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Abstract In this chapter, we present an overview of recent techniques from the
emerging area of topological data analysis (TDA), with a focus on machine-
learning applications. TDA methods are concerned with measuring shape-related
properties of point-clouds and functions, in a manner that is invariant to topological
transformations. With a careful design of topological descriptors, these methods
can result in a variety of limited, yet practically useful, invariant representations.
The generality of this approach results in a flexible design choice for practitioners
interested in developing invariant representations from diverse data sources such as
image, shapes, and time-series data. We present a survey of topological representa-
tions and metrics on those representations, discuss their relative pros and cons, and
illustrate their impact on a few application areas of recent interest.
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15.1 Introduction

Questions surrounding geometry have evoked interest for over several millennia.
Topology on the other hand, is relatively new and has been studied for just a
few centuries in mathematics. As said by Galileo Galilei, “To understand the
universe one must first learn its language, which is mathematics, with its characters
being different geometric shapes like lines, triangles and circles”. Topological
Data Analysis (TDA) is a collection of mathematical tools that aim to study the
invariant properties of shape or underlying structure in data. Real-world data can
often be represented as a point cloud, i.e., a discrete set of points lying in a high-
dimensional space. Identification and use of suitable feature representations that
can both preserve intrinsic information and reduce complexity of handling high-
dimensional data is key to several applications including machine-learning, and
other data-driven applications. In this chapter, we survey recent developments in
the field of topological data analysis, with a specific focus towards applications
in machine-learning (ML). ML applications require the generation of descriptors,
or representations, that encode relevant invariant properties of a given point-cloud.
This is then followed by choices of metrics over the representations, which leads to
downstream fusion with standard machine-learning tools.

One of the core unsolved problems in ML algorithms is the characterization of
invariance. Invariance refers to the ability of a representation to be unaffected by
nuisance factors, such as illumination variations for face recognition, pose variations
for object recognition, or rate-variations for video analysis. Provably invariant
representations have been very hard to find, especially in a manner that also results
in discriminative capabilities. One category of approaches involves ad-hoc choices
of features or metrics between features that offer some invariance to specific factors
(c.f. [14]). However, this approach suffers from a lack of generalizable solutions.
The second approach involves increasing the size of training data by collecting
samples that capture different possible variations in the data, allowing the learning
algorithm to implicitly marginalize out the different variations. This can be achieved
by simple data augmentation [106]. Yet, the latter approach does not offer any
theoretical insight, and it is known that contemporary deep-learning methods are
quite brittle to unexpected changes in factors like illumination and pose. Based
on recent work in the field, and including our own, we feel that topological data
analysis methods may help in creating a third category of approaches for enforcing
practically useful invariances, while being fusible with existing ML approaches.

Rooted in algebraic topology, Persistent Homology (PH) offers a simple way
to characterize the intrinsic structure and shape of data [29, 48, 61]. It does so by
finding the number of k-dimensional holes when we connect nearby discrete data
points. An easier way to describe PH is by comparing it to humans trying to identify
constellation patterns by connecting neighboring stars in the sky [60]. PH employs a
multi-scale filtration process and produces a series of nested simplicial complexes.
We will describe what a simplicial complex is in the next section. By sweeping
the scale parameter over a range, one can encode the structural information of the
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data by capturing the duration of existence of different topological invariants such
as connected components, cycles, voids, higher-dimensional holes, level-sets and
monotonic regions of functions defined on the data [29, 49]. Often topological
invariants of interest live longer in these multi-scale simplicial complexes. The
lifespan of these invariants is directly related to the geometric properties of interest.

Although the formal beginnings of topology is already a few centuries old,
dating back to Leonhard Euler, algebraic topology has seen a revival in the past
two decades with the advent of computational tools and software like JavaPlex [4],
Perseus [94], DIPHA [12], jHoles [18], GUDHI [90], Ripser [11], PHAT [13], R-
TDA [52], Scikit-TDA [114], etc. This has caused a spike in interest to use TDA
as a complementary analysis tool to traditional data analysis and machine learning
algorithms. TDA has been successfully implemented in various applications like
general data analysis [29, 86, 96, 109, 128], image analysis [8, 37, 45, 54, 62,
67, 88, 97, 104], shape analysis [19, 66, 83, 119, 137, 139], time-series analysis
[7, 89, 115, 119, 124, 129, 138], computer vision [7, 53, 119, 126], computational
biology [27, 44, 98], bioinformatics [74], materials science [91], medical imaging
[38, 79, 80], sphere packing [111], language and text analysis [65, 140], drug design
[24–26, 95, 133], deep-learning model selection and analysis [23, 25, 45, 55, 56,
70, 107, 110], sensor networks [3, 41, 42, 57, 131], financial econometrics [63, 64]
and invariance learning [119]. However, three main challenges exist for effectively
combining PH and ML, namely—(1) topological representations of data; (2) TDA-
based distance metrics; (3) TDA-based feature representations. A lot of progress
has been made on all three fronts, with the literature scattered across different
research areas [59, 93, 103, 130]. In this chapter we will briefly go over the various
topological feature representations and their associated distance metrics. The rest of
the chapter is outlined as follows: In Sect. 15.2 we will go over necessary theoretical
background and definitions. Section 15.3 provides details of various topological
feature representations. Section 15.4 describes the different metrics defined to
compare topological features. Section 15.5 goes over some of the application areas
mentioned earlier in more detail and Sect. 15.6 concludes the chapter.

