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Preface

These proceedings contain the papers presented at the 7th International Conference on
Statistical Language and Speech Processing (SLSP 2019), held at the Jožef Stefan
Institute, Ljubljana, Slovenia, during October 14–16, 2019.

The SLSP conference series deals with topics of theoretical and applied interest
concerning the employment of statistical models (including machine learning) within
language and speech processing. Specific areas covered in this and previous install-
ments include, but are not limited to:

– Anaphora and coreference resolution
– Authorship identification, plagiarism, and spam filtering
– Corpora and resources for speech and language
– Data mining, term extraction, and semantic web
– Dialogue systems and spoken language understanding
– Information retrieval and information extraction
– Knowledge representation and ontologies
– Lexicons and dictionaries
– Machine translation and computer-aided translation
– Multimodal technologies
– Natural language understanding and generation
– Neural representation of speech and language
– Opinion mining and sentiment analysis
– Part-of-speech tagging, parsing, and semantic role labeling
– Question-answering systems for speech and text
– Speaker identification and verification
– Speech recognition, transcription, and synthesis
– Spelling correction
– Text categorization and summarization
– User modeling

SLSP 2019 received 48 submissions. Each submission was reviewed by three
Program Committee (PC) members, with some external experts consulted. After a
thorough and vivid discussion phase, the PC decided to accept 25 papers (which
represents an acceptance rate of about 52%). The conference program also included
three invited talks (one of which is included as a paper in this volume) and a number of
poster presentations of work in progress.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.



We would like to thank all invited speakers and authors for their contributions, the
PC and the external reviewers for their diligent cooperation, and Springer for its very
professional publishing work.

July 2019 Carlos Martín-Vide
Senja Pollak

Matthew Purver
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The Time-Course of Phoneme Category
Adaptation in Deep Neural Networks

Junrui Ni1, Mark Hasegawa-Johnson1,2, and Odette Scharenborg3(&)

1 Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Champaign, IL, USA
2 Beckman Institute, University of Illinois at Urbana-Champaign,

Champaign, IL, USA
3 Multimedia Computing Group,

Delft University of Technology, Delft, The Netherlands
o.e.scharenborg@tudelft.nl

Abstract. Both human listeners and machines need to adapt their sound cat-
egories whenever a new speaker is encountered. This perceptual learning is
driven by lexical information. In previous work, we have shown that deep neural
network-based (DNN) ASR systems can learn to adapt their phoneme category
boundaries from a few labeled examples after exposure (i.e., training) to
ambiguous sounds, as humans have been found to do. Here, we investigate the
time-course of phoneme category adaptation in a DNN in more detail, with the
ultimate aim to investigate the DNN’s ability to serve as a model of human
perceptual learning. We do so by providing the DNN with an increasing number
of ambiguous retraining tokens (in 10 bins of 4 ambiguous items), and com-
paring classification accuracy on the ambiguous items in a held-out test set for
the different bins. Results showed that DNNs, similar to human listeners, show a
step-like function: The DNNs show perceptual learning already after the first bin
(only 4 tokens of the ambiguous phone), with little further adaptation for sub-
sequent bins. In follow-up research, we plan to test specific predictions made by
the DNN about human speech processing.

Keywords: Phoneme category adaptation � Human perceptual learning �
Deep neural networks � Time-course

1 Introduction

Whenever a new speaker or listening situation is encountered, both human listeners and
machines need to adapt their sound categories to account for the speaker’s pronunci-
ations. This process is called perceptual learning, and is defined as the temporary
adaptation of sound categories after exposure to deviant speech, in a manner such that
the deviant sounds are included into pre-existing sound categories, thereby improving
intelligibility of the speech (e.g., [1–6]). A specific case of perceptual learning is
lexically-guided perceptual learning [2], in which the adaptation process is driven by
lexical information. Human lexically-guided perceptual learning has been shown to be
fast, and requires only a few instances of the deviant sound [5, 6]. Automatic speech
recognition (ASR) systems typically adapt to new speakers or new listening conditions

© Springer Nature Switzerland AG 2019
C. Martín-Vide et al. (Eds.): SLSP 2019, LNAI 11816, pp. 3–15, 2019.
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using both short-time adaptation algorithms (e.g., fMLLR [7]) and longer-term adap-
tation techniques (e.g., DNN weight training [8]). In previous work [9], we showed that
Deep Neural Networks (DNNs) can adapt to ambiguous speech as rapidly as a human
listener by training on only a few examples of an ambiguous sound. Here, we push this
research further and ask the following questions: Are ambiguous sounds processed in
the same way as natural sounds; and, how many examples of the ambiguous sound are
needed before the DNN adapts?

In short, the aim of this paper is two-fold: (1) we investigate the time-course of
phoneme category adaptation in a DNN in more detail focusing on the amount of
deviant speech material and training needed for phoneme category retuning to occur in
a DNN, (2) with the larger aim to investigate the DNN’s ability to serve as a model of
human perceptual learning. In order to do so, we base our research on the experimental
set-up and use the stimuli of a human perceptual learning experiment (see for other
examples, e.g., [9–11]).

In a typical human lexically-guided perceptual learning experiment, listeners are first
exposed to deviant phonemic segments in lexical contexts that constrain their inter-
pretation, after which listeners have to decide on the phoneme categories of several
ambiguous sounds on a continuum between two phoneme categories (e.g., [1–6]). This
way the influence of exposure to the deviant sound can be investigated on the phoneme
categories in the human brain. In this paradigm, two groups of listeners are tested. Using
the experiment from which we take our stimuli [4] as an example: one group of Dutch
listeners was exposed to an ambiguous [l/ɹ] sound in [l]-final words such as appel (Eng:
apple; appel is an existing Dutch word, apper is not). Another group of Dutch listeners
was exposed to the exact same ambiguous [l/ɹ] sound, but in [ɹ]-final words, e.g., wekker
(Eng: alarm clock; wekker is a Dutch word, wekkel is not). After exposure to words
containing the [l/ɹ], both groups of listeners were tested on multiple steps from the same
continuum of [l/ɹ] ambiguous sounds from more [l]-like sounds to more [ɹ]-like sounds.
For each of these steps, they had to indicate whether the heard sound was an [l] or an [ɹ].
Percentage [ɹ] responses for the continuum of ambiguous sounds were measured and
compared for the two groups of listeners. Lexically-guided perceptual learning shows
itself as significantly more [ɹ] responses for the listeners who were exposed to the
ambiguous sound in [ɹ]-final words compared those who were exposed to the ambiguous
sound in [l]-final words. A difference between the groups is interpreted to mean that
listeners have retuned their phoneme category boundaries to include the deviant sound
into their pre-existing phone category of [ɹ] or [l], respectively.

We base our research on the time-course of adaptation found in human listeners in
the experiment in [5]. Their question was similar to ours: Are words containing an
ambiguous sound processed in the same way as “natural” words, and if so, how many
examples of the ambiguous sound are needed before the listener can do this? Partici-
pants had to listen to nonsense words, natural words, and words containing an
ambiguous sound, and were instructed to press the ‘yes’ button as soon as possible
upon hearing an existing word and ‘no’ upon hearing a nonsense word. Yes/no
responses and reaction times to the natural and “ambiguous” words were analyzed in
bins of 5 ambiguous words. They found that words containing an ambiguous sound
were accepted as words less often, and were processed slower than natural words, but
this difference in acceptance disappeared after approximately 15 ambiguous items.

4 J. Ni et al.



2 Methods

In our DNN experiment, we follow the set-up used in [9]. To mimic or create a Dutch
listener, we first train a baseline DNN using read speech from the Spoken Dutch Corpus
(CGN; [12]). The read speech part of the CGN consists of 551,624 words spoken by 324
unique speakers for a total duration of approximately 64 h of speech. A forced align-
ment of the speech material was obtained using a standard Kaldi [13] recipe found
online [15]. The speech signal was parameterized using a 64-dimensional vector of log
Mel spectral coefficients with a context window of 11 frames, each has a segment length
of 25 ms with a 10 ms shift between frames. Per-utterance mean-variance normalization
was applied. The CGN training data were split into a training (80% of the full data set),
validation (10%), and test set (10%) with no overlap in speakers.

Because we aim to investigate the DNN’s ability to serve as a model of human
perceptual learning, we used the same acoustic stimuli as used in the human perception
experiment [4] for retraining the DNN (also referred to as retuning). The retraining
material consisted of 200 Dutch words produced by a female Dutch speaker in isola-
tion: 40 words with final [ɹ], 40 words with final [l], and 120 ‘distractor’ words with no
[l] and [ɹ]. For the 40 [l]-final words and the 40 [ɹ]-final words, versions also existed in
which the final [l] or [ɹ] was replaced by the ambiguous [l/ɹ] sound. Forced alignments
were obtained using a forced aligner for Dutch from the Radboud University. For four
words no forced alignment was obtained, leaving 196 words for the experiment.

2.1 Model Architecture

All experiments used a simple fully-connected, feed-forward network with five hidden
layers, 1024 nodes per layer, with logistic sigmoid nonlinearities as well as batch-
normalization and dropout after each layer activation. The output layer was a softmax
layer of size 38, corresponding to the number of phonemes in our training labels. The
model was trained on CGN for 10 epochs using an Adam optimizer with a learning rate
of 0.001. After 10 epochs, we reached a training accuracy of 85% and a validation
accuracy of 77% on CGN.

2.2 Retuning Conditions

To mimic the two listener groups from the human perceptual experiment, and to mimic
a third group with no exposure to the ambiguous sound (i.e., a baseline group), we used
three different configurations of the retuning set:

• Amb(iguous)L model: trained on the 118 distractor words, the 39 [ɹ]-final words,
and the 39 [l]-final words in which the [l] was replaced by the ambiguous [l/ɹ].

• Amb(iguous)R model: trained on the 118 distractor words, the 39 [l]-final words,
and the 39 [ɹ]-final words in which the [ɹ] was replaced by the ambiguous [l/ɹ].

• Baseline model: trained on all 196 natural words (no ambiguous sounds). This
allows us to separate the effects of retuning with versus without the ambiguous
sounds.

The Time-Course of Phoneme Category Adaptation 5



In order to investigate the time-course of phoneme category adaptation in the DNNs,
we used the following procedure. First, the 196 words in the three retuning sets were
split into 10 bins of 20 distinct words, except for the last two bins, which each
contained only 18 words. In order to be able to compare between the different retuning
conditions, the word-to-bin assignments were tied among the three retuning conditions.
Each word appeared in only one bin. Each bin contained: 4 words with final [r] (last
bin: 3 words) + 4 words with final [l] (penultimate bin: 3 words) + 12 ‘distractor’
words with no [l] or [r] (last two bins: 11 words). The difference between the retuning
conditions is:

• AmbL: the final [l] in the 4 [l]-final words was replaced by the ambiguous [l/ɹ]
sound.

• AmbR: the final [ɹ] in the 4 [ɹ]-final words was replaced by the ambiguous [l/ɹ]
sound.

• Baseline: only natural words.

The [l]-final, [ɹ]-final, and [l/ɹ]-final sounds of the words in bin t from all three retuning
sets, combined, functioned as the test set to bin t − 1. As all the acoustic signals from
the test bin were unseen during training at the current time step, we denote this as “open
set evaluation”. Figure 1 explains the incremental adaption. Note that the final bin was
only used for testing; because at t = 10, there is no subsequent bin that could be used
for testing.

Retuning was repeated five times, with five different random seeds for permutation
of data within each bin, for each retuning condition/model. Each time, for every time
step of incremental adaptation, we retrained the baseline CGN-only model using bin 0
up to bin t − 1 of the retraining data for 30 epochs using an Adam Optimizer with a
learning rate of 0.0005. The re-tuning accuracy on the training set after 30 epochs
always reached an accuracy of 97.5–99%.

3 Classification Rates

In the first experiment, we investigated the amount of training material needed for
perceptual learning in a DNN to occur. Classification accuracy was computed for all
frames, but since we are primarily interested in the [l], [ɹ], and the ambiguous [l/ɹ]
sound, we only report those. Figure 2 through 4 show the proportion of correct frame
classifications as solid lines, i.e., [l] frames correctly classified as [l] and [ɹ] frames
correctly classified as [ɹ], for each of the 10 bins (0� t� 9). Dashed lines show, for
example, the proportion of [l] frames incorrectly classified as [ɹ], and of [ɹ] frames

for each retuning set from {Baseline, AmbL, AmbR}
Test the CGN-only model using bin 0 from the test set

for t in [1,9]:
Retrain the CGN-only model using bin 0 up to bin t-1 
Test the retrained model from bins 0 through t-1 using test set bin t

Fig. 1. Incremental retuning procedure for the open set evaluation.

6 J. Ni et al.



incorrectly classified as [l]; the rate of substitutions by any other phone is equal to 1.0
minus the solid line minus the dashed line. The interesting case is the classification of
the [l/ɹ] sound (see triangles), which is shown with a dashed line when classified as [l]
and with a solid line when classified as [ɹ]. Note, in the legend, the capital letter denotes
the correct response, lowercase denotes the classifier output, thus, e.g., L_r is the
percentage of [l] tokens classified as [ɹ].

Figure 2 shows the results for the baseline model retrained with the natural stimuli.
The baseline model shows high accuracy in the classification of [ɹ]. The [l] sound is
classified with high accuracy at t = 2, then drops for increasing t, up to t = 8. The [ɹ]
sound, on the other hand, is classified with very high accuracy after seeing a single bin
of retuning data, with very little further improvement for subsequent bins. The [l/ɹ]
sound (not part of the training data for this model) is classified as [ɹ] about 70% of the
time, and as [l] about 10% of the time, with the remaining 20% of instances classified
to some other phoneme.

Figure 3 shows the results for the model retrained with the ambiguous sound
bearing the label of /l/. The AmbL model has a high accuracy in the classification of the
[ɹ]; however, the accuracy of natural [l] is less than 50% after the first bin and continues
to worsen as more training material is added. The lexical retuning dataset contains no
labeled examples of a natural [l]; apparently, in this case, the model learns the retuning
data so well that it forgets what a natural [l] sounds like.

Fig. 2. Proportion of [l] and [ɹ] responses by the baseline model, retrained with natural stimuli,
per bin.

Fig. 3. Proportion of [l] and [ɹ] responses by the AmbL model, retrained with [l/ɹ] labeled as [l],
per bin.

The Time-Course of Phoneme Category Adaptation 7



Importantly, after the first bin, the network has correctly learned to label the [l/ɹ]
sounds as [l], indicating ‘perceptual learning’ by the AmbL system. The classification
of [l/ɹ] as [l] continues to rise slightly for subsequent bins. While the AmbL model
already correctly recognizes most [l/ɹ] sounds as [l] after the first bin, recognition
further improves for subsequent bins.

Figure 4 shows the results for the model retrained with the ambiguous sound
labeled as /r/. The AmbR model has high accuracy for both the [l] and [ɹ] sounds. So,
unlike the AmbL model, the AmbR model did not forgot what a natural [ɹ] sounds like.
Moreover, after the first bin, this model has learned to classify [l/ɹ] as [ɹ] more than
85% of the time, which is a 10% increase over the model trained on the natural sounds
at the same time step, thus showing perceptual learning. Unlike the AmbL model,
additional [l/ɹ] training examples show little tendency to further increase the classifi-
cation of [l/ɹ] as [ɹ], up to and including the last point.

Interestingly, all phones, including the natural [l] and [ɹ] as well as the ambiguous
phone, show classification accuracy of around 50% prior to retraining. This rather low
accuracy is most likely due to the differences in recording conditions and speaker
between the CGN training set and the retraining sets. After retraining with the first bin,
the classification accuracies make a jump in all models, with little further adaptation for
subsequent bins, although the AmbL shows a small increase in adaptation for later bins,
while this is not the case for the baseline and AmbR models. This adaptation suggests
that the neural network treats the ambiguous [l/ɹ] exactly as it treats every other
difference between the CGN and the adaptation data: In other words, exactly as it treats
any other type of inter-speaker variability. In all three cases, the model learns to
correctly classify test tokens after exposure to only one adaptation bin (only 4 exam-
ples, each, of the test speaker’s productions of [l], [r], and/or the [l/ɹ] sound).

Fig. 4. Proportion of [l] and [ɹ] responses by the AmbR model, retrained with [l/ɹ] labeled as [ɹ],
per bin.
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All three models show little tendency to misclassify [l] as [ɹ], or vice versa. This
indicates that the retraining preserves the distinction between the [l] and [ɹ] phoneme
categories.1

To investigate where the retuning takes place, we examined the effect of increasing
amounts of adaptation material on the hidden layers of the models using the inter-
category distance ratio proposed in [9]. This measure quantifies the degree to which
lexical retuning has modified the feature representations at the hidden layers using a
single number. First, the 1024-dimensional vector of hidden layer activations is re-
normalized, so that each vector sums to one, and averaged across the frames of each
segment. Second, the Euclidean distances between each [l/ɹ] sound and each [l] seg-
ment are computed, after which the distances are averaged over all [l/ɹ]-[l] token pairs,
resulting in the average [l]-to-[l/ɹ] distance. Third, using the same procedure the
average [ɹ]-to-[l/ɹ] distance is computed. The inter-category measure is then the ratio of
these two distances, and is computed for each of the ten bins.

Figures 5 through 7 show the inter-category distance ratio ([l/ɹ]-to-[l] over [l/ɹ]-to-
[ɹ]) for the baseline model, the AmbL model, and the AmbR model, respectively, for
each of the 5 hidden layers, for each of the bins.

Figure 5 shows that for earlier bins in the baseline model, the distance between the
ambiguous sounds and the natural [l] category and natural [ɹ] category is approximately
the same for the different layers, with a slight bias towards [ɹ] (the ratio is >1); the lines
for the five layers are close together and do not have a consistent ordering. From bin 5
onwards, and particularly for the last 3 bins, the distance between [l/ɹ] and the natural
[l] category decreases from the first (triangles) to the last layer (diamonds), suggesting
that [l/ɹ] is represented closer to the [l] category. However, this cannot be observed in
the classification scores: Fig. 2 shows that [l/ɹ] is primarily classified as [ɹ]. The
adaptation of [l/ɹ] towards natural [l] for the later bins suggests that adding training
material of the speaker improves the representation of the natural classes as well,
because the distance between [l/ɹ] and the natural classes changes without the model
being trained on the ambiguous sounds.

Figure 6 shows that, for the AmbL model, the distance between [l/ɹ] and the natural
[l] category becomes increasingly smaller deeper into the network: The line showing
hidden layer 1 (triangles) is almost always on top, and the line showing layer 5
(diamonds) is almost always at the bottom. Interestingly, there is a downward slope
from the first to the last bin, indicating that with increasing numbers of [l/ɹ] training
examples labeled as [l], the distance between [l/ɹ] and natural [l] continues to decrease,
even though there are no natural [l] tokens in the retuning data. This continual decrease

1 We repeated this experiment using a Recurrent Neural Network (RNN) model trained under the
Connectionist Temporal Classification (CTC) [14] criterion. The network architecture was different
from the DNN architecture used in this paper, and consisted of two convolutional layers on the raw
spectrogram, followed by six layers of stacked RNN. Despite the vastly different architecture, our
new model showed highly similar behavior in terms of classification rate over the time course of
incremental retuning. Most interestingly, both models seemed to have forgotten what a natural [l]
sounds like.
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in distance between [l/ɹ] and natural [l] seems to be correlated with the continual
increase in classification of the ambiguous sound as [l] for the later bins in Fig. 3, and
might indicate further adaptation of the representation of the ambiguous sound towards
the natural [l].

In the AmbR model (Fig. 7), the ratio of distance([l/ɹ],[l]) over distance([l/ɹ],[ɹ])
increases from layer 1 to layer 5, indicating that the neural embedding of [l/ɹ] becomes
more [ɹ]-like deeper in the network. So, like the AmbL model, the AmbR model also
shows lexical retuning: The speech representation of [l/ɹ] becomes increasingly closer
to that of the natural [ɹ] deeper into the model. The effect of increasing amounts of
adaptation material is however not as clear-cut as for the AmbL model. The distance
ratio rises until bin 2 (8 [l/ɹ] training examples), then falls until bin 5, then rises until
bin 7, then falls again. This inconsistency is also found in the classification scores of
[l/ɹ] as [ɹ] in Fig. 4 but to a lesser extent, which suggest that the increase in the distance
between the [l/ɹ] and [ɹ] categories is not large enough to substantially impact classi-
fication results.

Fig. 5. Ratio of distance([l/ɹ],[l])/distance([l/ɹ],[ɹ]) for the Baseline model.

Fig. 6. Ratio of distance([l/ɹ],[l])/distance([l/ɹ],[ɹ]) for the AmbL model.
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As the classification rates make a significant jump after just seeing the first bin of
words for all three experimental sets, which indicates very fast adaptation, in the
second experiment, we investigate how the CGN-only model adapts to a single bin of
retuning data over the training course in the very first time step. Similar to the pro-
cedure above, we evaluate the classification rates by training the CGN-only model
using the first training bin (training bin 0) from each experiment set (natural, AmbL,
AmbR) for 30 epochs. Before the first epoch of training (t = 0), and after each epoch of
training (1 � t � 30), we record the percentage of [l], [ɹ], and ambiguous [l/ɹ] sounds
from the second test bin (test bin 1) that are classified as either [l] or [ɹ] (a total of 31
time points, 0 � t � 30). Figure 8 shows the classification rates for the Baseline
model: both [l] and [ɹ] sounds show immediate adaptation after the first epoch (correct
response rate increases by about 20% from t = 0 to t = 1). The [ɹ] sound shows the
highest accuracy over 30 epochs, but the number of [ɹ]’s correctly recognized only
increases very slightly after the fifth epoch. After reaching a peak by the first epoch, the
classification rate for [l] decreases until the third epoch, and then flatlines (with some
small oscillations). Interestingly, while ambiguous [l/ɹ] sounds are not present in the
training data, more and more [l/ɹ] get classified as [ɹ] as training progresses, meaning

Fig. 7. Ratio of distance([l/ɹ],[l])/distance([l/ɹ],[ɹ]) for the AmbR model.

Fig. 8. Proportion of [l] and [ɹ] responses by the baseline model over 30 epochs for the first bin.
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that the bias of [l/ɹ] toward [ɹ] somehow increases without the model seeing any
ambiguous sounds.

Figure 9 shows the classification rates over 30 epochs for the AmbL model using
stimuli from the first training bin with ambiguous sounds labeled as [l]. The classifi-
cation rates at t = 0 are the same in Figs. 8 and 9, because they are based on the same
model; it is only after the first training epoch (t = 1) that their rates diverge. Similar to
Fig. 8, the accuracy for [ɹ] reaches 80% within 5 epochs, with a large jump at the
second epoch. The accuracy for natural [l] also jumps up after the first epoch, even
though there are no [l] tokens in the training data, but beginning with the second epoch,
the model starts to forget how to correctly classify natural [l] tokens. The most
important observation comes with the ambiguous [l/ɹ] sound. After just a single epoch
on a single bin of data, the percentage of [l/ɹ] sounds classified as [l] goes from 0% to a
little below 50%. However, after 5 epochs, the accuracy for [l/ɹ] as [l] flatlines around
50%, meaning that the model has reached its limit of perceptual learning by seeing only
one training bin.

Figure 10 shows the classification rates over 30 epochs for the AmbR model using
stimuli from the first training bin with ambiguous sounds labeled as [ɹ]. While no
natural [ɹ] is present in this experiment set, the accuracy for natural [ɹ] gradually
increases until the fifth epoch, meaning that perceptual learning on ambiguous sounds
as [ɹ] also helps the model learn a natural [ɹ]. The ambiguous [l/ɹ] sound is classified as

Fig. 9. Proportion of [l] and [ɹ] responses by the AmbL model over 30 epochs for the first bin.

Fig. 10. Proportion of [l] and [ɹ] responses by the AmbR model over 30 epochs for the first bin
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[ɹ] 50% of the time at t = 0, i.e., with no training; the t = 0 case is identical to those
shown in Figs. 8 and 9. After just one epoch of training, using one bin of ambiguous
sounds labeled as [ɹ], the model learns to perform this classification with 70% accuracy,
and accuracy increases until the fifth epoch.

It is worthwhile, at this point, to remind the reader what is meant by “one epoch” in
the training of a neural net. Each epoch of training consists of three stages: (1) a
direction vector d is chosen; in the first epoch, this is just the negative gradient of the
error; (2) a search procedure is used to choose the scale, g; (3) the neural network
weights are updated as w = w + gd. Each epoch of training can only perform a constant
shift of the previous network weights. Figures 2, 3, 4, 8, 9 and 10 show that most of the
DNN adaptation occurs in the first epoch on the first bin of the adaptation material, i.e.,
on the first update of the direction, therefore most of the DNN adaptation can be
characterized as a constant shift in the network weights. This makes sense since the
model is just learning about 4 additional training tokens (one adaptation bin) — with
only 4 tokens, while it is not possible to learn a very complicated modification of the
boundary, learning a boundary shift is indeed possible and very likely the case here.

In a deep neural network, a constant shift of the network weights is not the same
thing as a constant shift of the classification boundary, but in practice, the revision of
w after the first epoch is usually not much more complicated than a shifted boundary.
The finding that inter-talker adaptation can be accomplished by a constant shift in
cepstral space is not new; it has previously been reported by [16]. The finding that a
comparable constant shift is sufficient to learn distorted sounds, like the ambiguous [l/ɹ]
sound, has never previously been reported.

4 Discussion and Concluding Remarks

Inspired by the fast adaptation of human listeners to ambiguous sounds (e.g., [1–6]), we
investigated the time-course of phoneme category adaptation in a DNN, with the
ultimate aim to investigate the DNN’s ability to serve as a model of human perceptual
learning. We based our investigation on the time-course of adaptation of the human
perceptual learning experiment in [5]. In the first experiment, we provided the DNN
with an increasing number of the original ambiguous acoustic stimuli from [5] as
retraining tokens (in 9 bins of 4 ambiguous items), compared classification accuracy on
the ambiguous items in an independent, held-out test set for the different bins, and
calculated the ratio of the distance between the [l/ɹ] category and the natural [l] and [ɹ]
categories, respectively, for the five hidden layers of the DNNs and for the 9 different
bins. In the second experiment, the amount of training was investigated by calculating
the classification rates over 30 epochs when only one bin is used for retuning.

Results (both presented here and the unpublished results with a CTC-RNN model)
showed that, similar to human listeners, DNNs quickly learned to interpret the
ambiguous sound as a “natural” version of the sound. After only 4 examples of the
ambiguous sound, the DNN showed perceptual learning, with little further adaptation
for subsequent training examples, although a slight further adaptation was observed for
the model which learned to interpret the ambiguous sound as [l]. In fact, perceptual
learning could already clearly be seen after only one epoch of training on those 4
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examples, and showed very little improvement after the fifth epoch. This is in line with
human lexically-guided perceptual learning; human listeners have been found to need
10–15 examples of the ambiguous sound to show the same type of step-like function
[5, 6]. We should note, however, that it is not evident how to compare the 4 examples
needed by the DNN with the 10–15 examples of the human listener. We know of no
way to define the “learning rate” of a human listener other than by adjusting the
parameters of a DNN until it matches the behavior of the human, which is an inter-
esting avenue for further research into the DNN’s ability to serve as a model of human
perceptual learning. Nevertheless, both DNNs and human listeners need very little
exposure to the ambiguous sound to learn to normalize it.

Retuning took place at all levels of the DNN. In other words, retuning is not simply
a change in decision at the output layer but rather seems to be a redrawing of the
phoneme category boundaries to include the ambiguous sound. This is again exactly in
line with what has been found for human listeners [17].

This paper is the first to show that, similar to inter-talker adaptation, adaptation to
distorted sounds can be accomplished by a constant shift in cepstral space. Moreover,
our study suggests that DNNs are more like humans than previously believed: In all
cases, the DNN adapted to the deviant sound very fast and after only 4 presentations,
with little or no adaptation thereafter. Future research will aim to test, in perceptual
experiments with human listeners, the prediction of the DNN that the speech repre-
sentations of the ambiguous sound and the natural [l] and [ɹ] change very little once the
category adaptation has taken place.
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Abstract. The present paper describes a corpus for research into the pragmatic
nature of how information is expressed synchronously through language, speech,
and gestures. The outlined research stems from the ‘growth point theory’ and
‘integrated systems hypothesis’, which proposes that co-speech gestures (in-
cluding hand gestures, facial expressions, posture, and gazing) and speech
originate from the same representation, but are not necessarily based solely on the
speech production process; i.e. ‘speech affects what people produce in gesture
and that gesture, in turn, affects what people produce in speech’ ([1]: 260).
However, the majority of related multimodal corpuses ‘ground’ non-verbal
behavior in linguistic concepts such as speech acts or dialog acts. In this work, we
propose an integrated annotation scheme that enables us to study linguistic and
paralinguistic interaction features independently and to interlink them over a
shared timeline. To analyze multimodality in interaction, a high-quality multi-
modal corpus based on informal discourse in a multiparty setting was built.

Keywords: Corpora and language resources � Multimodal corpus �
Multimodal technologies � Natural language understanding. pragmatics �
Annotation � Conversational intelligence

1 Introduction

In social and spoken interaction, language is not used in isolation and does not occur in
a vacuum [2]. Embodied behavior adds more than 50 percent of non-redundant
information to the common ground of the conversation [3]. The sharing of information
or the exchange of information in human social interactions is far more complex than a
mere exchange of words. It is multilayered and includes attitude and affect, utilizes
bodily resources (embodiment) as well as a physical environment in which the dis-
course takes place [4].

Effective communication requires the following conditions to be fulfilled: (i) the
communicator must make his or her intention to communicate recognizable and (ii) the
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propositional content or conceptual or ideational meaning (e.g. semantic information)
that they wish the recipient to receive must be represented effectively [5].

In interpersonal discourse, verbal signals carry a symbolic or semantic interpreta-
tion of information through linguistic and paralinguistic properties, while non-verbal
signals (i.e. embodiments) orchestrate speech [6]:4. Non-verbal concepts, such as
prosody, embodiments, emotions, or sentiment are multi-functional and operate on the
psychological, sociological, and biological level and in all time frames. These signals
represent the basis of cognitive capabilities and understanding [7, 8]. Embodied
behavior in particular, effectively retains the semantics of the information, helps in
providing suggestive influences, and gives a certain degree of cohesion and clarity to
the overall discourse [9, 10]. Non-verbal behavior, although not bound by grammar,
co-aligns with language structures and compensates for the less articulated verbal
expression model [2, 11]. It also serves interactive purposes, such as content repre-
sentation or expression of one’s mental state, attitude, and social functions [12–16].

The main motivations for the work presented in this paper is driven by the goal of
enabling machine ‘sensing’ and more natural interaction with virtual agents. Despite
the considerable interest in this topic and significant progress reported, automatically
understood and machine-generated information from a set of evidence is, in general,
still far from perfect or natural [11, 17]. Moreover, not only speech and language affect
embodiment but embodied signals also affect what people produce through language
and speech [1].

This paper presents a multimodal approach to generating ‘conversational’ knowl-
edge and modeling of the complex interplay among conversational signals, based on a
concept of data analytics (mining) and information fusion. Our work outlines a novel
analytical methodology and a model to annotate and analyze conversational signals in
spoken multi-party discourse. Moreover, the results of our annotation process (i.e. the
corpus) applied to a multi-party discourse setting in Slovenian are represented. In
addition to capturing language-oriented signals, naïve to modern corpus linguistics, the
model also provides a very detailed description of non-verbal (and paralinguistic)
signals. These disparate phenomena are interconnected through the notion of co-
occurrence (e.g. timeline).

2 Background

One of the main issues in sentic computing is misinterpretation of conversational
signals and non-cohesive responses. As a result, ‘multimodality in interaction’ became
one of the fundamental concepts in corpus linguistics. Especially in interactional lin-
guistics and conversation analysis, a significant focus was shifted to embodied behavior
(an overview of such research can be found in [11, 18]). The semantic domain is
particularly well-suited when investigating co-verbal alignment. Research studies show
how humans ‘map’ semantic information onto linguistic forms [10, 19, 20]. Linguistic
approaches in general tend to observe embodied behavior in discourse on a linguistic
basis (i.e. language and grammar). However, as argued by Birdwhistell [21], what is
conveyed through the body does not meet the linguist’s definition of language.
Therefore, the apparent grammatical interface between language and gestures seems to
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be limited ([2]). In terms of creating conversational knowledge, such association
operates in very narrow contexts and opens limited and highly focused opportunities to
explore the interplay between verbal and non-verbal signals [8, 22].

In contrast, the researchers in [6, 14–16], among others, propose to involve addi-
tional modalities, such as sound and image, and investigate the functional nature of
embodiments during discourse. The widely adopted approach to multimodality in
interaction is Pierce’s semiotic perspective (i.e. the ‘pragmatics on the page’), which
explores the meaning of images and the intrinsic visual features of written text. In [23],
for instance, the authors correlated hand shapes (and their trajectories) with semiotic
class based on a broader context of the observed phenomena. Although the approaches
oriented towards semiotics (i.e. [24–26]) go beyond semantics and do not restrict
embodiments to linguistic rules, they still restrict themselves functionally, that is to a
specific phenomenon and a narrow discourse context.

In contrast to the aforementioned approaches inspired by linguistics, Feyaerts et al.
[27] authors build on the cognitive-linguistic enterprise and equally incorporate all
relevant dimensions of how events are utilized, including the trade-off between dif-
ferent semiotic channels. However, the discourse setting is limited to an artificial
setting. Due to the challenging nature of informal, especially multiparty discourse,
researchers tend to establish artificial settings [28]. These settings introduce laboratory
conditions with targeted narration and discourse concepts between collocutors which
focus on a specific task. Such data sources therefore clearly reveal the studied phe-
nomena but hinder ‘interference’ of other, non-observed signals that would appear in
less restricted settings. Furthermore, in most cases, a wider scope of conversational
signals is intentionally left out of the conversational scenario [29, 30]. Following [27],
we observe discourse as a multimodal phenomenon, in which each of the signals
represents an action item, which must be observed in its own domain and under its own
restrictions. We focus on corpus collection, structuring, and analysis. Instead of ‘arti-
ficial’ scenarios we utilize a rich data source based on an entertaining evening TV talk
show in Slovene, which represents a good mixture of institutional discourse, semi-
institutional discourse, and casual conversation.

3 Data Collection and Methodology: The EVA Corpus

3.1 Data Source

In this research, we used the EVA Corpus [31] which consists of 228 min in total,
including 4 video and audio recordings, each 57 min long, with corresponding
orthographic transcriptions. The discourse in all four recordings is a part of the
entertaining evening TV talk show A si ti tut not padu, broadcast by the Slovene
commercial TV in 2010. In total, 5 different collocutors are engaged in each episode.
The conversational setting is relaxed and unrestricted. It is built around a general
scenario, focused on day-to-day concepts. The discourse involves a lot of improvisation
and is full of humor, sarcasm, and emotional responses. Moreover, although
sequencing exists and general discourse structuring (e.g. role exchange, topic opening,
grounding, etc.) applies, it is performed highly irregularly. Table 1 outlines the general
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characteristics of the recording used to define the proposed model of conversational
expression. The utterances in the EVA Corpus are mostly single short sentences, on
average consisting of 8 words. The discourse contains 1,801 discourse markers
(counting only those with a minimum frequency of 10). The corpus includes a lot of
non-verbal interactions: 1,727 instances in which ‘movement’ was attributed to convey
meaning (e.g., a gesture performed with an intent) were classified.

The data in Table 1 clearly outline that contributors are active and that the dis-
course involves short statements (i.e. under 5 s) with a significant amount of overlap-
ping speech. Individual sentence duration ranges from 0.5 s to 5 s and 2.8 s on average.
Together, all participants generate roughly 93 min of spoken content in a 57-min
recording. The statements are interchanging rapidly among the collocutors and with
high density.

3.2 Annotation Topology

In order to realize the aforementioned ‘conversational model’ and observe each con-
versational expression in greater detail, a multimodal annotation approach typically
used in conversational analysis was adopted. For this purpose, an annotation topology
with various levels, as outlined in Fig. 1, was defined. The scheme applies a two-
layered analysis of the conversational episode.

In the first layer (i.e. symbolics/kinesics), signals that are primarily evident in the
formulation of an idea and identify the communicative intent were observed and
annotated. As outlined in Fig. 1, this layer annotates linguistic and paralinguistic signals

Table 1. General characteristics of discourse in the EVA Corpus.

Utterances

Total 1,516
AVG per speaker 303

Sentences

Total 1,999
AVG per speaker 399.8
AVG per statement 1.32

Words

Total 10,471
AVG per speaker 2094
AVG per sentence 7.9

Metadiscourse

discourse markers (n > 10) 1,801
AVG per speaker 599

Non-verbal behavior

Total number of semiotic intents 1,727
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(e.g. kinesics [21]). The second layer (i.e. articulation/prosody) is oriented towards the
form and is concerned with how an abstract concept (i.e. communicative intent) is
physically articulated through auditory and visual channels. It provides detailed
descriptions of the structure of verbal and non-verbal components and on how the
articulators (verbal and non-verbal ones) are modeled, moved, and put to use.

The material was annotated by an annotator with a background in linguistics and
experience in annotation of multimodal materials. The annotations were performed in
ELAN (EUDICO Linguistic Annotator) and WebAnno, converged into a single data
source, specified as JSON, and visualized. The currently available annotations were
performed over a nine-month period and in separate trials for each conversational
concept and, in some cases, even for each signal.

3.3 Annotation Procedure and Inter-annotator Agreement

Five annotators, two with linguistic background, and three with technical background
in machine interaction were involved in this phase of annotations. Annotations were
performed in separate sessions, each session describing a specific signal. The anno-
tation was performed in pairs, i.e. two or three annotators annotated the same signal.
After the annotation, consensus was reached by observing and commenting on the
values where the was no or little annotation agreement among multiple annotators
(including those not involved in the annotation of the signal). The final corpus was
generated after all disagreements were resolved. Procedures for checking inconsis-
tencies were finally applied by an expert annotator.

Before starting with each session, the annotators were given an introductory pre-
sentation defining the nature of the signal they were observing and the exact meaning
of the finite set of values they could use. An experiment measuring agreement was also
performed. It included an introductory annotation session in which the preliminary
inconsistencies were resolved. For the less complex signals, influenced primarily by a
single modality (i.e. pitch, gesture unit, gesture phrase, body-part/modality, sentence

Fig. 1. The topology of annotation in the EVA Corpus: the levels of annotation describing
verbal and non-verbal contexts of conversational episodes
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type, etc.), the annotators’ agreement measured in terms of Cohen’s kappa [32] was
high, namely between 0.8 and 0.9. As summarized by Table 2, for the more complex
signals that involve all modalities for their comprehension (including speech, gestures,
and text) the interpretation was less unanimous.

The figures indicate that agreement was 0.63 on average. Given the complexity of
the task and the fact that the values in Table 2 also cover cases with possible duality of
meaning, the level of agreement is acceptable and comparable to other multimodal
corpus annotation tasks [25]. For Intent the possible duality of interpretation was
surprisingly common. The annotators in general agreed on the major class and would
have a difference in opinion in the minor sub-class.

3.4 Transcription and Segmentation

The audio data was transcribed in original colloquial transcriptions (verbatim), and in
their standardized transcriptions (standardized Slovenian spelling). The colloquial
transcriptions also include meta information transcribed in brackets ‘[]’ (e.g.,
[:laugher], [gap], [incident], [:voice]). All transcriptions are segmented into statements,
sentences and words while also considering the temporal domain. The boundaries for
colloquial and standardized statements match completely. The conversations are split
into 5 sessions, in which each session contains information and annotation levels for
each individual speaker. Additionally, each word was POS tagged following the JOS
specifications.

3.5 Discourse Management and Structuring

Following the ISO 24617-2 [33] guidelines, dialogue acts (DA) in the EVA Corpus
were annotated as an independent concept and some adjustments to the ISO scheme
were added. The definition of the ISO functional segments as the basic unit of anno-
tation and their several layers of information (sender, addressee, dimension, and
communicative function) were retained. Some non-task dimensions were merged into a
single cover dimension, the social obligation dimension was generalized into social
management. The results of the annotation are listed in Table 3.

Table 2. Results of the preliminary inter-coder agreement experiment.

Signal Kappa score

Sentiment 0.67
Dialog function 0.64
Dialog dimension 0.71
Intent (semiotic class) 0.48
Emotion label 0.51
Gesture unit 0.75
Movement phase 0.66
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The most common dimension was task (e.g. information providing, agreement,
confirmation, instructing) which accounted for more than half of the DAs. Commu-
nication management (stalling, retraction, etc.) was the second most frequently
assigned dimension. This reflects a high level of spontaneity in dialogue. The third
most frequent dimension was feedback, which can be explained with a high level of
interaction and informal character of the dialogue.

3.6 Discourse Markers

The present research draws on previous work on Slovene DMs [34], which includes a
vast set of expressions ranging from connective devices such as and and or to the
interactional yes and y’know and to production markers such as uhm. Altogether 121
different expressions were tagged as DMs; however, only DMs with a minimum fre-
quency of 10 were analyzed and classified into the following groups:

DM-s (speech formation markers): eee ‘um’ (316), eem ‘uhm’ (15), mislim ‘I mean’
(24), v bistvu ‘actually’1 (10)
DM-d (dialogue markers):
• DM-d(c) (contact): veš ‘y’know’ (14), a veš ‘y’know’ (24), glej ‘look’ (23), daj

‘come on’ (17), ne ‘right?’ (183), a ne ‘right?’ (21), ti ‘you’ (10), ej ‘hey’ (14)
• DM-d(f) (feedback): aja ‘I see’ (18), mhm ‘mhm’ (20), aha ‘oh’ (53), ja ‘yes’

(409), fajn ‘nice’ (14)
• DM-d(s) (dialogue structure): dobro ‘alright’ (39), no ‘well’ (79), ma ‘well’

(10), zdaj ‘now’ (21), čakaj ‘wait’ (22)

Table 3. Results of DA annotation in the EVA Corpus

DA Dialog dimensions > 200

Total acts 3,465 Total dimensions 3,465
With 1 dimension 2,144 Task 1,960
With 2 dimensions 1,175 Communication management 608
With 3 or more dimensions 146 Feedback 445
Dialog functions
Total functions 3,479
Functions with frequency > 25
inform: 982, stalling: 291, ownComprehensionFB: 272, setQuestion: 176,
answer: 163, checkQuestion: 135, retraction: 112, feedbackElicitation: 108,
agreement: 104, instruct: 95, confirm: 93, positive: 78, interaction
Structuring: 68, negative: 65, backchannel: 64, disagreement: 48,
opening: 46, argument: 43, completion: 39, request: 38, partner
ComprehensionFB: 35, turnTake: 32, suggest: 31, emphasis: 28, flattery: 26

1 It is impossible to provide exact English equivalents for the Slovenian discourse markers examined
in this paper as there are no one-to-one equivalents. The translations provided here are therefore
only informative, giving the general meaning of each discourse marker.
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DM-c (connectives): in ‘and’ (65), pa ‘and’ (48), ker ‘because’ (13), ampak ‘but’
(16), tako ‘so’ (20), a ‘but’ (117), pač ‘just’ (16).

Altogether 1,651 DMs were annotated which accounts for 15.8% of all spoken
content (i.e. 10,471 words).

3.7 Emotion

Emotional attitude in discourse primarily pertains to the way people feel about the
conversational episode, the interlocutor, or the content of the ongoing conversation. For
the annotation of emotions, Plutchik’s three dimensional [35] model was applied. It has
the capacity to describe complex emotions and how they interact and change over time
and in a broader, social context. The results are listed in Table 4.

In the EVA corpus, 3,312 instances of emotional attitude were identified. The
‘Anticipation: interest’, ‘Trust: acceptance’ and ‘Joy’ category were identified as
dominant emotions.

3.8 Classification of Embodied Behavior Through Semiotic Intent

This research focuses only on ‘meaningful’ movement defined through an extension of
semiotics as the basis for symbolic interpretation of body language in human-human
interaction. We applied the classification proposed in [31], which leverages between
semiotics and kinesics, and also includes functions of discourse management
(i.e. [15, 16]). The following classes of semiotic intent (SI) were distinguished:

• illustrators (I), with the subclasses: outlines (IO), ideographs (II), dimensional
illustrators (ID), batons (IB);

Table 4. Cross-speaker distribution of annotated emotions in the EVA Corpus

Emotion Instances Emotion Instances

Anticipation: interest 1,239 Delight 19
Trust: acceptance 671 Trust: admiration 19
Joy 349 Boredom 15
Joy: serenity 221 Sadness 15
Disapproval 137 Contempt 14
Joy: ecstasy 92 Pensiveness 12
Surprise 69 Anger: annoyance 10
Amazement 49 Pride 10
Anticipation: vigilance 43 Alarm 7
Cynicism 29 Fear: apprehension 7
Disgust 23 Optimism 7
Distraction 23 Shame 7
Curiosity 22
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• regulators/adapters (R), with the subclasses: self-adaptors (RS), communication
regulators (RC), affect regulators (RA), manipulators (RM), social function and
obligation regulators (RO);

• deictics/pointers (D), with the subclasses: pointers (DP), referents (DR), and enu-
merators (DE), and

• symbols/emblems (S).

As visible in Table 5, the EVA Corpus contains 1,727 instances of SIs generated
during the discourse. The distribution of SIs shows that most of the observed embodied
movement correlates with regulation and adaptation of discourse (SI class R). Among
regulators, communication regulators (RC) and self-adapters (RS) were the most uti-
lized non-verbal mechanism. Symbols (S) and illustrators (I) exhibit the most signifi-
cant linguistic link and even a direct semantic link. In most cases, they are accompanied
by a speech referent, although symbols do provide a clear meaning even without a
referent in speech. In the EVA Corpus, they were classified as the least frequent non-
verbal mechanism, which is also in line with non-prepared discourse.

3.9 Form and Structure of Non-verbal Expressions

From the perspective of kinesics, gestures and non-verbal expressions are considered
body communication generated through movement, i.e. facial expressions, head
movement, or posture. The approach outlined in [36] and the definition of the anno-
tation of form, as represented in [37], were adopted for the description of non-verbal
expressions (shape and motion). The distribution of non-verbal expressions based on
modality (i.e. body parts) as represented in the EVA corpus is outlined in Table 6.

Table 5. The usage of embodied behavior in the EVA Corpus

SI class SI subclass Frequency Total

I IO 20 178
II 68
ID 11
IB 80

R RA 105 1,194
RC 717
RM 16
RO 27
RS 329

D DP 40 275
DR 219
DE 16

S S 37 37
(undetermined) U 43 43
Total 1,727
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4 Conclusion

This paper presents the first Slovene multimodal corpus, the EVA Corpus. Its aim is to
better understand how verbal and non-verbal signals correlate with each other in nat-
urally occurring speech and to help improve natural language generation in embodied
conversational agents. The various annotation levels incorporate and link linguistic and
paralinguistic, verbal and non-verbal features of conversational expressions as they
appear in multiparty informal conversations.

The concept proposed in this paper builds on the idea that a ‘multichannel’ rep-
resentation of a conversational expression (i.e. an idea) is generated by fusing language
(‘what to say’) and articulation (‘how to say it’). On the cognitive level (i.e. the
symbolic representation), an idea is first formulated through the symbolic fusion of
language and social/situational context (i.e. the interplay between linguistic and par-
alinguistic signals interpreted as the communicative intent). On the representational
level, one utilizes non-linguistic channels (i.e. gestures, facial expressions), verbal (i.e.
speech) and non-verbal prosody (i.e. movement structure) to articulate the idea and
present it to the target audience.

Acknowledgments. This work is partially funded by the European Regional Development Fund
and the Ministry of Education, Science and Sport of the Republic of Slovenia; the project SAIAL
(research core funding No. ESRR/MIZŠ-SAIAL), and partially by the Slovenian Research
Agency (research core funding No. P2-0069).

Table 6. Non-verbal patterns across all speakers in the EVA Corpus.

Modality Total Mean per participant

FACE 53 10.6
HEAD 704 140.8
HEAD+FACE 717 143.4
LARM 34 6.8
LARM+FACE 4 0,8
LARM+HEAD 289 57.8
LARM+HEAD+FACE 230 46
LARM+RARM 74 14.8
LARM+RARM+FACE 19 3.8
LARM+RARM+HEAD 789 157.8
ALL MODALITIES 476 95.2
RARM 57 11.4
RARM+FACE 2 0.4
RARM+HEAD 428 85.6
RARM+HEAD+FACE 323 64.6
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Abstract. Recently many works have proposed to cast human-machine
interaction in a sentence generation scheme. Neural networks models
can learn how to generate a probable sentence based on the user’s state-
ment along with a partial view of the dialogue history. While appealing
to some extent, these approaches require huge training sets of general-
purpose data and lack a principled way to intertwine language generation
with information retrieval from back-end resources to fuel the dialogue
with actualised and precise knowledge. As a practical alternative, in this
paper, we present Lilia, a showcase for fast bootstrap of conversation-like
dialogues based on a goal-oriented system. First, a comparison of goal-
oriented and conversational system features is led, then a conversion pro-
cess is described for the fast bootstrap of a new system, finalised with an
on-line training of the system’s main components. Lilia is dedicated to a
chit-chat task, where speakers exchange viewpoints on a displayed image
while trying collaboratively to derive its author’s intention. Evaluations
with user trials showed its efficiency in a realistic setup.

Keywords: Spoken dialogue systems · Chatbot ·
Goal-oriented dialogue system · On-line learning

1 Introduction

While a new avenue of research on end-to-end deep-learning-based dialogue sys-
tems has shown promising results lately [18,24,27], the need of a huge quan-
tity of data to efficiently train these models remains a major hindrance. In the
reported studies, systems are typically trained with large corpora of movie sub-
titles or forum data, which are suitable for modelling long, open-domain dia-
logues. But then, systems’ developments rely on a small set of reference datasets
that may be unavailable for all languages (publicly available corpora are usually
in English [4,25]), or for all new domains of interest. Another difficulty is that
they cannot handle entity matching between a knowledge source and utterances.
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C. Mart́ın-Vide et al. (Eds.): SLSP 2019, LNAI 11816, pp. 31–43, 2019.
https://doi.org/10.1007/978-3-030-31372-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31372-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-31372-2_3


32 M. Riou et al.

Despite some recent propositions to extend the range of applications of the end-
to-end neural-network-based framework to task-oriented systems [10,24], the way
to connect the external information to inner representation remains fundamen-
tally unsolved [23,27].

As a consequence, classical modular architectures are still useful in many
cases. They basically can be seen as a pipeline of modules processing the
audio information from the user; downstream progressive treatments aim to
first extract the content (speech recognition), then the meaning (semantic pars-
ing, SP), to finally combine it with previous information (including grounding
status) from the dialogue history (belief tracking). In this last module, a policy
can decide from a dialogue state representation the next best action to per-
form according to some global criteria (generally dialogue length and success
in reaching user’s goal). This in-depth step of dialogue management (DM) can
then supply the stream to convey the information back to the user: conversion of
the dialogue manager action into utterances by the natural language generation
(NLG) module followed by speech synthesis. The HIS architecture [26] offers
such a setup, plunged into a global statistical framework accounting for the rela-
tionships between the data handled by the main modules of the system. Among
other things it allows reinforcement learning of the DM policy. In this system
some of the most sample-efficient learning algorithms had been implemented and
tested [6], while on-line learning with direct interactions with the user had also
been proposed [9]. Even more recently on-line learning has been generalised to
the lower-level modules, SP and NLG, with protocols to control the cost of such
operations during the system development (as in [8,15,16,20,27]).

HIS is meant to handle goal-oriented vocal interactions. It allows a system to
exchange with users in order to address a particular need in a clearly identified
field (make a hotel reservation, consult train timetables, troubleshooting, etc.).
Goal-oriented dialogue systems require a database to be able to support domain
specific tasks. In order to formulate system responses, entities of the database are
matched with the information collected through the dialogue. The DM is respon-
sible for making appropriate dialogue decisions according to the user goal and
taking into account some uncertain information (e.g. speech recognition errors,
misunderstood speech, etc.). The Partially Observable Markov Decision Process
(POMDP) model [12] has been successfully employed in the Spoken Dialogue
System (SDS) field [22,26] as well as in the Human Robot Interaction (HRI)
context [14], due to its capacity to explicitly handle parts of the inherent uncer-
tainty of the information which the system has to deal with (e.g. erroneous speech
transcripts, falsely recognised gestures, etc.). In this setup, the agent maintains
a distribution over possible dialogue states, referred to as the belief state in the
literature, and interacts with its perceived environment using a reinforcement
learning (RL) algorithm so as to maximise the expected cumulative discounted
reward [21].

In this paper, we report on our investigations of the fast adaptation of such a
system to handle conversation-like dialogues. Our underlying goal in this endeav-
our is to develop a system intended to be used in a neuroscience experiment.
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From inside an fMRI system, users will interact with a robotic platform, vocally
powered by our system, which is live-recorded and displayed inside the head-
antenna. Users discuss with the system about an image and they try jointly
to elaborate on the message conveyed by the image (see Sect. 3 for further
details). Considering that well-performing solutions can be used directly off-
the-shelf for speech recognition and synthesis, the study focuses on adapting the
spoken semantic parsing and dialogue management modules only.

The remainder of this paper is organised as follows. After presenting a com-
parison between a goal-oriented dialogue and a conversation in Sect. 2, we present
some design guidelines, forming a recipe to convert the goal-oriented dialogue
system to a conversational one in Sect. 3. Section 4 provides an experimental
study with human evaluations of the proposed approach and we conclude in
Sect. 5.

2 Comparison of Goal-Oriented Vs Conversational
Agents

On the one hand, goal-oriented dialogue agents are designed for a few particular
tasks and set up to have highly-focused interactions to get information from
the user to help complete the task at stake, by helping her to reach a defined
goal (such as making a reservation). On the other hand, conversational systems
are designed to mimic the unstructured conversational or ‘chats’ characteristics
of human interactions [11]. The review hereafter intends to outline the most
important differences between the two situations.

Of course, one must be aware that most of natural human spoken interactions
are in fact a composition of goal-driven and open-minded interleaved turns. The
latter in this case generally play a role of social glue between speakers, as pointed
out by conversational analysis studies (e.g. in [19]). So the presentation below is
somewhat artificial and solely aims at making things clearer in the purpose of
the implementation of an artificial interactive system.

The most obvious difference lies in the domain covered by the interactions.
In principle, goal-oriented interactions suppose a limited single-domain back-
drop. Nevertheless these domains have been largely extended in the recent years,
and even some possibilities exist to design multi-domain applications (see for
instance [3,7]). On the contrary, conversational systems are supposed to have no
limitation on the discussed topics. No such system has been built so far and this
remains a research objective, mainly due to the limited understanding abilities of
extant systems. It is worth mentioning here that a conversation can also happen
in a restricted domain (such as banter about the weather forecast for instance).
And then the distinction should be operated at other levels.

First of them, goal-oriented systems can be characterised by the existence
of a back-end that the user wants to access to. It will generally be a database,
but can be generalised to any knowledge source from which informational enti-
ties can be retrieved. During a conversation it is supposed that the user has no
specific desire to know a particular piece of information. Even though it is not
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contradictory with getting to know things in a casual way, there is no incen-
tive to do so. While conversing users are mainly interested in answers allowing
them to pursue their own logic, some general knowledge is sufficient to produce
responses that make sense in light of users’ turns, most of the time. That is
how some conversational systems could be built using a huge quantity of movie
subtitles [17]. Not surprisingly, learning how to interact with a user based on
movie excerpts does not end up with very coherent and purposeful reactions on
behalf of the system, even when some contextual information is added [10].

Another major practical difference between goal-driven and chit-chat discus-
sions lies in the timing. While goal-oriented systems are expected to reach the
goal in the shortest possible time, it is almost the opposite for conversational
ones. For these latter, the dialogue is supposed to go on as long as the speakers
find some interest and motivation in the discussion (and they have available time
to spend together). It arises a difficulty in using an automatic process to train
such systems as one constraint guiding the learning progress (length penalty) is
removed. Indeed, most of recent approaches to train DM by means of RL algo-
rithms relied on two constraints: reach the goal (and collect a reward associated
with it) and do it fast (and avoid rewards penalising each turn). Therefore, with
only one remaining constraint, the kind of strategy is unclear at the end of the
learning process.

Finally, a very important discrepancy between the two interaction types is
the role-playing innuendo. In goal-oriented systems, the slave-to-master relation-
ship between the user and the system is implicitly implemented, whereas when
conversation is at stake, both speakers are expected to intervene at an equal
level. So the conversational system becomes truly mix-initiative (in compari-
son to user or system-initiative systems), but this implies much more complex
exchanges. More information can potentially be conveyed at each turn, with
less prior expectation of what can be said. On top of all that, the conversation
situation implies that the system might be able to participate in the argumenta-
tion about the discussed topics. The argumentative capacity, despite recent very
promising works based on the use of game theory [2,13], remains very difficult
to implement in the current architecture. This is a point that our endeavours to
convert a goal-oriented system to a conversational interface have not yet been
able to address appropriately, as discussed in the next section.

3 Conversion from Goal-Oriented to Conversational

In this section we present some principles behind the conversion of a goal-oriented
system to its conversational version. The propositions are exemplified in the
context of a new system, Lilia, intended to be used for neuroscience experiments
in a near future.

The experiments presented in the paper concern a chit-chat dialogue system
framed in a goal-oriented dialogue task. In this context, users discuss with the
system about an image (out of a small predefined set of 6), and they tried
jointly to discover the message conveyed by the image, as described in [5]. The
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discussion is expected to last only one minute at most. An example of a successful
dialogue for the task is reported, from user trials, in Table 1, with the presented
image. The dialogue is translated from French and the user inputs are given after
automatic speech recognition ( asr) processing.

Table 1. Example of a successful dialogue (translated from French). Automatic tran-
scripts of the user’s inputs are given.

S Hello, my name is Lilia. Today, we’ve got to try to find this
image’s message. Maybe we could start by discussing its char-
acteristics.

U asr and a head-down apple
S And what do you feel about this fruit?

U asr it looks like a superhero with eyes
S This apple looks like a hero with eyes. Concerning its look,
we can say it is upside-down.

U asr it seems appetising and nice-looking
S This apple with eyes really looks like a hero. Concerning its
appearance, I would say nice looking.

U asr image want to eat more fruits and natural products superheros
mean something to kids

S I think that may be related to GMOs. In order to prove that
they create strong fruits and vegetables, finally healthy.

U asr you’re right
S Yes, or more simply it is about recommending youth to eat
more fruits in general?

U asr yes may be, good bye

In order to use a goal-oriented system for such a task, the principle which has
been followed is to construct, as the system’s back-end, a database containing
several hundreds of possible combinations of characteristics of the image. Each
of them is associated with a hypothesis about the conveyed message. The overall
recommended process is summarised in Algorithm 1 in its general terms, and its
application to the development of Lilia is detailed hereafter.

During its interaction with the system, the user is expected to progressively
provide elements about the image, which will make the system select a small
subset of matching entity descriptions in the database. From this subset, it can
pick other characteristics and present them as its opinion or ultimately select a
pre-defined message to return as a plausible explanation of the image purpose.
This would allow the user to speak rather freely about the image for several tens
of seconds before arguing briefly about the message. Formally no argumentation
is possible from the system’s side, it can only propose canned messages. Yet by
providing variants of surface forms for each of them, it is possible to simulate
a progression in the system’s idea of the message. For example, in the dialogue
displayed in Table 1, the last two system turns are in fact issued from the same
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DM dialogue act (“inform(message=GMO)”) but are converted to two different
utterances which give the illusion to respond to each other. Although this a very
limited mechanism to mimic an argumentative capacity on behalf of the system,
it appeared to work quite well during user trials, as the next section will show.

So a paramount starting point for designing the new system is to elaborate
a dedicated new ontology. It should be built based not only on the expected
topics but also on the targeted discussion structure. We illustrate this process
for our ‘image commentary’ domain. The concepts chosen to describe an image
have been elicited on the expectation of what a user could say about them.
Here we ensure the ontology contains the elements to unroll the first part of
the conversation on exchanging impressions about image characteristics. The
ontology has been kept simple and generic as it is mainly based on the following
concepts:

– Is describes physical characteristics with the following values: “nice looking”,
“rotten”, “upside-down”, etc.

– Possesses describes attributes of the fruit, such as: “arm”, “bumps”, etc.
– Looks like describes a resemblance of the fruit, with the following values:

“human”, “batman”, etc.
– Seems describes an emotion or a feeling coming off the fruit: “sad”, “tired”,

“appetising”, etc.
– Color describes the main colour of the fruit.

Algorithm 1. Design guidelines for conversation-like dialogues
1: Enumerate possible objects of discussion → ontology, top slot and values
2: Elaborate a (small) set of common characteristics → ontology, leaf slots
3: Enumerate slot values for each object → ontology, flat list of slot/value pairs

for each object
4: Tailor ontology to enforce dialogue structure: tag a concluding slot (possible final

message of the discussion), and tag several slots as compulsory (the message can
be delivered only after users have provided them) → ontology, structure tags

5: Generate Cartesian product of all slot/value pairs per object → produce backend
DB

6: Use ontology to bootstrap semantic parser: keyword spotting with values (or more
elaborate, as for instance using ZSSP framework [8]) → SP

7: Use ontology to bootstrap a set of generation templates (concatenation of single-
slot templates or composition of multi-slot templates) → NLG

8: Multi-criteria objective function: → reward function for DM RL training
- final step (e.g. informing of a particular final slot after exchanging at least several
other slots, see ontology tags)
- length penalty, to preserve global coherence

9: Train system components: → trained SP and DM policy
- collect WoZ or human-human data first and batch train or
- direct online training
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For the second part of conversation, delivering a message, it has been observed
two sets of images: one with damaged poor-looking fruits with human character-
istics (arms, legs, eyes) and another with fruit disguised as superheros looking
rather strong (as the apple in Table 1). A dedicated message has been conceived
for each group: first the author’s intention was to convince children that even
poor-looking rotten fruits were healthy and good to eat, or fruits and vegeta-
bles in general are strong and healthy companions, as superheros are usually
(for some versions of the message it has even been suggested that it could be a
campaign in favour of GMO crops, see Table 1).

Those description concepts induce the system to discuss several characteris-
tics of the image with the user, but their usage also presents some pitfalls. Firstly,
when the system is discussing one concept, for example requesting about “Is”,
and the user answers with a characteristic of a different concept, the system
may keep repeating its request while the user thinks it has answered it. Sec-
ondly, the characteristics of a given concept do not necessarily exclude each
other. For example, a same fruit can have both characteristics “is=nice look-
ing” and “is=upside-down”. To implement that in the goal-oriented system, the
back-end database is built as the mere Cartesian product of all the values of the
ontology’s slots. In the previous case this will result in two distinct DB entities
for the same fruit in the database, one having the “nice looking” characteristic,
and the other having the “upside-down” one.

The SP module also has to be adapted to the new task. As our goal-oriented
system relies on the use of an on-line trained SP module (such as in [8]) no
further manual modifications have been necessary at this step. The ontology as
described above is instantiated in the model, and each concept is associated with
a set of values. In Lilia, 9 concepts are considered for a total of 51 values (so
5.7 values/slot on average). Only the concept of message has been specifically
addressed. As the purpose of the dialogue system is to ultimately deliver a mes-
sage, the message concept can only be requested by the user. Therefore all user
inputs proposing a message are labelled as a request, whatever it is said about
it, to drive the system to suggest its own message in return. For all concepts
the openness of the system will derive from a loose match between surface forms
and concept values (the opposite of what is generally required for goal-oriented
systems). SP being trained on-line, see below, it was possible to provide the
trainers with instructions on how to strive to connect their vocal inputs with
the ontology elements: no need to be precise as long as it allows the system to
unroll its entity matching process through the turns until the final delivery of
the image’s message.

On the side of the DM module, the goal-oriented dialogue system was
designed to receive only one dialogue act for each user input. This act could
carry several concepts (for example “inform(fruit=apple,seems=strong)”), but
it could not inform and request at the same time. The most essential act was
extracted from the SP outputs and it was the only one to be sent to the dia-
logue manager. In a conversational-like dialogue, the user is very likely to pro-
duce several acts in one sentence. To handle that, all the acts are sent to the
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dialogue manager as if they were multiple user turns, before the system is asked
to respond. As the last user input act is used by the dialogue manager as a feature
to choose the next answer, the acts are reordered to have the most important
at the end. Here is the complete list of acts priority, from the most important
to the least. First the acts which allow the user to request something to the sys-
tem and expect an immediate answer, in this order: “help”, “repeat”, “restart”,
“request”, “request alternatives”, “request more”, “confirm”. Then the acts used
by the user to inform the system, on which the system would have to bounce
back: “negate”,“deny”, “inform”, “affirm”, “acknowledge”. Finally, pragmatic
acts related to the overall dialogue management: “bye”, “hello”, “thank you”.

To allow a fast development of the system, an online RL training approach
has been retained for the DM. Several instructions have been given to the expert
trainers to define its reward function (how she will penalise or compliment the
system for its actions, with numerical values). A conversation, by definition, is
not supposed to have a precise goal. However, to be able to train the system,
we made explicit the notion of success of a dialogue in this case (associated to
a strong positive reward). This is a key aspect of the conversion proposed here,
to be able to tag a dialogue as successful or not. So it has been proposed to
consider a dialogue objectively successful when a message has been said by the
system and at least two description concepts have been discussed (no matter
who introduced them in the dialogue). To handle difficult examples, the users
are prompted to deem a dialogue failed whenever they notice anything they
consider bad (too abnormal or unnatural).

This definition of success imposes a minimal dialogue length. In order to
avoid unnecessary and redundant turns, a (−1) penalty reward is given at each
turn during the DM policy training. And although a conversation has no time
limit, generally speaking, the assumption is made that keeping a mechanism to
favour the dialogues reaching their goal swiftly is relevant.

This is coherent with a specificity of the task which is that the system does
not need to learn to end the dialogue. In final experiments, the dialogue will
automatically be interrupted after 1 min. In both on-line training and test phases,
users were asked to end the dialogue themselves by saying bye as soon as it was
successful, or when it had lasted too long already. So in a more general view this
property can be preserved with an upper bound on the dialogue duration after
which the system could decide to hang up.

Since the NLG module has a huge impact on user appreciation, we started
with handcraft rules. Each possible dialogue act has one or a few sentence tem-
plates, for a total of roughly 80 seed templates in total. Adding different varia-
tions for a single act leads to reduce the impression of repetitions. The outputs
have been specifically designed to induce the user behaviour. A small reminder
of the goal is given at the start of the dialogue.
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4 Evaluation

The evaluation of the converted system is presented in this section. In order to
evaluate the interest of the on-line learning process, two complementary versions
of the system are proposed in comparison. First, handcraft is a baseline ver-
sion of the system without on-line learning; it uses the initial SP module (zero
training) and a handcrafted (H) dialogue manager policy. Then, in order to effec-
tively learn on-line the dialogue system, the system’s developer needs to be able
to both improve the SP and DM models. Therefore, an enhanced version of the
system, referred to as trained hereafter, is obtained by replacing the initial SP
module and the handcrafted dialogue manager policy by on-line learnt ones. The
learning protocol proposed to achieve it, referred to as on-line training below,
directly juxtaposes an adversarial bandit to learn the SP module and a Q-learner
reinforcement learning approach to learn the dialogue manager policy following
our prior work [16]. The knowledge base of the SP module as well as the DM
policy are adapted after each dialogue turn.

