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Abstract Very generally speaking, statistical data analysis builds on descriptors
reflecting data distributions. In a linear context, well studied nonparametric descrip-
tors are means and PCs (principal components, the eigenorientations of covariance
matrices). In 1963, T.W. Anderson derived his celebrated result of joint asymptotic
normality of PCs under very general conditions. As means and PCs can also be
defined geometrically, there have been various generalizations of PC analysis (PCA)
proposed for manifolds and manifold stratified spaces. These generalizations play
an increasingly important role in statistical dimension reduction of non-Euclidean
data. We review their beginnings from Procrustes analysis (GPA), over principal
geodesic analysis (PGA) and geodesic PCA (GPCA) to principal nested spheres
(PNS), horizontal PCA, barycentric subspace analysis (BSA) and backward nested
descriptors analysis (BNDA). Along with this, we review the current state of the
art of their asymptotic statistical theory and applications for statistical testing,
including open challenges, e.g. new insights into scenarios of nonstandard rates and
asymptotic nonnormality.
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10.1 Introduction

The mean and the covariance are among the most elementary statistical descriptors
describing a distribution in a nonparametric way, i.e. in the absence of a distribu-
tional model. They can be used for dimension reduction and for statistical testing
based on their asymptotics. Extending these two quantities to non-Euclidean random
deviates and designing statistical methods for these has been the subject of intense
research in the last 50 years, beginning with Procrustes analysis introduced by
Gower [23] and the strong law of large numbers for Fréchet means by Ziezold [51].
This chapter intends to provide a brief review of the development of this research
until now and to put it into context.

We begin with the Euclidean version including classical PCA, introduce the
more general concept of generalized Fréchet ρ-means, their strong laws and recover
general Procrustes analysis (GPA) as a special case. Continuing with principal
geodesic analysis we derive a rather general central limit theorem for generalized
Fréchet ρ-means and illustrate how to recover from this Anderson’s asymptotic
theorem for the classical first PC and the CLT for Procrustes means. Next, as
another application of our CLT we introduce geodesic principal component analysis
(GPCA), which, upon closer inspection, turns out to be a nested descriptor. The
corresponding backward nested descriptor analysis (BNDA) requires a far more
complicated CLT, which we state. We put the rather recently developed methods of
principal nested spheres (PNS), horizontal PCA and barycentric subspace analysis
(BSA) into context and conclude with a list of open problems in the field.

10.2 Some Euclidean Statistics Building on Mean
and Covariance

Asymptotics and the Two-Sample Test

Let X1, . . . , Xn
i.i.d.∼ X be random vectors in RD , D ∈ N, with existing population

mean E[X]. Denoting the sample mean by

X̄n = 1

n

n∑

j=1

Xj ,

the strong law of large numbers (SLLN) asserts that (e.g. [8, Chapter 22])

X̄n
a.s.→ E[X] .

Upon existence of the second moment E[‖X‖2], the covariance cov[X] exists and
the central limit theorem (CLT) asserts that the fluctuation between sample and
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population mean is asymptotically normal (e.g. [14, Section 9.5]), namely that

√
n
(
X̄n − E[X]) D→ N

(
0, cov[X]) . (10.1)

Using the sample covariance

�̂ = 1

n − 1

n∑

j=1

(Xj − E[X])(Xj − E[X])T

as a plugin estimate for cov[X] in (10.1), asymptotic confidence bands for E[X] can
be obtained as well as corresponding tests.

A particularly useful test is the two-sample test, namely that for random vectors

X1, . . . , Xn
i.i.d.∼ X in RD and independent random vectors Y1, . . . , Ym

i.i.d.∼ Y in RD

with full rank population and sample covariance matrices, cov[X] and cov[Y ], �̂X
n

and �̂Y
m, respectively,

T 2 = n+m−2
1
n
+ 1

m

(X̄n−Ȳm)T
(
(n−1)�̂X

n + (m − 1)�̂Y
m

)−1
(X̄n − Ȳm) (10.2)

follows a Hotelling distribution if X and Y are multivariate normal, cf. [40, Section
3.6.1]. More precisely, T 2 nm(n+m−D−1)

(n+m)(n+m−2)D
follows a FD,n+m−D−1-distribution.

Remarkably, this holds also asymptotically under nonnormality of X and Y , if
cov[X] = cov[Y ] or n/m → 1, cf. [45, Section 11.3].

Principal Component Analysis (PCA)

Consider again random vectors X1, . . . , Xn
i.i.d.∼ X in RD , D ∈ N, with sample

covariance matrix �̂ and existing population covariance � = cov[X]. Further
let � = ���T and �̂ = �̂�̂�̂T be spectral decompositions, i.e. � =
(γ1, . . . , γD), �̂ = (γ̂1, . . . , γ̂D) ∈ SO(D) and � = diag(λ1, . . . , λD), �̂ =
diag(λ̂1, . . . , λ̂D) with λ1 ≥ . . . λD ≥ 0 and λ̂1 ≥ . . . λ̂D ≥ 0, respectively.
Then the vectors γj (j = 1, . . . , D) are called population principal components
and γ̂j (j = 1, . . . , D) are called sample principal components, abbreviated as
PCs. These PCs can be used for dimension reduction, namely considering instead
of X1, . . . , Xn ∈ RD their projections, also called scores,

(
XT

1 γ̂j

)J

j=1
, . . . ,

(
XT

n γ̂j

)J

j=1
∈ RJ ,

to the first 1 ≤ J ≤ D PCs. The variance explained by the first J PCs is

λ̂1 + . . . + λ̂J .

Due to the seminal result by Anderson [1], among others, there is a CLT for γ̂j

(1 ≤ j ≤ D), stating that if X is multivariate normal, � > 0 and λj simple,
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√
n(γ̂j − γj )

D→ N

⎛

⎝0,

D∑

j 	=k=1

λjλk

λj − λk

γkγ
T
k

⎞

⎠ . (10.3)

Here, we have assumed, w.l.o.g., that γ T
j γ̂j ≥ 0.