15.2 Background and Definitions

In this section we will briefly go over some of the history and a few important
definitions that will help us both appreciate and better understand the underlying
complexities involved in topology. A convex polyhedron is the intersection of
finitely many closed half-spaces. A half-space is either of the two parts when a
hyperplane divides an affine space. The 5 convex regular polyhedrons known to exist
in three dimensional spaces are the tetrahedron, cube, octahedron, dodecahedron
and icosahedron, also known as the 5 Platonic solids, named after the Greek
philosopher Plato. He theorized that the natural elements were constructed from
them. In addition, Euclid gave a complete description of the Platonic solids in
the XIII Books of the Elements [69]. An interesting fact to note is that the face
vector (#vertices, #edges, #faces) of the octahedron (6, 12, 8) is reverse of that of
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the cube (8, 12, 6). Similarly, the face vector of the dodecahedron (20, 30, 12) is
reverse of the icosahedron (12, 30, 20). However, the face vector of the tetrahedron
is a palindrome (4, 6, 4). A pattern that can be observed for all 5 Platonic solids
is the alternating sum of the face numbers is always equal to 2, i.e., #vertices −
#edges + #faces = 2. Leonhard Euler discovered this relationship and is widely
considered as the starting point in the field of topology. The relation is referred
to as the Euler characteristic of the polyhedron and is a global statement, without
depending on the precise geometric shape. It has taken more than a century to show
Euler’s original observation as a special case and to prove when the relation holds
[78]. This generalization is due to Henri Poincaré, which is why the more general
result is referred to as the Euler-Poincaré formula. It relates the alternating sums of
face numbers and Betti numbers, where fi is the number of i-dimensional faces, and
βi is the ith Betti number. βi is defined as the rank of the ith homology group.

∑

i≥0

(−1)ifi =
∑

i≥0

(−1)iβi (15.1)

Despite having existed for a few hundred years, the recent revival and gain in
popularity of algebraic topology is greatly attributed to the development of various
software packages [4, 11–13, 18, 52, 90, 94, 114]. Most of these packages are well
documented and offer simple tutorials making it easy for beginners to try out the
software. However, it is important to know the definitions of some of the underlying
steps that go into capturing different topological invariants from the data being
analyzed. Many definitions and examples below are inspired by and adapted from
[140]. We discuss only geometric realizations, but simplicial persistent homology
discussed below is applicable to abstract settings also [68] is an excellent reference
for further reading.

Definition 15.1 ([140]) A p-simplex is the convex hull of p + 1 affinely indepen-
dent points x0, x1, . . . , xp ∈ Rd . It can be denoted as σ = conv{x0, . . . , xp}.

The p + 1 points are said to be affinely independent if the p vectors xi − x0,

with i = 1, . . . , p are linearly independent. Simplices can be treated as the
building blocks of discrete spaces. The convex hull formed by these points is simply
the solid polyhedron. In the point cloud space, the points or vertices represent
0-simplices, edges represent 1-simplices, triangles represent 2-simplices and a
tetrahedron represents a 3-simplex. These are illustrated in Fig. 15.1. A p-simplex
is also referred to as a pth order hole or as a topological feature in the Hp homology
group.

Fig. 15.1 Illustration of
p-simplices, with
p = 0, 1, 2, 3

0-Simplex 1-Simplex 2-Simplex 3-Simplex
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Fig. 15.2 Example of
simplicial complex (left) and
not a simplicial complex
(right)

Definition 15.2 ([140]) A face of a p-simplex σ is the convex hull of a subset of
the p + 1 vertices.

For example, the tetrahedron shown in Fig. 15.1 has 4 triangle faces, 6 edge faces
and 4 vertex faces. Similarly, a triangle has 3 edge faces and 3 vertex faces. Finally,
an edge has just 2 vertex faces.

Definition 15.3 ([140]) Given a set of points x ∈ X, the simplicial complex of this
point set can be denoted by K = (X,�), where � is a family of non-empty subsets
of X, and each subset σ ∈ � is a simplex.

In a simplicial complex K , if τ is a face of σ , then τ ∈ �. It is also important
to note that both σ, σ ′ ∈ �, which implies that their intersection is either empty or
a face of both σ and σ ′. This forces the simplices to be either glued together along
whole faces or be separate. An example of what constitutes a simplicial complex
is shown in Fig. 15.2. In TDA we use simplicial complexes to construct and study
shapes from point cloud data.

Definition 15.4 ([140]) A p-chain is a subset of p-simplices in a simplicial
complex.

As an example, let us consider a tetrahedron as the target simplicial complex. It
has four triangle faces. A 2-chain for a tetrahedron is a subset of these four triangles,
bringing the total number of distinct 2-chains to 24. Similarly, we can construct 26

distinct 1-chains using the six edges of a tetrahedron. A p-chain does not have to be
connected, in spite of having the term chain in it.

Definition 15.5 ([140]) A p-chain group Cp is a set of p-chains in a simplicial
complex along with a group operation (addition).

The addition of p-chains gives us another p-chain with the duplicate p-simplices
cancelling out. See Fig. 15.3 for an example.

Definition 15.6 ([140]) The boundary ∂p of a p-simplex is the set of (p − 1)-
simplices faces. For example, a tetrahedron’s boundary consists of the set of 4
triangle faces. A triangle’s boundary is its three edges, and finally the boundary
of an edge is its two vertices. The boundary of a p-chain is the XOR or mod-2
addition of the boundaries of its simplices.