In the experiments reported here a GUI interface has been used (a porting
to the FurHat robot head platform [1] is planned for the next series in the fMRI
context). The platform could rely on the I/O capacities of the Google Chrome
web browser for automatic speech recognition and synthesis. Due to the cost of
transcribing the user trials, no precise measure of the actual word error rate has
been made; our estimation is less than 20% (with surprising variations depending
on the period of the day during which the trials were carried out). The synthesis
is of good quality, but cannot be used to add prosody information. So it can be
perceived as a bit ‘flat’ every now and then, but not really disturbing, as most
of the users noticed.

For on-line training, an expert user communicated with the system to
train it. Using sample-efficient reinforcement learning algorithms allows us to
converge pretty fast in terms of cumulated rewards and success rate. In our case
the training session has been limited to 140 dialogues. Then a group of (mostly)
naive users tested each model (48 dialogues each, so a total of 12 dialogues
performed by each of our 8 users). At the end of each session, the users were
asked to give a rating on a scale of 0 (worst) to 5 (best) to the understanding and
generation perceived qualities of the system. The number of training dialogues,
as well as the number of test sets for each configuration are recalled in Table 2,
along with the results.

Table 2. Evaluation of the proposed approach with and without training

Model Train Test Success Avg cum. Sys. Underst. Sys. Gener.

(#dial) (#dial) (%) Reward Rate Rate

Handcraft 0 94 31 −1.7 1.3 4.1

On-line training 140 96 78 9.3 2.9 4.5
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The difference in performance between handcraft and on-line training models
(+47% absolute in success rate) shows the impact of the SP adaptation on the
overall success of the conversation, along with a better understanding (1.3 for
handcraft vs. 2.9 for on-line training). The average cumulated reward rate on
the test is directly correlated to the success rate and comes in confirmation of
the previous observations. Also, due to a well-tuned template-based generation
system, the system generation rate is high (>4) for all configurations.

From Table 3, it is possible to observe the gap in performance between the
initial version of the SP module and after on-line training. For this evaluation
a set of 100 utterances were randomly extracted from the user trials and their
semantic annotation manually corrected. It was then possible to estimate the
precision and recall of the SP outputs w.r.t. their references, and derive an
overall F-measure. The measures were compared using or not the concept values
in the scoring. It can be observed that after training, SP is more robust to value
errors, as the gap of 5% with initial SP (65.5% vs 70.7%) is reduced to 3% (81%
vs 84%). But more generally if the performance of the initial low-cost SP (65.5%)
was well below standard for such system, the gap is filled after training where
an 81% F-score is reached.

Table 3. Semantic Parser module evaluation: initial vs post-on-line training

Model Complete act Without value

F-Score Precision Recall F-Score Precision Recall

Handcraft SP 65.5 60.0 72.1 70.7 65.0 77.6

Online training SP 81.0 76.3 86.5 84.0 78.9 89.8

Fig. 1. Distribution of the dialogues w.r.t. the number of turns

It is worth mentioning that in complementary experiments from our prior
work [16] the results obtained after on-line training seem to suffer of great
variability, depending on the choices made by the expert training the system.
The experts have a large margin of action in how they train their system: for
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instance, they can decide to locally reward only the correct actions (positively),
or reversely, only the bad ones (negatively) or ideally, but more costly, both.
Also they are free of the inputs used to train the system with: very simple to
ensure a steep learning curve or more realistic to try to immediately reach the
interesting regions of the DM policy state space. In any case it is worth noticing
that the system performance has been shown to increase globally with time in
all cases, and so a system can always be further improved to a certain level.

Some more detailed results are given in Table 4. The objective here was to
determine if succeeded dialogues and failed ones have distinct features that would
allow us to better handle and prevent failed cases in the future. For instance, it
was hypothesised that failure could occur from more complex and long interac-
tions from the user. But figures in Table 4 show that there is no such discrepancy
between good and bad occurrences: average numbers of turns are very close (8.3
vs 8.1); the same statement applies to time durations (125 s vs 130 s), or the
number of words or concepts by sentence, which are not different enough to give
some clues for the reasons of failure.

Table 4. Comparison of successful and unsuccessful dialogues

Success #dial Avg Avg duration Avg #words Avg #words Avg #concepts

#turns (seconds) by sentence by dialogue by sentence

Success 75 8.3 124.9 7.1 55.4 2.2

Failure 21 8.1 130.0 5.9 45.5 2.0

All 96 8.3 126.0 6.9 53.2 2.1

This tendency is further confirmed by looking at how succeeded and failed
dialogues spread over the number of turns, as shown in the histograms of Fig. 1.
The two populations, represented in two distinct series, can be compared (while
we did not re-normalise the percentage at each number of turns, to make obvi-
ous the difference in population size). It can be observed that success is pretty
uniformly spread in [4, 13] and failure alike, in a slightly larger interval [3, 14],
with small peaks in both cases (5 for success and 3 for failure). By the way, the
targeted duration of the dialogues (60 s) is on average doubled. Though depart-
ing from the instructions, it should be seen as a good point as it tends to show
that users are willing to chat with the system, and are not expeditious as they
could be if they had respected their guidelines giving a minute as an objective
duration.

5 Conclusion

In this paper a conversion of a goal-oriented human-agent interaction system
into a conversational system has been presented. After reviewing the main dif-
ferences between the two types of interactions, some considerations to redesign a
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goal-oriented system have been proposed to handle conversation-like dialogues.
This fast bootstrap of a goal-oriented system for conversation-liked dialogues is
affordable in terms of development cost, and has shown an unexpected good level
of performance. The user trials on a chit-chat task in French present a success
rate as high as 78%, with very good perceptual ratings from the users (system’s
understanding and generation quality).
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Abstract. This work investigates spoken language understanding (SLU) sys-
tems in the scenario when the semantic information is extracted directly from the
speech signal by means of a single end-to-end neural network model. Two SLU
tasks are considered: named entity recognition (NER) and semantic slot filling
(SF). For these tasks, in order to improve the model performance, we explore var-
ious techniques including speaker adaptation, a modification of the connectionist
temporal classification (CTC) training criterion, and sequential pretraining.

Keywords: Spoken language understanding (SLU) · Acoustic adaptation ·
End-to-end SLU · Slot filling · Named entity recognition

1 Introduction

Spoken language understanding (SLU) is a key component of conversational artificial
intelligence (AI) applications. Traditional SLU systems consist of at least two parts.
The first one is an automatic speech recognition (ASR) system that transcribes acoustic
speech signal into word sequences. The second part is a natural language understand-
ing (NLU) system which predicts, given the output of the ASR system, named entities,
semantic or domain tags, and other language characteristics depending on the consid-
ered task. In classical approaches, these two systems are often built and optimized inde-
pendently.

Recent progress in deep learning has impacted many research and industrial
domains and boosted the development of conversational AI technology. Most of the
state-of-the art SLU and conversational AI systems employ neural network models.
Nowadays there is a high interest of the research community in end-to-end systems
for various speech and language technologies. A few recent papers [5,11,16,18,21,24]
present ASR-free end-to-end approaches for SLU tasks and show promising results.
These methods aim to learn SLU models from acoustic signal without intermediate text
representation. Paper [5] proposed an audio-to-intent architecture for semantic clas-
sification in dialog systems. An encoder-decoder framework [26] is used in [24] for
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domain and intent classification, and in [16] for domain, intent, and argument recogni-
tion. A different approach based on the model trained with the connectionist temporal
classification (CTC) criterion [13] was proposed in [11] for named entity recognition
(NER) and slot filling. End-to-end methods are motivated by the following factors:
possibility of better information transfer from the speech signal due to the joint opti-
mization on the final objective criterion, and simplification of the overall system and
elimination of some of its components. However, deep neural networks and especially
end-to-end models often require more training data to be efficient. For SLU, this implies
the demand of big semantically annotated corpora. In this work, we explore different
ways to improve the performance of end-to-end SLU systems.

2 SLU Tasks

In SLU for human-machine conversational systems, an important task is to automati-
cally extract semantic concepts or to fill in a set of slots in order to achieve a goal in
a human-machine dialogue. In this paper, we consider two SLU tasks: named entity
recognition (NER) and semantic slot filling (SF). In the NER task, the purpose is to
recognize information units such as names, including person, organization and loca-
tion names, dates, events and others. In the SF task, the extraction of wider seman-
tic information is targeted. These last years, NER and SF where addressed as word
labelling problems, through the use of the classical BIO (begin/inside/outside) notation.
For instance, “I would like to book three double rooms in Paris for tomorrow” will be
represented for the NER and SF task as the following BIO labelled sentences:

– NER: “I::∅ would::∅ like::∅ to::∅ book::∅ three::B-amount double::∅ rooms::∅ in::∅
Paris::B-location/city for::∅ tomorrow::B-time/date”.

– SF: “I::B-command would::I-command like::I-command to::I-command book::I-
command three::B-room/number double::B-room/type rooms::I-room/type in::∅
Paris::B-location/city for::∅ tomorrow::B-time/date”.

In this paper, similarly to [11], the BIO representation is abandoned in profit to a
chunking approach. For instance for NER, the same sentence will be presented as:

– NER: “I would like to book < amount three > double rooms in < location/city Paris
> for < time/date tomorrow >”.

In this study, we train an end-to-end neural model to reproduce such textual repre-
sentation from speech. Since our neural model emits characters, we use specific char-
acters corresponding to each opening tag (one by named entity category or one by
semantic concept), while the same symbol is used to represent the closing tag.

3 Model Training

End-to-end training of SLU models is realized through the recurrent neural network
(RNN) architecture and CTC loss function [13] as shown in Fig. 1. A spectrogram of
power normalized audio clips calculated on 20ms windows is used as the input features
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for the system. As shown in Fig. 1, it is followed by two 2D-invariant (in the time and-
frequency domain) convolutional layers, and then by five BLSTM layers with sequence-
wise batch normalization. A fully connected layer is applied after BLSTM layers, and
the output layer of the neural network is a softmax layer. The model is trained using the
CTC loss function. The neural architecture is similar to the Deep Speech 2 [1] for ASR.

The outputs of the network depend on the task. For ASR, the outputs consist of
graphemes of a corresponding language, a space symbol to denote word boundaries and
a blank symbol. For NER, in addition to ASR outputs, we add outputs corresponding
to named entity types and a closing symbol for named entities. In the same way, for SF,
we use all ASR outputs and additional tags corresponding to semantic concepts and a
closing symbol for semantic tags.

In order to improve model training, we investigate speaker adaptive training (SAT),
pretraining and transfer learning approaches. First, we formalize the �-mode, that
proved its effectiveness in all our previous and current experiments.

3.1 CTC Loss Function Interpretation Related to �-mode

The CTC loss function [13] is relevant to train models for ASR without Hidden Markov
Models. The �-mode can be seen as a minor modification of the CTC loss function.

CTC Loss Function Definition. By means of a many-to-one B mapping function,
CTC transforms a sequence of the network outputs, emitted for each acoustic frame, to
a sequence of final target labels by deleting repeated output labels and inserting a blank
(no label) symbol. The CTC loss function is defined as:

LCTC = −
∑

(x,l)∈Z

lnP (l|x), (1)

where x is a sequence of acoustic observations, l is the target output label sequence,
and Z the training dataset. P (l|x) is defined as:

P (l|x) =
∑

π∈B−1(l)

P (π|x), (2)

where π is a sequence of initial output labels emitted by the model for each input frame.
To compute P (π|x) we use the probability of the output label πt emitted by the neural
model for frame t to build this sequence. This probability is modeled by the value yt

πt

given by the output node of the neural model related to the label πt. P (π|x) is defined
as P (π|x) = ∏T

t yt
πt

, where T denotes the number of frames.

CTC Loss Function and �-mode. In the framework of the �-mode, we introduce a
new symbol, “�”, that represents the presence of a label (the opposite of the blank
symbol) that does not need to be disambiguated. We expect to build a model that is more
discriminant on the important task-specific labels. For example, for the SF SLU task
important labels are the ones corresponding to semantic concept opening and closing
tags, and characters involved in the word sequences that support the value of these
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semantic concepts (i.e characters occurring between an opening and a closing concept
tag). In the CTC loss function framework, the �-mode consists in applying another kind
of mapping function before B. While B converts a sequence π of initial output labels
into the final sequence l to be retrieved, we introduce the mapping function S that is
applied to each final target output label. Let C be the set of elements li included in
subsequences lba ⊂ l such as la is an opening concept tag and lb the associated closing
tag; i, a and b are indexes that handle positions in sequence l, and a ≤ i ≤ b. Let V
be the vocabulary of all the symbols present in sequences l in Z, and let consider the
new symbol � /∈ V . Let define V � = V ∪ {�}, and L (resp. L�) the set of all the label
sequences that can be generated from V (resp. V �).

Considering n as the number of elements in l, m an integer such as m ≤ n, we
define the mapping function S : L → L�, l �→ l′ in two steps:

1. ∀lj ∈ l

{
lj /∈ C ⇒ l′j = �

lj ∈ C ⇒ l′j = lj
2. ∀l′j ∈ l′ l′j−1 = � ⇒ l′j = ∅

(3)

By applying S on the last example sentence used in Sect. 2 for NER, this sentence
is transformed to:

– sentence: “I would like to book < amount three > double rooms in < location/city
Paris > for <time/date tomorrow >”.

– S(sentence): “� < amount three> � < location/city Paris> � < time/date tomorrow
>”.

To introduce �-mode in the CTC loss function definition, we modify the formulation
of P (l|x) in formula (2) by introducing the S mapping function applied to l:

P (l|x) =
∑

π∈B−1◦S(l)

P (π|x). (4)

3.2 Speaker Adaptive Training

Adaptation is an efficient way to reduce the mismatches between the models and the
data from a particular speaker or channel. For many years, acoustic model adapta-
tion has been a key component of any state-of-the-art ASR system. For end-to-end
approaches, speaker adaptation is less studied, and most of the first end-to-end ASR sys-
tems do not use any speaker adaptation and are built on spectrograms [1] or filterbank
features [2]. However, some recent works [7,28] have demonstrated the effectiveness
of speaker adaptation for end-to-end models.

For SLU tasks, there is also an emerging interest in the end-to-end models which
have a speech signal as input. Thus, acoustic, and particularly speaker, adaptation for
such models can play an important role in improving the overall performance of these
systems. However, to our knowledge, there is no research on speaker adaptation for
end-to-end SLU models, and the existing works do not use any speaker adaptation.

One way to improve SLU models which we investigate in this paper is speaker
adaptation. We apply i-vector based speaker adaptation [23]. The proposed way of inte-
gration of i-vectors into the end-to-end model architecture is shown in Fig. 1. Speaker
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i-vectors are appended to the outputs of the last (second) convolutional layer, just before
the first recurrent (BLSTM) layer. In this paper, for better initialization, we first train a
model with zero pseudo i-vectors (all values are equal to 0). Then, we use this pretrained
model and fine-tune it on the same data but with the real i-vectors. This approach was
inspired by [6], where an idea of using zero auxiliary features during pretraining was
implemented for language models and in our preliminary experiments it demonstrated
better results than direct model training with i-vectors [27].

Input speech audio

i-vector

Output character sequence

CTC

Softmax

Fully connected

BLSTM

Convolutional 
(2D invariant)

Spectrogram

Named entities or Semantic tags Graphemes 

Fig. 1.Universal end-to-end deep neural network model architecture for ASR, NER and SF tasks.
Depending on the task, the set of the output characters consists of: (1) ASR: graphemes for a given
language; (2) NER: graphemes and named entity tags; (3) SF: graphemes and semantic SF tags.

3.3 Transfer Learning

Transfer learning is a popular and efficient method to improve the learning performance
of the target predictive function using knowledge from a different source domain [19].
It allows to train a model for a given target task using available out-of-domain source
data, and hence to avoid an expensive data labeling process, which is especially useful
in case of low-resource scenarios.

In this paper, for SF, we investigate the effectiveness of transfer learning for various
source domains and tasks: (1) ASR in the target and out-of-domain languages; (2) NER
in the target language; (3) SF. For all the tasks, we used similar model architectures
(Sect. 4.2 and Fig. 1). The difference is in the text data preparation and output targets.
For training ASR systems, the output targets correspond to alphabetic characters and a
blank symbol. For NER tasks, the output targets include all the ASR targets and targets
corresponding to named entity tags. We have several symbols corresponding to named
entities (in the text these characters are situated before the beginning of a named entity,
which can be a single word or a sequence of several words) and a one tag corresponding
to the end of the named entity, which is the same for all named entities. Similarly,
for SF tags, we use targets corresponding to the semantic concept tags and one tag
corresponding to the end of a concept. Transfer learning is realized through the chain of
consequence model training on different tasks. For example, we can start from training
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an ASR model on audio data and corresponding text transcriptions. Then, we change
the softmax layer in this model by replacing the targets with the SF targets and continue
training on the corpus annotated with semantic tags. Further in the paper, we denote this
type of chain as ASR→SF . Models in this chain can be trained on different corpora,
that can make this method useful in low-resource scenario when we do not have enough
semantically annotated data to train an end-to-end model, but have sufficient amount of
data annotated with more general concepts or only transcribed data. For NER, we also
investigates the knowledge transfer from ASR.

Table 1. Corpus statistics for ASR, NER and SF tasks.

Task Corpora Size, h #Speakers

ASR train EPAC, ESTER 1,2, ETAPE, REPERE, DECODA, MEDIA, PORTMEDIA 404.6 12518

NER train EPAC, ESTER 1,2, ETAPE, REPERE 323.8 7327

NER dev ETAPE (dev) 6.6 152

NER test ETAPE (test), Quaero (test) 12.3 474

SF train 1. MEDIA (train), 16.1 727

2. PORTMEDIA (train) 7.2 257

SF dev MEDIA (dev) 1.7 79

SF test MEDIA (test) 4.8 208

4 Experiments

4.1 Data

Several publicly available corpora have been used for experiments (see Table 1).

ASR Data. The corpus for ASR training was composed of corpora from various evalu-
ation campaigns in the field of automatic speech processing for French. The EPAC [9],
ESTER 1,2 [10], ETAPE [14], REPERE [12] contain transcribed speech in French from
TV and radio broadcasts. These data were originally in the microphone channel and for
experiments in this paper were downsampled from 16 kHz to 8 kHz, since the test set
for our main target task (SF) consists of telephone conversations. The DECODA [3]
corpus is composed of dialogues from the call-center of the Paris transport authority.
The MEDIA [4,8] and PORTMEDIA [17] are corpora of dialogues simulating a vocal
tourist information server. The target language in all experiments is French. For experi-
ments with transfer learning from ASR built in a different source language to SF in the
target language, we used the TED-LIUM corpus [22]. This publicly available dataset
contains 1495 TED talks in English that amount to 207 h of speech data from 1242
speakers.



50 N. Tomashenko et al.

NER Data. To train the NER system, we used the following corpora: EPAC,
ESTER 1,2, ETAPE, and REPERE. These corpora contain speech with text transcrip-
tions and named entity annotation. The named entity annotation is performed following
the methodology of the Quaero project [15]. The taxonomy is composed of 8 main
types: person, function, organization, location, product, amount, time, and event. Each
named entity can be a single word or a sequence of several words. The total amount of
annotated data is 112 h. Based on this data, a classical NER system was trained using
NeuroNLP21 to automatically extract named entities for the rest 212 h of the training
corpus. This was done in order to increase the amount of the training data for NER.
Thus, the total amount of audio data to train the NER system is about 324 (112 + 212)
h. The development part of the ETAPE corpus was used for development, and as a test
set we used the ETAPE test and Quaero test datasets.

SF Data. The following two French corpora, dedicated to semantic extraction from
speech in a context of human/machine dialogues, were used in the current experiments:
MEDIA and PORTMEDIA. The corpora have manual transcription and conceptual
annotation [8,29]. The MEDIA corpus is related to the hotel booking domain, and its
annotation contains 76 semantic tags: room number, hotel name, location, date, etc. The
PORTMEDIA corpus is related to the theater ticket reservation domain and its annota-
tion contains 35 semantic tags which are very similar to the tags used in the MEDIA
corpus. For joint training on these corpora, we used a combined set of 86 semantic tags.

4.2 Models

We used the deepspeech.torch implementation2 for training speaker independent (SI)
models, and our modification of this implementation to integrate speaker adaptation.
The open-source Kaldi toolkit [20] was used to extract 100-dimensional speaker i-
vectors. All models had similar topology (except for the number of outputs) shown
in Fig. 1 for SAT models. SI models were trained in the same way, but without i-
vector integration. Input features are spectrograms. They are followed by two 2D-
invariant (in the time and-frequency domain) convolutional layers3, and then by five
800-dimensional BLSTM layers with sequence-wise batch normalization. A fully con-
nected layer is applied after BLSTM layers, and the output layer of the neural network
is a softmax layer. The size of the output layer depends on the task (see Sect. 4.3). The
model is trained using the CTC loss function.

4.3 Tasks

The target tasks for us are NER and SF. For each of this task, other tasks can be used
for knowledge transfer. To train NER, we use ASR for transfer learning. To train SF,
we use ASR on French and English, NER and another auxiliary SF task for transfer
learning. Hence, we consider the following set of tasks:

1 https://github.com/XuezheMax/NeuroNLP2.
2 https://github.com/SeanNaren/deepspeech.pytorch.
3 With parameters: kernel size = (41, 11), stride = (2, 2), padding = (20, 5).

https://github.com/XuezheMax/NeuroNLP2
https://github.com/SeanNaren/deepspeech.pytorch
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– ASRF – French ASR with 43 outputs {French characters, blank symbol}.
– ASRE – English ASR with 28 outputs {English characters, blank symbol}.
– NER – French NER with 52 outputs {43 outputs from ASRF , 8 outputs corre-

sponding to named entity tags, 1 output corresponding to the closing tag for all
named entities}.

– SF1 – target SF task with 130 outputs {43 outputs from ASRF , 86 outputs for
semantic slot tags, 1 output for the closing tag}; trained on the training part of the
MEDIA corpus.

– SF1+2 – auxiliary SF task; trained on the MEDIA plus PORTMEDIA training cor-
pora.

– NER�, SF �
1 – for the target tasks NER and SF1, we also considered �-mode

(Sect. 3.1).

4.4 Results for NER

Performance of NER was evaluated in terms of precision, recall, and F-measure.
Results for different training chains for speaker-independent (SI) and speaker adaptive
training models (SAT) are given in Table 2. We can see, that pretraining with ASRF

task does not lead to significant improvement in performance. When the NER� is
added to the training chain, it improves all the evaluation measures. In particular, F-
measure is increased by 1.9% absolute. For each training chain, we trained a corre-
sponding chain with speaker adaptation. Results for SAT models are given in the right
part of Table 2. For all training chains, SAT models outperform SI models. The best
result with SAT (F-measure 71.8%) outperforms the best SI result by 1.1% absolute.

Table 2. NER results on the test dataset in terms of Precision (P,%), Recall (R,%) and F-measure
(F, %) for SI and SAT models.

Model training SI SAT

P R F P R F

NER 78.9 60.7 68.6 80.9 60.9 69.5

ASRF →NER 80.5 60.0 68.8 80.2 61.7 69.7

ASRF →NER→NER� 82.1 62.1 70.7 83.1 63.2 71.8

4.5 Results for SF

SF performance was evaluated in terms of F-measure, concept error rate (CER) and
concept value error rate (CVER).

Results for different training chains for speaker-independent (SI) models on the test
set are given in Table 3 (#1–8). The first line SF1 shows the baseline result on the test
MEDIA dataset for the SF task, when a model was trained directly on the target task
using in-domain data for this task (training part of the MEDIA corpus). The second line
SF1+2 corresponds to the case when the model was trained on the auxiliary SF task.
Other lines in the table correspond to different training chains described in Sect. 3.3.
In #4, we can see a chain that starts from training an ASR model for English. We can
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Table 3. SF performance results on the MEDIA test dataset for end-to-end SF models trained
with different transfer learning approaches. Results are given in terms of F-measure (F), CER
and CVER metrics (%); SF1 – target task; SF1+2 – auxiliary task; F and E refer to the languages.
For the best models, the results in blue correspond to decoding using beam search with a LM.

Model training SI SAT

# F CER CVER # F (LM) CER (LM) CVER (LM)

SF1 1 72.5 39.4 52.7

SF1+2 2 73.2 39.0 50.1

SF1+2→SF1 3 77.4 33.9 44.9

ASRE→SF1+2→SF1 4 81.3 28.4 37.3

ASRF →SF1+2→SF1 5 85.9 21.7 28.4 9 87.5 19.4 25.4

NER→SF1+2→SF1 6 86.4 20.9 27.5 10 87.3 19.5 26.0

ASRF →SF1+2→SF �
1 7 85.9 21.2 27.9 11 87.7 (89.2) 18.8 (16.5) 25.5 (20.8)

NER→SF1+2→SF �
1 8 87.1 19.5 27.0 12 87.6 (89.2) 18.6 (16.2) 24.6 (20.8)

Table 4. SF performance results on the MEDIA test dataset for different systems.

Systems in literature: CER Systems in this paper: CER

Pipeline: ASR+SLU, [25] 19.9 —greedy mode 18.6

End-to-end, [11] 27.0 —beam search with LM 16.2

observe that using a pretrained ASR model from a different language can significantly
(16.2% of relative CER reduction) improve the performance of the SF model (#4 vs #3).
This result is noticeable since it shows that we can take benefit from linguistic resources
from another language in case of lack of data for the target one. Using an ASR model
trained in French (#5) provides better improvement: 36.0% of relative CER reduction
(#5 vs #3). When we start the training process from a NER model (#6) we can observe
slightly better results. Further, for the best two model training chains (#5 and 6) we
trained corresponding models in �-mode (#7 and 8). Results with speaker adaptation
for four best models are shown in the right part of Table 3 (#9–12). We can see that SAT
models show better results than SI ones. For CVER, we can observe a similar tendency.
The results for the best models using beam search and a 4-gram LM are shown in
brackets in blue. The LM was built on the texts including “�”. Finally, Table 4 resumes
our best results (in greedy and beam search modes) and shows the comparison results
on the MEDIA dataset from other works [11,25]. We can see, that the reported results
significantly outperform the results reported in the literature for the current task.

Error Analysis. In the training corpus, different semantic concepts have different num-
ber of samples, that may impact the SF performance. Figure 2 demonstrates the relation
between the concept error rate (CER) of a particular semantic concept and its frequency
in the training corpus. Each point in Fig. 2 corresponds to a particular semantic con-
cept. For rare tags, the distribution of errors has larger variance and means than for
more frequent tags. In addition, we are interested in the distribution of different types
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Fig. 2. Concept error rate (CER,%) results on the MEDIA test dataset for different concepts
depending on the number of corresponding concepts in the training corpus. The CER results
are given for the SAT model (#12), decoding with beam search and a 4-gram LM.

of SF errors (deletions, insertions and substitutions), which is shown in the form of a
confusion matrix in Fig. 3. For better representation, we first ordered the concepts in
descending order by the total number of errors. Then, we chose the first 36 concepts
which have the biggest number of errors. The total amount of errors of the chosen 36
concepts corresponds to 90% of all the errors for all concepts in the test MEDIA dataset.
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Fig. 3. Confusion matrix for concepts on the MEDIA test dataset. The last row and last column
represent insertion and deletion errors correspondingly. The CER results are given for the SAT
model (#12), decoding with beam search and a 4-gram LM.
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The diagonal corresponds to the correctly detected concepts and other elements (except
for the last row and last column) correspond to the substitution errors. The final raw
represents insertion errors and the final column – deletions. Each element in the matrix
shows the total number of the corresponding events (correctly recognized concept, sub-
stitution, deletion or insertion) normalized by the total number of such events in the row.
The most frequent errors are deletions (50% of all errors), then substitutions (32.3%)
and insertions (17.7%).

5 Conclusions

In this paper, we have investigated several ways to improve the performance of end-
to-end SLU systems. We demonstrated the effectiveness of speaker adaptive training
and various transfer learning approaches for two end-to-end SLU tasks: NER and SF.
In order to improve the quality of the SF models, during the training, we proposed
to use knowledge transfer from an ASR system in another language and from a NER
in a target language. Experiments on the French MEDIA test corpus demonstrated that
using knowledge transfer from the ASR in English improves the SF model performance
by about 16% of relative CER reduction for SI models.

The improvement from the transfer learning is greater when the ASR model is
trained on the target language (36% of relative CER reduction) or when the NER model
in the target language is used for pretraining. Another contribution concerns SAT train-
ing for SLU models – we demonstrated that this can significantly improve the model
performance for NER and SF.
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TRAC project, under the contract number ANR-18-CE23-0021-01, and by the RFI Atlanstic2020
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Abstract. Transfer learning is an interesting approach to tackle the low resource
languages machine translation problem. Transfer learning, as a machine learning
algorithm, requires to make several choices such as selecting the training data and
more particularly language pairs and their available quantity and quality. Other
important choices must be made during the preprocessing step, like selecting
data to learn subword units, the subsequent model’s vocabulary. It is still unclear
how to optimize this transfer. In this paper, we analyse the impact of such early
choices on the performance of the systems. We show that systems performance
are depending on quantity of available data and proximity of the involved lan-
guages as well as the protocol used to determined the subword units model and
consequently the vocabulary. We also propose a multilingual approach to transfer
learning involving a universal encoder. This multilingual approach is comparable
to a multi-source transfer learning setup where the system learns from multiple
languages before the transfer. We analyse subword units distribution across differ-
ent languages and show that, once again, preprocessing choices impact systems
overall performance.

Keywords: Transfer learning · Machine translation · Languages proximity ·
Data quantity · Subwords distribution · Languages balance · Data balance ·
Multilingual

1 Introduction

Some major technical advances have allowed neural systems to become the most effi-
cient approach to machine translation when a large amount of data is available [1,19].
However, when small amounts of training data are available, neural systems struggle
to obtain good performance [13]. Transfer learning consists in training a first neural
machine translation (NMT) system on another language pair where a larger quantity of
data is available. This already trained system is then adapted to the new data from the
low resource language pair with the aim of getting better performance than a system
trained only on few data.

Transfer learning in machine translation results in learning a first system called “par-
ent” system on abundant data. Then use this learned system as a basis for the “children”
systems. This basis allows the system to learn the new data. It is comparable to domain
c© Springer Nature Switzerland AG 2019
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adaptation where the domain is another language. The transfer generally improves the
results of the child system which benefit from knowledge learned during the training
of the parent system [20]. In this paper we show that the data used to train the parent
system significantly impact the resulting child system. Many factors must be taken into
account like data quantity, languages proximity, data preprocessing, etc. Several stud-
ies deal with quantities of data used as well as proximity of involved languages, and
conclusions diverge [5,12].

2 Related Work

Currently, neural systems require a large body of training corpus to achieve good per-
formance, which by definition is problematic for low resource language pairs. Phrase-
based statistical machine translation systems appears then as a relevant alternative [13].

Several multilingual automatic translation approaches have been developed to trans-
late texts from low resource language pairs [7,10,15]. The use of universal encoders
and decoders allowed [10] to design a learning system that manages several language
pairs in parallel and achieves better results, especially for less-endowed languages.
Specific symbols (e.g. <2s>) are used to control the output language of the univer-
sal decoder. This kind of model even makes it possible to translate pairs of languages
that are not seen during training (so-called zero-shot learning). However, performance
in such cases remains relatively low. In the same line, [17] explore different parameter
sharing schemes in a multilingual model.

The choice of level of representation of words is important. [6,16] have shown
that the use of sub-lexical symbols shared between languages of the parent and child
models results in an increase of transfer performance. In our work, we use this method
by exploring different amounts of symbols (i.e. different vocabulary sizes).

Transfer learning tries to overcome the problem by relying on a parent system
(trained on a large amount of data) that serves as the basis for learning a child sys-
tem [20]. The transfer is more effective when languages are shared between the parent
and the child. In this direction, [5] highlights the importance of proximity of languages
in order to obtain a transfer of better quality. These observations are contradicted in [12]
where better results are obtained with more distant but better endowed language pairs.

The work presented in this paper extends those of [12] and [5] on several points.
Like [12], we try to evaluate the performance of the child system according to the
data used in the parent system, still considering the criteria of proximity of language
and quantity of data. In this study, we also consider a parent system consisting of a
universal encoder (trained over several languages). We study different choices to be
made for preprocessing data and the parameters of the translation model and we will
try to determine the best configuration.

The objective is to better understand the correlation between the impact of the
amount of data and the proximity of languages on the performance of the child sys-
tem. We will see that our experiences contradict some of the conclusions of the articles
mentioned above.
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3 Data

In order to perform transfer learning, we need multiple language pairs. We selected the
Estonian→English language pair as our low resource language pair. Our goal is to have
the best possible results for this language pair, thus we need another language pair to
train the parent system for the transfer.

3.1 Data Selection

We use data provided in WMT2018 machine translation evaluation campaign [2]. 2.5
million (41M words source side and 52M target side) parallel sentences are available
for the Estonian→English language pair. We can not consider this as a low resource
language pair, but this quantity remains low for training an NMT system that achieves
good results. To assess the impact of language proximity in the parent system, we use
two pairs of different languages with different proximity to Estonian. The first pair is
Finnish→English. Finnish is close to Estonian since both are Finno-Ugric languages.
5 million parallel sentences are available for this language pair which represent 78M
words source side and 114M target side. As distant language pair we have chosen
German→English. German is a Germanic language further away from Finnish and
Estonian for which 40 million parallel sentences are available corresponding to 570M
words source side and 607M target side. This will allow us to evaluate the impact of
the quantity of data. Both pairs have English as target so the transfer will be from close
(or distant) language on source side and target language is fixed. We want to exhibit
whether this significant difference in terms of quantity of data will compensate for the
language distance and result in a distant (German→English) parent system from which
the transfer is as effective as a close (Finnish→English) parent system.

3.2 Data Preprocessing

We use subword SPM units [14]. Systems using subword units are the current state
of the art in neural machine translation. There is also a correlation in transfer quality
depending on the number of subword units in common [16].

Two separate models of subword units are learned, one trained on source languages
and another trained on the target language (English). Both are used in parent and child
systems. The corresponding source and target vocabularies are created from tokenized
data. Consequently, there is a direct correlation between data used to train the SPM
models and resulting vocabularies in the NMT systems.

We take this into account by learning subword models for the source side with the
data used to learn the parent and child systems. This subword model is then applied to
all source side data, for both parent and child data. The goal is to not change the vocab-
ulary during the parent/child transition since this would require to get representations
for units that are not seen during training of the parent model.

Sentences with length less than 3 subword units and more than 100 subword units
are filtered out.
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Finally, subword units that occur at least 5 times in our training corpus are
kept in the vocabularies while the others are matched to an unknown unit (<unk>).
This process is necessary in our case since SPM can not guarantee exhaustive coverage
of the corpus.

3.3 SPM Model Study

In this section we will describe 3 different SPM models that were created for the mul-
tilingual parent system approach.

We tried to combine the proximity of Finnish and Estonian and to take advantage of
large amount of data from the German→English pair. For that, we built a system with
universal encoder and decoder [8] with both Finnish→English and German→English
corpora used as training data. One advantage of the universal approach is the capability
to add one or more languages to our system without having to change the architecture.
We can thus always have really comparable Estonian→English children, whereas we
now have a multilingual system as a parent. [10] showed that parallel learning of mul-
tiple language pairs with a universal architecture has a positive impact on translation
results. We want to verify if this is also the case for transfer learning.

Fig. 1. Subword distribution for different SPM models built with different data distributions. Left
is using 10M DE tokens only, center is using 5M DE tokens, 3M FI and 2.5M ET, and right is
using 3M DE, 3M FI and 2.5M ET tokens.

We designed 3 different SPM data distributions to train separate SPM models for
the source side of our universal systems.

For the first one, the model has been trained on German data only, resulting in sub-
word units that are specific this language but are used for Finnish and Estonian. The
result is that the vocabulary contains many short subword units covering the Finnish
and the Estonian text. The Finnish and Estonian words end up being heavily split,
which might complicate the subsequent modelling. This model is referred to as the
10-0-0 SPM. The second SPM model is using 5M German sentences, 3M in Finnish
and 2.5M in Estonian. This is an intermediate model, with a more balanced data distri-
bution across languages. It is referred to as the 5-3-2.5 SPM. The last one is made of
3M sentences in German, 3M in Finnish and 2.5M in Estonian. We force the data to be
balanced for this SPM model despite the data quantity imbalance. It is referred to as the
3-3-2.5 SPM.
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Figure 1 describes subword units distributions in the vocabulary of our systems
obtained with the three different SPM models presented above. Figure 1 (left) shows
the distribution for the 10-0-0 SPM model. This distribution is very unbalanced as
expected. The Finnish specific units and Estonian specific units in this figure are unseen
by the SPM model composed on German data. Figure 1 (center) shows that, even when
greatly reducing the quantity of German data, the vocabulary remains mainly composed
of German-specific units, however, we notice more common subword units than with
the 10-0-0 SPM.

It is important to keep in mind that the distribution of subword units in the vocabu-
lary does not reflect the actual coverage in the corpus (the number of occurrences is not
taken into account).

The Fig. 1 (right) shows a balanced distribution of subword units across the 3 lan-
guages.

In this case, every language has a set of specific units that will be learned during
training of the parent and/or child NMT model. We want to verify whether this will
lead to a better transfer for NMT.

Fig. 2. Average subword units size (in characters) against average number of tokens per segment
for the different SPM models. (Color figure online)

Figure 2 shows the relationship between the average subword token size (in charac-
ters) and the number of tokens per segment. This graph highlights that all the ratios for
German are close to each other regardless the data distribution used to train them (they
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are all in the pink rectangle). It also shows that the Finnish and Estonian ratios of each
SPM model are close to each other in each distribution. There is a particularity observed
only with the 3-3-2.5 SPM: all 3 languages ratio are close to each other (circled in green
in Fig. 2), emphasizing the balance between the 3 languages.

4 Architecture

To carry out our experiments we based our approach on the principle of trivial trans-
fer learning of [12]. The principle is simple and consists in using an architecture that
does not change between the learning of the parent system and the child system. Only
training data are changed between parent and child system learning.

We use a standard end-to-end encoder/decoder architecture with an attention mech-
anism [1,19]. This architecture is composed of a bi-directional encoder and a decoder
based on gated recurrent units, Bi-GRU [4] of size 800. The embeddings size is set
to 400. We apply a 0.3 dropout [18] on the embeddings, on the context before being
provided to the attention mechanism and on the output before softmax. Weights are ini-
tialized according to [9] and we use Adam [11] as optimizer. The initial learning rate
is set to 1.10e−4 and size of a batch is 32. This architecture is the only configuration
used for all systems presented in the next sections. They were implemented with the
nmtpytorch1 toolkit [3].

5 Experiments

All results of the systems presented here are calculated on the development dataset of
the News translation task of WMT2018 evaluation campaign.

Table 1. Results in BLEU of the Estonian→English language pair without transfer learning with
vocabularies containing only subword units coming from this language pair (source and target
side separated).

# subword units ET-EN 2.5M ET-EN 200k

8k 14.12 10.69

16k 14.17 10.70

32k 13.60 10.10

The Estonian→English system presented in Table 1 is compared to our system using
transfer learning. We can notice that the differences are small and negligible. Note that
the number of source and target side subword units is the same.

We can see in Table 2, that for learning a child system Estonian→English, the mod-
els based on the subword units including German get worse results than those including
Finnish. Since Finnish and Estonian are close languages, it is likely that they share more

1 https://github.com/lium-lst/nmtpytorch.

https://github.com/lium-lst/nmtpytorch
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Table 2. Results in BLEU of Estonian→English systems without transfer learning using subword
units from the different SPM models used in transfer learning afterwards. This emphasises the
impact of the subword units and vocabulary used.

# subword units DE+ET 2.5M DE+ET 200k FI+ET 2.5M FI+ET 200k

8k 10.64 - 14.47 -

16k 11.55 9.27 15.08 10.66

32k 12.52 - 13.87 -

subword units than with German, which explains the results. The hypothesis is that
they coexist better in the vocabulary. This is confirmed by the results of the Estonian-
German SPM model, which increases as number of subword units increases. While for
the Estonian-Finnish SPM, results decrease when using 32k units compared to using
16k units. Therefore, it seems that a greater number of subword units is more favourable
for German-Estonian system whereas 16k units are sufficient for the Finnish-Estonian
system.

Table 3. Results in BLEU of different parent models in their respective languages pairs.

Language pair 40M 20M 10M 5M 2.5M

FI-EN - - - 18.03 16.16

DE-EN 20.22 10.46 11.01 11.11 10.95

The results of the standard systems in Table 3 give us an idea of the performance
obtained by parent systems in their respective language pairs. We selected 5M sentences
from the German→English corpus to have a similar size to the Finnish→English cor-
pus. We can then effectively compare the 2 different source languages of the parent
systems with the same amount of data to train on. This allows us to evaluate the impact
of language proximity. We observed that the performance of the German→English par-
ent system using only 5M of randomly selected data is much lower than that of the
system using all available data. One can thus expect a loss of performance when the
parent system is trained with a smaller amount of data.

We had to make a compromise when defining architecture size. We want the biggest
possible architecture to effectively learn the parent system, but we also want a reason-
able size to avoid overfitting the child’s system afterwards. For the upcoming experi-
ments, we chose to use 16k subword units because this quantity led to the best perfor-
mance for the Estonian→English system.

5.1 Results

In Table 4, we expose the results of the Estonian→English child systems that were
learned from the different parent systems presented in Table 3.
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Using all data for our 3 systems we get an improvement compared to our
Estonian→English baseline which is 14.17 BLEU (see Table 1). Results are close but
we can see that the results with the DE+ET SPM are worse, which corresponds to results
in Table 2. The best result is obtained with the Finnish→English parent.

We performed several experiments with different quantities of German→English
data (from 40M to 1.25M) and Finnish→English data (from 5M to 1.25M). Results
show that with the same amount of data, results differ greatly among architectures. This
difference is explained by the proximity of languages used to train the parent system.
Finnish, which is closer to Estonian, offers a better transfer than the more distant Ger-
man, confirming results in [5]. [12] shows that the quality of the parent system is impor-
tant to ensure a good transfer to a child. The low performance of the German→English
parent using 5M of data explains the poor results of the later learned child system.

We also tried our multilingual parent approach with universal encoder as described
in Sect. 3.3.

We use a different SPM model from previous ones because this time it contains
German and Finnish from the parent system, in addition to Estonian from the child
system for source side.

The assumption is that by combining these two factors we should get a par-
ent who will provide a better transfer to our child systems. The results show that
this is not so obvious (see Table 4); performance is worse than German→English or
Finnish→English as the only parent. One hypothesis is that the imbalance of amounts
of data between the two source languages of the parent is an obstacle to learning a good
quality parent.

Table 4. Results in BLEU of Estonian→English child models with different parent models used
to transfer.

Parent language pair 45M (40M DE + 5M FI) 40M 20M 10M 5M 2.5M

FI-EN - - - - 16.55 16.55

DE-EN - 16.10 10.46 11.28 10.92 11.18

FI+DE-EN 10-0-0 SPM 15.71 14.06 14.44 14.37 14.53 14.47

FI+DE-EN 5-3-2.5 SPM 13.20 13.45 13.86 14.05 14.01 13.77

FI+DE-EN 3-3-2.5 SPM 14.09 14.51 14.22 14.64 14.52 14.71

We tried different data quantity distribution between the two languages.
In the 40M column there is 35M from German→English with 5M from

Finnish→English, in the 20M column it is 15M German→English with 5M
Finnish→English, in the 10M column it is 5M German→English with 5M
Finnish→English, in the 5M column it is 2.5M form both and in the last column it is
1.25M from both. This way we have a better vision of the impact of data quantity from
the German→English language pair.

With our 3 different SPM models applied to our multilingual parent, we observe
some interesting results.
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The first of them is the 15.71 BLEU obtained when using the full data available on
both parent pairs.

This result is surprising considering the others scores. This SPM model learned
only on German→English data reveals an interesting behaviour of non DE source side
data. Indeed, words are “overly” split into subword units. Surprisingly, this particularity
seems to provide good results in Estonian→English. Our hypothesis is that, thanks to
the quite large architecture to train the Estonian→English system, the system overfits
on the small subword units. The average number of subword units per line and average
subword unit size of this particular SPM model applied to our data can confirm it.
Thus, for the training of this child model, the system keeps improving and stopped
during the 10th epoch, while most of the other child systems presented barely passed
the 5th. These observations are in line with our hypothesis of overfitting but we keep
investigating about this result.

Overall the results from the 5-3-2.5 SPM are the least interesting. Results seem to
increase slightly as we reduced data quantity used by a small margin. This might be
related to the quantity of German→English data used for training the model.

Finally, with the more balanced SPM model (3-3-2.5), the results are quite stable
with only slight changes. The results are also better at each data quantity than the 5-3-
2.5 SPM.

We see an improvement thanks to the transfer for the Estonian→English child sys-
tems. However, we also want to apply this transfer in the case where few resources
are available. To simulate this lack of data, we kept only 200k sentences from the
Estonian→English corpus to learn new children with the same parent systems.

Table 5. Results in BLEU of the Estonian→English language pair using only 200k sentence pairs
to train the child model (artificially simulated low resourced)

Parent language pair 45M (40M DE + 5M FI) 40M 20M 10M 5M 2.5M

FI-EN - - - - 13.03 12.24

DE-EN - 11.12 6.87 6.99 7.10 6.96

FI+DE-EN 10-0-0 SPM 11.05 10.41 11.29 11.68 11.54 11.72

FI+DE-EN 5-3-2.5 SPM 10.26 9.79 10.52 11.00 10.85 10.65

FI+DE-EN 3-3-2.5 SPM 12.19 12.05 11.89 12.56 11.93 12.45

Results of Table 5 show us that when we have few training data for the child system,
the proximity of languages is the most important feature.

Finnish→English parent system outperforms the others in this configuration.
This time our multilingual approach results are as good as with the

German→English pair. Results coming from the balanced SPM outperforms it on all
data quantities.

Compared to previous results with all the data on the 10-0-0 SPM system, we
observe that the results are not anymore outperforming the others. The system obtains
11.05 BLEU which is not better than the previous results. This can confirm that the
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overfiting of the subword units works less well when less data is available like in this
setup. In general the results are consistent without dependency to data quantity.

With the 5-3-2.5 SPM model, the results are consistent as before: they are still worse
than the two others SPM models.

Our 3-3-2.5 SPM models now outperforms the others as well as the
German→English parent systems. Their results even get close to the Finnish→English
parent. We believe that the balance of the subword units across the 3 source languages
involved is particularly effective in this case where few data are available for the child
system.

6 Conclusion

In this paper, we showed that transfer learning for NMT depends on the quantity of
available data and the proximity of involved languages. Also, carefully training the
subword models can lead to a better language equilibrium in the vocabulary leading to
better translation results.

These parameters are therefore to be taken into account for the choice of parent
systems.

Our results are in line with those obtained by [20] and [5]; proximity of lan-
guages used for transfer learning is more important than data quantities. With equiv-
alent amounts of data, parent systems using pairs of closer languages perform better,
but the quality of the parent systems in question should not be neglected and should
be taken into account in the results of the child systems. The token distribution in the
vocabulary is also of greater importance and have an impact on system performance.

Our universal multilingual approach end up showing some interesting results, espe-
cially in low resource context. We presented an analysis of the subword units distri-
bution and the importance of the preprocessing steps ahead of the training process.
We showed that the balance between the different languages involved in the system is
extremely relevant for the performance of the child systems afterwards.

In the future we want to keep investigating subword units distribution with different
examples to better explain the relation between those factors and the systems perfor-
mance results.
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Abstract. Abbreviations and acronyms are shortened forms of words
or phrases that are commonly used in technical writing. In this study we
focus specifically on abbreviations and introduce a corpus-based method
for their expansion. The method divides the processing into three key
stages: abbreviation identification, full form candidate extraction, and
abbreviation disambiguation. First, potential abbreviations are identi-
fied by combining pattern matching and named entity recognition. Both
acronyms and abbreviations exhibit similar orthographic properties, thus
additional processing is required to distinguish between them. To this
end, we implement a character-based recurrent neural network (RNN)
that analyses the morphology of a given token in order to classify it as an
acronym or an abbreviation. A siamese RNN that learns the morpholog-
ical process of word abbreviation is then used to select a set of full form
candidates. Having considerably constrained the search space, we take
advantage of the Word Mover’s Distance (WMD) to assess semantic com-
patibility between an abbreviation and each full form candidate based
on their contextual similarity. This step does not require any corpus-
based training, thus making the approach highly adaptable to different
domains. Unlike the vast majority of existing approaches, our method
does not rely on external lexical resources for disambiguation, but with
a macro F-measure of 96.27% is comparable to the state-of-the art.

Keywords: Natural language processing · Text normalisation ·
Abbreviation disambiguation · Neural networks ·
Corpus-based methods

1 Introduction

In recent years, text data has become ubiquitous in many critical fields. For
example, it is nowadays standard practice for medical practitioners to write
and rely on electronic reports when taking care of patients. As narratives are an
important source of information, this growth has been accompanied by a surge in
Natural Language Processing (NLP) applications, such as information retrieval
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and topic modelling. While NLP systems have displayed stellar performance on
numerous tasks, they rely most of the time on clean and normalised data due to
the tasks’ complexity.

However, as actual text data can rarely be found in canonical form, trans-
forming text data into a unique standard representation — also called text
normalization — is a key aspect of NLP pipelines. Some documents might for
instance contain uncommon tokens that cannot be directly recognised by a stan-
dard NLP system and must first be resolved. The normalisation of short forms
(e.g., contractions) is particularly critical in any field that involves the regular
and rapid writing of reports, such as aviation or healthcare, where such forms
are frequently used to speed up the writing or to ease a repetitive task. The
word underlying a short form is hidden and therefore inaccessible to NLP appli-
cations, thus skewing their performance [22]. This ambiguity inevitably leads to
a loss of information which weakens the system’s understanding of language.

Liu et al. [13] revealed in a study conducted in 2001 that among the 163,666
short forms they retrieved from the Unified Medical Language System (UMLS),
33.1% of them referred to multiple full forms. Similarly, Li et al. [11] reported that
the 379,918 short forms which could be found on the website AcronymFinder.com
had in average 12.5 corresponding full forms. Furthermore, they noted that 37
new short forms were added daily to the website. These observations further
highlight the need for an automatic method for short form expansion that is
highly adaptable, preferably unsupervised and domain-independent.

Short forms can be divided into two categories: those that refer to a single
word (e.g., PT for patient) and those that refer to multiple words (e.g., DOB
for date of birth). (Note that, although not completely accurate from a linguistic
point of view, in the remainder of this work we will refer to the former as abbre-
viations and to the latter as acronyms for the sake of simplicity.) The way abbre-
viations and acronyms relate to full forms is intrinsically different, due to their
distinctive nature. Furthermore, while acronyms tend to follow pre-defined rules,
new abbreviations are often created spontaneously. Consequently, we believe that
these two types of short forms should be considered independently.

2 Related Works

NLP applications often use external lexical resources to expand the short forms
prior to text analysis. However, short forms often correspond to multiple long
forms [11], which implies that word sense disambiguation (WSD) is a required
as part of pre-processing. Unlike acronyms, which are often standardised within
a domain, authors often create ad hoc abbreviations, which may not be encoded
in existing lexicons.

When they are included in specialised biomedical terminologies, it is has
been shown that simple techniques, such as bag-of-words, combined with major-
ity sense prevalence were effective in practice despite an expectation that
sophisticated techniques based on biomedical terminologies, semantic types,
part-of-speech and language modelling and machine learning approaches would

http://AcronymFinder.com
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be necessary [16]. The ShARe/CLEF eHealth 2013 challenge [17] created a ref-
erence standard of clinical short forms normalized to the Unified Medical Lan-
guage System (UMLS) [2]. The challenge evaluated the accuracy of normalizing
short forms compared to a majority sense baseline approach, which ranged from
43% to 72%. In line with findings suggested in [16], a majority sense baseline
approach achieved the second-best performance. Nonetheless, machine learning
approaches to clinical abbreviation recognition and disambiguation were found
to be as effective with F-score over 75% [27]. However, this study focused on 1,000
most frequent abbreviations in a corpus used for evaluation, which makes it pos-
sible to successfully translate their distribution into a classification model. This
also means that the given approach may not necessarily work with ad hoc abbre-
viations. Another problem with using supervised machine learning methods for
abbreviation disambiguation in clinical texts is associated with the acquisition of
training data. Manually annotating abbreviations and their senses in a large cor-
pus is time-consuming, labour-intensive and error-prone. In addition, the learnt
model may not be transferrable across domains, which makes supervised learning
impractical for this particular text mining problem. With accuracy up to 90%,
semi-supervised classification algorithms proved to be a viable alternative for
abbreviation disambiguation [6]. Moreover, an F-score of 95% could be reached
by using an unsupervised approach [9], which avoids the need to retrain a clas-
sification models or use bespoke feature engineering, which makes the approach
domain independent. It also proved to be robust with respect to ad hoc abbre-
viations. Word embeddings provide an alternative way to represent the meaning
of clinical abbreviations. Three different methods for deriving word embeddings
from a large unlabelled clinical corpus have been evaluated [29]. Adding word
embeddings as additional features to be used by supervised learning methods
improved their performance the on clinical abbreviation disambiguation task.

All of the above mentioned systems, post-process clinical notes long after
clinicians originally created them. The results show that post-processing clin-
ical abbreviation cannot yet guarantee 100% accuracy in their identification
and disambiguation. With this problem in mind, a system for real-time clin-
ical abbreviation recognition and disambiguation has been implemented. The
system interacts with an author during note generation asking them to verify
correct abbreviation senses suggested automatically by the system [26]. With
the accuracy of 89% and the processing time ranging from 0.630 to 1.649 mil-
liseconds, the system incurred around 5% of total document entry time, which
demonstrated the feasibility of integrating a real-time abbreviation recognition
and disambiguation module with clinical documentation systems.

3 Our Method

The first step of our pipeline identifies short forms contained in a document and
determines the ones referring to single words (abbreviations) rather than multi-
ple words (acronyms). Then, for each abbreviation, a set of full form candidates
is extracted. Finally, the Word Mover’s Distance (WMD) which leverages the
power of word embeddings is used to disambiguate each abbreviation.
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3.1 Step 1: Abbreviation Identification

Let us assume we have a document D for which we would like to automati-
cally resolve all abbreviations. As mentioned above, we must initially identify
all abbreviations in the document: all short forms contained in the text are first
extracted, then we discard all acronyms.

To extract all short forms the text is first tokenized, and we gradually discard
tokens that cannot be short forms. To begin with, all tokens that are recognised
as English words are discarded. For the sake of this work, abbreviations that
are identical to existing English words—such as the short form tab for the word
tablet—are assumed to always appear immediately followed by a period so that
the two together can be identified as a single token. Indeed, in such case, the use
of a full point is standard practice to mark abbreviations to avoid any confusion.

Secondly, all tokens containing less than 2 or more than 6 characters are
rejected. An abbreviation should consist of at least two characters as a single
character is extremely ambiguous. Moreover, since abbreviations are short per
definition, we set a strict upper limit of 6 characters. This threshold is identical
to the one used in previous works on abbreviations [13,28]. This helps the system
discard unknown words that are not abbreviations (e.g., misspelled words).

Although they must be discarded eventually, locations and names are rarely
part of an English dictionary and are therefore still retained by the system at this
point. To deal with this, a named entity recognition (NER) system is applied to
the original document to classify the remaining tokens. Those that are labelled
as PERSON or LOCATION are not retained any further.

After this simple processing, we obtain a list of short forms that includes
both abbreviations and acronyms. In order to model morphological differences
between the two, we develop a deep neural network that learns to distinguish
between abbreviations and acronyms. Using a deep architecture rather than
other rule-based or machine learning methods has the advantage of obviating
the need for any manual features, giving more flexibility to the model to accom-
modate any type of short forms.

More specifically, the deep neural network takes as input a sequence of charac-
ters which is first processed by fully-connected layers for representation learning.
Then, a recurrent neural network (RNN) sequentially reads the improved repre-
sentation for structure learning. Finally, a soft-max layer predicts whether the
sequence is an abbreviation or an acronym (i.e., refers to a single or multiple
words).

At the end of this first step, the system yields a set A of abbreviations,
namely A = {w ∈ D|w is an abbreviation}.

3.2 Step 2: Full Form Candidates Identification

In the second step, a set of full form candidates Φα must be identified for each
abbreviation α ∈ A. Based on the assumption that characters appear in the
exact same order in both forms, a simple rule-based solution could consist in
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searching for all words within the document that have as a subset all the charac-
ters of contained in the abbreviation. However, many short forms such as xmas
and x-mas for the word Christmas contain characters that are not present in
their full form. Terada et al. chose to address this manually by not considering
specific characters such as X [23]. Unfortunately, this limits the system to follow
manually engineered rules. Therefore, for maximal flexibility, we instead take
advantage of a deep learning architecture to select full form candidates.

We design a siamese RNN [18] to learn how full forms relate to short forms.
An illustration of the architecture is depicted in Fig. 1. Every abbreviation α ∈ A
and every word w in the document D that is recognised as an English word are
first encoded as a sequence of characters. Then, one by one, each abbreviation is
fed along with one word to the network. The two are first processed by multiple
fully-connected layers for representation learning. Each improved representation
is then fed to one of two independent RNN: one that processes the sequence
corresponding to the short form and one that processes the full form. Finally,
the output of the two RNNs are compared by the network which must decide
whether this word could potentially be referred to by the short form or not. If
so, the word is added to the list of full-form candidates Φ for that abbreviation.
Instead of feeding only corpus word, we could feed every English word contained
in the corpus along with each abbreviation to get a set of full form candidates
that is more comprehensive.

Fig. 1. Siamese RNN to select a set of full form candidates

3.3 Step 3: Abbreviation Disambiguation

In order to determine the right full form for each abbreviation α ∈ A the system
must select the best of all full form candidates Φα. We rely on the assumption
that short forms and their corresponding true full forms share a similar context
in order to disambiguate each abbreviation and find the most appropriate of all
full form candidates.

To compare the context of an abbreviation and its full form candidates, we
propose to use the Word Mover’s Distance (WMD), a measure that was devel-
oped by Kusner et al. [10] to assess similarity between two documents. It takes
advantage of the semantic properties inherent to word embeddings to match
documents that have a similar meaning, although they consist of very different
words. First, each word i is represented by a d-dimensional word embeddings xi.
The use of pretrained word vectors allows the model to take advantage of the lin-
ear properties of continuous space word representations [14] without the need to
train it on the chosen corpus. For each document D, the n-dimensional normal-
ized bag-of-words (BOW) vector is denoted as fD with entries fD

i = ci/
∑n

j=1 cj ,
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where ci is the number of occurrences of word i in document D, and n the vocabu-
lary size. Finally, let T ∈ R

n×n be the transport matrix whose entries Tij denote
how much of fD

i should travel to fD′
j , where D′ is a another document. Then

the WMD minimizes the following linear optimization problem:

min
T≥0

n∑

i,j=1

Tij‖xi − xj‖2, subject to
n∑

i=1

Tij = fD′
j ,

n∑

j=1

Tij = fD
i ∀i, j (1)

which is an instance of the well-studied earth mover’s distance problem for which
many efficient solutions already exist [12,15,19,21,25].

Fig. 2. WMD for abbreviation disambiguation: the minimum cumulative distance
between non-stop words in the context of target abbreviation Pt and of full form
candidate patient is computed

Figure 2 illustrates how this measure is used to determine the full forms
that are semantically close to target short form. In this example, the abbre-
viation Pt used in the sentence “The Pt was immediately taken to the emer-
gency room” refers to the word patient, which can be found in the sentence
“The patient is admitted at once to the hospital.”. Although the two sentences
do not share a single representative word, they are semantically very close. To
minimize the cumulative distance between the two sets of context words c1 =
{admitted, at once,hospital} and c2 = {immediately, taken, emergency room},
the words admitted and taken are matched together, and so are the words at
once and immediately, and the words hospital and emergency room, because
their respective word embeddings lie close together in the word space. Since the
context words for the short form Pt have a similar meaning as the context words
for the candidate patient, the WMD between the two sentences will be small.

For each of the abbreviations α identified in the first step, we have filtered—in
the second step—a set Φα of potential full form candidates. Let S(w) be the set
of all sentences in document D containing word w, i.e., S(w) = {s ∈ D|w ∈ s}.
We must determine the best full form candidate φ∗

α that abbreviation α refers to
in sentence sα. We compute for each candidate φ ∈ Φα the WMD between the
sentence the abbreviation appears in (i.e., sα) and each sentence containing this
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candidate (i.e., S(φ)). The individual WMD are then summed up and averaged
to yield a disambiguation score σ(φ):

σ(φ) =
∑

s̃∈S(φ)

WMD(sα, s̃)
|S(φ)| . (2)

Eventually, we consider the full form with smallest WMD as being the best one,
namely φ∗

α = minφ∈Φα
(σ(φ)).

4 Evaluation

4.1 Abbreviation Identification (Step 1)

Our pipeline separates the abbreviation identification step into two subsequent
parts: short forms identification and abbreviation-acronym differentiation.

We first evaluate the former on discharge summaries from the 2009 i2b2
medication challenge [24] that we have manually annotated to this end. We use
the python library NLTK [1] both for word tokenization and to find non-standard
English words. More specifically, we build an English dictionary that combines
all words found in the Brown, Reuters, and Words corpora. To label entities, we
use the Stanford NER [5]. We succesfully identify short forms with an average
F1-score of 62.20% with high precision (92.18%) but low recall (52.90%). The
low recall can be explained by the presence of numerous short forms that are
common enough to be part of an English vocabulary (e.g., MD, Dr., mg, cm,
tel, ID) and, as a result, are discarded by our method. Such short forms would
likely be discarded if using a different dictionary, or could easily be resolved
using a standard abbreviation dictionary. When ignoring them, recall improves
drastically and our approach achieves an average F1-score of 91.04% (Precision:
95.20%, Recall: 87.38%).

Second, the network that we developed for abbreviation-acronym differen-
tiation is trained and evaluated using distinct samples from the 32,048 unique
short forms of the CARD framework [27]. The network takes as input a short
form xi and outputs a probability score yi ∈ [0, 1], where 0 denotes that the
short form refers to multiple words (acronyms) and 1 denotes that the short
form refers to a single word (abbreviation). Each short form is represented as
a 6 × 8 matrix where each row corresponds to the binary representation of
one character based on its Unicode code point—6 being the highest number of
characters in a sequence. Standard characters have code point value at most
256, which allows a compact representation in only 8 dimensions. As a compari-
son, a one-hot encoding would require around 100 dimensions, depending on the
actual number of characters in the corpus. Since short forms can sometimes refer
to either an abbreviation or an acronym depending on the context, we assign
each of them a label between 0 and 1 which accounts for this versatility. More
precisely, the label is computed as a weighted sum of the nature of all possible
expansions:

yi =

∑
Abb(xi)∑

Abb(xi)
+

∑
Acr(xi)

, (3)
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where Abb(xi) and Acr(xi) are the sets of full forms of xi that are single word and
multiple words respectively. The deep architecture consists of 4 fully connected
layers (with 16, 32, 16 and 8 nodes respectively) for representation learning
followed by an RNN consisting of an LSTM cell with 48 units for morphology
learning. Finally, a softmax layer outputs the probability score. The network
is optimised using the Adam optimiser [8] to minimise the cross-entropy loss.
The network is trained on 80% of the data, while the test set, which is used
to determine the final out-of-sample performance, is composed of 20% of the
short forms. Due to the high imbalance of the data set (only 19.15% of them
are abbreviations), we oversample samples from this smaller class so that there
are roughly the same number of examples in both classes. Since the goal is to
retrieve all abbreviations, recall is the most important measure for this task.
On test set we achieve a recall of 72% (F1-score of 59%, Precision 49%). These
scores could be improved by training the network on a larger data set. However,
we can easily set a minimum threshold for disambiguation, which will eventually
reject short forms that do not have any full form with context close enough
therefore discarding any remaining acronyms.

4.2 Full Form Candidates Identification (Step 2)

For this second step, we use the 31,922 abbreviations from the CARD data set.
We assign the label yi = 1 to each pair xi = (shortform, fullform) contained in
the data set. Negative examples are created by randomly selecting a short form
from the data set and pairing it with another randomly selected full form. If the
pair is not already contained in the dataset, we assign it the label yi = 0 and add
it to the set of samples. We repeat this process until we have as many negative
as positive samples. We train the siamese RNN on 70% of the data whereas 30%
are left out for testing. The deep architecture consists of 6 fully-connected layers
(with 16, 32, 64, 32, 16, and 8 nodes respectively) for representation learning
followed by two independent RNN – one for the abbreviation, one for the can-
didate. Each RNN consists of an LSTM cell with 64 units. The output of each
network are then compared by stacking them and feeding them to 3 successive
fully-connected layers consisting of 36, 18, and 2 nodes respectively. Prediction
is achieved through a final softmax layer. We use dropout to prevent overfitting.

For comparison we implement the simple rule-based baseline suggested by
Terada et al. [23]. It is based on the assumptions that the short form always
contain less characters than the full form and the characters contained in the
short form is a subset in the same order of the characters contained in a potential
full form candidate (except for “X”, “−”, “/”). The result of the comparison is
displayed in Table 1. Our approach achieves a slightly higher F1-score than the
baseline, but with much higher recall. Once again, recall is the most important
measure as it is crucial to select the true full form as part of the candidates,
whereas false positive will be naturally dealt with in the final step.

The network handles around 5,000 samples per second for inference, which
means that it needs 8 seconds for a corpus of 40,000 words and less than 40s for
the entire Oxford English dictionary (i.e. 171,476 words).
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Table 1. Comparison between our deep-learning based full form selection approach
against a rule-based baseline [%]

Method Prec Rec F1

Baseline [23] 90.12 64.53 75.21

Ours (siamese RNN) 75.21 84.04 78.57

4.3 Abbreviation Disambiguation (Step 3)

Due to the lack of well-established benchmarks for abbreviation disambigua-
tion, we evaluate our approach on a subset of the MSH WSD data set, which
mostly contains acronyms. We believe that although acronyms and abbrevia-
tions have different morpholgical properties, disambiguation is similar. Hence
we here reproduce an experiment first conducted by Prokofyev et al. [20] and
then later replicated by Li et al. [11] and Ciosici et al. [4] respectively. The subset
of MSH WSD—a data set of abstracts from the biomedical domain created by
Jimeno-Yepes et al. [7]—selected by Li et al. consists of 11,272 abstracts which
contain a total of 69 ambiguous short forms each having in average 2.1 full form
candidates.

To assess the performance of our approach, we compare it with the same
methods as Ciosici et al. [4]. First, a simple baseline called FREQUENCY which,
as its name implies, simply selects the most frequent full form candidate. Clearly,
such approach completely disregards any context information and relies purely
on the corpus statistics for determining the best candidate. Second, the Sur-
rounding Based Embedding (SBE) model, a word embedding-based model devel-
oped by Li et al. [11] which first computes word embeddings of abbreviations by
summing the word embeddings of the words in a window around the abbreviation
before disambiguating between full form candidates using the cosine similarity.
Similarly, Distr. Sim. is an approach introduced by Charbonnier and Wartena [3]
which relies on word embeddings to build weighted average vectors of the context
which are compared using the cosine similarity. Finally, the last benchmarks we
compare with is the Unsupervised Abbreviation Disambiguation (UAD) method
developed by Coisici et al. [4], which deal with disambiguation as a word pre-
diction task. For more details on implementation of all benchmarks, please refer
to the work of Coisici et al. [4].

