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Abstract. Multi-talker speech and moving speakers still pose a sig-
nificant challenge to automatic speech recognition systems. Assuming
an enrollment utterance of the target speakeris available, the so-called
SpeakerBeam concept has been recently proposed to extract the target
speaker from a speech mixture. If multi-channel input is available, spatial
properties of the speaker can be exploited to support the source extrac-
tion. In this contribution we investigate different approaches to exploit
such spatial information. In particular, we are interested in the ques-
tion, how useful this information is if the target speaker changes his/her
position. To this end, we present a SpeakerBeam-based source extrac-
tion network that is adapted to work on moving speakers by recursively
updating the beamformer coefficients. Experimental results are presented
on two data sets, one with artificially created room impulse responses,
and one with real room impulse responses and noise recorded in a con-
ference room. Interestingly, spatial features turn out to be advantageous
even if the speaker position changes.

Keywords: Robust speech recognition and Multi-channel speech
enhancement · Speaker adaptation · Conference scenario

1 Introduction

In recent years, robust multi-channel Automatic Speech Recognition (ASR) has
been a major focus of research which led to large improvements in transcription
accuracy [1]. These gains are mainly due to the development of novel neural
network (NN) architectures [2,3] and the combination of neural network (NN)s
with well-known speech enhancement techniques like statistical beamforming
[4,5] and dereverberation [6]. However, realistic application environments often
still present a challenge to Automatic Speech Recognition (ASR) systems
because of overlapped speech and moving speakers [7].
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Recently, several promising approaches for source separation [8–10] and
source extraction [11–14] in the presence of multiple simultaneously active speak-
ers were presented. This contribution focuses on source extraction, where one is
interested in only one of the speakers in a mixture.

Different techniques have been proposed to identify the target speaker. In
the so-called SpeakerBeam (SB) approach, the target speaker is identified by
an enrollment, also called adaptation utterance (AU), which the speaker has to
provide in advance and from which his/her spectral characteristics are obtained
[11,13]. This information is then used to guide a neural network for mask esti-
mation to focus on the target speaker.

The desired speaker can also be identified by the speaker’s position as in [14],
where a neural network uses oracle information of the target speaker location to
focus on a specific source, assuming the speaker does not move. In [12] a beam-
forming vector is estimated on a keyword preceding the user’s command. While
this setting may be appropriate for operating a digital home assistant, in many
other application scenarios, such as a meeting, it would be very inconvenient if
utterances had to start with a keyword to identify and locate the target speaker.
Additionally, a fixed beamformer estimated on a AU or a keyword cannot capture
changes in the speaker position or noise statistics.

In this contribution we are concerned with the extraction of a target speaker
from multi-talker speech. We would like to take advantage of the spatial diversity
present in the speech mixture while facing the problem that the spatial char-
acteristics of the target speaker may change. To be specific, we allow speakers
to change their position from one utterance to the next. The proposed system
is based on the SpeakerBeam concept developed in [11], which we extend to a
block-online source extraction system. We assume that an AU has been recorded
for each speaker in advance, when no competing speakers are present. This AU
is used to estimate a beamforming vector, which is applied to the AU itself to
improve the extraction of the speaker embedding vector, which captures the tar-
get speaker’s spectral characteristics. It is further used to enhance the distorted
input signal of the neural network. Thereby, emphasizing all signal components
originating from the position of the target speaker during the AU. To cope with
subsequent changing speaker positions, the beamformer coefficients are recur-
sively updated.

Spatial features have proven very effective in enhancing the performance of
neural network supported acoustic beamforming [15–17]. It is, however, unclear,
to which extent they are also useful if speaker positions change. We therefore test
the effectiveness of those features by comparing results for stationary speakers
and speaker position changes between utterances. It will be shown that spatial
features computed on the speech mixtures remain to be effective.

