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Abstract. Hybrid TTS systems generally try to optimise their cost
function with the voice provided to generate the best signal. The voice is
based on a speech corpus usually designed for a specific purpose. In this
paper, we consider that the voice creation is realized through a corpus
design step under reduction constraints. During this stage, a recording
script is crafted to be optimal for the target TTS engine and its purpose.
In this paper, we investigate the impact of sharing information between
the corpus design step and the hybrid TTS optimisation step.

We start from a reduced voice optimized for a unit selection system
using a CNN-based model. This baseline is compared to a hybrid TTS
system that uses, as its target cost, a linguistic embedding built for the
recording script design step. This approach is also compared to a stan-
dard hybrid TTS system trained only on the voice and so that does not
have information about the corpus design process.

Objective measures and perceptual evaluations show how the integra-
tion of the corpus design embedding as target cost outperforms a classical
hard-coded target cost. However, the feed-forward DNN acoustic model
from the standard hybrid TTS system remains the best. This emphasizes
the importance of acoustic information in the TTS target cost, which is
not directly available before the voice recording.

Keywords: Hybrid speech synthesis · Corpus reduction ·
Linguistic and Phonological embeddings

1 Introduction

Nowadays, there are two main strategies for Text-To-Speech (TTS) synthesis.
The first one is based on unit selection [1] and the second one is the Statisti-
cal Parametric Speech Synthesis (SPSS) [2,3]. The basic idea of unit selection-
based TTS is to choose and concatenate a sequence of units from a natural
speech corpus. The selected units should have linguistic features as close as pos-
sible to the target ones, associated to the text to vocalize, and the concatena-
tions of consecutive unit signals should minimize differences in their joins. SPSS
uses a vocoder and is known for the smoothness of its generated signals and
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its flexibility. Conversely, unit selection based TTS systems provide more
natural-sounding signals than SPSS [2,4].

The advantages and disadvantages of these TTS systems naturally led to the
design of hybrid systems. The combination of both systems usually involves sta-
tistical models trained on the voice to predict parameters of an ideal generated
speech and to guide a unit selection decoder that concatenates real signal seg-
ments extracted from the voice. Recent studies and the last Blizzard challenges
have revealed good achievements of hybrid systems (see for instance [4–6]). In
the last years, deep learning models such as Deep Neural Networks (DNNs)
and Recurrent Neural Networks (RNNs) have been successfully used as acoustic
models in hybrid systems, replacing HMMs, like in [7]. The main challenge in
designing acoustic models is that the linguistic sequence does not have the same
length as the acoustic sequence. For instance, in [8], a one to many approach
is followed to deal with this problem. A LSTM-based auto-encoder is employed
and permits to generate a sequence of acoustic frames representative of the input
phoneme. As another example, in [9], each candidate phone unit is converted
into a fix-length unit vector, called Unit2Vec, and DNNs are used as target and
concatenation cost functions.

In order to manage the variable sequence length problem, a similar process
has been applied in [10], a feed forward DNN for a one to one approach models
phoneme frames, based on frame position, and the euclidean distance in the
embedding space is used as the TTS target cost function. This approach also
provides better results than an expert target cost.

In all cases, hybrid TTS systems are trained on a speech corpus independently
of how it has been built. It may not lead to a significant difference when the
voice is large enough, offering a good internal acoustic diversity. But, when the
size of the voice is constrained in some ways, as in industrial applications which
often need a high quality recorded voice, the adequacy between the voice and
the TTS engine may impact the quality of the generated signals [11–13].

The cost, e.g. in terms of annotation time or recording time, to build a
TTS voice for a professional usage is correlated to the length of the recording
script. Hence, creating a voice under cost constraints requires to craft carefully
the sentences to guarantee a good TTS quality in the end. To design such a
script, a usual method is the selection of a subset of sentences as short and
linguistically rich as possible from a large text corpus. This approach can be
formalized as an optimisation problem in a discrete space [14]. The properties
that the linguistic and phonological content of this subset has to achieve can
stem from TTS engine needs or from the considered application independently
or not of the TTS system. For instance, in [18,19], the phonological distribution
in the script has to be close to a target one: natural, uniform or representative of
a given domain. Conversely, the constraints and the nature of attributes to cover
can be specific to the TTS engine, like in [17] where the phonological attributes
used for the target cost function are covered, or in [20,21] where the internal
descriptors of a SPSS system are considered, or, also in [19] where a pruning
is done to remove units that are least used by the unit selection TTS system.
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The resolution of this set covering problem for TTS corpus design has been
widely studied in past studies [14–17].