We use 300 dimensional pretrained words embeddings based on part of the
Google News corpus which contains about 100 billion words. Our scores are
computed as average of a 3-fold cross-validation, similarly to the implementation
of the benchmarks. Table 2 illustrates the performance of WMD compared to
other benchmarks for short form disambiguation.
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Table 2. Comparison of our disambiguation approach against different benchmarks on
a subset of the MSH WSD dataset [%]

Weighted Macro

Method Acc Prec Rec F1 Prec Rec F1

FREQUENCY 54.14 30.04 54.14 38.46 25.55 46.34 32.79

SBE [11] 82.48 83.07 82.48 82.53 82.18 82.16 81.87

Distr. Sim. [3] 80.19 80.87 80.19 80.25 79.90 80.12 79.71

UAD [4] 90.62 92.28 90.62 90.66 91.35 91.36 90.59

ours (WMD) 96.36 96.38 96.36 96.36 95.65 96.97 96.27

5 Conclusion

In this study, we introduced a domain-independent approach to matching abbre-
viations to their full form in corpus as part of text normalization. Unlike the vast
majority of existing approaches to abbreviation expansion, which use an external
lexicon in order to interpret an abbreviation and match it to its full form, we
extract full forms from the corpus itself. This approach is based on an assump-
tion that a full form is actually used elsewhere in the corpus. The likelihood of
such an event increases with the size of a corpus, which makes the approach suit-
able for large-scale text mining applications. However, since our siamese RNN is
able to select full form candidates from the whole English dictionary in a short
amount of time, one could use publicly available resources (such as Wikipedia)
to find context for the candidates that are not part of the corpus.

An advantage of using a corpus instead of a lexicon, which is typically
domain-specific, makes our approach domain independent. It also avoids the
need for maintaining an external lexicon up to date, while making our app-
roach robust with respect to ad hoc abbreviations. However, one may argue that
our approach still makes use of an external lexical resource. Indeed, we do use
an external resource to train an RNN to model the morphological differences
between acronyms and abbreviations. Assuming that these morphological prop-
erties are universal across the language rather than specific to a domain, then
once trained on any representative lexicon, the model itself is readily reusable
across domains and does not require to be re-trained. The same can be said about
the second RNN, which models the morphological principles of word abbrevia-
tion. Once trained on any abbreviation lexicon, the model can be used to expand
abbreviations that were not present in the training data (i.e. the lexicon). Lastly,
the deep learning approach taken avoids the need for manual feature engineering,
while the novel use of existing lexicons avoids the need for manual annotation
of training data.

Finally, the use of deep learning to constrain the search space of possible
matches based on the morphological structure of both abbreviations and full
forms paves the way for more sophisticated approaches that can be utilised to
analyse their contexts. We used Word Mover’s Distance to leverage pre-trained
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word embeddings to measure semantic compatibility between abbreviations and
full forms based on an assumption that both are used in similar contexts.

We have evaluated the different steps of our approach and achieved F1-scores
of 59%, 78.57% and 96.36% respectively. These results are in line with those
reported by other state-of-the art methods.
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Abstract. We present three methods for word sense induction based on
Word Sketches. The methods are being developed a part of an semiauto-
matic dictionary creation system, providing annotators with the summa-
rized semantic behavior of a word. Two of the methods are based on the
assumption of a word having a single sense per collocation. We cluster
the Word Sketch based collocations by their co-occurrence behavior in
the first method. The second method clusters the collocations using word
embedding model. The last method is based on clustering of Word Sketch
thesauri. We evaluate the methods and demonstrate their behavior on
representative words.

Keywords: Word sense induction · Word sketch · Collocations ·
Word embeddings

1 Word Sense Induction

The task of word sense induction (WSI) aims to identify the different senses of
polysemous words from bulk text in an unsupervised setting. The problem has
a long history, but none of the current solutions yield satisfactory results.

The closely related task of word sense discrimination assigns a specific occur-
rence of a word within its context to a predefined sense inventory.

Based on the Harris’ distributional hypothesis [5], words with similar mean-
ings appear in similar contexts, and therefore different meanings of the same
word tend to be present in differing contexts. Insight into the senses of the word
can be gained by investigating the contexts the word appears in.

The methods we are looking for are to be used to assist an annotator to
properly describe the different senses a word can take on, therefore we would
like the method to be transparent and give understandable sense clusters. For
this application it is not an issue if more than one cluster consist of the same
word sense, as long as a single cluster does not contain a mixture of different
senses. For a speaker of the language, joining clusters is easy, while separating
them is laborious. Therefore, in the following exposition we specify a higher
number of word sense clusters than we expect to occur in the examples, even
though the actual amount of investigated senses is likely smaller.
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2 Spectral Clustering

The methods described below employ spectral clustering as an important build-
ing block. Spectral clustering [9] is a family of techniques which operate on
the pairwise similarities between the clustered objects, that is, on the similar-
ity graph. Spectral clustering is based on the eigendecomposition of the graph
Laplacian L:

L = D − A (1)

where D is a diagonal matrix where dii ∈ D is the sum of weights of edges coin-
cident with the i-th vertex and A is a non-negative symmetric matrix, where
aij = aji ∈ A is the similarity between the i-th and j-th vertex. The number
of clusters n is then chosen and the first n smallest eigenvalues and their cor-
responding eigenvectors are used to project L into a well-behaved space with
reduced dimension, in which clusters are easier to find. The usual choice for
clustering the reduced space is k-means.

The technique does not depend on clusters of specific shape and does not
require the similarity function to satisfy the properties of a metric. The technique
is based on standard linear algebra methods, which have been studied deeply and
can be implemented in an efficient way.

The usual formulation of spectral clustering requires the number of clusters to
be specified beforehand. One commonly used heuristic is based on the eigengap
heuristic [9], which selects the position of the first large difference between the
eigenvalues of the Laplacian ordered by magnitude as the number of clusters.
This method, while simple to implement, has no theoretical basis [9,10]. A more
robust (and complex) heuristic is described in [10].

To calculate the clustering, we use the implementation provided by the ven-
erable scikit-learn [8] library, with modifications which allow us to examine the
eigenvalues used during the computation.

3 Clustering of Word Sketch Co-occurrences

Word Sketch, as implemented in the Sketch Engine [6] is a summary of the con-
texts a specific word appears in, collated by different grammatical relations. The
Word Sketches are extracted from text employing a collection of regular rules,
each of which describe a collocation and the grammatical relation the collocation
appears in. The result is a collection of triples of the form (headword, relation,
collocate). The rules aim to trade precision for recall, so that the resulting rela-
tions of a word describe the contexts in which the word appears as completely
as possible. Triples which do not satisfy a criterion specified by a co-occurrence
metric are discarded, so that only salient triples remain. The Fig. 1 shows the
word sketch for the word palm calculated from the BNC corpus [3] (Fig. 2).
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Fig. 1. Word sketch for the noun palm

Fig. 2. Document co-occurrences of the Word Sketch collocations of the noun palm

The WSI method described in this section is based on the following assump-
tions. For a specific word,

1. each (relation, collocate) pair has a single sense
2. two (relation, collocate) pairs co-occurring in a document belong to the same

sense

To identify the word senses, a n × n matrix C is constructed, where n =
|(relation, collocate)| and cij is the number of documents in which the i-th and
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Fig. 3. Clustered document co-occurrences of the Word Sketch collocations of the noun
palm

j-th (relation, collocate) pair appeared together. Only pairs with positive rank
are kept and the pairs which do not occur in at least four different documents
are discarded.

While C can be clustered directly, better result can be obtained by normal-
izing it. Using raw counts has tendency to create singleton clusters for collocates
which appear in many different contexts, such as prepositions. To reduce the
influence, we calculate the Dice-normalized C ′ as

C ′ = 2C � (C + CT ) (2)

where � represents element-wise matrix division. The result obtained by clus-
tering C ′ using the spectral clustering algorithm with the desired number of
clusters set to 4, contain the following (relation, collocate) pairs:

Cluster 1 (18 pairs) Cluster 2 (26 pairs)
nouns and verbs modified by “palm-n” leaf-n verbs with “palm-n” as object outstretch-v
verbs with “palm-n” as object sway-v verbs with “palm-n” as object raise-v
“palm-n” and/or ... flower-n verbs with “palm-n” as object open-v
nouns and verbs modified by “palm-n” grove-n “palm-n” of ... hand-n
Cluster 3 (6 pairs) Cluster 4 (6 pairs)
modifiers of “palm-n” sweaty-j nouns and verbs modified by “palm-n” oil-n
verbs with “alm-n” as object wipe-v nouns and verbs modified by “palm-n” court-n
nouns and verbs modified by “palm-n” springs-n modifiers of “palm-n” oil-n
nouns and verbs modified by “palm-n” beach-n nouns and verbs modified by “palm-n” sunday-n

The pairs are shown in the order they appear within the clusters in the
Fig. 3. The clusters obtained are mostly pure, with some exceptions, such as
palm-n springs-n and palm-n beach-n appearing in the third cluster. This can
be likely alleviated by modifying the construction of the similarity matrix.

The method yields reasonable results for many words and has the ability to
provide extract the specific occurrences of the induced senses.
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3.1 Clustering of Word Sketch Thesaurus

Thesaurus is a list of words similar a given word. As similar words appear in
similar context, their word sketches will be similar, so the similarity of two words
can be obtained by calculating the intersection of the word sketches of the two
words.

Fig. 4. Thesaurus for the noun palm

In Sketch Engine, the thesaurus is calculated by comparing all pairs of word
sketches. For illustration, the thesaurus of the noun palm is visualized in the
Fig. 4.

Based on the assumption that the thesaurus for a polysemous word will
contain words similar to the different senses, clustering the words contained in
the thesaurus based on their pairwise similarities can give insight into the senses
the word can take on.

In this method, the matrix T to be clustered consists of the elements tij ,
which give the similarity of the i-th and j-th entries in the thesaurus of the word
we are identifying the senses for, in the respective thesauri corresponding to the
i-th and j-th entries. For example, the Fig. 5 shows the pairwise similarities of
the elements of the thesaurus for the noun palm. Extracting 4 clusters yields the
result shown in the Fig. 6. The most similar words grouped by cluster are:
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Fig. 5. Pairwise similarities of thesaurus entries for the noun palm

max cluster similarity cluster representatives
.081 banana-n oak-n meadow-n fern-n vine-n
.127 fist-n finger-n thumb-n elbow-n flesh-n
.096 fingertip-n forefinger-n outward-n knuckle-n
.063 pine-n willow-n bamboo-n fig-n

This method gives easily interpretable results and seems to be more stable
than clustering the word sketch co-occurrences directly and fewer occurrences of
the investigated word are necessary to provide a satisfactory result. The draw-
back is that the information about the senses of specific occurrences in the corpus
is not retained. Another issue is that the minimal similarity, for which the word
sketch thesaurus items are indexed is .05, which is close to the maximum simi-
larity in some of the obtained clusters, so the more distant or less frequent senses
might be hidden below this threshold.

3.2 Clustering Context Word Embeddings

Another approach we investigated is based on clustering the contexts according
to the embedding vectors. We calculated skip-gram embeddings of dimension
100 using the fastText package [4] and for every occurrence of the examined
word, we calculated the average of the left and right collocate embeddings and
used the HDBSCAN [7] algorithm to cluster these vectors. The length of the
context to be examined turns out to be a crucial parameter. When the context
is too narrow, the clusters are strongly influenced by noise. On the other hand,
context which is too wide will not contain enough discriminating information for
the clustering algorithm to exploit. For this experiment, we use 10 tokens to the
left and 10 tokens to the right of the word.
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Fig. 6. Clustered pairwise similarities of thesaurus entries for the noun palm

HDBSCAN can determine the number of clusters automatically. For the word
palm, 6 clusters have been found and 93 % of the total vectors had been left
unclassified. Three of the clusters are similar, containing mostly repeated text:

BUST UPLIFT 6. With hands clasped behind, and palms facing inwards, raise the arms 30 times

BUST UPLIFT 9. With hands clasped behind and palms facing inwards, raise the arms 30 times

BUST UPLIFT 9. With hands clasped behind and palms facing inwards, raise the arms 35 times

The remaining three clusters consist of three salient senses: palm oil, palm
trees, and palm as a body part. While the actual obtained senses are well sep-
arated, the result is very sparse and the model hard to inspect, modify and
understand. Ensuring that this method works reliably on arbitrary words seems
to be difficult.

3.3 Clustering Word Sketches by Word Embeddings

The previous method can be enriched using the information contained within
word sketches. Instead of considering each context of the word as a candidate
entering the clustering algorithm, we create a single vector for each (relation,
collocate) pair by averaging the context vectors obtained from the obtained in
the same way as in the previous method and then cluster these vectors using
HDBSCAN. For the noun palm, when using the default configuration of HDB-
SCAN, all word sketch pairs are discarded by the algorithm. Changing the alpha
(robust single linkage distance scaling) parameter is reduced to 0.5, discards 55 %
of the pairs and the rest is split into two senses, of which the most salient ones
according to word sketch rank are:
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Cluster 1 (77 pairs) Cluster 2 (16 pairs)
“palm-n” of ... hand -n modifiers of “palm-n” coconut-j
... into “palm-n” nail-n nouns and verbs modified by “palm-n” tree-n
... into “palm-n” fist-n modifiers of “palm-n” potted-j
... with “palm-n” forehead-n “palm-n” from ... stone-n
nouns and verbs modified by “palm-n” springs-n nouns and verbs modified by “palm-n” frond-n
“palm-n” on ... apron-n nouns and verbs modified by “palm-n” grove-n
... into “palm-n” bit-n verbs with “palm-n” as subject fringe-v
verbs with “palm-n” as subject sweat-v verbs with “palm-n” as object sway-v
... into “palm-n” kiss-n nouns and verbs modified by “palm-n” thatch-n
... into “palm-n” dig-v modifiers of “palm-n” cabbage-n

While the senses are well separated, the sparsity could be an issue, as an impor-
tant sense may have been missed. Additionally, this method employs not only
one, but two black boxes: word embeddings and HDBSCAN.

4 Conclusion

While all of the methods give interesting results, we have not evaluated them
thoroughly and have not explored the parameter space well at this time.

In addition to the described methods, we implemented the very elegant
method based on sparse dictionary learning as described in [1], which aims to
decompose the word vector into a weighted sum of discourse atoms, but on our
data, it failed to yield any interesting result.

We also investigated the Adaptive Skip-gram [2], which trains a word embed-
ding model for multiple senses for each word in a single step. The senses we
obtained are reasonable, but we found the model to be too opaque and the infor-
mation about the sense at a specific corpus position can be reconstructed only
inexactly. We devised a method based on clustering word sketch co-occurrences,
which is efficient and provides reasonable senses along with the specific corpus
positions the senses for a given word appear at.

A different method based on word sketch thesaurus provides better word
sense clustering, but has the drawback of not providing the specific positions of
the senses.

The two word embedding based methods have shown the ability to produce
great results, however they are finicky and difficult to tune and interpret.
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Abstract. The paper explores temporal changes within an intonational
phrase in Russian. The main question we aim to answer is whether
we can speak about temporal “declination” in a similar way we speak
about melodic declination. In order to answer this question, we analysed
stressed vowel duration in intonational phrases (IPs) of different types
using a speech corpus. We have found that (1) most intonational phrases
in Russian do not have temporal “declination” or “inclination” in the
pre-nuclear part: the tempo is relatively stable until the nucleus, where
a noticeable lengthening is observed; (2) the rarely occurring temporal
“declination” or “inclination” in certain types of IPs can be considered a
specific speaker’s trait; (3) the amount of lengthening on the last stressed
vowel within the IP may play a role in distinguishing final and non-final
IPs, rising vs. falling nuclei, but this is also speaker-specific.

Keywords: Prosody · Speech tempo · Segmental duration ·
Intonational phrase · Russian phonetics

1 Introduction

One of the most well-known prosodic universals is melodic declination, which is
defined by Vaissiere in the following way: “ln relatively long stretches of contin-
uous speech, there is a global tendency for the F0 curve1 to decline with time,
despite successive local rises and falls” [7][p. 75]. One of the consequences of this
is the reset of the baseline, which occurs at the boundary between one stretch
of speech and the following one. As a result, reseting the baseline functions as
a boundary marker, and declination itself—as an organizing trend which joins a
number or words into a longer speech unit.

In a similar way we could attempt to speak about “temporal” declination.
What is known so far is that the last word within a large prosodic unit is longer
due to the phenomenon called pre-boundary (final) lengthening, which is a uni-
versal itself. Less is known about the other words within the prosodic unit:
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is duration evenly distributed among the other words, or we can speak about
some “declination” (or “inclination”) of tempo as well? The prosodic features—
melody, duration, intensity—often interact with each other, either working in
parallel (melody + intensity) or compensating each other (e.g., in whispered
speech, where no clear melody is observed, especially for tone languages). Thus,
given melodic declination, we might expect some accompanying temporal decli-
nation or inclination as well.

For Russian the melodic declination was described in detail in [3]. One of
the key results of the paper is that melodic declination differs across types of
utterance—almost zero in general questions (level tone), and quite significant
in declaratives. Similar results were described for Dutch by van Heuven and
Haan [1][p. 125]. In particular, this means that declination helps distinguish
some types of utterances even before the utterance is finished—and perceptually
this was proved for Russian in [6][p. 116–120], where speakers could success-
fully disambiguate general questions from non-final parts of declaratives before
they heard the last word of the prosodic unit, probably relying on the melodic
declination pattern. For speech tempo no research of this kind has been done
yet.

In this paper we compared 4 types of intonational phrases (IPs) differing in
the melodic movement within the nucleus and finality of the IP within the utter-
ance: (1) low-falling, utterance-final (declaratives); (2) rising-falling2, utterance
final (general questions); (3) falling, utterance-medial (as, e.g., in cases of punc-
tuation marks such as colon or semicolon); (4) rising-falling, utterance-medial
(occurring usually with a comma or dash, or no punctuation mark at all to divide
long stretches of speech). In the future more types of IPs may be analysed, but
so far we have taken the ones that occur more frequently in Russian speech.

2 Materials and Methods

Temporal “declination”, as well as melodic, can be calculated in several ways.
When choosing a method for this paper, we aimed at obtaining results compa-
rable with those found earlier for melodic declination in Russian as presented
in [3]. In that study melodic declination was calculates by peak values for stressed
syllables (upper declination). In a similar way, here we calculated temporal dec-
lination based on stressed syllables.

In Russian stressed syllables are longer than the unstressed. Within the
stressed syllable, vowel duration is a more reliable measurement as consonants in
the stressed syllables are not always longer than in the unstressed (see [2]). This
is why we calculated temporal declination based on stressed vowel duration.

2 Rise-fall—one of the most frequent types of nuclei in Russian speech—is used in
general questions and non-final IPs; the rise is realized on the stressed syllable, and
the melodic peak is close to its right boundary (or sometimes even later).
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As vowel phonemes differ in their inherent duration, we calculated duration
in z-scores using the formula suggested in [9]:

d̃(i) =
d(i) − μp

σp

where d̃(i) is the normalized duration of segment i, d(i) is its absolute duration,
and μp and σp are the mean and standard deviation of the duration of the
corresponding phone p. The mean and standard deviation values were calculated
over the whole corpus for each speaker separately.

We also limited our data by only those vowels that occurred in CV syllables,
in order to eliminate influence from syllable length.

The material is a subcorpus of CORPRES [5]: 20 h of segmented speech con-
taining fictional texts recorded from 4 speakers, all native Russians with standard
pronunciation. The recordings come with manual segmentation into sounds and
prosodic annotation in terms of [8]. The basic large prosodic unit in the annota-
tion is the IP defined as (1) the largest phonological chunk into which utterances
are divided, (2) containing a single most prominent word (nucleus), (3) serving to
join the words tightly connected with each other in terms of semantic or syntactic
stricture (the definition consistent with the one given in [4][p. 311]).

Using a Python script, we retrieved all the IPs with a given type of nucleus
and a given length in clitic groups (CGs). In this paper we only observe IPs with
final position of the nucleus (which is not always the case in Russian, but still
the vast majority). A clitic group is defined as one stressed lexical word plus
(possibly) one or more adjacent unstressed clitics. Thus, the number of clitic
groups within an IP equals the number of stressed syllables.

The data were analysed separately for each speaker in case individual strate-
gies are found. Then, for each type of nucleus and each IP length average values
were obtained for CG 1, CG 2, CG 3 etc. This was summarized in graphs and
tables. Then each pair of adjacent words were compared using the two-tailed
Student’s t-test for independent datasets with unequal variances (e.g., to find
out whether CG 1 is longer than CG 2 in 4-word declaratives, we compared the
means for the respective stressed vowels’ normalized durations using a t-test).

3 Results and Discussion

Table 1 summarizes the results of the analysis for four speakers. The table con-
tains data for the four types of IPs, and for each type—for IPs made up of 3,
4 and 5 clitic groups (CGs). The first clitic group obtains the number 1. Thus,
e.g., in an average 3-word IP of type 1 (utterance-final IP with a falling nucleus)
for speaker C the first stressed vowel has the normalized duration of −0.33, the
second −0.37, and the third 0.79.

The value of 1 corresponds to one standard deviation for vowel duration for
the particular vowel phoneme and for the particular speaker. Standard deviation
values in our data fall within the range of 23 to 35 ms. Thus, in our example the
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Table 1. Mean normalized vowel duration in stressed CV syllables in IPs of different
length (3 to 5 clitic groups) for each clitic group (CG) within the phrase. IP type 1
stands for utterance-final IPs with low-falling nucleus; type 2—utterance final, rising-
falling nucleus; type 3—utterance-medial, falling nucleus; type 4—utterance-medial,
rising-falling nucleus. Speakers C and K are females, speakers A and M are males.
Asterisk (*) marks the value which is significantly different from the left neighbour;
brackets around the asterisk mean that the p-value is above 0.05, but very close to this
value (up to 0.065). Bold font marks the IP types where the value for the 1-st word
differs significantly from the value for the penultimate word. Brackets mark a case of
a small dataset. Empty cells mean a lack of a reliable dataset.

CG number 1 2 3 4 5 1 2 3 4 5

IP type IP len

Speaker C Speaker K

1 3 −0.33 −0.37 0.79* −0.42 −0.51 0.80*

4 −0.47 −0.30 −0.35 0.92* −0.59 −0.68 −0.55 0.73*

5 −0.46 −0.40 −0.41 −0.46 0.86* −0.68 −0.48 −0.59 −0.46 0.73*

2 3 −0.51 −0.64 0.43* −0.69 −0.63 0.29*

4 −0.25 −0.63(*) −0.80 0.10* −0.53 −0.71 −0.58 0.39*

5 (−0.18) (−0.39) (−0.59) (−0.79) (0.42)*

3 3 −0.46 −0.49 0.82* −0.61 −0.57 0.96*

4 −0.54 −0.50 −0.42 0.92* −0.69 −0.59 −0.65 0.91*

5 −0.48 −0.55 −0.36 −0.34 0.99* −0.69 −0.52 −0.43 −0.35 1.18*

4 3 −0.53 −0.53 0.12* −0.61 −0.50* 0.36*

4 −0.47 −0.44 −0.49 0.14* −0.72 −0.60(*) −0.54 0.46*

5 −0.60 −0.53 −0.38 −0.51 0.24* −0.73 −0.69 −0.55 −0.51 0.34*

Speaker A Speaker M

1 3 −0.26 −0.33 0.30* −0.45 −0.39 0.18*

4 −0.46 −0.29* −0.23 0.37* −0.31 −0.37 −0.33 0.38*

5 −0.67 −0.28* −0.40 −0.56 0.24* −0.71 −0.49 −0.19(*) −0.40 0.20*

2 3 −0.50 −0.54 −0.01* −0.36 −0.60* 1.04*

4 −0.47 −0.53 −0.42 −0.06* −0.44 −0.49 −0.43 0.68*

5

3 3 −0.42 −0.47 0.79* −0.30 −0.34 0.62*

4 −0.57 −0.47 −0.44 0.49* −0.42 −0.28 −0.30 0.67*

5 −0.62 −0.69 −0.45 −0.49 0.95* −0.47 −0.41 −0.31 −0.24 0.52*

4 3 −0.52 −0.50 0.30* −0.49 −0.42 0.60*

4 −0.54 −0.44 −0.45 0.23* −0.53 −0.38* −0.34 0.66*

5 −0.61 −0.54 −0.37 −0.46 0.35* −0.48 −0.49 −0.34 −0.36 0.54*

first and the second words have almost equal stressed vowel duration, while on
the last word (which is the nucleus) we observe a noticeable change in duration—
1.16 standard deviations, i.e. more than 26 ms.

The results of statistical analysis are also shown in Table 1. An asterisk (*)
marks the values that differ significantly from the left neighbour (p-value < 0.05).
Those cases where the p-value was very close to 0.05 (up to 0.065) are marked
by an asterisk in brackets.

In our data every last clitic group within the IP has significantly greater
value; the p-values as for these cases were all below 0.002. This proves that the
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nucleus in phrase-final words is much longer than other stressed syllables, but
this result is not new, at least for Russian (e.g., see [2]).

Fig. 1. Temporal pattern of a general question for speaker C showing temporal “dec-
lination”. The graph presents data for IPs of different length (3–5 clitic groups); the x
axis shows the index number of the clitic group within the IP.

In some cases IP-medial clitic groups also reveal a significant change in dura-
tion (see, e.g., 4-word IPs of type 1 for speaker A); the p-values are usually
higher than for IP-final CGs (0.01 to 0.05). In most cases it is a decrease or an
increase in duration on the second clitic group. In terms of IP type and length
this is unsystematic.

We also analysed statistically the difference between the first CG and the
penultimate CG. If the difference is significant, we may conclude that we observe
temporal declination or inclination (not level tempo) in the pre-nuclear part
of the IP. In Table 1 such cases are marked by bold font. We can see that
there are only a few clear cases of declination, and they are very speaker-
specific. Speaker C marks general questions (IP type 2) with temporal declination
(see Fig. 1), while the other 3 speakers do not. Speakers K and M tend to mark
non-final IPs with rising-falling nucleus with temporal inclination (see Fig. 2);
speaker M also shows some temporal inclination in IPs with a falling nucleus;
speaker A has a slight temporal declination in declaratives.

In the large majority of cases no temporal declination is observed (see, e.g.,
Fig. 3). This means that the temporal pattern of a typical Russian IP can be
described in the following way: relatively stable tempo from the first CG to the
penultimate CG, and a noticeable lengthening on the last CG.



Temporal ”Declination” in Russian 97

Fig. 2. Temporal pattern of a non-utterance-final IP with a rising-falling nucleus for
speaker K showing a slight temporal “inclination”. The graph presents data for IPs
of different length (3–5 clitic groups); the x axis shows the index number of the clitic
group within the IP.

Fig. 3. Temporal pattern of a declarative for speaker C showing no temporal “decli-
nation” or “inclination”. The graph presents data for IPs of different length (3–5 clitic
groups); the x axis shows the index number of the clitic group within the IP.
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However, the amount of lengthening on the last CG differs between IP types
and between speakers. A number of individual strategies could be formulated.

1. Many speakers distinguish between IPs with falling and with rising-falling
nuclei (speakers A, C, K)—falling nuclei have longer vowels.

2. Some speakers use duration to signal non-finality (speaker A)—vowels in
nuclei of non-final IPs (types 3 and 4) are longer.

3. Some speakers tend to lengthen the nuclear vowel in general questions
(speaker M).

The speaker-specific nature of the temporal pattern of the IP is in accordance
with the findings presented in [3] for melodic declination. Still, the main result
or this preliminary study is that temporal “declination” is absent in most types
of IPs for most speakers. It might suggest that speech tempo is something that
needs to be kept stable while other parameters are changing. But this required
further proof. The next step of this ongoing research might be an analysis of
those IPs which do have temporal “delination” or “inclination” using a series of
perception experiments.

4 Conclusions

An analysis of 20 h of speech recorded from 4 speakers of Standard Russian
enabled to obtain the following preliminary results.

1. Most intonational phrases in Russian do not have temporal “declination” or
“inclination” in the pre-nuclear part: the tempo is relatively stable until the
nucleus, where a noticeable lengthening is observed.

2. Temporal “declination” or “inclination” in certain types of IPs can be con-
sidered a specific speaker’s trait.

3. The amount of lengthening on the last stressed vowel within the IP may play
a role in distinguishing final and non-final IPs, rising vs. falling nuclei; this is
also speaker-specific.
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Abstract. In this paper we discuss the well-known claim that language
analogies yield almost parallel vector differences in word embeddings.
On the one hand, we show that this property, while it does hold for a
handful of cases, fails to hold in general especially in high dimension,
using the best known publicly available word embeddings. On the other
hand, we show that this property is not crucial for basic natural language
processing tasks such as text classification. We achieve this by a simple
algorithm which yields updated word embeddings where this property
holds: we show that in these word representations, text classification
tasks have about the same performance.

1 Introduction

1.1 Context and Motivations

The motivation to build word representations as vectors in a Euclidean space
is twofold. First, geometrical representations can possibly enhance our under-
standing of a language. Second, these representations can be useful for infor-
mation retrieval on large datasets, for which semantic operations become alge-
braic operations. First attempts to model natural language using simple vector
space models go back to the 1970s, namely Index terms [22], term frequency
inverse document frequency (TF-IDF) [20], and corresponding software solu-
tions SMART [21], Lucene [10]. In recent work about word representations, it
has been emphasized that many analogies such as king is to man what queen
is to woman, yielded almost parallel difference vectors in the space of the two
most significant coordinates [15,18], that is to say (if d = 2):

(ui | 1 ≤ i ≤ n) ∈ R
d being the word representations

(3,4) is an analogy of (1,2) ⇔ ∃ε ∈ R
d s.t u2 − u1 = u4 − u3 + ε

where ||ε|| � min(||u2 − u1||, ||u4 − u3||)
(1)

In Eq. (1) ||x|| � ||y|| means in practice that ||x|| is much smaller than ||y||.
Equation (1) is stricter than just parallelism, but we adopt this version because
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): SLSP 2019, LNAI 11816, pp. 100–111, 2019.
https://doi.org/10.1007/978-3-030-31372-2_9
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it corresponds to the version the scientific press has amplified in such a way
that now it appears to be part of layman knowledge about word representations
[5,14,23]. We hope that our paper will help clear a misinterpretation.

Recent work leads us to cast word representations into two families: static
representations, where each word of the language is associated to a unique ele-
ment (scope of this paper), and dynamic representations, where the entity rep-
resentating each word may change on the context (we do not consider this case
in this paper).

1.2 Contributions

The attention devoted in the literature and the press to Eq. (1) might have been
excessive, based on the following criteria:

◦ The proportion of analogies leading to the geometric Eq. (1) is small.
◦ The classification of analogies based on Eq. (1) or parallelism does not appear

as an easy task.

Second, we present a very simple propagation method in the graph of analogies,
enabling our notion of parallelism in Eq. (1). Our code is available online.1

2 Related Work

2.1 Word Embeddings

In the static representations family, after the first vector space models (Index
terms, TF-IDF, see SMART [21], Lucene [10]), Skip-gram and statistical log-
bilinear regression models became very popular. The most famous are Glove [18],
Word2vec [15], and fastText [4]. Since word embeddings are computed once and
for all for a given string, this causes polysemy for fixed embeddings. To overcome
this issue, the family of dynamic representations have gained in attention very
recently due to the increase of deep learning methods. ELmo [19], and Bert [9]
representations take in account context, letters, and n-grams of each word. We
do not address comparison with these methods in this paper because of the lack
of analysis of their geometric properties.

There have been attempts to evaluate the semantic quality of word embed-
dings [11], namely:

◦ Semantic similarity (Calculate Spearman correlation between cosine similar-
ity of the model and human rated similarity of word pairs)

◦ Semantic analogy (Analogy prediction accuracy)
◦ Text categorisation (Purity measure).

1 Link to repository https://github.com/Khalife/Geometry-analogies.git.

https://github.com/Khalife/Geometry-analogies.git
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However, in practice, these semantic quality measures are not preferred for
applications: the quality of word embeddings is evaluated on very specific tasks,
such as text classification or named entity recognition. In addition, recent work
[17] has shown that the use of analogies to uncover human biases should be
carried out very carefully, in a fair and transparent way. For example [7] analyzed
gender bias from language corpora, but balanced their results by checking against
the actual distribution of jobs between genders.

2.2 Relation Embeddings for Named Entities

An entity is a real-world object and denoted with a proper name. In the expres-
sion “Named Entity”, the word “Named” aims at restricting the possible set
of entities to only those for which one or many rigid designators stands for the
referent. Named entities have an important role in text information retrieval [16].

For the sake of completeness, we report work on the representation of rela-
tions between entities. Indeed, an entity relation can be seen as an example of
relation we consider for analogies (example: Paris is the capital of France, such
as Madrid to Spain). There exist several attempts to model these relations, for
example as translations [6,24], or as hyperplanes [12].

2.3 Word Embeddings, Linear Structures and Pointwise Mutual
Information

In this subsection, we will focus on a recent analysis of pointwise mutual infor-
mation, which aims at providing a piece of explanation of the linear structure for
analogies [1,2]. This work provides a generative model with priors to compute
closed form expressions for word statistics. In the following, f = O(g) (resp.
f = Õ(g)) means that f is bounded by g (resp. bounded ignoring logarithmic
factors) in the neighborhood considered. The generation of sentences in a given
text corpus is made under the following generative assumptions:

◦ Assumption 1 : The ensemble of word vectors consists of i.i.d samples gener-
ated by v = s v̂, where v̂ is drawn from the spherical Gaussian distribution in
R

d and s is an integrable random scalar, always upper bounded by a constant
κ ∈ R

+.
◦ Assumption 2 : The text generation process is driven by a random walk of a

vector, i.e if wt is the word at step t, there exists a discourse vector ct such
that P(wt = w|ct) ∝ exp(〈ct, vw〉). Moreover, ∃κ ≥ 0 and ε1 ≥ 0 such that
∀t ≥ 0:

|s| ≤ κ

Ect+1(e
κ

√
d||ct+1−ct||2) ≤ 1 + ε1

(2)

In the following, P(w,w′) is the probability that two words w and w′ occur in
a window of size 2 (the result can be generalized to any window size), P(w) is
the marginal probability of w. PMI(w,w

′
) is the pointwise mutual information

between two words w and w
′
[8]. Under these conditions, we have the following

result [1]:
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Theorem 1. Let n denote the number of words and d denote the dimension of
the representations. If Assumptions 1 and 2 are verified, then using the same
notations, the following holds for any words w and w

′
:

PMI(w,w′) � log
P(w,w′)
P(w)P(w′)

=
〈vw, vw′〉

d
± O(ε)

with ε = Õ(
1√
n

) + Õ(
1
d
) + O(ε1)

(3)

Equation (3) shows that we could expect high cosine similarity for pointwise
close terms (if ε is negligible).

The main aspect we are interested in is the relationship between linear struc-
tures and analogies. In [1], the subject is treated with an assumption following
[18], stated in Eq. (4). Let χ be any set of words, and a and b words are involved
in a semantic relation R. Then there exist two scalars vR(χ) and ξabR(χ) such
that:

P(χ|a)
P(χ|b) = vR(χ) ξabR(χ) (4)

We failed to fully understand the argument made in [1,18] linking word
vectors to differences thereof. However, if we assume Eq. (4), by Eq. (3) we obtain
the following.

Corollary 2. Let V be the n × d matrix whose rows are the vectors of words in
dimension d. Let va and vb be vectors corresponding respectively to words a and
b. Assume a and b are involved in a relation R. Let log(vR) the element-wise
log of vector vR. Then there exists a vector ξ′

abR ∈ R
n such that:

V (va − vb) = d log(vR) + ξ
′
abR (5)

Proof. Let x a word, and a, b two words sharing a relation R. On the one hand,
taking the log of Eq. (4):

log(
P(x|a)
P(x|b) ) = log(vR(x)) + log(ξabR(x)) (6)

On the other hand, using Eq. (3), ∃ εabx ∈ R such that:

log(
P(x|a)
P(x|b) ) = log(

P(x, a)P(b)
P(x, b)P(a)

)

= log(
P(x, a)P(b)P(x)
P(x, b)P(a)P(x)

)

= PMI(x, a) − PMI(x, b)

log(
P(x|a)
P(x|b) ) =

〈vx, va − vb〉
d

+ εabx (7)

Combining Eqs. (6) and (7), for any x:

〈vx, va − vb〉 = d log(vR(x)) + d(log(ξabR(x)) − εabx) (8)
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Let V the matrix whose rows are the word vectors. V (va − vb) is a vector of
R

n whose component associated with word x is exactly 〈vx, va − vb〉. Then, let
vR be the element-wise log of vector vR, and ξ

′
abR the vectors of components

d(log ξabR(x) − εabx). Then, Eq. (8) is exactly Eq. (5). ��
It is shown in [1] that ||V +ξ′

abR|| ≤ ||ξ′
abR||, where V + is the pseudo-inverse

of V . In other words, the “noise” factor ξ′ can be reduced. This reduction may
not be sufficient if ξabR is too large to start with. In the next section we shall
propose an empirical analysis of existing embeddings with regard to analogies
and parallelism of vector differences.

3 Experiments with Existing Representations

In this section, we present a list of experiments we ran on the most famous word
representations.

3.1 Sanity Check

The exact meaning of the statement that analogies are geometrically character-
ized in word vectors is as follows [14,18]. For each quadruplet of words involved
in an analogy (a, b, c, d), consider the word vector triplet (va, vb, vc), and the
difference vector xab = vb − va. Then we run PCA on the set of word vectors to
get representations in R

2. Find the k nearest neighbours of vc + xab in the word
embedding set (with k small). Finally, examine the k words and choose the most
appropriate word d for the analogy a : b = c : d. We ran this protocol in many
dimension with a corpus of analogies obtained from [13]. We display the results
obtained in Fig. 1.

(a) word2vec (b) glove (c) fastText

Fig. 1. Sanity check

3.2 Analogies Protocol

In this subsection we show that the protocol we described in Sect. 3.1 for finding
analogies does not really work in general. We ran it on 50 word triplets (a, b, c)
as input, with k = 10 in the k-NN stage, but only obtained 35 correct valid
analogies, namely those in Fig. 2.
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Fig. 2. Some valid analogies following Protocol 3.2

3.3 Turning the Protocol into an Algorithm

The protocol described in Sect. 3.2 is termed “protocol” rather than “algorithm”
because it involves a human interaction when choosing the appropriate word out
of the set of k = 5 nearest neighbours to vc + (vb − va). Since natural language
processing tasks usually concern sets of words of higher cardinalities than humans
can handle, we are interested in an algorithm for finding analogies rather than a
protocol. In this section we present an algorithm which takes the human decision
out of the protocol sketched above. Then we show that this algorithm has the
same shortcomings as the protocol, as shown in Sect. 3.2.

We first remark that the obvious way to turn the protocol of Sect. 3.2 into
an algorithm is to set k = 1 in the k-NN stage, which obviously removes the
need for a human choice. If we do this, however, we cannot even complete the
famous “king:man = queen:woman” analogy: instead of “woman”, we actually
get “king” using glove embeddings.

Following our first definition in Eq. (1), we instead propose the notion of
strong parallelism in Eq. (9):

||vd − vc − (vb − va)|| ≤ τ min(||vb − va||, ||vd − vc||) (9)

where τ is a small scalar. Equation (9) is a sufficient condition for quasi-
parallelism between vd − vc and vb − va. The algorithm is very simple: given
quadruplets (a, b, c, d) of words, and tag the quadruplet as a valid analogy if
Eq. (9) is satisfied. We also generalize the PCA dimensional reduction from 2D
to more dimensionalities. We ran this algorithm on a database of quadruplets
corresponding to valid analogies, and obtained the results in Table 1. The fact
that the results are surprisingly low was one of our initial motivations for this
work. The failure of this algorithm indicates that the geometric relation Eq. (1)
for analogies may be more incidental than systematic.
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Table 1. Analogies from Eq. (9), F1-score

Dimension word2vec glove fastText

τ = 0.1 τ = 0.2 τ = 0.1 τ = 0.2 τ = 0.1 τ = 0.2

2 1.08% 5.17% 3.34% 12.93% 0.97% 4.92%

10 0.00% 0.00% 0.00% 0.09% 0.00% 0.00%

20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

50 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

100 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

300 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

3.4 Supervised Classification

The failure of an algorithm for correctly labelling analogies based on Eq. (9)
(see Sect. 3.3) does not necessarily imply that analogies are not correctly labeled
(at least approximately) using other means. In this section we propose a very
common supervised learning approach (a simple k−NN).

More precisely, we trained a 5−NN to predict analogies using vector dif-
ferences, following Eq. (1). If (a, b, c, d) is an analogy quadruplet, we use the
representation:

xabcd = (vb − va, vd − vc) (10)

to predict the class of the quadruplet (a, b, c, d) (either no relation or being the
capital of, plural, etc). If the angles between the vectors vb − va and vd − vc

(hint of parallelism) contain important information with respect to analogies,
this representation should yield a good classification score. The dataset used is
composed of 13 types of analogies, with thousand of examples in total (see Foot-
note 1). We considered 1000 pairs of words sharing a relation, with 13 labels (1
to 13, respectively: capital-common-countries and capital-world (merged), cur-
rency, city-in-state, family, adjective-to-adverb, opposite, comparative, superla-
tive, present-participle, nationality-adjective, past-tense, plural, plural-verbs),
and 1000 pairs of words sharing no relation (label 0). In order to generate differ-
ent random quadruplets, we ran 500 simulations. Average results are in Table 2.

The results in Table 2 suggest that the representations obtained from Eq. (10)
allow a good classification of analogies in dimension 10 when Euclidean geometry
is used with a 5−NN. However, in the remaining dimensions, vector differences
do not encode enough information with regards to analogies.
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Table 2. Multi-class F1 score classification of analogies based on representation 10
(5-nearest neighbors)

Dimension word2vec glove fastText

2 62.47% 69.30% 68.74%

10 86.44% 85.62% 90.40%

20 74.74% 77.45% 80.57%

50 55.11% 61.24% 55.30%

100 50.57% 51.26% 50.56%

300 51.12% 51.72% 49.98%

4 Parallelism for Analogies with Graph Propagation

In this section we present an algorithm which takes an existing word embedding
as input, and outputs a modified word embedding for which analogies correspond
to a notion of parallelism in vector differences. These new word embeddings will
be later used (see Sect. 5) to confirm the hypothesis that analogies correspond-
ing to parallel vector differences does not make the word embedding better for
common classification tasks.

Let us consider a family of semantic relations (Rk|1 ≤ k ≤ r). For instance,
this family can contain the plural or superlative relation. One of the relations
Rk creates the analogy a : b = c : d, if and only if: aRkb and cRkd, i.e semantic
relations create quadruplets of analogies in the following sense:

(a, b, c, d) is an analogy quadruplet ⇐⇒ ∃k, aRkb and dRkc (11)

A sufficient condition for relation (1) to hold for a quadruplet is for each pair
a, b in the relation Rk:

∃μk ∈ R
d, aRkb ⇐⇒ vb = va + μk (12)

Equation (12) can be generalized to other functions than summing a constant
vector, namely it suffices that

∃fk : Rd −→ R
d, vaRkvb ⇐⇒ vb = fk(va) (13)

Other choices of fk might be interesting, but are not considered in this work.
In order to generate word vectors satisfying Eq. (12), we propose a routine

using propagation on graphs. The first step consists in building a directed graph
of words (V,E) encoding analogies:

(i, j) ∈ E ⇔ ∃k (iRkj) (14)

Therefore, we can label each edge with the type k of analogy involved (namely
being the capital of, plural, etc, ...). Then, we use a graph propagation algorithm
(Algorithm 1) involving Eq. (12) relation. We remark that propagation requires
initial node representations.
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Algorithm 1. Graph propagation for analogies
Data: List of relations, vectors μ1, ..., μK ∈ R

d

Result: New representations
1 Build graph G of analogies (Eq. (14));
2 Extract connected components C1, ..., Cc from G;
3 for j = 1 → c do
4 Select source node s1 ∈ Cj ;
5 vs1 ← Generate initial representation of s1;
6 s2, ..., s|Cj | ← Breadth first search from s1;

7 for r = 2 → |Cj | do
8 k ← index of relation between sr and sr+1;
9 vsr+1 = vsr + μk;

10 end

11 end
12 Return (vi | 1 ≤ i ≤ |G|)

Proposition 1. Let G the graph of analogies. If G is a forest, then the repre-
sentations obtained with Algorithm1 verify Eq. (12).

Proof. A forest structure implies the existence of a source node s for each com-
ponent in G. For each component, every visited node with breadth-first search
starting from s has only one parent, so the update defined Line 9 in Algo-
rithm1 defines a representation that verify Eq. (12) for the current node and its
parent. ��

However, if G is not a forest, words can have several parents. In this case, if
(parent1, child) is visited before (parent2, child), our graph propagation method
will not respect Eq. (12) for (parent1, child). This is the case with homonyms.
For example, Peso is the currency for Argentina, but the currency for Mexico
too. In practice, we selected μ1, . . . , μK as a family of independent vectors in
R

d. We found better results in our experiments with ∀i, ||μi|| ≥ d. This can
be explained by the fact that the vectors of relations needs to be non negligible
when compared to difference of the words vectors.

5 Experiments with New Embeddings

In this section we present results of the experiments described in Sec. 3 with the
updated embeddings obtained with the propagation Algorithm1. We call X++
the new word embeddings obtained with the propagation algorithm from the
word embeddings X.

5.1 Classification of Analogies

Analogies from “Parallelism”: As in Sect. 3.3 using Eq. (9). Results are in
Table 3. F1-scores are almost perfect (by design) in all dimensions.
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Table 3. Analogies from Eq. (9) with updated embeddings, F1-score

Dimension word2vec++ glove++ fastText++

τ = 0.1 τ = 0.2 τ = 0.1 τ = 0.2 τ = 0.1 τ = 0.2

2 96.80% 96.50% 97.92% 97.15% 98.15% 97.61%

10 98.48% 98.54% 97.88% 97.88% 98.25% 98.31%

20 98.12% 98.18% 98.14% 98.43% 96.56% 96.56%

50 96.80% 96.80% 98.28% 98.36% 98.17% 98.17%

100 98.08% 98.08% 98.19% 98.19% 98.06% 98.06%

300 98.41% 98.41% 98.40% 98.40% 98.30% 98.30%

With Supervised Learning: Same experiments as in Sec. 3.4: 1000 pairs of
words sharing a relation with 13 labels (1 to 13), and 1000 pairs of words sharing
no relation (label 0). Results are in Table 4.

Table 4. Multi-class F1 score on classification of analogies based on relation 10 with
updated embeddings (5-nearest neighbors)

Dimension word2vec++ glove++ fastText++

2 99.73% 99.44% 99.31%

10 99.75% 99.36% 99.64%

20 99.80% 99.52% 99.94%

50 99.56% 99.63% 99.49%

100 99.89% 99.54% 99.42%

300 99.40% 99.86% 99.45%

5.2 Text Classification: Comparison Using KNN

We used three datasets: one for binary classification (Subjectivity) and two for
multi-class classification (WebKB and Amazon). For reasons of time compu-
tation we used a subset of WebKB and Amazon datasets (500 samples). The
implementation and datasets are available online (see Footnote 1). Results are
in Table 5.

Table 5. Text classification (d = 20), F1-score

word2vec glove fastText word2vec++ glove++ fastText++

Subjectivity 81.69% 81.02% 82.14% 81.69% 80.38% 81.57

WebKB 71.50% 71.00% 70.50% 71.50% 72.00% 72.00

Amazon 65.20% 63.60% 60% 65.20% 61.00% 56.40
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6 Conclusion

In this paper we discussed the well-advertised “geometrical property” of word
embeddings w.r.t. analogies. By using a corpus of analogies, we showed that
this property does not hold in general, in two or more dimensions. We conclude
that the appearance of this geometrical property might be incidental rather than
systematic or even likely.

This is somewhat in contrast to the theoretical findings of [1]. One possible
way to reconcile these two views is that the concentration of measure argument
in [1, Lemma 2.1] might yield high errors in vectors spaces having dimension
as low as R

300. Using very high-dimensional vector spaces might conceivably
increase the occurrence of almost parallel differences for analogies. By the phe-
nomenon of distance instability [3], however, algorithms based on finding closest
vectors in high dimensions require computations with ever higher precision when
the vectors are generated randomly. Moreover, the model of [1] only warrants
approximate parallelism. So, even if high dimensional word vectors pairs were
almost parallel with high probability, verifying this property might require con-
siderable computational work related to floating point precision.

By creating word embeddings on which the geometrical property is enforced
by design, we also showed empirically that the property appears to be irrelevant
w.r.t. the performance of a common information retrieval algorithm (k-NN).
So, whether it holds or not, unless one is trying to find analogies by using the
property, is probably a moot point. We are obviously grateful to this property
for the (considerable, but unscientific) benefit of having attracted some attention
of the general public to an important aspect of computational linguistics.

References

1. Arora, S., Li, Y., Liang, Y., Ma, T., Risteski, A.: A latent variable model approach
to PMI-based word embeddings. Trans. Assoc. Comput. Lingui. 4, 385–399 (2016)

2. Arora, S., Li, Y., Liang, Y., Ma, T., Risteski, A.: Linear algebraic structure of word
senses, with applications to polysemy. Trans. Assoc. Comput. Lingui. 6, 483–495
(2018)

3. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “Nearest Neighbor”
meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7 15

4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606 (2016)

5. Bolukbasi, T., Chang, K.W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to
computer programmer as woman is to homemaker? debiasing word embeddings.
In: Advances in Neural Information Processing Systems, pp. 4349–4357 (2016)

6. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

7. Caliskan, A., Bryson, J.J., Narayanan, A.: Semantics derived automatically from
language corpora contain human-like biases. Science 356(6334), 183–186 (2017)

https://doi.org/10.1007/3-540-49257-7_15
http://arxiv.org/abs/1607.04606


Geometry and Analogies 111

8. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexi-
cography. Comput. Linguist. 16(1), 22–29 (1990)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

10. Hatcher, E., Gospodnetic, O.: Lucene in Action. Manning Publications, Shelter
Island (2004)

11. Jastrzebski, S., Leśniak, D., Czarnecki, W.M.: How to evaluate word embed-
dings? on importance of data efficiency and simple supervised tasks. arXiv preprint
arXiv:1702.02170 (2017)

12. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. AAAI 15, 2181–2187 (2015)

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

15. Mikolov, T., Yih, W.T., Zweig, G.: Linguistic regularities in continuous space word
representations. In: Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pp. 746–751 (2013)

16. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Lingvisticae Investigationes 30(1), 3–26 (2007)

17. Nissim, M., van Noord, R., van der Goot, R.: Fair is better than sensational: man
is to doctor as woman is to doctor. arXiv preprint arXiv:1905.09866 (2019)

18. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

19. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K.,
Zettlemoyer, L.: Deep contextualized word representations. arXiv preprint
arXiv:1802.05365 (2018)

20. Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries.
In: Proceedings of the First Instructional Conference on Machine Learning, Pis-
cataway, NJ, vol. 242, pp. 133–142 (2003)

21. Salton, G.: The SMART retrieval system—Experiments in automatic document
processing. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1971). https://dl.
acm.org/citation.cfm?id=1102022

22. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

23. Vylomova, E., Rimell, L., Cohn, T., Baldwin, T.: Take and took, gaggle and goose,
book and read: evaluating the utility of vector differences for lexical relation learn-
ing. arXiv preprint arXiv:1509.01692 (2015)

24. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. AAAI 14, 1112–1119 (2014)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1702.02170
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1905.09866
http://arxiv.org/abs/1802.05365
https://dl.acm.org/citation.cfm?id=1102022
https://dl.acm.org/citation.cfm?id=1102022
http://arxiv.org/abs/1509.01692


Language Comparison via Network
Topology
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Abstract. Modeling relations between languages can offer understand-
ing of language characteristics and uncover similarities and differences
between languages. Automated methods applied to large textual cor-
pora can be seen as opportunities for novel statistical studies of language
development over time, as well as for improving cross-lingual natural lan-
guage processing techniques. In this work, we first propose how to repre-
sent textual data as a directed, weighted network by the text2net algo-
rithm. We next explore how various fast, network-topological metrics,
such as network community structure, can be used for cross-lingual com-
parisons. In our experiments, we employ eight different network topology
metrics, and empirically showcase on a parallel corpus, how the methods
can be used for modeling the relations between nine selected languages.
We demonstrate that the proposed method scales to large corpora con-
sisting of hundreds of thousands of aligned sentences on an of-the-shelf
laptop. We observe that on the one hand properties such as communi-
ties, capture some of the known differences between the languages, while
others can be seen as novel opportunities for linguistic studies.

Keywords: Computational typology · Cross-linguistic variation ·
Network theory · Language modeling · Comparative linguistics ·
Graphs · Language representation

1 Introduction and Related Work

Understanding cross-linguistic variation has for long been one of the foci of lin-
guistics, addressed by researchers in comparative linguistics, linguistic typology
and others, who are motivated by comparison of languages for genetic or typo-
logical classification, as well as many other theoretical or applied tasks. Com-
parative linguistics seeks to identify and elucidate genetic relationships between
languages and hence to identify language families [26]. From a different angle,
linguistic typology compares languages to learn how different languages are,
to see how far these differences may go, and to find out what generalizations
can be made regarding cross-linguistic variation on different levels of language
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structure and aims at mapping the languages into types [6]. The availability
of large electronic text collections, and especially large parallel corpora, have
offered new possibilities for computational methodologies that are developed to
capture cross-linguistic variation. This work falls under computational typol-
ogy [1,13], an emerging field with the goal of understanding of the differences
between languages via computational (quantitative) measures. Recent studies
already offer novel insights into the inner structure of languages with respect
to various sequence fingerprint comparison metrics, such as for example the
Jaccard measure, the intra edit distance and many other boolean distances [21].
Such comparisons represent e.g., sentences as vectors, and evaluate their similar-
ity using plethora of possible metrics. Albeit useful, vector-based representation
of words, sentences or broader context does not necessarily capture the context
relevant to the task at hand and the overall structure of a text collection. Word
or sentence embeddings, which recently serve as the language representation
workhorse, are not trivial to compare across languages, and can be expensive
to train for new languages and language pairs (e.g., BERT [8]). Further, such
embeddings can be very general, possibly problematic for use on smaller data
sets and are dependent on input sequence length.

In recent years, several novel approaches to computational typography have
been applied. For example, Bjerva et al. [2] compared different languages based
on distance metrics computed on universal dependency trees [19]. They discuss
whether such language representations can model geographical, structural or
family distances between languages. Their work shows how a two layer LSTM
neural network [12] represents the language in a structural manner, as the embed-
dings mostly correlate with structural properties of a language. Their main focus
is thus on explaining the structural properties of neural network word embed-
dings. Algebraic topology was also successfully used to study syntax properties
by Port et al. [20]. Similar efforts of statistical modelling of language distances
were previously presented in e.g., [14] who used Kolmogorov complexity metrics.

In contrast, we propose a different approach to modeling language data. The
work is inspired by ideas of node representation as seen in contemporary geo-
metric and manifold learning [10] and the premises of computational network
theory, which studies the properties of interconnected systems, found within vir-
tually every field of science [27]. Various granularities of a given network can
be explored using approaches for community detection, node ranking, anomaly
identification and similar [5,9,15]. We demonstrate that especially information
flow-based community detection [7] offers interesting results, as it directly sim-
ulates information transfer across a given corpus. In the proposed approach, we
thus model a corpus (language) as a single network, exposing the obtained repre-
sentation to powerful network-based approaches, which can be used for language
comparison (as demonstrated in this work), but also for e.g., keyword extraction
(cf. [4] who used TopicRank) and potentially also for representation learning and
end-to-end classification tasks.

The purpose of this work is twofold. First, we explore how a text can be
transformed into a network with minimal loss of information. We believe that
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this powerful and computationally efficient text representation that we name
text2net, standing for text-to-network transformation, can be used for many new
tasks. Next, we show how the obtained networks can be used for cross-lingual
analysis across nine languages (36 language pairs).

This work is structured as follows. In Sect. 2 we introduce the networks and
the proposed text2net algorithm. Next, we discuss network-topological metrics
(Sect. 3) that we use for the language comparison experiment in Sect. 4. The
results are presented in Sect. 5, followed by discussion and conclusions in Sect. 6.

2 Network-Based Text Representation

First, we discuss the notion of networks, and next present our text2net approach.

2.1 Networks

We first formally define the type of networks considered in this work.

Definition 1 (Network). A network is an object consisting of nodes, connected
by arcs (directed) and/or edges (undirected). In this work we focus on directed
networks, where we denote with G = (N,A) a network G, consisting of a set of
nodes N and a set of arcs A ⊆ N × N (ordered pairs).

Such simple networks are not necessarily informative enough for complex,
real world data. Hence, we exploit the notion of weighted directed networks.

Definition 2 (Directed weighted network). A directed weighted network is
defined as a directed network with additional, real-valued weights assigned to
arcs.

Note that assigning weights to arcs has two immediate consequences: arcs can
easily be pruned (using a threshold), and further, algorithms, which exploit arc
weights can be used. We continue to discuss how a given text is first transformed
into a directed weighted network G.

2.2 text2net Algorithm

Given a corpus T , we discuss the mapping text2net : T → G. As text is sequen-
tial, the approach captures global word neighborhood, proceeding as follows:

1. Text is first tokenized and optionally stemming, lemmatization and other
preprocessing techniques are applied to reduce the space of words.

2. text2net traverses each input sequence of tokens (e.g., words, or lemmas or
stems depending on Step 1), and for each token (node) stores its successor as
a new node connected with the outbound arc. This step can be understood
as breaking the text into triplets, where two consecutive words are connected
via a directed arc (therefore preserving the sequential information).
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3. During construction of such triplets, arcs commonly repeat, as words often
appear in same order. Such repetitions are represented as arc weights. Weight
assignment can depend on the arc type. For this purpose, we introduce a
mapping ρ(a) → R; a ∈ A (A is the set of arcs), a mapping which assigns a
real value to a given arc with respect to that arc’s properties.

4. Result is a weighted, directed network representing weighted token co-
occurrence.

The algorithm can thus formally be stated as given in Algorithm 1. The key
idea is to incrementally construct a network based on text, while traversing the
corpus only once (after potential selected preprocessing steps).

We next discuss the text2net’s computational complexity. To analyze it, we
assume the following: the text corpus T is comprised of s sentences. In terms
of space, the complexity can be divided into two main parts. First, the memory
needed to store the sentence being currently processed and the memory for
storing the network. As the sentences can be processed in small batches, we
focus on the spatial complexity of the token network. Let the corpus consist of t
tokens. In the worst case, all tokens are interconnected and the spatial complexity
is quadratic O(t2). Due to Zipf’s law networks are notably smaller as each word
is (mostly) connected only with a small subset of the whole vocabulary (heavy
tailed node degree distribution). The approach is thus both spatially, as well as
computationally efficient, and can easily scale to corpora comprised of hundreds
of thousands of sentences.

In terms of hyperparameters, the following options are available (offering
enough flexibility to model different aspects of a language, rendering text2net
suitable as the initial step of multiple down-stream learning tasks):

Algorithm 1. text2net algorithm.
Data: Text corpus T (of documents d1 . . . dn), empty weighted network G
Parameters : Minimum number of tokens per sentence ts, Minimum token

length tl, word transformation function f , stopwords σ, weight
prunning threshold θ, frequency weight function ρ

Result: A weighted network G
1 for d ∈ T do
2 orderedTokens := getTokens(d, tl,ts,f ,σ); � Get token sequence.

3 for qi ∈ orderedTokens do
4 arc := (qi,qi+1); � Construct an arc.

5 addToNetwork(G, arc); � Construct the network.

6 if arc ∈ current set of arcs of G then
7 update arc’s weight via ρ; � Update weights.

8 end

9 end

10 end
11 G := prunenetwork(G,θ); � Prune the network.

12 return G
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– minimum sentence length considered for network construction (ts),
– minimum token length (tl),
– optional word transformation (e.g., lemmatisation) (f),
– optional stopwords or punctuation to be removed (σ),
– arc weight assignment function (ρ) (e.g., co-occurrence frequency),
– a threshold for arc prunning based on weights (θ).

3 Considered Network Topology Metrics

In this section we discuss the selected metrics that we applied to directed
weighted networks. The metrics vary in their degree of computational
complexity.

Number of nodes. The number of nodes present in a given network.
Number of edges. The number of edges in a given network.
InfoMap communities. The InfoMap algorithm [22] is based on the idea

of minimal description length of the walks performed by a random walker
traversing the network. It obtains a network partition by minimizing the
description lengths of random walks, thus uncovering dense regions of a net-
work, which represent communities. Once converged, InfoMap yields the set
of a given network’s nodes N partitioned into a set of partitions which poten-
tially represent functional modules of a given network.

Average node degree. How many in- and out connections a node has on
average. For this metric, networks were considered as undirected. See below:

AvgDeg =
1

|N |
∑

n∈N

degin(n) + degout(n).

Network density. The network density represents the percentage of theoreti-
cally possible edges. This metric is defined as:

Density =
|A|

|N |(|N | − 1)
;

where |A| is the number of arcs and |N | is the number of nodes. This measure
represents more coarse-grained clustering of a network.

Clustering coefficient. This coefficient is defined as the geometric average of
the subnetwork edge weights:

ClusCoef =
1

|N |
∑

u∈N

(
1

deg(u)(deg(u) − 1))

∑

vw

3
√

(ŵuvŵuwŵvw

)
;

here, ŵvw for example represents the weight of the arc between nodes v and w.
The deg(u) corresponds to the u-th node’s degree. Intuitively, this coefficient
represents the number of closed node triplets w.r.t. number of all possible
triplets. The higher the number, the more densely connected (clustered) the
network. See [3] for detailed description of the metrics above.
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4 Language Comparison Experiments

In this section we discuss the empirical evaluation setting, where we investigated
how the proposed network-based text representation and network-topology met-
rics can be used for the task of language comparison. We use the parallel corpus
(i.e., corpus of aligned sentences across different languages) from the DGT cor-
pus, i.e. Directorate-General for Translation translation memory, provided by
Joint Research Centre and available in OPUS [25]. We selected nine different
languages: EN – English, ES – Spanish, ET – Estonian, FI – Finish, LV – Lat-
vian, NL – Dutch, PR – Portugese, SI – Slovene, SK – Slovak, covering languages
from different historical origins and language families: Romance languages (PT,
ES), Balto-Slavic languages including Slavic (SI, SK) and Baltic (LV) language
examples, Germanic langauges (EN, NL), as well as Finnic languages from Uralic
family (FI, ET). The selected languages have also different typological charac-
teristics. For example in terms of morphological typology, EN can be considered
as mostly analytic, while majority of others are synthetic languages, where for
example FI is considered as agglutinative, while Slavic languages are fusional as
they are highly inflected.

The goal of the paper was to use the network topology metrics for langauge
comparison. We considered all the pairs between the selected languages, resulting
in 36 comparisons for each network-based metric. From the parallel corpus we
sampled 100,000 sentences for each language, resulting in 900,000 sentences,
which match across languages.

From each language, we constructed a network using text2net with following
parameters: the minimum number of tokens per sentence (ts) was set to 3, the
minimum length of a given token (tl) to 1, the word transformation function
transformed words to lower-case, no lemmatisation was used, and punctuation
was removed. We defined ρ(arc) = 1.

We compared the pairs of languages as follows. For each of the two languages,
we transformed the text into a network. The discussed network topology metrics
were computed for each of the two networks. Differences between the metrics’
values are reported in tabular form (Table 1), as well as visualized as heatmaps
(Fig. 1). In the latter, the cells are colored according to the absolute difference
in a given metric for readability purposes. Thus, the final result of the consid-
ered analysis are differences in a selected network topology metric. The selected
results were further visualized in Fig. 2.

We used NLTK [16] for preprocessing, Py3plex [23], NetworkX [11],
Cytoscape [24] for network analysis and visualization and Pandas for numeric
comparisions [17]. Full code is available at: https://github.com/SkBlaz/
language-comparisons.

While we do not have full linguistic hypotheses about the expected mapping
of the linguistic characteristics and the topological metrics, we believe that the
network-based comparisons should show differences between the languages. For
example, the number of nodes might capture linguistic properties, such as inflec-
tional morphology, where we could expect that morphologically rich languages
would have more nodes. Number of edges might capture linguistic properties,

https://github.com/SkBlaz/language-comparisons
https://github.com/SkBlaz/language-comparisons
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(a) Maximum community size (b) Mean community size (c) Density

(d) Average degree (e) Connected components (f) Clustering coefficient

(g) Num. Nodes (h) Num. Edges

Fig. 1. Pairwise language comparison via various network-topological metrics. Cells
represent the absolute differences between metrics of individual text-derived networks.
Red regions represent very different networks, and blue very similar ones. (Color figure
online)

such as the flexibility of the word order. The other measures are less intuitive
and will be further investigated in future work. However, we believe that more
complex the language (including aspects of morphology richness and word order
flexibility), the richer the corresponding network’s structure, while the number
of connected components might offer insights into general dispersity of a given
language, and could pinpoint grammatical differences if studied in more detail.
Also clustering coefficient might be dependent on how fixed is the word order of
a given language. None of the above has been systematically investigated, and
the hypothesis is, that differences between languages will have high variability
and show already known, as well as novel groupings of the languages.

5 Results

In this section we present the results of cross-lingual comparison. The inter-
language differences in tabular format are given in Table 1. The measures given
in the table are the differences in: #Nodes—the number of nodes, #Edges—the
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Fig. 2. Language network based on the Clustering coeff. The red links are present
after the threshold of 10−3 was applied. Gray links represent connections that are not
present given the applied threshold. We can see two groups, one formed by Balto-Slavic
and Finnic languages, the other by Germanic and Romanic. (Color figure online)

Fig. 3. Visualization of the English DGT subcorpus. This network was constructed
using the proposed text2net algorithm, where each link corresponds to the followed by
relation between a given pair of word tokens. Clustering emerges, indicating the pres-
ence of meso-scale topological structures in such networks. Different colors correspond
to different communities detected using InfoMap. (Color figure online)

number of edges, Mean degree—mean node degree, Density—network density as
defined in Sect. 3, MaxCom—maximum community size, MeanCom—mean com-
munity size, both computed using InfoMap communities, Clustering—clustering
coefficient and CC—the number of connected components. The differences in
the table are presented in L2-L1 absolute differences, while for nodes and edges
we also present the differences as relative percentages of the e.g., number of
nodes of the second language w.r.t the number of nodes of the first language1.
It can be observed that some language pairs differ substantially even if only
node counts are considered, where EN-FI is the pair with the largest difference,
which is not surprising. English is for example an analytical language, while
Finnish agglutinative with very rich morphology. Further, some of the metrics
indicate groupings, which can be further investigated using heatmaps and direct
visualization of language-language links.

From heatmaps shown in Fig. 1, where colors of individual cells represent
differences between a given metric’s values across languages, we can make several
interesting observations. Based on Num. of nodes, FI and ET are very similar,

1 For nodes Ndiff = 100·|N2|
|N1| , and for edges Ediff = 100·|E2|

|E1| ; the first language’s values
are compared against the second language’s values.
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Table 1. Differences between selected network-topology metrics across languages. The
values are computed as L2-L1, or reported as L2 relative to L1.

