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Preface

Nonlinear geometry arises in various applications in science and engineering.
Examples of nonlinear data spaces are diverse and include for instance nonlinear
spaces of matrices, spaces of curves, shapes as well as manifolds of probability
measures. Applications where such data spaces appear can be found in biology,
medicine, engineering, geography, and computer vision.

Variational methods on the other hand have evolved to be very powerful
tools of applied mathematics. They involve techniques from various branches of
mathematics such as statistics, modeling, optimization, numerical mathematics and
analysis. The vast majority of research on variational methods, however, is focused
on methods for data in linear spaces.

Variational methods for nonlinear data are a currently emerging topic. As a
consequence, and since such methods involve various branches of mathematics,
there exists a plethora of different, recent approaches dealing with various aspects
of variational methods for nonlinear geometric data. Research results are rather
scattered over different mathematical communities.

The intention of this handbook is to cover different research directions in the
context of variational methods for nonlinear geometric data, to bring together
researchers from different communities working in the field, and to create a
collection of works giving basic introductions, giving overviews, and describing
the state of the art in the respective discipline. To this end, we have invited
numerous authors, who are leading experts in different disciplines related to
variational methods for nonlinear geometric data, to contribute an introductory
overview of the state of the art and of novel developments in their field. With
this, we hope to both stimulate exchange and collaborations of different research
groups and to provide a unique reference work for experts and newcomers in the
field.
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Introduction

This book covers a broad range of research directions connected to variational
methods for nonlinear geometric data, the latter being understood as the solution
of application-driven problems with nonlinear data via the computation of the
minimizer of an energy functional.

The modeling of real-world processes via energy minimization is a classical
field in mathematics and is inspired by nature, where stable configurations or the
results of certain processes are often those that minimize an energy. Variational
methods are well-established tools in mathematics as well as in other scientific
disciplines such as computer science, biomedical engineering, or physics. They
involve techniques from various branches of mathematics—in particular, analysis,
statistics, modeling, optimization, and numerical mathematics—and yield state-of-
the-art results in many application-driven problems in science and engineering.

The vast majority of mathematical research in the context of variational methods,
however, deals with data and techniques from linear spaces. While this makes
sense in view of the fact that the development, analysis, and numerical realization
of variational models are challenging already in such a setting, it is important to
note the extension of variational methods to incorporate techniques and data from
nonlinear spaces is both promising and natural for a broad class of applications.

Indeed, quite often the data of interest, such as diffusion tensors, shapes or
fibers of biological objects, functional data, or low-rank matrices, have a natural,
nonlinear geometry that needs to be respected when processing or reconstructing
such data. In addition, incorporating a nonlinear geometric viewpoint in variational
techniques even when dealing with originally linear data, such as in the context of
image regularization or classification tasks, can open new perspectives and yield
improvements.

Needless to say, extending a well-established field to new application scenarios
also requires a nontrivial extension of methodological concepts such as analysis,
statistical methods, and optimization techniques.

Now since, as mentioned above, variational methods for linear data already both
cover a broad field of applications and incorporate a great variety of mathematical
techniques, their extensions towards respecting nonlinear geometries do so even
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x Introduction

more. This results in a variety of different research directions and application
scenarios for variational methods with nonlinear geometric data which are rather
spread out over different mathematical communities.

The purpose of this book is to both stimulate exchange between these different
communities and to provide a comprehensive reference work for newcomers in the
field. To this end, it contains contributions of leading experts for different aspects
of variational methods for nonlinear geometric data who provide introductory
overviews as well as discussions of recent research results in their fields.

Addressing the different research directions in extending variational methods
to respect nonlinear geometry, the book contains different parts. While with this
we aim to improve readability by introducing some structure, it is important to
mention that the division of the chapters into different parts, and in particular their
ordering, is to some extent arbitrary. We emphasize that strong connections between
the different parts exist.

In the first part of the book, we deal with different techniques within the area of
variational methods to allow processing of data in nonlinear spaces. In this respect,
suitable discretizations are necessary.

Chapter 1 addresses this issue by introducing geometric finite elements. Geomet-
ric finite elements generalize the idea of finite element methods to maps that take
values in Riemannian manifolds. The chapter defines suitable discrete manifold-
valued function spaces and deals with the corresponding discretization of smooth
variational problems. The resulting discrete problems are solved using methods of
manifold optimization. Applications considered are harmonic map problems as well
as problems of shell mechanics and micromagnetics.

Another important ingredient for variational methods, in particular, in the
context of inverse problems or image processing, is the incorporation of suitable
regularization approaches. Classical applications are for instance image denoising
and reconstruction, segmentation and labeling tasks as well as joint reconstruction
and post-processing. Dealing with nonlinear data spaces, important tasks in this
context are the introduction, the analysis as well as the numerical realization of
regularization functionals.

Chapter 2 deals with non-smooth variational regularization approaches for
nonlinear data. Motivated by their success in the linear context, the chapter considers
first- and higher-order derivative/difference-based regularizers as well as wavelet-
based sparse regularization approaches and provides an overview of existing
approaches. Furthermore, inverse problems in the context of manifold-valued data
as well as different techniques for the numerical solution of the corresponding
minimization problems are discussed. Applications to denoising, segmentation, and
reconstruction from indirect measurements are given.

Chapter 3 also deals with variational regularization pursuing a functional lifting
approach for images with values in a manifold. The approach transforms an
original variational problem for manifold-valued data into a higher dimensional
vector space problem and thereby solves a corresponding relaxed convex problem
using the tools of convex optimization in a vector space. Applications are total
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variation regularization and generalizations as well as segmentation and optical flow
estimation.

Often data are not sparse with respect to the canonical basis but with respect to
some suitable dictionary such as a wavelet frame or, more generally, a corresponding
multiscale transform. For data in linear space, this has led to variational regular-
ization methods such as wavelet sparse regularization which imposes a sparsity
prior with respect to a corresponding expansion/transform. Chapter 4 deals with
multiscale transforms for geometric data as well as with refinement procedures, in
particular subdivision schemes, for geometric data which are needed to define these
transforms. In particular, the chapter discusses the differential geometric building
blocks and focuses on respecting the nature and symmetries of the data in metric
spaces, Riemannian manifolds, and groups. Results on the current state of the art
regarding convergence and smoothness are presented.

Besides image processing, variational methods also play an important role in the
processing of geometry data. While consistent discrete notions of curvatures and
differential operators have been widely studied, the question of the convergence
of the resulting minimizers to their smooth counterparts is still open for various
geometric functionals. Building on tools from variational analysis, and in particular
using the notion of Kuratowski convergence (as opposed to Γ or epi-convergence),
Chapter 5 provides a general framework to deal with the convergence of minimizers
of discrete geometric functionals to their continuous counterparts. Applications to
minimal surfaces and Euler elasticae are provided.

The second part of the book deals with approaches that use nonlinear geometry
as a tool to address challenging, variational problems. In this context, Chapter 6
gives an introduction to variational methods recently developed in fluid-structure
interaction focusing on the dynamics and nonlinear geometry of flexible tubes
conveying fluids. Biomedical and industrial applications are in connection with
arterial flows as well as in connection with high-speed motion of gas in flexible
pipes. Besides the discussion and analysis of variational models, the chapter also
considers the numerical realization including appropriate discretizations.

Furthermore, Chapter 7 introduces the geometric concept of roto-translation
space, which appears in the representation of object contours from 2D and 3D
images in a higher-dimensional space. This lifting technique allows obtaining
convex representations of curvature-aware regularization functionals in image
processing. Chapter 7 provides the basic concept of this approach, shows some ana-
lytical properties and connections of different, existing functionals, and discusses
numerical discretization techniques.

Having a different focus, Chapter 8 introduces the framework of assignment
flows, which employs in particular methods from information (differential) geom-
etry to model data labeling and related machine learning tasks. Assignment flows
provide an adaptive time-variant extension of established discrete graphical models
and a basis for the design and better mathematical understanding of hierarchical net-
works. Chapter 8 provides an overview of recent research and future developments
in this field, dealing in particular with the supervised and the unsupervised situation
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and providing mathematical background on the corresponding dynamical systems
as well as geometric integration approaches for their numerical solution.

Last but not least, in the context of large-scale and high-dimensional problems,
often low-rank matrix and tensor techniques are used. Chapter 9 deals with this
topic and provides numerical methods that explicitly make use of the geometry
of rank-constrained matrix and tensor spaces. It illustrates the benefit of these
techniques with two topics. One is classical optimization problems such as matrix or
tensor completion, where the explicit incorporation of geometry allows to employ
Riemannian optimization methods to obtain efficient numerical methods. The other
one is ordinary differential equations defined on matrix or tensor spaces, where the
authors show how corresponding solutions can be approximated by a dynamical
low-rank principle.

In the third part of the book, we consider statistical methods in the context of
nonlinear geometric data. There are close links between statistics and variational
methods: On the one hand, many variational models are based on statistical
considerations. On the other hand, statistical objects in the context of manifolds are
themselves often defined as energy minimizers (like most of the statistical objects
defined in the following two chapters).

Chapter 10 deals with statistics on manifolds with an emphasis on principal
component analysis (PCA). In the linear space context, PCA is a commonly used
dimension reduction method, and its generalization to nonlinear data spaces is an
important topic for dimension reduction of non-Euclidean data. Starting from the
intrinsic mean, the chapter discusses various generalizations to the manifold setting.
In particular, Procrustes analysis, principal geodesic analysis, geodesic PCA as well
as principal nested spheres, horizontal PCA, barycentric subspace analysis, and
backward nested descriptors analysis (BNDA) are considered. The chapter reviews
the current state of the art of the corresponding asymptotic statistical theory and
discusses open challenges.

Chapter 11 provides a historical review and discussion of intrinsic means in
a manifold (which is the best zero-dimensional summary statistics of data). It
then proceeds to define the concept of barycentric subspace analysis (BSA). BSA
yields flags of “subspaces” generalizing the sequences of nested linear subspaces
appearing in the classical PCA. Barycentric subspaces are the locus of weighted
means of a finite set of fixed reference points with the varying weights defining the
space in the manifold. The corresponding “subspaces” of the BSA are found by
minimizing corresponding energies. Here, three variants are discussed generalizing
different desired properties from the Euclidean setup. In particular, minimizing
the so-called accumulated unexplained variance criterion yields nested spaces
while leading to the PCA decomposition in Euclidean spaces when considering a
Euclidean setup. The potential of the method is illustrated by applying it to cardiac
imaging.

Last but not least, Chapter 12 deals with deep variational inference (VI). After
reviewing VI as a fast alternative to Markov Chain Monte Carlo methods, stochastic
VI, black-box VI, as well as amortized VI leading to the variational auto-encoder
are discussed. The latter involves deep neural networks and graphical models.
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Finally, generative flows, the latent space manifold, and the Riemannian geometry
of generative models are explored.

In part four of the book, we summarize chapters that deal with geometric methods
for the analysis of data from particular nonlinear spaces, such as shapes, curves,
and trajectories. Aiming at a statistical analysis of geometric data that is invariant
with respect to some particular transformations or reparameterizations, Chapter 13
introduces the framework of square root velocity functions for the representation
of scalar functions, curves, and shapes. Building on that, the chapter discusses
registration approaches that allow to compute correspondences between different
geometric objects. This is then exploited to compute statistics such as principal
modes.

On top of that, Chapter 14 extends this framework for a statistical analysis
of multi-modality data. There, the authors present a framework for the joint
analysis of multi-modality data such as trajectories of functions or tensors. That
is, building on representations such as square root velocity functions, they define
a metric that jointly registers trajectories and particular data that is defined on such
trajectories. With that, they again want to obtain certain invariances and applications
to trajectories of functions in the context of functional magnetic resonance imaging,
and trajectories of tensors in the context of diffusion tensor imaging are shown.

With similar applications in the background, Chapter 15 deals with geometric
methods for topological representations. That is, the authors provide an introduction
to tools from topological data analysis to achieve invariant representations and
corresponding metrics for diverse data classes such as image, shape, or time
series data. They provide several existing approaches, discuss advantages and
disadvantages of those, and provide exemplary applications.

Chapter 16 deals with combining machine learning techniques with modeling
based on geometric considerations for extracting features from geometric data
appearing in computer vision, computer graphics, and image processing. Two
scenarios are considered. First, a scheme to discover geometric invariants of planar
curves from data in a learning framework is discussed. Here, the invariants are
modeled using neural networks. The second scenario considers a reverse setup
by imputing principled geometric invariants like geometric moments into standard
learning architectures. This enables a significant boost in performance and also
provides a geometric insight into the learning process.

Chapter 17 deals with sub-Riemannian methods to study shapes, with a spe-
cial focus on shape spaces defined as homogeneous spaces under the action
of diffeomorphisms. The chapter provides a review of recent developments. It
considers sub-Riemannian methods based on control points and their generalization
to deformation modules. Furthermore, it considers implicit constraints on geodesic
evolution together with the corresponding computational challenges. Numerical
examples are provided as illustrations.

The fifth part of the book contains chapters that deal with optimization
approaches on manifolds and with particular numerical problems for manifold-
valued data. This is broadly relevant for energy minimization-based techniques in
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general, and in particular also for many of the research directions discussed in the
other chapters of the book.

Chapter 18 deals with first order methods for optimization on Riemannian
manifolds. In particular, algorithms based on the proximal point method as well as
algorithms based on gradient and subgradient methods in the Riemannian setting are
defined and analyzed. In particular, an asymptotic and iteration-complexity analysis
for the proximal point method on Hadamard manifolds is presented.

Chapter 19 deals with recent advances in stochastic optimization on Rie-
mannian manifolds. Starting from stochastic gradient descend, various methods
are discussed. In particular, variance reducing algorithms such as the stochastic
recursive gradient algorithm or the stochastic variance reduced gradient algorithm
are considered. For the presented schemes, a summary of the presently available
convergence results is given. Applications for machine learning problems related to
Gaussian mixtures, PCA, and Wasserstein barycenters are also discussed.

In various places in the book, averaging in a manifold appears as a central
tool. Chapter 20 considers the particularly interesting problem of averaging in
the manifold of positive definite matrices (appearing in medical imaging, radar
signal processing, and mechanics) from a numerical optimization point of view.
In particular, different averages, all defined in terms of minimization problems,
together with their numerical realization are discussed.

In connection with geometric data, differential geometric aspects naturally
enter the scene. In particular, differential geometric considerations for efficiently
computing the concrete quantities involved in the numerical problems are of central
importance (and are often not treated in textbooks on differential geometry due
to a different focus). Chapter 21 deals with such aspects focusing on spheres,
Graßmannians, and special orthogonal groups. The employed methodology is
based on rolling motions of those manifolds considered as rigid bodies, subject
to holonomic as well as non-holonomic constraints. As application, interpolation
problems on Riemannian manifolds are considered.

The sixth part of the book deals with particular, relevant applications of varia-
tional methods for geometric data. While partially already covered in the previous
chapter, here the focus is on the applications. Chapter 22 deals with applications of
variational regularization methods for nonlinear data in medical imaging applica-
tions. More precisely, the compounding of ultrasound images, the tracking of nerve
fibers, and the segmentation of aortas are considered. In particular, the impact of the
regularization techniques for manifold valued data for the final result of processing
pipelines is demonstrated.

Chapter 23 considers the Riemannian geometry of facial expression and action
recognition. Building on landmark representations, it introduces geometric repre-
sentations of landmarks in a static and time-series context. Again, a driving factor
here is to obtain certain invariances with respect to basic transformations such
as a change of the viewpoint or different parameterizations. Building on pseudo
geodesics and the concept of closeness for the representation of a set of landmarks in
the manifold of positive semidefinite matrices with fixed rank, the chapter considers
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applications in facial expression and action recognition and provides a comparison
of the discussed to previous, existing approaches.

Chapter 24 discusses biomedical applications of geometric functional data anal-
ysis. It reviews parameterization-invariant Riemannian metrics and corresponding
simplifying square root transforms (see also Chapters 13 and 14). The data space
of interest here is probability density functions, amplitude and phase components in
functional data, and shapes of curves and surfaces. The chapter provides general
recipes for computing the sample mean, covariance, and performing principal
component analysis (PCA). The considered applications are the assessment of tumor
texture variability, the segmentation and clustering of electrocardiogram signals, the
comparison and summarization of planar shapes of tumors as well as the simulation
of endometrial tissue shapes, which can be used, for instance, for the validation of
various image processing algorithms.
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Geometric Finite Elements
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Abstract Geometric finite elements (GFE) generalize the idea of Galerkin methods
to variational problems for unknowns that map into nonlinear spaces. In particular,
GFE methods introduce proper discrete function spaces that are conforming in
the sense that values of geometric finite element functions are in the codomain
manifold M at any point. Several types of such spaces have been constructed,
and some are even completely intrinsic, i.e., they can be defined without any
surrounding space. GFE spaces enable the elegant numerical treatment of variational
problems posed in Sobolev spaces with nonlinear codomain space. Indeed, as
GFE spaces are geometrically conforming, such variational problems have natural
formulations in GFE spaces. These correspond to the discrete formulations of
classical finite element methods. Also, the canonical projection onto the discrete
maps commutes with the differential for a suitable notion of the tangent bundle
as a manifold, and we therefore also obtain natural weak formulations. Rigorous
results exist that show the optimal behavior of the a priori L2 and H 1 errors under
reasonable smoothness assumptions. Although the discrete function spaces are no
vector spaces, their elements can nevertheless be described by sets of coefficients,
which live in the codomain manifold. Variational discrete problems can then be
reformulated as algebraic minimization problems on the set of coefficients. These
algebraic problems can be solved by established methods of manifold optimization.
This text will explain the construction of several types of GFE spaces, discuss the
corresponding test function spaces, and sketch the a priori error theory. It will also
show computations of the harmonic maps problem, and of two example problems
from nanomagnetics and plate mechanics.

1.1 Introduction

A number of interesting physical phenomena is described by partial differential
equations for functions that map into a nonlinear spaceM. Examples are equations
used to describe liquid-crystal dynamics [23], models of the microscopic behavior of
ferromagnetic materials [48], finite-strain plasticity [51], image processing [14, 66],
and non-standard models of continuum mechanics [54]. In these examples, the
nonlinear degrees of freedom frequently represent a direction or an orientation,
and the target spaceM is therefore the unit sphere S2, the projective plane, or the
special orthogonal group SO(3). The processing of diffusion tensor images involves
functions with values in the symmetric positive definite matrices [9]. Numerical
simulations of general relativity deal with fields of metric tensors with a given
signature [12], and in particle physics, sigma models use fields in a variety of
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different spaces [45]. At the same time, maps into nonlinear spaces have also
received much interest from the mathematical community, see, e.g., the works on
geometric wave equations [60] or the large body of work on harmonic maps [41]. In
that latter case in particular, there is no restriction to particular target spaces.

For a long time, numerical analysis has struggled with the non-Euclidean struc-
ture of these problems. Indeed, as sets of functions with nonlinear codomain cannot
form vector spaces, standard finite element methods are ruled out immediately,
because the very notion of piecewise polynomial functions has no meaning in
nonlinear spaces. Similarly, the wealth of tools from linear functional analysis
traditionally used to analyze finite element methods is not available if the codomain
is nonlinear.

Various approaches have been proposed in the literature to overcome these
difficulties. Without trying to be comprehensive we mention the nonconforming
methods of Bartels and Prohl [11], and Alouges and Jaisson [6], finite difference
methods used in image processing [66] and the simulation of harmonic maps [5],
and various ad hoc methods used in computational mechanics [61, 67]. All these
methods have in common that they avoid the explicit construction of discrete con-
forming function spaces, and that theoretical results concerning their approximation
properties are either suboptimal or lacking completely.

The geometric finite element method, in contrast, strives to follow the idea of
traditional Galerkin methods more closely. It is based on explicit constructions
of discrete function spaces that generalize the piecewise polynomials of standard
finite element methods, but which are geometrically conforming in the sense of
mapping into the codomain spaceM everywhere. These spaces can then be assessed
regarding their approximation properties, and a priori bounds of the discretization
error as a function of the element size and solution smoothness can be shown. The
error rates thus obtained correspond to what is expected from the linear theory, and
this optimality is also confirmed by numerical tests.

In this exposition, the target spaceM is mostly assumed to have the structure of
a Riemannian manifold. However, some of the constructions of Sect. 1.2 also work
in more general settings such as pseudo-Riemannian manifolds, affine manifolds,
and general metric spaces. One subject of ongoing research is the generalization of
existing approximation results to these more general settings.

1.2 Constructions of geometric Finite Elements

The finite element method solves partial differential equations (PDEs) by approx-
imating Sobolev functions by piecewise polynomials with certain continuity prop-
erties. For this, the domain � ⊂ Rd is covered with a grid G, i.e., a partition of
essentially nonoverlapping (deformations of) convex polytopes Th, the so-called
elements. In this chapter, grids will always be conforming, i.e., the intersection of
two grid elements is a common face or empty. The spaces of polynomials on the
elements are typically described by giving particular bases, and the basis vectors are
called shape functions [20].
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The main ingredient of geometric finite element methods is a way to generalize
spaces of polynomials on one grid element to manifold-valued functions. Under
certain conditions on the behavior of these functions on the element boundary, the
generalized polynomials can then be combined to globally continuous functions.
This chapter describes four ways to construct geometric finite elements.

In the following, if not specified otherwise, M will denote a smooth n-
dimensional Riemannian manifold with metric g, tangent bundle TM, and Levi–
Civita connection ∇. All derivatives of vector fields will be covariant derivatives
with respect to this connection; in particular, for a vector field V : � → u−1TM
along a map u ∈ C(�,M), we denote by ∇kV all k-th order covariant derivatives
along u. For k = 1, in coordinates around u(x), these are given by

∇V lα(x) := ∂

∂xα
V l(x)+ �lij (u(x))V i(x)

∂uj

∂xα
(x),

where i, j, l = 1, . . . , n, α = 1, . . . , d, the �lij denote the Christoffel symbols of ∇,
and we sum over repeated indices.

We assume that M is complete as a metric space with distance d(·, ·), and has
bounds on the Riemannian curvature tensor Rm and its derivatives, i.e.,

‖Rm‖L∞ := sup
p∈M

sup
Vi∈TpM
i=1,...,4

|Rm(p)(V1, V2, V3, V4)|
‖V1‖g(p)‖V2‖g(p)‖V3‖g(p)‖V4‖g(p) ≤ C,

‖∇Rm‖L∞ := sup
p∈M

sup
Vi∈TpM
i=1,...,5

|∇Rm(p)(V1, V2, V3, V4, V5)|
‖V1‖g(p)‖V2‖g(p)‖V3‖g(p)‖V4‖g(p)‖V5‖g(p) ≤ C.

We will denote the exponential map by expp : TpM → M. Its inverse, where
defined, will be denoted by logp :M→ TpM, logp q := exp−1

p q. The differential
of the logarithm logp is denoted by

d logp q : TqM→ TpM d logp q(V ) := d

dt

∣
∣
∣
∣
t=0

logp c(q,V )(t),

where p, q ∈M are such that log(·)(·) is defined in a neighborhood of these points,
and c(p,V )(·) denotes a curve with c(p,V )(0) = p and ċ(p,V )(0) = V . The injectivity
radius ofM is

inj(M) := inf
p∈M

sup
ρ>0

{

expp is defined on Bρ(0) ⊂ TpM and injective
}

.

1.2.1 Projection-Based Finite Elements

Our first construction of geometric finite elements uses an embedding space of the
manifoldM. It has been described in detail in [33]. Independently, Gawlik and Leok
[28] investigated the case d = 1,M = SO(3).
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1.2.1.1 Construction

Let Th be an element of a finite element grid G for �. On Th we consider a scalar-
valued r-th order Lagrange basis ϕ1, . . . , ϕm : Th → R with associated Lagrange
points ξ1, . . . , ξm ∈ Th. Suppose that M is embedded smoothly into a Euclidean
space RN by a map ι :M→ RN .

We will define the space Sproj
h (Th,M) of projection-based finite elements on Th

as the image of an interpolation rule. Let v = (v1, . . . , vm) ∈ Mm be a set of
values associated to the Lagrange points. First we consider the canonical Lagrange
interpolation operator IRN of values embedded into RN

IRN :Mm × Th → RN

IRN (v, ξ) :=
m
∑

i=1

ι(vi)ϕi(ξ).

Even though the vi are elements of M, the values of IRN (v, ·) will in general not
be inM away from the Lagrange points ξi . To getM-valued functions we compose
IRN pointwise with the closest-point projection

P : RN →M, P (q) := arg min
p∈M

‖ι(p)− q‖RN ,

where ‖ · ‖RN denotes the Euclidean distance. While the closest-point projection
is usually not well defined for all q ∈ RN , if M is regular enough it is well
defined in a neighborhood Uδ ⊂ RN ofM [1]. We then defineM-valued projected
interpolation by composition of IRN and P , restricted to sets of input values for
which the projection is well defined.

Definition 1.1 Let Th ⊂ Rd be a grid element. Let ϕ1, . . . , ϕm be a set of r-th order
scalar Lagrangian shape functions, and let v = (v1, . . . , vm) ∈ Mm be values at the
corresponding Lagrange nodes. We call

I proj : Mm × Th →M

I proj(v, ξ) := P
( m
∑

i=1

ι(vi)ϕi(ξ)
)

(where defined) r-th order projection-based interpolation onM.

Well-posedness is guaranteed if the values vi are close to each other on the
manifold, such that IRN (v, ξ) ∈ Uδ for all ξ ∈ Th.

Lemma 1.2 There exists a ρ > 0 such that if

diamM
{

vi : i = 1, . . . , m
}

< ρ,

the projection-based interpolation I proj(v, ξ) will well defined for all ξ ∈ Th.
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Such a requirement of locality is common to all geometric finite element
constructions. Here the closeness parameter ρ depends on the Lagrangian shape
functions and the extrinsic curvature ofM.

Projection-based finite elements on Th are defined as the range of this interpola-
tion operator.

Definition 1.3 Let Th ⊂ Rd ,M ⊂ RN an embedded submanifold, and P : Uδ ⊂
RN → M the closest-point projection. For a given set of Lagrange basis functions
ϕ1, . . . , ϕm : Th → R we define

S
proj
h (Th,M) :=

{

vh ∈ C(Th,M) : ∃ v ∈Mm such that vh = I proj(v, ·)
}

.

The element-wise definition can be used to construct projection-based finite
element spaces on an entire conforming grid G. We define a global geometric
Lagrange finite element space by joining projected polynomials on each element,
and requesting global continuity

S
proj
h (�,M) :=

{

vh ∈ C(�,M) : vh|Th ∈ Sproj
h (Th,M) ∀Th ∈ G

}

.

As the operator I proj only uses the values at the Lagrange points, we have the
equivalent definition

S
proj
h (�,M) :=

{

vh ∈ C(�,M) : ∃(vi)i∈I⊂M such that vh=P
(
∑

i∈I viϕi(·)
)}

,

(1.1)

where (vi)i∈I and (ϕi)i∈I are now global sets of coefficients and Lagrange basis
functions, respectively. Note that the definition of Discontinuous-Galerkin-type
spaces without continuity constraints is straightforward.

1.2.1.2 Properties

We list a few properties of projection-based finite elements. Firstly, projection-
based finite element functions are W 1,p-conforming, if the projection operator P
is sufficiently smooth:

Lemma 1.4 ([33, Sec. 1.1]) If the point-wise operator norm of the differential
dP (x) : RN → TP(x)M is globally bounded, then

S
proj
h (�,M) ⊂ W 1,p(�,M)

for all p ∈ [1,∞].
Different ways to define the M-valued Sobolev spaces are discussed in

Sect. 1.4.1. The required smoothness of P holds at least in a neighborhood of
M, ifM is embedded smoothly in RN [49]. The proof of Lemma 1.4 follows from
the chain rule, and the piecewise smoothness of the Lagrange basis.
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Next, note that for a fixed grid G, finite element spaces of different polynomial
orders are nested.

Lemma 1.5 Let Sproj
h,r1
(�,M) and S

proj
h,r2
(�,M) be two projection-based finite

element spaces with shape functions of orders r1 and r2, respectively. If r1 ≤ r2
then

S
proj
h,r1
(�,M) ⊂ S

proj
h,r2
(�,M).

Thirdly, as projection-based finite elements as defined here are based on standard
Lagrange finite elements, they form affine families in the sense of Ciarlet [20].
This means that if Sproj

h (Th,M) is a given space of projection-based finite element
functions on an element Th, then the corresponding space on a different element T̃h
is equal to

S
proj
h (T̃h,M) =

{

ṽh ∈ C(T̃h,M) : ṽh = vh ◦ F−1, vh ∈ Sproj
h (Th,M)

}

,

where F is an affine map from Th to T̃h. This means that all projection-based finite
elements can be implemented as push-forwards of projection-based finite elements
on a reference element Tref.

Finally, we investigate a crucial symmetry property. It is desirable for any finite
element discretization that the interpolation operator I mapping coefficients to
discrete functions be equivariant under isometries of the codomain, i.e.,

QI(v, ·) = I (Qv, ·)
for elements Q of the isometry group of M. For the standard case M = R, this
means that

I (v, ·)+ α = I (v + α, ·)
for all α ∈ R, which does indeed hold for interpolation by piecewise polynomials.
In mechanics, where usually M = R3 and the corresponding isometries are the
special Euclidean group R3

� SO(3), equivariance implies the desirable property
that discretizations of frame-invariant problems are again frame-invariant. Unfor-
tunately, for projection-based finite elements this equivariance only holds under
special circumstances.

Lemma 1.6 ([33, Thm. 5]) Let Q : M → M be an isometry that is extendable in
the sense that there exists an isometry Q̃ : RN → RN with Q̃(p) = Q(p) for all
p ∈M. Then

QI proj(v, ξ) = I proj(Qv, ξ)

for all ξ ∈ Th.

However, the assumption of the lemma is restrictive. Indeed, in order to be
extendable, Q needs to be the restriction of a rigid body motion of RN . This means
that projection-based interpolation has the desired equivariance only in some special
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situations, like the casesM = Sn andM = SO(n). These are, on the other hand,
relevant for applications.

1.2.2 Geodesic Finite Elements

Projection-based interpolation requires an embedding space. The following alter-
native construction uses weighted geodesic means, and is therefore purely intrin-
sic [56, 57].

1.2.2.1 Construction

Let again Th be a grid element, and r-th order scalar Lagrange functions ϕ1, . . . , ϕm
with Lagrange nodes ξ1, . . . , ξm as previously. The definition of geodesic finite
element functions is based on the fact that for values vi in a vector space, Lagrangian
interpolation has a minimization formulation

m
∑

i=1

ϕi(ξ)vi = arg min
q∈R

m
∑

i=1

ϕi(ξ)‖vi − q‖2,

which is typically interpreted as a weighted average. In a general metric space
(M, d), the proper generalization of such averages is the Fréchet mean [18, 27].
For Riemannian (and Finsler) manifolds it is also known as the Riemannian center
of mass or Karcher mean [44]. We will follow [4] and call the averages with respect
to the geodesic distance weighted geodesic means.

Definition 1.7 (Weighted Geodesic Mean) A weighted geodesic mean of points
v1, . . . , vm ∈ M for weights w1, . . . , wm ∈ R with

∑m
i=1wi = 1 is any point

q ∈ M minimizing q �→ ∑m
i=1wi d(vi, q)2 in M. If the minimizer exists and is

unique, we denote it by

av
[

(v1, . . . , vm), (w1, . . . , wm)
]

.

Geodesic finite elements are defined as geodesic means with Lagrangian shape
functions as weights.

Definition 1.8 Let Th ⊂ Rd be a grid element, ϕ1, . . . , ϕm a set of r-th order
scalar Lagrangian shape functions, and let v = (v1, . . . , vm) ∈ Mm be values at
the corresponding Lagrange nodes. We call

I geo : Mm × Th →M

I geo(v, ξ) := av
[

(v1, . . . , vm), (ϕ1(ξ), . . . , ϕm(ξ))
]

(1.2)

(where defined) r-th order geodesic interpolation onM (Fig. 1.1).
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Fig. 1.1 Second-order
geodesic interpolation from a
triangle into a sphere

ξ1 ξ2 ξ3

ξ4
ξ5

ξ6

v1

v2

v3

v4

v5

v6
ξ I geo

M

I geo(v, ξ )

We define Sgeo
h (Th,M) to be the space of all M-valued functions on Th that

can be constructed in this way. Obviously, the construction (1.2) produces an
interpolation function of the values vi .

The definition of I geo can be generalized in a number of ways. First of all,
Definition 1.8 uses Lagrange shape functions mainly for simplicity. In a similar
fashion, [17, 31] have used splines to achieve higher-order approximation, and [4]
use Bernstein polynomials. Then, as the construction uses only metric information
ofM, it is possible to define I geo in the more general context of metric spaces. On
the other hand, for a Riemannian manifold M it is known [43, Thm 5.6.1] that at
minimizers q ∈M of (1.2) we have

m
∑

i=1

ϕi(ξ) logq(vi) = 0. (1.3)

This can be used as the definition of geodesic interpolation for manifolds with
an affine connection that have an exponential map but no compatible Riemannian
metric.

Both definitions (1.2) and (1.3) lead to well-defined maps, but a quantitative
result is available only for the minimization formulation:

Lemma 1.9

1. If the nodal values v1, . . . , vm are contained in a geodesic ball B ⊂ M
with radius less than a threshold depending on the injectivity radius and the
Lagrangian shape functions, then the minimization problem (1.2) has a unique
solution for all ξ .

2. Around any p ∈M there exists a neighborhood B, such that for nodal values vi ,
i = 1, . . . , m in B there exists a unique map q : Th →M solving (1.3).

The first assertion is proved in [36]. The second one follows from
the implicit function theorem as

∑m
i=1 ϕi(ξ) logp(p) = 0 for all ξ , and

∂q |q=p∑m
i=1 ϕi(ξ) logq(p) = Id : TpM→ TpM and hence invertible.
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As in the previous section we now piece together the local interpolation rule to
construct function spaces on an entire grid.

Definition 1.10 Let G be a grid for �. The space of global geodesic finite element
functions is

S
geo
h (�,M) :=

{

vh ∈ C(�,M) : vh|Th ∈ Sgeo
h (Th,M) for all Th ∈ G

}

.

As the values of geodesic interpolation functions on a face of the boundary
of an element Th only depend on the values corresponding to Lagrange points
on that face [57, Lem. 4.2], continuity across adjacent elements can be enforced
by requiring the Lagrange coefficients on the common boundary to be equal. We
therefore have a definition like (1.1) also for geodesic finite elements. Beware,
however, that the relation between geodesic finite element functions and values at
the Lagrange points is not an isomorphism. See [57] for details.

1.2.2.2 Properties

We now discuss various properties of the geodesic interpolation (1.2). Arguably
the most important one for finite element applications is smoothness in ξ and the
coefficients vi . This follows from local smoothness of the distance d(·, ·), and the
implicit function theorem.

Theorem 1.11 ([57, Thm. 4.1]) Let M be a complete Riemannian manifold, and
let v = (v1, . . . , vm) be coefficients onM with respect to a Lagrange basis {ϕi} on
a domain Th. Assume that the situation is such that the assumptions of Lemma 1.9(1)
hold. Then the function

I geo : Mm × Th →M (v, ξ) �→ I geo(v, ξ)

is infinitely differentiable with respect to the vi and ξ .

Actually computing derivatives is possible using the following trick, explained
for derivatives with respect to ξ . To compute the derivative

∂

∂ξ
I geo(v, ξ) : TξTh → TI geo(v,ξ)M

(where TξTh is the tangent space at ξ of the grid element Th interpreted as a
manifold), we recall that values q∗ of I geo are minimizers of the functional

fv,ξ :M→ R fv,ξ (q) :=
m
∑

i=1

ϕi(ξ) d(vi, q)
2.
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Hence, they fulfill the first-order optimality condition

F(v1, . . . , vm; ξ, q∗) := ∂fv,ξ (q)

∂q

∣
∣
∣
∣
q=q∗

= 0.

Taking the total derivative of this with respect to ξ gives, by the chain rule,

dF

dξ
= ∂F

∂ξ
+ ∂F

∂q
· ∂I

geo(v, ξ)

∂ξ
= 0,

with

∂F

∂ξ
=

m
∑

i=1

∇ϕi(ξ) ∂
∂q

d(vi, q)
2 (1.4)

and

∂F

∂q
=

m
∑

i=1

ϕi(ξ)
∂2

∂q2
d(vi, q)

2. (1.5)

By [57, Lemma 3.11] the matrix ∂F/∂q is invertible. Hence the derivative ∂I geo/∂vi
can be computed as a minimization problem to obtain the value I geo(v, ξ) and the
solution of the linear system of equations

∂F

∂q
· ∂
∂ξ
I geo(v, ξ) = −∂F

∂ξ
.

The expressions ∂
∂q

d(vi, q)2 and ∂2

∂q2 d(vi, q)2 that appear in (1.4) and (1.5),

respectively, encode the geometry ofM. Closed-form expressions for both are given
in [56] for the case ofM being the unit sphere. ForM = SO(3), the first and second
derivatives of d(v, ·)2 with respect to the second argument have been computed
in [59].

Unlike projection-based finite elements, geodesic finite elements do not form
nested spaces except in the following special case [57, Lem. 4.3].

Lemma 1.12 (Nestedness) Let d = 1 and I geo
1 (v1, ·) : [0, 1] →M be a first-order

geodesic interpolation function between two values v1
1, v

1
2 ∈ M. Correspondingly,

let I geo
r (vr , ·) : [0, 1] → M be an r-th order geodesic interpolation function of

values vr1, . . . , v
r
r+1. We assume that I geo

r interpolates I geo
1 in the sense that

vri = I
geo
r (vr , ξ r ) = I

geo
1 (v1, ξ r )

for all Lagrange nodes ξ ri ∈ [0, 1] of I geo
r . Then

I
geo
r (vr , ξ) = I

geo
1 (v1, ξ) for all ξ ∈ [0, 1].
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Equivariance of the interpolation under isometries ofM, on the other hand, holds
under very general circumstances:

Lemma 1.13 LetM be a Riemannian manifold and G a group that acts onM by
isometries. Let v1, . . . , vm ∈M be such that the assumptions of Lemma 1.9(1) hold.
Then

QI geo(v1, . . . , vm; ξ) = I geo(Qv1, . . . ,Qvm; ξ)

for all ξ ∈ Th andQ ∈ G.

As geodesic interpolation is defined using metric quantities only, this result is
straightforward. We therefore omit the proof and refer the reader to the correspond-
ing proof for the first-order case given in [56, Lem. 2.6], which can be adapted easily.

1.2.2.3 Relationship to Projection-Based Finite Elements

The close relationship between geodesic and projection-based finite elements has
been noted by several authors [28, 33, 62]. If one considers weighted Fréchet
means with respect to the Euclidean distance of the embedding space RN instead
of the geodesic distance, this agrees exactly with the definition of projection-based
interpolation:

arg min
q∈M

m
∑

i=1

ϕi(ξ)‖vi − q‖2
RN

= arg min
q∈M

∥
∥
∥q −

m
∑

i=1

ϕi(ξ)vi

∥
∥
∥

2

RN
= P

( m
∑

i=1

ϕi(ξ)vi

)

.

This does not mean that projection-based finite elements are equal to geodesic finite
elements for embedded manifolds. Instead, projection-based interpolation can be
interpreted as an example of geodesic finite elements for a general metric space
(M, d) with a non-intrinsic metric d. In particular cases, the Euclidean distance can
be intrinsic, as we see in the following example:

Remark 1.14 For the sphereM = Sn, projection-based interpolation with respect
to the standard embedding into Rn+1 solves the intrinsic pointwise minimization
problem

I proj(v, ξ) = arg min
q∈M

m
∑

i=1

ϕi(ξ)
[

1 − cos(d(vi, q))
]

,

where d(·, ·) denotes the intrinsic distance on the sphere. It therefore coincides
with the center of mass construction with a curvature adapted distance function
suggested in [44, p. 511]. This construction is well-defined in larger balls than the
weighted geodesic means used to define geodesic finite elements, which leads to
more robustness. This effect is observable in practice (see Sect. 1.5.1).
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1.2.3 Geometric Finite Elements Based on de Casteljau’s
Algorithm

The following two ways to construct manifold-valued generalizations of polyno-
mials have been proposed by Absil et al. [4], who call them generalized Bézier
surfaces.

1.2.3.1 Construction

The definition of generalized Bézier surfaces is based on the weighted geodesic
mean (Definition 1.7). Following [4], we define them for two-dimensional domains
only. The generalization to higher domains is straightforward.

Let Th be the image of the unit quadrilateral Tref = [0, 1]2 under a multilinear
transformation, with local coordinates (t1, t2) ∈ Tref.

Definition 1.15 (Generalized Bézier Surface) Given control points vij ∈ M,
i, j = 0, . . . , r , we define a corresponding generalized Bézier surface of type II
by

IBézier,II(t1, t2; (vij )i,j=0,...,r ) = βr(t1; (βr(t2; (vij )j=0,...,r ))i=0,...,r ),

where βr(·; (bm)m=0,...,r ) = br0 denotes a Bézier curve inM defined by de Castel-
jau’s algorithm

b0
i = bi, i = 0, . . . , r,

bki = av
[

(bk−1
i , bk−1

i+1 , ((1 − t1), t1)
]

, k = 1, . . . , r, i = 0, . . . , r − k.

Likewise, we define a generalized Bézier surface of type III by

IBézier,III(t1, t2; (vij )i,j=0,...,r ) = br00,

where br00 is defined recursively via the two-dimensional de Casteljau algorithm,

b0
ij = bij , i, j = 0, . . . , r,

bkij = av
[

(bk−1
ij , bk−1

i,j+1, b
k−1
i+1,j , b

k−1
i+1,j+1), (w00, w01, w10, w11)

]

,

k = 1, . . . , r, i, j = 0, . . . , r − k,

with the first-order Lagrange shape functions as weights

w00 = (1 − t1)(1 − t2), w01 = (1 − t1)t2, w10 = t1(1 − t2), w11 = t1t2.
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It is demonstrated in [4] that these two definitions do not produce the same maps
in general.

The type I Bézier surfaces also proposed in [4] correspond to the geodesic
interpolation of Definition 1.8 with the standard Bernstein polynomials as weight
functions.

Bézier surfaces are well-defined if the coefficients are close to each other in a
specific sense. This is a consequence of the following Lemma.

Lemma 1.16 For every q ∈ M there exists a neighborhood U ⊂ M that is both
multigeodesically convex, i.e., it contains any weighted geodesic average of any
of its points with weights in [0, 1], and proper, i.e., the averages of finitely many
points with weights in [0, 1] are unique, and depend smoothly on the points and the
weights.

Details are given in [4, Sec. 3.2].
Note that the Bézier surface functions are not interpolatory, except at the domain

corners. Nevertheless, we use them to define global finite element spaces on grids
where all elements are multilinear images of d-dimensional cubes

S
Bézier,Y
h (�,M) :=

{

vh ∈ C(�,M) : vh|Th is a type Y Bézier surface ∀Th ∈ G
}

.

Here, the symbol Y replaces either II or III.
It is shown in [4] that piecewise type III surfaces are continuous for all d ≥ 1 if

the control values match at the element boundaries. For piecewise type II surfaces
the situation is more complicated. Unlike type III surfaces (and unlike all previous
constructions of geometric finite elements), type II surfaces are not invariant under
isometries of the domain. More specifically, the natural condition

IBézier,II(t1, t2; (vij )i,j=0,...,r ) = IBézier,II(t2, t1; (vij )Ti,j=0,...,r )

does not hold. As a consequence, for d ≥ 3, the restriction to an element facet
depends on the control values on that facet and on the ordering of the local
coordinate axes there. As these typically do not match across neighboring elements,
identical control values on a common boundary do not necessarily imply continuity
of the function there.

