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Abstract. Modeling relations between languages can offer understand-
ing of language characteristics and uncover similarities and differences
between languages. Automated methods applied to large textual cor-
pora can be seen as opportunities for novel statistical studies of language
development over time, as well as for improving cross-lingual natural lan-
guage processing techniques. In this work, we first propose how to repre-
sent textual data as a directed, weighted network by the text2net algo-
rithm. We next explore how various fast, network-topological metrics,
such as network community structure, can be used for cross-lingual com-
parisons. In our experiments, we employ eight different network topology
metrics, and empirically showcase on a parallel corpus, how the methods
can be used for modeling the relations between nine selected languages.
We demonstrate that the proposed method scales to large corpora con-
sisting of hundreds of thousands of aligned sentences on an of-the-shelf
laptop. We observe that on the one hand properties such as communi-
ties, capture some of the known differences between the languages, while
others can be seen as novel opportunities for linguistic studies.
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1 Introduction and Related Work

Understanding cross-linguistic variation has for long been one of the foci of lin-
guistics, addressed by researchers in comparative linguistics, linguistic typology
and others, who are motivated by comparison of languages for genetic or typo-
logical classification, as well as many other theoretical or applied tasks. Com-
parative linguistics seeks to identify and elucidate genetic relationships between
languages and hence to identify language families [26]. From a different angle,
linguistic typology compares languages to learn how different languages are,
to see how far these differences may go, and to find out what generalizations
can be made regarding cross-linguistic variation on different levels of language
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structure and aims at mapping the languages into types [6]. The availability
of large electronic text collections, and especially large parallel corpora, have
offered new possibilities for computational methodologies that are developed to
capture cross-linguistic variation. This work falls under computational typol-
ogy [1,13], an emerging field with the goal of understanding of the differences
between languages via computational (quantitative) measures. Recent studies
already offer novel insights into the inner structure of languages with respect
to various sequence fingerprint comparison metrics, such as for example the
Jaccard measure, the intra edit distance and many other boolean distances [21].
Such comparisons represent e.g., sentences as vectors, and evaluate their similar-
ity using plethora of possible metrics. Albeit useful, vector-based representation
of words, sentences or broader context does not necessarily capture the context
relevant to the task at hand and the overall structure of a text collection. Word
or sentence embeddings, which recently serve as the language representation
workhorse, are not trivial to compare across languages, and can be expensive
to train for new languages and language pairs (e.g., BERT [8]). Further, such
embeddings can be very general, possibly problematic for use on smaller data
sets and are dependent on input sequence length.

In recent years, several novel approaches to computational typography have
been applied. For example, Bjerva et al. [2] compared different languages based
on distance metrics computed on universal dependency trees [19]. They discuss
whether such language representations can model geographical, structural or
family distances between languages. Their work shows how a two layer LSTM
neural network [12] represents the language in a structural manner, as the embed-
dings mostly correlate with structural properties of a language. Their main focus
is thus on explaining the structural properties of neural network word embed-
dings. Algebraic topology was also successfully used to study syntax properties
by Port et al. [20]. Similar efforts of statistical modelling of language distances
were previously presented in e.g., [14] who used Kolmogorov complexity metrics.

In contrast, we propose a different approach to modeling language data. The
work is inspired by ideas of node representation as seen in contemporary geo-
metric and manifold learning [10] and the premises of computational network
theory, which studies the properties of interconnected systems, found within vir-
tually every field of science [27]. Various granularities of a given network can
be explored using approaches for community detection, node ranking, anomaly
identification and similar [5,9,15]. We demonstrate that especially information
flow-based community detection [7] offers interesting results, as it directly sim-
ulates information transfer across a given corpus. In the proposed approach, we
thus model a corpus (language) as a single network, exposing the obtained repre-
sentation to powerful network-based approaches, which can be used for language
comparison (as demonstrated in this work), but also for e.g., keyword extraction
(cf. [4] who used TopicRank) and potentially also for representation learning and
end-to-end classification tasks.

