductive solutions, but in this case using this option
XHAIL still returns F1, even though F2 is a more optimal hypothesis. Even
when iterative deepening is enabled, XHAIL only considers non-minimal abduc-
tive solutions if the minimal abductive solutions do not lead to any non-empty
inductive solutions.

Although ILASP1, ILASP2 and ILASP2i are all guaranteed to find optimal
inductive solutions of any n(ILP context

LOAS ) task, they do not perform well when
solving tasks with noise. ILASP3 is specifically targetted at learning tasks with
noisy examples; however, a discussion of ILASP3 is beyond the scope of this tuto-
rial. An in depth discussion of ILASP3 can be found in [20], and an evaluation
of ILASP3 on several noisy datasets can be found in [26].



Logic-Based Learning of Answer Set Programs 229

5 Conclusion

This tutorial has presented an introduction to logic based learning under the
answer set semantics. We have introduced the six main frameworks for learning
ASP programs, and presented generality results highlighting the flaws in early
frameworks and showing that to learn some ASP programs the recent, more
general, frameworks are required. The development of learning frameworks has
been matched by the development of more sophisticated algorithms, of which we
have given an overview in this tutorial. The most recent ILASP system supports
learning ASP programs including normal rules, choice rules and hard and weak
constraints, even from noisy examples. However, there are still challenges to
be addressed, particularly with respect to scalability, which is the focus of our
current research.

References

1. Athakravi, D.: Inductive logic programming using bounded hypothesis space. Ph.D.
thesis, Imperial College London (2015)

2. Athakravi, D., Corapi, D., Broda, K., Russo, A.: Learning through hypothesis
refinement using answer set programming. In: Zaverucha, G., Santos Costa, V.,
Paes, A. (eds.) ILP 2013. LNCS (LNAI), vol. 8812, pp. 31–46. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44923-3 3

3. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1), 285–297 (1998)

4. Brain, M., Cliffe, O., De Vos, M.: A pragmatic programmer’s guide to answer set
programming. In: Answer Set Programming, p. 49 (2009)

5. Corapi, D., Russo, A.: ASPAL. Proof of soundness and completeness. Technical
report, Department of Computing (DTR11-5), Imperial College, London (2011)

6. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search.
In: ICLP (Technical Communications), pp. 54–63 (2010)

7. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming in answer set pro-
gramming. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011.
LNCS (LNAI), vol. 7207, pp. 91–97. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31951-8 12

8. Dastani, M., Jacobs, N., Jonker, C.M., Treur, J.: Modeling user preferences and
mediating agents in electronic commerce. In: Dignum, F., Sierra, C. (eds.) Agent
Mediated Electronic Commerce. LNCS (LNAI), vol. 1991, pp. 163–193. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44682-6 10

9. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tes-
saris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2 2

10. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53–68 (2016)

11. Fürnkranz, J., Hüllermeier, E.: Pairwise preference learning and ranking. In:
Lavrač, N., Gamberger, D., Blockeel, H., Todorovski, L. (eds.) ECML 2003. LNCS
(LNAI), vol. 2837, pp. 145–156. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39857-8 15

https://doi.org/10.1007/978-3-662-44923-3_3
https://doi.org/10.1007/978-3-642-31951-8_12
https://doi.org/10.1007/978-3-642-31951-8_12
https://doi.org/10.1007/3-540-44682-6_10
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1007/978-3-540-39857-8_15
https://doi.org/10.1007/978-3-540-39857-8_15


230 M. Law et al.

12. Geisler, B., Ha, V., Haddawy, P.: Modeling user preferences via theory refinement.
In: Proceedings of the 6th International Conference on Intelligent User Interfaces,
pp. 87–90. ACM (2001)

13. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, vol. 88, pp. 1070–1080 (1988)

15. Horváth, T.: A model of user preference learning for content-based recommender
systems. Comput. Inform. 28(4), 453–481 (2012)

16. Inoue, K., Kudoh, Y.: Learning extended logic programs. In: IJCAI, no. 1, pp.
176–181 (1997)

17. Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions
with inductive logic programming. Mach. Learn. 100(2–3), 555–585 (2015)

18. Kazmi, M., Schüller, P., Saygın, Y.: Improving scalability of inductive logic pro-
gramming via pruning and best-effort optimisation. Expert Syst. Appl. 87, 291–303
(2017)

19. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput.
4(1), 67–95 (1986)

20. Law, M.: Inductive learning of answer set programs. Ph.D. thesis, Imperial College
London (2018)

21. Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs. In:
Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 311–325.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 22

22. Law, M., Russo, A., Broda, K.: Learning weak constraints in answer set program-
ming. Theory Pract. Log. Program. 15(4–5), 511–525 (2015)

23. Law, M., Russo, A., Broda, K.: Simplified reduct for choice rules in ASP. Technical
report, Department of Computing (DTR2015-2), Imperial College London (2015)

24. Law, M., Russo, A., Broda, K.: Iterative learning of answer set programs from con-
text dependent examples. Theory Pract. Log. Program. 16(5–6), 834–848 (2016)

25. Law, M., Russo, A., Broda, K.: The complexity and generality of learning answer
set programs. Artif. Intell. 259, 110–146 (2018)

26. Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs from
noisy examples. In: Advances in Cognitive Systems (2018)

27. Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach. Mor-
gan Kaufmann, San Francisco (2014)

28. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318
(1991)

29. Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13(3–4), 245–
286 (1995)

30. Muggleton, S., et al.: ILP turns 20. Mach. Learn. 86(1), 3–23 (2012)
31. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog

decision support system for the space shuttle. In: Ramakrishnan, I.V. (ed.) PADL
2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45241-9 12

32. Nuffelen, B.: Abductive constraint logic programming: implementation and appli-
cations. Ph.D. thesis, K.U. Leuven (2004)

33. Otero, R.P.: Induction of stable models. In: Rouveirol, C., Sebag, M. (eds.) ILP
2001. LNCS (LNAI), vol. 2157, pp. 193–205. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44797-0 16

https://doi.org/10.1007/978-3-319-11558-0_22
https://doi.org/10.1007/3-540-45241-9_12
https://doi.org/10.1007/3-540-45241-9_12
https://doi.org/10.1007/3-540-44797-0_16
https://doi.org/10.1007/3-540-44797-0_16


Logic-Based Learning of Answer Set Programs 231

34. Papadimitriou, C.H.: Computational Complexity. Wiley, New York (2003)
35. Ray, O.: Hybrid abductive inductive learning. Ph.D. thesis, Imperial College Lon-

don (2005)
36. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Log. 7(3), 329–340

(2009)
37. Ray, O., Broda, K., Russo, A.: Hybrid abductive inductive learning: a generali-

sation of progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI),
vol. 2835, pp. 311–328. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39917-9 21

38. Ricca, F., et al.: A logic-based system for e-tourism. Fundam. Inform. 105(1–2),
35–55 (2010)

39. Sakama, C.: Inverse entailment in nonmonotonic logic programs. In: Cussens, J.,
Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 209–224. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-44960-4 13

40. Sakama, C.: Nonmonotomic inductive logic programming. In: Eiter, T., Faber,
W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 62–80.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45402-0 5

41. Sakama, C., Inoue, K.: Brave induction: a logical framework for learning from
incomplete information. Mach. Learn. 76(1), 3–35 (2009)

42. Seitzer, J., Buckley, J.P., Pan, Y.: INDED: a distributed knowledge-based learning
system. IEEE Intell. Syst. Appl. 15(5), 38–46 (2000)

43. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications
in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp.
305–319. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49201-1 21

44. Srinivasan, A.: The Aleph Manual. Machine Learning at the Computing Labora-
tory, Oxford University (2001)

https://doi.org/10.1007/978-3-540-39917-9_21
https://doi.org/10.1007/978-3-540-39917-9_21
https://doi.org/10.1007/3-540-44960-4_13
https://doi.org/10.1007/3-540-45402-0_5
https://doi.org/10.1007/3-540-49201-1_21


Constraint Learning: An Appetizer

Stefano Teso(B)

KU Leuven, Leuven, Belgium
stefano.teso@cs.kuleuven.be

Abstract. Constraints are ubiquitous in artificial intelligence and oper-
ations research. They appear in logical problems like propositional sat-
isfiability, in discrete problems like constraint satisfaction, and in full-
fledged mathematical optimization tasks. Constraint learning enters the
picture when the structure or the parameters of the constraint satis-
faction/optimization problem to be solved are (partially) unknown and
must be inferred from data. The required supervision may come from
offline sources or gathered by interacting with human domain experts
and decision makers. With these lecture notes, we offer a brief but self-
contained introduction to the core concepts of constraint learning, while
sampling from the diverse spectrum of constraint learning methods,
covering classic strategies and more recent advances. We will also dis-
cuss links to other areas of AI and machine learning, including concept
learning, learning from queries, structured-output prediction, (statisti-
cal) relational learning, preference elicitation, and inverse optimization.

Keywords: Machine learning · Constraint satisfaction ·
Constraint optimization · Interactive learning

1 Introduction

Constraint learning is the task of acquiring constraint satisfaction or optimiza-
tion problems from examples of solutions and non-solutions or other types of
supervision. This document overviews selected topics in constraint learning and
has no ambition of completeness. More specifically, we will discuss learning
of hard constraints, which implicitly define a satisfaction problem; learning of
soft constraints, where competing constraints are assigned different preferences;
and interactive learning of hard or soft constraints, where the learning algo-
rithm obtains supervision by interacting with an oracle (e.g. a human expert,
a non-expert, a measurement apparatus). For a more in-depth guide to con-
straint learning and related areas, we refer the interested reader to the works by
O’Sullivan [35], Bessiere et al. [9], Lombardi et al. [30], and De Raedt et al. [15].
Further pointers to the literature are provided in Sect. 6.

Why Constraint Learning?

Constraints are extremely popular from a modeling perspective, and appear in all
sort of satisfaction and optimization problems in both artificial intelligence and
c© Springer Nature Switzerland AG 2019
M. Krötzsch and D. Stepanova (Eds.): Reasoning Web 2019, LNCS 11810, pp. 232–249, 2019.
https://doi.org/10.1007/978-3-030-31423-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31423-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-31423-1_7


Constraint Learning: An Appetizer 233

operations research. Plenty of frameworks for modelling and solving problems
involving constraints exist, from propositional satisfiability (SAT) and linear
programming (LP), to constraint satisfaction [42], to more sophisticated alter-
natives that combine combinatorial and numerical elements, like mixed-integer
linear programming (MILP). Given a formal specification of a constraint satis-
faction or optimization problem of interest, it is often sufficient to feed it to an
appropriate solver to obtain an appropriate solution1.

A major bottleneck of this setup is that obtaining a formal constraint theory
is non-obvious: designing an appropriate, working constraint satisfaction or opti-
mization problem requires both domain and modeling expertise. For this reason,
in many cases a modeling expert is hired and has to interact with domain expert
to acquire informal requirements and turn them into a valid constraint theory.
This process is can be expensive and time consuming.

The idea is then to replace or assist this process by acquiring a constraint
theory directly from examples. In the simplest setting, when learning hard
constraints—which implicitly define constraint satisfaction models like propo-
sitional concepts [54], satisfiability modulo theory formulas [5], and general con-
straint theories over discrete variables [9]—one is given a data set of positive and
negative configurations and searches for a theory that covers (i.e. classifies as fea-
sible) all of the positive examples and none of the negative ones. At its core, this
is a form of concept learning [9]. Several variants and extensions of this setup
have been proposed, including learning of soft constraints [41], which can be
violated and are assigned different degrees of importance, and full-fledged opti-
mization problems [36]. In the following, we will briefly cover the most prominent
of these settings.

Of course, in practice the learned constraint theory may be approximate or
wrong. In this case, two things can occur: either more data is provided and
the theory is refined accordingly, or a human expert can revise the model via
inspection and debugging. Here the goal is not to replace human experts, but
rather to aid them by generating a reasonable initial theory consistent with
all available supervision. Notice that in some settings the model does not have
to be perfect. For instance, in recommendation the goal is to acquire a soft
constraint theory that knows enough about the preferences of the target user
to be able to provide reasonable personalized recommendations: so long as the
model manages to identify some interesting products, the goal is met [39]. In this
case, approximate models are acceptable and no human intervention is needed.

Dimensions of Constraint Learning

Formalisms and approaches to constraint learning can be roughly grouped based
on three criteria:

1 One should of course keep in mind that many constrained satisfaction/optimization
problems can be NP-hard, so obtaining a solution in an acceptable time may still be
tricky; see below for some examples.



234 S. Teso

(a) The type of constraints being learned. One can learn hard constraints, which
define pure satisfaction models, soft constraints, which implicitly define opti-
mization models, or (in principle) both. We will consider approaches to
learning hard and soft constraints in Sects. 3 and 4, respectively. There is
essentially no literature on learning both hard and soft constraints, so we
will skip this topic.

(b) The technique used to represent and search over the set of candidate con-
straints or constraint theories. We will consider both search-based and
syntax-guided synthesis approaches for learning hard constraints in Sect. 3,
as well as optimization-based approaches in Sects. 4 and 5.

(c) Whether learning occurs from a pre-existing data set (passive learning) or by
interactively asking questions to an oracle (interactive learning). Section 5 is
dedicated to this last setting.

In the next Section, we proceed by introducing a simple, general formalism for
expressing hard and soft constraint theories.

2 Constraint Theories

There are a number of successful formalisms for modeling and solving constraint
programming problems [42]. In this overview we will restrict ourselves to a very
general but minimal notation, to avoid as much overhead as possible.

Let us start by establishing some basic notation. In the following, variables
will be written in upper-case X, constants in lower-case x, and value assignments
X = x. For simplicity, all variables will take values in the same domain X ⊂ Z or
X = R, unless otherwise specified. Vectors of variables will be written in upper-
case bold X = (X1, . . . , Xn) and total value assignments X1 = x1∧. . .∧Xn = xn

simply as X = x. Total assignments are also called configurations. The indicator
function 1 {ϕ} evaluates to 1 if condition ϕ holds and to 0 otherwise. Throughout
the paper, we will use the terms “model”, “constraint theory”, and “constraint
satisfaction/optimization problem” interchangeably.

In our simple framework, a constraint theory (or constraint network [9]) is
defined by a set of variables X and by a set of constraints c1, . . . , cm. A constraint
with n arguments cj(X1, . . . , Xn) distinguishes between feasible and infeasible
configurations. For instance, the constraint cj(X1,X2) = X1∨X2, where X1 and
X2 are Boolean, specifies that the configurations (true, true), (true, false),
and (false, true) are feasible, while (false, false) is not. A constraint with
n arguments can be more formally defined as an n-ary relation [9], but we will
leave such technicalities aside. Further, constraints over continuous variables
are also possible, e.g., consider the linear constraint 2X1 − 3X2 ≤ 15 or the
mixed non-linear constraints ¬Slim =⇒ (H < 110) ∨ (π · R2 ≥ 1000), where
X1,X2,H,R ∈ R and Slim is Boolean. The set of constraints c1, . . . , cm is usually
implicitly conjoined, but keep in mind that this does not hold for soft constraint
theories; see Sects. 4 for some counter-examples.

In this overview, we will consider different kinds of constraint theories over
both discrete and continuous variables, including:



Constraint Learning: An Appetizer 235

– Propositional logic theories (or formulas) consist of Boolean variables, X =
{true, false}, combined with the usual logical connectives: conjunction ∧,
disjunction ∨, and negation ¬. Propositional formulas are most often encoun-
tered in conjunctive or disjunctive normal form. An example may be:

(Saturday ∨ Sunday) ∧ Sunny ∧ ¬Bored ∧ ¬Sick

which is a possible definition for the concept of “fun weekend”. The main
inference task is satisfiability (SAT) [21], where the goal is to find a total
value assignment X = x that renders the theory true. Extensions include
MAX-SAT and weighted MAX-SAT, which will be discussed later.

– Constraint networks [9] leverage pure propositional logic to general discrete
variables and arbitrary constraints, for instance inequality relations ≤, =, 	=,
. . . and global constraints like all-different. Inference is once again a form of
satisfaction.

– Satisfiability modulo theories (SMT for short) extend propositional logic with
one or more decidable theories T [5]. For instance, satisfiability modulo linear
real arithmetic (SMT(LRA)) combines logic with linear arithmetic over the
reals, and therefore introduces continuous variables and arbitrary linear con-
straints over them. An example SMT(LRA) formula for describing a happy
outdoor weekend is:

(Saturday ∨ Sunday) ∧ (Rain + SoilHumidity ≤ 2)

Other decidable theories include linear integer arithmetic, bit-vectors, and
uninterpreted functions, but we will stick to LRA for simplicity. In this case
inference is also a form of satisfaction.