Language
pair

#Nodes #Edges Mean
degree

Density
(·10−4)

MaxCom MeanCom Clustering CC Ndiff (%) Ediff (%)

en-es 10232 15251 −1.34 −0.18 11100 538.53 −0.00 5 110.90 101.71

en-et 108986 539449 −2.85 −0.62 −72382 −6578.80 −0.19 14 233.53 187.45

en-fi 117623 474376 −3.96 −0.65 114803 649.71 −0.20 12 249.01 179.60

en-lv 53162 464366 1.02 −0.34 48411 −1208.95 −0.14 8 164.35 177.99

en-nl 30786 99189 −2.30 −0.36 30839 836.35 0.06 2 138.10 115.73

en-pt 10778 56039 −0.51 −0.14 10249 −366.93 0.02 4 113.07 107.48

en-sk 59715 425657 −0.22 −0.41 60709 2757.51 −0.12 6 174.20 172.24

en-sl 46764 337421 −0.11 −0.34 −68833 −5693.41 −0.09 4 156.30 154.82

es-et 97822 518349 −1.62 −0.35 −80506 −5877.34 −0.19 7 210.57 184.29

es-fi 110493 479001 −2.70 −0.49 108672 1004.91 −0.20 6 224.53 176.58

es-lv 42062 442253 2.34 −0.16 42066 2382.83 −0.14 3 148.20 174.99

es-nl 21501 88846 −1.04 −0.20 21235 1433.40 0.06 −2 124.52 113.78

es-pt 971 43922 0.84 0.04 1232 1922.25 0.02 −2 101.96 105.67

es-sk 49382 406578 0.99 −0.20 49740 4703.95 −0.12 1 157.08 169.34

es-sl 36317 321960 1.17 −0.18 36362 6935.34 −0.10 −3 140.94 152.21

et-fi 10262 −68268 −1.32 −0.05 183810 7318.28 −0.01 5 106.63 95.82

et-lv −57119 −80883 4.01 0.29 −51457 1237.71 0.05 −5 70.38 94.95

et-nl −75247 −424500 0.50 0.24 −69698 −1081.51 0.25 −7 59.14 61.74

et-pt −96441 −471464 2.45 0.49 81260 8871.81 0.21 −9 48.42 57.34

et-sk −47901 −109523 2.56 0.20 −40340 5107.84 0.07 −7 74.60 91.89

et-sl −61594 −194218 2.80 0.27 117767 15563.93 0.08 −11 66.93 82.60

fi-lv −66730 −11261 5.33 0.34 −72108 −2285.02 0.06 −8 66.00 99.10

fi-nl −89718 −393774 1.71 0.30 −89284 −3638.18 0.26 −5 55.46 64.44

fi-pt −110479 −439797 3.60 0.54 −111720 −6939.93 0.22 −7 45.41 59.84

fi-sk −59295 −46799 3.96 0.26 −182908 −6349.16 0.08 −10 69.96 95.90

fi-sl −72939 −134593 4.11 0.32 −71835 8022.41 0.11 −13 62.77 86.20

lv-nl −19634 −354516 −3.52 −0.05 −18654 −318.15 0.20 −2 84.02 65.02

lv-pt −41716 −402441 −1.46 0.21 −36193 4468.15 0.16 −6 68.80 60.39

lv-sk 7581 −34478 −1.38 −0.08 −123658 −7706.36 0.02 −5 105.99 96.77

lv-sl −5810 −122602 −1.21 −0.03 1014 7032.05 0.05 −6 95.10 86.99

nl-pt −20143 −43781 1.86 0.24 −19930 −314.52 −0.04 −1 81.88 92.87

nl-sk 27385 314730 2.09 −0.04 27329 1161.44 −0.19 3 126.14 148.83

nl-sl 13810 230590 2.32 0.03 7637 −2267.56 −0.16 −3 113.18 133.78

pt-sk 48780 361817 0.12 −0.29 47881 1201.90 −0.15 5 154.06 160.25

pt-sl 35260 275981 0.32 −0.22 35831 6622.65 −0.12 0 138.23 144.05

sk-sl −13637 −85421 0.23 0.07 −130809 −9182.12 0.03 −3 89.73 89.89

and the most different to other languages. Both are agglutinative languages
and part of the Uralic language family. In terms of Num. of edges, the largest
differences are between ET and EN, while the most similar are LV and FI; in
pairwise comparison with EN, we can see that PT, ES and NL have similar
statistics, which are all languages from Germanic (NL) or Romanic family. We
believe that some measures could also indicate groupings based on morphological
or other typological properties beyond the currently known ones. For example,
Max. community size on one hand points FI and ET as very different, as well
as SI and SK (where in both pairs the two languages are belonging to the same
language family), but on the other hand PT and ES are very similar. Further,
Clustering coefficient yields insights into context structure and similar properties
of groupings of basic semantic units, such as words, where high similarity between
ES and PT, as well as SI and SK can be observed. Finally, the number of
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connected components offers insights into general dispersity of a given language,
and could pinpoint grammatical differences if studied in more detail. Again, we
see the most remarkable differences between EN and FI and ET, but also FI
and SI, while Romanic and Germanic languages are more similar. There are
many open questions. E.g., which linguistic phenomena make EN-FI being quite
different in Average degree, while FI-NL are relatively similar (despite EN and
NL being in the same language group)?

Clustering coefficient is also shown in an alternative visualisation, i.e. in a
colored network in Fig. 2. Here, we consider Clustering coefficient metric, where
we adjust the color so that it represents only very similar languages (low absolute
difference in the selected metric). We selected this metric, as the heatmap yielded
the most block-alike structure, indicating strong connections between subsets of
languages. We can see that Balto-Slavic and Finnic languages group together,
while Germanic and Romanic form another group. Finally, we visualized the
English corpus network in Fig. 3. Colored parts of the network correspond to
individual communities. It can be observed that especially the central part of
the network contains some well defined structures (blue and red). The figure also
demonstrates, why various network-topological metrics were considered, as from
the structure alone, no clear insights can be obtained at such scale.

6 Discussion and Conclusions

In this work, our aim was to provide one of the first large-scale comparisons
of languages based on corpus-derived networks. To the best of our knowledge,
the use of network topologies on sequence-based token networks are novel and
it is not yet known to what characteristics the network topologies correspond.
Second, we investigated whether the difference in some metrics correspond known
relationships between languages, or represent novel language groupings.

We have shown that the proposed network-based text representation offers
a pallete of novel opportunities for language comparison. Commonly, methods
operate on sequence level, and are as such limited to one dimensional interactions
with respect to a given token. In this work we attempted to lift this constraint
by introducing richer, global word neighborhood. We were able to cast the lan-
guage comparison problem to comparing network topology metrics, for which we
show can be informative for genetic and typographic comparisons. For example,
the Slovene and Slovak languages appear to have very similar global network
structure, indicating comparison using communities picks up some form of evo-
lutionary language distance. In this work we explored only very simple language
networks by performing virtually no preprocessing. We believe a similar idea
could be used to form networks from lemmatized text or even Universal Depen-
dency Tags, potentially opening another dimension.

Overall, we identified the clustering coefficient as the metric, which, when
further inspected, yielded some of the well known language-language relation-
ships, such as for example high similarity between Spanish and Portugese, as well
as Slovenian and Slovak languages. Similar observation was made when commu-
nity structure was compared. We believe such results demonstrate network-based
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language comparison represents a promising venue for scalable and more infor-
mative studies of how languages, and text in general, relate to each other.

In future, we will closer connect the interpretation of network topological fea-
tures with linguistic properties, also by single language metrics. Also, we believe
that document-level classification tasks can benefit from exploiting the inner
document structure (e.g., the Graph Aggregator framework could be leveraged
instead of/in addition to conventional RNN-based approaches). The added value
of graph-based similarity for classification was demonstrated e.g., in [18] for psy-
chosis classification from speech graphs. We also believe that our cross-language
analysis, could be indicative for the expected quality of cross-lingual represen-
tations. Last but not least, we plan to perform additional experiments to see
if the results are stable, leading to similar findings of other corpora genres and
corpora of other sizes, and also using comparable not only parallel data.
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2. Bjerva, J., Östling, R., Han Veiga, M., Tiedemann, J., Augenstein, I.: What do
language representations really represent? Comput. Linguist. 4(2), 381–389 (2019)

3. Bollobás, B.: Modern Graph Theory, vol. 184. Springer, Heidelberg (2013)
4. Boudin, F.: PKE: an open source python-based keyphrase extraction toolkit. In:

Proceedings of COLING 2016, the 26th International Conference on Computa-
tional Linguistics: System Demonstrations, Osaka, Japan, pp. 69–73, December
2016

5. Brandao, M.A., Moro, M.M.: Social professional networks: a survey and taxonomy.
Comput. Commun. 100, 20–31 (2017)

6. Daniel, M.: Linguistic Typology and the Study of Language, pp. 43–68. Oxford
University Press, Oxford (2010)

7. De Domenico, M., Lancichinetti, A., Arenas, A., Rosvall, M.: Identifying modular
flows on multilayer networks reveals highly overlapping organization in intercon-
nected systems. Phys. Rev. X 5(1), 011027 (2015)

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidi-
rectional transformers for language understanding. arXiv:1810.04805 (2018)

9. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
10. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-

mance: a survey. Knowl. Based Syst. 151, 78–94 (2018)
11. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and

function using networkx. Technical report, LANL, Los Alamos, NM, USA (2008)

http://arxiv.org/abs/1704.08914
http://arxiv.org/abs/1810.04805


Language Comparison via Network Topology 123

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

13. Kepser, S., Reis, M.: Linguistic evidence: empirical, theoretical and computational
perspectives, vol. 85. Walter de Gruyter (2008)

14. Kettunen, K., Sadeniemi, M., Lindh-Knuutila, T., Honkela, T.: Analysis of EU
languages through text compression. In: Salakoski, T., Ginter, F., Pyysalo, S.,
Pahikkala, T. (eds.) FinTAL 2006. LNCS (LNAI), vol. 4139, pp. 99–109. Springer,
Heidelberg (2006). https://doi.org/10.1007/11816508 12

15. Kralj, J., Robnik-Sikonja, M., Lavrac, N.: NETSDM: semantic data mining with
network analysis. J. Mach. Learn. Res. 20(32), 1–50 (2019)

16. Loper, E., Bird, S.: Nltk: the natural language toolkit. arXiv cs/0205028 (2002)
17. McKinney, W.: pandas: a foundational python library for data analysis and statis-

tics. Python High Perform. Sci. Comput. 14 (2011)
18. Mota, N.B., Vasconcelos, N.A., Lemos, N., Pieretti, A.C., Kinouchi, O., Cecchi,

G.A., Copelli, M., Ribeiro, S.: Speech graphs provide a quantitative measure of
thought disorder in psychosis. PLoS ONE 7(4), e34928 (2012)

19. Nivre, J., et al.: Universal dependencies v1: a multilingual treebank collection.
In: Proceedings of the 10th International Conference on Language Resources and
Evaluation (LREC 2016), pp. 1659–1666 (2016)

20. Port, A., et al.: Persistent topology of syntax. Math. Comput. Sci. 12(1), 33–50
(2018)

21. Rama, T., Kolachina, P.: How good are typological distances for determining
genealogical relationships among languages? In: Proceedings of COLING 2012:
Posters, pp. 975–984 (2012)

22. Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. Eur. Phys. J. Spec.
Top. 178(1), 13–23 (2009)
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Abstract. The voice pathology detection using automatic classification
systems is a useful way to diagnose voice diseases. In this paper, we
propose a novel tool to detect voice pathology based on an incremental
possibilistic SVM-HMM method which can be applied to serval practical
applications using non-stationary or a very large-scale data in purpose to
reduce the memory issues faced during the storage of the kernel matrix.
The proposed system includes the steps of using SVM to incrementally
compute possibilitic probabilities and then they will be used by HMM
in order to detect voice pathologies. We evaluated the proposed method
on the task of the detection of voice pathologies using voices samples
from the Massachusetts Eye and Ear Infirmary Voice and Speech Labo-
ratory (MEEI) database. According to the detection rates obtained by
our system, the performance sounds robust, efficient and speed applied
to a task of voices pathology detection.

Keywords: Possibilistic degree · Incremental learning · HMM ·
SVM · Voice pathology

1 Introduction

In the last decades, there has been a remarkable advance in the automatic sys-
tems dealing with the voice pathology diagnostic. However, the discrimination
between pathological and normal voices is still a complex field of research in
speech classification. The aim of this paper is to help the diagnosis of patholog-
ical voices among normal voices. Currently, the traditional way to detect voice
pathology is to visit a specialist who examines the vocal folds of the patient
using endoscopic tools. This process is considered time consuming, complex and
expensive. Thus, this area of science has attracted a lot of attention in purpose
to develop an accurate automatic device able to help the speech specialists for
early diagnosing voices pathologies. In this work, we propose an automatic sys-
tem for the detection of pathological voices combining incremental possibilistic
SVM and HMM.
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Hidden Markov Model (HMM) [17] is a statistical model which consists of
a finite number of unknown states. Each of those states is associated with a
respective probability distribution. HMM are considered as probabilistic frame-
work which able to model a time series of any observations. HMM are successfully
used for classification tasks in particular in bioinformatics and speech processing.

In the past 20 years, Support Vector Machines (SVM) technique acquired
an important place in solving classification and regression problems since they
provide a valuable learning design that generalize accurately by handling high
dimensional data [5,10]. SVM were first introduced by Vapnik as an approx-
imate implementation of the Structural Risk Minimization (SRM) induction
principle [5,7].

Various studies using HMM and SVM have been proposed for voice pathology
detection and classification; Dibazar et al. [14], propose to investigate HMM
performance on a task of the detection of pathological voices using 5 pathologies.
They suggest HMM approach using MFCC (Mel frequency cepstral coefficients)
achieved a classification accuracy of 70%. The authors in [15] present a method
based on HMM which classifies speeches into normal class and pathological class.
The performance of this system for detection of vocal fold pathology is equal to
94%. In the study of [16], HMM was applied in order to classify voices of the
database composed by 11 normal voices and 11 pathological voices. The proposed
system obtains accuracy rate of 100% for pathological voices and 98% for normal
voices.

Pend et al. [11] propose to combine PCA (Principal component analysis) to
SVM using 27 features in order to classify the normal and pathological voice.
Four classifiers were evaluated in [12] based on voice pathology problem. The
Support vector machines achieved the best performance. In [13], the authors
developed an incremental method combining density clustering and Support
Vector Machines for voice pathology detection. This proposed method achieved
a performance equal to 92%.

The main idea of SVM was to seek for a model with the optimal generalization
performance while building the solution to the minimization problem of SRM
through a quadratic programming optimization [6].

For the given data points (xi, yi) where i = 1, .., n and n is the number of the
data, SVM learn a classifier f(x) = wT x+b where the hyperplane that optimally
separates the data is the one that minimises:

1
2
‖wij‖2 + C

n∑

i=1

ξij (1)

Where C is a regularization term and ξ is a positive slack variable. Subject to
the inequality constraints:

yi[wT .xi + b] ≥ 1 − xii; i = 1, 2, ...n (2)

On the other hand, the solution to the optimization quadratic programming
problem can be cast to the Lagrange’s function and we obtain the following dual
objective function:
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Ld = max
αi

n∑

i=1

αi −
n∑

i=1

n∑

j=1

αiαjyiyjK(xi, xj). (3)

where K(xi, xj) is the kernel of data xi and xj and the coefficients αi are the
lagrange multipliers and are computed for each sample of the data set.

In the context of speech classification area, the major problems of detection
systems using batch methods can be resumed in two facts; the time-varying of
speech samples and the amount of available data for learning stage. Hence, the
online or incremental techniques provide a valuable solution in applications that
handle speech data.

Given these facts, the main contribution of this paper is the application of
an incremental possibilistic SVM technique combined to HMM to the problem
of voice pathology detection. The implementation of the proposed system begin
with the parameters extraction of samples and then proceed with the application
of the proposed method to classify the voices samples.

This paper is organized as follows: in Sect. 2, the proposed system of voice
pathology detection is presented and discussed. In Sect. 3, the features extraction
step is described. In Sect. 4, experiments conditions and results are presented
and evaluated. In Sect. 5, the conclusion and the perspectives of this work are
illustrated.

2 The Proposed Incremental Possibilistic SVM-HMM
System

In this paper, we consider the output of the incremental possibilistic Support
Vector Machines (SVMs) as probabilities used into the HMM-based decoder
and in particular used in the computation of HMM’s likelihood (see Fig. 1). The
combination of incremental possibilistic SVM and HMM seems interesting and
a robust solution since the SVM lack the ability to model time series. Hence, the
probabilities outputted from possibilistic SVM are used by the HMM in order
to provide their state-dependent likelihoods as follows:

P (x|qi) ∝
K∑

k=1

cik · Pr(k|x)
Pr(k)

(4)

where for a given feature vector x, the posterior probability of the class k are
given by Pr(k|x) and Pr(k) is the a-priori probability of class k. cik are the
mixture weights for each HMM state.

The proposed method is shown in the Fig. 1. It must be pointed out that
for our voice database, the Mel Frequency Cepstral Coefficients (MFCC) are
extracted for each voice sample. Furthermore, in this work, we use the incre-
mental learning which behaves exactly like an online learning by introducing
repeatedly a new data at the current classifier. In other words, each step of the
incremental learning of SVM consists of adding a new sample to the solution
and retiring the old samples while keeping their Support Vectors (SV) which
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describes the learned decision boundary. Indeed, the training samples needed for
the next step of the incremental learning process are obtain by incorporating
the new incoming sample and the SV of the previous samples.

Fig. 1. The block diagram of the proposed method

The key idea of incremental SVM is to keep the Karush–Kuhn–Tucker (KKT)
conditions satisfies while retiring old samples and adding a new one to the solu-
tion. Recalling that the KKT conditions are:

gt = −1 + Kt, : α + μyi

⎧
⎨

⎩

≥ 0, ifαt = 0
= 0, if0 < αt < C

≤ 0, ifαt = C

δW

δμ
= yT α = 0 (5)

The following algorithm summarizes the incremental SVM steps to learn
new incoming samples (xc, yc). It consists to construct a classifier hc from the
classifier hc−1 [1].
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Algorithm 1. Incremental SVM
Initialize lagrangian multiplier αc to zero
If gc > 0, terminates and set hc−1 as new classifier hcs
If gc ≤ 0, apply the largest possible increment αc in order to obtain one of those
conditions:
(a) gc = 0: Add the new sample to margin set S, then update the present Jacobian
inverse � and terminate.
(b) gc = C: Add the new sample to error set E, and terminate.
(c) Elements of Dn migrate across S, E and �: update membership of elements and if
S changes, then update �.
and repeat as necessary.

To our knowledge, efficient application using Support vector machines (SVM)
based incremental learning in the field of voice pathology detection has not been
reported in the last years. Thus, we propose the incremental SVM learning in the
context of voice pathology detection based on the possibilistic degrees combined
to HMM.

2.1 Possibilistic SVM

SVM was first introduced to solve the problems of pattern classification. In recent
years, SVM have demonstrated robustness and have been successfully used to
various practical applications. However, in many real-world applications, the per-
formance of SVM would be seriously affected by the nature of available data i.e.
data may be accompanied by noise. The voice pathology detection applications
are often considered as a very complicated and delicate problems since the voices
samples are non-stationary signals with a high amount of variation in the way
how and by whom the sample is pronounced.

Let us note that the speech which is generally produced on a short-time scale,
includes non-stationary parts due to the physiological system of the speaker
which defines the amplitude and frequency modulation.

Furthermore, the behavior of SVM depends mostly on the training data and
the optimal hyperplane is identified mainly from the support vectors. Thus, the
variation in the voice sample may lead SVM to misclassify the data set [4].

In the literature, various solutions were proposed to solve this kind of prob-
lems such as weighted SVM, adaptive SVM and central SVM. In this paper,
we propose a possibilitic SVM based on a geometric distance to improve the
performance of the conventional SVM on a task of voice pathology detection.
The main idea is to assign different possibilistic degrees to the different voice
samples while SVM is computing class posterior probabilities. Those degrees
calculates an euclidean distance between the point and the center of each class.
As a result, the membership degree of the sample xi near of the center of the
class yi is more important than the degrees of the points far from the center. We
use the euclidian distance algorithm to generate the possibilitic degrees [2].

The formulation of the proposed possibilitic SVM is defined in three steps
(see Fig. 2):
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Fig. 2. The process of possibilistic SVM

As shown in the Fig. 2, the first step consists of computing the Euclidean
distance between the center of the different classes yk and the data xi to be
detected. Then, the possibilitic degree is evaluated which measure the degree
that the data xi belong to the class yi. The final step of the formulation of the
possibilitic SVM consists in incorporated into SVM those degrees in order to
help the HMM based decoder to classify the voice pathologies.

Euclidean Distance. The Euclidean distance is computed between Xi and the
center of the class CYi where i ∈ (1, . . . , k). We suppose that it exists a possibility
that the data Xi belongs to one of the classes Yi. The lowest measured value of
the Euclidean distance given by d(CYi,Xi) is assigned to the nearest data Xi to
the class Yi and the highest computed value is associated with the farthest class
to the data Xi.

Possibilistic Degrees. The possibilitic degrees noted mi(X) measure the mem-
bership degree of every voice Xi of our data set to a given class Yi. Those degrees
are computed as follows:

mi(X) := 1/d(Ci,Xi) (6)

Where Ci is the center of the ith class and d is the Euclidean distance previously
calculated.

The Fig. 3 shows the possibilitic degrees generated by step 2 of a given class
(where two samples are misclassified from the Class 1). As we can see, the degrees
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of training voices samples closer to the center of the class 1 are much larger and
the samples farthest from the center are much smaller.

Fig. 3. An example of possibilitic degrees generated by the possibilitic SVM

Formulation of Possibilistic SVM. The purpose of incorporating possibilis-
tic degrees is to limit the restrictions when the data have a larger degree into a
given class.

Hence, with the formulation of possibilistic SVM for non-separable data, all
the training data set must satisfy the following constraints:

m(x)(wij)T φ(xt) + bij ≥ 1 − ξij
t , if yt = i

m(x)(wij)T φ(xt) + bij ≤ 1 − ξij
t , if yt = j

ξij
t ≥ 0 (7)

with m(x) is the possibilitic degree of the sample x.
We optimize, also, the formulation of the possibilitic SVM in order to obtain

a new dual representation including the possibilistic degrees m(x):

Ld = max
αi

m∑

i=1

αi −
m∑

i=1

m∑

j=1

m(xi)m(xj)αiαjyiyjΦ(xi)Φ(xj). (8)

In the new formulation the of possibilistic SVM, the decision function is
given by:

m∑

i=1

m(x)αiyiΦ(xi) + b (9)
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2.2 Incremental Possibilistic SVM

In this paper, the training sample xi represents the vector MFCC features of
voices files coming from the MEEI database. In the supervised learning, the
label yi represents the class to which belong the sample x. The Figure below
shows the process of the proposed incremental possibilistic SVM.

Fig. 4. Incremental possibilitic SVM

As seen in the Fig. 4, the incremental possibilitic SVM get, first, a new train-
ing vector from the data X. Then, the existing SVM is updated to add the
new training sample. Before computing the probabilities, a possibilitic degree
is calculated for the given data and incorporated into SVM formulation. This
process will be repeated until all posteriors probabilities for training samples are
computed.

2.3 Hidden Markov Model

Hidden Markov Model (HMM) is considered as statistical model to estimate
the probability of a set of observations based on the sequence of hidden state
transitions. The use of HMM for speech recognition has become popular for the
last decade thanks to its the inherent statistical framework. HMM are simple
networks that can generate speech using a sequence of states for each model
and modeling the short-term spectra associated with each state. The following
equation shows a state transition probability distribution, aij :

aij = Pqt+1 = j/qt = i, 1 ≺ i, j ≺ Nn

∑
aij = 1; 1 ≺ i, j ≺ Nn (10)

where N is number of states in given model and qt is the current state.
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3 Feature Extraction

The feature extraction is the first step in a recognition system whose scheme
is summarized in the Fig. 1. In this study, Mel-frequency cepstral coefficients
(MFCCs) features [3] are extracted. Those coefficients are a very well-known
extractor that allows to select significant features which are able to be used in
several pattern detection problems.

The differential (Delta) and acceleration coefficients (Delta-Delta) were also
calculated and used. Furthermore, the frame energy is appended to each feature
vector. In the MEEI database, the pathological speakers have different voice
disorders like traumatic, organic and psychogenic problems. The MEEI database
contains 53 healthy samples and 724 samples with voice disorders. The speech
samples were recorded in a controlled environment with a rate of 25 kHz or
50 kHz and 16 bits of resolution. The samples of healthy voices have duration of
3 s, and pathological voices samples have duration of 1 s. In this work, we set the
duration of each frame to 20 ms and the Hamming window was used to extract
the speech frames. For our experiments, the voice samples set consists of 53
normal voice samples and 139 for pathological (Keratosis/Vocal Poly/Adductor)
voice samples.

The speakers have similar age, gender and different voice pathologies. The
following table describes the MEEI database used in this work (Table 1):

Table 1. Normal and pathological speakers from the MEEI database

Disorder Male Female

Non-pathological speakers

21 32

Pathological speakers

Paralysis 35 36

Keratosis 15 11

Vocal Polyp 12 8

Adductor 3 19

4 Experimental Results

The voice pathology detection performance is evaluated by four algorithms; stan-
dard SVM, standard HMM, batch possibilistic SVM and the proposed incre-
mental possibilistic SVM-HMM. The results of our work will be presented for
a classification into five classes normal/Keratosis/Vocal Poly/Adductor for all
voices. For SVM method, we have to set several parameters such as the kernel
width γ and the regularization parameter C which is the regularization param-
eter. Hence, we used the optimum values of γ = 1

K and C = 10 found in a
grid search using a cross-validation. RBF is selected as the kernel function. The
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Table 2. Comparison of EER (%), Efficiency (DCF(%)), Sensitivity (%) and Specificity
(%) for the different voice pathology detection systems and the proposed incremental
possibilistic SVM-HMM system

System Disorder EER DCF Sensibility Specificity

Standard SVM Normal 07.98± 01.33 91.18± 0.17 86.75 86.91

Paralysis 09.12± 1.04 92.33± 0.49 86.65 87.08

Keratosis 08.45± 01.10 90.35± 0.69 86.15 86.81

Vocal Polyp 09.14± 0.62 92.02± 0.57 86.39 87.02

Adductor 8.80± 0.51 92.13± 0.77 87.51 86.64

Standard HMM Normal 09.38± 0.47 89.86± 1.03 87.83 89.15

Paralysis 09.14± 0.82 91.20± 0.95 87.28 88.39

Keratosis 08.75± 01.11 92.31± 0.67 88.05 87.81

Vocal Polyp 09.19± 01.02 91.80± 0.53 86.92 87.37

Adductor 8.99± 0.63 92.13± 0.74 86.75 86.99

Batch possibilistic SVM Normal 05.84± 0.36 93.87± 1.55 91.82 91.12

Paralysis 7.91± 0.47 92.28± 01.07 90.25 89.75

Keratosis 05.18± 0.72 91.69± 01.39 91.45 89.91

Vocal Polyp 07.24± 01.22 92.33± 01.17 91.21 90.19

Adductor 06.92± 01.15 92.00± 0.82 90.05 89.68

Incremental possibilistic
SVM-HMM

Normal 02.11± 0.57 98.81± 0.88 98.95 99.27

Paralysis 02.11± 0.57 99.22± 0.88 98.95 99.27

Keratosis 02.36± 0.48 98.72± 1.02 97.92 98.20

Vocal Polyp 02.07± 1.10 99.57± 0.91 99.08 98.97

Adductor 01.48± 1.58 99.12± 0.73 98.55 98.77

choice to use RBF (Gaussian) Kernel was made after a study done on our data
with different kernel functions such Linear, Polynomial, and Sigmoid.

The voices samples are subdivided into portions for training (70%) and test-
ing (30%) steps. In order to investigate the performance of our voice pathology
detection system, we consider four measures: Error Equal rate (EER), the per-
formance accuracy (DCF), Sensitivity and Specificity.

The results, given in Table 2, show that the detection system based on the
hybrid incremental possibilistic SVM-HMM yield the best results in this study.
Obviously, the proposed system using the Incremental Possibilistic SVM-HMM
and MFCC coefficients with their first and second derivatives outperforms the
standard HMM, the standard SVM and the batch possibilistic SVM with an
obtained accuracy equal to 99%.

The voice pathologies detection using the standard HMM give the worst
results within a rate of 90%. Moreover, the detection system using the possi-
bilistic SVM give a decent rate of 93%. Table 2 presents the performance of
the proposed incremental hybrid method compared with the standard meth-
ods SVM, HMM and the batch possibilistic SVM method. The results obtained
in this study for voice pathology detection are very encouraging. As a future
work, we suggest to investigate different multi-pathologies detectors and also, to
improves the incremental hybrid classifiers in order to determine the degree of
voice pathology.
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Furthermore, the Table 3 presents a comparison of the proposed hybrid incre-
mental method with other recent methods from the state-of-art for the voice
pathology detection problem using the MEEI datasets in similar experimental
conditions.

Table 3. Comparison of the performance of our proposed incremental method possi-
bilistic SVM-HMM and different methods in the state-of-art

System Accuracy (%)

Patil et al. [9] 97%

Dibazar et al. [8] 97%

Amara et al. [18] 96%

Zulfiqar et al. [19] 93%

Proposed method 99%

The following table shows that the proposed incremental possibilistic SVM-
HMM method improves the robustness of the voice pathology detection system
and achieved the highest accuracy compared to several existing methods in the
state-of-art.

5 Conclusion

Standard SVM and standard HMM works correctly in a batch setting where
the algorithm has a fixed collection of samples and uses them to construct a
hypothesis, which is used, thereafter, for detection and classification tasks with-
out further modification. This paper proposes to combine an incremental possi-
bilitic SVM to HMM for voice pathology detection task based an online setting.
In the proposed method, we incorporate possibilistic degrees to the class poste-
rior probabilities computing by SVM. Then, to improve the detection decision,
we have given those possibilistic probabilities to HMM-based decoder in order
to detect normal voices among pathological voices. The experimental results on
the normal/pathology voices from MEEI database suggest that the proposed
method gives high accuracies compared with several methods in the literature
in detection task.
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Abstract. Cognitive Load (CL) refers to the amount of mental demand
that a given task imposes on an individual’s cognitive system and it can
affect his/her productivity in very high load situations. In this paper,
we propose an automatic system capable of classifying the CL level
of a speaker by analyzing his/her voice. We focus on the use of Long
Short-Term Memory (LSTM) networks with different weighted pooling
strategies, such as mean-pooling, max-pooling, last-pooling and a logistic
regression attention model. In addition, as an alternative to the previous
methods, we propose a novel attention mechanism, called external atten-
tion model, that uses external cues, such as log-energy and fundamental
frequency, for weighting the contribution of each LSTM temporal frame,
overcoming the need of a large amount of data for training the attentional
model. Experiments show that the LSTM-based system with external
attention model outperforms significantly the baseline system based on
Support Vector Machines (SVM) and the LSTM-based systems with the
conventional weighed pooling schemes and with the logistic regression
attention model.

Keywords: Computational Paralinguistics · Cognitive load · Speech ·
LSTM · Weigthed pooling · Attention model

1 Introduction

Cognitive Load (CL) refers to the amount of mental demand that a given task
imposes on a subject’s cognitive system and it is usually associated to the work-
ing memory that refers to the capacity of holding short-term information in the
brain [8]. As overload situations can affect negatively the individual’s perfor-
mance, the automatic detection of the cognitive load levels has many applications
in real scenarios such as drivers’ or pilots’ monitoring.
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Speech-based CL detection systems are particularly interesting since they
are non-intrusive and speech can be easily recorded in real applications. In fact,
in 2014, an international challenge (Cognitive Load Sub-Challenge inside the
INTERSPEECH 2014 Computational Paralinguistics Challenge) was organized
with the aim of studying the best acoustic features and classifiers for this task
[23]. Following this line of research, this work focuses on the design of an auto-
matic system for CL level classification from speech.

Different features have been proposed for this task, as spectral-related param-
eters such as, Mel-Frequency Cepstral Coefficients (MFCC) [13,23], spectral cen-
troid, spectral flux [23], and prosodic cues (intensity, pitch, silence duration, etc.)
[2,24]. For the classifier module itself, Gaussian Mixture Models (GMM) [13] and
Support Vector Machines (SVM) [23,24] are the most common choices.

However, in the last years, the application of deep learning models to speech-
related tasks, such as Automatic Speech Recognition (ASR) [21,22], Language
Recognition (LR) [27] or Speech Emotion Recognition (SER) [10,11,19] has
allowed to increase the performance drastically. As a consequence, nowadays,
Deep Neural Networks (DNN) have become the state of the art in this kind of
systems. Among all the architectures proposed in the literature for speech-related
tasks, Convolutional Neural Networks (CNN) [21], Long Short-Term Memory
(LSTM) networks [7] and their combination are the most commonly used. On
the one hand, CNNs exhibit the capability of learning optimal speech represen-
tations. On the other hand, LSTMs are capable to perform temporal modeling,
so they are very suitable for dealing with sequences as it is the case of speech
signals.

The so-called attention modeling is a new line of research, complementary
to CNs and LSTMs, that tries to learn the structure of the temporal sequences
aiming at determining the relevance of each frame to the task under consider-
ation. Attention models have been successfully proposed for ASR [4], machine
translation [17] or SER [10,11,19].

In this paper, we propose to adopt the previous findings to cognitive load
level classification from speech. As this task has many similarities to SER, our
work is mainly based on previous research on emotion classification from speech,
especially, [10] and [19]. In particular, we focus on the use of LSTMs in com-
bination with different weighted pooling strategies for CL classification, and we
propose an external attention model that tries to take advantage of the benefits
offered by attentional schemes, overcoming the need of a large amount of data
for their training. Note that one of the main challenges of this kind of tasks is the
lack of training data due to the difficulty of collecting and annotating recordings
with the appropriate characteristics.

The remainder of this paper is organized as follows: Sect. 2 describes the fun-
damentals of LSTM with weighted pooling networks, Sect. 3 covers the different
weighting schemes used in this work, together to our proposed external atten-
tion weighting method. Our results are presented in Sect. 4, followed by some
conclusions of the research in Sect. 5.
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Fig. 1. General scheme of an LSTM with weighted pooling architecture. For simplicity,
it is assumed that the LSTM layer is composed by only one LSTM cell.

2 LSTM with Weighted Pooling Networks

Long Short-Term Memory networks are a special kind of Recurrent Neural Net-
works (RNNs) that have the ability to store information from the past in the
so-called memory blocks [7], in such a way that they are capable of learning
long-term dependencies, overcoming the vanishing gradient problem. Therefore,
LSTM outputs depend on the present and previous inputs, and, for this reason,
they are very suitable for modeling temporal sequences, as speech.

The sequence-to-sequence learning carried out by LSTMs can be thought as a
transformation of an input sequence of length T , x = {x1, ..., xT } into an output
sequence y = {y1, ..., yT } of the same length, assuming that the classification
process is easier in the y-space than in the x-space. However, as in the case
of SER, CL classification can be seen as a many-to-one sequence-to-sequence
learning problem [10]. Specifically, the input is a sequence of acoustic vectors
and the final output must be the predicted CL level for the whole utterance
(one single value). For this reason, it is advisable to include an intermediate
stage in order to generate a more compact representation of the temporal LSTM
output sequence that, in turn, will be the input to the classifier itself [10,11].
A most common option is the so-called Weighted Pooling (WP) module [19],
as shown in Fig. 1. It consists of two different steps: weighting and temporal
integration.

A desirable characteristic of WP is the ability for retaining the relevant infor-
mation regarding the considered task while discarding the non-significant one.
This issue can be addressed in the first step, where a weight αt is computed
and assigned to each temporal LSTM output yt, following a certain criterion.
For the CL task, it is reasonable to expect that not all the frames within an
utterance reflect the subject’s CL state with the same intensity, and therefore,
larger weights should be assigned to frames containing significant cues about the
speaker’s CL, whereas smaller weights should be set to neutral or not relevant
frames to the task. Different weighting schemes are discussed in Sect. 3.

In the second step, temporal aggregation, the weighted elements of the LSTM
output sequence are somehow combined over time for producing a summarized
representation of the information contained in it. For doing this, the most com-
mon choice is to perform a simple aggregation operation as follows,



142 A. Gallardo-Antoĺın and J. M. Montero

z =
T∑

t=1

αtyt (1)

where y = {y1, y2, ..., yT } is the LSTM output sequence, α = {α1, α2, ..., αT } is
the weight vector and z is the final utterance-level representation.

Note that it is possible to find a parallelism between this method and the
temporal feature integration technique that is part of many parameterization
modules in conventional hand-crafted feature-based systems, and whose aim is to
obtain segment- or utterance-level representations of sequences of short-time fea-
tures. Temporal integration has been successfully used in different speech/audio-
related tasks, such as SER [5] or acoustic event classification [15,16]. Well-known
methods comprise the computation of the statistics (mean, standard deviation,
skewness, ...) of short-time acoustic vectors over longer time scales or their fil-
tering [16]. Although out of the scope of this paper, weighted pooling could be
performed by applying any of these techniques instead of the simple aggregation
operation in Eq. (1).

3 Weighting Schemes

Several weighting schemes have been proposed in the literature. They can be clas-
sified into three categories: fixed, local attention and external attention weights.

3.1 Fixed Weights

This is the most simplistic alternative in which the same weights are used across
all the utterances. The most used variants are the following:

– Mean-pooling. In this case, it is assumed that all the LSTM frames are
equally important and, therefore, the weights α are set to,

αt =
1
T

, ∀ t (2)

– Max-pooling. Here, it is assumed that the whole LSTM output sequence is
optimally represented by its maximum, so the weights follow this expression,

αt =

{
1, yt = max{y}
0, otherwise

(3)

– Last-pooling. As in LSTM networks every output relies on previous and
present inputs, it can be expected that the last outputs are the most reliable
ones since for their computation, the LSTM uses to some extent information
from the whole utterance [27]. This is equivalent to take into account only the
last M frames of the LSTM output, according to the following expression,

αt =

{
1
M , T − M < t ≤ T

0, otherwise
(4)
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3.2 Local Attention Weights

The aim of this approach is to focus on the frames of the utterance that convey
more information about the classification task, therefore, a different weight is
assigned to each temporal frame. Although when enough training data is avail-
able, it is possible to design more complex attention models, as those described
in [10,11], in this work, we adopt the strategy proposed in [19] where the weights
are computed as a simple logistic regression as follows,

αt =
exp(uT yt)∑t=T
t=1 exp(uT yt)

(5)

where u and y are the attention parameters and the LSTM output, respec-
tively. Both, the attention parameters and the LSTM outputs, are obtained in
the whole training process of the system.

3.3 External Attention Weights

As mentioned before, the lack of training data prevents the use of complex
attention models. Our hypothesis is that, in these cases, the attention model is
not going to be properly trained and therefore, it should be more effective to use
attention weights derived from external cues.

Previous studies about speech production under cognitive load conditions
have shown that the level of CL may affect speech by producing changes in the
prosody with respect to the neutral voice. In fact, variations in intensity (energy)
[12,14], fundamental frequency (F0) [2,12,14] and duration [2,14] are correlated
to the speaker’s cognitive load. We propose to incorporate the information con-
tained in these prosody-related parameters in the weighted pooling scheme of
the LSTM network.

Specifically, we consider the energy (actually, we use the log-energy) and F0

as external attention signals eATT (t) with the assumption that frames with high
energies and F0 values are more likely to present a strong content about the sub-
ject’s CL level. The weights of the external attention model are computed from
these signals. For doing this, firstly, eATT is normalized at utterance-level in the
range [0, 1] yielding to a normalized signal ēATT , and secondly, the weights are
obtained as the result of the softmax transformation applied to the normalized
attention signal as follows,

αt =
exp(ēATT (t))

∑t=T
t=1 exp(ēATT (t))

(6)

This last operation guarantees that the sum of the weights across all the
frames of the utterance is one.
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4 Experiments and Results

4.1 Database and Baseline System

To the best of our knowledge, nowadays, there are a few speech databases con-
taining utterances pronounced in different CL conditions by a significant num-
ber of speakers and conveniently labeled. One of the databases fulfilling these
requirements is the “Cognitive Load with Speech and EGG” (CSLE) database
[23,26] that we have adopted for our experiments. It has been used in the Cogni-
tive Load Sub-Challenge inside the INTERSPEECH 2014 ComParE [23] whose
main objective was the assessment of different speech features and classifiers for
the prediction of subjects’ cognitive load from their voice characteristics.

The CSLE database contains speech from 26 Australian English speakers
recorded at 16 kHz by using a close-talk microphone while performing a set of
tasks designed for inducing different levels of cognitive load (low, medium and
high, denoted as L1, L2 and L3, respectively). As in the challenge, in this paper,
we have considered the following three tasks:

– Reading Sentence (RS). In this case, speakers were asked to read a set of
short sentences and recall an isolated letter between them. The degree of cog-
nitive load was objectively assigned according to the number of read sentences
before remembering the letter. Each speaker pronounced 75 utterances with
a duration of 4 s on average, yielding a total of 1950 speech files.

– Stroop Time Pressure (STP). It is based on the well-known Stroop test [25]
where speakers were required to indicate the color of a set of printed words
that, in turn, are names of colors. In medium and high load tasks, there was
a mismatch between color names and color fonts. In addition, in the case of
high load conditions, there was a time constraint for finishing the task. It
contains 234 utterances (9 per speaker) with an mean duration of 17 s.

– Stroop Dual (SD). It is similar to the previous task, but in this case, speakers
had to execute another simultaneous task (tone counting) in the high load
scenario. In total, for this task, 234 utterances (9 per speaker) with an average
duration of 21 s were recorded.

The challenge organizers provided a partition of the database into train-
ing+development and testing subsets, where it was guaranteed that speakers
belong to only one of these subsets (speaker independence). The number of
speakers is 18 and 8 in the training+development and testing subsets, respec-
tively. Table 1 shows the details about the database composition.

The baseline system is the one provided by the challenge organizers whose
details can be found in [23]. In summary, it uses the standard parameterization
adopted in the last Computational Paralinguistics Challenges (6373 character-
istics), obtained with the open-source openSMILE feature extractor [6]. The
classifier is a linear kernel SVM implemented by using the WEKA toolkit [9].

Following the challenge recommendations, each task was considered sepa-
rately. This way, for both, the baseline and the LSTM-based models, an inde-
pendent system per task has been trained with its specific training+development
data and evaluated with the corresponding testing data.
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Table 1. Composition of the CSLE database. For each task, the number of utterances
per subset and cognitive load level are indicated.

Task Number of utterances

Subset L1 L2 L3

Reading Sentence Train+Dev 1350 378 378 594

Test 600 168 168 264

Stroop Time Pressure Train+Dev 162 54 54 54

Test 72 24 24 24

Stroop Dual Train+Dev 162 54 54 54

Test 72 24 24 24

Total Train+Dev 1674 486 486 702

Test 744 216 216 312

4.2 LSTM-Based Systems Configuration

Figure 2 shows the LSTM architectures with the three main weighting schemes
evaluated in this work. In particular, Fig. 2(a) represents the fixed weight
approach and its three variants: last-pooling, max-pooling and mean-pooling,
Fig. 2(b) shows the system with logistic regression attention weights and Fig. 2(c)
depicts our proposal, the LSTM system with external attention model. All sys-
tems were implemented with the Tensorflow [1] and Keras [3] packages.

In all cases, the same input acoustic features were used. The feature set con-
sists of nB = 64 log-Mel filterbank energies (log-Mels), computed every 10 ms
using a Hamming window of 32 ms long and a mel-scaled filterbank composed
of nB = 64 filters by using the Librosa Python toolkit [18]. After feature extrac-
tion, mean and standard deviation normalization are applied at utterance-level
yielding to a set of normalized log-Mels sequences xI with T x 64 dimensions,
where T is the number of frames of each utterance.

In all architectures, the length of the LSTM input sequences is set to L = 1024
for the RS task and L = 2048 for the STP and SD tasks, which corresponds
to approximately 10 s and 20 s, respectively. Shorter utterances are padded with
zeros by using a Masking layer, in such a way that these masked values are not
used in further computations. Longer utterances are cut (this is only necessary
in a few cases in the SD task). The output sequence of the Masking layer is
denoted as x and its dimensions are L x 64.

This sequence is passed through an LSTM recurrent layer with nL = 128
memory cells and 25% dropout to avoid over-fitting in the training process. The
LSTM output, denoted as y, is a sequence of size L x 128. Next, the information
contained in y is summarized by using the considered weighting scheme with
weights α, yielding to a 128-dimensional vector, z. The length of the weight
vector α is L. However, note that when T < L, αt = 0, T < t ≤ L. The
vector z is the input of a dense layer with nC = 3 nodes (as the classes of our
system are the 3 CL levels, L1, L2 and L3) with softmax activation producing
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Fig. 2. Different LSTM-based architectures for cognitive load classification. (a) Fixed
weights (last-pooling, max-pooling, mean-pooling); (b) Local logistic regression atten-
tion model; (c) External attention model. In brackets, the dimension of each variable,
where T , L, nB , nL and nC , stand for the number of frames of the input signal, the
length of the LSTM input/output sequence, the number of mel filters, the number of
LSTM units and the number of classes (CL levels), respectively.

a 3-dimensional output, zO, representing the probabilities of each class. Finally,
the class with the highest probability is assigned to the utterance.

In all cases, the LSTM models were trained using stochastic gradient descent
and the Adam method with an initial learning rate of 0.001. We used a batch
size of 32 and a maximum number of 60 epochs.

In the logistic regression attention model, the attention parameter vector u
has a dimension of nL = 128. All its components were initialized to 1/L and
then refined during the training stage of the whole system.

In the external attention model, eATT denotes the external attention signal
from which the weights α are derived. In this work, we have considered two alter-
natives for eATT . In the first case, it corresponds to the fundamental frequency
F0 of the speech signal computed every 10 ms using a Hamming window of 32 ms
long and constraining the maximum F0 to 500 Hz. In the second case, eATT is the
log-energy of the speech signal extracted every 10 ms using a Hamming window
of 32 ms long. Both, F0 and log-energy were computed with the Librosa Python
toolkit [18].

4.3 Results

This Subsection contains the experiments carried out in order to assess the per-
formance of the proposed LSTM-based systems. As the number of instances for
each class (CL levels) is unbalanced, results are given in terms of the Unweighted
Average Recall (UAR) that is computed as the unweighted mean of the class-
specific recalls.
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Table 2 contains the results achieved for the baseline system and different
LSTM architectures for the three tasks under consideration, Reading Sentence,
Stroop Time Pressure and Stroop Dual. The column “Average” refers to the
micro-average across the tasks. In the case of the LSTM-based systems, each
experiment was run 10 times and therefore, results in Table 2 are the average
UAR across the 10 subexperiments and the respective standard deviation.

LSTM corresponds to the conventional approach where no weighted pooling
is applied and only the last frame of the LSTM output is passed through the
following dense softmax layer. In the LSTM+VAD alternative, a Voice Activity
Detector (VAD) is applied to the raw speech signals before the feature extraction
in order to remove the silence/noise frames. As can be observed, the use of a VAD
produces a decrease in performance. This suggests that silence pauses convey
important information for discriminating between different CL levels, as they
are related to the rhythm, elocution speed and disfluencies that can be heavily
affected by the speaker’s CL state. This result corroborates the observations
about the effects of CL on speech production mentioned in, for example, [20].

The fixed weighting schemes evaluated are Last-pooling (in this case, the last
M = 200 frames of the LSTM output were picked and averaged), Max-pooling
and Mean-pooling. All these strategies outperform the conventional LSTM show-
ing that not only the last frame contains relevant information for the task.
Among these approaches, Mean-pooling achieves the best performance, and
therefore, it seems better not to completely discard LSTM frames.

The Logistic Regression Attention method outperforms the previous ones,
although its results overlap with Mean-pooling in the RS task and in the average
across the three tasks. Nevertheless, it is clear that focusing on frames conveying
more CL characteristics can help to improve the performance of the system.

Our proposal, the two External Attention approaches, produces the best
results for all the tasks in comparison to the rest of LSTM-based systems. Com-
paring both approaches, using the log-energy as external attention signal slightly
outperforms the F0 alternative. Any case, these results support our hypothesis
that the log-energy and F0 could be used for establishing to some extent the
relative importance of the frames for the CL level classification task.

Figure 3 depicts the weights used in the weighted pooling stage of the Logistic
Regression Attention (top) and the External Attention strategy with log-energy
(bottom). Contrary to the observations made in [19], in our case, the regres-
sion attention weights are very uniform and closely resemble the mean-pooling
weights. This justifies the fact that the results achieved by Mean-pooling and
Logistic Regression Attention are rather similar. We hypothesize that one pos-
sible reason for this behaviour is the lack of data for adequately training both,
the attention and the LSTM model. However, the weights derived from the log-
energy in the External Attention approach presents a large degree of variation,
suggesting that the log-energy becomes a good approximation of the amount
of cognitive load content of a speech frame when no enough data is available
for training more sophisticated attention models. On average, External Atten-
tion Energy achieves 9.61% relative error reduction with respect to Mean-pooling
and 6.85 % with respect to Logistic Regression Attention.



148 A. Gallardo-Antoĺın and J. M. Montero

Fig. 3. Attention weights for one utterance belonging to the Reading Sentence task.
Top: Weights obtained with the local regression attention strategy. Bottom: Weights
derived from the log-energy used in the external attention approach.

Regarding the comparison of the LSTM-based systems to the baseline, it can
be observed that Logistic Regression Attention, External Attention Energy and
External Attention F0 clearly outperforms the SVM-based system for the RS
task and on average across the three tasks. For the STP and SD tasks, these
systems perform similarly, but these results are not very reliable as the number
of test files in both cases is rather small (72 utterances). In summary, External
Attention Energy achieves a relative error reduction with respect to the baseline
of 11.04% an 9.64% for the RS task and on average, respectively.

Table 2. Unweighted Average Recalls (UARs) [%] for the baseline system and different
LSTM-based classifiers for the Reading Sentence (RS), Stroop Time Pressure (STP)
and Stroop Dual (SD) tasks and on Average.

System RS STP SD Average

SVM [23] 61.50 66.70 56.90 61.60

LSTM 48.87± 1.36 55.42± 1.02 45.83± 4.09 49.61± 1.33

LSTM+VAD 45.34± 1.79 54.01± 2.02 46.60± 4.06 46.36± 1.51

LSTM Last-Pooling 52.42± 1.53 59.57± 2.81 46.60± 4.11 52.67± 1.30

LSTM Max-Pooling 59.87± 1.28 53.48± 0.98 41.95± 1.83 57.54± 1.18

LSTM Mean-Pooling 62.99± 0.82 60.69± 0.67 50.00± 2.07 61.61± 1.01

LSTM Logistic Regression Attention 63.58± 0.48 63.47± 0.67 54.59± 0.67 62.75± 0.59

LSTM External Attention F0 65.24± 0.95 64.68± 0.52 56.35± 1.38 64.32± 0.83

LSTM External Attention Energy 65.75± 0.44 65.97± 0.76 59.20± 1.03 65.30± 0.70
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5 Conclusions and Future Work

In this paper, we have developed an automatic system capable of classifying the
cognitive load level of a speaker by analyzing his/her voice, based on LSTM
models with different weighted pooling strategies. We have evaluated and com-
pared the performance of mean-pooling, max-pooling, last-pooling and a logis-
tic regression attention model. In addition, we have proposed a novel attention
mechanism, called external attention model, that uses external cues, such as log-
energy and fundamental frequency, for weighting the contribution of each LSTM
temporal frame and that it is suitable in situations with scarce training data, as
in this case. Experiments have shown that our proposal achieves, on average, a
relative error reduction of 9.64% and 6.85% with respect to the baseline SVM
and the LSTM with logistic regression attention systems, respectively.

For future work, we plan to extend our research in two directions: to explore
different data augmentation techniques for increasing the amount of data for
training the LSTM-based system and to study the use of other external cues.
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Abstract. We present a test corpus of audio recordings and transcrip-
tions of presentations of students’ enterprises together with their slides
and web-pages. The corpus is intended for evaluation of automatic speech
recognition (ASR) systems, especially in conditions where the prior avail-
ability of in-domain vocabulary and named entities is benefitable. The
corpus consists of 39 presentations in English, each up to 90 s long. The
speakers are high school students from European countries with English
as their second language. We benchmark three baseline ASR systems on
the corpus and show their imperfection.

Keywords: Speech recognition · ASR evaluation · Speech corpus ·
Non-native English

1 Introduction

Nowadays, English is being widely used as lingua franca for communication
between people without common first language (denoted as L1). Europe is pop-
ulated by dozens of nations with various and unique languages. In need for
cooperation or interaction, English is often used as a universal first foreign lan-
guage (or, in other words, the second language a human learns, L2) even between
neighboring nations with closely related national languages, e.g. Czech and Pol-
ish. At the same time, many people are still not capable of using English and are
dependent on translation services, which in turn often rely on human experts.
We see an opportunity to boost availability, speed and language coverage of
skilled professional translators and interpreters with the help of machines.

In spoken communication, such as during business conferences, the transla-
tion relies on speech comprehension. In Europe there are as many varieties of L2
English as there are European languages because many speakers have an accent
derived from their L1. Current commonly used corpora for training the ASR
systems are often based on audio recordings of English L1 speakers [6,11], which
may not be optimal for ASR of European L2 English. Furthermore, the outputs
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of ASR systems to date heavily depend on domain coverage of training data and
they could be considerably improved by domain adaptation techniques. Also,
the pronunciation of named entities from primarily non-English speaking areas
usually differs significantly between English L1 and L2 speakers. Big corpora of
L1 speakers often do not cover these differences and named entities are a big
source of ASR errors and misunderstandings.

In certain situations, it is possible to prepare the ASR or spoken language
translation (SLT) system for the specifics of a given talks and speakers. This
is due to the fact that the sessions such as conferences and meetings are often
planned ahead of time and additional relevant materials such as accompanying
presentations to the talks or relevant websites are available.

With this in mind, we have created a corpus consisting of practice presenta-
tions of student fictional firms. The corpus contains audio recordings, transcrip-
tions and additional relevant texts (presentation slides and web pages) of the
participants. The audio recordings cover English L2 speakers with eight Euro-
pean L1s (cs, sk, it, de, es, ro, hu, nl, fi). Some of the practise firms’ web pages
are in English, some of them in local languages. Our corpus is suitable for eval-
uation of ASR systems, both in settings with and without additional materials
provided ahead of time.

In Sect. 2, we describe the methodology that was used to collect the corpus
data. In Sect. 3, we describe the corpus and its possible applications for the ASR
systems. In Sect. 4, we present evaluation on three distinct English ASR systems.
We summarize related works in Sect. 5 and conclude in Sect. 6.

2 Methodology

In this section, we explain the methodology we followed when creating the cor-
pus. We collected the data at an international trade fair of student firms (see
Sect. 2.1), during a competition of business presentations (Sect. 2.2). We moti-
vated the speakers to transcribe their own speech presentations by introducing
the Clearest voice competition for valuable prizes (Sect. 2.3). Additionally, we
collected documents related to the student firms (Sect. 2.4). Throughout the
corpus creation, we adhered to ethical standards (Sect. 2.5).

2.1 Background of Data: Student Firms and Trade Fair

“Student firms” are mock companies established for the practice of running a
real company. The participants who run the companies are high-school students,
mainly from economically-oriented schools or departments. The firms meet at
trade fairs, where they practise promoting their fictional goods or services, issu-
ing invoices for mock trades, and bookkeeping. They also compete in aforemen-
tioned tasks and are evaluated based on various criteria by field professionals.
The best firms advance into higher rounds of trade fairs, from regional rounds
through national into international.
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We collected the data at an international trade fair held recently in the
Czech Republic. The firms involved in our data collection were from 7 European
countries. See Table 1 for a summary.

The trade fair organizers provided us the firms’ presentation slides, which
were used by students during the fair. In many cases, we were able to find their
web pages and included them into the corpus. See Sect. 3.3 for more details.

Table 1. Number of student firms included in corpus and their countries of origin.

Country Firms

Czech Republic 18

Italy 8

Romania 4

Slovakia 3

Austria 2

Spain 2

Belgium 2

Total 39

2.2 Presentation Competition

One of the activities during the fair, in which students could participate, was a
competition of mock presentations of their businesses. The subject of the com-
petition was to promote the firm to a random stranger in an elevator. The
maximal allowed duration of the presentation was 90 s and no additional mate-
rials were allowed to be shown. The participants had to use English and either
one or two students were allowed to give the presentation. A professional three-
member committee was evaluating the content considering various aspects of
the presentation. The selected competition winners were awarded prices for their
performances.

We equipped the speakers with headset microphones to ensure the best pos-
sible quality of recordings. Despite of that, there was loud background noise that
leaked to the recordings. On the one hand, this adds an extra obstacle for ASR,
but on the other hand, the recordings thus represent a real environment where
humans interact.

2.3 Manual Transcriptions

In order to obtain manual transcriptions of all the recordings, we asked the par-
ticipants to transcribe their speech, given only their own recording. To motivate
the students, we presented the task as an additional competition for valuable
prizes. The objective of this competition was to find out who has the “clearest
voice” for ASR. We processed the recordings with English ASR systems, evalu-
ated them and awarded the students based on their respective ASR recognition
scores. See Sect. 4 for more details.
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The quality of the transcription was one of the major factors of the competi-
tion (together with clarity of speech) because the students had no access to any
ASR outputs and had to assume that anything could be recognized correctly.
We therefore believe that the students had a strong incentive to provide as accu-
rate transcripts as possible. Furthermore, we reviewed all the transcriptions and
edited them to include the missing parts, normalize punctuation and correct the
misspellings, but for authenticity, we preserved the original grammar and vocab-
ulary, even when it was not considered as standard English (e.g. massageses as
a plural of massage, or botel, pronounced as bottle, as a term for a hotel on a
boat).

2.4 Additional Resources

As mentioned above, the participants of this trade fair competed in various
disciplines, which included also the preparation of slides and web pages for the
fictional companies and their products.

Thanks to our close collaboration with the main organizer of the event, we
were able to obtain additional materials, where available. While none of these
additional materials were directly used in the presentation competition, they
were closely linked to the mock companies and their activity subject. More details
on the obtained and processed collection are available in Sect. 3.3.

We are confident that the students did their best when preparing these mate-
rials, motivated by the various competitions. For the purposes of ASR adapta-
tion, the practical usability and overall quality of these materials highly differ
from company to company. The relevant topics and named entities for each
company are nevertheless mentioned in the corresponding materials.

2.5 Ethical Standards

During the competition and subsequent data evaluation we did comply with the
ethical standards, which are in Europe given by General Data Protection Reg-
ulation (GDPR). Before the competition has started, all the participants gave
us their consent to use and release collected data for research purposes, except
of their names and any other personal data. Therefore, we removed the real
names of students from the recordings, transcriptions and additional materials,
and their photographs from the slides and downloaded web pages.

3 Corpus

The main motivation for collecting the corpus was to test our current ASR
models and to gather data for further improvement of their robustness. We
believe that the audio recordings contained in the corpus can be beneficial for
anyone who wants to deploy their ASR models in real world applications. We
also believe that the model performance on these data is a good approximation
of its general accuracy in noisy environment.
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3.1 Audio Recordings and Transcriptions

The corpus consists of 39 recordings of presentations of fictional student firms.
The content of the audio recording corpus is summarized in Table 2 and the
native languages of the speakers in Table 3.

Recordings contain different types of background noise including live music,
announcements by organisers of the fair at main stage, conversations in different
languages and noise produced by attendees of the presentations.

Table 2. Audio and content of the corpus.

Single speaker Two speakers Total

Number of recording 17 22 39

Total audio duration 24m 20 s 24 m 8 s 58m 28 s

Transcription words 2891 3722 6613

Distinct speakers 17 44 61

Table 3. Native languages of the speakers in corpus.

Language cs de it es ro sk hu nl fi Total

Single speakers 9 - - 1 3 1 1 - - 17

Two speakers 18 4 16 2 - - - 3 1 44

3.2 Topics

The mock firms involved in the corpus represent a large variety of small or
medium-sized companies. We summarize their business fields in Table 4. The
most common are travel agencies followed by various food or beverage producers.
Each firm is unique, focusing on a very specific segment of the market. Most of
the firms fictionally operate only in their local areas.

Table 4. Business categories of student firms included in the corpus.

Business category Firms

Travel agencies 7

Food and beverage producers 4

Beauty and health 3

Clothes and shoes 3

Household equipment 3

Online promotion 2

Accessories 2

Logistics 2

Others 13

Total 39
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3.3 Additional Resources

We collected additional resources of 36 student firms participating in corpus
creation. We are including either their presentation slides, web page or both. The
numbers and types of resources are described in Table 5. In total, the additional
resources contain 97000 of words, with a total vocabulary size of 15000.

Table 5. Types of additional materials and number of firms providing them.

Slides Web Firms

✓ ✓ 20

✓ ✗ 12

✗ ✓ 4

✗ ✗ 3

Table 6. Languages of presentation materials

Lang. cs en de it es ro sk cs/en ro/en sk/en it/en/es/de Total

Slides 14 15 - - - - 1 1 - 1 - 32

Web 14 2 2 2 1 1 - - 1 - 1 23

In order to protect the privacy of participants, we remove their real names
and photographs, however, we preserve all facts that are related to the compa-
nies themselves. These include real or fictious email addresses, phone numbers,
websites and locations.

The resources included in the corpus come in three distinct formats: the
original (either Microsoft Office presentation format, or original web content
format such as HTML or pictures), XLIFF format generated by MateCat Filters
tool,1 which is an XML-based format preserving the original structure of the
document and may be useful for translation of the content, advanced information
extraction tools, proper sentence segmentation or word-sense disambiguation.
We also provide a plaintext format, which we created from XLIFF simply by
extracting textual data from the documents. We included plaintexts because
they may be convenient for the corpus users, and originals and XLIFF files,
because they contain the complete information about the original structure of
documents.

3.4 Additional Resources by Languages

The slides are either in Czech, Slovak or English. The web pages are mostly in
national languages. Two of them are in multiple parallel language variants and
two are in English only. Despite this fact, we believe they can still be valuable

1 http://filters.matecat.com/.

http://filters.matecat.com/
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resource for ASR or SLT improvement with English as a source. We believe
that the named entities or specific in-domain vocabulary of the spoken presen-
tation, which could otherwise be left unrecognized, may be inferred from these
documents even automatically.

We provide the language counts of presentations and web pages in Table 6.
We note that there is one company in the corpus whose presenter’s L1 was
Hungarian, their slides were English and web page in Romanian.

All the documents in the corpus are marked with language tags.

Table 7. WER of JRTk, Kaldi BBC and Google model scores on all recordings in the
corpus (right) and on the recordings on which all the systems produced some output
(left). WER of 100% indicates that no output was provided.

Recognized by all All recordings

Google Kaldi B. JRTk Google Kaldi B. JRTk

Mean 73.59 87.55 45.21 89.32 87.47 45.63

Min 20.90 83.96 25.00 20.90 83.96 25.00

Max 98.31 91.03 74.08 100.00 91.03 99.58

Median 87.50 87.59 43.41 100.00 87.04 46.31

Stddev 27.87 2.29 15.28 21.82 1.92 15.23

4 Evaluation of ASR

In order to document the state of the art of ASR, we evaluated three ASR
systems on the corpus.

4.1 The ASR Systems

We consider three different ASR systems:
Janus Recognition Toolkit (JRTk) [9] featuring the IBIS single pass

decoder [15]. Its acoustic model was trained on TED talks [6] and Broadcast
News [4]. This system was designed to recognize lecture talks from IWSLT 2017
workshop [17].

Google Cloud Speech-to-Text2 with English (United States) language
option.

Kaldi [12] based model trained on data from Multi-Genre Broadcast Chal-
lenge [2], on 1600 h of broadcast audio from BBC TV and several hundred million
words of subtitle text for language modeling. This model is thus suitable mainly
for native British English speakers.

We also tried Microsoft Cloud ASR but it failed for all our recordings.

2 https://cloud.google.com/speech-to-text/.

https://cloud.google.com/speech-to-text/
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4.2 Evaluation Metric

We use the standard word error rate (WER) metric, which is the minimum
number of text insertions, deletions and substitutions needed to transfer one
document to another, normalized by the total number of words in the document.
As customary in ASR development, we disregard letter case and punctuation
for this evaluation. We took the transcriptions obtained from the participants as
the ground truth against which the automatic speech recognition outputs were
evaluated.

4.3 Results

The descriptive statistics of respective word error rate scores are listed in Table 7
and visualized in Fig. 1. Note that the lower WER, the better recognition.

As already discussed in Sect. 3, the audio files contain a significant amount
of background noise. Due to this fact, Google returned an empty output in some
cases, resulting in the WER of 100%. In order to account this, we selected only
the recordings on which all the systems had less than 100% WER, and measured
a second set of descriptive statistics on this subset.

By manually inspecting the recordings on which the systems had the highest
error rate we observed that the ASR difficulties could have been caused by a
very strong accent of the speaker, or by the fact that the microphone was not in
the appropriate distance from the mouth, or that the speaker did not articulate

Fig. 1. Boxplot showing the word error rate scores of Google, Kaldi BBC and JRTk
models on all recordings (right) and on a subset where all the systems produced some
non-empty output (left).
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clearly. Also, the background conditions such as a music band playing or students
entering the presentation room may have affected the recognition quality.

5 Related Works

Tests sets for ASR are usually released together with speech corpora [5,6,11].
Our corpus is unique in a way that it contains L2 English, similarly as [20], but
in our corpus there is a large variety of speakers, European L1s and realistic
background noise conditions. Also, to our best knowledge, there is not any other
speech corpus with additional in-domain resources.

Robustness to Noise: There are some corpora intended for noisy speech recog-
nition: [1,7,14,18]. In [10], the authors show that model trained on a large data-
set of distorted data with background noise is able to generalize much better
than domain-specific models. Similar conclusions were derived in [8], where the
authors experimented with random sampling of noise and intentionally corrupt-
ing the training data.

Non-native Speech: Adaptation for non-native speech in low-resource sce-
narios was studied by [19], who proposed interpolation of acoustic models or
polyphone decision tree specialization. This can be incorporated into statistical
ASR systems. For hybrid HMM-DNN (Hidden Markov models and deep neural
networks) models, data selection methods can be used. In [16], combination of
L2 out-of-domain read speech and L2 in-domain spontaneous speech led to the
highest improvements, as opposed to using L1 speech.

Domain Adaptation: For purely neural LF-MMI (Lattice-free maximum
mutual information) models [13], multi-task learning with large out-of-domain
data as a first task and in-domain data as a second task, or various approaches
of transfer learning can be beneficial [3].

6 Conclusion

We presented a small English speech corpus (only about 1 hour in total) intended
as a test set for challenging speech recognition conditions: 61 distinct speak-
ers, none of which were native speakers of English, a diverse set of vocabulary
domains and noisy background.

We have demonstrated that current ASR systems have severe difficulties in
processing the test set, with WER ranging from 40 to 100% on individual audio
recordings. The test set is equipped with additional text materials which can
serve as evaluation of domain adaptation.

The corpus is publicly released and available under the following link: http://
hdl.handle.net/11234/1-3023.

http://hdl.handle.net/11234/1-3023
http://hdl.handle.net/11234/1-3023
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2017 KIT IWSLT speech-to-text systems for English and German. In: The Interna-
tional Workshop on Spoken Language Translation (IWSLT), Tokyo, Japan, 14–15
December 2017

18. Vincent, E., Barker, J., Watanabe, S., Le Roux, J., Nesta, F., Matassoni, M.:
The second ‘CHiME’ speech separation and recognition challenge: an overview of
challenge systems and outcomes. In: 2013 IEEE Workshop on Automatic Speech
Recognition and Understanding, pp. 162–167, December 2013

19. Wang, Z., Schultz, T., Waibel, A.: Comparison of acoustic model adaptation tech-
niques on non-native speech. In: ICASSP, IEEE International Conference on Acous-
tics, Speech and Signal Processing - Proceedings, vol. 1, May 2003

20. Zhao, G., et al.: L2-ARCTIC: a non-native english speech corpus. In: Proceedings of
the Interspeech 2018, pp. 2783–2787 (2018). https://doi.org/10.21437/Interspeech.
2018-1110

https://doi.org/10.21437/Interspeech.2016-595
https://doi.org/10.21437/Interspeech.2016-595
https://doi.org/10.21437/Interspeech.2018-1110
https://doi.org/10.21437/Interspeech.2018-1110


Investigating the Relation Between Voice
Corpus Design and Hybrid Synthesis

Under Reduction Constraint

Meysam Shamsi(B), Damien Lolive, Nelly Barbot, and Jonathan Chevelu

Univ Rennes, CNRS, IRISA, Lannion, France
{meysam.shamsi,damien.lolive,nelly.barbot,jonathan.chevelu}@irisa.fr

Abstract. Hybrid TTS systems generally try to optimise their cost
function with the voice provided to generate the best signal. The voice is
based on a speech corpus usually designed for a specific purpose. In this
paper, we consider that the voice creation is realized through a corpus
design step under reduction constraints. During this stage, a recording
script is crafted to be optimal for the target TTS engine and its purpose.
In this paper, we investigate the impact of sharing information between
the corpus design step and the hybrid TTS optimisation step.