Definition 15.7 ([140]) A p-cycle is a p-chain with empty boundary. Figure 15.3
illustrates both the boundary operator and the notion of cycle.
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Fig. 15.3 Example of the boundary operator ∂2 acting on the 2-chain (collection of two triangles)
to create a 1-chain (collection of 4 edges). The addition operation of the two 1-chains leads to
cancellation of the common 1-simplex. Applying ∂1 on the resulting 1-chain results in 0, and
hence this 1-chain is also a 1-cycle

With the definitions out of the way, let us now look at the process of constructing
simplicial complexes and summarizing the topology of data. Consider a point cloud
x0, x1, . . . , xn ∈ Rd . We can construct a simplicial complex by identifying any
subset of p + 1 points that are close enough, such that we add a p-simplex σ , where
the points serve as vertices to the complex. An easy way to do this is by constructing
a Vietoris-Rips complex [143]. At scale ε, the Vietoris-Rips complex can be defined
as VR(ε) = {σ | diam(σ ) ≤ ε}, with diam(σ ) being the largest distance between
any two points in the simplex σ . Increasing the scale ε produces a sequence of
increasing simplicial complexes, i.e., VR(ε1) ⊆ VR(ε2) ⊆ · · · ⊆ VR(εm). This
process is referred to as filtration. Persistent homology keeps a track of how the
pth homology holes change as ε changes and summarizes this information using a
persistence diagram or persistence barcode plot. In this section we briefly discuss the
barcode representation and will explain both persistence diagrams and persistence
barcodes in more detail in Sect. 15.3. We provide an example adapted from [140].
Consider six points positioned at (0, 0), (0, 1), (2, 0), (2, 1), (5, 0), (5, 1) in a two-
dimensional (2D) Cartesian coordinate axis as shown in Fig. 15.4. Varying scale
ε causes the appearance and disappearance of H0 and H1 homology holes. For
instance, at ε = 0 there are six disconnected vertices, making β0 = 6. Three edges
are formed at ε = 1, reducing β0 to 3. Two more edges are formed at ε = 2, which
sets β0 = 2. The points become fully connected at ε = 3, and β0 becomes 1. With
respect to H1 homology, we observe the first hole form at ε = 2. However, this hole
is short-lived as it disappears at ε = √

5 = 2.236. A second hole is formed at ε = 3
and disappears at ε = √

10 = 3.162. The above information can be best summaried
using a persistence barcode. The persistence barcodes for H0 and H1 homology
groups is also shown in Fig. 15.4. Each bar in the barcode represents the birth-
death of each hole in the Hp homology group. Just like the Vietoris-Rips complex,
other types of complexes also exist, such as C̆ech complex, Alpha complex, Clique
complex, Cubical complex, and Morse-Smale complex [103]. In the next section
we will look at persistence diagrams, persistence barcodes and other topological
representations in more detail.
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Fig. 15.4 An example of the filtration process of a Vietoris-Rips simplicial complex

15.3 Topological Feature Representations

From an application perspective, persistent homology (PH) is the most popular
tool in topological data analysis (TDA). It offers a useful multi-scale summary
of different topological invariants that exist in the data space. This information is
represented using a Persistence Diagram (PD) [39] which is a set of points on
a two-dimensional (2D) Cartesian plane. The two axis in this plane represent the
birth-time (BT), i.e., the filtration value or scale at which a topological invariant is
formed; and death-time (DT), the scale at which the topological invariant ceases to
exist. The DT is always greater than the BT. This results in utilizing just the top
half plane of the PD. The persistence or life-time (LT) of a point is the absolute
difference between the DT and BT. For point j in the PD we will refer to the BT,
DT, LT as bj , dj , lj respectively.

Points in a PD can also be represented using a set of bars, with the length of each
bar reflecting the LT of the point, i.e., [lj ] = [bj , dj ]. This representation is called a
Persistence Barcode (PB) [61]. An example of a PD and its PB is shown in Fig. 15.5.
In a PD only half of the 2D plane is utilized. To fully use the entire 2D surface one
can employ a rotation function R(bj , dj ) = (bj , dj − bj ) = (bj , lj ). Now, the new
set of axis represent BT and LT respectively. Since it is a multi-set of points, it is
not possible to directly use this representation in ML algorithms that use fixed-size
features and operate in the Euclidean space. This has resulted in various topological
representations being proposed to better understand the information captured using
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Fig. 15.5 H1-Homology persistence diagram and persistence barcode for a 2D point cloud. In the
persistence diagram, point (b1, d1) represents the smaller circle and point (b2, d2) represents the
larger circle

PDs/PBs and that can be used along with ML tools [5–7, 21, 25, 27, 28, 41, 73,
119, 120, 134]. In the remainder of this section we will briefly go over the different
topological representations.

The Persistent Betti Number (PBN) is defined as the summation of all k-
dimensional holes in the PD and is defined in Eq. (15.2) [50]. It transforms the 2D
points in the PD to a 1D function that is not continuous. Here, X[bj ,dj ] is a step
function, i.e., it equals 1 where there is a point and 0 otherwise.

fPBN(x) =
∑

j

X[bj ,dj ](x) (15.2)

Kelin Xia proposed the Persistent Betti Function (PBF) defined in Eq. (15.3)
[134]. It is a 1D continuous function and there is a strict one-to-one correlation
between PDs and PBFs. The weight variable wj needs to be suitable set and σ is
the resolution parameter.

fPBF(x) =
∑

j

wj exp

(
− (x − (

bj +dj

2 ))

σ (dj − bj )

)2

(15.3)

Peter Bubenik proposed the Persistence Landscape (PL) feature in [21]. PLs are
stable, invertible functional representations of PDs. A PL lies in the Banach space
and is a sequence of envelope functions defined on the points in the PD. These
functions are ordered based on their importance. PLs were primarily motivated to
derive a unique mean representation for a set of PDs which is comparatively difficult
to do using other techniques such as Fréchet means [92]. However, their practical
utility has been limited since they provide decreasing importance to secondary and
tertiary features in PDs that are usually useful in terms of discriminating between
data from different classes. For a PL, a piece-wise linear function can be defined on
each point in the PD as shown below. The PL can be defined using a sequence of
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functions λm : R → [0,∞], m = 1, 2, 3, . . . where λm(x) is the mth largest value
of fPL(x). It is set to zero if the mth largest value does not exist.

fPL(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x /∈ (bj , dj );
x − bj if x ∈ (bj ,

bj +dj

2 ];
−x + dj if x ∈ [ bj +dj

2 , dj ).