This CLT has been extended to nonnormal X with existing fourth moment
E[‖X‖4] by Davis [11] with a more complicated covariance matrix in (10.3). With
little effort we reproduce the above result in Corollary 10.4 for j = 1 in the context
of generalized Fréchet ρ-means.

10.3 Fréchet ρ-Means and Their Strong Laws

What is a good analog to E[X] when data are no longer vectors but points on a
sphere, as are principal components, say? More generally, one may want to statis-
tically assess points on manifolds or even on stratified spaces. For example, data
on stratified spaces are encountered in modeling three-dimensional landmark-based
shapes by Kendall [36] (cf. Sect. 10.4) or in modeling phylogenetic descendants
trees in the space introduced by Billera et al. [7].

For a vector-valued random variable X in RD , upon existence of second moments
E[‖X‖2] note that,

E[X] = argmin
x∈RD

E
[
‖X − x‖2

]
.

For this reason, [21] generalized the classical Euclidean expectation to random
deviates X taking values in a metric space (Q, d) via

E(X) = argmin
q∈Q

E
[
d(X, q)2

]
. (10.4)

In contrast to the Euclidean expectation, E(X) can be set-valued, as is easily seen
by a symmetry argument for Q = SD−1 equipped with the spherical metric d and
X uniform on SD−1. Then E(X) = SD−1.

Revisiting PCA, note that PCs are not elements of the data space Q = RD but
elements of SD−1, or more precisely, elements of real projective space of dimension
D − 1

RP D−1 = {[x] : x ∈ SD−1} = SD−1/S0 with [x] = {−x, x} .

Moreover, the PCs (as elements in SD−1) are also solutions to a minimization
problem, e.g. for the first PC we have
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γ1 ∈ argmin
γ∈SD−1

(
var[X] − γ T cov[X]γ

)
. (10.5)

Since var[X] − γ T cov[X]γ = E
[
‖X − γ T Xγ ‖2

]
, in case of E[X] = 0, this

motivates the following distinction between data space and descriptor space leading
to Fréchet ρ-means.

Definition 10.1 (Generalized Fréchet Means) Let Q,P be topological spaces
and let ρ : Q × P → R be continuous. We call Q the data space, P the descriptor

space and ρ the link function. Suppose that X1, . . . , Xn
i.i.d.∼ X are random elements

on Q with the property that

F(p) = E[ρ(X, p)2], Fn(p) = 1

n

n∑

j=1

ρ(Xj , p)2 ,

called the population and sample Fréchet functions, are finite for all p ∈ P . Every
minimizer of the population Fréchet function is called a population Fréchet mean
and every minimizer of the sample Fréchet function is called a sample Fréchet mean.
The corresponding sets are denoted by

E = argmin
p∈P

F (p), En = argmin
p∈P

Fn(p) . 
�

Remark By construction, En and E are closed sets, but they may be empty without
additional assumptions. 
�

For the following we require that the topological space P is equipped with a loss
function d, i.e.

1. d : P × P → [0,∞), is a continuous function
2. that vanishes only on the diagonal, that is d(p, p′) = 0 if and only if p = p′.

We now consider the following two versions of a set valued strong law,

∞⋂

n=1

⋃

k=n

Ek ⊆ E a.s. (10.6)

∀ε > 0 ∃N ∈ N such that En ⊆ {p ∈ P : d(E, p) < ε} ∀n ≥ N a.s. (10.7)

In (10.7), N is random as well.
Ziezold [51] established (10.6) for separable P = Q and ρ = d a quasi-metric.

Notably, this also holds in case of void E. Bhattacharya and Patrangenaru [5] proved
(10.7) under the additional assumptions that E 	= ∅, ρ = d is a metric and P =
Q satisfies the Heine–Borel property (stating that every closed bounded subset is
compact). Remarkably, (10.6) implies (10.7) for compact spaces P ; this has been
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observed by Bhattacharya and Patrangenaru [5, Remark 2.5] for P = Q and ρ = d

a metric and their argument carries over at once to the general case.
For generalized Fréchet ρ-means we assume the following strongly relaxed

analogs of the triangle inequality for (quasi-)metrics.

Definition 10.2 Let Q,P be topological spaces with link function ρ and let d be a
loss function on P . We say that (ρ, d) is uniform if

∀p ∈ P, ε > 0 ∃δ = δ(ε, p) > 0 such that

|ρ(x, p′) − ρ(x, p)| < ε ∀x ∈ Q,p′ ∈ P with d(p, p′) < δ.

Further, we say that (ρ, d) is coercive, if ∀p0, p
∗ ∈ P and pn ∈ P with

d(p∗, pn) → ∞,

d(p0, pn) → ∞ and ∃C > 0 such that

ρ(x, pn) → ∞ ∀x ∈ Q with ρ(x, p0) < C

Theorem ([27]) With the notation of Definition 10.1 we have (10.6) if (ρ, d)

is uniform and P is separable. If additionally (ρ, d) is coercive, E 	= ∅ and
∩∞

n=1∪k=nEk satisfies the Heine Borel property with respect to d then (10.7) holds
true. 
�

Let us conclude this section with another example. In biomechanics, e.g.
traversing skin markers placed around the knee joint (e.g. [49]), or in medical
imaging, modeling deformation of internal organs via skeletal representations (cf.
[47]), typical motion of markers occurs naturally along small circles in S2, c.f. [46].
For a fixed number k ∈ N, considering k markers as one point q = (q1, . . . , qk) ∈
(S2)k , define the descriptor space P of k concentric small circles p = (p1, . . . , pk)

defined by a common axis w ∈ S2 and respective latitudes 0 < θ1 < . . . < θk < π .
Setting

ρ(q, p) =

√√√√√
k∑

j=1

min
y∈pj

arccos2 yT qj

and

d(p, p′) =

√√√√√arccos2(wT w′) +
k∑

j=1

(θj − θ ′
j )

2

we obtain a link ρ and a loss d which form a uniform and coercive pair. Moreover,
even P satisfies the Heine–Borel property.
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10.4 Procrustes Analysis Viewed Through Fréchet Means

Long before the notion of Fréchet means entered the statistics of shape, Procrustes
analysis became a tool of choice and has been ever after for the statistical analysis
of shape.

