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Abstract Stochastic and finite-sum optimization problems are central to machine
learning. Numerous specializations of these problems involve nonlinear constraints
where the parameters of interest lie on a manifold. Consequently, stochastic
manifold optimization algorithms have recently witnessed rapid growth, also in part
due to their computational performance. This chapter outlines numerous stochastic
optimization algorithms on manifolds, ranging from the basic stochastic gradient
method to more advanced variance reduced stochastic methods. In particular, we
present a unified summary of convergence results. Finally, we also provide several
basic examples of these methods to machine learning problems, including learning
parameters of Gaussians mixtures, principal component analysis, and Wasserstein
barycenters.

R. Hosseini (�)
School of ECE, College of Engineering, University of Tehran, Tehran, Iran

School of Computer Science, Institute of Research in Fundamental Sciences (IPM), Tehran, Iran
e-mail: reshad.hosseini@ut.ac.ir

S. Sra
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: suvrit@mit.edu

© Springer Nature Switzerland AG 2020
P. Grohs et al. (eds.), Handbook of Variational Methods for Nonlinear
Geometric Data, https://doi.org/10.1007/978-3-030-31351-7_19

527

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31351-7_19&domain=pdf
mailto:reshad.hosseini@ut.ac.ir
mailto:suvrit@mit.edu
https://doi.org/10.1007/978-3-030-31351-7_19


528 R. Hosseini and S. Sra

19.1 Introduction

In this chapter we outline first-order optimization algorithms used for minimizing
the expected loss (risk) and its special case, finite-sum optimization (empirical
risk). In particular, we focus on the setting where the parameters to be optimized
lie on a Riemannian manifold. This setting appears in a variety of problems in
machine learning and statistics, including principal components analysis [33], low-
rank matrix completion [9, 39], fitting statistical models like Gaussian mixture
models [17, 18, 38], Karcher mean computation [22, 33], Wasserstein barycen-
ters [40], dictionary learning [12], low rank multivariate regression [27], subspace
learning [28], and structure prediction [34]; see also the textbook [1].

Typical Riemannian manifolds used in applications can be expressed by a set
of constraints on Euclidean manifolds. Therefore, one can view a Riemannian
optimization problem as a nonlinearly constrained one, for which one could use
classical approaches. For instance, if the manifold constitutes a convex set in
Euclidean space, one can use gradient projection like methods,1 or other nonlinear
optimization methods [6]. These methods could suffer from high computational
costs, or as a more fundamental weakness, they may fail to satisfy the constraints
exactly at each iteration of the associated algorithm. Another problem is that the
Euclidean gradient does not take into account the geometry of the problem, and
even if the projection can be done and the constraints can be satisfied at each
iteration, the numerical conditioning may be much worse than a method that
respects geometry [1, 42].

Riemannian optimization has shown great success in solving many practical
problems because it respects the geometry of the constraint set. The definition of
the inner product in Riemannian geometry makes the direction of the gradient to
be more meaningful than Euclidean gradients because it considers the geometry
imposed by constraints on the parameters of optimization. By defining suitable
retractions (geodesic like curves on manifolds), the constraint is always satisfied.
Sometimes the inner product is defined to also take into account the curvature
information of the cost function. The natural gradient is an important example of
the Riemannian gradient shown to be successful for solving many statistical fitting
problems [2]. The natural gradient was designed for fitting statistical models and it
is a Riemannian gradient on a manifold where the metric is defined by the Fisher
information matrix.

1Some care must be applied here, because we are dealing with open sets, and thus projection is not
well-defined.
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Additional Background and Summary

Another key feature of Riemannian optimization is the generalization of the widely
important concept of convexity to geodesic convexity. We will see later in this
chapter that geodesic convexity help us derive convergence results for accelerated
gradient descent methods akin to their famous Euclidean counterpart: Nesterov’s
accelerated gradient method. Similar to the Euclidean case, there are works that
develop results for recognizing geodesic convexity of functions for some special
manifolds [37]. Reformulating problems keeping an eye on geodesic convexity also
yields powerful optimization algorithms for some practical problems [18].

After summarizing key concepts of Riemannian manifolds, we first sketch the
Riemannian analogue of the widely used (Euclidean) stochastic gradient descent
method. Though some forms of stochastic gradient descent (SGD) such as natural
gradient were developed decades ago, the version of SGD studied here and its
analysis has a relatively short history; Bonnabel [8] was the first to give a unifying
framework for analyzing Riemannian SGD and provided an asymptotic analysis
on its almost sure convergence. We recall his results after explaining SGD on
manifolds. We then note how convergence results of [15] for Euclidean non-
convex SGD generalize to the Riemannian case under similar conditions [18].
Among recent progress on SGD, a notable direction is that of faster optimization
by performing variance reduction of stochastic gradients. We will later outline
recent results of accelerating SGD on manifolds and give convergence analysis
for geodesically non-convex and convex cases. Finally, we close by summarizing
some applications drawn from machine learning that benefit from the stochastic
Riemannian algorithms studied herein.

Apart from the algorithms given in this chapter, there exist several other methods
that generalize well from the Euclidean to the Riemannian setting. For example
in [4] the SAGA algorithm [13] is generalized to Riemannian manifolds along with
convergence theory assuming geodesic convexity. In [23] a Riemannian stochastic
quasi-Newton method is studied; in [21] an inexact Riemannian trust-region method
is developed and applied to finite-sum problems. Adaptive stochastic gradient
methods such as ADAM and RMSProp have also been generalized [5, 24, 25]. It
was observed however that ADAM works inferior to plain SGD for fitting Gaussian
mixture models [16], where momentum and Nesterov SGD offered the best variants
that improve on the performance of plain SGD.

The convergence results presented in this chapter are for general Riemannian
manifolds and hold for a fairly general class of cost functions. For specific manifolds
and functions, one can obtain better convergence results for the algorithms. For
example for the case of quadratic optimization with orthogonality constraint, the
authors in [26] proved convergence results. The authors in [41] proved convergence
for a block eigensolver.
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19.2 Key Definitions

We omit standard definitions such as Riemannian manifolds, geodesics, etc.; and
defer to a standard textbook such as [20]. Readers familiar with concepts from
Riemannian geometry can skip this section and directly move onto Sect. 19.3;
however, a quick glance will be useful for getting familiar with our notation.

A retraction is a smooth mapping Ret from the tangent bundle TM to the
manifold M. The restriction of a retraction to TxM, Retx : TxM → M, is a smooth
mapping that satisfies the following:

1. Retx(0) = x, where 0 denotes the zero element of TxM.
2. D Retx(0) = idTxM, where D Retx denotes the derivative of Retx and idTxM

denotes the identity mapping on TxM.

One possible candidate for retraction on Riemannian manifolds is the exponential
map. The exponential map Expx : TxM → M is defined as Expx v = γ (1), where
γ is the geodesic satisfying the conditions γ (0) = x and γ̇ (0) = v.

A vector transport T : M×M×TM → TM, (x, y, ξ) �→ Tx,y(ξ) is a mapping
that satisfies the following properties:

1. There exists an associated retraction Ret and a tangent vector ν satisfying
Tx,y(ξ) ∈ TRetx(ξ), for all ξ ∈ TxM.

2. Tx,xξ = ξ , for all ξ ∈ TxM.
3. The mapping Tx,y(·) is linear.

We use T Retx
x,y to denote the vector transport constructed by the differential of the

retraction, i.e., T Retx
x,y (ξ) = D Retx(η)[ξ ], wherein Retx(η) = y (in the case of

multiple η, we make it clear by writing the value of η), while PRetx
x,y denotes the

parallel transport along the retraction curve (again, if there are multiple curves where
Retx(η) = y, we make it clear from context which curve is meant).