– Linear programs (LP) include both a linear objective function of real variables
and a set of implicitly conjoined linear constraints [52]. An LP in canonical
form is written as:

max
x

f�x

s.t. a�
j x ≤ bj ∀j = 1, . . . , m

Here f is a constant vector that defines the (gradient of) the objective func-
tion while a1, . . . ,am and b1, . . . , bm specify m linear constraints. Mixed-
integer linear programs (MILP) have the same form, but allow both contin-
uous and integer variables.
Notice that, for both LPs and MILPs, inference is a form of optimization
rather than satisfaction, that is, the model specifies not only a feasible space
(like in standard satisfaction) but also a score over alternative feasible con-
figurations.

Of course there are many other kinds of constraint theories, e.g., in database
systems and spreadsheet software. In this case, variables can be strings or other
objects. However, we will not consider these further, and refer the interested
reader to [17,26] instead.



236 S. Teso

3 Learning Hard Constraints

Warmup: Learning k-CNF Theories

Let us start from the simplest constraint learning problem: learning a k-CNF
formula. Such formulas are the conjunction of clauses (disjunctions) with at most
k literals each, where a literal is either a variable or its negation. For instance,
happy weekends are captured by the 2-CNF formula (Saturday ∨ Sunday) ∧
¬Rainy ∧ ¬ImminentDeadline.

Now, let there be a hidden k-CNF theory ϕ∗. Given a set of example con-
figurations labeled based on whether they are feasible with respective to ϕ∗

(positive) or not (negative), we want to recover ϕ∗ from the data only. Valiant’s
algorithm is a classic strategy to achieve this goal. The idea is simple. First,
build the set of all candidate clauses of length at most k over the variables X.
Then, taking each positive example in turn, remove from the set of candidates
all of the clauses that are inconsistent with the example. This makes sure that,
upon scanning over all positive examples, the set of candidates only contains
clauses consistent with the data set. Upon termination, the learned formula is
retrieved by taking the conjunction of all surviving clauses.

Despite its simplicity, Valiant’s algorithm is PAC (probabilistically approx-
imately correct) algorithm, meaning that the probability over all random data
sets that the algorithm works is arbitrarily high so long as there are enough
examples [54]. However, in order to work, Valiant’s algorithm requires two key
assumptions2: (a) the data set must be noiseless, i.e., there must be no measure-
ment errors on the variables and no corruption on the labels, and (b) the hidden
concept ϕ∗ must be a k-CNF formula, which is not always known in advance.
This is the so-called realizable setting. If these assumptions are not satisfied,
then the algorithm gives unreliable results.

Encoding and Searching the Space of Candidates

Let us focus on discrete variables only for the time being. During learning, it
is convenient to sort the space of candidate theories according to the generality
relation �g. A constraint c is said to be more general than a constraint c′, written
c �g c′, if and only if the feasible set of c contains the feasible set of c′, that is:

c �g c′ ⇐⇒ ∀x . (x |= c′) =⇒ (x |= c)

If c is more general than c′, then c′ is more specific than c, and vice versa. The
generality relation induces a lattice over both constraints and constraint theories,
which is perhaps the most common way to structure the space of candidates.

Once the set of candidates is given, the question becomes how to efficiently
find a candidate theory compatible with the observed examples. In this sense,

2 There are other technical assumptions over the distribution of the examples, which
will be ignored for simplicity.



Constraint Learning: An Appetizer 237

Valiant’s algorithm can be viewed as a generate-and-test algorithm: it enumer-
ates all candidates and then discards all of the ones incompatible with the data.
In doing so, it keeps track of the most specific candidate theory. Beyond Valiant’s
algorithm, there exist notable examples of generate-and-test learners, led by the
impressive ModelSeeker [7] approach to acquiring global constraints. But let us
briefly consider alternative search strategies too.

There are three classic approaches to searching the space of candidates, all
based on the above lattice structure:

– General-to-specific (aka top-down) approaches start from the most general
concept (namely, true) and gradually specialize it according to the examples
by introducing extra constraints that exclude the observed negatives from the
feasible space of the learned theory.

– Specific-to-general (aka bottom-up) approaches, unsurprisingly, do the con-
verse: they start from a most specific theory or set of theories and incre-
mentally generalize them. It is often the case that the most specific theory
is simply the disjunction of all positive examples—which, unless the data is
inconsistent, excludes all negative examples. Generalization then boils down
to removing constraints or removing conditions from constraints so to enlarge
the feasible space of the candidate theory, while keeping all negatives outside
of it.

– Version space approaches keep track of the whole set of candidates at once.
The version space (VS) is indeed defined as the set of all theories that are
consistent with respect to the dataset [33], and it is the sub-lattice (induced
by the generality relation �g) between a set of most-general (top) and most-
specific (bottom) candidates.
In a discrete setting, VS learners leverage incremental bi-directional search,
whereby an initial estimate of the VS is incrementally refined iterating over
all examples, and for each example checking whether the most general theory
wrongly covers it (if it is negative) or whether the most specific candidate
wrongly excludes it (if it is positive). In either case the VS is updated.
We note in passing that version spaces are not restricted to discrete variables,
and that they are used in recent algorithms for both active learning [20] and
preference elicitation [12].

In more general terms, learning of hard constraints can be viewed simply as a
search problem, and therefore any search algorithm can in principle be used,
including stochastic local search, genetic algorithms, etc.

It is worth remarking that, in most cases of interest, the set of candidates is
exponential in the number of variables. For instance, for k-CNF, given v vari-
ables one can build 2v literals, and thus (2v)k potential clauses out of them.
Learning approaches use smart strategies to avoid enumerating such a humon-
gous set. Perhaps the simplest solution is to leverage the generality relation, by
automatically excluding all constraints that are more general than an already
excluded one. Alternative approaches include restricting the space of hypothe-
ses by introducing background knowledge, e.g., by restricting the value of k or



238 S. Teso

the initial set of candidates. Providing constraint templates to be filled in, as in
sketching [48], is also an option. A sensible alternative is to compactly represent
the space of candidates using a satisfaction or optimization problem. This strat-
egy is at the core of syntax-guided synthesis (SyGuS) [1,2], a general framework
for designing programs from specifications and examples. Two notable exam-
ples of SyGuS are the celebrated constraint learning Conacq [8], which encodes
the version space using a propositional formula, and Incal [27], an approach for
learning SMT(LRA) theories from examples that extends SyGuS to continuous
variables.

4 Learning Soft Constraints

Soft constraints are a powerful tool for dealing with conflicting requirements,
uncertain inputs, and imperfect specifications. Intuitively, soft constraints intro-
duce two new rules: first, it is not mandatory to satisfy soft constraints, and
second, some soft constraints are more important than others [10,42]. There-
fore, if two soft constraints are incompatible, the most preferable one should be
satisfied.

Soft Constraints with Linear Preferences

In their most general form, preferences over soft constraints can be encoded as a
binary relation. Although very flexible, in the worst case encoding a relation over
m soft constraints requires m2 parameters. This is very cumbersome both when
manually designing the constraint theory and when learning it from examples.

For this reason, we will focus on a more agile alternative, where the absolute
importance of a constraint is determined by an objective function associated
to it. The overall quality of a configuration is then given by the sum of the
importances of the soft constraints that it satisfies. More formally, a theory in
this form includes:

– m soft constraints s1, . . . , sm, each associated to an objective function wj :
X → R, j = 1, . . . ,m, and

– k hard constraints h1, . . . , hk that must be satisfied.

Finding the most preferable (aka optimal or highest scoring) configuration x∗

is accomplished by maximizing the total weight fw (x) of the soft constraints it
satisfies3, as follows:

x∗ = argmax
x

fw (x) :=
m∑

j=1

wj(x)1 {x |= sj} (1)

s.t. x |= hj ∀j = 1, . . . , k (2)

3 Notice that the optimal configuration may not be unique, and that all optima have
the same score.



Constraint Learning: An Appetizer 239

The computational complexity of this inference problem depends on the type
of constraints and objective functions appearing above, but in most cases of
interest (like MAX-SAT below) it is NP -hard or beyond.

Although more general alternatives exist, such as semiring-based con-
straints [10], we will stick to our simple framework because: (1) it captures many
prominent settings, from weighted maximum satisfiability (weighted MAX-SAT)
up to optimization modulo theories [44], and (2) soft constraint theories in the
above format can be easily learned with high-quality machine learning algo-
rithms, as discussed next.

Learning Weighted MAX-SAT from Annotated Configurations

In weighted MAX-SAT, the soft constraints s1, . . . , sm are arbitrary logic formu-
las and the per-constraint objective functions are constants wj(x) ≡ wj ∈ R. In
the simplest case, no hard constraints are present. Inference boils down to finding
a configuration x that maximizes the total weight of the satisfied formulas:

max
x

fx(x) :=
m∑

j=1

wj1 {x |= sj} (3)

This problem is notoriously NP-complete, but in can be solved efficiently in
many practical cases [21].

Let us now consider perhaps the simplest possible learning scenario. We
assume that there is a latent, unknown weighted MAX-SAT problem with param-
eters w∗ ∈ R

m. We cannot observe this latent model, but we do know the dic-
tionary of soft constraints s1, . . . , sm. Further, we are given a data set of exam-
ple configurations x1, . . . ,xn annotated with their own scores according to the
unknown theory, i.e., yi =

∑
j w∗

j1 {xi |= sj} for all i = 1, . . . , n. The configu-
rations xi are assumed to be sampled at random according to some underlying
distribution, and no implicit guarantee is given as for their quality.

The goal of learning is to induce a model w that behaves similarly to the
latent one w∗. For the time being, we will consider a model good so long as
the estimated parameter vector w scores the examples similarly to the hidden
model. Since we have access to the value of the true objective function yi for all
example configurations, finding an appropriate parameter vector can be cast as
a regression problem, namely:

ŵ = argminw∈Rm

∑n
k=1(yi − fw (xi))2 (4)

Now, notice that the function fw (x) is linear with respect to the basis defined
by the indicator functions {1 {x |= sj} : j = 1, . . . ,m}. This means that Eq. 4
can be cast as linear regression and solved using standard regression techniques.

A very nice property of this setup is that linear regression works well even
if the supervision yi is moderately corrupted, and it provides a bridge to robust
regression techniques for different kinds of noise.



240 S. Teso

One should keep in mind, however, that supervision on the per-instance scores
yi may not be readily available. This happens for instance when eliciting prefer-
ences from decision makers, who may be unable to state a numerical score. For
this reason, we consider two alternative forms of supervision, namely pairwise
rankings and input-output pairs, and show how to learn soft constraint theories
from them.

Learning from Rankings

Let us start from pairwise rankings. In this case, we are given n pairs of config-
urations {(xi,x

′
i) : i = 1, . . . , n}, where each pair is implicitly ranked according

to the preference relation xi � x′
i ⇔ fw∗(xi) ≥ fw∗(x′

i). The goal of learning is
then to find a parameter vector w that ranks all of the example pairs correctly,
or more formally:

find w (5)
s.t. fw (xi) − fw (x′

i) ≥ 0 ∀i = 1, . . . , n (6)

The above constraint can be shown to be linear (in the indicators) by rewrit-
ing it as

∑m
j=1 wj(1 {xi |= sj} − 1 {x′

i |= sj}) ≥ 0. Notice that, even though
the model is acquired from ranking data, we use it to compute high-scoring
configurations, as per Eq. 3.

One issue with the above formulation is that simply conforming to the super-
vision does not guarantee that the learned vector w generalizes well to unseen
pairs. This means that the learned function fw may fail to rank the true optima
above all other configurations. In order to address this, following principles from
statistical learning theory [43,55], it is customary to look for a vector w that
correctly ranks all pairs by the largest possible margin, that is:

max
w ,µ≥0

μ (7)

s.t. μ ≤ fw (xi) − fw (x′
i) ∀i = 1, . . . , n (8)

where μ ∈ R measures the margin. It turns out that maximizing μ is geometri-
cally equivalent to minimizing the (squared) Euclidean norm of w ([43], Chap. 1),
and so the above can be rewritten as the following quadratic convex optimization
problem:

min
w

1
2
‖w‖22 (9)

s.t. fw (xi) − fw (x′
i) ≥ 0 ∀i = 1, . . . , n (10)

Finally, if the observations xi are noisy or their rankings are inconsistent, as it
the case when the examples define cycles like x1 � x2 � . . . � x1, then it may



Constraint Learning: An Appetizer 241

be impossible to find a non-zero vector w that simultaneously satisfies Eq. 10
for all examples. A common solution is to introduce slack variables ξi ∈ R that
measure the “degree of violation” for every example k = 1, . . . , n:

min
w ,ξ

1
2
‖w‖22 +

λ

2

s∑

k=1

ξi (11)

s.t. fw (xi) − fw (x′
i) ≥ ξi ∀i = 1, . . . , n (12)

This is the well-known formulation of ranking support vector machine (SVM),
a now classical machine learning algorithm for learning to rank, originally con-
ceived for ranking results in search engines [23]. The constant λ ≥ 0 controls
the trade-off between generalization (first term) and error on the training set
(second term), and it is assumed to be given.

Although earlier works focused on solving the above optimization problem
(OP) in the dual (cf. [40]), current state-of-the-art approaches rely on gradient-
based optimization in the primal [46]. Practitioners need not worry about these
details, since efficient (ranking) SVM solvers are included by default in most
machine learning libraries, like scikit-learn [37] and Weka [19].

Learning from Input-Output Pairs

Input-output pairs are another popular form of supervision. Let U and V par-
tition the set of variables (i.e., X = U ∪ V , U ∩ V = ∅). The intuition is that
the variables U act as inputs and thus are always known and fixed, while V are
outputs and can be optimized over.

The data set, in this case, consists of n input-output pairs {(ui,vi) : i =
1, . . . , n}, where for any partial assignment ui, the output vi is chosen optimally
w.r.t. the latent parameters w∗, that is:

vi = argmax
v

fw∗(ui ◦ vi) (13)

Here ◦ indicates vector concatenation. This kind of supervision is common in
machine learning tasks that require to learn a map from structured inputs to
structured outputs, like text parsing (where a sentence u is mapped to a parse
tree v) or image segmentation (an image u is mapped to a set of labeled segments
v), but it is also used in constraint learning, where the distinction between input
and output variables is less well-defined [51].

In order to learn from input-output pairs, we adapt the training procedure
of structured-output support vector machines (SSVM) [53], see [24] for a gentler
introduction. Given an example (ui,vi) and an arbitrary vector w, let v′ be the
output of Eq. 4 when using ui as input and w as parameters. Also, let Δ(vi,v

′)
be a distortion function4 that measures the difference between the correct output
vi and the predicted one v′.
4 For technical reasons, the distortion is often assumed to lie in the range [0, 1], see [32].



242 S. Teso

The intuition behind structured-output SVMs is that the vector w should be
chosen so that, for any example, the predicted output has low distortion. This
can be formalized as follows5:

max
w ,ξ

1
2
‖w‖22 +

λ

2

s∑

k=1

ξi (14)

s.t. fw (ui ◦ vi) − fw (ui ◦ v′′) ≥ Δ(vi,v
′′) − ξi ∀v′′ 	= vi ∀i = 1, . . . , n (15)

The objective function is the same as for ranking data. The constraint, on the
other hand, is much more complex: it requires the correct output vi to be scored
higher than any alternative output v′′ 	= vi by a margin proportional to the
distortion. This takes care of enforcing an appropriate margin between vi and
the predicted output v′ too. The per-example slacks ξi allow for scoring mistakes
in noisy data sets.

The similarity to learning to rank is striking, but solving this optimization
problem is trickier, because the number of alternative outputs v′ can be very
(exponentially) large. This means that Eq. 15 has to be enforced over an enor-
mous amount of configurations. In order to solve this OP, the most straight-
forward approach is to employ cutting planes, which we will not discuss. We
refer the interested reader to [24] instead.

Learning more General Constraint Theories

A striking property of the OPs described in the previous sections is that they
are relatively agnostic to the particular choice of constraints and per-constraint
objective functions. Indeed, regression-based learning has been used to learn
arbitrary weighted CSPs [41], and SSVM-based learning for learning Optimiza-
tion Modulo Theories [51]. In this last case, the restriction that the per-constraint
objective functions wj(x) are constant is lifted—although the learning algorithm
remains essentially unchanged.

5 Interactive Learning

Applications where supervision is scarce and expensive are not well suited for
offline learning, because there are often too few examples to learn a reasonably
accurate model. In this case, a sensible thing to do is to acquire supervision
directly from an oracle by asking informative questions. This allows the learning
algorithm to optimize the performance/example ratio, and thus to acquire good
models at a small cost.

Notice that the oracle may be a human subject, like when eliciting constraints
(knowledge) from a domain expert [41] or preferences from an end-user [39], or

5 There exist several variants of structured-output SVM, here we opt for the simpler
one; see the references for more details.