Kendall’s Shape Spaces
Consider n geometric objects in Rm, each described by k landmarks (n, k,m ∈ N),
i.e. every object is described by a matrix Xj ∈ Rm×k (1 ≤ j ≤ n), the columns of
which are the k landmark vectors in Rm of the j -th object. When only the shape of
the objects is of concern, consider every

λjRj (Xj − aj 1T
k /n)

equivalent with Xj , where λj ∈ (0,∞) reflects size, Rj ∈ SO(m) rotation and
aj ∈ Rm translation. Here, 1k is the k-dimensional column vector with all entries
equal to 1. Note that the canonical quotient topology of Rm×k/(0,∞) gives a non-
Hausdorff space which is a dead end for statistics, because all points have zero
distance from one another. For this reason, one projects instead to the unit sphere
Sm×k−1 and the canonical quotient

�k
m = Sm×k−1/SO(m)/Rm ∼= Sm×(k−1)−1/SO(m)

is called Kendall’s shape space, for details see [13].

Procrustes Analysis
Before the introduction of Kendall’s shape spaces, well aware that the canonical
quotient is statistically meaningless, [23] suggested to minimize the Procrustes sum
of squares

n∑

j=1

∥∥∥λiRi(Xi − ai 1T
k /n) − λjRj (Xj − aj 1T

k /n)

∥∥∥
2

over λj , Rj , aj ∈ (0,∞) × SO(m) × Rm (1 ≤ j ≤ n) under the constraining
condition

∥∥∥∥∥∥

n∑

j=1

λjRj (Xj − aj 1T
k /n)

∥∥∥∥∥∥
= 1 .

It turns out that the minimizing aj are the mean landmarks, so for the following,
we may well assume that every Xj is centered, i.e. Xj 1k = 0 and dropping one
landmark, e.g. via Helmertizing, i.e. by multiplying each Xj with a sub-Helmert
matrix H
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H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

1√
6

. . . 1√
k(k−1)

− 1√
2

1√
6

. . . 1√
k(k−1)

0 − 2√
6

. . . 1√
k(k−1)

...
...

. . .
...

0 0 . . . − k−1√
k(k−1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ M(k, k − 1)

from the right, see [13], we may even more assume that Xj ∈ Rm×(k−1) (j =
1, . . . , n). Further, with minimizing λj , Rj , every Procrustes mean

μ = 1

n

n∑

j=1

λjRjXj

is also a representative of a Fréchet mean on Q = P = �k
m using the canonical

quotient ρ = d of the residual quasi-metric

ρ̃(X, Y ) = ‖X − (XT Y )Y‖ (10.8)

on Sm×(k−1)−1, in this context, called the pre-shape space, see [26] for a detailed
discussion.

If μ is a Procrustes mean with minimizing λj , Rj (j = 1, . . . , n), notably, this
implies trace(RjX

T
j μ) = λj , then

λjRjXj − μ

are called the Procrustes residuals. By construction they live in the tangent space
TμSm×(k−1)−1 of Sm×(k−1)−1 at μ. In particular, this is a linear space and hence, the
residuals can be subjected to PCA. Computing the Procrustes mean and performing
PCA for the Procrustes residuals is full Procrustes analysis as proposed by Gower
[23].

Note that at this point, we have neither a CLT for Procrustes means nor can we
apply the CLT (10.3) because the tangent space is random.

This nested randomness can be attacked directly by nested subspace analysis
in Sect. 10.7 or circumvented by the approach detailed in the Sect. 10.6. Let us
conclude the present section by briefly mentioning an approach for Riemannian
manifolds similar to Procrustes analysis.

Principal Geodesic Analysis
Suppose that Q = P is a Riemannian manifold with intrinsic geodesic distance
ρ = d. Fréchet means with respect to ρ are called intrinsic means and [20] compute
an intrinsic mean μ and perform PCA with the data mapped under the inverse
exponential at μ to the tangent space TμQ of Q at μ. Again, the base point of
the tangent space is random, prohibiting the application of the CLT (10.3).
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10.5 A CLT for Fréchet ρ-Means

For this section we require the following assumptions.

(A1) X1, . . . , Xn
i.i.d.∼ X are random elements in a topological data space Q, which

is linked to a topological descriptor space P via a continuous function ρ :
Q × P → R, featuring a unique Fréchet ρ-mean μ ∈ P .

(A2) There is a loss function d : P ×P → [0,∞) and P has locally the structure of
a D-dimensional manifold near μ, i.e. there is an open set U ⊂ P , μ ∈ U and
a homeomorphism φ : U → V onto an open set V ⊂ RD . W.l.o.g. assume
that φ(μ) = 0 ∈ V .

(A3) In local coordinates the population Fréchet function is twice differentiable at
μ with non-singular Hessian there, i.e. for p ∈ U , x = φ−1(p),

F(p) = F(μ) + xT 1

2
Hess

(
F ◦ φ−1

)
(0) x + o(‖x‖2) ,

H := Hess
(
F ◦ φ−1

)
(0) > 0 .

(A4) The gradient ρ̇0(X) := gradxρ(X, φ−1(x))2|x=0 exists almost surely and
there is a measurable function ρ̇ : Q → R, satisfying E[ρ̇(X)2] < ∞, such
that the following Lipschitz condition

|ρ(X, φ−1(x1))
2 − ρ(X, φ−1(x2))

2| ≤ ρ̇(X)‖x1 − x2‖ a.s.

holds for all x1, x2 ∈ U .