The paper is structured as follows: In Sect. 2 a short overview over the system
is presented, where Sect. 2.1 focuses on the beamforming vector estimation and
Sect. 2.2 explains the neural network structure used for mask estimation. In
Sect. 3 the systems are evaluated on a database presented in Sect. 3.1. Final
conclusions are drawn in Sect. 4.
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2 System Overview

We assume a multi-channel signal captured by D microphones. In the short-time
Fourier transform (STFT) domain the overlapped speech Y and the adaptation
utterance A can be expressed as

Y(t, f) = Xi(t, f) +
∑

j �=i

Xj(t, f) + N(t, f) (1)

A(t, f) = U(t, f) + N(t, f). (2)

Here, Y(t, f), N(t, f) and Xk(t, f) are the STFT coefficient vectors of the speech
mixture, of the noise and of the k-th source image at the microphones. A(t, f)
represents the distorted and U(t, f) the clean AU. The time and frequency indices
t and f will be dropped wherever possible without sacrificing clarity.

2.1 Beamforming

Speech enhancement is done using the well known Minimum Variance Distortion-
less Response (MVDR) beamformer, which minimizes the noise power without
introducing distortions on signals originating from a target direction, by opti-
mizing the cost function [18]:

FMVDR = argmin
F

FHΦNNF s.t. FHH̃ = 1, (3)

where H̃ = [1, ..., H̃D]T is the target speaker acoustic transfer function (ATF)
normalized to a reference microphone, which is called relative transfer function
(RTF), and ΦNN is the noise spatial correlation matrix (SCM).

We employ the solution of the MVDR cost function in the form presented
in [19]:

FMVDR =
Φ−1

NNΦXX

tr
{
Φ−1

NNΦXX

}u, (4)

where u is a unit vector pointing to the reference microphone, tr{·} is the trace
operator and ΦXX is the target speech SCM. Here, the target speech SCM is
forced to follow the rank-1 approximation [20] by using:

Φ̃XX = aaH · tr{ΦXX}/tr{aaH} (5)

with a = ΦNNP {
Φ−1

NNΦXX

}
and P {·} as the principal component of the matrix

given in parentheses. Both the noise and target speaker SCMs are estimated
using speech and noise masks Mν , where ν ∈ [X,N]. In case of block-wise
estimation a recursive update of the SCM is applied [21]:

Φνν(nN) = βνΦνν((n − 1)N) + (1 − βν)Φ̂νν(nN), (6)
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with n as the block-index, βν as the forgetting factor and

Φ̂νν(nN) =
1

∑N−1
l=0 Mν(nN − l)

N−1∑

l=0

Mν(nN − l)Y(nN − l)YH(nN − l). (7)

In the offline (batch) case, Φνν(nN) is estimated on the whole utterance, i.e.,
βν = 0 and N is set to the number of frames in the utterance.

Equation (6) requires an initialization. The noise SCM is initialized either by
assuming white noise and thereby a diagonal matrix or by estimating the SCM
of diffuse noise:

Φdiff(f) = ϕN · sinc
(

2πf · Fmax

F
· d/c

)
, (8)

where d is the matrix of distances between the microphones, c is the velocity of
sound, Fmax the Nyquist frequency, F the number of frequency bins, and ϕN is
the noise power.

The target speech SCM may either be initialized using the RTF of the speaker
position and the rank-1 approximation Φ̃XX = ϕXH̃H̃H with ϕX as the speech
power, or using the SCM of the AU.

For comparison purposes, a second speech enhancement method is employed
using non-adaptive beamforming. A set of MVDR beamforming coefficient vec-
tors is precomputed, assuming concentrated sources at fixed, predefined posi-
tions and a diffuse noise field, as described in [22]. The predefined positions for
the FixedBF are set in a circular form around the array with 10◦ distance, a
radius of 1.5 m and 0.4 m height relative to the array, resulting in 36 positions.
During the AU phase, an acoustic source localization is performed using the
Steered Response Power - Normalized Arithmetic Mean (SRP-NAM) algorithm,
as described in [23], and the beamforming vector corresponding to the estimated
position is selected for source extraction. This method will be referred to as
FixedBF.

2.2 Mask Estimation

In this section we describe the mask estimation required for SCM updates given
in Eq. (6). It is a modified version of the SB source extraction network introduced
in [11].