The purpose of this work is twofold. First, we explore how a text can be
transformed into a network with minimal loss of information. We believe that
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this powerful and computationally efficient text representation that we name
text2net, standing for text-to-network transformation, can be used for many new
tasks. Next, we show how the obtained networks can be used for cross-lingual
analysis across nine languages (36 language pairs).

This work is structured as follows. In Sect. 2 we introduce the networks and
the proposed text2net algorithm. Next, we discuss network-topological metrics
(Sect. 3) that we use for the language comparison experiment in Sect. 4. The
results are presented in Sect. 5, followed by discussion and conclusions in Sect. 6.

2 Network-Based Text Representation

First, we discuss the notion of networks, and next present our text2net approach.

2.1 Networks

We first formally define the type of networks considered in this work.

Definition 1 (Network). A network is an object consisting of nodes, connected
by arcs (directed) and/or edges (undirected). In this work we focus on directed
networks, where we denote with G = (N,A) a network G, consisting of a set of
nodes N and a set of arcs A ⊆ N × N (ordered pairs).

Such simple networks are not necessarily informative enough for complex,
real world data. Hence, we exploit the notion of weighted directed networks.

Definition 2 (Directed weighted network). A directed weighted network is
defined as a directed network with additional, real-valued weights assigned to
arcs.

Note that assigning weights to arcs has two immediate consequences: arcs can
easily be pruned (using a threshold), and further, algorithms, which exploit arc
weights can be used. We continue to discuss how a given text is first transformed
into a directed weighted network G.

2.2 text2net Algorithm

Given a corpus T , we discuss the mapping text2net : T → G. As text is sequen-
tial, the approach captures global word neighborhood, proceeding as follows:

1. Text is first tokenized and optionally stemming, lemmatization and other
preprocessing techniques are applied to reduce the space of words.

2. text2net traverses each input sequence of tokens (e.g., words, or lemmas or
stems depending on Step 1), and for each token (node) stores its successor as
a new node connected with the outbound arc. This step can be understood
as breaking the text into triplets, where two consecutive words are connected
via a directed arc (therefore preserving the sequential information).
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3. During construction of such triplets, arcs commonly repeat, as words often
appear in same order. Such repetitions are represented as arc weights. Weight
assignment can depend on the arc type. For this purpose, we introduce a
mapping ρ(a) → R; a ∈ A (A is the set of arcs), a mapping which assigns a
real value to a given arc with respect to that arc’s properties.

4. Result is a weighted, directed network representing weighted token co-
occurrence.

The algorithm can thus formally be stated as given in Algorithm 1. The key
idea is to incrementally construct a network based on text, while traversing the
corpus only once (after potential selected preprocessing steps).

We next discuss the text2net’s computational complexity. To analyze it, we
assume the following: the text corpus T is comprised of s sentences. In terms
of space, the complexity can be divided into two main parts. First, the memory
needed to store the sentence being currently processed and the memory for
storing the network. As the sentences can be processed in small batches, we
focus on the spatial complexity of the token network. Let the corpus consist of t
tokens. In the worst case, all tokens are interconnected and the spatial complexity
is quadratic O(t2). Due to Zipf’s law networks are notably smaller as each word
is (mostly) connected only with a small subset of the whole vocabulary (heavy
tailed node degree distribution). The approach is thus both spatially, as well as
computationally efficient, and can easily scale to corpora comprised of hundreds
of thousands of sentences.

In terms of hyperparameters, the following options are available (offering
enough flexibility to model different aspects of a language, rendering text2net
suitable as the initial step of multiple down-stream learning tasks):

Algorithm 1. text2net algorithm.
Data: Text corpus T (of documents d1 . . . dn), empty weighted network G
Parameters : Minimum number of tokens per sentence ts, Minimum token

length tl, word transformation function f , stopwords σ, weight
prunning threshold θ, frequency weight function ρ

Result: A weighted network G
1 for d ∈ T do
2 orderedTokens := getTokens(d, tl,ts,f ,σ); � Get token sequence.

3 for qi ∈ orderedTokens do
4 arc := (qi,qi+1); � Construct an arc.