Theorem 10.3 Under the above Assumptions (A1)–(A4), if μn ∈ En is a measur-

able selection of sample Fréchet ρ-means with μn
P→ μ, then

√
nφ−1(μn)

D→ N
(

0,H−1cov[ρ̇0(X)]H−1
)

.

Proof We use [17, Theorem 2.11] for r = 2. While this theorem has been
formulated for intrinsic means on manifolds, upon close inspection, the proof
utilizing empirical process theory from [50], rests only on the above assumptions,
so that it can be transferred word by word to the situation of Fréchet ρ-means. 
�
Remark Since the seminal formulation of the first version of the CLT for intrinsic
means on manifolds by Bhattacharya and Patrangenaru [6] there has been a vivid
discussion on extensions and necessary assumptions (e.g. [2–4, 19, 24, 25, 33,
37, 39, 41]). Recently it has been shown that the rather complicated assumptions
originally required by Bhattacharya and Patrangenaru [6] could be relaxed to the
above. Further relaxing the assumption H > 0 yields so-called smeary CLTs, cf.
[17]. 
�
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Classical PCA as a Special Case of Fréchet ρ-Means
As an illustration how asymptotic normality of PCs shown by Anderson [1] in an
elaborate proof follows simply from Theorem 10.3 we give the simple argument for
the first PC.

Corollary 10.4 Suppose that X1, . . . , Xn
i.i.d.∼ X are random vectors in RD with

E[X] = 0, finite fourth moment and orthogonal PCs γ1, . . . , γD ∈ SD−1 to
descending eigenvalues λ1 > λ2 ≥ . . . ≥ λD > 0. Further let γ̂1 be a first
sample PC with γ̂ T

1 γ1 ≥ 0 and local coordinates x̂n = γ̂1 − γ T
1 γ̂1 γ1. Then, with

H−1 = ∑D
k=2

1
λ1−λk

γkγ
T
k ,

√
nx̂n

D→ N(0,H−1cov[XXT γ1]H−1) ,

If X is multivariate normal then the covariance of the above r.h.s. is given by the
r.h.s. of (10.3) for j = 1. 
�

Proof With the representation γ = x + √
1 − ‖x‖2 γ1 ∈ SD−1, γ1 ⊥ x ∈ U ⊂

Tγ1S
D−1 ⊂ RD , we have that the link function underlying (10.5) is given by

ρ(X, x)2 = ‖X − γ T X γ ‖2 = ‖X‖2 − (γ T X)2

= ‖X‖2 − (xT X +
√

1 − ‖x‖2 γ T
1 X)2

= ‖X‖2 − xT XXT x − (1 − ‖x‖2)(γ T
1 X)2 − 2xT X

√
1 − ‖x‖2 γ T

1 X .

From

gradxρ(X, x)2 = −2XXT x+2x(γ T
1 X)2 −2

(√
1 − ‖x‖2X − xT Xx√

1 − ‖x‖2

)
γ T

1 X

and, with the unit matrix I ,

Hessxρ(X, x)2=−2XXT +2I (γ T
1 X)2+2

(
XxT + xXT − XxT

√
1−‖x‖2

+ xT XxxT

(1−‖x‖2)3/2

)
γ T

1 X,

verify that it satisfies Assumption (A4) with ρ̇0(X) = −2XXT γ1 and ρ̇(X) =
4‖XXT γ1‖ for U sufficiently small, which is square integrable by hypothesis. Since
Hessxρ(X, x)2|x=0 = 2(γ T

1 XXT γ1I − XXT ), with

H = 2E[γ T
1 XXT γ1I − XXT ] = 2

D∑

k=2

(λ1 − λk)γkγ
T
k ,

which is, by hypothesis, positive definite in Tγ1S
D−1, we obtain the first assertion

of Theorem 10.3. Since in case of multivariate normality X = ∑D
k=1 ckγk with

independent real random variables c1, . . . , cD , the second assertion follows at once.

�
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The CLT for Procrustes Means
For m ≥ 3, Kendall’s shape spaces are stratified as follows. There is an open and
dense manifold part (�k

m)∗ and a lower dimensional rest (�k
m)0 that is similarly

stratified (comprising a dense manifold part and a lower dimensional rest, and so
on), e.g. [9, 32, 38]. For a precise definition of stratified spaces, see the following
Sect. 10.6.

As a toy example one may think of the unit two-sphere S2 = {x ∈ R3 : ‖x‖ = 1}
on which SO(2) ⊂ SO(3) acts via

⎛

⎝
cos φ sin φ 0

− sin φ cos φ 0
0 0 1

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ =
⎛

⎝
x1 cos φ + x2 sin φ

−x1 sin φ + x2 cos φ

x3

⎞

⎠ .

The canonical quotient space has the structure of the closed interval S2/SO(2) ∼=
[−1, 1] in which (−1, 1) is an open dense one-dimensional manifold and {1,−1} is
the rest, a zero-dimensional manifold.

Let Z1, . . . , Zn
i.i.d.∼ Z be random configurations of m-dimensional objects

with k landmarks, with pre-shapes X1, . . . , Xn
i.i.d.∼ X in Sm×(k−1)−1 and shapes

ξ1, . . . , ξn
i.i.d.∼ ξ in �k

m with the link function ρ given by the Procrustes metric from
the pre-shape (i.e. residual) quasi-metric (10.8).

Theorem (Manifold Stability, cf. [28, 29]) If, with the above setup, P{ξ ∈
(�k

m)∗} > 0 and if the probability that two shapes are maximally remote is zero
then every Procrustes mean μ is assumed on the manifold part. 
�

In consequence, for Q = P = �k
m, if the manifold part is assumed at all,

Assumption (A1) implies Assumption (A2). With the same reasoning as in the proof
of Corollary 10.4, Assumption (A4) is verified. This yields the following.