Constraint Learning: An Appetizer 243

a full-fledged scientific apparatus, as in automated scientific experiments [25].
In the first case, the goal is to extract a (soft or hard) constraint theory from a
domain expert, who is otherwise unable to formalize and model her knowledge
upfront. The second case captures applications like interactive recommender
systems, where very little expertise (or patience!) can be expected of the human
counterpart, and any request for supervision has to be designed so to be easy to
understand and answer.

The main questions that arise when designing an interactive learning algo-
rithm are of course what kind of questions should be asked to the oracle, and
how to pick good questions. The answer to both questions is very application-
and oracle-specific, as we will see in the following.

Interactive Learning of Hard Constraints

The most straightforward approach to learning hard constraints is to trivially
select each candidate constraint hj in turn, j = 1, . . . , m, and ask the oracle
whether it appears in the latent constraint theory. Unfortunately, this naive
approach is not very useful, as it requires to consider all constraints, which can
be exponentially many in the number of variables. This procedure is therefore
unfeasible even for theories of modest size, especially if the oracle is a human
being.

A more appropriate procedure is to use membership constraints. In this set-
ting, the learner chooses an instance x and asks the user whether it satisfies the
hidden theory or not. This setup stands at the core of query-based learning [4],
a venerable and sound approach to learning. Alternative query types will be
considered later on.

Now, what is the best way to choose the query configuration x? Before pro-
ceeding, let us assume a realizable scenario, i.e., that (a) the set of hypotheses
includes the latent concept, and (b) that the oracle always answers correctly.
This is the case, for instance, if the learning problem is well engineered and the
oracle is a human domain expert, e.g., an employee who has a vested interest
in answering the questions asked by the algorithm. Under these (rather strong)
assumptions, one can resort to halving approaches, which roughly work as fol-
lows.

Learning is interactive. At all iterations, the learner keeps track of the set
of candidate theories that are consistent with respect to all answers observed so
far—i.e., the version space. The intuition is that, in each iteration, the algorithm
chooses a configuration x so that, regardless of the answer to the membership
query, the version space is reduced as much as possible. In the best possible
scenario, the version space halves at each iteration, and therefore ideally the
number of queries necessary to find the correct concept is approximately log2 |H|,
where H is the set of candidate hypotheses.

Unfortunately, this theoretically appealing approach has several flaws. First,
keeping track of the version space can be quite complicated. The best approaches
to date make use of rather convoluted schemas [8] or only store the most general
and most specific candidate theories in the version space [9]. Second, it turns out



244 S. Teso

that in many interesting cases, choosing the (approximately) optimal instance
x is computationally intractable [31]. A simple approximation to this schema
is to choose an instance x that reduces the version space by some amount.
This is accomplished in [9] by choosing an instance whose feasibility the most
general and the most specific theories in the current version space disagree on.
Therefore, if it turns out that x is feasible, the most specific hypothesis is wrong
and it must be generalized. On the other hand, if x is actually unfeasbile, the
converse is true and the most general hypothesis must be specialized. Thus, this
strategy guarantees that the version space reduces at each iteration, and that it
eventually contains only concepts that match all examples.

Interactive Learning of Soft Constraints

Consider the following toy application: A user wishes to buy a custom PC. The
PC is assembled from individual components: CPU, HDD, RAM, etc. Valid PC
configurations must satisfy constraints, e.g. CPUs only work with compatible
motherboards [50]. In this setting, one is tasked with constructing a PC config-
uration x that is both palatable to the customer and compatible with any hard
constraints, e.g., that the CPU and the motherboard should be compatible.

As above, we cast this kind of problems as learning a weighted CSP that
captures the preferences of the customer, and that can be used to generate high-
scoring

In the following, we will consider three queries of three common kinds:

– Scoring queries. In this case, the oracle is asked to provide the true numerical
score of configuration x chosen by the learner.
Queries of this type make sense when interacting with very precise oracles,
such as measurement devices in automated scientific experiments [25], but not
as much when interacting with human oracles. Indeed, it is very difficult—
even for domain experts—to provide precise or approximate numerical scores.
This is why most scoring systems use discrete ratings, such as star ratings.
Regardless, depending on the application, other query types may be easier to
answer.

– Ranking queries. In this case, the query consists of two unlabeled configura-
tions x and x′, and the oracle is tasked with indicating the most preferable
of the two, i.e., whether fw∗(x) ≥ fw∗(x′) holds.
These queries have found ample application in interactive preference elicita-
tion and recommendation tools [39].

– Improvement queries. In this case, the algorithm chooses a single configuration
x and asks the oracle to provide an improved version x̄. Notice that the
improvement is allowed to be small or partial [47].
It is easy to see that the pair (x̄,x) implicitly defines a pairwise ranking of
the form x̄ � x, and so the supervision is the same as for ranking queries. It
is important to notice that, however, the interaction itself is different. Indeed,
improvement queries only require the human oracle to observe and analyze
a single configuration (rather than two), and synergize very well with direct
manipulation interfaces like those used in computer-assisted design.



Constraint Learning: An Appetizer 245

Notice that scoring queries lead to collecting a large data set of scoring informa-
tion, and thus learning can be cast in terms of linear regression. In the other two
cases, the collected data set contains pairwise ranking information, and therefore
learning boils down to learning to rank. Thus the techniques discussed in the
previous section can be immediately applied to the interactive case: it is just a
matter of solving a regression, ranking, or structured-output learning every time
a new answer is achieved. Although not entirely principled, this approach tends
to work well in practice.

The question is, again, how to pick the right query. Ideally, the most infor-
mative question should be chosen. Unfortunately, evaluating the true informa-
tiveness of a query based on the information available during learning is tricky.
A very simple solution is to choose a configuration x (or a pair of configura-
tions) that is maximally uncertain according to the model. More specifically, an
instance is uncertain if the entropy of the response variable (e.g. of the score, for
scoring queries) is large. Measures based on the margin are also common [45].
The major down-side of uncertainty sampling is that the uncertainty provided
by the model may be misleading, e.g., for instance if the learned theory is “over-
confident”. It is therefore customary to combine uncertainty sampling with other
strategies that lessen its reliance on the model’s estimates [45].

6 Further Reading

Learning and Optimization. The interplay between machine learning and sat-
isfaction/optimization is not limited to constraint learning. In most of machine
learning (excluding a large chunk of its Bayesian side), learning is framed as
the task of optimizing some regularized loss function with respect to the data
set [55]—hence the centrality of optimization in ML. Nowadays, the most pop-
ular solution approach are gradient descent techniques [29], but one should not
forget that there are a plethora of valid alternatives, cf. [11,49]. Some learning
frameworks go one step further, and make use of declarative constraint pro-
gramming to model and solve learning tasks like program synthesis and pattern
mining [2,18]. Another link between ML and optimization occurs in probabilistic
graphical models, structured-output prediction, and constraint learning, where
computing a prediction for an unseen instance is itself an optimization prob-
lem. There is also abundant literature on speed-up learning, i.e., on leveraging
machine learning techniques for improving the run-time of satisfaction and opti-
mization solvers; see for instance [22] for a method to accelerate branch & bound
in mixed-integer linear programming solvers. It is easy to spot a recursion here:
machine learning could in principle be used to accelerate an optimization step
which is itself part of a learning problem. While true, diminishing returns make
it difficult to exploit this loop.

Learning Hard Constraints. The task of acquiring hard constraints is surprisingly
close to concept learning [54] and binary classification: in all of these, the learner
has to acquire a hidden concept from examples. The main difference is whether



246 S. Teso

the model in question is a constraint theory, and whether it is used in a purely
predictive manner or also for inspection, interpretation, debugging, etc. A major
advantage of constraints is that they can be verified by domain experts either
manually or with appropriate tools—and modified, if necessary. Verification of
models learned from data is often a required to guarantee the proper functioning
of the model [3], and indeed verification techniques are being actively researched
for non constraint-based models like neural networks [13].

From a search perspective, learning hard constraints is also closely related to
feature selection, pattern mining, and structure learning of probabilistic graph-
ical models [28]—e.g. Bayesian networks and Markov networks. All these tasks
revolve around efficiently encoding and searching a very large set of candidates,
and often employ similar techniques, e.g., version spaces, variants of grafting [38],
and syntax-guided synthesis [6], albeit often under different names. Inductive
logic programming, where the task is to learn first-order theories [34], can be
handled analogously, but it involves even larger search spaces.

Learning soft constraints. As for soft constraints, we focused on learning tech-
niques rooted in statistical learning theory and empirical risk minimization [55]
and max-margin methods like support vector machines [43]. Learning from input-
output examples stands at the core of structured-output prediction [24] and
learning to search [14]. One link that is seldom made is to inverse (combina-
torial) optimization, where the goal is to adjust a pre-existing (combinatorial)
optimization model such that it adheres to a set of known optimal solutions.
Unsurprisingly, this field has slowly been drifting closer to the structured-output
setting, and these two problems have recently been tackled using similar strate-
gies, see for instance [47] and [16].

Acknowledgments. The author is grateful to Luc De Raedt and Andrea Passerini
for many insightful discussions. These lecture notes are partially based on material
co-developed by LDR, AP and the author. This work has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. [694980] SYNTH: Synthesising Induc-
tive Data Models).

References

1. Alur, R., et al.: Syntax-guided synthesis. In: 2013 Formal Methods in Computer-
Aided Design, pp. 1–8. IEEE (2013)

2. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis.
Commun. ACM 61(12), 84–93 (2018)

3. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for
extracting rules from trained artificial neural networks. Knowl.-Based Syst. 8(6),
373–389 (1995)

4. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
5. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-

ries. Handb. Satisf. 185, 825–885 (2009)



Constraint Learning: An Appetizer 247

6. Bartlett, M., Cussens, J.: Integer linear programming for the Bayesian network
structure learning problem. Artif. Intell. 244, 258–271 (2017)

7. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint mod-
els from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, pp. 141–157.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7 13

8. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space
algorithm for acquiring constraint satisfaction problems. In: Gama, J., Camacho,
R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol.
3720, pp. 23–34. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096 8

9. Bessiere, C., et al.: New approaches to constraint acquisition. In: Bessiere, C., De
Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreschi, D. (eds.) Data Min-
ing and Constraint Programming. LNCS (LNAI), vol. 10101, pp. 51–76. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50137-6 3

10. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint logic program-
ming: syntax and semantics. ACM Trans. Program. Lang. Syst. (TOPLAS) 23(1),
1–29 (2001)

11. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine
learning. Siam Rev. 60(2), 223–311 (2018)

12. Boutilier, C., Regan, K., Viappiani, P.: Simultaneous elicitation of preference fea-
tures and utility. In: Twenty-Fourth AAAI Conference on Artificial Intelligence
(2010)

13. Bunel, R.R., Turkaslan, I., Torr, P., Kohli, P., Mudigonda, P.K.: A unified view of
piecewise linear neural network verification. In: Advances in Neural Information
Processing Systems, pp. 4790–4799 (2018)

14. Daumé III, H., Marcu, D.: Learning as search optimization: approximate large mar-
gin methods for structured prediction. In: Proceedings of the 22nd International
Conference on Machine Learning, pp. 169–176. ACM (2005)

15. De Raedt, L., Passerini, A., Teso, S.: Learning constraints from examples. In:
Thirty-Second AAAI Conference on Artificial Intelligence (2018)

16. Dong, C., Chen, Y., Zeng, B.: Generalized inverse optimization through online
learning. In: Advances in Neural Information Processing Systems, pp. 86–95 (2018)

17. Gulwani, S., Hernandez-Orallo, J., Kitzelmann, E., Muggleton, S.H., Schmid, U.,
Zorn, B.: Inductive programming meets the real world. Commun. ACM 58(11),
90–99 (2015)

18. Guns, T., Dries, A., Tack, G., Nijssen, S., De Raedt, L.: Miningzinc: a modeling
language for constraint-based mining. In: Twenty-Third International Joint Con-
ference on Artificial Intelligence (2013)

19. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

20. Hanneke, S., et al.: Theory of disagreement-based active learning. Found. Trends R©
Mach. Learn. 7(2–3), 131–309 (2014)

21. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Com-
puting 44(4), 279–303 (1990)

22. He, H., Daume III, H., Eisner, J.M.: Learning to search in branch and bound
algorithms. In: Advances in Neural Information Processing Systems, pp. 3293–
3301 (2014)

23. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 133–142. ACM (2002)

https://doi.org/10.1007/978-3-642-33558-7_13
https://doi.org/10.1007/11564096_8
https://doi.org/10.1007/978-3-319-50137-6_3


248 S. Teso

24. Joachims, T., Hofmann, T., Yue, Y., Yu, C.N.: Predicting structured objects with
support vector machines. Commun. ACM 52(11), 97 (2009)

25. King, R.D., et al.: The automation of science. Science 324(5923), 85–89 (2009)
26. Kolb, S., Paramonov, S., Guns, T., De Raedt, L.: Learning constraints in spread-

sheets and tabular data. Mach. Learn. 106, 1–28 (2017)
27. Kolb, S., Teso, S., Passerini, A., De Raedt, L.: Learning SMT (LRA) constraints

using SMT solvers. In: IJCAI, pp. 2333–2340 (2018)
28. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press, Cambridge (2009)
29. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
30. Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine

learning. In: Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pp. 5472–5478. AAAI Press (2018)

31. Louche, U., Ralaivola, L.: From cutting planes algorithms to compression schemes
and active learning. In: 2015 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE (2015)

32. McAllester, D.: Generalization bounds and consistency. In: Predicting Structured
Data, pp. 247–261 (2007)

33. Mitchell, T.M.: Generalization as search. Artif. Intell. 18(2), 203–226 (1982)
34. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods.

J. Logic Program. 19/20, 629–679 (1994)
35. O’Sullivan, B.: Automated modelling and solving in constraint programming. In:

Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)
36. Pawlak, T.P., Krawiec, K.: Automatic synthesis of constraints from examples using

mixed integer linear programming. Eur. J. Oper. Res. 261(3), 1141–1157 (2017)
37. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
38. Perkins, S., Lacker, K., Theiler, J.: Grafting: fast, incremental feature selection by

gradient descent in function space. J. Mach. Learn. Res. 3(03), 1333–1356 (2003)
39. Pigozzi, G., Tsoukias, A., Viappiani, P.: Preferences in artificial intelligence. Ann.

Math. Artif. Intell. 77(3–4), 361–401 (2016)
40. Platt, J.: Sequential minimal optimization: a fast algorithm for training support

vector machines (1998)
41. Rossi, F., Sperduti, A.: Acquiring both constraint and solution preferences in inter-

active constraint systems. Constraints 9(4), 311–332 (2004)
42. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,

Amsterdam (2006)
43. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-

ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)
44. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.

ACM Trans. Comput. Log. (TOCL) 16(2), 12 (2015)
45. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114

(2012)
46. Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated

sub-gradient solver for svm. Math. Program. 127(1), 3–30 (2011)
47. Shivaswamy, P., Joachims, T.: Coactive learning. J. Artif. Intell. Res. (JAIR) 53,

1–40 (2015)
48. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial

sketching for finite programs. ACM Sigplan Not. 41(11), 404–415 (2006)
49. Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. MIT Press,

Cambridge (2012)



Constraint Learning: An Appetizer 249

50. Teso, S., Dragone, P., Passerini, A.: Coactive critiquing: elicitation of preferences
and features. In: AAAI (2017)

51. Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif.
Intell. 244, 166–187 (2017)

52. Todd, M.J.: The many facets of linear programming. Math. Program. 91(3), 417–
436 (2002)

53. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine
learning for interdependent and structured output spaces. In: Proceedings of the
Twenty-first International Conference on Machine Learning, p. 104. ACM (2004)

54. Valiant, L.: A theory of the learnable. Commun. ACM 27, 1134–1142 (1984)
55. Vapnik, V.: An overview of statistical learning theory. IEEE Trans. Neural Netw.

10(5), 988–999 (1999)



A Modest Markov Automata Tutorial

Arnd Hartmanns1(B) and Holger Hermanns2,3

1 University of Twente, Enschede, The Netherlands
a.hartmanns@utwente.nl

2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
hermanns@cs.uni-saarland.de

3 Institute of Intelligent Software, Guangzhou, China

Abstract. Distributed computing systems provide many important ser-
vices. To explain and understand why and how well they work, it is
common practice to build, maintain, and analyse models of the systems’
behaviours. Markov models are frequently used to study operational phe-
nomena of such systems. They are often represented with discrete state
spaces, and come in various flavours, overarched by Markov automata. As
such, Markov automata provide the ingredients that enable the study of
a wide range of quantitative properties related to risk, cost, performance,
and strategy. This tutorial paper gives an introduction to the formalism
of Markov automata, to practical modelling of Markov automata in the
Modest language, and to their analysis with the Modest Toolset. As
case studies, we optimise an attack on Bitcoin, and evaluate the perfor-
mance of a small but complex resource-sharing computing system.