An exception to this is the case d = 2. There, the element boundaries are one-
dimensional, and there is only one possible coordinate system (and one-dimensional
Bézier curves are invariant under the coordinate changes t �→ 1 − t). We therefore
conjecture that type II surfaces are a competitive choice of finite elements mainly
for problems with two-dimensional domains. Their advantage is that they only
use averages between pairs of points, i.e., interpolation along geodesics between
two given points in M. For this, closed-form expressions are known for a few
important spaces like the spheres (where it is simply interpolation along arcs of great
circles), the three-dimensional special orthogonal group [55], and the hyperbolic
half-spaces [63].
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1.2.3.2 Properties

Wie discuss a few properties of (piecewise) generalized Bézier surfaces of types II
and III. First of all, smoothness of generalized Bézier surfaces is a direct conse-
quence of Lemma 1.16 (cf. [4, Sec. 3.2]), but note that no quantitative measure
of the required locality seems to be available. Combining the smoothness on each
element with global continuity yields the following conformity result:

Lemma 1.17 S
Bézier,Y
h (�,M) ⊂ W 1,p(�,M) for Y ∈ {II, III} and all p ∈

[1,∞].
Concerning nestedness, when the codomainM is linear, then generalized Bézier

surfaces degenerate to polynomials, and constructions with different numbers of
control points lead to nested spaces. The explicit construction of the embeddings
are called degree elevation formulas [24]. Corresponding results for nonlinear M
are unknown.

As Bézier finite elements are defined using the metric structure ofM alone, they
satisfy the same favorable equivariance properties as geodesic finite elements:

Lemma 1.18 LetM be a Riemannian manifold andQ an isometry ofM. Then

QIBézier,Y ((vij ); ξ) = IBézier,Y ((Qvij ); ξ)

for Y ∈ {II, III} and all ξ ∈ [0, 1]d , provided these expressions are well defined.

Hence, discretizations of frame-invariant problems are frame-invariant as well.

1.2.4 Interpolation in Normal Coordinates

As manifolds are locally diffeomorphic to Rn by definition, yet another approach
to obtain an interpolation method is to interpolate in a coordinate chart in Rn. A
canonical choice is to use normal coordinates around a point p ∈M, i.e., use expp
and logp to identify points inM with their coordinates

Ip(v, ξ) := expp

( m
∑

i=1

ϕi(ξ) logp vi

)

.

This interpolation depends heavily on the choice of the point p ∈M, and unless p
is fixed once and for all, it is not obvious how to choose the p for each element of a
grid to obtain globally continuous finite elements from this local interpolation.

Nevertheless, this construction is used by several authors [29, 52], especially
for interpolation in symmetric spaces. Symmetric spaces are smooth manifolds that
have an inversion symmetry about every point [43, Ch. 6]. Examples are SO(3),
the space of Lorentzian metrics, the spaces of symmetric positive matrices, and the
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Grassmannians. As symmetric spaces are in one-to-one correspondence with Lie
triple systems, they have the advantage that the Lie group exponential can be used
to construct the coordinate chart. The dependence on the choice of p, however,
remains.

1.2.4.1 Construction

We follow the construction in [29]. Let S be a symmetric space, g its Lie algebra of
Killing vector fields, and p ∈ S. Then TpS is isomorphic to the vector space

p := {X ∈ g : ∇X(p) = 0}.

Let G be the isometry group of S, and let exp : g → G denote the Lie group
exponential map.

Fixing an element g ∈ G, a diffeomorphism from a neighborhood of 0 ∈ p to a
neighborhood of g · p ∈ S can be defined by

Fg(P ) := g · exp(P ) · p.

Definition 1.19 Let Th be a grid element, and S a symmetric space with Fg defined
as above. Let ϕ1, . . . , ϕm be a set of r-th order scalar Lagrangian shape functions,
and let v = (v1, . . . , vm) ∈ Sm be values at the corresponding Lagrange nodes. We
call

I
exp
g : Mm × Th →M

I
exp
g (v, ξ) := Fg

( m
∑

i=1

ϕi(ξ)F
−1
g vi

)

(1.6)

r-th order normal-coordinate interpolation on S.

Here it is assumed that the interpolation values vi belong to the range of Fg;
therefore the interpolation is only suitable for values in a neighborhood of g ·p ∈ S.
Note that different choices of g essentially correspond to different choices of the
point p ∈ S. Indeed, it is shown in [29] that for h ∈ Gp := {g ∈ G : g · p = p}
(the stabilizer subgroup), the interpolation is invariant under post-multiplication,
i.e.,

I
exp
gh (v, ξ) = I

exp
g (v, ξ).

Example 1.20 If we consider S = SO(3), p = Id, and g = Id, we obtain for values
v ∈ SO(3)m that are in the range of the matrix exponential exp

I
exp
Id (v, ξ) = exp

( m
∑

i=1

ϕi(ξ) log vi

)

.
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For S the space of symmetric positive definite matrices, this is the (weighted) Log-
Euclidean mean proposed by Arsigny et al. [10].

For interpolation with respect to a different g ∈ SO(3), we obtain for values
v ∈ SO(3)m such that the g−1vi are in the range of exp

I
exp
g (v, ξ) = g exp

( m
∑

i=1

ϕi(ξ) log(g−1vi)

)

.

Münch [52] heuristically switched between different choices of p for a discretiza-
tion of SO(3)-valued functions.

As in the previous sections we use the local interpolation rule to define a global
discrete space.

Definition 1.21 Let G be a grid for�. The space of global normal-coordinate finite
element functions for a symmetric space S is

S
exp
h (�,S) :=

{

vh ∈ C(�,M) : ∃(vi)i∈I ⊂ S, g ∈ G s.t. vh|Th = I
exp
g (v, ·)

}

.

As pointed out in the beginning of this section, it is not clear that there exists a
natural choice for the g on each element Th such that this is non-empty. Engineering-
oriented works such as [52] that switch between several p appear to be tacitly
working with spaces of discontinuous functions.

In [29] it is possible to let g vary with ξ . If one chooses g(ξ) such that

g(ξ) · p = I
exp
g(ξ)(v, ξ),

this is equivalent to

m
∑

i=1

ϕi(ξ)F
−1
g(ξ)(vi) = 0.

If G is equipped with a left-invariant Riemannian metric, then this corresponds to
the definition of geodesic finite elements by first variation (1.3).

1.2.4.2 Properties

Once the choice of p ∈ S is fixed, the normal coordinate interpolation has several
nice properties.

Lemma 1.22 The interpolation operator I exp
g defined by (1.6) is infinitely differen-

tiable with respect to the vi and ξ .
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For fixed g ∈ G this follows from the chain rule, and smoothness of the
exponential map. In [29] explicit formulas for the first and second derivatives with
respect to the ξ are given. For varying g(ξ), the implicit function theorem implies
the result.

It is easy to see that normal-coordinate interpolation produces nested spaces if g
remains fixed for all orders:

Lemma 1.23 (Nestedness) If Sexp
h,r1
(�,S) and Sexp

h,r2
(�,S) are two global finite

element spaces of polynomial orders r1 ≤ r2, defined by normal-coordinate
interpolation with respect to the same g on each element, then

S
exp
h,r1
(�,S) ⊂ S

exp
h,r2
(�,S).

Note that this is no longer true for varying g, as illustrated, e.g., by the lack of
nestedness of geodesic finite elements.

After the choice of p ∈ S there is no more coordinate dependence, i.e., the
method is frame-invariant:

Lemma 1.24 ([29]) Let S be a symmetric space, G its isometry group, and
v1, . . . , vm ∈ S, g ∈ G such that (1.6) is well-defined. Then

Q · I exp
g v(ξ) = I

exp
Qg (Q · v)(ξ)

holds for every ξ ∈ Th and everyQ ∈ G.

Note that on the right hand side, the isometryQ not only acts on the coefficients
v = (v1, . . . , vm), but also on g.

1.3 Discrete Test Functions and Vector Field Interpolation

The standard finite element method uses the word “test functions” to denote the
variations of a function in variational problems. As the function spaces are linear or
affine, these variations are independent of the functions they act on. Even more, in
many cases the spaces of variations coincide with the function spaces that contain
the functions themselves.

This changes in nonlinear function spaces like the ones used by geometric finite
element methods. Here, test functions have to be defined by admissible variations of
functions, and the spaces of test functions therefore do depend on the function that is
being tested. Consider the setC∞(Th,M) of differentiable maps into a manifoldM.
An admissible variation of c ∈ C∞(Th,M) is a family �(·, s) ∈ C∞(Th,M) for all
s ∈ (−δ, δ) with �(·, 0) = c. The variational field of this variation, i.e., the vector
field V = ∂s�(·, 0) ∈ C∞

0 (Th, c
−1TM), is the generalization of a test function in

this context. This construction carries over to functions of lesser smoothness.
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(a) (b) (c)

Fig. 1.2 Test functions along geodesic interpolation functions from a triangle into the sphere S2.
These vector fields correspond to the shape functions normally used for Lagrangian finite element
methods, because they are zero on all but one Lagrange point. Note how the second-order vertex
vector field (center) partially point “backwards”, because the corresponding scalar shape function
has negative values on parts of its domain. (a) First order, (b) second order: vertex degree of
freedom, (c) second order: edge degree of freedom

Analogously, we can define discrete test vector fields by variations of discrete
maps. Let Sh(�,M) ⊂ C(�,M) be a set of geometric finite element functions.

Definition 1.25 For any uh ∈ Sh(�,M), we denote by Sh(�, u
−1
h TM) the set

of all vector fields Vh ∈ C(�, u−1
h TM) such that there exists a family vh(s) ∈

Sh(�,M), s ∈ (−δ, δ), with vh(0) = uh and d
ds
vh(0) = Vh.

Figure 1.2 shows three such vector fields along functions from S
geo
h (Th, S

2).
If we set M = R, the standard Lagrangian shape functions are obtained. Hence,
Definition 1.25 is a direct generalization of the test functions normally used in the
finite element method.

1.3.1 Algebraic Representation of Test Functions

Geometric finite element test functions have an algebraic representation. Unlike
for geometric finite element functions themselves, where the relationship between
discrete functions and algebraic representations is complicated, for test functions
the two are isomorphic.

Lemma 1.26 ([58, Lem. 3.1]) Let Th be a grid element, and let I be a geometric
interpolation function for values v1, . . . , vm ∈ M. The admissible variations of
the function I (v, ·) : Th → M form a vector space Sh(Th, v−1TM), which is
isomorphic to

∏m
i=1 TviM. The isomorphism has an explicit representation as
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T :
m
∏

i=1

TviM→ Vh,v

T [b1, . . . , bm](ξ) =
m
∑

i=1

∂I (v1, . . . , vm; ξ)
∂vi

· bi

for all bi ∈ TviM, i = 1, . . . , m, and ξ ∈ Th.

In other words, any test function along a geometric finite element function
I (v, ·) : Th → M can be uniquely characterized by a set of tangent vectors
bi ∈ TviM, i = 1, . . . , m.

Practical computation of the quantities ∂I (v, ξ)/∂vi depends on the specific
interpolation rule. It is straightforward for rules that are given in closed form such
as projection-based interpolation (Definition 1.1) and interpolation in normal coor-
dinates with respect to a fixed point (Definition 1.19). For geodesic interpolation,
the trick to compute ∂I geo/∂ξ described in Sect. 1.2.2.2 can be modified to obtain
the differentials with respect to the vi as well. Details can be found in [56].

1.3.2 Test Vector Fields as Discretizations of Maps
into the Tangent Bundle

To analyze test vector fields further, we consider an implicit definition of geometri-
cally conforming finite element functions. Note that both geodesic (Example 1.27)
as well as projection-based finite elements (Example 1.28) can be viewed in this
way. Let Sh(Th,M) be defined implicitly by a differentiable mapping

FM : Th×Mm×M→ TM, (ξ, v1, . . . , vm; q) �→FM(ξ, v1, . . . , vm; q) ∈ TqM.

We assume that FM(ξ,p;p) = 0 for all p ∈ M (with p=(p, . . . , p) ∈ Mm), and
that ∂qFM(ξ,p; q)∣∣

q=p : TpM→ TFM(ξ,p;p)TpM = TpM is invertible. Then we
can define the discrete maps vh ∈ Sh(Th,M) by

FM(ξ, v1, . . . , vm, vh(ξ)) = 0 ∈ Tvh(ξ)M, (1.7)

as long as the vi ∈ M, i = 1, . . . , m, are close enough for the implicit function
theorem to hold.

Example 1.27 For geodesic finite elements into an affine manifold (M,∇) the
mapping FM is given by

FM(ξ, v1, . . . , vm; q) =
m
∑

i=1

ϕi(ξ) logq vi .
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Example 1.28 LetM be a manifold embedded smoothly into RN . For any q ∈ M
denote by Pq : TqRN → TqM the orthogonal projection. For projection-based finite
elements, the mapping FM is then given by

FM(ξ, v1, . . . , vm; q) = Pq

( m
∑

i=1

ϕi(ξ)vi − q
)

.

Definition 1.25 defines discrete test vector fields as variations. Implicit differen-
tiation of vh defined in (1.7) thus leads to a natural extension of the definition of
Sh(�,M) to maps from � to the tangent bundle TM.

Lemma 1.29 Let Sh(Th,M) be defined implicitly by (1.7), and define F̂ : Th ×
TMm × TM→ T TM by

F̂ (ξ, (v1, V1), . . . , (vm, Vm); (q,W))

:=
(

FM(ξ, v1, . . . , vm; q)
∑m
j=1 ∂vj FM(ξ, v1, . . . , vm; q)(Vj )+ ∂qFM(ξ, v1, . . . , vm; q)(W)

)

with the standard identification T(q,W)TM = (TqM)2. Then the discrete test vector
fields (vh, Vh) with Vh ∈ Sh(Th, v−1

h TM) as defined in Definition 1.25 agree with
the implicit definition

F̂ (ξ, (v1, V1), . . . , (vm, Vm), (vh(ξ), Vh(ξ))) = 0.

Proof For i = 1, . . . , m consider curves ci : (−δ, δ) → M with ci(0) = vi ,
ċi (0) = Vi , and a curve γ : (−δ, δ) → M with γ (0) = q, γ̇ (0) = W . Inserting
these as arguments for FM and differentiating yields

d

ds

∣
∣
∣
∣
s=0
FM(ξ, c1(s), . . . , cm(s), γ (s)(ξ))

= F̂2
(

ξ, (v1, V1), . . . , (vm, Vm); (q,W)
) ∈ TqM,

where F̂2 denotes the second component of F̂ .
Let now wh : (−δ, δ) → Sh(�,M) be a family of discrete maps with wh(0) =

vh and d
ds
wh(0) = Vh, and let Vj ∈ TvjM denote the values of Vh at vj for j =

1, . . . , m. Then differentiation of (1.7) yields

F̂2(ξ, (v1, V1), . . . , (vm, Vm); (vh(ξ), Vh(ξ))) = 0 ∈ Tvh(ξ)M.

Thus, a discrete test vector field fulfills the implicit definition.
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Further note that at (ξ, (p,V); (p, V )) ∈ � × TMm × TM, where (p,V) :=
((p, V ), . . . , (p, V )),

F̂ (ξ, (p,V); (p, V )) =
(

FM(ξ,p;p)
d
dt

∣
∣
t=0FM(ξ, expp(tV ), . . . , expp(tV ); expp(tV ))

)

=
(

0
0

)

,

and that the invertibility of ∂qFM(ξ,p;p) implies the invertibility of

∂(q,W)F̂ (ξ, (p,V); (p, V ))

=
(

∂qFM(ξ,p;p) 0
∑m
j=1 ∂q∂vj FM(ξ,p;p)(V, ·)+ ∂q∂vj FM(ξ,p;p)(V, ·) ∂qFM(ξ,p;p)

)

.

Thus, the implicit definition for vector fields is well posed. ��
An alternative way to define vector field discretizations is to consider TM as a

manifold and use the finite elements Sh(�, TM) defined by

FTM(ξ, (v1, V1), . . . , (vm, Vm), (vh(ξ), Vh(ξ))) = 0.

If FTM = F̂ , then variation and discretization commute, i.e., the discretization of
the variational field is the variational field of the discretization. For this, TM needs
to be endowed with an appropriate metric structure. We give two examples, but it is
an open question whether such a structure always exists.

Example 1.30 ([36, 38]) For geodesic finite elements

F̂ (ξ, (v1, V1), . . . , (vl, Vl); (q,W))=
m
∑

i=1

ϕi(ξ)

(

logq vi
d logq vj (Vj )+dq logqvj (W)

)

,

where dq denotes the differential of the bivariate mapping log : M ×M → TM,
(p, q) �→ logq p, with respect to the second variable. F̂ corresponds to FTM if
we endow TM with the horizonal lift connection [15, 47]. Choosing the more
commonly used Sasaki metric instead does not yield commutativity.

Example 1.31 ([33]) For projection-based finite elements with P : M × RN →
TM, P(q, ·) = Pq(·), defined by the orthogonal projection onto TqM of Exam-
ple 1.28, we have
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F̂ (ξ, (v1, V1), . . . , (vl, Vl); (q,W))

=
(

Pq
(∑m

i=1 ϕi(ξ)vi − q
)

Pq
(∑m

i=1 ϕi(ξ)Vi −W
)− ∂1P(q,

∑m
i=1 ϕi(ξ)vi − q)(W)

)

=
(

Pq 0
−∂1P(q, ·)(W) Pq

)( ∑m
i=1 ϕi(ξ)vi − q∑m
i=1 ϕi(ξ)Vi −W

)

.

Hence, if we choose the projection P(q,W) : RN×N → TqM2

P(q,W) :=
(

Pq 0
−∂1P(q, ·)(W) Pq

)

we recover projection-based finite elements with values in TM. Note that P(q,W)
does not correspond to the standard projection which is

P̃(q,W) =
(

Pq 0
0 Pq

)

.

1.4 A Priori Error Theory

1.4.1 Sobolev Spaces of Maps into Manifolds

The analysis of Galerkin methods for the approximation of variational PDEs is
written in the language of Sobolev spaces. While some of the concepts can be
generalized directly to maps from � ∈ Rd to a smooth complete Riemannian
manifold (M, g), others need to treated more carefully.

Definition 1.32 Let (M, g) be a complete manifold with distance d(·, ·), and 1 ≤
p <∞. We define

Lp(�,M) :=
{

u : �→M | u measurable, u(�) separable,

∫

�

dp(u(x), q) dx <∞ for some q ∈M
}

.

A distance dLp on Lp(�,M) is then given by

d
p
Lp(u, v) :=

∫

�

dp(u(x), v(x)) dx.
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There are several ways to define the Sobolev space Wk,p(�,M). The most
common definition (see, e.g., [34, 40, 41, 64]) uses the Nash embedding theorem,
that asserts that every Riemannian manifold can be isometrically embedded into
some Euclidean space.

Definition 1.33 Let p ∈ [1,∞], and ι :M→ RN be an isometric embedding into
a Euclidean space. We then define

Wk,p
ι (�,M) :=

{

v ∈ Wk,p(�,RN) : v(x) ∈ ι(M) a.e.
}

.

While this definition is always possible it depends in principle on the choice of
embedding ι. If k = 1 and M is compact, then the definition is independent of ι
(see, e.g., [41]). For orders k ≥ 2, the definition is no longer intrinsic.

An alternative definition [42, 46, 53] for k = 1 uses only the metric structure
ofM.

Definition 1.34 Let p ∈ [1,∞]. We say that u ∈ W 1,p(�,M) if for every q ∈M
the map x �→ d(u(x), q) is in W 1,p(�), and if there exists a function h ∈ Lp(�)
independent of q such that |D(d(u(x), q))| ≤ h(x) almost everywhere.

This provides an intrinsic definition of W 1,p-spaces that is equivalent to Def-
inition 1.33, at least for compact M [35]. It also gives a notion of the Dirichlet
integrand |Du|: it is the optimal h in the definition above, which may differ from
the definition of |Du| given by an isometric embedding. Using the notion of
approximate continuity [7], it is possible to construct a posteriori an approximate
differential almost everywhere [26]. Metric-space-based definitions of Sobolev
spaces such as Definition 1.34, however, do not work for higher-order derivatives.

A third approach uses the chain rule to define a notion of weak derivatives [21,
22]: A map u : �→M is called colocally weakly differentiable if it is measurable
and f ◦ u is weakly differentiable for all f ∈ C1(M,R) with compact support.
This defines a unique bundle morphism du via D(f ◦ u) = df ◦ du, which directly
generalizes the classical notion of differential [21]. This notion extends to higher-
order derivatives [22]. For Riemannian manifolds, [22] also gives a definition of
a colocal weak covariant derivative. Intrinsic higher-order Sobolev maps are then
defined as maps for which the corresponding weak colocal covariant derivatives
are in Lp with respect to the norm induced by the Riemannian metric. While this
construction has several nice properties (a notion of intrinsic weak derivative, a
Rellich–Kondrachov type compactness result, a weak closure property of bounded
maps), one drawback is that the chain rule does not hold in general. This can
be overcome by assuming additional integrability conditions based on a k-tuple
norm.

In previous works about geometric finite elements [32, 36, 39], Definition 1.33
is used to define the Sobolev space Wk,p(�,M). For weak derivatives, only
Wk,p(�,M) ∩ C(�,M) is considered, and weak covariant derivatives are defined
using local coordinates. It is shown in [22] that although the homogeneous Sobolev



1 Geometric Finite Elements 27

space Ẇ k,p(�,M) defined by weak colocal covariant derivatives does not agree
with Ẇ k,p

ι (�,M), at least for compactM it holds that

Ẇ k,p
ι (�,M) =

k
⋂

j=1

Ẇ
j,
kp
j (�,M).

A similar result for continuous maps using weak derivatives in local coordinates is
shown in [36].

1.4.1.1 Smoothness Descriptors

Driven by a desire to retain the chain rule, previous works about geometric finite
elements [32, 39] introduced the following notion of integrability condition which
uses local coordinates to define weak differentiability only for continuous maps.

Definition 1.35 (Smoothness Descriptor) Let k ≥ 1, p ∈ [1,∞]. The homoge-
neous k-th order smoothness descriptor of a map u ∈ Wk,p ∩W 1,kp ∩ C(�,M) is
defined by

θ̇k,p,�(u) :=
(∫

�

|∇ku|p dx +
∫

�

|du|kp dx
) 1
p

,

with the usual modifications for p = ∞. The corresponding inhomogeneous
smoothness descriptor is

θk,p,�(u) :=
( k
∑

i=1

θ̇
p
i,p,�(u)

) 1
p

.

We will also need the smoothness descriptor for vector fields. Although vector
fields, i.e., maps (u, V ) : �→ TM, are linear in the sense that u−1TM is a vector
space for each u, the set of all vector fields for all base maps u is not linear. For
a direct generalization of the linear Sobolev norm, we generalize the smoothness
descriptor to vector fields by taking essentially a full Sobolev norm of the linear
vector field part V : � → u−1TM weighted with covariant derivatives of u to
obtain the correct scaling.

Definition 1.36 (Smoothness Descriptor for Vector Fields) Given k ∈ N and p ∈
[1,∞] set for i = 1, . . . , k

1

pi
:=

⎧

⎪⎪⎨

⎪⎪⎩

1
p

for ip > d,
1
p

− εi for ip = d,

i
d

for ip < d,

1

si
:= 1

p
− 1

pi
,
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where 0 < εi < min{ 1
i+p ,

1
ip

}. Let u ∈ Wk,pk ∩ C(�,M), and V ∈
Wk,p(�, u−1TM). We define the k-th order homogeneous smoothness descriptor
for vector fields by

�̇k,p,�(V ) :=
(

‖∇kV ‖p
Lp(�,u−1TM) +

k
∑

i=1

θ̇i,pi ,�(u)
p‖∇k−iV ‖p

Lsi (�,u−1TM)

)1/p

.

For k = 0, we set �̇0,p,�(V ) := ‖V ‖Lp , and we make the usual modifications for
p = ∞. The inhomogeneous smoothness descriptor is defined by

�k,p,�(V ) :=
( k
∑

s=0

�̇s,p,�(V )
p

) 1
p

=
(

‖V ‖p
Wk,p(�,u−1TM) +

k
∑

i=1

θ̇i,pi ,�(u)
p‖V ‖p

Wk−i,si (�,u−1TM)

) 1
p

.

For a fixed base map u, the smoothness descriptor acts like a semi-norm on
functions into the linear space u−1TM. In particular, if u maps � to a constant
point p on M, then the smoothness descriptor of a vector field V : � → TpM
coincides with the Sobolev semi-norm.

1.4.1.2 Scaling Properties

As already observed in [32], the homogeneous smoothness descriptor is subhomo-
geneous with respect to rescaling of the domain � ∈ Rd with a parameter h.

Definition 1.37 Let Tref, Th be two domains in Rd , and F : Th → Tref a C∞-
diffeomorphism. For l ∈ N0 we say that F scales with h of order l if we have

sup
x∈Tref

∣
∣
∣∂
βF−1(x)

∣
∣
∣ ≤ C hk for all β ∈ [d]k, k = 0, . . . , l, (i)

|det(DF(x))| ∼ h−d for all x ∈ Th (where DF is the Jacobian of F),
(ii)

sup
x∈Th

∣
∣
∣
∣

∂

∂xα
F (x)

∣
∣
∣
∣
≤ C h−1 for all α = 1, . . . , d. (iii)

Readers familiar with finite element theory will recognize such maps F as
transformations of an element of a discretization of � to a reference element. The
smoothness descriptor scales in the following manner.
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Lemma 1.38 Let Tref, Th be two domains in Rd , and F : Th → Tref a map that
scales with h of order l. Consider u ∈ Wk,p ∩W 1,kp ∩ C(�,M) with 1 ≤ k ≤ l

and p ∈ [1,∞]. Then

θ̇k,p,Tref(u ◦ F−1) ≤ C hk− d
p

(
k
∑

i=1

θ̇
p
i,p,Th

(u)

) 1
p

≤ C hk− d
p θk,p,Th(u).

The proof follows from the chain rule and the integral transformation formula
[32].

Remark 1.39 Note that Lemma 1.38 only asserts subhomogeneity of the smooth-
ness descriptor, as the homogeneous descriptor is bounded by the inhomogeneous
one. This differs from the scaling behavior of Sobolev semi-norms in the Euclidean
setting.

Like the smoothness descriptor for functions, the smoothness descriptor for
vector fields is subhomogeneous with respect to scaling of the domain [36, 39].

Lemma 1.40 Let Tref, Th be two domains in Rd , and F : Th → Tref a map
that scales with h of order l. Consider u ∈ Wk,pk ∩ C(�,M), and V ∈
Wk,p(�, u−1TM) with 1 ≤ k ≤ l and p ∈ [1,∞]. Then

�̇k,p,Tref(V ◦ F−1) ≤ C hk− d
p �k,p,Th(V ).

Assumption (iii) of Definition 1.37 is not required for the proof of Lemmas 1.38
and 1.40. Instead, it is needed for the following ‘inverse’ estimate [36].

Lemma 1.41 Let Tref, Th be two domains in Rd , and F : Th → Tref a map that
scales with h of order 1. Consider u ∈ W 1,p ∩ C(Th,M) with p ∈ [1,∞]. Then

θ̇1,p,Th(u) ≤ C h−1+ d
p θ̇1,p,Tref(u ◦ F−1).

1.4.1.3 Sobolev Distances

Based on the different definitions of Sobolev maps, the spaces W 1,p(�,M) can be
endowed with a metric topology. Several of these have been discussed in [19] based
on the definitions of [7, 42, 46, 53], with the result that while all of them are proper
generalizations of the classical topology onW 1,p(�,R) for 1 < p <∞, the spaces
are not complete for any of these distances.

In the context of colocal derivatives [21] so-called concordant distances are
discussed, which have the form

δ1,p(u, v) =
(∫

�

Dp(du(x), dv(x)) dx

) 1
p

, (1.8)
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where D is a distance on the tangent bundle TM of the target manifold M.
Completeness is shown in [21], ifD is the Sasaki metric. In the context of geometric
finite elements, this construction was also introduced to measure the W 1,2-error of
approximations [32, 36, 39]. However, instead of using the Sasaki metric directly,
a different notion based on the Sasaki norm of the horizontal lift connection
was introduced. This horizontal lift metric has the desirable property that W 1,p-
geodesics project onto Lp-geodesics, which are themselves families of pointwise
geodesics (geodesic homotopies).

Definition 1.42 Let u, v ∈ W 1,p(�,M) ∩ C(�,Binj(M)), and let � denote the
geodesic homotopy connecting u to v. We set

D
p

1,p(u, v) :=
d
∑

α=1

∫

�

‖∇dαu logu(x) v(x)‖pg(u(x)) dx,

and

dW 1,p (u, v) := dLp(u, v)+D1,p(u, v).

While this definition does not define a distance in the classical sense, one can
show that it is locally an quasi-infra-metric, i.e., it fulfills the triangle inequality and
the symmetry condition up to multiplication with a constant. The proofs for this are
based on the so-called uniformity lemma [32, 39]:

Lemma 1.43 (Uniformity Lemma) Let q > max{p, d}, and let K and L be two
constants such that L ≤ inj(M) and KL ≤ 1

‖Rm‖∞ , where Rm is the Riemann
tensor ofM. We set

W
1,q
K

:=
{

v ∈ W 1,q (�,M) : θ1,q,�(v) ≤ K
}

,

and denote by H 1,p,q
K,L an L-ball w.r.t. Ls in W 1,q

K , where 1
s

:= 1
p1

− 1
q

for p1 as

in Definition 1.36. Let � be the geodesic homotopy connecting u to v in H 1,p,q
K,L .

Consider a pointwise parallel vector field V ∈ W 1,p∩C(�×[0, 1], �−1TM) along
�. Then there exists a constant C depending on the curvature of M, the Sobolev
constant, and the dimension d of � such that

1

1 + C t ‖V (·, 0)‖W 1,p(�,u−1TM) ≤ ‖V (·, t)‖W 1,p(�,�(·,t)−1TM)

≤ (1 + C t)‖V (·, 0)‖W 1,p(�,u−1TM)

holds for all t ∈ [0, 1].
The proof of this lemma follows by differentiating ‖V (·, t)‖W 1,p(�,�(·,t)−1TM)

with respect to t and using the Hölder and Sobolev inequalities. Note that the
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uniformity lemma extends to higher-order Wk,p-Sobolev norms of vector fields as
long as the smoothness descriptors of the end point maps u and v are bounded in a
slightly higher-order (k, q)-smoothness descriptor (q > max{kp, d}).

Using Lemma 1.43 one can show that D1,2 is locally equivalent to both the
concordant distance induced by the Sasaki metric (1.8), as well as to the distance
induced by an embedding. This implies that it is a quasi-infra-metric [36].

Proposition 1.44 ([36]) On H 1,p,q
K,L the mapping dW 1,p is a quasi-infra-metric. If

ι : M → RN denotes a smooth isometric embedding, then for all u, v ∈ H
1,p,q
K,L

there exists a constant depending on the curvature ofM, ‖ι‖C2 , and K , such that

‖ι ◦ u− ι ◦ v‖
W 1,p(�,RN ) ≤ C dW 1,p (u, v).

If additionally dL∞(u, v) ≤ inj(M), then equivalence to both the distances induced
by the embedding and the Sasaki metric holds.

Finally, there exists a constant C such that

θ̇1,p,�(v) ≤ θ̇1,p,�(u)+ C D1,p(u, v).

For the context of finite element analysis we note the following scaling proper-
ties.

Proposition 1.45 Let Tref, Th be two domains in Rd , and F : Th → Tref a map that
scales with h of order 1. Consider u, v ∈ W 1,p ∩ C(Th,M) with p ∈ [1,∞]. Then

dLp(u, v) ≤ C h dp dLp(u ◦ F−1, v ◦ F−1)

D1,p(u, v) ≤ C h dp−1
D1,p(u ◦ F−1, v ◦ F−1).

The proof follows from the chain rule and the integral transformation for-
mula [32].

1.4.2 Discretization of Elliptic Energy Minimization Problems

We consider the minimization of energies J in H ⊂ W
1,q
φ (�,M), q > max{2, d},

where φ : �→M prescribes Dirichlet boundary data and a homotopy class.

u ∈ H : J(u) ≤ J(v) ∀v ∈ H. (1.9)

We assume that the boundary data φ is chosen such that there exists a unique (local)
solution u ∈ Wr+1,2(�,M) to (1.9). For a condensed discussion of such choices in
the context of harmonic maps see, e.g., [41].
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1.4.2.1 Ellipticity

The focus will be on W 1,2-elliptic energies. Following notions from metric space
theory [8] we define ellipticity with respect to a class of curves and a choice of
distance.

Definition 1.46 (Ellipticity) Let J : H → R be twice continuously differentiable
along geodesic homotopies � : [0, 1] � t �→ �(t) ∈ H . We say that J is

1. W 1,2-coercive around u ∈ H , if there exists a constant λ > 0 such that for all
geodesic homotopies � starting in u the map t �→ J(�(t)) is λ-convex with
respect to D1,2, i.e.,

J(�(t)) ≥ (1 − t)J(�(0))+ tJ(�(1))− λ

2
t (1 − t)D2

1,2(�(0), �(1)),

2. W 1,2-bounded around u if there exists a constant � > 0 such that for all v

J(v)−J(u) ≤ �

2
D2

1,2(v, u),

3. locallyW 1,2-elliptic if (1) and (2) hold for all v in a neighborhood of u (the exact
type of neighborhood may depend on J).

A prototypical example of a locally elliptic energy between manifolds is the
harmonic map energy, for which (1) and (2) hold around a minimizer u for maps
in H 1,2,q

K,L defined as in Lemma 1.43.
We consider the approximation of (1.9) by geometric finite elements. Assume

that we have a conforming grid G on �.

Definition 1.47 We say that a conforming grid G for the domain � ⊂ Rd is of
width h and order r , if for each element Th of G there exists a C∞-diffeomorphism
Fh : Th → Tref to a reference element Tref ⊂ Rd that scales with h of order r .

Let Sh,r (�,M) ⊂ H be a conforming discrete approximation space for a grid G
on � of width h and order r . This can be, e.g., any of the constructions presented in
Sect. 1.2.

Remark 1.48 The conformity assumption Sh,r (�,M) ⊂ H implies that the
boundary data φ|∂� can be represented exactly in Sh,r (�,M). This part of the
assumption may be waived and replaced by a standard approximation argument for
boundary data [20, 32].

Consider the discrete approximation of (1.9)

uh ∈ Sh,r (�,M) : J(uh) ≤ J(vh) ∀vh ∈ Sh,r (�,M). (1.10)

Variations of discrete functions provide a notion of discrete test vector fields
Sh,r (�, u

−1
h TM) along a discrete map uh ∈ Sh,r (�,M) (see Definition 1.25). We
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denote by Sh,r;0(�, u−1
h TM) the set of all vector fields Vh ∈ Sh,r (�, u

−1
h TM)

with boundary values equal to zero.

1.4.2.2 Approximability Conditions

In order to control the error between u and uh, we formulate approximability
conditions on the discrete space Sh,r (�,M) [32, 39]. This allows to obtain dis-
cretization error estimates for all approximation spaces that fulfill these conditions.
The conditions will be discussed for geodesic and projection-based finite elements
in Sect. 1.4.3.

The first condition is an estimate for the best approximation error in Sh,r (�,M),
similar to what is used in the Euclidean setting [20].

Condition 1.49 Let kp > d, r ≥ k − 1, and u ∈ Wk,p(�,M) with u(Th) ⊂ Bρ ⊂
M, where ρ ≤ inj(M), for all elements Th ∈ G. For small enough h there exists a
map uI ∈ Srh and constants C with

θ̇l,q,Th(uI ) ≤ C θ̇l,q,Th(u) (1.11)

for all k − d
p

≤ l ≤ k and q ≤ pd
d−p(k−l) , that fulfills on each element Th ∈ G the

estimate

dLp(u, uI )+ h D1,p(u, uI ) ≤ C hk θk,p,Th(u). (1.12)

Note that the discrete functions in Sh,r (�,M) ⊂ H are globally only of
W 1,q -smoothness. In analogy to the Euclidean theory we define grid-dependent
smoothness descriptors.

Definition 1.50 Let k ≥ 1, p ∈ [1,∞], and u ∈ C(�,M) with u|Th ∈
Wk,p(Th,M) for all elements Th from the grid G. We define the grid-dependent
smoothness descriptor of u by

θ̇k,p,G(u) :=
(
∑

Th∈G
θ̇
p
k,p,Th

(u)

) 1
p

.

Analogously, for a function v ∈ C(�,M) with v|Th ∈ Wk,pk (Th,M) for all
elements Th ∈ G, pk as in Definition 1.36, and a vector field V along v such that
V ∈ Wk,p(Th, v

−1TM) for all Th ∈ G, we define the grid-dependent smoothness
descriptor of V by

�̇k,p,G(V ) :=
(
∑

Th∈G
�̇
p
k,p,Th

(V )

) 1
p

.
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By summation over all elements, estimates like (1.11) and (1.12) imply corre-
sponding global bounds involving grid-dependent smoothness descriptors.

As we need to approximate the generalized test functions as well, we also
assume a best approximation error estimate between generalW 2,2 vector fields and
variations of discrete maps.

Condition 1.51 For any element Th from the grid G, let Srh(Th,M) ⊂
W 2,p2(Th,M) for p2 as in Definition 1.36 with p = k = 2. Given any
uh ∈ Srh(Th,M) and V ∈ W 2,2(Th, u

−1
h TM), there exists a family of maps

vh(t) ∈ Srh(Th,M) with vh(0) = uh and constants C such that for VI = d
dt
vh(0)

the estimates

�2,2,Th(VI ) ≤ C �2,2,Th(V )

and

‖V − VI‖W 1,2(Th,u
−1
h TM)

≤ Ch �2,2,Th(V )

hold.

Conditions 1.49 and 1.51 are sufficient to prove approximation errors locally
close to the exact solution u of (1.9). This locality can be achieved by restricting the
set of discrete functions Sh,r (�,M) in (1.10) by additional bounds. We still obtain
a meaningful result if we can show that the discrete solution uh stays away from
these bounds. In order to do this, we need the following inverse estimate.

Condition 1.52 On a grid G of width h and order r , under the additional
assumption that F−1

h : Tref → Th scales with order 2 for every Th ∈ G, for
p, q ∈ [1,∞] there exists a constant C such that

θ̇1,p,Th(vh) ≤ C h
−d max

{

0, 1
q
− 1
p

}

θ̇1,q,Th(vh)

θ̇2,p,Th(vh) ≤ C θ̇2
1,2p,Th(vh)+ C h

−1−d max
{

0, 1
q
− 1
p

}

θ̇1,q,Th(vh)

for any vh ∈ Sh,r (Th,M) with v(Th) ⊂ Bρ for ρ small enough.

Once we can show that the discrete solution is indeed close to the continuous one,
we can infer even stronger bounds on higher derivatives of it from the exact solution.
In order to do so, we need inverse estimates on differences of discrete functions, i.e.,
vector fields of the form logvh wh with vh,wh ∈ Sh,r (Th,M). Note that these are
not discrete vector fields in the sense of Definition 1.25 themselves.

Condition 1.53 On a grid G of width h and order r , under the additional
assumption that F−1

h : Tref → Th scales with order 2 for every Th ∈ G, for

p, q ∈ [1,∞] there exist constants C, Ĉ such that
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‖ logvh wh‖Lp(Th,v−1
h TM) ≤ C h−d max

{

0, 1
q
− 1
p

}

‖ logvh wh‖Lq(Th,v−1
h TM) (1.13)

| logvh wh|W 2,p(Th,u
−1
h TM)

≤ Cθ̇2,p,Th(vh)+ Cθ̇2
1,2p,Th(wh) (1.14)

+ Ch−1−d max
{

0, 1
q
− 1
p

}

‖ logvh wh‖W 1,q (Th,v
−1
h TM)

+ Ĉh−2‖ logvh wh‖Lp(Th,v−1
h TM)

for any vh,wh ∈ Sh,r (Th,M) with w(Th), v(Th) ⊂ Bρ for ρ small enough. For
r = 1, the constant Ĉ must be zero.

1.4.2.3 W 1,2-Error Bounds

We recall the W 1,2-discretization error bounds given in [32], in particular the
generalized Céa Lemma:

Lemma 1.54 Assume that u ∈ H is a minimizer of J : H → R w.r.t. variations
along geodesic homotopies in H , and that J is elliptic along geodesic homotopies
starting in u.
For K > θ1,q,�(u), L ≤ inj(M), and KL ≤ 1

|Rm|∞ let H 1,2,q
K,L be defined as in

Lemma 1.43, and consider a subset Vh ⊂ H ∩H 1,2,q
K,L such that

w = arg min
v∈Vh

J(v)

exists. Then

D1,2(u,w) ≤ (1 + C)2
√

�

λ
inf
v∈Vh

D1,2(u, v)

holds, where C is the constant appearing in Lemma 1.43.

A combination of this version of Céa’s lemma with Condition 1.49 yields the
W 1,2-error estimate shown in [32].

Theorem 1.55 Let 2(r + 1) > d, and r ≥ 1. Assume that u ∈ Wr+1,2
φ (�,M) is

a minimizer of J : H → R w.r.t. variations along geodesic homotopies in H , and
that J is elliptic along geodesic homotopies starting in u.

• For a conforming grid G of width h and order r set Vh := H ∩ Sh,r . Assume that
the boundary data φ|∂� is such that Vh is not empty.

• Let uI ∈ Srh be the approximating map from Condition 1.49, and let K be a
constant such that

K ≥ max{θ1,q,�(uI ), θ1,q,�(u)}.
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• Assume that h is small enough such that uI ∈ H 1,2,q
K,L , where H 1,2,q

K,L is defined as
in Lemma 1.43.

Then the discrete minimizer

uh := arg min
vh∈Vh∩H 1,2,q

K,L

J(vh)

fulfills the a priori error estimate

D1,2(u, uh) ≤ Chrθr+1,2,�(u).

Note that the proofs of Céa’s Lemma 1.54 and Theorem 1.55 do not use a first
variation of the discrete problem. Thus, they do not conflict with the additional K-
and L-bounds on the discrete functions. We can show using Condition 1.52 that we
can choose q such that the restricted solution uh ∈ Vh ∩H 1,2,q

K,L stays away from the
K and L bounds and is thus indeed a local solution in Vh:

Lemma 1.56 ([36]) Assume that Condition 1.52 holds, and that the grid G fulfills
the additional assumption that F−1

h : Tref → Th scales with order 2 for every

Th ∈ G. Let u ∈ Wr+1,2
φ (�,M), 2(r + 1) > d, uh ∈ H ∩ Srh with θ̇1,q,�(uh) ≤ K ,

and

D1,2(u, uh) ≤ C hrθr+1,2,�(u).

Then we can choose q > max{d, 2} such that

D1,q(u, uh) ≤ C hδ

holds with some δ > 0 and a constant C depending on K and u. Note that this also
implies

dL∞(u, uh) ≤ C hδ,

as well as θ1,q,�(uh) < K , as long as K > θ1,q,�(u) and h small enough.

The proof follows from Lp-interpolation for q between max{2, d} and sr as in
Definition 1.36, with p = 2 and k = r + 1.

1.4.2.4 L2-Error Bounds

A generalization of the Aubin–Nitsche lemma has been given in [39]. It is applicable
for energies that are “predominantly quadratic”, by which we mean that there is a
bound on the third variation of the energy. We will in the following denote the k-th
variation of the energy (cf. e.g. [30, 68]) by δkJ , omitting k for k = 1.
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Definition 1.57 Let q > max{d, 2} and J : H → R be an energy functional. We
say that J is predominantly quadratic if J is C3 along geodesic homotopies, and if
for any v ∈ H ∩W 1,q

K , and vector fields U,V along v

|δ3J(v)(U, V, V )|
≤ C(K,M)‖U‖W 1,p(�,v−1TM)‖V ‖W 1,2(�,v−1TM)‖V ‖Wo,t (�,v−1TM),

with

p = ∞ if d = 1,

p ∈ [1,∞) if d = 2,

1

p
= 1

2
− 1

d
if d > 2,

and either (o, t) = (1, 2), or o = 0 and t ≤ d.

