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Abstract In this chapter, we describe several biomedical applications of geomet-
ric functional data analysis methods for modeling probability density functions,
amplitude and phase components in functional data, and shapes of curves and
surfaces. We begin by reviewing parameterization-invariant Riemannian metrics
and corresponding simplifying square-root transforms for each case. These tools
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allow for computationally efficient implementations of statistical procedures on
the appropriate representation spaces, including computation of the Karcher mean
and exploration of variability via principal component analysis. We then showcase
applications of these tools in multiple biomedical case studies based on various
datasets including Glioblastoma Multiforme tumors, Diffusion Tensor Magnetic
Resonance Image-based white matter tracts and fractional anisotropy functions,
electrocardiogram signals, endometrial tissue surfaces and subcortical surfaces in
the brain.

24.1 Introduction

Improvements in medical data acquisition technology, especially non-invasive imag-
ing technology, have resulted in proliferation of large, complex datasets. There are
many goals in analyzing such data depending on the application of interest, ranging
from assessment of regular aging patterns to diagnosis and monitoring of various
diseases. The types of imaging data of interest greatly vary in their properties,
e.g., functional Magnetic Resonance Imaging (fMRI) measures dynamic brain
activity through changes in blood flow, structural Magnetic Resonance Imaging
(MRI) produces images of the anatomy using magnetic fields and Diffusion Tensor
Magnetic Resonance Imaging (DT-MRI) maps diffusion of water molecules in
biological tissues. In spite of this apparent heterogeneity, many medical imaging
datasets share two common characteristics: (1) the representation space of the data
is fundamentally non-Euclidean and (2) the data is functional (infinite-dimensional)
in nature. These two properties of the data introduce a major challenge for
statistical analysis as most traditional statistical methods apply to data residing
in relatively low-dimensional Euclidean spaces. Our focus in this book chapter is
on representation and statistical analysis of various aspects of biomedical imaging
data including (1) patterns of voxel values via probability density functions (pdfs,
smoothed histograms of voxel intensities) [44], (2) elastic functional data that
contains amplitude and phase variabilities [48], (3) shapes of curves [30, 47] and
(4) shapes of surfaces representing objects in medical images [19, 35]. As will be
seen later, all of these data types benefit from a Riemannian geometric approach
to data analysis. To unify these different data objects of interest, we refer to them
commonly as geometric data objects throughout.

Statistical analysis of geometric data objects starts with the definition of a suit-
able mathematical representation and metric that can be used for their comparison.
Once an appropriate representation space and a Riemannian metric on that space
have been defined, statistical analysis proceeds via the metric structure. In particular,
this approach allows one to (1) compute summary statistics such as the mean
and covariance, (2) explore variability in a sample via adaptations of principal
component analysis and (3) define basic statistical models [20, 49]. We consider
each of pdfs, elastic functional data, and shapes of curves and surfaces separately
to define the relevant Riemannian geometric representation spaces. To tie all of
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the frameworks together, we point out the commonalities between the Riemannian
geometry used for statistical analysis in each case.

We begin with statistical analysis of texture via a pdf representation. Texture
here refers to the pattern of voxel values inside an object of interest in a medical
image; it is a fundamental appearance property of objects in images [49]. We form
the pdf by (1) vectorizing the relevant voxel values, (2) generating their histogram
and (3) smoothing the histogram [44]. The result is a functional data object with two
constraints: the pdf must be positive everywhere on its domain and it must integrate
to one. The representation space of pdfs is the infinite-dimensional simplex, a
constrained linear space. To define a Riemannian structure on this space, we use the
well-known Fisher-Rao metric [25, 42, 46]. An important property of this metric
is that it is invariant to reparameterization [7], a property used later for defining a
Riemannian structure on the space of elastic functions and shapes.

The second type of geometric data objects of interest are elastic functions. Elastic
functions naturally contain two different sources of variability: amplitude variability
and phase, warping or parameterization variability [38]. A main goal in elastic
functional data analysis is to separate these two sources of variability and define
statistical methods to analyze them. The Riemannian setting for this type of analysis
necessitates invariance to function reparameterization. Conveniently, we apply an
extension of the Fisher-Rao metric used for pdfs in this setting [48].

Finally, we use methods from elastic shape analysis to study outlines (boundaries
of objects resulting in curves and surfaces) representing objects in medical images
[20, 30, 47]. The shape of such boundaries is a fundamental physical property of the
objects, and provides indispensable information about the health and development
of anatomical structures in the medical setting. The notion of shape is invariant
to translations, scales, rotations and reparameterizations of the curves and surfaces
[26]. In this setting, we use elastic Riemannian metrics which have been shown
to have such desired invariances. These elastic metrics are also extensions of the
Fisher-Rao metric introduced for pdfs.

In all of the above-mentioned settings, the initial Riemannian geometric struc-
ture of the representation spaces is quite complicated and necessitates numerical
methods for simple tasks such as computing geodesic distances. Luckily, there exist
square-root transforms in each of the cases that greatly simplify the geometry, and
result in Riemannian geometric tools with analytical expressions. This, in turn,
allows for development of large-scale data analytic approaches that can be applied
in various biomedical settings.

Our focus in this book chapter is not on describing recent methodological
advances in this area, but rather on elucidating various biomedical applications of
geometric methods for functional data analysis. While we outline the relevant math-
ematical details to keep our discussion self-contained, the main aim is to showcase
the breadth of applicability of the methods in medical imaging. As a result, our
methodological descriptions are terse and avoid many technical details; we refer the
interested readers to the recent books [49] and [20] for specific details. Additionally,
we highlight two closely related chapters in this volume that present complementary
material. In Chapter 13, the authors focus on the problem of registering different
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types of functional data as well as related mathematical/statistical properties; they
also present many intuitive examples to introduce this topic. In Chapter 14, the
authors provide an extension of the methods described in our chapter to trajectories
on general manifolds and present examples that consider multimodal data. The
rest of this chapter is organized as follows. Section 24.2 describes the Riemannian
geometry of representation spaces for the four geometric data objects of interest:
(1) pdfs, (2) elastic functional data, (3) shapes of curves and (4) shapes of surfaces.
In Sect. 24.3, we describe a general nonparametric framework, based on tools
provided by the Riemannian geometric backdrops, for computing summary statistics
and assessing variability in random samples. Section 24.4 discusses multiple case
studies for each type of geometric data object. Here, we draw on previous studies to
showcase the breadth of biomedical applications of the described methods. Finally,
we close with a brief summary in Sect. 24.5.

