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Abstract. Cognitive Load (CL) refers to the amount of mental demand
that a given task imposes on an individual’s cognitive system and it can
affect his/her productivity in very high load situations. In this paper,
we propose an automatic system capable of classifying the CL level
of a speaker by analyzing his/her voice. We focus on the use of Long
Short-Term Memory (LSTM) networks with different weighted pooling
strategies, such as mean-pooling, max-pooling, last-pooling and a logistic
regression attention model. In addition, as an alternative to the previous
methods, we propose a novel attention mechanism, called external atten-
tion model, that uses external cues, such as log-energy and fundamental
frequency, for weighting the contribution of each LSTM temporal frame,
overcoming the need of a large amount of data for training the attentional
model. Experiments show that the LSTM-based system with external
attention model outperforms significantly the baseline system based on
Support Vector Machines (SVM) and the LSTM-based systems with the
conventional weighed pooling schemes and with the logistic regression
attention model.

Keywords: Computational Paralinguistics - Cognitive load - Speech -
LSTM - Weigthed pooling - Attention model

1 Introduction

Cognitive Load (CL) refers to the amount of mental demand that a given task
imposes on a subject’s cognitive system and it is usually associated to the work-
ing memory that refers to the capacity of holding short-term information in the
brain [8]. As overload situations can affect negatively the individual’s perfor-
mance, the automatic detection of the cognitive load levels has many applications
in real scenarios such as drivers’ or pilots’ monitoring.

The work leading to these results has been partly supported by Spanish Government
grants TEC2017-84395-P and TEC2017-84593-C2-1-R.
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Speech-based CL detection systems are particularly interesting since they
are non-intrusive and speech can be easily recorded in real applications. In fact,
in 2014, an international challenge (Cognitive Load Sub-Challenge inside the
INTERSPEECH 2014 Computational Paralinguistics Challenge) was organized
with the aim of studying the best acoustic features and classifiers for this task
[23]. Following this line of research, this work focuses on the design of an auto-
matic system for CL level classification from speech.

Different features have been proposed for this task, as spectral-related param-
eters such as, Mel-Frequency Cepstral Coefficients (MFCC) [13,23], spectral cen-
troid, spectral flux [23], and prosodic cues (intensity, pitch, silence duration, etc.)
[2,24]. For the classifier module itself, Gaussian Mixture Models (GMM) [13] and
Support Vector Machines (SVM) [23,24] are the most common choices.

However, in the last years, the application of deep learning models to speech-
related tasks, such as Automatic Speech Recognition (ASR) [21,22], Language
Recognition (LR) [27] or Speech Emotion Recognition (SER) [10,11,19] has
allowed to increase the performance drastically. As a consequence, nowadays,
Deep Neural Networks (DNN) have become the state of the art in this kind of
systems. Among all the architectures proposed in the literature for speech-related
tasks, Convolutional Neural Networks (CNN) [21], Long Short-Term Memory
(LSTM) networks [7] and their combination are the most commonly used. On
the one hand, CNNs exhibit the capability of learning optimal speech represen-
tations. On the other hand, LSTMs are capable to perform temporal modeling,
so they are very suitable for dealing with sequences as it is the case of speech
signals.

The so-called attention modeling is a new line of research, complementary
to CNs and LSTMs, that tries to learn the structure of the temporal sequences
aiming at determining the relevance of each frame to the task under consider-
ation. Attention models have been successfully proposed for ASR [4], machine
translation [17] or SER [10,11,19].

In this paper, we propose to adopt the previous findings to cognitive load
level classification from speech. As this task has many similarities to SER, our
work is mainly based on previous research on emotion classification from speech,
especially, [10] and [19]. In particular, we focus on the use of LSTMs in com-
bination with different weighted pooling strategies for CL classification, and we
propose an external attention model that tries to take advantage of the benefits
offered by attentional schemes, overcoming the need of a large amount of data
for their training. Note that one of the main challenges of this kind of tasks is the
lack of training data due to the difficulty of collecting and annotating recordings
with the appropriate characteristics.