Note that as long as the coefficient functions of a semilinear PDE coming from a
minimization problem are smooth enough and bounded, the corresponding energy
is predominantly quadratic [37]. A prototypical example is again the harmonic map
energy.

We consider the variational formulation of the problems (1.9) and (1.10)

u ∈ H : δJ(u)(V ) = 0 ∀V ∈ W 1,2
0 (�, u−1TM), (1.15)

uh ∈ Srh(�,M) : δJ(uh)(Vh)= 0 ∀Vh ∈ Srh;0(�, u−1
h TM). (1.16)

In the Euclidean setting, Galerkin orthogonality is an important tool for proving
L2-error estimates. It is obtained by inserting a discrete test function into the
continuous problem and subtracting the variational formulations. As in the manifold
setting the test spaces depend on the base functions, we obtain only an integrated
type of Galerkin orthogonality with respect to a transport of the test vector field:

Proposition 1.58 Let u and uh be solutions to (1.15) and (1.16), respectively, and
let � be the geodesic homotopy joining u and uh. Then, for any transport Vh :
[0, 1] → W

1,2
0 (�, �(t)−1TM) along � of any discrete vector field Vh(1) = Vh,1 ∈

Sh(�, u
−1
h TM) holds

∫ 1

0
δ2J(�(t))(Vh(t), �̇(t))+ δJ(�(t))(∇tVh(t)) dt = 0.

While there are different choices of transports possible, we employ parallel
transport to let the second term on the left hand side vanish. A second tool is
the definition of the so-called adjoint problem. For nonlinear energies this is a
linearization of problem (1.15) with a right hand side that is given by the difference
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of the solutions u and uh to (1.15) and (1.16), respectively. In the context of
Riemannian manifolds we call this linearization the deformation problem, as it acts
on vector fields:

FindW ∈ W 1,2(�, u−1TM) such that

δ2J(u)(W, V ) = −(V , logu uh)L2(�,u−1TM) ∀V ∈ W 1,2
0 (�, u−1TM).

(1.17)

Based on generalizations of the standard tools in the Aubin–Nitsche lemma to
Riemannian manifold codomains, an L2-error estimate has been proven in [39]:

Theorem 1.59 Let the assumptions of Theorem 1.55 and Lemma 1.56 be fulfilled
with q > max{d, 4} chosen as in Lemma 1.56 for a predominantly quadratic energy
J , and a discrete set Srh fulfilling Condition 1.51.

Let uh be a minimizer of J in Srh ∩ H 1,2,q
K,L under the boundary and homotopy

conditions. We assume that

θ2,p2,G(uh) ≤ K2 (1.18)

for a constant K2 and p2 as in Definition 1.36 with p = k = 2. Finally, suppose
that the deformation problem (1.17) is H 2-regular, i.e., that its solutionW fulfills

‖W‖W 2,2(�,u−1TM) ≤ C ‖ logu uh‖L2(�,u−1TM).

Then there exists a constant C such that

dL2(u, uh) ≤ C hr+1
(

θr+1,2,�(u)+ θ2
r+1,2,�(u)

)

.

The proof follows the basic idea of the Aubin–Nitsche trick: The vector field
describing the error logu uh is inserted as a test vector field in the deformation
problem:

dL2(u, uh) = −δ2J(u)(W, logu uh). (1.19)

Further, we transport the solution W of the deformation problem to the discrete
solution uh, and interpolate along uh. This produces a discrete vector field WI for
which the integrated Galerkin orthogonality holds. Adding this to the right hand side
of (1.19), we integrate again and obtain

d2
L2(u, uh) =

∫ 1

0

∫ t

0
δ3J(�(s))

( s

t
WI (s)+

(

1 − s

t

)

W(s), �̇(s), �̇(s)
)

ds dt

+
∫ 1

0

∫ t

0

1

t
δ2J(�(s))(WI (s)−W(s), �̇(s)) ds dt.
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The first integral can be estimated by norms of W and �̇ since J is assumed to
be predominantly quadratic. The second integral is bounded using the ellipticity
assumption. The arising norms are estimated using Theorem 1.55, Condition 1.51
for vector field interpolation, and the H 2-regularity.

Note that in order to transportH 2-norms of vector fields the a priori bound (1.18)
is needed. This additional a priori bound needs either to be proven directly for the
discrete solution uh, or can be shown in general if Condition 1.53 is fulfilled.

Proposition 1.60 ([39]) Let r ≥ 1 and 2(r + 1) > d. Define si, pi as in
Definition 1.36 with p = 2 and k = r + 1, and let q > max{4, d} fulfill
2p2 ≤ q < sr . Suppose that the grid G on � is of width h and order r , that
F−1
h : Tref → Th scales with order 2 for all elements Th, and that Srh fulfills

Conditions 1.49, 1.52, and 1.53. For v ∈ Wr+1,2(�,M), and vh ∈ Sh,r ∩ H 1,2,q
K,L

with vI |∂� = vh|∂�, we assume the relation

D1,2(v, vh) ≤ C hrθr+1,2,�(v).

Then there exists a constant K2 depending on v and K but independent of h such
that

θ2,p2,G(vh) ≤ K2

if h is small enough.

1.4.3 Approximation Errors

In this section we discuss Conditions 1.49–1.53 for two of the geometric methods—
geodesic and projection-based finite elements.

1.4.3.1 Geodesic Finite Elements

Detailed proofs that geodesic finite elements fulfill the Conditions 1.49–1.53 have
appeared in [32] and [38, Section 1.3].

The best-approximation condition 1.49 can be shown for uI ∈ Sgeo
h,r (�,M) being

the geodesic interpolant of u. In particular, the a priori bound (1.11) can be shown by
contradiction. The interpolation estimate (1.12) has appeared in [32], and is based on
the first-order optimality condition (1.3) using a Taylor expansion of the vector field
loguI (x) u(y). Both estimates are done on a reference element, and use the scaling
properties in Sect. 1.4.1.2.

The proof of best-approximation estimates for vector fields, Condition 1.51,
follows for interpolations of continuous vector fields analogously to the proof of
(1.12) for geodesic finite elements, as discrete vector fields are themselves geodesic
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interpolations for the pseudo-Riemannian codomain TM with the horizontal lift
metric (cf. Sect. 1.3.2). If the vector fields are discontinuous, so that geodesic
interpolation is not well-defined, a weakened version of Condition 1.51 can be
proven using mollifier smoothing [38].

The inverse estimates, Condition 1.52, follow from differentiation of (1.3),
properties of the exponential map, and norm equivalence in Rm, where m is the
number of degrees of freedom on Th. Note that they do not hold for higher order
smoothness descriptors.

The inverse estimate (1.13) for Lp-differences of geodesic finite elements in
Condition 1.53 follows from the fact that the point-wise difference of two maps
in u, v ∈ S

geo
h (�,M) can be estimated from above and below by the norm of a

vector field of the form

m
∑

i=1

ϕi(ξ)d logu(ξ) ui(Wi).

The class of these vector fields is isomorphic to the finite-dimensional product space
�mi=1TuiM. Thus, standard arguments for norm equivalences can be applied on a
reference element and scaled to the grid. The higher-order estimate (1.14) follows
from a similar argument using the differentiated versions of (1.3) and the scaling of
the Lagrange basis functions ϕi and their derivatives.

1.4.3.2 Projection-Based Finite Elements

Detailed proofs that projection-based finite elements fulfill the a priori condi-
tions 1.49–1.53 have appeared in [33].

Introduce the Lagrange interpolation operator

QRN : C(�,RN)→ C(�,RN), QRN v =
∑

i∈I
v(ξi)ϕi,

and the projected operator

QM : C(�,RN)→ C(�,M), QM = P ◦QRN ,

where P is the superposition operator induced by the closest-point projection P
from RN onto M. One can bound the discrete maps QMv in terms of smooth-
ness descriptors of QRnv using boundedness of the projection operator, and the
Galiardo–Nirenberg–Sobolev inequality for higher-order derivatives. This implies
the a priori bound (1.11) of Condition (1.49) as well as the inverse estimates in
Condition 1.52 and Condition 1.53 using inverse estimates for QRn . The interpo-
lation error (1.12) follows from properties of the standard Lagrange interpolation
QRn using the triangle inequality, and the identity QRn ◦QM = QRn . Analogous
but even simpler to prove is Condition 1.51, as the projection operator for vector
fields is actually linear.
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1.5 Numerical Examples

We close by showing three numerical examples that demonstrate the use of
geometric finite elements for different standard problems. All these are problems
with optimization formulations. After discretization, they can be written as algebraic
minimization problems on the product manifoldM|I | (but see [57] for a discussion
of the subtleties involved), where |I | is the global number of Lagrange points or
control points. This minimization problem is solved using the Riemannian trust-
region method introduced in [2] together with the inner monotone multigrid solver
described in [56]. Gradient and Hessian of the energy functional are computed using
the ADOL-C automatic differentiation software [65], and the formula derived in [3]
to obtain the Riemannian Hessian matrix from the Euclidean one.

1.5.1 Harmonic Maps into the Sphere

We first show measurements of the L2 and H 1 discretization errors of projection-
based and geodesic finite elements for harmonic maps into S2, confirming the
theoretical predictions of Chapter 1.4. The results of this section have previously
appeared in [33].

As domain we use the square� = (−5, 5)2, and we prescribe Dirichlet boundary
conditions. As Dirichlet values we demand the values of the inverse stereographic
projection function

pst : R2 → S2, pst(x) :=
(

2x1

|x|2 + 1
,

2x2

|x|2 + 1
,
|x|2 − 1

|x|2 + 1

)T

,

restricted to ∂�. This function is in C∞, and we can therefore hope for optimal
discretization error orders. Indeed, it is shown in [13] (see also [50]) that this
function is actually a minimizer of the harmonic energy in the set of functions that
are connected to pst by continuous deformations, and we therefore have a closed-
form reference solution to compare with.

We discretize the domain with the grid shown in Fig. 1.3, and create a sequence
of grids by refining the initial grid uniformly up to six times. We then compute
harmonic maps in spaces of projection-based and geometric finite elements of orders
r = 1, 2, 3 using the algorithm described above.

The Riemannian trust-region solver is set to iterate until the maximum norm of
the correction drops below 10−6. We then compute errors

ekr = ‖vkr − pst‖, k = 0, . . . , 6, r = 1, 2, 3,
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Fig. 1.3 Approximating harmonic maps from a square into the unit sphere in R3. Left: coarsest
grid. Right: function values

where vkr is the discrete solution, and k is the number of grid refinement steps.
The norm ‖·‖ is either the norm in L2(�,R3), or the semi-norm in H 1(�,R3);
in other words, we interpret the functions as Sobolev functions in the sense of
Definition 1.33.

Sixth-order Gaussian quadrature rules are used for the integrals, but note that
since geometric finite element functions are not piecewise polynomials in R3, a
small additional error due to numerical quadrature remains.

Figure 1.4 shows the errors ekr as functions of the normalized mesh size h both
for projection-based finite elements (Fig. 1.4a) and for geodesic finite elements
(Fig. 1.4b). We see that for r-th order finite elements the L2-error decreases like
hr+1, and the H 1-error decreases like hr . Hence we can reproduce the optimal
convergence behavior predicted by Theorems 1.55 and 1.59.

Comparing the two discretizations, one can see that while the same asymptotic
orders are obtained, the constant is slightly better for geodesic finite elements.
On the other hand, one can see that the graphs in Fig. 1.4b do not contain values
for the two coarsest grids and approximation orders 2 and 3. This is because the
minimization problem that defines geodesic interpolation was actually ill-defined on
at least one grid element in these cases. The problem does not happen for projection-
based finite elements for this example. This is an effect of the increased radius
of well-posedness for projection-based finite elements into S2, briefly explained in
Remark 1.14.

The decisive argument for projection-based finite elements for this scenario,
however, is run-time. Figure 1.5 plots the total time needed to compute the harmonic
energy for the different finite element spaces and grid resolutions, computed on a
standard laptop computer. Projection-based finite elements need only about 10 %
of the time of geodesic finite elements. This is of course because projection-
based interpolation is given by a simple closed-form formula in the case of M =
S2, whereas for geodesic finite elements it involves numerically solving a small
minimization problem (1.2). In practical applications of sphere-valued problems,
projection-based finite elements are therefore typically preferable to geodesic finite
elements. Note, however, that the run-time difference very much depends on the
target space M. In [33] it is shown, e.g., that there is hardly any difference if
M = SO(3).
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Fig. 1.4 Discretization errors for a harmonic map into S2 as a function of the normalized grid
edge length. Left: L2-norm. Right: H 1-semi-norm. The black dashed reference lines are at the
same positions for both discretizations. (a) Projection-based finite elements. (b) Geodesic finite
elements

Fig. 1.5 Wall-time needed to
compute the harmonic energy
on seven different grids and
with approximation orders
r = 1, 2, 3. Solid:
projection-based finite
elements. Dashed: geodesic
finite elements
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1.5.2 Magnetic Skyrmions in the Plane

In the second example we consider a model of chiral magnetic Skyrmions in the
plane as investigated, e.g., by Melcher [50]. Magnetic Skyrmions are quasi-particles
that appear as soliton solutions in micromagnetic descriptions of ferromagnetic
materials [25]. These particles are of considerable technological interest, because
they allow to describe magnetization patterns that are kept stable by topological
restrictions.

Following [50], we consider a two-dimensional domain � and a field of
magnetization vectors m : � → S2. Fixing the values of m on the entire boundary
of � splits the set of continuous functions m into pairwise disconnected homotopy
classes. For any such class we are interested in finding a local minimizer of the
energy functional

E(m) =
∫

�

e(m) dx =
∫

�

[
1

2
|∇m|2 + κm · (∇ × m)+ h

2
|m − e3|2

]

dx

in that class. The two material parameters κ �= 0 and h > 0 are the normalized
Dzyaloshinskii–Moriya constant and the normalized magnetic field strength, respec-
tively.

Inspired by the works of [16], who investigated lattices of Skyrmions, we pick
� to be a regular hexagon with edge length 1. As in [16], we prescribe Dirichlet
boundary values

m(x) = (1, 0, 0)T on ∂�,

and we are looking for minimizers in the class of functions with topological
charge +1.

We discretize the domain by six equilateral triangles, and create a hierarchy of
grid by uniform refinement. For the discretization we pick projection-based finite
elements, for their advantage in speed. Figure 1.6 shows that the solution really is a
soliton. Its diameter can be controlled with the parameter h/κ2.

Note that the Skyrmion problem is covered by our a priori error theory, as long
as κ2 < h, and the continuous minimizer solution m� fulfills

(∫

�

e(m�)q dx

) 1
q

<
1

2C2(q,�)

(

1 − κ2

h

)

,

where q > 1, and C(q,�) denotes the constant of the embedding H 1
0 (�) ↪→

L
2q
q−1 (�).
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Fig. 1.6 Left: coarse grid; Right: Skyrmion solution

Fig. 1.7 Discretization error of the Skyrmion example. Left: error in the L2 norm. Right: error in
the H 1 semi-norm

We numerically determine the discretization error behavior by comparing with a
numerical reference solution obtained by 10, 9, and 8 steps of uniform refinement
for approximation orders 1, 2, and 3, respectively. Figure 1.7 plots the errors in the
L2 norm and the H 1 semi-norm with respect to the standard embedding of S2 into
R3, for finite elements with approximation orders 1, 2, and 3. These figures show
that optimal orders are obtained in practice. The reason for the slightly superoptimal
behavior of the L2 error is unclear.

1.5.3 Geometrically Exact Cosserat Plates

We finally show an example with the target spaceM = SO(3), which has appeared
previously in [59]. For this we simulate torsion of a long elastic strip, which is
modeled by a field m : � → R3 of midsurface displacements, and a field R :
� → SO(3) of microrotations. Stable configurations are described as minimizers
of an energy involving the first derivatives of m and R. One short edge is clamped,
and using prescribed displacements, the other short edge is then rotated around the
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center line of the strip, to a final position of three full revolutions. The example
hence demonstrates that geometric finite elements can discretize Cosserat materials
with arbitrarily large rotations.

Let � = (0, 100)mm × (−5, 5)mm be the parameter domain, and γ0 and γ1 be
the two short ends. Let R3 be the third column of the matrix R. We clamp the shell
on γ0 by requiring

m(x, y) = (x, y, 0), R3 = (0, 0, 1)T on γ0,

and we prescribe a parameter dependent displacement

mt(x, y) =
⎛

⎝

1 0 0
0 cos 2πt − sin 2πt
0 sin 2πt cos 2πt

⎞

⎠

⎛

⎝

x

y

0

⎞

⎠ (Rt )3 =
⎛

⎝

0
− sin 2πt
cos 2πt

⎞

⎠ on γ1.

For each increase of t by 1 this models one full revolution of γ1 around the
shell central axis. Homogeneous Neumann boundary conditions are applied to the
remaining boundary degrees of freedom. The material parameters are given in
Table 1.1. We discretize the domain with 10 × 1 quadrilateral elements, and use
second-order geodesic finite elements to discretize the problem.

The result is pictured in Fig. 1.8 for several values of t . Having little bending
stiffness, the configuration stays symmetric for the first few rounds. After about
three full revolutions, a breaking of the symmetry can be observed. Figure 1.9 shows
one configuration of the plate with the microrotation field.

Table 1.1 Material parameters for the twisted strip

h [mm] μ [N/m2] λ [N/m2] μc [N/m2] Lc [mm] q [1]
2 5.6452 · 109 2.1796 · 109 0 2 · 10−3 2

Fig. 1.8 Twisted rectangular strip at different parameter values t , with t equal to the number of
revolutions
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Fig. 1.9 Twisted strip with the microrotation fieldR visualized as orthonormal director frame field
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Abstract Many methods for processing scalar and vector valued images, volumes
and other data in the context of inverse problems are based on variational for-
mulations. Such formulations require appropriate regularization functionals that
model expected properties of the object to reconstruct. Prominent examples of
regularization functionals in a vector-space context are the total variation (TV)
and the Mumford-Shah functional, as well as higher-order schemes such as total
generalized variation models. Driven by applications where the signals or data
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live in nonlinear manifolds, there has been quite some interest in developing
analogous methods for nonlinear, manifold-valued data recently. In this chapter,
we consider various variational regularization methods for manifold-valued data. In
particular, we consider TV minimization as well as higher order models such as total
generalized variation (TGV). Also, we discuss (discrete) Mumford-Shah models
and related methods for piecewise constant data. We develop discrete energies for
denoising and report on algorithmic approaches to minimize them. Further, we
also deal with the extension of such methods to incorporate indirect measurement
terms, thus addressing the inverse problem setup. Finally, we discuss wavelet sparse
regularization for manifold-valued data.

2.1 Introduction

Any measurement process, either direct or indirect, produces noisy data. While for
some setups, the noise can safely be ignored, for many others it severely hinders an
interpretation or further processing of the data of interest. In addition, measurements
might also be incomplete such that again direct usability of the measured data is
limited.

Variational regularization, i.e., a postprocessing or reconstruction of the quantity
of interest via the minimization of an energy functional, often allows to reduce data
corruption significantly. The success of such methods heavily relies on suitable
regularization functionals and, in particular in the broadly relevant situation that
the quantity of interest is sparse in some sense, non-smooth functionals are known
to perform very well. Prominent and well-established examples of non-smooth
regularization functional in the context of vector-space data are for instance the total
variation functional and higher-order extensions such as total generalized variation,
the Mumford-Shah functional and the �1- or �0-penalization of coefficients w.r.t.
some wavelet basis.

When it comes to data in a non-linear space such as a manifold, the situation
is different and the development of appropriate analogues of non-smooth regu-
larization functionals in this setting is currently an active topic of research with
many challenges still to be overcome. Most of these challenges are related to the
nonlinearity of the underlying space, which complicates the transfer of concepts
from the context of vector-space regularizers, such as measure-valued derivatives or
basis transforms, but also their numerical realization.

On the other hand, applications where the underlying data naturally lives in a
non-linear space are frequent and relevant. A prominent example is diffusion tensor
imaging (DTI), which is a technique to quantify non-invasively the diffusional
characteristics of a specimen [10, 69]. Here the underlying data space is the
set of positive (definite) matrices, which becomes a Cartan-Hadamard manifold
when equipped with the corresponding Fisher-Rao metric. Another example is
interferometric synthetic aperture radar (InSAR) imaging which is an important
airborne imaging modality for geodesy [76]. Often the InSAR image has the
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interpretation of a wrapped periodic version of a digital elevation model [87] and
the underlying data space is the unit circle S1. Further examples are nonlinear color
spaces for image processing, as for instance the LCh, HSV and HSL color spaces
(where the underlying manifold is the cylinder R2 × S1) and chromaticity-based
color spaces where the underlying manifold is S2 × R, see [37]. Also, the rotation
group SO(3) appears as data space in the context of aircraft orientations and camera
positions [105], protein alignments [60], and the tracking of 3D rotational data
arising in robotics [44]. Data in the euclidean motion group SE(3) may represent
poses [89] and sphere-valued data appear as orientation fields of three dimensional
images [86]. Finally, shape-space data [16, 77] constitutes manifold-valued data as
well.

Motivated by such applications, we review existing non-smooth regularization
techniques for non-linear geometric data and their numerical realization in this
chapter. Following the majority of existing approaches, we will concentrate on
discrete signals in a finite difference setting, which is appropriate particularly for
image processing tasks due to the mostly Cartesian grid domains of images. We
start with total variation regularization in Sect. 2.2, which can be transferred to a
rather simple yet effective approach for non-linear data with different possibilities
for a numerical realization. With the aim of overcoming well-known drawbacks
of TV regularization, in particular so-called staircasing effects, we then move
to higher-order functionals in Sect. 2.3, where the goal is to provide a model
for piecewise smooth data with jumps. Next, having a similar scope, we discuss
different models for Mumford-Shah regularization and their algorithmic realization
(using concepts of dynamic programming) in Sect. 2.4. Indirect measurements in
the context of manifold valued data are then the scope of Sect. 2.5, where we
consider a regularization framework and algorithmic realization that applies to the
previously defined approaches. Finally, we deal with wavelet sparse regularization
of manifold valued data in Sect. 2.6 where we consider �1 and �0 type models and
their algorithmic realization.

2.2 Total Variation Regularization of Manifold Valued Data

For scalar data, total variation regularization was early considered by Rudin et al.
[90] and by Chambolle and Lions [33] in the 1990s. A major advantage of total
variation regularization compared to classical Tikhonov regularization is that it
preserves sharp edges [59, 101] which is the reason for a high popularity of TV
regularization in particular in applications with image-related data. The most direct
application of TV regularization is denoising, where �2 data terms have originally
been used in [90] (and are well-suited in case of Gaussian noise) and �1 data
terms are popular due to robustness against outliers and some favorable analytical
properties [3, 36, 81]. An extension of TV for vector-valued data has early been
considered in [91] and we refer to [45] for an overview of different approaches.

This section reviews existing extensions of TV regularization to manifold-valued
data. In the continuous setting, such an extension has been considered analytically in
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[56, 57], where [57] deals with the S1 case and [56] deals with the general case using
the notion of cartesian currents. There, in particular, the existence of minimizers
of certain TV-type energies in the continuous domain setup has been shown. In a
discrete, manifold-valued setting, there is a rather straight forward definition of TV.
Here, the challenge is more to develop appropriate algorithmic realizations. Indeed,
many of the successful numerical algorithms for TV minimization in the vector
space setting, such as [32, 34, 58] and [82] for �1-TV, rely on smoothing or convex
duality, where for the latter no comprehensive theory is available in the manifold
setting.

2.2.1 Models

For univariate data of length N in a finite dimensional Riemannian manifoldM, the
(discrete) TV denoising problem with �q -type data fidelity term reads as

argminx∈MN

{ 1

q

N
∑

i=1

d(xi, fi)
q + α

N−1
∑

i=1

d(xi, xi+1)
}

. (2.1)

Here, f = (fi)
N
i=1 denotes the observed data and x = (xi)

N
i=1 is the argument to

optimize for. Further, q ∈ [1,∞) is a real number and α > 0 is a regularization
parameter controlling the trade of between data fidelity and the regularity. The
symbol d(y, z) denotes the distance induced by the Riemannian metric on the
manifold M. We note that in the euclidean case M = Rd , the above distance to
the data f corresponds to the �q norm. For noise types with heavier tails (such as
Laplacian noise in the euclidean case,) q = 1 is a good choice. We further point out
that, in the scalar caseM = R, the expression

∑N−1
i=1 d(xi, xi+1) defines the total

variation of the sequence x interpreted as a finite sum of point measures.
In the bivariate case, a manifold version of TV denoising for signals inMN×M

is given by

argminu∈MN×M
{

1
q

∑

i,j
d(xi,j , fi,j )

q (2.2)

+ α
∑

i,j

(

d(xi,j , xi+1,j )
p + d(xi,j , xi,j+1)

p
)1/p

}

.

Note that here and in the following, we will frequently omit the index bounds in
finite-length signals and sums for the sake of simplicity, and always implicitly set
all scalar-valued summands containing out-of-bound indices to 0. In (2.2), the cases
p = 1 and p = 2 are most relevant, where p = 1 has computational advantages
due to a separable structure and p = 2 is often used because is corresponds to
an isotropic functional in the continuous, vector-space case. We note however that,
in the TV case, the effects resulting from anisotropic discretization are not severe.
Moreover, they can be almost completely eliminated by including further difference
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directions, such as diagonal differences. For details on including further difference
directions we refer to Sect. 2.4 (discussing reduction of anisotropy effects for the
Mumford-Shah case in which case such effects are more relevant.)

Note that if we replace the distance term in the TV component of (2.1) by the
squared distance (or remove the square root for p = 2 in (2.2)), we end up with
a discrete model of classical H 1 regularization. Further, we may also replace the
distance term in the regularizer by h ◦ d where h can for instance be the so-called
Huber function which is a parabola for small arguments smoothly glued with two
linear functions for larger arguments. Using this, we end up with models for Huber
regularization, see [114] for details.

2.2.2 Algorithmic Realization

As mentioned in the introduction to this section, the typical methods used for TV
regularization in vector spaces are based on convex duality. The respective concepts
are not available in a manifold setting. However, there are different strategies to
solve (2.1) and (2.2), and we briefly review some relevant strategies in the following.

The authors of [40, 100] consider TV regularization for S1-valued data and
develop a lifting approach, i.e., they lift functions with values in S1 to functions with
values in the universal covering R of S1, lifting the involved functionals at the same
time such that the periodicity of the data is respected. This results in a nonconvex
problem for real valued data (which still reflects the original S1 situation), which can
then algorithmically be approached by using convex optimization techniques on the
convex relaxation of the nonconvex vector space problem. We note that the approach
is a covering space approach which relies on the fact that the covering space is
a vector space which limits its generalization to general manifolds. In connection
with S1 valued data we also point out the paper [98] which provides an exact solver
for the univariate L1-TV problem (2.1) with q = 1.

For general manifolds there are three conceptually different approaches to TV
regularization. The authors of [74] reformulate the TV problem as a multi-label
optimization problem. More precisely, they consider a lifted reformulation in a
vector-space setting, where the unknown takes values in the space of probability
measures on the manifold (rather than the manifold itself), such that it assigns
a probability for each given value on the manifold. Constraining the values of
the unknown to be delta peaks, this would correspond to an exact reformulation
whereas dropping this constraint yields a convex relaxation. After discretization, the
unknown takes values in the unit simplex assigning a probability to each element
of a discrete set of possible values. This corresponds to a lifting of the problem
to higher dimensions, where the number of values the unknown is allowed to attain
defines the dimensionality of the problem. Having a vector-space structure available,
the lifted problem is then solved numerically using duality-based methods. We refer
to [74] for details and to Chapter 3 of this book for an overview of research in that
direction and extensions.
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Another approach can be found in the paper [63]. There, the authors employ an
iteratively reweighted least squares (IRLS) algorithm to the isotropic discrete TV
functional (2.2). The idea of the IRLS is to replace the distance terms in the TV
regularizer by squared distance terms and to introduce a weight for each summand
of the regularizer. Then, fixing the weights, the problem is differentiable and can
be solved using methods for differentiable functions such as a gradient descent
scheme. In a next step, the weights are updated where a large residual part of
a summand results in a small weight, and the process is iterated. This results in
an alternating minimization algorithm. The authors show convergence in the case
of Hadamard spaces and for data living in a half-sphere. We mention that IRLS
minimization is frequently applied for recovering sparse signals and that it has been
also applied to scalar TV minimization in [88]. In connection with this, we also
mention the paper [13] which considers half-quadratic minimization approaches that
are generalizations of [63].

Finally, the approach of [114] to TV regularization employs iterative geodesic
averaging to implement cyclic and parallel proximal point algorithms. The main
point here is that the appearing proximal mappings can be analytically computed
and the resulting algorithms exclusively perform iterative geodesic averaging. This
means that only points on geodesics have to be computed. We will elaborate on this
approach in the following. In connection with this, we also mention the paper [12]
where a generalized forward-backward type algorithm is proposed to solve a related
problem in the context of DTI; see also [11, 92] in the context of shape spaces.

The approach of [114] relies on the concepts of cyclic proximal point algorithms
(CPPAs) and parallel proximal point algorithms (PPPA) in a manifold. A reference
for cyclic proximal point algorithms in vector spaces is [19]. In the context of
nonlinear spaces, the concept of CPPAs was first proposed in [7], where it is
employed to compute means and medians in Hadamard spaces. In the context of
variational regularization methods for nonlinear, manifold-valued data, they were
first used in [114], which also proposed the PPPA in the manifold setting.

CPPAs and PPPAs

The idea of both CPPAs and PPPAs is to decompose a functional F :MN → R to
be minimized into basic atoms (Fi)Ki=1 and then to compute the proximal mappings
of the atoms Fi iteratively. For a CPPA, this is done in a cyclic way, and for a PPPA,
in a parallel way. More precisely, assume that

F =
∑K

i=1
Fi (2.3)

and consider the proximal mappings [6, 48, 78] proxλFi :MN →MN given as

proxλFi (x) = argminy Fi(y)+ 1
2λ

∑N

j=1
d(xj , yj )

2. (2.4)
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Algorithm 1 CPPA for solving minx F (x) with F = ∑K
j=1 Fj

1: CPPA(x0, (λk)k, (σ (j))
K
j=1)

2: k = 0, x0
0 = x0

3: repeat until stopping criterion fulfilled
4: forj = 1, . . . , K
5: xkj = proxλkFσ(j) (x

k
j−1)

6: xk+1
0 = xkK, k ← k + 1

7: return xk0

Algorithm 2 PPPA for solving minx F (x) with F = ∑K
j=1 Fj

1: PPPA(x0, (λk)k)

2: k = 0,
3: repeat until stopping criterion fulfilled
4: forj = 1, . . . , K
5: xk+1

j = proxλkFj (x
k)

6: xk+1 = meanj
(

xk+1
j

)

, k ← k + 1

7: return xk

One cycle of a CPPA then consists of applying each proximal mapping proxλFi
once in a prescribed order, e.g., proxλF1

, proxλF2
, proxλF3

, . . . , or, generally,
proxλFσ(1) , proxλFσ(2) , proxλFσ(3) , . . . , where the symbol σ is employed to denote
a permutation. The cyclic nature is reflected in the fact that the output of proxλFσ(i)
is used as input for proxλfσ(i+1)

. Since the ith update is immediately used for the
(i+1)th step, it can be seen as a Gauss-Seidel-type scheme. We refer to Algorithm 1
for its implementation in pseudocode.

A PPPA consists of applying the proximal mapping to each atom Fi to the
output of the previous iteration xk in parallel and then averaging the results, see
Algorithm 2. Since it performs the elementary update steps, i.e., the evaluation
of the proximal mappings, in parallel it can be seen as update pattern of Jacobi
type. In Algorithm 2, the symbol mean denotes the generalization of the arithmetic
average to a Riemannian manifold, which is the well known intrinsic mean, i.e.,
given z1, . . . , zK inM, a mean z∗ ∈M is defined by (cf. [50, 70, 71, 83])

z∗ = meanj
(

zj
) = argminz∈M

∑K

j=1
d(z, zj )

2. (2.5)

Please note that this definition is employed component-wise for xk+1 in Algo-
rithm 2. We note that, if the (Fi)i are lower semi continuous, both the minimization
problem for the proximal mapping and for the mean admit a solution. On general
manifolds, however, the solution is not necessarily unique. For arguments whose
points are all contained in a small ball (whose radius depends on the sectional
curvature M) it is unique, see [6, 48, 70, 71] for details. This is a general issue
in the context of manifolds that are—in a certain sense—a local concept involving
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objects that are often only locally well defined. In case of ambiguities, we hence
consider the above objects as set-valued quantities.

During the iteration of both CPPA and PPPA, the parameter λk of the proximal
mappings is successively decreased. In this way, the penalty for deviation from
the previous iterate is successively increased. It is chosen in a way such that the
sequence (λk)k is square-summable but not summable. Provided that this condition
holds, the CPPA can be shown to converge to the optimal solution of the underlying
minimization problem, at least in the context of Hadamard manifolds and convex
(Fi)i , see [8, Theorem 3.1]. The same statement holds for the PPPA, see [114,
Theorem 4]. The mean can be computed using a gradient descent or a Newton
scheme. To reduce the computation time further, it has been proposed in [114]
to replace the mean by another construction (known as geodesic analogues in
the subdivision context [107]) which is an approximation of the mean that is
computationally less demanding. As above, in the context of Hadamard manifolds
and convex (Fi)i , the convergence towards a global minimizer is guaranteed, see
[114, Theorem 7]. For details we refer to the above reference.

Proximal Mappings for the Atoms of the TV Functionals

Now we consider a splitting of the univariate problem (2.1) and the bivariate
problem (2.2) into basic atoms such that the CPPA and the PPPA can be applied.
Regarding (2.1) we use the atoms

F1(x) := 1
q

N
∑

i=1

d(xi, fi)
q, F2(x) =

N−1
∑

i=1
i odd

d(xi, xi+1), F3(x) =
N
∑

i=1
i even

d(xi, xi+1).

(2.6)

Regarding (2.2), we consider the case p = 1 and again define F1 to be the data term,
F2 and F3 to be a splitting of the sum

∑

i,j d(xi,j , xi+1,j ) into even and odd values
of i and F4 and F5 to be a splitting of the sum

∑

i,j d(xi,j , xi,j+1) into even and odd
values of j . With these splittings, all summands in the atom (Fi)i decouple such
that the computation of the proximal mappings reduces to a point-wise computation
of the proximal mappings of

x �→ g1(x, f ) := 1

q
d(x, f )q and (x1, x2) �→ g2(x1, x2) = d(x1, x2).

(2.7)

From the splitting (2.6) (and its bivariate analogue below (2.6)) together with (2.7)
we see that within a PPPA all proximal mappings of the basic building blocks g1, g2
can be computed in parallel and the computation of each mean only involves 3 points
in the manifoldM in the univariate setting and 5 points in the multivariate setting.
For a CPPA we see that a cycle has length 3 and 5 in the univariate and bivariate
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situation, respectively, and that within each atom Fi the proximal mappings of the
respective terms of the form g1, g2 can be computed in parallel.

For the data term, the proximal mappings proxλg1
are explicit for q = 1 and

q = 2 and, as derived in [48], are given as

(proxλg1(·,f ))j (x) = [x, f ]t (2.8)

where

t = λ
1+λ for q = 2, t = min

(
λ

d(x,f ) , 1
)

for q = 1. (2.9)

Here, we use the symbol [·, ·]t to denote the point reached after time t on the (non
unit speed) length-minimizing geodesic starting at the first argument reaching the
second argument at time 1. (Note, that up to sets of measure zero, length minimizing
geodesics are unique, and in the extraordinary case of non-uniqueness we may pick
one of them.)

Regarding g2, it is shown in [114] that the proximal mappings are given in closed
form as

proxλg2
((x1, x2)) = ([x1, x2]t , [x2, x1]t ), where t = min

(
λα

d(x1, x2)
,

1

2

)

.

(2.10)

Here, for each point, the result is a point on the geodesic segment connecting two
arguments.

It is important to note that the point pt = [p0, p1]t on the geodesic connecting
two points p0, p1 is given in terms of the Riemannian exponential map exp and its
inverse denoted by log or exp−1 by

pt = [p0, p1]t = expp0
(t logp0

p1). (2.11)

Here, v := logp0
p1 denotes that tangent vector sitting in p0 such that expp0

v = p1.

The tangent vector v is scaled by t, and then the application of the exp-map yields
pt . More precisely, expp0

assigns the point pt = expp0
tv to the tangent vector tv

by evaluating the geodesic starting in p0 with tangent vector tv at time 1.
We note that also the proximal mappings of the classical Tichanov regularizers as

well as of the Huber regularizers mentioned above have a closed form representation
in terms of geodesic averaging as well. Further, there are strategies to approximate
intrinsic means by iterated geodesic averages to speed up the corresponding
computations. For details on these comments we refer to [114].

Plugging in the splittings and proximal mappings as above into the Algorithms 1
and 2 yields a concrete implementation for the TV-regularized denoising of
manifold-valued data. Regarding convergence, we have the following result.
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Fig. 2.1 The effect of �2-TV denoising in LCh space (α = 0.80). Left. Ground truth. Middle
left. Noisy input image corrupted by Gaussian noise on each channel. Middle right. The �2-TV
reconstruction in linear space. Right. The �2-TV reconstruction in the nonlinear LCh color space.
Using the distance in the non-flat LCh metric can lead to higher reconstruction quality

Theorem 2.1 For data in a (locally compact) Hadamard space and a parameter
sequence (λk)k which is squared summable but not summable, the iterative geodesic
averaging algorithms for TV-regularized denosing (based on the CPPA, the PPPA,
as well as the inexact approximative and fast variant of the PPPA) converge towards
a minimizer of the �p-TV functional.

We further remark that the statement remains true when using the Huber potential
mentioned above either as data term or for the regularization, as well as when using
quadratic variation instead of TV. A proof of this statement and more details on the
remarks can be found in [114].

We illustrate the algorithms with some examples. First we consider denoising in
the LCh color space. As explained above, the underlying manifold is S1 × R2. The
exponential and its inverse are given componentwise by the respective mappings on
R2 and S1. By (2.11), this allows to compute the involved proximal mappings via
(2.8), (2.9) and (2.10), respectively. We point out that in spite of the separability of
the exponential and its inverse, the proposed algorithm is in general not equivalent to
performing the algorithm on R2 and S1 separately. The reason is that the parameter
t in (2.9) and (2.10) depend nonlinearly on the distance in the product manifold
(except for p, q = 2). In Fig. 2.1 we illustrate the denoising potential of the
proposed scheme in the LCh space. Here, the vector-space computation was realized
using the split Bregman method for vectorial TV regularization [55, 58] and we
optimized the parameters of both methods with respect to the peak signal to noise
ratio.

As a second example we consider noisy data on the unit sphere S2 (in R3). In
Fig. 2.2, we test the denoising potential of our algorithm on a noisy (synthetic)
spherical-valued image. As noise model on S2, we use the von Mises-Fisher
distribution having the probability density h(x) = c(κ) exp(κx · μ). Here, κ > 0
expresses the concentration around the mean orientation μ ∈ S2 where a higher
κ indicates a higher concentration of the distribution and c(κ) is a normalization
constant. We observe in Fig. 2.2 that the noise is almost completely removed by TV
minimization and that the edges are retained.
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Fig. 2.2 Denoising of an S2-valued image. The polar angle is coded both as length of the
vectors and as color (red pointing towards the reader, blue away from the reader). Left. Synthetic
image. Center. Noisy data (corrupted by von Mises-Fisher noise of level κ = 5.5). Right. �2-TV
regularization using α = 0.7. The noise is almost completely removed whereas the jumps are
preserved

0 10 20 30 40 50 60 70 80 90100

0 10 20 30 40 50 60 70 80 90100

0 10 20 30 40 50 60 70 80 90100

Fig. 2.3 Result (right) of denoising an SO(3)-valued noisy time-series (center) using the inexact
parallel algorithm for L2-TV regularization with α = 4.0. (Left: Ground truth.) Here, an element
of SO(3) is visualized by the rotation of a tripod. We observe that the noise is removed and the
jump is preserved

In Fig. 2.3 we consider an univariate signal with values in the special orthogonal
group SO(3) consisting of all orthogonal 3 × 3 matrices with determinant one. We
see that the proposed algorithm removes the noise and that the jump is preserved.
Finally, we consider real InSAR data [76, 87] in Fig. 2.4. InSAR images consist of
phase values such that the underlying manifold is the one-dimensional sphere S1.
The image is taken from [87]. We apply total variation denoising using �2 and �1

data terms. We observe that TV regularization reduces the noise significantly. The
�1 data term seems to be more robust to outliers than the �2 data term.

2.3 Higher Order Total Variation Approaches, Total
Generalized Variation

It is well known in the vector space situation (and analytically confirmed for
instance in [21, 24]) that TV regularization has a tendency to produce piecewise
constant results, leading to artificial jump discontinuities in case of ground truth
data with smooth regions. Classical H 1 regularization avoids this effect. However,
H 1 regularity does not allow for jump discontinuities, which can be seen as
motivation for considering non-smooth higher order approaches. While second
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Fig. 2.4 Total variation denoising of an S1-valued InSAR image (real data, left) using L2-TV
regularization (α = 0.32, middle) and L1-TV regularization (α = 0.60, right). Here, the circle S1 is
represented as an interval with endpoints identified, i.e., white and black represent points nearby.
Total variation minimization reliably removes the noise while preserving the structure of the image

order TV regularization [41, 65], i.e., penalizing the Radon norm of the second order
distributional derivative of a function, is a first attempt in this direction, one can
show that functions whose second order distributional derivative can be represented
by a Radon measure again cannot have jumps along (smooth) hypersurfaces [25].
This disadvantage is no longer present when using a combination of first and second
order TV via infimal convolution, i.e.,

ICα(u) = inf
v
α1TV(u− v)+ α0TV2(v),

as originally proposed in [33]. Here, α = (α1, α0) ∈ (0,∞)2 are two weights.
Regularization with TV-TV2 infimal convolution finds an optimal additive decom-
position of the unknown u in two components, where one yields minimal cost for
TV and the other one for second order TV. Extending on that, the (second order)
total generalized variation (TGV) functional [27] optimally balances between first
and second order derivatives on the level of the gradient rather than the function,
i.e., is given as

TGV2
α(u) = inf

w
α1‖∇u− w‖M + α0‖Ew‖M,

where Ew = 1/2(Jw + JwT ) is a symmetrization of the Jacobian matrix field
Jw and again α = (α1, α0) ∈ (0,∞)2 are two weights. This provides a more
flexible balancing between different orders of differentiation and, in particular in
situations when an optimal decomposition on the image level is not possible, further
reduces piecewise constancy artifacts still present with TV-TV2 infimal convolution,
see [27].

Motivated by the developments for vector spaces, and due to the challenges
appearing when extending them to manifold-valued data, several works deal with
developing non-smooth higher order regularization in this setting. In the following
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we motivate and review some existing approaches and strive to present them in
a common framework. Following the existing literature, we consider a discrete
setting.

2.3.1 Models

First, we define the above-mentioned higher order regularization functionals in a
discrete, vector-space setting. To this aim, for u = (ui,j )i,j ∈ RN×M , let δx :
RN×M → R(N−1)×M , (δxu)i,j = ui+1,j − ui,j and δy : RN×M → RN×(M−1),
(δyu)i,j = ui,j+1 −ui,j be finite differences (on a staggered grid to avoid boundary
effects) w.r.t. the first- and second component, respectively. A discrete gradient,
Jacobian and symmetrized Jacobian are then given as

∇u = (δxu, δyu), J(v1, v2) = (δxv
1, δyv

2, δyv
1, δxv

2),

E(v1, v2) = (δxv
1, δyv

2,
δyv

1+δxv2

2 ),

respectively, where v = (v1, v2) ∈ R(N−1)×M × RN×(M−1). We note that different
components of ∇u, Jv, Ev have different length. Using these objects, we define
discrete versions of TV, second order TV, of TV-TV2 infimal convolution and of
TGV as

TV(u) = ‖∇u‖1, TV2(u) = ‖J∇u‖1,

ICα(u) = min
v
α1TV(u− v)+ α0TV2(v),

TGV2
α(u) = min

w
α1‖∇u− w‖1 + α0‖Ew‖1.