1 Introduction

Distributed computing systems provide many important services, such as elec-
tronic banking, information and knowledge sharing, and social networking. They
are enablers for innovation; for instance, blockchain technology is based on mas-
sively distributed computing. Since our societies increasingly depend on the ser-
vices offered in this manner, it is important to ensure their performance, depend-
ability, and correctness. The purpose of performance evaluation is to investigate
and optimise the amount of useful work being accomplished. Dependability eval-
uation is concerned with assessing service continuity by means of measures such
as reliability and availability. The evaluation of correctness—usually called for-
mal verification—focusses on proving that the service delivered satisfies a formal
specification of its behaviour. Usually, all of these techniques are based on a model
of the system, which is an abstract representation of the system’s behaviour.

Markov Chains. In numerical performance and dependability evaluation, by far
the most prominent models used to represent the temporal dynamics of a system

Authors are listed alphabetically. This work has received financial support by DFG
grant 389792660 as part of TRR 248 (see perspicuous-computing.science), by ERC
Advanced Grant 69561 (POWVER), and by NWO VENI grant 639.021.754.
c© Springer Nature Switzerland AG 2019
M. Krötzsch and D. Stepanova (Eds.): Reasoning Web 2019, LNCS 11810, pp. 250–276, 2019.
https://doi.org/10.1007/978-3-030-31423-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31423-1_8&domain=pdf
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0002-2766-9615
https://perspicuous-computing.science
https://powver.org
https://doi.org/10.1007/978-3-030-31423-1_8


A Modest Markov Automata Tutorial 251

are Markov chains [38]. In this model family, the system is supposed to occupy
a state at any moment in time, with the set S of states (the state space) being
finite or countably infinite. Markov chains come in two flavours, dependent on
whether the time domain T is considered to be discrete (T = N = { 0, 1, . . . }) or
continuous (T = R+ = [0,∞)). The dynamics of a discrete-time Markov chain
(DTMC) is determined by a mapping from states to probability distributions
over (successor) states. For instance, if state s is mapped to probability distri-
bution μ, then the system once occupying state s is understood to jump to state
s′ with probability μ(s′) in one time step. Notably, the probability is assumed to
be independent of any further information (such as any past behaviour) apart
from the state identity of s. This is known as the Markov (or memoryless)
property. A continuous-time Markov chain (CTMC) adheres to this property,
too, but it now needs to be interpreted in stochastic time, i.e. on a continuous
time line where probability mass flows continuously between states. For CTMC,
the Markov property implies that neither the past history nor the time already
spent in the current state s influences the flow of probability into some state s′.
Instead, it is governed by a time-independent rate λ, a positive real value (or
zero if no flow exists). Thus the overall behaviour of a CTMC is determined by
a mapping from state pairs to rates in R+. CTMC are arguably better fit to the
nature of distributed computing [5], where it is difficult to assume a common
discrete time base. The time spent in state s before jumping to another state s′

is usually called the residence time (or sojourn time) in s. Residence times are
geometrically distributed in DTMC, and exponentially distributed in CTMC.

Labelled Transition Systems. In formal verification, other models appear: State-
transition diagrams, automata, and similar formalisms describe the dynamic
behaviour of systems here. They often appear in the specific form of labelled
transition systems (LTS). A transition system consists of a set of states S and a
set of possible state changes. The latter is given as a binary relation on states,
i.e. a subset of the cross product S × S. Intuitively, a pair of states 〈s, s′〉 is in
this relation if it is possible to jump from s to s′ in a single step. In LTS, state
changes are associated with occurrences of actions. A state change from s to s′

then implies the occurrence of a specific action a, which labels the transition—
thus we have an LTS. If multiple transitions are possible in a state, then the
decision of which one to take is usually interpreted as being nondeterministic.
Nondeterminism is especially useful to represent concurrency, a crucial aspect
of distributed computing systems. If two systems run concurrently and inde-
pendently, this is best represented as the nondeterministic interleaving of their
individual steps. LTS can thus be endowed with parallel composition operators
to model concurrency and interaction of component LTS [6,40,44]. With fur-
ther operators, this is convenient for a compositional modelling style, where the
behaviour of components is the result of compositions of smaller building blocks.

Model Checking. Within the spectrum of techniques used in formal verifica-
tion, model checking is an automated model-based technique to assess whether
the possible system behaviours satisfy a property describing the desirable



252 A. Hartmanns and H. Hermanns

behaviour [3]. Typically, properties are expressed in temporal logics such as
LTL or CTL. Model checking usually involves constructing an in-memory rep-
resentation of the (part of the) state space (relevant to assess the property). It
thus gives definitive answers, but faces the state space explosion problem. In
the past decades, model checking has been extended to treat aspects such as
discrete probabilities and stochastic time. It has become apparent that a joint
consideration of performance, dependability and correctness is both possible and
worthwhile [2].

This Paper. The purpose of this tutorial paper is to provide a gentle intro-
duction to working with a mathematical formalism integrating the modelling
aspects discussed above. We focus especially on the specification and modelling
of real systems. The formalism we introduce is called Markov automata (MA),
and it can best be described as an orthogonal and compositional superposition
of DTMC, CTMC, and LTS. MA have been coined in [22,23]. They are expres-
sive enough to give a semantics to generalised stochastic Petri nets (GSPN) in
their full generality [20]. The theoretical properties of MA are the subject of
the Ph.D. thesis of Christian Eisentraut [19]; a process-algebraic perspective is
covered in the Ph.D. thesis of Mark Timmer [50]. Various algorithmic analysis
methods for Markov automata have been developed over the past decade [8,9,14–
16,21,28,29,36,37,52].

Using the mathematical formalism of MA directly to build complex models
is, however, cumbersome. We instead need a higher-level modelling language.
Aside from parallel composition, such languages typically provide variables over
finite domains that can be used in expressions to e.g. enable or disable transi-
tions, allowing to compactly describe very large models. In this paper, we use
Modest [30] to construct MA models. Rooted in process algebra, Modest pro-
vides various composition operators that allow large models to be assembled from
smaller, easier-to-understand components. After a formal definition of MA, par-
allel composition, and various types of properties (that we may want to compute
for a given MA model) in Sect. 2, we introduce the basics of Modest in a step-by-
step fashion in Sect. 3. We compare it to alternative languages with respect to its
succinctness, expressivity, and readability. We then guide the reader through the
modelling and analysis of two very different applications: we optimise an attack
on Bitcoin in Sect. 4, and we evaluate the performance of a small, but intri-
cate resource-sharing queueing system in Sect. 5 with the Modest Toolset.
Algorithmic aspects of the analysis of MA with the Modest Toolset are the
subject of a companion paper [13].

Previous Work. Our presentation of MA in Sect. 2 is adapted and extended
from [13], as is the text in Sects. 3.2 and 3.3. The Bitcoin models in Sect. 4 are
inspired by [24], and the bitcoin-attack.modest model is part of the Quanti-
tative Verification Benchmark Set [34]. The reentrant queueing system, of which
we present a new Modest model in Sect. 5, was first described in [36].



A Modest Markov Automata Tutorial 253

Fig. 1. The MA family tree Fig. 2. Example Markov automata

2 Markov Automata

The mathematical formalism of Markov automata provides nondeterministic
choices as in LTS, discrete probabilistic decisions as in DTMC, and stochas-
tic time as in CTMC. The relationships between these and other formalisms
are visualised in Fig. 1. The combination of DTMC and LTS leads to the model
family of (discrete-time) Markov decision processes [46] (MDP, or probabilistic
automata [49]) where transitions of the form s a−→ μ offer in state s a (nondeter-
ministic) decision option (or choice option) labelled by action a that is followed
by a probabilistic decision of where to jump according to probability distribution
μ. The conceptually closest model in continuous time is that of continuous-time
MDP [46] (CTMDP), where action-labelled transitions are of the form s a e
with e mapping states to rates. Such a transition indicates that probability mass
flows from state s to state s′ with rate e(s′) provided action a is chosen in state
s. Markov automata instead combine MDP and CTMC in an orthogonal man-
ner by providing two types of transitions: s a−→ μ as in MDP, and s λ s′ as in
CTMC. We now define Markov automata formally and describe their semantics.

Preliminaries. We write [a, b] for the real interval {x ∈ R | a ≤ x ≤ b }, (a, b)
for {x ∈ R | a < x < b }, and analogously for half-open intervals. Given a
set S, its powerset is 2S . A (discrete) probability distribution over S is a func-
tion μ : S → [0, 1] such that its support spt(μ) def= { s ∈ S | μ(s) > 0 } is
countable and

∑
s∈spt(μ) μ(s) = 1. Dist(S) is the set of all probability distri-

butions over S, and μ1 ⊗ μ2 is the product distribution of μ1 and μ2 defined
by (μ1 ⊗ μ2)(〈s1, s2〉) = μ1(s1) · μ2(s2). We refer to discrete random choices as
probabilistic and to continuous ones as stochastic. We write {x1 	→ y1, . . . } to
denote the function that maps each xi to yi, and if necessary in some context,
implicitly maps to 0 all x for which no explicit mapping is specified. Thus we
can e.g. write { s 	→ 1 } for the Dirac distribution that assigns probability 1 to s.

Definition 1. A Markov automaton (MA) is a tuple M = 〈S, s0, A, P,Q, rr , br〉
where S is a finite set of states with initial state s0 ∈ S, A is a finite set of
actions, P : S → 2A×Dist(S) is the probabilistic transition function, Q : S →
2Q×S is the Markovian transition function, rr : S → [0,∞) is the rate reward



254 A. Hartmanns and H. Hermanns

function, and br : S × Tr(M) × S → [0,∞) is the branch reward function.
Tr(M) def=

⋃
s∈S P (s) ∪ Q(s) is the set of all transitions; it must be finite. We

require that br(〈s, tr , s′〉) �= 0 implies tr ∈ P (s) ∪ Q(s).

We also write s a−→P μ for 〈a, μ〉 ∈ P (s) and s λ
Q s′ for 〈λ, s′〉 ∈ Q(s), and omit

the P and Q subscripts if they are clear from the context. In s λ
Q s′, we call

λ the rate of the Markovian transition. We refer to every element of spt(μ) as a
branch of s a−→P μ; a Markovian transition has a single branch only (its target
state). We define the exit rate of s ∈ S as E(s) =

∑
〈λ,s′〉∈Q(s) λ.

Example 1. Fig. 2 shows two MA M1 and M2 without rewards. We draw proba-
bilistic transitions as solid, Markovian ones as dashed lines. If a transition leads
to a single target state, we omit the intermediate probabilistic branching node.
Thus, for M1 = 〈S, s0, A, P,Q, rr , br〉, we have five states in S = { 0, 1, 2, 3, 4 },
the initial state being s0 = 0, two actions in A = { a, c }, two probabilistic
transitions in P = { 0 	→ { 〈a, { 1 	→ 0.5, 2 	→ 0.5 }〉, 〈c, { 3 	→ 1 }〉 } }, and two
Markovian transitions in Q = { 1 	→ { 〈2, 4〉 }, 3 	→ { 〈2, 4〉 } }, both with rate 2.

Intuitively, the semantics of an MA is that, in state s, (1) the probability to
take Markovian transition s λ s′ and move to state s′ within t model time
units is λ/E(s) · (1−e−E(s)·t), i.e. the residence time in s follows the exponential
distribution with rate E(s) and the choice of transition is probabilistic, weighted
by the rates; and (2) at any point in time, a probabilistic transition s a−→ μ can be
taken with the successor state being chosen according to μ. An MA thus resolves
some choices in a probabilistic (the choice of successor state of a probabilistic
transition, the choice among Markovian transitions) or stochastic (the choice
of residence time) way, while other choices are left open as nondeterministic
(the timing of probabilistic transitions, and the choice among multiple available
probabilistic transitions). Due to the presence of nondeterminism, an MA itself
does not induce a probability measure over its possible behaviours. We refer the
interested reader to e.g. [35] for a complete formal definition of this semantics.

An MA without Markovian transitions is an MDP; it is a DTMC if in addition
P maps each state to a singleton set. An MA without probabilistic transitions is
a CTMC. The co-existence of action-labelled probabilistic transitions of the form
s a−→ μ and of Markovian transitions of the form s λ s′ separates actions from
timing. It enables parallel composition operators with action synchronisation for
MA without the need to prescribe an ad-hoc operation for combining rates.

Definition 2. Given two MA Mi = 〈Si, s0i , Ai, Pi, Qi, rr i, br i〉 i ∈ { 1, 2 }, a
finite set A of actions, and a synchronisation relation

sync ⊆ (A1  {⊥}) × (A2  {⊥}) × A,

their parallel composition is M1 ‖ M2
def= 〈S1×S2, 〈s01 , s02〉, A, P,Q, rr , br〉 where

P is the smallest function that satisfies the inference rules

s1
a1−→P1 μ 〈a1,⊥, a〉 ∈ sync

〈s1, s2〉 a−→P μ ⊗ { s2 	→ 1 }
s2

a2−→P2 μ 〈⊥, a2, a〉 ∈ sync
〈s1, s2〉 a−→P { s1 	→ 1 } ⊗ μ



A Modest Markov Automata Tutorial 255

s1
a1−→P1 μ1 s2

a2−→P2 μ2 〈a1, a2, a〉 ∈ sync
〈s1, s2〉 a−→P μ1 ⊗ μ2

,

Q is the smallest function that satisfies the inference rules

s1
λ

Q1 s′
1

〈s1, s2〉 λ
Q 〈s′

1, s2〉
s2

λ
Q2 s′

2

〈s1, s2〉 λ
Q 〈s1, s′

2〉
,

and for all states 〈s1, s2〉, we have rr(〈s1, s2〉) = rr1(s1) + rr2(s2). Function br
sums the values of br1 and br2 for the combinations of branches in synchronisa-
tion (third inference rule), and otherwise preserves the original branch rewards.

The first two inference rules for P allow the individual MA to proceed indepen-
dently of each other if allowed by sync; the third rule covers the case where both
automata synchronise on a pair of actions as determined by sync. The rules for
Q simply state that Markovian transitions are always performed independently.
An element of sync is called a synchronisation vector ; we also write 〈a1, a2〉 	→ a
for vector 〈a1, a2, a〉. This form of parallel composition can be generalised to
more than two automata in the straightforward way with longer synchronisation
vectors. It is very flexible, allowing in particular the traditional CCS-style binary
and CSP-style multi-way synchronisation patterns [40,44] to be encoded. Origi-
nally established by Cadp [26], it is today used for MA in the Jani format [12].
We refer to a general parallel composition of several MA as a network of MA.

Example 2. Fig. 2 includes the parallel composition of the example MA M1 and
M2, where we write nm for state 〈n,m〉. The two automata synchronise on the
shared actions a and c, i.e. we have sync = { 〈a, a〉 	→ a, 〈⊥, b〉 	→ b, 〈c, c〉 	→ c }.

We defined MA as open systems [10]: probabilistic transitions can interact with,
wait for, and be blocked by other MA in parallel composition. For verification,
we make the usual closed system and maximal progress assumptions: proba-
bilistic transitions face no further interference and take place without delay. If
multiple probabilistic transitions are available in a state, however, the choice
between them remains nondeterministic. Since the probability that a Markovian
transition is taken in zero time is 0, the maximal progress assumption allows us
to remove all Markovian transitions from states that also have a probabilistic
transition. In such closed MA, we can thus distinguish between Markovian states
(where P (s) = ∅) and probabilistic states (where Q(s) = ∅). The behaviour of
a closed, deadlock-free MA M is defined via its paths:

Definition 3. Let M be a closed, deadlock-free MA M as above. A path π of
M is an infinite sequence

π = s0 t0 tr0 s1 . . . ∈ (S × [0,∞) × Tr(M))ω

such that, for all i ∈ { 0, . . . }, Q(si) = ∅ implies ti = 0, tr i ∈ P (si) ∪ Q(si),
tr i = 〈a, μ〉 ∈ P (si) implies μ(si+1) > 0, and tr i = 〈λ, s′〉 ∈ Q(si) implies



256 A. Hartmanns and H. Hermanns

s′ = si+1. Π(M) is the set of all paths of M . We write Πfin(M) for the set of all
path prefixes πfin ending in a state. The last state of πfin is denoted last(πfin).
Let π≤j

def= s0 t0 . . . sj. The duration dur(πfin) of a path prefix is the sum of its
residence times ti. A path’s reward is

rew(π) def=
∑∞

i=0
ti · rr(si) + br(si, tri , si+1).

It may be ∞, and is defined analogously for prefixes (where it is always finite).