The remainder of this paper is organized as follows: Sect. 2 describes the fun-
damentals of LSTM with weighted pooling networks, Sect. 3 covers the different
weighting schemes used in this work, together to our proposed external atten-
tion weighting method. Our results are presented in Sect.4, followed by some
conclusions of the research in Sect. 5.
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Fig. 1. General scheme of an LSTM with weighted pooling architecture. For simplicity,
it is assumed that the LSTM layer is composed by only one LSTM cell.

2 LSTM with Weighted Pooling Networks

Long Short-Term Memory networks are a special kind of Recurrent Neural Net-
works (RNNs) that have the ability to store information from the past in the
so-called memory blocks [7], in such a way that they are capable of learning
long-term dependencies, overcoming the vanishing gradient problem. Therefore,
LSTM outputs depend on the present and previous inputs, and, for this reason,
they are very suitable for modeling temporal sequences, as speech.

The sequence-to-sequence learning carried out by LSTMs can be thought as a
transformation of an input sequence of length 7', x = {x1, ..., 7} into an output
sequence y = {y1,...,yr} of the same length, assuming that the classification
process is easier in the y-space than in the z-space. However, as in the case
of SER, CL classification can be seen as a many-to-one sequence-to-sequence
learning problem [10]. Specifically, the input is a sequence of acoustic vectors
and the final output must be the predicted CL level for the whole utterance
(one single value). For this reason, it is advisable to include an intermediate
stage in order to generate a more compact representation of the temporal LSTM
output sequence that, in turn, will be the input to the classifier itself [10,11].
A most common option is the so-called Weighted Pooling (WP) module [19],
as shown in Fig. 1. It consists of two different steps: weighting and temporal
integration.

A desirable characteristic of WP is the ability for retaining the relevant infor-
mation regarding the considered task while discarding the non-significant one.
This issue can be addressed in the first step, where a weight «a; is computed
and assigned to each temporal LSTM output y,, following a certain criterion.
For the CL task, it is reasonable to expect that not all the frames within an
utterance reflect the subject’s CL state with the same intensity, and therefore,
larger weights should be assigned to frames containing significant cues about the
speaker’s CL, whereas smaller weights should be set to neutral or not relevant
frames to the task. Different weighting schemes are discussed in Sect. 3.

In the second step, temporal aggregation, the weighted elements of the LSTM
output sequence are somehow combined over time for producing a summarized
representation of the information contained in it. For doing this, the most com-
mon choice is to perform a simple aggregation operation as follows,
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T
z = Zatyt (1)
t=1

where y = {y1, y2, ..., yr} is the LSTM output sequence, « = {a1, g, ...,ar} is
the weight vector and z is the final utterance-level representation.

Note that it is possible to find a parallelism between this method and the
temporal feature integration technique that is part of many parameterization
modules in conventional hand-crafted feature-based systems, and whose aim is to
obtain segment- or utterance-level representations of sequences of short-time fea-
tures. Temporal integration has been successfully used in different speech/audio-
related tasks, such as SER [5] or acoustic event classification [15,16]. Well-known
methods comprise the computation of the statistics (mean, standard deviation,
skewness, ...) of short-time acoustic vectors over longer time scales or their fil-
tering [16]. Although out of the scope of this paper, weighted pooling could be
performed by applying any of these techniques instead of the simple aggregation
operation in Eq. (1).

3 Weighting Schemes

Several weighting schemes have been proposed in the literature. They can be clas-
sified into three categories: fixed, local attention and external attention weights.