(2.12)

Here, ‖ · ‖1 denotes the �1 norm w.r.t. the spatial component and we take
an �p norm (with p ∈ [1,∞)) in the vector components without explicitly

mentioning, e.g., ‖∇u‖1 := ∑

i,j

(

(δxu)
p
i,j + (δyu)pi,j

)1/p
, where we again replace

summands containing out-of-bound indices 0. Note that the most interesting cases
are p = 1 due to advantages for the numerical realization and p = 2 since
this corresponds to isotropic functionals in the infinite-dimensional vector-space
case, see for instance [27] for TGV. Also note that (J∇u)i,j is symmetric, that the
symmetric component of Ew is stored only once and that we define ‖Ew‖1 :=
∑

i,j

(

(δxw
1)
p
i,j + (δyw2)

p
i,j + 2( δyw

1+δxw2

2 )
p
i,j

)1/p
to compensate for that.

Now we extend these regularizers to arguments u ∈ MN×M with M being a
complete, finite dimensional Riemannian manifold with induced distance d. For the
sake of highlighting the main ideas first, we start with the univariate situation u =
(ui)i ∈MN .
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Regarding second order TV, following [9], we observe (with δ the univariate
version of δx) that, for u ∈ (Rd)N and a norm ‖ · ‖ on Rd ,

‖(δδu)i‖ = ‖ui+1 − 2ui + ui−1‖ = 2‖ui+1 + ui−1

2
− ui‖,

where the last expression only requires averaging and a distance measure, both of
which is available on Riemannian manifolds. Thus, a generalization of TV2 for u ∈
MN can be given, for u = (ui)i , by

TV2(u) =
∑

i
Dc(ui−1, ui, ui+1) where Dc(u−, u◦, u+) = inf

c∈[u−,u+] 1
2

2d(c, u◦).

Here, Dc essentially measures the distance between the central data point u◦ and
the geodesic midpoint of its neighbors, if this midpoint is unique, and the infimum
w.r.t. all midpoints otherwise. Similarly, we observe for mixed derivatives and u ∈
(Rd)N×N that

‖(δyδxu)‖ = 2
∥
∥
∥
ui+1,j+ui,j−1

2 − ui,j+ui+1,j−1
2

∥
∥
∥ .

An analogue for u ∈MM×M is hence given by

Dcc(ui,j , ui+1,j , ui,j−1, ui+1,j−1) = inf
c1∈[ui+1,j ,ui,j−1] 1

2
,c2∈[ui,j ,ui+1,j−1] 1

2

2d(c1, c2),

and similarly for δxδy . Exploiting symmetry, we only incorporate (δyδxu) and define

TV2(u) =
∑

i,j

(

Dc(ui−1,j , ui,j , ui+1,j )
p +Dc(ui,j−1, ui,j , ui,j+1)

p

+ 2Dcc(ui,j , ui+1,j , ui,j−1, ui+1,j−1)
p
)1/p

.

This generalizes second order TV for manifold-valued data while still relying only
on point-operations on the manifold. As will be shown in Sect. 2.3.2, numerical
result for TV2 denoising show less staircasing than TV denoising. However, it
tends towards oversmoothing which is expected from the underlying theory and
corresponding numerical results in the vector space case.

A possible extension of TV-TV2 infimal-convolution to manifolds is based on a
representation in the linear space case given as

ICα(u) = inf
v
α1TV(u− v)+ α0TV2(v) = (1/2) inf

v,w:u= v+w
2

α1TV(v)+ α0TV2(w),

where u = (ui,j )i,j ∈ (Rd)N×M. This representation was taken in [14, 15] and
extended for u = (ui,j )i,j ∈MN×M (up to constants) via
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IC(u) = 1
2 inf
v,w

α1TV(v)+ α0TV2(w) s.t. ui,j ∈ [[vi,j , wi,j ]] 1
2
,

where v = (vi,j )i,j and w = (wi,j )i,j . Following [14], we here use the symbol
[[vi,j , wi,j ]] instead of [vi,j , wi,j ], where we define the former to include also non-
distance minimizing geodesics.

In order to generalize the second order TGV functional to a manifold setting, we
consider (2.12) for vector spaces. This definition (via optimal balancing) requires
to measure the distance of (discrete) vector fields that are in general defined in
different tangent spaces. One means to do so is to employ parallel transport for
vector fields in order to shift different vector fields to the same tangent space and
to measure the distance there. (We note that the particular locations the vectors
are shifted to is irrelevant since the values are equal.) This approach requires to
incorporate more advanced concepts on manifolds. Another possibility is to consider
a discrete tangent space of point tuples via the identification of v = loga(b) as
a point tuple [a, b] (where log is the inverse exponential map), and to define a
distance-type function on such point tuples. Indeed, the above identification is one-
to-one except for points on the cut locus (which is a set of measure zero [67]) and
allows to identify discrete derivatives (δxu)i = (ui+1 − ui) = logui (ui+1) as tupel
[ui, ui+1]. Choosing appropriate distance type functions, this identification allows
to work exclusively on the level of point-operations and one might say that the
“level of complexity” of the latter approach is comparable with that of TV2 and
IC. Furthermore, a version of the above parallel transport variant can be realized
in the tupel setting as well (still incorporating more advanced concepts). This
approach was proposed in [28]; more precisely, an axiomatic approach is pursued
in [28] and realizations via Schild’s ladder (requiring only point operations) and
parallel transport are proposed and shown to be particular instances of the axiomatic
approach.

We explain the approach in more detail, where we focus on the univariate
situation first. We assume for the moment that D : M2 ×M2 is an appropriate
distance-type function for point tuples. Then, a definition of TGV2

α for an univariate
signal u = (ui)i ∈MN can be given as

TGV2
α((ui)i) = inf

(yi )i

∑

i

α1D([ui, ui+1], [ui, yi])+ α0D([ui, yi], [ui−1, yi−1]).

Thus, one is left to determine a suitable choice of D. One possible choice is based
on the Schild’s ladder [72] approximation of parallel transport, which is defined as
follows (see Fig. 2.5): Assuming, for the moment, uniqueness of geodesics, define
c = [v, x] 1

2
and y′ = [u, c]2. Then [x, y′] can be regarded as approximation

of the parallel transport of w = logu(v) to x, which is exact in the vector-space
case. Motivated by this, the distance of the tuples [u, v] and [x, y] can be defined
as d(y, y′). Incorporating non-uniqueness by minimizing over all possible points
in this construction to capture also points on the cut locus, yields a distance-type
function for point tuples given as
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u v

x

y

c

yʹ

w = logu (v )

logx (yʹ ) ≈ ptx (w )

Fig. 2.5 Approximate parallel transport of logu(v) to x via the Schild’s ladder construction. Figure
taken from [28]

DS([x, y], [u, v]) = inf
y′∈M

d(y, y′) s.t. y′ ∈ [u, c]2 with c ∈ [x, v] 1
2
.

In the particular case that both tuples have the same base point, i.e., x = u, it
is easy to see that, except in the case of non-unique length-minimizing geodesics,
DS([x, y], [x, v]) = d(v, y) such that we can use this as simplification and arrive at
a concrete form of manifold-TGV for univariate signals (ui)i inM given as

S-TGV2
α((ui)i) = inf

(yi )i

∑

i

α1d(ui+1, yi)+ α0DS([ui, yi], [ui−1, yi−1]).

We note that this operation only requires to carry out averaging and reflection
followed by applying the distance in the manifold. Thus it is on the same “level of
difficulty” as TV2 or IC. For the bivariate situation, the situation is more challenging
due to an additional averaging involved in the evaluation of Ew. In fact, as described
in [28], there are different possibilities (of varying complexity) to generalize this to
the manifold valued setting but there is a unique, rather simple one which in addition
transfers fundamental properties of TGV, such as a precise knowledge on its kernel,
to the manifold setting. This leads to the definition of Dsym

S : (M2)4 which realizes
the symmetrized part of Ew in the definition of TGV and for which, for the sake of
brevity, we refer to [28, Equation 20]. Using Dsym

S , a bivariate version of TGV for
u = (ui,j )i,j ∈MN×M is given as

S-TGV2
α(u) = min

y1
i,j ,y

2
i,j

α1

∑

i,j

(

d(ui+1,j , y
1
i,j )

p + d(ui,j+1, y
2
i,j )

p
)1/p

+α0

∑

i,j

(

DS
([ui,j , y1

i,j ], [ui−1,j , y
1
i−1,j ]

)p+DS
([ui,j , y2

i,j ], [ui,j−1, y
2
i,j−1]

)p

+ 21−pDsym
S ([ui,j , y1

i,j ], [ui,j , y2
i,j ], [ui,j−1, y

1
i,j−1], [ui−1,j , y

2
i−1,j ])p

)1/p
.

(2.13)
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Naturally, the above definition of S-TGV based on the Schild’s ladder construc-
tion is not the only possibility to extend second order TGV to the manifold setting.
As already pointed out, in [28] this was accounted for by an axiomatic approach
which, for a suitable generalization, also requires additional properties such as a
good description of their kernel, and we will see below that indeed this is possible
for S-TGV. An alternative definition based on parallel transport presented in [28]
uses, instead of DS for point-tuples with different base points, the distance

Dpt([x, y], [u, v]) = ∥
∥ logx(y)− ptx(logu(v))

∥
∥
x
, (2.14)

where ptx(z) is the parallel transport of z ∈ TM to TxM, and a similar adaption
of Dsym

S for bivariate signals. It was shown in [28] that also this version suitably
generalizes TGV by transferring some of its main properties to the manifold setting.

Another existing extension of TGV to the manifold setting is the one presented
in [15] which is given, in the univariate setting, as

˜TGV2
α(u) = inf

(ξi )i

∑

i
α1‖ logui (ui+1)− ξi‖ui + α0‖ξi − Pui (ξi−1)‖ui

where Pui approximates the parallel transport of ξi−1 to ui by first mapping it down
to a point tupel [ui−1, expui−1

(ξi)], then using the pole ladder [75] as an alternative
to Schild’s ladder to approximate the parallel transport to ui and finally lifting
the transported tuple again to the tangent space via the logarithmic map. In the
univariate case, this also generalizes TGV and preserves its main properties such as a
well defined kernel. For the bivariate version, [15] uses the standard Jacobian instead
of the symmetrized derivative and it remains open to what extend the kernel of TGV
is appropriately generalized, also because there is no direct, natural generalization
of the kernel of TGV2

α (i.e., affine functions) in the bivariate setting (see the next
paragraph for details).

Consistency

Given that there are multiple possibilities of extending vector-space concepts to
manifolds, the question arises to what extend the extensions of TV2, IC and
TGV presented above are natural or “the correct ones.” As observed in [28], the
requirement of suitably transferring the kernel of the vector-space version, which
consists of the set of affine functions, is a property that at least allows to reduce
the number of possible generalizations. Motivated by this, we consider the zero-set
of the manifold extensions of TV2, ICα and TGV2

α . We start with the univariate
situation, where a generalization of the notion of “affine” is rather natural.

Definition 2.2 (Univariate Generalization of Affine Signals) Let u = (ui)i be
a signal in MN . We say that u is generalized affine or geodesic if there exists a
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geodesic γ : [0, L] →M such that all points of u are on γ at equal distance and γ
is length-minimizing between two subsequent points.

The following proposition relates geodesic functions to the kernel of higher-order
regularizers on manifolds. Here, in order to avoid ambiguities arising from subtle
difference in the functionals depending on if length-minimizing geodesics are used
or not, we assume geodesics are unique noting that the general situation is mostly
analogue.

Proposition 2.3 (Consistency, Univariate) Let u = (ui)i in M be such that all
points ui, uj are connected by a unique geodesic.

(i) If u is geodesic, TV2(u) = ICα(u) = S-TGV2
α(u) = 0.

(ii) Conversely, if TV2(u) = 0 or S-TGV2
α(u) = 0 , then u is geodesic.

Proof If u is geodesic, it follows that ui ∈ [ui−1, ui+1] 1
2
, such that TV2(u) = 0. In

case of ICα define vi = u1 (the first point of u) for all i and wi = [u1, ui]2d(u1,ui ).
Then it follows that ui ∈ [vi, wi] 1

2
for all i. Further, TV((vi)i) = 0 and, since

(wi)i is geodesic, also TV2((wi)i) = 0 such that ICα(u) = 0. Regarding S-TGV2
α ,

we see that S-TGV2
α(u) = 0 follows from choosing (yi)i = (ui+1)i and noting

that DS([ui, ui+1], [ui−1, ui]) = 0 since ui ∈ [ui, ui] 1
2

and ui+1 ∈ [ui−1, ui]2.

Now conversely, if TV2(u) = 0, it follows that ui ∈ [ui−1, ui+1] for all i such that
(ui)i is geodesic. If S-TGV2

α(u) = 0 we obtain (yi)i = (ui+1)i and, consequently,
ui+1 ∈ [ui, ui−1] which again implies that u is geodesic. ��
Remark 2.4 One can observe that in Proposition 2.3, the counterparts of ii) for ICα
is missing. Indeed, an easy counterexample shows that this assertion is not true,
even in case of unique geodesics: ConsiderM = S2 ∩ ([0,∞)× R × [0,∞)) and
ϕ1 = −π/4, ϕ2 = 0, ϕ3 = π/4 and ψ = π/4 define

ui = (cos(ϕi) sin(ψ), sin(ϕi) sin(ψ), cos(ψ))

wi = (cos(ϕi), sin(ϕi), 0)

and vi = (0, 0, 1) for all i. Then ui ∈ [vi, wi] 1
2
, TV(v) = 0, TV2(w) = 0, hence

ICα(u) = 0 but u is not geodesic.

In the bivariate setting, a generalization of an affine function is less obvious: It
seems natural that u = (ui,j )i,j being generalized affine or, in the notion above,
geodesic should imply that for each k, both (ui,k)i and (uk,j )j are geodesics.
However, to achieve a generalization of affine, an additional condition is necessary
to avoid functions of the form (x, y) �→ xy. In [28] this condition was to require also
the signal (ui+k,j−k)k to be geodesic for each i, j . While this has the disadvantage
favoring one particular direction, it is less restrictive than to require, in addition,
also (ui+k,j+k)k to be geodesic. As shown in the following proposition, bivariate
functions that are geodesic in the sense of [28] coincide with the kernel of S-TGV2

α .
TV2 on the other hand, gives rise to a different notion of affine.
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Proposition 2.5 (Kernel, Bivariate) Let u = (ui,j )i,j be such that all points of u
are connected by a unique geodesics.

(i) S-TGV2
α(u) = 0 if and only if (uk,j0)k , (ui0,k)k and (ui0+k,j0−k)k is geodesic

for each i0, j0.
(ii) TV2(u) = 0 if and only if (uk,j0)k , (ui0,k)k is geodesic for each i0, j0 and

[ui+1,j , ui,j−1] 1
2
∩ [ui,j , ui+1,j−1] 1

2
�= ∅ for all i, j .

Proof For S-TGV2
α , a stronger version of this result is proven in [28, Theorem 2.18].

For TV2, this follows analogously to the univariate case directly from the definition
of Dc and Dcc. ��

Higher-Order Regularized Denoising

The next proposition shows that TV2 and S-TGV based denoising of manifold
valued data is indeed well-posed.

Proposition 2.6 Both TV2 and S-TGV2
α are lower semi-continuous w.r.t. conver-

gence in (M, d). Further, for R ∈ {αTV2,S-TGV2
α}, where α > 0 in the case of

TV2, the problem

inf
u=(ui,j )i,j

R(u)+
∑

i,j
d(ui,j , fi,j )

q

admits a solution.

Proof The proof is quite standard: by the Hopf-Rinow theorem, it is clear that
the claimed existence follows once lower semi-continuity of R can be guaranteed.
For S-TGV2

α , this is the assertion of [28, Theorem 3.1]. For TV2, it suffices to
show lower semi-continuity of Dc and Dcc. We provide a proof for Dc, the other
case works analogously. Take un = (un−, un◦, un+)n converging to (u−, u◦, u+) and
take (cn)n with cn ∈ [un−, un+] such that d(cn, un◦) ≤ infc∈[un−,un+] d(c, un◦) + 1/n.
Then, from boundedness of (un)n and since d(cn, un−) ≤ d(un+, un−) we obtain
boundedness of (cn)n, hence a (non-relabeled) subsequence converging to some
c ∈ M exists. From uniform convergence of the geodesics γ n : [0, 1] → M
connecting un− and un+ such that cn = γ n(1/2) (see for instance [28, Lemma
3.3]) we obtain that c ∈ [u−, u+] 1

2
such that Dc(u−, u◦, u+) ≤ d(c, u◦) ≤

lim infn d(cn, un◦) ≤ lim infn Dc(un−, un◦, u◦+). ��
Remark 2.7 We note that the arguments of Proposition 2.6 do not apply to IC since
we cannot expect (vi,j )i,j and (wi,j )i,j with ui,j ∈ [vi,j , wi,j ] 1

2
to be bounded in

general. Indeed, this is similar to vector-space infimal convolution, only that there,
one can factor out the kernel of TV and still obtain existence.
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2.3.2 Algorithmic Realization

Here we discuss the algorithmic realization and illustrate the results of TV2 and
S-TGV regularized denoising; for IC we refer to [14, 15]. We note that, in contrast
to the TV functional, the TV2 and the S-TGV2

α functional are not convex on
Hadamard manifolds (cf. [9, Remark 4.6]) such that we cannot expect to obtain
numerical algorithms that provably converge to global optimal solutions as for TV
in Hadamard spaces (cf. Theorem 2.1). Nevertheless, the cyclic proximal point
algorithm and the parallel proximal point algorithm as described in Sect. 2.2.2 are
applicable in practice. In the following, we discuss the corresponding splittings
and proximal mappings, where we focus on the univariate case since, similar to
Sect. 2.2.2, the bivariate case for p = 1 can be handled analogously; for details we
refer to [9, 28].

For TV2 denoising, we may use the splitting

1
q

∑

i
d(ui, fi)

q + αTV2((ui)i) = F0(u)+ F1(u)+ F2(u)+ F3(u)

where F0(u) = 1
q

∑

i d(ui, fi)q, and

Fj (u) =
∑

i
Dc(u3i−1+j , u3i+j , u3i+1+j ), j = 1, . . . , 3.

Due to the decoupling of the summands, the computation of the proximal maps of
(Fi)

3
i=0 reduces to the computation of the proximal maps of x �→ d(x, f )q and of

(x1, x2, x3) �→ Dc(x1, x2, x3). The former is given explicitly as in (2.8), while for
the latter, following [9], we use a subgradient descent scheme (see for instance [47])
to iteratively solve

min
xk−1,xk,xk+1

1

2

∑k+1

l=k−1
d2(xl, hl)+ λDc(xk−1, xk, xk+1)

for (hk−1, hk, hk+1) ∈ M3 the given point where the proximal map needs
to be computed. For this purpose, we employ Algorithm 3, which requires to
compute the subgradient of Dc as well as the derivative of d. The latter is, at

a point (xk−1, xk, xk+1) given as −
(

logxk−1
(hk−1), logxk (hk), logxk+1

(hk+1)
)T

.

Regarding the computation of Dc, in order to avoid pathological (and practically
irrelevant) constellations, we assume that the arguments xk−1, xk+1 are not cut
points, such that there is exactly one length minimizing geodesics connecting xk−1
and xk+1 and the corresponding midpoint is unique. With these assumptions, the
derivative w.r.t. the first component and for a point (x, y, z) with y �= [x, z] 1

2
is

given as

∂yDc(x, ·, z)(y) = logy([x, z] 1
2
)/‖ logy([x, z] 1

2 )
‖y.
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Algorithm 3 Subgradient descent for solving minx F (x)
1: SGD(x0, (λi)i )
2: l = 0
3: repeat until stopping criterion fulfilled
4: xk+1 ← expxk (−λk∂F (xk))
5: k ← k + 1
6: return x

The derivative w.r.t. x is given by

∂xDc(·, y, z)(x) =
∑d

l=1

〈

logc(y)/‖ logc(y)‖c,Dxc(ξl)
〉

where we denote c = [x, z] 1
2
. Here, Dxc is the differential of the mapping c : x �→

[x, z] 1
2

which is evaluated w.r.t. the elements of an orthonormal basis (ξl)dl=1 of the
tangent space at x. The derivative w.r.t. z is computed analoguosly due to symmetry
and for the particular case that y = [x, z] 1

2
we refer to [9, Remark 3.4]. While

the formulas above provide general forms of the required derivatives, a concrete
realization can be done using explicit formulae for Jacobi fields in the particular
manifold under consideration; we refer to [9] for explicit versions. For the bivariate
case, we also refer to [9] for the derivative of Dcc, which can be computed with
similar techniques as Dc.

For TGV, we again start with the univariate case and consider the S-TGV2
α

variant. We consider the splitting

1
q

∑

i
d(ui, fi)

q + TGV2
α((ui)i) = F0(u)+ F1(u)+ F2(u)+ F3(u)

where F0(u) = 1
q

∑

i d(ui, fi)q, F1(u) = ∑

i d(ui+1, yi), and

F2(u) =
∑

i:i even

DS([ui, yi], [ui−1,yi−1]), F3(u) =
∑

i:i odd

DS([ui, yi], [ui−1yi−1]).

Here, as an advantage of this particular version of TGV that uses only points on
the manifold, we see that the proximal mappings of F1 are explicit as in (2.10) and,
since again the proximal mapping of F0 is given for q ∈ {1, 2} explicitly by (2.8),
we are left to compute the proximal mappings for DS. To this aim, we again apply
the subgradient descent method as in Algorithm 3, where the required derivatives
of DS are provided in [28]. In particular, again assuming uniqueness of geodesics
to avoid pathological situations, we have for points [ui, yi], [ui−1, yi−1] with yi �=
[ui−1, [ui, yi−1] 1

2
]2 that

∇yiDS = − logyi S(ui−1, yi−1, ui)/
∥
∥ logyi S(ui−1, yi−1, ui)

∥
∥ (2.15)
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where

S(ui−1, yi−1, ui) = [ui−1, [ui, yi−1] 1
2
]2 (2.16)

denotes the result of applying the Schild’s construction to the respective arguments.
Derivatives w.r.t. the arguments ui−1 and yi−1 are given in abstract form as

∇ui−1DS = −T1

(

logS(ui−1,yi−1,ui )
yi/

∥
∥ logS(ui−1,yi−1,ui )

yi
∥
∥

)

, (2.17)

∇yi−1DS = −T2

(

logS(ui−1,yi−1,ui )
yi/

∥
∥ logS(ui−1,yi−1,ui )

yi
∥
∥

)

, (2.18)

where T1 is the adjoint of the differential of the mapping ui−1 �→
[ui−1, [ui, yi−1]1/2]2, and T2 is the adjoint of the differential of the mapping
yi−1 �→ [ui−1, [ui, yi−1]1/2]2. The differential w.r.t. ui is obtained by symmetry.
Again, the concrete form of these mappings depends on the underlying manifold
and we refer to [28] for details. Regarding points with yi �= [ui−1, [ui, yi−1]1/2]2
we note that for instance the four-tuple consisting of the four zero-tangent vectors
sitting in ui, ui−1, [ui−1, [ui, yi−1]1/2]2, yi−1 belongs to the subgradient of DS.

The algorithm for bivariate TGV-denoising can be obtained analogously, where
we refer to [28] for the computation of the derivative of Dsym

S . The algorithm for
TGV-denoising based on the parallel variant (2.14) employs the proximal mappings
of F0 and F1 as well. Implementation of the proximal mappings of F2 and F3 based
on subgradient descent can be found in [28] and [26].

Numerical Examples

We illustrate the algorithm with numerical examples. At first, we provide a
comparison between TV, TV2 and S-TGV regularization for synthetic S2-valued
image data, taken from [28]. The results can be found in Fig. 2.6, where for each
approach we optimized over the involved parameters to achieve the best �SNR
result, with �SNR being defined for ground truth, noisy and denoised signals h,

f and u, respectively, as �SNR = 10 log10

(∑

i d(hi ,fi )2
∑

i d(hi ,ui )2

)

dB. We observe that the

TV regularization produces significant piecewise constancy artifacts (staircasing)
on the piecewise smooth example. The result of TV2 shows no visible staircasing,
but smoothes the discontinuities to some extend. S-TGV is able to better reconstruct
sharp interfaces while showing no visible staircasing.

As second example, Fig. 2.7 considers the denoising of interferometric synthetic
aperture radar (InSAR) images. Again, it can be observed that S-TGV has a
significant denoising effect while still preserving sharp interfaces.
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Fig. 2.6 Comparison of first and second-order total variation as well as S-TGV on an S2-valued
image from [9]. (a) Original. (b) Noisy data. (c) Color code for S2. (d) TV, �SNR = 5.7 dB. (e)
TV2, �SNR = 8.4 dB. (f) S-TGV, �SNR = 8.9 dB. Images taken from [28]

2.4 Mumford-Shah Regularization for Manifold Valued Data

The Mumford and Shah model [79, 80], also called Blake-Zisserman model [20],
is a powerful variational model for image regularization. The regularization term
measures the length of the jump set and, within segments, it measures the quadratic
variation of the function. The resulting regularization is a smooth approximation to
the image/signal which, at the same time, allows for sharp edges at the discontinuity
set. Compared with the TV regularizer, it does not penalize the jump height and,
due to the quadratic variation on the complement of the edge set, no staircasing
effects appear. (Please note that no higher order derivatives/differences are involved
here.) The piecewise constant variant of the Mumford-Shah model (often called
Potts model) considers piecewise constant functions (which then have no variation
on the segments) and penalizes the length of the jump sets. Typical applications
of these functionals are smoothing and the use within a segmentation pipeline.
For further information considering these problems for scalar data from various
perspectives (calculus of variation, stochastics, inverse problems) we refer to
[4, 20, 23, 30, 51, 52, 54, 68, 85, 118] and the references therein. These references
also deal with fundamental questions such as the existence of minimizers. Mumford-
Shah and Potts problems are computationally challenging since the functionals are
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Fig. 2.7 Left: InSAR image from [102]. Right: Result of S-TGV. Image taken from [28]

non-smooth and non-convex. Even for scalar data, both problems are known to be
NP-hard in dimensions higher than one [2, 22, 106]. This makes finding a (global)
minimizer infeasible. Because of its importance in image processing however,
many approximative strategies have been proposed for scalar- and vector valued
data. Among these strategies are graduated non-convexity [20], approximation by
elliptic functionals [4], graph cuts [22], active contours [104], convex relaxations
[84], iterative thresholding approaches [51], and alternating direction methods of
multipliers [66].

In the context of DTI, the authors of [109, 110] consider a Chan-Vese model
for positive matrix-valued data, i.e., for manifold-valued data in Pos3, as well as a
piecewise smooth variant. (We recall that Chan-Vese models are variants of Potts
models for the case of two labels.) Their method is based on a level-set active-
contour approach. In order to reduce the computational load in their algorithms
(which is due to the computation of Riemannian means for a very large number
of points) the authors resort to non-Riemannian distance measures in [109, 110].
Recently, a fast recursive strategy for computing the Riemannian mean has been
proposed and applied to the piecewise constant Chan-Vese model (with two labels)
in [38].

We mention that for S1-valued data, a noniterative exact solver for the univariate
Potts problem has been proposed in [99].

In this section, we consider Mumford-Shah and Potts problems for (general)
manifold-valued data and derive algorithms for these problems. As in the linear
case, typical applications of these functionals are smoothing and also segmentation;
more precisely, they can serve as an initial step of a segmentation pipeline. In simple
cases, the induced edge set may yield a reasonable segmentation directly.

2.4.1 Models

We start out with Mumford-Shah and Potts problems for univariate manifold-valued
data (fi)Ni=1 ∈MN , withM again being a complete, finite dimensional Riemannian
manifold. The discrete Mumford-Shah functional reads
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Bα,γ (x) = 1

q

N
∑

i=1

d(xi, fi)
q + α

p

∑

i /∈J(x)
d(xi, xi+1)

p + γ |J(x)| , (2.19)

where d is the distance with respect to the Riemannian metric in the manifoldM,
J is the jump set of x and p, q ∈ [1,∞). The jump set is given by J(x) = {i : 1 ≤
i < n and d(xi, xi+1) > s}, and |J(x)| denotes the number of jumps. The jump
height s and the parameter γ are related via γ = αsp/p. We rewrite (2.19) using a
truncated power function to obtain the Blake-Zisserman type form

Bα,s(x) = 1

q

N
∑

i=1

d(xi, fi)
q + α

p

N−1
∑

i=1

min(sp, d(xi, xi+1)
p), (2.20)

where s is the argument of the power function t �→ tp, at which d(xi, xi+1)
p is

truncated at. The discrete univariate Potts functional for manifold-valued data reads

Pγ (x) = 1

q

n
∑

i=1

d(xi, fi)
q + γ |J(x)|, (2.21)

where an index i belongs to the jump set of x if xi �= xi+1.

In the multivariate situation, the discretization of the Mumford-Shah and Potts
problem is not as straightforward as in the univariate case. A simple finite
difference discretization with respect to the coordinate directions is known to
produce undesired block artifacts in the reconstruction [31]. The results improve
significantly when including further finite differences such as the diagonal directions
[31, 93, 97]. To define bivariate Mumford-Shah and Potts functionals, we introduce
the notation dq(x, y) = ∑

i,j dq(xij , yij ) for the q-distance of two manifold-valued

images x, y ∈MN×M. For the regularizing term, we employ the penalty function

�a(x) =
∑

i,j
ψ(x(i,j)+a, xij ),

where a ∈ Z2 \ {0} denotes a direction, and the potentials ψ are given by

ψ(w, z) = 1

p
min(sp, d(w, z)p), and ψ(w, z) =

{

1, if w �= z,

0, if w = z,
(2.22)

for w, z ∈ M, in the Mumford-Shah case and in the Potts case, respectively. We
define the discrete multivariate Mumford-Shah and Potts problems by

min
x∈MN×M

1

q
dq(x, f )+ α

R
∑

s=1

ωs�as (x), (2.23)
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where the finite difference vectors as ∈ Z2 \ {0} belong to a neighborhood system
N and ω1, . . . , ωR are non-negative weights. As observed in [93], a reasonable
neighborhood system is

N = {(1, 0); (0, 1); (1, 1); (1,−1)}
with the weights ω1 = ω2 = √

2 − 1 and ω3 = ω4 = 1 −
√

2
2 as in [93]. It

provides a sufficiently isotropic discretization while keeping the computational load
at a reasonable level. For further neighborhood systems and weights we refer to
[31, 93].

For both, the univariate and multivariate discrete Mumford-Shah and Potts
functionals, the following result regarding the existence of minimizers holds.

Theorem 2.8 LetM be a complete Riemannian manifold. Then the univariate and
multivariate discrete Mumford-Shah and Potts problems (2.19), (2.21), and (2.23)
have a minimizer.

A proof may be found in [116]. We note that most of the data spaces in
applications are complete Riemannian manifolds.

2.4.2 Algorithmic Realization

We start with the univariate Mumford-Shah and Potts problems (2.19) and (2.21).
These are not only important on their own, variants also appear as subproblems in
the algorithms for the multivariate problems discussed below.

Dynamic Programming Scheme

To find a minimizer of the Mumford-Shah problem (2.19) and the Potts problem
(2.21), we employ a general dynamic programming scheme which was employed for
related scalar and vectorial problems in various contexts [30, 53, 80, 96, 115, 117].
We briefly explain the idea where we use the Mumford-Shah problem as example.
We assume that we have already computed minimizers xl of the functional Bα,γ
associated with the partial data f1:l = (f1, . . . , fl) for each l = 1, . . . , r − 1 and
some r ≤ N. (Here, we use the notation fl:r := (fl, . . . , fr ).) We explain how to
compute a minimizer xr associated to data f1:r . For each xl−1 of length l − 1, we
define a candidate xl,r = (xl−1, hl,r ) ∈Mr which is the concatenation of xl−1 with
a vector hl,r of length r − l + 1; We choose hl,r as a minimizer of the problem

εl,r = min
h∈Mr−l+1

∑r−1

i=l
α

p
dp(hi, hi+1)+ 1

q

∑r

i=l dq(hi, fi), (2.24)

where εl,r is the best approximation error on the (discrete) interval (l, . . . , r). Then
we calculate
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min
l=1,...,r

{

Bα,γ (x
l−1)+ γ + εl,r

}

, (2.25)

which coincides with the minimal functional value of Bα,γ for data f1:r . We obtain
the corresponding minimizer xr = xl

∗,r , where l∗ is a minimizing argument in
(2.25). We successively compute xr for each r = 1, . . . , N until we end up with
full data f. For the selection process, only the l∗ and the εl,r have to be computed;
the optimal vectors xr are then computed in a postprocessing step from these data;
see, e.g., [53] for further details. This skeleton (without computing the εl,r ) has
quadratic complexity with respect to time and linear complexity with respect to
space. In the concrete situation, it is thus important to find fast ways for computing
the approximation errors εl,r .We will discuss this below for our particular situation.
In practice, the computation is accelerated significantly using pruning strategies
[73, 93].

Algorithms for the Univariate Mumford-Shah and Potts Problem

To make the dynamic program work for the Mumford-Shah problem with manifold-
valued data, we have to compute the approximation errors εl,r in (2.24). These are
Lq -V p type problems: the data term is a manifold �q distance and the second term
is a pth variation; in particular, for p = 1 we obtain TV minimization problems.
These Lq -V p problems can be solves using the proximal point schemes discussed
in Sect. 2.2.1; for details, we refer to [114] where in particular the corresponding
proximal mappings are calculated in terms of geodesic averages for the important
case of quadratic variation p = 2.

To make the dynamic program work for the Potts problem with manifold-
valued data, we have to compute the approximation errors εl,r for the problem
εl,r = minh∈Mr−l+1

1
q

∑r
i=l dq(hi, fi), under the assumption that h is a constant

vector. Hence we have to compute

εl,r = min
h∈M

1

q

∑r

i=l dq(h, fi). (2.26)

We observe that, by definition, a minimizer of (2.26) is given by an intrinsic mean
for q = 2, and by an intrinsic median for q = 1, respectively.

As already discussed, a mean is general not uniquely defined since the mini-
mization problem has no unique solution in general. Further, there is no closed form
expression in general. One means to compute the intrinsic mean is the gradient
descent (already mentioned in [70]) via the iteration

hk+1 = exphk
r
∑

i=l
1

r−l+1 loghk fi, (2.27)

where again log denotes the inverse exponential map. Further information on
convergence and other related topics can for instance be found in the papers [1, 50]
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Fig. 2.8 Univariate Mumford-Shah regularization (p, q = 1) using dynamic programming. (The
red steaks indicate jumps.) Top. Original signal. Middle. Data with Rician noise added. Bottom.
Regularized signal. Mumford-Shah regularization removes the noise while preserving the jump

and the references given there. Newton’s method was also applied to this problem in
the literature; see, e.g., [49]. It is reported in the literature and also confirmed by the
authors’ experience that the gradient descent converges rather fast; in most cases,
5–10 iterations are enough. For general p �= 1, the gradient descent approach works
as well. The case p = 1 amounts to considering the intrinsic median together with
the intrinsic absolute deviation. In this case, we may apply a subgradient descent
which in the differentiable part amounts to rescaling the tangent vector given on the
right-hand side of (2.27) to length 1 and considering variable step sizes which are
square-integrable but not integrable; see, e.g., [5].

A speedup using the structure of the dynamic program is obtained by initializing
with previous output. More precisely, when starting the iteration of the mean for
data fl+1:r , we can use the already computed mean for the data fl:r as an initial
guess. We notice that this guess typically becomes even better the more data items
we have to compute the mean for, i.e., the bigger r − l is. This is important since
this case is the computational more expensive part and a good initial guess reduces
the number of iterations needed.

We have the following theoretical guarantees.

Theorem 2.9 In a Cartan-Hadamard manifold, the dynamic programming scheme
produces a global minimizer for the univariate Mumford-Shah problem (2.19) and
the discrete Potts problem (2.21), accordingly.

A proof can be found in [116]. In this reference, also guarantees are obtained
for Potts problems for general complete Riemannian manifold under additional
assumptions; cf. [116, Theorem 3]. In Fig. 2.8, the algorithm for the univariate case
is illustrated for Mumford-Shah regularization for the Cartan-Hadamard manifold
of positive matrices.

Multivariate Mumford-Shah and Potts Problems

We now consider Mumford-Shah and Potts regularization for manifold-valued
images. Even for scalar data, these problems are NP hard in dimensions higher
than one [2, 106]. Hence, finding global minimizers is not tractable anymore in
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the multivariate case in general. The goal is to derive approximative strategies that
perform well in practice. We present a splitting approach: we rewrite (2.23) as the
constrained problem

min
x1,...,xR

R
∑

s=1

1

qR
dq(xs, f )+ αωs�as (xs) s. t. xs = xs+1, s ∈ {1, . . . , R},

(2.28)
with the convention xR+1 = x1. We use a penalty method (see e.g. [18]) to obtain
the unconstrained problem

min
x1,...,xR

∑R

s=1
ωsqRα�as (xs)+ dq(xs, f )+ μkdq(xs, xs+1).

We use an increasing coupling sequence (μk)k which fulfills the summability
condition

∑

k μ
−1/q
k < ∞. This specific splitting allows us to minimize the

functional blockwise, that is, with respect to the variables x1, . . . , xR separately.
Performing blockwise minimization yields the algorithm

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1
1 ∈ argminxqRω1α�a1(x)+ dq(x, f )+ μkdq(x, xkR),
xk+1

2 ∈ argminxqRω2α�a2(x)+ dq(x, f )+ μkdq(x, xk+1
1 ),

...

xk+1
R ∈ argminxqRωRα�aR(x)+ dq(x, f )+ μkdq(x, xk+1

R−1).

(2.29)

We notice that each line of (2.29) decomposes into univariate subproblems of
Mumford-Shah and Potts type, respectively. The subproblems are almost identical
with the univariate problems above. Therefore, we can use the algorithms developed
above with a few minor modification. Details may be found in [116].

There is the following result ensuring that the algorithm terminates.

Theorem 2.10 For Cartan-Hadamard manifold-valued images the algorithm
(2.29) for both the Mumford-Shah and the Potts problem converges.

A proof can be found in [116].
A result of the algorithm is illustrated in Fig. 2.9 for Mumford-Shah regulariza-

tion in the Cartan-Hadamard manifold of positive matrices. The data set was taken
from the Camino project [39].
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Fig. 2.9 Left. Part of a corpus callosum of a human brain [39]. Right: Mumford-Shah regulariza-
tion with p, q = 1. The noise is significantly reduced and the edges are preserved. Here, the edge
set (depicted as red lines) of the regularization yields a segmentation

2.5 Dealing with Indirect Measurements: Variational
Regularization of Inverse Problems for Manifold
Valued Data

In this section, we consider the situation when the data is not measured directly.
More precisely, we consider the manifold valued analogue of the discrete inverse
problem of reconstructing the signal u in the equation Au ≈ f, with given noisy
data f . Here, A ∈ RK×N is a matrix with unit row sums (and potentially negative
items), and u is the objective to reconstruct. In the linear case, the corresponding
variational model, given discrete data f = (fi)

K
i=1, reads

argmin
u∈RN

1

q

∑K

i=1

∣
∣
∣
∣

∑N

j=1
Ai,j uj − fi

∣
∣
∣
∣

q

+ Rα(u). (2.30)

Here, the symbol Rα denotes a regularizing term incorporating prior assumption on
the signal. The process of finding u given data f via minimizing (2.30) is called
Tikhonov-Phillips regularization. For a general account on inverse problems and
applications in imaging we refer to the books [17, 46].

In this section we consider models for variational (Tikhonov-Phillips) regular-
ization for indirect measurement terms in the manifold setup, we present algorithms
for the proposed models and we show the potential of the proposed schemes. The
material is mostly taken from [94].

2.5.1 Models

We introduce models for variational (Tikhonov-Phillips) regularization of indirectly
measured data in the manifold setup. The approach is as follows: Given a matrix
A = (Ai,j )i,j ∈ RK×N with unit row sum, we replace the euclidean distance
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in |∑j Ai,j uj − fi | by the Riemannian distance d(·, f ) in the complete, finite
dimensional Riemannian manifold M and the weighted mean

∑

j Ai,j uj by the
weighted Riemannian center of mass [70, 71] denoted by mean(Ai,·, u) which is
given by

mean(Ai,·, u) = argminv∈M
∑

j
Ai,j d(v, uj )

2. (2.31)

We consider the manifold analogue of the variational problem (2.30) given by

argminu∈MN

1

q

∑K

i=1
d
(

mean(Ai,·, u), fi
)q + Rα(u). (2.32)

Here Rα(u) is a regularizing term, for instance

Rα(u) = αTV(u), or Rα(u) = TGV2
α(u), (2.33)

where TV(u) denotes the total variation as discussed in Sect. 2.2, and TGV2
α(u)

denotes the total generalized variation for the discrete manifold valued target u
as discussed in Sect. 2.3, for instance, the Schild variant and the parallel transport
variant of TGV.

We note that also other regularizers R such as the Mumford-Shah and Potts
regularizers of Sect. 2.4 and the wavelet sparse regularizers of Sect. 2.6 may be
employed.

We point out that our setup includes the manifold analogue of convolution
operators (a matrix with constant entries on the diagonals), e.g., modeling blur.
Further, we notice that the discussion includes the multivariate setup (by serializing).

There are the following well-posedness results for the variational problems,
i.e., results on the existence of minimizers. For a general regularizer Rα , under
a coercivity type condition in the manifold setup the existence of a minimizer is
guaranteed as the following theorem shows.

Theorem 2.11 We consider a sequence of signals (uk)k inMN and use the notation
diam(uk) to denote the diameter of a single element uk (viewed as N points inM)
of the sequence {uk | k ∈ N}. If Rα is a regularizing term such that Rα(uk) → ∞,
as diam(uk) → ∞, and Rα is lower semicontinuous, then the variational problem
(2.32) with indirect measurement term has a minimizer.

This theorem is formulated as Theorem 1 in [94] and proved there. In particular, it
applies to the TV regularizers and their analogues considering qth variation instead
of total variation as well as mixed first-second order regularizers of the form α1TV+
α0TV2 with α1 > 0, α0 ≥ 0.

Theorem 2.12 The inverse problem (2.32) for manifold-valued data with TV
regularizer has a minimizer. The same statement applies to mixed first and second
order regularizers of the form α1TV + α0TV2 with α1, α0 ∈ [0,∞), α1 > 0.



82 M. Holler and A. Weinmann

This statement is part of [94, Theorem 6] and proved there. We note that, although
the TGV2

α regularizer using either the Schild or the parallel transport variant of
Sect. 2.3 is lower semicontinuous (cf. [28]) Theorem 2.11 does not apply. The same
issue occurs with pure TV2 regularization. To overcome this, results with weaker
conditions on R and additional conditions onA have been established to ensure the
existence of minimizers; cf. the discussion in [94], in particular [94, Theorem 7].
The mentioned theorem applies to TGV2

α and pure second order TV regularizers.
The conditions onA are in particular fulfilled ifA is such that the data term fulfills
the (significantly stronger) coercivity type condition

∑K

i=1
d
(

mean(Ai,·, un), fi
)q → ∞, as diam

(

un
) → ∞. (2.34)

This coercivity type condition is for instance fulfilled if A fulfills the manifold
analogue of lower boundedness, see [94] for details. Furthermore, the conditions
hold if the underlying manifold is compact. As a result we formulate the following
theorem.

Theorem 2.13 Assume that either M is a compact manifold, or assume that A
fulfills the coercivity type condition (2.34). Then, the inverse problem (2.32) for
data living inMK with TGV2

α regularization using either the Schild or the parallel
transport variant of Sect. 2.3 has a minimizer. The same statement applies to (pure)
second order TV2 regularization.