A path comprises states si, times ti spent in si, and transitions tr i taken from
si to si+1. It is a resolution of all nondeterministic, probabilistic, and stochastic
choices. To define a probability measure, we resolve nondeterminism only:

Definition 4. Let M be a closed, deadlock-free MA as above. A scheduler is a
function σ : Πfin(M) → Tr(M) s.t. ∀s ∈ S : σ(s) = tr implies tr ∈ P (s) ∪ Q(s).
We write S(M) for the set of all schedulers of M . A time-dependent scheduler
is in S × [0,∞) → Tr(M); a memoryless scheduler is in S → Tr(M). Given a
time bound b ∈ [0,∞), every time-dependent scheduler σt defines a correspond-
ing scheduler σ by σ(πfin) = σt(〈last(πfin), b − dur(πfin)〉). Every memoryless
scheduler σml defines a corresponding scheduler σ by σ(πfin) = σml(last(πfin)).

We define deterministic schedulers only since randomised schedulers are in prac-
tice only needed for multi-objective problems [47]. We note that CTMDP with
early schedulers [48] can be encoded as closed MA. If we “apply” a scheduler to
an MA, it removes all nondeterminism, and we are left with a fully stochastic
process whose paths can be measured and assigned probabilities according to
the rates and distributions in the (remaining) MA. Formally, these probability
measures over sets of measurable paths are built via cylinder sets; we refer the
interested reader to e.g. [35] for a fully formal definition. For all of the following
types of properties, we are interested in the maximum (supremum) and minimum
(infimum) values when ranging over all schedulers σ ∈ S(M):

Reachability probabilities: Given goal states G ⊆ S, compute the probability
of the set of paths that include a state in G. Memoryless schedulers suffice to
achieve optimal results (i.e. the maximum and minimum probabilities).

Time-bounded reachability: Additionally restrict to paths where the duration
of the prefix to the first state in G is below a bound b ∈ [0,∞). Time-
dependent schedulers suffice.

Expected accumulated rewards: Compute the expected value of the random
variable that assigns to π the value rew(πfin) with πfin being the shortest
prefix of π with a state in G. This is well-defined if the maximum (minimum)
probability to reach G is 1; otherwise, we define the minimum (maximum)
expected accumulated reward to be ∞. Memoryless schedulers suffice.

Long-run average rewards: Compute the expected value of the random vari-
able that assigns to path π the value limi→∞ rew(π≤i)/dur(π≤i). Memoryless
schedulers suffice.



A Modest Markov Automata Tutorial 257

Example 3. Consider MA M1 ‖ M2 of Fig. 2 and the
probability to reach state 〈4, 4〉 within 1 time unit.
In state 〈0, 1〉, we have to decide whether to choose
action a or b. The optimal decision depends on the
amount of time t that has passed in state 〈0, 0〉. In the
plot on the right, we show the probability of reaching
state 〈4, 4〉 within the time limit (y-axis) depending on
the remaining time 1 − t (x-axis). The blue (initially
upper) line represents the reachability probability for
the memoryless scheduler that always chooses a and the red (initially lower) one
is for the scheduler that always takes action b. A time-dependent scheduler can
make better decisions than either of these two by determining the values of t
for which a results in a higher probability than b and vice-versa. The optimal
scheduler thus chooses a if and only if 1 − t ≤ 0.63 approximately.

We can extend MA with discrete variables: An MA with variables (MAV) is an
MA like in Definition 1 that additionally contains a finite set of variables. We
call its states locations, its transitions edges, and their branches destinations.
Every edge additionally has a guard and every destination has a set of updates.
A guard is a Boolean expression over the variables that determines whether the
edge is enabled, and a set of assignments modifies the values of the variables.
Tools usually work with the semantics of an MAV in terms of an MA: The MAV

MV corresponds to the MA M with states 〈�, v〉, each consisting of a location �
of MV and a valuation v that assigns a value to every variable. The transitions
out of 〈�, v〉 are those edges out of � in MV whose guard is satisfied in v. The
target state of a branch of a transition is 〈�′, v′〉 with �′ the target location in MV

and v′ obtained by executing the destination’s assignments on v. Our parallel
composition operator extends to MA with variables by using the conjunction of
guards and the union of assignments for synchronising transitions. If we allow
variables to be shared between MAV, parallel composition does not distribute
over semantics; we need to compose the MAV before converting them to MA.

3 Modelling with Markov Automata

Tools for the automated analysis of MA need a syntax in which the model and
the properties of interest are specified. As noted in Sect. 1, such a modelling
language needs to provide a parallel composition operator (akin to the operator
introduced in the previous section) such that large MA can be built from small
specifications, and will typically support modelling with variables.

3.1 Modest for Markov Automata

Modest [4,30] is the modelling and description language for stochastic timed
systems. At its core, it is a process algebra: it provides various operations such as



258 A. Hartmanns and H. Hermanns

parallel and sequential composition, parameterised process definitions, process
calls, and guards to flexibly construct complex models out of small and reusable
components. Its syntax, however, borrows heavily from commonly used pro-
gramming languages, and it provides high-level conveniences such as loops and
an exception handling mechanism. As such, Modest tends to be more verbose
than classic process algebras, but also more readable and beginner-friendly. To
specify complex behaviour in a succinct manner, Modest provides variables of
standard basic types (e.g. bool, int, or bounded int), arrays, and user-defined
recursive datatypes akin to functional programming languages. Its syntax for
expressions is aligned with C-like programming languages for ease of use.

Let us now introduce the Modest language syntax step-by-step by using it
to model our example MA shown in Fig. 2, starting with M1. Modest models
are structured into processes, with each process consisting of declarations and a
behaviour. The declarations introduce all named objects like actions, variables,
exceptions, nested processes, etc., that are available for use in the behaviour
and inside nested processes. A process’ behaviour defines an MA with those
variables1. To model M1 as a Modest process, we thus start by declaring the
actions and a Boolean variable to later distinguish between states 1 and 2:
action a, c;
bool f = false; // to distinguish between states 1 and 2

The simplest behaviour in Modest is to perform a (previously declared) action:

Semantically, this behaviour represents the MA with variables shown above on
the right, where the one edge has guard expression true. Every location � is
uniquely identified by a behaviour such that the MA with � as its initial location
is the semantics of the behaviour. The checkmark � is a special behaviour called
successful termination that is not part of the syntax of Modest, and whose
semantics is a state with no outgoing edges. It receives special treatment by
several other Modest constructs. Modest also contains a stop construct with
the same semantics but without the special treatment.

Initially, automaton M1 offers a choice between two probabilistic transitions.
The alt construct combines multiple behaviours into a nondeterministic choice
between them, thus the initial choice in M1 can be represented as follows:

The semantic effect of the alt construct is simply to merge the initial states
of the semantics of its child behaviours, the start of each of which is indicated
by ::. Note that both edges lead to the same location here; this is because the
semantics of both behaviours a and c end in the identical location �.
1 Actually, the semantics of Modest [30] is defined in terms of stochastic hybrid

automata (SHA), of which MA are a special case; we restrict to that case in
this paper.



A Modest Markov Automata Tutorial 259

Now, in M1, the transition labelled a actually has two branches. The branch-
ing of probabilistic transitions can be represented in Modest with the palt
construct. Since it does not create a new transition, but only defines branches,
it has to be prefixed by the transition’s action:

Probabilities are specified as weights between colons :, i.e. the actual probability
in the semantics is calculated as the given weight divided by the sum of all
weights in the palt construct. The assignments for every branch are specified
in {= =} blocks, and they are executed atomically, so e.g. the assignment block
{= x = y, y = x =} performs an in-place swap of variables x and y. To create
an edge labelled a with a single destination and assignments u, we can omit the
palt and just write a {= u =}. Observe that, in the semantics of our example
above, all destinations still lead to the same location. However, the semantics of
this MAV contains two states in location �: one where f is true, which is the
target of the branch for the uppermost destination, and one where it is false.
We will from now on omit true guards and empty assignment sets in MAV.

Continuing to model M1 in Modest, we now add the Markovian transitions
to state 4. We need two new constructs: for sequential composition, and for
rates. First, the semantics of the sequential composition construct P; Q, for two
behaviours P and Q, is to first behave like P , and upon successful termination
of P (i.e. upon reaching location �), behave like Q. We thus get the following:

tau is the predefined silent action, which does not take part in synchronisation
(i.e. in a binary parallel composition, it is governed by synchronisation vectors
〈τ,⊥〉 	→ τ and 〈⊥, τ〉 	→ τ , but cannot occur in any other vectors). To turn the
τ -labelled probabilistic edge into a Markovian one, we simply specify rates:



260 A. Hartmanns and H. Hermanns

Modest enforces the separation of probabilistic and Markovian transitions by
requiring edges for which a rate is specified to have action tau. If this restriction
is not met, the model is recognised as a CTMDP.

In the model above, the behaviour rate(2) tau occurs twice. We can eliminate
this duplication by moving it out of the alt construct. At this point, let us also
introduce the when construct to specify guards: instead of using stop to make
the model deadlock in the upper destination, we use f to cause the deadlock in
the semantics of the MAV. The result is:

The semantics of the MAV on the right above is almost isomorphic to M1; the
difference is that states 1 and 3 are merged since they have the same behaviour.

In Fig. 3, we show the full Modest model of the parallel composition of MA
M1 and M2 of Fig. 2. It includes the model that we built for M1 above as the
body of the named process M1. Such processes can have parameters (specified
between the parentheses in the declaration, not shown here) and local variables.
A process call like M1() behaves exactly like the behaviour of M1, with all formal
parameters being assigned the values of the actual arguments, and new variable
instances created for all parameters and local variables to separate them from
any other calls to M1. The semantics of the parallel composition construct par
is the n-ary parallel composition of its child behaviours, with synchronisation
vectors that implement CSP-style synchronisation for all actions declared with
the action keyword (in this model, that is the vectors given in Example 2), and
as described above for τ . The model also declares two properties for verification,
P_Min and P_Max, which ask for the probability to reach state 〈4, 4〉—made
observable via the global variable succ, which is of bounded integer type2 with
range { 0, 1, 2 }—within time bound B akin to Example 3. B is an open parameter
for which values can be specified at verification time.

At this point, we have covered most basic constructs of Modest. There are
many features not used in this small model; we will introduce more constructs in
Sects. 4 and 5. The interested reader also finds additional Modest MA models
in the Quantitative Verification Benchmark Set (QVBS, [34]) at qcomp.org.

2 MA model checking requires finite state spaces; thus all variables must be bounded.
Indicating the bounds in the types is good practice to avoid accidentally creating
infinite-state models and may improve performance, but it is not a requirement for
the mcsta model checker (see Sect. 3.2) as long as only finitely many distinct values
are ever assigned to the variables occurring in the model.

http://qcomp.org/benchmarks/


A Modest Markov Automata Tutorial 261

Fig. 3. Modest model for M1 ‖M2

Fig. 4. MAPA process algebra

Fig. 5. Prism dialect supporting MA

Fig. 6. Imca state space format

3.2 The Modest Toolset

The creation and analysis of MA with Modest is supported by the Modest
Toolset [32], a comprehensive suite of tools for quantitative modelling and ver-
ification. Aside from Modest, it also supports the Jani model interchange for-
mat [12] as an input language. MA are supported in the toolset’s mosta, moconv3,
mcsta, and modes tools. mosta visualises the symbolic semantics of models (i.e.
networks of MAV before and after parallel composition as shown throughout
Sect. 3.1) and is useful for model debugging. moconv transforms models between
Modest and Jani, and performs syntactic rewriting and optimisations. mcsta is
3 moconv can also export CTMDP to Jani, but due to their lack of a natural parallel

composition operator, the analysis of CTMDP is not supported in the other tools.



262 A. Hartmanns and H. Hermanns

a fast explicit-state model checker that implements state-of-the-art MA-specific
algorithms [13] and uses secondary storage to alleviate state space explosion [33].
modes [11] is a statistical model checker with automated rare event simulation
capabilities. It implements lightweight scheduler sampling [43] for nondetermin-
istic models, including MA [17]. The Modest Toolset is written in C#, works
on Linux, Mac OS, and Windows, and is freely available at modestchecker.net.
All its tools share a common infrastructure for parsing and syntactic transfor-
mations. mcsta and modes build on the same state space exploration engine that
compiles models to bytecode at runtime for memory efficiency and performance.

3.3 Alternative Modelling Languages

Modest is not the only modelling language for MA. We now briefly contrast it
to the currently available alternative modelling languages with support for MA.

State Space Files for Imca. The first MA-specific algorithms were implemented
in the Imca tool [27]. Its only input language is a text-based explicit state space
format as illustrated for our example of M1 ‖ M2 in Fig. 6. This is clearly not a
useful modelling language, but a format to be automatically generated by tools.

Guarded Commands with Storm. The Storm model checker [18] provides many
input languages, with MA being supported through a state space format similar
to Imca’s, via Jani, as the semantics of generalised stochastic Petri nets [20] in
GreatSPN format [1], and through an extension of the Prism guarded com-
mand language. We show our example in the latter in Fig. 5. This is a very
simple and small language that is easy to learn, however it completely lacks
higher-level constructs to structure and compose models aside from the implicit
parallel composition of its modules.

Process Algebra with Scoop. Mapa [51] is a dedicated process algebra for MA. It
is supported by Scoop [51], which can linearise, reduce, and finally export Mapa
models to Imca for verification. We show the example of M1 and M2 in Mapa in
Fig. 4. As a classic concise process algebra, Mapa tends to be very succinct, but
also difficult to read. Mapa models can be much more flexibly composed than
Prism models, yet there is less syntactic structure than in Modest—although
the languages conceptually share many operators. Mapa notably has a prede-
fined queue datatype, and users can specify custom non-recursive datatypes.

Jani [12] is a model interchange format designed to ease tool development and
interoperation. It is Json-based and thus human-debuggable, but not intended as
human-writable. It represents networks of automata with variables symbolically.
Since both the Modest Toolset and Storm support Jani, it is possible to e.g.
build MA models in the Modest language, export them to Jani with moconv,
and then verify them with Storm. Likewise in the other direction, we can e.g.
create a Petri net with GreatSPN, convert to Jani with Storm, and analyse it
with mcsta or modes. In this way, the most appropriate modelling language can
be combined with the best analysis method and tool for every specific scenario.
The JSON-based syntax however is too verbose to display the example in JANI
format in this paper.

http://www.modestchecker.net/


A Modest Markov Automata Tutorial 263

4 Optimising Attacks on Bitcoin

Bitcoin [45] is currently the most popular cryptocurrency. It is built on
blockchain technology using the proof-of-work approach. Every block in the
blockchain contains a nonce (a randomly chosen number), a set of (monetary)
transactions, and a hash of the predecessor block in the chain. In this way, no
past block can be changed without invalidating (the hashes in) all its successors.
A block is valid if the hash of the block’s contents falls below a target value.
To create a valid block, a node in the Bitcoin network repeatedly selects a new
nonce until it finds one that makes the block valid. Creating new blocks is called
mining, and overall constitutes the proof-of-work approach since the repeated
hashing is computationally (and thus environmentally) expensive. As the com-
putational power used for mining (the hash rate) changes, the Bitcoin network
periodically adjusts the target value such that the average time to find a new
block (the confirmation time) is 10min. In practice, the actual confirmation time
varies; it was about 12min in 2017 [24]. Every node in the network stores its
own copy of the entire blockchain. Once a new node finds a new valid block, it
broadcasts the block to the network. Due to network delays, multiple new blocks
may propagate at the same time. Nodes add the first block they receive to their
local chain. Thus multiple forks of the blockchain may exist on different nodes.
Each node always considers the longest chain known to it as valid, and miners
extend the longest chain. A transaction is n-confirmed with confirmation depth
n = 0 if it is not part of any valid block and otherwise with n > 1 if there are
n − 1 blocks in the chain beyond the block b that the transaction is part of. The
amount of work to invalidate a fork that starts with b increases with n. Many
services only accept Bitcoin payments once they are at least 6-confirmed [7].

In this section, we use Modest and the Modest Toolset to study two
variants of a secret-fork attack on Bitcoin, inspired by the Andresen attack pro-
posal and a study performed with Uppaal smc in [24]. The attackers secretly
create a fork, keep mining on it until it reaches a certain length greater than that
of the publicly known blockchain, and then publish it all at once. This would
invalidate the public fork, with the private one becoming the valid blockchain.
The original aim of the attack was to undermine the trust in Bitcoin; if it suc-
ceeds on the first attempted fork, it can equally be used for double spending by
invalidating a specific transaction. For the attack to be feasible, the malicious
attacker must control a significant fraction m of the hash rate.

