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Abstract Functional data is one of the most common types of data in our
digital society. Such data includes scalar or vector time series, Euclidean curves,
surfaces, or trajectories on nonlinear manifolds. Rather than applying past statistical
techniques developed using standard Hilbert norm, we focus on analyzing functions
according to their shapes. We summarize recent developments in the field of
elastic shape analysis of functional data, with a perspective on statistical inferences.
The key idea is to use metrics, with appropriate invariance properties, to register
corresponding parts of functions and to use this registration in quantification
of shape differences. Furthermore, one introduces square-root representations of
functions to help simplify computations and facilitate efficient algorithms for large-
scale data analysis. We will demonstrate these ideas using simple examples from
common application domains.
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13.1 Introduction

Statistical shape analysis aims to study the shapes of given geometric objects by
statistical methods. It has wide applications in biology, computer vision, medical
images, etc. For instance, in bioinformatics, it is important to associate the shapes
of biological objects like RNAs and proteins with their functionality. Given a sample
of shapes, one would like to use some statistical tools to summarize the information
and make the inference. Some important techniques include an appropriate metric
for quantifying shape difference, geodesics to study a natural deformation between
two shapes, summary statistics (mean, covariance) of shapes, shape models to
characterize shape populations and regression models using shapes as predictors
or responses.

The object of interest varies depending on different applications. Examples
include scalar functions, planar or 3D curves, surfaces, etc. As the result, shape
analysis is naturally related to the subject of differential geometry. A typical frame-
work for shape analysis starts with mathematical representations of objects and
removes certain shape-preserving transformations as pre-processing. The remaining
transformations that cannot be removed by pre-processing are dealt with equivalent
classes defined by group actions. For example, since shape is invariant with respect
to different rotations, an equivalent class defined by rotation of a specific shape is a
set that contains all the possible rotations of that shape. And one treats this set as a
specific observation in shape analysis.

Since shape analysis is an important branch of statistics, numerous methods have
been developed in the literature. In the earlier works, shapes are represented by
landmarks, a finite set of points [6, 9, 19]. One of the earliest formal mathematical
frameworks is introduced in [9] where one removes rigid motions and global scaling
from landmarks to reach final shape representations. Translation and scaling are first
removed by centering and rescaling the landmarks, as a pre-processing. The space
achieved is also called preshape space. The remaining transformation, rotation, is
removed by forming orbits (equivalent classes) under the group action. A metric is
then imposed on the space of orbits, which is also called quotient space, followed
with rich methods in statistical analysis. More recently, there is a trend that shapes
are more continuously represented other than using the finite, discrete points as
landmarks.

One of the important challenges in shape analysis is the registration problem,
which means finding the correspondence points between different objects. His-
torically, some shape analysis methods presume that objects have been already
registered while others use different methods to register first and use this registration
in subsequent own methods for analyzing shapes. However, both approaches are
restrictive and questionable. A simultaneous registration and shape analysis called
elastic shape analysis [20] has achieved significant recognition over the past few
years. This is a class of Riemannian metrics based solutions that perform registration
along with the process of shape analysis. The key idea is to equip the shape space
with an elastic Riemannian metric that is invariant under the action of registration
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group. Such elastic metrics are often complicated if used directly. However, a
square-root transformation can simplify them into the standard Euclidean metric
and results in an efficient solution.

In this chapter, we summarize advances in elastic shape analysis. As mentioned
earlier, there are different objects of shapes. For example, planar curves come from
boundaries or silhouettes of objects in images [22]. 3D curves can be extracted from
complex biomolecular structures like proteins or RNAs [13]. A special case of this
problem is when the functional data is in R, i.e., real numbers, which is also called
functional data analysis (FDA) [17], where one analyzes shapes of scalar functions
on a fixed interval [23]. The use of elastic Riemannian metrics and square-root
transformations for curves were first introduced in [29, 30] although this treatment
used complicated arithmetic and was restricted to planar curves. Later on, a family
of elastic metrics are presented [16] that allowed for different levels of elasticity in
shape comparisons. The works [21, 23] introduced a square-root representation that
was applicable to curves in any Euclidean space. Subsequently, several other elastic
metrics and square-root representations, each representing a different strength and
limitation, have been discussed in the literature [2, 3, 11, 15, 31]. In this paper, we
focus on the framework in [21, 23] and demonstrate that approach using a number
of examples involving functional and curve data.