The gradient on a Riemannian manifold is defined as the vector ∇f (x) in tangent
space such that

Df (x)ξ = 〈∇f (x), ξ 〉, for ξ ∈ TxM,

where 〈·, ·〉 is the inner product in the tangent space TxM. Df (x)ξ is the directional
derivative of f along ξ . Let γ : [−1, 1] → M be a differentiable curve with γ (0) =
x and γ̇ (0) = ξ (for example γ (t) = Exp(tξ)), then the directional derivative can
be defined by

Df (x)ξ = d

dτ
f (γ (τ))

∣
∣
∣
∣
τ=0

.

Differentials at each point on the manifold forms the cotangent space. The cotangent
space on the smooth manifold M at point x is defined as the dual space of the tangent
space. Elements of the cotangent space are linear functionals on the tangent space.
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The Hessian of a function is a symmetric bilinear form D2f (x) : TxM×TxM →
R, (ξ, η) → 〈∇η∇f (x), ξ 〉, where ∇η is the covariant derivative with respect to
η [1]. The Hessian as a operator ∇2f (x) : TxM → TxM is a linear operator
that maps ν in TxM onto the Riesz representation D2f (x)(ν, .). Alternatively, the
operator Hessian can be defined by

d

dτ
〈∇f (γ (τ)), ∇f (γ (τ))〉

∣
∣
∣
∣
τ=0

= 2〈∇f (x), (∇2f )ξ〉,

where γ : [−1, 1] → M is a differentiable curve with γ (0) = x and γ̇ (0) = ξ .In
the following, we give some conditions and definitions needed for the complexity
analysis of the algorithms in this book chapter.

Definition 19.1 (ρ-Totally Retractive Neighborhood) A neighborhood � of a
point x is called ρ-totally retractive if for all y ∈ �, � ⊂ B(0y, ρ) and Rety(·)
is a diffeomorphism on B(0y, ρ).

All optimization algorithms given in this book chapter start from an initial point
and the point is updated based on a retraction along a direction with a certain
step size. The following condition guarantees that all points along retraction in all
interactions stay in a set.

Definition 19.2 (Iterations Stay Continuously in X) The iterate xk+1 =
Retxk

(αkξk) is said to stay continuously in X if Retxk
(tξk) ∈ X for all t ∈ [0, αk].

Most of the optimization algorithms explained in this chapter need a vector
transport. The convergence analysis for many of them is available for the specific
case of parallel transport. Some works that go beyond parallel transport still need
some extra conditions on the vector transport as explained below. These conditions
hold a forteriori for parallel transport.

Definition 19.3 (Isometric Vector Transport) The vector transport T is said to be
isometric on M if for any x, y ∈ M and η, ξ ∈ TxM, 〈Tx,y(η), Tx,y(ξ)〉 = 〈η, ξ 〉.
Definition 19.4 (θ-Bounded Vector Transport) The vector transport T with its
associated retraction Ret is said to be θ -bounded on M if for any x, y = Retx(ξ) ∈
M and ξ ∈ TxM,

‖Tx,yη − PRetx
x,y η‖ ≤ θ‖ξ‖‖η‖, (19.1)

where P is the parallel transport along this associated retraction curve.

Definition 19.5 (θ-Bounded Inverse Vector Transport) The inverse vector trans-
port with its associated retraction Ret is said to be θ -bounded on M if for any
x, y = Retx(ξ) ∈ M and ξ ∈ TxM,

‖(Tx,y

)−1
χ −

(

PRetx
x,y

)−1
χ‖ ≤ θ‖χ‖‖ξ‖,
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where P is the parallel transport along this associated retraction curve.

The following proposition helps in checking if a vector transport satisfies some
of the conditions expressed above.

Proposition 19.6 (Lemma 3.5 in Huang et al. [19]) Assume that there
exists a constant c0 > 0 such that T satisfies ‖Tx,y − T Retx

x,y ‖ ≤ c0‖ξ‖,

‖(Tx,y

)−1 −
(

T Retx
x,y

)−1‖ ≤ c0‖ξ‖, for any x, y ∈ M and the retraction

y = Retx(ξ). Then, the vector transport and its inverse are θ -bounded on M,
for a constant θ > 0.

We note that if the vector transport is C0, then the condition of this proposition
holds.

For the convergence analysis of the algorithms in this chapter, the cost function
needs to satisfy some of the properties given below.

Definition 19.7 (G-Bounded Gradient) A function f : X → R is said to have a
G-bounded gradient in X if ‖∇f (x)‖ ≤ G, for all x ∈ X.

Definition 19.8 (H-Bounded Hessian) A function f : X → R is said to have an
H -bounded Hessian in X if ‖∇2f (x)‖ ≤ H , for all x ∈ X.

Definition 19.9 (Retraction L-Smooth) A function f : X → R is said to be
retraction L-smooth if for any x, y = Retx(ξ) in X, we have

f (y) ≤ f (x) + 〈∇f (x), ξ 〉 + L

2
‖ξ‖2.

If the retraction is the exponential map, then the function is called geodesically
L-smooth.

Definition 19.10 (Retraction L-Upper-Hessian Bounded) A function f : X →
R is said to be upper-Hessian bounded in a subset U ⊂ X if Retx(tξ) stays in X for
all x, y = Retx(ξ) in U and t ∈ [0, 1], and there exists a constant L > 0 such that
d2f (Retx(tξ))

dt2 ≤ L.

Definition 19.11 (Retraction μ-Lower-Hessian Bounded) A function f : X →
R is said to be lower-Hessian bounded in a subset U ⊂ X if Retx(tξ) stays in X for
all x, y = Retx(ξ) in U and t ∈ [0, 1], and there exists a constant μ > 0 such that
d2f (Retx(tξ))

dt2 ≥ μ.

Definition 19.12 (Retraction Ll-Lipschitz) A function f : X → R is said to be
retraction Ll-Lipschitz in X, if there exists Ll > 0 such that for all x, y ∈ X,

‖PRetx
x,y ∇f (x) − ∇f (y)‖ ≤ Ll‖ξ‖, (19.2)

where P is the parallel transport along this associated retraction curve y = Retx(ξ).
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If the retraction is the exponential map, then this condition is called geodesically
Ll-Lipschitz. A function that is geodesically Ll-Lipschitz is also geodesically L-
smooth with L = Ll [44].

In the following, we give two propositions and a theorem for checking if a func-
tion satisfies some of the conditions explained before. The following proposition is
based on a Lemma in [22].

Proposition 19.13 Suppose that the function f : X → R is retraction L-upper-
Hessian bounded in U ⊂ X. Then, the function is also retraction L-smooth in U.

Proposition 19.14 (Lemma 3.8 in Kasai et al. [22]) Let Ret be a retraction on
M and the vector transport associated with the retraction and its inverse be θ -
bounded. Assume a function is twice continuously differentiable with H -bounded
Hessian. Then the function is retraction Ll-Lipschitz with Ll = H(1 + �θ) with �

being an upper bound for ‖ξ‖ in (19.2).