4.1 Modelling and Evaluating the Double-Spending Attack

If the goal of the attacker is double spending, then it creates a transaction that
spends some Bitcoin funds and announces it to the network for inclusion in the
next block. At the same time, it starts mining on its own secret fork. Let cd be
the confirmation depth after which a transaction is accepted by the receiver of
the funds. If the attacker manages for its secret fork to become longer than the
public fork, and longer than cd , then it can publish this fork immediately after
the public one reaches length cd . At that point, the receiver of the funds has



264 A. Hartmanns and H. Hermanns

just accepted the transaction (and presumably fulfilled its part of the contract).
The secret fork however invalidates the public one since it is longer, and thus
invalidates the transaction. The attacker is now free to spend the same funds
again. Due to the proof-of-work system, such an attack is possible, but—as
long as the attacker controls less than 50% of the hash rate—has a low success
probability and an immense computational cost.

Modelling the Attack in Modest. We build an abstract model of mining
in Modest, reduced to the aspects relevant to the attack. The observation that
a new block is mined every 12min on average fits well with MA: we model
block creation via Markovian transitions with a total rate of 1

12 . We abstract
from network delays, i.e. blocks propagate instantaneously. We consider a single
attacker, assuming that the rest of the world’s miners behave in the normal
“honest” manner and publish all mined blocks immediately.

Honest Mining Model. To start, we define a process HonestPool representing the
pool of honest miners, which control (1− m) · 100% of the global computational
resources used for mining, with m realised as model parameter M:
const real M; // fraction of hash rate controlled by malicious mining pool
action sln; // indicates that the honest pool mined a new block
process HonestPool()
{

rate(1/12 * (1 - M)) tau; // wait 12 / (1 − M) minutes on average
sln; // signal that a new block was found
HonestPool() // repeat

}

Action sln models the propagation of a new block through the network, which
can also be observed by the attacker. Due to the separation of timing and inter-
action in MA, we need two separate edges for mining delay and communication.

Attacker Model. We keep track of the length of the attacker’s fork, and of the
difference in length to the public fork. To make the MA finite, we identify all
fork lengths greater than cd with the value cd + 1 (since we only need to know
whether the fork is longer than cd , but not how much longer), and we assume
that the attacker gives up on its fork once it is db blocks shorter than the public
one. The attacker process is then as follows:
const int CD; // confirmation depth required by victim
const int DB = CD; // attacker gives up when this far behind
action cnt; // indicates that the attacker continues
int(0..CD+1) m_len; // length of the secret fork
int(-DB..CD+1) m_diff = 0; // length of secret fork minus honest fork
bool gup; // indicates whether the attacker gave up
process DoubleSpendingAttacker()
{

do {
:: rate(1/12 * M) {= m_len = min(CD+1, m_len + 1), m_diff++ =}
:: sln {= m_diff-- =}; // public fork extended



A Modest Markov Automata Tutorial 265

if(m_diff <= -DB) { tau {= gup = true =}; stop } // give up
else { cnt } // continue

}
}

For illustration, we use the do construct to implement a loop here instead of
the recursive process call used in HonestPool. A do loop is in essence a looping
alt: There is an initial nondeterministic choice between the child behaviours;
once the chosen behaviour successfully terminates, control loops back to the
nondeterministic choice. do loops can be exited via the predefined break action.
We also use the if shorthand: if(e) { P } else { Q } is syntactic sugar for
alt{ :: when(e) P :: when(!e) Q }. Thus the behaviour of the attacker process
is as follows: it waits until it either mines a new block itself (first child behaviour
of the do loop), or until it observes a new block in the public fork. In both cases,
it appropriately updates m_len and m_diff. In the second case, it then either
gives up if it has fallen too far behind, or otherwise continues the attack.

Composition and Nondeterminism. The overall behaviour of our model is the
parallel composition of the two processes, with synchronisation on sln:
par {
:: HonestPool()
:: DoubleSpendingAttacker()
}

Observe that the behaviour of neither of the two processes contains an actual
nondeterministic choice: HonestPool is entirely sequential, and the choices in the
attacker process are between a Markovian and a probabilistic edge (in do), i.e.
the probability for both to be available at the same time is 0, and between two
edges with disjoint guards (in if). Since the only probabilistic edge in HonestPool
synchronises with the attacker, and is immediately followed by a Markovian edge,
the parallel composition cannot introduce nondeterminism due to interleaving
probabilistic transitions, either. Thus the entire model takes the form of an MA,
but is in fact equivalent to a CTMC. MA that are equivalent to CTMC are a
class of models that occurs frequently in practice. Several of the MA models in
the QVBS belong to this class.

Evaluating the Attack. We are interested in the probability that the attacker
eventually wins, and that it eventually gives up without winning. We expect it to
eventually either win or give up, thus—due to the absence of nondeterminism—
the probabilities should sum to 1. We declare the two properties in Modest:
function bool win() = m_len > CD && m_diff > 0; // winning condition
property P_Win = Pmin(<> win()); // attacker wins
property P_GiveUp = Pmin(!win() U gup); // attacker gives up



266 A. Hartmanns and H. Hermanns

To avoid repeating the expression that characterises the winning condition, we
encapsulate it in the user-defined function win(). Functions in Modest can also
take parameters, and they can be (mutually) recursive. The body of a function
is an expression; since expressions in Modest are free of side effects, functions
provide for pure functional programming inside Modest models. Combined with
user-defined recursive datatypes (not shown in this paper), they make Modest
Turing-complete. Property P_Win is straightforward: we ask for the (minimum)
probability to eventually (<>) enter a state that satisfies the winning condition.
Since there is no nondeterminism, there is no difference between Pmin and Pmax
for this model. Property P_GiveUp uses the until (U) operator to ask for the
probability of those paths on which no state satisfies win() until a state where
gup is true is reached. If we invoke mcsta on this model by executing
./modest mcsta bitcoin-ds.modest -E "M = 0.2, CD = 6"

we obtain probability ≈ 0.0087 for P_Win and ≈ 0.9913 for P_GiveUp: the attack is
unlikely to succeed if the attacker controls only 20% of the hash rate. However,
at m = 0.4, we get P_Win ≈ 0.343, and at m = 0.5, it is ≈ 0.719. It is not 1 here
because the attacker gives up when falling behind too much. If we modify the
model such that the attacker never gives up, it becomes an infinite-state MA since
m_diff is no longer bounded from below. We cannot model-check this model, but
due to the absence of nondeterminism, we can easily perform statistical model
checking with modes by running
./modest modes bitcoin-ds-inf.modest -E "M=0.2, CD=6" --max-run-length 0

The output confirms our expectation that the probability is now 1, although we
only know this with the statistical confidence provided by modes.

4.2 Optimising the Attack on Trust in Bitcoin

If the goal of the attack is to undermine the trust in the Bitcoin system by
invalidating a large amount of work performed by the honest miners, the attacker
gains some freedom in choices: Instead of having to give up when it gets too far
behind, it can simply restart its attack from the then-current public fork. We
thus keep the cd parameter, which now indicates the minimum desired length of
the secret fork for it to be published. The winning condition becomes the length
of the secret fork being greater than or equal to cd . Instead of only giving up
(which now means resetting the secret fork) when db blocks behind, the attacker
can additionally choose to continue the attack or reset its fork every time that
the honest mining pool publishes a new block.

Modelling the Attack. Our new attacker process, which replaces the Double-
SpendingAttacker process presented previously, is thus as follows:



A Modest Markov Automata Tutorial 267

action rst; // indicates that the attacker restarts from the public fork
process TrustAttacker()
{

do {
:: rate((1/12) * M) {= m_len = min(CD, m_len + 1), m_diff++ =}
:: sln {= m_diff-- =}; // public fork extended

alt { // strategy choice: restart or continue malicious fork
:: rst {= m_len = 0, m_diff = 0 =} // can always restart
:: when(m_diff > -DB) cnt // can continue if not too far behind
}

}
}

This model is nondeterministic due to the choice between rst and cnt in the
attacker process. We use actions rst and cnt to indicate the choice made; they
have no synchronisation partner, but will help understand the optimal scheduler.

Evaluation. The probability for the attacker to eventually win as expressed by
an adjusted version of P_Win is now 1 since it can retry indefinitely. It is thus
more interesting to investigate the expected time until it wins:
property T_WinMin = Xmin(T, m_len >= CD && m_diff > 0);

We ask for the minimum time here, i.e. for the attacker to make its choices such
that the time to success is minimised, which arguably is its best strategy. mcsta
reports that the value is ≈ 3735.94 minutes for m = 0.2, i.e. a little over two and
a half days. Let us thus compute the probability to succeed in just two days:
property P_WinMax2 = Pmax(<>[T<=2880](m_len >= CD && m_diff > 0));

We now ask for the maximum probability, since this again corresponds to an
optimal attack. The result that mcsta gives is ≈ 0.535. As originally discovered
in [24], we thus have a more than 50% chance to undermine the trust in Bitcoin
if we control only 20% of the hash rate and invest only two days of mining.
According to blockchain.com/pools, on July 8, 2019, the BTC.com pool in fact
controlled 21.6% of the global hash rate; it could thus perform the attack.

Optimising the Attack Strategy. While the above numbers tell us the time
and probability for the attack to succeed, they do not give any information about
the attack strategy: What are the points, in terms of the length of the secret and
public forks, where we should restart in order to obtain these optimal times and
probabilities? Probabilistic model checking as implemented by mcsta, however,
implicitly computes the optimal choice for every state of the MA underlying the
model it checks, and it can be instructed to write this scheduler to a file:
./modest mcsta bitcoin-attack.modest -E "M=0.2,CD=6" --scheduler sched.txt

The result is a text file sched.txt with entries of the form
+ State: (HonestPool.location = loc_1, TrustAttacker.location = loc_10,

m_len = 1, m_diff = -2)
Choice: rst

for every state; here, in a state where the secret fork’s length is 1, and it is two
blocks shorter than the public one, the attacker restarts. We processed the file

https://www.blockchain.com/pools


268 A. Hartmanns and H. Hermanns

by projecting to m_len and m_diff and then eliminating all subsequent duplicate
entries to find that the optimal strategy is to restart the attack if

– the honest pool announces a block, but the secret fork is still empty,
– the secret fork has one block and the public fork adds a third block, or
– the secret fork has ≥2 blocks and gets 3 blocks shorter than the public one,

and to continue the attack in all other cases.

Summary. Throughout this section, we first built an MA model that was equiv-
alent to a CTMC, and then a truly nondeterministic MA. However, even that
model does not use all features of the MA formalism: it lacks discrete proba-
bilistic branching. As such, it falls into the interactive Markov chain (IMC, [39])
subset of MA. In the next section, we will introduce a model that is a true MA.

5 Evaluating a Reentrant Queueing System

In the previous section, we considered quantitative aspects of attacks on a
stochastic timed system. We now turn our attention to a prominent use of
continuous-time Markov models: performance and dependability evaluation. A
classic application is resource-sharing queueing systems, using various CTMC-
based formalisms like (Jackson) queueing networks [41], with analytical or
simulation-based techniques for the analysis. Yet these approaches are restricted,
both in modelling and in analysis, to fully stochastic systems. MA as a model,
and our analysis tools in the Modest Toolset, sit right at the edge between
performance evaluation and model checking [2]. In particular, they add the con-
cept of nondeterminism, which is at the core of classic qualitative model checking,
to modelling formalisms and analysis algorithms that directly apply to perfor-
mance evaluation scenarios. We now study a queueing system with stochastic
timing, discrete probabilistic choices, and nondeterministic decisions—its model
is thus an MA that does not fall into any of the existing subsets.

We consider the system with two queues depicted in Fig. 7, originally pre-
sented in [36]. Both queues have the same capacity c. Jobs arrive with rate λ

Fig. 7. A queuing system with postprocessing needs [36]



A Modest Markov Automata Tutorial 269

and enter one of the queues according to the standard join-the-shortest-queue
strategy. This strategy is implicitly nondeterministic if both queues are equally
filled. For each queue, jobs are processed by a dedicated server, serving jobs
with rates μu and μd, respectively. Jobs leaving the lower server leave the sys-
tem, while jobs once processed by the upper server are subject to an additional
check. Dependent on the (nondeterministic) outcome thereof, they are either sent
into the lower queue again (action d), or (action u) they may either leave the
queue (with probability p) or reenter the upper queue (with probability 1 − p).

A Modest Model. As usual, we start our Modest model by declaring all
relevant constants, including the model parameters without specified values:
const int C; // queue capacity
const int LAMBDA = 5; // job arrival rate
const real MU_UP = 10; // service rate of up server
const int MU_DOWN = 4; // service rate of down server
const real P = 0.3; // probability to be done after up server

In this model, we will use two transient variables to track when jobs are done,
and when a job is dropped because both queues are full on arrival, or the queue
in which it is due to re-enter after being processed by the up server is full:
transient int(0..1) done = 0; // 1 when a job is done, otherwise 0
transient int(0..1) loss = 0; // 1 when a job is dropped, otherwise 0

Unlike regular variables in MAV, transient variables do not become part of the
states. They can be used in assignments, but the assigned values are lost once
the successor state is entered. However, the assigned value is visible to properties
when the branch is taken, and we will make use of this later to define rewards.

We structure our model along the components shown in Fig. 7, defining a
Modest process for each of them. The arrivals process and the down server
have the simplest behaviours:
action put, get;
process Arrivals()
{

rate(LAMBDA) tau;
put;
Arrivals()

}

process ServerDown()
{

get;
rate(MU_DOWN) tau {= done = 1 =};
ServerDown()

}

Both processes synchronise with the input queues: Arrivals uses action put to
enqueue a job that just arrived, and ServerDown uses action get to obtain a job
to work on when idle, as soon as one is available. We will use synchronisation
vectors to ensure that the synchronisation on put happens between Arrivals and
exactly one of the two queues. Both queues use the same process definition:
int(0..C)[] q = [0, 0]; // array: number of jobs in the two queues
function bool isShortest(int id) = q[id] <= q[(id + 1) % 2];
process Queue(int id)
{

do {



270 A. Hartmanns and H. Hermanns

:: when(isShortest(id)) // enqueue
put {= q[id] = min(q[id]+1, C), loss = q[id] == C ? 1 : 0 =}

:: when(q[id] > 0) get {= q[id]-- =} // dequeue
}

}

To distinguish the two queues, we use a process parameter id, and a two-element
array storing the lengths of the queues that the processes index with their id.
Function isShortest indicates whether the queue with the given id is no longer
than the other one. A queue only accepts new jobs when isShortest(id) is true;
if the queue is full in that case, the job is dropped, and loss is (temporarily) set
to 1. The get action removes a job from a non-empty queue.

Finally, the up server has the most complicated structure, since it manages
the reentry of jobs that it has finished serving into the two queues:
action u, d, rup, rdn;
process ServerUp()
{

get; // get job from queue
rate(MU_UP) tau; // serve job
alt { // nondeterministic choice between u and d:
:: u palt { // action u: probabilistic choice to either

:1-P: {==}; rup // reenter the up queue with probability 1−P,
: P: {= done = 1 =} // or leave the system with probability P
}

:: d; rdn // action d: reenter the down queue
};
ServerUp()

}

The nondeterministic choice between u and d is a choice between (d) making
the job surely leave the system within a certain expected time, at the cost of
processing by the slower down server, and (u) taking the chance for the job to
leave the system immediately, at the risk of it reentering the up queue. The
optimal choice will likely depend on the current lengths of both queues.

Now that we have specified all the necessary processes, we can put them into
a parallel composition. We have rather different synchronisation requirements:
put shall use a binary synchronisation between Arrivals and one of the two
queues, with a nondeterministic choice if both have the same lengths; get in a
queue shall synchronise only with the one server for that queue; and rup and rdn
shall look like a put to the respective queues. We could declare put as a binary
action, and cleverly use the relabel construct to rename the other actions in a
way that makes Modest create the correct synchronisation vectors internally.
However, we can also just specify the desired vectors explicitly in a par:
par { put, put, get, get, put, put, u, d } {

: put, put, - , - , - , - , -, - : Arrivals()
: put, - , get, - , put, - , -, - : Queue(0)
: - , - , get, - , rup, rdn, u, d : ServerUp()
: - , put, - , get, - , put, -, - : Queue(1)
: - , - , - , get, - , - , -, - : ServerDown()

}



A Modest Markov Automata Tutorial 271

If we read the “columns” in the above specification from bottom to top, we read
the synchronisation vectors, with the topmost entry being the action that labels
the synchronising edge in the composed MAV, and - corresponding to ⊥.