Whereas the unit selection approach can support a small well-adapted voice
corpus, the learning processes in hybrid systems are greedy in terms of voice
data. Therefore, one may ask how to address and improve the use of hybrid
TTS systems in a context of parsimonious voice building. In this paper, we
investigate how the information from the voice creation process can be useful to
help a hybrid TTS engine. To avoid disruption in the experiments, it focuses only
on the inclusion of the information as the target cost of the hybrid TTS system.
Using a unique voice, built from a simulated and controlled corpus design pro-
cess, three variants of the same system are compared. The first one is based on an
expert target cost function as in classical unit selection framework, whereas the
target cost function of the second one is trained on linguistic, phonological and
acoustic contents of the voice. This second approach illustrates a usual hybrid
TTS system, as described in [10]. At last, the third approach uses a target cost
function whose definition takes into account the voice creation process. The pro-
posed method relies on the partition and covering of the embedding space used
to design the recording script. Since this embedding is learnt before the recording
phase, only linguistic and phonological features are required. Using objective and
foremost perceptual evaluations, the experiments help to understand relations
between corpus design and hybrid TTS.

This paper is organized as follows. First, Sect. 2 introduces the experimen-
tal framework. Especially, it explains how the corpus design is simulated and
presents the resources used for training. Since all compared systems use the
same voice, a voice creation process under size constraint is described in Sect. 3.
This process is compared with the standard set-covering approach as a prelimi-
nary experiment. Section 4 details the different systems considered and especially
differences between the hybrid ones. Evaluations and results are given in Sect. 5
before an overall discussion in Sect. 6.

2 Experimental Framework

In order to carry out the experiments presented in this paper and take into
account the assumption of a recording phase, we have avoided the constraint
of this recording work by reducing an already recorded and annotated corpus
as in [11,25]. We have chosen an audio-book read by a professional speaker as
initial corpus, thus limiting the bias inherent to the recording phase (speaker
experience, recording conditions, etc.).

From this book, a randomly selected continuous part T has been taken away
as a test set and the other part, denoted F , is named the full corpus in the
remainder.

The voice creation step is simulated by the selection of a sentence set S from
F , based on linguistic and phonological features only; the voice corresponds to
the set of the signals associated to S. The objective is to find the best set S to
synthesize the entire book, and the voice quality is evaluated using the subset T .
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To illustrate the recording time constraint, S may be not longer than a given
ratio of F in number of phoneme instances, and for the presented experiments,
this ratio has been set to 10% of F .

The initial corpus, i.e. the entire audio-book, contains 3,339 utterances of a
French expressive audio-book spoken by a male speaker. The overall length of
the speech corpus is 10 h44. More information on the annotation process can be
found in [23]. F is composed of 3,005 utterances and 362,126 phoneme instances.
The test set T contains the 334 other sentences from the initial corpus.

For all experiments, synthesis is done by the IRISA TTS unit selection sys-
tem [22]. It can also be used as a hybrid TTS system like in [10].

3 Voice Construction and Preliminary Experiment

As explained in Sect. 1, several approaches can be used for corpus design under
size constraint. The corpus design method used to build the voice that feeds
all evaluated systems should be carefully selected so that the comparisons are
fair. It needs to be usable in a hybrid TTS context and also leads to good per-
formances with a unit-selection system. Among the methods optimized for a
specific TTS engine (as in [17]) and others based on distributional information
about the target domain (as in [19]), the latter seems preferable. This is particu-
larly true since the corpus used here is in a consistent domain (a full audio-book
as explained in 2). At last, distributional information can be well modeled by
Neural Networks and can then be integrated into a hybrid TTS workflow. This
section details the proposed corpus design method used to create the voice in
further experiments. Moreover, in a preliminary experiment, this method will be
compared to standard approaches to ensure its relevance.

The way to select sentences for the voice is accomplished as follows. Utter-
ances from F are used to train an auto-encoder based on a multi-layer Convo-
lution Neural Network (CNN) as illustrated in Fig. 1. The activation function is
tanh and the loss function is the Mean Squared Error (MSE). The input vectors
are composed of 296 components of categorical and numerical types automat-
ically computed. The categorical attributes represent information about quin-
phonemes, syllables, articulatory features, and Part Of Speech for the current,
previous and following words. These features are converted to a one-hot vector.
The numerical features take into account information such as the phoneme posi-
tion inside the word or utterance. These numerical features are normalized so
that all the entries of the linguistic vector are in the range [0, 1]. The linguistic
content of each input utterance is then represented by the sequence of linguistic
feature vectors associated to the phonemes that compose it.

By taking the encoder part as the embedding model, each utterance of F is
transformed into a sequence of vectors in the embedding space and its associated
average vector is chosen to characterize this utterance. This results in a fixed-
length vector whose size is the number of features (30) in the embedding space
for each utterance. A K-Means algorithm is then applied to partition the set
of average vectors represented F . From each cluster, the utterance whose the
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Fig. 1. Deep convolutional auto-encoder used to train linguistic and phonological
embeddings.