We start from a reduced voice optimized for a unit selection system
using a CNN-based model. This baseline is compared to a hybrid TTS
system that uses, as its target cost, a linguistic embedding built for the
recording script design step. This approach is also compared to a stan-
dard hybrid TTS system trained only on the voice and so that does not
have information about the corpus design process.

Objective measures and perceptual evaluations show how the integra-
tion of the corpus design embedding as target cost outperforms a classical
hard-coded target cost. However, the feed-forward DNN acoustic model
from the standard hybrid TTS system remains the best. This emphasizes
the importance of acoustic information in the TTS target cost, which is
not directly available before the voice recording.

Keywords: Hybrid speech synthesis · Corpus reduction ·
Linguistic and Phonological embeddings

1 Introduction

Nowadays, there are two main strategies for Text-To-Speech (TTS) synthesis.
The first one is based on unit selection [1] and the second one is the Statisti-
cal Parametric Speech Synthesis (SPSS) [2,3]. The basic idea of unit selection-
based TTS is to choose and concatenate a sequence of units from a natural
speech corpus. The selected units should have linguistic features as close as pos-
sible to the target ones, associated to the text to vocalize, and the concatena-
tions of consecutive unit signals should minimize differences in their joins. SPSS
uses a vocoder and is known for the smoothness of its generated signals and
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): SLSP 2019, LNAI 11816, pp. 162–173, 2019.
https://doi.org/10.1007/978-3-030-31372-2_14
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its flexibility. Conversely, unit selection based TTS systems provide more
natural-sounding signals than SPSS [2,4].

The advantages and disadvantages of these TTS systems naturally led to the
design of hybrid systems. The combination of both systems usually involves sta-
tistical models trained on the voice to predict parameters of an ideal generated
speech and to guide a unit selection decoder that concatenates real signal seg-
ments extracted from the voice. Recent studies and the last Blizzard challenges
have revealed good achievements of hybrid systems (see for instance [4–6]). In
the last years, deep learning models such as Deep Neural Networks (DNNs)
and Recurrent Neural Networks (RNNs) have been successfully used as acoustic
models in hybrid systems, replacing HMMs, like in [7]. The main challenge in
designing acoustic models is that the linguistic sequence does not have the same
length as the acoustic sequence. For instance, in [8], a one to many approach
is followed to deal with this problem. A LSTM-based auto-encoder is employed
and permits to generate a sequence of acoustic frames representative of the input
phoneme. As another example, in [9], each candidate phone unit is converted
into a fix-length unit vector, called Unit2Vec, and DNNs are used as target and
concatenation cost functions.

In order to manage the variable sequence length problem, a similar process
has been applied in [10], a feed forward DNN for a one to one approach models
phoneme frames, based on frame position, and the euclidean distance in the
embedding space is used as the TTS target cost function. This approach also
provides better results than an expert target cost.

In all cases, hybrid TTS systems are trained on a speech corpus independently
of how it has been built. It may not lead to a significant difference when the
voice is large enough, offering a good internal acoustic diversity. But, when the
size of the voice is constrained in some ways, as in industrial applications which
often need a high quality recorded voice, the adequacy between the voice and
the TTS engine may impact the quality of the generated signals [11–13].

The cost, e.g. in terms of annotation time or recording time, to build a
TTS voice for a professional usage is correlated to the length of the recording
script. Hence, creating a voice under cost constraints requires to craft carefully
the sentences to guarantee a good TTS quality in the end. To design such a
script, a usual method is the selection of a subset of sentences as short and
linguistically rich as possible from a large text corpus. This approach can be
formalized as an optimisation problem in a discrete space [14]. The properties
that the linguistic and phonological content of this subset has to achieve can
stem from TTS engine needs or from the considered application independently
or not of the TTS system. For instance, in [18,19], the phonological distribution
in the script has to be close to a target one: natural, uniform or representative of
a given domain. Conversely, the constraints and the nature of attributes to cover
can be specific to the TTS engine, like in [17] where the phonological attributes
used for the target cost function are covered, or in [20,21] where the internal
descriptors of a SPSS system are considered, or, also in [19] where a pruning
is done to remove units that are least used by the unit selection TTS system.
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The resolution of this set covering problem for TTS corpus design has been
widely studied in past studies [14–17].

Whereas the unit selection approach can support a small well-adapted voice
corpus, the learning processes in hybrid systems are greedy in terms of voice
data. Therefore, one may ask how to address and improve the use of hybrid
TTS systems in a context of parsimonious voice building. In this paper, we
investigate how the information from the voice creation process can be useful to
help a hybrid TTS engine. To avoid disruption in the experiments, it focuses only
on the inclusion of the information as the target cost of the hybrid TTS system.
Using a unique voice, built from a simulated and controlled corpus design pro-
cess, three variants of the same system are compared. The first one is based on an
expert target cost function as in classical unit selection framework, whereas the
target cost function of the second one is trained on linguistic, phonological and
acoustic contents of the voice. This second approach illustrates a usual hybrid
TTS system, as described in [10]. At last, the third approach uses a target cost
function whose definition takes into account the voice creation process. The pro-
posed method relies on the partition and covering of the embedding space used
to design the recording script. Since this embedding is learnt before the recording
phase, only linguistic and phonological features are required. Using objective and
foremost perceptual evaluations, the experiments help to understand relations
between corpus design and hybrid TTS.

This paper is organized as follows. First, Sect. 2 introduces the experimen-
tal framework. Especially, it explains how the corpus design is simulated and
presents the resources used for training. Since all compared systems use the
same voice, a voice creation process under size constraint is described in Sect. 3.
This process is compared with the standard set-covering approach as a prelimi-
nary experiment. Section 4 details the different systems considered and especially
differences between the hybrid ones. Evaluations and results are given in Sect. 5
before an overall discussion in Sect. 6.

2 Experimental Framework

In order to carry out the experiments presented in this paper and take into
account the assumption of a recording phase, we have avoided the constraint
of this recording work by reducing an already recorded and annotated corpus
as in [11,25]. We have chosen an audio-book read by a professional speaker as
initial corpus, thus limiting the bias inherent to the recording phase (speaker
experience, recording conditions, etc.).

From this book, a randomly selected continuous part T has been taken away
as a test set and the other part, denoted F , is named the full corpus in the
remainder.

The voice creation step is simulated by the selection of a sentence set S from
F , based on linguistic and phonological features only; the voice corresponds to
the set of the signals associated to S. The objective is to find the best set S to
synthesize the entire book, and the voice quality is evaluated using the subset T .
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To illustrate the recording time constraint, S may be not longer than a given
ratio of F in number of phoneme instances, and for the presented experiments,
this ratio has been set to 10% of F .

The initial corpus, i.e. the entire audio-book, contains 3,339 utterances of a
French expressive audio-book spoken by a male speaker. The overall length of
the speech corpus is 10 h44. More information on the annotation process can be
found in [23]. F is composed of 3,005 utterances and 362,126 phoneme instances.
The test set T contains the 334 other sentences from the initial corpus.

For all experiments, synthesis is done by the IRISA TTS unit selection sys-
tem [22]. It can also be used as a hybrid TTS system like in [10].

3 Voice Construction and Preliminary Experiment

As explained in Sect. 1, several approaches can be used for corpus design under
size constraint. The corpus design method used to build the voice that feeds
all evaluated systems should be carefully selected so that the comparisons are
fair. It needs to be usable in a hybrid TTS context and also leads to good per-
formances with a unit-selection system. Among the methods optimized for a
specific TTS engine (as in [17]) and others based on distributional information
about the target domain (as in [19]), the latter seems preferable. This is particu-
larly true since the corpus used here is in a consistent domain (a full audio-book
as explained in 2). At last, distributional information can be well modeled by
Neural Networks and can then be integrated into a hybrid TTS workflow. This
section details the proposed corpus design method used to create the voice in
further experiments. Moreover, in a preliminary experiment, this method will be
compared to standard approaches to ensure its relevance.

The way to select sentences for the voice is accomplished as follows. Utter-
ances from F are used to train an auto-encoder based on a multi-layer Convo-
lution Neural Network (CNN) as illustrated in Fig. 1. The activation function is
tanh and the loss function is the Mean Squared Error (MSE). The input vectors
are composed of 296 components of categorical and numerical types automat-
ically computed. The categorical attributes represent information about quin-
phonemes, syllables, articulatory features, and Part Of Speech for the current,
previous and following words. These features are converted to a one-hot vector.
The numerical features take into account information such as the phoneme posi-
tion inside the word or utterance. These numerical features are normalized so
that all the entries of the linguistic vector are in the range [0, 1]. The linguistic
content of each input utterance is then represented by the sequence of linguistic
feature vectors associated to the phonemes that compose it.

By taking the encoder part as the embedding model, each utterance of F is
transformed into a sequence of vectors in the embedding space and its associated
average vector is chosen to characterize this utterance. This results in a fixed-
length vector whose size is the number of features (30) in the embedding space
for each utterance. A K-Means algorithm is then applied to partition the set
of average vectors represented F . From each cluster, the utterance whose the
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Fig. 1. Deep convolutional auto-encoder used to train linguistic and phonological
embeddings.

Table 1. Objective evaluation of the proposed script design strategy using the TTS
global cost.

Corpus design method Average TTS global cost 95% confidence interval

Random 1.77 ± 0.01

Set covering Greedy 1.75 ± 0.02

CNN+KMeans 1.60 ± 0.02

average vector is the closest to the center is selected and add to S. This subset S
is thus built to represent the linguistic richness of F by covering all its clusters,
with the length about 10% from that of F . The natural speech signals associated
to elements of F are used as the TTS voice corpus of the experiments described
below.

In order to assess the achievements of this script design method and its
derived voice, a second voice with an identical length is built using a classic set
covering strategy [17]. For this, the features used are diphones with the same
linguistic as for the CNN. The utterances of T are then vocalized using the two
voices respectively but the same TTS system, namely the IRISA system based
on an expert target cost function. Generated outputs are objectively evaluated
using the TTS global cost (a linear combination of target and concatenation
costs) and also compared using a perceptual assessment. Besides, as baseline,
for each utterance of T , the average TTS global cost stemming from the use
of 10 randomly selected voices is added. As for the perceptual evaluation, it is
conducted in the form of an AB test with 17 listeners. From the 334 samples of
T , 100 samples are evaluated at least 6 times. Results are summarized in Table 1
and Fig. 2.

Whereas the TTS global cost mean provided by the standard set covering is
close to the one resulting from the random selection method, the CNN-Kmeans
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Fig. 2. Perceptual evaluation of the proposed script design strategy.

based corpus design method gives a significantly lower TTS global cost mean.
This latter approach is also preferred during the listening test.

For the next experiments, we then keep this voice and the associated creation
process based on the combination of CNN and KMeans algorithm. They will be
used with different TTS engine configurations to investigate the relation between
voice creation and hybrid synthesis.

4 TTS Systems Under Comparison

The objective of the paper is answering to this question: Is it helpful to use the
same phoneme representation in the corpus design step and in the TTS target
cost?

To do so, three methods for calculating the TTS target cost are compared. An
expert target cost function which is a weighted sum of linguistic features is used
as the baseline. The two other methods are based on embedded representations
at phone level. The first one uses the same embedding for the corpus design step
and the target cost function while the third one uses a specific embedding for
the target cost function taking into account acoustics. The target cost is the
euclidean distance in the embedding space between the candidate phone and the
target one.

In the following, these three systems are described and then compared.

4.1 Expert-Based Target Cost (Exp)

In this method, the system used is a state of the art unit selection system. The
target cost is defined as a weighted sum of linguistic features and has since been
improved over the years [10]. The concatenation cost is the same as in [22],
defined as a sum of euclidean distances on acoustic features between consecutive
units.

4.2 Same Embedding for Corpus Design and TTS (CNN )

The second method replaces the expert target cost function by a cost function
relying on the phoneme level embedding created during the corpus design step.
Consequently, we propose here to use the same embedding model and phoneme
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representation for both corpus design and TTS target cost. The CNN auto-
encoder described in Sect. 3 represents the linguistic information of phoneme by
a vector of latent features. The TTS target cost is the euclidean distance in the
embedding space between the candidate and target units. The CNN model is
trained at the utterance level with F corpus and uses only linguistic information.
One of the assets of this model is having contextual information of phonemes at
the utterance level which could help a better representation in the embedding
space.

4.3 Different Embeddings for Corpus Design and TTS (MLP)

The third method uses an embedding model specific to the target cost function
using both linguistic and acoustic information. According to the proposition in
[10], a feed-forward DNN is trained to predict the acoustic information at frame
level for each input phoneme vector. The timing features are concatenated to
embedding features in order to help prediction of the corresponding acoustic
features. As in the previous system, the target cost function corresponds to the
euclidean distance in the embedding space.

The learning data is the linguistic and acoustic information corresponding
to phoneme/frame of the voice corpus S. The timing features are the phoneme
duration in seconds and the relative position of the corresponding frame inside
the phoneme. The acoustic features consist of a 60 dimension Mel-Frequency
Cepstral Coefficients (MFCC) vector, and the log of fundamental frequency F0.
The acoustic features are centered and reduced (unit variance). The frame length
is 10 ms.

After training, the encoder part that transforms linguistic vector of phonemes
into embedding space is detached and used as the embedding model.

4.4 Systems Differences

Table 2 summarizes and highlights the differences of the two embedding models
described above and Fig. 3 displays the three approaches compared in this study.

Table 2. Embedding models comparison for both hybrid systems.

Method CNN MLP

Training data Full corpus (F) Voice corpus (S)

Input Linguistic Linguistic+Timing

Output Linguistic Acoustic

Training Level Utterances (Sequence of phonemes) Frames of signals

It is important to notice that the MLP model benefits from acoustics while
the CNN model is only learnt with linguistic data. Also, both models learn, by
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Fig. 3. TTS systems considered, namely Exp, MLP and CNN from top to bottom. The
only difference come from the target cost (T.C.) computation.

construction, an embedding at the phoneme level, even if the MLP model is
trained at the frame level (see [10]).

Besides, the CNN model is trained on the full corpus F and not only on the
voice corpus S to maximize the quantity of data used for learning. The learning
data is samples at the utterance level for the CNN model whereas the MLP one
considers samples at the frame level. Hence, the MLP has much more data for
training. It would not have been efficient to train the CNN model just with 300
samples from the S corpus.

Considering all this, we want to see if the consistency of embeddings between
the corpus design step and the synthesis step helps to improve synthesis. How-
ever, the use of an acoustic model, with the MLP model, might not be completely
fair. To be complete, further experiments are planned to try to inject acoustics
in the corpus design step.

5 Experiments and Results

In the following subsections, we report the objective and perceptual evaluation
results for the three methods.

5.1 Objective Evaluation

Since for the three methods, the target cost functions measure distances in three
different (embedding or not) spaces, it is not possible to compare their outputs
based on TTS costs. However, the same script is used as the test set and the
Concatenation rate is then more appropriate to compare TTS performances. For
each test utterance, this statistic is the number of concatenations in synthetic
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signal divided by the total number of possible concatenations. As for this mea-
sure, the lower is the better as it means more consecutive units from the same
utterance. Less concatenation is assumed to result in higher quality. This mea-
surement is computed for the test part (T ) and the rest of full corpus (F − S).
It helps to find how methods can be generalized to other scripts than F .

As shown in Table 3, the CNN method has better statistics than Exp method
and MLP beats both for test part.

Table 3. Concatenation rate (%) results; confidence interval are calculated by using
boot strap method with alpha = 0.05.

Measures/Methods Exp CNN MLP

Rest of full corpus (F − S) 56.63± 0.16 54.36± 0.16 54.34± 0.15

Test part (T ) 56.64± 0.52 56.24± 0.51 53.98± 0.50

5.2 Perceptual Evaluation

In [10], the use of an acoustic model for the derivation of target cost has proved
to be superior to an expert-based model. So two AB listening tests have been
prepared to compare the synthetic quality of systems. The first one is between the
Exp method and the CNN method and the other one is between the CNN and
the MLP method. According to the protocol proposed for perceptual evaluation
in [24], each AB test is composed of the 100 samples extracted from T with the
highest DTW on MCep features. The samples are shorter than 7 s. The listeners
have been asked to compare 40 pairs in terms of overall quality. The results are
reported on Fig. 4.

Fig. 4. Listening test results.

There are 14 listeners who have participated to the first test and 10 listeners
as for the second test. Each pair of samples in the first test has been compared
at least 5 times and in the second test at least 4 times. The result of the first
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test shows that the CNN based embedding as input of target cost can generate
synthetic signals with significantly higher quality than the expert target cost.
The second test indicates the preference of listeners for MLP model, which takes
advantage of linguistic and acoustic information, rather than CNN model.

6 Conclusion

In this paper, we have investigated the relation between the corpus design pro-
cess and a hybrid TTS. The TTS voice corpus has been selected based on an
embedding model which uses the phonological information of the full corpus.
This embedding model can be applied instead of the expert TTS cost or an
acoustic model of phonemes. It has then be used to build a hybrid system by
computing the target cost function as the euclidean distance between units in
the embedding space.

In the first step, we have presented a phoneme embedding model which is
basically the encoder part of a CNN auto-encoder. The transformation of utter-
ances in the embedding space is followed by the KMeans algorithm to select a
subset of full corpus in order to compose a voice corpus. Our preliminary exper-
iment has shown that this method could achieve perceptually higher quality of
synthetic signals than a voice designed by a classical set covering method.

The proposed CNN model has been applied to provide a phoneme embedding
in hybrid TTS instead of an acoustic model (MLP) trained on the selected voice
corpus. The perceptual test has shown that although the CNN model has better
performances than expert-based target cost TTS, the MLP model has been
preferred to the CNN model.

The CNN may be tuned or changed to improve performances. However,
these results seem to emphasize the importance of acoustic information in any
phone-embedding process for TTS tasks. The CNN model has been used for
both corpus design and hybrid TTS, it is learnt on the full corpus, and takes
into account more contextual information by the use of utterances as training
samples (instead of frames). On the other side, the MLP model profits from
acoustic information besides the linguistic one. Consequently, in future works,
the use of an acoustic model as the embedding model for corpus reduction or
corpus design should be investigated.
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Abstract. Speech recognition systems play an important role in solving
problems such as spoken content retrieval. Thus, we are interested in the task of
speech recognition for low-resource languages, such as Amharic. The main
challenges in solving Amharic speech recognition are the limited availability of
corpora and complex morphological nature of the language. This paper presents
a new corpus for the low-resource Amharic language which is suitable for
training and evaluation of speech recognition systems. The corpus prepared
contains 90 h of speech data with word and syllable-based annotation. More-
over, the use of syllable units for acoustic and language model in comparison
with a morpheme-based model is presented. Syllable-based triphone speech
recognition system provides a lower word error rate of 16.82% on the subset of
the dataset. Moreover, syllable-based hybrid deep neural network with hidden
Markov model provides a 14.36% word error rate.

Keywords: Speech recognition � Corpus � Neural and hidden Markov model �
Syllable units

1 Introduction

With the increasing amount of spoken data being stored, shared, and processed
nowadays, there is a need for systems performing automatic speech recognition, audio
indexing, and search on audio streams. Hence, researchers are interested in the task of
speech recognition and retrieving data from spoken contents, such as for Amharic. The
domain of spoken contents includes broadcast news, oral historic archives, online
lectures, meeting dialogues, and call-center conversations [14]. There are numerous
amount of research that has been done on speech recognition [6, 7, 19–21]. However,
performing speech recognition on low-resource languages raises some of the major
research challenges in the area. There should be an open research with publicly
available datasets and methodologies to speed up the progress in the field and to make
speech recognition systems available for wider use.

There are efforts made to develop both morpheme-based [8, 9, 11] and syllable-
based [7, 9] speech recognition systems for Amharic. However, all published works
used only 20 h of training data [10]. In this paper, an effort has been made to collect

© Springer Nature Switzerland AG 2019
C. Martín-Vide et al. (Eds.): SLSP 2019, LNAI 11816, pp. 177–187, 2019.
https://doi.org/10.1007/978-3-030-31372-2_15

https://orcid.org/0000-0001-5159-5241
https://orcid.org/0000-0003-4311-0624
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31372-2_15&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31372-2_15&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31372-2_15&amp;domain=pdf
https://doi.org/10.1007/978-3-030-31372-2_15


more Amharic speech and text corpora to make it publicly available for researchers in
the field. We have also demonstrated the advantage of using Amharic syllable units
instead of other units like morpheme.

The remainder of the paper is organized as follows: Sect. 2 describes the Amharic
language. Section 3 discusses the corpus preparation. In Sect. 4, Amharic speech
recognition components acoustic, language, and pronunciation models are described.
Section 5 presents the experiments on the corpus. The last section, Sect. 6, provides
discussion, conclusions, and highlights of the future work.

2 The Amharic Language

Amharic is the official language spoken in Ethiopia. It is a Semitic language of the Afro
Asiatic Language group that is related to Hebrew and Arabic. There are more than 25
million users according to Ethnologue1. The language has its own writing system. As it
is true in other languages, Amharic has its own phonetic and phonological character-
istics. Amharic orthography, also known as , represents a consonant-vowel
sequence, which is modified for the vowel.

There are seven vowels in Amharic namely, ,
[4, 5] (see Table 1). The language has 33 basic characters with each having seven
forms for each consonant-vowel combination (33 � 7 = 231) with additional charac-
ters there are 276 distinct orthography.

To create a complete inventory of Amharic sounds there are a set of thirty-eight
phones, seven vowels, and thirty-one consonants [5]. The consonants are classified as
stops, fricatives, nasals, liquids, and semi-vowels. Table 2 shows the first three of the
Amharic phone inventory.

Table 1. Amharic vowels category

1 https://www.ethnologue.com/language/amh (last accessed on 30.11.2018).

178 N. H. Gebreegziabher and A. Nürnberger

https://www.ethnologue.com/language/amh


2.1 Amharic Morphology

Amharic inflectional morphology exhibits addition of prefixes, suffixes, and modifi-
cations of root words. A single Amharic word could give hundreds of morphologically
inflected different form of words. This morphological richness of the language
increases the size of lexicons in speech recognition. The use of morphemes as a sub-
word unit for Amharic speech recognition system is shown on [8, 9, 11] however, there
is problem of out of vocabulary (OOV) morphemes. It is practically difficult to use the
Amharic rule-based morphological analyzer like HornMorpho2 for speech recognition
purpose. Therefore, researches usually use Morfessor [25] to automatically segment
words into morphemes. The tool allows supervised, semi-supervised, and unsupervised
training statistical approaches. In this paper, unsupervised training method has been
used to prepare morpheme-based corpus. The comparison of morpheme and syllable-
based speech recognition model is presented in Sect. 5.

2.2 Amharic Syllabification

Syllable is a unit of sound composed of a central peak of sonority (usually a vowel
(V)), and the consonants (C) which cluster around this central peak. Syllabification is
the task of segmenting words whether spoken or written into syllables. Technically, the
basic elements of syllables are Onset (the first phone in the sequence) and Rhyme (the
remaining sequence of phones), which includes nucleus (central peak of sonority) and
Coda (the remaining consonants other than the onset) [26]. A syllable can be described
by a series of grammars such as consonant-vowel-consonant (CVC) sequence or onset,
nucleus & coda (ONC).

Amharic is a syllabic language in which every orthography represents consonant-
vowel assimilation. However, not all syllables in Amharic follow the CV sequence
represented by the graphemes. Instead, Amharic syllables may follow various patterns,
such as V, VC, CV, and CVC, including possible consonant clusters and gemination.
Moreover, Amharic orthography did not show epenthetic vowel & geminated conso-
nants that make it challenging to perform syllabification simply following the templates.

A novel syllabification algorithm for Amharic has been shown in [12]. In the paper,
acoustic evidence, Amharic syllable template (V, VC, CV, VCC, CVC and CVCC
[26]) and the well-known linguistic syllabification implementation principles namely,

Table 2. A few Amharic orthographic inventories

2 https://github.com/hltdi/HornMorpho.
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maximum onset and sonority hierarchy principles, have been used to develop a rule-
based syllabification algorithm. The algorithm considered gemination and the irregular
nature of Amharic epenthesis vowel . In this paper, the algorithm has been re-
implemented in python with minor improvements. The algorithm is used to prepare
syllable-based text corpus for the experiments.

3 Speech and Text Corpus Preparation

Speech recognition research in major languages such as English, German and Chinese
has been conducted since 1950s. However, for low-resource languages such as
Amharic, there are only a few attempts as it is mentioned in Sect. 1. There are only
20 h of speech data available [10] for the language, which is very less data to develop a
better speech recognizer system. It is also challenging to develop Amharic speech-to-
speech translation and spoken content retrieval systems [13, 15].

Collecting and preparing a very large speech corpus suited for the development of
speech recognizer is costly and labor-intensive task. In this paper, we have prepared
approximately 90 h of speech corpus from audiobooks and radio show archives with
word and syllable-based transcription. The corpus is merged with the existing dataset
and partitioned into training and evaluation set which is made publicly available3. An
effort has been made to better estimate the number of speakers and age range in the
audiobooks and radio show subsets, since we could not found such details.

There are two alternatives in preparing speech corpus. The first alternative is col-
lecting text corpus and ask the native speakers of the language to read the text while
recording. The other alternative is finding a variety of prerecorded and transcribed speech
and preprocess it for the development of speech recognizer. In this paper, the second
alternative is used. However, very few audiobooks and transcribed speech found, which
limited the size of the corpus prepared. We have also used publicly available radio
program archives. Table 3 provides a summary of all subsets in the corpus.

3.1 Audio Segmentation

For segmenting the audiobooks and the radio show archives, Audacity4 open source
tools have been used. The segmentation process was semi-automatic. Since most of

Table 3. Amharic speech corpus subset summary

Subset Hours Gender Age #Sentences #Tokens
Male Female

Existing 20 70 54 18–40 11234 109125
Audiobooks 81 40 – 18–40 22026 339342
Radio 9 30 20 18–50 2780 50208

3 http://www.findke.ovgu.de/findke/en/Research/Data+Sets/Amharic+Speech+Corpus.html.
4 https://www.audacityteam.org/.

180 N. H. Gebreegziabher and A. Nürnberger

http://www.findke.ovgu.de/findke/en/Research/Data%2bSets/Amharic%2bSpeech%2bCorpus.html
https://www.audacityteam.org/


speech recognition toolkits expect relatively shorter utterances, the average length of
the segments is made 14 s. To align the text and spoken sentence command line tools
and manual effort has been made. The preprocessing step includes fine-tuning such as
removing non-speech contents, removing long silences, and correcting the audio
samples using audio processing tools. The sampling frequency for each subset is
normalized to 16 kHz with sample size of 16 bits, 256 kbs bitrate with mono channel.

Finally, the corpus is merged with the existing 20 h of data which contains varieties
of speakers based on gender, age and dialects. The summary of the dataset could be
found in [10].

3.2 Text Preprocessing

After aligning the text with the speech, numbers are converted into equivalent Amharic
text as it is spoken in the recordings. Punctuation marks, foreign words, special
characters, and symbols have been eliminated, abbreviations are also expanded man-
ually. For some preprocessing tasks, simple python script has been used. For the
language model (LM) preparation, CACO the 1.39 million (M) Amharic sentence from
[24] has been used. The corpus is merged with our domain-specific text for speech
recognition task, which makes it 1.4 M sentences. The text is converted into mor-
phemes for morpheme-base LM using Morfessor 2.0 and into syllables using syllab-
ification algorithm mentioned in Sect. 2.2 for syllable-based LM.

4 Amharic Speech Recognition System

To solve the general speech recognition problem there are three basic modeling approa-
ches, namely, Hidden Markov model (HMM) [1, 16], hybrid Deep Neural Network with
HMMmodel (DNN-HMM) and end-to-end [17, 19, 20] or all neural model. HMM-based
automatic speech recognition is a very popular and successful one [16], nevertheless more
recently deep neural network (DNN) is becoming state-of-the-art [21, 22].

Since Amharic suffer from lack of standard dataset it is not feasible to go for all
neural model. However, in this paper, we have demonstrated the development of a
syllable-based DNN-HMM model on the subset of the corpus. In this work, we have
tried to balance the benefit of DNN, the use of less dataset and the advantage of getting
n-best recognition result. Getting more than one best result is beneficial especially for
indexing in spoken content retrieval [2, 3, 15, 18].

In HMM-based ASR, the aim of the system is to find the most likely sentence
W ¼ w1;w2;w3; ::;wtf g (word sequence) as it is shown in the Eq. (1) which tran-
scribes the speech audio O ¼ o1; o2; o3; . . .; otf g (acoustic observation).

W ¼ argmax
W

P WjOð Þ ¼ argmax
W

P OjWð ÞP Wð Þ ð1Þ

Given the phone set, lexicon and the audio files the HMM generates the probability
of pronunciation and particular observation sequence given a state sequence which is
also referred to as Acoustic model. In the training phase, all the models including the
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language model are represented as a weighted finite state transducer (WFST) and they
become composed to form one large WFST graph.

4.1 Acoustic Modeling

Acoustic model, PðOjWÞ, represents the relationship between an audio signal and the
phonemes or other linguistic units that make up speech. The model learned from a set
of audio recordings and their corresponding transcripts [1]. A simple 3-state HMM
with its transition probabilities aij and output probabilities bi(ot) is illustrated in Fig. 1.

Each states capture the beginning, central and ending parts of a phone. In order to
capture the articulation effects, triphone models are preferred to context-independent
phone models. A mixture of multivariate Gaussian probability distribution functions
represented the emission probabilities. The parameters of Gaussian distributions esti-
mated using the Baum-Welch algorithm [16]. In the decoding phase, the dynamic
programming Viterbi algorithm is used to get the most probable speech unit sequence
(syllable, morpheme or word) sequence from the graph generated.

Fig. 1. A simple left-to-right 3-state HMM

Fig. 2. A Viterbi algorithm for speech unit recognition
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As shown in Fig. 2, this algorithm can be seen as finding the best path through a
matrix where the vertical dimension represents the states of the HMM and the hori-
zontal dimension represents the frames of speech (i.e. time). Each small circles in the
picture represents the probability of observing that frame at that time and each arrow
between circles corresponds to a transition probability. Instead of summing over all
possible state sequences, we just consider the most likely path which can be achieved
by changing the summation to a maximization in the recursion. The score for state j,
given the input at time t is computed using Eq. (2).

Pj tð Þ ¼ max
i

Pi t � 1ð Þaijbj tð Þ
� � ð2Þ

The paths are grown from left-to-right column-by-column. We need to keep track
of the states that make up this path by keeping a sequence of back-pointers. At time t,
each partial path is known for all states i, finally we backtrack to find the state sequence
of the most probable path. An interesting detail of the application of HMM in speech
recognition can be found in [1, 16].

4.2 Language Model

Language model, P(W), it is a probabilistic model used to guide the search algorithm
(predict next word given history). It assigns a probability to a sequence of tokens to be
finally recognized. The most common modeling approach is the N-gram model
PðwN jw1;w2; . . .;wN�1Þ but recurrent neural network (RNN) is also used as a modeling
approach [23]. In this paper, two language models are prepared using a subset of the
CACO text corpus mentioned in Sect. 3.2. The first language model is a 1.4 M
morpheme-base 5-gram LM and the other is 73k syllable-based 5-gram LM.

4.3 Pronunciation Model

Pronunciation model (lexicon model), PðWjLÞ, forms the bridge between the acoustic
and language models [1]. Prior knowledge of language mapping between words and
the acoustic units (phoneme is most common). Two different lexicons are prepared for
our experiment. The first one is prepared by selecting the most frequent 51k mor-
phemes from the morpheme-based language model text. The second syllable-based
lexicon is prepared in the same way by selecting only 16.7k unique syllables from the
syllable-based language model corpus.

5 Experiments

The acoustic features extracted for our experiments consist of 13 dimensional Mel
Frequency Cepstral Coefficient (MFCC), with their first- and second-order derivatives.
A window size of 25 ms with an overlap of 10 ms has been used in the estimation of

An Amharic Syllable-Based Speech Corpus for Continuous Speech Recognition 183



the MFCCs. The acoustic models have been trained and tested using Kaldi5, one of the
most widely used open source speech recognition toolkit.

All the language models mentioned in Sect. 4.2 are generated using KenLM6

statistical language modeling toolkit. The language models are smoothed with modified
Kneser-Ney smoothing technique.

5.1 Morpheme-Based System

For the morpheme-based system monophone and triphone models have been experi-
mented in the Kaldi toolkit. The pronunciation dictionary consists of 51k most frequent
morphemes described in Sect. 4.3 is used. Moreover, the pronunciation dictionary has
been prepared as explained in Sect. 2.1.

In all the models, a 3-state left-to-right HMM topology is used. The monophone
model is a context-independent HMM model which does not consider the neighboring
phones in the acoustic modeling. The alignment from the monophone model is used as
input to the triphone HMMs. Unsurprisingly, the monophone model has worse per-
formance than both the triphone and hybrid DNN-HMM model. Table 4. shows
summary of morpheme error rate for each models.

5.2 Syllable-Based System

As it has been indicated in Sect. 2.2, Amharic has six syllable templates [26]. However,
researchers have been considering only the CV syllable template [7, 8]. Moreover,
epenthesis vowel and gemination are not handled in those research works [9]. In this
paper, all the six syllable templates, as well as epenthesis vowel has been realized using
the Amharic syllabification algorithm.

The experimental setup for syllable-based system is the same as morpheme-based
system explained in Sect. 5.1, except the lexicon and language model is prepared from
syllable units. The lexicon contains only 16.7k syllables and the language model is
prepared using 73k syllable-based sentences, which is a small subset of the text corpus.
A hybrid DNN-HMM model is experimented with similar setup used in the morpheme-
based model.

In the DNN-HMM model, the GMM-HMM alignment from the triphone model is
passed into a simple feedforward network (vanilla network with tanh nonlinearities

Table 4. Morpheme-based model system performance

Model Morpheme error rate (MER) %

GMM-HMM monophone 70.97
GMM-HMM triphone 56.36
DNN-HMM triphone 44.62

5 https://github.com/kaldi-asr/kaldi.git.
6 https://kheafield.com/code/kenlm/.
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adapted from Kaldi script). The network architecture has been built with only 300
hidden layer dimension, 3 hidden layers, minibach size of 128, with initial learning rate
0.04 and final learning rate 0.004. The model is trained for 15 � 2 plus extra 2 � 5
epochs which is 40 epochs in total.

The syllable-based system performed better in all the models even with fewer data
in the language model. Moreover, the OOV using syllable units is only three, which is
extremely low compared with the morpheme-based system. Table 5 shows a summary
of syllable error rate for each model.

All the model performance shown in Tables 4 and 5 gained using the subset (20 h)
of data to compare the performance of the morpheme-based model and syllable-based
model.

6 Discussion and Conclusions

In this paper, new Amharic speech corpus is presented and made available for public
access. The dataset is semi-automatically segmented and aligned with word and
syllable-based transcript in order to make it suitable for speech recognition and spoken
content retrieval tasks. Moreover, syllable-based speech recognition and language
models are also introduced. Morpheme and syllable-based models are trained using the
existing and the newly prepared corpus. The syllable-based models showed a better
result compared with all the morpheme-based models even with language model
prepared from a relatively small corpus. The syllable-based system showed a negligible
amount of OOV syllables compared with the morpheme-based system. The size of the
vocabulary required to prepare the pronunciation dictionary is also noticeably reduced
when syllable units are used. The DNN-HMM model showed a better result in all the
models even though a simple network with less number of epochs and hidden layers
are used. The system provides n-best results in the form of a lattice which makes it a
good starting point for tasks like lattice indexing for spoken content retrieval which is
planned to be evaluated in future work. As a future work we have also planned to go
for all neural model using all the subsets of the dataset.

Acknowledgments. The authors would like to thank the DAAD and MoSHE for funding this
research work and DW for allowing us to use Amharic radio program audio from their online
archive.

Table 5. Syllable-based models system performance

Model Syllable error rate (SER) %

GMM-HMM monophone 38.00
GMM-HMM triphone 16.82
DNN-HMM triphone 14.36
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Abstract. This paper presents the methodology we applied for build-
ing a new corpus of Bulgarian speech suitable for training and evaluat-
ing modern speech recognition systems. The Bulgarian Parliament ASR
(BG-PARLAMA) corpus is derived from the recordings of the plenary
sessions of the Bulgarian Parliament. The manually transcribed texts and
the audio data of the speeches are processed automatically to build an
aligned and segmented corpus. NLP tools and resources for Bulgarian
are utilized for the language specific tasks. The resulting corpus con-
sists of 249 hours of speech from 572 speakers and is freely available
for academic use. First experiments with an ASR system trained on the
BG-PARLAMA corpus have been conducted showing word error rate
of around 7% on parliament speeches from unseen speakers using time-
delay deep neural network (TD-DNN) architecture. The BG-PARLAMA
corpus is to our knowledge the largest speech corpus currently available
for Bulgarian.

Keywords: Speech corpus · Automatic speech recognition ·
Low resource language

1 Introduction

Acoustic data acquisition for low resource languages like Bulgarian is an impor-
tant and challenging task. Only few speech resources are available for Bulgarian
– e.g. GLOBALPHONE1 and BulPhonC2. As far as we know the largest cur-
rently available Bulgarian ASR speech corpus is BulPhonC [5]. This corpus con-
sists of less than 40 hours of read speech, which makes it rather insufficient for
the purpose of training modern DNN and RNN acoustic models. On the other
hand, recent developments in speech and language technology made it possible
to significantly reduce the manual work required for building a speech corpus
from transcribed audio content. Also, the increase in the amount of multimedia
content on the Internet in the recent years makes it possible to automatically
collect data. The English ASR corpus LibriSpeech [9] has been derived from thou-
sands of public domain audio books. Unfortunately, the availability of Bulgarian
1 ISLRN:250-105-856-478-2 http://www.islrn.org/resources/250-105-856-478-2/.
2 ISLRN:755-406-235-455-4 http://www.islrn.org/resources/755-406-235-455-4/.
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audio content with transcriptions on the Internet is very limited. One of the few
sources of such content is the Bulgarian Parliament, Narodno sabranie, where
all speeches from the plenary sessions are transcribed manually and recorded
on video. The texts and videos are published on the parliament’s web page3.
Other projects for building speech corpora from transcribed audio of parliament
speeches are presented in [12] for Catalan and [6] for Icelandic.

This paper describes the work and methodology used for building the BG-
PARLAMA corpus, which is a speech data set based on the speeches of the
Bulgarian Parliament members. The corpus is freely available for academic use4.
Section 2 describes the raw data available from the Bulgarian Parliament. In
Sect. 3 we describe the process we used to build the language models for the ASR
system used for audio alignment. Section 4 presents the ASR based alignment
procedure for long audio that we used in the creation of this corpus. Section 5
describes the procedure for the selection and segmentation of the content and the
structure of the corpus. Finally, in Sect. 6 we present and compare experimental
results for ASR trained on the new data set.

2 Data Source

The website of the Bulgarian Parliament provides mp4 video files for all ple-
nary sessions from 2010 up to now. The speeches are recorded using stationary
directed microphones on the parliament’s platform. The distance between the
microphone and the speaker varies, which causes differences in the speech level
between the speakers. Occasionally background noise occurs in the recordings.
The format of the audio stream in the video files is 44100 Hz mono compressed
with the AAC codec at 75 kb/s. In some files from 2013–2015 the audio signal is
corrupted by electric hum. There are around 120 sessions per year. Every session
is split into parts by session breaks. Every part of a session is stored in a separate
video file. For our corpus we have downloaded all videos from 2010 up to the
end of June 2018 with a total duration of 4839 h.

The manual transcriptions available in textual format go back to year 1991.
Older transcriptions are provided only as scanned PDF files. For every session
of the parliament exactly one text file with transcriptions is given. In most cases
the session breaks are marked in the transcriptions. We downloaded all texts
from 1991, consisting of 94 million words.

The corpus preparation procedure had to overcome the following specifics:

1. The correspondence between the speech and its manual transcription is not
exact. For example unintended repetitions in the speech are not present in the
transcription. Also, some grammatical or lexical mistakes in the speech are
corrected in the transcription. On some occasions the texts are modified by
changing the word order and inserting or deleting words in order to increase
its clarity.

3 https://www.parliament.bg.
4 http://lml.bas.bg/BG-PARLAMA.

https://www.parliament.bg
http://lml.bas.bg/BG-PARLAMA
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2. The transcriptions make use of digits to express number, date, time and
currency expressions. Common abbreviations are used as well.

3. In the transcriptions the name of the speaker together with the name of his
party is written in free text in front of each speech. The free text of the names
occasionally contains variations or mistakes in the spelling. There are also
cases where a member of the parliament switches parties. This complicates
the unique identification of the speaker.

4. There are additional annotations in the text files (e.g. indication of what is
happening in the room) which are not represented in the speech.

3 Building Language Models for ASR

3.1 Text Corpus

All transcribed texts are first normalized by converting them to lower-case and
then are tokenized. The verbalization (expansion) of vocabulary items which
differ in verbal and written form (such as dates, numbers and abbreviations) is
done next. Since we have no ground truth for verbalization, we reuse the finite-
state rewrite rules developed for the Text-to-Speech system [3]. Those rules make
use of contextual information to resolve ambiguities caused by inflections in the
Bulgarian language. For example, the verbalization of a number written with
digits is ambiguous because it could be verbalized either to ordinal or cardinal
number and should agree with the preceding or following noun on number and
gender. In Bulgarian if a sequence of digits is preceded by the word “article” it
has to be verbalized as a masculine ordinal number; if it is preceded by “chapter”
it has to be verbalized as a feminine ordinal number and if followed by “meters”
it has to be verbalized as a cardinal number etc. We can express these rules with
regular expressions such as:

The verbalization rules are further compiled into finite-state transducers and
applied to the texts. Generally, verbalization is an ambiguous task and there-
fore the process introduces verbalization errors. Nevertheless, since we later
require perfect alignment, texts which include verbalization errors shall hardly
be included in the dataset. Finally, all punctuation marks are removed from the
texts.

3.2 Dictionary

The lexicon that we use is based on the lexicon used in [7] consisting of 440 K
entries. This lexicon has been further extended to cover 99% of the vocabu-
lary found in the text corpus by adding the phonetizations of the most frequent
unknown words and acronyms from the transcribed texts. To achieve this we
manually added accent marks and then generated the phonetizations automati-
cally using phonetization rules from the Bulgarian TTS system [3].
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3.3 Language Models

We used the SRILM tool [2] to train two 3-gram (modified) Kneser-Ney
smoothed language models on the verbalized texts. The first model is trained
on all verbalized texts (94 million words) while the second one is trained only
on the texts corresponding to the available video files (32 million words). The
smaller language model is used only for the ASR system in the alignment phase
(see Sects. 4 and 5). Perplexities of both language models were measured on
verbalized texts from parliament sessions not included in the training texts.
The perplexity of the smaller language model is 59.52 with (and 85.48 without)
end-of-sentence tokens and the perplexity of the larger is 59.48 with (and 85.42
without) end-of-sentence tokens.

4 Segmentation into Speeches

The training of acoustic models for ASR systems requires as input relatively
short utterances (around ten seconds) with the corresponding nearly perfectly
matching reference texts. To achieve this, we have to align the audio, extracted
from the available video files, with the verbalized texts and split it into small
segments. This is done in two phases. The first phase, described in this section,
aims to split the audio and transcription files for a whole plenary session into sep-
arate audio and corresponding text files for each speech. In the second phase (see
Sect. 5) short audio and text segments with nearly perfect match are extracted.

4.1 Splitting Transcriptions into Session Parts

Initially, the original video files are processed with the ffmpeg5 tool in order to
extract the audio stream in 16KHz PCM wav file format. As mentioned above,
for each session of the parliament there are several audio files but only one text
transcription. We use the marked breaks to split the transcribed text to match
the audio parts. Ideally, this would give us equal number of audio and text files.
However, occasionally there are wrongly indicated breaks in the transcriptions
and missing or corrupted audio files which leads to differences in the number of
audio and text files. We manually corrected the inconsistencies by splitting or
merging text files or deleting the corresponding transcriptions when the audio file
was unavailable. Nevertheless, occasional inaccuracies remain in the alignment
of the session audio and text parts.

4.2 Speaker Identification

We had to identify the speaker for each speech. As explained, the name and
the party of the parliament member, which we call speaker label, is given in
free text in front of each speech in the transcription file. Unfortunately, for
speeches of the same speaker this label may be different. This is caused by
5 http://www.ffmpeg.org.

http://www.ffmpeg.org
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members of the parliament switching parties over the years, middle or family
names being included or omitted, spelling variations and mistakes and others.
In total we extracted 4033 different speaker labels. To deal with the problem we
chose for each parliament member a unique identifier – 1113 speaker identifiers
in total. Then we manually assigned to each label the corresponding identifier.
The identifiers also reflect the gender of the speaker. This procedure was aided
by automatically grouping the labels using Levenshtein similarity.

Using the speaker identifiers, the transcribed texts were split into separate
speech transcriptions. For each such transcription the speaker, the session, and
the session part it came from are known.

4.3 ASR for Alignment

Next, we aim to align the verbalized speech transcriptions with the corresponding
audio. For this purpose we use an ASR system for Bulgarian trained on the
BulPhonC corpus [5]. For the speech alignment we apply the Kaldi ASR toolkit
[10]. We train a triphone hidden Markov model using Gaussian mixture models,
applying LDA and MLLT, on the acoustic data from the BulPhonC corpus (see
Sect. 6 for more details). Then we align each of the transcribed speeches of the
speaker with the recognized text produced by the Kaldi ASR decoder using the
BulPhonC acoustic model and the smaller language model (see Subsect. 3.3).

4.4 Audio Segmentation

In the segmentation stage we search for the best match between each speech
transcription and an arbitrary region of the ASR recognized text from the cor-
responding session part. This is done by using the dynamic programming frame-
work [11] with symbol level Levenshtein distance. If the best match is above a
chosen threshold (in this case 30% letter error rate) we search for matches of the
given speech transcription in the ASR text of the other parts of that session.
In this way we compensate for the inaccuracies in the alignment of the session
audio and text parts. Using the timestamps for each word from the ASR output
we extract the audio segment that corresponds to the matched region in the
speech transcription.

As a result we obtain for each speaker a set of text-audio pairs for each of his
or her speeches. Those pairs may contain inaccuracies (up to 30% letter error
rate) between the audio and the transcription.

5 Audio Splitting and Selection

The corpus is divided into three parts: training, development and test. The
training part has to satisfy the following constraints:

– (near) perfect match between the audio and the transcription;
– sufficient speech duration for each speaker and no big imbalances in the speech

duration between the speakers;
– audio split into relatively short segments.
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Table 1. Data subsets in the BG-PARLAMA corpus

Subset Duration per-spk minutes Male spks Female spks Total spks

Train 248 h 47m 26 422 150 572

Dev 1 h 10m 6 6 5 11

Test 1 h 8m 5 9 5 14

On the other hand, the development and test parts should provide:

– unbiased selection of texts and speakers;
– no speaker overlap between training, development and test parts;
– audio split on sentence boundaries.

5.1 ASR for Selection

For the purpose of segment selection we again used the ASR system for Bulgarian
trained on the BulPhonC corpus. In this case, since the speeches are already
aligned to the speakers, we were able to improve the recognition quality by
using speaker adaptation (SAT) with feature-space Maximum Likelihood Linear
Regression (fMLLR). All other parameters are as described in Subsect. 4.3.

5.2 Alignment Procedure and Extraction of Corpus Candidates

The alignment procedure also uses symbol level Levenshtein distance. We align
the text recognized by the ASR with the corresponding speech transcription.
From the best alignment we extract the subsequences with exact matches (with
no corrections). Those subsequences are further trimmed in order to start and
finish with silence of at least 0.1 s. We use the timestamps in the decoder output
to split the audio of the speech into the selected subsequences with perfect
match. As a result of the phase we obtain a set of corpus candidates consisting of
1.6 million extracted short audio segments with the corresponding text excerpts
with perfect match of a total duration of 1979 h.

N.B. The perfect match between the ASR recognized text and the transcription
does not necessarily imply that the audio always matches the transcription. On
some occasions there still remain some inaccuracies.

5.3 Selection of Training Corpus

The Training Corpus is obtained from the corpus candidates by:

1. discarding all audio segments with transcriptions shorter than 20 symbols
(avoiding very short utterances);

2. discarding all speakers with total duration of audio with perfect match less
than 10 min;

3. limiting the audio for each of the remaining speakers to 30 min6.
6 In our setup training with audio for individual speakers limited to 60min did not

improve the ASR accuracy.
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Finally, in the training corpus we obtained 148607 speech segments from 572
speakers of a total duration of 249 hours (see Table 1).

Table 2. Bulgarian ASR phonetic system

5.4 Selection of Development and Test Corpus

The speakers for the development dataset are chosen among the speakers not
included in the training corpus. First, we extracted the speakers with total audio
duration in the corpus candidates between 6 and 10 min. We obtained in total
69 speakers (21 female and 48 male speakers) with corpus candidates of total
duration of 9 h. However the corpus candidates are not suitable for development
and test because their ASR output matches perfectly the corresponding tran-
scription. Because of that we extracted the raw speeches for those speakers. A
random selection of those speeches was further manually split into sentences for
inclusion in the development corpus. Finally, we prepared for the development
corpus 173 segments from 11 speakers of total duration of 70 min. In order to
obtain a correct language model the selected speeches are removed from the text
corpus.

The dataset for the test corpus was prepared in a similar way. Instead of
using the corpus candidates, we selected new speakers and their speeches from
newer plenary sessions. The training and development datasets make use of the
records of the plenary sessions up to 30 June 2018 whereas for the testing corpus
we use the data from plenary sessions from 1 July to 30 September 2018. In
this way we ensured that the speakers and the texts in the test dataset have no
overlap with the train and development datasets. The alignment and splitting
of the segments was done manually as well. As result we produced a test corpus
consisting of 219 segments from 14 speakers with a duration of 68 min.

Table 1 summarizes the quantitative information for the three datasets in the
BG-PARLAMA corpus.
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6 ASR Experiments and Results

We present the ASR results using HMM-GMM and DNN based acoustic models
trained on the BulPhonC and the BG-PARLAMA datasets. All ASR experi-
ments are performed with the Kaldi Toolkit [10] using the dictionary and lan-
guage model described in Sect. 3 and the phonetic system presented in [5,7]
(see Table 2). This phonetic system achieved better accuracy compared to the
Bulgarian IPA phonetic system. We train three acoustic models:

Table 3. ASR word error rate of the acoustic models trained on different datasets

Acoustic model BG-PARLAMA dev BG-PARLAMA test

BulPhonC GMM 36.95% 33.43%

GMM+SAT 25.06% 21.39%

DNN 44.54% 34.25%

BG-PARLAMA GMM 16.55% 16.06%

GMM+SAT 13.32% 12.27%

DNN 7.45% 6.80%

1. GMM – a triphone hidden Markov model using Gaussian mixture models,
applying LDA and MLLT [4] (used in Subsect. 4.3);

2. GMM+SAT – a triphone hidden Markov model with the addition of speaker
adaptation with fMLLR [1,8] (used in Subsect. 5.1);

3. DNN – deep neural networks with p-norm non-linearities [13].

We used the same recipes and parameters for the models as in LibriSpeech [9].
We tested the ASR accuracy on the BG-PARLAMA development and the

BG-PARLAMA test sets. Table 3 summarizes the recognition results. As shown
in the table the DNN model trained on the BulPhonC dataset performs worse
than the corresponding GMM and GMM+SAT models. We speculate that
this is due to overfitting caused by insufficient training data. Trained on the
BG-PARLAMA dataset, however, the DNN models delivered significantly bet-
ter results. This could be explained with the much larger size of the audio data.
The best ASR result on the test data is achieved by the DNN model trained on
the BG-PARLAMA dataset – 6.80%.

We performed a preliminary analysis of the recognition errors and identified
the following two main sources of errors:

– mismatches between the speeches and their transcriptions;
– errors in the verbalizations caused by the inherent ambiguity of this task.

We plan to address those issues in future versions of the corpus.
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7 Conclusion

We described the compilation procedure for the BG-PARLAMA corpus, applying
automatic alignment and segmentation of speeches from the Bulgarian Parlia-
ment. As result we produce the largest currently available corpus of Bulgarian
speech suitable for training modern ASR systems. The presented experiments
show that the larger size of the resulting corpus (249 h) outweighs the audio
mismatches caused by the automatic alignment procedure. The ASR system
trained on the new BG-PARLAMA corpus achieves an error rate of around 7%.
The corpus is freely available for academic use.

In the future we plan to experiment with varying the model’s parameters in
order to further improve the accuracy. We also plan to explore the recognition
accuracy using the BG-PARLAMA corpus on other domains of Bulgarian speech
and language models.
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Abstract. Multi-talker speech and moving speakers still pose a sig-
nificant challenge to automatic speech recognition systems. Assuming
an enrollment utterance of the target speakeris available, the so-called
SpeakerBeam concept has been recently proposed to extract the target
speaker from a speech mixture. If multi-channel input is available, spatial
properties of the speaker can be exploited to support the source extrac-
tion. In this contribution we investigate different approaches to exploit
such spatial information. In particular, we are interested in the ques-
tion, how useful this information is if the target speaker changes his/her
position. To this end, we present a SpeakerBeam-based source extrac-
tion network that is adapted to work on moving speakers by recursively
updating the beamformer coefficients. Experimental results are presented
on two data sets, one with artificially created room impulse responses,
and one with real room impulse responses and noise recorded in a con-
ference room. Interestingly, spatial features turn out to be advantageous
even if the speaker position changes.

Keywords: Robust speech recognition and Multi-channel speech
enhancement · Speaker adaptation · Conference scenario

1 Introduction

In recent years, robust multi-channel Automatic Speech Recognition (ASR) has
been a major focus of research which led to large improvements in transcription
accuracy [1]. These gains are mainly due to the development of novel neural
network (NN) architectures [2,3] and the combination of neural network (NN)s
with well-known speech enhancement techniques like statistical beamforming
[4,5] and dereverberation [6]. However, realistic application environments often
still present a challenge to Automatic Speech Recognition (ASR) systems
because of overlapped speech and moving speakers [7].
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Recently, several promising approaches for source separation [8–10] and
source extraction [11–14] in the presence of multiple simultaneously active speak-
ers were presented. This contribution focuses on source extraction, where one is
interested in only one of the speakers in a mixture.

Different techniques have been proposed to identify the target speaker. In
the so-called SpeakerBeam (SB) approach, the target speaker is identified by
an enrollment, also called adaptation utterance (AU), which the speaker has to
provide in advance and from which his/her spectral characteristics are obtained
[11,13]. This information is then used to guide a neural network for mask esti-
mation to focus on the target speaker.

The desired speaker can also be identified by the speaker’s position as in [14],
where a neural network uses oracle information of the target speaker location to
focus on a specific source, assuming the speaker does not move. In [12] a beam-
forming vector is estimated on a keyword preceding the user’s command. While
this setting may be appropriate for operating a digital home assistant, in many
other application scenarios, such as a meeting, it would be very inconvenient if
utterances had to start with a keyword to identify and locate the target speaker.
Additionally, a fixed beamformer estimated on a AU or a keyword cannot capture
changes in the speaker position or noise statistics.

In this contribution we are concerned with the extraction of a target speaker
from multi-talker speech. We would like to take advantage of the spatial diversity
present in the speech mixture while facing the problem that the spatial char-
acteristics of the target speaker may change. To be specific, we allow speakers
to change their position from one utterance to the next. The proposed system
is based on the SpeakerBeam concept developed in [11], which we extend to a
block-online source extraction system. We assume that an AU has been recorded
for each speaker in advance, when no competing speakers are present. This AU
is used to estimate a beamforming vector, which is applied to the AU itself to
improve the extraction of the speaker embedding vector, which captures the tar-
get speaker’s spectral characteristics. It is further used to enhance the distorted
input signal of the neural network. Thereby, emphasizing all signal components
originating from the position of the target speaker during the AU. To cope with
subsequent changing speaker positions, the beamformer coefficients are recur-
sively updated.

Spatial features have proven very effective in enhancing the performance of
neural network supported acoustic beamforming [15–17]. It is, however, unclear,
to which extent they are also useful if speaker positions change. We therefore test
the effectiveness of those features by comparing results for stationary speakers
and speaker position changes between utterances. It will be shown that spatial
features computed on the speech mixtures remain to be effective.

The paper is structured as follows: In Sect. 2 a short overview over the system
is presented, where Sect. 2.1 focuses on the beamforming vector estimation and
Sect. 2.2 explains the neural network structure used for mask estimation. In
Sect. 3 the systems are evaluated on a database presented in Sect. 3.1. Final
conclusions are drawn in Sect. 4.
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2 System Overview

We assume a multi-channel signal captured by D microphones. In the short-time
Fourier transform (STFT) domain the overlapped speech Y and the adaptation
utterance A can be expressed as

Y(t, f) = Xi(t, f) +
∑

j �=i

Xj(t, f) + N(t, f) (1)

A(t, f) = U(t, f) + N(t, f). (2)

Here, Y(t, f), N(t, f) and Xk(t, f) are the STFT coefficient vectors of the speech
mixture, of the noise and of the k-th source image at the microphones. A(t, f)
represents the distorted and U(t, f) the clean AU. The time and frequency indices
t and f will be dropped wherever possible without sacrificing clarity.

2.1 Beamforming

Speech enhancement is done using the well known Minimum Variance Distortion-
less Response (MVDR) beamformer, which minimizes the noise power without
introducing distortions on signals originating from a target direction, by opti-
mizing the cost function [18]:

FMVDR = argmin
F

FHΦNNF s.t. FHH̃ = 1, (3)

where H̃ = [1, ..., H̃D]T is the target speaker acoustic transfer function (ATF)
normalized to a reference microphone, which is called relative transfer function
(RTF), and ΦNN is the noise spatial correlation matrix (SCM).

We employ the solution of the MVDR cost function in the form presented
in [19]:

FMVDR =
Φ−1

NNΦXX

tr
{
Φ−1

NNΦXX

}u, (4)

where u is a unit vector pointing to the reference microphone, tr{·} is the trace
operator and ΦXX is the target speech SCM. Here, the target speech SCM is
forced to follow the rank-1 approximation [20] by using:

Φ̃XX = aaH · tr{ΦXX}/tr{aaH} (5)

with a = ΦNNP {
Φ−1

NNΦXX

}
and P {·} as the principal component of the matrix

given in parentheses. Both the noise and target speaker SCMs are estimated
using speech and noise masks Mν , where ν ∈ [X,N]. In case of block-wise
estimation a recursive update of the SCM is applied [21]:

Φνν(nN) = βνΦνν((n − 1)N) + (1 − βν)Φ̂νν(nN), (6)
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with n as the block-index, βν as the forgetting factor and

Φ̂νν(nN) =
1

∑N−1
l=0 Mν(nN − l)

N−1∑

l=0

Mν(nN − l)Y(nN − l)YH(nN − l). (7)

In the offline (batch) case, Φνν(nN) is estimated on the whole utterance, i.e.,
βν = 0 and N is set to the number of frames in the utterance.

Equation (6) requires an initialization. The noise SCM is initialized either by
assuming white noise and thereby a diagonal matrix or by estimating the SCM
of diffuse noise:

Φdiff(f) = ϕN · sinc
(

2πf · Fmax

F
· d/c

)
, (8)

where d is the matrix of distances between the microphones, c is the velocity of
sound, Fmax the Nyquist frequency, F the number of frequency bins, and ϕN is
the noise power.

The target speech SCM may either be initialized using the RTF of the speaker
position and the rank-1 approximation Φ̃XX = ϕXH̃H̃H with ϕX as the speech
power, or using the SCM of the AU.

For comparison purposes, a second speech enhancement method is employed
using non-adaptive beamforming. A set of MVDR beamforming coefficient vec-
tors is precomputed, assuming concentrated sources at fixed, predefined posi-
tions and a diffuse noise field, as described in [22]. The predefined positions for
the FixedBF are set in a circular form around the array with 10◦ distance, a
radius of 1.5 m and 0.4 m height relative to the array, resulting in 36 positions.
During the AU phase, an acoustic source localization is performed using the
Steered Response Power - Normalized Arithmetic Mean (SRP-NAM) algorithm,
as described in [23], and the beamforming vector corresponding to the estimated
position is selected for source extraction. This method will be referred to as
FixedBF.

2.2 Mask Estimation

In this section we describe the mask estimation required for SCM updates given
in Eq. (6). It is a modified version of the SB source extraction network introduced
in [11].

The neural network for mask estimation can be split in three parts: a recur-
rent neural network (RNN) layer, followed by an adaptation layer and a clas-
sification layer, consisting of two feed forward layers (FFs). In the adaptation
layer one larger feed forward layer is split into several sub-layers. The outputs
of these sub-layers are combined prior to the application of the non-linearity σ,
using weights α:

h
(�)
k = σ

⎛

⎝
N(�−1)∑

j=1

h
(�−1)
j

M∑

m=1

αmWmjk

⎞

⎠ , k = 1, . . . , N (�) (9)
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Fig. 1. System overview of the presented spatial speaker extractor.

where h
(�−1)
j is the output of the j-th node in the preceding, (� − 1)-st, layer,

and h
(�)
k the k-th node output in the �-th layer. N (�) is the number of nodes in

layer �, Wmjk the learn-able weight matrix coefficients, where m indicates the
sub-layer, and M the number of adaptation weights. Here, α = [α1, ..., αM ]T is
provided by an Auxiliary Network (AUX), to which the AU is used as input.
This enables the mask estimator (ME) to focus on the speaker which was present
during the AU.

The SB approach shows a degradation in performance when applied in a
scenario with overlapping speakers with similar spectral characteristics as is
observed in speakers of the same gender. To alleviate this problem spatial infor-
mation is employed, assuming that the target speaker spoke the AU and his
contribution to the speech mixture Y from the same position in the room. First,
both the AU and the distorted signal Y are enhanced using a beamformer esti-
mated from the SCM calculated on the AU as described above. Additionally,
spatial features as described in [16] are extracted from both the AU and Y:

cosIPD(t, f, p, q) = cos (∠yt,f,p − ∠yt,f,q) , (10)
sinIPD(t, f, p, q) = sin (∠yt,f,p − ∠yt,f,q) , (11)

where p, q are channel indices and ∠ is the phase operator. In the case of more
than two channels all combinations of channel pairs are employed. However, at
the output of the auxiliary network a mean pooling over the channel pairs is
carried out to allow a more robust estimation in case of defective channels.

Furthermore, a beamformer is estimated on the AU. This beamformer, called
“initial beamformer” in the following, is used to enhance the AU and the mixed
speech to compute enhanced features.

To summarize, three sets of features are input to the AUX and mask estima-
tion network: first, log-spectral features computed from the observed microphone
signals, second, enhanced log-spectral features obtained after applying the ini-
tial beamformer to the microphone signals, and third, the aforementioned spatial
features.
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Fig. 2. System overview of the spatial speaker extractor reusing the estimated beam-
forming vector as initial beamformer for the next block of frames.

A block diagram of the presented system is depicted in Fig. 1.
Both the features computed from the initial beamformer and the spatial

features computed on the AU are informative only under the assumption that
both the speech of the target speaker in the speech mixture and the AU originate
from the same position in the room. Therefore, a system dependent on these
features will probably fail in a moving speaker scenario. However, the spatial
information computed from the speech mixture can still be beneficial to extract
the target speech, in particular if the competing speaker has similar spectral
characteristics.

We propose to use a block-online recursive mask estimation system as
depicted in Fig. 2. The initial beamformer estimated on the AU is used to
enhance the first block of input frames which in turn are used to update the
SCMs and estimate a new beamforming vector. This new beamforming vector
then replaces the initial beamformer coefficients to compute the above mentioned
set of enhanced features on the next block of frames. By this recursive update the
enhanced feature set remains able to capture valid information in the presence
of speaker movement or changes in the noise statistics.

3 Experiments

The presented systems are compared using four evaluation metrics: signal to
distortion ratio (SDR) following the implementation presented in [24], an “inva-
sive” SDR (InvSDR) [25], whereby the speech and the distortion are separately
processed by the beamformer, and the SDR is computed as the power ratio of the
resulting two outputs, the intelligibility measure STOI [26] and the perceptual
speech quality metric PESQ [27]. All systems will be evaluated in terms of their
gain compared to the signal at a reference microphone prior to the enhancement.
Additionally, the systems are evaluated in terms of Word Error Rate (WER) of
a subsequent Automatic Speech Recognition (ASR) system.

All signals are recorded or resampled with 8kHz. For the STFT computation,
a 512-point FFT is used with a Hann window and an 75% overlap, resulting in
257 frequency bins for each time frame. The ME consists of an LSTM layer of
1024 units, two feedforward layers with 1024 units each and one output layer.
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The first feedforward layer is split into 30 sub-layers for the SB approach. The
auxiliary network has two feed-forward layers of 50 units each and an output
layer of 30 units, as in [11]. Finally, for the block-online estimation we use a
block size of N = 5 frames, corresponding to 80 ms.

Fig. 3. Sketch of one of the meeting rooms the impulse responses and noises were
recorded in. Room size approx. 4m × 6m. Drawn true to scale.

3.1 Database Description

We evaluate the proposed source extraction system on two databases. The first
is the one described in [28], which consists of 30000 training, 500 development
and 1500 evaluation examples. Each example is created by randomly choosing
two utterances from the Wall Street Journal (WSJ) database and convolving
the signals with six-channel room impulse responses (RIRs) with reverberation
times T60 ∈ [20 ms, 500 ms] simulated by the Image Methode [29]. The shorter
of the generated multi-channel signals is padded with zeros to arbitrarily fall
in the duration of the longer signal. The observation utterance then consists of
the sum over both utterances, to which white Gaussian noise with an Signal to
Noise Ratio (SNR) of 15 to 25 dB is added. The speaker sets of training, devel-
opment and evaluation sets are mutually exclusive. Therefore, we characterize
the database as open. For the AU we convolve a second utterance spoken by the
target speaker with the same RIR and add white Gaussian noise. This database
will be referred to as RirSim and is used for all parameter tuning and network
training.

The second database is created similarly to the one described above, how-
ever the RIRs and the noise are replaced by real signals recorded in a con-
ference scenario. The real RIRs and noises were recorded using a flat 8-channel
Microelectromechanical systems (MEMS) microphone array, 7 cm × 10 cm in size
and of elliptic shape. The recordings took place in two different meeting rooms
with reverberation times of T60 ≈ 1s at the premises of voice INTER connect
GmbH in Dresden. Figure 3 shows the floor plan of one of these rooms. The
microphone array was flush-mounted at the center of the meeting room table
in both cases. The table height is 0.73 m. Impulse responses for ten different
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Table 1. Gains of the beamformer output compared to the signal at a reference micro-
phone w.r.t. different performance measures, and word error rate for different feature
sets of the speaker extraction system on RirSim.