The part of Theorem 2.13 concerning compact manifoldsM is the statement of
[94, Corollary 1], the part concerning the coercivity type condition is a special case
of [94, Theorem 8, Theorem 9].

2.5.2 Algorithmic Realization

We consider the numerical solution of (2.32). For differentiable data terms (q > 1),
we build on the concept of a generalized forward backward-scheme. In the context
of DTI, such a scheme has been proposed in [12]. We discuss an extension by
a trajectory method and a Gauß-Seidel type update scheme which significantly
improves the performance compared to the basic scheme.

Basic Generalized Forward Backward Scheme

We denote the functional in (2.32) by F and decompose it into the data term D
and the regularizer Rα which we further decompose into data atoms (Di )i and
regularizer atoms (Rα)k, i.e.,

F (u) = D(u)+ Rα(u) =
∑K

i=1
Di (u)+

∑L

l=1
(Rα)l(u) (2.35)
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Algorithm 4 FB-splitting for solving minuD(u)+ Rα(u)
1: FBS(u0, (λk)k)
2: k = 0,
3: repeat until stopping criterion fulfilled
4: for j = 1, . . . , N

5: uk+0.5
j = expukj

(

−λk∑K
i=1 ∇ujDi

(

uk
))

6: for l = 1, . . . , L
7: uk+0.5+l/2L = proxλk(Rα)l (u

k+0.5+(l−1)/2L)

8: k ← k + 1
9: return uk

with Di (u) := 1
q

d(mean(Ai,·, u), fi)q, for i = 1, . . . , K. Examples for decompo-

sitions Rα(u) = ∑L
l=1(Rα)l(u) of TV and TGV2

α regularizers are given in Sects. 2.2
and 2.3, respectively.

The basic idea of a generalized forward-backward scheme is to perform a
gradient step for the explicit term, here D, as well as a proximal mapping step
for each atom of the implicit term, here (Rα)l . (Concerning the computation of the
corresponding proximal mappings for the TV and TGV2

α regularizers of Sects. 2.2
and 2.3, we refer to these sections.) We now focus on the data termD. The gradient
ofD w.r.t. the variable uj , j ∈ {1, . . . , N}, decomposes as

∇ujD(u) =
∑K

i=1
∇ujDi (u). (2.36)

The gradient of Di w.r.t. uj can then be computed rather explicitly using Jacobi
fields. Performing this computation is a central topic of the paper [94]. A cor-
responding result is [94, Theorem 11]. The overall algorithm is summarized in
Algorithm 4. Note that there, for the explicit gradient descend part, we use the
kth iterate uk = (uk1, . . . , u

k
N) as base point for computing the gradients w.r.t. all

data atoms Di , i = 1, . . . , K and all items uj , j ∈ {1, . . . , N}. This corresponds
to a Jacobi type update scheme. During the iteration, the parameter λk > 0 is
decreased fulfilling

∑

k λk = ∞ and
∑

k λ
2
k < ∞. Recall that, for the regularizers

Rα = αTV and Rα = TGV2
α using either the Schild or the parallel transport

variant of Sect. 2.3, the computation of line 6 in Algorithm 4 can be parallelized
as explained in Sects. 2.2 and 2.3.

A Generalized Forward Backward Scheme with Gauß-Seidel Update and a
Trajectory Method

A well-known issue when considering gradient descent schemes is to find a suitable
parameter choice for the (λk)k . Often a step size control based on line search
techniques is employed. Above, there are two particular issues when employing an
adaptive step size strategy: First, a single data atomDi′ may require a low step size
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Algorithm 5 FB-splitting for solving minuD(u)+Rα(u) using a trajectory method

1: FBSTraj(u0, (λk)k)
2: k = 0,
3: repeat until stopping criterion fulfilled
4: for i = 1, . . . , K
5: uk+i/2K = trajλkDi

(

uk+(i−1)/2K
)

6: for l = 1, . . . , L
7: uk+0.5+l/2L = proxλk(Rα)l (u

k+0.5+(l−1)/2L)

8: k ← k + 1
9: return xk

whereas the otherDi would allow for much larger steps, but in the standard form one
has to use the small step size for all Di . Second, a small stepsize restriction from a
singleDi′ also yields a small stepsize in the proximal mapping for the regularization
terms. Together, a small step size within an atom of the data term results in a small
step size for the whole loop of the iteration Algorithm 4.

In order to overcome these step size issue, the paper [94] proposes to employ a
Gauss-Seidel type update scheme together with a trajectory method. To explain the
idea, we first replace the update of lines 4/5 of Algorithm 4 by

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

for i = 1, . . . , K

for j = 1, . . . , N

u
k+i/2K
j = exp

u
k+(i−1)/2K
j

(

−λk∇ujDi (uk+(i−1)/2K)
)

.

(2.37)

Here, the computation of the gradients is performed in a cyclic way w.r.t. the Di
which corresponds to a Gauß-Seidel type update scheme. This in particular has the
following advantage: if we face a small step size for a particular Di′ , instead of
decreasing the step size for the whole loop, we may employ the following trajectory
method. Instead of using a single geodesic line for the decay w.r.t. the atom Di at
iteration k, we follow a polygonal geodesic path. That is, at iteration k, we do not
only carry out a single but possibly multiple successive gradient descent steps w.r.t.
Di , where the length of each step is chosen optimal for the current direction forDi
(by a line search strategy) and the descent steps are iterated until the sum of the step
“times” forDi reaches λk . Details can be found in [94]. This way, a global step size
choice with all atoms (potentially negatively) influencing each other, is replaced by
an autonomous step size choice for each atom. We denote the resulting operator by
trajλkDi for a data atomDi . The overall algorithm is subsumed in Algorithm 5.

We point out that also a stochastic variant of this scheme where the atoms are
chosen in a random order has been proposed in [94]. Finally, we point out that it
is also possible to employ a CPPA or a PPPA as explained in Sect. 2.2. This is in
particular important if the data term is not differentiable, i.e., if q = 1. For details
on computing the proximal mappings of the atomsDi we refer to the paper [94].
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Fig. 2.10 Deconvoling an S1-valued image (visualized as hue values.) As input data (center) we
use the ground truth (left) convolved with a Gaussian kernel (5×5 kernel with σ = 1) and corrupted
by von Mises noise. We observe the denoising and deblurring capabilities of TGV regularized
deconvolution (right)

We illustrate the results of joint deconvolution and denoising of manifold-
valued data in Fig. 2.10. The data consists of an S1-valued image convolved with a
Gaussian kernel and corrupted by von Mises noise. We employ S-TGV2

α regularized
deconvolution and observe good denoising and deblurring capabilities.

2.6 Wavelet Sparse Regularization of Manifold Valued Data

In contrast to TV, higher order TV type and Mumford-Shah regularizers which
are all based on differences (or derivatives in the continuous setting), we here
consider a variational scheme employing manifold valued interpolatory wavelets in
the regularizing term. In particular, we consider a sparsity promoting �1 type term
as well as an �0 type term. We obtain results on the existence of minimizers for
the proposed models. We provide algorithms for the proposed models and show the
potential of the proposed algorithms.

Interpolatory wavelet transforms for linear space data have been investigated by
Donoho in [42]. Their analogues for manifold-valued data have been introduced
by Ur Rahman, Donoho and their coworkers in [105]. Such transforms have
been analyzed and developed further in [62, 64, 113]. Typically, the wavelet-type
transforms employ an (interpolatory) subdivision scheme to predict the signal on
a finer scale. The ‘difference’ between the prediction and the actual data on the
finer scale is realized by vectors living in the tangent spaces of the predicted signal
points which point to the actual signal values, i.e., they yield actual signal values
after application of a retraction such as the exponential map. These tangent vectors
then serve as detail coefficients. Subdivision schemes for manifold-valued data have
been considered in [61, 107, 108, 112, 119]. Interpolatory wavelet transforms and
subdivision are discussed in more detail in Chapter 4 of this book. All the above
approaches consider explicit schemes, i.e., the measured data is processed in a



86 M. Holler and A. Weinmann

forward way using the analogues of averaging rules and differences in the manifold
setting. In contrast, we here consider an implicit approach based on a variational
formulation.

2.6.1 Model

We discuss a model for wavelet sparse regularization for manifold-valued data.
For the reader’s convenience, we consider the univariate situation here. For the
multivariate setup and further details we refer to [95]. Let f ∈ MK be data in the
complete, finite dimensional Riemannian manifoldM.We consider the problem

argminu∈MN

1

q
d(A(u), f )q +Wμ,p

α (u). (2.38)

Here, u denotes the argument to optimize for; it may be thought of as the underlying
signal generating the responseA(u) ∈MK , whereA is an operator which models a
system’s response, for instance. In case of pure denoising,A is the identity onMN,

N = K. Further instances of A are the manifold valued analogues of convolution
operators as pointed out in Sect. 2.5. The deviation of A(u) from f is quantified
by 1

q
d(A(u), f )q = 1

q

∑K
i=1 d(A(u)i, fi)q . Further, α = (α1, α2) is a parameter

vector regulating the trade-off between the data fidelity, and the regularizing term
Wμ,p

α which is the central topic of this section and is given by

Wμ,p
α (u) = α1 ·

∑

n,r

2
rp
(

μ+ 1
2 − 1

p

)

‖dn,r (u)‖pûn,r + α2 ·
∑

n

d(ũn−1,0, ũn,0)
p.

(2.39)

We discuss the regularizing term (2.39) in more detail in the following. We start with
the so-called detail coefficients dn,r which requires some space. The details dn,r at
scale r of the interpolatory wavelet transform for manifold valued data are given by

dn,r = dn,r (u) = 2−r/2 (ũn,r � ûn,r
)

, ûn,r = Sũn,r−1. (2.40)

Here ũn,r−1 = u2R−r+1n and ũn,r = u2R−r n (with R the finest level) denote the
thinned out target u at scale r − 1 and r, respectively. The coarsest level is denoted
by ũn,0 = u2Rn. The symbol � takes the Riemannian logarithm of the first argument
w.r.t. the second argument as base point. Sũn,r−1 denotes the application of an
interpolatory subdivision scheme S for manifold-valued data to the coarse level data
ũ·,r−1 evaluated at the index n which serves as prediction for ũn,r , i.e.,

Sũn,r−1 = mean(sn−2 · , ũ·,r−1). (2.41)

Here the mask s of the subdivision scheme S is a real-valued sequence such that
the even as well as the odd entries sum up to 1. The even and the odd entries yield
two sets of weights; in case of an interpolatory scheme s0 = 1 and all other even
weights equal zero. The simplest example of an interpolatory scheme is the linear
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interpolatory scheme for which s−1 = s1 = 1/2 and the other odd weights equal
zero. Thus, in the manifold setup, the prediction of the linear interpolatory scheme
consists of the geodesic midpoint between two consecutive coarse level items. The
linear interpolatory scheme is a particular example of the interpolatory Deslaurier-
Dubuc schemes whose third order variant is given by the coefficients s−3 = s3 =
−1/16 as well as s−1 = s1 = 9/16 with the remaining odd coefficients equal to
zero. A reference on linear subdivision schemes is the book [29]; for manifold-
valued schemes we refer to references above.

Coming back to (2.40), the detail dn,r quantifies the deviation between the
prediction Sũn,r−1 and the actual rth level data item ũn,r by

dn,r = ũn,r � Sũn,r−1 = exp−1
Sũn,r−1

ũn,r

which denotes the tangent vector sitting in ûn,r = Sũn,r−1 pointing to ũn,r .
With this information on the details dn,r , we come back to the definition of the

regularizer in (2.39). We observe that the symbol ‖ · ‖ûn,r denotes the norm induced
by the Riemannian scalar product in the point ûn,r , which is the point where the
detail dn,r (u) is a tangent vector at; it measures the size of the detail. The parameter
μ is a smoothness parameter and the parameter p ≥ 1 stems from a norm type term.
The second term measures the pth power of the distance between neighboring items
on the coarsest scale.

We emphasize that the case p = 1, μ = 1 in (2.38), corresponds to the manifold
analogue of the LASSO [35, 103] or �1-sparse regularization which, in the linear
case, is addressed by (iterative) soft thresholding [43]. This case is particularly
interesting since it promotes solutions u which are likely to be sparse w.r.t. the
considered wavelet expansion.

The manifold analogue of �0-sparse regularization which actually measures
sparsity is obtained by using the regularizer

W0
α(u) = α1 #{(n, r) : dn,r (u) �= 0} + α2 #{n : ũn−1,0 �= ũn,0}. (2.42)

The operator # is used to count the number of elements in the corresponding
set. Note that this way the number of non-zero detail coefficients of the wavelet
expansion is penalized. Similar to the linear case [35, 43, 111], potential applications
of the considered sparse regularization techniques are denoising and compression.

Concerning the existence of minimizers, we have the following results.

Theorem 2.14 The variational problem (2.38) of wavelet regularization using the
regularizersWμ,p

α of (2.39) with α2 �= 0 has a minimizer.

Similar to the existence results in Sect. 2.5 these results are based on showing
lower semicontinuity and a coercivity type condition in the manifold setting. To
ensure a coercivity type condition when α2 = 0 we need to impose additional
conditions on A. For a precise discussion of this point we refer to [95]. As in
Sect. 2.5 we here state a special case which is easier to access.
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Theorem 2.15 LetM be a compact manifold, or assume thatA fulfills the coerciv-
ity type condition (2.34). The variational problem (2.38) of wavelet regularization
using the regularizersWμ,p

α of (2.39) with α2 = 0 has a minimizer.

Theorem 2.16 We make the same assumptions as in Theorem 2.15. Then wavelet
sparse regularization using the �0 type regularizing terms W0

α(u) of (2.42) has a
minimizer.

For proofs of these theorems (whereby Theorem 2.15 is a special case of [95,
Theorem 4]) we refer to [95].

2.6.2 Algorithmic Realization

We decompose the regularizerWμ,p
α into atoms Rk with a enumerating index k by

Rk = α1

∑

n,r

2
rp
(

μ+ 1
2 − 1

p

)

‖dn,r (u)‖pûn,r , or Rk = α2d(ũn−1,0, ũn,0)
p,

(2.43)
and the data term into atoms Dk according to (2.35). To these atoms we may apply
the concepts of a generalized forward backward-scheme with Gauss-Seidel type
update and a trajectory method (explained in Sect. 2.5) as well as the concept of a
CPPA or a PPPA (explained in Sect. 2.2). To implement these schemes expressions
for the (sub)gradients and proximal mappings of the atoms Rk based on Jacobi
fields have been derived in [95]. Due to space reasons, we do not elaborate on this
derivation here, but refer to the mentioned paper for details. Similar to (2.43), we
may decompose the �0-sparse regularizer W0

α into atoms we also denote by Dk,
and apply a CPPA or PPPA. For details we refer to [95]. We illustrate �1 wavelet
regularization by considering a joint deblurring and denoising problem for an S2-
valued time series in Fig. 2.11. The noisy data is convolved with the manifold-valued

Fig. 2.11 Illustration of the proposed �1 wavelet regularization for a S2-valued time series. The
given data (left) is noisy and blurred with the manifold analogue of a Gaussian kernel with σ = 2.
We display the result of using the first order interpolatory wavelet (middle) and the third order
Deslaurier-Dubuc (DD) wavelet (right)
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analogue of a discrete Gaussian kernel. As prediction operator we employ the linear
interpolatory subdivision scheme which inserts the geodesic midpoint as well as the
cubic Deslaurier Dubuc scheme for manifold valued data as explained above.
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problem. Recently, these techniques have also been applied to problems with values
in a manifold. We provide a review of such methods in a refined framework based on
a finite element discretization of the range, which extends the concept of sublabel-
accurate lifting to manifolds. We also generalize existing methods for total variation
regularization to support general convex regularization.

3.1 Introduction

Consider a variational image processing or general data analysis problem of the
form

min
u:�→M

F(u) (3.1)

with � ⊂ Rd open and bounded. In this chapter, we will be concerned with
problems where the image u takes values in an s-dimensional manifold M.
Problems of this form are wide-spread in image processing and especially in the
processing of manifold-valued images such as InSAR [49], EBSD [6], DTI [8],
orientational/positional [58] data or images with values in non-flat color spaces such
as hue-saturation-value (HSV) or chromaticity-brightness (CB) color spaces [20].

They come with an inherent non-convexity, as the space of images u : � → M
is generally non-convex, with few exceptions, such as if M is a Euclidean space,
or if M is a Hadamard manifold, if one allows for the more general notion
of geodesic convexity [4, 5]. Except for these special cases, efficient and robust
convex numerical optimization algorithms therefore cannot be applied and global
optimization is generally out of reach.

The inherent non-convexity of the feasible set is not only an issue of represen-
tation. Even for seemingly simple problems, such as the problem of computing the
Riemannian center of mass for a number of points on the unit circle, it can affect the
energy in surprisingly intricate ways, creating multiple local minimizers and non-
uniqueness (Fig. 3.1). The equivalent operation in Euclidean space, computing the
weighted mean, is a simple convex (even linear) operation, with a unique, explicit
solution.

The problem of non-convexity is not unique to our setting, but rather ubiquitous
in a much broader context of image and signal processing: amongst others,
image segmentation, 3D reconstruction, image matching, optical flow and image
registration, superresolution, inpainting, edge-preserving image restoration with
the Mumford-Shah and Potts model, machine learning, and many statistically
or physically motivated models involve intrinsically non-convex feasible sets or
energies. When applied to such non-convex problems, local optimization strategies
often get stuck in local minimizers.

In convex relaxation approaches, an energy functional is approximated by a
convex one whose global optimum can be found numerically and whose minimizers
lie within a small neighborhood around the actual solution of the problem. A popular
convex relaxation technique that applies to a wide range of problems from image
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Fig. 3.1 Variational problems where the feasible set is a non-Euclidean manifold are prone to local
minima and non-uniqueness, which makes them generally much harder than their counterparts in
Rn. The example shows the generalization of the (weighted) mean to manifolds: the Riemannian
center of mass x̄ of points xi on a manifold—in this case, the unit circle S1—is defined as
the minimizer (if it exists and is unique) of the problem inf

x∈S1
∑

i λid(xi , x)
2, where d is the

geodesic (angular) distance and λi > 0 are given weights. Left: Given the two points x1 and x2, the
energy for computing their “average” has a local minimum at y in addition to the global minimum
at x̄. Compare this to the corresponding problem in Rn, which has a strictly convex energy with the
unique and explicit solution (x1+x2)/2. Center and right: When the number of points is increased
and non-uniform weights are used (represented by the locations and heights of the orange bars),
the energy structure becomes even less predictable. The objective function (right, parametrized by
angle) exhibits a number of non-trivial local minimizers that are not easily explained by global
symmetries. Again, the corresponding problem—computing a weighted mean—is trivial in Rn.
Starting from xstart = π , our functional lifting implementation finds the global minimizer x̄,
while gradient descent (a local method) gets stuck in the local minimizer xlocal. Empirically, this
behaviour can be observed for any other choice of points and weights, but there is no theoretical
result in this direction

and signal processing is functional lifting. With this technique, the feasible set is
embedded into a higher-dimensional space where efficient convex approximations
of the energy functional are easier available.

Overview and Contribution In the following sections, we will give a brief
introduction to the concept of functional lifting and explore its generalization to
manifold-valued problems. Our aim is to provide a survey-style introduction to the
area, therefore we will provide references and numerical experiments on the way. In
contrast to prior work, we will explain existing results in an updated finite element-
based framework. Moreover, we propose extensions to handle general regularizers
other than the total variation on manifolds, and to apply the “sublabel-accurate”
methods to manifold-valued problems.

3.1.1 Functional Lifting in Euclidean Spaces

The problem of finding a function u : � → � that assigns a label u(x) ∈ � from a
discrete range � to each point x in a continuous domain � ⊂ Rd , while minimizing
an energy function F(u), is commonly called a continuous multi-label (or multi-
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class labeling) problem in the image processing community [44, 53]. The name
comes from the interpretation of this setting as the continuous counterpart to the
fully discrete problem of assigning to each vertex of a graph one of finitely many
labels γ1, . . . , γL while minimizing a given cost function [17, 33, 34, 36].

The prototypical application of multi-labeling techniques is multi-class image
segmentation, where the task is to partition a given image into finitely many regions.
In this case, the label set � is discrete and each label represents one of the regions
so that u−1(γ ) ⊂ � is the region that is assigned label γ .

In the fully discrete setting, one way of tackling first-order multi-label problems
is to look for good linear programming relaxations [17, 34, 36]. These approaches
were subsequently translated to continuous domains� for the two-class [21], multi-
class [7, 43, 53, 71], and vectorial [30] case, resulting in non-linear, but convex,
relaxations. By honoring the continuous nature of �, they reduce metrication errors
and improve isotropy [31, 61, 63, 64], see [46] for a discussion and more references.

The general strategy, which we will also follow for the manifold-valued case, is
to replace the energy minimization problem

min
u : �→�

F (u), (3.2)

by a problem

min
v : �→X

F̃ (v), (3.3)

where X is some “nice” convex set of larger dimension than � with the property
that there is an embedding i : � ↪→ X and F(u) ≈ F̃ (i ◦u) in some sense whenever
u : �→ �.

In general, the lifted functional F̃ is chosen in such a way that it exhibits
favorable (numerical or qualitative) properties compared with the original functional
F while being sufficiently close to the original functional so that minimizers of F̃
can be expected to have some recoverable relationship with global minimizers of
F . Usually, F̃ is chosen to be convex when F is not, which will make the problem
amenable for convex optimization algorithms and allows to find a global minimizer
of the lifted problem.

While current lifting strategies generally avoid local minimizers of the original
problem, they are still an approximation and they are generally not guaranteed to
find the global minimizers of the original problem.

A central difficulty is that some simplifications have to be performed in the lifting
process in order to make it computationally feasible, which may lose information
about the original problem. As a result, global minimizers v : � → X of the lifted
problem need not be in the image of � under the embedding i : � ↪→ X and
therefore are not directly associated with a function in the original space.

The process of projecting a solution back to the original space of functions
u : � → � is a difficult problem and, unless � is scalar [55], the projection cannot
be expected to be a minimizer of the original functional (see the considerations in
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[26, 40, 66]). These difficulties may be related to the fact that the original problems
are NP-hard [23]. As in the discrete labeling setting [36], so-called rounding
strategies have been proposed in the continuous case [42, 45] that come with an
a priori bound for the relative gap between the minimum of the original functional
and the value attained at the projected version of a minimizer to the lifted functional.
For the manifold-valued case considered here, we are not aware of a similar result
yet.

In addition to the case of a discrete range �, relaxation methods have been
derived for dealing with a continuous (non-discrete) range, most notably the scalar
case � ⊆ R [3, 55]. They typically consider first-order energies that depend
pointwise on u and ∇u only:

F(u) =
∫

�

f (x, u(x),∇u(x)) dx. (3.4)

The equivalent problem class in the fully discrete setting consists of the energies
with only unary (depending on one vertex’s label) and pairwise (depending on two
vertices’ labels) terms.

For the problem (3.4), applying a strategy as in (3.2)–(3.3) comes with a substan-
tial increase in dimensions. These relaxation approaches therefore have been called
functional lifting, starting from the paper [54] where the (non-convex) Mumford-
Shah functional for edge-preserving image regularization and segmentation is lifted
to a space of functions v : �×� → [0, 1], � ⊂ R. The authors use the special “step
function” lifting X = {v : � → [0, 1]} and i(z∗) = v with v(z) = 1 if z ≤ z∗ and 0
otherwise, which is only available in the scalar case

In this case, the integrand f : � × � × Rs,d → R in (3.4) is assumed to be
convex in the third component and nonnegative. The less restrictive property of
polyconvexity has been shown to be sufficient [51, 69], so that also minimal surface
problems fit into this framework. The continuous formulations can be demonstrated
[51, 54] to have strong connections with the method of calibrations [3] and with the
theory of currents [29].

In this paper, we will consider the more general case of � = M having a
manifold structure. We will also restrict ourselves to first-order models. Only very
recently, attempts at generalizing the continuous lifting strategies to models with
higher-order regularization have been made—for regularizers that depend on the
Laplacian [48, 66] in case of vectorial ranges � ⊂ Rs and for the total generalized
variation [56, 60] in case of a scalar range � ⊂ R. However, in contrast to the
first-order theory, the higher-order models, although empirically useful, are still
considerably less mathematically validated. Furthermore, we mention that there are
models where the image domain � is replaced by a shape (or manifold) [14, 24],
which is beyond the scope of this survey.
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Fig. 3.2 A manifold M is embedded into the space P(M) of probability measures via the
identification of a point z ∈ M with the Dirac point measure δz concentrated at z. This “lifts”
the problem into a higher-dimensional linear space, which is much more amenable to global
optimization methods

3.1.2 Manifold-Valued Functional Lifting

In this chapter, we will be concerned with problems where � has a manifold
structure. The first step towards applying lifting methods to such problems was an
application to the restoration of cyclic data [23, 62] with � = S1, which was later
[47] generalized for the case of total variation regularization to data with values
in more general manifolds. In [47], the functional lifting approach is applied to a
first-order model with total variation regularizer,

F(u) =
∫

�

ρ(x, u(x))dx + λTV(u), (3.5)

for u : �→M, where � =M is an s-dimensional manifold and ρ : �×M→ R is
a pointwise data discrepancy. The lifted space is chosen to be X = P(M), the space
of Borel probability measures over M, with embedding i : M ↪→ P(M), where
i(z) := δz is the Dirac point measure with unit mass concentrated at z ∈ M (see
Fig. 3.2). The lifted functional is

F̃ (v) =
∫

�

〈ρ(x, ·), v(x)〉 dx + λT̃V(v), (3.6)

where 〈g,μ〉 := ∫

M g dμ for g ∈ C(M) and μ ∈ P(M). Furthermore,

T̃V(v) := sup

{∫

�

〈divx p(x, ·), v(x)〉 dx : p : �×M→ R, ‖∇zp‖∞ ≤ 1

}

.

(3.7)

The Lipschitz constraint ‖∇zp‖∞ ≤ 1, where

‖∇zp‖∞ := sup
{‖∇zp(x, z)‖σ,∞ : (x, z) ∈ �×M}

, (3.8)

and ‖ · ‖σ,∞ the spectral (operator) norm, can be explained by a functional analytic
perspective [65] on this lifting strategy: The lifted total variation functional is the
vectorial total variation semi-norm for functions over � with values in a certain
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Banach space of measures. The topological dual space of this space of measures is
the space of Lipschitz continuous functions over M. However, this interpretation
does not generalize easily to other regularizers. We will instead base our model for
general convex regularizers on the theory of currents as presented in [51].

Sublabel Accuracy While the above model comes with a fully continuous descrip-
tion, a numerical implementation requires the discretization of� as well as the range
�. This introduces two possible causes for errors: metrication errors and label bias.

Metrication errors are artifacts related to the graph or grid representation of the
spatial image domain�, finite difference operators, and the choice of metric thereof.
They manifest mostly in unwanted anisotropy, missing rotational invariance, or
blocky diagonals. They constitute a common difficulty with all variational problems
and lifting approaches [37].

In contrast, label bias means that the discretization favors solutions that assume
values at the chosen “labels” (discretization points) Z1, . . . , ZL in the range �
(see Figs. 3.3 and 3.4). This is very desirable for discrete �, but in the context of
manifolds, severely limits accuracy and forces a suitably fine discretization of the
range.

[47], 10 10 labels [38], 10 10 labels [38], 2 2 labels [38], 2 2 labels
label bias no label bias sublabel-accurate exact data term

Fig. 3.3 Rudin-Osher-Fatemi (ROF) L2 − TV denoising (blue) of an (Euclidean) vector-valued
signal u : [0, 1] → R2 (red), visualized as a curve in the flat manifoldM = R2. The problem is
solved by the continuous multi-labeling framework with functional lifting described in this chapter.
The discretization points (labels) in the rangeM, which are necessary for the implementation of the
lifted problem, are visualized by the gray grid. Left: The method proposed in [47] does not force
the solution to assume values at the grid points (labels), but still shows significant bias towards
edges of the grid (blue curve). Second from left: With the same number of labels, the method
from [38] is able to reduce label bias by improving data term discretization. Second from right:
Furthermore, the method from [38] allows to exploit the convexity of the data term to get decent
results with as little as four grid points. Right: Further exploiting the quadratic form of the data
term even produces the numerically exact reference solution, which in this case can be precisely
computed using the unlifted formulation due to the convexity of the problem. This shows that for
the Euclidean fully convex case, the sublabel-accurate lifting allows to recover the exact solution
with careful discretization
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Fig. 3.4 Total Variation denoising (blue) of a signal u : [0, 1] → S2 with values in S2 (red),
visualized as curves on the two-dimensional sphere embedded into R3. The problem is solved
by the continuous multi-labeling framework with functional lifting described in this chapter. The
discretization points (labels), that are necessary for the implementation of the lifted problem, are
visualized by the gray grid. Left: The method proposed in [47] does not force the solution to
take values at the grid points, but still shows significant grid bias. Center: With the same number
of labels, our proposed method, motivated by [38], reduces label bias by improving data term dis-
cretization. Right: Furthermore, our method can get excellent results with as little as six grid points
(right). Note that the typical contrast reduction that occurs in the classical Euclidean ROF can also
be observed in the manifold-valued case in the form of a shrinkage towards the Fréchet mean

In more recent so-called sublabel-accurate approaches for scalar and vectorial
ranges �, more emphasis is put on the discretization [38, 52, 70] to get rid of label
bias in models with total variation regularization, which allows to greatly reduce
the number of discretizations points for the range �. In a recent publication [50],
the gain in sublabel accuracy is explained to be caused by an implicit application
of first-order finite elements on � as opposed to previous approaches that can be
interpreted as using zero-order elements, which naturally introduces label-bias. An
extension of the sublabel-accurate approaches to arbitrary convex regularizers using
the theory of currents was recently proposed in [51].

Motivated by these recent advances, we propose to extend the methods from [47]
for manifold-valued images to arbitrary convex regularizers, making use of finite
element techniques on manifolds [25]. This reduces label bias and thus the amount
of labels necessary in the discretization.

3.1.3 Further Related Work

The methods proposed in this work are applicable to variational problems with
values in manifolds of dimension s ≤ 3. The theoretical framework applies to
manifolds of arbitrary dimension, but the numerical costs increase exponentially
for dimensions 4 and larger.

An alternative is to use local optimization methods on manifolds. A reference
for the smooth case is [2]. For non-smooth energies, methods such as the cyclic
proximal point, Douglas-Rachford, ADMM and (sub-)gradient descent algorithm
have been applied to first and second order TV and TGV as well as Mumford-Shah
and Potts regularization approaches in [9, 11, 12, 16, 67, 68]. These methods are
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generally applicable to manifolds of any dimension whose (inverse) exponential
mapping can be evaluated in reasonable time and quite efficient in finding a local
minimum, but can get stuck in local extrema. Furthermore, the use of total variation
regularization in these frameworks is currently limited to anisotropic formulations;
Tikhonov regularization was proposed instead for isotropic regularization [13, 67].
An overview of applications, variational models and local optimization methods is
given in [13].

Furthermore, we mention that, beyond variational models, there exist statistical
[27], discrete graph-based [10], wavelet-based [59], PDE-based [22] and patch-
based [39] models for the processing and regularization of manifold-valued signals.

3.2 Submanifolds of RN

We formulate our model for submanifolds of RN which is no restriction by the
Whitney embedding theorem [41, Thm. 6.15]. For an s-dimensional submanifold
of RN and � ⊂ Rd open and bounded, differentiable functions u : � → M
are regarded as a subset of differentiable functions with values in RN . For those
functions, a Jacobian Du(x) ∈ RN,d in the Euclidean sense exists that can be
identified with the push-forward of the tangent space Tx� to Tu(x)M, i.e., for each
x ∈ � and ξ ∈ Rd = Tx�, we have

Du(x)ξ ∈ Tu(x)M ⊂ Tu(x)R
N. (3.9)

On the other hand, for differentiable maps p : M → Rd , there exists an extension
of p to a neighborhood of M ⊂ RN that is constant in normal directions and we
denote by ∇p(z) ∈ RN,d the Jacobian of this extension evaluated at z ∈ M. Since
the extension is assumed to be constant in normal directions, i.e., ∇p(z)ζ = 0
whenever ζ ∈ NzM (the orthogonal complement of TzM in RN ), this definition is
independent of the choice of extension.

3.2.1 Calculus of Variations on Submanifolds

In this section, we generalize the total variation based approach in [47] to less
restrictive first-order variational problems by applying the ideas from functional
lifting of vectorial problems [51] to manifold-valued problems. Most derivations
will be formal; we leave a rigorous choice of function spaces as well as an analysis
of well-posedness for future work. We note that theoretical work is available for
the scalar-valued case in [3, 15, 55] and for the vectorial and for selected manifold-
valued cases in [29].

We consider variational models on functions u : �→M,

F(u) :=
∫

�

f (x, u(x),Du(x)) dx, (3.10)
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for which the integrand f : � ×M × RN,d → R is convex in the last component.
Note that the dependence of f on the full Jacobian of u spares us dealing with the
tangent bundle push-forward T�→ TM in a coordinate-free way, thus facilitating
discretization later on.

Formally, the lifting strategy for vectorial problems proposed in [51] can be
generalized to this setting by replacing the range � with M. As the lifted space,
we consider the space of probability measures on the Borel σ -Algebra over M,
X = P(M), with embedding i : M → P(M), where i(z) = δz is the Dirac
point mass concentrated at z ∈ M. Furthermore, we write  := � × M and,
for (x, z) = y ∈  , we define the coordinate projections π1y := x and π2y := z.
Then, for v : �→ P(M), we define the lifted functional

F̃ (v) := sup

{∫

�

〈− divx p(x, ·)+ q(x, ·), v(x)〉 dx : (∇zp, q) ∈ K
}

, (3.11)

where 〈g,μ〉 := ∫

M g dμ is the dual pairing between g ∈ C(M) and μ ∈ P(M)
and

K :=
{

(P, q) ∈ C( ;RN,d × R) : f ∗(π1y, π2y, P (y))+ q(y) ≤ 0 ∀y ∈  
}

,

(3.12)

where f ∗(x, z, ζ ) := supξ 〈ζ, ξ 〉 − f (x, z, ξ) is the convex conjugate of f with
respect to the last variable.

In the following, the integrand f : �×M×RN,d → R is assumed to decompose
as

f (x, z, ξ) = ρ(x, z)+ η(Pzξ) (3.13)

into a pointwise data term ρ : � ×M→ R and a convex regularizer η : Rs,d → R
that only depends on an s-dimensional representation of vectors in TzM given by a
surjective linear map Pz ∈ Rs,N with ker(Pz) = NzM.

This very general integrand covers most first-order models in the literature
on manifold-valued imaging problems. It applies in particular to isotropic and
anisotropic regularizers that depend on (matrix) norms of Du(x) such as the
Frobenius or spectral norm (or operator norm) where Pz is taken to be an arbitrary
orthogonal basis transformation. Since z �→ Pz is not required to be continuous,
it can also be applied to non-orientable manifolds such as the Moebius strip or the
Klein bottle where no continuous orthogonal basis representation of the tangent
bundle TM exists.

Regularizers of this particular form depend on the manifold through the choice of
Pz only. This is important because we approximateM in the course of our proposed
discretization by a discrete (simplicial) manifoldMh and the tangent spaces TzM
are replaced by the linear spaces spanned by the simplicial faces ofMh.
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3.2.2 Finite Elements on Submanifolds

We translate the finite element approach for functional lifting proposed in [50] to
the manifold-valued setting by employing the notation from surface finite element
methods [25].

The manifoldM ⊂ RN is approximated by a triangulated topological manifold
Mh ⊂ RN in the sense that there is a homeomorphism ι : Mh → M (Figs. 3.5
and 3.6). By Th, we denote the set of simplices that make upMh:

⋃

T ∈Th
T =Mh. (3.14)

For T , T̃ ∈ Th, either T ∩ T̃ = ∅ or T ∩ T̃ is an (s − k)-dimensional face for
k ∈ {1, . . . , s}. Each simplex T ∈ Th spans an s-dimensional linear subspace of RN

and there is an orthogonal basis representation PT ∈ Rs,N of vectors in RN to that
subspace. Furthermore, for later use, we enumerate the vertices of the triangulation
as Z1, . . . , ZL ∈M ∩Mh.

Fig. 3.5 Triangulated approximations of the Moebius strip (left) and the two-dimensional sphere
(right) as surfaces embedded into R3

Fig. 3.6 Each simplex T in a
triangulation (black
wireframe plot) is in
homeomorphic
correspondence to a piece
ι(T ) of the original manifold
(blue) through the map
ι : Mh →M z

ι(z )
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Fig. 3.7 The first-order finite
element space Sh is spanned
by a nodal basis χ1, . . . , χL
which is uniquely determined
by the property χk(Zl) = 1 if
k = l and χk(Zl) = 0
otherwise. The illustration
shows a triangulation of the
Moebius strip with a color
plot of a nodal basis function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

For the numerics, we assume the first-order finite element space

Sh := {φh ∈ C0(Mh) : φh|T is linear affine for each T ∈ Th}. (3.15)

The functions in Sh are piecewise differentiable onMh and we define the surface
gradient ∇T φh ∈ RN,d of φh ∈ Sh by the gradient of the linear affine extension
of φh|T to RN . If L is the number of vertices in the triangulation of Mh, then Sh
is a linear space of dimension L with nodal basis χ1, . . . , χL which is uniquely
determined by the property χk(Zl) = 1 if k = l and χk(Zl) = 0 otherwise
(Fig. 3.7).

The dual space of Sh, which we denote by Mh(Mh), is a space of signed mea-
sures. We identify Mh(Mh) = RL via dual pairing with the nodal basis χ1, . . . , χL,
i.e., to each μh ∈ Mh(Mh) we associate the vector (〈μh, χ1〉, . . . , 〈μh, χL〉). We
then replace the space P(M) of probability measures overM by the convex subset

Ph(Mh) =
{

μh ∈ Mh(Mh) : μh ≥ 0,
L
∑

k=1

〈μh, χk〉 = 1

}

. (3.16)

The energy functional is then translated to the discretized setting by redefining
the integrand f onMh for any x ∈ �, z ∈Mh and ξ ∈ RN,d as

f̃ (x, z, ξ) := ρ(x, ι(z))+ η(PT ξ) (3.17)

The epigraphical constraints in K translate to

∀x ∈ �∀z ∈Mh : η∗(PT∇zp(x, z))− ρ(x, ι(z))+ q(x, z) ≤ 0, (3.18)

for functions p ∈ Sdh and q ∈ Sh. The constraints can be efficiently implemented on
each T ∈ Th where ∇zp is constant and q(x, z) = 〈qT,1(x), z〉 + qT,2(x) is linear
affine in z:
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η∗(PT∇T p(x))+ 〈qT,1(x), z〉 − ρ(x, ι(z)) ≤ −qT,2(x), (3.19)

for any x ∈ �, T ∈ Th and z ∈ T . Following the approach in [50], we define

ρ∗
T (x, z) := sup

z′∈T
〈z, z′〉 − ρ(x, ι(z′)), (3.20)

and introduce auxiliary variables aT , bT to split the epigraphical constraint (3.19)
into two epigraphical and one linear constraint for x ∈ � and T ∈ Th:

η∗(PT∇T p(x)) ≤ aT (x), (3.21)

ρ∗
T (qT ,1(x)) ≤ bT (x), (3.22)

aT (x)+ bT (x) = −qT,2(x). (3.23)

The resulting optimization problem is described by the following saddle point form
over functions v : �→ Ph(Mh), p ∈ C1(�, Sd+1

h ) and q ∈ C(�, Sh):

inf
v

sup
p,q

∫

�

〈− divx p(x, ·)+ q(x, ·), v(x)〉 dx (3.24)

subject to η∗(PT∇T p(x)) ≤ aT (x), (3.25)

ρ∗
T (qT ,1(x)) ≤ bT (x), (3.26)

aT (x)+ bT (x)+ qT,2(x) = 0. (3.27)

Finally, for the fully discrete setting, the domain � is replaced by a Cartesian rect-
angular grid with finite differences operator ∇x and Neumann boundary conditions.

3.2.3 Relation to [47]

In [47], a similar functional lifting is proposed for the special case of total variation
regularization and without the finite elements interpretation. More precisely, the
regularizing term is chosen to be η(ξ) = λ‖ξ‖σ,1 for ξ ∈ Rs,d , where ‖ · ‖σ,1 is
the matrix nuclear norm, also known as Schatten-1-norm, which is given by the sum
of singular values of a matrix. It is the dual to the matrix operator or spectral norm
‖ · ‖σ,∞. If we substitute this choice of η into the discretization given above, the
epigraphical constraint (3.18) translates to the two constraints

‖PT∇T p(x)‖σ,∞ ≤ λ and q(x, z) ≤ ρ(x, ι(z)). (3.28)

The first one is a Lipschitz constraint just as in the model from [47], but two
differences remain:
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Fig. 3.8 Data term discretization for the lifting approach applied to the Riemannian center of
mass problem introduced in Fig. 3.1. For each x ∈ �, the data term z �→ ρ(x, z) (blue graph)
is approximated (orange graphs) between the label points Zk (orange vertical lines). Left: In the
lifting approach [47] for manifold-valued problems, the data term is interpolated linearly between
the labels. Right: Based on ideas from recent scalar and vectorial lifting approaches [38, 52], we
interpolate piecewise convex between the labels

1. In [47], the lifted and discretized form of the data term reads

∫

�

L
∑

k=1

ρ(x, Zk)v(x)k dx. (3.29)

This agrees with our setting if z �→ ρ(x, ι(z)) is affine linear on each simplex
T ∈ Th, as then q(x, z) = ρ(x, ι(z)) maximizes the objective function for any p
and v. Hence, the model in [47] doesn’t take into account any information about
ρ below the resolution of the triangulation. We improve this by implementing
the epigraph constraints ρ∗

T (qT ,1(x)) ≤ bT (x) as proposed in [38] using a
convex approximation of ρT (see Fig. 3.8). The approximation is implemented
numerically with piecewise affine linear functions in a “sublabel-accurate” way,
i.e., at a resolution below the resolution of the triangulation.

2. A very specific discretization of the gradients ∇T p(x) is proposed in [47]: To
each simplex in the triangulation a mid-point yT ∈M is associated. The vertices
Z1
T , . . . , Z

s+1
T of the simplex are projected to the tangent space at yT as vkT :=

logyT Z
k
T . The gradient is then computed as the vector g in the tangent space

TyTM describing the affine linear map on TyTM that takes values p(ZkT ) at the
points vkT , k = 1, . . . , s + 1 (Fig. 3.9).

This procedure aims to make up for the error introduced by the simplicial
discretization and amounts to a different choice of PT—a slight variant of our
model. We did not observe any significant positive or negative effects from using
either discretization; the difference between the minimizers is very small.

In the one-dimensional case, the two approaches differ only in a constant
factor: Denote by PT ∈ Rs,N the orthogonal basis representation of vectors in
RN in the subspace spanned by the simplex T ∈ Th and denote by P̃T ∈ Rs,N

the alternative approach from [47]. Now, consider a triangulation Th of the circle
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Fig. 3.9 Mapping a simplex T , spanned by Z1
T , . . . , Z

s+1
T , to the tangent space at its center-of-

mass yT using the logarithmic map. The proportions of the simplex spanned by the mapped points
v1
T , . . . , v

s+1
T may differ from the proportions of the original simplex for curved manifolds. The

illustration shows the case of a circle S1 ⊂ R2, where the deformation reduces to a multiplication
by a scalar αT , the ratio between the geodesic (angular) and Euclidean distance between Z1

T and
Z2
T . The gradient ∇T p of a finite element p ∈ Sh can be modified according to this change

in proportion in order to make up for some of the geometric (curvature) information lost in the
discretization

S1 ⊂ R2 and a one-dimensional simplex T ∈ Th. A finite element p ∈ Sh that
takes values p1, p2 ∈ R at the vertices Z1

T , Z
2
T ∈ R2 that span T has the gradient

∇T p = (p1 − p2)
Z1
T − Z2

T

‖Z1
T − Z2

T ‖2
2

∈ R2 (3.30)

and PT , P̃T ∈ R1,2 are given by

PT := (Z1
T − Z2

T )
!