Corollary Let Z1, . . . , Zn
i.i.d.∼ Z be random configurations of m-dimensional

objects with k landmarks, with pre-shapes X1, . . . , Xn
i.i.d.∼ X in SD×(k−1)−1 and

shapes ξ1, . . . , ξn
i.i.d.∼ ξ in �k

m such that

• P{ξ ∈ (�k
m)∗} > 0, the probability that two shapes are maximally remote is zero

and
• Assumptions (A1) and (A3) are satisfied.

Then, every measurable selection μn of Procrustes sample means satisfies a CLT as
in Theorem 10.3. 
�
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10.6 Geodesic Principal Component Analysis

In this section we assume that random deviates X1, . . . , Xn
i.i.d.∼ X take values in a

Riemann stratified space Q.

Definition (Stratified Space) A stratified space Q of dimension m embedded in a
Euclidean space can be defined as a direct sum

Q =
k⋃

j=1

Qdj

such that 0 ≤ d1 < . . . < dk = m, each Qdj
is a dj -dimensional manifold and

Qdj
∩ Qdl

= ∅ for j 	= l.
A stratified space Q ⊂ Rs is called Whitney stratified, if for every j < l

(i) If Qdj
∩ Qdl

	= ∅ then Qdj
⊂ Qdl

.
(ii) For sequences x1, x2, . . . ∈ Qdj

and y1, y2, . . . ∈ Qdl
which converge to the

same point x ∈ Qdj
such that the sequence of secant lines ci between xi and

yi converges to a line c as i → ∞, and such that the sequence of tangent
planes Tyi

Qdl
converges to a dl dimensional plane T as i → ∞, the line c is

contained in T .

We call a Whitney stratified space Riemann stratified, if

(iii) for every j < l and sequence y1, y2, . . . ∈ Qdl
which converges to the point

x ∈ Qdj
the Riemannian metric tensors gl,yi

∈ T 2
yi

Qdl
converge to a rank two

tensor gl,x ∈ T ⊗ T and the Riemannian metric tensor gj,x ∈ T 2
x Qdj

is given
by the restriction gj,x = gl,x |T 2

x Qdj
.


�
Geodesics, i.e. curves of locally minimal length, exist locally in every stratum

Qdj
. Due to the Whitney condition, a geodesic can also pass through strata of

different dimensions if these strata are connected. Property (ii) is called Whitney
condition B and it follows from this condition that TxQdj

⊂ T , which is called
Whitney condition A, e.g. [22].

Of course, all Riemannian manifolds are stratified spaces. Typical examples for
stratified spaces that are not Riemannian manifolds are Kendall’s shape spaces
�k

m for m ≥ 3 dimensional objects with k ≥ 4 landmarks or the BHV space of
phylogenetic descendants trees Tn with n ≥ 3 leaves.

Let �(Q) be the space of point sets of maximal geodesics in Q. With the intrinsic
geodesic metric dQ on Q we have the link function

ρ : Q × �(Q) → [0,∞), (q, γ ) �→ inf
q ′∈γ

dQ(q, q ′) .



10 Statistical Methods Generalizing Principal Component Analysis . . . 329

Further, we assume that �(Q) also carries a metric d� . This can be either Hausdorff
distance based on dQ, or a quotient metric, e.g. induced from �(Q) = (Q × Q)/ ∼
with a suitable equivalence relation. An example for the latter is the identification of
�(SD−1) with G(D, 2), the Grassmannian structure of the space of two-dimensional
linear subspaces in RD (every geodesic on SD−1 is a great circle which is the
intersection with SD−1 ⊂ RD of a plane through the origin).

Definition 10.5 (cf. [32]) With the above assumptions, setting P0 = �(Q), every
population Fréchet ρ-mean on P = P0 is a first population geodesic principal
component (GPC) and every such sample mean is a first sample GPC.

Given a unique first population GPC γ1, setting P1 = {γ ∈ �(Q) : γ ∩ γ1 	=
∅ and γ ⊥ γ1 there}, every population Fréchet ρ-mean on P = P1 is a second
population GPC.

Higher order population GPCs are defined by requiring them to pass through
a common point p ∈ γ1 ∩ γ2 and being orthogonal there to all previous unique
population GPCs.

Similarly, for the second sample GPC, for a given unique first GPC γ̂1 use P =
P̂1 = {γ ∈ �(Q) : γ ∩ γ1 	= ∅ and γ ⊥ γ̂1 there} and higher order sample GPCs
are defined by requiring them to pass through a common point p̂ ∈ γ̂1 ∩ γ̂2 and
being orthogonal there to all previous unique sample GPCs.

The GPC scores are the orthogonal projections of X, or of the data, respectively,
to the respective GPCs. 
�
Remark In case of valid assumptions (A1) – (A4) the CLT from Theorem 10.3
yields asymptotic

√
n-normality for the first PC in a local chart. An example and an

application to Q = �k
2 (k ≥ 3) can be found in [27]. 
�

Obviously, there are many other canonical intrinsic generalizations of PCA to
non-Euclidean spaces, e.g. in his horizontal PCA [48] defines the second PC by a
parallel translation of a suitable tangent space vector, orthogonally along the first
PC. One difficulty is that GPCs usually do not define subspaces, as classical PCs
do, which define affine subspaces. However, there are stratified spaces which have
rich sets of preferred subspaces.

Definition (Totally Geodesic Subspace) A Riemann stratified space S ⊂ Q with
Riemannian metric induced by the Riemannian metric of a Riemann stratified space
Q is called totally geodesic if every geodesic of S is a geodesic of Q. 
�

The totally geodesic property is transitive in the following sense. Consider a
sequence of Riemann stratified subspaces Q1 ⊂ Q2 ⊂ Q3 where Q1 is totally
geodesic with respect to Q2 and Q2 is totally geodesic with respect to Q3. Then Q1
is also totally geodesic with respect to Q3.