5 addToNetwork(G, arc); � Construct the network.

6 if arc ∈ current set of arcs of G then
7 update arc’s weight via ρ; � Update weights.

8 end

9 end

10 end
11 G := prunenetwork(G,θ); � Prune the network.

12 return G
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– minimum sentence length considered for network construction (ts),
– minimum token length (tl),
– optional word transformation (e.g., lemmatisation) (f),
– optional stopwords or punctuation to be removed (σ),
– arc weight assignment function (ρ) (e.g., co-occurrence frequency),
– a threshold for arc prunning based on weights (θ).

3 Considered Network Topology Metrics

In this section we discuss the selected metrics that we applied to directed
weighted networks. The metrics vary in their degree of computational
complexity.

Number of nodes. The number of nodes present in a given network.
Number of edges. The number of edges in a given network.
InfoMap communities. The InfoMap algorithm [22] is based on the idea

of minimal description length of the walks performed by a random walker
traversing the network. It obtains a network partition by minimizing the
description lengths of random walks, thus uncovering dense regions of a net-
work, which represent communities. Once converged, InfoMap yields the set
of a given network’s nodes N partitioned into a set of partitions which poten-
tially represent functional modules of a given network.

Average node degree. How many in- and out connections a node has on
average. For this metric, networks were considered as undirected. See below:

AvgDeg =
1

|N |
∑

n∈N

degin(n) + degout(n).

Network density. The network density represents the percentage of theoreti-
cally possible edges. This metric is defined as:

Density =
|A|

|N |(|N | − 1)
;

where |A| is the number of arcs and |N | is the number of nodes. This measure
represents more coarse-grained clustering of a network.

Clustering coefficient. This coefficient is defined as the geometric average of
the subnetwork edge weights:

ClusCoef =
1

|N |
∑

u∈N

(
1

deg(u)(deg(u) − 1))

∑

vw

3
√

(ŵuvŵuwŵvw

)
;

here, ŵvw for example represents the weight of the arc between nodes v and w.
The deg(u) corresponds to the u-th node’s degree. Intuitively, this coefficient
represents the number of closed node triplets w.r.t. number of all possible
triplets. The higher the number, the more densely connected (clustered) the
network. See [3] for detailed description of the metrics above.
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4 Language Comparison Experiments

In this section we discuss the empirical evaluation setting, where we investigated
how the proposed network-based text representation and network-topology met-
rics can be used for the task of language comparison. We use the parallel corpus
(i.e., corpus of aligned sentences across different languages) from the DGT cor-
pus, i.e. Directorate-General for Translation translation memory, provided by
Joint Research Centre and available in OPUS [25]. We selected nine different
languages: EN – English, ES – Spanish, ET – Estonian, FI – Finish, LV – Lat-
vian, NL – Dutch, PR – Portugese, SI – Slovene, SK – Slovak, covering languages
from different historical origins and language families: Romance languages (PT,
ES), Balto-Slavic languages including Slavic (SI, SK) and Baltic (LV) language
examples, Germanic langauges (EN, NL), as well as Finnic languages from Uralic
family (FI, ET). The selected languages have also different typological charac-
teristics. For example in terms of morphological typology, EN can be considered
as mostly analytic, while majority of others are synthetic languages, where for
example FI is considered as agglutinative, while Slavic languages are fusional as
they are highly inflected.

The goal of the paper was to use the network topology metrics for langauge
comparison. We considered all the pairs between the selected languages, resulting
in 36 comparisons for each network-based metric. From the parallel corpus we
sampled 100,000 sentences for each language, resulting in 900,000 sentences,
which match across languages.

From each language, we constructed a network using text2net with following
parameters: the minimum number of tokens per sentence (ts) was set to 3, the
minimum length of a given token (tl) to 1, the word transformation function
transformed words to lower-case, no lemmatisation was used, and punctuation
was removed. We defined ρ(arc) = 1.

