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Abstract. At the beginning, we had started to develop a Czech tele-
phone acoustic model by evaluating various Kaldi recipes. We had a
500-h Czech telephone Switchboard-like corpus. We had selected the
Time-Delay Neural Network (TDNN) model variant “d” with the i-vector
adaptation as the best performing model on the held-out set from the
corpus. The TDNN architecture with an asymmetric time-delay window
also fulfilled our real-time application constrain. However, we were won-
dering why the model totally failed on a real call center task. The main
problem was in the i-vector estimation procedure. The training data are
split into short utterances. In the recipe, 2-utterance pseudospeakers are
made and i-vectors are evaluated for them. However, the real call center
utterances are much longer, in order of several minutes or even more.
The TDNN model was trained from i-vectors that did not match the
test ones. We propose two ways how to normalize statistics used for the
i-vector estimation. The test data i-vectors with the normalization are
better compatible with the training data i-vectors. In the paper, we also
discuss various additional ways of improving the model accuracy on the
out-of-domain real task including using LSTM based models.
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1 Introduction

Deep neural networks (DNNs) have been successfully applied to acoustic mod-
elling for automatic speech recognition (ASR). ASR systems are now capable
of real-world applications, especially if we have plenty of data from the target
domain. However, there can be a performance degradation due to the mismatch
between training and testing conditions, such as speaker, recording channel,
speaking style, and acoustic environment [3,12]. Many approaches have been
proposed in recent years to achieve a robust ASR or to improve the DNN adapt-
ability. Generally, there are two ways that can also be combined [1,15]. First, a
boost of the training data variability [6,7]. Second, an adaptation of the acoustic
model [5,11,13]. Variability of the training data can be improved by an addition
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of more sources of real speech or by an artificial modification of the existing data
itself – usually called data augmentation. In this paper, we have evaluated these
approaches on a real call center speech recognition task. We have identified that
a proper use of the i-vector adaptation is crucial. Especially an i-vector statistics
normalization. Therefore, we focus on these techniques in detail below.

2 I-Vector Calculation

We only outline the main points of the i-vector calculation here. More detail can
be found in [4,11]. The acoustic feature vectors xt ∈ RD are seen as samples
generated from a universal background model (UBM) represented as a GMM
with K diagonal covariance Gaussians

xt ∼
K∑

k=1

ckN (·;μk(0),Σk) (1)

with mixture coefficients ck, means μk(0) and diagonal covariance matrices Σk.
Moreover, data xt(s) belonging to speaker s are drawn from the distribution

xt(s) ∼
K∑

k=1

ckN (·;μk(s),Σk) (2)

where μk(s) are the means of the GMM adapted to speaker s. The basis of the
i-vector algorithm is to assume a linear dependence between the speaker-adapted
means μk(s) and the speaker-independent means μk(0) of the form

μk(s) = μk(0) + Tkw(s), k = 1 . . . K (3)

Tk, of size D × M , is called the factor loading submatrix corresponding to
component k and w(s) is the speaker identity vector (i-vector) corresponding to
s. Each Tk contains M bases which span the subspace with important variability
in the component mean vector space.

For the i-vector estimation, we assume a fixed soft alignment of frames to
mixture components. We estimate the posterior distribution of w given speaker
data as

p(w|xt(s)) = N (w;L−1(s)
K∑

k=1

TT
k Σ−1

k Θk(s),L−1(s)) (4)

with precision matrix L(s) of size M × M expressed as

L(s) = I +
K∑

k=1

γk(s)TT
k Σ−1

k Tk (5)

The quantities that appear in (4) and (5) are the zero-order and centered first-
order statistics and are defined as

γk(s) =
∑

t

γkt(s), (6)
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Θk(s) =
∑

t

γkt(s)(xt(s) − μk(0)) (7)

with γkt(s) being the posterior probability of mixture component k given xt(s).
The i-vector that we are looking for is simply the MAP point-estimate of the
variable w which is the mean of the posterior distribution from (4), i.e.

w(s) = L−1(s)
K∑

k=1

TT
k Σ−1

k Θk(s). (8)

The inversion of matrix L−1(s) could be numerically unstable. More robust vari-
ant to i-vector estimation is based on a linear solver. E.g. Kaldi implementation
uses a linear conjugate gradient solver.

