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1 Department of Telecommunications and Media Informatics,
Budapest University of Technology and Economics, Budapest, Hungary

{tarjanb,szaszak}@tmit.bme.hu
2 SpeechTex Ltd., Budapest, Hungary

fegyo@speechtex.com
3 THINKTech Research Center, Budapest, Hungary

mihajlik@thinktech.hu

Abstract. Recognition of Hungarian conversational telephone speech
is challenging due to the informal style and morphological richness of
the language. Recurrent Neural Network Language Model (RNNLM)
can provide remedy for the high perplexity of the task; however, two-
pass decoding introduces a considerable processing delay. In order to
eliminate this delay we investigate approaches aiming at the complexity
reduction of RNNLM, while preserving its accuracy. We compare the
performance of conventional back-off n-gram language models (BNLM),
BNLM approximation of RNNLMs (RNN-BNLM) and RNN n-grams in
terms of perplexity and word error rate (WER). Morphological richness
is often addressed by using statistically derived subwords - morphs - in
the language models, hence our investigations are extended to morph-
based models, as well. We found that using RNN-BNLMs 40% of the
RNNLM perplexity reduction can be recovered, which is roughly equal
to the performance of a RNN 4-gram model. Combining morph-based
modeling and approximation of RNNLM, we were able to achieve 8%
relative WER reduction and preserve real-time operation of our conver-
sational telephone speech recognition system.

Keywords: Speech recognition · Neural language model · RNNLM ·
LSTM · Conversational telephone speech ·
Morphologically rich language

1 Introduction

Recognition of conversational telephone speech poses great challenge due to the
low acoustic quality (limited bandwidth, speaker noises, lossy compression etc.)
on the one hand and high perplexity of spontaneous speaking style on the other
hand. The less constrained grammar and word order of informal speech make the
language model estimation less accurate due to the increased variability of both
the individual words and their possible sequential combinations. Data sparsity
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issues caused by morphological richness of the language or lack of sufficient
training data make the problem even harder.

In the last few years neural networks have been successfully applied in the
field of language modeling [2,11]. Recurrent networks have proved particularly
efficient for the task [11] especially if they exploit Long Short-Term Memory
(LSTM) units [8,17]. However, the RNNLMs have a vast amount of inner states
that makes their usage in the first-pass of an Automatic Speech Recognition
(ASR) system computationally infeasible. RNNLMs hence are usually utilized
in a second decoding pass for rescoring the hypotheses obtained with a less
heavy LM. The two-pass decoding, however, introduces a considerable processing
delay [7,17].

Various techniques have been proposed to address direct applicability of
RNNLMs in the single-pass decoding scheme. A possible solution is to approx-
imate the probability distributions of RNNLMs with conventional back-off n-
gram language models [1,2,6]. Although the converted model (RNN-BNLM)
loses its ability to model long contexts and distributed input features, it can
be directly applied for first-pass decoding that makes these techniques attrac-
tive. Recently another approach called RNN n-gram has also been introduced [3].
RNN n-gram language models are special recurrent networks trained on n-grams
sampled from the training data. As a consequence, the size of the modeled con-
text here is also limited, but RNN n-gram models are able to learn word embed-
dings just like standard RNNLMs.

Our ambition in this paper is to compare conventional BNLMs, RNNLMs
and n-gram approximated RNNLMs in a morphologically very rich language,
Hungarian. The rich morphology of Hungarian allows for a weakly constrained
word order, and per se, results in an extreme large vocabulary. We, moreover,
go for spontaneous speech. All of these three effects – varying word order, large
vocabulary and spontaneity – hamper statistic models’ ability to yield consistent
estimates by high confidence. Since data sparsity issues can be often handled by
estimating language models on statically derived subword units (morphs) [5,9,
10] in morphologically rich languages, we extended our investigation to morph-
based language models, as well.

Besides the related work already cited, another paper, written by Tüske
et al. [20] is also closely related to our work. In this comprehensive study a
RNNLM, RNN n-gram models and BNLMs are compared on various English
and German ASR tasks. RNN n-gram models were found to be superior to
BNLMs both in terms of word perplexity and WER, whereas high order RNN
n-grams were close to the performance of an unrestricted RNNLM. However,
in [20] ASR results were obtained with two-pass decoding, and German (and
obviously English) morphology is less complex than Hungarian.