24.2 Mathematical Representation: Riemannian Metrics
and Simplifying Transforms

We begin with a brief review of the different Riemannian metrics and representa-
tions for pdfs, amplitude and phase components of elastic functional data, shapes
of curves and shapes of surfaces. In each case, we highlight a particular square-root
transformation, which greatly simplifies the computational implementation of the
framework. For more details on these approaches, please refer to Chapters 4 (pdfs
and elastic functional data), 5 and 6 (shapes of open and closed curves, respectively)
in [49], and [20] (shapes of surfaces). Throughout, we use ‖ · ‖ and 〈〈·, ·〉〉 to denote
functional norms and inner products (not necessarily L2), and | · | and 〈·, ·〉 to denote
the norm and inner product in a finite-dimensional Euclidean space Rk .

24.2.1 Probability Density Functions

Without loss of generality, our description focuses on univariate densities on [0, 1].
However, the methods described here can be generalized to the multivariate setting
in a straightforward manner (see Section 4 in [44] for an example). Let P denote the
Banach manifold of such pdfs defined as P = {p : [0, 1] → R+| ∫ 1

0 p(t)dt = 1}.
For any point p ∈ P, the tangent space is defined as Tp(P) = {v : [0, 1] →
R| ∫ 1

0 v(t)dt = 0}; this is a vector space of all possible perturbations of the pdf
p. We proceed to define a Riemannian metric on P, which will be used to compute
geodesic distances between two pdfs and summary statistics of samples of pdfs. The
nonparametric Fisher-Rao Riemannian metric (simply FR metric hereafter), for any
two tangent vectors v1, v2 ∈ Tp(P) is defined as [25, 42, 46]
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〈〈v1, v2〉〉p =
∫ 1

0
v1(t)v2(t)

1

p(t)
dt. (24.1)

The FR metric is invariant to reparameterizations of densities [7], a nice mathemati-
cal property. One drawback of this metric is the difficulty associated with computing
geodesic paths and distances due to the fact that the metric changes from point to
point on the space of pdfs, requiring numerical procedures.

To simplify computation, we choose an equivalent representation of the space
P via the square-root density (SRD) representation [4]. Under this representation,
the complicated FR metric becomes the standard L2 metric and the space of pdfs P
becomes the positive orthant of the unit hypersphere in L2. In other words, we define
an isometric transformation that greatly simplifies computing. The SRD is defined
as a function ψ = +√

p (we omit the + sign hereafter for notational convenience).
Then, the inverse mapping is unique and is simply given by p = ψ2. Hence, the
space of all SRDs is given by � = {ψ : [0, 1] → R+| ∫ 1

0 ψ(t)2dt = 1}. The

L2 Riemannian metric on � is defined as 〈〈w1, w2〉〉 = ∫ 1
0 w1(t)w2(t)dt , where

w1, w2 ∈ Tψ(�) and Tψ(�) = {w : [0, 1] → R| ∫ 1
0 ψ(t)w(t)dt = 0}.

As the Riemannian geometry of � equipped with the L2 metric is well-known,
geodesic paths and their lengths can now be computed analytically. The geodesic
distance between ψ1, ψ2 ∈ � is simply given by

d(ψ1, ψ2) = θ = cos−1
( ∫ 1

0
ψ1(t)ψ2(t)dt

)
. (24.2)

The corresponding geodesic path between ψ1, ψ2 ∈ � is

η(τ) = 1/ sin(θ){ψ1 sin(θ(1 − τ)) + ψ2 sin(τθ)}, τ ∈ [0, 1]. (24.3)

It is easy to see that the geodesic distance θ is bounded above by π/2. In addition to
geodesic paths and distances, we often use the exponential and inverse exponential
maps for computing statistical summaries of a sample of pdfs. The exponential map
at a point ψ1 ∈ �, denoted by exp : Tψ1(�) �→ �, is defined as

expψ1
(w) = cos(‖w‖)ψ1 + sin(‖w‖)(w/‖w‖), (24.4)

where ‖w‖ =
( ∫ 1

0 w(t)2dt
)1/2

. The inverse exponential map, denoted by exp−1
ψ1

:
� �→ Tψ1(�), is given by

exp−1
ψ1

(ψ2) = (θ/ sin(θ))(ψ2 − ψ1 cos(θ)). (24.5)

These two mappings can be used to transfer points from the nonlinear representation
space � to linear tangent spaces of �, and vice versa.
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24.2.2 Amplitude and Phase in Elastic Functional Data

One can extend the above FR metric-based framework to more general functional
data. One difficulty that arises in this setting is the need for registration when
comparing or modeling such observations. This is due to the fact that functional
data often contains two forms of variability: amplitude and phase [38, 41, 48, 49].
Amplitude describes the vertical variability along the y-axis while phase describes
the horizontal variability along the x-axis (also called domain warping), i.e., the
parameterization of the functional observations. Thus, extracting phase variability
from functional data through a registration procedure requires a metric that is
invariant to reparameterization. As we have already established that the FR metric
is invariant to reparameterizations of pdfs, we will use its extension for functional
data.

We introduce some additional notation to formalize the discussion. Without
loss of generality, we restrict our attention to absolutely continuous functions
on the domain [0, 1], and focus only on nonlinear warpings of this domain;
thus, we define the function space of interest as F = {f : [0, 1] →
R|f is absolutely continuous}. We use the set � = {γ : [0, 1] → [0, 1]|γ (0) =
0, γ (1) = 1, γ is a diffeomorphism} to represent all possible nonlinear domain
warpings. Then, for a function f ∈ F , the composition f ◦ γ denotes the domain
warping of f using γ , i.e., a reparameterization of the function f . To extend the
FR metric for pdfs to this more general class of functions, we start with absolutely
continuous functions f : [0, 1] → R such that ḟ > 0; call the set of such functions
F0 and let Tf (F0) denote the tangent space to F0 at f . For any f ∈ F0 and
v1, v2 ∈ Tf (F0), the FR metric can be redefined as [48]

〈〈v1, v2〉〉f =
∫ 1

0
v̇1(t)v̇2(t)

1

ḟ (t)
dt. (24.6)

As in the case of densities, this metric is invariant to domain warpings, 〈〈v1 ◦γ, v2 ◦
γ 〉〉f ◦γ = 〈〈v1, v2〉〉f , for all γ ∈ �, f ∈ F0 and v1, v2 ∈ Tf (F0), but also difficult
to work with computationally.