Because of nature of the MAP point-estimate, low amount of accumulated
data leads to an i-vector close to the central zero point. A DNN trained from
short utterances works with i-vectors that are not far from the central zero point.
Long utterances in the test set produce precise i-vectors far from the central zero
point that the DNN never saw. In that case, the long test utterance i-vectors
cause failure of the recognizer. Also, we have investigated the online scenario,
where first several words of the utterance are recognized well, but when the
utterance length starts to be significantly longer than the typical training length,
recognition errors ramp up. The solution is an i-vector statistics normalization
comparable with the training utterances length distribution.

3 I-Vector Statistics Normalization Methods

The most efficient method of i-vectors normalization is to scale statistics
(Eqs. (5), (6), and (7)) before the i-vector calculation because of the additive
nature of statistics and real meaning of them (amount of accumulated data in
seconds).

3.1 Length Normalization

The simplest way is to scale down statistics to some predefined length of data
in seconds. The proper length may be derived from training utterance (pseudos-
peaker) lengths. Disadvantage of this approach is a convergence to a constant
i-vector for very long utterances. This i-vector calculated from long-term statis-
tics is not precisely compatible with the short-term i-vectors in training data.

3.2 Exponential Forgetting

To focus more on the local short-term information, a local time-window may
be used. Similar, but simple to implement, is the exponential forgetting of the
statistics. Every time-step, the statistics accumulators are multiplied by a con-
stant less than one. The constant value αe is set compatible to a time-window
length Tw, thus easy to understand

αe = 1 − 1
Tw

, (9)

where Tw is the time-window length in time-step units, e.g. frames.
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4 Experiments

4.1 Training Data

As a main source of our training data, we have a 500-h Czech telephone
Switchboard-like corpus. It is called Bezplatne Hovory (BH) (eng. Toll-free
Calls). The corpus consists of unrestricted spontaneous speech in variable condi-
tions and speaking styles. The training data part was filtered a bit, we omitted
very short utterances and utterances with majority of non-speech events. The
total length of data for training was 406.6 h. The total number of calls was 5,535.
It does not match perfectly with the number of speakers because some speakers
may call more than once.

To add more variability and robustness into the training data, we added three
additional corpora:

– Siemens – a read speech corpus recorded through a telephone channel. It is a
small corpus of 10.7 h of speech in total, but with a large number of speakers:
1,121.

– Czech part of SpeechDat-E (SD-E) – a read speech telephone corpus [8]. The
Czech part used for training consists of 739 speakers and 20.8 h of speech in
total.

– Telephone Quality Speech Corpus (TQSC) – a read speech telephone corpus
recorded at our department. Each of 1,929 speakers uttered 40 sentences.
These sentences were uttered by native Czech male and female speakers, and
they contain a large number of silent parts and low–level noises. The used
training data has 26.2 h in total.

All added corpora are read speech ones, because we were interested in test-
ing whether the addition of a read speech into the training data improves the
spontaneous speech recognition results.

4.2 Test Data and Recognizer Setup

We have prepared two tests. First, an in-domain test called BH Test. The data for
this test were taken from a held-out part of the main training corpus (BH). We
have selected 221 utterances of 26 speakers. The test data has 17.3min in total.
The in-domain test showed how an acoustic model performed in the matching
conditions.

Second, an out-of-domain test from a real call center task. We have split an
Operator and Customer part of the test for the evaluation. Operators are skilled
speakers with more formal speech in contrast with more spontaneous customers.
We selected 20 operator and 20 customer calls/utterances. The calls were about
several minutes long and both groups were balanced to have 1.2 h of speech in
total.
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We have used our proprietary recognizer optimized for online speech recog-
nition [10]. We have used two trigram language models. A general telephone
conversation model with 550k words for the BH Test and a task-specific
33k-words model for the Call center test. OOV words were added explicitly
to the vocabulary to avoid disturbing the recognition results.