(15.4)

The Persistence Surface (PS) is defined in Eq. (15.5) [5]. It is a weighted sum of
Gaussian functions, with each function centered at each point in the PD.

ρ(x, y) =
∑

j

w(x, y, t1, t2) φ(x, y, bj , dj ) (15.5)

Here, φ(.) is a differentiable probability distribution function and is defined as

φ(x, y, bj , dj ) = 1
2πσ 2 exp

(
− (x−bj )2+(y−(dj −bj ))2

2σ 2

)
. A simple choice of weighting

function depends on the death-time. To weight the points of higher persistence more
heavily, non-decreasing functions like sigmoid functions are a natural choice. The
weight function with constants t1, t2 is defined as

w(x, y, t1, t2) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if y ≤ t1;
y−t1
t2−t1

if t1 < y < t2;
1 if y ≥ t2.

(15.6)

We can discretize the continuous PS function by fitting a Cartesian grid on top of
it. Integrating the PS over each grid gives us a Persistence Image (PI) [5]. The
Persistent Entropy (PE) function is proposed to quantify the disorder of a system
and is defined as fPE = ∑

j

−pj ln(pj ), where pj = dj −bj∑
j

(dj −bj )
[112].

One can also collect different statistical measurements from a PD and use
it as a feature representation. Examples of such measurements include maxima,
minima, variance, and summation, of the BT, DT, and LT. Cang et al. used 13 such
different measurements to characterize the topological structural information [27].
One can also consider doing algebraic combinations or using tropical functions
of BT, DT and LT [6, 73]. Binning approaches have gained more popularity as
one can construct well-structured features that can easily be used as input to ML
algorithms. For instance, binning with respect to PBN and PBF can be done by
collecting values at grid points, i.e., the set {f (xi) | i = 0, 1, . . . , n; k = 0, 1, 2},
n corresponds to the grid number and k is the homology group [25, 28]. The same
binning approach can be adopted for PLs as well. However, it needs to be repeated
m times and thus the m set of {λm(xi) | i = 0, 1, . . . , n} values are used as features
[22]. In the case of PIs, we first rotate the PD so that the 2D Cartesian coordinate
axis are BT and LT respectively. Next, we compute the PI for the rotated PD and
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discretize it into a n×n grid. We can evaluate the values along each grid which will
result in feature vector containing total of n2 elements. The distribution functions
of BTs, DTs and PLs can be discretized and used as feature vectors. For each
interval [xi, xi+1], we can count the numbers of the k dimensional BTs, DTs, PLs
located in this range and denote them as Ni

BT, Ni
DT, Ni

PL, respectively. These sets
of counts {(Ni

BT, Ni
DT, Ni

PL) | i = 0, 1, . . . , n; k = 0, 1, 2} can be assembled as
a feature vector. It should be noticed that normally for β0 (rank of H0 homology
group), the BTs are 0, thus DTs are usually equal to PLs. So only the set of
{Ni

PL | i = 0, 1, . . . , n} is used instead [25, 28].
Just like bagging, Persistent Codebooks are also popular for getting fixed-

size feature representations by using different clustering or bagging methods over
the points in the PD [19, 142]. For instance the Persistent Bag-of-Words (P-
BoW) method matches each point in a rotated PD R(bi,m, di,m) to a precomputed
dictionary/codebook to get a feature vector representation [142]. k-means clustering
is used to cluster the points into c clusters NN(R(bi,m, di,m)) = i, with i =
1, 2, . . . , c and m = 1, 2, . . . , si . NN(x, y) = i means that point (x, y) belongs to
cluster i and si is the total number of points present in cluster i. The center of each
cluster is represented as zi = (xi, yi). Thus the P-BoW is denoted by fP-BoW =
(zi)i=1,2,...,c. One could also take the persistence information into account during
clustering. This would result in a more adaptive codebook. The Persistent Vector
of Locally Aggregated Descriptors (P-VLAD) captures more information than P-
BoW [142]. It also employs k-means clustering. The aggregated distance between
each rotated point R(bi,m, di,m) and its closest codeword zi is defined as follows
fP-VLAD = ∑

m=1,2,...,si

(R(bi,m, di,m) − zi). The c vectors are concatenated into a 2c

dimensional vector.
The Persistent Fisher Vector (PFV) captures the rotated PD with a gradient

vector from a probability model [142]. Let the set of Gaussian Mixture Model
(GMM) parameters be represented using λGMM = {wi, μi,�i}. Here, wi, μi,�i

denote the weight, Gaussian center and covariance matrix of the ith Gaussian
respectively. The likelihood that the rotated point R(bj , dj ) is generated by the ith
Gaussian is shown in Eq. (15.7) and the function is defined in Eq. (15.8).

pi(R(bj , dj ) | λGMM) = exp(− 1
2 (R(bj , dj ) − μi)

′�−1
i (R(bj , dj ) − μi))

2π |�i | 1
2

(15.7)

f (R(PDb,d) | λGMM) =
∑

j

log
( ∑

i

wipi(R(bj , dj ) | λGMM)
)

(15.8)

Another feature representation was proposed by Chevyrev et al., where the PB is
first represented as a persistent path which in turn is represented as a tensor series
[35].
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Anirudh et al., proposed a feature representation denoted by fHS, that is based
on Riemannian geometry [7]. This feature is obtained by modeling PDs as 2D
probability density functions (PDF) that are represented using the square-root
framework on the Hilbert Sphere. The resulting space is more intuitive with closed
form expressions for common operations and statistical analysis like computing
geodesics, exponential maps, inverse-exponential maps and computing means.
Assuming that the supports for each 2D PDF p is in [0, 1]2, the Hilbert Sphere
feature representation of the PD is shown in Eq. (15.9). Here, ψ = √

p.