In addition to methods summarized in this chapter, we mention that elastic
frameworks have also been developed for curves taking values on nonlinear domains
also, including unit spheres [32], hyperbolic spaces [5], the space of symmetric
positive definite (SPD) matrices [33], and some other manifolds. In the case where
the data is a trajectory of functions or curves, for instance, the blood oxygenation
level-dependent (BOLD) signal along tracts can be considered as trajectories of
functions. A parallel transported square-root transformation in [24] can be used
to effectively analyze and summarize the projection pathway. Additionally, elastic
metrics and square-root representations have also been used to analyze shapes of
surfaces in R3. These methods provide techniques for registration of points across
objects, as well as comparisons of their shapes, in a unified metric-based framework.
Applications include modeling parameterized surfaces of endometrial tissues that
reconstructed from 2D MRI slices [12], shape changes of brain structures associated
with Alzheimer [8], etc. For details, we refer to the textbook [7].

13.2 Registration Problem and Elastic Framework

We provide a comprehensive framework in a similar spirit of Kendall’s [9] approach
for comparing shapes of functional objects. The essence is to treat them as
parameterized objects and use an elastic metric to register them. The invariant
property with respect to reparameterization of the elastic metric enable us to conduct
registration and shape analysis simultaneously.
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13.2.1 The Use of the L2 Norm and Its Limitations

The problem of registration is fundamental for comparing shapes of functional
data. To formulate the problem, we consider F as all the parameterized functional
objects, whose elements are f : D → Rn where D represents the domain of
parameterization. As an example, for open planar curves, n = 2 and D is the unit
interval [0, 1]. While for analyzing shapes of surfaces, D can be a unit sphere S2,
unit disk, etc. The reparametrization of f is given by the composition with γ : f ◦γ ,
where γ : D → D is a boundary-preserving diffeomorphism that is an invertible
function maps from domain D to itself that both the function and its inverse are
smooth. We denote � as all the boundary-preserving diffeomorphisms of domain
D. One can show that � forms a group with action as composition and the identity
element is γid(t) = t, t ∈ D. Therefore, for any two γ1, γ2 ∈ �, γ1 ◦ γ2 ∈ D

is also a (cumulative) reparameterization. Reparametrization does not change the
shape of f ∈ Rn, n ≥ 2, i.e., f and f ◦ γ, γ ∈ � has the exact same shape. For
scalar functions f ∈ R, the reparametrization is usually called time warping, and
we will discuss details later. An example of reparametrization of 2D curves can
be found in Fig. 13.1. The top row shows the sine functions in the plane in different
reparametrizations plotted in the bottom row. The middle column shows the original
parametrization while left and right columns visualize different reparametrizations.
For any t ∈ D and any two functional object f1, f2 ∈ F , f1(t) are registered to
f2(t). Therefore, if we reparametrize f2 to f2 ◦ γ , we can change the registration
between f1 and f2, controlled by the diffeomorphism γ .

In order to quantify the problem, one needs an objective function to measure
the quality of registration. A seemingly natural choice is using L2 norm. Let ‖ · ‖
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Fig. 13.1 An illustration of reparametrization of a 2D open curve. Top row is the curve in different
parametrization. Bottom row shows the corresponding γ (diffeomorphism)
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Fig. 13.2 Pinching effect when using L2 norm to align scalar functions. The rightmost is the time
warping function