3.1 Fixed Weights

This is the most simplistic alternative in which the same weights are used across
all the utterances. The most used variants are the following:

— Mean-pooling. In this case, it is assumed that all the LSTM frames are
equally important and, therefore, the weights a are set to,
1
y = T7 Vit (2)
— Max-pooling. Here, it is assumed that the whole LSTM output sequence is
optimally represented by its maximum, so the weights follow this expression,

0, otherwise

— Last-pooling. As in LSTM networks every output relies on previous and
present inputs, it can be expected that the last outputs are the most reliable
ones since for their computation, the LSTM uses to some extent information
from the whole utterance [27]. This is equivalent to take into account only the
last M frames of the LSTM output, according to the following expression,

1
_ ) T-M<t<T 4
O . ( )
0, otherwise
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3.2 Local Attention Weights

The aim of this approach is to focus on the frames of the utterance that convey
more information about the classification task, therefore, a different weight is
assigned to each temporal frame. Although when enough training data is avail-
able, it is possible to design more complex attention models, as those described
in [10,11], in this work, we adopt the strategy proposed in [19] where the weights
are computed as a simple logistic regression as follows,

_ eXp(uTyt) (5)
- =T

> i1 exp(ulyy)
where v and y are the attention parameters and the LSTM output, respec-

tively. Both, the attention parameters and the LSTM outputs, are obtained in
the whole training process of the system.

Qi

3.3 External Attention Weights

As mentioned before, the lack of training data prevents the use of complex
attention models. Our hypothesis is that, in these cases, the attention model is
not going to be properly trained and therefore, it should be more effective to use
attention weights derived from external cues.

Previous studies about speech production under cognitive load conditions
have shown that the level of CL may affect speech by producing changes in the
prosody with respect to the neutral voice. In fact, variations in intensity (energy)
[12,14], fundamental frequency (Fp) [2,12,14] and duration [2,14] are correlated
to the speaker’s cognitive load. We propose to incorporate the information con-
tained in these prosody-related parameters in the weighted pooling scheme of
the LSTM network.

Specifically, we consider the energy (actually, we use the log-energy) and Fp
as external attention signals e 477 (t) with the assumption that frames with high
energies and Fj values are more likely to present a strong content about the sub-
ject’s CL level. The weights of the external attention model are computed from
these signals. For doing this, firstly, e 477 is normalized at utterance-level in the
range [0, 1] yielding to a normalized signal €471, and secondly, the weights are
obtained as the result of the softmax transformation applied to the normalized
attention signal as follows,

ap = exp(éATT(t)) 6
ST exp(éarr(t)) ©

This last operation guarantees that the sum of the weights across all the
frames of the utterance is one.
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4 Experiments and Results

4.1 Database and Baseline System

To the best of our knowledge, nowadays, there are a few speech databases con-
taining utterances pronounced in different CL conditions by a significant num-
ber of speakers and conveniently labeled. One of the databases fulfilling these
requirements is the “Cognitive Load with Speech and EGG” (CSLE) database
[23,26] that we have adopted for our experiments. It has been used in the Cogni-
tive Load Sub-Challenge inside the INTERSPEECH 2014 CoMPARE [23] whose
main objective was the assessment of different speech features and classifiers for
the prediction of subjects’ cognitive load from their voice characteristics.

The CSLE database contains speech from 26 Australian English speakers
recorded at 16 kHz by using a close-talk microphone while performing a set of
tasks designed for inducing different levels of cognitive load (low, medium and
high, denoted as L1, L2 and L3, respectively). As in the challenge, in this paper,
we have considered the following three tasks:

~ Reading Sentence (RS). In this case, speakers were asked to read a set of
short sentences and recall an isolated letter between them. The degree of cog-
nitive load was objectively assigned according to the number of read sentences
before remembering the letter. Each speaker pronounced 75 utterances with
a duration of 4s on average, yielding a total of 1950 speech files.

— Stroop Time Pressure (STP). It is based on the well-known Stroop test [25]
where speakers were required to indicate the color of a set of printed words
that, in turn, are names of colors. In medium and high load tasks, there was
a mismatch between color names and color fonts. In addition, in the case of
high load conditions, there was a time constraint for finishing the task. It
contains 234 utterances (9 per speaker) with an mean duration of 17s.