4.3 Acoustic Model Training

Two kinds of acoustic models were trained.

TDNN Models. were trained in Kaldi [9,14]. The procedure followed a Kaldi
Switchboard example recipe. In our prior work, we tested various recipes and
setups. Note that not every model architecture is usable for a real-time recog-
nition. Therefore, we are restricted with absence of any offline technique and
limited by the total latency. From models that are real-time recognition com-
patible, we have selected the “s5c” TDNN Switchboard recipe “tdnn_d”.

The model is trained in three stages. First, a base GMM-HMM is trained. The
triphone clustered states (senones) and alignments produced by the GMM-HMM
were then used for further TDNN training. Low resolution MFCC features were
used for the entire GMM-HMM training. The GMM-HMM was trained with
LDA, MLLT, SAT techniques. Second and third stages used high resolution
MFCC features.

The second stage was estimation of an i-vector model and extraction of i-
vectors for the entire training set. The i-vector model was based on pseudospeak-
ers that were made by setting two utterances from a speaker as a pseudospeaker
data. It boosted the speaker variability and enriched the i-vectors space. For
even more speaker-space variability, a speed perturbation with 0.9 and 1.1 speed
ratios was used [6]. Thus, the total amount of training data was tripled to almost
1400 h.

The third stage was the TDNN training itself. The TDNN has 6 hidden layers
with 1024 ReLU neurons. The time-delay coefficients were as follows: (−2, −1,
0, 1, 2), (−1, 2), (−3, 3), (−3, 3), and (−7, 2). The total delay of the network is
12 frames. The final softmax layer has 7,149 outputs – senones – triphone states.
The net was trained by Kaldi GPU parallel implementation with momentum
SGD.

LSTM Models. follow the first two stages of the TDNN training [2]. They
share the same features, triphone states, alignments, and i-vectors. Only a NN
architecture and training procedure were different. We used Chainer 5.0 as a NN
training framework for all LSTM models.

During our preliminary tests, we had found out that a residual neural net-
work (ResNet) with LSTM layers worked best for our data. The neural network
architecture used in this paper was 6-layer LSTM network with 1024 units in
each layer. The skip connections were between 4-th and the last (linear) layer
(see Fig. 1). First, we trained each network using Adam optimizer and then we
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performed 3 training stages with the momentum SGD with momentum equal
to 0.9 and learning rate equal to 1e − 3, 1e − 4, and 1e − 5, respectively. In
all training stages, we used batch size 128 and dropout p = 0.2. We used early
stopping, where each training stage was stopped when a validation data criterion
increased in comparison to the last epoch.

Fig. 1. Our LSTM ResNet architecture

4.4 Results

First, we evaluated the impact of i-vectors on the TDNN network performance.
We trained several TDNN models. The models were trained on the BH only
dataset and on a combined datasets BH, Siemens, SD-E, and TQSC (called “All”
in the figures). We also trained each TDNN model with and without i-vectors.
The models with i-vectors used exponential forgetting with αe equivalent to 5s
time window length. All TDNN models were trained on speed perturbed (SP)
data with speed ratios 0.9 and 1.1.

From the Fig. 2 it can be seen, that models with i-vectors have worse WER
than models without i-vectors on the in-domain test. However, on the out-of-
domain tests, models with i-vectors perform better. The biggest impact of adding
i-vectors on the in-domain test was for model trained on BH only, the resulting
WER increased by 1.39%. The biggest improvement on out-of-domain tests was
for model trained on All datasets, where call center customer WER improved by
3.37%. The use of All datasets compared to only BH had negligible impact on
models without i-vectors, but on models with i-vectors it noticeably improved
WER for all tests. The biggest improvement was 1.03% lower WER on call center
customer test.
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Fig. 2. Word Error Rate [%] of TDNN Models on In-domain and Out-of-domain Recog-
nition Task

Then, we trained LSTM models as described in Sect. 4.3. As with TDNN, all
LSTM models were trained on BH only dataset and also on combined datasets
called “All”. We also trained all models with and without i-vectors. And we
trained all models with and without speed perturbation (SP).