We compared the pairs of languages as follows. For each of the two languages,
we transformed the text into a network. The discussed network topology metrics
were computed for each of the two networks. Differences between the metrics’
values are reported in tabular form (Table 1), as well as visualized as heatmaps
(Fig. 1). In the latter, the cells are colored according to the absolute difference
in a given metric for readability purposes. Thus, the final result of the consid-
ered analysis are differences in a selected network topology metric. The selected
results were further visualized in Fig. 2.

We used NLTK [16] for preprocessing, Py3plex [23], NetworkX [11],
Cytoscape [24] for network analysis and visualization and Pandas for numeric
comparisions [17]. Full code is available at: https://github.com/SkBlaz/
language-comparisons.

While we do not have full linguistic hypotheses about the expected mapping
of the linguistic characteristics and the topological metrics, we believe that the
network-based comparisons should show differences between the languages. For
example, the number of nodes might capture linguistic properties, such as inflec-
tional morphology, where we could expect that morphologically rich languages
would have more nodes. Number of edges might capture linguistic properties,

https://github.com/SkBlaz/language-comparisons
https://github.com/SkBlaz/language-comparisons
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(a) Maximum community size (b) Mean community size (c) Density

(d) Average degree (e) Connected components (f) Clustering coefficient

(g) Num. Nodes (h) Num. Edges

Fig. 1. Pairwise language comparison via various network-topological metrics. Cells
represent the absolute differences between metrics of individual text-derived networks.
Red regions represent very different networks, and blue very similar ones. (Color figure
online)

such as the flexibility of the word order. The other measures are less intuitive
and will be further investigated in future work. However, we believe that more
complex the language (including aspects of morphology richness and word order
flexibility), the richer the corresponding network’s structure, while the number
of connected components might offer insights into general dispersity of a given
language, and could pinpoint grammatical differences if studied in more detail.
Also clustering coefficient might be dependent on how fixed is the word order of
a given language. None of the above has been systematically investigated, and
the hypothesis is, that differences between languages will have high variability
and show already known, as well as novel groupings of the languages.

5 Results

In this section we present the results of cross-lingual comparison. The inter-
language differences in tabular format are given in Table 1. The measures given
in the table are the differences in: #Nodes—the number of nodes, #Edges—the
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Fig. 2. Language network based on the Clustering coeff. The red links are present
after the threshold of 10−3 was applied. Gray links represent connections that are not
present given the applied threshold. We can see two groups, one formed by Balto-Slavic
and Finnic languages, the other by Germanic and Romanic. (Color figure online)

Fig. 3. Visualization of the English DGT subcorpus. This network was constructed
using the proposed text2net algorithm, where each link corresponds to the followed by
relation between a given pair of word tokens. Clustering emerges, indicating the pres-
ence of meso-scale topological structures in such networks. Different colors correspond
to different communities detected using InfoMap. (Color figure online)

number of edges, Mean degree—mean node degree, Density—network density as
defined in Sect. 3, MaxCom—maximum community size, MeanCom—mean com-
munity size, both computed using InfoMap communities, Clustering—clustering
coefficient and CC—the number of connected components. The differences in
the table are presented in L2-L1 absolute differences, while for nodes and edges
we also present the differences as relative percentages of the e.g., number of
nodes of the second language w.r.t the number of nodes of the first language1.
It can be observed that some language pairs differ substantially even if only
node counts are considered, where EN-FI is the pair with the largest difference,
which is not surprising. English is for example an analytical language, while
Finnish agglutinative with very rich morphology. Further, some of the metrics
indicate groupings, which can be further investigated using heatmaps and direct
visualization of language-language links.

From heatmaps shown in Fig. 1, where colors of individual cells represent
differences between a given metric’s values across languages, we can make several
interesting observations. Based on Num. of nodes, FI and ET are very similar,

1 For nodes Ndiff = 100·|N2|
|N1| , and for edges Ediff = 100·|E2|

|E1| ; the first language’s values
are compared against the second language’s values.
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Table 1. Differences between selected network-topology metrics across languages. The
values are computed as L2-L1, or reported as L2 relative to L1.