For showing retraction L-smoothness, we can use the following theorem.

Theorem 19.15 (Lemma 2.7 in Boumal et al. [11]) Let M be a compact Rieman-
nian submanifold of a Euclidean space. Let Ret be a retraction on M. If a function
has a Euclidean Lipschitz continuous gradient in the convex hull of M, then the
function is retraction L-smooth for some constant L for any retraction.

The aforementioned conditions of function are quite general. In the following we
give some conditions on functions that help to develop stronger convergence results.

Definition 19.16 (g-Convex) A set X is geodesically convex (g-convex) if for any
x, y ∈ X, there is a geodesic γ with γ (0) = x, γ (1) = y and γ (t) ∈ X for
t ∈ [0, 1]. A function f : X → R is called geodesically convex in this set if

f (γ (t)) ≤ (1 − t)f (x) + tf (y).

Definition 19.17 (μ-Strongly g-Convex) A function f : X → R is called
geodesically μ-strongly convex if for any x, y = Expx(ξ) ∈ X and gx subgradient
of f at x (gradient if f is smooth), it holds

f (y) ≥ f (x) + 〈gx, ξ 〉 + μ

2
‖ξ‖2.

Definition 19.18 (τ -Gradient Dominated) A function f : X → R is called τ -
gradient dominated if x∗ is a global minimizer of f and for every x ∈ X we have

f (x) − f (x∗) ≤ τ‖∇f (x)‖2. (19.3)

The following proposition shows that strongly convex functions are also gradient
dominated. Therefore, the convergence analysis developed for gradient dominated
functions also holds for strongly convex functions [44].
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Algorithm 1 Riemannian SGD

Given: Smooth manifold M with retraction Ret; initial value x0; a differentiable cost function
f ; number of iterations T .
for t = 0, 1, . . . , T − 1 do

Obtain the direction ξt = ∇fi(xt ), where ∇fi(xt ) is the noisy version of the cost gradient
Use a step-size rule to choose the step-size αt

Calculate xt+1 = Retxt (−αt ξt )

end for
return xT

Proposition 19.19 τ -gradient domination is implied by 1
2τ

-strong convexity as in
Euclidean case.

19.3 Stochastic Gradient Descent on Manifolds

In the most general form, consider the following constrained optimization problem:

min
x∈M

f (x). (19.4)

We assume M is a Riemannian manifold and that at each step of SGD we obtain
a noisy version of the Riemannian gradient. Riemannian SGD uses the following
simple update rule:

xt+1 = Retxt

(−ηt∇fit (xt )
)

, (19.5)

where ∇fit is a noisy version of the Riemannian gradient at time step t and the
noise terms at different time steps are assumed to be independent. Note that there
is stochasticity in each update. Therefore, the value xt can be seen as a sample
from a distribution depending on the gradient noise until time step t . A sketch of
Riemannian SGD is given in Algorithm 1. For providing convergence results for all
algorithms, it is assumed the stochastic gradients in all iterations are unbiased, i.e.,

E[∇fit (xt ) − ∇f (xt )] = 0.

This unbiasedness condition is assumed in all theorems and we do not state it
explicitly in the statements of the theorems.

The cost function used in many practical machine learning problems which is
solved by SGD can be defined by

f (x) = E[f (z; x)] =
∫

f (z; x)dP (z), (19.6)

where x denotes the parameters, dP is a probability measure and f (z; x) is the risk
function. For this cost function fit = f (zit , xt ) is the risk evaluated at the current
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sample zit from the probability law dP . Apparently, the stochastic gradients for this
cost function satisfy the condition that stochastic gradients are unbiased. A special
case of the above-mentioned cost function is the following finite-sum problem:

f (x) = 1

n

n
∑

i=1

fi(zi, x). (19.7)

If we assume z1, . . . , zn to be our data, then the empirical distribution over the
data P(Z = zi) = 1

n
gives rise to the above noted cost function. Therefore, the

theoretical analysis for SGD works both for online-algorithms and also finite-sum
optimization problems. To further elucidate this consider the following example.

Example: Maximum Likelihood Parameter Estimation
Consider we want to estimate the parameters of a model distribution given
by the density q(z; x), where x denotes the parameters. In the online learning
framework, we observe a sample zt from the underlying distribution p(z) at
each time step. Observing this new sample, the parameter set is updated by a
rule. The update rule should be designed such that in the limit of observing
enough samples, the parameters converge to the optimal parameters. The
optimal parameters are commonly defined as the parameters that minimize the
Kullback-Leibler divergence between the estimated and the true distributions.
The following cost function minimizes this divergence:

f (x) = E[− log q(z; x)] = −
∫

log q(z; x)p(z)dz,

where q is the density of model distribution and p is the true density.
Apparently, this cost function is in the form of cost function defined in (19.6).
One of the common update rules for online learning is SGD. For Riemannian
SGD, we have ∇f (zt , xt ) = ∇fit (xt ) and we use the update rule as in (19.5).

In the finite sample case, consider z1, . . . , zn to be i.i.d. samples from
the underlying density q(z; x). A common approach for estimating the
parameters is the maximum-likelihood estimate where we are minimizing the
following cost function:

f (x) = 1

n

n
∑

i=1

− log q(zi; x).

The cost function is a finite-sum cost that can be minimized using SGD.
Therefore, it is important to know the conditions under which SGD guarantees
convergence.
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The following theorem gives the convergence to stationary points of the cost
function.

Theorem 19.20 (Theorem 2 in Bonnabel [8]) Consider the optimization problem
in (19.4), where the cost function is the expected risk (19.6). Assume

– The manifold M is a connected Riemannian manifold with injectivity radius
uniformly bounded from below by I > 0.

– The steps stay within a compact set.
– The gradients of the fis are G-bounded.

Let the step-sizes in Algorithm 1 satisfy the following standard condition

∑

α2
t < ∞ and

∑

αt = ∞, (19.8)

Then f (xt ) converges a.s. and ∇f (xt ) → 0 a.s.

Staying within a compact set of the previous theorem is a strong requirement. Under
milder conditions, [18] were able to prove the rate of convergence.

Theorem 19.21 (Theorem 5 in Hosseini and Sra [18]) Assume that the following
conditions hold

– The functions fi are retraction L-smooth.
– The expected square norm of the gradients of the fis are G2-bounded.

Then for the following constant step-size in Algorithm 1

αt = c√
T

,

we have

min
0≤t≤T −1

E[‖∇f (xt )‖2] ≤ 1

T

T −1
∑

t=0

E[‖∇f (xt )‖2]≤ 1√
T

(
f (x0)−f (x∗)

c
+Lc

2
G2

)

.

(19.9)
where f (x0) is the function value at the initial point and f (x∗) is the minimum
function value.

The following theorem shows that it is possible to get a convergence rate without
needing bounded gradients with a randomized rule. For this theorem, the stochastic
gradients needs to have σ -bounded variance, i.e.,

E[‖∇fit (xt ) − ∇f (xt )‖2] ≤ σ 2, 0 ≤ σ < ∞.

The conditions and the resulting rate are similar to that of Euclidean case [15], and
no further assumptions are necessary.
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Theorem 19.22 (Theorem 4 in Hosseini and Sra [18]) Assume that the following
conditions hold.