To alleviate this issue, we define a square-root transform similar to the SRD.
Define the square-root slope function (SRSF) of f as q = sign(ḟ )

√
|ḟ (t)|. Since

we have assumed ḟ > 0, the SRSF in this case simply becomes q =
√

ḟ , i.e., the
square-root of an unnormalized pdf. Importantly, under the SRSF representation,
the FR metric becomes the standard L2 metric. While we have so far restricted our
attention to functions with positive derivative, the SRSF allows us to treat more
general cases. Next, we return to the space F of all absolutely continuous functions,
i.e., ḟ is allowed to take arbitrary values including zero (when ḟ = 0, the SRSF also
takes value 0). Then, using the L2 metric on the space of all SRSFs corresponding
to functions in F , the FR metric implicitly extends from F0 to F . If the function f

is absolutely continuous then the resulting SRSF is square-integrable or an element
of L2([0, 1],R) (simply L2 for brevity) [43]. The inverse mapping from an SRSF to
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its corresponding function is unique up to a vertical translation. If one additionally
keeps track of the starting point f (0), then the mapping is unique and is given by
f (t) = f (0) + ∫ t

0 q(s)|q(s)|ds. Furthermore, the SRSF of a warped function f ◦ γ

is given by (q, γ ) = (q ◦ γ )
√

γ̇ .
This basic setup allows us to define amplitude and phase mathematically. The

amplitude of a function remains unchanged under warping, i.e., f and f ◦ γ have
the same amplitude for any γ ∈ �. The amplitude is thus defined as the equivalence
class [f ] = {f ◦ γ |γ ∈ �}, which contains all possible domain warpings of f .
The space of all amplitudes is the quotient space F /�. In contrast to amplitude, the
definition of phase is only relative. Given two functions f1 and f2, the relative phase
of f2 with respect to f1 is defined as

γ21 = arg min
γ∈�

‖q1 − (q2 ◦ γ )
√

γ̇ ‖, (24.7)

where q1 and q2 are the SRSFs of f1 and f2, respectively. This minimization is
usually solved using the dynamic programming algorithm [43]. The optimization
problem in Eq. (24.7) is referred to as the pairwise registration of f2 to f1.

Next, we focus on defining a distance for amplitude and phase components. The
distance between amplitudes of two functions f1 and f2 is defined as

da(f1, f2) = d([q1], [q2]) = min
γ∈�

‖q1 − (q2 ◦ γ )
√

γ̇ ‖ = ‖q1 − (q2 ◦ γ21)
√

γ̇21‖.
(24.8)

A geodesic path between two amplitude functions can then be constructed using a
straight line connecting q1 and (q2 ◦ γ21)

√
γ̇21. Similarly, in order to compare the

phase components of the two functions f1 and f2, we use the relative phase between
them, γ21. Then, the phase distance is defined as

dp(f1, f2) = cos−1
( ∫ 1

0

√
γ̇21(t)dt

)
. (24.9)

This definition is based on an adaptation of the FR metric to �, and is measured
using the SRSFs of warping functions [27]. In fact, the SRSF of any warping
function is simply an SRD. Thus, the phase distance uses the SRD representation
introduced earlier to compute distances between warping functions. To construct
a geodesic path between two warping functions, after transforming them to their
SRSFs, one can simply use Eq. (24.3).

24.2.3 Shapes of Open and Closed Curves

The extension of methods for functional data analysis to curves in higher-
dimensional Euclidean spaces comes from so-called elastic shape analysis. While
functional data requires invariance to reparameterization only, shape analysis
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additionally requires invariance to translation, scale and rotation, also referred
to as similarity shape-preserving transformations. As in the two previous sections,
we begin by introducing a Riemannian metric, which is naturally invariant to all
such transformations.

Let f : D → Rk, k > 1 denote an absolutely continuous, parameterized curve
in the Euclidean space Rk with the domain of parameterization given by D = [0, 1]
for open curves and D = S1 for closed curves. With a slight abuse of notation, let
F denote the set of all such curves. While the framework described here applies to
k-dimensional curves, biomedical applications generally consider 2D and 3D curves
as data objects, as seen in later sections. The most difficult of the aforementioned
invariances is that to parameterization, and it requires the definition of a nonstandard
Riemannian metric on F referred to as the elastic metric. We begin by identifying

the curve f with the pair (r, θ) where r = |ḟ | is the speed function and θ = ḟ

|ḟ |
is the angle function. The only information lost when passing from f to the pair
(r, θ) is translation, which is one of the nuisance, shape-preserving transformations.
Also, let (δr1, δθ1) and (δr2, δθ2) be two tangent vectors at (r, θ). Then, the elastic
Riemannian metric is defined as

〈〈(δr1, δθ1), (δr2, δθ2)〉〉(r,θ) = a

∫

D
δr1(t)δr2(t)

1

r(t)
dt+b

∫

D
δθ1(t)

T δθ2(t)r(t)dt.

(24.10)
We note three important properties of this metric. First, it is a weighted combination
of two terms, one capturing changes in the speed function, i.e., stretching deforma-
tions, and one capturing changes in the angle function, i.e., bending deformations.
Second, the stretching term in the metric should look familiar: it is the same
as the FR metric introduced earlier for densities. Third, this metric is invariant
to reparameterizations of curves, in addition to translation, scaling and rotation.
Unfortunately, as in the two previous cases, this metric is difficult to use in practice.

Fortunately, one can extend the SRSF representation introduced for functional
data to this more general case. This new representation of curves is called the square-

root velocity function (SRVF) [21] and is defined as q = √
rθ = ḟ√

|ḟ | . In fact,

the SRVF and SRSF are equivalent for univariate curves. The SRVFs of absolutely
continuous curves reside in L2(D,Rk) (simply L2 for brevity). An important prop-
erty of this representation is that the complicated elastic metric, with a = 1/4 and
b = 1, simplifies to the standard L2 metric under the SRVF transform. We note that
the SRVF is not the only transform that simplifies a specific instance of the elastic
metric to the L2 metric; for alternative approaches see [2, 28, 53, 54]. We will use the
SRVF to mathematically formalize the notion of shape so that any two curves that
are within a translation, rescaling, rotation and reparameterization of each other are
considered to be the same data object. Since the SRVF is a function of the derivative
of the original curve, it is automatically translation invariant (this is obvious since
the elastic metric is translation invariant). Forcing a unit length constraint on the
curves results in unit L2 norm SRVFs, i.e., ‖q‖2 = 1. Hence, the set of unit length
open curves is C = {q : [0, 1] → Rk|‖q‖2 = 1}, i.e., a unit sphere in L2; C is
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also referred to as the pre-shape space. Restricting attention to closed curves, the
pre-shape space becomes Cc = {q : S1 → Rk|‖q‖2 = 1,