The neural network for mask estimation can be split in three parts: a recur-
rent neural network (RNN) layer, followed by an adaptation layer and a clas-
sification layer, consisting of two feed forward layers (FFs). In the adaptation
layer one larger feed forward layer is split into several sub-layers. The outputs
of these sub-layers are combined prior to the application of the non-linearity σ,
using weights α:

h
(�)
k = σ

⎛

⎝
N(�−1)∑

j=1

h
(�−1)
j

M∑

m=1

αmWmjk

⎞

⎠ , k = 1, . . . , N (�) (9)
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Fig. 1. System overview of the presented spatial speaker extractor.

where h
(�−1)
j is the output of the j-th node in the preceding, (� − 1)-st, layer,

and h
(�)
k the k-th node output in the �-th layer. N (�) is the number of nodes in

layer �, Wmjk the learn-able weight matrix coefficients, where m indicates the
sub-layer, and M the number of adaptation weights. Here, α = [α1, ..., αM ]T is
provided by an Auxiliary Network (AUX), to which the AU is used as input.
This enables the mask estimator (ME) to focus on the speaker which was present
during the AU.

The SB approach shows a degradation in performance when applied in a
scenario with overlapping speakers with similar spectral characteristics as is
observed in speakers of the same gender. To alleviate this problem spatial infor-
mation is employed, assuming that the target speaker spoke the AU and his
contribution to the speech mixture Y from the same position in the room. First,
both the AU and the distorted signal Y are enhanced using a beamformer esti-
mated from the SCM calculated on the AU as described above. Additionally,
spatial features as described in [16] are extracted from both the AU and Y:

cosIPD(t, f, p, q) = cos (∠yt,f,p − ∠yt,f,q) , (10)
sinIPD(t, f, p, q) = sin (∠yt,f,p − ∠yt,f,q) , (11)

where p, q are channel indices and ∠ is the phase operator. In the case of more
than two channels all combinations of channel pairs are employed. However, at
the output of the auxiliary network a mean pooling over the channel pairs is
carried out to allow a more robust estimation in case of defective channels.

Furthermore, a beamformer is estimated on the AU. This beamformer, called
“initial beamformer” in the following, is used to enhance the AU and the mixed
speech to compute enhanced features.

To summarize, three sets of features are input to the AUX and mask estima-
tion network: first, log-spectral features computed from the observed microphone
signals, second, enhanced log-spectral features obtained after applying the ini-
tial beamformer to the microphone signals, and third, the aforementioned spatial
features.
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Fig. 2. System overview of the spatial speaker extractor reusing the estimated beam-
forming vector as initial beamformer for the next block of frames.

A block diagram of the presented system is depicted in Fig. 1.
Both the features computed from the initial beamformer and the spatial

features computed on the AU are informative only under the assumption that
both the speech of the target speaker in the speech mixture and the AU originate
from the same position in the room. Therefore, a system dependent on these
features will probably fail in a moving speaker scenario. However, the spatial
information computed from the speech mixture can still be beneficial to extract
the target speech, in particular if the competing speaker has similar spectral
characteristics.

We propose to use a block-online recursive mask estimation system as
depicted in Fig. 2. The initial beamformer estimated on the AU is used to
enhance the first block of input frames which in turn are used to update the
SCMs and estimate a new beamforming vector. This new beamforming vector
then replaces the initial beamformer coefficients to compute the above mentioned
set of enhanced features on the next block of frames. By this recursive update the
enhanced feature set remains able to capture valid information in the presence
of speaker movement or changes in the noise statistics.

3 Experiments

The presented systems are compared using four evaluation metrics: signal to
distortion ratio (SDR) following the implementation presented in [24], an “inva-
sive” SDR (InvSDR) [25], whereby the speech and the distortion are separately
processed by the beamformer, and the SDR is computed as the power ratio of the
resulting two outputs, the intelligibility measure STOI [26] and the perceptual
speech quality metric PESQ [27]. All systems will be evaluated in terms of their
gain compared to the signal at a reference microphone prior to the enhancement.
Additionally, the systems are evaluated in terms of Word Error Rate (WER) of
a subsequent Automatic Speech Recognition (ASR) system.

All signals are recorded or resampled with 8kHz. For the STFT computation,
a 512-point FFT is used with a Hann window and an 75% overlap, resulting in
257 frequency bins for each time frame. The ME consists of an LSTM layer of
1024 units, two feedforward layers with 1024 units each and one output layer.