– The functions fi are retraction L-smooth.
– The functions fi have σ -bounded variance.

Assume a slightly modified version of SGD that outputs a point xa by randomly
picking one of the iterates, say xt , with probability pt := (2αt − Lα2

t )/ZT , where
ZT = ∑T

t=1(2αt − Lα2
t ). Furthermore, choose αt = min{L−1, cσ−1T −1/2} in

Algorithm 1 for a suitable constant c. Then, we obtain the following bound on
E[‖∇f (xa)‖2], which measures the expected gap to stationarity:

E[‖∇f (xa)‖2] ≤ 2L�1

T
+ (

c + c−1�1
) Lσ√

T
= O

(
1

T

)

+ O
(

1√
T

)

. (19.10)

For Hadamard manifolds (complete, simply-connected Riemannian manifolds with
nonpositive sectional curvature), one can prove a.s. convergence under milder condi-
tions. Hadamard manifolds have strong properties, for example the exponential map
at any point is globally invertible. Concerning convergence for Hadamard manifolds
there is the following result requiring milder assumptions.

Theorem 19.23 (Theorem 3 in Bonnabel [8]) Consider the optimization problem
in (19.4), where the cost function is the expected risk (19.6). Assume

– The exponential map is used for the retraction.
– The manifold M is a Hadamard manifold.
– There is a lower bound on the sectional curvature denoted by κ < 0.
– There is a point y ∈ M such that the negative gradient points towards y when

d(x, y) becomes larger than s > 0, i.e.,

inf
d(x,y)>s

〈Exp−1
x (y), ∇f (x)〉 < 0

– There is a continuous function g : M → R that satisfies

g(x) ≥ max
{

1,E
[‖∇f (z; x)‖2(1 + √

κ(d(x, y) + ‖∇f (z; x)‖))],
E
[(

2‖∇f (z; x)‖d(x, y) + ‖∇f (z; x)‖2)2]}

Then for the step size rule αt = − βt

g(xt )
in Algorithm 1, wherein βt satisfying (19.8),

f (xt ) converges a.s. and ∇f (xt ) → 0 a.s.
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Algorithm 2 Riemannian SVRG

1: Given: Smooth manifold M with retraction Ret and vector transport T ; initial value x0; a
finite-sum cost function f ; update frequency m; number of epochs S and K .

2: for k = 0, . . ., K-1 do
3: x̃0 = xk

4: for s = 0, . . ., S-1 do
5: Calculate the full Riemannian gradient ∇f (x̃s )

6: Store xs+1
0 = x̃s

7: for t = 0, . . . , m − 1 do
8: Choose it ∈ {1, . . . , n} uniformly at random
9: Calculate ξ s+1

t = ∇fit (x
s+1
t ) − T

x̃s ,xs+1
t

(∇fit (x̃
s ) − ∇f (x̃s ))

10: Use a step-size rule to choose the step-size αs+1
t

11: Calculate xs+1
t+1 = Ret

xs+1
t

(−αs+1
t ξ s+1

t )

12: end for
13: Option I-a: Set x̃s+1 = xs+1

m

14: Option II-a: Set x̃s+1 = xs+1
t for randomly chosen t ∈ {0, . . . , m − 1}

15: end for
16: Option I-b: Set xk+1 = x̃S

17: Option II-b: Set xk+1 = x̃s
t for randomly chosen s ∈ {0, . . . , S−1} and t ∈ {0, . . . , m−1}

18: end for
19: return xK

19.4 Accelerating Stochastic Gradient Descent

Mainly for finite-sum problems but also for expected risk (19.6) problems, acceler-
ated algorithms have been developed with faster convergence rates than plain SGD.
In this section, we review several popular accelerated algorithms that are based on
variance reduction ideas. Stochastic variance reduced gradient (SVRG) is a popular
variance reduction technique that has a superior convergence than plain SGD. A
Riemannian version of SVRG (R-SVRG) was proposed in [33] and generalized to
use retractions and vector transports in [36]. Variance reduction can be seen in the
line 9 of Algorithm 2, where the average gradient is used for adjust the current
gradient. Consider a stochastic gradient that has high variance; then subtracting the
difference between this gradient and the average gradient at a reference point from
this gradient in the current point reduces the effect of high variance. Because we are
on a Riemannian manifold, gradients live in different tangent spaces, and a vector
transport is needed to make the subtraction meaningful as can be seen in the line 9
of Algorithm 2.

The authors in [33] were able to prove that R-SVRG has the same convergence
as in the Euclidean case [32]. Though, the statement on the convergence rate needs
additional assumptions and a bound depending on the sectional curvature.

Theorem 19.24 (Theorem 2 in Zhang et al. [33]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we
run Riemannian SVRG to solve this problem with K = 1, Option I-a, Option II-b.
Assume
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– The exponential map is used for the retraction and the parallel transport is used
for the vector transport.

– The iterations stay in a compact subset X, and the diameter of X is bounded by
D, that is maxx,y∈X d(x, y) ≤ D.

– The exponential map on X is invertible.
– The sectional curvature is upper-bounded.
– There is a lower bound on the sectional curvature denoted by κ .
– The functions fi are geodesically L-smooth.
– The function f attains its minimum at x∗ ∈ X.

Define ζ to be a constant that captures the impact of the manifold curvature.

ζ =
⎧

⎨

⎩

√|κ|D
tanh

(√|κ|D
) , κ < 0.

1, κ ≥ 0.
(19.11)

Then there exist universal constants μ0 ∈ (0, 1), ν > 0 such that if we set αt =
μ0

Lnα1 ζα2 , α1 ∈ (0, 1], α2 ∈ (0, 2] and m = � n3α1

3μ0ζ
1−2α2

� in Algorithm 2, we have

E[‖∇f (x1)‖2] ≤ Lnα1ζ α2 [f (x0) − f (x∗)]
T ν

,

where T = mS is the number of iterations.

The abovementioned theorem was stated based on the exponential map and the
parallel transport that can be expensive making SVRG impractical for some appli-
cations. In [36] the following convergence result is proved when using retractions
and vector transports.

Theorem 19.25 (Theorem 4.6 in Sato et al. [36]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we
run the Riemannian SVRG algorithm to solve this problem with K = 1, Option I-a
and Option I-b. Assume

– The retraction is of the class C2.
– The iterations stay in a compact subset X.
– For each s ≥ 0, there exists ηs+1

t ∈ Tx̃sM such that Retx̃s (ηs+1
t ) = xs+1

t .
– There exists I > 0 such that, for any x ∈ X, Retx(.) is defined in a ball B(0x, I ) ∈

TxM, which is centered at the origin 0x in TxM with radius I .
– The vector transport is continuous and isometric on M.
– The functions fi are twice-differentiable.

Assume the step-size αs
t in Algorithm 2 is chosen by the rule (19.8). Then f (xs

t )

converges a.s. and ∇f (xs
t ) → 0 a.s.

Note that existence of ηs+1
t is guaranteed if Retx has ρ-totally retractive neighbor-

hood for all x ∈ X. For the special case of the exponential map and the parallel
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transport, many of the conditions of the aforementioned theorem are automatically
satisfied or simplified: The parallel transport is an isometry, the exponential map
is of class C2, and the third and fourth conditions can be satisfied by having a
connected manifold with the injectivity radius uniformly bounded from below by
I > 0.