The results for LSTM models are in Fig. 3. From the figure, it is obvious
that for all tests, in-domain and out-of-domain, all models with i-vectors per-
form worse than models without i-vectors. The biggest difference in WER with
i-vectors compared to without is for a model trained on All datasets without
SP, where the call center customer test WER got worse by even 17.96%. Speed
perturbation improved results for all test cases except for models trained on BH
with i-vectors. In-domain test in this case has lower WER, but out-of-domain
tests have higher WER, with call center customer WER increasing by 2.5%. The
best performing model for out-of-domain call center operator test was a model
trained on All datasets with SP without i-vectors, having 17.36% WER. The
best models for other out-of-domain test (customer) and in-domain test were
both trained on BH only with SP without i-vectors, but their WER were very
close in comparison to the best model for call center operator test mentioned
above.

Next, we evaluated the performance of two i-vector normalization techniques.
When we started working with TDNN models with i-vectors, we found out that
the models performed well on in-domain test, but failed on out-of-domain tests.
We found out, that the reason was an utterance length. Our out-of-domain test
(real call center data) contained utterances much longer than our training data
and some form of i-vector normalization had to be employed.
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Fig. 3. Word error rate [%] of LSTM models on in-domain and out-of-domain recog-
nition task

The image Fig. 4 shows a histogram of a pseudospeaker utterance length for
our training and out-of-domain test data. It can be seen that training pseudos-
peaker data are generally up to 10 s (typically 3–5 s) long while test utterances
are mostly longer than one minute.

We have evaluated two i-vector normalization techniques, the exponential
forgetting and the length normalization as described in Sect. 3. We have trained
a model on various normalized data lengths and evaluated WER of each nor-
malization technique. Used model was TDNN trained on all datasets with SP.
The results can be seen in Fig. 5. From the figure it can be said that the best
results for all the normalization techniques are generally obtained using data
length from 3 to 6 s. Length normalization gives best WER on both tests for
data length of 3 s and exponential forgetting gives best WER on operator test
for data length of 4 s and on customer test for data length of 6 s, although WER
for all tests in this range are very similar. Exponential forgetting gives better



Tuning of Acoustic Modeling and Adaptation Technique for a Real Task 243

Fig. 4. Histogram of pseudospeaker utterance length in training and test data

Fig. 5. Impact of data length on the word error rate [%] of TDNN models with different
i-vector normalization techniques
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WER than length normalization on all our tests for all normalized data lengths.
The WER obtained using exponential forgetting compared to the length nor-
malization is improved in average by 7.3% for operator test and by 10.4% for
customer test.

5 Conclusion

In this paper, we described our experiences with the development of the Czech tele-
phone acoustic model. We have tested models based on two architectures, TDNN
and LSTM, suited for the real-time recognition task. At first, the models totally
failed on a real call center task. We have identified the main problem in the i-vector
estimation procedure and propose and evaluate two i-vector statistics normaliza-
tion methods. The use of the exponential forgetting compared to the length nor-
malization was far better. The forgetting constant αe was robust to set and a value
matching a typical training pseudospeaker data length worked well.

We also tested various additional techniques: data augmentation, addition of
real data, and i-vector adaptation. Generally, we may recommend using the speed
perturbed data augmentation. Other techniques behaviour was model architec-
ture dependent. TDNN models worked well with i-vectors on the call center test
and addition of the out-of-domain real data did not help. In contrast, with LSTM
models, the i-vector adaptation failed, speed perturbation helped in all cases, and
adding the read speech data helped only on the call center operator test.

Summarized, LSTM based model worked better by more than 1% absolutely
than TDNN on the in-domain test. In contrast, the TDNN model with the proper
i-vector normalization was more robust and worked slightly better on the out-
of-domain test. It seems, that the LSTM model has an ability to outperform the
TDNN one. However, some other adaptation technique needs to be developed
to improve its robustness on the out-of-domain data.
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