‖Z1
T − Z2

T ‖2
, P̃T := (Z1

T − Z2
T )

!

dS1(Z1
T , Z

2
T )
. (3.31)

Hence PT = αT P̃T for αT = dS1(Z1
T , Z

2
T )/‖Z1

T − Z2
T ‖2 the ratio between

geodesic (angular) and Euclidean distance between the vertices. If the vertices
are equally spaced on S1, this is a constant factor independent of T that
typically scales the discretized regularizer by a small constant factor. On higher-
dimensional manifolds, more general linear transformations PT = AT P̃T come
into play. For very irregular triangulations and coarse discretization, this may
affect the minimizer; however, in our experiments the observed differences were
negligible.
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3.2.4 Full Discretization and Numerical Implementation

A prime advantage of the lifting method when applied to manifold-valued problems
is that it translates most parts of the problem into Euclidean space. This allows
to apply established solution strategies for the non-manifold case, which rely on
non-smooth convex optimization: After discretization, the convex-concave saddle-
point form allows for a solution using the primal-dual hybrid gradient method
[18, 19] with recent extensions [32]. In this optimization framework, the epigraph
constraints are realized by projections onto the epigraphs in each iteration step. For
the regularizers to be discussed in this paper (TV, quadratic and Huber), we refer to
the instructions given in [55]. For the data term ρ, we follow the approach in [38]:
For each x ∈ �, The data term z �→ ρ(x, ι(z)) is sampled on a subgrid of Mh

and approximated by a piecewise affine linear function. The quickhull algorithm
can then be used to get the convex hull of this approximation. Projections onto
the epigraph of ρ∗

T are then projections onto convex polyhedra, which amounts to
solving many low-dimensional quadratic programs; see [38] for more details.

Following [47], the numerical solution u : � → Ph(Mh), taking values in the
lifted space Ph(Mh), is projected back to a function u : � → M, taking values in
the original spaceM, by mapping, for each x ∈ � separately, a probability measure
u(x) = (λ1, . . . , λL) = μh ∈ Ph(Mh) to the following Riemannian center of mass
on the original manifoldM:

μh = (λ1, . . . , λL) �→ arg min
z∈M

L
∑

k=1

λkdM(z, Z
k)2 (3.32)

For M = Rs , this coincides with the usual weighted mean z̄ = ∑L
k=1 λkZk .

However, on manifolds this minimization is known to be a non-convex problem
with non-unique solutions (compare Fig. 3.1). Still, in practice the iterative method
described in [35] yields reasonable results for all real-world data considered in this
work: Starting from a point z0 := Zk with maximum weight λk , we proceed for
i ≥ 0 by projecting the Zk , k = 1, . . . , L, to the tangent space at zi using the
inverse exponential map, taking the linear weighted mean vi there and defining zi+1
as the projection of vi toM via the exponential map:

V ki := logzi (Z
k) ∈ TziM, k = 1, . . . , L, (3.33)

vi :=
L
∑

k=1

λkV
k
i ∈ TziM, (3.34)

zi+1 := expzi (vi). (3.35)

The method converges rapidly in practice. It has to be applied only once for each
x ∈ � after solving the lifted problem, so that efficiency is non-critical.



3 Lifting Methods for Manifold-Valued Variational Problems 111

3.3 Numerical Results

We apply our model to problems with quadratic data term ρ(x, z) := d2
M(I (x), z)

and Huber, total variation (TV) and Tikhonov (quadratic) regularization with
parameter λ > 0:

ηTV(ξ) := λ‖ξ‖2, (3.36)

ηHuber(ξ) := λφα(ξ), (3.37)

ηquad(ξ) := λ

2
‖ξ‖2

2, (3.38)

where the Huber function φα for α > 0 is defined by

φα(ξ) :=
{ ‖ξ‖2

2
2α if ‖ξ‖2 ≤ α,

‖ξ‖2 − α
2 if ‖ξ‖2 > α.

(3.39)

Note that previous lifting approaches for manifold-valued data were restricted to
total variation regularization ηTV.

The methods were implemented in Python 3 with NumPy and PyCUDA, running
on an Intel Core i7 4.00 GHz with an NVIDIA GeForce GTX 1080 Ti 12 GB and
16 GB RAM. The iteration was stopped as soon as the relative gap between primal
and dual objective fell below 10−5. Approximate runtimes ranged between 5 and
45 min. The code is available from https://github.com/room-10/mfd-lifting.

3.3.1 One-Dimensional Denoising on a Klein Bottle

Our model can be applied to both orientable and non-orientable manifolds.
Figure 3.10 shows an application of our method to Tikhonov denoising of
a synthetic one-dimensional signal u : [0, 1] → M on the two-dimensional
Klein surface embedded in R3, a non-orientable closed surface that cannot be
embedded into R3 without self-intersections. Our numerical implementation uses a
triangulation with a very low count of 5×5 vertices and 50 triangles. The resolution
of the signal (250 one-dimensional data points) is far below the resolution of the
triangulation and, still, our approach is able to restore a smooth curve.

3.3.2 Three-Dimensional Manifolds: SO(3)

Signals with rotational range u : � → SO(3) occur in the description of crystal
symmetries in EBSD (Electron Backscatter Diffraction Data) and in motion track-
ing. The rotation group SO(3) is a three-dimensional manifold that can be identified
with the three-dimensional unit-sphere S3 up to identification of antipodal points via

https://github.com/room-10/mfd-lifting
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Fig. 3.10 Tikhonov (quadratic) denoising (blue) of a one-dimensional signal (red) u : [0, 1] →M
with values on the two-dimensional Klein surface (commonly referred to as Klein bottle)M ⊂ R3.
The black wireframe lines on the surface represent the triangulation used by the discretization of
our functional lifting approach. The numerical implementation recovers the denoised signal at a
resolution far below the resolution of the manifold’s discretization. The lifting approach does not
require the manifold to be orientable

the quaternion representation of 3D rotations. A triangulation of S3 is given by the
vertices and simplicial faces of the hexacosichoron (600-cell), a regular polytope in
R4 akin to the icosahedron in R3. As proposed in [47], we eliminate opposite points
in the hexacosichoron and obtain a discretization of SO(3) with 60 vertices and 300
tetrahedral faces.

Motivated by Bézier surface interpolation [1], we applied Tikhonov regulariza-
tion to a synthetic inpainting (interpolation) problem with added noise (Fig. 3.11).
In our variational formulation, we chose ρ(x, z) = 0 for x in the inpainting area and
ρ(x, z) = δ{z=I (x)} (a hard constraint to the input signal I : � → SO(3)) for x in
the known area.

Using the proposed sublabel-accurate handling of data terms, we obtain good
results with only 60 vertices, in contrast to [47], where the discretization is refined
to 720 vertices (Fig. 3.11).

3.3.3 Normals Fields from Digital Elevation Data

In digital elevation models (DEM), elevation information for earth science studies
and mapping applications often includes surface normals which can be used to
produce a shaded coloring of elevation maps. Normal fields u : �→ S2 are defined
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Fig. 3.11 Tikhonov inpainting of a two-dimensional signal of (e.g., camera) orientations, elements
of the three-dimensional special orthogonal group of rotations SO(3), a manifold of dimension
s = 3. The masked input signal (red) is inpainted (gray) using our model with Tikhonov
(quadratic) regularization. The interpolation into the central area is smooth. Shape: Triceratops
by BillyOceansBlues (CC-BY-NC-SA, https://www.thingiverse.com/thing:3313805)

on a rectangular image domain � ⊂ R2; variational processing of the normal fields
is therefore a manifold-valued problem on the two-dimensional sphere S2 ⊂ R3.

Denoising using variational regularizers from manifold-valued image processing
before computing the shading considerably improves visual quality (Fig. 3.12).
For our framework, the sphere was discretized using 12 vertices and 20 triangles,
chosen to form a regular icosahedron. The same dataset was used in [47], where
the proposed lifting approach required 162 vertices—and solving a proportionally
larger optimization problem—in order to produce comparable results.

https://www.thingiverse.com/thing:3313805
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Fig. 3.12 Denoising of S2-valued surface normals on the digital elevation model (DEM) dataset
from [28]: Noisy input (top), total variation (λ = 0.4) denoised image (second from top), Huber
(α = 0.1, λ = 0.75) denoised image (second from bottom), quadratically (λ = 3.0) denoised
image (bottom). Mountain ridges are sharp while hillsides remain smooth with Huber. TV enforces
flat hillsides and Tikhonov regularization smoothes out all contours

We applied our approach with TV, Huber and Tikhonov regularization. Inter-
estingly, many of the qualitative properties known from RGB and grayscale image
processing appear to transfer to the manifold-valued case: TV enforces piecewise
constant areas (flat hillsides), but preserves edges (mountain ridges). Tikhonov
regularization gives overall very smooth results, but tends to lose edge information.
With Huber regularization, edges (Mountain ridges) remain sharp while hillsides
are smooth, and flattening is avoided (Fig. 3.12).

3.3.4 Denoising of High Resolution InSAR Data

While the resolution of the DEM dataset is quite limited (40 × 40 data points),
an application to high resolution (432 × 426 data points) Interferometric Synthetic
Aperture Radar (InSAR) denoising shows that our model is also applicable in a
more demanding scenario (Fig. 3.13).

In InSAR imaging, information about terrain is obtained from satellite or aircraft
by measuring the phase difference between the outgoing signal and the incoming
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Fig. 3.13 Denoising of S1-valued InSAR measurements from Mt. Vesuvius, dataset from [57]:
Noisy input (top left), total variation (λ = 0.6) denoised image (top right), Huber (α = 0.1,
λ = 0.75) denoised image (bottom left), quadratically (λ = 1.0) denoised image (bottom right).
All regularization strategies successfully remove most of the noise. The total variation regularizer
enforces clear contours, but exhibits staircasing effects. The staircasing is removed with Huber
while contours are still quite distinct. Quadratic smoothing preserves some of the finer structures,
but produces an overall more blurry and less contoured result
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reflected signal. This allows a very high relative precision, but no immediate
absolute measurements, as all distances are only recovered modulo the wavelength.
After normalization to [0, 2π), the phase data is correctly viewed as lying on the
one-dimensional unit sphere S1. Therefore, handling the data before any phase
unwrapping is performed requires a manifold-valued framework.

Again, denoising with TV, Huber, and Tikhonov regularizations demonstrates
properties comparable to those known from scalar-valued image processing while
all regularization approaches reduce noise substantially (Fig. 3.13).

3.4 Conclusion and Outlook

We provided an overview and framework for functional lifting techniques for
the variational regularization of functions with values in arbitrary Riemannian
manifolds. The framework is motivated from the theory of currents and continuous
multi-label relaxations, but generalizes these from the context of scalar and vectorial
ranges to geometrically more challenging manifold ranges.

Using this approach, it is possible to solve variational problems for manifold-
valued images that consist of a possibly non-convex data term and an arbitrary,
smooth or non-smooth, convex first-order regularizer, such as Tikhonov, total vari-
ation or Huber. A refined discretization based on manifold finite element methods
achieves sublabel-accurate results, which allows to use coarser discretization of the
range and reduces computational effort compared to previous lifting approaches on
manifolds.

A primary limitation of functional lifting methods, which equally applies to
manifold-valued models, is dimensionality: The numerical cost increases exponen-
tially with the dimensionality of the manifold due to the required discretization of
the range. Addressing this issue appears possible, but will require a significantly
improved discretization strategy.
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Abstract Any procedure applied to data, and any quantity derived from data, is
required to respect the nature and symmetries of the data. This axiom applies to
refinement procedures and multiresolution transforms as well as to more basic
operations like averages. This chapter discusses different kinds of geometric
structures like metric spaces, Riemannian manifolds, and groups, and in what way
we can make elementary operations geometrically meaningful. A nice example of
this is the Riemannian metric naturally associated with the space of positive definite
matrices and the intrinsic operations on positive definite matrices derived from it.
We discuss averages first and then proceed to refinement operations (subdivision)
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and multiscale transforms. In particular, we report on the current knowledge as
regards convergence and smoothness.

4.1 Computing Averages in Nonlinear Geometries

The line of research presented in this chapter was first suggested by a 2001
presentation by D. Donoho on multiscale representations of discrete data [10].
A subsequent Ph.D. thesis and accompanying publication appeared a few years
later [48]. Multiscale representations are intimately connected with refinement
procedures (prediction operators). These are in themselves an interesting topic with
applications, e.g. in computer graphics. Iterative refinement a.k.a. subdivision in
turn is based on the notion of average. Consequently this chapter is structured into
the following parts: Firstly a discussion of averages, in particular averages in metric
spaces and in manifolds. Secondly, subdivision rules and the limits generated by
them. Thirdly, multiresolution representations.

We start with the affine average w.r.t. weights aj of data points xj contained in a
vector space. It is defined by

x = avgj∈Z(aj , xj ) :=
∑

ajxj , where
∑

aj = 1. (4.1)

In this chapter we stick to finite averages, but we allow negative coefficients. For
data whose geometry is not that of a vector space, but that of a surface contained
in some Euclidean space, or that of a group, or that of a Riemannian manifold, this
affine average often does not make sense. In any case it is not natural. Examples of
such data are, for instance, unit vectors, positions of a rigid body in space, or the
3 by 3 symmetric positive definite matrices which occur in diffusion-tensor MRI.
In the following paragraphs we show how to extend the notation of affine average
to nonlinear situations in a systematic way. We start by pointing out equivalent
characterizations of the affine average:

x = avg(aj , xj ) ⇐⇒ x solves
∑
aj (xj − x) = 0 (4.2)

⇐⇒ x = y +∑
aj (xj − y) for any y (4.3)

⇐⇒ x minimizes
∑
aj‖x − xj‖2. (4.4)

4.1.1 The Fréchet Mean

Each of (4.2)–(4.4) has been used to generalize the notion of weighted average to
nonlinear geometries. Some of these generalizations are conceptually straightfor-
ward. For example, Eq. (4.4) has an analogue in any metric space (M, dM), namely
the weighted Fréchet mean defined by
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avgF (aj , xj ) := arg min
x∈M

∑

aj dM(x, xj )
2. (4.5)

It is a classical result that in case of nonnegative weights, the Fréchet mean exists
and is unique, if M is a Hadamard metric space. This property means M is
complete, midpoints exist uniquely, and triangles are slim, cf. [1].1

The Fréchet Mean in Riemannian Manifolds

In a surface resp. Riemannian manifoldM, the Fréchet mean locally exists uniquely.
A main reference here is the paper [39] by H. Karcher. He considered the more
general situation that μ is a probability measure onM, where the mean is defined
by

avgF (μ) = arg min
x∈M

∫

dM(x, ·)2dμ.

In this chapter we stick to the elementary case of finite averages with possibly neg-
ative weights. The Fréchet mean exists uniquely if the manifold is Hadamard—this
property is usually called “Cartan-Hadamard” and is characterized by completeness,
simple connectedness, and nonpositive sectional curvature. For unique existence of
avgF , we do not even have to require that weights are nonnegative [37, Th. 6].

The Fréchet Mean in the Non-unique Case

If the Cartan-Hadamard property is not fulfilled, the Fréchet mean does not have to
exist at all, e.g. if the manifold is not complete (cutting a hole inM exactly where
the mean should be makes it nonexistent). If the manifold is complete, the mean
exists, but possibly is not unique.

If M is complete with nonpositive sectional curvature, but is not simply
connected, there are situations where a unique Fréchet mean of given data points
can still be defined, e.g. if the data are connected by a path c : [a, b] → M with
c(tj ) = xj . This will be the case e.g. if data represent a time series. Existence or
maybe even canonical existence of such a path depends on the particular application.
We then consider the simply connected covering M̃, find a lifting c̃ : I → M̃ of c,
compute the Fréchet mean avgF (aj , c̃(tj )), and project it back toM. This average
does not only depend on the data points and the weights, but also on the homotopy
class of c. In fact instead of a path, any mapping c : I → M can be used for such
purposes as long as its domain I is simply connected [37].

1More precisely, for all a, b ∈M there is a unique midpoint x = m(a, b) defined by dM(x, a) =
dM(x, b) = dM(a, b)/2, and for any a, b, c ∈ M and points a′, b′, c′ ∈ R2 which have the same
pairwise distances as a, b, c, the inequality dM(c,m(a, b)) ≤ dR2 (c′,m(a′, b′)) holds.
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Finally, ifM is complete but has positive sectional curvatures, a unique Fréchet
mean is only defined locally. The size of neighbourhoods where uniqueness happens
has been discussed by [15, 16, 34]. This work plays a role in investigating
convergence of subdivision rules in Riemannian manifolds, see Sect. 4.2.4.

4.1.2 The Exponential Mapping

From the different expressions for the affine average, (4.2) and (4.3) seem to be
specific to linear spaces, because they involve the + and − operations. However, it
turns out that there is a big class of nonlinear geometries where natural analogues
⊕ and � of these operations exist, namely the exponential mapping and its inverse.
We discuss this construction in surfaces resp. Riemannian manifolds, in groups, and
in symmetric spaces.

The Exponential Mapping in Riemannian Geometry

In a Riemannian manifold M, for any p ∈ M and tangent vector v ∈ TpM, the
point expp(v) is the endpoint of the geodesic curve c(t) which starts in p, has initial
tangent vector v, and whose length equals ‖v‖. We let

p ⊕ v := expp(v), q � p := exp−1
p (q).

One property of the exponential mapping is the fact that curves of the form t �→
p⊕ tv are shortest paths with initial tangent vector v. The mapping v �→ p⊕ v is a
diffeomorphism locally around v = 0. Its differential equals the identity.

Properties of the Riemannian Exponential Mapping

For complete Riemannian manifolds, p ⊕ v is always well defined. Also q � p

exists by the Hopf-Rinow theorem, but it does not have to be unique. Uniqueness
happens if dM(p, q) does not exceed the injectivity radius ρinj(p) of p. In Cartan-
Hadamard manifolds, injectivity radii are infinite and the exponential mapping does
not decrease distances, i.e., dM(p ⊕ v, p ⊕ w) ≥ ‖v − w‖TpM. The injectivity
radius can be small for topological reasons (e.g. a cylinder of small radius which is
intrinsically flat, can have arbitrarily small injectivity radius), but even in the simply
connected case, one cannot expect ρinj to exceed πK−1/2, if K is a positive upper
bound for sectional curvatures.

Further, the � operation and the Riemannian distance are related by

∇ dM(·, a)(x) = − a � x
‖a � x‖ , ∇ dM

2(·, a)(x) = −2(a � x), (4.6)
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if v = a � x refers to the smallest solution v of x ⊕ a = v. For more properties
of the exponential mapping we refer to [39] and to differential geometry textbooks
like [8].

The Exponential Mapping in Groups

In Lie groups, which we describe only in the case of a matrix group G, a canonical
exponential mapping is defined: With the notation g = TeG for the tangent space in
the identity element, we let

v ∈ g %⇒ e ⊕ v = exp(v) =
∑

k≥0

1

k!v
k.

The curve t �→ e ⊕ tv is the unique one-parameter subgroup of G whose tangent
vector at t = 0 is the vector v ∈ g. Again, v �→ e ⊕ v is locally a diffeomorphism
whose differential is the identity mapping.

An inverse log of exp is defined locally around e. Transferring the definition of
⊕ to the entire group by left translation, the defining relation g ⊕ gv := g(e ⊕ v)

yields

p ⊕ v = p exp(p−1v), q � p = p log(p−1q).

Addition is always globally well defined, but the difference q � p might not exist.
For example, in GLn, the mapping v �→ e ⊕ v is not onto. The difference exists
always, but not uniquely, in compact groups. See e.g. [2].

The Exponential Mapping in Symmetric Spaces

Symmetric spaces have the form G/H , where H is a Lie subgroup of G. There are
several definitions which are not entirely equivalent. We use the one that the tangent
spaces g = TeG, h = TeH obey the condition that h is the +1 eigenspace of an
involutive Lie algebra automorphism σ of g.2 The tangent space g/h ofG/H in the
point eH ∈ G/H is naturally identified with the −1 eigenspace s of the involution,
and is transported to all points ofG/H by left translation. The exponential mapping
inG is projected ontoG/H in the canonical way and yields the exponential mapping
in the symmetric space.

We do not go into more details but refer to the comprehensive classic [35] instead.
Many examples of well-known manifolds fall into this category, e.g. the sphere Sn,
hyperbolic space Hn, and the Grassmannians. We give an important example:

Example 4.1 (The Riemannian Symmetric Space of Positive-Definite Matrices) The
space Posn of positive definite n× n matrices is made a metric space by letting

2i.e., σ obeys the law σ([v,w]) = [σ(v), σ (w)], where in the matrix group case, the Lie bracket
operation is given by [v,w] = vw − wv.
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d(a, b) = ‖ log(a−1/2ba−1/2)‖2 =
(∑

λ1,...,λn∈σ(a−1b)
log2 λj

)1/2
. (4.7)

Here ‖ · ‖2 means the Frobenius norm, and σ(m)means the eigenvalues of a matrix.
The metric (4.7) is actually that of a Riemannian manifold. Posn, as an open

subset of the set Symn of symmetric matrices, in each point has a tangent space
TaPosn canonically isomorphic to Symn as a linear space. The Riemannian metric
in this space is defined by ‖v‖ = ‖a−1/2va−1/2‖2.

Posn is also a symmetric space: We know that any g ∈ GLn can be uniquely
written as a product g = au, with a = √

ggT ∈ Posn and u ∈ On. Thus Posn =
G/H , with G = GLn, H = On, and the canonical projection π(x) = √

xxT .
The respective tangent spaces g, h of G,H are given by g = Rn×n and h = son,

which is the set of skew-symmetric n × n matrices. The involution σ(x) = −xT
in g obeys [σ(v), σ (w)] = σ([v,w]), and h is its +1 eigenspace. We have thus
recognized Posn as a symmetric space. It turns out that a⊕v = a exp(a−1v), where
exp is the matrix exponential function.

The previous paragraphs define two different structures on Posn, namely that of
a Riemannian manifold, and that of a symmetric space. They are compatible in the
sense that the ⊕, � operations derived from either structure coincide. For more
information we refer to [24, 40, 58]. Subdivision in particular is treated by [38].

4.1.3 Averages Defined in Terms of the Exponential Mapping

If ⊕ and � are defined as discussed in the previous paragraphs, it is possible to
define a weighted affine average implicitly by requiring that

x = avgE(aj , xj ) : ⇐⇒
∑

aj (xj � x) = 0. (4.8)

Any Fréchet mean in a Riemannian manifold is also an average in this sense, which
follows directly from (4.5) together with (4.6). Locally, avgE is well defined and
unique. As to the size of neighbourhoods where this happens, in the Riemannian
case the proof given by [15, 16] for certain neighbourhoods enjoying unique
existence of avgF shows that the very same neighbourhoods also enjoy unique
existence of avgE .

Affine Averages with Respect to a Base Point

From the different expressions originally given for the affine average, x = y +
∑
aj (xj − y) is one we have not yet defined a manifold analogue for. With � and

⊕ at our disposal, this can be done by
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avgy(aj ; xj ) := y ⊕
∑

aj (xj � y). (4.9)

We call this the log/exp average with respect to the base point y. It has the
disadvantage of a dependence on the base point, but for the applications we have
in mind, there frequently is a natural choice of base point. Its advantages lie in the
easier analysis compared to the Fréchet mean. One should also appreciate that the
Fréchet mean is a log/exp mean w.r.t. to a basepoint, if that basepoint is the Fréchet
mean itself:

y = avgF (aj ; xj ) %⇒ avgy(aj ; xj ) = y ⊕
∑

aj (xj � y) = y ⊕ 0 = y,

(4.10)

because of (4.8). This may be a trivial point, but it has been essential in proving
smoothness of limit curves for manifold-based subdivision processes (see Theo-
rem 4.11 and [29]).

The possibility to define averages w.r.t. basepoints rests on the possibility of
defining �, which has been discussed above.

4.2 Subdivision

4.2.1 Defining Stationary Subdivision

Subdivision is a refinement process acting on input data lying in some setM, which
in the simplest case are indexed over the integers and are interpreted as samples
of a function f : R → M. A subdivision rule refines the input data, producing a
sequence Sp which is thought of as denser samples of either f itself, or of a function
approximating f .

One mostly considers binary rules, whose application “doubles” the number of
data points. The dilation factor of the rule, generally denoted by the letter N , then
equals 2. We require that the subdivision rule is invariant w.r.t. index shift, which by
means of the left shift operator L can be formalized as

LNS = SL.

We require that each point Spi depends only on finitely many data points pj .
Together with shift invariance this means that there is s > 0 such that pi influences
only SpNi−s , . . . , SpNi+s .

Subdivision rules are to be iterated: We create finer and finer data

p, Sp, S2p, S3p, . . . ,
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which we hope approach a continuous limit (the proper definition of which is given
below).

Subdivision was invented by G. de Rham [6], who considered the process of
iteratively cutting corners from a convex polygon contained inM = R2, and asked
for the limit shape. If cutting corners is done by replacing each edge pipi+1 by the
shorter edge with vertices Sp2i = (1 − t)pi + tpi+1, Sp2i+1 = tpi + (1 − t)pi+1,
this amounts to a subdivision rule. In de Rham’s example, only two data points pi
contribute to any individual Spj .

Primal and Dual Subdivision Rules The corner-cutting rules mentioned above are
invariant w.r.t. reordering indices according to . . . , 0 �→ 1, 1 �→ 0, 2 �→ −1, . . ..
With inversion U defined by (Up)i = p−i we can write this invariance as (LU)S =
S(LU). An even simpler kind of symmetry is enjoyed by subdivision rules with
obey US = SU . The latter are called primal rules, the former dual ones. The reason
why we emphasize these properties is that they give guidance for finding manifold
analogues of linear subdivision rules.

Subdivision of Multivariate Data It is not difficult to generalize the concept
of subdivision to multivariate data p : Zs → M indexed over the grid Zs . A
subdivision rule S must fulfill LNv S = SLv , for all shifts Lv w.r.t. a vector v ∈ Zs .

Data with combinatorial singularities have to be treated separately, cf. Sect. 4.3.4.
Here basically only the bivariate case is studied, but this has been done extensively,
mostly because of applications in Computer Graphics [43].

Linear Subdivision Rules and Their Nonlinear Analogues

A linear subdivision rule acting on data p : Z2 → Rd has the form

Spi =
∑

j
ai−Njpj .

If the sum
∑

j ai−Nj of coefficients contributing to Spi equals 1, the application of
the rule amounts to computing a weighted average:

Spi = avg(ai−Nj ;pj ). (4.11)

Subdivision rules not expressible in this way might occur as auxiliary tools in proofs,
but are not meant to be applied to data which are points of an affine space. This is
because if

∑
ai−Nj �= 1, then the linear combination

∑
ai−Njpj is not translation-

invariant, and the rule depends on the choice of origin of the coordinate system.
Besides, the iterated application of rules not expressible as weighted averages

either leads to divergent data Skp, or alternatively, to data approaching zero. For
this reason, one exclusively considers linear rules of the form (4.11). A common
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definition of convergent subdivision rule discounts the case of zero limits and
recognizes translation invariance as a necessary condition for convergence, cf. [17].

For a thorough treatment of linear subdivision rules, conveniently done via
S acting as a linear operator in �∞(Zs ,R) and using the appropriate tools of
approximation theory, see, e.g. [4].

In the following we discuss some nonlinear, geometric, versions of subdivision
rules. We use the various nonlinear versions of averages introduced above, starting
with the Fréchet mean in metric spaces.

• Subdivision using the Fréchet mean. A natural analogue of (4.11) is found by
replacing the affine average by the Fréchet mean. This procedure is particularly
suited for Hadamard metric spaces and also in complete Riemannian manifolds.

• Log/exp subdivision. In a manifold equipped with an exponential mapping, an
analogue of (4.11) is defined by

Tpi = avgmi (ai−Nj ;pj ),

where mi is a base point computed in a meaningful manner from the input data,
e.g. mi = p'i/N(. In case of combinatorial symmetries of the subdivision rule, it
makes sense to make the choice of mi conform to these symmetries.

• Subdivision using projections. IfM is a surface embedded in a vector space and
π is a projection ontoM, we might use the subdivision rule

Tpi = π(Spi ).

If the intrinsic symmetries of M extend to symmetries of ambient space, then
this projection analogue of a linear subdivision rule is even intrinsic—see
Example 4.2.

Example 4.2 (Subdivision in the Motion Group) The groups On and SOn are
1
2n(n − 1)-dimensional surfaces in the linear space Rn×n. A projection onto On
is furnished by singular value decomposition, or in an alternate way of expressing
it, by the polar decomposition of Example 4.1:

π : GLn → On, π(g) = (ggT )−1/2g.

This projection is On-equivariant in the sense that for u ∈ On, we have both
π(ug) = uπ(g) and π(gu) = π(g)u. The same invariance applies to application of
a linear subdivision rule acting in Rn×n. So for any given data in On, and a linear
subdivision rule S, the subdivision rule π ◦S produces data in On in a geometrically
meaningful way, as long as we do not exceed the bounds of GLn. Since GLn is a
rather big neighbourhood of On, this is in practice no restriction. Figure 4.1 shows
an example.
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Fig. 4.1 Subdivision by projection in the motion group R3
� O3. A 4-periodic sequence pi =

(ci , ui) of positions of a rigid body is defined by the center of mass ci , and an orientation ui ∈ O3.
Both components undergo subdivision w.r.t. the interpolatory four-point rule S, where the matrix
part is subsequently projected back onto O3 in an invariant manner

4.2.2 Convergence of Subdivision Processes

Definition of Convergence

When discrete data p are interpreted as samples of a function, then refined data Sp,
S2p etc. are interpreted as the result of sampling which is N times, N2 times etc. as
dense as the original. We therefore define a convergent refinement rule as follows.

Definition 4.3 Discrete data Skp : Zs → M at the k-th iteration of refinement
determine a function fk : N−kZs → M, whose values are the given data points:
For any N -adic point ξ , we have (Skp)Nkξ = fk(ξ), provided Nkξ is an integer.
For all such ξ , the sequence (fk(ξ))k≥0 is eventually defined and we let f (ξ) =
limk→∞ fk(ξ). We say S is convergent for input data p, if the limit function f exists
for all ξ and is continuous. It can be uniquely extended to a continuous function
S∞p : Rs →M.

Another way of defining the limit is possible if data pi, Spi , . . . lie in a vector
space. We linearly interpolate them by functions g0, g1, . . . with gk(N−ki) = Skpi .
Then the limit of functions gk agrees with the limit of Definition 4.3 (which is
pointwise, but in fact convergence is usually uniform on compact sets.)

The following lemma is the basis for investigating convergence of subdivision
rules in metric spaces. The terminology is that of [19, 20].

Lemma 4.4 Let M be a complete metric space, and let the subdivision rule S
operate with dilationN on data p : Zs →M. We measure the density of the data by

δ(p) = sup
|i−j |≤1

dM(pi, pj ),

where we use the 1-norm on the indices. S is contractive, resp. displacement-safe, if

δ(Sp) ≤ γ δ(p), for some γ < 1, resp. supi∈Zs dM(SpNi, pi) ≤ λδ(p).
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If these two conditions are met, any input data with bounded density have a limit
S∞p, which is Hölder continuous with exponent − log γ

logN .

Proof Contractivity implies δ(Skp) ≤ γ kδ(p). For any N -adic rational point ξ ∈
N−rZs , the sequence fk(ξ) = (Skp)Nkξ is defined for all k ≥ r . It is Cauchy, since

dM(fk(ξ), fk+1(ξ)) ≤ λδ(Skp) ≤ λγ kδ(p).

Thus the limit function S∞p ≡ f is defined for all N -adic points.
Consider now two N -adic points ξ, η. Choose k such that N−(k+1) ≤ |ξ − η| ≤

N−k . For all j ≥ k, approximate ξ resp. η by N -adic points aj , bj ∈ N−jZs , such
that none of |aj−a|, |bj−b|, |aj−aj+1|, |bj−bj+1| exceeds sN−j . One can choose
ak = bk . The sequence aj is eventually constant with limit ξ , and similarly the
sequence bj is eventually constant with limit η. Using the symbol (∗) for “similar
terms involving bj instead of aj ”, we estimate

dM(f (ξ), f (η)) ≤
∑

j≥k dM(fj (aj ), fj+1(aj+1))+ (∗)

≤
∑

dM(fj (aj ), fj+1(aj ))+ dM(fj+1)(aj ), fj+1(aj+1))+ (∗).

Using the contractivity and displacement-safe condition, we further get

dM(f (ξ), f (η)) ≤ 2
∑

j≥k λδ(S
jp)+ sδ(Sj+1p)

≤ 2(λ+ sγ )δ(p)
∑

j≥k γ
j ≤ Cδ(p) γ

k

1 − γ .

The index k was chosen such that k ≤ − log |ξ − η|/ logN , so in particular γ k ≤
γ− log |ξ−η|/ logN . We conclude that

dM(f (ξ), f (η)) ≤ C′γ− log |ξ−η|/ logN = C′|ξ − η|− log γ / logN.

Thus f is continuous with Hölder exponent − log γ
logN on the N -adic rationals, and so

is the extension of f to all of Rs . ��
The scope of this lemma can be much expanded by some obvious modifications.

• Input data with unbounded density d(p). Since points Spj only depend on finitely
many pi’s, there is m > 0 such that pi only influences SpNi+j with |j | < m.
By iteration, pi influences S2pN2i+j with |j | < Nm + m, and so on. It follows
that pi influences the value S∞p(i + ξ) of the limit function only for |ξ | <
m
N

+ m
N2 + · · · = m

N−1 . We can therefore easily analyze the restriction of the
limit function to some box by re-defining all data points away from that box in a
manner which makes d(p) finite.
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• Partially defined input data. If data are defined not in all of Zs but only in a
subset, the limit function is defined for a certain subset of Rs . Finding this subset
goes along the same lines as the previous paragraph—we omit the details.

• Convergence for special input data. In order to check convergence for particular
input data p, it is sufficient that the contractivity and displacement-safe condi-
tions of Lemma 4.4 hold for all data Skp constructed by iterative refinement
from p. A typical instance of this case is that contractivity can be shown only if
δ(p) does not exceed a certain threshold δ0. It follows that neither does δ(Skp),
and Lemma 4.4 applies to all p with δ(p) ≤ δ0.

• Powers of subdivision rules. A subdivision rule S might enjoy convergence like a
contractive rule without being contractive itself. This phenomenon is analogous
to a linear operator A having norm ‖A‖ ≥ 1 but spectral radius ρ(A) < 1, in
which case some ‖Am‖ < 1. In that case we consider some power Sm as a new
subdivision rule with dilation factor Nm. If Sm is contractive with factor γm <
1, Lemma 4.4 still applies, and limits enjoy Hölder smoothness with exponent
− log γm

logNm = − log γ
logN .

Example 4.5 (Convergence of Linear Subdivision Rules) Consider a univariate
subdivision rule S defined by finitely many nonzero coefficients aj via (4.11). S
acts as a linear operator on sequences p : Z → Rd . The norm ‖p‖ = supi ‖pi‖Rd

induces an operator norm ‖S‖ which obeys ‖Sp‖ ≤ ‖S‖‖p‖. It is an exercise to
check ‖S‖ = maxi

∑

j |ai−Nj |. Equality is attained for suitable input data with
values in {−1, 0, 1}.

With (�p)i = pi+1−pi we express the density of the data as δ(p) = sup ‖�pi‖.
Contractivity means that sup ‖�Spi‖ ≤ γ sup ‖�pi‖ for some γ < 1.

Analysis of this contractivity condition uses a trick based on the generating
functions p(z) = ∑

pjz
j and a(z) = ∑

aj z
j . Equation (4.11) translates to the

relation (Sp)(z) = a(z)p(zN) between generating functions, and we also have
�p(z) = (z−1 − 1)p(z). The trick consists in introducing the derived subdivision
rule S∗ with coefficients a∗

j which obeys S∗� = N�S. The corresponding relation
between generating functions reads

a∗(z)�p(zN) = N(z−1 − 1)a(z)p(zN) ⇐⇒ a∗(z)(z−N − 1) = N(z−1 − 1)a(z)

⇐⇒ a∗(z) = Na(z)zN−1 z− 1

zN − 1
= NzN−1 a(z)

1 + z+ · · · + zN−1 .

This division is possible in the ring of Laurent polynomials, because for all
i,

∑

j ai−Nj = 1. The contractivity condition now reads sup ‖�Spi‖ =
1
N

sup ‖S∗�pi‖ ≤ 1
N

‖S∗‖ sup ‖�pi‖, i.e., the contractivity factor of the subdivision
rule S is bounded from above by 1

N
‖S∗‖. The “displacement-safe” condition of

Lemma 4.4 is fulfilled also, which we leave as an exercise (averages of points pi
are not far from the pi’s).

The above computation leads to a systematic procedure for checking conver-
gence: we compute potential contractivity factors 1

N
‖S∗‖, 1

N2 ‖S2∗‖, and so on,
until one of them is < 1. The multivariate case is analogous but more complicated
[4, 17, 18].
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Example 4.6 (Convergence of Geodesic Corner-Cutting Rules) Two points a, b of a
complete Riemannian manifoldM are joined by a shortest geodesic path t �→ a⊕tv,
v = b � a, t ∈ [0, 1]. The difference vector v and thus the path are generically
unique, but do not have to be, if the distance between a and b exceeds both injectivity
radii ρinj(a), ρinj(b). The point x = a ⊕ tv has dM(a, x) = t dM(a, b), dM(b, x) =
(1 − t) dM(a, b). It is a Fréchet mean of points a, b w.r.t. weights (1 − t), t .

With these preparations, we consider two elementary operations on sequences,
namely averaging At and corner cutting St,s :

(Atp)i = pi ⊕ t (pi+1 � pi), (Stsp)j =
{

pi ⊕ t (pi+1 � pi) if j = 2i,

pi ⊕ s(pi+1 � pi) if j = 2i + 1.

The distance of Atpi from Atpi+1 is bounded by the length of the broken geodesic
path which connects the first point with pi+1 and continues on to the second;
its length is bounded by δ(p). Similarly, the distance of successive points of the
sequence Stsp, for 0 ≤ t < s ≤ 1 is estimated by max(1 − (s − t), s − t)δ(p). It
follows immediately that a concatenation of operations of this kind is a subdivision
rule where Lemma 4.4 applies, if at least one St,s with 0 < s − t < 1 is involved.
Any such concatenation therefore is a convergent subdivision rule in any complete
Riemannian manifold. A classical example are the rules S(k) = (A1/2)

k ◦ S0,1/2,
which insert midpoints,

S(1)p2i = pi, S(1)p2i+1 = pi ⊕ 1

2
(pi+1 � pi),

and then compute k rounds of averages. E.g.,

S(2)p2i = S(1)p2i ⊕ 1
2 (S

(1)p2i+1 � S(1)p2i ) = pi ⊕ 1
4 (pi+1 � pi),

S(2)p2i+1 = S(1)p2i+2 ⊕ 1
2 (S

(1)p2i+2 � S(1)p2i+1) = pi ⊕ 3
4 (pi+1 � pi).

The rule S(2) (Chaikin’s rule, see [5]) is one of de Rham’s corner cutting rules. In
the linear case, S(k) has coefficients aj = 1

2k
(
k
j

)

, apart from an index shift. Its limit
curves are the B-spline curves whose control points are the initial data pj [45].

The corner-cutting rules discussed above are well defined and convergent in
any Hadamard metric space—those spaces have geodesics in much the same way
as Riemannian manifolds. Subdivision rules based on geodesic averaging (not
necessarily restricted to values t, s ∈ [0, 1]) have been treated by [19, 20, 51, 52]. We
should also mention that adding a round A1/2 to a subdivision increases smoothness
of limit curves, which was recently confirmed in the manifold case [14].

Example 4.7 (Convergence of Interpolatory Rules) A subdivision rule S with
dilation factor N is called interpolatory if SpNi = pi , i.e., the old data points are
kept and new data points are inserted in between. In the linear case, a very well
studied subdivision rule of this kind is the four-point rule proposed by Dyn et al.
[21]. We let Sp2i = pi and
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Fig. 4.2 Geodesic corner-cutting rules are among those where convergence is not difficult to show.
These images show Chaikin’s rule S(2), with the original data in red, and the result of subdivision
as a yellow geodesic polygon

Sp2i+1 = −ωpi−1 + ( 1
2 + ω)pi + ( 1

2 + ω)pi+1 − ωpi+2

= pi + pi+1

2
− ω

(

pi−1 − pi + pi+1

2

)

− ω
(

pi+2 − pi + pi+1

2

)

.

In the special case ω = 1
16 , the point Sp2i+1 is found by evaluating the cubic

Lagrange polynomial interpolating pi−1, . . . , pi+2, which accounts for the high
approximation order of S. There is in fact a whole series of interpolatory rules
based on the idea of evaluating Lagrange interpolation polynomials (the Dubuc-
Deslauriers subdivision schemes, see [7]).
S is a binary “dual” subdivision rule with combinatorial symmetry about edges.

Thus it makes sense to define a Riemannian version of S (Fig. 4.2) by means of
averages w.r.t. geodesic midpoints of pi, pi+1 as base points, cf. Eq. (4.9). Using
mpi,pi+1 = pi ⊕ 1

2 (pi+1 � pi), we let

Tp2i = pi,Tp2i+1 = mpi,pi+1 ⊕
(

− ω(pi−1 �mpi,pi+1)− ω(pi+2 �mpi,pi+1)
)

.

The distance of successive points Tp2i and Tp2i+1 is bounded by half the geodesic
distance of pi, pi+1 plus the length of the vector added to the midpoint in the
previous formula. This yields the inequality δ(Tp) ≤ 1

2δ(p) + 2|ω| 3
2δ(p) =

( 1
2 + 3|ω|)δ(p). Lemma 4.4 thus shows convergence, if |ω| < 1/6.

We cannot easily extend this “manifold” four-point rule to more general metric
spaces. The reason is that we used the linear structure of the tangent space. A general
discussion of univariate interpolatory rules is found in [50].

4.2.3 Probabilistic Interpretation of Subdivision in Metric
Spaces

Ebner in [22, 23] gave a probabilistic interpretation of subdivision. This goes as
follows. Consider a linear subdivision rule as in (4.11), namely
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Spi =
∑

j
ai−2jpj = avg(ai−2j ;pj ), where ai ≥ 0,

∑

j
ai−2j = 1,

(4.12)

acting on data p : Zs → Rd . Consider a stochastic process J0, J1, . . . defined as the
random walk on Zs with transition probabilities

P (Jn+1=j | Jn=i) = ai−2j .

Then the expected value of pJn+1 , conditioned on Jn = j is given by

E (pJn+1 | Jn=j) = Spj , (4.13)

by definition of the expected value. Now the expectation E (X) of an Rd -valued
random variableX has a characterization via distances: E (X) is that constant c ∈ Rd

which is closest toX in the sense of E (d(X, c)2)→ min. A similar characterization
works for the conditional expectation E (X|Y ) which is the random variable f (Y )
closest to X in the L2 sense. These facts inspired a theory of random variables with
values in Hadamard metric spaces developed by Sturm [46, 47]. The minimizers
mentioned above can be shown to still exist if Rd is replaced byM.

Since the way we compute subdivision by Fréchet means is compatible with
the distance-based formula for expected values, Eq. (4.13) holds true also in the
case that both the expectation and the subdivision rule are interpreted in the
Hadamard space sense. On that basis, O. Ebner could show a remarkable statement
on convergence of subdivision rules:

Theorem 4.8 ([23, Theorem 1]) Consider a binary subdivision rule Tpi =
avgF (ai−2j ;pj ) with nonnegative coefficients ai . It produces continuous limits
for any data pj in any Hadamard spaceM if and only if it produces a continuous
limit function when acting on real-valued data.