fHS = {ψ : [0, 1] × [0, 1] → R ∀x, y | ψ ≥ 0; with
∫ 1

0

∫ 1

0
ψ2(x, y)∂x∂y = 1}

(15.9)
Motivated from the successful use of Riemannian geometry to encode PDs,

Som et al. proposed Perturbed Topological Signatures (PTS), a more robust
topological descriptor where a set of PDs can be projected to a point on the
Grassmann manifold [119]. We refer our readers to the following papers that provide
a good introduction to the geometry, statistical analysis, and techniques for solving
optimization problems on the Grassmann manifold [1, 2, 36, 47, 132]. Instead of
creating more variations in the data space and then computing PDs, the authors
induce variations by directly augmenting in the space of PDs. They do so by creating
a set of randomly perturbed PDs from the original PD. Each perturbed PD in this set
has its points randomly shifted but within a certain defined radius about the original
position of the points. The extent of perturbation is constrained to ensure that the
topological structure of data being analyzed is not abruptly changed. A perturbed PD
is analogous to extracting the PD from data that is subjected to topological noise.
Next, 2D PDFs are computed for each of the PDs in this set. Finally, the set of
2D PDFs are vectorized, stacked and then mapped to a point on the Grassmannian.
Mapping to a point on the Grassmann manifold is done by applying singular value
decomposition (SVD) on the stacked matrix of perturbed PDFs. Once in this space,
we can use the various metrics defined for the Grassmann manifold to do basic
operations and statistical analysis, just like in [7].

There is also recent interest bringing the areas of topological representation
learning and deep learning closer, and explore how they can help each other. In
[70], the authors propose to use PDs in deep neural network architectures using a
novel input layer that performs necessary parametrizations. Som et al. also explored
the use of deep learning models for computing topological representations directly
from data [120]. They proposed simple convolutional architectures called PI-Net to
directly learn mappings between time-series or image data and their corresponding
PIs, thereby reducing the amount of time taken to compute PIs from large datasets
significantly. Given a new dataset, they also discuss ways of using transfer learning
to fine-tune a pre-trained model on a subset of the new dataset. This opens doors to
exploring deep learning methods for computing topological features from the target
datasets. In the next section we will go over the different metrics and kernel methods
defined for the various topological representations described earlier.
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15.4 Geometric Metrics for Representations

As mentioned earlier, a persistence diagram (PD) is a multi-set of points that lies
on a 2D Cartesian plane. Its unique format poses a challenge for a finding a suitable
metric to compare PDs. However, several metrics have been proposed that are
suited specifically for PDs. Metrics have also been formulated for other topological
representations that are functional approximations of PDs [7, 30, 34, 92, 119, 123].
In addition, various kernel functions for topological data have been proposed to
replace the role of features. In this section, we will briefly go over these geometric
metrics and topological kernels.

The two classical metrics used to measure the dissimilarity between PDs are
the Bottleneck and p-Wasserstein distances [92, 123]. Both of these are transport
metrics, and are computed by matching corresponding points in PDs. For Hk

homology group, the bottleneck distance between a pair of PDs D and D′ is shown
in Eq. (15.10), with γ ranging over all bijections from D to D′, and xj representing
the j th point.

dB(D,D′) = inf
γ

sup
j

‖xj − γ (xj )‖∞ (15.10)

Here, ‖xj − xj ′ ‖∞ = max{|bj − bj ′ |, |dj − dj ′ |}, with (b, d) corresponding to
BT and DT respectively. The p-Wasserstein distance between two PDs D and D′ is
shown in Eq. (15.11), with p > 0.

dW,p(D,D′) = inf
γ

[ ∑

j

||xj − γ (xj )||p∞
] 1

p

(15.11)

Despite being principled metrics that can quantify the changes between the PDs,
these metrics are computationally expensive. For example, to compare two PDs with
n points each, the worst-case computational complexity is of the order of O(n3)

[15]. This and the fact that the PDs are not vector space representations makes
the computation of statistics in the space of PDs challenging. This has led to the
emergence of other topological representations with their corresponding metrics.

The Sliced Wasserstein distance [105] between two PDs is defined as

dSW(D,D′) = 1

2π

∫
W(μ(θ,D) + μ�(θ,D′), μ(θ,D′) + μ�(θ,D)) dθ.

(15.12)
Since the points in a PD live in a restriction of the 2D Euclidean space, we can define
a line f (θ) = {λ(cos(θ), sin(θ)) | λ ∈ R} for θ ∈ [−π/2, π/2] in this space. Further
πθ : R2 → f (θ) is defined as the orthogonal projection of a point onto this line
and the π� is the orthogonal projection onto the diagonal line (i.e., θ = π/4). We
denote μ(θ,D) = ∑

j

δπθ (xj ) and μ�(θ,D) = ∑
j

δπθ◦π�(xj ) andW is the generic
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Kantorovich formulation of optimal transport. The main idea behind this metric is
to slice the plane with lines passing through the origin, to project the measures onto
these lines whereW is computed, and to integrate those distances over all possible
lines. Based on this metric, Carriere et al. proposed the Sliced Wasserstein kernel
[31].

Reininghaus et al., proposed the Persistence Scale Space Kernel (PSSK) [108]
that is defined as

KPSSK(D,D′, σ ) = 1

8πσ

∑

xj ,xj ′
exp

(
−‖xj − xj ′ ‖2

8σ

)
− exp

(
−‖xj − xj ′ ‖2

8σ

)
.