Although subword language modeling has been used in morphologically rich
Finnish ASR systems for more than a decade now [5,9], it was not found
beneficial for spontaneous conversational speech until recently. In [7], sub-
word RNNLMs were trained on Finnish and Estonian conversations and used
for rescoring lattices generated with conventional back-off models. Subword
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language models have already been applied successfully for recognition of Hun-
garian conversational speech [10,19], but neural language models have not been
used before to the best of our knowledge. We found only one mention of appli-
cation of morph-based approximated RNNLMs in the first pass of an ASR sys-
tem [13]. This is, however, a preprint paper from which the most relevant subword
results are missing.

Overall, we consider the main contributions of our work are (1) presenting
the first ASR results with using morph-based RNN-BNLMs in single-pass decod-
ing; (2) comparing the performance of BNLMs and n-gram approximations of
RNNLM (RNN n-gram models, RNN-BNLMs); (3) carrying out for the first time
an evaluation of neural language models on very rich morphology Hungarian for
speech recognition tasks on spontaneous speech; and (4) doing this preserving
real-time operation capabilities by low delay.

In next section the experimental database is introduced along with the
applied preprocessing techniques. In Sect. 3 we describe the techniques we used
for training our different types of language models. Next Sect. 4 presents the
experimental results, while in the conclusions we highlight the most impactful
outcome of our work.

2 Database

2.1 Training Data

Original Data. Our experiments were performed on anonymised manual tran-
scripts of telephone customer service calls which were collected from the Hun-
garian Call Center Speech Database (HCCSD). We selected 290 h of recordings
from HCCSD for training purposes. The corresponding transcripts that were
used for building the language models consisted of 3.4 million word tokens and
contained 100,000 unique word forms. In order to accelerate the training of recur-
rent networks only the most frequent 50,000 word forms were retained in the
final vocabulary. Out-Of-Vocabulary (OOV) words and sentence endings were
replaced with 〈unk〉 and 〈eos〉 symbols respectively.

Morph Segmented Data. Language modeling of morphologically rich lan-
guages poses a great challenge, since the large number of word forms cause data
sparseness and high OOV rate. A common remedy is to segment words into
smaller parts and train language models on these subword sequences [9,10]. One
of the most popular statistical word segmentation algorithm is Morfessor [5],
which was specifically designed for processing morphologically rich languages.
We applied the Python implementation of the original algorithm called Mor-
fessor 2.0 [21]. Hyperparameters of the segmentation were optimized on the
validation test set (see Sect. 2.2).

Morph segmentation increased the number of tokens in the training text with
around 12% (from 3.4 million to 3.8 million). However, number of types decreased
to around 32,000 from 100,000. In order to provide sufficient amount of training
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samples to 〈unk〉, the vocabulary size of morph-based models was limited in
30,000 morphs. Sentence endings were replaced with 〈eos〉 just like in the case of
word-based text data. Non-initial morphs of every word were tagged to provide
information to the ASR decoder for the reconstruction of word boundaries (see
left-marked style in [14]).

2.2 Test Data

Almost 20 h of conversations were selected from HCCSD for testing purposes.
The test dataset was split into two disjoint parts (see Table 1). The validation
set (∼7.5 h) and the corresponding text transcripts were used for optimization
of the hyperparameters (e.g. learning rate control, early stopping), whereas eval-
uation set (∼12 h) was used to test the models and report experimental results.
Morph-based segmentation of evaluation dataset was performed with Morfessor
2.0 toolkit using the segmentation model we optimized on the validation set.

Table 1. Test database statistics

Validation Evaluation

Duration [h:m] 7:31 12:12

# of word tokens 45773 66312

# of morph tokens 57849 84385

word OOV rate [%] 2.7 2.5

morph OOV rate [%] 0.07 0.08

3 Language Modeling

3.1 Back-Off N-Gram Models

The conventional, count-based, back-off language models (BNLMs) were trained
using the SRI language modeling toolkit [15]. In order to maximize their per-
formance, the baseline BNLMs applied neither count-based n-gram cut-offs nor
entropy-based pruning [16]. All BNLMs were estimated on cross-sentence n-grams
and smoothed with Chen and Goodman’s modified Kneser-Ney discounting [4].

3.2 Recurrent Language Model

The 2-layered LSTM RNNLM structure we used in our experiments is illustrated
in Fig. 1. This type of network has already been successfully applied for other
language modeling tasks [3,22]. Our implementation1 is based on the TensorFlow
sample code of the Penn Tree Bank language model presented in [22].