Stochastic recursive gradient (SRG) [29] is another variance reduction algorithm
similar to SVRG proposed. It was recently shown that the algorithm achieves
the optimal bound for the class of variance reduction methods that only assume
the Lipschitz continuous gradients [30]. Recently, the Riemannian counterpart of
this algorithm (R-SRG) shown in Algorithm 3 has also been developed [22]. The
following theorem gives a convergence result with the minimalistic conditions
needed for the proof.

Theorem 19.26 (Theorem 4.5 in Kasai et al. [22]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we
run the Riemannian SRG algorithm to solve this problem with S = 1. Assume

– The iterations stay continuously in a subset X.
– The vector transport is θ -bounded.
– The vector transport is isometric on X.
– The functions fi are retraction L-smooth.
– The functions fi are retraction Ll-Lipschitz.
– The gradients of the fis are G-bounded.
– The function f attains its minimum at x∗ ∈ X.

Assume a constant step-size α ≤ 2

L+
√

L2+8m(L2
l +G2θ2)

in Algorithm 3. Then, we

have

E[‖∇f (x̃)‖2] ≤ 2

α(m + 1)
[f (x0) − f (x∗)].

A very similar idea to R-SRG was used in another algorithm called Riemannian
SPIDER (R-SPIDER) [45]. The Euclidean counterpart of the R-SPIDER algorithm
was shown to have near optimal complexity bound. It can be applied to both the
finite-sum and the stochastic optimization problems [14]. The details of the R-
SPIDER method are given in Algorithm 4. The algorithm uses retraction and vector
transport while the original algorithm and proofs of [45] were for the exponential
mapping and the parallel transport. For the analysis of general non-convex functions
in this section, we set T = 1 meaning that we have a single outer-loop.

Theorem 19.27 (Theorem 1 in Zhou et al. [45]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we run
the Riemannian SPIDER algorithm with option I to solve this problem. Assume

– The exponential map is used for the retraction and the parallel transport is used
for the vector transport.

– The functions fi are geodesically L-Lipschitz.
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Algorithm 3 Riemannian SRG

1: Given: Smooth manifold M with retraction Ret and vector transport T ; initial value x̃0; a
finite-sum cost function f ; update frequency m; number of epochs S.

2: for s = 0, . . ., S-1 do
3: Store x0 = x̃s

4: Calculate the full Riemannian gradient ∇f (x0)

5: Store ξ0 = ∇f (x0)

6: Store x1 = Retx0 (−α0ξ0)

7: for t = 1, . . . , m − 1 do
8: Choose it ∈ {1, . . . , n} uniformly at random
9: Calculate ξt = ∇fit (xt ) − Txt−1,xt

(∇fit (xt−1) − ξt−1
)

10: Use a step-size rule to choose the step-size αt

11: Calculate xt+1 = Retxt (−αt ξt )

12: end for
13: Set x̃s+1 = xt for randomly chosen t ∈ {0, . . . , m}
14: end for
15: return x̃S

– The stochastic gradients have σ -bounded variance.

Let T = 1, s = min
(

n, 16σ 2

ε2

)

, p = n0s
1
2 ,αk = min

(
ε

2Ln0
,

‖ξk‖
4Ln0

)

,|S1| = s, |S2| =
4s

1
2

n0
and n0 ∈ [1, 4s

1
2 ] in Algorithm 4. Then, we achieve E[‖∇f (x̃1)‖] ≤ ε in

at most K = 14Ln0�

ε2 iterations in expectation, where � = f (x0) − f (x∗) with
x∗ = arg minx∈M f (x).

For the online case, the following theorem considers the iteration complexity of the
algorithm.

Theorem 19.28 (Theorem 2 in Zhou et al. [45]) Consider the optimization
problem in (19.4), where the cost function is the expected risk (19.6). Assume the
same conditions as in Theorem 19.27. Consider we run the Riemannian SPIDER
algorithm with option I to solve this problem. Let T = 1, p = n0σ

ε
,αk =

min
(

ε
2Ln0

,
‖ξk‖
4Ln0

)

,|S1| = 64σ 2

ε2 , |S2| = 4σ
εn0

for n0 ∈ [1, 4σ
ε
] in Algorithm 4. Then,

we achieve E[‖∇f (x̃1)‖] ≤ ε in at most K = 14Ln0�

ε2 iterations in expectation,
where � = f (x0) − f (x∗) with x∗ = arg minx∈M f (x).

The authors of [44] give the following convergence theorem for the same algorithm.
The following theorems are for finite-sum and online settings.

Theorem 19.29 (Theorem 2 in Zhang et al. [44]) Consider the same problem and
assume the same conditions as in Theorem 19.27. Consider, we run the Riemannian
SPIDER algorithm with option II to solve this problem. Let T = 1, p = �n1/2�,
αk = min{ 1

2L
, ε

‖ξk‖L }, |S1| = n, and |S2| = �n1/2� for each iteration in

Algorithm 4. Then, we achieve E[‖∇f (x̃1)‖2] ≤ 10ε2 in at most K = 4L�
ε2

iterations, where � = f (x0) − f (x∗) with x∗ = arg minx∈M f (x).
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Algorithm 4 Riemannian SPIDER

1: Given: Smooth manifold M with retraction Ret and vector transport T ; initial value x̃0; noisy
version of the cost function fi ; iteration interval pt , mini-batch sizes |St

1| and |St
2,k |; number

of epochs T and Kt .
2: for t = 0, . . ., T − 1 do
3: x0 = x̃t

4: for k = 0, . . ., Kt − 1 do
5: if mod(k, pt ) = 0 then
6: Draw minibatch size |St

1| and compute ξk = ∇fSt
1
(xk)

7: else
8: Draw minibatch size |St

2| and compute ∇fSt
2
(xk)

9: Compute ξk = ∇fSt
2
(xk) − Txk−1,xk

(∇fSt
2
(xk−1) − ξk−1

)

10: end if
11: if ξk ≤ 2εk then
12: Option II: x̃t+1 = xk , break
13: end if
14: Use a step-size rule to choose the step-size αt

k

15: Calculate xk+1 = Retxk
(−αt

kξk)

16: end for
17: Option I: Output x̃t+1 = xk for randomly chosen k ∈ {0, . . . , K − 1}
18: end for
19: return x̃T

Theorem 19.30 (Theorem 1 in Zhang et al. [44]) Consider the same problem and
assume the same conditions as in Theorem 19.28. Consider, we run the Riemannian
SPIDER algorithm with option II to solve this problem. Let T = 1, p = 1

ε
, αk =

min{ 1
2L

, ε
‖ξk‖L }, |S1| = 2σ 2

ε2 , and |S2| = 2
ε

for each iteration in Algorithm 4. Then,

we achieve E[‖∇f (x̃1)‖2] ≤ 10ε2 in at most K = 4L�
ε2 iterations, where � =

f (x0) − f (x∗) with x∗ = arg minx∈M f (x).

Among the convergence results presented in this section, R-SPIDER is the only
algorithm that has strong convergence without the need for the strong condition that
the iterates stay in a compact set. This condition is hard to ensure even for simple
problems. Another important point to mention is that the step-sizes suggested by the
theorems are very small, and in practice much larger step-sizes with some decaying
rules are usually used.