∫
S1 q(t)|q(t)|dt = 0},

which is a subspace of C due to the closure constraint. In the remainder, to keep the
discussion general, we do not make a distinction between these two pre-shape spaces
and simply use C. The rotation and reparameterization variabilities can be filtered
out through a suitable definition of equivalence classes. Let [q] = {O(q, γ )|γ ∈
�,O ∈ SO(k)} denote all possible rotations and reparameterizations of q, where
SO(k) = {O ∈ Rk×k|OT O = OOT = 1, det(O) = 1} is the special orthogonal
group of rotations, � = {γ : D → D|γ is a diffeomorphism} is the set of (order-
preserving) reparameterizations and (q, γ ) = (q ◦ γ )

√
γ̇ . Each equivalence class

represents a shape uniquely and the collection of all equivalence classes is the shape
space S = C/(SO(k) × �). The final ingredient is the ability to compare shapes
using a distance on S. Under the SRVF representation, this distance is given by

d([q1], [q2]) = min
O∈SO(k),γ∈�

cos−1
( ∫

D
q1(t)

T Oq2(γ (t))
√

γ̇ (t)
)
dt. (24.11)

The optimization problem in Eq. (24.11) is solved using a combination of Procrustes
analysis [10] and dynamic programming [43]. For visualization, a geodesic path
between two shapes can be constructed using Eq. (24.3) with inputs q1 and
O∗(q2, γ

∗), where O∗ and γ ∗ denote the minimizers of Eq. (24.11).

24.2.4 Shapes of Surfaces

Lastly, we consider shape analysis of surfaces. This case evolves similarly to the
case of curves. Again, with a slight abuse in notation, let F denote the space of
smooth embeddings f : D → R3, where the domain of parameterization D can be
a unit sphere (closed surfaces), a unit square (quadrilateral surfaces), a unit cylinder
(cylindrical surfaces), a unit disk (hemispherical surfaces), etc. Furthermore, let �

be the set of all diffeomorphisms of D. We use n(t) ∈ R3 to denote the normal vector
to the surface at the point t ∈ D, i.e., n(t) = ∂f

∂u
(t) × ∂f

∂v
(t), where (u, v) are the

coordinates on the domain D. The infinitesimal area measure at a point t is given by
r(t) = |n(t)| and the normalized normal vector is ñ(t) = n(t)

r(t)
. We will represent the

surface f using the pair (r, ñ); as this representation depends on partial derivatives
only, it is automatically invariant to translations. Let (δr1, δñ1) and (δr2, δñ2) be
two tangent vectors at (r, ñ). A reparameterization invariant Riemannian metric on
the space of surfaces is given by [19]

〈〈(δr1, δñ1), (δr2, δñ2)〉〉(r,ñ) = 1

4

∫

D
δr1(t)δr2(t)

1

r(t)
dt+

∫

D

δñ1(t)
T δñ2(t)r(t)dt.

(24.12)
Again, the first term in this metric resembles the FR metric introduced earlier,
and captures changes in the infinitesimal areas of surface patches, i.e., stretching
deformations. The second term captures changes in the direction of the unit normal
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vector, i.e., bending deformations. The metric in Eq. (24.12) is a special case of a
more general elastic metric for surfaces [19]. Due to the difficulty of working with
this metric in practice, we define an alternative representation of surfaces, called the
square-root normal field (SRNF), which simplifies this metric to the standard L2

metric. The SRNF of a surface f is given by q = √
rñ = n√|n| . The SRNF of a

reparameterized surface f ◦γ , for a γ ∈ �, is given by (q, γ ) = (q ◦γ )
√

Jγ , where
Jγ is the determinant of the Jacobian of γ .

As in the case of curves, we seek a framework that is invariant to all shape-
preserving transformations (translation, scale, rotation and reparameterization).
The SRNF representation is automatically invariant to translations. To produce
invariance to scaling, we rescale all surfaces to unit area, resulting in SRNFs with
unit L2 norm. As in the case of curves, this amounts to restricting attention to the unit
sphere in L2. We then define a distance on the shape space of surfaces by minimizing
over equivalence classes of the form [q] = {O(q, γ )|γ ∈ �, O ∈ SO(3)}

d([q1], [q2]) = min
O∈SO(3),γ∈�

cos−1
( ∫

D
q1(t)

T Oq2(γ (t))

√
Jγ (t)

)
dt. (24.13)

As in the case of curves, the optimal rotation is found using Procrustes analysis
[10]. Computation of the optimal reparameterization requires a gradient descent
algorithm [29]. A geodesic path between two shapes can be constructed using
Eq. (24.3) with inputs q1 and O∗(q2, γ

∗), where O∗ and γ ∗ are the minimizers
of Eq. (24.13).

24.3 Nonparametric Metric-Based Statistics

We provide a general recipe for computing the sample mean, covariance and
performing principal component analysis (PCA). Our tools rely on Karcher means
for metric spaces and local linear approximations via the Riemannian structure.
Since all four geometric data objects described in Sect. 24.2 rely on L2 Riemannian
geometry, we provide a single description here for brevity.

24.3.1 Karcher Mean

The sample Karcher mean [24] of a collection of points (i.e., pdfs, amplitude
functions, phase functions or shapes) x1, . . . , xn from a metric space (X, d) is
defined as the minimizer of the Karcher variance

μ̂ = arg min
x∈X

1

n

n∑

i=1

d(x, xi)
2. (24.14)
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This definition, with slight modification when dealing with equivalence classes, is
applicable to all four metric spaces discussed in Sect. 24.2. Computation of the
Karcher mean is carried out using gradient-based algorithms [31, 36, 40], which
generally iterate between three steps: (1) projection of data from the representation
space to the linear tangent space at the current estimate of the mean via the inverse
exponential map, (2) computation of the gradient of the cost function in Eq. (24.14),
and (3) update of the current estimate of the mean using the exponential map. In the
case of functional data, the Karcher mean is used as a template for mutliple function
registration. That is, once the Karcher mean is estimated, the amplitude components
of all functions are defined through pairwise registration to the Karcher mean; this
also results in the phase component, computed with respect to the mean [48].