In the following, we will use the term rich space of subspaces for a space of k-
dimensional Riemann stratified subspaces of an m-dimensional Riemann stratified
space, if it has dimension at least (m − k)(k + 1). This means that the space of
k-dimensional subspaces has at least the same dimension as the space of affine
k-dimensional subspaces in Rm. If a Riemann stratified space has a rich space of
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sequences of totally geodesic subspaces Q0 ⊂ Q1 ⊂ · · · ⊂ Qm−1 ⊂ Qm = Q

where every Qj is a Riemann stratified space of dimension j , a generalization which
is very close in spirit to PCA can be defined. This is especially the case, if Q has a
rich space of (m − 1)-dimensional subspaces which are of the same class as Q. For
example, the sphere Sm has a rich space of great subspheres Sm−1, which are totally
geodesic submanifolds. Therefore, spheres are well suited to introduce an analog
of PCA, and [34, 35] have defined principal nested spheres (PNS) which even
exist as principal nested small spheres, which are not totally geodesic, however.
In the latter case the dimension of the space of k-dimensional submanifolds is even
(m − k)(k + 2), cf. [30].

Generalizing this concept [43], has introduced barycentric subspaces, cf. Chap-
ter 18 of this book.

In the following penultimate section we develop an inferential framework for
such nested approaches.

10.7 Backward Nested Descriptors Analysis (BNDA)

As seen in Definition 10.5, higher order GPCs depend on lower order GPCs and
are hence defined in a nested way. More generally, one can consider sequences
of subspaces of descending dimension, where every subspace is also contained in
all higher dimensional subspaces. Here we introduce the framework of backward
nested families of descriptors to treat such constructions in a very general way.

In Sect. 10.9 we introduce several examples of such backward nested families of
descriptors.

Definitions and Assumptions 10.6 Let Q be a separable topological space, called
the data space and let {Pj }mj=0 be a family of separable topological spaces called
descriptor spaces, each equipped with a loss function dj : Pj ×Pj → [0,∞) (i.e. it
is continuous and vanishes exactly on the diagonal) with Pm = {Q} (j = 1, . . . , m).

Next, assume that every p ∈ Pj (j = 1, . . . , m) is itself a topological space
giving rise to a topological space ∅ 	= Sp ⊆ Pj−1 with a continuous function
ρp : p × Sp → [0,∞) called a link function.

Further, assume that for all p ∈ Pj (j = 1, . . . , m) and s ∈ Sp there exists a
measurable mapping πp,s : p → s called projection.

Then for j ∈ {1, . . . , m} every

f = {pm, . . . , pj }, with pl−1 ∈ Spl , l = j + 1, . . . , m

is a backward nested family of descriptors (BNFD) from Pm to Pj which lives in
the space

Pm,j =
{
f = {pl}jl=m : pl−1 ∈ Spl , l = j + 1, . . . , m

}
,
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with projection along each descriptor

πf = πpj+1,pj ◦ . . . ◦ πpm,pm−1 : pm → pj

For another BNFD f ′ = {p′l}jl=m ∈ Tm,j set

dj (f, f ′) =
√√√√

j∑

l=m

dj (pl, p′l )2 .

Definition With the above Definitions and Assumptions 10.6, random elements

X1, . . . , Xn
i.i.d.∼ X on the data space Q admitting BNFDs give rise to backward

nested population and sample means (BN-means) f = (pm, . . . , pj ) and fn =
(pm

n , . . . , p
j
n), respectively, recursively defined via f m = {Q} = f m

n , i.e. pm =
Q = pm

n and for j = m, . . . , 2,

pj−1 ∈ argmin
s∈S

pj

E[ρpj (πf j ◦ X, s)2], f j−1 = {pl}j−1
l=m

p
j−1
n ∈ argmin

s∈S
p
j
n

n∑

i=1

ρ
p

j
n
(π

f
j
n

◦ Xi, s)
2, f

j−1
n = {pl

n}j−1
l=m .

If all of the population minimizers are unique, we speak of unique BN-means.

Remark A nested sequence of subspaces is desirable for various scenarios. Firstly,
it can serve as a basis for dimension reduction as is also often done using PCA
in Euclidean space. Secondly, the residuals of projections along the BNFD can
be used as residuals of orthogonal directions in Euclidean space in order to
achieve a “Euclideanization” of the data (e.g. [44]). Thirdly, lower dimensional
representations of the data or scatter plots of residuals can be used for more
comprehensible visualization.

Backward approaches empirically achieve better results than forward
approaches, starting from a point and building up spaces of increasing dimension,
in terms of data fidelity. The simplest example, determining the intrinsic mean
first and then requiring the geodesic representing the one-dimensional subspace to
pass through it, usually leads to higher residual variance than fitting the principal
geodesic without reference to the mean. 
�

For a strong law and a CLT for BN-means we require assumptions corresponding
to Definition 10.2 and corresponding to assumptions in [4]. Both sets of assumptions
are rather complicated, so that they are only referenced here.

(B1) Assumptions 3.1–3.6 from [31]
(B2) Assumption 3.10 from [31]
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To the best knowledge of the authors, instead of (B2), more simple assumptions
corresponding to (A1)–(A4) from Sect. 10.5 have not been derived for the backward
nested descriptors scenario.

Theorem ([31]) If the BN population mean f = (pm, . . . , pj ) is unique and if
fn = (pm

n , . . . , p
j
n) is a measurable selection of BN sample means then under (B1),

fn → f a.s.

i.e. there is �′ ⊆ � measurable with P(�′) = 1 such that for all ε > 0 and ω ∈ �′,
there is N(ε, ω) ∈ N with

d(fn, f ) < ε for all n ≥ N(ε, ω) .