19.5 Analysis for G-Convex and Gradient Dominated
Functions

For g-convex or gradient dominated functions, we obtain faster convergence rates
for the algorithms explained in the previous sections. For plain SGD, [43] proved
faster convergence for g-convex functions as stated in the following theorem.
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Theorem 19.31 (Theorem 14 in Zhang et al. [43]) Consider the R-SGD Algo-
rithm for solving the optimization problem in (19.4), where the cost function is the
expected risk (19.6). Assume

– The function f is g-convex.
– The exponential map is used for the retraction.
– The iterations stay in a compact subset X, and the diameter of X is bounded by

D, that is maxx,y∈X d(x, y) ≤ D.
– There is a lower bound on the sectional curvature denoted by κ .
– The functions fi are geodesically L-smooth.
– The function f attains its minimum at x∗ ∈ X.
– The functions fi have σ -bounded variance.
– The manifold is Hadamard (Riemannian manifolds with global non-positive

curvature).

Define ζ to be a constant that captures the impact of manifold curvature defined by

ζ =
√|κ|D

tanh
(√|κ|D) . (19.12)

Then the R-SGD algorithm with αt = 1
L+ σ

D

√
(t+1)ζ

in Algorithm 1 satisfies

E[f (x̄T ) − f (x∗)] ≤ ζLD2 + 2Dσ
√

ζT

2(ζ + T − 1)
,

where x̄1 = x1, x̄t+1 = Expx̄t
( 1
t+1 Exp−1

x̄t
(xt+1)), for 1 ≤ t ≤ T − 1 and x̄T =

Expx̄T −1
(

ζ
ζ+T −1 Exp−1

x̄T −1
(xT )).

The aforementioned theorem shows that we need a decaying step size for
obtaining faster convergence for the R-SGD algorithm, while Theorem 19.22
needed constant step size for getting a convergence rate for general non-convex
functions. Decaying step-size is usually used in practice and the above theorem can
be a motivation, because near local minima the function can be assumed to be g-
convex. For the case of strongly g-convex functions, the authors of [43] proved a
stronger convergence result stated below.

Theorem 19.32 (Theorem 12 in Zhang et al. [43]) Consider the R-SGD Algo-
rithm for solving the optimization problem in (19.4), where the cost function is the
expected risk (19.6). Assume

– The function f is μ-strongly g-convex.
– The exponential map is used for the retraction.
– The iterations stay in a compact subset X, and the diameter of X is bounded by

D, that is maxx,y∈X d(x, y) ≤ D.
– There is a lower bound on the sectional curvature denoted by κ .
– The function f attains its minimum at x∗ ∈ X.
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– The expected square norm of the gradients of the fis are G2-bounded.
– The manifold is Hadamard (Riemannian manifolds with global non-positive

curvature).

Then the R-SGD algorithm with αt = 2
μ(t+2)

in Algorithm 1 satisfies

E[f (x̄T ) − f (x∗)] ≤ 2ζG

(T + 2)
,

where x̄0 = x0, x̄t+1 = Expx̄t
( 2
t+2 Exp−1

x̄t
(xt+1)) and ζ is a constant given

in (19.12).

For strongly g-convex functions, [33] proved a linear convergence rate for the
R-SVRG algorithm given in the following theorem.

Theorem 19.33 (Theorem 1 in Zhang et al. [33]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we
run the Riemannian SVRG algorithm to solve this problem with K = 1, Option I-
a and Option I-b. Assume the same conditions as in Theorem 19.24. Furthermore,
assume that the function f is μ-strongly g-convex. If we use an update frequency
and a constant step size in Algorithm 2 such that the following holds

a = 3ζαL2

μ − 2ζαL2 + (1 + 4ζα2 − 2αμ)m(μ − 5ζαL2)

μ − 2ζαL2 < 1,

then the iterations satisfy

E[f (x̃S) − f (x∗)] ≤ L

2
E[d2(x̃S, x∗)] ≤ L

2
aSd2(x0, x∗).

For a class of functions more general than strongly g-convex functions, that is
gradient-dominated functions, it is also possible to prove that R-SVRG has a strong
linear convergence rate.

Theorem 19.34 (Theorem 3 in Zhang et al. [33]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we
run the Riemannian SVRG algorithm to solve this problem with Option II-a, Option
I-b. Assume the same conditions as in Theorem 19.24. Furthermore, assume that
the function f is τ -gradient dominated. If we use the parameters α = μ0

Ln2/3ζ 1/3 ,

m = � n
3μ0

�, S = �(6 + 18μ0
n−3 )

Lτζ 1/2μ0
νn1/3 � for some universal constants μ0 ∈ (0, 1)

and ν > 0 in Algorithm 2, then we have

E[‖∇f (xK)‖2] ≤ 2−K‖∇f (x0)‖2,

E[f (xK) − f (x∗)] ≤ 2−K [‖f (x0) − f (x∗)‖].
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The aforementioned strong convergence results for R-SVRG are valid when
using the exponential map and the parallel transport. For the general retraction and
the vector transport there is not any global rate of convergence result yet. However,
the authors in [36, Theorem 5.14] proved a local linear convergence result for the
R-SVRG algorithm.

For the R-SRG algorithm, [22] gives a convergence result for the g-convex case
as stated in the following.

Theorem 19.35 (Theorem 4.1 in Kasai et al. [22]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Assume the same
conditions as in Theorem 19.26 hold, and furthermore assume that

‖PRetx
x,y ∇fi(x) − ∇fi(y)‖2 ≤ L〈PRetx

x,y ∇fi(x) − ∇fi(y), Exp−1
y x〉,

where L is the constant for the retraction smooth function f . For the Euclidean
case, this condition is equal to have a convex and L-smooth function. Consider, we
run the Riemannian SRG algorithm to solve this problem using the parameters α

and m in Algorithm 3 such that α < 2/L and (β − L2)α2 + 3Lα − 2 ≤ 0, where

β := 2
(

(2Ll + 2θG + L)θG + νL
)

m. (19.13)

Then for s > 0,

E[‖∇f (x̃s)‖2] ≤ 2

α(m + 1)
E[‖f (x̃s−1) − f (x∗)‖] + αL

2 − αL
E[‖∇f (x̃s−1)‖2].

For μ-strongly g-convex functions, the authors of [22] proved linear convergence
as stated below. The nice feature of the R-SRG algorithm is that it is the only
method that achieves linear convergence without needing the exponential map and
the parallel transport.

Theorem 19.36 (Theorem 4.3 in Kasai et al. [22]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Assume the
same conditions as in Theorem 19.35 and furthermore assume that the function
f is μ-strongly convex. Consider, we run the Riemannian SRG algorithm to solve
this problem using the parameters α and m in Algorithm 3 such that such that
αm := 1

μα(m+1)
+ αL

2−αL
< 1. Then,

E[‖∇f (x̃s)‖2] ≤ σ s
mE[‖∇f (x̃0)‖2].

Similarly for τ gradient dominated functions, the authors of [22] obtained linear
convergence.

Theorem 19.37 (Theorem 4.6 in Kasai et al. [22]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Assume the same
conditions as in Theorem 19.26 hold and furthermore assume that the function is
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τ -gradient dominated. Consider, we run Riemannian SRG algorithm to solve this
problem with the same α in Algorithm 3 as that of Theorem 19.26 and assume
σ̄m := 2τ

α(m+1)
< 1. Then for s > 0,

E[‖∇f (x̃s)‖2] ≤ σ̄ s
mE[‖∇f (x̃0)‖2].