204 J. Heitkaemper et al.

The first feedforward layer is split into 30 sub-layers for the SB approach. The
auxiliary network has two feed-forward layers of 50 units each and an output
layer of 30 units, as in [11]. Finally, for the block-online estimation we use a
block size of N = 5 frames, corresponding to 80 ms.

Fig. 3. Sketch of one of the meeting rooms the impulse responses and noises were
recorded in. Room size approx. 4m × 6m. Drawn true to scale.

3.1 Database Description

We evaluate the proposed source extraction system on two databases. The first
is the one described in [28], which consists of 30000 training, 500 development
and 1500 evaluation examples. Each example is created by randomly choosing
two utterances from the Wall Street Journal (WSJ) database and convolving
the signals with six-channel room impulse responses (RIRs) with reverberation
times T60 ∈ [20 ms, 500 ms] simulated by the Image Methode [29]. The shorter
of the generated multi-channel signals is padded with zeros to arbitrarily fall
in the duration of the longer signal. The observation utterance then consists of
the sum over both utterances, to which white Gaussian noise with an Signal to
Noise Ratio (SNR) of 15 to 25 dB is added. The speaker sets of training, devel-
opment and evaluation sets are mutually exclusive. Therefore, we characterize
the database as open. For the AU we convolve a second utterance spoken by the
target speaker with the same RIR and add white Gaussian noise. This database
will be referred to as RirSim and is used for all parameter tuning and network
training.

The second database is created similarly to the one described above, how-
ever the RIRs and the noise are replaced by real signals recorded in a con-
ference scenario. The real RIRs and noises were recorded using a flat 8-channel
Microelectromechanical systems (MEMS) microphone array, 7 cm × 10 cm in size
and of elliptic shape. The recordings took place in two different meeting rooms
with reverberation times of T60 ≈ 1s at the premises of voice INTER connect
GmbH in Dresden. Figure 3 shows the floor plan of one of these rooms. The
microphone array was flush-mounted at the center of the meeting room table
in both cases. The table height is 0.73 m. Impulse responses for ten different
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Table 1. Gains of the beamformer output compared to the signal at a reference micro-
phone w.r.t. different performance measures, and word error rate for different feature
sets of the speaker extraction system on RirSim.

Method Add. features ΔSDR ΔInvSDR ΔSTOI ΔPESQ WER

Enhanced Spatial dB dB %

Offline – – 6.48 6.49 0.10 0.26 32.66

– ✓ 9.54 9.36 0.14 0.40 29.43

✓ – 10.16 10.22 0.16 0.46 27.32

✓ ✓ 11.09 11.07 0.16 0.51 23.50

Online ✓ ✓ 7.57 9.00 0.15 0.41 30.61

lateral speaker positions per room were recorded using a coaxial loudspeaker at
an assumed human speaker’s mouth height of 1.15 m. The speaker positions for
the depicted room, together with their directions of view, are shown as squares
with arrows in Fig. 3. Four different types of typical meeting room noise sources
(air-conditioning, paper shuffling, projector, typing noises) were recorded using
the microphone array. The database thus created will be called RirReal.

3.2 ASR Backend

The Automatic Speech Recognition (ASR) backend used the wide residual net-
work structure proposed in [30] with logarithmic mel filterbank input features
and two Long-Short-Term-Memory (LSTM) layers. This acoustic model is com-
bined with a trigram language model from the WSJ baseline script provided by
the KALDI toolkit [31]. All hyper-parameters were taken from [30]. The same
neural acoustic model, trained on the artificially reverberated WSJ utterances
of RirSim, is used for both databases. The network is trained on alignments
extracted with a HMM model trained in KALDI. The decoding is performed
without language model rescoring.

3.3 Source Extraction in Static Speaker Scenario

In Table 1 the performance of different feature sets for the extraction systems
described above are compared on the RirSim database. All systems use the log-
spectral magnitude of the observation. As additional features we compare the
log-spectral magnitude of the observation enhanced using an initial beamforming
vector estimated on the AU, spatial features according to Eqs. (10) and (11), or
both the spatial features and the enhanced signals. If the method is offline, both
the beamforming vector and mask estimation are carried out in batch mode on
the whole utterance.