Proof (Sketch) With the random walk (Ji)i=0,1,... defined above, (4.13) directly
implies

(T np)J0 = E (T n−1pJ1 | J0) = E (E (T n−2pJ2 | J1) | J0) = . . .

= E (. . .E (E (pJn | Jn−1) | Jn−2) . . . | J0). (4.14)

Unlike for Rd -valued random variables, there is no tower property for iterated
conditioning, so in general (T np)J0 �= E (pJn |J0). That expression has a different
interpretation: T is analogous to the linear rule S of (4.12), which is nothing but the
restriction of the general rule T to data in Euclidean spaces. Its n-th power Sn is a
linear rule of the form (Snq)i = ∑

a
[n]
i−2nj qj , and we have

E (qJn | J0) = (Snq)J0 , if S acts linearly on data q : Zs → Rd . (4.15)
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This follows either directly (computing the coefficients of the n-th iterate Sn

corresponds to computing transition probabilities for the n-iterate of the random
walk), or by an appeal to the tower property in (4.14).

Sturm [46] showed a Jensen’s inequality for continuous convex functions �,

�
(

E (. . . (E (pJn | Jn−1) . . . | J0)
)

≤ E
(

�(pJn) | J0

)

.

We choose � = dM(·, x) and observe that qJn = dM(pJn, x) is a real-valued
random variable. Combining Jensen’s inequality with (4.14) and (4.15) yields

dM(T
npi, x) ≤

∑

k
a
[n]
i−2nk dM(pk, x), (for any x)

dM(T
npi, T

npj ) ≤
∑

k,l
a
[n]
i−2nka

[n]
j−2nl dM(pk, pl) (by recursion).

To continue, we need some information on the coefficients a[n]
i . For that, we use the

limit function φ : Rs → [0, 1] generated by applying T (or rather, S), to the delta
sequence. By construction (see Lemma 4.4), |a[n]

j − φ(2−nj)| → 0 as n → ∞.
These ingredients allow us to show existence of n with T n contractive. ��

As a corollary we get, for instance, that subdivision with nonnegative coefficients
works in Posn in the same way as in linear spaces, as far as convergence is
concerned. Since Posn is not only a Hadamard metric space, but even a smooth
Riemannian manifold, also the next section will yield a corollary regarding Posn.

4.2.4 The Convergence Problem in Manifolds

The problem of convergence of subdivision rules in manifolds (Riemannian man-
ifolds, groups, and symmetric spaces) was at first treated by means of so-called
proximity inequalities which compare linear rules with their analogous counterparts
in manifolds. This approach was successful in studying smoothness of limits
(see Sect. 4.3 below), but less so for convergence. Unless subdivision rules are
of a special kind (interpolatory, corner-cutting , . . .) convergence can typically
be shown only for “dense enough” input data, with very small bounds on the
maximum allowed density. On the other hand numerical experiments demonstrate
that a manifold rule analogous to a convergent linear rule usually converges.
This discrepancy between theory and practice is of course unsatisfactory from the
viewpoint of theory, but is not so problematic from the viewpoint of practice. The
reason is the stationary nature of subdivision—if δ(p) is too big to infer existence
of a continuous limit S∞p, we can check if δ(Skp) is small enough instead. As long
as S converges, this leads to an a-posteriori proof of convergence.

More recently, convergence of subdivision rules of the form Spi = avgF
(ai−Nj ;pj ) in Riemannian manifolds has been investigated along the lines of
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Lemma 4.4. This work is mainly based on the methods of H. Karcher’s seminal
paper [39]. So far, only the univariate case of data p : Z → M has been treated
successfully, cf. [36, 37, 54].

There are two main cases to consider. In Cartan-Hadamard manifolds (curvature
≤ 0) the Fréchet mean is well defined and unique also if weights are allowed to be
negative [37, Th. 6]. Subdivision rules are therefore globally and uniquely defined.
We have the following result:

Proposition 4.9 ([37, Th. 11]) Consider a univariate subdivision rule Spi =
avgF (ai−Nj ;pj ) acting on sequences in a Cartan-Hadamard manifold M. Con-
sider also the norm ‖S∗‖ of its linear derived subdivision rule according to
Example 4.5. If

γ = 1

N
‖S∗‖ < 1,

then S meets the conditions of Lemma 4.4 (with contractivity factor γ ) and produces
continuous limits.

This result is satisfying because it allows us to infer convergence from a condition
which is well known in the linear case, cf. [17]. If 1

N
‖S∗‖ ≥ 1, we can instead

check if one of 1
Nn

‖S∗n‖, n = 2, 3, . . . is smaller than 1. If this is the case, then the
manifold subdivision rule analogous to the linear rule Sn converges.

Subdivision in Riemannian Manifolds with Positive Curvature

Recent work [36] deals with spaces of positive curvature, and initial results
have been achieved on the unit sphere, for subdivision rules of the form Spi =
avgF (ai−2j ;pj ). Figure 4.3 shows two examples. One aims at finding a bound δ0
such that for all data p with δ(p) < δ0, S acts in a contractive way so that Lemma 4.4
shows convergence.

1
16 (−1, 0, 9, 1, 9, 0, −1) 1

32 (−1, −1, 21, 13, 13, 21, −1, −1)
d (p ) < 0.31 d (p ) < 0.4

Fig. 4.3 Subdivision rules Spj = avgF (aj−2i;pi) based on the Fréchet mean operating on
sequences on the unit sphere. The images visualize the interpolatory 4-point rule (left) and a rule
without any special properties. We show the coefficient sequence aj and the bound on δ(p) which
ensures convergence
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Rules defined in a different way are sometimes much easier to analyze. E.g.
the Lane-Riesenfeld subdivision rules defined by midpoint insertion, followed by k
rounds of averaging, can be transferred to any complete Riemannian manifold as a
corner-cutting rule and will enjoy continuous limits, see Example 4.6. Similarly, the
interpolatory four-point rule can be generalized to the manifold case in the manner
described by Example 4.7, and will enjoy continuous limits. The generalization via
the Fréchet mean (Fig. 4.3) on the other hand, is not so easy to analyze. The approach
by [36] is to control δ(Sp) by introducing a family S(t), 0 ≤ t ≤ 1, of rules where
S(0) is easy to analyze, and S(1) = S. If one manages to show δ(S(0)p) < γ1δ(p)

and ‖ d
dt
S(t)pi‖ ≤ Cδ(p), then the length of each curve t �→ S(t)pi is bounded by

Cδ(p), and

δ(Sp) ≤ sup
i

dM(Spi , S
(0)pi)+ δ(S(0)p)+ sup

i

dM(Spi+1, S
(0)pi+1)

≤ (γ1 + 2C)δ(p).

Contractivity is established if γ1 + 2C < 1, in which case Lemma 4.4 shows
convergence. The bounds mentioned in Fig. 4.3 have been found in this way.
Estimating the norm of the derivative mentioned above involves estimating the
eigenvalues of the Hessian of the right hand side of (4.5).

The State of the Art Regarding Convergence of Refinement Schemes

Summing up, convergence of geometric subdivision rules is treated in a satisfactory
manner for special rules (interpolatory, corner-cutting), for rules in special spaces
(Hadamard spaces and Cartan-Hadamard manifolds), and in the very special case
of the unit sphere and univariate rules. General manifolds with positive curvature
have not been treated. Multivariate data are treated only in Hadamard metric spaces
and for subdivision rules with nonnegative coefficients. In other situations, we know
that convergence happens only for “dense enough” input data, where the required
theoretical upper bounds on δ(p) are very small compared to those inferred from
numerical evidence.

4.3 Smoothness Analysis of Subdivision Rules

For linear subdivision rules, the question of smoothness of limits can be considered
as largely solved, the derived rule S∗ introduced in Example 4.5 being the key to
the question if limits are smooth. Manifold subdivision rules do not always enjoy
the same smoothness as the linear rules they are derived from. The constructions
mentioned in Sect. 4.2 basically yield manifold rules whose limits enjoy C1 resp.
C2 smoothness if the original linear rule has this property, but this general statement
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is no longer true if C3 or higher smoothness is involved. Manifold rules generated
via Fréchet means or via projection [26, 59] retain the smoothness of their linear
counterparts. Others, e.g. constructed by means of averages w.r.t. basepoints in
general do not. This is to be expected, since the choice of basepoint introduces an
element of arbitrariness into manifold subdivision rules. The following paragraphs
discuss the method of proximity inequalities which was successfully employed in
treating the smoothness of limits.

4.3.1 Derivatives of Limits

A subdivision rule S acting on a sequence p in Rd converges to the limit function
S∞p, if the refined data Skp, interpreted as samples of functions fk at the finer grid
N−kZ, approach that limit function (see Definition 4.3):

(S∞p)(ξ) ≈ fk(ξ) = (Skp)Nkξ ,

whenever Nkξ is an integer. A similar statement holds for derivatives, which are
approximated by finite differences. With h = N−k , we get

(S∞p)′(ξ) ≈ fk(ξ + h)− fk(ξ)
h

= Nk((Skp)Nkξ+1 − (Skp)Nkξ )

= (�(NS)kp)Nkξ = (S∗k�p)Nkξ .

Here S∗ is the derived rule defined by the relation S∗� = N�S, see Example 4.5.
For the r-th derivative of the limit function we get

(S∞p)(r)(ξ) ≈ (�r(NrS)kp)Nkξ = ((S∗∗
r times
︷ ︸︸ ︷···∗)k�rp)Nkξ .

These relations, except for references to derived rules, are valid even if S does not
act linearly. S could be a manifold rule expressed in a coordinate chart, or it could
be acting on a surface contained in Rd .

If S does act linearly, one proves that S hasC1 smooth limits, if S∗ has continuous
ones, and in that case (S∞p)′ = S∗∞�p. To treat higher order derivatives, this
statement can be iterated. For multivariate data pi , i ∈ Zs , the situation is analogous
but more complicated to write down. For the exact statements, see [4, 17].
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4.3.2 Proximity Inequalities

Smoothness from Proximity

Manifold subdivision rules were first systematically analyzed with regard to deriva-
tives by [51]. The setup is a linear rule S and a nonlinear rule T both acting on data
contained in the same space Rd . T could be a manifold version of S, with Rd being
a coordinate chart of the manifold; or T could act on points of a surface contained
in Rd . Then S, T are in proximity, if

supi ‖Spi − Tpi‖ ≤ Cδ(p)2. (4.16)

This formula is motivated by a comparison of the shortest path between two points
within in a surface (which is a geodesic segment), with the shortest path in Euclidean
space (which is a straight line). These two paths differ by exactly the amount stated
in (4.16). Two statements were shown in [51]:

1. Certain manifold subdivision rules T derived from a convergent linear rule S
obey the proximity inequality (4.16) whenever data are dense enough (i.e., δ(p)
is small enough).

2. in that case, if limit curves of S enjoy C1 smoothness, then T produces
continuous limit curves for data with d(p) small enough; and all continuous limit
curves enjoy C1 smoothness.

To demonstrate how proximity inequalities work, we prove a convergence
statement like the ones given by [52, Th. 1] or [51, Th. 2+3] (with slightly different
proofs).

Proposition 4.10 Assume the setting of Eq. (4.16), with a subdivision rule T being
in proximity with a linear subdivision rule S. We also assume 1

N
‖S∗‖ < 1.3 Then T

produces continuous limit curves from data p with δ(p) small enough.

Proof Generally supi ‖pi−qi‖ ≤ K %⇒ δ(p) ≤ δ(q)+2K . Thus (4.16) implies

δ(Tp) ≤ δ(Sp)+ 2Cδ(Tp)2 ≤ 1

N
‖S∗‖δ(p)+ 2Cδ(p)2.

Choose ε > 0 with λ := 1
N

‖S∗‖ + 2Cε < 1. If δ(p) < ε, then T is contractive:

δ(Tp) ≤ ( 1

N
‖S∗‖ + 2Cδ(p))δ(p) ≤ λδ(p).

3Implying convergence of the linear rule S. N is the dilation factor, S∗ is the derived rule, cf.
Example 4.5.



4 Geometric Subdivision and Multiscale Transforms 141

By recursion, δ(T k+1p) ≤ λδ(T kp). As to the displacement-safe condition of
Lemma 4.4, recall from Example 4.5 that S has it. For T , observe that

‖TpNi − pi‖ ≤ ‖TpNi − SpNi‖ + ‖SpNi − pi‖
≤ Cδ(p)2 + C′δ(p) ≤ (εC + C′)δ(p).

Now Lemma 4.4 shows convergence. ��
The convergence of vectors Nk�T kp to derivatives of the limit function T∞p is

proved in a way which is analogous in principle. The method was extended to treat
C2 smoothness by [49], using the proximity condition

supi ‖�Spi −�Tpi‖ ≤ C(δ(p)δ(�p)+ δ(p)3).

A series of publications treated C2 smoothness of Lie group subdivision rules based
on log/exp averages [31, 53], the same in symmetric spaces [54], C1 smoothness
in the multivariate case [25], higher order smoothness of interpolatory rules in
groups [27, 61], and higher order smoothness of projection-based rules [26, 59]. The
proximity conditions involving higher order smoothness become rather complex,
especially in the multivariate case.

Smoothness Equivalence

If a manifold subdivision rule T is created on basis of a linear rule S, it is interesting
to know if the limit functions of T enjoy the same smoothness as the limits of S.
For C1 and C2 smoothness, T can basically be constructed by any of the methods
described above, and it will enjoy the same smoothness properties as S (always
assuming that convergence happens, and that the manifold under consideration is
itself as smooth as the intended smoothness of limits). This smoothness equivalence
breaks down for Ck with k ≥ 3.

A manifold subdivision rule based on the log/exp construction, using averages
w.r.t. basepoints,

Tpi = avgmi (ai−Nj ;pj ),

does not enjoy Ck smoothness equivalence for k ≥ 3 unless the base pointsmi obey
a technical condition which can be satisfied e.g. if they themselves are produced
by certain kinds of subdivision [29, 60]. Necessary and sufficient conditions for
smoothness equivalence are discussed by [13]. We pick one result whose proof
is based on this method (using (4.10) for a “base point” interpretation of Fréchet
means):
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Theorem 4.11 ([29, Th. 4.3]) Let S be a stable4 subdivision rule Spi = avg(ai−Nj ;
pj ) acting on data p : Zs → Rd , which is convergent with Cn limits. Then all
continuous limits of its Riemannian version Tpi = avgF (ai−Nj ; pj ) likewise are
Cn.

We should also mention that proximity conditions relevant to the smoothness
analysis of manifold subdivision rules can take various forms, cf. the “differential”
proximity condition of [12, 13, 30].

Finally we point out a property which manifold rules share with linear ones: For
any univariate linear rule S which has Ck limits, the rule Ak1/2 ◦ S has limits of

smoothness Cn+k , where A1/2 is midpoint-averaging as described by Example 4.6.
It has been shown in [14] that an analogous statement holds true also in the manifold
case, for a general class of averaging operators.

4.3.3 Subdivision of Hermite Data

Hermite subdivision is a refinement process acting not on points, but on tangent
vectors, converging to a limit and its derivative simultaneously. In the linear case,
data (p, v) : Z → Rd × Rd undergo subdivision by a rule S which obeys basic shift
invariance SL = LNS. The interpretation of pi as points and vi as vectors leads to

S
(
p
v

)

i
=
(∑

j ai−Njpj +∑

j bi−Njvj
∑

j ci−Njpj +∑

j bi−Njvj .

)

, where

{∑

j ai−Nj = 1,
∑

j ci−Nj = 0.
(4.17)

S is invariant w.r.t. translations, which act via p �→ p + x on points, but act
identically on vectors. Iterated refinement creates data Sk

(
p
v

)

converging to a limit
f : R → Rd ,

(
f (ξ)

f ′(ξ)

)

= lim
k→∞

(
1

0

0

Nk

)

Sk
(
p

v

)

Nkξ

, whenever Nkξ ∈ Z.

We say that S converges, if the limit (f, f ′) exists and f enjoys C1 smoothness,
with f ′ then being continuous. A manifold version of S, operating on data

(
p
v

) : Z → TM, i.e., vi ∈ TpiM,

4“Stable” means existence of constants C1, C2 with C1‖p‖ ≤ ‖S∞p‖∞ ≤ C2‖p‖ for all input
data where ‖p‖ := supi ‖pi‖ is bounded. Stable rules with Cn limits generate polynomials of
degree ≤ n, which is a property used in the proof.
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(p0 , v0)

(p1 , v1)

(p2 , v2)

f

Fig. 4.4 Left: Hermite data (pi, vi ) in R2 and the result of one round subdivision by a linear
Hermite rule S. Center: Limit curve f (f ′ is not shown). Right: Hermite data (pi, vi ) in the group
SO3, and the limit curve generated by a group version of S. Points pi ∈ SO3 and tangent vectors
vi ∈ TpiSO3 are visualized by means of their action on a spherical triangle. These figures appeared
in [42] (© The Authors 2017, reprinted with permission)

faces the difficulty that each vi is contained in a different vector space. One
possibility to overcome this problem is to employ parallel transport ptqp : TpM →
TqM between tangent spaces. In Riemannian manifolds, a natural choice for ptqp
is parallel transport w.r.t. the canonical Levi-Civita connection along the shortest
geodesic connecting p and q, cf. [8]. In groups, we can simply choose ptqp as left
translation by qp−1 resp. the differential of this left translation. Then the definition

S
(
p
v

) = (
q
w

)

with

{
qi =mi⊕

(∑

j ai−Nj (pj �mi)+∑

j bi−Nj ptmipj vj
)

wi = ptqimi
(∑

j ci−Nj (pj �mi)+∑

j di−Nj ptmipj vj
)

is meaningful (provided the base point mi is chosen close to p'i/N(). In a linear
space, this expression reduces to (4.17). C. Moosmüller could show C1 smoothness
of limits of such subdivision rules, by methods in the spirit of Sect. 4.3.2, see [41, 42]
(Fig. 4.4).

4.3.4 Subdivision with Irregular Combinatorics

A major application of subdivision is in Computer Graphics, where it is ubiquitously
used as a tool to create surfaces from a finite number of handle points whose
arrangement is that of the vertices of a 2D discrete surface. That surface usually
does not have the combinatorics of a regular grid.

Two well known subdivision rules acting on such data are the Catmull-Clark rule
and the Doo-Sabin rule, see [3, 11]. Such subdivision rules create denser and denser
discrete surfaces which are mostly regular grids but retain a constant number of
combinatorial singularities. This implies that the limit surface is locally obtained via
Definition 4.3, but with a nontrivial overlapping union of several such limits as one
approaches a combinatorial singularity. A systematic way of analyzing convergence
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Fig. 4.5 Here data pi in the unit sphere  2 and Pos3-valued data qi are visualized by placing the
ellipsoid with equation xT qix = 1 in the point pi ∈  2. Both data undergo iterative refinement
by means of a Riemannian version S of the Doo-Sabin subdivision rule. For given initial data p, q
which have the combinatorics of a cube, the four images show Sjp and Sj q, for q = 1, 2, 3, 4
(from left). The correspondence (Skp)i �→ (Skq)i converges to a C1 immersion f :  2 → Pos3
as k → ∞. These figures appeared in [55] (© Springer Science+Business Media, LLC 2009,
reprinted with permission)

and smoothness was found by Reif [44], see also the monograph [43]. There is a
wealth of contributions to this topic, mostly because of its relevance for Graphics.

Weinmann in [55–57] studied intrinsic manifold versions of such subdivision
rules. They are not difficult to define, since the linear subdivision rules which serve
as a model are defined in terms of averages. We do not attempt to describe the
methods used for establishing convergence and smoothness of limits other than to
say that a proximity condition which holds between a linear rule S and a nonlinear
rule T eventually guarantees that in the limit, smoothness achieved by S carries over
to T—the perturbation incurred by switching from a linear space to a manifold is
not sufficient to destroy smoothness. Figure 4.5 illustrates a result obtained by [55].

4.4 Multiscale Transforms

4.4.1 Definition of Intrinsic Multiscale Transforms

A natural multiscale representation of data, which does not suffer from distortions
caused by the choice of more or less arbitrary coordinate charts, is required to be
based on operations which are themselves adapted to the geometry of the data.
This topic is intimately connected to subdivision, since upscaling operations may
be interpreted as subdivision.

A high-level introduction of certain kinds of multiscale decompositions is given
by [33]. We start with an elementary example.

Example 4.12 (A Geometric Haar Decomposition and Reconstruction Procedure)
Consider data p : Z →M, and the upscaling rule S and downscaling rule D,

(. . . , p0, p1, . . .)
S�−→ (. . . , p0, p0, p1, p1, . . .)

(. . . , p0, p1, . . .)
D�−→ (. . . , mp0,p1 ,mp1,p2 , . . .), where ma,b = a ⊕ 1

2
(b � a).
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The use of ⊕ and � refers to the exponential mapping, as a means of computing
differences of points, and adding vectors to points. D is a left inverse of S but not
vice versa: SDp �= p in general. However, if we store the difference between p and
SDp as detail vectors q:

(. . . , q0, q1, . . .) = (. . . , p0 �mp0,p1 , p2 �mp2,p3 , . . . )

then the reconstruction procedure

p2i = mp2i ,p2i+1 ⊕ qi, p2i+1 = mp2i ,p2i+1 � qi
recovers the information destroyed by downsampling.

More systematically, we have employed two upscaling rules S,R and two
downscaling rules D,Q which obey

SL = L2S, RL = L2R, DL2 = LD, DQ2 = LQ

(L is left shift). We have data p(j) at level j , j = 0, . . . ,M , where we interpret
the data at the highest (finest) level as given, and the data at lower (coarser) level
computed by downscaling. We also store details q(j) at each level (Fig. 4.6):

p(j−1) = Dp(j), q(j) = Q(p(j) � Sp(j−1)). (4.18)

We require that upscaled level j − 1 data and level j details can restore level j data:

p(j) = Sq(j−1) ⊕ Rq(j). (4.19)

Generally, S, D compute points from points, so they are formulated via averages:

Spi = avg(ai−2j ;pj ), Dpi = avg(a2i−j ;pj ).

In Example 4.12, averages are computed w.r.t. base points p'i/2( for S resp. pi for
D, and coefficients aj and bj vanish except a0 = a1 = 1, b0 = b1 = 1

2 .

Fig. 4.6 The decomposition
and reconstruction chains of
operations in a geometric
multiscale decomposition
based on upscaling and
downscaling S,D for points,
and upscaling and
downscaling R,Q for detail
vectors
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The downscaling operatorQ acts on tangent vectors vi = pi � (SDp)i ∈ TpiM,
so it has to deal with vectors potentially contained in different vector spaces. In our
special case,Q simply forgets one half of the data:

(Qp)i = p2i .

Finally, the upscaling operator R takes the vectors stored in q(j) and converts them
into vectors which can be added to upscaled points Sp(j−1). Thus R potentially
has to deal with vectors contained in different tangent spaces. In our special case,
the points (Sp(j−1))2i (Sp

(j−1))2i+1 both coincide with p(j−1)
i , and that is also the

point where the detail coefficient q(j)i is attached to. We therefore might be tempted
to write (Rq)2i = qi , (Rq)2i+1 = −qi . This simple rule however does not take into
account that along reconstruction, data and details could have been modified, and
no longer fit together. We therefore use parallel transport to move the vector to the
right tangent space, just in case:

(Rq)2i = pt(p
(j−1))i (qi), (Rq)2i+1 = −(Rq)2i .

The symbol pt(p
(j−1))i (qi) refers to transporting qi to a tangent vector attached to

(p(j−1))i , see Sect. 4.3.3.
The operations S,R,D,Q must be compatible, in the sense that reconstruction

is a left inverse of downscaling plus computing details. While in the linear case,
where S,D,R,Q are linear operators on �∞(Rd), one usually requires QR = id
and QS = 0 as well as SD + RQ = id, in the geometric case we must be careful
not to mix operations on points with operations on tangent vectors. We therefore
require

SDp ⊕ (RQ(p � SDp)) = p. (4.20)

Example 4.13 (Interpolatory Wavelets) Consider an interpolatory subdivision rule
S with dilation factor 2, i.e., Sp2i = pi , and the forgetful downscaling operator

p
(j−1)
i = (Dp(j))i = p

(j)

2i . If we store as details the difference vectors between
SDp and p for odd indices, the data points p2i+1 can be easily reconstructed:

p
(j−1)
i = p

(j)

2i , q
(j)
i = p

(j)

2i+1 � Sp(j−1) (decomposition),

p
(j)

2i = p
(j−1)
i , p

(j)

2i+1 = (Sp(j−1))2i+1 ⊕ q(j)i (reconstruction).

This procedure fits into the general scheme described above if we we let Q = DL

(L is left shift) and define the upscaling of details by (Rq)2i = 0, (Rq)2i+1 = qi . To
admit the possibility that before reconstruction, data and details have been changed,
we define
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(Rq)2i = 0 ∈ TxM, (Rq)2i+1 = ptx(q(j)i ) ∈ TxM, where x = Sp
(j−1)
2i+1 ,

in order to account for the possibility that q(j)i is not yet contained in the “correct”
tangent space. The decimated data p(j−1) together with details q(j) (j ≤ M) may
be called a geometric interpolatory-wavelet decomposition of the data at the finest
level p(M). That data itself comes e.g. from sampling a function, cf. [9].

Definability of Multiscale Transforms Without Redundancies

The previous examples use upscaling and downscaling operations which are rather
simple, except that in Example 4.13 one may use any interpolatory subdivision rule.
It is also possible to extend Example 4.12 to the more general case of a midpoint-
interpolating subdivision rule S, which is a right inverse of the decimation operator
D. In [33] it is argued that it is highly unlikely that in the setup described above,
which avoids redundancies, more general upscaling and downscaling rules will
manage to meet the compatibility condition (4.20) needed for perfect reconstruction.
In the linear case, where all details q(j)i are contained in the same vector space,
(4.20) is merely an algebraic condition on the coefficients involved in the definition
of S,D,Q,R which can be solved. In the geometric case, the usage of parallel
transport makes a fundamental difference.

4.4.2 Properties of Multiscale Transforms

Characterizing Smoothness by Coefficient Decay

One purpose of a multiscale decomposition of data is to read off properties of
the original data. Classically, the faster the magnitude of detail coefficients q(j)i
decays as j → ∞, the smoother the original data. A corresponding result for the
interpolatory wavelets of Example 4.13 in the linear case is given by [9, Th. 2.7]. To
state a result in the multivariate geometric case, let us first introduce new notation
for interpolatory wavelets, superseding Example 4.13.

We consider an interpolatory subdivision rule S acting with dilation factor N on
data p : Zs →M. We define data p(j) at level j as samples of a function f : Rs →
M, and construct detail vectors similar to Example 4.13:

p
(j)
i = f (N−j i), q(j) = p(j) � Sp(j−1), p(j) = Sp(j−1) ⊕ q(j). (4.21)

This choice is consistent with the decimation operator Dpi := pNi . The difference
to Example 4.13 is firstly that here we allow multivariate data, and secondly that we
do not “forget” redundant information such as q(j)Ni = 0.
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The result below uses the notation Lip γ for functions which areCk with k = 'γ (
and whose k-th derivatives are Hölder continuous of exponent γ − k. The critical
Hölder regularity of a function f is the supremum of γ such that f ∈ Lip γ .

Theorem 4.14 ([32, Th. 8]) Assume that the interpolatory upscaling rule S, when
acting linearly on data p : Zs → R, reproduces polynomials of degree ≤ d and has
limits of critial Hölder regularity r .

Consider a continous function f : Rs → M, and construct detail vectors q(j)

at level j for the function x �→ f (σ · s) for some σ > 0 (whose local existence is
guaranteed for some σ > 0).

Then f ∈ Lipα, α < d implies that detail vectors decay with supi ‖q(j)i ‖ ≤
C · N−αj as j → ∞. Conversely, that decay rate together with α < r implies
f ∈ Lipα. The constant is understood to be uniform in a compact set.

The manifoldM can be any of the cases we defined ⊕ and � operations for. Of
course, smoothness of f : Rs →M is only defined up to the intrinsic smoothness of
M as a differentiable manifold. An example of an upscaling rule S is the four-point
scheme with parameter 1/16 mentioned in Example 4.7, which reproduces cubic
polynomials and has critical Hölder regularity 2, cf. [21].

The proof is conducted in a coordinate chart (it does not matter which), and uses
a linear vision of the theorem as an auxiliary tool. It further deals with the extensive
technicalities which surround proximity inequalities in the multivariate case.

It is worth noting that Weinmann in [56] succeeded in transferring these ideas to
the combinatorially irregular setting. The results are essentially the same, with the
difference that one can find upscaling rules only up to smoothness 2 − ε.

Stability

Compression of data is a main application of multiscale decompositions, and it is
achieved e.g. by thresholding or quantizing detail vectors. It is therefore important
to know what effect these changes have when reconstruction is performed. What
we basically want to know is whether reconstruction is Lipschitz continuous. In
the linear case the problem does not arise separately, since the answer is implicitly
contained in norms of linear operators. For the geometric multiscale transforms
defined by upscaling operations S,R and downscaling operationsD,Q according to
(4.20), this problem is discussed by [33]. Consider data p(j) at level j with p(j−1) =
Dp(j) such that δ(p(j)) ≤ Cμj , for some μ < 1. Consider recursive reconstruction
of data p(j) from p(0) and details q(1), . . . , q(j) according to Eq. (4.19). Then there
are constants Ck such that for modified details q̃(j), leading to modified data p̃(j),
we have the local Lipschitz-style estimate

supi ‖p(0)i − p̃(0)i ‖ ≤ C1, supi ‖q(k)i − q̃(k)i ‖ ≤ C2μ
k

%⇒ supi ‖p(j)i − p̃(j)i ‖ ≤ C3

(

supi ‖p(0)i − p̃(0)i ‖ +
∑j

k=1
supi ‖q(k)i − q̃(k)i ‖

)

.

It refers to a coordinate chart of the manifoldM (it does not matter which).
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Approximation Order

For an interpolatory upscaling operator S, and data pi ∈ M defined by sampling,
pi = f (h · i), we wish to know to what extent the original function differs from the
limit created by upscaling the sample. We say that S has approximation order r , if
there are C > 0, h0 > such that for all h < h0

supx dM(S
∞f (x/h), f (x)) ≤ C · hr .

It was shown by [62] that a manifold subdivision rule has in general the same
approximation order as the linear rule we get by restricting S to linear data.

This question is directly related to stability as discussed above: Both f and
S∞p can be reconstructed from samples p(j), if h = N−j : Detail vectors q(k),
k > j , according to (4.21) reconstruct f , whereas details q̃(k) = 0 reconstruct
S∞p. Stability of reconstruction and knowledge of the asymptotic magnitude of
details q(k)i , k > j directly corresponds to approximation order. On basis of this
relationship one can again show an approximation order equivalence result, cf. [28].

Conclusion

The preceding pages give an account of averages, subdivision, and multiscale trans-
forms defined via geometric operations which are intrinsic for various geometries
(metric spaces, Riemannian manifolds, Lie groups, and symmetric spaces). We
reported on complete solutions in special cases (e.g. convergence of subdivision
rules in Hadmard metric spaces) and on other results with much more general scope
as regards the spaces and subdivision rules involved, but with more restrictions on
the data they apply to.
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Abstract While consistent discrete notions of curvatures and differential operators
have been widely studied, the question of whether the resulting minimizers converge
to their smooth counterparts still remains open for various geometric functionals.
Building on tools from variational analysis, and in particular using the notion of
Kuratowski convergence, we offer a general framework for treating convergence of
minimizers of (discrete) geometric functionals. We show how to apply the resulting
machinery to minimal surfaces and Euler elasticae.

5.1 Introduction

Classically, the notion of curvature relies on second derivatives (at least in a
weak sense) and thus requires sufficient smoothness of the underlying space.
Simplicial manifolds, such as triangle meshes, offer a natural choice for replacing
smooth manifolds by discrete ones, but lack the required smoothness. A challenge,
therefore, is to provide discrete notions of curvatures for simplicial manifolds that
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(1) mimic the structural properties of their smooth counterparts, such as preserving
the relation between total curvature and topological properties, and (2) are consistent
in the sense of converging to their smooth counterparts in the limit of mesh
refinement. Both structure-preserving and consistent notions of discrete curvatures
have at least been considered since the work of Alexandrov; new notions have been
brought forward over the past decades, see, e.g., [4, 12, 14, 20, 23, 44, 47].

Discrete mean curvature provides a prominent example of discrete curvatures.
Mean curvature of surfaces is intimately linked to Laplacians on manifolds since
the mean curvature vector of a smooth hyper-surface is equal to the Laplace–
Beltrami operator applied to surface positions. Requiring to maintain this relation
in the discrete case therefore links consistent discrete notions of mean curvature
to consistent notions of discrete Laplacians. Dziuk’s seminal work [27] shows
convergence of solutions to the Poisson problem for the Laplace–Beltrami operator
in the limit of mesh refinement using linear Lagrange finite elements on triangle
meshes. Dziuk’s work treats the case of inscribed meshes, i.e., the case where
mesh vertices reside on the smooth limit surface. This condition was later relaxed
to meshes that are nearby a smooth limit surface in the sense that both surface
positions and surface normals converge to their smooth counterparts under mesh
refinement. In fact, given convergence of positions of a sequence of polyhedral
surfaces to a smooth limit surface, the following are equivalent: (1) convergence
of surface normals, (2) convergence of Laplace–Beltrami operators in norm, and (3)
convergence of metric tensors, see [34, 54].

As pointed out by Fu, Cohen-Steiner, and Morvan, the relation between consis-
tent discrete notions of curvatures and convergence of both positions and normals
is also central when studying convergence of curvatures in the sense of measures,
see [21, 22, 31, 43]. Indeed, convergence in the sense of measures, or (in a similar
spirit) weak convergence, is the best one can hope for in general. For example, mean
curvature vectors only converge as elements of the Sobolev space H−1 (the dual of
H 1

0 ); even convergence in L2 cannot be expected in general, see [34, 54]. Pointwise
convergence of discrete curvatures can only be expected under special assumptions,
see, e.g., [5, 15, 33, 37, 56].

Convergence of minimizers of discrete geometric functionals is significantly
more involved than convergence of curvatures. Perhaps one of the most prominent
examples is that of minimal surfaces, i.e., the problem of finding a surface of least
(or critical) area among all surfaces of prescribed topology spanning a prescribed
boundary curve. In the smooth setting, Radó [46] and Douglas [26] independently
solved this problem for disk-like, immersed surfaces. Douglas’ existence proof is
based on minimizing the Dirichlet energy of conformal surface parameterizations.
Douglas’ ideas have been inspirational for proving convergence of discrete minimal
surfaces using the finite element method (FEM) for disk-like and cylindrical
surfaces [28, 29, 35, 45, 53, 55]. An entirely different approach for showing conver-
gence of disk-like minimal surfaces to their smooth counterparts can be established
using tools from discrete differential geometry (DDG) [13, 19]. Convergence of
discrete minimal surfaces to smooth minimal surfaces of arbitrary topology has
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Fig. 5.1 Septfoil torus knot (top left), which exhibits a sevenfold symmetry and minimal surfaces
(with the topology of Moebius strips) spanning this knot. Notice that the solution space maintains
the sevenfold symmetry, while each individual minimal surface lacks this symmetry

only been established recently using the notion of Kuratowski convergence [51].
The latter work forms the basis for our survey.

Minimal surfaces offer a prime example for geometric variational problems.
Apart from their relation to physics (as models of soap films spanning a given wire),
they pose several mathematical challenges. The first challenge is non-uniqueness
of solutions. Indeed, consider the minimal surface problem of spanning a Moebius
strip into the septfoil knot (the (7, 2)-torus knot) illustrated in Fig. 5.1. Notice that
the solution space maintains the sevenfold symmetry of the boundary curve, while
each individual minimal surface lacks this symmetry. An even more severe example
of non-uniqueness is provided by Morgan’s minimal surface(s), where boundary
conditions exhibit a continuous rotational symmetry, which is maintained for the
solution space but lost for each individual minimizer, see Fig. 5.2.

Another peculiarity is non-existence of solutions for the minimal surface prob-
lem. Consider the example of Fig. 5.3, where the topology is prescribed by a sphere
with six holes. Within this topological class, there exist minimizing sequences,
which, however, do not converge in C0, but leave the topological class (resulting
in six disjoint disks).

An additional complication arises from the fact that the area functional is non-
convex. Consider the example in Fig. 5.4, where a given boundary curve gets
spanned by Enneper’s classical minimal surface, see Fig. 5.4, top. There exist two
other minimal surfaces (Fig. 5.4, left and right), supported on the same boundary,
which are congruent to one another, with a smaller area than that of Enneper’s
surface. When the positions of these two surfaces are linearly interpolated in
3-space, one obtains a surface of larger surface area than that of Enneper’s surface,
see Fig. 5.4, bottom. Clearly, this could not occur if surface area were a convex
functional.
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Fig. 5.2 Morgan’s minimal surface(s): The boundary curves (top left) exhibit continuous rota-
tional symmetry, which is maintained for the solution space but lost for each individual minimizer

Fig. 5.3 Within the class of surfaces homeomorphic to a sphere with six holes, there exist
minimizing sequences; however, the minimizer leaves the topological class resulting in six disjoint
disks

Finally, working with triangle meshes when approximating classical minimal
surfaces leads to complications with boundary conditions since mesh boundaries
are polygonal curves instead of smooth ones, leading to so-called non-conforming
methods or variational crimes, see Fig. 5.5. Of course, the issue of approximating a
smooth boundary curve by a polygonal curve disappears in the limit of refinement;
nonetheless, one needs to attend to the underlying issue that the space of smooth
manifolds and the space of discrete manifolds need to be embedded in a common
shape space X in which (discrete and smooth) minimizers can be compared. One
of the subtleties is to choose the topology of shape space. One likes to choose the
topology of shape space as fine as possible, since finer topologies lead to stronger
convergence results. However, choosing the topology of X too fine might prohibit
the option to embed both smooth and discrete manifolds into the common space X.

Shape spaces naturally arise when studying minimizers of geometric functionals.
Within the context of shape spaces, it is natural to view manifolds (or other shapes)
as geometric objects, i.e., independently of any particular choice of parameteri-
zation. Thus, one considers the (often infinite-dimensional) configuration space C
of parameterized manifolds modulo the (then also infinite-dimensional) group G
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Fig. 5.4 Non-convexity of the area functional: A space curve gets spanned by Enneper’s surface
(top), and two other surfaces (left and right) with the same boundary but strictly lower area.
Interpolating the positions of these two surfaces in 3-space results in a surface of larger area than
that of Enneper’s surface (bottom)

Fig. 5.5 Discrete minimal surfaces lead to non-conforming methods since smooth boundaries
(here: Borromean rings) get approximated by polygonal curves

of reparameterizations. Suppose C is equipped with a metric such that G acts by
isometries—a natural assumption in view of the parameterization independence of
geometric functionals. With G acting by isometries on C, the metric structure on
C can be factored to the (quotient) shape space X := C/G; however, it is not
clear (and often indeed false) that this quotient “metric” remains to be definite.
For shape spaces, the resulting problem of degenerate metrics has been observed in
the seminal work by Michor and Mumford when working with L2-type metrics on
shape space, see [39, 40]. This issue can be overcome when considering curvature-
weighted L2-metrics, see [6–9, 41], or Sobolev metrics, see [10, 11, 17, 18, 38]. We
follow an approach similar to the latter. Indeed, in order to embed both discrete and
smooth manifolds into a common space, we work with the configuration space C of
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Lipschitz immersions of an abstract, compact, k-dimensional Riemannian manifold
( , g) into Rm, and we work with the group G of Lipschitz diffeomorphisms acting
on  . The resulting quotient metric on the shape space X = C/G is then indeed
definite and thus not degenerate. For details, see Sect. 5.2.

In order to study convergence of discrete minimizers to their smooth counterparts,
we require tools for reconstructing smooth manifolds from discrete ones and—
vice versa—tools for approximating (or sampling) smooth manifolds by discrete
ones. These tools are provided by respective reconstruction and sampling operators
that take discrete manifolds to smooth ones nearby and vice versa. The notion of
“nearby” needs to be understood in the sense of the metric on configuration space
C that gives rise to the quotient metric on shape space discussed above. Providing
the requisite reconstruction and sampling operators and studying their properties
is technically somewhat involved, with details heavily depending on the choice
of metric on configuration space. We choose to omit these technicalities in our
exposition and rather discuss the overall utility of these operators in the setting of
geometrically nonlinear variational problems.

For showing convergence, it is natural to study consistency of both reconstruction
and sampling operators. Additionally, the fact that smooth and discrete manifolds
have different regularity (or smoothness) properties also requires the notion of
proximity, which measures the “nearness” of smooth and discrete manifolds when
mapped to the common shape space X. Together, consistency and proximity imply
“nearness” of lower level sets of (smooth and discrete) energy functionals. In order
to obtain convergence of (almost) minimizers, one additionally requires certain
growth conditions of the energy functionals near minimizers. Such growth condi-
tions can be subsumed within the notion of stability. The concepts of consistency,
proximity, and stability are outlined in Sect. 5.4.

The notions of consistency, proximity, and stability enable the study of conver-
gence in the sense of Kuratowski. In a nutshell, Kuratowski convergence implies:

(A) Every smooth minimizer is a limit point of discrete minimizers.
(B) Every accumulation point of discrete minimizers is a smooth minimizer.

The concept of Kuratowski convergence is related, but not identical, to the
concept of Γ -convergence, see Sect. 5.3. Kuratowski convergence is a concept
for studying convergence of sets and thus naturally lends itself to incorporating
a priori information about (regularity of) minimizers. Indeed, Kuratowski conver-
gence allows for focusing on restricted subsets of configuration space and thus
avoids the need for constructing so-called recovery sequences for every element
in configuration space.

The concept of Kuratowski convergence can be applied to a variety of geometric
energy functionals. Minimal surfaces provide one such example—with the result
of obtaining properties (A) and (B) above, see Sect. 5.5. Another prominent
example is provided by Euler’s elasticae, i.e., the problem of finding a curve of
prescribed total length and prescribed positions and tangents at the end points
that minimizes bending energy, see Fig. 5.6. Since Euler elasticae posses rather
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Fig. 5.6 Discrete Euler elasticae converging to a smooth Euler elastica under refinement (first
three images) and a one-parameter family of resulting elasticae considered by Euler (right)

strong regularity properties (both in the smooth and discrete setting), we are able to
apply our machinery for even deducing Hausdorff convergence of discrete (almost)
minimizers to their smooth counterparts, see Sect. 5.5.

5.2 Shape Space of Lipschitz Immersions

In order to treat both discrete (simplicial) and smooth manifolds as elements of a
common space, we work with the configuration space C of Lipschitz immersions of
an abstract, compact, k-dimensional Riemannian manifold ( , g) into Rm, and we
work with the group G of Lipschitz diffeomorphisms acting on  . More precisely,
define the fiber bundle π : P →  by P |x := P(Tx ) for all x ∈  , where
P(Tx ) denotes the manifold of positive-definite, symmetric bilinear forms on the
tangent space Tx . Notice that for a k-dimensional real vector space V , the set
P(V ) of positive-definite, symmetric bilinear forms on V is an open subset of the
vector space Sym(V ) of symmetric bilinear forms on V . Thus, P(V ) is a smooth
manifold with tangent bundle TbP (V ) = Sym(V ). One defines a Riemannian
metric gP on P(V ) via

gP |b(X, Y ) := 〈X, Y 〉b for all X, Y ∈ TbP (V ) = Sym(V ),

where 〈·, ·〉b denotes the inner product on Sym(V ) that is induced by b. This
Riemannian structure is indeed one of the commonly used metrics on the manifold
of inner products (see [42] and references therein). It gives rise to a distance function
dP on P(V ) that can be computed explicitly as

dP (b, c) =
∥
∥
∥log

(

B−1/2CB−1/2)
∥
∥
∥
F
,

where B and C denote matrix representations (Gram matrices) of the inner products

b and c, respectively, B
1
2 is any symmetric square root of B, and ‖·‖F denotes the

Frobenius norm. This distance function, in turn, can be used for defining the metric
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space (P( ), dP ) of Riemannian metrics that have bounded distortion with respect
to the given Riemannian metric g on  :

P( ) := {b :  → P | b is measurable, dP(b, g) <∞} and

dP(b1, b2) := ess sup
x∈ 

dP
(

b1|x, b2|x
)

.