Theorem 10.7 ([31]) Under Assumptions (B2), with unique BN population mean
f ∈ P = Pm,j and local chart φ with φ−1(0) = f , for every measurable selection

fn of BN sample means fn
P→ f , there is a symmetric positive definite matrix Bφ

such that

√
n φ−1(fn)

D→ N(0, Bφ) .

Remark 10.8 Under factoring charts as detailed in [31], asymptotic normality also

holds for the last descriptor p
j−1
n

a.s.→ pj−1,

√
nφ−1(p

j−1
n )

D→ N(0, Cφ)

with a suitable local chart φ such that φ−1(0) = pj−1 and a symmetric positive
definite matrix Cφ . 
�

10.8 Two Bootstrap Two-Sample Tests

Exploiting the CLT for ρ-means, BN-means or the last descriptor of BN-means
(cf. Remark 10.8) in order to obtain an analog of the two-sample test (10.2),

we inspect its ingredients. Suppose that X1, . . . , Xn
i.i.d.∼ X and Y1, . . . , Ym

i.i.d.∼ Y

are independent random elements on Q. In case of ρ-means, we assume that
Assumptions (A1)–(A4) from Sect. 10.5 are valid and in case of BN-means (or a
last descriptor thereof) assume that Assumption (B2) from Sect. 10.7 is valid for
X and Y , in particular that unique means μX and μY lie within one single open
set U ⊂ P that homeomorphically maps to an open set V ⊂ RD under φ. With
measurable selections μ̂X

n and μ̂Y
m of sample means, respectively, replace X̄n − Ȳm

with φ−1
(
μ̂X

n

)− φ−1
(
μ̂Y

m

) ∈ RD .
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Obviously, �̂X
n and �̂Y

m are not directly assessable, however. If one had a large
number B of samples {X1,1, . . . , X1,n}, . . . , {XB,1, . . . , XB,n}, one could calculate
the descriptors φ−1

(
μ̂X

n,1

)
, . . . , φ−1

(
μ̂X

n,B

)
and estimate the covariance of these.

But since we only have one sample, we use the bootstrap instead. The idea of
the n out-of n non-parametric bootstrap (e.g. [12, 15]) is to generate a large
number B of bootstrap samples {X∗1

1 , . . . , X∗1
n }, . . . , {X∗B

1 , . . . , X∗B
n } of the same

size n by drawing with replacement from the sample X1, . . . , Xn. From each of
these bootstrap samples one can calculate estimators φ−1

(
μ

X,∗1
n

)
, . . . , φ−1

(
μ

X,∗B
n

)
,

which serve as so-called bootstrap estimators of μ. From these, one can now
calculate the estimator for the covariance of μ̂X

n

�X,∗
n := 1

B

B∑

j=1

(
φ−1(μ

X,∗j
n ) − φ−1(μ̂X

n )
) (

φ−1(μ
X,∗j
n ) − φ−1(μ̂X

n )
)T

(10.9)

For the First Test
Perform BX times n out-of n bootstrap from X1, . . . , Xn to obtain Fŕechet ρ-means
μ

X,∗1
n , . . . , μ

X,∗BX
n and replace �̂X

n with the n-fold of the bootstrap covariance �
X,∗
n

as defined in Eq. (10.9). With the analog m out-of m bootstrap, replace �̂Y
m with

m�
Y,∗
m .

Then, under H0 : μX = μY , if m/n → 1 or n cov
[
φ−1(μX

n )
] =

m cov
[
φ−1(μY

m)
]
, under typical regularity conditions, e.g. [10], the statistic

T 2 =(φ−1(μ̂X
n ) − φ−1(μ̂Y

m))T
((

1

n
+ 1

m

)
�∗

p

)−1

(φ−1(μ̂X
n ) − φ−1(μ̂Y

m))

(10.10)

�∗
p := 1

n + m − 2

(
n(n − 1)�X,∗

n + m(m − 1)�Y,∗
m

)

adapted from Eq. (10.2), is asymptotically Hotelling distributed as discussed in
Sect. 10.2.

For the Second Test
Observe that, alternatively, the test statistic

T 2 =
(
φ−1(μX̃

n ) − φ−1(μỸ
m)
)T (

�X,∗
n + �Y,∗

m

)−1 (
φ−1(μX̃

n ) − φ−1(μỸ
m)
)

,

can be used. Notably, this second test for H0 : μX = μY does not rely on
n/m → 1 or equal covariances, as does the first. However, the test statistic is only
approximately F distributed, even for normally distributed data and the parameters
of the F distribution have to be determined by an approximation procedure.

To enhance the power of either test, quantiles can be determined using the
bootstrap. A naive approach would be to pool samples and use X̃ for the first n
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data points, Ỹ for the last m data points of bootstrapped samples from the pooled
data X1, . . . , Xn, Y1, . . . , Ym. However, it turns out that this approach suffers from
significantly diminished power.

Instead, we generate the same number B of bootstrap samples from X1, . . . , Xn

and Y1, . . . , Ym separately, thus getting μ
X,∗1
n , . . . , μ

X,∗B
n and μ

Y,∗1
m , . . . , μ

Y,∗B
m .

Due to the CLT 10.7 and Remark 10.8, φ−1(μ
X,∗1
n ), . . . , φ−1(μ

X,∗B
n ) are samples

from a distribution which is close to normal with mean φ−1(μ̂X
n ). The analog holds

for Y . As a consequence, the residuals d
X,∗j
n = φ−1(μ

X,∗j
n ) − φ−1(μ̂X

n ) are close
to normally distributed with mean 0. To simulate quantiles from the null hypothesis
μX

n = μY
m, we therefore only use the residuals dX

n,∗j and dY
m,∗j and calculate

T 2
j =

(
d

X,∗j
n − d

Y,∗j
m )

)T (
�X,∗

n + �Y,∗
m

)−1 (
d

X,∗j
n − d

Y,∗j
m

)
. (10.11)

Then we order these values ascendingly and use them as (j − 1/2)/B-quantiles
as usual for empirical quantiles. Tuning the corresponding test to the right level, its
power is usually larger than using the F-quantiles corresponding to the Hotelling
distribution.