Method Add. features ΔSDR ΔInvSDR ΔSTOI ΔPESQ WER

Enhanced Spatial dB dB %

Offline – – 6.48 6.49 0.10 0.26 32.66

– ✓ 9.54 9.36 0.14 0.40 29.43

✓ – 10.16 10.22 0.16 0.46 27.32

✓ ✓ 11.09 11.07 0.16 0.51 23.50

Online ✓ ✓ 7.57 9.00 0.15 0.41 30.61

lateral speaker positions per room were recorded using a coaxial loudspeaker at
an assumed human speaker’s mouth height of 1.15 m. The speaker positions for
the depicted room, together with their directions of view, are shown as squares
with arrows in Fig. 3. Four different types of typical meeting room noise sources
(air-conditioning, paper shuffling, projector, typing noises) were recorded using
the microphone array. The database thus created will be called RirReal.

3.2 ASR Backend

The Automatic Speech Recognition (ASR) backend used the wide residual net-
work structure proposed in [30] with logarithmic mel filterbank input features
and two Long-Short-Term-Memory (LSTM) layers. This acoustic model is com-
bined with a trigram language model from the WSJ baseline script provided by
the KALDI toolkit [31]. All hyper-parameters were taken from [30]. The same
neural acoustic model, trained on the artificially reverberated WSJ utterances
of RirSim, is used for both databases. The network is trained on alignments
extracted with a HMM model trained in KALDI. The decoding is performed
without language model rescoring.

3.3 Source Extraction in Static Speaker Scenario

In Table 1 the performance of different feature sets for the extraction systems
described above are compared on the RirSim database. All systems use the log-
spectral magnitude of the observation. As additional features we compare the
log-spectral magnitude of the observation enhanced using an initial beamforming
vector estimated on the AU, spatial features according to Eqs. (10) and (11), or
both the spatial features and the enhanced signals. If the method is offline, both
the beamforming vector and mask estimation are carried out in batch mode on
the whole utterance.

All described features achieve better results than the original SpeakerBeam
system, whose performance is given in the first results row of Table 1. Even
the online system achieves better results using the additional features compared
to the original offline SpeakerBeam system. Therefore, we conclude that using
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Table 2. Gains of the beamformer output compared to the signal at a reference micro-
phone w.r.t. different performance measures, and word error rate for non-stationary
speaker on RirReal. Here Position (Pos.) 0 symbolizes the first speaker position which
is equal to the position during the AU whereas Position 1 indicates a change in the
position. “only ME” indicates that the additional spatial features are used as input to
the mask estimation network only.

Method Add. features Pos. ΔInvSDR ΔSTOI ΔPESQ WER

Enhanced Spatial dB %

FixedBF – – 0 −1.72 0.03 −0.04 63.27

1 −6.71 −0.08 −0.05 94.51

Offline ✓ ✓ 0 2.76 0.05 0.11 36.26

1 0.12 −0.02 0.03 88.82

Online ✓ ✓ 0 3.93 0.07 0.13 34.79

1 1.41 0.01 0.05 63.94

only ME 0 3.38 0.06 0.13 35.34

1 1.71 0.02 0.06 62.18

F(� − 1) only ME 0 3.43 0.05 0.11 35.12

1 2.29 0.03 0.08 50.44

spatial information is beneficial for our source extraction system in case of static
speakers. In [17] we present an in-depth evaluation of the described features in
case of static speakers.

3.4 Source Extraction in the Presence of a Speaker Position Change

To simulate a change in speaker position, we divided the WSJ database in pairs
of two utterances, where the first is convolved with the same set of RIRs as the
AU and second is convolved with a different set of RIRs than the first, while
keeping the competing speaker in the speech mixture and his/her position in the
room fixed in both utterances.

The change of the target speaker position calls for adaptive beamforming.
We thus expect the online beamformer to outperform the offline beamformer.

While the target speaker position in the first of the two utterances coincides
with the one present in the AU, this no longer holds for the second. This renders
the spatial information gained from the AUX incorrect. Table 2 displays the
extraction results achieved with different features for online and offline systems.
Note that neither the Acoustic Model (AM) nor the ME is retrained on the new
RIR and noise.

Using spatial features during mask estimation but not in the AUX improves
the extraction in case of changes in the target speaker position as can be seen in
the entry with “only ME” in the column “spatial”. Similarly, can be concluded
that it is beneficial to update the initial beamforming vector for each block of
frames, see the entry with F(� − 1) under the column “enhanced”.
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Fig. 4. Cosine distance between the block-online beamforming vector and an oracle
offline beamforming vector calculated on the speech and noise image averaged over 500
utterances. Speaker positions changed at frame #600.

Additionally, the results confirm that the extraction achieved by a recursively
updated beamforming vector is only slightly impeded by the change in speaker
position, whereas a fixed beamformer estimated once for the concatenated utter-
ances suffers significantly from changes in the speaker position. This is especially
true for the fixed beamforming vector estimated on the AU since no information
about the concurrent speaker is included in the noise SCM estimation.

To emphasize the benefits of recursive beamformer adaptation the cosine
distance between the recursively estimated beamforming vector and an oracle
offline beamformer is depicted in Fig. 4. Here, the coefficients of the offline beam-
former have been obtained separately on the first and second utterance using
the oracle speech and noise images at the microphones. The displayed tracking
curves are averaged over multiple utterances.

The figure showcases the ability of the online beamforming vector to adapt
to a change in speaker position. Furthermore, the recursive update displays an
invariance concerning the forgetting factor βν

4 Conclusion

This paper offers a thorough investigation of speaker extraction systems guided
by an AU in case of changes in the speaker position. We showcased the benefits
of recursively updating a beamforming vector and investigated the usefulness
of spatial features in case of target speaker position changes. While the spatial
characteristics of the target speaker extracted from the adaptation utterance
becomes outdated, the use of spatial features for mask estimation to extract a
target speaker from a speech mixture remains beneficial. This can be attributed
to the fact that they allow to separate speakers based on their spatial diversity,
thus not relying solely on different spectro-temporal properties of the speakers.
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17. Mart́ın-Doñas, J.M., Heitkaemper, J., Haeb-Umbach, R., Gomez, A.M., Peinad,
A.M.: Multi-channel block-online source extraction based on utterance adaptation.
In: 20th Annual Conference of the International Speech Communication Associa-
tion. Graz, Austria (September 2019)

18. Gannot, S., Vincent, E., Markovich-Golan, S., Ozerov, A.: A consolidated perspec-
tive on multi-microphone speech enhancement and source separation. IEEE/ACM
Trans. Audio, Speech, Lang. Process. PP(99), 1 (2017)

19. Souden, M., Benesty, J., Affes, S.: On optimal frequency-domain multichannel
linear filtering for noise reduction. IEEE Trans. Audio, Speech, Lang. Process.
18(2), 260–276 (2007)

20. Wang, Z., Vincent, E., Serizel, R., Yan, Y.: Rank-1 constrained multichannel wiener
filter for speech recognition in noisy environments. Comput. Speech Lang. 49, 37–
51 (2018)

21. Heitkaemper, J., Heymann, J., Haeb-Umbach, R.: Smoothing along frequency in
online neural network supported acoustic beamforming. In: ITG 2018, Oldenburg,
Germany (October 2018)

22. Fehér, T., Freitag, M., Gruber, C.: Real-time audio signal enhancement for hands-
free speech applications. In: 16th Annual Conference of the International Speech
Communication Association, pp. 1246–1250. Dresden, Germany (September 2015)

23. Salvati, D., Drioli, C., Foresti, G.L.: Incoherent frequency fusion for broadband
steered response power algorithms in noisy environments. IEEE Signal Process.
Lett. 21(5), 581–585 (2014)

24. Raffel, C., et al.: mir eval: a transparent implementation of common MIR metrics.
In: Proceedings of the 15th International Society for Music Information Retrieval
Conference, ISMIR (2014)

25. Tran Vu, D.H., Haeb-Umbach, R.: Blind speech separation employing directional
statistics in an expectation maximization framework. In: 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 241–244 (March 2010)

26. Taal, C.H., Hendriks, R.C., Heusdens, R., Jensen, J.: An algorithm for intelligibility
prediction of time-frequency weighted noisy speech. IEEE Trans. Audio, Speech,
Lang. Process. 19(7), 2125–2136 (2011)

27. Rix, A.W., Beerends, J.G., Hollier, M.P., Hekstra, A.P.: Perceptual evaluation of
speech quality (pesq)-a new method for speech quality assessment of telephone net-
works and codecs. In: 2001 Proceedings IEEE International Conference on Acous-
tics, Speech, and Signal Processing. (Cat. No.01CH37221). vol. 2, pp. 749–752
(2001)

28. Drude, L., Haeb-Umbach, R.: Integration of neural networks and probabilistic spa-
tial models for acoustic blind source separation. In: IEEE Journal of Selected Topics
in Signal Processing (2018)

29. Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room
acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)

30. Heymann, J., Drude, L., Haeb-Umbach, R.: Wide residual BLSTM network with
discriminative speaker adaptation for robust speech recognition. In: CHiME4
Workshop (2016)

31. Povey, D., et al.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on
Automatic Speech Recognition and Understanding. No. Idiap-RR-04-2012, IEEE
Signal Processing Society, Rue Marconi 19, Martigny (Dec 2011)



Improving Speech Recognition with
Drop-in Replacements for f-Bank Features

Sean Robertson1,2(B) , Gerald Penn1 , and Yingxue Wang1

1 Department of Computer Science, University of Toronto,
40 St. George St., Toronto, ON, Canada

{sdrobert,gpenn,yingxue}@cs.toronto.edu
2 Vector Institute, 661 University Ave., Toronto, ON, Canada

Abstract. While a number of learned feature representations have been
proposed for speech recognition, employing f-bank features often leads
to the best results. In this paper, we focus on two alternative meth-
ods of improving this existing representation. First, triangular filters can
be replaced with Gabor filters, a compactly supported filter that better
localizes events in time, or with psychoacoustically-motivated Gamma-
tone filters. Second, by rearranging the order of operations in comput-
ing filter bank features, the resulting coefficients will have better time-
frequency resolution. By merely swapping f-banks with other types of
filters in modern phone recognizers, we achieved significant reductions in
error rates across repeated trials.

Keywords: Speech recognition · Phone recognition ·
Time-domain filter banks · Short-integration

1 Introduction

Time-frequency decomposition of speech has long been the dominant feature
representation for speech recognition. It is often achieved through a Short-Time
Fourier Transform (STFT). The STFT and its derivatives break up a speech
signal into overlapping windows in time. Then, for a given window, a fixed num-
ber of coefficients corresponding to frequency are computed. Filtering the power
spectrum, such as in the popular f-bank representation, can reduce the dimen-
sionality of the resulting representation.

Though a number of different feature representations have been proposed,
such as 3-D time-frequency-rotation filter banks [3,18,26], learned filter repre-
sentations [17,23,25,34], and scattering transforms [2,21], state-of-the-art results
still primarily employ f-banks [24,31]. Researchers are justifiably hesitant to
change a formula that works so well.

Instead of learning a representation that is potentially drastically differ-
ent, we propose making alterations to standard f-bank features. The alterations
are intended to be fully compatible with existing speech recognizers, insofar
as they encode similar time-frequency information as f-bank features, but lead
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to improved recognition. First, we swap out triangular filters of f-banks with
filters that have more desirable theoretical properties: the Gabor and Gamma-
tone filters. Second, by swapping the order of operations in computation, we
can generate a representation that bypasses some of the time-frequency resolu-
tion constraints of windowing. These adjustments are no more computationally
expensive than f-banks, nor are they necessarily of a different dimension.

We explore the efficacy of these adjustments as drop-in replacements for f-
banks in a phone recognition task on TIMIT. Evaluation spans three near state-
of-the-art models from the literature: two hybrid recurrent models [23] and one
end-to-end neural model [36]. Critically, we do not alter the architectures or
any hyperparameters, we only make the above changes. With minimal effort on
behalf of the developer – all code is available open source through the authors’
repositories1 or COVAREP [6] – we achieve significant improvements of similar
size to novel neural architectures and learned feature representations.

2 Mel-Scaled Log Filter Banks

In the continuous domain, a filter bank coefficient k for a given frame of length
T centered at sample c is popularly calculated for signal f as [22,33]:

ΨT,f,w,h[k, c] = log
∫ ∞

−∞
ĥk

2
(ω)

∣∣∣ ̂fwcΔ,T

∣∣∣2 (ω)dω, c ∈ N (1)

Where ·̂ indicates a signal’s frequency spectrum, hk is the k-th real filter
in the filter bank {hk}k, wcΔ,T is a windowing function of temporal support T
centred at cΔ, and Δ is the frame shift.

To calculate f-bank coefficients from Eq. (1), ĥ2
k must be triangular in the

Mel-scale power spectrum, and the pointwise square-root of a triangular filter in
the Mel-scale magnitude spectrum ĥk. The Mel scale [30], inspired by psycho-
acoustic experimentation, is roughly linear with respect to frequencies below
1kHz and logarithmic above. The frequencies captured by a coefficient of the
f-bank are limited to the nonzero region of ĥk. Like the human auditory system,
f-banks have difficulty distinguishing between nearby frequencies, a problem
which becomes exacerbated the further a filter’s centre (apex) frequency is from
0 Hz.

The triangular filters are easy to calculate and have compact support in
frequency. Nonetheless, other filters may be better suited to speech recognition.
F-bank filters do not exhibit the asymmetry in frequency response (wherein
high-frequency filters exhibit large “tails” towards zero) that can be found in
human hearing [9]. We also find discontinuities at the triangle vertices, which
may generate an unnecessarily severe preference towards certain frequencies.

1 Features: https://github.com/sdrobert/pydrobert-speech CNN-CTC: https://
github.com/sdrobert/more-or-let RNN-HMM: https://github.com/sdrobert/
pytorch-kaldi.

https://github.com/sdrobert/pydrobert-speech
https://github.com/sdrobert/more-or-let
https://github.com/sdrobert/more-or-let
https://github.com/sdrobert/pytorch-kaldi
https://github.com/sdrobert/pytorch-kaldi
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Multiplying the signal with a window in time blurs the result’s frequency
responses. By the convolution theorem, ̂fwcΔ,T = f̂ ∗ŵcΔ,T . For large T , ŵ(ω) →
δ(ω), where δ is the Dirac delta function (

∫ 0+

0− δ(ω)dω = 1 and δ(ω) = 0 for
ω �= 0). Nonetheless, ŵ will have a nonzero support. This behaves similarly to
a rolling average over f̂ and effectively increases the bandwidth of all ĥ2

k. While
not particularly detrimental to wideband filters, the bandwidth of the window
can be similar to or greater than that of the narrowband filters, which can
have drastically less discriminative power at low frequencies. In effect, all filters
have a bandwidth above that of the window, limiting their overall resolution in
frequency.

For ĥk that are real-valued and positive, ĥ2
k|f̂w|2 ≡ |ĥkf̂w|2. By the con-

volution theorem and Parseval’s theorem, Eq. (1) can be rearranged into an
integration over a windowed signal that has been filtered:

ΨT,f,w,h[k, c] = C + log
∫ ∞

−∞
|hk ∗ (fwcΔ,T )|2 (t)dt (2)

where C is some constant. Equation (2) shows the insensitivity of filter bank coef-
ficients to the duration of hk, since it always integrates over the entire length of
the analysis window. Compact hk will not localize events in the signal any better
than wide hk. This is convenient for f-bank filters, as they have an extremely
wide temporal support. Were we to widen the window so that ŵ(ω) → δ(ω),
we would also integrate over a greater duration in time, wiping out additional
temporal dynamics.

We have established that the multiplication of the signal with an analysis
window limits the resolution of f-bank filters in both time and frequency. In
Sect. 5, we show how to modify Eq. (1) so that the time-frequency trade-off
is closer to optimal and better reflects the frequency response of filters in the
bank. Before that, we discuss two filters compatible with Eq. (1) that have more
desirable properties than square-root triangular filters.

3 Gabor Filters

Gabor filters have been explored in a variety of contexts. 2-D Gabor filters are
often applied to spectrograms (or log spectrograms) to produce a collection of 3-
D spectral-temporal-rotational features [3,18,26]. The filters’ 2-D construction
allows the bank to capture meaningful geometric structures, such as formant
movement. Likewise, 2-D Gabor bases have been learned as convolutional layers
[4]. The present paper focuses on the design and evaluation of spectrogram-like
features, rather than a set of features derived from a spectrogram. Dimitriadis
et al. [8] designed a Mel-scaled Gabor filter bank much like the one presented
here, but it was employed in an HMM-based architecture, not a neural network.
Recently, Zeghidour et al. [34] trained end-to-end CNNs for phone recognition
with weights initialized to a Gabor filter bank.
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Gabor filters are simply Gaussian windows with a complex carrier. They are
defined in time as

hk(t) = Ce
− t2

2s2
k

+iξkt
(3)

To design the filter bank, centre frequencies ξ are sampled along the
Mel-scale. Neighbouring filters’ frequency responses intersect at their −3dB
bandwidths.

Gabor filters have a provably optimal time-frequency trade-off [19]. Their
regions of effective support in both time and frequency are bounded above by a
Gaussian window. Equation (2) suggests that improvements to time resolution
will be under-appreciated by standard filter bank representations due to the
effects of windowing, but, with the modifications to filter banks described in
Sect. 5, the effects of windowing will be minimized.

The Gabor filter has a symmetric frequency response. Log-linear scales of
speech perception, such as the Mel scale, are decidedly asymmetric. The Gam-
matone filter helps mitigate this trade-off.

4 Gammatone Filters

Gammatone filters were derived by Flanagan [9], and formalized by Aertsen et al.
[1]. Their skewed frequency responses lend themselves nicely to existing models
of speech perception. Gammatone filters have been employed in ASR directly
[27,29] and have been used as a starting point in learned feature representations
[25,35].

The complex Gammatone filter is defined in time as

hk(t) = Ctn−1e−αt+iξktu(t) (4)

Where n is the order of the Gammatone, usually set to 4, which controls the
asymmetry of the envelope of h.

The Gammatone does not have an optimal time-frequency trade-off like the
Gabor filter. It is still much more compact in duration than square-root triangu-
lar filters, but tapers very slowly to zero outside of the filter’s bandwidth. The
Gammatone replaces compact localization with biological plausibility.

5 Short Integration

As is shown in Sect. 2, windowing widens the bandwidth of the narrowband filters
in the f-bank, a form of spectral leakage. Increasing the width of the window will
decrease the magnitude of the spectral leakage. However, a wider window will
capture more of the signal in time, decreasing its temporal resolution. Deriving
inspiration from scattering transforms [2,20], we can modify Eq. (1) to mitigate
the effects of windowing.
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The following relationship was described by Mallat [20]. Assuming hk(t) =
φk(t)eiξkt ↔ ĥk(ω) = φ̂k(ω − ξ), where φk is a low-pass filter, for an arbitrary
signal, f , we find:

|(f ∗ hk)(t)| =
∣∣eiξkt(fk ∗ φk)(t)

∣∣ = |(fk ∗ φk)(t)| (5)

where fk(t) = f(t)e−iξkt shifts the frequency response of f such that f̂(ξk) =
f̂k(0). Equation (5) shows that, for band-pass hk, the point-wise modulus on
filtered signals produces a low-frequency signal. A subsequent low-pass window
can be used to capture much of that energy.

Existing work that uses scattering in speech has focused on wide windows
and recursive filter bank computations [2,21]. Wide windows guarantee greater
translation invariance in the representation [20], and recursive filtering quickly
captures the energy that those wide windows fail to capture. Though later filter-
ing does capture the time dynamics of a signal, it captures interferences which
no longer resemble a spectrogram.

As translation invariance is an oxymoronic property of an accurate time-
frequency feature representation, we forego wide windows and cascades of fil-
tering operations. The following is the short integration method of feature
computation:

Ψf,w,h,p,T [k, c] = log (|f ∗ hk|p ∗ wT ) [cΔ] (6)

Where p ∈ N, and {hk} is some set of filters. The low-pass quality of the modulus
means that Eq. (6) will tend to vary more gradually than a direct convolution
f ∗ hk. The primary role of windowing is to avoid any aliasing induced by sub-
sampling vis-à-vis the frame shift Δ. For convenience, we choose T = 2Δ, but T
can be chosen so that filtering with w ensures the critical sampling rate is ≤ Δ.

w still limits the temporal resolution of the representation, but, for short
w and wide hk, the greater impact to resolution will come from the filter. For
those low-frequency filters, Eq. (1) will have better temporal resolution than Eq.
(6). This trade-off can be optimized by employing filters with compact temporal
support, such as the Gabor filter.

Finally, short-integration coefficients have the same computational complex-
ity as STFT-based coefficients. With the overlap-save method of convolution,
short integration requires wider FFTs and must involve an inverse FFT, but,
unlike STFT-based coefficients, the resulting modulated signal can be used to
calculate the coefficients of additional frames.

6 Experiments

In order to explore the efficacy of filter types and methods of computation in
speech recognition, we test them as drop-in replacements for f-banks in three
modern recognizers and measured their effects on Phone Error Rates (PERs).
The first, based on the work of Zhang et al. [36], is an end-to-end fully Con-
volutional Neural Network (CNN) with a Connectionist Temporal Classifica-
tion (CTC) [14] loss function, hereinafter referred to as the CNN-CTC model.
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The remainder are two hybrid Recurrent Neural Network (RNN) and Hidden
Markov Model (HMM) hybrids proposed by Ravanelli et al. [24]. Hybrid models
were originally proposed by Deng et al. [7]. The CNN-CTC model was imple-
mented from scratch using Keras [5]. The RNN-HMMs are from an existing
repository2.

The TIMIT phone recognition task allows for fast experimental comparison
and reduces the impact of language modelling on experimental results. Much of
the data preparation was performed with Kaldi’s timit/s5 recipe [22]. The RNN-
HMMs bootstrap the HMM topology of the speaker-dependent HMMs trained
in the recipe.

A critical aspect of the experimental design is that no architectural or opti-
mization decisions are based on the feature modifications. Both model types
– CNN-CTC and RNN-HMM – were designed to work with f-banks. Debug-
ging the architectures and any additional optimization required was performed
solely on f-banks, though experiments had to be re-run when debugging feature
implementations.

6.1 Models

The CNN-CTC model consists mostly of convolutional layers with maxout acti-
vations [13]. Maxout activations take the per-unit maximum of the output of
at least two weight matrices that have received the same input. This (at least)
doubles the number of trainable weights in memory. After discussion with Zhang
et al. [36], we halved the weights listed in the paper so that the total number
of parameters matched 4.3 million. The network has 10 convolutional layers,
followed by 3 time-distributed fully-connected layers.

Two types of RNN cell are explored for RNN-HMM acoustic modelling: Long-
Short Term Memory cells (LSTMs) [15], a mainstay in RNN architectures; and
the modified Rectified Linear Unit-Gated Recurrent Unit, also called liGRU, pro-
posed by Ravanelli et al. [24]. We use the repository’s default architecture settings,
which are slightly different from those reported in that paper, but purportedly
achieve lower PERs. The LSTM model has 4 bidirectional layers for a total of 8
hidden layers, followed by a time-distributed fully-connected layer. With fewer
parameters per cell, 5 bidirectional layers are employed in the liGRU model.

6.2 Training and Decoding

The training and decoding processes are similar to that of their source papers.
For the CNN-CTC model, training is broken up into two phases: the former

with an aggressive learning rate and no weight regularization; the latter with a
small learning rate and weight regularization. Each stage ends when a model’s
validation loss has not improved over 50 epochs. As large beam widths almost
always lead to better error rates, a fixed width of 100 is employed.

2 https://bitbucket.org/mravanelli/pytorch-kaldi-v0.0/src/master/.

https://bitbucket.org/mravanelli/pytorch-kaldi-v0.0/src/master/
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The only difference between our experiments and those of the RNN-HMMs’
source repository is the decoding process. The authors use a prior version of the
Kaldi TIMIT scoring script, which removes silence tokens from both the refer-
ence and hypothesis transcripts. Removing silences reduces the PER of tested
models by about 1–2% absolute. Second, a Kaldi standard is to tune decoding
hyperparameters, specifically the language model rate, according to whichever
setting is best on the test set. Instead, we use the best setting from the devel-
opment set on the test set.

6.3 Features

The models are trained on four feature sets whose time-frequency matrices are
of identical shape. F-bank is our implementation of the standard log Mel-scaled
triangular filter bank. G-bank combines the STFT-based coefficients from Eq.
(1) with Gabor filters from Eq. (3). Tone-bank is likewise for Gammatone filters
from Eq. (4). and sif-bank, sig-bank, and sitone-bank are the short-integration
analogues (Eq. (6)) of f-bank, g-bank, and tone-bank, respectively.

For the STFT-based computations, 40 log filters plus one energy coefficient
are calculated every 10 ms over a frame of 25 ms. The short-integration filters’
window size was chosen to be 20 ms. Filters are spaced uniformly on the Mel-
scale between 20 Hz and 8000 Hz. For the CNN-CTC model, deltas and double
deltas are included, totalling 123 dimensions. Only the original 40 filters plus
energy are provided to the RNN-HMMs. Pre-emphasis, dithering, and compres-
sion were enabled at their standard Kaldi values. An additional baseline, kaldifb,
was included to test Kaldi’s built-in f-bank implementation as a sanity check.
Ravanelli et al. reported much improved PERs by using fMLLR features, so we
also test them for RNN-HMMs. Here, fMLLR is actually a composite of three
linear transforms applied to the features: first, linear discriminant analysis on
concatenated sequential frames; second, global semi-tied covariance [12]; and
third, speaker-adaptive constrained maximum likelihood regression [11]. The
latter two are iteratively trained via expectation maximization using tri-state
diagonal-covariance GMMs.

6.4 Evaluation

To evaluate the performance of the proposed filters and computations, we per-
form a hybrid non-parametrical statistical analysis. To limit multiple compar-
isons, we treat changing the filter type and changing the computation as sepa-
rate improvements. To compare filter types, we fix computations to the original
STFT-based method. To compare computations (STFT versus short integra-
tion), we fix the square-root triangular filters. We correct for the 6 comparisons
using the Holm-Bonferroni method [16].

10 independent training and testing cycles – trials – are repeated for each
type of acoustic model: CNN-CTC, LSTM, and liGRU. Trials differ only in the
choice of seed, which controls weight initialization and, in the case of CNN-
CTC, utterance ordering. Within each architecture, the seed for a specific trial
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number is fixed across feature types. Each trial PER is considered a sample for
that filter/computation combination.

We use ranked non-parametrical statistics to evaluate significance. A rejected
null hypothesis indicates that one or more variables are ranked consistently
higher or lower than the rest, though not to what degree. We performed Wilcoxon
tests [32] to compare computations and Friedman tests [10] to compare filters.

7 Results and Discussion

For the CNN-CTC architecture, we found that one seed – the same seed for each
combination of filters and computations – failed to converge, with PERs around
70%. Those trials were removed from analysis, leaving 9 trials in the CNN-CTC
condition.

Table 1 lists the six aforementioned experimental conditions, ordered by
ascending p value. With α = 0.05 and Holm-Bonferroni correction, only the
highest-ranked comparison, namely comparing filter types in the liGRU STFT
condition, is significant.

Since we found a significant difference between filter types in the liGRU
condition, we performed pairwise comparisons of filter types in a post-hoc eval-
uation to tease out which filters differed significantly from the others. Table 2
lists the results of the comparisons. fMLLR-based features and tone-bank fea-
tures differ significantly in rank from all other feature types. Combining these
results from the descriptive statistics listed in Table 3, it is clear that fMLLR

Table 1. Experimental statistics, architectures, and comparison type, ordered by
ascending p value. filt is a comparison of filter types, comp of computations

Arch Comparison Statistic

liGRU filt Q = 22.243, p < 0.001

LSTM comp W = 6.000, p = 0.028

liGRU comp W = 8.000, p = 0.047

LSTM filt Q = 9.505, p = 0.050

CNN-CTC filt Q = 5.933, p = 0.115

CNN-CTC comp W = 13.000, p = 0.260

Table 2. Post-hoc comparisons of PER rank. ∗ ∗ p < 0.01; ∗p < 0.05, ∼ p ≥ 0.05

fMLLR kaldifb f-bank g-bank

kaldifb ∗∗
f-bank ∗∗ ∼
g-bank ∗∗ ∼ ∼
tone-bank ∗∗ ∗∗ ∗ ∗
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features performed much worse than the other features, whereas tone-bank fea-
tures performed much better.

We may observe that, irrespective of Holm-Bonferroni correction, short inte-
gration performs much worse than STFT-based computations when combined
with f-bank filters and RNN-HMMs. This result does not appear to apply to all
short-integration filter banks: additional post-hoc comparisons reveal the signifi-
cant differences are between tone-bank and sitone-bank with tone-bank preferred
(W = 5.000, p = 0.038) and between g-bank and sig-bank with sig-bank preferred
(W = 4.000, p = 0.028). Regardless, short integration does not appear to be a
suitable drop-in replacement for STFT-based methods without additional con-
siderations for both filter type and model architecture.

Table 1 tells us that the relative ranks of conditions did not vary as wildly
in the CNN-CTC condition versus RNN-HMMs. The considerable variance
in results is large enough to discount the differences in PERs in Table 3.

Table 3. Descriptive statistics of PER (%) over experimental conditions

Arch Cond N Mean Med Std Min Max

CNN-CTC f-bank 9 18.60 18.61 0.22 18.25 18.96

sig-bank 9 18.68 18.57 0.36 18.31 19.33

tone-bank 9 18.71 18.64 0.27 18.28 19.14

sif-bank 9 18.74 18.75 0.26 18.21 19.11

sitone-bank 9 18.75 18.81 0.30 18.30 19.17

g-bank 9 18.77 18.82 0.26 18.48 19.17

kaldifb 9 18.82 18.86 0.14 18.61 19.03

LSTM g-bank 10 16.13 16.15 0.29 15.60 16.60

kaldifb 10 16.20 16.20 0.22 15.90 16.60

tone-bank 10 16.23 16.20 0.31 15.80 16.70

f-bank 10 16.31 16.30 0.18 16.10 16.70

sig-bank 10 16.32 16.40 0.26 15.80 16.60

sitone-bank 10 16.33 16.35 0.16 16.10 16.50

fMLLR 10 16.59 16.65 0.26 16.10 17.00

sif-bank 10 16.70 16.75 0.34 16.20 17.20

liGRU tone-bank 10 15.75 15.70 0.24 15.50 16.20

sig-bank 10 15.89 15.90 0.10 15.70 16.00

sitone-bank 10 16.01 15.95 0.19 15.80 16.40

kaldifb 10 16.07 16.05 0.16 15.80 16.30

f-bank 10 16.08 16.10 0.25 15.70 16.40

g-bank 10 16.09 16.10 0.17 15.70 16.30

sif-bank 10 16.51 16.50 0.34 16.00 16.90

fMLLR 10 16.53 16.50 0.21 16.30 16.80
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We hypothesize that end-to-end models spend much of their time learning to
predict sequences of phones, rather than look for more evidence in the features.
If so, end-to-end models will, in general, benefit less from feature engineering.

In contrast, the benefits of swapping features in the RNN-HMM cases
are more obvious. Table 3 tells us that, by fixing the f-bank features and
swapping from LSTM to liGRU architectures, we achieve an absolute error
rate improvement of, on average, 0.23% (W = 7.5, p = 0.041). Switching
from f-bank to tone-bank features for the liGRU architecture buys an average
0.33% (W = 6.0, p = 0.028) improvement. Admittedly, the improvement from
switching architectures generalizes better across features than switching between
two fixed features across architectures. Since the features are drop-in replace-
ments for f-banks and require no additional computation cost, it is relatively
easy to compare multiple features to f-banks and acquire similar significant gains
(f-bank vs. g-bank in LSTMs leads to 0.18%, W = 28.000, p = 0.007). Hence,
the feature engineering that we have undertaken in fact leads to significant gains
of the same order as improved neural architectures without much effort.

Finally, we turn to how these results compare with recent literature on
learned filter representations. By swapping f-bank features with two trainable
layers that have been initialized to resemble a sig-bank, Zeghidour et al. [34]
improved their PER from 18.1% to 18.0%. Schneider et al. [28] reported a
2.9% PER improvement over a baseline of 17.6% (silence phones removed), but
required pre-training an addotopma; neural network on corpora which are tens
and hundreds of times the size of TIMIT. Ravanelli and Bengio [23] reported
an impressive average 1.1% PER improvement over an 18.1% baseline by learn-
ing the bandwidths of filters, though learning directly from the raw signal led to
only marginal improvements over f-banks (0.1%). When applied to other corpora
[17,25,35], we find that single-layer learned representations offer improvements
to error rates which are similar to those we observed when swapping fixed filters.
In order to obtain those improvements, moreover, learned representations often
must initialize their weight matrices to resemble a fixed filter bank. We must
therefore conclude that the low-hanging fruit borne merely of swapping filters
using a better understanding of signal processing, while perhaps not as flam-
boyant as its savoury “deep-learning” cousins, has not yet entirely fallen. This
remains an effective, relevant, and low-cost method of improving error rates.

8 Conclusion

In this work, we have presented alterations to the standard time-frequency rep-
resentation for speech-recognition: the f-bank. First, we replace the square-root
triangular filters of f-banks with Gabor filters or Gammatone filters. Second,
we modify the traditional, STFT-based filter coefficients so that time and fre-
quency information may better reflect the duration and bandwidths of filters in
the bank. Merely swapping filter types lead to significant improvements in error
rates. With minimal effort on the part of the developer, we achieve improvements
of a similar order of magnitude to improving the model architecture or learning
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a new feature representation. We found no single best filter for all recognizers;
it is critical to explore different features across architectures and data. To this
end, all of our code is available open source and online.

The second improvement, short integration, did not appear beneficial as a
drop-in replacement for STFT-based features. It should be emphasized, however,
that this experiment focused on replicating existing recognition setups, includ-
ing model architectures and hyperparameters like filter placement, frame shift,
and learning rate. Tuning hyperparameters, permuting existing architectures, and
developing new architectures that can exploit the high-resolution information that
short integration provides remains an important topic for further investigation.
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Abstract. Recognition of Hungarian conversational telephone speech
is challenging due to the informal style and morphological richness of
the language. Recurrent Neural Network Language Model (RNNLM)
can provide remedy for the high perplexity of the task; however, two-
pass decoding introduces a considerable processing delay. In order to
eliminate this delay we investigate approaches aiming at the complexity
reduction of RNNLM, while preserving its accuracy. We compare the
performance of conventional back-off n-gram language models (BNLM),
BNLM approximation of RNNLMs (RNN-BNLM) and RNN n-grams in
terms of perplexity and word error rate (WER). Morphological richness
is often addressed by using statistically derived subwords - morphs - in
the language models, hence our investigations are extended to morph-
based models, as well. We found that using RNN-BNLMs 40% of the
RNNLM perplexity reduction can be recovered, which is roughly equal
to the performance of a RNN 4-gram model. Combining morph-based
modeling and approximation of RNNLM, we were able to achieve 8%
relative WER reduction and preserve real-time operation of our conver-
sational telephone speech recognition system.

Keywords: Speech recognition · Neural language model · RNNLM ·
LSTM · Conversational telephone speech ·
Morphologically rich language

1 Introduction

Recognition of conversational telephone speech poses great challenge due to the
low acoustic quality (limited bandwidth, speaker noises, lossy compression etc.)
on the one hand and high perplexity of spontaneous speaking style on the other
hand. The less constrained grammar and word order of informal speech make the
language model estimation less accurate due to the increased variability of both
the individual words and their possible sequential combinations. Data sparsity
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): SLSP 2019, LNAI 11816, pp. 223–234, 2019.
https://doi.org/10.1007/978-3-030-31372-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31372-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-31372-2_19


224 B. Tarján et al.

issues caused by morphological richness of the language or lack of sufficient
training data make the problem even harder.

In the last few years neural networks have been successfully applied in the
field of language modeling [2,11]. Recurrent networks have proved particularly
efficient for the task [11] especially if they exploit Long Short-Term Memory
(LSTM) units [8,17]. However, the RNNLMs have a vast amount of inner states
that makes their usage in the first-pass of an Automatic Speech Recognition
(ASR) system computationally infeasible. RNNLMs hence are usually utilized
in a second decoding pass for rescoring the hypotheses obtained with a less
heavy LM. The two-pass decoding, however, introduces a considerable processing
delay [7,17].

Various techniques have been proposed to address direct applicability of
RNNLMs in the single-pass decoding scheme. A possible solution is to approx-
imate the probability distributions of RNNLMs with conventional back-off n-
gram language models [1,2,6]. Although the converted model (RNN-BNLM)
loses its ability to model long contexts and distributed input features, it can
be directly applied for first-pass decoding that makes these techniques attrac-
tive. Recently another approach called RNN n-gram has also been introduced [3].
RNN n-gram language models are special recurrent networks trained on n-grams
sampled from the training data. As a consequence, the size of the modeled con-
text here is also limited, but RNN n-gram models are able to learn word embed-
dings just like standard RNNLMs.

Our ambition in this paper is to compare conventional BNLMs, RNNLMs
and n-gram approximated RNNLMs in a morphologically very rich language,
Hungarian. The rich morphology of Hungarian allows for a weakly constrained
word order, and per se, results in an extreme large vocabulary. We, moreover,
go for spontaneous speech. All of these three effects – varying word order, large
vocabulary and spontaneity – hamper statistic models’ ability to yield consistent
estimates by high confidence. Since data sparsity issues can be often handled by
estimating language models on statically derived subword units (morphs) [5,9,
10] in morphologically rich languages, we extended our investigation to morph-
based language models, as well.

Besides the related work already cited, another paper, written by Tüske
et al. [20] is also closely related to our work. In this comprehensive study a
RNNLM, RNN n-gram models and BNLMs are compared on various English
and German ASR tasks. RNN n-gram models were found to be superior to
BNLMs both in terms of word perplexity and WER, whereas high order RNN
n-grams were close to the performance of an unrestricted RNNLM. However,
in [20] ASR results were obtained with two-pass decoding, and German (and
obviously English) morphology is less complex than Hungarian.

Although subword language modeling has been used in morphologically rich
Finnish ASR systems for more than a decade now [5,9], it was not found
beneficial for spontaneous conversational speech until recently. In [7], sub-
word RNNLMs were trained on Finnish and Estonian conversations and used
for rescoring lattices generated with conventional back-off models. Subword
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language models have already been applied successfully for recognition of Hun-
garian conversational speech [10,19], but neural language models have not been
used before to the best of our knowledge. We found only one mention of appli-
cation of morph-based approximated RNNLMs in the first pass of an ASR sys-
tem [13]. This is, however, a preprint paper from which the most relevant subword
results are missing.

Overall, we consider the main contributions of our work are (1) presenting
the first ASR results with using morph-based RNN-BNLMs in single-pass decod-
ing; (2) comparing the performance of BNLMs and n-gram approximations of
RNNLM (RNN n-gram models, RNN-BNLMs); (3) carrying out for the first time
an evaluation of neural language models on very rich morphology Hungarian for
speech recognition tasks on spontaneous speech; and (4) doing this preserving
real-time operation capabilities by low delay.

In next section the experimental database is introduced along with the
applied preprocessing techniques. In Sect. 3 we describe the techniques we used
for training our different types of language models. Next Sect. 4 presents the
experimental results, while in the conclusions we highlight the most impactful
outcome of our work.

2 Database

2.1 Training Data

Original Data. Our experiments were performed on anonymised manual tran-
scripts of telephone customer service calls which were collected from the Hun-
garian Call Center Speech Database (HCCSD). We selected 290 h of recordings
from HCCSD for training purposes. The corresponding transcripts that were
used for building the language models consisted of 3.4 million word tokens and
contained 100,000 unique word forms. In order to accelerate the training of recur-
rent networks only the most frequent 50,000 word forms were retained in the
final vocabulary. Out-Of-Vocabulary (OOV) words and sentence endings were
replaced with 〈unk〉 and 〈eos〉 symbols respectively.

Morph Segmented Data. Language modeling of morphologically rich lan-
guages poses a great challenge, since the large number of word forms cause data
sparseness and high OOV rate. A common remedy is to segment words into
smaller parts and train language models on these subword sequences [9,10]. One
of the most popular statistical word segmentation algorithm is Morfessor [5],
which was specifically designed for processing morphologically rich languages.
We applied the Python implementation of the original algorithm called Mor-
fessor 2.0 [21]. Hyperparameters of the segmentation were optimized on the
validation test set (see Sect. 2.2).

Morph segmentation increased the number of tokens in the training text with
around 12% (from 3.4 million to 3.8 million). However, number of types decreased
to around 32,000 from 100,000. In order to provide sufficient amount of training
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samples to 〈unk〉, the vocabulary size of morph-based models was limited in
30,000 morphs. Sentence endings were replaced with 〈eos〉 just like in the case of
word-based text data. Non-initial morphs of every word were tagged to provide
information to the ASR decoder for the reconstruction of word boundaries (see
left-marked style in [14]).

2.2 Test Data

Almost 20 h of conversations were selected from HCCSD for testing purposes.
The test dataset was split into two disjoint parts (see Table 1). The validation
set (∼7.5 h) and the corresponding text transcripts were used for optimization
of the hyperparameters (e.g. learning rate control, early stopping), whereas eval-
uation set (∼12 h) was used to test the models and report experimental results.
Morph-based segmentation of evaluation dataset was performed with Morfessor
2.0 toolkit using the segmentation model we optimized on the validation set.

Table 1. Test database statistics

Validation Evaluation

Duration [h:m] 7:31 12:12

# of word tokens 45773 66312

# of morph tokens 57849 84385

word OOV rate [%] 2.7 2.5

morph OOV rate [%] 0.07 0.08

3 Language Modeling

3.1 Back-Off N-Gram Models

The conventional, count-based, back-off language models (BNLMs) were trained
using the SRI language modeling toolkit [15]. In order to maximize their per-
formance, the baseline BNLMs applied neither count-based n-gram cut-offs nor
entropy-based pruning [16]. All BNLMs were estimated on cross-sentence n-grams
and smoothed with Chen and Goodman’s modified Kneser-Ney discounting [4].

3.2 Recurrent Language Model

The 2-layered LSTM RNNLM structure we used in our experiments is illustrated
in Fig. 1. This type of network has already been successfully applied for other
language modeling tasks [3,22]. Our implementation1 is based on the TensorFlow
sample code of the Penn Tree Bank language model presented in [22].

1 https://github.com/btarjan/stateful-LSTM-LM.

https://github.com/btarjan/stateful-LSTM-LM
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The hyperparameters of the neural network were optimized on the validation
set. One batch consists of 32 sequences containing 35 tokens each (words or
morphs). LSTM states are preserved between the batches, so stateful recurrent
networks are trained according to TensorFlow terminology. The 650 dimension
word/morph embedding vectors are trained on the input data, since we did
not find any benefit of Hungarian pretrained embeddings. In order to match
the dimensionality of embeddings the output dimension of LSTM neurons is
also set to 650. After testing several optimization algorithms, we decided on the
momentum accelerated, Stochastic Gradient Descent (SGD). The initial learning
rate was set to 1, which is halved after every epoch where the cross entropy loss
increases. For regularization purposes, dropout layers with keep probability of
0.5 and early stopping with patience of 3 epochs are applied.

Fig. 1. The recurrent LSTM language model structure used in our experiments

3.3 RNN N-Grams

Although RNNLM can model word sequences with outstanding accuracy [11,17],
the need for large context prevents its practical use in many cases. The modeled
context can be reduced if we organize training data into n-grams [3]. It was
shown that this limitation of history length does not necessarily have a drastic
impact on perplexity [20].

Two examples for the many-to-one structure of our RNN n-gram implemen-
tations are illustrated in Fig. 2. The hyperparameters and optimization used in
RNN n-gram training were the same as those we applied for the RNNLM – except
for the sequence length and batch size. Sequence length of RNN n-grams depends
on the actual n-gram order (n-1), whereas – thanks to the shorter sequences –
RNN n-grams can use a larger batch size (512). An additional important differ-
ence compared to RNNLM is that RNN n-gram models do not apply dropout
between the two LSTM layers.
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Fig. 2. Two examples for the applied RNN n-gram structures (3-gram and 4-gram)

3.4 Approximation of RNNLM with BNLM

There are various approaches for the approximation of an RNNLM with a back-
off ngram language model [1,6]. In [1] three methods are compared and a text
generation based approximation is suggested. The main idea of this approach
is that the BNLM is estimated from a large text which was generated with
the RNNLM. For training the RNN-BNLM models we generated 100 million
words/morphs with the corresponding RNNLM (RNN-BNLM 100M). In order
to assess the importance of corpus size, we generated a text with 1 billion morphs
(RNN-BNLM 1B), as well. The generation of 1 billion morphs took around
one week with four NVIDIA GTX 1080 Ti GPUs. Note, that perplexity results
in Sect. 4.1 were measured with unpruned RNN-BNLM models, whereas RNN-
BNLMs used in ASR decoding are pruned to limit runtime memory usage.

4 Experimental Results

In the first part of this section, we present perplexities measured on the evalua-
tion text set of our conversational speech database. We compare the performance
of the language modeling techniques that were described in Sect. 3. Our aim is to
measure the perplexity reduction that can be achieved with RNNLM compared
to BNLMs and how much of this reduction can be preserved with the n-gram
approximated models. In the second part, we utilize these language models in
an ASR system to show whether the application of subwords and approximated
RNNLMs can turn to reduction in WER.

4.1 Perplexity Results

All perplexity results were measured with cross-sentence language models as it
was discussed in Sect. 3. Note that BNLMs and RNN-BNLMs were estimated
only up to 6-grams as larger model order did not result significant reduction in
perplexity.
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Word-Based Models. Perplexity results of word-based models are shown in
Table 2. What can be clearly seen at the first glance is the superiority of RNN-
based language models over BNLMs. Perplexity of RNN n-gram models improves
step by step as we increase the modeling context, while results of BNLMs satu-
rates at around 5-gram. This can be explained by the fact that recurrent models
can provide a more accurate probability estimate for unobserved n-grams with
the help of distributed modeling of input tokens.

Table 2. Perplexities of word-based backoff n-gram, RNN n-gram and backoff approx-
imated RNN language models as function of n-gram order

Order BNLM RNN-BNLM 100M BNLM + RNN-BNLM 100M RNN n-gram

2 130.8 136.3 125.0 124.4

3 92.4 94.5 82.5 77.8

4 85.7 86.8 74.4 64.2

5 84.4 85.5 72.8 58.3

6 84.1 85.4 72.5 54.9

8 52.4

10 49.5

14 47.1

18 46.4

inf 44.6

In the last row of Table 2, where the order of context is indicated with infi-
nite (inf.), we can find the perplexity of the LSTM RNN language model (see
Sect. 3.2). This implies that this model takes (theoretically) all previous words
into account to estimate probability. RNNLM can halve the perplexity of con-
ventional BNLM, however as RNN n-gram results suggest it is only partly due
to the modeling of large context, but also due to the previously mentioned gen-
eralization abilities of RNNs [20].

The perplexity of the BNLM approximation of the RNNLM (RNN-BNLM
100M) is slightly worse, but very close to the perplexity of the original BNLM.
The interpolated model (BNLM + RNN-BNLM 100M), however, improves per-
plexity with around 10–15% which suggests that there are different n-gram prob-
ability distributions behind the similar perplexities. If we would like to capture
the effectiveness of RNNLM approximation, we could say that the performance
of a pure BNLM model is bit worse than a RNN 3-gram, while the interpolated
language model is slightly better than the RNN 3-gram.

We can get an even better insight to the benefit of n-gram approximated
RNNLMs, if we estimate the perplexity reduction associated with each approach.
Assuming that we utilize 4-gram language models which usually represent a
good trade-off between precision and memory consumption, the total amount
of perplexity improvement between the baseline 4-gram BNLM (85.7) and the
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LSTM RNNLM (44.6) is 41.1. After the interpolation of the BNLM and the
RNN-BNLM models perplexity decreases with 11.3. This means that around
27% of potential perplexity reduction can be recovered during the conversion
of RNNLM to BNLM. If we were able to utilize RNN 4-gram (64.2) in the
downstream task, this recovery rate could go up to around 52%.

Morph-Based Models. Just like in the case of word-based models, morph-
based RNN language models significantly outperform BNLMs for every con-
text size (see Table 3) as BNLM perplexities saturate at around 5 or 6-grams.
Although morph-based perplexities are lower than word-based ones, note that
the two perplexities can not be directly compared, since the vocabulary size of
the two model types differs (50k vs. 30k).

Table 3. Perplexities of morph-based backoff n-gram, RNN n-gram and backoff approx-
imated RNN language models as function of n-gram order

Order BNLM RNN-
BNLM 100M

BNLM +
RNN-BNLM 100M

RNN-
BNLM 1B

BNLM +
RNN-BNLM 1B

RNN
n-gram

2 120.7 127.6 114.9 122.6 113.4 112.2

3 83.0 87.7 74.1 80.2 71.1 69.7

4 76.2 80.9 66.6 71.8 62.7 57.5

5 74.7 79.6 64.9 70.1 60.8 52.1

6 74.4 79.4 64.5 69.8 60.3 48.7

8 45.7

10 43.4

14 43.2

18 40.7

inf 40.2

The morph-based results related to RNN-BNLM 100M model are also very
similar to the word-based ones. The approximated model itself is a bit worse
than the original BNLM; however, the interpolated model reduces perplexity
with around 10–15%. The question naturally arises: what if a much larger corpus
is generated with the morph-based RNNLM. In order to answer this question
we generated a ten times bigger corpus containing 1 billion morphs. As it can
be seen in Table 3 RNN-BNLM 1B significantly outperforms not just the RNN-
BNLM 100M model but also the original BNLM. Moreover, the interpolated
model (BNLM + RNN-BNLM 1B) further decreases perplexity, which suggests
that in the future it may be useful to generate even larger corpora.

We calculated the perplexity recovery rate for the morph-based language
models, as well. Interpolation of the morph-based BNLM and RNN-BNLM 100M
models recover almost the same proportion of the potential perplexity reduc-
tion as the word-based models (∼29%). The 1 billion-morph-corpus, however,
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increases this rate to 40%, which means almost half of the RNNLM-based per-
plexity improvement can be utilized in the ASR system. This way, morph-based
BNLM approximations of RNNLMs got much closer to RNN 4-grams than in
the case of word-based models.

4.2 Speech Recognition Experiments

Perplexity is a useful measure to compare language models with a shared vocab-
ulary. However, to assess the impact of different language modeling approaches
on the ASR task, the best is to directly compare the automatic transcripts.

Experimental Setup. Classical hybrid Hidden Markov-Model (HMM) app-
roach with Deep (feed-forward) Neural Network (DNN) probability distributions
were used with three hidden layers consisting of 2500 neurons and output layer
with 4907 neurons (senones). The acoustic model was trained on the 290 h of
the HCCSD 8 kHz sampled training data using the KALDI toolkit [12]. As for
acoustic features 13 dimensional MFCC (Mel-Frequency Cepstral Coefficients)
were applied followed by LDA+MLLT [12]. Shared-state context-dependent
phone models were used, three states per phones. Acoustic and language model
resources were compiled into weighted finite-state transducers and decoded with
VoXerver [18] ASR decoder.

Speech Recognition Results. We performed single-pass decoding with the
BNLM and RNN-BNLM models and calculated WER of each output (see
Table 4). In order to ensure the fair comparison among the modeling approaches,
we pruned each RNN-BNLM so that they had similar runtime memory foot-
print as the baseline BNLM models (∼1GB). The interpolated language models
(BNLM + RNN-BNLM) are also evaluated in a setup, where larger memory
consumption is allowed.

ASR results of word-based language models show similar trends as perplex-
ity results. The BNLM approximation of RNNLM (RNN-BNLM 100M) has a
slightly higher WER than the baseline BNLM; however, the interpolated model
(BNLM + RNN-BNLM 100M) outperforms both. The relative WER improve-
ment of interpolated model compared to baseline BNLM is only around 2%.
Memory limit does not seem to have significant impact on the results.

Replacing words with subwords in the baseline BNLM yields 2% relative
WER reduction, which is in accordance with our former findings [19]. The morph-
based BNLM trained on the 100-million-morph corpus (RNN-BNLM 100M) has
larger WER than the original BNLM, just like in the case of word-based mod-
els. Using a ten times larger corpus to train the approximated model, however,
seems to change the trend. Morph-based RNN-BNLM 1B model is the first
approximated RNN model that outperforms a baseline BNLM by itself with-
out interpolation. This observation underlines the importance of the size of the
generated text. The difference between 100M and 1B models are also reflected
in their interpolated counterparts. BNLM + RNN-BNLM 1B model can reduce
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Table 4. Word Error Rate of the ASR system using the proposed language models

Token

type
Model

# of

n-grams

[million]

Memory

usage

[GB]

WER

[%]

Word

BNLM 5.0 1.3 29.2

RNN-BNLM 100M 4.8 0.9 30.2

BNLM+RNN-BNLM 100M
7.0 1.5 28.5

29.7 6.1 28.4

Morph

BNLM 5.1 1.0 28.7

RNN-BNLM 100M 8.5 1.1 28.9

RNN-BNLM 1B 7.2 0.9 28.6

BNLM+RNN-BNLM 100M
7.9 1.1 27.7

31.8 4.2 27.5

BNLM+RNN-BNLM 1B
7.2 1.1 27.3

46.6 5.9 27.0

WER of morph-based BNLM by 5% or even 6% if runtime memory consumption
is not a restricting factor.

All in all, the performance of morph-based BNLM approximations of RNN
language models have exceeded our expectations. We managed to reduce the
word error rate of our speech transcription system by 8% relative by preserving
real-time operation.

5 Conclusions

In this paper our aim was to improve our Hungarian conversational telephone
speech recognition system by handling morphological richness of the language
and transferring information from a recurrent neural language model to the back-
off n-gram model used in the single-pass decoding. We compared various types of
word-based and subword-based n-gram approximated RNNLMs and found that
by generating a text with 1 billion morphs around 40% of the perplexity improve-
ment associated with the RNNLM can be transferred to the BNLM model. With
the combination of subword modeling and RNNLM approximation, we were able
to achieve 8% relative WER reduction and preserve real-time operation of our
conversational telephone speech recognition system. The perplexity we achieved
with BNLM approximation of RNNLMs is roughly equal to the performance of
an RNN 4-gram. The fact that RNN-BNLM was able to keep up with RNN
n-gram until 4-gram is a quite promising result, but it also suggests that there
is room for further improvement in utilizing higher order RNN n-grams in ASR
decoding.

We consider the main contributions of our work are (1) presenting the first
ASR results with using morph-based RNN-BNLMs in single-pass decoding; (2)
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comparing the performance of BNLMs and n-gram approximations of RNNLM
(RNN n-gram models, RNN-BNLMs); (3) carrying out for the first time an
evaluation of neural language models on very rich morphology Hungarian for
speech recognition tasks on spontaneous speech; and (4) doing this preserving
real-time operation capabilities by low delay.

In the future, we plan to place more emphasis on the study of OOV words.
We would like to measure the recognition rate of OOV words and compare
it among the word and morph-based language modeling approaches proposed
in this paper. Moreover, we would like to evaluate models that extract features
with character-based convolutional neural networks. Extending our work to other
ASR tasks and share knowledge among them utilizing transfer learning methods
is also a very promising direction of further research.
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Abstract. At the beginning, we had started to develop a Czech tele-
phone acoustic model by evaluating various Kaldi recipes. We had a
500-h Czech telephone Switchboard-like corpus. We had selected the
Time-Delay Neural Network (TDNN) model variant “d” with the i-vector
adaptation as the best performing model on the held-out set from the
corpus. The TDNN architecture with an asymmetric time-delay window
also fulfilled our real-time application constrain. However, we were won-
dering why the model totally failed on a real call center task. The main
problem was in the i-vector estimation procedure. The training data are
split into short utterances. In the recipe, 2-utterance pseudospeakers are
made and i-vectors are evaluated for them. However, the real call center
utterances are much longer, in order of several minutes or even more.
The TDNN model was trained from i-vectors that did not match the
test ones. We propose two ways how to normalize statistics used for the
i-vector estimation. The test data i-vectors with the normalization are
better compatible with the training data i-vectors. In the paper, we also
discuss various additional ways of improving the model accuracy on the
out-of-domain real task including using LSTM based models.

Keywords: Neural networks · Acoustic model ·
Automatic speech recognition · Adaptation · I-vectors

1 Introduction

Deep neural networks (DNNs) have been successfully applied to acoustic mod-
elling for automatic speech recognition (ASR). ASR systems are now capable
of real-world applications, especially if we have plenty of data from the target
domain. However, there can be a performance degradation due to the mismatch
between training and testing conditions, such as speaker, recording channel,
speaking style, and acoustic environment [3,12]. Many approaches have been
proposed in recent years to achieve a robust ASR or to improve the DNN adapt-
ability. Generally, there are two ways that can also be combined [1,15]. First, a
boost of the training data variability [6,7]. Second, an adaptation of the acoustic
model [5,11,13]. Variability of the training data can be improved by an addition
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of more sources of real speech or by an artificial modification of the existing data
itself – usually called data augmentation. In this paper, we have evaluated these
approaches on a real call center speech recognition task. We have identified that
a proper use of the i-vector adaptation is crucial. Especially an i-vector statistics
normalization. Therefore, we focus on these techniques in detail below.

2 I-Vector Calculation

We only outline the main points of the i-vector calculation here. More detail can
be found in [4,11]. The acoustic feature vectors xt ∈ RD are seen as samples
generated from a universal background model (UBM) represented as a GMM
with K diagonal covariance Gaussians

xt ∼
K∑

k=1

ckN (·;μk(0),Σk) (1)

with mixture coefficients ck, means μk(0) and diagonal covariance matrices Σk.
Moreover, data xt(s) belonging to speaker s are drawn from the distribution

xt(s) ∼
K∑

k=1

ckN (·;μk(s),Σk) (2)

where μk(s) are the means of the GMM adapted to speaker s. The basis of the
i-vector algorithm is to assume a linear dependence between the speaker-adapted
means μk(s) and the speaker-independent means μk(0) of the form

μk(s) = μk(0) + Tkw(s), k = 1 . . . K (3)

Tk, of size D × M , is called the factor loading submatrix corresponding to
component k and w(s) is the speaker identity vector (i-vector) corresponding to
s. Each Tk contains M bases which span the subspace with important variability
in the component mean vector space.

For the i-vector estimation, we assume a fixed soft alignment of frames to
mixture components. We estimate the posterior distribution of w given speaker
data as

p(w|xt(s)) = N (w;L−1(s)
K∑

k=1

TT
k Σ−1

k Θk(s),L−1(s)) (4)

with precision matrix L(s) of size M × M expressed as

L(s) = I +
K∑

k=1

γk(s)TT
k Σ−1

k Tk (5)

The quantities that appear in (4) and (5) are the zero-order and centered first-
order statistics and are defined as

γk(s) =
∑

t

γkt(s), (6)
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Θk(s) =
∑

t

γkt(s)(xt(s) − μk(0)) (7)

with γkt(s) being the posterior probability of mixture component k given xt(s).
The i-vector that we are looking for is simply the MAP point-estimate of the
variable w which is the mean of the posterior distribution from (4), i.e.

w(s) = L−1(s)
K∑

k=1

TT
k Σ−1

k Θk(s). (8)

The inversion of matrix L−1(s) could be numerically unstable. More robust vari-
ant to i-vector estimation is based on a linear solver. E.g. Kaldi implementation
uses a linear conjugate gradient solver.

Because of nature of the MAP point-estimate, low amount of accumulated
data leads to an i-vector close to the central zero point. A DNN trained from
short utterances works with i-vectors that are not far from the central zero point.
Long utterances in the test set produce precise i-vectors far from the central zero
point that the DNN never saw. In that case, the long test utterance i-vectors
cause failure of the recognizer. Also, we have investigated the online scenario,
where first several words of the utterance are recognized well, but when the
utterance length starts to be significantly longer than the typical training length,
recognition errors ramp up. The solution is an i-vector statistics normalization
comparable with the training utterances length distribution.

3 I-Vector Statistics Normalization Methods

The most efficient method of i-vectors normalization is to scale statistics
(Eqs. (5), (6), and (7)) before the i-vector calculation because of the additive
nature of statistics and real meaning of them (amount of accumulated data in
seconds).

3.1 Length Normalization

The simplest way is to scale down statistics to some predefined length of data
in seconds. The proper length may be derived from training utterance (pseudos-
peaker) lengths. Disadvantage of this approach is a convergence to a constant
i-vector for very long utterances. This i-vector calculated from long-term statis-
tics is not precisely compatible with the short-term i-vectors in training data.

3.2 Exponential Forgetting

To focus more on the local short-term information, a local time-window may
be used. Similar, but simple to implement, is the exponential forgetting of the
statistics. Every time-step, the statistics accumulators are multiplied by a con-
stant less than one. The constant value αe is set compatible to a time-window
length Tw, thus easy to understand

αe = 1 − 1
Tw

, (9)

where Tw is the time-window length in time-step units, e.g. frames.
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4 Experiments

4.1 Training Data

As a main source of our training data, we have a 500-h Czech telephone
Switchboard-like corpus. It is called Bezplatne Hovory (BH) (eng. Toll-free
Calls). The corpus consists of unrestricted spontaneous speech in variable condi-
tions and speaking styles. The training data part was filtered a bit, we omitted
very short utterances and utterances with majority of non-speech events. The
total length of data for training was 406.6 h. The total number of calls was 5,535.
It does not match perfectly with the number of speakers because some speakers
may call more than once.

To add more variability and robustness into the training data, we added three
additional corpora:

– Siemens – a read speech corpus recorded through a telephone channel. It is a
small corpus of 10.7 h of speech in total, but with a large number of speakers:
1,121.

– Czech part of SpeechDat-E (SD-E) – a read speech telephone corpus [8]. The
Czech part used for training consists of 739 speakers and 20.8 h of speech in
total.

– Telephone Quality Speech Corpus (TQSC) – a read speech telephone corpus
recorded at our department. Each of 1,929 speakers uttered 40 sentences.
These sentences were uttered by native Czech male and female speakers, and
they contain a large number of silent parts and low–level noises. The used
training data has 26.2 h in total.

All added corpora are read speech ones, because we were interested in test-
ing whether the addition of a read speech into the training data improves the
spontaneous speech recognition results.

4.2 Test Data and Recognizer Setup

We have prepared two tests. First, an in-domain test called BH Test. The data for
this test were taken from a held-out part of the main training corpus (BH). We
have selected 221 utterances of 26 speakers. The test data has 17.3min in total.
The in-domain test showed how an acoustic model performed in the matching
conditions.

Second, an out-of-domain test from a real call center task. We have split an
Operator and Customer part of the test for the evaluation. Operators are skilled
speakers with more formal speech in contrast with more spontaneous customers.
We selected 20 operator and 20 customer calls/utterances. The calls were about
several minutes long and both groups were balanced to have 1.2 h of speech in
total.
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We have used our proprietary recognizer optimized for online speech recog-
nition [10]. We have used two trigram language models. A general telephone
conversation model with 550k words for the BH Test and a task-specific
33k-words model for the Call center test. OOV words were added explicitly
to the vocabulary to avoid disturbing the recognition results.

4.3 Acoustic Model Training

Two kinds of acoustic models were trained.

TDNN Models. were trained in Kaldi [9,14]. The procedure followed a Kaldi
Switchboard example recipe. In our prior work, we tested various recipes and
setups. Note that not every model architecture is usable for a real-time recog-
nition. Therefore, we are restricted with absence of any offline technique and
limited by the total latency. From models that are real-time recognition com-
patible, we have selected the “s5c” TDNN Switchboard recipe “tdnn_d”.

The model is trained in three stages. First, a base GMM-HMM is trained. The
triphone clustered states (senones) and alignments produced by the GMM-HMM
were then used for further TDNN training. Low resolution MFCC features were
used for the entire GMM-HMM training. The GMM-HMM was trained with
LDA, MLLT, SAT techniques. Second and third stages used high resolution
MFCC features.

The second stage was estimation of an i-vector model and extraction of i-
vectors for the entire training set. The i-vector model was based on pseudospeak-
ers that were made by setting two utterances from a speaker as a pseudospeaker
data. It boosted the speaker variability and enriched the i-vectors space. For
even more speaker-space variability, a speed perturbation with 0.9 and 1.1 speed
ratios was used [6]. Thus, the total amount of training data was tripled to almost
1400 h.

The third stage was the TDNN training itself. The TDNN has 6 hidden layers
with 1024 ReLU neurons. The time-delay coefficients were as follows: (−2, −1,
0, 1, 2), (−1, 2), (−3, 3), (−3, 3), and (−7, 2). The total delay of the network is
12 frames. The final softmax layer has 7,149 outputs – senones – triphone states.
The net was trained by Kaldi GPU parallel implementation with momentum
SGD.

LSTM Models. follow the first two stages of the TDNN training [2]. They
share the same features, triphone states, alignments, and i-vectors. Only a NN
architecture and training procedure were different. We used Chainer 5.0 as a NN
training framework for all LSTM models.

During our preliminary tests, we had found out that a residual neural net-
work (ResNet) with LSTM layers worked best for our data. The neural network
architecture used in this paper was 6-layer LSTM network with 1024 units in
each layer. The skip connections were between 4-th and the last (linear) layer
(see Fig. 1). First, we trained each network using Adam optimizer and then we
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performed 3 training stages with the momentum SGD with momentum equal
to 0.9 and learning rate equal to 1e − 3, 1e − 4, and 1e − 5, respectively. In
all training stages, we used batch size 128 and dropout p = 0.2. We used early
stopping, where each training stage was stopped when a validation data criterion
increased in comparison to the last epoch.

Fig. 1. Our LSTM ResNet architecture

4.4 Results

First, we evaluated the impact of i-vectors on the TDNN network performance.
We trained several TDNN models. The models were trained on the BH only
dataset and on a combined datasets BH, Siemens, SD-E, and TQSC (called “All”
in the figures). We also trained each TDNN model with and without i-vectors.
The models with i-vectors used exponential forgetting with αe equivalent to 5s
time window length. All TDNN models were trained on speed perturbed (SP)
data with speed ratios 0.9 and 1.1.

From the Fig. 2 it can be seen, that models with i-vectors have worse WER
than models without i-vectors on the in-domain test. However, on the out-of-
domain tests, models with i-vectors perform better. The biggest impact of adding
i-vectors on the in-domain test was for model trained on BH only, the resulting
WER increased by 1.39%. The biggest improvement on out-of-domain tests was
for model trained on All datasets, where call center customer WER improved by
3.37%. The use of All datasets compared to only BH had negligible impact on
models without i-vectors, but on models with i-vectors it noticeably improved
WER for all tests. The biggest improvement was 1.03% lower WER on call center
customer test.



Tuning of Acoustic Modeling and Adaptation Technique for a Real Task 241

Fig. 2. Word Error Rate [%] of TDNN Models on In-domain and Out-of-domain Recog-
nition Task

Then, we trained LSTM models as described in Sect. 4.3. As with TDNN, all
LSTM models were trained on BH only dataset and also on combined datasets
called “All”. We also trained all models with and without i-vectors. And we
trained all models with and without speed perturbation (SP).

The results for LSTM models are in Fig. 3. From the figure, it is obvious
that for all tests, in-domain and out-of-domain, all models with i-vectors per-
form worse than models without i-vectors. The biggest difference in WER with
i-vectors compared to without is for a model trained on All datasets without
SP, where the call center customer test WER got worse by even 17.96%. Speed
perturbation improved results for all test cases except for models trained on BH
with i-vectors. In-domain test in this case has lower WER, but out-of-domain
tests have higher WER, with call center customer WER increasing by 2.5%. The
best performing model for out-of-domain call center operator test was a model
trained on All datasets with SP without i-vectors, having 17.36% WER. The
best models for other out-of-domain test (customer) and in-domain test were
both trained on BH only with SP without i-vectors, but their WER were very
close in comparison to the best model for call center operator test mentioned
above.