(15.13)
Here, xj ′ is xj ′ mirrored at the diagonal. The proposed kernel is positive definite and
is defined via an L2-valued feature map, based on ideas from scale space theory [71].
The authors also show that the proposed kernel is Lipschitz continuous with respect
to the 1-Wasserstein distance and apply it to different shape classification/retrieval
and texture recognition experiments. Kwitt et al. proposed the Universal Persistence
Scale Space Kernel (u-PSSK) [77], which is a modification of PSSK and is defined
as,

Ku-PSSK(D,D′, σ ) = exp(KPSSK(D,D′, σ )). (15.14)

The Persistence Weighted Gaussian Kernel (PWGK) is also a positive definite
kernel, proposed by Kusano et al. [76] and defined as

KPWGK(D,D′, σ ) =
∑

xj ,xj ′
warc(xj )warc(xj ′) exp

(
−‖xj − xj ′ ‖2

2σ 2

)
. (15.15)

Here, warc(xj ) = arctan(C(dj − bj )
p), with parameters p and C being positive

values. PWGK has the following 3 advantages over PSSK: (1) PWGK can better
control the effect of persistence using parameters p,C in warc, which are indepen-
dent of the bandwidth parameter σ in the Gaussian factor, while PSSK has just σ ; (2)
approximation by random Fourier features is applicable only in PWGK, since PSSK
is not shift-invariant in total; (3) PWGK is a non-linear kernel on the reproducing
kernel Hilbert space (RKHS), where as PSSK is a linear kernel.

The Geodesic Topological Kernel (GTK) is proposed by Padellini and Brutti [99]
and is defined as

KGTK(D,D′, σ ) = exp

(
1

h
dW,2(D,D′)2

)
(15.16)

where dW,2 is the 2-Wasserstein distance and h > 0. Similarly the Geodesic
Laplacian Kernel (GLK) is defined as
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KGLK(D,D′, σ ) = exp

(
1

h
dW,2(D,D′)

)
. (15.17)

Unlike PSSK and PWGK, both GTK and GLK are not positive definite kernels.
However, the authors show that this does not affect the performance of the kernel
in a supervised learning setting, as they exploit the predictive power of the negative
part of the kernels and can do better in a narrowed class of problems.

The Persistence Fisher Kernel (PFK) proposed by Le and Yamada is a positive
definite kernel that preserves the geometry of the Riemannian manifold as it is
built upon the Fisher information metric for PDs without approximation [81]. The
PFK is defined in Eq. (15.18). Here, t0 is a positive scalar value; dFIM is the
Fisher information metric; ρ(x, y,D) = 1

Z

∑
j

N(x, y|lj , σ ) with j ranging over

all points in the PD; Z = ∫ ∑
j

N(x, y|lj , σ )∂x∂y and N(x, y|lj , σ ) is the normal

distribution.

KPFK(D,D′) = exp(−t0dFIM(ρ(x, y,D), ρ(x, y,D′)) (15.18)

Zhu et al. proposed three persistent landscape-based kernels namely: Global Per-
sistent Homology Kernel (GPHK), Multi-resolution Persistent Homology Kernel
(MPHK) and Stochastic Multi-resolution Persistent Homology Kernel (SMUR-
PHK) [141]. However, both GPHK and MPHK do not scale well to point clouds
with large number of points. SMURPHK solves the scalability issue with Monte
Carlo sampling.

The PTS representation by Som et al. is a point on the Grassmann manifold
[119]. This allows one to utilize the different distance metrics and Mercer kernels
defined for the Grassmannian. The minimal geodesic distance (dG) between two
points Y1 and Y2 on the Grassmann manifold is the length of the shortest constant
speed curve that connects these points. To do this, the velocity matrix AY1,Y2 or the
inverse exponential map needs to be calculated, with the geodesic path starting at
Y1 and ending at Y2. AY1,Y2 can be computed using the numerical approximation
method described in [85]. The geodesic distance between Y1 and Y2 is represented
in Eq. (15.19). Here θ is the principal angle matrix between Y1,Y2 and can be
computed as θ = arccos(S), where USV T = svd(YT

1 Y2). The authors show the
stability of the proposed PTS representation using the normalized geodesic distance
represented by dNG(Y1,Y2) = 1

D
dG(Y1,Y2), where D is the maximum possible

geodesic distance on Gp,n [72, 82].

dG(Y1,Y2) = trace(AY1,Y2AY1,Y2
T) =

√
trace(θT θ) (15.19)

The symmetric directional distance (d�) is another popular metric to compute
distances between Grassmann representations with different subspace dimension
p [121, 127]. Its been used areas like computer vision [9, 10, 40, 87, 135],
communications [116], and applied mathematics [46]. It is equivalent to the chordal
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metric [136] and is defined in Eq. (15.20). Here, k and l are subspace dimensions
for the orthonormal matrices Y1 and Y2 respectively. The following papers
propose methods to compute distances between subspaces of different dimensions
[121, 127, 136].

d�(Y1,Y2) = (
max(k, l) −

k,l∑

i,j=1

(y1,i
Ty2,j )

2) 1
2 (15.20)

15.5 Applications

In this section, we describe three application areas that have benefited from
topological methods, including time-series modeling, image and shape analysis.
We also compare the performance of some of the topological representations and
metrics described in Sects. 15.3 and 15.4.