24.3.2 Covariance Estimation and Principal Component
Analysis

Exploration of variability in a sample of geometric data objects can be carried out by
choosing local coordinates in the vicinity of the Karcher mean μ̂. The Riemannian
structure allows one to conveniently linearize the data representation space via the
tangent space at the mean, Tμ̂, and to select Euclidean coordinates in this space.

As before, let x1, . . . , xn and μ̂ represent the data objects of interest and their
Karcher mean, respectively. We begin by projecting each xi, i = 1, . . . , n onto
the tangent space at the mean using the inverse exponential map resulting in
tangent vectors v1, . . . , vn. Using this tangent space representation, we estimate the
covariance matrix based on discretized versions of the tangent vectors denoted by
vi , i = 1, . . . , n. Assuming the dimension of each vi is M , the sample covariance
matrix is given by KM := 1/(n − 1)

∑n
i=1 viv

T
i . To study variability using PCA,

we apply the spectral decomposition to the covariance matrix KM = U�UT ,
where the orthogonal matrix U contains the principal components (PCs) or principal
directions of variability, and the diagonal matrix � contains the PC variances. In
typical biomedical applications, the number of observations is smaller than the
dimensionality of each tangent vector, i.e., n < M . Thus, there are at most n − 1
positive values in the matrix �. The submatrix formed by the first r columns of
U , Ur , spans the r-dimensional principal subspace of the observed data, and one
can reexpress the data using coordinates in this subspace via principal coefficients
computed as ci = UT

r vi , i = 1, . . . , n. One can then use these principal coefficients
for further statistical modeling, e.g., PC regression [3]. A common approach to
modeling complex data objects is through tangent PCA-based models such as the
truncated wrapped Gaussian distribution [30] or by directly modeling the principal
coefficients.



686 J. Matuk et al.

24.4 Biomedical Case Studies

We focus on multiple biomedical case studies that consider (1) pdfs, (2) amplitude
and phase in functional data, (3) shapes of curves, and (4) shapes of surfaces
as data objects. While the theoretical underpinnings outlined in Sect. 24.2 con-
sider infinite-dimensional data representations, computer implementation of these
methods requires appropriate discretization. We represent pdfs and other univariate
functions (amplitude/phase) as 1 × N vectors, where N denotes the number
of discretization points selected on the function domain. Shapes of curves are
represented as d × N matrices, where d = 2, 3 depending on whether the curve
is planar or 3D, and N is again the number of points selected on the curve domain.
Finally, shapes of surfaces are represented as N1 × N2 × 3 arrays, where N1 × N2
defines a discretization grid on the surface, and each point on the grid takes a value
in R3.

24.4.1 Probability Density Functions

Assessment of Glioblastoma Multiforme Tumor Texture Variability Glioblas-
toma multiforme (GBM), also known as grade IV glioma, is the most common form
of a malignant brain tumor in adults [15]. It is a morphologically heterogeneous
disease with extremely poor prognosis; also, predicting the impact of standard
cancer treatments such as chemotherapy and radiation therapy becomes consider-
ably challenging. Thus, exploring tumor heterogeneity is critical in cancer research
as inter- and intra-tumor differences have stymied the systematic development of
targeted cancer therapies [9]. MRI is one of the modern medical imaging techniques
that has been used to investigate tumor development in various contexts. MRI
scans are primarily used to exhibit and evaluate the location, size, growth and
progression of tumors, which serve as indicators for clinical decision making.
Various physiological features are extracted by using voxel-level data to visualize
the progression (or regression) of tumors. This is generally done by constructing
voxel value histograms. However, in most cases, only simple summaries of the entire
histograms are used for statistical analysis. This approach has two main drawbacks.
First is the subjectivity in the choice of the number and location of the summary
features (e.g., quantiles or percentiles, etc.). Second, and more importantly, these
summary features fail to capture the entire information in a histogram of voxel
intensities, and thus cannot detect small-scale and sensitive changes in the tumor
due to treatment effects [23].

Alternatively, one can exploit the entire histogram, or its corresponding smoothed
density profile, for the tumor region in an MRI. This was the approach taken in a
recent paper that introduces DEMARCATE, a self-contained pipeline for geometric
clustering and validation of GBM tumor texture profiles [44]. Semi-automated
segmentation methods [1] can be employed to delineate the tumor region in the
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Fig. 24.1 (a) MRI slice for a subject with GBM; the delineated region corresponds to the tumor.
(b) Mask identifying the tumor region. (c) Estimated voxel intensity pdf corresponding to the tumor

whole brain MRI scan. In subsequent analyses we use the voxel-level information
from the axial slice with the largest tumor area only. This is done for simplicity of
visualization and can be easily extended to the full 3D tumor. Figure 24.1a shows
a single slice of an MRI scan for a subject with GBM, where the delineated region
corresponds to the tumor. This region is displayed as a binary mask in panel (b).
The voxel values inside the tumor are used to compute a Gaussian kernel density
estimate (a pdf), which is displayed in panel (c); it contains detailed and refined
information about the voxel-level tumor characteristics. Hence, under this setup, a
sample of GBM scans is represented by a sample of voxel value pdfs corresponding
to the tumor region in the MRI scan of each subject. For a more detailed description
of the image processing pipeline, we refer the interested reader to [44]. The imaging
data used in this study was retrieved from The Cancer Imaging Archive (www.
cancerimagingarchive.net).

Next, we consider a comparison of two subjects based on their voxel value pdfs.
Figure 24.2a, b shows the MRI slice for two subjects, and the corresponding pdfs
of the tumor intensity values. The geodesic path between the two pdfs under the
FR metric is shown in Fig. 24.2c. The displayed geodesic was discretized with five
equally spaced points on the interior of the path. Finally, we consider a random
sample of ten subjects with GBM. The densities for these ten subjects (dashed),
along with their Karcher mean (solid red) are displayed in Fig. 24.3a. The Karcher
mean in this case provides a simple summary of the sample of voxel intensity pdfs,
and was computed using the FR Riemannian framework. We do not display the
corresponding MRI slices in this case for brevity (note that there doesn’t exist a
unique MRI slice corresponding to the Karcher mean pdf). Given an estimate of the
Karcher mean, we perform PCA and show the first principal direction of variability
in the given sample. This result is provided in Fig. 24.3b and reflects the relative
heights of the different modes in the sample of voxel value pdfs. While not shown
here, principal coefficients can be subsequently used as covariates in regression
models, e.g., to predict subject survival [3].