Table 1. Objective evaluation of the proposed script design strategy using the TTS
global cost.

Corpus design method Average TTS global cost 95% confidence interval

Random 1.77 ± 0.01

Set covering Greedy 1.75 ± 0.02

CNN+KMeans 1.60 ± 0.02

average vector is the closest to the center is selected and add to S. This subset S
is thus built to represent the linguistic richness of F by covering all its clusters,
with the length about 10% from that of F . The natural speech signals associated
to elements of F are used as the TTS voice corpus of the experiments described
below.

In order to assess the achievements of this script design method and its
derived voice, a second voice with an identical length is built using a classic set
covering strategy [17]. For this, the features used are diphones with the same
linguistic as for the CNN. The utterances of T are then vocalized using the two
voices respectively but the same TTS system, namely the IRISA system based
on an expert target cost function. Generated outputs are objectively evaluated
using the TTS global cost (a linear combination of target and concatenation
costs) and also compared using a perceptual assessment. Besides, as baseline,
for each utterance of T , the average TTS global cost stemming from the use
of 10 randomly selected voices is added. As for the perceptual evaluation, it is
conducted in the form of an AB test with 17 listeners. From the 334 samples of
T , 100 samples are evaluated at least 6 times. Results are summarized in Table 1
and Fig. 2.

Whereas the TTS global cost mean provided by the standard set covering is
close to the one resulting from the random selection method, the CNN-Kmeans
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Fig. 2. Perceptual evaluation of the proposed script design strategy.

based corpus design method gives a significantly lower TTS global cost mean.
This latter approach is also preferred during the listening test.

For the next experiments, we then keep this voice and the associated creation
process based on the combination of CNN and KMeans algorithm. They will be
used with different TTS engine configurations to investigate the relation between
voice creation and hybrid synthesis.

4 TTS Systems Under Comparison

The objective of the paper is answering to this question: Is it helpful to use the
same phoneme representation in the corpus design step and in the TTS target
cost?

To do so, three methods for calculating the TTS target cost are compared. An
expert target cost function which is a weighted sum of linguistic features is used
as the baseline. The two other methods are based on embedded representations
at phone level. The first one uses the same embedding for the corpus design step
and the target cost function while the third one uses a specific embedding for
the target cost function taking into account acoustics. The target cost is the
euclidean distance in the embedding space between the candidate phone and the
target one.

In the following, these three systems are described and then compared.

4.1 Expert-Based Target Cost (Exp)

In this method, the system used is a state of the art unit selection system. The
target cost is defined as a weighted sum of linguistic features and has since been
improved over the years [10]. The concatenation cost is the same as in [22],
defined as a sum of euclidean distances on acoustic features between consecutive
units.

4.2 Same Embedding for Corpus Design and TTS (CNN )

The second method replaces the expert target cost function by a cost function
relying on the phoneme level embedding created during the corpus design step.
Consequently, we propose here to use the same embedding model and phoneme
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representation for both corpus design and TTS target cost. The CNN auto-
encoder described in Sect. 3 represents the linguistic information of phoneme by
a vector of latent features. The TTS target cost is the euclidean distance in the
embedding space between the candidate and target units. The CNN model is
trained at the utterance level with F corpus and uses only linguistic information.
One of the assets of this model is having contextual information of phonemes at
the utterance level which could help a better representation in the embedding
space.

4.3 Different Embeddings for Corpus Design and TTS (MLP)

The third method uses an embedding model specific to the target cost function
using both linguistic and acoustic information. According to the proposition in
[10], a feed-forward DNN is trained to predict the acoustic information at frame
level for each input phoneme vector. The timing features are concatenated to
embedding features in order to help prediction of the corresponding acoustic
features. As in the previous system, the target cost function corresponds to the
euclidean distance in the embedding space.

The learning data is the linguistic and acoustic information corresponding
to phoneme/frame of the voice corpus S. The timing features are the phoneme
duration in seconds and the relative position of the corresponding frame inside
the phoneme. The acoustic features consist of a 60 dimension Mel-Frequency
Cepstral Coefficients (MFCC) vector, and the log of fundamental frequency F0.
The acoustic features are centered and reduced (unit variance). The frame length
is 10 ms.

After training, the encoder part that transforms linguistic vector of phonemes
into embedding space is detached and used as the embedding model.

4.4 Systems Differences

Table 2 summarizes and highlights the differences of the two embedding models
described above and Fig. 3 displays the three approaches compared in this study.

Table 2. Embedding models comparison for both hybrid systems.