For τ -gradient dominated functions, [45] was able to prove stronger convergence
results for the R-SPIDER algorithm. The following two theorems are convergence
results for the finite-sum and online cases. Unlike the analysis for the general non-
convex case, here the authors use a fixed step-size and adaptive batch sizes.

Theorem 19.38 (Theorem 3 in Zhou et al. [45]) Consider the finite sum prob-
lem (19.7) solved using the R-SPIDER algorithm with option I. Assume the same
conditions as in Theorem 19.27, and furthermore assume that the function f is

τ -gradient dominated. At iteration t of Algorithm 4, set ε0 =
√

�
2
√

τ
, εt = ε0

2t ,

st = min(n, 32σ 2

ε2
t−1

), pt = nt
0s

1
2
t ,αk = ‖ξk‖

2Ln0
,|St

1| = st , |St
2,k| = min

( 8pt‖ξk−1‖2

(nt
0)

2ε2
t−1

, n
)

and Kt = 64Lnt
o�

t

ε2
t−1

where nt
0 ∈ [1,

8
√

s‖ξk−1‖2

ε2
t−1

] and � = f (x0) − f (x∗) with

x∗ = arg minx∈M f (x). Then the sequence x̃t satisfies

E[‖∇f (x̃t )‖2] ≤ �

4t τ
.

Theorem 19.39 (Theorem 4 in Zhou et al. [45]) Consider the optimization
problem in (19.4) solved using the R-SPIDER algorithm with option I. Assume the
same conditions as in Theorem 19.28, and furthermore assume that the function

f is τ -gradient dominated. At iteration t of Algorithm 4, set ε0 =
√

�
2
√

τ
, εt = ε0

2t ,

pt = σnt
0

εt−1
, αt

k = ‖ξk‖
2Lln

t
0
, |St

1| = 32σ 2

ε2
t−1

, |St
2,k| = 8σ‖ξk−1‖2

nt
0ε

3
t−1

and Kt = 64Lnt
o�

t

ε2
t−1

where

n0 ∈ [1,
8σ‖ξk−1‖2

ε3
t−1

] and � = f (x0) − f (x∗) with x∗ = arg minx∈M f (x). Then the

sequence x̃t satisties,

E[‖∇f (x̃t )‖2] ≤ �

4t τ
.

The authors of [44] give the following analysis of the R-SPIDER algorithm for
τ -gradient dominated functions.

Theorem 19.40 (Theorem 3 in Zhang et al. [44]) Consider the same problem and
assume the same conditions as in Theorem 19.28. Consider, we run the Riemannian
SPIDER algorithm with option II to solve this problem. Let p = �n1/2�,εt =
√

M0
10τ2t ,αt = εt

L
,|S1| = n, and |S2| = �n1/2� in each iteration of Algorithm 4, where

M0 > f (x0) − f (x∗) with x∗ = arg minx∈M f (x). Then the algorithm returns x̃T

that satisfies
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E[f (x̃T ) − f (x∗)] ≤ M0

2T
.

The authors of [44] also give another proof for the R-SPIDER algorithm with
different parameters that give better iteration complexity for τ -gradient dominated
functions with respect to n.

Theorem 19.41 (Theorem 4 in Zhang et al. [44]) Consider the same problem
and assume the same conditions as in Theorem 19.28. Consider, we run the
Riemannian SPIDER algorithm with option II to solve this problem. In Algo-
rithm 4, let T = 1, p = �4Lτ log(4)�, α = 1

2L
, |S1| = n, and |S2,k| =

�min

{

n,
4τpL2‖ Exp−1

xk−1
(xk)‖22�k/p�

M0

}

�, where M0 > f (x0) − f (x∗) with x∗ =
arg minx∈M f (x). Then, the algorithm returns x̃K after K = pS iterations that
satisfies

E[f (x̃K) − f (x∗)] ≤ M0

2S
.

The theorems of the algorithms in the previous sections showing convergence
speed of different algorithms are summarized in Tables 19.1 and 19.2. The incre-
mental first order oracle (IFO) complexity for different algorithms are calculated
by counting the number of evaluations needed to reach the ε accuracy of gradient
(E[‖∇f (x)‖2] ≤ ε) or function (E[f (x)−f (x∗)] ≤ ε) in the theorems given in the
previous sections.

Table 19.1 Comparison of the IFO complexity for different Riemannian stochastic optimization
algorithms under finite-sum and online settings

Method general non-convex g-convex Theorem

Finite-sum R-SGD* [18] O
(

L
ε

+ L2σ 2

ε2

)

– 19.22

R-SRG [22] O
(

n + L2

ε2

)

O
((

n + 1
ε

)

log
( 1

ε

))

19.26, 19.35

R-SRG* [22] O
(

n + L2ρ2
l +θ2

ε2

)

O
( (

n+ 1
ε

)

log( 1
ε
)

log(c(1−β/L2))

)

19.26, 19.35

R-SVRG [33] O
(

n + ζ 1/2n2/3

ε

)

– 19.24

R-SPIDER [45] O
(

min
(

n + L
√

n
ε

, Lσ
ε3/2

))

– 19.27, 19.38

R-SPIDER [44] O
(

n + L
√

n
ε

)

– 19.29

(continued)
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Table 19.1 (continued)

Online R-SGD* [18] O
(

L
ε

+ L2σ 2

ε2

)

– 19.22

R-SPIDER [45] O
(

Lσ
ε3/2

)

– 19.28

R-SPIDER [44] O
(

Lσ 2

ε3/2

)

– 19.30

The ε-accuracies of gradients are reported for general non-convex and g-convex functions. Star in
front of the method names means using the general retraction and the parallel transport, and no
star means using the exponential map and the parallel transport in the method. The parameter
ζ (19.11) is determined by manifold curvature and diameter, σ is the standard deviation of
stochastic gradients, θ is the constant in θ-bounded vector transport, ρl = Ll/L for retraction
L-smooth and retraction Ll-Lipschitz function, the parameter β is defined in (19.13) and c > 1 is
a constant. Apparently for the parallel transport θ = 0 and ρl = 1

Table 19.2 Comparison of the IFO complexity for different Riemannian stochastic optimization
algorithms under finite-sum and online settings

Method τ -gradient dominated μ-strongly g-convex Theorem

Finite-sum R-SGD [44] – ζG
ε

19.32

R-SRG [22] O
((

n + L2
τ

)

log
( 1

ε

))

O
((

n + Lμ

)

log
( 1

ε

))

19.36,
19.37

R-SRG* [22] O
((

n + τ 2(L2ρ2
l + θ2)

)

log
( 1

ε

))

O
(

(n+Lμ) log( 1
ε
)

log(c(1−β/L2))

)

19.36,
19.37

R-SVRG [33] O
(

(n + Lτ ζ
1/2n2/3) log

( 1
ε

))

O
(

(n + ζL2
μ) log

( 1
ε

))

19.33,
19.34

R-SPIDER [45] O
(

min
((

n + Lτ

√
n
)

log
( 1

ε

)

, Lτ σ

ε1/2

)) ← 19.38

R-SPIDER [44] O
((

n + min
(

Lτ

√
n,L2

τ

))

log
( 1

ε

)) ← 19.40,
19.41

Online R-SGD [44] – ζG
ε

19.32

R-SPIDER [45] O
(

Lτ σ

ε1/2

)

← 19.39

The ε-accuracies of functions are reported for μ-strongly g-convex and τ -gradient dominated
functions. The results of Theorems 19.34, 19.36, 19.37, 19.38 are originally given for the ε-
accuracy of gradient, and they also hold for the ε-accuracy of function because of (19.3). The
parameters Lτ = 2τL and Lμ = L

μ
are condition numbers, G is the bound for the norm of

the stochastic gradients, and other parameters are the same as those given in Table 19.1. From
Proposition 19.19, it is clear that the complexity results for τ -gradient dominated functions also
hold for μ-strongly g-convex functions, and to obtain complexity results it is enough to change Lτ

to Lμ in the equations
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19.6 Example Applications

We list below a few finite-sum optimization problems drawn from a variety of
applications. Riemannian stochastic methods turn out to be particularly effective
for solving these problems. We only include the formulation, and refer the reader
to the cited works for details about implementation and empirical performance. The
manifolds occurring in the examples below are standard, and the reader can find
explicit implementations of retractions, vector transport, etc., within the MANOPT

software [10], for instance.