15.5.1 Time-Series Analysis

A lot of work has gone into modeling dynamical systems. A popular approach
involves reconstructing the phase space of the dynamical system by implementing
Takens’ embedding theorem on a 1D time-series signal [122]. For a discrete
dynamical system with a multi-dimensional phase space, the embedding or time-
delay vectors are obtained by stacking time-delayed versions of the 1D signal. This
can be easily expressed through Eq. (15.21).

x(n) = [x(n), x(n + τ), . . . , x(n + (m − 1)τ )]T (15.21)

Here, x is the 1D time-series signal, m is the embedding dimension and τ

is the embedding delay or delay factor. An example of reconstructing the phase
space of the Lorenz attractor is shown in Fig. 15.6. Takens’ embedding theorem has

Fig. 15.6 Phase space reconstruction of the Lorenz attractor using Takens’ embedding theorem.
The Lorenz attractor (left) is obtained using a system of three ordinary differential equations:
x(t), y(t), z(t), with control parameters ρ = 28, σ = 10, β = 2.667. Takens’ embedding theorem
is applied on x(t) (middle), with m = 3, τ = 10 to get the reconstructed phase space (right)
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been successfully employed in various applications [117–119, 125]. Skraba et al.
proposed a framework that analyzes dynamical systems using persistent homology,
that requires almost no prior information of the underlying structure [43]. The
authors observed that the reconstructed phase space can reveal the recurrent nature
of the system in the form of loops and returning paths. Persistent homology can
be used to quantify these recurrent structures using persistent diagrams or Betti
numbers. It is important to note that these loops need not necessarily exist in the
1D signal, thereby making the reconstructed phase space even more attractive. A
periodic dynamical system exhibits Betti numbers equivalent to that of a circle, a
quasi-periodic system with p periods will have Betti numbers equal to that of a p-
dimensional torus. Apart from counting the number of loops in the reconstructed
phase space, persistent homology also allows one to measure the periodicity of a
signal which is represented by the size of the loops or holes.

Perea and Harer also used persistent homology to discover periodicity in sliding
windows of noisy periodic signals [101]. Perea later extended the same idea to quasi-
periodic signals and also provide details for finding the optimal time-delay, window
size for sliding window embedding [100]. Berwald and Gidea used persistence
diagrams constructed using Vietoris-Rips filtration to discover important transitions
in genetic regulatory systems by identifying significant topological difference in
consecutive time-series windows [16, 17]. Garland et al. constructed persistence
diagrams using Witness complex filtrations to model the underlying topology of
noisy samples in dynamical systems [58]. Chazal et al. proposed the idea of
persistence-based clustering, where they showed that stable peaks possessed longer
life-times [33]. The life-time of points in the persistence diagram can reflect the
hierarchy of importance of the cluster centroids. Based on this other persistence-
based clustering ideas have also come up in recent years [32, 102]. Emrani et al. used
Betti-1 persistence barcodes for wheeze detection [51]. Sanderson et al. used TDA
to capture differences between same musical notes played on different instruments
[113]. They used persistent rank functions as features from a persistent diagram
and observed better results than a classifier trained on fast fourier transform (FFT)
features [111]. Ideas from [100, 101] were also used for identifying early signs
of important transitions in financial time-series trends using persistent homology
[63, 64].

15.5.2 Image Analysis

Topological methods have played a crucial role for different image-based applica-
tions, including image analysis [8, 37, 45, 54, 62, 67, 88, 97, 104], computer vision
[7, 53, 119, 126], medical imaging [38, 79, 80] and so on. Li et al. used persistence
diagrams together with bag-of-features representation for texture classification.
They theorized that while bag-of-features capture the distribution of functional
values defined over the data, PDs on the other hand capture structural properties
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that reflect spatial information in an invariant way. Similarly, Som et al. used
Perturbed Topological Signature (PTS) features along with self-similarity matrix
based representations for multi-view human activity recognition task. Lawson
et al. used persistent homology for classification and quantitative evaluation of
architectural features in prostate cancer histology [79, 80].

TDA methods are also being investigated as complementary representations to
those afforded by deep-learning representations for image classification problems
[45, 120]. Given an image, one can consider it as a point-cloud of pixels with
additional information associated to each pixel. In [45], the authors suggest a
mapping from each pixel—f : I → R5 mapping the RGB values of a given pixel at
location (x, y) to a point (

r−μr

σr
,

g−μg

σg
,

b−μb

σb
, x−x, y−y), where μ and σ represent

the mean and standard deviations of individual R,G,B channels in the image, and
x, y represent the mean spatial co-ordinates. Under this mapping, it can be shown
with some simple analysis that the topological properties of the resulting point cloud
will be invariant to spatial transforms like affine transforms, or simple monotonic
intensity transforms like gamma correction. The author proposed using a persistence
barcode features as a way to extract these invariant representations. The study shows
that fusion with features from deep-nets is possible, using methods like Fisher
vector encoding. The performance improvements shown are significant across many
different datasets like CIFAR-10, Caltech-256, and MNIST. Another interesting
approach involves directly computing topological representations from data using
deep learning. For example, Som et al. build simple convolution neural networks to
learn mappings between images and their corresponding persistence images [120].
However, this would require us to first compute the ground-truth persistence images
using conventional TDA methods. Nevertheless, the trained network offers a speed
up in the computation time by about two orders of magnitude. We feel that the
above approaches open a new class of image representations, with many possible
design choices, beginning with how an image can be converted to a topological
representation, all the way to fusion approaches.

15.5.3 Shape Analysis

Point cloud shape analysis is a topic of major current interest due to emergence
of Light Detection and Ranging (LIDAR) based vision systems in autonomous
vehicles. The different invariances one tries to seek include shape articulation, i.e.,
stretching, skewing, rotation of shape that does not alter the fundamental object
class. These invariances are optimally defined in terms of topological invariants.