Method CNN MLP

Training data Full corpus (F) Voice corpus (S)

Input Linguistic Linguistic+Timing

Output Linguistic Acoustic

Training Level Utterances (Sequence of phonemes) Frames of signals

It is important to notice that the MLP model benefits from acoustics while
the CNN model is only learnt with linguistic data. Also, both models learn, by
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Fig. 3. TTS systems considered, namely Exp, MLP and CNN from top to bottom. The
only difference come from the target cost (T.C.) computation.

construction, an embedding at the phoneme level, even if the MLP model is
trained at the frame level (see [10]).

Besides, the CNN model is trained on the full corpus F and not only on the
voice corpus S to maximize the quantity of data used for learning. The learning
data is samples at the utterance level for the CNN model whereas the MLP one
considers samples at the frame level. Hence, the MLP has much more data for
training. It would not have been efficient to train the CNN model just with 300
samples from the S corpus.

Considering all this, we want to see if the consistency of embeddings between
the corpus design step and the synthesis step helps to improve synthesis. How-
ever, the use of an acoustic model, with the MLP model, might not be completely
fair. To be complete, further experiments are planned to try to inject acoustics
in the corpus design step.

5 Experiments and Results

In the following subsections, we report the objective and perceptual evaluation
results for the three methods.

5.1 Objective Evaluation

Since for the three methods, the target cost functions measure distances in three
different (embedding or not) spaces, it is not possible to compare their outputs
based on TTS costs. However, the same script is used as the test set and the
Concatenation rate is then more appropriate to compare TTS performances. For
each test utterance, this statistic is the number of concatenations in synthetic
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signal divided by the total number of possible concatenations. As for this mea-
sure, the lower is the better as it means more consecutive units from the same
utterance. Less concatenation is assumed to result in higher quality. This mea-
surement is computed for the test part (T ) and the rest of full corpus (F − S).
It helps to find how methods can be generalized to other scripts than F .

As shown in Table 3, the CNN method has better statistics than Exp method
and MLP beats both for test part.

Table 3. Concatenation rate (%) results; confidence interval are calculated by using
boot strap method with alpha = 0.05.

Measures/Methods Exp CNN MLP

Rest of full corpus (F − S) 56.63± 0.16 54.36± 0.16 54.34± 0.15

Test part (T ) 56.64± 0.52 56.24± 0.51 53.98± 0.50

5.2 Perceptual Evaluation

In [10], the use of an acoustic model for the derivation of target cost has proved
to be superior to an expert-based model. So two AB listening tests have been
prepared to compare the synthetic quality of systems. The first one is between the
Exp method and the CNN method and the other one is between the CNN and
the MLP method. According to the protocol proposed for perceptual evaluation
in [24], each AB test is composed of the 100 samples extracted from T with the
highest DTW on MCep features. The samples are shorter than 7 s. The listeners
have been asked to compare 40 pairs in terms of overall quality. The results are
reported on Fig. 4.

Fig. 4. Listening test results.

There are 14 listeners who have participated to the first test and 10 listeners
as for the second test. Each pair of samples in the first test has been compared
at least 5 times and in the second test at least 4 times. The result of the first
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test shows that the CNN based embedding as input of target cost can generate
synthetic signals with significantly higher quality than the expert target cost.
The second test indicates the preference of listeners for MLP model, which takes
advantage of linguistic and acoustic information, rather than CNN model.

6 Conclusion

In this paper, we have investigated the relation between the corpus design pro-
cess and a hybrid TTS. The TTS voice corpus has been selected based on an
embedding model which uses the phonological information of the full corpus.
This embedding model can be applied instead of the expert TTS cost or an
acoustic model of phonemes. It has then be used to build a hybrid system by
computing the target cost function as the euclidean distance between units in
the embedding space.

In the first step, we have presented a phoneme embedding model which is
basically the encoder part of a CNN auto-encoder. The transformation of utter-
ances in the embedding space is followed by the KMeans algorithm to select a
subset of full corpus in order to compose a voice corpus. Our preliminary exper-
iment has shown that this method could achieve perceptually higher quality of
synthetic signals than a voice designed by a classical set covering method.

The proposed CNN model has been applied to provide a phoneme embedding
in hybrid TTS instead of an acoustic model (MLP) trained on the selected voice
corpus. The perceptual test has shown that although the CNN model has better
performances than expert-based target cost TTS, the MLP model has been
preferred to the CNN model.

The CNN may be tuned or changed to improve performances. However,
these results seem to emphasize the importance of acoustic information in any
phone-embedding process for TTS tasks. The CNN model has been used for
both corpus design and hybrid TTS, it is learnt on the full corpus, and takes
into account more contextual information by the use of utterances as training
samples (instead of frames). On the other side, the MLP model profits from
acoustic information besides the linguistic one. Consequently, in future works,
the use of an acoustic model as the embedding model for corpus reduction or
corpus design should be investigated.
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