— Stroop Dual (SD). It is similar to the previous task, but in this case, speakers
had to execute another simultaneous task (tone counting) in the high load
scenario. In total, for this task, 234 utterances (9 per speaker) with an average
duration of 21s were recorded.

The challenge organizers provided a partition of the database into train-
ing+development and testing subsets, where it was guaranteed that speakers
belong to only one of these subsets (speaker independence). The number of
speakers is 18 and 8 in the training+development and testing subsets, respec-
tively. Table 1 shows the details about the database composition.

The baseline system is the one provided by the challenge organizers whose
details can be found in [23]. In summary, it uses the standard parameterization
adopted in the last Computational Paralinguistics Challenges (6373 character-
istics), obtained with the open-source openSMILE feature extractor [6]. The
classifier is a linear kernel SVM implemented by using the WEKA toolkit [9].

Following the challenge recommendations, each task was considered sepa-
rately. This way, for both, the baseline and the LSTM-based models, an inde-
pendent system per task has been trained with its specific training-+development
data and evaluated with the corresponding testing data.
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Table 1. Composition of the CSLE database. For each task, the number of utterances
per subset and cognitive load level are indicated.

Task Number of utterances
Subset L1 |L2 L3
Reading Sentence Train+Dev | 1350 | 378 | 378 | 594
Test 600 | 168 | 168 | 264
Stroop Time Pressure | Train+Dev | 162 | 54 | 54 | 54
Test 721 24| 24| 24
Stroop Dual Train+Dev | 162 | 54 | 54 | 54
Test 72024 | 24| 24
Total Train+Dev | 1674 | 486 |486 | 702
Test 744 1216 216 | 312

4.2 LSTM-Based Systems Configuration

Figure 2 shows the LSTM architectures with the three main weighting schemes
evaluated in this work. In particular, Fig.2(a) represents the fixed weight
approach and its three variants: last-pooling, max-pooling and mean-pooling,
Fig. 2(b) shows the system with logistic regression attention weights and Fig. 2(c)
depicts our proposal, the LSTM system with external attention model. All sys-
tems were implemented with the Tensorflow [1] and Keras [3] packages.

In all cases, the same input acoustic features were used. The feature set con-
sists of np = 64 log-Mel filterbank energies (log-Mels), computed every 10ms
using a Hamming window of 32ms long and a mel-scaled filterbank composed
of np = 64 filters by using the Librosa Python toolkit [18]. After feature extrac-
tion, mean and standard deviation normalization are applied at utterance-level
yielding to a set of normalized log-Mels sequences x; with 7' x 64 dimensions,
where T is the number of frames of each utterance.

In all architectures, the length of the LSTM input sequences is set to L = 1024
for the RS task and L = 2048 for the STP and SD tasks, which corresponds
to approximately 10s and 20s, respectively. Shorter utterances are padded with
zeros by using a Masking layer, in such a way that these masked values are not
used in further computations. Longer utterances are cut (this is only necessary
in a few cases in the SD task). The output sequence of the Masking layer is
denoted as x and its dimensions are L x 64.

This sequence is passed through an LSTM recurrent layer with ny = 128
memory cells and 25% dropout to avoid over-fitting in the training process. The
LSTM output, denoted as y, is a sequence of size L x 128. Next, the information
contained in y is summarized by using the considered weighting scheme with
weights «, yielding to a 128-dimensional vector, z. The length of the weight
vector « is L. However, note that when T" < L, ap = 0, T < t < L. The
vector z is the input of a dense layer with nc = 3 nodes (as the classes of our
system are the 3 CL levels, L1, Ly and L3) with softmax activation producing
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Fig. 2. Different LSTM-based architectures for cognitive load classification. (a) Fixed
weights (last-pooling, max-pooling, mean-pooling); (b) Local logistic regression atten-
tion model; (¢) External attention model. In brackets, the dimension of each variable,
where T, L, ng, nr, and nc, stand for the number of frames of the input signal, the
length of the LSTM input/output sequence, the number of mel filters, the number of
LSTM units and the number of classes (CL levels), respectively.

a 3-dimensional output, zo, representing the probabilities of each class. Finally,
the class with the highest probability is assigned to the utterance.