represents the L2 norm, i.e., ‖f ‖ =
√∫

D
|f (t)|2dt . Therefore, the corresponding

objective function becomes infγ∈� ‖f1 − f2 ◦ γ ‖. There are several problems
related to it. The main issue is that it leads to degeneracy solution. In other words,
one can find a γ to reduce the cost to be infinitesimal even if f1, f2 are quite
different. Such γ minimize the cost by eliminating the part of f2 that is greatly
different from the part of f1, which is referred to pinching problem in the literature
[20]. Figure 13.2 shows a simple example to illustrate the idea using two scalar
functions. We have two scalar functions on the unit interval [0, 1] showed in the left
panel. If we optimize the previous L2 based objective functions, the obtained time
warping function γ is plotted on the right panel while the middle panel visualizes
the reparameterization f2 ◦ γ . As we can see, it kills the height of f2 to get
this degenerate solution. To avoid this, people proposed the modified solution that
penalize large time warpings by some roughness penalties:

inf
γ∈�

(‖f1 − f2 ◦ γ ‖ + λR(γ )) , (13.1)

where R(γ ) represents the roughness of γ . For example, it can be the norm of the
first or the second derivatives.

While this solution prevents the pinching problem, it introduces new issues. For
example, the solution is not inverse consistent. That is, the registration of f2 to
f1 is no longer equivalent with that of f1 to f2. We use Fig. 13.3 to explain this
issue. The task is to align two scalar functions f1 and f2, shown in the top panel of
Fig. 13.3. And in this example, we use the first order penalty R(γ ) = ∫

γ̇ (t)2dt in
Eq. (13.1). To study the property of symmetry, for each row, we perform registration
using different template and target on a fixed λ, i.e., warping f2 to register to f1
to get γ1 and warping f1 to register to f2 to get γ2. Then, we compose the two
obtained optimal warping functions. If the solution is symmetric, the composition
γ1 ◦ γ −1

2 should be the identity function: γid(t) = t . The last column shows the
compositions. As we can see, when λ = 0, the solution is symmetric. However,
it suffers the pinching problem. As λ increases, the pinching effect is reducing but
the solution is no longer inverse consistent. In the last row, where λ is large, the
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Fig. 13.3 Example of penalized-L2 based alignment. The top row shows the two original
functions. From the second row to the bottom row, the roughness tuning parameter is set to
λ = 0, 0.03, 0.3, respectively. As λ increases, the solution becomes more and more asymmetric

pinching problem disappears. However, the alignment is also largely limited. It is
not obvious to select the appropriate λ for this example. In reality, it is even difficult
to tune this parameter.

In the following sections, we will go through the shape analysis in elastic
framework for scalar functions, parametrized curves.

13.2.2 Elastic Registration of Scalar Functions

Among various functional objects one comes across in shape analysis, the simplest
types are real-valued functions on a fixed interval. For simplicity, functional data
in this section refers to the scalar functions. Examples include human activities
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collected by wearable devices, biological growth data, weather data, etc. Shape
analysis on scalar functions is reduced to alignment problem in FDA. If one does
not account for misalignment in the given data, which happens when functions are
contaminated with the variability in their domain, this can inflate variance artificially
and can overwhelm any statistical analysis. The task is warping the temporal domain
of functions so that geometric features (peaks and valleys) of functions are well-
aligned, which is also called curve registration or phase-amplitude separation [14].
While we have illustrated the limitation of L2 norm earlier, we will introduce a
desirable solution in elastic framework as follows.

Definition 13.1 For a function f (t) : [0, 1] → R, define the square-root velocity
function (SRVF) (or square-root slope function (SRSF)) q(t) as follows:

q(t) = sign(ḟ (t))

√
|ḟ (t)| . (13.2)

It can be shown if f (t) is absolutely continues, q(t) is square-integrable,
i.e., q(t) ∈ L2. The representation is invertible given f (0): f (t) = f (0) +∫ t

0 q(s)|q(s)|ds. If the function f is warped as f ◦ γ , then the SRVF becomes: (q ◦
γ )