Next, we evaluated the performance of two i-vector normalization techniques.
When we started working with TDNN models with i-vectors, we found out that
the models performed well on in-domain test, but failed on out-of-domain tests.
We found out, that the reason was an utterance length. Our out-of-domain test
(real call center data) contained utterances much longer than our training data
and some form of i-vector normalization had to be employed.



242 J. Vaněk et al.

Fig. 3. Word error rate [%] of LSTM models on in-domain and out-of-domain recog-
nition task

The image Fig. 4 shows a histogram of a pseudospeaker utterance length for
our training and out-of-domain test data. It can be seen that training pseudos-
peaker data are generally up to 10 s (typically 3–5 s) long while test utterances
are mostly longer than one minute.

We have evaluated two i-vector normalization techniques, the exponential
forgetting and the length normalization as described in Sect. 3. We have trained
a model on various normalized data lengths and evaluated WER of each nor-
malization technique. Used model was TDNN trained on all datasets with SP.
The results can be seen in Fig. 5. From the figure it can be said that the best
results for all the normalization techniques are generally obtained using data
length from 3 to 6 s. Length normalization gives best WER on both tests for
data length of 3 s and exponential forgetting gives best WER on operator test
for data length of 4 s and on customer test for data length of 6 s, although WER
for all tests in this range are very similar. Exponential forgetting gives better
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Fig. 4. Histogram of pseudospeaker utterance length in training and test data

Fig. 5. Impact of data length on the word error rate [%] of TDNN models with different
i-vector normalization techniques
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WER than length normalization on all our tests for all normalized data lengths.
The WER obtained using exponential forgetting compared to the length nor-
malization is improved in average by 7.3% for operator test and by 10.4% for
customer test.

5 Conclusion

In this paper, we described our experiences with the development of the Czech tele-
phone acoustic model. We have tested models based on two architectures, TDNN
and LSTM, suited for the real-time recognition task. At first, the models totally
failed on a real call center task. We have identified the main problem in the i-vector
estimation procedure and propose and evaluate two i-vector statistics normaliza-
tion methods. The use of the exponential forgetting compared to the length nor-
malization was far better. The forgetting constant αe was robust to set and a value
matching a typical training pseudospeaker data length worked well.

We also tested various additional techniques: data augmentation, addition of
real data, and i-vector adaptation. Generally, we may recommend using the speed
perturbed data augmentation. Other techniques behaviour was model architec-
ture dependent. TDNN models worked well with i-vectors on the call center test
and addition of the out-of-domain real data did not help. In contrast, with LSTM
models, the i-vector adaptation failed, speed perturbation helped in all cases, and
adding the read speech data helped only on the call center operator test.

Summarized, LSTM based model worked better by more than 1% absolutely
than TDNN on the in-domain test. In contrast, the TDNN model with the proper
i-vector normalization was more robust and worked slightly better on the out-
of-domain test. It seems, that the LSTM model has an ability to outperform the
TDNN one. However, some other adaptation technique needs to be developed
to improve its robustness on the out-of-domain data.
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of the Ministry of Education of the Czech Republic No. CZ.02.1.01/0.0/0.0/16_013/
0001781.
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2 Laboratório de Inteligência Artificial e Ciência de Computadores (LIACC),

Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
3 Autoridade de Segurança Alimentar e Económica (ASAE),
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Abstract. In recent years, public institutions have undergone a progres-
sive modernization process, bringing several administrative services to be
provided electronically. Some institutions are responsible for analyzing
citizen complaints, which come in huge numbers and are mainly provided
in free-form text, demanding for some automatic way to process them,
at least to some extent. In this work, we focus on the task of automati-
cally identifying economic activities in complaints submitted to the Por-
tuguese Economic and Food Safety Authority (ASAE), employing natu-
ral language processing (NLP) and machine learning (ML) techniques for
Portuguese, which is a language with few resources. We formulate the
task as several multi-class classification problems, taking into account
the economic activity taxonomy used by ASAE. We employ features at
the lexical, syntactic and semantic level using different ML algorithms.
We report the results obtained to address this task and present a detailed
analysis of the features that impact the performance of the system. Our
best setting obtains an accuracy of 0.8164 using SVM. When looking at
the three most probable classes according to the classifier’s prediction,
we report an accuracy of 0.9474.

Keywords: Text categorization · Natural language processing ·
User-generated text · Complaint analysis

1 Introduction

Several countries have public administration institutions that provide public
services electronically. Moreover, such institutions are responsible for processing
citizen requests, also performed by electronic means, often materialized through
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email contacts or by filling-in contact forms in so-called virtual counters. In spe-
cific types of public institutions, such as those in charge of enforcing compliance
of citizens or economic agents, a significant number of such requests are in fact
complaints that need to be appropriately dealt with.

The amount of complaints received can reach the thousands in a short period
of time, depending on the size of the country/administrative region. The Por-
tuguese Economic and Food Safety Authority (ASAE), for instance, receives
more than 20 thousand complaints annually, more than 30% of which are usu-
ally found not to be in the jurisdiction of ASAE; the rest are sent to the ASAE
Operational Units. Given the high amount of complaints, the use of human labor
to analyze and properly handle them quickly becomes a bottleneck, bringing the
need to automate this process to the extent possible. One of the obstacles to do
it effectively is the fact that contact forms typically include free-form text fields,
bringing high variability to the quality of the content written by citizens.

This work focuses on automatically identifying economic activities in com-
plaints written in Portuguese, through the use of natural language processing
(NLP) and machine learning (ML) techniques. Portuguese is a low-resourced lan-
guage in terms of NLP. We employ different features and analyze which ones give
the best results using different ML algorithms. We start by discussing related
work in Sect. 2. Section 3 describes the dataset used in this work. We detail the
employed preprocessing and feature extraction techniques in Sect. 4. Using dif-
ferent ML models, Sect. 5 describes several experiments, including those related
with feature selection and data balancing techniques. In Sect. 6, we provide an
error analysis and make pertinent observations on the difficulty of the task.
Finally, Sect. 7 concludes and presents some lines of future work.

2 Related Work

Although several works exist on analyzing user-generated content, they mostly
study social media data [1], focusing on tasks such as sentiment analysis and
opinion mining [15], or predicting the usefulness of product reviews [4]. Forte
and Brazdil [6] focus on sentiment polarity of Portuguese comments, and use
a lexicon-based approach enriched with domain specific terms, formulating spe-
cific rules for negation and amplifiers. Literature on (non-social media) complaint
analysis is considerably more scarce, mainly due to the fact that such data is
typically not publicly available. Nevertheless, the problem has received signifi-
cant attention from the NLP community, as a recent task on consumer feedback
analysis shows [11]. Given the different kinds of analysis one may want to under-
take, however, the task concentrates on a single goal: to distinguish between
comment, request, bug, complaint, and meaningless. In our work, we want to
further analyze the contents of complaints, with a finer granularity.

Ordenes et al. [14] propose a framework for analyzing customer experience
feedback, going beyond sentiment analysis and using a linguistics-based text min-
ing model. The approach explores the identification of activities, resources and
context, so as to automatically distinguish compliments from complaints, regard-
ing different aspects of the customer feedback. This is made possible through a
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manual annotation process. The work focuses on a single activity domain, and
in the end aims at obtaining a refined sentiment analysis model. In our case, we
aim at distinguishing amongst a number of economic activities, without entering
into a labor-intensive annotation process of domain-specific data.

Traditional approaches to text categorization employ feature-based sparse
models, using bags-of-words and TF-IDF metrics. In the context of insurance
complaint handling, Dong and Wang [17] make use of synonyms and Chi-square
statistics to reduce dimensionality.

Dealing with complaints as a multi-label classification problem can be effec-
tive, even when the original problem is not, due to the noisy nature of user-
generated content. Ranking algorithms [10,12] are a promising approach in this
regard, providing a set of predictions sorted by confidence. These techniques
have been applied in complaint analysis [5], although with modest results.

Kalyoncu et al. [9] approach customer complaint analysis from a topic model-
ing perspective, using techniques such as Latent Dirichlet Allocation (LDA) [2].
This work is not so much focused on automatically processing complaints, but
instead on providing a visualization tool for mobile network operators.

3 Data

The dataset under study has been provided by ASAE. It contains a total of
48,850 complaints received by this governmental entity between 2014 and 2018,
submitted by citizens, economic operators, public organizations or other orga-
nizations either by email or through a contact form in an official website. Each
complaint contains its textual content and is classified with a single economic
activity. This is the focus of this work, i.e., to train a classifier that is able to
predict this activity (or a generalization thereof).

The economic activity taxonomy used by ASAE is hierarchical in nature.
The first level contains 11 classes, and its imbalanced distribution is shown in
Table 1. Generally, each class is composed of a number of sub-classes, which have
a further decomposition level. Given the large number of second and third-level
classes, we decided to train our classifiers to predict first-level classes only.

Since our goal is to aid ASAE staff in handling complaints, we have decided to
base our classifications on their textual contents alone. The average complaint is
1, 664 characters long after removing HTML tags and other artifacts, containing
information on its subject matter, the targeted economic agent and contact
information of the claimant.

4 Data Preprocessing and Feature Extraction

We have gone through a typical preprocessing pipeline, including tokenization
and lemmatization. Based on [13], we have chosen to use NLTK1, StanfordNLP2

1 https://www.nltk.org/.
2 https://stanfordnlp.github.io/stanfordnlp/.

https://www.nltk.org/
https://stanfordnlp.github.io/stanfordnlp/
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Table 1. Distribution per classes

Class # examples # 2nd level subclasses

I - Primary Production 134 7

II - Industry 2031 26

III - Restoration and beverages 20899 4

IV - Wholesalers 299 4

V - Retail 5951 23

VI - Direct selling establishments 1 1

VII - Distance selling (by Catalog and Internet) 2856 1

VIII - Production and Trade 3335 69

IX - Service Providers 9933 85

X - Safety and Environment 696 62

Z - No activity identified 2715 N/A

and spaCy3. Given the lack of conclusive data on their performance for Por-
tuguese, the non-exhaustive experiments shown in Table 2 were performed to
analyze which were better to identify the economic activity of a complaint.

StanfordNLP was chosen for most experiments, given its competitive contri-
bution to the task and because it is able to identify punctuation marks. Addi-
tionally, StanfordNLP provides specific and complete support for Portuguese and
presents the data using the CoNLL-U format [16], which increases interoperabil-
ity with other tools. After obtaining the lemmas, we remove punctuation marks
and stop words (using NLTK’s stop word list for Portuguese) before performing
TF-IDF counts. Given that we have a single example for class VI, as per Table 1,
we decided to leave it out of our classification problem.

To perform feature extraction, different data representation techniques were
used: count, hashing and TF-IDF, as provided by scikit-learn [3]. The count
technique transforms a collection of texts into a matrix of token counts. Hashing
obtains a matrix of either token counts or binary occurrences, depending if we
want counts or one-hot encoding. We used it to obtain token counts and compare
the difference with the count technique because it has a few advantages, like
low memory scalability. TF-IDF obtains features representing the importance
of each token in the collection of all documents. For these three techniques, we
present results obtained by using bags-of-words of 1-grams, 2-grams, 3-grams
and intervals of 1 to 2-grams, 1 to 3-grams and 2 to 3-grams.

5 Predicting Economic Activity

The classification task addressed in this paper concerns predicting the economic
activity targeted in a complaint. We focus on the first level of the hierarchy, as
explained in Sect. 3. In order to find out which classifiers would allow us to obtain

3 https://spacy.io/.

https://spacy.io/
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the best results, we decided to use Random Forests, Bernoulli NB, Multinomial
NB, Complement NB, k-Nearest Neighbors, SVM, Decision Tree, Extra Tree
and Random (stratified). The latter will be used as baseline. All of them were
implemented using scikit-learn4 and the default parameters are used (for version
0.22), except those explicitly stated.

To split the original dataset into training and test set, we use 30% of the data
for testing, while keeping the distribution of classes of the original dataset in
both training and test sets. Following this procedure, we ensure that the trained
classifier learns the real distribution of the data, and that the distribution is
kept in the test set. Cross-validation was considered but given the considerable
amount of training data it was deemed unnecessary to ensure consistency. This
is important not only to ensure proper training but also to ensure that, when
applying over/under sampling, no over/underfitting occurs in a class.

Our main performance metric was the accuracy score instead of the average
macro-F1 score. We aim to provide a list of classes sorted by confidence and
it is not critical to correctly classify minority classes. As a baseline we used a
stratified random classifier that yielded an accuracy of 0.2504.

Table 2. Economic Activity Multiclass Classification accuracy scores using different
tokenizers/lemmatizers

Classifier StanfordNLP
(baseline)

NLTK spaCy -
pt core news sm

spaCy -
xx ent wiki sm

Random Forests 0.6787 0.6924 0.6818 0.6911

Bernoulli NB 0.5115 0.5363 0.5110 0.5185

Multinomial NB 0.4603 0.4719 0.4613 0.4648

Complement NB 0.5914 0.6263 0.5965 0.6066

K-Neighbors 0.6283 0.3146 0.6328 0.6180

SVM (linear) 0.8075 0.8164 0.8093 0.8135

Decision Tree 0.6659 0.6698 0.6669 0.6703

Extra Tree 0.5056 0.5228 0.5185 0.5166

In Table 2 we present the accuracy scores obtained using different tokenizers
and lemmatizers to preprocess the text of the examples in the dataset. For this
experiment, we used 1-gram TF-IDF to represent the features extracted. NLTK
obtains the best scores overall, followed by spaCy and, finally, StanfordNLP.
Nevertheless, we chose to continue using StanfordNLP because the performance
loss is negligible and it provides PoS information, including punctuation marks.
This proved useful to remove punctuation on all experiments and also experiment
with removing adjectives. Furthermore, it has the advantage of having specific
support for several languages, several more than the ones supported by NLTK
and spaCy (although for now we are focusing on Portuguese).
4 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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Table 3. Economic Activity Multiclass Classification accuracy scores using different
feature extraction techniques

Classifier Count Hashing TF-IDF

Random Forests 0.6958 0.6561 0.6787

Bernoulli NB 0.5115 0.4415 0.5115

Multinomial NB 0.6329 Errora 0.4603

Complement NB 0.6790 Errora 0.5914

K-Neighbors 0.5359 0.5750 0.6283

SVM (linear) 0.7784b 0.7953 0.8075

Decision Tree 0.6786 0.6671 0.6659

Extra Tree 0.4968 0.4865 0.5056
a Hashing may generate negative feature values, not
supported by some classifiers.
bFailed to converge after 1,000 iterations.

Table 3 presents accuracy scores obtained using the different feature represen-
tation techniques discussed in Sect. 4. We used StanfordNLP for preprocessing
and represent only 1-grams. Accuracy scores vary considerably depending on the
classifier used, the best being obtained using SVM and TF-IDF. For that reason,
subsequent experiments make use of TF-IDF.

Table 4. Economic Activity Multiclass Classification accuracy scores using different
n-grams

Classifier 1-gram 1 to 2-grams 2-grams 1 to 3-grams 2 to 3-grams 3-grams

Random Forests 0.6737 0.6503 0.6323 0.6230 0.6127 0.5663

Bernoulli NB 0.5115 0.4763 0.4703 0.4622 0.4561 0.4495

Multinomial NB 0.4603 0.4568 0.4700 0.4568 0.4683 0.4733

Complement NB 0.5914 0.5432 0.5978 0.5381 0.5922 0.6320

K-Neighbors 0.6283 0.6152 0.5821 0.5950 0.5631 0.5413

SVM (linear) 0.8075 0.8098 0.7640 0.8004 0.7396 0.6532

Decision Tree 0.6659 0.6729 0.6121 0.6717 0.6120 0.5413

Extra Tree 0.5056 0.5338 0.5462 0.5541 0.5398 0.5298

In Table 4 we present the accuracy scores obtained using different n-grams
when performing feature extraction with TF-IDF. It is not possible to conclude
which is the best interval of n-grams because it depends on the classifier, but, for
SVM, 1 to 2-grams is the best choice, followed by 1-gram. Because the difference
between 1-grams and 1 to 2-grams in small for SVM, but higher for Random
Forests, the following experiments use only 1-grams.

Taking into account the potential usage of the classifier, which is meant to
help humans on analyzing complaints by providing likely classification labels
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Table 5. Economic Activity Multiclass Classification accuracy scores for top-k predic-
tions. Acc@k: accuracy scores considering the top-k (Acc@k) predicted classes, accord-
ing to the confidence of the classifier predictions

Classifier Acc@1 Acc@2 Acc@3

Random Forests 0.6787 0.8322 0.8885

Bernoulli NB 0.5115 0.7533 0.7913

Multinomial NB 0.4603 0.6790 0.7936

Complement NB 0.5914 0.8214 0.8873

K-Neighbors 0.6283 0.7699 0.8447

SVM (linear) 0.8075 0.9031 0.9474

Decision Tree 0.6659 0.7086 0.7226

Extra Tree 0.5056 0.5627 0.5703

(as opposed to imposing a definitive one), we looked at the performance of the
classifier considering the ranking provided. In Table 5 we present accuracy scores
obtained by accepting the 1st, 2nd and 3rd best probabilities. The second column
shows the accuracy scores accepting as correct only the option with the highest
probability. The third/fourth column shows the accuracy scores when accepting
as correct one of the two/three options with the highest probabilities. For most
classifiers, the accuracy of the top-2 is considerably higher than the accuracy
considering the top-1. The 0.9474 score with SVM and top-3 demonstrates that
presenting a set of classes sorted by confidence will be an effective help.

5.1 Feature Selection

We noticed that TF-IDF using 1-gram extracted 252,000 features, while only
101,159 are of interest when analyzing feature importance with Random Forests.
As such, although a lot of features are extracted, a considerable part will be of
no use to a classifier. For that reason, we explored feature selection via Latent
Dirichlet Allocation (LDA), with the aim of bringing the number of features
down while improving classification and training speed by clustering the features
that are more important for the classification problem. However, as shown in
Table 6, the use of LDA largely reduces the effectiveness of the classifiers. More-
over, although Random Forests presents an increase of 6% when raising the num-
ber of LDA components, most other classifiers maintain or even decrease accu-
racy scores. For this experiment, we used StanfordNLP and TF-IDF, extracting
only 1-grams and analyzing top-1 predictions.

Based on these results, we concluded that performing LDA is not effective
for this classification task. Applying Principal Component Analysis (PCA) [18]
has led to a similar result.

Finally, we performed experiments using the Recursive Feature Elimination
and Cross-Validated selection (RFECV) approach [7]. This technique consists
in training a classifier multiple times with different features and yielding the
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Table 6. Economic Activity Multiclass Classification accuracy scores using LDA

Classifier No LDA (baseline) 10 components 100 components

Random Forests 0.6787 0.4053 0.4612

Bernoulli NB 0.5115 0.4278 0.4278

Multinomial NB 0.4603 - 0.4306

Complement NB 0.5914 0.4157 0.3561

K-Neighbors 0.6283 0.3995 0.4146

SVM (linear) 0.8075 0.4484 0.4424

Decision Tree 0.6659 0.3320 0.3525

Extra Tree 0.5056 0.3300 0.3419

feature matrix that generated the best classifier according to a chosen metric.
RFECV was tested with Complement NB because it is fast to train, resulting
in a classifier with significantly better accuracy. On the other hand, testing with
SVM has shown that this classifier does not benefit from further optimization.

5.2 Over and Under Sampling

As shown in Table 1, the class distribution for our problem is very imbalanced.
To improve the overall classification performance and, more specifically, the per-
formance on minority classes, we explore two widely used techniques to deal with
imbalanced datasets [8]: random under sampling and random over sampling.

We have chosen to use the “imblearn” Python package5. There were three
alternatives to perform the over sampling: RandomOverSampler (ROS), SMOTE
and ADASYN. ROS duplicates some of the examples of the classes, increasing
the number of examples of all classes to the number of examples of the class
with the highest number of examples, as indicated in the documentation of
“imblearn”. SMOTE generates new samples by interpolation, not distinguishing
between easy and hard examples. ADASYN generates new samples by inter-
polation, focusing on generating samples based on the original samples which
are incorrectly classified using a k-Nearest Neighbors classifier. Because we were
testing several different classifiers, including a k-Nearest Neighbors classifier, we
decided to use the RandomOverSampler to reduce bias in the results. For random
under sampling, RandomUnderSampler (RUS) was chosen to be comparable to
the RandomOverSampler. RandomUnderSampler randomly selects a subset of
data for the targeted classes, reducing the number of examples of each class to
the number of examples of the class with the smallest number of examples.

Table 7 presents the accuracy and average macro-F1 scores obtained by per-
forming random over sampling and random under sampling on the dataset. For
these experiments, we used StanfordNLP for preprocessing and TF-IDF to rep-
resent the features extracted. Only 1-grams were extracted and only the top-1
5 https://imbalanced-learn.readthedocs.io/en/stable/.

https://imbalanced-learn.readthedocs.io/en/stable/
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was analyzed. As shown in Table 7, when performing random over sampling the
accuracy scores related to Naive Bayes increased significantly and the accuracy
of Random Forests also increased, but for all others it decreased. A similar sit-
uation can be observed regarding the corresponding average macro-F1 score.
This is demonstrative that repeating the same data in the classes with a lower
number of examples does not help distinguishing the different classes (except
for Naive Bayes) and indicates that the classifiers are not predicting mostly the
more frequent classes due to their amount of examples.

Table 7. Accuracy scores and average macro-F1 score using over or under sampling

Classifier Accuracy

(baseline)

Accuracy

ROS

Accuracy

RUS

Avg macro-F1

(baseline)

Avg macro-F1

ROS

Avg macro-F1

RUS

Random Forests 0.6787 0.7137 0.4402 0.42 0.49 0.30

Bernoulli NB 0.5115 0.6477 0.4703 0.18 0.48 0.28

Multinomial NB 0.4603 0.7299 0.5223 0.09 0.56 0.37

Complement NB 0.5914 0.7130 0.5258 0.28 0.52 0.37

K-Neighbors 0.6283 0.5456 0.3959 0.46 0.46 0.29

SVM (linear) 0.8075 0.7985 0.5555 0.63 0.62 0.43

Decision Tree 0.6659 0.6294 0.3678 0.45 0.44 0.26

Extra Tree 0.5056 0.4942 0.2074 0.33 0.32 0.15

On the other hand, when performing random under sampling, only the accu-
racy scores related to Bernoulli NB and Multinomial NB increased, while for all
the other classifiers it has decreased significantly. All average macro-F1 score are
relatively low, but 6 of them decreased and 3 of them increased. This is demon-
strative that reducing the amount of examples for the classes with a higher
number of examples reduces the ability of distinguishing the different classes.

5.3 Additional Experiments

An experiment performed to analyze the impact of the removal of adjectives
identified by StanfordNLP was performed to identify if they were important for
the classification task. This experiment was interesting because strong adjectives
are apparently important for the classification task, but other weaker adjectives
should not be. Depending on the amount and type of adjectives present in the
dataset, their removal could reduce the amount of features that are irrelevant
for the problem. Comparing the accuracy scores of all classifiers with the accu-
racy scores obtained by not removing the adjectives (baseline), as is the case
in Table 5, the percentage was always the same, differing only on the permil-
lage. These results are indicative that adjectives are partially important for the
classifiers, although most of them have a low or even null importance/coefficient.

Experiments performed to increase the accuracy of SVM (with linear kernel)
generating different class weights and balanced class weights (hyperparameter-
ization) [8] obtained accuracy and average macro-F1 scores close to the ones
obtained using the default parameters: a maximum accuracy of 0.8096 with a
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macro-F1 score of 0.63. Also, the different kernels available for SVM (linear,
poly, rbf, sigmoid, precomputed) were tested and it was found that the linear
kernel is the best in terms of accuracy, immediately followed by the sigmoid
kernel, and that the sigmoid kernel is the best in terms of average macro-F1
score, immediately followed by the linear kernel. Finally, experiments performed
to test the use of ensembles based on decision trees, which usually have interest-
ing performances, provided accuracy scores higher than the ones obtained using
Random Forests, but considerably lower than the ones provided by SVM.

6 Error Analysis

Based on the different accuracy and average macro-F1 scores obtained, we
decided to focus on SVM for the sake of error analysis. We show the obtained
confusion matrix in Table 8, when considering top-1 classification only. The influ-
ence of the majority class III is visible, but also of the second majority class IX.
Class Z, where there is no identified economic activity, seems to be the most
ambiguous for the classifier.

Table 8. Confusion matrix of the baseline SVM (Top-1)

Predicted
I II III IV V VII VIII IX X Z

A
ct
ua

l

I 14 5 10 1 5 0 1 0 0 4
II 1 324 155 2 61 2 8 26 0 30
III 0 37 5935 1 72 7 30 160 2 24
IV 0 9 16 22 22 0 3 7 0 11
V 1 26 184 3 1454 16 32 42 1 26
VII 0 0 16 0 7 722 26 62 1 23
VIII 1 18 126 1 61 31 596 114 6 46
IX 0 5 314 0 26 30 83 2479 10 33
X 0 0 17 1 6 8 31 52 81 12
Z 2 35 181 3 72 55 93 163 6 204

To better understand in which situations the classifier was making erroneous
predictions, we randomly sampled 50 examples from the dataset where the clas-
sifier was not capable of correctly predicting (from the top-3 predictions) the
gold-standard class. Based on a manual analysis of such cases, we were able to
draw the following observations:

– The dataset includes some short text complaints, not providing enough infor-
mation to classify their target economic activity. Furthermore, a small num-
ber of complaints are not written in Portuguese. Some complaint texts are
followed by non complaint-related content, sometimes in English.6

6 Complaints received by e-mail often include “think twice before printing” appeals.
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– Some classes exhibit semantic overlap (to a certain degree), thus confusing
the classifier. For example, class VIII apparently overlaps with classes II and
V. Moreover, while being labeled with a given class, some complaints contain
words that are highly related with a different class.

– A non-negligible number of examples refer to previously submitted com-
plaints, either to provide more data or to request information on their status.
These cases do not contain the complaint itself, the same happening when a
short text simply includes meta-data or points to an attached file.

– Finally, we were able to identify some complaints that have been misclassified
by the human operator.

7 Conclusions and Future Work

For the imbalanced complaints dataset of ASAE, SVM with a linear kernel
proved to be the best option among the experimented models. It is reason-
ably fast, allows to get probability scores and gives the best accuracy scores
and average macro-F1. It is particularly valuable if we need a ranked output,
given its high accuracy when aggregating the top-3 predicted classes. It is inter-
esting to note that removing punctuation and stop words after lemmatization,
using TF-IDF and training the SVM generates better accuracy scores than using
additional techniques like feature selection and different quantities of n-grams.

After analyzing misclassified examples, several improvements have been
planned. Non-Portuguese complaints need to be ignored, as the number of exam-
ples is too low to warrant a multilingual classifier. Furthermore, we aim to further
assess how to discard texts that are simply not informative enough to consider as
valid complaints (besides empty complaints, which the system correctly classi-
fies). We also aim to tackle additional classification problems exploring this rich
dataset. The ideas presented in this work will be the baseline for these future
classifiers. We intend to explore recent advances on word embeddings approaches
and deep learning techniques, and compare the results obtained with the models
presented in this paper. The end goal is to create a system that will greatly assist
ASAE personnel when handling these complaints.
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Abstract. Manual evaluation of individual results of natural language
generation tasks is one of the bottlenecks. It is very time consuming and
expensive if it is, for example, crowdsourced. In this work, we address
this problem for the specific task of automatic image captioning. We
automatically generate human-like judgements on grammatical correct-
ness, image relevance and diversity of the captions obtained from a neu-
ral image caption generator. For this purpose, we use pool-based active
learning with uncertainty sampling and represent the captions using fixed
size vectors from Google’s Universal Sentence Encoder. In addition, we
test common metrics, such as BLEU, ROUGE, METEOR, Levenshtein
distance, and n-gram counts and report F1 score for the classifiers used
under the active learning scheme for this task. To the best of our knowl-
edge, our work is the first in this direction and promises to reduce time,
cost, and human effort.

Keywords: Active learning · NLP · NLG ·
Automated human judgement · Image captioning · Neural networks

1 Introduction

Recently, automatic image caption generation has received a lot of attention
in scientific natural language processing (NLP) and applications of natural lan-
guage generation (NLG) in particular. It has attracted a lot of attention from
the machine learning (ML) community as well—because of far reaching NLG-
ML-applications ranging from assisting the visually impaired to the development
of socially interactive robots [10,16,20,31].

Although significant progress has been made in dealing with the caption gen-
eration problem [3,18,24,30], we still need to perform manual human evaluation
for assessing the quality of the generated descriptions. This is both expensive
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): SLSP 2019, LNAI 11816, pp. 261–272, 2019.
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and time consuming. In this work, we have modified [3] to remedy this situation
by automating human judgement on the quality of the generated descriptions
(see examples in Fig. 1) through an active learning scheme (Fig. 2). Specifically,
we infer human judgement on grammatical correctness, image relevance and
diversity of the generated captions in an automatic manner.

For this purpose, we employ standard ML classifiers, SVM and logistic regres-
sion, under a pool based active learning scheme [29]. First, we generate diverse
captions for images in the MSCOCO dataset [22] using the neural architec-
ture in [32] along with beam search [23]. A small number of these captions are
randomly selected and binary labels on their grammatical correctness, image rel-
evance and diversity are crowdsourced to train the mentioned classifiers for each
task. Using the learned classifiers we predict grammatical correctness, image
relevance and diversity labels for the unlabeled captions. Subsequently, a batch
of 200 instances which lie close to the decision boundary of the classifiers are
selected and annotated using the same crowdsourcing platform. We incorporate
them in the training set and re-train the classifiers on the new training set. We
repeat this cycle 4 times and report the F1 scores for the classifiers on a separate
human labeled test set.

To summarize, our primary contributions are: first, a new approach in the
direction of automatic human evaluation of machine generated image captions;
and second, a computational model that uses a fixed size vector representa-
tion for sentences, obtained from a pre-trained network and standard metrics
which produce a good baseline for automating human evaluation. The paper is
organized as follows: Sect. 2 describes related work in the field of image cap-
tion generation. Section 3 describes in details the method used in our work for
automatically inferring human judgement on the three quality aspects discussed
above. Section 4 provides experiments and results followed by a short discussion
in Sect. 5. Section 6 provides the conclusion.

2 Related Work

Although there has been considerable interest in language grounding in percep-
tual data [9,25,28], in the recent past there has been an explosion of interest in
the problem of image captioning. As a matter of fact, this is part of a broader
effort to investigate the boundary between vision and language. The caption gen-
eration method in our work uses the neural framework proposed in [6] where,
instead of translating text from one language to another, an image is translated
into a caption or sentence that describes it. The neural architecture for image
caption generation consists of a deep convolutional network [13] and a recurrent
neural network [12]. The first approach in this direction is credited to Kiros et al.
[18,19] who proposed to construct a joint multimodal embedding space and pro-
vide a natural way to perform both ranking and generation. Works [7,30] offer
slight contrast as the authors adopt LSTM RNNs instead of stock RNNs. Karpa-
thy et al. [15] proposes to learn a joint embedding space for both ranking and
generation. In fact, their model learns to score sentence and image similarity as
a function of convnet object detections with outputs of a bidirectional RNN.

The caption generation problem also is a structured learning problem since
both the input and output of this problem have a rich structure. That is, the
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Fig. 1. Diverse image captions generated using beam search

image of a natural scene is made up of multiple random variables, such as,
position of objects, their inter-relationship and all of them have a rich joint
distribution. Moreover, there needs to be an alignment between the output words
of a caption with the spatial regions of the input image. So, to properly address
the structured nature of this problem, we make use of attention mechanism in
our work. Hence, we have adopted the show, attend and tell architecture by Xu
et al. [32] which uses attention to generate the captions for images.

In addition to being an important task in the area of computer vision, image
caption generation is also a major problem in the area of Natural Language
Generation (NLG) where proper evaluation of such a system is a core issue.
The methods for evaluation can be divided into intrinsic and extrinsic methods.
Human Judgement falls under the category of intrinsic evaluation methods and
one of the most important requirement for new applications such as [2,26]. The
common criteria here include readability or fluency, which refer to the linguistic
quality of the text, and also accuracy or relevance relative to the input which
shows the NLG system’s ability to satisfactorily reproduce content. However,
none of the image captioning or NLG methods described above have tried to
automatically generate human judgement on the quality of their generations and
instead relied on conducting time and cost intensive human evaluation through
public surveys. It is worth mentioning here that standard metrics, such as, BLEU
[27], ROUGE [21] aim to emulate human judgement but often fall short as they
suffer from low correlation between them and human judgements, a fact which is
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Fig. 2. Pool based active learning scheme

widely reported in the NLG community. In addition, these standard metrics are
dependent on groundtruth information since they measure the overlap between
a generation and its groundtruth for quality assessment. This in our view is a
severe limitation and prevents true automatic evaluation of NLG tasks.

To the best of our knowledge, we believe our attempt which uses fixed size
vectors from pretrained sentence encoders, is the first one in the direction of
automated human judgement for quality assessment which does not require
groundtruth information and thus reduces cost, boosts productivity.

3 Method

We aim at automating human judgements on neural network generated image
captions using active learning. In the following, we describe the caption gen-
erator, the features that we consider for modeling human judgements and our
active learning approach.

3.1 Image Caption Generation

For generating the image captions we use the Show, Attend and Tell [32] app-
roach on the MSCOCO dataset [22] as depicted in Fig. 4. In this approach instead
of using a single fixed dimensional vector to represent the image, a set of fixed
dimensional vectors from a lower convolution layer of the CNN architecture is
used. This helps to maintain a fine-grained correspondence between the different
portions of a 2D image represented through the corresponding vectors. With this
the decoder becomes more powerful as it can focus selectively on different parts
of an image during the generation process by selecting a subset of the feature
vectors.
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The detailed operations of the LSTM based decoder, used in [32] for gener-
ating the captions, are described through the following equations,

⎡
⎢⎢⎣

it
ft
ot
gt

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

σ
σ
σ

tanh
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⎣
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ẑt

⎤
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ct = ft � ct−1 + it � gt (2)
ht = ot � tanh(ct) (3)

where, it, ft, ct, ot, ht denote input, forget, memory, output gates and the hidden
state respectively. It is to be noted that T represents a mapping of the form fs,t :
R

s → R
t. Thus, TD+m+n,n is a mapping from R

(D+m+n) to R
n. ẑ ∈ R

D denotes
the context vector responsible for capturing the visual information related to a
specific location in the input image. E denotes the embedding matrix and has
the dimension m×k. The dimension of the embedding vector is given by m while
the dimension of the LSTM hidden state is denoted by n. Furthermore, σ and
� represent the logistic sigmoid and element-wise multiplication respectively.

For handling the MSCOCO data, we adopt the data splits proposed in [14] in
which the training set contains 113, 287 images with each having 5 corresponding
captions while the validation and test sets contain 5, 000 images with each having
5 corresponding groundtruth captions. For our work, we build a vocabulary
by dropping a word which has a frequency below 5 leading to a vocabulary
size of 10, 000 words. We use image features obtained from the RESNET-101
architecture with 101 layers [11]. The dimensions for the LSTM hidden state,
image, word and attention embeddings are set to 512 for our model. We train
our model under the cross entropy objective, using beam search for the decoder
and ADAM [17] as the preferred optimizer. We use beam search with a beam
width of 200 from which we select the top three captions for each image. We use
this setup to generate captions for all images in the MSCOCO test set and use
them for evaluating our proposed approach for automatically inferring human
judgement on them.
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3.2 Features

We consider two different representations of the generated image captions for the
purpose of training different classifiers for automating human judgement using
active learning. First, we generate a dense vector representation of the captions
using the pre-trained Universal Sentence Encoder [4]. It is a 512-dimensional
vector, representing each caption, which promises to capture the context and
semantic meaning of the sentence. We consider this representation to be use-
ful for identifying syntactic or grammatical accuracy, image relevance and for
identifying diverse captions, i.e., the ones which are more informative compared
to the other describing the same image. The second representation for captions
that we test is a 10 dimensional feature vector formed from different metrics
which are popular in the caption generation community. These include overlap
scores, such as, BLEU [27], ROUGE [21], METEOR [1] between the model gener-
ated captions and their corresponding groundtruths. Also Levenshtein distance,
Levenshtein ratio and the ratio of number of unique unigrams, unique bigrams
in the set of generated captions compared to the total number of words in the
set of the generated captions.

3.3 Active Learning

We use pool-based active learning with uncertainty sampling for automating
judgement on the quality of generated captions. We model the tasks of automatic
human judgement on grammatical correctness, image relevance and diversity as
binary classification problems. We initially select a random batch of generated
captions and obtain human judgement labels for them using the crowdsourcing
platform (Figure Eight https://www.figure-eight.com/). For each task, we train

https://www.figure-eight.com/
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different classifiers with this initial labeled data and then apply them to the unla-
beled pool of captions to predict their labels. For every active learning iteration
we select 200 instances on which prediction probabilities for the binary labels,
for each task, are between the threshold 0.45 to 0.55. These instances are anno-
tated by crowdworkers and incorporated into the training set for re-training the
respective classifiers. This cycle is repeated 4 times. For each iteration, we report
the performances of the classifiers on a completely separate human labeled test
set. Figure 3 provides a schematic diagram for the entire process.

We use a SVM classifier with three different oversampling techniques for
handling data imbalance in grammatical correctness and relevance estimation:
Random Oversampling (ROS), Synthetic Minority Oversampling [5] technique
(SMOTE) and Adaptive Synthetic [8] oversampling (ADASYN). We use the
SVM and logistic regression without any oversampling for inferring human judg-
ments on diversity, because the labels are balanced. The data imbalance for
grammatical correctness and image relevance stems from the fact that most of
the model generated captions are grammatically correct and relevant to their
corresponding images compared to the few which are incorrect. Whereas, for
diversity the data is balanced as for each image there is only one caption which
is diverse and another which is not diverse.

In brief, ROS employs oversampling randomly to handle the issue of class
imbalance whereas SMOTE is an oversampling approach where the minority
class is oversampled by creating synthetic samples instead of oversampling with
replacement. Oversampling for the minority class is done by considering each
observation in the minority class and then generating synthetic examples along
the line segments joining any or all of the k minority class nearest neighbors.
The k nearest neighbors are chosen randomly depending upon the amount of
oversampling needed. ADASYN on the other hand, aims to reduce the learning
bias introduced by the original imbalance in the data distribution and at the
same time, it adaptively shifts the decision boundary to focus on those samples
which are difficult to learn.

4 Experiments and Results

For automatically determining human judgement on the three quality aspects
of the generated captions, we first conduct surveys on a crowdsourcing platform
to obtain the labels for an initial batch of randomly selected captions. We train
different classifiers using these labels under an active learning scheme and report
their performances on a separate test set. The labels for the test set are obtained
separately using the same crowdsourcing platform.

We show that the performance of the classifiers, under active learning, using
the 512-dimensional feature vector representation obtained from the sentence
encoder [4] is much better compared to the representation using standard metrics
based vector for all the tasks. This also establishes a new baseline for generating
automatic human judgements without groundtruth information.
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4.1 Results of Active Learning for Grammatical Accuracy

It is important to note that the dataset for grammatical accuracy is highly imbal-
anced since most of the model generated captions are grammatically correct. So,
we combine different oversampling techniques (ROS, SMOTE and ADASYN)
with a SVM and report the F1 score on the test set for initial (Base) and sub-
sequent active learning iterations (Iter 1–4 ) for which the classifier is retrained.
Table 1 shows the scores for models trained with the vector representations
from the Universal Sentence Encoder and Table 2 for models based on the 10-
dimensional metric vector. F1 scores from the two tables establish that standard
metrics perform poorly in comparison to the features obtained from the universal
sentence encoder for automating judgement on grammatical accuracy.

Table 1. Grammatical accuracy: F1 score of SVM using vector representation from
Universal Sentence Encoder.

Classifier Base Iter1 Iter2 Iter3 Iter4

ROS + SVM 0.6650 0.6925 0.6922 0.6911 0.6821

SMOTE + SVM 0.6440 0.6711 0.6711 0.6794 0.6828

ADASYN + SVM 0.6651 0.6446 0.6505 0.6757 0.6559

Table 2. Grammatical accuracy: F1 score of SVM with sentence representation using
metric scores.

Classifier Base Iter1 Iter2 Iter3 Iter4

ROS + SVM 0.4473 0.4445 0.4373 0.3998 0.3233

SMOTE + SVM 0.4722 0.4401 0.4202 0.3880 0.4115

ADASYN + SVM 0.3746 0.3839 0.2886 0.4444 0.4444

4.2 Results of Active Learning for Image Relevance

The dataset for image relevance also suffers from data imbalance, which is why
we use SVMs in combination with oversampling, as well. We report the F1
score obtained with each combination for initial and subsequent active learning
iterations on the test set for caption representations using Google’s Universal
Sentence Encoder [4] (see Table 3) and the one using a vector of overlap metrics
discussed above (see Table 4). For automatic human judgment on image relevance
of the generated captions, we see that the features from the sentence encoder
produce superior results compared to the standard metric based features.
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Table 3. Image relevance: F1 score of SVM with sentence representation from Uni-
versal Sentence Encoder.

Classifier Base Iter1 Iter2 Iter3 Iter4

ROS + SVM 0.5863 0.5982 0.6028 0.5807 0.6005

SMOTE + SVM 0.5940 0.6098 0.5886 0.5757 0.6110

ADASYN + SVM 0.5901 0.6024 0.6214 0.6075 0.6254

Table 4. Image relevance: F1 score of SVM with sentence representation using metric
scores.

Classifier Base Iter1 Iter2 Iter3 Iter4

ROS + SVM 0.5709 0.5389 0.5389 0.5399 0.5306

SMOTE + SVM 0.5706 0.5446 0.5315 0.5306 0.5122

ADASYN + SVM 0.4002 0.4138 0.5709 0.5306 0.5211

4.3 Results of Active Learning for Diversity

Finally, we report the F1 scores for predicting human judgement on the diver-
sity of the generated captions using logistic regression and SVM models. Since
the dataset for diversity is balanced, we do not use any of the oversampling
techniques. Table 5 shows the scores for models using the Universal Sentence
Encoder, Table 6 the scores for models using the metric vector.

From the tables below, we see that for automatically determining human
judgement on diversity of the generated captions, we see that feature vectors
obtained from the sentence encoder do not provide significant advantage over
the metric based vectors.

Table 5. Diversity: F1 score of classifiers with sentence representation from Universal
Sentence Encoder.

Classifier Base Iter1 Iter2 Iter3 Iter4

Log. Reg. 0.5294 0.5175 0.5411 0.5400 0.5288

SVM 0.5288 0.5116 0.4642 0.4630 0.4658

Table 6. Diversity: F1 score of classifiers with sentence representation using metric
scores.

Classifier Base Iter1 Iter2 Iter3 Iter4

Log. Reg. 0.529 0.558 0.482 0.490 0.57

SVM 0.523 0.530 0.52 0.50 0.58
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5 Discussion

The results from our experiments show that feature vectors obtained from the
pretrained sentence encoder [4] produce much higher F1 scores compared to
standard overlap metrics when employed for the task of automatically inferring
human judgement on neural network generated image captions. We believe the
reason behind this performance increase is that the vectors from the sentence
encoder capture the semantic and syntactic information present in the captions
more than the standard overlap metrics such as BLEU, ROUGE, METEOR etc.
Moreover, representing the generated captions with fixed size feature vectors,
obtained from the pretrained sentence encoder [4], do not require correspond-
ing groundtruth information for the captions. In our opinion, this is a major
advantage over standard metrics which are completely dependent on groundtruth
information.

The results further indicate that we can automate human judgement on
grammatical accuracy and image relevance more successfully compared to auto-
matically determining human judgement on diversity. However, we believe our
approach, which combines feature vectors and standard ML classifiers under the
active learning scheme, can significantly reduce annotation cost. In addition, the
requirement for groundtruth information for automating human judgement on
different quality aspects of neural network generated captions and NLG evalua-
tion in general is reduced.

6 Conclusion

We implemented a technical architecture and conducted experiments to demon-
strate that active learning can be used for automatically generating human
judgement on the quality of the captions generated by a neural image cap-
tion generator. For this purpose, we tested sentence representations obtained
from Google’s Universal Sentence Encoder and another one obtained using stan-
dard metrics computed between the generated captions and their corresponding
groundtruths. Subsequently, we trained SVM and logistic regression classifiers
under an active learning framework and reported the F1 scores for a separate
test set.

The F1 scores of the used classifiers show that under active learning better
results are obtained using the 512 dimensional vectors from Universal Sentence
Encoder across all three tasks. Also, we found that under active learning better
results are obtained for the task of automating judgement on grammatical cor-
rectness and image relevance compared to the performance of automating judge-
ment on diversity. Note that automatic human judgement on quality assessment
is novel and an important step towards automated quality assessments in the
evaluation of image captions and natural language generation in general. Our
approach will be tested in future experiments as we believe it can reduce manual
evaluation costs thereby simplifying NLG evaluation significantly.
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Abstract. Stance detection is the task of determining the perspective
“or stance” of pairs of text. Classifying the stance (e.g. agree, disagree,
discuss or unrelated) expressed in news articles with respect to a cer-
tain claim is an important step in detecting fake news. Many neural and
traditional models predict well on unrelated and discuss classes while
they poorly perform on other minority represented classes in the Fake
News Challenge-1 (FNC-1) dataset. We present a simple neural model
that combines similarity and statistical features through a MLP network
for news-stance detection. Aiding augmented training instances to over-
come the data imbalance problem and adding batch-normalization and
gaussian-noise layers enable the model to prevent overfitting and improve
class-wise and overall accuracy. We also conduct additional experiments
with a light-GBM and MLP network using the same features and text
augmentation to show their effectiveness. In addition, we evaluate the
proposed model on the Argument Reasoning Comprehension (ARC)
dataset to assess the generalizability of the model. The experimental
results of our models outperform the current state-of-the-art.

Keywords: Text categorization · Stance detection · Fake news

1 Introduction

Fake news detection has become one of the important research directions in
Natural Language Processing (NLP). One of the key challenges faced by social
media users or online news communities is that anyone can share fake news/false
claims and easily propagate fake news through the Internet for financial or polit-
ical gain [25]. Pomerleau and Rao [22] organized the first Fake News Challenge
(FNC-1) and introduced a dataset for stance detection task which is an exten-
sion of the work of Ferreira & Vlachos [10]. Acknowledging the complexity of
fake news detection task, the challenge organizers noted that tackling the fake-
news stance detection problem could be the first step to help prevent the spread
of misinformation. It could also assist human fact-checkers to identify incorrect
claims by detecting the stance of relevant articles in knowledge-bases. The goal
of this task is to determine the “perspective” stance of two pieces of text (e.g.
c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): SLSP 2019, LNAI 11816, pp. 273–285, 2019.
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article headline and body). Specifically, the focus of this task is to detect the
stance of a headline by predicting its class as agree, disagree, discuss or unrelated
in relation to an article body.

Recent advances on news-stance detection have mostly employed an ensem-
ble of feature engineering with MLPs [4,23,27], CNNs [2,29], RNNs [6,13] and
Memory Networks [20]. These complex ensembles with deep neural layers [6,13],
attention networks [6] and memory networks [20] have been shown to achieve
state-of-the-art performance. But the increase in complexity of these neural mod-
els tends to overfitting on smaller datasets. In addition to that, we observe that
previous classic and deep neural models [2,13,18,22] achieved better classifica-
tion accuracy on unrelated and discuss classes with above 97% and 76% accuracy
respectively but they also struggle at predicting the disagree class (e.g. 0–18%)
and the predictions of agree class often fall short (e.g. 0–58%) as well because of
the dataset’s imbalanced class distribution.

Inspired by related work that applies machine learning models in combina-
tion with external features to news-stance detection, we explore other potential
methods which can reduce textual noise and generate more training examples for
minority classes in order to avoid overfitting and improve the models’ robustness.
By addressing a document-level stance detection problem over a FNC-1 dataset,
this work explores two aspects in addition with deep learning: (a) an assessment
of important external features and their predictive power with respect to also
machine learning model; and (b) the performance of using regularization (gaus-
sian and batch normalization) and text augmentation (text summarization and
synonym replacement methods).

Our contributions are summarized as follows: (i) We combine a simple 1-layer
Gated Recurrent Unit (GRU) model with various important features, fine-tuned
using batch-normalization and gaussian-noise, to better make predictions for
news-stance detection task. (ii) Experimental results show that this combined
model with GloVe embeddings and text augmentation outperforms all previous
models in both of the evaluation settings (e.g. the FNC-1 metric and the Macro-
F1 metric) on the FNC-1 dataset. (iii) We also provide a cross-domain validation
using ARC dataset and a comparative report about proposed feature-based mod-
els (e.g. light-GBM and MLP) as they achieve state-of-the-art performances.

The rest of the paper is structured as follows. In Sect. 2, we elaborate the
related work for news-stance detection. Section 3 presents the details of the
proposed models. Section 4 discusses our experimental procedure and results.
Finally, Sect. 5 draws some conclusions of our work.

2 Related Work

The problem of news-stance detection has emerged recently at the FNC-1 lab
challenge, which was organized by Pomerleau and Rao [22]. So far, researchers
in the competition and the wider NLP community have built a range of models
using traditional machine learning, deep learning (DL) or a combined model.
Some of the works used hand-crafted features with classical methods [11,18,22]
to detect the stance of an article-headline towards an article-body.
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Different deep learning architectures, including MLPs, CNNs and RNNs
together with hand-crafted features were also proposed to capture the seman-
tic and the contextual similarity of the headline and body pairs. SOLAT team
[2] presented the best performing model in the FNC-1 contest by combining a
gradient-boosted decision trees classifier (with various classical features) and a
deep CNN. The two other best performing teams [14,23] used different archi-
tectures of MLP classifiers along with different hand-engineered features to pre-
dict the stance. Thorne et al. [27] also used a stacked ensemble of five models
including the baseline model of the contest in addition with another three MLP
architectures.

Subsequent to the FNC-1 contest, Bhatt et al. [4] combined some statistical,
external and neural features as they also employed an ensemble of MLP classifiers
for the stance detection. A recent trend in deep learning towards Memory Neural
Networks encouraged Mohtarami et al. [20] to deploy an end-to-end memory net-
work (MemN2N) combined with Bag-of-Words (BoW) and its cosine similarity
features to improve the performance of the stance detection task. A thorough
feature ablation analysis of the FNC-1’s top three systems was conducted by
Hanselowski et al. [13] where they also proposed a stackLSTM architecture using
the best features from the analysis. Xu et al. [29] conducted a study of trans-
fer learning, called adversarial domain adaptation, from the FEVER domain to
stance detection domain as they tried to improve on agree and disagree classes
respectively. Recently, Borges et al. [6] proposed a deep neural network model
for stance detection that is a combination of Bi-directional RNNs, an atten-
tion mechanism, max-pooling as well as external hand-crafted features. A recent
work used conditional encoding and co-matching attention neural models [9] to
classify the related-part (agree, disagree and discuss) of the stance detection
pipeline.

Different from previous models, we use a simple 1-layer GRU model enhanced
with statistical and similarity features, regularization methods as well as text
augmentation techniques that was previously found useful to make models more
robust to overfitting for sentence modeling tasks.

3 Methodology

In this section, we describe methods that we adopt for news-stance detection. Our
methodology is a combined model of GRU [7] and feature-engineering heuristics
fed through a fully connected MLP network to predict the stance of four-class
classifications. We also made use of regularization and text augmentation tech-
niques to improve the overall performance of the model. Moreover, we apply the
same feature-engineering to train additional proposed models include a light-
GBM (gradient boosting) and an MLP neural model.

The GRU network architecture [7] is a simplified version of a LSTM [15]
and widely adopted in sequence modeling tasks [1,5]. The key difference is that
the GRU network adaptively capture sequence dependencies over different time
scales using an update gate and a reset gate as opposed to an LSTM model
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with three gates (i.e. forget, input and output gates) for the same purpose. The
GRU network has fewer parameters to be trained compared to an LSTM and it
can be able to train on smaller datasets efficiently while achieving comparable
performances to an LSTM [8]. In addition, we use word embeddings to capture
the semantic relations among similar words. The goal of an embedding layer is
to transform the input text into a lower dimensional vectors. Following initial
evaluation of five different word-embeddings, we choose 50-d GloVe and 300-d
GloVe [21] for use in the later experiments described in this paper.

As a regularization techniques for our model, we also add Batch-
Normalization (BN) layer and Gaussian-Noise (GN) layer with a standard devi-
ation 0.1 to the output vectors before the fully connected layer. These methods
can help prevent overfitting and optimize the neural network performance [28].
The GN layer adds noise to the input values while creating more samples but
the output shape remains the same as the input. This will help for the neural
network to learn and better able to generalize and improve the performance
[28,30].

3.1 Features

In our proposed approach, we apply different preprocessing methods to create
number of features composed in different groups from the dataset. To normalize
words and remove noise in sentences, the text of news articles are tokenized,
lowercased, and removed the stopwords, non-alphabets and punctuation in order
to clean the dataset as we create external features and embedding vectors.

Based on our experimental analysis, the following external features in Table 1
were proven to convey additional relevant information that neural models cannot
easily represent, so we combine them with the output of simple neural model.
We include features taken from the FNC-1 official baseline and the top three
performing models [2,14,23] in the competition such as Single Value Decom-
position (SVD), Latent Dirichlet Allocation (LDA) and Non-negative Matrix
Factorization (NMF). We also made use of a feature [13] that adds a “ NEG”
tag to negate words that appear after a negative keyword in both of the 500 most
frequent 2-grams BoW headline and body vectors. Besides the use of cosine dis-
tance to compare the similarity between headline and body 3000 most frequent
BoW vectors, we also add Jaccard and Euclidean similarity distances that have
been successfully applied in detecting Duplicate Questions [3]. Word mover’s
distance [17] feature of the word2vec [19] embeddings between the headline and
the article also being generated. Common entities between the pairs are also
being extracted as a feature by using the SpaCy toolkit. We also incorporate
“agreeing word” count (a.g. confirm, support, valid, correct, etc.) and “hedging
word”1 count features as well as polarity and subjectivity features generated by
using textblob library.

1 https://en.wiktionary.org/wiki/Category:English hedges.

https://en.wiktionary.org/wiki/Category:English_hedges
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Table 1. Set of features used in this study

Statistical Features

Overlapping (CW) character and word ngrams between headline and body

Overlapping (WT) word ngrams of top 25 TF-IDF-body-vectors in the headline

(RC) refuting, (AC) agreeing and (HC) hedging word counts of both text

(CE) common entities between headline and body text

(TP) polarity and (TS) subjectivity in the heads and top 25 body BoW

(ES) emotional scores [26] and (PS) polarity scores [16] in each of the text.

(BW) 3000 most common 3-gram BoW vectors from the headline and body text

(BW) negated-sign feature for 500 most frequent BoW of both text

Similarity Features

(BW) cosine, jaccard and euclidean similarities between head and body BoWs

(TC) cosine similarity feature between heads and body TF-IDF vectors

(SC) cosine similarity feature between 100 headline and body SVD components

(LC) cosine similarity feature between 100 headline and body LDA topics

(NC) cosine similarity feature between 50 headline and body NMF topics

(WM) WMD similarity between the headline and body word-embedding vectors

3.2 Data Augmentation

Data augmentation is a common way to expand the number of training instances
in order to avoid overfitting and control generalization error for machine learn-
ing models. As the amounts of disagree and agree training instances in FNC-1
dataset are very small compared to unrelated and discuss pairs, we paid a spe-
cial attention to text augmentation techniques to enlarge the minority classes
through label-preserving transformations. We hypothesize that summarizing
news article body will help reduce the noisy text as extractive summarization
[24] can produce a summary while preserving the meaning of the original text.
In addition, the summarized version of the news body can be used to create
new training instances by replacing random words with their synonyms from
the thesaurus [31].

Our approach involves using an extractive centroid-based text summarization
technique [24] to summarize text pairs of minority classes. The centroid is the
document vector which is computed as the average word embeddings of the most
common words occurring in the document. To generate the summary sentences,
this algorithm selects the closest vectors (sentences in the document) which
have vectors similar to centroid embeddings. In contrast to other methods [31],
we use GloVe embeddings to find synonyms for randomly-chosen words from the
summary and then we replace 30% of the original words with their synonyms.
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4 Experiments

4.1 Dataset

We evaluate the proposed approach on the FNC-1 dataset [22] composed of
textual documents for the task of Stance Detection. There are 49972 instances of
headlines and news documents in the training set whereas the test-set comprises
of 25,413 pairs. The distribution of the classes of headline/article pairs is highly
imbalanced where the unrelated (UNR) pairs are approximately 73% while the
other three classes share only the remaining 27% of the whole dataset (e.g.
agree (AGR): 7.4%, disagree(DSG): 2% and discuss (DSC): 17.7%). To test
the generalizability of the proposed model, we also use an Argument Reasoning
Comprehension (ARC) dataset [12]. This dataset, composed of 17,792 claims
and multi-sentence user posts (e.g. agree: 8.9%, disagree: 10%, discuss: 6.1%
and unrelated : 75%), is designed for stance detection by Hanselowski et al. [13].
The dataset is divided 80/20 for training and test sets.

4.2 Metrics

The FNC-1 organizers introduced a mechanism to evaluate the performance of
the models in the competition. The evaluation metric weights the score of 25%
for correctly classifying related/unrelated pairs and 75% for correctly classifying
the related instances into further three-class classifications (e.g. agree, disagree
and discuss). Also, following the previous work by Hanselowski et al. [13], they
suggested using a Macro-F1 metric because the FNC-1 evaluation metric does
not take into account the imbalanced distribution of related classes and under-
mines the fair evaluation of class-wise performance as explained in [4,13]. We
use both evaluation metrics to show the performance of our models.

4.3 Experimental Procedure

We estimate the best hyper-parameters using a grid search and we finally set
the hyper-parameters of light-GBM as: learning rate - 0.09, number of leaves -
50, number of boosting rounds - 1000 and early stopping rounds - 50. The MLP
model consists of the external features with three layers of 600 neurons and rec-
tified linear unit (ReLu) activation function followed by a softmax classifier. To
improve the performance, we train a GRU model on top of pre-trained word
embeddings to generate 100-vector (e.g. headlines and bodies) input sequences.
We use 50-d GloVe embedding together with a single-layer GRU of 64 neurons
for each of the headline and body vectors as we set the probability of dropout and
recurrent dropout to 0.2 and 0.1 respectively. This is followed by a concatenation
layer with handcrafted features, a batch-normalization layer, a gaussian-noise
layer (e.g. set to 0.1) and then, three fully connected layers with 600 neurons
and ReLU optimizer. Finally, the outputs of the 4 classes are decoded by a
softmax classifier. To evaluate the effectiveness of our text augmentation meth-
ods, we trained the same light-GBM, MLP and the combined GRU models as
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we add more training instances of 3678 and 840 for agree and disagree classes
respectively. In addition to these models, we provide a weighted-sum average
of the predictions from the experiments of each model with and without text
augmentation.

The implementation of our models are based on Keras with Tenserflow as a
backend and a light-GBM library. We use the Adam weight optimizer and we set
epochs to 10 and batch size to 100 for the both of the combined-GRU and the
MLP experiments. 20% of the training-set is being used as a development-set.

Table 2. Comparison with the state-of-the-art traditional models

Models UNR-F1 AGR-F1 DSG-F1 DSC-F1 FNC-1 Macro-F1

GBT (FNC-1 baseline) 97.98 9.09 1.00 79.66 75.20 46.93

3-step LR/RF [18] 98.00 52.00 1.00 76.00 82.10 56.75

SVM [11] – – – – – 58

Prposed Light-GBM

Light-GBM 99.13 57.75 2.87 80.00 83.40 59.94

Light-GBM-Augment 98.88 68.47 4.16 71.42 82.27 60.73

Ensemble-Model 98.91 67.89 4.30 72.22 82.44 60.83

4.4 Results

In this section, we empirically evaluate our proposed models with the literature.

Light-GBM: Table 2 compares the results of our light-GBM model against
the state-of-the-art traditional approaches with different feature-groups for this
task including: Gradient Boost Decision Tree (GBT) baseline from the FNC-1
contest [22], 3-step Logistic Regression (LR) and Random Forest (RF) [18] as
well as Support Vector Machine (SVM) [11]. The light-GBM model performs
better than the FNC-1’s baseline and other state-of-the-art classical models for
this task, with our light GBM’s performance increased by a significant margin in
each of the evaluation metric as presented in Table 2. The Light-GBM model with
text augmentation effectively improves the class agree and the overall Macro-
F1 while the weighted ensemble model yields a slight increase on the Macro-F1
score.

Figure 1 reveals the ablation study of this model as we remove one feature-set
(refer to Table 1) in each run of an experiment. We find that removing any of the
feature-set from the model leads to a reduced performance in terms of FNC-1
and F1 scores. We also observe that leaving-out BW and TC features produces
the worst FNC and F1 scores of 81.97% and 57.98% respectively.
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Fig. 1. Feature Ablation Study (** denotes All features)

Table 3. Comparison with the state-of-the-art MLP models

Models UNR-F1 AGR-F1 DSG-F1 DSC-F1 FNC-1 Macro-F1

1-layer MLP [23] 97.90 44.04 6.60 81.38 81.72 57.48

7-layer MLP [14] 99.25 44.72 9.47 80.89 81.97 58.58

Ensemble-MLP [27] – – – – 78.04 –

Ensemble-MLP [4] 98.04 43.82 6.31 85.68 83.08 58.46

2-layer MLP [11] – – – – – 59.60

Proposed 3-layer MLP

MLP 98.95 53.13 12.20 79.61 83.08 60.97

MLP-Augment 96.71 60.64 21.52 72.13 81.53 62.75

Ensemble-Model 96.93 60.33 21.23 73.30 81.82 62.95

Multi-layer Perceptron (MLP): We also train a MLP neural network model
on the same external features. Variations of MLP approaches have been employed
on this task with different combination of features including: 1-layer MLP neural
network [23], 7-layers MLP architecture [14], ensemble of three MLP networks
(among five classifiers) [27], ensemble of three MLP architectures [4] and 2-
layer MLP neural networks [11]. The proposed MLP achieved 83.08% of FNC-1
and 60.97% of Macro-F1 scores as shown in Table 3 outperforming all previ-
ous MLPs. Moreover, MLP with text augmentation model shows a substantial
increase (more than 2% improvement compared to other methods) on Macro-F1
and the weighted ensemble model improves a bit on the Macro-F1 score.

Ensemble-GRU Model: Table 4 compares the evaluation results of the
proposed model with the state-of-the-art neural models. GRU-MLP Baseline
performs the worst because it does not use any of the external features,
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batch-normalization and gaussian-noise layers. GRU-MLP-External baseline
performs comparably good in terms of FNC-1 (82.88%) and Macro-F1 (59.59%)
metrics but it does not improve the results for disagree and agree classes. The
proposed ensemble GRU-MLP-External-BN-GN model with 50-d GloVe shows
higher Macro-F1 score for the stance detection setting.

Table 4. Comparison with the state-of-the-art neural models

Models UNR-F1 AGR-F1 DSG-F1 DSC-F1 FNC-1 Macro-F1

Ensemble-CNN/GBT [2] 98.70 58.50 1.86 76.18 82.02 58.81

MemoryNN-BoW [20] – – – – 81.23 56.88

stackLSTM [13] 99.50 50.10 18.00 75.70 82.10 60.90

Transfer learning [29] 97.70 54.60 15.10 72.60 80.30 60.00

DeepNet (best encoder) [6] 96.74 51.34 10.33 81.52 82.23 59.98

Proposed model baselines

GRU-MLP 86.94 26.54 0.86 49.96 60.37 41.07

GRU-MLP-External 98.98 56.28 4.30 78.79 82.88 59.59

Proposed Model: GRU-MLP-External-BN-GN

GloVe-6B-50d 98.48 60.43 15.64 74.33 82.36 62.22

GloVe-6B-50d-Augment 96.62 66.47 23.39 65.32 80.26 62.95

Ensemble-Model 97.22 65.32 24.53 68.86 81.46 63.98

However, when text augmentation is added with the proposed model, it
demonstrates the best results on agree and disagree scores of 66.47% (from
58.50% [2]) and 23.39% (from 18.0% [13]) as it performs comparably well to
previous approaches in other two classes. Table 4 shows that a weighted ensem-
ble model achieves higher overall accuracy, 63.98% on the Macro-F1 metric,
compared to the previous models’ highest Macro-F1 score 60.90% [13]. This
shows that the simple ensemble GRU model optimized with text augmentation
methods and regularization layers is robust in terms of class-wise accuracy com-
pared to other complex ensemble models [2,6,13,20,29] and the overall Macro-F1
metric was improved by more than 3% from 60.90% to 63.98%.

ARC Dataset for Cross-domain Validation: we test the combined GRU
model on the ARC dataset to determine its generalizability. Table 5 presents the
performance of the cross-domain evaluations. For in-domain ARC-ARC training
and test scenario, our model gives a slight improvement on both of the evaluation
metrics over the stackLSTM model [13]. For the cross-domain test, we find that
the proposed model trained on the ARC training-set and tested on the FNC-1
test-set outperforms by a large margin (11.82%) on Macro-F1 compared to the
stackLSTM model in [13]. We also observe that the cross-domain FNC-ARC
test performance on our proposed approach is lower than the stackLSTM in [13]
but our approach still receives higher performance than the other model on the
unrelated and discuss classes.
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Table 5. Cross-domain evaluation using ARC dataset

Models UNR-F1 AGR-F1 DSG-F1 DSC-F1 FNC-1 Macro-F1

ARC-ARC1

stackLSTM [13] 93.50 45.10 51.80 19.4 68.50 52.40

GloVe-6B-300d-BN-GN 95.18 47.60 46.51 27.37 69.95 54.17

ARC-FNC-1

stackLSTM [13] 95.00 34.30 11.60 8.20 61.30 37.30

GloVe-6B-300d-BN-GN 94.57 71.36 21.09 9.48 63.94 49.12

FNC-ARC

stackLSTM [13] 91.00 32.10 19.10 18.20 59.10 40.10

GloVe-6B-300d-BN-GN 91.14 26.35 5.38 28.49 56.05 37.84

4.5 Discussion

Our proposed light-GBM with all the external features achieves the highest
FNC-1 weighted accuracy 83.40%. It is interesting to see that our proposed
light-GBM variations with all the external features perform on par, i.e. 60.83%,
with previous state-of-the-art (e.g. 60.90%) stackLSTM model [13] in terms of
Macro-F1 as shown in Tables 2 and 4. Light-GBM with text augmentation model
also performs the best in terms of agree class (68.47%). But, we observe that
the light-GBM models lack the semantic understanding required in improving
the detection of class disagree as the other traditional models have difficulties
making better predictions due to the imbalance of training data. Furthermore,
our experiments show the importance of the proposed feature-based MLP and
the combined GRU models where they strengthened the semantic-understanding
ability to predict and improve class-wise and overall Macro-F1 score by a sig-
nificant margin. Our experiments also demonstrate that text augmentation and
regularization methods such as batch-normalization and gaussian-noise are use-
ful methods that can help prevent overfitting to overcome the class imbalance
problem. We have seen that it is possible to outperform the state-of-the-art
results with these simple models compared with complex deep learning ensem-
bles [6,13,20]. Our simple 1-layer GRU model improves on the current state-
of-the-art over 3% on Macro-F1 metric as illustrated in Table 4. The proposed
GRU-MLP-External-BN-GN is also applied to ARC dataset for cross-domain
validation and it has shown better performance compared to previous stack-
LSTM model [13].