For 3D shape analysis we conduct an experiment on 10 random shapes selected
from the SHREC 2010 dataset [84]. The dataset consists of 200 near-isometric
watertight 3D shapes with articulating parts, equally divided into 10 classes. Each
3D mesh is simplified to 2000 faces. The 10 shapes used in the experiment are
denoted as Si , i = 1, 2, . . . , 10 and are shown in Fig. 15.7. The minimum bounding
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Fig. 15.7 Sample shapes from SHREC 2010 dataset

sphere for each of these shapes has a mean radius of 54.4 with standard deviation
of 3.7 centered at (64.4, 63.4, 66.0) with coordinate-wise standard deviations of
(3.9, 4.1, 4.9) respectively. Next, we generate 100 sets of shapes, infused with
topological noise. Topological noise is applied by changing the position of the
vertices of the triangular mesh face, which results in changing its normal. We do
this by applying a zero-mean Gaussian noise to the vertices of the original shape,
with the standard deviation σ varied from 0.1 to 1 in steps of 0.1. For each shape
Si , its 10 noisy shapes with different levels of topological noise are denoted by
Ni,1, . . . ,Ni,10.

A 17-dimensional scale-invariant heat kernel signature (SIHKS) spectral descrip-
tor function is calculated on each shape [75], and PDs are extracted for each
dimension of this function resulting in 17 PDs per shape. To know more about
the process of extracting PDs from the SIHKS descriptor, we refer our readers to
the paper by Li et al. [83]. The 3D mesh and PD representation for 5 of the 10
shapes (shown in Fig. 15.7) and their respective noisy-variants (Gaussian noise with
standard deviation 1.0) is shown in Fig. 15.8. Now we evaluate the robustness of
each topological representation by trying to correctly classify shapes with different
levels of topological noise. Displacement of vertices by adding varying levels of
topological noise, interclass similarities and intraclass variations of the shapes make
this a challenging task. A simple unbiased one-nearest-neighbor (1-NN) classifier is
used to classify the topological representations of the noisy shapes in each set. The
classification results are averaged over the 100 sets and tabulated in Table 15.1. We
compare the performance of the following topological representations: PI [5], PL
[20], PSSK [108], PWGK [76] and PTS [119]. For PTS, we set the discretization
of the grid k = 50 and use σ = 0.0004. For PIs we chose the linear ramp
weighting function, set k and σ for the Gaussian kernel function, same as the
PTS feature. For PLs we use the first landscape function with 500 elements. A
linear SVM classifier is used instead of the 1-NN classifier for the PSSK and
PWGK methods. The classification results and the average time taken to compare
topological representations is shown in Table 15.1.

We observe that PIs, PLs and PWGK take the least amount of time to compare
topological features. PDs on the other hand take the most amount of time. At lower
levels of topological noise, there is little difference in the overall performance
of each topological feature. However, with the increase in topological noise the
classification performance deteriorates drastically for PIs, PLs, PSSK and PWGK.
Even PDs with the Bottleneck distance and 2-Wasserstein metric show poor results
as the noise level increases. The PTS representation shows the most stability with
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Fig. 15.8 PD representations for 5 shapes and their noisy variants. Columns 1 and 4 represent the
3D shape with triangular mesh faces; columns 2 and 3 show the corresponding ninth dimension
SIHKS function-based PDs. A zero mean Gaussian noise with standard deviation 1.0 is applied on
the original shapes in column 1 to get the corresponding noisy variant in column 4

respect to the applied topological noise. This is attributed to the fact that the PTS
representation takes into account different possible perturbations that are artificially
induced in the PD space before being mapped to a point on the Grassmann
manifold. Also, both Grassmannian metrics dG, d� still observe about two orders
of magnitude faster times to compare PTS representations.
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15.6 Conclusion

TDA methods are continuing to find more applications in diverse domains, as a
new lens to encode ‘shape’-related information. The theoretical work of the past
two decades has resulted in a variety of tools, which are being actively transitioned
to many different applications. We feel that TDA methods will continue to attract
interest from machine-learning practitioners, as we need newer methods to address
outstanding issues in standard ML approaches. Our conjecture is that the problem
of enforcing invariances in ML architectures will be one of the significant points
of transitions of TDA tools to the ML field. TDA methods are also being used to
throw light on how deep-learning methods learn, and generalize to other tasks. In
conclusion, we feel that TDA methods are poised to advance ML techniques as well
as many different applications where analysis of the shape of underlying data is
important.
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137. Zeppelzauer, M., Zieliński, B., Juda, M., Seidl, M.: Topological descriptors for 3d surface
analysis. In: International Workshop on Computational Topology in Image Context, pp. 77–
87. Springer, Berlin (2016)

138. Zhang, Z., Song, Y., Cui, H., Wu, J., Schwartz, F., Qi, H.: Early mastitis diagnosis through
topological analysis of biosignals from low-voltage alternate current electrokinetics. In: 2015
37th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pp. 542–545. IEEE, Piscataway (2015)

139. Zhou, Z., Huang, Y., Wang, L., Tan, T.: Exploring generalized shape analysis by topological
representations. Pattern Recogn. Lett. 87, 177–185 (2017)

140. Zhu, X.: Persistent homology: an introduction and a new text representation for natural
language processing. In: International Joint Conference on Artificial Intelligence (2013)

141. Zhu, X., Vartanian, A., Bansal, M., Nguyen, D., Brandl, L.: Stochastic multiresolution
persistent homology kernel. In: International Joint Conference on Artificial Intelligence, pp.
2449–2457 (2016)

142. Zielinski, B., Juda, M., Zeppelzauer, M.: Persistence codebooks for topological data analysis
(2018). Preprint. arXiv: 1802.04852

143. Zomorodian, A.: Fast construction of the vietoris-rips complex. Comput. Graph. 34(3), 263–
271 (2010)


	15 Geometric Metrics for Topological Representations
	Contents
	15.1 Introduction
	15.2 Background and Definitions
	15.3 Topological Feature Representations
	15.4 Geometric Metrics for Representations
	15.5 Applications
	15.5.1 Time-Series Analysis
	15.5.2 Image Analysis
	15.5.3 Shape Analysis

	15.6 Conclusion
	References