√
γ̇ , denoted by (q∗γ ). One of the most import properties of the representation is

isometry under the action of diffeomorphism: ‖q1−q2‖ = ‖(q1∗γ )−(q2∗γ )‖,∀γ ∈
�. In other words, L2 norm of SRVFs is preserved under time warping. One can
show that the L2 metric of SRVF is non-parametric Fisher-Rao metric on f , given
f is absolutely continuous and ḟ > 0, and it can be extended to the larger space
F0 = {f ∈ F |f is absolute continuous} [20]. Then, in order to register f1 and f2,
the problem becomes

inf
γ∈�

‖q1 − (q2 ∗ γ )‖ = inf
γ∈�

‖q2 − (q1 ∗ γ )‖ . (13.3)

One can efficiently solving above objective function using Dynamic Programming
[4]. Gradient based algorithm or exact solutions [18] are also available.

For aligning multiple functions, one can easily extend the framework to align
every function to their Karcher mean [20] by iteratively updating the following
equations:

γi = arg inf
γ∈�

‖μ − (qi ∗ γ )‖ ,

μ = 1

n

n∑
i=1

(qi ∗ γi)

We demonstrate an application of function alignment using the famous Berkeley
growth data [27], where observations are heights of human subjects in the age
domain recorded from birth to age 18. In order to understand the growth pattern, we
use a smoothed version of the first time derivative (growth velocity) of the height
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Fig. 13.4 Alignment on Berkeley growth data. (a) Original male growth function. (b) Aligned
male growth function. (c) Time warping functions for male. (d) Original female growth function.
(e) Aligned female growth function. (f) Time warping functions for female

functions, instead of the height functions themselves, as functional data, plotted in
(a) and (d) of Fig. 13.4 for male and female subjects, respectively. The task is to align
the growth spurts of different subjects in order to make inferences about the number
and placement of such spurts for the underlying population. The aligned functions
are presented in (b) and (e) of Fig. 13.4. After alignment, it becomes much easier to
estimate the location and size of the growth spurts in observed subjects, and make
inferences about the general population.

There are many studies related to the elastic functional analysis in the literature.
For example, one can construct a generative model for functional data, in terms of
both amplitude and phase parts [25]. One can also take account the elastic part into
functional principal component analysis [26]. For regression models using elastic
functions as predictors, readers can refer to [1].

13.2.3 Elastic Shape Analysis of Curves

13.2.3.1 Registration of Curves

As previously mentioned, square-root transformations were first proposed for planar
curves [29, 30]. We can register curves in R2 and R3 using SRVFs as defined below.



13 Shape Analysis of Functional Data 387

Fig. 13.5 Registration of signatures

Definition 13.2 Define SRVF of 2D or 3D parametrized curves:

q(t) =
⎧
⎨
⎩

ḟ (t)√
|ḟ (t)| , |ḟ (t)| 
= 0

0 , |ḟ (t)| = 0
. (13.4)

Here f : [0, 1] → Rn, n = 2, 3, is an absolutely continuous parametrized curve.
(For closed curves, S1 is a more appropriate domain.) It is worth noting that this
definition is valid for Rn. The L2 metric in the space of SRVFs is a special elastic
metric in the space of curves, which measures the bending and stretching from the
curves [20]. To register curves, we again use Eq. (13.3). An example of registering
2D curves is shown in Fig. 13.5, where we are registering signatures.

13.2.3.2 Shape Space

Now we know how to align functions and to register curves using the SRVF
framework. And these will now serve as fundamental tools for our ultimate goal:
shape analysis. One has to note that shapes are invariant to some nuanced group
actions: translation, scaling, rotation, and reparametrization. For example, Fig. 13.6
illustrates that using a bird shape. On the left panel, although the bird contour is
shifted, scaled and rotated, the shape is keeping the same as the original one. One
the right panel, two shapes have different reparametrizations but they need to be
treated as the same shape. Therefore, it is important to identify what is the space
that shapes reside in. We represent a curve f by its SRVF q and thus it is invariant
to translation (because it is a derivative). The curve can be rescaled into unit length
to remove scaling. Since the length of f is L[f ] = ‖q‖, after rescaling, ‖q‖ = 1. As
the result, the unit length q is on the unit Hilbert sphere. Let C = {q ∈ L2|‖q‖ = 1}
denote the unit Hilbert sphere inside L2, which is also called preshape space. The
geometry of C is simple: the distance between any two point q1, q2 ∈ C is given
by the arc length dC(q1, q2) = cos−1(〈q1, q2〉), where <,> represents L2 inner
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Fig. 13.6 Example of bird shapes

product. The geodesic (shortest path) between q1 and q2 is α : [0, 1] → C is the
shortest arc length on the greater circle:

α(τ) = 1

sin θ
(sin((1 − τ)θ)q1 + sin(τθ)q2), τ ∈ [0, 1]

The remaining variability that has not been removed is rotation and
reparametrization. We will remove them by using equivalent classes that are defined
by group actions. Let SO(n) represent the set of all the rotation matrices in Rn. For
any O ∈ SO(n) and q ∈ C, Oq has exactly same shape with q. (The SRVF of
Of is Oq.) The same holds for a reparametrization (q ∗ γ ),∀γ ∈ �. We will treat
them as the same object in the shape space as follows. Define the action of group
SO(n) × � on C according to:

(SO(n) × �) × C → C, (O, γ ) ∗ q = O(q ∗ γ ) ,

which leads to the equivalent classes or orbits:

[q] = {O(q ∗ γ )|O ∈ SO(n), γ ∈ �} .

Therefore, each orbit [q] represents a unique shape of curves. The shape space
(quotient space) S is the collection of all the orbits:

S = C/(SO(n) × �) = {[q]|q ∈ C} .

As we mentioned earlier, the inner product or L2 norm of SRVF is preserved under
reparametrization. This is also true for rotation actions: 〈q1, q2〉 = 〈Oq1,Oq2〉. As
the result, we can inherit the metric from preshape space into shape space as follows:
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Definition 13.3 For two representations of shapes [q1] and [q2], define the shape
metric as:

dS([q1], [q2]) = inf
γ∈�,O∈SO(n)

dC(q1,O(q2 ∗ γ )) . (13.5)

The above equation is a proper metric in the shape space [20] and thus can be used
for ensuing statistical analysis. The optimization over SO(n) is performed using
Procrustes method [10]. For instance, for curves in 2D, the optimal rotation O∗ is
given by

O∗ =

⎧
⎪⎪⎨
⎪⎪⎩

UV T if det (A) > 0

U

[
1 0

0 −1

]
V T otherwise

, (13.6)

where A = ∫ 1
0 q1q

T
2 dt and A = U�V T (singular value decomposition). While

the optimization of γ can be implement by Dynamic Programming or gradient
based methods [20]. For [q1] and [q2] in S, the geodesic path is given by the
geodesic between q1 and q̃2, while q̃2 is rotated and reparemetrized w.r.t. q1. We
present an example geodesic in Fig. 13.7. The top row is the geodesic in S. For
comparison, we also plot the geodesic path in C in bottom row. It is clear to see
that elastic registration makes a more reasonable deformation since it matches the
corresponding parts.

Shape Spaces of Closed Curves For parametrized closed curves, there is one more
constraint: f (0) = f (1). Therefore, as we mentioned earlier, S1 is a more natural
domain for parametrized closed curves. Let q denote the SRVF of a closed curve f ,

Fig. 13.7 Comparison
between geodesic and
interpolation for a toy 2D
open curve. (a) Geodesic in
S. (b) Geodesic in C

(a)

(b)
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Fig. 13.8 Some geodesic paths between two closed planar curves in Sc

the above condition f (0) = f (1) becomes
∫
S1 q(t)|q(t)|dt = 0. As the result, the

prespace Cc for unit length closed curve is:

Cc =
{
q ∈ L2(S1,Rn)|

∫

S1
|q(t)|dt = 1,

∫

S1
q(t)|q(t)|dt = 0

}
⊂ C .