Performance Evaluation. We first add properties to investigate the proba-
bility and time until the queues are full, which is an undesirable condition that
affects the dependability of the system by making it likely for jobs to be lost:
property ProbFullIsOne = Pmin(<> (q[0] == C && q[1] == C)) == 1;
property TminFull = Xmin(T, q[0] == C && q[1] == C);
property TmaxFull = Xmax(T, q[0] == C && q[1] == C);
property PminFull10 = Pmin(<>[T<=10] (q[0] == C && q[1] == C));
property PmaxFull10 = Pmax(<>[T<=10] (q[0] == C && q[1] == C));

We thus assert that the minimum probability for both queues to eventually be
full is 1, which is a sanity check for the model; then we ask for the minimum and
maximum of the expected time for both queues to be full, and of the probability
for this to happen within 10 time units. By repeating the bottom two properties
for different values of the time bound, we can obtain an approximation of the
underlying cumulative distribution function over time. If we run mcsta with
./modest mcsta reentrant-q.modest -E"C=5" -O results.txt Minimal

we get an easy-to-parse file results.txt with the results:
"ProbFullIsOne": True
"TminFull": 7.165959461963808
"TmaxFull": 54.167593727326874
"PminFull10": 0.1338675853224175
"PmaxFull10": 0.7958342318163893

We see that the nondeterministic choices have a significant influence on the
behaviour of the system; between the worst and best choices, the time to and
probability for the undesirable event differs by a factor of 6 to 7. Since the stan-
dard probabilistic model checking algorithms implemented in mcsta are iterative
numeric algorithms using double-precision floating-point numbers, every result
is only an approximation of the true value despite the high number of decimal
digits included in the output. The precision of mcsta is configurable.

Assume that we are designing a system of which our reentrant queueing
system is an abstract model, and we have one parameter for which we must
decide on a concrete value: the queue capacity c. We expect a higher capacity to
improve throughput, utilisation, and reduce the number of lost jobs; however,
it is also more costly to implement. We would thus like to find a good tradeoff
between c and these quantities. We first specify properties that query for them:
property Throughput = Smax(S(done));
property Loss = Smax(S(loss));
property IdleOne = Smin(T(q[0] == 0 || q[1] == 0 ? 1 : 0));
property IdleBoth = Smin(T(q[0] == 0 && q[1] == 0 ? 1 : 0));

These queries are for long-run average rewards. The rewards are described by
accumulation expressions: S(done) attaches to every branch (i.e. to every dis-
crete step) the value of done after the branch’s assignments have been executed



272 A. Hartmanns and H. Hermanns

(but before transient variables lose their values) as a branch reward. Expres-
sion T(q[0] == 0 || q[1] == 0 ? 1 : 0) sets the rate reward (accumulated over
time) in every state to 1 if both queues are empty, and to 0 otherwise. We
chose maximisation/minimisation as appropriate to correspond to the best pos-
sible strategy. We can ask mcsta to compute these quantities for many different
values of c by specifying multiple experiments via the -E parameter:
./modest mcsta reentrant-q.modest -E "C=1" -E "C=2" -E "C=3" -E "C=4" \

-E "C=5" -E "C=6" -E "C=7" -E "C=8" -E "C=9" -E "C=10" -E "C=11" \
-E "C=12" -E "C=13" -E "C=14" -E "C=15" -E "C=16" -O perf.txt Minimal

We visualise the results in Fig. 8. The two lines converging to zero plot
IdleOne (red, upper line) and IdleBoth (orange, lower). The other two lines
plot Throughput (blue, upper) and Loss (purple, lower). We see that the frac-
tion of time that the servers spent idle drops quickly with increasing c, whereas
throughput and loss do not improve so much. Looking at this plot, we might
choose c around 5 to 8.

Summary. In this section, we built a model for a queueing system that utilises
all the features of the MA formalism. mcsta offers algorithms to calculate a
variety of quantities (cf. Sect. 2), and we fully utilised them to evaluate the
system from several perspectives.

Fig. 8. Long-run average performance values for the reentrant queueing system

6 Conclusion

This tutorial paper has discussed how Modest can be used as a convenient mod-
elling language for Markov automata, together with some hints on what analysis
is possible for such models. Markov automata can be considered as a central
model family for studying the performance, dependability, and correctness of
randomised and distributed systems.

We introduced all the basic and several advanced constructs of the Modest
language for MA. Among the features that we did not cover are exception han-
dling (using the throw and try-catch constructs), the specification of values for



A Modest Markov Automata Tutorial 273

transient variables in locations (using the with construct), dynamic array con-
structors, user-defined recursive datatypes (which allow the specification of, for
example, unbounded list types), recursive functions, and binary and broadcast
actions (which automatically generate appropriate synchronisation vectors, just
like “normal” actions do for multi-way synchronisation). Going beyond MA,
Modest also supports the formalisms of probabilistic timed automata [42]
(which add a clock type and time progress conditions via the constrain con-
struct), stochastic timed automata [4] (which allow sampling values from contin-
uous probability distributions in assignments; they are a generalisation of MA),
and stochastic hybrid automata [25] (which add continuous variables of type var
whose behaviour over time is specified via differential equations and inclusions
using the der operator for derivatives). Further Modest models are included
in the Modest Toolset download, available at modestchecker.net, and in the
Quantitative Verification Benchmark Set at qcomp.org.

Data Availability. The models, example command lines, and results pre-
sented in this paper are archived and available at DOI 10.4121/uuid:5a73169e-
b494-411b-b3a8-051e62efba9e [31].

Acknowledgments. The authors thank Michaela Klauck (Saarland University) for
preparing an initial version of the Modest model appearing in Sect. 5 and for helpful
comments on a draft of this paper.

References

1. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years
of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and
Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30599-8_9

2. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76–85 (2010)

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
4. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: a

compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

5. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains - Modeling and Performance Evaluation with Computer Science Applica-
tions, 2nd edn. Wiley, Hoboken (2006)

6. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Comput. Netw. 14, 25–59 (1987)

7. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: SP, pp.
104–121. IEEE Computer Society (2015)

8. Braitling, B., Fioriti, L.M.F., Hatefi, H., Wimmer, R., Becker, B., Hermanns, H.:
MeGARA: menu-based game abstraction and abstraction refinement of Markov
automata. In: QAPL. EPTCS, vol. 154, pp. 48–63 (2014)

http://www.modestchecker.net/
http://qcomp.org/benchmarks/
https://doi.org/10.4121/uuid:5a73169e-b494-411b-b3a8-051e62efba9e
https://doi.org/10.4121/uuid:5a73169e-b494-411b-b3a8-051e62efba9e
https://doi.org/10.1007/978-3-319-30599-8_9


274 A. Hartmanns and H. Hermanns

9. Braitling, B., Ferrer Fioriti, L.M., Hatefi, H., Wimmer, R., Becker, B., Hermanns,
H.: Abstraction-based computation of reward measures for Markov automata. In:
D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 172–
189. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-8_10

10. Brázdil, T., Hermanns, H., Krcál, J., Kretínský, J., Rehák, V.: Verification of
open interactive Markov chains. In: FSTTCS. LIPIcs, vol. 18, pp. 474–485. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

11. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3_20

12. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5_9

13. Butkova, Y., Hartmanns, A., Hermanns, H.: A Modest approach to modelling and
checking Markov automata. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS,
vol. 1785, pp. 52–69. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30281-8_4

14. Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time Markov
decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364,
pp. 166–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-
7_12

15. Butkova, Y., Wimmer, R., Hermanns, H.: Long-run rewards for Markov automata.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 188–203.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_11

16. Butkova, Y., Wimmer, R., Hermanns, H.: Markov automata on discount!. In: Ger-
man, R., Hielscher, K.-S., Krieger, U.R. (eds.) MMB 2018. LNCS, vol. 10740, pp.
19–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74947-1_2

17. D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical model check-
ing in nondeterministic continuous time. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11245, pp. 336–353. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03421-4_22

18. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9_31

19. Eisentraut, C.: Principles of Markov automata. Ph.D. thesis, Saarland University,
Saarbrücken, Germany (2017)

20. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every
GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp.
90–109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-
8_6

21. Eisentraut, C., Hermanns, H., Schuster, J., Turrini, A., Zhang, L.: The quest for
minimal quotients for probabilistic and Markov automata. Inf. Comput. 262(Part),
162–186 (2018)

22. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a
stochastic world. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol.
6269, pp. 21–39. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15375-4_3

https://doi.org/10.1007/978-3-662-46081-8_10
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-030-30281-8_4
https://doi.org/10.1007/978-3-030-30281-8_4
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-662-54580-5_11
https://doi.org/10.1007/978-3-319-74947-1_2
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-38697-8_6
https://doi.org/10.1007/978-3-642-38697-8_6
https://doi.org/10.1007/978-3-642-15375-4_3
https://doi.org/10.1007/978-3-642-15375-4_3


A Modest Markov Automata Tutorial 275

23. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010)

24. Fehnker, A., Chaudhary, K.: Twenty percent and a few days – optimising a Bitcoin
majority attack. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS,
vol. 10811, pp. 157–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-77935-5_11

25. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52. ACM
(2011)

26. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

27. Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed analysis of
interactive Markov chains. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 8–23. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28891-3_4

28. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.P., Timmer, M.: Analysis of timed
and long-run objectives for Markov automata. Logical Methods Comput. Sci. 10(3)
(2014)

29. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and anal-
ysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 168–184. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11936-6_13

30. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013)

31. Hartmanns, A.: A Modest Markov automata tutorial (artifact). 4TU.Centre for
Research Data (2019). https://doi.org/10.4121/uuid:5a73169e-b494-411b-b3a8-
051e62efba9e

32. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8_51

33. Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using
partitioning and secondary storage. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 131–147. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24953-7_10

34. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0_20

35. Hatefi, H.: Finite horizon analysis of Markov automata. Ph.D. thesis, Saarland
University, Germany (2017). scidok.sulb.uni-saarland.de/volltexte/2017/6743/

36. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. Elec-
tron. Commun. EASST 53 (2012)

37. Hatefi, H., Wimmer, R., Braitling, B., Fioriti, L.M.F., Becker, B., Hermanns, H.:
Cost vs. time in stochastic games and Markov automata. Formal Asp. Comput.
29(4), 629–649 (2017)

38. Haverkort, B.R.: Performance of Computer Communication Systems - A Model-
Based Approach. Wiley, Hoboken (1998)

https://doi.org/10.1007/978-3-319-77935-5_11
https://doi.org/10.1007/978-3-319-77935-5_11
https://doi.org/10.1007/978-3-642-28891-3_4
https://doi.org/10.1007/978-3-642-28891-3_4
https://doi.org/10.1007/978-3-319-11936-6_13
https://doi.org/10.1007/978-3-319-11936-6_13
https://doi.org/10.4121/uuid:5a73169e-b494-411b-b3a8-051e62efba9e
https://doi.org/10.4121/uuid:5a73169e-b494-411b-b3a8-051e62efba9e
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
http://scidok.sulb.uni-saarland.de/volltexte/2017/6743/


276 A. Hartmanns and H. Hermanns

39. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.
LNCS, vol. 2428, pp. 35–55. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45804-2_3

40. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

41. Jackson, J.R.: Jobshop-like queueing systems. Manag. Sci. 10(1), 131–142 (1963)
42. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification

of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002)

43. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_23

44. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River
(1989)

45. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009). bitcoin.org
46. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley Series in Probability and Statistics, Wiley, Hoboken (1994)
47. Quatmann, T., Junges, S., Katoen, J.-P.: Markov automata with multiple objec-

tives. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
140–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_7

48. Rabe, M.N., Schewe, S.: Finite optimal control for time-bounded reachability in
CTMDPs and continuous-time Markov games. Acta Inf. 48(5–6), 291–315 (2011)

49. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge (1995)

50. Timmer, M.: Efficient modelling, generation and analysis of Markov automata.
Ph.D. thesis, University of Twente, Enschede (2013)

51. Timmer, M., Katoen, J.-P., van de Pol, J., Stoelinga, M.I.A.: Efficient modelling
and generation of Markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32940-1_26

52. Timmer, M., Katoen, J.P., van de Pol, J., Stoelinga, M.: Confluence reduction for
Markov automata. Theor. Comput. Sci. 655, 193–219 (2016)

https://doi.org/10.1007/3-540-45804-2_3
https://doi.org/10.1007/3-540-45804-2_3
https://doi.org/10.1007/978-3-319-15201-1_23
http://bitcoin.org
https://doi.org/10.1007/978-3-319-63387-9_7
https://doi.org/10.1007/978-3-642-32940-1_26
https://doi.org/10.1007/978-3-642-32940-1_26


Explainable AI Planning (XAIP):
Overview and the Case of Contrastive

Explanation (Extended Abstract)

Jörg Hoffmann1(B) and Daniele Magazzeni2

1 Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
hoffmann@cs.uni-saarland.de

2 King’s College London, London, UK
daniele.magazzeni@kcl.ac.uk

Abstract. Model-based approaches to AI are well suited to explainabil-
ity in principle, given the explicit nature of their world knowledge and
of the reasoning performed to take decisions. AI Planning in particu-
lar is relevant in this context as a generic approach to action-decision
problems. Indeed, explainable AI Planning (XAIP) has received interest
since more than a decade, and has been taking up speed recently along
with the general trend to explainable AI. In the lecture, we provide an
overview, categorizing and illustrating the different kinds of explanation
relevant in AI Planning; and we outline recent works on one particular
kind of XAIP, contrastive explanation. This extended abstract gives a
brief summary of the lecture, with some literature pointers. We empha-
size that completeness is neither claimed nor intended; the abstract may
serve as a brief primer with literature entry points.

1 Explainable AI Planning: Overview

The need for explainable AI (XAI) first became prominent in Machine Learn-
ing, where the lack of understandable decision rationales is particularly daunting.
Model-based techniques are fundamentally better suited to providing explana-
tions, yet their explainability has traditionally not received much interest. This
has changed with the XAI trend. In particular, research on explainable AI plan-
ning (XAIP) has received increasing interest in recent years. One culminating
point of this trend is the nascent series of XAIP workshops1 at the International
Conference on Automated Planning and Scheduling (ICAPS).

As is natural for a nascent area, at this time the XAIP landscape is still
in the making. XAIP has attracted interest from researchers with widely dif-
ferent backgrounds and points of view, and it is too early to give a conclusive
systematization into sub-topics and issues of interest. A roadmap for XAIP was

1 See the 2019 edition at https://kcl-planning.github.io/XAIP-Workshops/ICAPS
2019.

c© Springer Nature Switzerland AG 2019
M. Krötzsch and D. Stepanova (Eds.): Reasoning Web 2019, LNCS 11810, pp. 277–282, 2019.
https://doi.org/10.1007/978-3-030-31423-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31423-1_9&domain=pdf
https://kcl-planning.github.io/XAIP-Workshops/ICAPS_2019
https://kcl-planning.github.io/XAIP-Workshops/ICAPS_2019
https://doi.org/10.1007/978-3-030-31423-1_9


278 J. Hoffmann and D. Magazzeni

proposed by Fox et al. [10], categorizations have been attempted [16], and a sys-
tematization of possible objectives has just been published [6]. XAIP includes
topics ranging from epistemic logic to machine learning, and techniques rang-
ing from domain analysis to plan generation and goal recognition. Nevertheless,
some major themes have emerged, that we refer to here as plan explanation,
contrastive explanation, human factors, and model reconciliation.

Plan explanation is the oldest branch of XAIP. It aims at helping humans
to understand the inner workings of a plan suggested by the system (e. g.,
[1,2,13,17,20,24,27]). This involves, in particular, the transformation of planner
output into forms that humans can easily understand; the description of causal
and temporal relations between individual plan steps; and the design of inter-
faces, in particular suitable dialogue systems, supporting human interaction and
understanding.

In contrastive explanation, the aim is to answer user questions of the kind
“Why do you suggest to do A here? (rather than B which seems more appro-
priate to me)”. This is a frequent form of question as highlighted by a recent
analysis [19] of lessons to be learned for XAI from social sciences. Answers to
such questions take the form of reasons why A is preferable over B. Contrastive
explanation is the major focus of this lecture, so we discuss it in more detail in
Sects. 2 and 3.

Human factors research naturally has to be a major component of XAIP,
whose ultimate aim is to communicate with human users. Manuela Veloso and
her team investigate verbalizations describing the robot experience and inten-
tions to human users [22]. Other work [29] focuses on a human’s interpretation
of plans. Learning is used to create a model of the interpretation, which is then
used to measure the explicability and predictability of plans. A recent proposal
is to combine cognitive measures with epistemic planning [21]. Many works, also
ones cited here as belonging to other themes, include human factors research to
varying degrees.

In model reconciliation, the focus is on the agent vs. human having different
world models. The explanation must then identify and reconcile the relevant
model differences. This has been intensively investigated in the last years [4,
15,23,28], with mature results and outreach to the robotics [7] and multi-agent
communities [12].

There are of course various works on XAIP, or relating to XAIP, that do not
fit into this categorization. To name but a few examples: Göbelbecker et al. [11]
proposed a framework for “excuses”, which can be viewed as explanations why
a planning task is unsolvable; Smith [25] put forward the challenge of planning
as an iterative process, which among others requires explanation facilities; and
some work has considered particular forms of communication like lying [5].