Language
pair

#Nodes #Edges Mean
degree

Density
(·10−4)

MaxCom MeanCom Clustering CC Ndiff (%) Ediff (%)

en-es 10232 15251 −1.34 −0.18 11100 538.53 −0.00 5 110.90 101.71

en-et 108986 539449 −2.85 −0.62 −72382 −6578.80 −0.19 14 233.53 187.45

en-fi 117623 474376 −3.96 −0.65 114803 649.71 −0.20 12 249.01 179.60

en-lv 53162 464366 1.02 −0.34 48411 −1208.95 −0.14 8 164.35 177.99

en-nl 30786 99189 −2.30 −0.36 30839 836.35 0.06 2 138.10 115.73

en-pt 10778 56039 −0.51 −0.14 10249 −366.93 0.02 4 113.07 107.48

en-sk 59715 425657 −0.22 −0.41 60709 2757.51 −0.12 6 174.20 172.24

en-sl 46764 337421 −0.11 −0.34 −68833 −5693.41 −0.09 4 156.30 154.82

es-et 97822 518349 −1.62 −0.35 −80506 −5877.34 −0.19 7 210.57 184.29

es-fi 110493 479001 −2.70 −0.49 108672 1004.91 −0.20 6 224.53 176.58

es-lv 42062 442253 2.34 −0.16 42066 2382.83 −0.14 3 148.20 174.99

es-nl 21501 88846 −1.04 −0.20 21235 1433.40 0.06 −2 124.52 113.78

es-pt 971 43922 0.84 0.04 1232 1922.25 0.02 −2 101.96 105.67

es-sk 49382 406578 0.99 −0.20 49740 4703.95 −0.12 1 157.08 169.34

es-sl 36317 321960 1.17 −0.18 36362 6935.34 −0.10 −3 140.94 152.21

et-fi 10262 −68268 −1.32 −0.05 183810 7318.28 −0.01 5 106.63 95.82

et-lv −57119 −80883 4.01 0.29 −51457 1237.71 0.05 −5 70.38 94.95

et-nl −75247 −424500 0.50 0.24 −69698 −1081.51 0.25 −7 59.14 61.74

et-pt −96441 −471464 2.45 0.49 81260 8871.81 0.21 −9 48.42 57.34

et-sk −47901 −109523 2.56 0.20 −40340 5107.84 0.07 −7 74.60 91.89

et-sl −61594 −194218 2.80 0.27 117767 15563.93 0.08 −11 66.93 82.60

fi-lv −66730 −11261 5.33 0.34 −72108 −2285.02 0.06 −8 66.00 99.10

fi-nl −89718 −393774 1.71 0.30 −89284 −3638.18 0.26 −5 55.46 64.44

fi-pt −110479 −439797 3.60 0.54 −111720 −6939.93 0.22 −7 45.41 59.84

fi-sk −59295 −46799 3.96 0.26 −182908 −6349.16 0.08 −10 69.96 95.90

fi-sl −72939 −134593 4.11 0.32 −71835 8022.41 0.11 −13 62.77 86.20

lv-nl −19634 −354516 −3.52 −0.05 −18654 −318.15 0.20 −2 84.02 65.02

lv-pt −41716 −402441 −1.46 0.21 −36193 4468.15 0.16 −6 68.80 60.39

lv-sk 7581 −34478 −1.38 −0.08 −123658 −7706.36 0.02 −5 105.99 96.77

lv-sl −5810 −122602 −1.21 −0.03 1014 7032.05 0.05 −6 95.10 86.99

nl-pt −20143 −43781 1.86 0.24 −19930 −314.52 −0.04 −1 81.88 92.87

nl-sk 27385 314730 2.09 −0.04 27329 1161.44 −0.19 3 126.14 148.83

nl-sl 13810 230590 2.32 0.03 7637 −2267.56 −0.16 −3 113.18 133.78

pt-sk 48780 361817 0.12 −0.29 47881 1201.90 −0.15 5 154.06 160.25

pt-sl 35260 275981 0.32 −0.22 35831 6622.65 −0.12 0 138.23 144.05

sk-sl −13637 −85421 0.23 0.07 −130809 −9182.12 0.03 −3 89.73 89.89

and the most different to other languages. Both are agglutinative languages
and part of the Uralic language family. In terms of Num. of edges, the largest
differences are between ET and EN, while the most similar are LV and FI; in
pairwise comparison with EN, we can see that PT, ES and NL have similar
statistics, which are all languages from Germanic (NL) or Romanic family. We
believe that some measures could also indicate groupings based on morphological
or other typological properties beyond the currently known ones. For example,
Max. community size on one hand points FI and ET as very different, as well
as SI and SK (where in both pairs the two languages are belonging to the same
language family), but on the other hand PT and ES are very similar. Further,
Clustering coefficient yields insights into context structure and similar properties
of groupings of basic semantic units, such as words, where high similarity between
ES and PT, as well as SI and SK can be observed. Finally, the number of
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connected components offers insights into general dispersity of a given language,
and could pinpoint grammatical differences if studied in more detail. Again, we
see the most remarkable differences between EN and FI and ET, but also FI
and SI, while Romanic and Germanic languages are more similar. There are
many open questions. E.g., which linguistic phenomena make EN-FI being quite
different in Average degree, while FI-NL are relatively similar (despite EN and