1 https://github.com/btarjan/stateful-LSTM-LM.

https://github.com/btarjan/stateful-LSTM-LM
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The hyperparameters of the neural network were optimized on the validation
set. One batch consists of 32 sequences containing 35 tokens each (words or
morphs). LSTM states are preserved between the batches, so stateful recurrent
networks are trained according to TensorFlow terminology. The 650 dimension
word/morph embedding vectors are trained on the input data, since we did
not find any benefit of Hungarian pretrained embeddings. In order to match
the dimensionality of embeddings the output dimension of LSTM neurons is
also set to 650. After testing several optimization algorithms, we decided on the
momentum accelerated, Stochastic Gradient Descent (SGD). The initial learning
rate was set to 1, which is halved after every epoch where the cross entropy loss
increases. For regularization purposes, dropout layers with keep probability of
0.5 and early stopping with patience of 3 epochs are applied.

Fig. 1. The recurrent LSTM language model structure used in our experiments

3.3 RNN N-Grams

Although RNNLM can model word sequences with outstanding accuracy [11,17],
the need for large context prevents its practical use in many cases. The modeled
context can be reduced if we organize training data into n-grams [3]. It was
shown that this limitation of history length does not necessarily have a drastic
impact on perplexity [20].

Two examples for the many-to-one structure of our RNN n-gram implemen-
tations are illustrated in Fig. 2. The hyperparameters and optimization used in
RNN n-gram training were the same as those we applied for the RNNLM – except
for the sequence length and batch size. Sequence length of RNN n-grams depends
on the actual n-gram order (n-1), whereas – thanks to the shorter sequences –
RNN n-grams can use a larger batch size (512). An additional important differ-
ence compared to RNNLM is that RNN n-gram models do not apply dropout
between the two LSTM layers.
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Fig. 2. Two examples for the applied RNN n-gram structures (3-gram and 4-gram)

3.4 Approximation of RNNLM with BNLM

There are various approaches for the approximation of an RNNLM with a back-
off ngram language model [1,6]. In [1] three methods are compared and a text
generation based approximation is suggested. The main idea of this approach
is that the BNLM is estimated from a large text which was generated with
the RNNLM. For training the RNN-BNLM models we generated 100 million
words/morphs with the corresponding RNNLM (RNN-BNLM 100M). In order
to assess the importance of corpus size, we generated a text with 1 billion morphs
(RNN-BNLM 1B), as well. The generation of 1 billion morphs took around
one week with four NVIDIA GTX 1080 Ti GPUs. Note, that perplexity results
in Sect. 4.1 were measured with unpruned RNN-BNLM models, whereas RNN-
BNLMs used in ASR decoding are pruned to limit runtime memory usage.

4 Experimental Results

In the first part of this section, we present perplexities measured on the evalua-
tion text set of our conversational speech database. We compare the performance
of the language modeling techniques that were described in Sect. 3. Our aim is to
measure the perplexity reduction that can be achieved with RNNLM compared
to BNLMs and how much of this reduction can be preserved with the n-gram
approximated models. In the second part, we utilize these language models in
an ASR system to show whether the application of subwords and approximated
RNNLMs can turn to reduction in WER.

4.1 Perplexity Results

All perplexity results were measured with cross-sentence language models as it
was discussed in Sect. 3. Note that BNLMs and RNN-BNLMs were estimated
only up to 6-grams as larger model order did not result significant reduction in
perplexity.
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Word-Based Models. Perplexity results of word-based models are shown in
Table 2. What can be clearly seen at the first glance is the superiority of RNN-
based language models over BNLMs. Perplexity of RNN n-gram models improves
step by step as we increase the modeling context, while results of BNLMs satu-
rates at around 5-gram. This can be explained by the fact that recurrent models
can provide a more accurate probability estimate for unobserved n-grams with
the help of distributed modeling of input tokens.

Table 2. Perplexities of word-based backoff n-gram, RNN n-gram and backoff approx-
imated RNN language models as function of n-gram order

Order BNLM RNN-BNLM 100M BNLM + RNN-BNLM 100M RNN n-gram

2 130.8 136.3 125.0 124.4

3 92.4 94.5 82.5 77.8

4 85.7 86.8 74.4 64.2

5 84.4 85.5 72.8 58.3

6 84.1 85.4 72.5 54.9

8 52.4

10 49.5

14 47.1

18 46.4

inf 44.6

In the last row of Table 2, where the order of context is indicated with infi-
nite (inf.), we can find the perplexity of the LSTM RNN language model (see
Sect. 3.2). This implies that this model takes (theoretically) all previous words
into account to estimate probability. RNNLM can halve the perplexity of con-
ventional BNLM, however as RNN n-gram results suggest it is only partly due
to the modeling of large context, but also due to the previously mentioned gen-
eralization abilities of RNNs [20].