All described features achieve better results than the original SpeakerBeam
system, whose performance is given in the first results row of Table 1. Even
the online system achieves better results using the additional features compared
to the original offline SpeakerBeam system. Therefore, we conclude that using



206 J. Heitkaemper et al.

Table 2. Gains of the beamformer output compared to the signal at a reference micro-
phone w.r.t. different performance measures, and word error rate for non-stationary
speaker on RirReal. Here Position (Pos.) 0 symbolizes the first speaker position which
is equal to the position during the AU whereas Position 1 indicates a change in the
position. “only ME” indicates that the additional spatial features are used as input to
the mask estimation network only.

Method Add. features Pos. ΔInvSDR ΔSTOI ΔPESQ WER

Enhanced Spatial dB %

FixedBF – – 0 −1.72 0.03 −0.04 63.27

1 −6.71 −0.08 −0.05 94.51

Offline ✓ ✓ 0 2.76 0.05 0.11 36.26

1 0.12 −0.02 0.03 88.82

Online ✓ ✓ 0 3.93 0.07 0.13 34.79

1 1.41 0.01 0.05 63.94

only ME 0 3.38 0.06 0.13 35.34

1 1.71 0.02 0.06 62.18

F(� − 1) only ME 0 3.43 0.05 0.11 35.12

1 2.29 0.03 0.08 50.44

spatial information is beneficial for our source extraction system in case of static
speakers. In [17] we present an in-depth evaluation of the described features in
case of static speakers.

3.4 Source Extraction in the Presence of a Speaker Position Change

To simulate a change in speaker position, we divided the WSJ database in pairs
of two utterances, where the first is convolved with the same set of RIRs as the
AU and second is convolved with a different set of RIRs than the first, while
keeping the competing speaker in the speech mixture and his/her position in the
room fixed in both utterances.

The change of the target speaker position calls for adaptive beamforming.
We thus expect the online beamformer to outperform the offline beamformer.

While the target speaker position in the first of the two utterances coincides
with the one present in the AU, this no longer holds for the second. This renders
the spatial information gained from the AUX incorrect. Table 2 displays the
extraction results achieved with different features for online and offline systems.
Note that neither the Acoustic Model (AM) nor the ME is retrained on the new
RIR and noise.

Using spatial features during mask estimation but not in the AUX improves
the extraction in case of changes in the target speaker position as can be seen in
the entry with “only ME” in the column “spatial”. Similarly, can be concluded
that it is beneficial to update the initial beamforming vector for each block of
frames, see the entry with F(� − 1) under the column “enhanced”.
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Fig. 4. Cosine distance between the block-online beamforming vector and an oracle
offline beamforming vector calculated on the speech and noise image averaged over 500
utterances. Speaker positions changed at frame #600.

Additionally, the results confirm that the extraction achieved by a recursively
updated beamforming vector is only slightly impeded by the change in speaker
position, whereas a fixed beamformer estimated once for the concatenated utter-
ances suffers significantly from changes in the speaker position. This is especially
true for the fixed beamforming vector estimated on the AU since no information
about the concurrent speaker is included in the noise SCM estimation.

To emphasize the benefits of recursive beamformer adaptation the cosine
distance between the recursively estimated beamforming vector and an oracle
offline beamformer is depicted in Fig. 4. Here, the coefficients of the offline beam-
former have been obtained separately on the first and second utterance using
the oracle speech and noise images at the microphones. The displayed tracking
curves are averaged over multiple utterances.

The figure showcases the ability of the online beamforming vector to adapt
to a change in speaker position. Furthermore, the recursive update displays an
invariance concerning the forgetting factor βν

4 Conclusion

This paper offers a thorough investigation of speaker extraction systems guided
by an AU in case of changes in the speaker position. We showcased the benefits
of recursively updating a beamforming vector and investigated the usefulness
of spatial features in case of target speaker position changes. While the spatial
characteristics of the target speaker extracted from the adaptation utterance
becomes outdated, the use of spatial features for mask estimation to extract a
target speaker from a speech mixture remains beneficial. This can be attributed
to the fact that they allow to separate speakers based on their spatial diversity,
thus not relying solely on different spectro-temporal properties of the speakers.
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