For a detailed discussion and justification see [16, 31].

10.9 Examples of BNDA

Scenarios of BNDA are given by flags, namely, by nested subspaces,

Q ⊇ pm ⊇ pm−1 ⊇ . . . ⊇ p0 ∈ Q.

We give three examples.

The Intrinsic Mean on the First GPC
It is well known, that the intrinsic mean usually comes not to lie on the first GPC.
For example a distribution on S2 that is uniform on a great circle has this great
circle as its first GPC with respect to the spherical metric. The Fréchet mean with
respect to this metric is given, as is easily verified, by the two poles having this great
circle as the equator. In order to enforce nestedness, we consider the first GPC on
a Riemannian manifold and the intrinsic mean on it. The corresponding descriptor
spaces are

P2 = {Q}, SQ = P1 = {
γq,v : (q, v) ∈ T Q, v 	= 0

}
/ ∼, P0 = Q.

with the tangent bundle T Q over Q, the maximal geodesic γq,v through q with
initial velocity v ∈ TqQ and γq,v ∼ γq ′,v′ if the two geodesics agree as point sets.
Denoting the class of γq,v by [γq,v], it turns out that
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T2,0 = {(p, s) : p = [γq,v] ∈ P1, s ∈ p} ∼= PQ,

([γq,v], s) ∼=
(

s,

{
w

‖w‖ ,− w

‖w‖
})

,

where [γq,v] = [γs,w] and PQ denotes the projective bundle over Q. With the local
trivialization of the tangent bundle one obtains a local trivialization of the projective
bundle and thus factoring charts, so that, under suitable conditions, Theorem 10.7
and Remark 10.8 are valid. In fact, this construction also works for suitable Riemann
stratified spaces, e.g. also for Q = �k

m with m ≥ 3, cf. [31].

Principal Nested Spheres (PNS)
For the special case of Q = SD−1 ⊂ RD let Pj be the space of all j -dimensional
unit-spheres (j = 1, . . . , D − 1) and PD−1 = SD−1. Note that Pj can be given
the manifold structure of the Grassmannian G(D, j + 1) of (j + 1)-dimensional
linear subspaces in RD . The corresponding BNDA has been introduced by Jung et al.
[34, 35] as principal nested great spheres analysis (PNGSA) in contrast to principal
nested small sphere analysis (PNSSA), when allowing also small subspheres in
every step. Notably, estimation of small spheres involves a test for great spheres
to avoid overfitting, cf. [18, 34].

Furthermore, PNSSA offers more flexibility than PNGSA because the family of
all j -dimensional small subspheres in SD−1 has dimension dim

(
G(D, j + 1)

) +
D − j , cf. [18].

As shown in [31], under suitable conditions, Theorem 10.7 and Remark 10.8 are
valid for both versions of PNS.

Extensions of PNS to general Riemannian manifolds can be sought by consid-
ering flags of totally geodesic subspaces. While there are always geodesics, which
are one-dimensional geodesic subspaces, there may be none for a given dimension
j . And even, if there are, for instance on a torus, totally geodesic subspaces
winding around infinitely are statistically meaningless because they approximate
any given data set arbitrarily well. As a workaround, tori can be topologically and
geometrically deformed into stratified spheres and on these PNS with all of its
flexibility, described above, can be performed, as in [18].

Barycentric Subspace Analysis (BSA) by Pennec [43] constitutes another
extension circumventing the above difficulties. Here Pj is the space of exponential
spans of any j + 1 points in general position. More precisely, with the geodesic
distance d on Q, for q1, . . . , qj+1 ∈ Q, define their exponential span by

M(q1, . . . , qj+1) =
⎧
⎨

⎩argmin
q∈Q

j+1∑

k=1

akd(qk, q)2 : a1, . . . , aj+1 ∈ R,

j+1∑

k=1

ak = 1

⎫
⎬

⎭ .

For an m-dimensional manifold Q a suitable choice of m+1 points q1, . . . , qm+1 ∈
Q thus yields the flag
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Q = M(q1, . . . , qm+1) ⊃ M(q1, . . . , qm) ⊃ . . . ⊃ M(q1, q2) ⊃ {q1} .

For the space of phylogenetic descendants tree by Billera et al. [7] in a similar
approach by Nye et al. [42] the locus of the Fréchet mean of a given point set has
been introduced along with corresponding optimization algorithms.

Barycentric subspaces and similar constructions are the subject of Chapter 11.
To the knowledge of the authors, there have been no attempts, to date, to

investigate applicability of Theorem 10.7 and Remark 10.8 to BSA.

10.10 Outlook

Beginning with Anderson’s CLT for PCA, we have sketched some extensions of
PCA to non-Euclidean spaces and have come up with a rather general CLT, the
assumptions of which are more general than those of [4, 6]. Let us conclude
with listing a number of open tasks, which we deem of high importance for the
development of suitable statistical non-Euclidean tools.

1. Formulate the CLT for BNFDs in terms of assumptions corresponding to
Assumptions (A1)–(A4).

2. Apply the CLT for BNFDs to BSA if possible.
3. Formulate BNFD not as a sequential but as a simultaneous optimization problem,

derive corresponding CLTs and apply them to BSA with simultaneous estimation
of the entire flag.

4. In some cases we have no longer
√

n-Gaussian CLTs but so-called smeary CLTs
which feature a lower rate, cf. [17]. Extend the CLTs presented here to the general
smeary scenario.

5. Further reduce and generalize Assumptions (A1)–(A4), especially identify nec-
essary and sufficient conditions for (A3).
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