www.cancerimagingarchive.net
www.cancerimagingarchive.net
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Fig. 24.2 (a and b) MRI slices from two different GBM subjects, with the pdf corresponding to
the tumor intensity values. (c) Geodesic path between the pdfs for subject (a) and subject (b)
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Fig. 24.3 (a) Karcher mean (solid red line) of a random sample of ten voxel value pdfs (dashed
lines) extracted from tumor regions of GBM subjects. (b) Principal direction of variability in the
sample, displayed at −2, −1, 0, +1, +2 standard deviations around the mean (red)

24.4.2 Amplitude and Phase in Elastic Functional Data

Automatic Segmentation and Clustering of Electrocardiogram Signals The
electrocardiogram (ECG) is a cheap and widely-applied diagnostic tool for assess-
ment of various heart diseases including myocardial infarction (MI). Automated
algorithms, based on sound mathematical and statistical principles, that can accu-
rately and efficiently analyze ECG signals are thus useful in monitoring and
identifying the risk or onset of a particular disease. The ECG captures fluctuations
in electrical potential of the heart muscle on the body surface and results in a vector
that represents the magnitude and direction of the electric field generated through
the heart [8]. The ECG represents an example of a highly periodic biomedical signal.
The two main challenges in analyzing such data include (1) automatic segmentation
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Fig. 24.4 (a) Pictorial description of automatic algorithm for segmentation of long ECG signals.
Bottom: Registration of PQRST complexes to a common template. (b) Given PQRST complexes.
(c) Phase component. (d) Amplitude component. (e) Comparison of average PQRST complex
without (blue) and with (green) registration. Image courtesy of [32]

of cycles called PQRST complexes (PQRST refer to semantic features of each cycle:
the P peak, QRS complex and the T peak) from a long temporal ECG signal, and
(2) automatic registration of cycles to extract amplitude and phase variabilities of
individual cycles. The ECG data used here for demonstrative purposes is a subset of
the PTB Diagnostic ECG Database [5] obtained from Physionet [12].

In [32], the authors solve these two problems using techniques from elastic
functional data analysis described in Sect. 24.2.2. First, they define an automatic
signal segmentation algorithm based on a sliding window approach. In particular,
they construct a PQRST complex template, based on the amplitude component of
a few manually segmented PQRST complexes, and slide it along the long periodic
signal. The cost function that is then used for segmentation is the phase distance,
defined in Eq. (24.9), between the part of the long signal in the current window
and the defined template. The PQRST cycles are identified as local minima of this
cost function. Figure 24.4a provides a pictorial description of this process. Once the
cycles have been extracted, their amplitude components are found by registering to
a new common template. This result is displayed in the bottom panel of Fig. 24.4. In
(b), we show the segmented PQRST complexes. The extracted phase components
are displayed in (c) with corresponding amplitude components in (d). Finally, in
(e), we compare the amplitude means computed without (blue) and with (green)
registration. Note the enhanced features of the PQRST complex average computed
after registration.
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In addition to extracting the amplitude and phase components from PQRST
complexes, the authors in [32] use the amplitude components for (1) classification
of subjects as healthy controls or as having MI and (2) localization of the MI as
anterior or inferior. The data they use for this experiment consists of 80 healthy
control ECGs, 28 of which are repeated measures for the same subject, and 80 MI
ECGs with no repeated measures. For each subject, they first segment the long ECG
signal into corresponding PQRST complexes and then use the amplitude of the
average PQRST complex for classification using the nearest neighbor procedure.
They report an accuracy of MI classification of 90% by combining information
from different ECG leads (the data contains a total of 15 different ECG signals
called leads per subject). Also, they report a localization accuracy of 92.21%, again
based on combining multiple single lead classifiers.

Assessment of Variability in DT-MRI Fractional Anisotropy Functions in
Multiple Sclerosis DT-MRI is a neuroimaging modality that traces the diffusion
of water molecules in the brain. A DT-MRI scan of a subject’s brain provides a
3×3 tensor matrix, at each voxel in the image, that describes the constraints of local
Brownian motion of water molecules. This information is essential to understanding
white matter in the brain which constitutes areas made up of axons or tracts. Tracts
connect neurons and allow for the transmittance of electric signals from one area of
the brain to another, affecting overall brain function. Because the diffusion of water
in tracts is anisotropic, tracts themselves can be extracted from the information
contained in a DT-MRI, along with other quantities of interest that describe the
quality of tract connection by summarizing its degree of anisotropy.

Here, we focus on Fractional Anisotropy (FA) measurements along tracts,
which provide a voxel-wise summary of the eigenvalues of the diffusion tensors,
denoted by λ1, λ2, λ3. At each voxel, FA is given by the scalar quantity FA =
√

3
2

√
(λ1−λ̄)2+(λ2−λ̄)2+(λ3−λ̄)2

λ2
1+λ2

2+λ2
3

, where λ̄ = λ1+λ2+λ3
3 . A larger FA value indicates

a large degree of anisotropy. For practitioners, this summary is interpreted as
measuring the quality of connections between neurons connected by the tracts in
a particular region of interest, and has been found to be a useful quantity to study
subjects with various diseases, e.g., multiple sclerosis (MS) [13], Alzheimer’s [39],
etc. In the MS setting, the autoimmune disease causes lesions and damage to tracts
that results in a decrease in FA. Thus, this quantity can be used to distinguish
between healthy controls and subjects with MS, and to predict cognitive and motor
disease outcomes. The data of interest takes a functional form, with the domain of
the functions representing locations along tracts. Determining the voxels that the
tracts pass through in the image is a practical challenge in itself and will be further
discussed in Sect. 24.4.3.

The functional FA data we analyze here is available as part of the ‘refund’
package in R [14]. In particular, we study the mean and principal directions of
variability in a sample of 66 subjects with MS whose FA values were measured at 55
locations along the right corticospinal tract that contributes to fine motor movements
in ipsilateral limbs. The domain of parameterization for each FA function was
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Fig. 24.5 (a) Observed FA functions. (b) Amplitude component. (c) Phase component

normalized to [0, 1] for convenience. It is important to note that due to differences in
the geometry of different subjects’ white matter, there generally exist both phase and
amplitude variabilities in the FA functional data, as demonstrated next. The raw FA
functions for the 66 subjects are shown in Fig. 24.5a. The amplitude components of
the functions, after registration to a common template, are displayed in Fig. 24.5b.
Finally, the warping functions which constitute the phase components are shown
in Fig. 24.5c. Visual inspection of panel (b) reveals that the number of extreme
values in the FA functions is roughly the same across subjects. The main source of
variability in this case are the heights of the extreme values. The phase components
in panel (c) suggest that the extreme values occur at different parameter values
for different subjects, which is intuitive given natural geometric variability of the
tracts across subjects. These insights are only made possible through the separation
of amplitude and phase by registering all functions to a common template; such
patterns are much more difficult to observe by looking at the observed functions in
panel (a).