2 Contrastive Explanations

As mentioned, an important type of questions in Explainable Planning are con-
trastive questions, of the form “Why action A instead of action B?”. These
questions arise when the planner is suggesting something different from what



Explainable AI Planning (XAIP) 279

the user would expect. In such a scenario, one way to address this type of ques-
tion is to allow the user to compare the plan suggested by the planner with what
she/he was expecting. These are contrastive explanations that can highlight the
differences between the decisions that have been made by the planner and what
the user would expect, as well as to provide further insight into the model and
the planning process. A detailed analysis of contrastive explanations in AI has
been proposed by Tim Miller in [18].

Some recent work introduced contrastive explanations for Explainable Plan-
ning. In particular, in [14] contrastive questions are compiled into constraints
that form a hypothetical model. Such a hypothetical model can be used to gen-
erate the hypothetical plan that the user would expect and from here the con-
trastive explanation can be presented to the user. The work focuses on temporal
planning and presents domain-independent compilations.

Another related line of work focuses on providing contrastive explanations
as a service [3]. Here the idea is to create a wrapper around an existing planner
and use automatic compilations of user questions into models. In this way, the
explanations are generated using the same planner already used by the user, and
this increases the user confidence in the explanations provided.

In the lecture we give an overview of recent progress on using contrastive
explanations for Explainable Planning.

3 Contrastive Explanation of Plan Space Through
Plan-Space Dependencies

We finally consider a line of work, conducted by the authors, starting from the
idea to answer questions “Why does the plan π start with action A rather than
B?” by generating a new plan π′ starting with B and highlighting undesirable
properties of π′. A weakness of this approach is that there may be differences
between π and π′ unrelated to the use of A vs. B. Many comparison aspects
(e. g. which other actions are used, or which “soft” objectives are satisfied) may
be affected by arbitrary decisions in the planner’s search. Therefore, the idea is
to replace the existential answer generating a single alternative plan π′ with a
universal answer pertaining to all possible such alternatives.

This can be done at the level of plan properties: Boolean functions on plans
that capture aspects of plans the user cares about (whether or not the plan
starts with a particular action, whether or not a particular soft objective is
satisfied, etc). Given a set of plan properties, one can determine dependencies
across these properties, i. e., plan-space entailments: a plan property p entails
another property p′ if every plan that satisfies p also satisfies p′. A user question
“Why does the current plan π satisfy p rather than q?” can then be answered
in terms of the properties q′ not true in π but entailed by q: things that will
necessarily change when satisfying q.

We put forward, and explain in the lecture, a generic framework for this
kind of analysis, as well as an instantiation and experiments in the context of
oversubscription planning [8,26] where resources are insufficient to achieve all



280 J. Hoffmann and D. Magazzeni

goals, and plan properties of obvious interest are those goals achieved by a plan.
A first paper on this approach is published at XAIP’19 and serves as a reference
for the reader interested in details [9].

Acknowledgments. This material is based upon work supported by the Air Force
Office of Scientific Research under award number FA9550-18-1-0245. Jörg Hoffmann’s
research group has received support by DFG grant 389792660 as part of TRR 248
(see https://perspicuous-computing.science). Daniele Magazzeni’s research group has
received support by EPSRC grant EP/R033722/1: Trust in Human-Machine Partner-
ships.

References

1. Bercher, P., et al.: Plan, repair, execute, explain - how planning helps to assemble
your home theater. In: Chien, S., Do, M., Fern, A., Ruml, W. (eds.) Proceedings of
the 24th International Conference on Automated Planning and Scheduling (ICAPS
2014). AAAI Press (2014)

2. Bidot, J., Biundo, S., Heinroth, T., Minker, W., Nothdurft, F., Schattenberg, B.:
Verbal plan explanations for hybrid planning. In: Proceedings MKWI (2010)

3. Cashmore, M., Collins, A., Krarup, B., Krivic, S., Magazzeni, D., Smith, D.:
Explainable planning as a service. In: ICAPS-19 Workshop on Explainable Plan-
ning (2019)

4. Chakraborti, T., Sreedharan, S., Zhang, Y., Kambhampati, S.: Plan explanations
as model reconciliation: moving beyond explanation as soliloquy. In: Sierra, C. (ed.)
Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI 2017). AAAI Press/IJCAI (2017)

5. Chakraborti, T., Kambhampati, S.: (how) can ai bots lie? In: Proceedings of the
2nd Workshop on Explainable Planning (XAIP 2019) (2019)

6. Chakraborti, T., Kulkarni, A., Sreedharan, S., Smith, D.E., Kambhampati, S.:
Explicability? Legibility? Predictability? Transparency? Privacy? Security? The
emerging landscape of interpretable agent behavior. In: Proceedings of the 29th
International Conference on Automated Planning and Scheduling (ICAPS 2019).
AAAI Press (2019)

7. Chakraborti, T., Sreedharan, S., Grover, S., Kambhampati, S.: Plan explanations
as model reconciliation. In: Proceedings of the 14th ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI 2019), pp. 258–266 (2019)

8. Domshlak, C., Mirkis, V.: Deterministic oversubscription planning as heuristic
search: abstractions and reformulations. J. Artif. Intell. Res. 52, 97–169 (2015)

9. Eifler, R., Cashmore, M., Hoffmann, J., Magazzeni, D., Steinmetz, M.: Explaining
the space of plans through plan-property dependencies. In: Proceedings of the 2nd
Workshop on Explainable Planning (XAIP 2019) (2019)

10. Fox, M., Long, D., Magazzeni, D.: Explainable planning. In: Proceedings of IJCAI
2017 Workshop on Explainable AI (2017)

11. Göbelbecker, M., Keller, T., Eyerich, P., Brenner, M., Nebel, B.: Coming up with
good excuses: what to do when no plan can be found. In: Brafman, R.I., Geffner, H.,
Hoffmann, J., Kautz, H.A. (eds.) Proceedings of the 20th International Conference
on Automated Planning and Scheduling (ICAPS 2010), pp. 81–88. AAAI Press
(2010)

https://perspicuous-computing.science


Explainable AI Planning (XAIP) 281

12. Kambhampati, S.: Synthesizing explainable behavior for human-AI collaboration.
In: Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS 2019), pp. 1–2 (2019)

13. Khan, O.Z., Poupart, P., Black, J.P.: Minimal sufficient explanations for factored
Markov decision processes. In: Gerevini, A., Howe, A., Cesta, A., Refanidis, I.
(eds.) Proceedings of the 19th International Conference on Automated Planning
and Scheduling (ICAPS 2009). AAAI Press (2009)

14. Krarup, B., Cashmore, M., Magazzeni, D., Miller, T.: Model-based contrastive
explanations for explainable planning. In: ICAPS 2019 Workshop on Explainable
Planning (2019)

15. Kulkarni, A., Zha, Y., Chakraborti, T., Vadlamudi, S.G., Zhang, Y., Kambham-
pati, S.: Explicable planning as minimizing distance from expected behavior. In:
Proceedings of the 18th International Conference on Autonomous Agents and Mul-
tiAgent Systems, AAMAS 2019, Montreal, QC, Canada, 13–17 May 2019, pp.
2075–2077 (2019)

16. Langley, P., Meadows, B., Sridharan, M., Choi, D.: Explainable agency for intel-
ligent autonomous systems. In: Singh, S., Markovitch, S. (eds.) Proceedings of
the 31st AAAI Conference on Artificial Intelligence (AAAI 2017). AAAI Press,
February 2017

17. McGuinness, D.L., Glass, A., Wolverton, M., da Silva, P.P.: Explaining task pro-
cessing in cognitive assistants that learn. In: Proceedings of the 20th International
Florida Artificial Intelligence Research Society Conference (FLAIRS 2007), pp.
284–289 (2007)

18. Miller, T.: Contrastive explanation: a structural-model approach. CoRR,
abs/1811.03163 (2018)

19. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

20. Nothdurft, F., Behnke, G., Bercher, P., Biundo, S., Minker, W.: The interplay of
user-centered dialog systems and AI planning. In: Proceedings of the 16th Annual
Meeting of the Special Interest Group on Discourse and Dialogue (SIGDAL2015),
pp. 344–353 (2015)

21. Petrick, R., Dalzel-Job, S., Hill, R.: Combining cognitive and affective measures
with epistemic planning for explanation generation. In: Proceedings of the 2nd
Workshop on Explainable Planning (XAIP 2019) (2019)

22. Rosenthal, S., Selvaraj, S.P., Veloso, M.M.: Verbalization: narration of autonomous
robot experience. In: Kambhampati, S. (ed.) Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI 2016). AAAI Press/IJCAI (2016)

23. Sarath, S., Alberto, O., Prasad, M., Subbarao, K.: Model-free model reconciliation.
In: ICAPS-19 Workshop on Explainable Planning (2019)

24. Seegebarth, B., Müller, F., Schattenberg, B., Biundo, S.: Making hybrid plans more
clear to human users - A formal approach for generating sound explanations. In:
Bonet, B., McCluskey, L., Silva, J.R., Williams, B. (eds.) Proceedings of the 22nd
International Conference on Automated Planning and Scheduling (ICAPS 2012).
AAAI Press (2012)

25. Smith, D.: Planning as an iterative process. In: Hoffmann, J., Selman, B. (eds.)
Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012),
Toronto, ON, Canada, pp. 2180–2185. AAAI Press, July 2012

26. Smith, D.E.: Choosing objectives in over-subscription planning. In: Koenig, S.,
Zilberstein, S., Koehler, J. (eds.) Proceedings of the 14th International Conference
on Automated Planning and Scheduling (ICAPS 2004), Whistler, Canada, pp.
393–401. Morgan Kaufmann (2004)



282 J. Hoffmann and D. Magazzeni

27. Sohrabi, S., Baier, J.A., McIlraith, S.A.: Preferred explanations: theory and gen-
eration via planning. In: Burgard, W., Roth, D. (eds.) Proceedings of the 25th
National Conference of the American Association for Artificial Intelligence (AAAI
2011), San Francisco, CA, USA. AAAI Press, July 2011

28. Sreedharan, S., Chakraborti, T., Kambhampati, S.: Handling model uncertainty
and multiplicity in explanations via model reconciliation. In: Proceedings of the
Twenty-Eighth International Conference on Automated Planning and Scheduling,
ICAPS 2018, Delft, The Netherlands, 24–29 June 2018, pp. 518–526 (2018)

29. Zhang, Y., Sreedharan, S., Kulkarni, A., Chakraborti, T., Zhuo, H., Kambhampati,
S.: Plan explicability and predictability for robot task planning. In: Proceedings of
ICRA (2017)



Author Index

Boschin, Armand 110
Broda, Krysia 196

Ganter, Bernhard 153
Glimm, Birte 1

Hartmanns, Arnd 250
Hermanns, Holger 250
Hoffmann, Jörg 277

Kazakov, Yevgeny 1

Lajus, Jonathan 110
Law, Mark 196

Magazzeni, Daniele 277
Martinez, Maria Vanina 65

Rudolph, Sebastian 153
Russo, Alessandra 196

Senellart, Pierre 104
Simari, Gerardo I. 65
Stumme, Gerd 153
Suchanek, Fabian M. 110

Teso, Stefano 232

Weikum, Gerhard 110


	Preface
	Organization
	Reasoning Web 2019 Sponsors
	Contents
	Classical Algorithms for Reasoning and Explanation in Description Logics
	1 Introduction
	2 Description Logics
	2.1 Syntax
	2.2 Semantics
	2.3 Reasoning Problems
	2.4 Reductions Between Reasoning Problems

	3 Tableau Procedures
	3.1 Deciding Concept Satisfiability
	3.2 TBox Reasoning

	4 Axiom Pinpointing
	4.1 Computing One Justification
	4.2 Computing All Justifications
	4.3 Computing All Repairs
	4.4 Computing Justifications and Repairs Using SAT Solvers

	5 Summary and Outlook
	A  Appendix
	A.1  Computational Complexity
	A.2  Propositional Logic and SAT

	References

	Explanation-Friendly Query Answering Under Uncertainty
	1 Introduction
	2 The Datalog+/– Family of Ontology Languages
	2.1 Preliminary Concepts and Notations
	2.2 Syntax and Semantics of Datalog+/–
	2.3 Conjunctive Query Answering
	2.4 Datalog+/– Fragments: In Search of Decidability and Tractability

	3 Query Answering over Probabilistic Knowledge Bases
	3.1 Brief Overview of Basic Probabilistic Graphical Models
	3.2 Probabilistic Datalog+/–
	3.3 Towards Explainable Probabilistic Ontological Reasoning

	4 Inconsistency-Tolerant Query Answering with Datalog+/–
	4.1 Relationship with (Classical) Consistent Answers
	4.2 Relationship with IAR Semantics
	4.3 Lazy Answers
	4.4 Towards Explainable Inconsistency-Tolerant Query Answering

	5 Discussion and Future Research Directions
	References

	Provenance in Databases: Principles and Applications
	1 Introduction
	2 Provenance
	3 Example Applications
	4 Beyond Relational Provenance
	5 Outlook
	References

	Knowledge Representation and Rule Mining in Entity-Centric Knowledge Bases
	1 Introduction
	1.1 Knowledge Bases
	1.2 Applications
	1.3 Knowledge Representation and Rule Mining

	2 Knowledge Representation
	2.1 Entities
	2.2 Classes
	2.3 Relations
	2.4 Knowledge Bases
	2.5 The Semantic Web
	2.6 Challenges in Knowledge Representation

	3 Rule Mining
	3.1 Rules
	3.2 Rule Mining
	3.3 Rule Mining Approaches
	3.4 Related Approaches
	3.5 Challenges in Rule Mining

	4 Representation Learning
	4.1 Embedding
	4.2 Neural Networks
	4.3 Knowledge Base Embeddings
	4.4 Challenges in Representation Learning

	5 Conclusion
	A  Computation of Support and Confidence
	References

	Explaining Data with Formal Concept Analysis
	1 Introduction
	2 TL;DR – Formal Concept Analysis in a Nutshell
	3 Concept Lattices
	3.1 Formal Contexts and Cross Tables
	3.2 The Derivation Operators
	3.3 Formal Concepts, Extent and Intent
	3.4 Conceptual Hierarchy
	3.5 Concept Lattice Diagrams
	3.6 Supremum and Infimum
	3.7 Complete Lattices
	3.8 The Basic Theorem of FCA
	3.9 Computing All Concepts of a Context
	3.10 Drawing Concept Lattices
	3.11 Clarifying and Reducing a Formal Context
	3.12 Additive and Nested Line Diagrams

	4 Closure Systems
	4.1 Definition and Examples
	4.2 The Next Closure Algorithm

	5 Implications
	5.1 Implications of a Formal Context
	5.2 Semantic and Syntactic Implication Inference
	5.3 When Does An Implication Follow from Other Implications (Semantically)?
	5.4 When Does an Implication Follow from Other Implications (Syntactically)?
	5.5 The Stem Base
	5.6 Computing the Stem Base

	6 Conclusion
	References

	Logic-Based Learning of Answer Set Programs
	1 Introduction
	2 Background
	2.1 Answer Set Programming
	2.2 Inductive Logic Programming
	2.3 Complexity Theory

	3 Early Approaches to Logic-Based Learning Under the Answer Set Semantics
	3.1 Cautious Induction
	3.2 Brave Induction
	3.3 Induction of Stable Models

	4 Learning from Answer Sets and ILASP
	4.1 Preference Learning in ASP
	4.2 Context-Dependent Learning from Answer Sets
	4.3 ILASP
	4.4 The Complexity and Generality of Learning Answer Set Programs
	4.5 Learning Answer Set Programs from Noisy Examples

	5 Conclusion
	References

	Constraint Learning: An Appetizer
	1 Introduction
	2 Constraint Theories
	3 Learning Hard Constraints
	4 Learning Soft Constraints
	5 Interactive Learning
	6 Further Reading
	References

	A Modest Markov Automata Tutorial
	1 Introduction
	2 Markov Automata
	3 Modelling with Markov Automata
	3.1 Modest for Markov Automata
	3.2 The Modest Toolset
	3.3 Alternative Modelling Languages

	4 Optimising Attacks on Bitcoin
	4.1 Modelling and Evaluating the Double-Spending Attack
	4.2 Optimising the Attack on Trust in Bitcoin

	5 Evaluating a Reentrant Queueing System
	6 Conclusion
	References

	Explainable AI Planning (XAIP): Overview and the Case of Contrastive Explanation (Extended Abstract)
	1 Explainable AI Planning: Overview
	2 Contrastive Explanations
	3 Contrastive Explanation of Plan Space Through Plan-Space Dependencies
	References

	Author Index