In all cases, the LSTM models were trained using stochastic gradient descent
and the Adam method with an initial learning rate of 0.001. We used a batch
size of 32 and a maximum number of 60 epochs.

In the logistic regression attention model, the attention parameter vector u
has a dimension of ny = 128. All its components were initialized to 1/L and
then refined during the training stage of the whole system.

In the external attention model, eq7r denotes the external attention signal
from which the weights « are derived. In this work, we have considered two alter-
natives for espr. In the first case, it corresponds to the fundamental frequency
Fy of the speech signal computed every 10 ms using a Hamming window of 32 ms
long and constraining the maximum Fy to 500 Hz. In the second case, e o477 is the
log-energy of the speech signal extracted every 10 ms using a Hamming window
of 32ms long. Both, Fjy and log-energy were computed with the Librosa Python
toolkit [18].

4.3 Results

This Subsection contains the experiments carried out in order to assess the per-
formance of the proposed LSTM-based systems. As the number of instances for
each class (CL levels) is unbalanced, results are given in terms of the Unweighted
Average Recall (UAR) that is computed as the unweighted mean of the class-
specific recalls.
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Table 2 contains the results achieved for the baseline system and different
LSTM architectures for the three tasks under consideration, Reading Sentence,
Stroop Time Pressure and Stroop Dual. The column “Average” refers to the
micro-average across the tasks. In the case of the LSTM-based systems, each
experiment was run 10 times and therefore, results in Table2 are the average
UAR across the 10 subexperiments and the respective standard deviation.

LSTM corresponds to the conventional approach where no weighted pooling
is applied and only the last frame of the LSTM output is passed through the
following dense softmax layer. In the LSTM+ VAD alternative, a Voice Activity
Detector (VAD) is applied to the raw speech signals before the feature extraction
in order to remove the silence/noise frames. As can be observed, the use of a VAD
produces a decrease in performance. This suggests that silence pauses convey
important information for discriminating between different CL levels, as they
are related to the rhythm, elocution speed and disfluencies that can be heavily
affected by the speaker’s CL state. This result corroborates the observations
about the effects of CL on speech production mentioned in, for example, [20].

The fixed weighting schemes evaluated are Last-pooling (in this case, the last
M = 200 frames of the LSTM output were picked and averaged), Max-pooling
and Mean-pooling. All these strategies outperform the conventional LSTM show-
ing that not only the last frame contains relevant information for the task.
Among these approaches, Mean-pooling achieves the best performance, and
therefore, it seems better not to completely discard LSTM frames.

The Logistic Regression Attention method outperforms the previous ones,
although its results overlap with Mean-pooling in the RS task and in the average
across the three tasks. Nevertheless, it is clear that focusing on frames conveying
more CL characteristics can help to improve the performance of the system.

Our proposal, the two External Attention approaches, produces the best
results for all the tasks in comparison to the rest of LSTM-based systems. Com-
paring both approaches, using the log-energy as external attention signal slightly
outperforms the F{, alternative. Any case, these results support our hypothesis
that the log-energy and F could be used for establishing to some extent the
relative importance of the frames for the CL level classification task.