Figure 24.6 further highlights the importance of elastic functional data analysis
methods by contrasting averages computed without (panel (a)) and with (panel (b))
registration. While the general patterns in the two means are similar, the amplitude
mean in panel (b) reveals much more local structure through small peaks and
valleys. Finally, to understand patterns of variability in the given sample of FA
functions, we perform PCA on the amplitude components. Since the translation
of the functions is also informative in this setting, we include it as an additional
feature in the PCA model (it is appropriately weighted to make the scales of the
two components, amplitude and translation, comparable). The first three principal
directions of amplitude (and translation) variability are visualized in Fig. 24.6c–e.
The first direction predominantly captures variability in translation as well as the
initial portion of the functions, as some functions in the sample initially decrease and
others increase. The second direction captures fine features of the different peaks
and valleys of the FA functions, especially the fourth peak, as well as large amount
of variability at the end of the functions. Finally, the third direction (and subsequent
directions not displayed here) capture bigger differences in the relative heights of
peaks and valleys.
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Fig. 24.6 (a) Pointwise mean of the FA functions in Fig. 24.5a. (b) Karcher mean of the FA
functions after registration in Fig. 24.5b. (c)–(e) First three principal directions of amplitude (and
translation) variability of the FA functions, respectively. We display a path of functions sampled at
−2 and +2 (dotted lines), −1 and +1 (dashed lines), and 0 (solid line) standard deviations from
the mean

24.4.3 Shapes of Open and Closed Curves

Comparison and Summarization of Planar Shapes of GBM Tumors We return
to the study of the GBM tumor dataset, as described in Sect. 24.4.1. However,
instead of modeling the internal texture of the tumors, we instead model the shapes
of tumor outlines. This allows us to study growth patterns and shape heterogeneity of
tumors, which are features that are complementary to voxel intensity values. Tumor
shape is affected by the location of the tumor in the brain due to constraints posed
by the brain anatomy such as white matter and blood vessels. In [3], the authors
suggest that tumor shape could enhance our understanding of disease prognosis and
help in prediction of therapeutic success. As in Sect. 24.4.1, the imaging data is a
subset of The Cancer Imaging Archive, and the tumor shape is obtained through
semi-automated segmentation; a segmented tumor is visualized in Fig. 24.1. The
geometric data object of interest in this case is the red outline of the tumor rather
than the entire MRI slice. In this case study, we consider 63 GBM tumor outlines,
which are represented as planar closed curves. We focus on characterization of
tumors through the visualization of geodesic paths, the Karcher mean shape and
shape PCA. Similar results appear in [3]; the scope of their study is broader and
additionally includes shape clustering, hypothesis testing and survival modeling.
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We begin with a visualization of a geodesic path between two tumor shapes in
Fig. 24.7. If the two endpoints of the geodesic path are a single subject’s tumor at
different timepoints, the points along the path can be viewed as an interpolation
along different stages of tumor growth. This, in turn, can help a practitioner
retrospectively understand how the subject’s tumor has evolved over time without
collecting MRI data at intermediate timepoints. On the other hand, when the two
endpoints are shapes of tumors coming from two different subjects, as in Fig. 24.7,
the path can help formulate a qualitative understanding of how tumor shapes differ in
the population. In this case, the shapes of the tumors seem to differ by how bulbous
or skinny their protrusions are. By viewing more subjects’ tumors in Fig. 24.8, this
seems to be a common discrepancy between the different subjects. The insight
that this is a primary source of variability in GBM tumor shapes is formalized by
viewing the principal directions of variability in the entire dataset; the first four
directions are shown in Fig. 24.9. Notice that the first direction, which captures
approximately 41% of the total variability, describes the types of differences in

Fig. 24.7 Geodesic path between shapes of GBM tumors for two subjects (blue and black
endpoints), sampled uniformly using five interior points along the path

Fig. 24.8 Five randomly
selected GBM tumor outlines

Fig. 24.9 (a)–(d) First four
principal directions of shape
variability in the GBM
dataset, respectively, sampled
at −3, −2, −1, 0, +1, +2 and
+3 standard deviations
around the mean shape (red)
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protrusions described before. The remaining directions describe other shapes of the
bulbous features of the tumors. The second, third and fourth principal directions of
variation capture about 33%, 16%, and 10% of the total variability, respectively;
essentially all of the variation is contained in these first four directions. This implies
that a low dimensional model, based on these PCs, could be used for subsequent
statistical analyses.

Clustering Shapes of 3D DT-MRI Tracts As previously mentioned in
Sect. 24.4.2, DT-MRI tracts are of interest when studying structural connections
between different regions of the brain. Tractography is the field of study
concerned with discerning tracts from the tensor-based DT-MRIs [37]. Conventional
tractography relies on the principle that water diffuses anisotropically in white
matter tracts in a principal direction that is encoded in the diffusion tensor. This
implies that the direction that the tract is pointing in a voxel will coincide with
the eigenvector corresponding to the maximum eigenvalue of the diffusion tensor.
Consequently, an entire tract can be traced using information from the observed
diffusion tensors associated with voxel locations. The application described in [30]
deals with tracts that connect Broca’s and Wernicke’s regions of the left hemisphere
of the brain; these two regions are associated with the human language circuit.
While two main routes of connection are widely recognized, there is an ongoing
debate on whether the white matter tracts connecting the two regions can be further
broken down into smaller subroutes.