5 Conclusion

In this paper, we presented a simple combined model of deep learning with hand-
crafted features for automating the stance detection on news headline and body
pairs which improves on the state-of-the-art accuracy for the FNC-1 dataset. We
first generated different groups of classical features from headlines and bodies.
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We then integrate the external features and a simple 1-layer GRU neural network
with 50-d GloVe pre-trained embedding to boost the semantic understanding of
the model. This combined model is optimized with text augmentation, batch-
normalization and gaussian-noise regularization methods to provide significant
improvement. We also show that light-GBM and MLP models with the same
hand-engineered features provide state-of-the-art results on this task. As future
work, we will investigate how different state-of-the-art neural sentence modeling
architectures can be applied to understand the deeper semantics of the article
sentences and their interactions with the headlines so as to improve the perfor-
mance of the fake news detection. We will also consider multitask and transfer
learning methodologies to exploit knowledge from other related domains.
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Automatic stance detection using end-to-end memory networks. arXiv preprint
arXiv:1804.07581 (2018)

21. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

22. Pomerleau, D., Rao, D.: Fake News Challenge (2017). http://www.
fakenewschallenge.org/

23. Riedel, B., Augenstein, I., Spithourakis, G.P., Riedel, S.: A simple but tough-to-
beat baseline for the fake news challenge stance detection task. arXiv preprint
arXiv:1707.03264 (2017)

24. Rossiello, G., Basile, P., Semeraro, G.: Centroid-based text summarization through
compositionality of word embeddings. In: Proceedings of the MultiLing 2017 Work-
shop on Summarization and Summary Evaluation Across Source Types and Gen-
res, pp. 12–21 (2017)

25. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social
media: a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36
(2017). ACM

26. Staiano, J., Guerini, M.: Depechemood: a lexicon for emotion analysis from crowd-
annotated news. arXiv preprint arXiv:1405.1605 (2014)

27. Thorne, J., Chen, M., Myrianthous, G., Pu, J., Wang, X., Vlachos, A.: Fake news
stance detection using stacked ensemble of classifiers. In: Proceedings of the 2017
EMNLP Workshop: Natural Language Processing meets Journalism, pp. 80–83
(2017)

http://arxiv.org/abs/1708.01425
https://medium.com/@andre134679/team-athene-on-the-fake-news-challenge-28a5cf5e017b
https://medium.com/@andre134679/team-athene-on-the-fake-news-challenge-28a5cf5e017b
http://arxiv.org/abs/1309.4168
http://arxiv.org/abs/1804.07581
http://www.fakenewschallenge.org/
http://www.fakenewschallenge.org/
http://arxiv.org/abs/1707.03264
http://arxiv.org/abs/1405.1605


Imbalanced Stance Detection by Combining GRU and External Features 285

28. Tommasel, A., Rodriguez, J.M., Godoy, D.: Textual aggression detection through
deep learning. In: Proceedings of the First Workshop on Trolling, Aggression and
Cyberbullying (TRAC-2018), pp. 177–187 (2018)

29. Xu, B., Mohtarami, M., Glass, J.: Adversarial domain adaptation for stance detec-
tion. arXiv preprint arXiv:1902.02401 (2019)

30. Zhang, D., Yang, Z.: Word embedding perturbation for sentence classification.
arXiv preprint arXiv:1804.08166 (2018)

31. Zhang, X., LeCun, Y.: Text understanding from scratch. arXiv preprint
arXiv:1502.01710 (2015)

http://arxiv.org/abs/1902.02401
http://arxiv.org/abs/1804.08166
http://arxiv.org/abs/1502.01710


Prediction Uncertainty Estimation
for Hate Speech Classification

Kristian Miok1(B), Dong Nguyen-Doan1, Blaž Škrlj2, Daniela Zaharie1,
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Abstract. As a result of social network popularity, in recent years, hate
speech phenomenon has significantly increased. Due to its harmful effect
on minority groups as well as on large communities, there is a press-
ing need for hate speech detection and filtering. However, automatic
approaches shall not jeopardize free speech, so they shall accompany
their decisions with explanations and assessment of uncertainty. Thus,
there is a need for predictive machine learning models that not only
detect hate speech but also help users understand when texts cross the
line and become unacceptable.

The reliability of predictions is usually not addressed in text clas-
sification. We fill this gap by proposing the adaptation of deep neural
networks that can efficiently estimate prediction uncertainty. To reliably
detect hate speech, we use Monte Carlo dropout regularization, which
mimics Bayesian inference within neural networks. We evaluate our app-
roach using different text embedding methods. We visualize the relia-
bility of results with a novel technique that aids in understanding the
classification reliability and errors.

Keywords: Prediction uncertainty estimation ·
Hate speech classification · Monte Carlo dropout method ·
Visualization of classification errors

1 Introduction

Hate speech represents written or oral communication that in any way discred-
its a person or a group based on characteristics such as race, color, ethnicity,
gender, sexual orientation, nationality, or religion [35]. Hate speech targets disad-
vantaged social groups and harms them both directly and indirectly [33]. Social
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networks like Twitter and Facebook, where hate speech frequently occurs, receive
many critics for not doing enough to deal with it. As the connection between
hate speech and the actual hate crimes is high [4], the importance of detecting
and managing hate speech is not questionable. Early identification of users who
promote such kind of communication can prevent an escalation from speech to
action. However, automatic hate speech detection is difficult, especially when the
text does not contain explicit hate speech keywords. Lexical detection methods
tend to have low precision because, during classification, they do not take into
account the contextual information those messages carry [11]. Recently, con-
textual word and sentence embedding methods capture semantic and syntactic
relation among the words and improve prediction accuracy.

Recent works on combining probabilistic Bayesian inference and neural net-
work methodology attracted much attention in the scientific community [23].
The main reason is the ability of probabilistic neural networks to quantify trust-
worthiness of predicted results. This information can be important, especially in
tasks were decision making plays an important role [22]. The areas which can
significantly benefit from prediction uncertainty estimation are text classifica-
tion tasks which trigger specific actions. Hate speech detection is an example of
a task where reliable results are needed to remove harmful contents and pos-
sibly ban malicious users without preventing the freedom of speech. In order
to assess the uncertainty of the predicted values, the neural networks require a
Bayesian framework. On the other hand, Srivastava et al. [32] proposed a reg-
ularization approach, called dropout, which has a considerable impact on the
generalization ability of neural networks. The approach drops some randomly
selected nodes from the neural network during the training process. Dropout
increases the robustness of networks and prevents overfitting. Different variants
of dropout improved classification results in various areas [1]. Gal and Ghahra-
mani [14] exploited the interpretation of dropout as a Bayesian approximation
and proposed a Monte Carlo dropout (MCD) approach to estimate the pre-
diction uncertainty. In this paper, we analyze the applicability of Monte Carlo
dropout in assessing the predictive uncertainty.

Our main goal is to accurately and reliably classify different forms of text
as hate or non-hate speech, giving a probabilistic assessment of the prediction
uncertainty in a comprehensible visual form. We also investigate the ability of
deep neural network methods to provide good prediction accuracy on small tex-
tual data sets. The outline of the proposed methodology is presented in Fig. 1.

Our main contributions are:

– investigation of prediction uncertainty assessment to the area of text classifi-
cation,

– implementation of hate speech detection with reliability output,
– evaluation of different contextual embedding approaches in the area of hate

speech,
– a novel visualization of prediction uncertainty and errors of classification

models.



288 K. Miok et al.

Fig. 1. The diagram of the proposed methodology.

The paper consists of six sections. In Sect. 2, we present related works on hate
speech detection, prediction uncertainty assessment in text classification context,
and visualization of uncertainty. In Sect. 3, we propose the methodology for
uncertainty assessment using dropout within neural network models, as well as
our novel visualization of prediction uncertainty. Section 4 presents the data sets
and the experimental scenario. We discuss the obtained results in Sect. 5 and
present conclusions and ideas for further work in Sect. 6.

2 Related Work

We shortly present the related work in three areas which constitute the core
of our approach: hate speech detection, recurrent neural networks with Monte
Carlo dropout for assessment of prediction uncertainty in text classification, and
visualization of predictive uncertainty.

2.1 Hate Speech Detection

Techniques used for hate speech detection are mostly based on supervised learn-
ing. The most frequently used classifier is the Support Vector Machines (SVM)
method [30]. Recently, deep neural networks, especially recurrent neural network
language models [20], became very popular. Recent studies compare (deep) neu-
ral networks [9,12,28] with the classical machine learning methods.

Our experiments investigate embeddings and neural network architectures
that can achieve superior predictive performance to SVM or logistic regression
models. More specifically, our interest is to explore the performance of MCD
neural networks applied to the hate speech detection task.

2.2 Prediction Uncertainty in Text Classification

Recurrent neural networks (RNNs) are a popular choice in text mining. The
dropout technique was first introduced to RNNs in 2013 [34] but further research
revealed negative impact of dropout in RNNs, especially within language model-
ing. For example, the dropout in RNNs employed on a handwriting recognition
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task, disrupted the ability of recurrent layers to effectively model sequences [25].
The dropout was successfully applied to language modeling by [36] who applied it
only on fully connected layers. The then state-of-the-art results were explained
with the fact that by using the dropout, much deeper neural networks can be
constructed without danger of overfitting. Gal and Ghahramani [15] implemented
the variational inference based dropout which can also regularize recurrent layers.
Additionally, they provide a solution for dropout within word embeddings. The
method mimics Bayesian inference by combining probabilistic parameter interpre-
tation and deep RNNs. Authors introduce the idea of augmenting probabilistic
RNN models with the prediction uncertainty estimation. Recent works further
investigate how to estimate prediction uncertainty within different data frame-
works using RNNs [37]. Some of the first investigation of probabilistic properties
of SVM prediction is described in the work of Platt [26]. Also, investigation how
Bayes by Backprop (BBB) method can be applied to RNNs was done by [13].

Our work combines the existing MCD methodology with the latest contextual
embedding techniques and applies them to hate speech classification task. The
aim is to obtain high quality predictions coupled with reliability scores as means
to understand the circumstances of hate speech.

2.3 Prediction Uncertainty Visualization in Text Classification

Visualizations help humans in making decisions, e.g., select a driving route,
evacuate before a hurricane strikes, or identify optimal methods for allocating
business resources. One of the first attempts to obtain and visualize latent space
of predicted outcomes was the work of Berger et al. [2]. Prediction values were
also visualized in geo-spatial research on hurricane tracks [10,29]. Importance
of visualization for prediction uncertainty estimation in the context of decision
making was discussed in [17,18].

We are not aware of any work on prediction uncertainty visualization for
text classification or hate speech detection. We present visualization of tweets
in a two dimensional latent space that can reveal relationship between analyzed
texts.

3 Deep Learning with Uncertainty Assessment

Deep learning received significant attention in both NLP and other machine
learning applications. However, standard deep neural networks do not pro-
vide information on reliability of predictions. Bayesian neural network (BNN)
methodology can overcome this issue by probabilistic interpretation of model
parameters. Apart from prediction uncertainty estimation, BNNs offer robust-
ness to overfitting and can be efficiently trained on small data sets [16]. However,
neural networks that apply Bayesian inference can be computationally expen-
sive, especially the ones with the complex, deep architectures. Our work is based
on Monte Carlo Dropout (MCD) method proposed by [14]. The idea of this app-
roach is to capture prediction uncertainty using the dropout as a regularization
technique.
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In contrast to classical RNNs, Long Short-term Memory (LSTM) neural net-
works introduce additional gates within the neural units. There are two sources
of information for specific instance t that flows through all the gates: input val-
ues xt and recurrent values that come from the previous instance ht−1. Initial
attempts to introduce dropout within the recurrent connections were not suc-
cessful, reporting that dropout brakes the correlation among the input values.
Gal and Ghahramani [15] solve this issue using predefined dropout mask which
is the same at each time step. This opens the possibility to perform dropout
during each forward pass through the LSTM network, estimating the whole dis-
tribution for each of the parameters. Parameters’ posterior distributions that
are approximated with such a network structure, q(ω), is used in constructing
posterior predictive distribution of new instances y∗:

p(y∗|x∗,D) ≈
∫

p
(
y∗|fω(x∗)

)
q(ω)dω, (1)

where p
(
y∗|fω(x∗)

)
denotes the likelihood function. In the regression tasks, this

probability is summarized by reporting the means and standard deviations while
for classification tasks the mean probability is calculated as:

1
K

K∑
k=1

p(y∗|x∗, ω̂k) (2)

where ω̂k ∼ q(ω). Thus, collecting information in K dropout passes throughout
the network during the training phase is used in the testing phase to generate
(sample) K predicted values for each of the test instance. The benefit of such
results is not only to obtain more accurate prediction estimations but also the
possibility to visualize the test instances within the generated outcome space.

3.1 Prediction Uncertainty Visualization

For each test instance, the neural network outputs a vector of probability esti-
mates corresponding to the samples generated through Monte Carlo dropout.
This creates an opportunity to visualize the variability of individual predictions.
With the proposed visualization, we show the correctness and reliability of indi-
vidual predictions, including false positive results that can be just as informative
as correctly predicted ones. The creation of visualizations consists of the follow-
ing five steps, elaborated below.

1. Projection of the vector of probability estimates into a two dimensional vector
space.

2. Point coloring according to the mean probabilities computed by the network.
3. Determining point shapes based on correctness of individual predictions (four

possible shapes).
4. Labeling points with respect to individual documents.
5. Kernel density estimation of the projected space—this step attempts to sum-

marize the instance-level samples obtained by the MCD neural network.
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As the MCD neural network produces hundreds of probability samples for each
target instance, it is not feasible to directly visualize such a multi-dimensional
space. To solve this, we leverage the recently introduced UMAP algorithm [19],
which projects the input d dimensional data into a s-dimensional (in our case s =
2) representation by using computational insights from the manifold theory. The
result of this step is a two dimensional matrix, where each of the two dimensions
represents a latent dimension into which the input samples were projected, and
each row represents a text document.

In the next step, we overlay the obtained representation with other rele-
vant information, obtained during sampling. Individual points (documents) are
assigned the mean probabilities of samples, thus representing the reliability of
individual predictions. We discretize the [0, 1] probability interval into four bins
of equal size for readability purposes. Next, we shape individual points accord-
ing to the correctness of predictions. We take into account four possible outcomes
(TP - true positives, FP - false positives, TN - true negatives, FN - false negatives).

As the obtained two dimensional projection represents an approximation
of the initial sample space, we compute the kernel density estimation in this
subspace and thereby outline the main neural network’s predictions. We use two
dimensional Gaussian kernels for this task.

The obtained estimations are plotted alongside individual predictions and
represent densities of the neural network’s focus, which can be inspected from
the point of view of correctness and reliability.

4 Experimental Setting

We first present the data sets used for the evaluation of the proposed approach,
followed by the experimental scenario. The results are presented in Sect. 5.

4.1 Hate Speech Data Sets

We use three data sets related to the hate speech.

1 - HatEval data set is taken from the SemEval task “Multilingual detection of
hate speech against immigrants and women in Twitter (hatEval)1”. The compe-
tition was organized for two languages, Spanish and English; we only processed
the English data set. The data set consists of 100 tweets labeled as 1 (hate
speech) or 0 (not hate speech).

2 - YouToxic data set is a manually labeled text toxicity data, originally
containing 1000 comments crawled from YouTube videos about the Ferguson
unrest in 20142. Apart from the main label describing if the comment is hate

1 https://competitions.codalab.org/competitions/19935.
2 https://zenodo.org/record/2586669#.XJiS8ChKi70.

https://competitions.codalab.org/competitions/19935
https://zenodo.org/record/2586669#.XJiS8ChKi70
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speech, there are several other labels characterizing each comment, e.g., if it is
a threat, provocative, racist, sexist, etc. (not used in our study). There are 138
comments labeled as a hate speech and 862 as non-hate speech. We produced
a data set of 300 comments using all 138 hate speech comments and randomly
sampled 162 non-hate speech comments.

3 - OffensiveTweets data set3 originates in a study regarding hate speech
detection and the problem of offensive language [11]. Our data set consists of
3000 tweets. We took 1430 tweets labeled as hate speech and randomly sampled
1670 tweets from the collection of remaining 23 353 tweets.

Data Preprocessing. Social media text use specific language and contain syn-
tactic and grammar errors. Hence, in order to get correct and clean text data
we applied different prepossessing techniques without removing text documents
based on the length. The pipeline for cleaning the data was as follows:

– Noise removal: user-names, email address, multiple dots, and hyper-links are
considered irrelevant and are removed.

– Common typos are corrected and typical contractions and hash-tags are
expanded.

– Stop words are removed and the words are lemmatized.

4.2 Experimental Scenario

We use logistic regression (LR) and Support Vector Machines (SVM) from the
scikit-learn library [5] as the baseline classification models. As a baseline RNN,
the LSTM network from the Keras library was applied [8]. Both LSTM and
MCD LSTM networks consist of an embedding layer, LSTM layer, and a fully
connected layer within the Word2Vec and ELMo embeddings. The embedding
layer was not used in TF-IDF and Universal Sentence encoding.

To tune the parameters of LR (i.e. liblinear and lbfgs for the solver functions
and the number of component C from 0.01 to 100) and SVM (i.e. the rbf for
the kernel function, the number of components C from 0.01 to 100 and the
gamma γ values from 0.01 to 100), we utilized the random search approach [3]
implemented in scikit-learn. In order to obtain best architectures for the LSTM
and MCD LSTM models, various number of units, batch size, dropout rates and
so on were fine-tuned.

5 Evaluation and Results

We first describe experiments comparing different word representations, followed
by sentence embeddings, and finally the visualization of predictive uncertainty.

3 https://github.com/t-davidson/hate-speech-and-offensive-language.

https://github.com/t-davidson/hate-speech-and-offensive-language
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5.1 Word Embedding

In the first set of experiments, we represented the text with word embeddings
(sparse TF-IDF [31] or dense word2vec [21], and ELMo [24]). We utilise the gen-
sim library [27] for word2vec model, the scikit-learn for TFIDF, and the ELMo
pretrained model from TensorFlow Hub4. We compared different classification
models using these word embeddings. The results are presented in Table 1.

The architecture of LSTM and MCD LSTM neural networks contains an
embedding layer, LSTM layer, and fully-connected layer (i.e. dense layer) for
word2vec and ELMo word embeddings. In LSTM, the recurrent dropout is
applied to the units for linear transformation of the recurrent state and the clas-
sical dropout is used for the units with the linear transformation of the inputs.
The number of units, recurrent dropout, and dropout probabilities for LSTM
layer were obtained by fine-tuning (i.e. we used 512, 0.2 and 0.5 for word2vec
and TF-IDF, 1024, 0.5, and 0.2 for ELMo in the experiments with MCD LSTM
architecture). The search ranges for hyper parameter tuning are described in
Table 2.

Table 1. Comparison of classification accuracy (with standard deviation in brack-
ets) for word embeddings, computed using 5-fold cross-validation. All the results are
expressed in percentages and the best ones for each data set are in bold.

Table 2. Hyper-parameters for LSTM and MCD LSTM models

The classification accuracy for HatEval data set is reported in the Table 1
(left). The difference between logistic regression and the two LSTM models indi-
cates accuracy improvement once the recurrent layers are introduced. On the
other hand, as the ELMo embedding already uses the LSTM layer to take into
account semantic relationship among the words, no notable difference between
logistic regression and LSTM models can be observed using this embedding.

4 https://tfhub.dev/google/elmo/2.

https://tfhub.dev/google/elmo/2
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Results for YouToxic and OffensiveTweets data sets are presented in Table 1
(middle) and (right), respectively. Similarly to the HatEval data set, there is a
difference between the logistic regression and the two LSTM models using the
word2vec embeddings. For all data sets, the results with ELMo embeddings are
similar across the four classifiers.

5.2 Sentence Embedding

In the second set of experiments, we compared different classifiers using sentence
embeddings [6] as the representation. Table 3 (left) displays results for HatEval.
We can notice improvements in classification accuracy for all classifiers compared
to the word embedding representation in Table 1. The best model for this small
data set is MCD LSTM. For larger YouToxic and OffensiveTweets data sets, all
the models perform comparably. Apart from the prediction accuracy the four
models were compared using precision, recall and F1 score [7].

We use the Universal Sentence Encoder module5 to encode the data. The
architecture of LSTM and MCD LSTM contains a LSTM layer and dense layer.
With MCD LSTM architecture in the experiments, the number of neurons, recur-
rent dropout and dropout value for LSTM is 1024, 0.75 and 0.5, respectively.
The dense layer has the same number of units as LSTM layer, and the applied
dropout rate is 0.5. The hyper-parameters used to tune the LSTM and MCD
LSTM models are presented in the Table 2.

Table 3. Comparison of predictive models using sentence embeddings. We present
average classification accuracy, precision, recall and F1 score (and standard deviations),
computed using 5-fold cross-validation. All the results are expressed in percentages and
the best accuracies are in bold.

5.3 Visualizing Predictive Uncertainty

In Fig. 2 we present a new way of visualizing dependencies among the test tweets.
The relations are result of applaing the MCD LSTM network to the HetEval
data set. This allows further inspection of the results as well as interpretation of
correct and incorrect predictions. To improve comprehensibility of predictions
and errors, each point in the visualization is labeled with a unique identifier,
making the point tractable to the original document, given in Table 4.

5 https://tfhub.dev/google/universal-sentence-encoder-large/3.
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Fig. 2. Visualization of individual predictions along with their probability ranges.
The numeric labels besides each point correspond to individual tweets, summarized
in Table 4. The size of the points corresponds to the neural network’s mean probabil-
ity for a given prediction. True positives are marked with circles, true negatives with
crosses, false positives with squares, and false negatives as pluses.

As Fig. 2 shows, the tweets are grouped into two clusters. According to the
kernel density isometric lines, two centers are identified: the tweets assigned
lower probability of being hate speech and the tweets with higher probability
of being hate speech. Let us focus on the wrongly classified tweets and their
positions in the graph (tweets 8, 16 and 18). While for tweets 8 and 18 the
classifier wasn’t certain and a mistake seems possible according to the plot, the
tweet 16 was predicted to be hate speech with high probability. Analyzing the
words that form this tweet, we notice that not only that most of them often do
appear in the hate speech but also this combination of the words used together
is very characteristic for the offensive language.

Table 4. Test documents (one fold) used for the visualization in Fig. 2.
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Our short demonstration shows the utility of the proposed visualization which
can identify different types of errors and helps to explain weaknesses in the
classifier or wrongly labeled data.

6 Conclusions

We present the first successful approach to assessment of prediction uncertainty
in hate speech classification. Our approach uses LSTM model with Monte Carlo
dropout and shows performance comparable to the best competing approaches
using word embeddings and superior performance using sentence embeddings.
We demonstrate that reliability of predictions and errors of the models can be
comprehensively visualized. Further, our study shows that pretrained sentence
embeddings outperform even state-of-the-art contextual word embeddings and
can be recommended as a suitable representation for this task. The full Python
code is publicly available6.

As persons spreading hate speech might be banned, penalized, or monitored
not to put their threats into actions, prediction uncertainty is an important com-
ponent of decision making and can help humans observers avoid false positives
and false negatives. Visualization of prediction uncertainty can provide better
understanding of the textual context within which the hate speech appear. Plot-
ting the tweets that are incorrectly classified and inspecting them can identify
the words that trigger wrong classifications.

Prediction uncertainty estimation is rarely implemented for text classifica-
tion and other NLP tasks, hence our future work will go in this direction. A
recent emergence of cross-lingual embeddings possibly opens new opportunities
to share data sets and models between languages. As evaluation in rare languages
is difficult, the assessment of predictive reliability for such problems might be
an auxiliary evaluation approach. In this context, we also plan to investigate
convolutional neural networks with probabilistic interpretation.

Acknowledgments. The work was partially supported by the Slovenian Research
Agency (ARRS) core research programme P6-0411. This project has also received fund-
ing from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 825153 (EMBEDDIA).

References

1. Baldi, P., Sadowski, P.J.: Understanding dropout. In: Advances in Neural Infor-
mation Processing Systems, pp. 2814–2822 (2013)

2. Berger, W., Piringer, H., Filzmoser, P., Gröller, E.: Uncertainty-aware exploration
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Abstract. Recent demands in authorship attribution, specifically, cross-topic
authorship attribution with small numbers of training samples and very short
texts, impose new challenges on corpora design, feature and algorithm devel-
opment. In the current work we address these challenges by performing
authorship attribution on a specifically designed dataset in Russian. We present
a dataset of short written texts in Russian, where both authorship and topic are
controlled. We propose a pairwise classification design closely resembling a
real-world forensic task. Semantic coherence features are introduced to sup-
plement well-established n-gram features in challenging cross-topic settings.
Distance-based measures are compared with machine learning algorithms. The
experiment results support the intuition that for very small datasets, distance-
based measures perform better than machine learning techniques. Moreover,
pairwise classification results show that in difficult cross-topic cases, content-
independent features, i.e., part-of-speech n-grams and semantic coherence, are
promising. The results are supported by feature significance analysis for the
proposed dataset.

Keywords: Authorship identification � Plagiarism and spam filtering �
Forensic authorship identification � Distributional semantics � Russian language

1 Introduction

Authorship Attribution (AA), the task of identifying unknown authorship of a docu-
ment, has gained weight in recent years, especially in view of challenges posed by
online security requirements [1, 20]. Traditionally, AA was aimed at identifying authors
of large samples of fiction texts. However, the recent progress of the World Wide Web
has influenced a drift in AA goals towards identifying authorship based on a very small
number of extremely short text samples spanning different topics and genres.

These changes call for new methods to be developed for AA. First, small numbers
of training examples render the traditional machine learning methods impractical.
Second, traditional content-based features are ineffective in cross-domain scenarios.
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In the current work, we set out to address these issues by performing AA experiments
in a real-world forensic scenario with a dataset in Russian.

We present a corpus which is controlled over both authors and topics and includes
short written texts in Russian. Apart from a traditional machine learning setting with
dozens of training documents, we also perform experiments following a scenario
similar to a real-world forensic task, with only two training documents by different
authors and one test document, with various distributions of topics over the training and
test documents; in the latter case, distance-based measures are effectively used. We
apply well-established word, character and part-of-speech n-grams, and introduce
semantic coherence features to handle the author-topic interference cases.

To our knowledge, this is the first report of a topic-author-controlled AA setting in
Russian. It is also the first application of semantic coherence to AA. Moreover, this is
the first attempt to date to perform AA in a setting similar to a real-world forensics
scenario for Russian texts.

2 Related Work

2.1 Authorship Attribution

Recent challenges in authorship attribution include cross-domain attribution tasks
(mostly cross-topic and cross-genre scenarios) and tasks where very few learning
documents are available. In such cases, distance-based measures and clustering are
preferred over traditional supervised learning approaches [6, 12, 29].

In fact, in order to tackle cross-topic AA, character n-grams were introduced, as
opposed to well-established lexical features [26, 28]. The former are currently con-
sidered the best performing features in cross-topic AA [18, 24]. However, character n-
grams were recently demonstrated to capture also topic-related information, depending
on the type of character n-grams [21]. Some researchers propose techniques to remove
content-dependent information and improve cross-topic AA results [27]. Some func-
tional linguistic features were introduced to address the problem of content-dependency
in cross-topic AA: namely, part-of-speech and syntactic n-grams, text complexity
indices, etc. are applied to both English and Russian language data [14, 24, 29].

Comparing the AA results is a difficult issue, as the applied corpora differ a lot. For
instance, for an English corpus controlled by topic and genre by 21 authors the AA
results range from 0.19 to 0.65 [27]. Widely used in AA experiments is the Reuters
corpus, with the most 10 or 50 productive authors and 50 documents by each in the
training and test sets; this dataset has been classified as accurately as 0.71–0.85 with
word n-grams and their embeddings. The Guardian corpus consists of at most 10
articles per each of 13 authors on different topics, and the AA accuracy ranges from
0.24 to 0.98, depending on the choice of the training and test topics [18]. All the above
cited approaches, however, are rather far from typical forensic authorship attribution
task (for details see Sect. 3.1).
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2.2 RusIdioStyle Corpus

The mentioned benchmark corpora comprise of texts written mostly in English or other
European languages. Unfortunately, works in AA in Russian is scarce. There have been
attempts to perform AA in social media texts with large numbers of authors and large
(over hundreds) collections of documents by each author based on social media texts
[3], although it is well-known that they typically contain non-marked citations and
other non-authorial elements. Litvinova et al. [15; see also 14] have used a corpus of
hundreds of authors with two texts by each author from four different topics to identify
stable authorship features across topics, and have identified the proportions of some
functional, part-of-speech and LIWC categories as stable and therefore potentially
useful for AA, although their contribution in AA has not been evaluated yet.

To date there has been no topic-balanced dataset reported for AA in Russian. We
introduce a dataset we have compiled for the current study from RusIdioStyle corpus.
The corpus has been gathered since September 2018 and includes both experimental
texts (answers by different Russian speakers to a questionnaire) and text produced (both
orally and in writing) in different natural communicative situations. The questionnaire
consists of a range of questions, including everyday and controversial social topics, a
number of picture descriptions, narratives, etc. In some tasks, these texts were to be
composed in both written and oral manner. Currently the corpus includes texts by 125
authors. However, in the current experiments we only use written texts by five authors
belonging to three topics (register) and produced in experimental conditions, as we aim
at a highly topic-and-author-controlled dataset designed for experiments in AA which
simulate the most typical forensic scenarios.

2.3 Semantic Coherence

Semantic coherence measurement stems from topic modelling coherence evaluation
[16]. The idea behind topic coherence is that given a symmetric similarity measure
between words, an overall score of word similarity can be measured in a list of words.
Semantic coherence is measured as similarity between words in a context window in a
text, whereas similarity is typically based on a distance metric between word meanings
in a distributional semantic space. In recent years semantic coherence has been effec-
tively applied to a range of cognitive and profiling tasks in NLP, including lexical error
identification by learners of English [9], metaphor identification [23], thought disorder
evaluation [4], psychosis onset prediction [2] and diagnosing schizophrenia [10].

Some approaches based on distributional word representations have been utilized in
AA tasks with exceptional results. As early as 1997 [25] word-n-gram-based Latent
Semantic Indexing was effectively applied to AA in biblical Hebrew texts. In a dis-
sertation by Gritta [8], a number of target terms are represented in distributional
semantic spaces; the representations are further applied to AA among three English
authors. The term representations have shown highly significant differences between
authors, despite the use of small corpora for modelling.

The abovementioned research has demonstrated that semantic coherence, and, more
broadly, distributional word representations are capable of capturing important
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characteristics of individual authors in their texts. For these reasons, we find it nec-
essary to investigate the performance of semantic coherence features in AA, and
specifically, to find out whether semantic coherence can provide content-independent
measures to advance cross-topic AA.

3 Experiment

The goal of the experiments is to perform cross-topic AA with a topic-author-
controlled dataset in Russian and evaluate the widely used n-gram features and
semantic coherence features. Apart from a traditional machine learning setting, we
perform a specifically designed experiment replicating a common forensic task, with a
single training document by each author and diverse topical relations between the
training and test documents. For these purposes, we analyze feature distribution and
classification performance in a specifically designed Russian language dataset.

3.1 Dataset

We have sampled a subcorpus of RusIdioStyle (Table 1). We aimed at constructing a
dataset by various authors, which is controlled for both topic and authorship infor-
mation. At the same time, we intended to replicate a typical forensic authorship
attribution task [11, 19]:

• a very small but finite set of candidate authors (very often only two, see [7] as an
example);

• a very small number of documents per author and topic;
• very short document length;
• training and test documents typically belong to different topics (see also [7], where

it is stated that “forensic authorship identification usually has to deal with cross-
register of mixed text type data”).

In RusIdioStyle, different topics are addressed by different authors. We have
sampled five authors, who have written texts on each of the three topics:

• Thematic Apperception Test: descriptions of seven drawings (TAT);
• description of the previous day in normal and reversed order (Day);
• essays on two of the following topics (Essay):

– “My dream city”;
– “An annoying person”;
– “Family is the basis of the society”;
– “Surrogacy: is it good or bad?”;
– “Obesity: is it a problem?”;
– “Retirement age increase: is it good or bad?”.

Only two of the six possible topics were chosen by every author, which further
contributes to the topic diversification of the dataset. Number of documents and doc-
ument length statistics of the sampled dataset are illustrated in Tables 1 and 2.

302 P. Panicheva and T. Litvinova



Thus, we have compiled a dataset by five different authors stratified by topic
(besides, texts belong to different registers). The dataset replicates a typical real-life AA
dataset with texts differing in length, including very short texts; a small number of
authors and texts by each author, and a variety of topics. The dataset was designed to
allow for a cross-topic AA scenario, where training and test samples belong to different
topics.

3.2 Features

The goal of the experiment is to evaluate the performance of a number of established n-
gram features and the semantic coherence features. As a preprocessing step, we per-
form tokenization, morphological analysis and lemmatization with MyStem morpho-
logical analyzer [22].

N-grams. We apply n-grams of lemmas, parts-of-speech and characters, with n rang-
ing from 1 to 3. These features are straightforward by design, but capable of achieving
state-of-the-art performance in a number of AA tasks, including cross-topic AA [20,
21, 28, 29]. As a number of authors have shown [5, 27], cross-topic AA typically gains
from the most frequent few hundred character and lemma features. We apply the most
frequent 100 features for lemmatized Word, character (Char) and part of speech
(POS) n-grams, with the resulting n-gram feature space containing 300 dimensions.

Semantic Coherence. Semantic coherence features are computed based on the cosine
distance between the neighboring words in a distributional semantic model.

We have used the word2vec Continuous Skipgram model by Kutuzov1 [13]. The
model is trained with the Russian National Corpus and Wikipedia dump as of
December 2017, a combined corpus of 600M tokens. The context window is set to ±2,

Table 1. Document numbers in the dataset

Topic TAT Day Essay All

№ of documents per author 7 2 2 11
№ of documents by all authors 35 10 10 55

Table 2. Document length properties in the dataset (in words)

Topic\AuthorID 153 154 155 157 158 Mean Std

TAT 19.4 38.0 267.4 141.6 283.4 150.0 126.9
Day 78.5 194.5 200.0 234.0 294.5 200.3 106.7
Essay 53.5 76.5 177.5 499.0 302.0 221.7 190.9
Mean 36.4 73.5 238.8 223.4 288.8 172.2
Std 30.0 65.0 83.2 191.3 18.5 137.9

1 The model is made available for free download by the RusVectōrēs project at https://rusvectores.org/
ru/models/.
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the resulting dimensionality is 300, and the word frequency cutoff is 40. Besides, every
word is supplied with its part-of-speech tag, as defined by MyStem [22].

As our dataset contains very short texts, we apply the measure of semantic
coherence between neighboring words in a sliding window ranging from 3 to 8. The
semantic coherence in the sliding window is computed as follows (Eq. 1):

Coh Winð Þ ¼ Meanfcos wi;wj
� �

wi;wj 2
�� Win; i[ jg ð1Þ

The result is the mean cosine distance between the words in a sliding window. The
following statistics are computed from the semantic coherence measures in the con-
secutive sliding windows:

• mean, standard deviation;
• minimum, maximum;
• 90- and 10-percentile.

Six coherence features are computed for every sliding window size between 3 and
8; the final feature set consists of 6 * 6 = 36 semantic coherence features (SemCoh).

Experiment Settings. N-gram features are normalized with tf-idf and ‘l2’ normal-
ization. All the features are further normalized by subtracting their mean and dividing
by their standard deviation, so that Z-scores are obtained, which are suitable for Delta-
based distance measurement [5]. Normalization is performed based on the whole
dataset statistics.

First, we perform a Group AA experiment: we apply Support Vector Machine
(SVM) and K-Nearest Neighbors (KNN) algorithms to the resulting feature sets. While
SVM is a basic algorithm widely used for text classification problems, KNN can be
seen as an extension of the Delta measure [5] to more than one nearest elements. The
dataset is grouped by three topics, where we perform Leave-One-Group-Out cross-
validation: the algorithm is trained with two topics and tested with the third topic. All
the experiments have been performed with scikit-learn for Python2 [17].

Second, we perform a pairwise AA experiment. It is organized similar to a typical
real-world forensic task in it’s most difficult scenario: there are only two documents by
two authors with known authorship in the training set, and a third anonymous test
document. The author of the test document is one of the authors of the two training
documents. The author of the test document has to be chosen automatically between the
two authors represented in the training set. As the training set in each experiment only
includes two documents, classification algorithms are expected to fail. This task can be
solved with distance-based measures [11], when the test document is compared to the
training documents in a pairwise manner. We apply Cosine, Manhattan and Euclidean
distance measures to the task, which correspond to the respective types of the Delta
measure for AA [5]. The data for the task is obtained by a three-fold Cartesian product
of the above dataset, and contains 55 * 10 * 44 = 24,200 document triples of the
following structure:

2 https://scikit-learn.org/.
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ðDtestðAiÞ;DtrainðAiÞ;DtrainðAjÞÞ; ð2Þ

– where Dtest(Ai) and Dtrain(Ai) are different test and training documents by author i;
– Dtrain(Aj) is a training document by author j;
– i ! = j.

As the dataset size is small, we expect some random effects on feature performance
when the dataset is further divided into training and test sets. To estimate the contri-
bution of different features in the authorship classes, we also report feature importance
measurement results based on the Z-scores of their distribution in the dataset.

4 Results and Discussion

4.1 Group Authorship Attribution Performance

We have performed AA experiments with Word, Char and POS n-grams (n = {1, 2,
3}), SemCoh features, and combined feature sets. We report a number of the highest
results; different parameter values result in similar patterns with lower performance.

Table 3 illustrates the accuracy values for a number of experiment settings. The
baseline is 0.2, as there are five equally distributed authors. The best result was
obtained by the Word + Char n-grams and KNN with 5 nearest neighbors and
distance-based weights (N = 5, dist). In most of the other settings, Word + Char
features have the highest performance, whereas in SVM their combination with
SemCoh is also among the highest results.

4.2 Pairwise Authorship Attribution Performance

We have performed distance-based AA in a pairwise distance-based setting, i.e. with
two training documents, one by the author of a test document and the other written by a
different author.

Cosine and Manhattan distance measures performed similarly whereas Euclidean
distance resulted in lower performance; we report the accuracy results only for Man-
hattan distance for the sake of brevity (Table 4). The baseline for the task is 0.5, as it
implies a choice between two authors equally represented in the training sets.

In the pairwise setting, there are four types of topical relation scenarios between the
triples of documents. First, both training documents belong to the same topic as the test
document (Same, 6,040 document triples). Second, both training documents belong to
different topic(s) than the test document (Diff, 8,720 triples). Third, the training doc-
ument by the same author as the test document belongs also to the same topic as the test
document (TrueSame, 4,080 triples). Finally, the training document by a different
author than the test document belongs to the same topic as the test document (False-
Same, 5,360 triples). The results are reported for the full dataset (All) and for every
kind of topical relations.

It is obvious that the Same relation is essentially a single-topic scenario, where the
training and test documents belong to the same topic. The TrueSame scenario is
relatively simple, because both authorship and topic information contribute to the
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choice of the correct candidate. Diff scenario is complicated, because the test document
belongs to a different topic than both training documents. Finally, FalseSame scenario
is even more complicated, as the ‘correct’ training document by the same author as the

Table 3. AA performance (accuracy) with different feature sets (the highest two results in each
setting are highlighted in bold).

Features KNN
(N = 5, dist)

KNN
(N = 1, uni)

SVM
(l2, C = 0.1)

Word 0.564 0.564 0.436
POS 0.436 0.309 0.255
Char 0.364 0.364 0.382
SemCoh 0.382 0.418 0.345
Word + SemCoh 0.473 0.473 0.4
POS + SemCoh 0.309 0.255 0.273
Char + SemCoh 0.473 0.382 0.4
Word + POS 0.436 0.473 0.4
Word + Char 0.618 0.545 0.582
POS + Char 0.455 0.327 0.309
Word + POS + SemCoh 0.436 0.4 0.345
Word + Char + SemCoh 0.473 0.455 0.491
POS + Char + SemCoh 0.364 0.345 0.345
Word + POS + Char 0.509 0.491 0.455
Word + POS + Char + SemCoh 0.418 0.418 0.455

Table 4. Accuracy of pairwise AA using Manhattan distance (the highest two results in each
setting are highlighted in bold).

Features All Same Diff TrueSame FalseSame

Word 0.703 0.805 0.653 0.875 0.537
POS 0.633 0.695 0.577 0.707 0.596
Char 0.575 0.625 0.536 0.613 0.553
SemCoh 0.575 0.627 0.533 0.6 0.567
Word + SemCoh 0.665 0.742 0.617 0.78 0.568
POS + SemCoh 0.629 0.692 0.569 0.701 0.601
Char + SemCoh 0.588 0.64 0.538 0.632 0.577
Word + POS 0.696 0.776 0.633 0.829 0.605
Word + Char 0.639 0.703 0.582 0.763 0.566
POS + Char 0.593 0.64 0.546 0.65 0.571
Word + POS + SemCoh 0.682 0.762 0.615 0.816 0.6
Word + Char + SemCoh 0.636 0.711 0.572 0.753 0.568
POS + Char + SemCoh 0.602 0.658 0.545 0.668 0.581
Word + POS + Char 0.642 0.703 0.584 0.752 0.584
Word + POS + Char + SemCoh 0.641 0.71 0.575 0.758 0.58
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test document belongs to a different topic, whereas the ‘wrong’ document by a different
author belongs to the same topic as the test document: thus the topic information
interferes with authorship, and it is only by ignoring topical features that the correct
result can be obtained here.

In straightforward single-topic scenarios (Same, TrueSame) mostly content fea-
tures result in the best performance: the best result is obtained with Word and Char
features, and POS and SemCoh are in some cases useful as additional features.
However, in the most complicated FalseSame scenario, POS and SemCoh features are
promising, as their addition results in performance increase. In fact, it is different
combinations of Word, POS and SemCoh features, which allow to reach the accuracy
values of 0.6 in these difficult conditions. Despite the complications introduced in the
task by topic and authorship information interference, the suggested features allow to
overcome the baseline by 10%.

4.3 Feature Importance

We have identified the most important features for authorship classes based on the
whole dataset. The most important features with their type (char, word, POS n-grams,
or SemCoh) are presented in Table 5. The word features are represented by their
English translation and the original Russian word.

There are 17 features significant for authorship classification (p < 0.01). They are
distributed as follows: SemCoh – 6, word – 5, char – 4, and POS – 2 features.

Table 5. Feature importance (F-ANOVA) and feature count. Only significant features with
p < 0.01 are shown (corrected with the Benjamini-Hochberg false discovery rate).

Feature name Feature type F log10P Feature count

VERB PRON POS 18.38 −9 132
to start - нaчинaть word 11.47 −6 15
PRON POS 10.31 −6 784
Std_win8 SemCoh 9.03 −5 –

oл char 7.95 −5 329
she - oнa word 7.51 −5 37
Min_win6 SemCoh 7.47 −5 –

Min_win8 SemCoh 7.41 −5 –

нe char 7.37 −5 531
you - ты word 7.17 −4 33
._ char 6.75 −4 594
Std_win7 SemCoh 6.74 −4 –

Max_win6 SemCoh 6.69 −4 –

this - этo word 6.50 −4 63
Std_win6 SemCoh 6.33 −4 –

although - oднaкo word 6.13 −4 120
oт char 6.01 −4 414
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It is obvious that based on significance in the corpus, the semantic coherence
features play an important role in authorship characteristics. It is standard deviation,
maximum and minimum of the semantic coherence values which are significant. All
three of these measures for sliding window size = 6 belong to the significant features,
some are also present for window size = 7, 8. These facts show that for the genre and
mode of written short stories, semantic coherence for window size = 6 is probably
most characteristic of individual style among other window sizes.

However, n-gram features are also important, and they confirm the established
results based on English data: mostly stop words and some specific part-of-speech and
character n-grams are reliable in AA based on our dataset.

5 Conclusions

We have performed experiments on cross-topic AA with a specifically designed topic-
author-controlled dataset in Russian. The widely used n-gram features were applied,
and semantic coherence features were introduced for the first time in AA. Traditional
machine learning and distance-based algorithms were used. We have performed
experiments in two scenarios: Group AA, a traditional setting with dozens of training
and test documents, and Pairwise AA, a specifically designed scenario replicating a
real-world forensic task. The features were evaluated for authorship significance based
on the whole dataset.

The results demonstrate that we have effectively tackled the difficulties introduced
by the real-world cross-topic dataset:

1. Distance-based measures allow to obtain high results on the small dataset: the
Nearest Neighbors algorithm works well for both experiment settings, with
training sample size ranging from 2 to 45 documents;

2. Content-independent part-of-speech and semantic coherence features are
promising in difficult cross-topic scenarios, allowing to overcome the baseline in
extremely difficult conditions of topic-authorship interference.

Certainly, the results obtained especially in the most difficult (FalseSame) scenario
are very far from the results which could be applicable in real cases. However, one
should bear in mind that this scenario is rare even in real life where investigators try to
gain more texts from suspects.

Our future plans involve application of features types, including features related to
discourse levels, and testing their stability in register-shift scenario, as well as esti-
mating the volume of texts needed for high (above 0.9) level of accuracy of AA
models.
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1 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
blaz.skrlj@ijs.si, repar.andraz@gmail.com
2 Jožef Stefan Institute, Ljubljana, Slovenia

senja.pollak@ijs.si
3 Usher Institute, Medical School, University of Edinburgh, Edinburgh, UK

Abstract. Keyword extraction is used for summarizing the content of
a document and supports efficient document retrieval, and is as such an
indispensable part of modern text-based systems. We explore how load
centrality, a graph-theoretic measure applied to graphs derived from a
given text can be used to efficiently identify and rank keywords. Intro-
ducing meta vertices (aggregates of existing vertices) and systematic
redundancy filters, the proposed method performs on par with state-
of-the-art for the keyword extraction task on 14 diverse datasets. The
proposed method is unsupervised, interpretable and can also be used for
document visualization.

Keywords: Keyword extraction · Graph applications ·
Vertex ranking · Load centrality · Information retrieval

1 Introduction and Related Work

Keywords are terms (i.e. expressions) that best describe the subject of a document
[2]. A good keyword effectively summarizes the content of the document and allows
it to be efficiently retrieved when needed. Traditionally, keyword assignment was
a manual task, but with the emergence of large amounts of textual data, auto-
matic keyword extraction methods have become indispensable. Despite a consid-
erable effort from the research community, state-of-the-art keyword extraction
algorithms leave much to be desired and their performance is still lower than on
many other core NLP tasks [13]. The first keyword extraction methods mostly fol-
lowed a supervised approach [14,24,31]: they first extract keyword features and
then train a classifier on a gold standard dataset. For example, KEA [31], a state
of the art supervised keyword extraction algorithm is based on the Naive Bayes
machine learning algorithm. While these methods offer quite good performance,
they rely on an annotated gold standard dataset and require a (relatively) long
training process. In contrast, unsupervised approaches need no training and can
c© Springer Nature Switzerland AG 2019
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be applied directly without relying on a gold standard document collection. They
can be further divided into statistical and graph-based methods. The former, such
as YAKE [6,7], KP-MINER [10] and RAKE [25], use statistical characteristics of
the texts to capture keywords, while the latter, such as Topic Rank [3], TextRank
[22], Topical PageRank [29] and Single Rank [30], build graphs to rank words based
on their position in the graph. Among statistical approaches, the state-of-the-art
keyword extraction algorithm is YAKE [6,7], which is also one of the best perform-
ing keyword extraction algorithms overall; it defines a set of five features capturing
keyword characteristics which are heuristically combined to assign a single score
to every keyword. On the other hand, among graph-based approaches, Topic Rank
[3] can be considered state-of-the-art; candidate keywords are clustered into top-
ics and used as vertices in the final graph, used for keyword extraction. Next, a
graph-based ranking model is applied to assign a significance score to each topic
and keywords are generated by selecting a candidate from each of the top-ranked
topics. Network-based methodology has also been successfully applied to the task
of topic extraction [28].

The method that we propose in this paper, RaKUn, is a graph-based key-
word extraction method. We exploit some of the ideas from the area of graph
aggregation-based learning, where, for example, graph convolutional neural net-
works and similar approaches were shown to yield high quality vertex represen-
tations by aggregating their neighborhoods’ feature space [5]. This work imple-
ments some of the similar ideas (albeit not in a neural network setting), where
redundant information is aggregated into meta vertices in a similar manner.
Similar efforts were shown as useful for hierarchical subnetwork aggregation in
sensor networks [8] and in biological use cases of simulation of large proteins [9].

The main contributions of this paper are as follows. The notion of load cen-
trality was to our knowledge not yet sufficiently exploited for keyword extraction.
We show that this fast measure offers competitive performance to other widely
used centralities, such as for example the PageRank centrality (used in [22]). To
our knowledge, this work is the first to introduce the notion of meta vertices with
the aim of aggregating similar vertices, following similar ideas to the statistical
method YAKE [7], which is considered a state-of-the-art for the keyword extrac-
tion. Next, as part of the proposed RaKUn algorithm we extend the extraction
from unigrams also to bigram and threegram keywords based on load central-
ity scores computed for considered tokens. Last but not least, we demonstrate
how arbitrary textual corpora can be transformed into weighted graphs whilst
maintaining global sequential information, offering the opportunity to exploit
potential context not naturally present in statistical methods.

The paper is structured as follows. We first present the text to graph transfor-
mation approach (Sect. 2), followed by the introduction of the RaKUn keyword
extractor (Sect. 3). We continue with qualitative evaluation (Sect. 4) and quan-
titative evaluation (Sect. 5), before concluding the paper in Sect. 6.
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2 Transforming Texts to Graphs

We first discuss how the texts are transformed to graphs, on which RaKUn
operates. Next, we formally state the problem of keyword extraction and discuss
its relation to graph centrality metrics.

2.1 Representing Text

In this work we consider directed graphs. Let G = (V,E) represent a graph
comprised of a set of vertices V and a set of edges (E ⊆ V ×V ), which are ordered
pairs. Further, each edge can have a real-valued weight assigned. Let D represent
a document comprised of tokens {t1, . . . , tn}. The order in which tokens in text
appear is known, thus D is a totally ordered set. A potential way of constructing
a graph from a document is by simply observing word co-occurrences. When
two words co-occur, they are used as an edge. However, such approaches do not
take into account the sequence nature of the words, meaning that the order is
lost. We attempt to take this aspect into account as follows. The given corpus
is traversed, and for each element ti, its successor ti+1, together with a given
element, forms a directed edge (ti, ti+1) ∈ E. Finally, such edges are weighted
according to the number of times they appear in a given corpus. Thus the graph,
constructed after traversing a given corpus, consists of all local neighborhoods
(order one), merged into a single joint structure. Global contextual information
is potentially kept intact (via weights), even though it needs to be detected via
network analysis as proposed next.

2.2 Improving Graph Quality by Meta Vertex Construction

A näıve approach to constructing a graph, as discussed in the previous section,
commonly yields noisy graphs, rendering learning tasks harder. Therefore, we
next discuss the selected approaches we employ in order to reduce both the
computational complexity and the spatial complexity of constructing the graph,
as well as increasing its quality (for the given down-stream task).

First, we consider the following heuristics which reduce the complexity of the
graph that we construct for keyword extraction: Considered token length (while
traversing the document D, only tokens of length μ > μmin are considered), and
next, lemmatization (tokens can be lemmatized, offering spatial benefits and
avoiding redundant vertices in the final graph). The two modifications yield a
potentially “simpler” graph, which is more suitable and faster for mining.

Even if the optional lemmatization step is applied, one can still aim at fur-
ther reducing the graph complexity by merging similar vertices. This step is
called meta vertex construction. The motivation can be explained by the fact,
that even similar lemmas can be mapped to the same keyword (e.g., mechanic
and mechanical; normal and abnormal). This step also captures spelling errors
(similar vertices that will not be handled by lemmatization), spelling differences
(e.g., British vs. American English), non-standard writing (e.g., in Twitter data),
mistakes in lemmatization or unavailable or omitted lemmatization step.
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Fig. 1. Meta vertex construction. Sets of highlighted vertices are merged into a single
vertex. The resulting graph has less vertices, as well as edges.

The meta-vertex construction step works as follows. Let V represent the set
of vertices, as defined above. A meta vertex M is comprised of a set of vertices
that are elements of V , i.e. M ⊆ V . Let Mi denote the i-th meta vertex. We
construct a given Mi so that for each u ∈ Mi, u’s initial edges (prior to merging
it into a meta vertex) are rewired to the newly added Mi. Note that such edges
connect to vertices which are not a part of Mi. Thus, both the number of vertices,
as well as edges get reduced substantially. This feature is implemented via the
following procedure:

1. Meta vertex candidate identification. Edit distance and word lengths distance
are used to determine whether two words should be merged into a meta vertex
(only if length distance threshold is met, the more expensive edit distance is
computed).

2. The meta vertex creation. As common identifiers, we use the stemmed version
of the original vertices and if there is more than one resulting stem, we select
the vertex from the identified candidates that has the highest centrality value
in the graph and its stemmed version is introduced as a novel vertex (meta
vertex).

3. The edges of the words entailed in the meta vertex are next rewired to the
meta vertex.

4. The two original words are removed from the graph.
5. The procedure is repeated for all candidate pairs.

A schematic representation of meta vertex construction is shown in Fig. 1. The
yellow and blue groups of vertices both form a meta vertex, the resulting (right)
graph is thus substantially reduced, both with respect to the number of vertices,
as well as the number of edges.

3 Keyword Identification

Up to this point, we discussed how the graph used for keyword extraction is
constructed. In this work, we exploit the notion of load centrality, a fast measure
for estimating the importance of vertices in graphs. This metric can be defined
as follows.
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Load Centrality. The load centrality of a vertex falls under the family of
centralities which are defined based on the number of shortest paths that pass
through a given vertex v, i.e. c(v) =

∑
t∈V

∑
s∈V

σ(s,t|v)
σ(s,t) ; t �= s, where σ(s, t|v)

represents the number of shortest paths that pass from vertex s to vertex t
via v and σ(s, t) the number of all shortest paths between s and t (see [4,
11]). The considered load centrality measure is subtly different from the better
known betweenness centrality; specifically, it is assumed that each vertex sends
a package to each other vertex to which it is connected, with routing based on
a priority system: given an input of flow x arriving at vertex v with destination
v’, v divides x equally among all neighbors of minimum shortest path to the
target. The total flow passing through a given v via this process is defined as
v’s load. Load centrality thus maps from the set of vertices V to real values. For
detailed description and computational complexity analysis, see [4]. Intuitively,
vertices of the graph with the highest load centrality represent key vertices in a
given network. In this work, we assume such vertices are good descriptors of the
input document (i.e. keywords). Thus, ranking the vertices yields a priority list
of (potential) keywords.

Formulating the RaKUn Algorithm. We next discuss how the considered
centrality is used as part of the whole keyword extraction algorithm RaKUn,
summarized in Algorithm 1. The algorithm consists of three main steps described
next. First, a graph is constructed from a given ordered set of tokens (e.g., a
document) (lines 1 to 8). The resulting graph is commonly very sparse, as most
of the words rarely co-occur. The result of this step is a smaller, denser graph,
where both the number of vertices, as well as edges is lower. Once constructed,
load centrality (line 10) is computed for each vertex. Note that at this point,
should the top k vertices by centrality be considered, only single term keywords
emerge. As it can be seen from line 11, to extend the selection to 2- and 3-grams,
the following procedure is proposed:

2-gram keywords. Keywords comprised of two terms are constructed as fol-
lows. First, pairs of first order keywords (all tokens) are counted. If the sup-
port (= number of occurrences) is higher than f (line 11 in Algorithm 1), the
token pair is considered as potential 2-gram keyword. The load centralities of
the two tokens are averaged, i.e. cv = c1+c2

2 , and the obtained keywords are
considered for final selection along with the computed ranks.

3-gram keywords. For construction of 3-gram keywords, we follow a similar
idea to that of bigrams. The obtained 2-gram keywords (previous step) are
further explored as follows. For each candidate 2-gram keyword, we consider
two extension scenarios: Extending the 2-gram from the left side. Here, the
in-neighborhood of the left token is considered as a potential extension to
a given keyword. Ranks of such candidates are computed by averaging the
centrality scores in the same manner as done for the 2-gram case. Extending
the 2-gram from the right side. The difference with the previous point is that
all outgoing connections of the rightmost vertex are considered as potential
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Algorithm 1. RaKUn algorithm.
Data: Document D, consisting of n tokens t1, . . . , tn
Parameters : General: number of keywords k, minimal token length μ; Meta

vertex parameters: edit distance threshold α, word length
difference threshold l, Multi-word keywords parameters: path
length p, 2-gram frequency threshold f

Result: A set of keywords K
1 corpusGraph← EmptyGraph; � Initialization.

2 for ti ∈ D do
3 edge ← (ti, ti+1);
4 if edge not in corpusGraph and len(ti) ≥ μ then
5 add edge to corpusGraph ; � Graph construction.

6 end
7 updateEdgeWeight(corpusGraph, edge) ; � Weight update.

8 end
9 corpusGraph ← generateMetaVertices(corpusGraph, α, l);

10 tokenRanks ← loadCentrality(corpusGraph) ; � Initial token ranks.

11 scoredKeywords ← generateKeywords(p, f , tokenRanks) ; � Keyword search.

12 K = scoredKeywords[:k];
13 return K

extensions. The candidate keywords are ranked, as before, by averaging the
load centralities, i.e. cv = 1

3

∑3
i=1 ci.

Having obtained a set of (keyword, score) pairs, we finally sort the set accord-
ing to the scores (descendingly), and take top k keywords as the result. We next
discuss the evaluation the proposed algorithm.

4 Qualitative Evaluation

Fig. 2. Keyword visualization. Red dots represent keywords, other dots represent the
remainder of the corpus graph. (Color figure online)
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Fig. 3. Keyword visualization. A close-up view shows some examples of keywords and
their location in the corpus graph. The keywords are mostly located in the central part
of the graph.

RaKUn can be used also for visualization of keywords in a given document or
document corpus. A visualization of extracted keywords is applied to an example
from wiki20 [21] (for dataset description see Sect. 5.1), where we visualize both
the global corpus graph, as well as a local (document) view where keywords are
emphasized, see Figs. 2 and 3, respectively. It can be observed that the global
graph’s topology is far from uniform—even though we did not perform any
tests of scale-freeness, we believe the constructed graphs are subject to distinct
topologies, where keywords play prominent roles.

5 Quantitative Evaluation

This section discusses the experimental setting used to validate the pro-
posed RaKUn approach against state-of-the-art baselines. We first describe the
datasets, and continue with the presentation of the experimental setting and
results.

5.1 Datasets

For RaKUn evaluation, we used 14 gold standard datasets from the list of [6,7],
from which we selected datasets in English. Detailed dataset descriptions and
statistics can be found in Table 1, while full statistics and files for download
can be found online1. Most datasets are from the domain of computer science
or contain multiple domains. They are very diverse in terms of the number
of documents—ranging from wiki20 with 20 documents to Inspec with 2,000

1 https://github.com/LIAAD/KeywordExtractor-Datasets.

https://github.com/LIAAD/KeywordExtractor-Datasets
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Table 1. Selection of keyword extraction datasets in English language

Dataset Desc No. docs Avg.

keywords

Avg. doc

length

500N-KPCrowd-v1.1 [18] Broadcast news transcriptions 500 48.92 408.33

Inspec [15] Scientific journal papers from Computer

Science collected between 1998 and 2002

2000 14.62 128.20

Nguyen2007 [23] Scientific conference papers 209 11.33 5201.09

PubMed Full-text papers collected from PubMed

Central

500 15.24 3992.78

Schutz2008 [26] Full-text papers collected from PubMed

Central

1231 44.69 3901.31

SemEval2010 [17] Scientific papers from the ACM Digital

Library

243 16.47 8332.34

SemEval2017 [1] 500 paragraphs selected from 500

ScienceDirect journal articles, evenly

distributed among the domains of Computer

Science, Material Sciences and Physics

500 18.19 178.22

citeulike180 [19] Full-text papers from the CiteULike.org 180 18.42 4796.08

fao30 [20] Agricultural documents from two datasets

based on Food and Agriculture Organization

(FAO) of the UN

30 33.23 4777.70

fao780 [20] Agricultural documents from two datasets

based on Food and Agriculture Organization

(FAO) of the UN

779 8.97 4971.79

kdd [12] Abstracts from the ACM Conference on

Knowledge Discovery and Data Mining

(KDD) during 2004-2014

755 5.07 75.97

theses100 Full master and Ph.D. theses from the

University of Waikato

100 7.67 4728.86

wiki20 [21] Computer science technical research reports 20 36.50 6177.65

www [12] Abstracts of WWW conference papers from

2004-2014

1330 5.80 84.08

documents, in terms of the average number of gold standard keywords per
document—from 5.07 in kdd to 48.92 in 500N-KPCrowd-v1.1—and in terms
of the average length of the documents—from 75.97 in kdd to SemEval2017
with 8332.34.

5.2 Experimental Setting

We adopted the same evaluation procedure as used for the series of results
recently introduced by YAKE authors [6]2. Five fold cross validation was used to
determine the overall performance, for which we measured Precision, Recall and
F1 score, with the latter being reported in Table 2.3 Keywords were stemmed
prior to evaluation.4 As the number of keywords in the gold standard document
2 We attempted to reproduce YAKE evaluation procedure based on their experimental

setup description and also thank the authors for additional explanation regarding
the evaluation. For comparison of results we refer to their online repository https://
github.com/LIAAD/yake [7].

3 The complete results and the code are available at https://github.com/SkBlaz/
rakun.

4 This being a standard procedure, as suggested by the authors of YAKE.

https://github.com/LIAAD/yake
https://github.com/LIAAD/yake
https://github.com/SkBlaz/rakun
https://github.com/SkBlaz/rakun
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is not equal to the number of extracted keywords (in our experiments k=10), in
the recall we divide the correctly extracted keywords by the number of keywords
parameter k, if in the gold standard number of keywords is higher than k.

Selecting Default Configuration. First, we used a dedicated run for deter-
mining the default parameters. The cross validation was performed as follows.
For each train-test dataset split, we kept the documents in the test fold intact,
whilst performing a grid search on the train part to find the best parametriza-
tion. Finally, the selected configuration was used to extract keywords on the
unseen test set. For each train-test split, we thus obtained the number of true
and false positives, as well as true and false negatives, which were summed up
and, after all folds were considered, used to obtain final F1 scores, which served
for default parameter selection. The grid search was conducted over the follow-
ing parameter range Num keywords: 10, Num tokens (the number of tokens a
keyword can consist of): Count threshold (minimum support used to determine
potential bigram candidates): Word length difference threshold (maximum dif-
ference in word length used to determine whether a given pair of words shall be
aggregated): [0, 2, 4], Edit length difference (maximum edit distance allowed to
consider a given pair of words for aggregation): [2, 3], Lemmatization: [yes, no].

Even if one can use the described grid-search fine-tuning procedure to select
the best setting for individual datasets, we observed that in nearly all the cases
the best settings were the same. We therefore selected it as the default, which
can be used also on new unlabeled data. The default parameter setting was as
follows. The number of tokens was set to 1, Count threshold was thus not needed
(only unigrams), for meta vertex construction Word length difference threshold
was set to 3 and Edit distance to 2. Words were initially lemmatized. Next, we
report the results using these selected parameters (same across all datasets), by
which we also test the general usefulness of the approach.

5.3 Results

The results are presented in Table 2, where we report on F1 with the default
parameter setting of RaKUn, together with the results from related work, as
reported in the github table of the YAKE [7]5. We first observe that on the
selection of datasets, the proposed RaKUn wins more than any other method.
We also see that it performs notably better on some of the datasets, whereas on
the remainder it performs worse than state-of-the-art approaches. Such results
demonstrate that the proposed method finds keywords differently, indicating
load centrality, combined with meta vertices, represents a promising research
venue. The datasets, where the proposed method outperforms the current state-
of-the-art results are: 500N-KPCrowd-v1.1, Schutz2008, fao30 and wiki20. In
addition, RaKUn also achieves competitive results on citeulike180. A look at the

5 https://github.com/LIAAD/yake/blob/master/docs/YAKEvsBaselines.jpg
(accessed on: June 11, 2019).

https://github.com/LIAAD/yake/blob/master/docs/YAKEvsBaselines.jpg
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gold standard keywords in these datasets reveals that they contain many single-
word units which is why the default configuration (which returns unigrams only)
was able to perform so well.

Table 2. Performance comparison with state-of-the-art approaches.

Dataset RaKUn YAKE Single

Rank

KEA KP-MINER Text

Rank

Topic

Rank

Topical

PageRank

500N-KPCrowd-v1.1 0.428 0.173 0.157 0.159 0.093 0.111 0.172 0.158

Inspec 0.054 0.316 0.378 0.150 0.047 0.098 0.289 0.361

Nguyen2007 0.096 0.256 0.158 0.221 0.314 0.167 0.173 0.148

PubMed 0.075 0.106 0.039 0.216 0.114 0.071 0.085 0.052

Schutz2008 0.418 0.196 0.086 0.182 0.230 0.118 0.258 0.123

SemEval2010 0.091 0.211 0.129 0.215 0.261 0.149 0.195 0.125

SemEval2017 0.112 0.329 0.449 0.201 0.071 0.125 0.332 0.443

citeulike180 0.250 0.256 0.066 0.317 0.240 0.112 0.156 0.072

fao30 0.233 0.184 0.066 0.139 0.183 0.077 0.154 0.107

fao780 0.094 0.187 0.085 0.114 0.174 0.083 0.137 0.108

kdd 0.046 0.156 0.085 0.063 0.036 0.050 0.055 0.089

theses100 0.069 0.111 0.060 0.104 0.158 0.058 0.114 0.083

wiki20 0.190 0.162 0.038 0.134 0.156 0.074 0.106 0.059

www 0.060 0.172 0.097 0.072 0.037 0.059 0.067 0.101

#Wins 4 3 2 2 3 0 0 0

Four of these five datasets (500N-KPCrowd-v1.1, Schutz2008, fao30, wiki20 )
are also the ones with the highest average number of keywords per document
with at least 33.23 keywords per document, while the fifth dataset (citeulike180 )
also has a relatively large value (18.42). Similarly, four of the five well-performing
datasets (Schutz2008, fao30, citeulike180, wiki20 ) include long documents (more
than 3,900 words), with the exception being 500N-KPCrowd-v1.1. For details,
see Table 1. We observe that the proposed RaKUn outperforms the majority of
other competitive graph-based methods. For example, the most similar variants
Topical PageRank and TextRank do not perform as well on the majority of the
considered datasets. Furthermore, RaKUn also outperforms KEA, a supervised
keyword learner (e.g., very high difference in performance on 500N-KPCrowd-
v1.1 and Schutz2008 datasets), indicating unsupervised learning from the graph’s
structure offers a more robust keyword extraction method than learning a clas-
sifier directly.

6 Conclusions and Further Work

In this work we proposed RaKUn, a novel unsupervised keyword extraction algo-
rithm which exploits the efficient computation of load centrality, combined with
the introduction of meta vertices, which notably reduce corpus graph sizes. The
method is fast, and performs well compared to state-of-the-art such as YAKE
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and graph-based keyword extractors. In further work, we will test the method
on other languages. We also believe additional semantic background knowledge
information could be used to prune the graph’s structure even further, and poten-
tially introduce keywords that are inherently not even present in the text (cf.
[27]). The proposed method does not attempt to exploit meso-scale graph struc-
ture, such as convex skeletons or communities, which are known to play promi-
nent roles in real-world networks and could allow for vertex aggregation based
on additional graph properties. We believe the proposed method could also be
extended using the Ricci-Oliver [16] flows on weighted graphs.
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