Figure 3 depicts the weights used in the weighted pooling stage of the Logistic
Regression Attention (top) and the External Attention strategy with log-energy
(bottom). Contrary to the observations made in [19], in our case, the regres-
sion attention weights are very uniform and closely resemble the mean-pooling
weights. This justifies the fact that the results achieved by Mean-pooling and
Logistic Regression Attention are rather similar. We hypothesize that one pos-
sible reason for this behaviour is the lack of data for adequately training both,
the attention and the LSTM model. However, the weights derived from the log-
energy in the External Attention approach presents a large degree of variation,
suggesting that the log-energy becomes a good approximation of the amount
of cognitive load content of a speech frame when no enough data is available
for training more sophisticated attention models. On average, Fxternal Atten-
tion Energy achieves 9.61% relative error reduction with respect to Mean-pooling
and 6.85 % with respect to Logistic Regression Attention.
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Fig. 3. Attention weights for one utterance belonging to the Reading Sentence task.
Top: Weights obtained with the local regression attention strategy. Bottom: Weights
derived from the log-energy used in the external attention approach.

Regarding the comparison of the LSTM-based systems to the baseline, it can
be observed that Logistic Regression Attention, External Attention Energy and
External Attention Fy clearly outperforms the SVM-based system for the RS
task and on average across the three tasks. For the STP and SD tasks, these
systems perform similarly, but these results are not very reliable as the number
of test files in both cases is rather small (72 utterances). In summary, Ezternal
Attention Energy achieves a relative error reduction with respect to the baseline
of 11.04% an 9.64% for the RS task and on average, respectively.

Table 2. Unweighted Average Recalls (UARs) [%)] for the baseline system and different
LSTM-based classifiers for the Reading Sentence (RS), Stroop Time Pressure (STP)
and Stroop Dual (SD) tasks and on Average.

System RS STP SD Average
SVM [23] 61.50 66.70 56.90 61.60
LSTM 48.87 £ 1.36 | 55.42 +1.02 | 45.83 £ 4.09 | 49.61 £+ 1.33
LSTM+VAD 45.34 £1.79 | 54.01 £ 2.02 | 46.60 + 4.06 | 46.36 = 1.51
LSTM Last-Pooling 52.42 +1.53 | 59.57 £ 2.81 | 46.60 £4.11 | 52.67 £+ 1.30
LSTM Max-Pooling 59.87 +1.28 | 53.48 = 0.98 | 41.95 £ 1.83 | 57.54 £ 1.18
LSTM Mean-Pooling 62.99 £+ 0.82 | 60.69 + 0.67 | 50.00 £+ 2.07 | 61.61 £ 1.01
LSTM Logistic Regression Attention | 63.58 4+ 0.48 | 63.47 + 0.67 | 54.59 + 0.67 | 62.75 £ 0.59
LSTM External Attention FO 65.24 £ 0.95 | 64.68 = 0.52 | 56.35 £ 1.38 | 64.32 £ 0.83
LSTM External Attention Energy 65.75 £ 0.44 | 65.97 + 0.76 | 59.20 £+ 1.03 | 65.30 £ 0.70
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5 Conclusions and Future Work

In this paper, we have developed an automatic system capable of classifying the
cognitive load level of a speaker by analyzing his/her voice, based on LSTM
models with different weighted pooling strategies. We have evaluated and com-
pared the performance of mean-pooling, max-pooling, last-pooling and a logis-
tic regression attention model. In addition, we have proposed a novel attention
mechanism, called external attention model, that uses external cues, such as log-
energy and fundamental frequency, for weighting the contribution of each LSTM
temporal frame and that it is suitable in situations with scarce training data, as
in this case. Experiments have shown that our proposal achieves, on average, a
relative error reduction of 9.64% and 6.85% with respect to the baseline SVM
and the LSTM with logistic regression attention systems, respectively.

For future work, we plan to extend our research in two directions: to explore
different data augmentation techniques for increasing the amount of data for
training the LSTM-based system and to study the use of other external cues.
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CSLE dataset and Prof. B. Schuller and the rest of the COMPARE 2014 organizers for
kindly providing the dataset partition and the baseline system.
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