The data in this study contains different numbers of fiber tracts for four subjects.
We identify different routes of connectivity by clustering the shapes of these tracts
using distance-based methods. This was also done in [30], but there the authors
used shape in conjunction with other features of the tracts. To determine if the
tracts can be put in different clusters representing major pathways connecting the
regions of interest, a hierarchical clustering algorithm, with a complete linkage
criterion, is used to cluster the observations for each individual based on the elastic
shape distance defined in Eq. (24.11). The results for all four subjects are shown in
Fig. 24.10. The tracts, represented as 3D open curves, are plotted in the top panel of
the figure and are colored by cluster membership. In the middle panel, we show the
pairwise shape distance matrix as an image, rearranged according to the computed
clusters. Note the nice separation of clusters in this distance matrix. Finally, in the
bottom panel, we show a plot of the tracts after applying multidimensional scaling
(MDS) to the distance matrices. This 2D scatterplot provides a lower dimensional
visualization of the clustered data. Some of the subjects exhibited tracts that could
be separated into more than two clusters, e.g., Fig. 24.10b, c. The case for more than
two clusters is hard to justify for the subject in Fig. 24.10a. Based on these results,
it appears that the hypothesis that there are two or three main pathways connecting
Broca’s and Wernicke’s regions in the left hemisphere is plausible for all of the
subjects considered in this case study.
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Fig. 24.10 (a)–(d) Results of hierarchichal shape clustering for four subjects. Top: Tracts colored
by cluster membership. Middle: Image of distance matrix. Bottom: MDS plot of tracts

24.4.4 Shapes of Surfaces

Simulation of Endometrial Tissue Shapes We define a PCA-based statistical
model for efficient simulation of random endometrial tissue shapes, which can be
used for validation of various image processing algorithms such as multimodal
registration of MRI and transvaginal ultrasound (TVUS). This is an important
task in the context of diagnosis and surgery planning for endometriosis [45, 52],
a complex gynecological disease in which endometrial cells appear outside their
usual locations in the uterine cavity [6]. Endometriosis affects approximately 10%
of women in the reproductive age group and may cause chronic pelvic pain, severe
dysmenorrhea, infertility, rectal bleeding and digestive problems.

In this study [33, 34], we use real data from ten subjects with small endometrial
implants in the pelvic area. The available data are cylindrically parameterized
surfaces of endometrial tissues, reconstructed from 2D MRI slices. The entire
dataset can be found in Figure 1(b) in [34]. There is a lot of variation in this data,
and thus, parsimonious shape models are very important in this application. Of main
interest is random generation of realistic endometrial tissue shapes as they’d appear
in an MRI scan and a corresponding TVUS image. Unfortunately, endometrial tissue
is soft and undergoes a significant deformation during TVUS imaging due to the
transducer’s pressure. Thus, in addition to generating a random endometrial tissue
shape we must additionally apply a deformation on the surface of the shape that is
consistent with the TVUS imaging protocol.



696 J. Matuk et al.

Fig. 24.11 (a) Randomly
sampled shape from the
Gaussian model resembling
MRI data. (b) Random
sample after additional
deformation resembling
TVUS data. (c) Deformation
applied to the random sample
displayed on a perfect
cylinder. Image courtesy of
[34]

To achieve the two goals outlined above, we first compute the Karcher mean
of and perform PCA on the ten given endometrial tissue shapes. This allows us to
express the data in terms of the principal coefficients. We model these coefficients
using a simple zero-mean multivariate Gaussian distribution with the covariance
structure informed by the PCA. A major advantage of this shape model is that it is
very easy and computationally efficient to sample from. Figure 24.11a shows four
randomly generated endometrial tissue shapes as they’d appear in an MRI. Then,
to simulate the semi-synthetic deformation needed for the corresponding TVUS-
based endometrial tissue shape, we define a simple diffusion model with different
degrees of deformation on the previously computed Karcher mean; the deformation
is centered at a randomly selected point on the mean. These deformations can then
be transported from the Karcher mean to each of the random samples from our
model using parallel transport [51]. Figure 24.11c displays the deformations applied
to a perfect cylinder. The magnitude of deformation increases from the top row to
the bottom row. Finally, the TVUS-based, deformed endometrial tissue shapes are
displayed in (b). The random samples generated using this approach (as well as
their deformed counterparts) naturally resemble the given data. In [34], the authors
provide a thorough validation of their models and a formal assessment by a clinician.

Classification of Attention Deficit Hyperactivity Disorder (ADHD) via Shapes
of Subcortical Structures Recently, many researchers have become interested
in studying shape changes of brain structures and associating these changes with
various diseases including Alzheimer’s [22, 50], Parkinson’s [11], autism [16] and
ADHD [29], among others. Statistical analysis of the shapes of such structures plays
a central role in the ability to diagnose and monitor such diseases, as well as to
develop novel treatment strategies. The current standard of practice is to use clinical
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Fig. 24.12 Subcortical structures used for classification of ADHD. Image courtesy of [20]

symptoms, including various behavioral tests, to detect and quantify abnormalities
due to disease status. Such an approach has clear limitations as the tests are often
subjective and mainly qualitative, relying entirely on a doctor’s assessment and
judgment.

As an alternative, our final case study considers classification of ADHD based
on the shapes of four distinct subcortical structures, represented as closed surfaces:
pallidum, caudate, thalamus and putamen; a single example of each structure is
displayed in Fig. 24.12. The surfaces of these subcortical structures were segmented
from T1-weighted MRIs of young adults aged between 18 and 21 who were
recruited from the Detroit Fetal Alcohol and Drug Exposure Cohort [17, 18].
Among the 34 subjects in this dataset, 19 were diagnosed with ADHD and the
remaining 15 were controls. The classifier in this study was constructed in the
following way. First, the training data was used to estimate the Karcher mean in
each class. Then, shape PCA was used to define a Gaussian model on the principal
coefficients. The resulting classifier simply uses the likelihood ratio under these
two models to classify test shapes into control or ADHD classes. This classifier
was applied in a leave-one-out manner to the above-described dataset, i.e., at each
iteration a single case was left out for testing while the rest were used to learn the
classification model. The best classification result obtained using this method was
based on the shape of the left putamen, 94.1%. The shape of the right pallidum
yielded a classification accuracy of 76.5%, and the shapes of the left caudate, left
thalamus and right thalamus resulted in a slightly worse classification accuracy of
67.7%. Comprehensive results of this study are reported in [20], where the approach
outlined here was compared to other classifiers and other shape representations [29].

24.5 Summary

We consider several biomedical applications of geometric functional data analysis.
We begin by assessing variability in a sample of GBM voxel intensity pdfs to
model tumor appearance. We then shift our focus to the use of elastic functional
data methods for analyzing amplitude and phase components of electrocardiogram
signals and FA functions extracted from DT-MRI. For the GBM tumor data, we
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additionally study shape variability of tumor outlines extracted from single MRI
slices, which form planar closed curves. Shapes of white matter tracts in DT-MRI
provide information about connectivity of different brain areas. We cluster particular
sets of tracts to elucidate connection pathways between Broca’s and Wernicke’s
areas, which are associated with the language circuit. Finally, we use shape models
to simulate 3D endometrial tissue shapes, and to define classifiers for ADHD based
on shapes of subcortical structures.
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