The perplexity of the BNLM approximation of the RNNLM (RNN-BNLM
100M) is slightly worse, but very close to the perplexity of the original BNLM.
The interpolated model (BNLM + RNN-BNLM 100M), however, improves per-
plexity with around 10–15% which suggests that there are different n-gram prob-
ability distributions behind the similar perplexities. If we would like to capture
the effectiveness of RNNLM approximation, we could say that the performance
of a pure BNLM model is bit worse than a RNN 3-gram, while the interpolated
language model is slightly better than the RNN 3-gram.

We can get an even better insight to the benefit of n-gram approximated
RNNLMs, if we estimate the perplexity reduction associated with each approach.
Assuming that we utilize 4-gram language models which usually represent a
good trade-off between precision and memory consumption, the total amount
of perplexity improvement between the baseline 4-gram BNLM (85.7) and the
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LSTM RNNLM (44.6) is 41.1. After the interpolation of the BNLM and the
RNN-BNLM models perplexity decreases with 11.3. This means that around
27% of potential perplexity reduction can be recovered during the conversion
of RNNLM to BNLM. If we were able to utilize RNN 4-gram (64.2) in the
downstream task, this recovery rate could go up to around 52%.

Morph-Based Models. Just like in the case of word-based models, morph-
based RNN language models significantly outperform BNLMs for every con-
text size (see Table 3) as BNLM perplexities saturate at around 5 or 6-grams.
Although morph-based perplexities are lower than word-based ones, note that
the two perplexities can not be directly compared, since the vocabulary size of
the two model types differs (50k vs. 30k).

Table 3. Perplexities of morph-based backoff n-gram, RNN n-gram and backoff approx-
imated RNN language models as function of n-gram order

Order BNLM RNN-
BNLM 100M

BNLM +
RNN-BNLM 100M

RNN-
BNLM 1B

BNLM +
RNN-BNLM 1B

RNN
n-gram

2 120.7 127.6 114.9 122.6 113.4 112.2

3 83.0 87.7 74.1 80.2 71.1 69.7

4 76.2 80.9 66.6 71.8 62.7 57.5

5 74.7 79.6 64.9 70.1 60.8 52.1

6 74.4 79.4 64.5 69.8 60.3 48.7

8 45.7

10 43.4

14 43.2

18 40.7

inf 40.2

The morph-based results related to RNN-BNLM 100M model are also very
similar to the word-based ones. The approximated model itself is a bit worse
than the original BNLM; however, the interpolated model reduces perplexity
with around 10–15%. The question naturally arises: what if a much larger corpus
is generated with the morph-based RNNLM. In order to answer this question
we generated a ten times bigger corpus containing 1 billion morphs. As it can
be seen in Table 3 RNN-BNLM 1B significantly outperforms not just the RNN-
BNLM 100M model but also the original BNLM. Moreover, the interpolated
model (BNLM + RNN-BNLM 1B) further decreases perplexity, which suggests
that in the future it may be useful to generate even larger corpora.

We calculated the perplexity recovery rate for the morph-based language
models, as well. Interpolation of the morph-based BNLM and RNN-BNLM 100M
models recover almost the same proportion of the potential perplexity reduc-
tion as the word-based models (∼29%). The 1 billion-morph-corpus, however,
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increases this rate to 40%, which means almost half of the RNNLM-based per-
plexity improvement can be utilized in the ASR system. This way, morph-based
BNLM approximations of RNNLMs got much closer to RNN 4-grams than in
the case of word-based models.

4.2 Speech Recognition Experiments

Perplexity is a useful measure to compare language models with a shared vocab-
ulary. However, to assess the impact of different language modeling approaches
on the ASR task, the best is to directly compare the automatic transcripts.

Experimental Setup. Classical hybrid Hidden Markov-Model (HMM) app-
roach with Deep (feed-forward) Neural Network (DNN) probability distributions
were used with three hidden layers consisting of 2500 neurons and output layer
with 4907 neurons (senones). The acoustic model was trained on the 290 h of
the HCCSD 8 kHz sampled training data using the KALDI toolkit [12]. As for
acoustic features 13 dimensional MFCC (Mel-Frequency Cepstral Coefficients)
were applied followed by LDA+MLLT [12]. Shared-state context-dependent
phone models were used, three states per phones. Acoustic and language model
resources were compiled into weighted finite-state transducers and decoded with
VoXerver [18] ASR decoder.