One can still use dC as the extrinsic metric in Cc [20]. Unlike the open curves, the
geodesics in Cc have no closed form. A numerical approximation method called
path straightening [20] can be used to compute the geodesic. The shape space is
Sc = Cc/(SO(n) × �). whose elements, equivalence classes or orbits, are [q] =
{O(q ∗ γ )|q ∈ Cc,O ∈ SO(n), γ ∈ �}. Some examples of geodesic paths can be
found in Fig. 13.8, where we can see natural deformations between two shapes.

13.3 Shape Summary Statistics, Principal Modes and Models

The framework we have developed so far is able to define and compute several
statistics for analysis of shapes. For instance, we may want to compute the mean
shape from a sample of curves to represent the underlying population. The intrinsic
sample mean on a nonlinear manifold is typically defined as the Fréchet mean or
Karcher mean, defined as follows.

Definition 13.4 (Mean Shape) Given a set of curves f1, f2, . . . , fn ∈ F0 with
corresponding shapes [q1], [q2], . . . , [qn], we define the mean shape [μ] as:

[μ] = arg min[q]

n∑
i=1

d2
S([q], [qi]) .
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Fig. 13.9 Examples of mean
shapes

The algorithm for computing a mean shape [20] is similar to the one described
earlier in multiple function alignment. We iteratively find the best one from rotation,
registration and average while fixing the other two, in way of coordinate descent
[28]. Figure 13.9 illustrates some mean shapes. One the left hand side, there are
some sample shapes: glasses and human beings. Their corresponding mean shapes
are plotted on the right.

Besides the Karcher mean, the Karcher covariance and modes of variation can
be calculated to summarize the given sample shapes. As it is known that the
shape space S is a non-linear manifold, we will use tangent PCA [20] to flatten
the space. Let T[μ]S denote the tangent space to S at the mean shape [μ] and
log[μ]([q]) denote the mapping from the shape space S to this tangent space using
inverse exponential map. Let vi = log[μ]([q]), for i = 1, 2, . . . , n be the shooting
vectors from the mean shape to the given shapes in the tangent space. Since these
shooting vectors are in the linear space, we are able to compute the covariance
matrix C = 1

n−1

∑n
i=1 viv

t
i . Performing Principal Component Analysis (PCA) of

C provides the directions of maximum variability in the given shapes and can be
used to visualize (by projecting back to the shape space) the main variability in that
set. Besides that, one can impose a Gaussian model on the principal coefficients
si, i = 1, 2, . . . , n in the tangent space. To valid the model, one can generate a
random vector ri from the estimated model and project back to the shape space using
exponential map exp[μ](ri), where random vectors become random shapes. We use
Figs. 13.10 and 13.11 as illustrations. We have several sample shapes of apples and
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(a) (b) 

(c) (d)

Fig. 13.10 Principal modes and random samples of apple shapes. (a) Sample shapes. (b) Mean
shapes. (c) Principal modes. (d) Random samples from Tangent Gaussian model

butterflies in panel (a) and the mean shapes are presented in panel (b). We perform
tangent PCA as described above and show the results in panel (c). While the mean
shapes are the red shapes in the shape matrix, the modes in first and second principal
direction are plotted horizontally and vertically, respectively, which explain the first
and second modes of variation in the given sample shapes. Finally, we generate
some random shapes from the estimated tangent Gaussian model and show them in
panel (d). The similarity between random shapes and given samples validates the
fitness of the shape models.

13.4 Conclusion

In this chapter, we describe the elastic framework for shape analysis of scalar
functions and curves in Euclidean spaces. The SRVF transformation simplifies the
registration and makes the key point for the approach. Combining with L2 norm,
it derives an appropriate shape metric that unifies registration with comparison
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(a) (b)

(c) (d)

Fig. 13.11 Principal modes and random samples of butterfly shapes. (a) Sample shapes. (b) Mean
shapes. (c) Principal modes. (d) Random samples from Tangent Gaussian model

of shapes. As the result, one can compute geodesic paths, summary statistics.
Furthermore, these tools can be used in statistical modeling of shapes.
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