NL being in the same language group)?

Clustering coefficient is also shown in an alternative visualisation, i.e. in a
colored network in Fig. 2. Here, we consider Clustering coefficient metric, where
we adjust the color so that it represents only very similar languages (low absolute
difference in the selected metric). We selected this metric, as the heatmap yielded
the most block-alike structure, indicating strong connections between subsets of
languages. We can see that Balto-Slavic and Finnic languages group together,
while Germanic and Romanic form another group. Finally, we visualized the
English corpus network in Fig. 3. Colored parts of the network correspond to
individual communities. It can be observed that especially the central part of
the network contains some well defined structures (blue and red). The figure also
demonstrates, why various network-topological metrics were considered, as from
the structure alone, no clear insights can be obtained at such scale.

6 Discussion and Conclusions

In this work, our aim was to provide one of the first large-scale comparisons
of languages based on corpus-derived networks. To the best of our knowledge,
the use of network topologies on sequence-based token networks are novel and
it is not yet known to what characteristics the network topologies correspond.
Second, we investigated whether the difference in some metrics correspond known
relationships between languages, or represent novel language groupings.

We have shown that the proposed network-based text representation offers
a pallete of novel opportunities for language comparison. Commonly, methods
operate on sequence level, and are as such limited to one dimensional interactions
with respect to a given token. In this work we attempted to lift this constraint
by introducing richer, global word neighborhood. We were able to cast the lan-
guage comparison problem to comparing network topology metrics, for which we
show can be informative for genetic and typographic comparisons. For example,
the Slovene and Slovak languages appear to have very similar global network
structure, indicating comparison using communities picks up some form of evo-
lutionary language distance. In this work we explored only very simple language
networks by performing virtually no preprocessing. We believe a similar idea
could be used to form networks from lemmatized text or even Universal Depen-
dency Tags, potentially opening another dimension.

Overall, we identified the clustering coefficient as the metric, which, when
further inspected, yielded some of the well known language-language relation-
ships, such as for example high similarity between Spanish and Portugese, as well
as Slovenian and Slovak languages. Similar observation was made when commu-
nity structure was compared. We believe such results demonstrate network-based
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language comparison represents a promising venue for scalable and more infor-
mative studies of how languages, and text in general, relate to each other.

In future, we will closer connect the interpretation of network topological fea-
tures with linguistic properties, also by single language metrics. Also, we believe
that document-level classification tasks can benefit from exploiting the inner
document structure (e.g., the Graph Aggregator framework could be leveraged
instead of/in addition to conventional RNN-based approaches). The added value
of graph-based similarity for classification was demonstrated e.g., in [18] for psy-
chosis classification from speech graphs. We also believe that our cross-language
analysis, could be indicative for the expected quality of cross-lingual represen-
tations. Last but not least, we plan to perform additional experiments to see
if the results are stable, leading to similar findings of other corpora genres and
corpora of other sizes, and also using comparable not only parallel data.
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