Stochastic PCA
Suppose we have observations z1, . . . , zn ∈ Rd . The stochastic PCA problem
is to compute the top eigenvector of the matrix

∑n
i=1 ziz

T
i . This problem can

be written as a finite-sum optimization problem on the sphere Sd−1 as follows

min
xT x=1

−xT
(∑n

i=1
ziz

T
i

)

x = −
∑n

i=1
(zT

i x)2. (19.14)

Viewing (21.100) as a Riemannian optimization problem was proposed
in [33], who solved it using R-SVRG, in particular, by proving that the cost
function satisfies a Riemannian gradient-dominated condition (probabilisti-
cally). One can extend this problem to solve for the top-k eigenvectors by
considering is as an optimization problem on the Stiefel manifold.

A challenge for the methods discussed in the present paper, except R-SGD
and R-SPIDER explained in Sect. 19.4 is the requirements for the iterates to
remain within a predefined compact set. While the whole manifold is com-
pact, for obtaining a precise theoretical characterization of the computational
complexity of the algorithms involved, the requirement to remain within a
compact set is important.

GMM
Let z1, . . . , zn be observations in Rd that we wish to model using a Gaussian
mixture model (GMM). Consider the mixture density

p(z; {μj ,�j }kj=1) :=
∑k

j=1
πjN(z;μj ,�j ),

where N(z;μ,�) denotes the Gaussian density evaluated at z and parameter-
ized by μ and �. This leads to the following maximum likelihood problem:

(continued)
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max
{πj ,μj ,�j }kj=1

∑n

i=1
log p(zi; {μj ,�j }kj=1). (19.15)

In [18], the authors reformulate (21.52) to cast it as a problem well-suited for
solving using R-SGD. They consider the reformulated problem

max
{ωj ,Sj �0}kj=1

n
∑

i=1

log
(∑k

j=1

exp(ωj )
∑k

k=1 exp(ωk)
q(yi; Sj )

)

, (19.16)

where yi = [zi; 1], and q(y; Sj ) is the centered normal distribution

parameterized by Sj =
[

�j + μjμ
T
j μj

μT
j 1

]

. With these definitions, prob-

lem (21.61) can be viewed as an optimization problem on the product
manifold

(∏k
j=1 P

d+1) × Rk−1.
Importantly, in [18] it was shown that SGD generates iterates that remain

bounded, which is crucial, and permits one to invoke the convergence analysis
without resorting to projection onto a compact set.

Karcher Mean
Let A1, . . . , An be hermitian (strictly) positive definite (hpd) matrices.
This set is a manifold, commonly endowed with the Riemmanian metric
〈η, ξ 〉 = tr(ηX−1ξX−1). This metric leads to the distance d(X, Y ) :=
‖ log(X−1/2YX−1/2)‖F between hpd matrices X and Y . The Riemannian
centroid (also called the “Karcher mean”) is defined as the solution to the
following finite-sum optimization problem:

min
X�0

∑n

i=1
wid

2(X,Ai), (19.17)

where the weights wi ≥ 0 and
∑n

i=1 wi = 1. This problem is often used as a
defacto benchmark problem for testing Riemannian optimization problems
(see e.g., [33]). The objective function in (19.14) is both geodesically L-
smooth as well as strongly convex, both properties can be exploited to obtain
faster convergence [22, 33].

It is important to note that this problem is over the manifold of hpd matri-
ces, which is a noncompact manifold. Hence, to truly invoke the convergence
theorems (except for R-SGD and R-SPIDER explained in Sect. 19.4), we need
to ensure lower bounds on the curvature as well as ensure that iterates remain
within a compact set. Lower bounds on the curvature can be obtained in terms

(continued)
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of min1≤i≤n λmin(Ai); ensuring that the iterates remain within a compact set
can be ensured via projection. Fortunately, for (19.17), a simple compact set
containing the solution is known, since we know that (see e.g., [7]) its solution
X∗ satisfies HM(A1, . . . , An) � X∗ � Am(A1, . . . , An), where HM and AM

denote the Harmonic and Arithmetic Means, respectively. A caveat, however,
is that R-SVRG and related methods do not permit a projection operation and
assume their iterates to remain in a compact set by fiat; R-SGD, however,
allows metric projection and can be applied. Nevertheless, in practice, one
can invoke any of the methods discussed in this chapter.

We note in passing here that the reader may also be interested in considering the
somewhat simpler “Karcher mean” problems that arise when learning hyperbolic
embeddings [35], as well as Fréchet-means on other manifolds [3, 31].

Wasserstein Barycenters
Consider two centered multivariate Gaussian distributions with covariance
matrices �1 and �2. The Wasserstein W2 optimal transport distance between
them is given by

d2
W(�1, �2) := tr(�1 + �2) − 2 tr[(�1/2

1 �2�
1/2
1 )1/2]. (19.18)

The Wasserstein barycenter of n different centered Gaussians is then given by
the solution to the optimization problem

min
X�0

∑n

i=1
wid

2
W(X,�i). (19.19)

While (21.83) is a (Euclidean) convex optimization problem, it lends itself
to more efficient solution by viewing it as a Riemannian convex optimization
problem [40]. A discussion about compact sets similar to the Karcher mean
example above applies here too.

Riemannian Dictionary Learning
Dictionary learning problems seek to encode input observations using a
sparse combination of an “overcomplete basis”. The authors of [12] study
a Riemannian version of dictionary learning, where input hpd matrices must
be encoded as sparse combinations of a set of hpd “dictionary atoms.” This
problem may be cast as the finite-sum minimization problem

(continued)
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min
B,α1,...,αn

∑n

i=1
d2

(

Xi,
∑m

j=1
αijBj

)

+ R(B, α1, . . . , αn). (19.20)

In other words, we seek to approximate each input matrix Xi ≈ ∑m
j=1 αijBj ,

using Bj � 0 and nonegative coefficients αij . The function R(·) is a suitable
regularizer on the tensor B and the coefficient matrix α, and d(·, ·) denotes
the Riemannian distance.

For this particular problem, we can invoke any of the discussed stochastic
methods in practice; though previously, results only for SGD have been
presented [12]. By assuming a suitable regularizer R(·, ·) we can ensure that
the problem has a solution, and that the iterates generated by the various
methods remain bounded.
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