Speech Recognition Results. We performed single-pass decoding with the
BNLM and RNN-BNLM models and calculated WER of each output (see
Table 4). In order to ensure the fair comparison among the modeling approaches,
we pruned each RNN-BNLM so that they had similar runtime memory foot-
print as the baseline BNLM models (∼1GB). The interpolated language models
(BNLM + RNN-BNLM) are also evaluated in a setup, where larger memory
consumption is allowed.

ASR results of word-based language models show similar trends as perplex-
ity results. The BNLM approximation of RNNLM (RNN-BNLM 100M) has a
slightly higher WER than the baseline BNLM; however, the interpolated model
(BNLM + RNN-BNLM 100M) outperforms both. The relative WER improve-
ment of interpolated model compared to baseline BNLM is only around 2%.
Memory limit does not seem to have significant impact on the results.

Replacing words with subwords in the baseline BNLM yields 2% relative
WER reduction, which is in accordance with our former findings [19]. The morph-
based BNLM trained on the 100-million-morph corpus (RNN-BNLM 100M) has
larger WER than the original BNLM, just like in the case of word-based mod-
els. Using a ten times larger corpus to train the approximated model, however,
seems to change the trend. Morph-based RNN-BNLM 1B model is the first
approximated RNN model that outperforms a baseline BNLM by itself with-
out interpolation. This observation underlines the importance of the size of the
generated text. The difference between 100M and 1B models are also reflected
in their interpolated counterparts. BNLM + RNN-BNLM 1B model can reduce
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Table 4. Word Error Rate of the ASR system using the proposed language models

Token

type
Model

# of

n-grams

[million]

Memory

usage

[GB]

WER

[%]

Word

BNLM 5.0 1.3 29.2

RNN-BNLM 100M 4.8 0.9 30.2

BNLM+RNN-BNLM 100M
7.0 1.5 28.5

29.7 6.1 28.4

Morph

BNLM 5.1 1.0 28.7

RNN-BNLM 100M 8.5 1.1 28.9

RNN-BNLM 1B 7.2 0.9 28.6

BNLM+RNN-BNLM 100M
7.9 1.1 27.7

31.8 4.2 27.5

BNLM+RNN-BNLM 1B
7.2 1.1 27.3

46.6 5.9 27.0

WER of morph-based BNLM by 5% or even 6% if runtime memory consumption
is not a restricting factor.

All in all, the performance of morph-based BNLM approximations of RNN
language models have exceeded our expectations. We managed to reduce the
word error rate of our speech transcription system by 8% relative by preserving
real-time operation.

5 Conclusions

In this paper our aim was to improve our Hungarian conversational telephone
speech recognition system by handling morphological richness of the language
and transferring information from a recurrent neural language model to the back-
off n-gram model used in the single-pass decoding. We compared various types of
word-based and subword-based n-gram approximated RNNLMs and found that
by generating a text with 1 billion morphs around 40% of the perplexity improve-
ment associated with the RNNLM can be transferred to the BNLM model. With
the combination of subword modeling and RNNLM approximation, we were able
to achieve 8% relative WER reduction and preserve real-time operation of our
conversational telephone speech recognition system. The perplexity we achieved
with BNLM approximation of RNNLMs is roughly equal to the performance of
an RNN 4-gram. The fact that RNN-BNLM was able to keep up with RNN
n-gram until 4-gram is a quite promising result, but it also suggests that there
is room for further improvement in utilizing higher order RNN n-grams in ASR
decoding.

We consider the main contributions of our work are (1) presenting the first
ASR results with using morph-based RNN-BNLMs in single-pass decoding; (2)
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comparing the performance of BNLMs and n-gram approximations of RNNLM
(RNN n-gram models, RNN-BNLMs); (3) carrying out for the first time an
evaluation of neural language models on very rich morphology Hungarian for
speech recognition tasks on spontaneous speech; and (4) doing this preserving
real-time operation capabilities by low delay.

In the future, we plan to place more emphasis on the study of OOV words.
We would like to measure the recognition rate of OOV words and compare
it among the word and morph-based language modeling approaches proposed
in this paper. Moreover, we would like to evaluate models that extract features
with character-based convolutional neural networks. Extending our work to other
ASR tasks and share knowledge among them utilizing transfer learning methods
is also a very promising direction of further research.
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