Then, following [48], we define the space of Lipschitz immersions as

Imm( ;Rm) := {f ∈ W 1,∞( ;Rm) | f #g0 ∈ P( )}

and equip it with the distance

dImm(f1, f2) := ‖f1 − f2‖L∞ + dP(f #
1 g0, f

#
2 g0)

+ ess sup
x∈ ,u∈Tx \{0}

�(df1|x(u), df2|x(u))

for f1, f2 ∈ Imm( ;Rm). Here f #g0 denotes the pullback of the induced metric on
f ( ) to , and �(df1|x(u), df2|x(u)) denotes the unsigned angle between the lines
spanned by df1|x(u) and df2|x(u) (considered as lines through 0 ∈ Rm). The idea
behind this distance is that it measures deviation of surface positions (first term),
deviation of tangent spaces (which is related to deviation of normals in codimension
one, third term), and distortion of metric tensors (second term). In order to treat
boundary conditions, let  be a compact, smooth manifold with boundary. We
define the configuration space of strong Lipschitz immersions by

C := Imm×( ;Rm) := {f ∈ Imm( ;Rm) | f |∂ ∈ Imm(∂ ;Rm)}

and equip it with the graph metric

d×
Imm(f1, f2) := dImm(f1, f2)+ dImm(f1|∂ , f2|∂ ), for f1, f2 ∈ Imm×( ;Rm).

Finally, in order to mod out parameterizations, we define the group of Lipschitz
diffeomorphisms by

G := Diff( ) := {ϕ ∈ W 1,∞
g ( ; ) | ϕ is a bi-Lipschitz homeomorphism}.

This group acts by isometries on C = Imm×( ;Rm), thus giving rise to the shape
space of Lipschitz immersions, defined as the quotient

X := Shape( ;Rm) := Imm×( ;Rm)/Diff( ).

One can show that the resulting quotient metric on X = C/G is then indeed definite
and does not exhibit the problem of degeneration. For details we refer to [51].
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5.3 Notions of Convergence for Variational Problems

As illustrated by the examples given in Figs. 5.1 and 5.2, it does not suffice to
consider convergence of isolated minimizers. Rather, for geometric variational
problems, one is sometimes required to consider sets of minimizers. Therefore,
we review notions of convergence of sets, for which the notions of Hausdorff
convergence and Kuratowski convergence are most natural.

Let (X, dX) be a metric space. For a subset � ⊂ X and a radius r > 0, we define
the r-thickening of � by

B̄(�, r) :=
⋃

x∈�
{y ∈ X | dX(x, y) ≤ r}.

The Hausdorff distance between two sets �1 and �2 ⊂ X is given by

distX(�1,�2) := inf
{

r > 0 | �1 ⊂ B̄(�2, r) and �2 ⊂ B̄(�1, r)
}

,

and a sequence of sets �n ⊂ X Hausdorff converges to � ⊂ X if and only if

distX(�n,�0)
n→∞−→ 0.

Hausdorff convergence is perhaps one of the most elementary and expressive
notions of set convergence. In the following, we also require another, somewhat
weaker notion of set convergence.

Definition 5.1 Let X be a topological space and denote by U(x) the set of all open
neighborhoods of x ∈ X. For a sequence of sets (�n)n∈N inX one defines the upper
limit Lsn→∞�n and the lower limit Lin→∞�n, respectively, as follows:

Ls
n→∞�n := {x ∈ X | ∀U ∈ U(x)∀n ∈ N ∃k ≥ n : U ∩�k �= ∅} and

Li
n→∞�n := {x ∈ X | ∀U ∈ U(x) ∃n ∈ N ∀k ≥ n : U ∩�k �= ∅}.

If � := Lsn→∞�n = Lin→∞�n agree, one says that �n Kuratowski converges to
� and writes Ltn→∞�n = �.

Both lower and upper limit are closed sets, and one has Lin→∞�n ⊂ Lsn→∞�n.
One often refers to Lsn→∞�n as the set of cluster points since x is an element of
the upper limit if and only if there is a sequence of elements xn ∈ �n that has x as
a cluster point, i.e., there is a subsequence (xnk )k∈N that converges to x as k → ∞.
A point x is contained in the lower limit if and only if there is a sequence of elements
xn ∈ �n that has x as its limit.

Hausdorff convergence is stronger than Kuratowski convergence: If �n Haus-
dorff converges to �, then it also Kuratowski converges to �. The converse is in
general not true. For example, let (en)n∈N be a countable orthonormal system in an
infinite-dimensional Hilbert space. Then �n := {en} ∪ {0} Kuratowski converges to
{0}. But �n and �m have Hausdorff distance equal to 1 whenever m �= n, which
prohibits Hausdorff convergence.
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Fig. 5.7 The almost minimizing sets arg min
3
n (Fn) of the tilted Mexican hat potentials Fn(x) =

(1−|x|2)2−(−1)n 1
n

x1
1+|x|2 Hausdorff converge to the set of minimizers of the Mexican hat potential

F (x) = (1 − |x|2)2 (the unit circle). In contrast, while Fn Γ -converges to F , the respective
minimizers ({(1, 0)} for even n and {(−1, 0)} for odd n) do not converge to the minimizers of F

The notion of Γ -convergence of functions is related to the notion of Kuratowski
convergence of sets. A sequence of functions Fn : X → ] − ∞,∞] is said to
Γ -converge to F : X→ ] − ∞,∞] if and only if the sequence of epigraphs epi(Fn)
Kuratowski converges to epi(F ). Here, the epigraph of a function F is defined as
epi(F ) := {(x, t) ∈ X×] − ∞,∞] | F (x) ≤ t}. By denoting the set of minimizers
of F by

arg min(F ) := {x ∈ X | ∀y ∈ X : F (x) ≤ F (y)},

we may state the principal property of Γ -convergence as follows:

If Fn Γ -converges to F , then Ls
n→∞ arg min(Fn) ⊂ arg min(F ). (5.1)

One often rephrases this by saying that cluster points of minimizers of Fn are
minimizers of F . But neither does Γ -convergence imply equality in (5.1), nor does
it imply that arg min(Fn) Kuratowski converges to arg min(F ). As an example,
consider the functions Fn(x) = (1−|x|2)2 − (−1)n 1

n
x1

1+|x|2 and F (x) = (1−|x|2)2
(see also Fig. 5.7). It is not hard to show that Fn Γ -converges to F . Notice,
however, that arg min(F ) is the unit circle while the minimizers of Fn are given
by arg min(Fn) = {((−1)n, 0)}. We have arg min(Fn) ⊂ arg min(F ), but the upper
and lower limits do not coincide:

Ls
n→∞ arg min(Fn) = {(1, 0), (−1, 0)} while Li

n→∞ arg min(Fn) = ∅.

So arg min(Fn) does neither Kuratowski converge nor Hausdorff converge to
any set, let alone to arg min(F ). We point out that this lack of convergence of
arg min(Fn) to arg min(F ) is basically caused by symmetry breaking of Fn vs. F .
This is actually very similar to what happens when one discretizes parameterization
invariant optimization problems for immersed manifolds.

Despite these issues, the functions Fn actually do carry quite a lot of information
about arg min(F ). In order to make this precise, we introduce the notion of δ-
minimizers:
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arg minδ(F ) := {x ∈ X | ∀y ∈ X : F (x) ≤ F (y)+ δ}.

Utilizing the notion of δ-minimizers, Eq. (5.1) can be strengthened to the following
statement (see [24, Theorem 7.19]):

Theorem 5.2 Suppose that Fn Γ -converges to F . Moreover, suppose that F is
not constantly equal to ∞, that arg min(F ) is nonempty, and that inf(F ) =
limn→∞ inf(Fn). Then one has

arg min(F ) =
⋂

δ>0

Lt
n→∞ arg minδ(Fn) = Lt

δ↘0
Lt
n→∞ arg minδ(Fn).

The fact that the limit Ltδ↘0 is applied after Ltn→∞ is somewhat unfortunate. In
in the example of Fig. 5.7, we actually have a much stronger convergence statement:

arg min(F ) = Lt
n→∞ arg minδn(Fn) with δn := 3

n
,

and the convergence is even in Hausdorff distance. From the point of view of
numerical analysis, this last convergence result is very desirable, since numerical
algorithms can usually only compute δ-minimizers. In particular, a rough knowledge
on the size of δn provides a guide on how to choose the stopping criterion for
numerical optimization algorithms.

This concludes our brief review of convergence concepts for variational prob-
lems. For more comprehensive treatments of the relationship between Kuratowski
or K-convergence and epi- or Γ -convergence, we refer the reader to [49] and [24].

5.4 Practitioner’s Guide to Kuratowski Convergence
of Minimizers

Let F : C → R be a function that we seek to minimize. Abbreviate the set of
minimizers by

M := arg min(F ).

We aim at approximating M by solving optimization problems for a sequence
of functions Fn : Cn → R with minimizers Mn := arg min(Fn). Therefore, we
have to compare subsets of C and Cn in some way. Suppose that we are given
certain “measurements” or “test mappings” � : C → X and �n : Cn → X with
values in a common metric space (X, dX), e.g., the shape space from Sect. 5.2.
Then the Hausdorff distance between �(M) and �n(Mn) is a canonical measure
of approximation quality.

When analyzing the relationship between the optimization problems for F and
Fn, one often takes advantage of a priori information. Indeed, it is quite typical
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for shape optimization problems that minimizers (or at least certain representatives
of each orbit of minimizers under the reparameterization group) have significantly
higher regularity than generic elements of the energy space. Minimal surfaces lend
themselves once more to good examples; see, e.g., [25, 32] for their regularity
theory. Usually, regularity of minimizers of the smooth problem is measured in
terms of uniform bounds on Sobolev or Hölder norms. Often, these norms are
stronger than the norm of the energy space. This implies that, compared to generic
elements of the energy space, minimizers of the smooth problem can be more
accurately approximated by discrete entities. We are going to incorporate such
a priori information in the form of subsets A ⊂ C, An ⊂ Cn that, on the one
hand, may be assumed to be “small” (e.g., relatively compact), but, on the other
hand, are sufficiently representative for the minimizers in the sense that A and An
contain minimizing sequences and such that the following inclusions hold:

�(M) ⊂ �(A ∩M) and �n(Mn) ⊂ �n(An ∩Mn).

The advantage of a priori information is that it allows for quantifying various
types of discretization errors in a uniform way. In order to make this precise, suppose
that we have at our disposal sampling operators Sn : C→ Cn, transferring smooth
objects to discrete ones, and reconstruction operators Rn : Cn → C, transferring
discrete objects to smooth ones. Sufficiently detailed a priori information then
allows for controlling the sampling consistency error

δSn := sup
a∈A

max
{

0, Fn ◦ Sn(a)− F (a)
}

,

the reconstruction consistency error

δRn := sup
a∈An

max
{

0, F ◦ Rn(a)− Fn(a)
}

,

and thus the total consistency error

δn := δSn + δRn .

From the very definition of these errors and from the presence of minimizing
sequences of F inA and of Fn inAn, it follows that

inf(Fn) ≤ inf(F )+ δSn and inf(F ) ≤ inf(Fn)+ δRn .

Hence, if one of inf(F ) or inf(Fn) is finite, the other one is also finite and we have

|inf(Fn)− inf(F )| ≤ max (δSn , δ
R
n ).

This in turn implies the following inclusions of lower level sets for all # ≥ 0:
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Sn(A ∩M#) ⊂ Sn(A) ∩M#+2δn
n and Rn(An ∩M#

n) ⊂ Rn(An) ∩M#+2δn .

Combined with knowledge on the sampling proximity error εSn and the reconstruc-
tion proximity error εRn

εSn := sup
a∈A

dX (�n ◦ Sn(a),�(a)) and εRn := sup
a∈An

dX (� ◦ Rn(a),�n(a)) ,

this leads to

�(A ∩M#) ⊂ B̄
(

�n

(

Sn(A) ∩M#+2δn
n

)

, εSn

)

and (5.2)

�n(An ∩M#
n) ⊂ B̄

(

�
(

Rn(An) ∩M#+2δn
)

, εRn

)

for all # ≥ 0. (5.3)

Provided that εSn
n→∞−→ 0 and εRn

n→∞−→ 0 (and under the mild requirements
Sn(A) ⊂ An and Rn(An) ⊂ K with some closed set K ⊂ C satisfying
�(M) ⊂ �(K)), this implies

�(M) ⊂ �(A ∩M) ⊂ Li
n→∞�n(An ∩M2δn

n )

⊂ Ls
n→∞�n(An ∩M2δn

n ) ⊂ Ls
n→∞�(K ∩M4δn).

Finally, we require some notion of stability, i.e., a condition on the convergence
behavior of those lower level sets whose level is close to inf(F ). For simplicity, we
say that F is stable along � over K if Ls#↘0�(K ∩M#) = �(M). This leads to
the following result; for a more detailed derivation, see [51]:

Theorem 5.3 Suppose (1) consistency (δn
n→∞−→ 0), (2) proximity (εRn → 0 and

εSn → 0), and (3) stability of F along � over K . Then

�n(An ∩M2δn
n )

n→∞−→ �(M) in the sense of Kuratowski.

In particular, this implies Lsn→∞�n(Mn) ⊂ �(M) (compare to Eq. (5.1)).
The steps for establishing this result (constructing sampling and reconstruction
operators, estimating consistency and proximity errors, showing stability) are
very similar to the work flow of showing Γ -convergence. So, essentially without
investing additional effort and by incorporating a priori information (which makes
it easier to estimate consistency and proximity errors), we may derive a considerably
stronger statement on convergence than Theorem 5.2.

Finally, if K can be chosen to be compact (which tends to require quite detailed
a priori knowledge in the discrete setting), then Theorem 5.3 can be strengthened as
follows:
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Theorem 5.4 In addition to the conditions of Theorem 5.3, suppose that K is
compact. Then

�n(An ∩M2δn
n )

n→∞−→ �(M) in the sense of Hausdorff.

This is mostly due to the fact that Kuratowski and Hausdorff convergence are
equivalent in compact metric spaces (see [3, Proposition 4.4.14]). One can put
this result to great use in the convergence analysis for discrete Euler elastica (see
Theorem 5.6 below and [50]).

5.5 Convergence of Discrete Minimal Surfaces and Euler
Elasticae

The machinery of Kuratowski convergence can in particular be applied to discrete
minimal surfaces and discrete Euler elasticae. Here we summarize the respective
results. For details, we refer to [50, 51].

For the case of minimal surfaces, let ( , g) be a compact, k-dimensional smooth
Riemannian manifold with boundary, and let γ ∈ Imm(∂ ;Rm) ∩W 2,∞(∂ ;Rm)
be an embedding and hence a bi-Lipschitz homeomorphism onto its image. In order
to fix boundary conditions and using the notation of Sect. 5.2, we restrict to the
subset of configuration space

Immγ ( ;Rm) := {f ∈ Imm×( ;Rm) | f |∂ = γ }

that respects the prescribed boundary. Indeed, one can show that the trace mapping
f �→ f |∂ is well defined and Lipschitz continuous on Imm×( ;Rm). By slight
abuse of notation, we work with the configuration space

C := Immγ ( ;Rm)

for the case of minimal surfaces.
Let (Tn)n∈N be a uniformly shape regular sequence of smooth triangulations of

( , g) with mesh size tending to zero as n → ∞. For every n ∈ N, let fn ∈ Cn
be an embedding of the vertex set of Tn into Rm, where Cn denotes the discrete
configuration space that respects an appropriate discretization of the boundary curve
γ and consists of those mappings that map vertices of simplices to points in general
position. The reconstruction operator Rn is then defined such that Rn(fn) :  → Rm

is a Lipschitz continuous mapping given by barycentric interpolation. Likewise, the
sampling operator Sn is defined by restricting f ∈ C to Tn. LetMn ⊂ Cn be the set
of discrete minimizers. Likewise, letM ⊂ C denote the minimizing set of (smooth)
minimal surfaces spanning γ . We let � : C→ X denote the attendant quotient map
into shape space. Likewise, we denote by �n := � ◦ Rn : Cn → X the mapping
from discrete configuration space to shape space.
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We additionally require subsets of immersions that have certain regularity prop-
erties, both in the smooth and discrete setting, resembling regularity of minimizers.
We encode this regularity as a priori information. In the smooth setting, we let

As := {f ∈ C ∩W 2,∞
g ( ;Rm) | dP(g, f #g0) ≤ s, ‖f ‖

W
2,∞
g

≤ s} for s ≥ 0.

In particular, this means that every element of As yields a “nice” parameterization
with injective differentials, controlled metric distortion, and controlledW 2,∞

g -norm.
Likewise, in the discrete setting we let

Arn := {fn ∈ Cn | dP(g,Rn(f )#g0) ≤ r} for r ≥ 0.

This implies that all simplices resulting from a mapping in Arn are uniformly
non-degenerate in the sense that the aspect ratios of the embedded simplices are
uniformly bounded. For the case of discrete minimal surfaces, our main result is:

Theorem 5.5 Suppose that ∅ �= �(M) ⊂ �(As ∩M) for some s ∈ ]0,∞[ and
that ∅ �= �n(Mn) ⊂ �n(Arn ∩Mn) for some r ∈ ]s,∞[ and all n ∈ N. Then one
has Kuratowski convergence of discrete almost minimizers, i.e.,

�n(Arn ∩M2δn
n )

n→∞−→ �(M) in the sense of Kuratowski,

where δn decreases on the order of decreasing mesh size. The convergence is with
respect to the topology generated by the quotient metric on shape space.

For the case of Euler elasticae, let ⊂ R be a compact interval, and let γ ∈ W 2,2

be a curve. The Euler–Bernoulli bending energy is defined as the integral of squared
curvature with respect to the curve’s line element ωγ , i.e.,

E(γ ) := 1

2

∫

 

|κγ |2 ωγ .

The Euler–Bernoulli bending energy is frequently used as a model for the bending
part of the stored elastic energy of a thin, flexible and inextensible piece of material
that has a straight cylindrical rest state.

The classical Euler elastica problem is to find minimizers of E in the feasible
set C of all curves of given fixed curve length L subject to fixed first order boundary
conditions that pin down positions and tangent directions at both ends of the curve.
Together, these constraints—fixed curve length and fixed boundary conditions—
constitute the main difficulty of the problem. Indeed, in dimension two, dropping the
positional constraints (while keeping the tangent and length constraints) would yield
rather trivial minimizers in the form of circular arcs. Likewise, dropping the length
constraint (while keeping endpoint and end tangent constraints) would prevent
existence of solutions: In dimension two, consider two straight line segments that
respectively meet the two boundary conditions; connect these line segments by a
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circular arc at their free ends. Then the energy of such a curve is reciprocal to the
length of the circular arc and thus arbitrarily small, yielding a minimizing sequence
that does not converge.

In the discrete setting, we represent curves as polygonal lines. On a finite
partition T of the interval  with vertex set V (T ), consider the set of discrete
immersions. This space consists of all polygons P : V (T )→ Rm whose successive
vertices are mapped to distinct points. On this set, define the discrete Euler—
Bernoulli energy by

En(P ) := 1

2

∑

v∈V (T )

(
αP (v)

l̄P (v))

)2

l̄P (v) = 1

2

∑

v∈V (T )

α2
P (v)

l̄P (v)
, (5.4)

where αP (v) is the turning angle at an interior vertex v and l̄P (v) is the dual edge
length, i.e., the arithmetic mean of the lengths of the two adjacent (embedded) edges.
This energy is motivated by the observation that turning angles are in many ways
a reasonable surrogate for integrated absolute curvature on dual edges (see, e.g.,
[23, 52]).

We define smooth and discrete configuration spaces, respectively, as

C := {γ ∈ W 2,p | γ satisfies the boundary conditions},
Cn := {P : V (T )→ Rm | P satisfies the boundary conditions},

where for Cn we restrict to those polygons whose successive vertices are mapped to
distinct points. The boundary conditions consist of prescribing positions and tangent
directions at both endpoints and fixing total curve length L. We call boundary
conditions commensurable if C and Cn are not empty.

As in the case of minimal surfaces, we consider certain a priori assumptions that
encode regularity properties of minimizers. Accordingly, we define the two sets

A := {γ ∈ C | [γ ]W 2,∞ , [γ ]W 3,∞ ≤ K1},
An := {P ∈ Cn | [P ]w2,∞ , [P ]tv3 ≤ K2},

where K1 and K2 ≥ 0 are suitable constants. The norms [P ]w2,∞ and [P ]tv3 are
certain discrete versions of Sobolev and total variation norms, see [50]. These a
priori assumptions are justified by regularity properties of smooth and discrete
minimizers. In the smooth setting, regularity of minimizers can be verified in various
ways, e.g., by invoking elliptic integrals. We use a functional analytic approach to
prove these regularity properties, since this approach can be closely mimicked in
the discrete case. The above sets satisfy the following inclusions:

M ⊂ A ⊂ C and Mn ⊂ An ⊂ Cn.
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As in the case of minimal surfaces, we rely on a reconstruction operator
Rn : An → C and a sampling operator Sn : A → Cn, taking polygons to smooth
curves and vice versa. In order to construct these operator, we first construct
approximate reconstruction and sampling operators R̃n and S̃n that map An and
A into sufficiently small vicinities of C and Cn, respectively. The main idea for
these approximate operators is that they only satisfy the boundary conditions and
the length constraint approximately but not necessarily exactly. We then apply a
Newton–Kantorovich-type theorem in order to show that exact reconstruction and
sampling operators Rn and Sn (i.e., those that satisfy the requisite constraints
exactly) can be obtained from R̃n and S̃n by sufficiently small perturbations. For
the case of discrete Euler elasticae, our main result is:

Theorem 5.6 Fix a prescribed curve length L and commensurable boundary
conditions. Denote by ρ(Tn) the maximum edge length of a partition Tn of the
domain  , and let �n : Cn → W 1,∞ denote the interpolation of vertices of discrete
curves by continuous, piecewise affine curves. Then for each p ∈ [2,∞[ there is a
constant C ≥ 0 such that one has the following convergence in Hausdorff distances:

lim
ρ(Tn)→0

distW 2,p

(

M,Rn
(

An ∩MCρ(Tn)
n

)) = 0 and

lim
ρ(Tn)→0

distW 1,∞
(

M, �n
(

An ∩MCρ(Tn)
n

)) = 0.

Notice that although sampling operators do not appear explicitly in this result,
they play a prominent role in the proof since they guarantee existence of discrete
almost minimizers in the vicinity of every smooth minimizer.

By relying on a priori assumptions, our result is different from the Γ -convergence
results from [1, 2, 16, 30, 36]. Indeed, by restricting to the setsA andAn, we avoid
the need for recovery sequences for every element in configuration space. We thus
obtain a stronger convergence result in the sense that all discrete minimizers are
uniformly close to the set of smooth minimizersM with respect toW 2,p-norm, i.e.,
there exists a function f : [0,∞] → [0,∞], continuous at 0 and with f (0) = 0,
such that

sup
P∈Mn

inf
γ∈M

‖γ − Rn(P )‖W 2,p ≤ f (ρ(Tn)).

Since p > 2 is allowed, we obtain convergence in a topology that is finer than the
one of the energy space.
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Abstract This chapter gives an introduction to the variational methods recently
developed in fluid-structure interaction, by focusing on the dynamics of flexible
tubes conveying fluid. This is a topic of high importance for biomedical and
industrial applications, such as arterial or lung flows, and problems involving high-
speed motion of gas in flexible pipes. Our goal is to derive a variational approach to
fluid-structure interaction with the aim of developing the corresponding variational
numerical methods. Variational approaches and corresponding discretizations are
advantageous for fluid-structure interactions, since they possess excellent long term
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energy behavior, exact conservation of momenta, and yield consistent models for
complex mechanical systems. We present a model for the three-dimensional evolu-
tion of tubes with expandable walls conveying fluid, that can accommodate arbitrary
deformations of the tube, arbitrary elasticity of the walls, and both compressible and
incompressible flows inside the tube. We show how this model reduces to previously
derived models under specific assumptions. We present particular solutions of the
model, such as propagation of a shock wave in an elastic tubes via the Rankine–
Hugoniot conditions. Finally, we develop the variational discretization of the model,
based on the discretization of the back-to-labels map, for the cases of spatial and
spatio-temporal discretizations.

6.1 Introduction

Tubes with flexible walls conveying fluid are frequently encountered in nature and
exhibit complex behavior due to the interaction between the fluid and elastic walls.
Important examples naturally appear in physiological applications, such as flow of
blood in arteries. There has been a great number of studies in this area, especially
with the focus on arterial flows, e.g. [20, 35, 54–56, 59, 66, 67] and lung flows,
e.g. [16, 17, 40]. For more informations about the application of collapsible tubes
to biological flows and a summary of the literature in the field, we refer the reader
to the reviews [31, 32, 61]. Analytical studies for such flows are usually limited
to cases when the centerline of the tube is straight, which restricts the utility of
the models for practical applications, but is important for theoretical understanding.
While substantial progress in the analysis of the flow has been achieved so far, it
was difficult to describe analytically the general dynamics of 3D deformations of
the tube.

On the other hand, studies involving non-trivial dynamics of the centerline have
a long history in the context of engineering applications also loosely called the
“garden hose instabilities”. While one of the earliest works on the subject was
[4], Benjamin [6, 7] was perhaps the first to formulate a quantitative theory for
the 2D dynamics of initially straight tubes by considering a linked chain of tubes
conveying fluids and using an augmented Hamilton principle of critical action
that takes into account the momentum of the jet leaving the tube. A continuum
equation for the linear disturbances was then derived as the limit of the discrete
system. It is interesting to note that Benjamin’s approach was, in essence, the first
discrete variational method applied to this problem. This linearized equation for the
initially straight tubes was further studied by Gregory and Païdoussis [29]. These
initial developments formed the basis for further stability analysis for finite, initially
straight tubes [1–3, 15, 49–53, 63], which showed a reasonable agreement with
experimentally observed onset of the instability [11, 19, 30, 37, 50]. Models treating
nonlinear deflection of the centerline were also considered in [28, 47, 51, 62], and
the compressible (acoustic) effects in the flowing fluid in [72]. Alternatively, a more
detailed 3D theory of motion for the flow was developed in [5] and extended in
[60]. That theory was based on a modification of the Cosserat rod treatment for
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the description of elastic dynamics of the tube, while keeping the cross-section
of the tube constant and orthogonal to the centerline. In particular [60], analyzes
several non-straight configurations, such as a tube deformed from its straight state
by gravity, both from the point of view of linear stability and nonlinear behavior.
Unfortunately, this approach cannot easily incorporate the effects of the cross-
sectional changes in the dynamics, either prescribed (e.g. a tube with variable
cross-section in the initial state) or dynamically occurring. The history of the parallel
development of this problem in the Soviet/Russian literature is summarized in [26].

The goal of this chapter is to describe the variational approach to the problem
developed by the authors in [21, 22, 24]. Based on this approach, the linear stability
of helical tubes was studied in [26]. The theory derived in [21, 22, 24], being a
truly variational theory of the 3D motion of the tube, opened the opportunity for
developing variational approximation for the equations, both from the point of
view of deriving simplified reduced models and developing structure preserving
numerical schemes, as initiated in [23]. The description in this paper summarizes
and extends this approach. We base our method on the recent works [13, 14] on
multisymplectic discretization of an elastic beam in R3, which is in turn based
on the geometric variational spacetime discretization of Lagrangian field theories
developed in [45].

6.2 Preliminaries on Variational Methods

Variational numerical schemes, also known as variational integrators, are powerful
discretization methods as they allow exact conservation of appropriately defined
momenta and excellent long-term energy behavior and are thus very useful for
constructing efficient description of long-term dynamics, especially in the case
when friction effects are small. We refer the reader to the extensive review [43]
of variational integrators in Lagrangian mechanics, and [39] for the application of
variational integrators to constrained systems, important for this work. There are
two major difficulties which we will need to address here, namely, the appropriate
coupling of the fluid to the elastic tube, and the treatment of the constraint of fluid
volume conservation. Before we describe these concepts in more details, we give
a review of variational methods in mechanics in order to keep the exposition self-
contained.

Hamilton’s Principle
One of the most fundamental statement in classical mechanics is the principle
of critical action or Hamilton’s principle, according to which the motion of a
mechanical system between two given positions follows a curve that makes the
integral of the Lagrangian of the system critical (see, for instance [38]).

Consider a mechanical system with configuration manifold Q and Lagrangian
L : TQ→ R defined on the tangent bundle ofQ. The LagrangianL is usually given
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by the kinetic minus the potential energy of the system as L(q, v) = K(q, v) −
U(q). The Hamilton principle reads

δ

∫ T

0
L(q, q̇)dt = 0 , (6.1)

for arbitrary variations δq with δq(0) = δq(T ) = 0, and yields the Euler–Lagrange
equations, given in coordinates as

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n.

External forces, given by a fiber preserving maps F ext : TQ → T ∗Q, can be
included in the Hamilton principle, by considering the principle

δ

∫ T

0
L(q, q̇)dt +

∫ T

0
〈F ext, δq〉dt = 0 . (6.2)

Requiring that F ext : TQ → T ∗Q is a fiber preserving map means that for each
fixed q ∈ Q, it restricts to a map from the fiber TqQ to the fiber T ∗

q Q, at the same
point q.

The Hamilton principle has a natural extension to continuum systems, for which
the configuration manifold becomes infinite dimensional, typically a manifold of
maps, and which will be of crucial use in this chapter. For instance, let us assume
that the motion of the continuum system is described by a curve of embeddings
ϕt : B→ R3, where B is the reference configuration of the continuum. The current
position at time t of the particle with label X ∈ B is x = ϕt (X) ∈ R3. In this
case, the configuration manifold Q of the system is infinite dimensional and given
by all smooth embeddings of B into R3, i.e.,Q = Emb(B,R3). Given a Lagrangian
L : TQ → R, Hamilton’s principle formally takes the same form as Eq. (6.1),
namely

δ

∫ T

0
L(ϕ, ϕ̇)dt = 0 , (6.3)

for variations δϕ such that δϕ(0) = δϕ(T ) = 0. We refer to [27] for a detailed
account on Hamilton’s principle and its symmetry reduced versions in continuum
mechanics. An extension of Hamilton’s principle to include irreversible processes
in continuum systems was presented in [25]. Note that since L is defined on the
tangent bundle of Q = Emb(B,R3), it can a priory depend in an arbitrary way
on the spatial derivatives of ϕ and ϕ̇. Typically L only depends on the first spatial
derivative of ϕ and is thus expressed with the help of a Lagrangian density as

L(ϕ, ϕ̇) =
∫

B
L
(

ϕ(X), ϕ̇(X),∇ϕ(X))d3X.
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Holonomic Constraints
Hamilton’s principle can be naturally extended to include constraints, should they
be holonomic or not. In the holonomic case, which is the case that we will need, the
constraint defines a submanifold N ⊂ Q of the configuration manifold. Assuming
that N = %−1(0), for a submersion % : Q → Rr , the equations of motion follow
from the Hamilton principle with Lagrange multipliers

δ

∫ T

0

[

L(q, q̇)+ λα%α(q)
]

dt = 0 , (6.4)

in which one considers also arbitrary variations δλα . In this holonomic case the
equations of motion can be also directly obtained by applying the Hamilton principle
to the Lagrangian L restricted to TN , but in most examples in practice, as it will be
the case for us, the constraint submanifold N takes such a complicated expression
that it is impossible to avoid the use of (6.4).

Lagrangian Reduction by Symmetry
When a symmetry is available in a mechanical system, it is often possible to
exploit it in order to reduce the dimension of the system and thereby facilitating
its study. This process, called reduction by symmetry, is well developed both on the
Lagrangian and Hamiltonian sides, see [44] for an introduction and references.

While on the Hamiltonian side, this process is based on the reduction of
symplectic or Poisson structures, on the Lagrangian side it is usually based on the
reduction of variational principles, see [9, 41, 42]. Consider a mechanical system
with configuration manifold Q and Lagrangian L : TQ → R and consider also
the action of a Lie group G on Q, denoted here simply as q �→ g · q, for
g ∈ G, q ∈ Q. This action naturally induces an action on the tangent bundle
TQ, denoted here simply as (q, v) �→ (g · q, g · v), called the tangent lifted
action. We say that the action is a symmetry for the mechanical system if the
Lagrangian L is invariant under this tangent lifted action. In this case, L induces
a symmetry reduced Lagrangian � : (TQ)/G → R defined on the quotient
space (TQ)/G of the tangent bundle with respect to the action. The goal of the
Lagrangian reduction process is to derive the equations of motion directly on the
reduced space (TQ)/G. Under standard hypotheses on the action, this quotient
space is a manifold and one obtains the reduced Euler–Lagrange equations by
computing the reduced variational principle for the action integral

∫ t2
t1
� dt induced

by Hamilton’s principle (6.1) for the action integral
∫ t2
t1
L dt. The main difference

between the reduced variational principle and Hamilton’s principle is the occurrence
of constraints on the variations to be considered when computing the critical curves
for

∫ t2
t1
� dt . These constraints are uniquely associated to the reduced character of

the variational principle and not to physical constraints.
Passing from the Hamilton principle and Euler–Lagrange equations to their

symmetry reduced versions corresponds in practical examples to pass from the
material (or Lagrangian) description to either the spatial (or Eulerian) description
(in case of symmetries associated to actions on the right), or to the convective (or
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body) description (in case of symmetries associated to actions on the left), see [27].
A mixing of the two descriptions also arises, as it will be the case for the flexible
tube conveying fluid.

Variational Discretization
Another useful side of the Hamilton principle is that it admits discrete versions
that are useful to derive structure preserving numerical schemes. Such schemes,
called variational integrators, see [43, 70], are originally based on Moser–Veselov
discretizations [48, 68, 69]. Very briefly and in the simplest case, one fixes a time
step h, and considers a discrete Lagrangian Ld : Q×Q→ R that approximates the
time integral of the continuous Lagrangian between two consecutive configurations
qk and qk+1

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t))dt , (6.5)

where qk = q(tk) and qk+1 = q(tk+1), with tk+1 = tk + h. Equipped with
such a discrete Lagrangian, one can formulate a discrete version of Hamilton’s
principle (6.1) according to

δ

N−1
∑

k=0

Ld(qk, qk+1) = 0 ,

for variations δqk vanishing at the endpoints. Thus, if we denote Di the partial
derivative with respect to the ith variable, three consecutive configuration variables
qk−1, qk, qk+1 must verify the discrete analogue of the Euler–Lagrange equations:

D2Ld(qk−1, qk)+D1Ld(qk, qk+1) = 0 . (6.6)

These discrete Euler–Lagrange equations define, under appropriate conditions, a
symplectic integration scheme which solves for qk+1, knowing the two previous
configuration variables qk−1 and qk . Discrete versions of the Hamilton principle
with holonomic constraints (6.4) can be derived in a similar way, see [43]. Varia-
tional integrators have been extended to spacetime discretization in [45], leading to
multisymplectic integrators, which will be greatly exploited in our development.

6.2.1 Exact Geometric Rod Theory via Variational Principles

The theory of geometrically exact rod that we recall here has been developed in
[64] and [65] and is based on the original work of [10]. We shall derive below the
equations of geometrically exact rods by using a symmetry reduced version of the
classical Hamilton principle (6.1) written on the infinite dimensional configuration
manifold of the rod. We follow the variational formulation given in [33] and [18].
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Fig. 6.1 Illustration of the geometrically exact rod. Are represented the fixed frame {Ei | i =
1, 2, 3}, the moving frame {ei (t, s) = �(t, s)Ei | i = 1, 2, 3}, and the position of the line of
centroids r(t, s)

Configuration Manifold and Hamilton’s Principle The configuration of the rod
deforming in the ambient space R3 is defined by specifying the position of its line
of centroids r(t, s) ∈ R3, and by giving the orientation of the cross-section at each
point r(t, s). This orientation can be defined by using a moving basis {ei (t, s) | i =
1, 2, 3} attached to the cross section relative to a fixed frame {Ei | i = 1, 2, 3}.
The moving basis is described by means of an orthogonal transformation �(t, s) ∈
SO(3) such that ei (t, s) = �(t, s)Ei . Here t is the time and s ∈ [0, L] is a parameter
along the rod that does not need to be arclength. The cross-section is not required to
be orthogonal to line of centroids. More generally, there is no constraint relating the
frame {ei (t, s) | i = 1, 2, 3} and the vector ∂sr(t, s). See Fig. 6.1 for an illustration
of the geometrically exact rod.

The configuration manifold of a geometrically exact rod is thus the infinite
dimensional manifoldQrod = F ([0, L], SO(3)×R3) of SO(3)×R3-valued smooth
maps defined on the interval [0, L]. Given the Lagrangian function of the rod

L : TQrod → R , (�, �̇, r, ṙ) �→ L
(

�, �̇, r, ṙ
)

(6.7)

defined on the tangent bundle TQrod of the configuration manifold, one obtains
the equations of motion by using the Hamilton principle (6.1), more precisely its
continuum extension (6.3), which here reads

δ

∫ T

0
L
(

�, �̇, r, ṙ
)

dt = 0 , (6.8)

for arbitrary variations δ�, δr vanishing at t = 0, T . In general, a Lagrangian L
defined on TQrod can depend in an arbitrary way on the spatial derivatives of �, �̇,
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r , and ṙ . For geometrically exact rods, L only depends on the first spatial derivatives
of � and r , i.e., it is expressed with the help of a Lagrangian density as

L
(

�, �̇, r, ṙ
) =

∫ L

0
L
(

�(s),�′(s), �̇(s), r(s), r ′(s), ṙ(s)
)

ds.

Moreover, it turns out that the Lagrangian of geometrically exact rods can be
exclusively expressed in terms of the convective variables

γ = �−1ṙ , ω = �−1�̇ , � = �−1r ′ , � = �−1�′ , (6.9)

see [64, 65]. Here γ ,ω ∈ F ([0, L],R3) are the linear and angular convective
velocities and �,� ∈ F ([0, L],R3) are the linear and angular convective strains,
with ( )′ = ∂s and ˙( ) = ∂t . We use the hat map isomorphism to obtain ω and �

from ω and � in (6.9):

ω ∈ R3 �→ ω = ω̂ ∈ so(3) , ωij = −εijkωk , (6.10)

where εijk is the completely antisymmetric tensor with ε123 = 1. Note that we have

ω̂a = ω×a, for all a ∈ R3. Since [ â , b̂ ] = â × b, the correspondence (6.10) is a Lie
algebra isomorphism. Writing L in terms of those variables, we get the convective
Lagrangian that we denote

� : F ([0, L],R3)4 → R , (ω, γ ,�,�) �→ �(ω, γ ,�,�) . (6.11)

For the moment, we leave the Lagrangian function unspecified, we will give its
explicit expression later in the case of fluid-conveying tubes.

The equations of motion in convective description are obtained by writing the
critical action principle (6.8) in terms of the Lagrangian �. This is accomplished by
computing the constrained variations of ω, γ ,�,� induced by the free variations
δ�, δr via the definition (6.9). We find the constrained variations

δω = ∂t� + ω × � , δγ = ∂tη + γ × � + ω × η , (6.12)

δ� = ∂s� + � × � , δ� = ∂sη + � × � + � × η , (6.13)

where �̂(t, s) =  (t, s) = �(t, s)−1δ�(t, s) ∈ so(3) and η(t, s) =
�(t, s)−1δr(t, s) ∈ R3 are arbitrary functions vanishing at t = 0, T . We show
explicitly how the expression of δω is obtained. Let δ� = d

dε

∣
∣
ε=0�ε be an

arbitrary variation of � in (6.8), �ε=0 = �. Using the definition of ω in (6.9), we
have

δω = d

dε

∣
∣
∣
∣
ε=0

ωε = d

dε

∣
∣
∣
∣
ε=0

�−1
ε �̇ε = −�−1δ��−1�̇+�−1δ�̇
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= −�−1δ��−1�̇+ d

dt

(

�−1δ�
)−

( d

dt
�−1

)

δ�

= −�−1δ��−1�̇+�−1�̇�−1δ�+ d

dt

(

�−1δ�
)

= − ω + ω + ∂t = ∂t + [ω, ].

Applying the inverse of the hat map (6.10) to this equality yields the desired
expression for δω in (6.12). The other expressions δγ , δ�, and δ� are derived in
a similar way.

Hamilton’s principle (6.8) yields the principle

δ

∫ T

0
�(ω, γ ,�,�) dt = 0 , (6.14)

for constrained variations δω, δγ , δ�, δ� given in (6.12) and (6.13), from which a
direct computation yields the convective Euler–Lagrange equations

D

Dt

δ�

δω
+γ × δ�

δγ
+ D

Ds

δ�

δ�
+� × δ�

δ�
= 0 ,

D

Dt

δ�

δγ
+ D

Ds

δ�

δ�
= 0 , (6.15)

together with the boundary conditions

δ�

δ�

∣
∣
∣
∣
s=0,L

= 0 and
δ�

δ�

∣
∣
∣
∣
s=0,L

= 0. (6.16)

In (6.15) the symbols δ�/δω, δ�/δγ , . . . denote the functional derivatives of �
relative to the L2 pairing, defined as

d

dε

∣
∣
∣
∣
ε=0

�(ω + εδω, γ ,�,�) =
∫ L

0

δ�

δω
· δω ds . (6.17)

We also introduced the notations

D

Dt
= ∂t + ω × and

D

Ds
= ∂s + � × . (6.18)

If one of the extremities (say s = 0) of the rod is kept fixed, i.e., r(t, 0) = r0,
�(t, 0) = �0 for all t , then only the boundary condition at s = L arises
above in (6.16). From their definition (6.9), the convective variables verify the
compatibility conditions

∂t� = ω × � + ∂sω and ∂t� + ω × � = ∂sγ + � × γ . (6.19)

Lagrangian Reduction by Symmetry The process of passing from the Hamil-
ton principle (6.8) to its convective version (6.14) with appropriate constrained
variations is rigorously justified by the process of Lagrangian reduction that we
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briefly recalled earlier in Sect. 6.2. In view of the symmetries of the problem, it is
natural to endow Qrod wit the Lie group multiplication of the special Euclidean
group SE(3) = SO(3)R3 �1 (rather than, for example, the direct Lie group
multiplication of SO(3) × R3). We shall thus write the configuration manifold as
the infinite dimensional Lie group Qrod = F ([0, L], SE(3)) and observe that the
Lagrangian L defined on TQrod is invariant under the action on left by the subgroup
G = SE(3) ⊂ Qrod of special Euclidean transformations that are constant on [0, L].
Indeed, an equivalence class [�, r, �̇, ṙ] in the quotient space (TQrod)/G can be
identified with the element (ω, γ ,�,�), via the relations given by (6.9). From this
point of view, (6.14) is the symmetry reduced variational principle induced from the
Hamilton principle (6.8) and Eq. (6.15) are the symmetry reduced Euler–Lagrange
equations.

This approach via Lagrangian reduction not only gives an elegant and efficient
way to derive the equations for geometrically exact rods, but also turns out to be a
powerful tool for the derivation of new models, as we show in the next section.

6.3 Variational Modeling for Flexible Tubes Conveying
Fluids

In this section we derive a geometrically exact model for a flexible tube with
expandable walls conveying a compressible fluid. We shall derive the model from
the Hamilton principle, reformulated in convective variables for the tube and in
spatial variables for the fluid, by making use of the symmetries of the Lagrangian.

To achieve this goal we first need to identify the infinite dimensional configura-
tion manifold of the system as well as the convective and spatial variables, together
with their relation with the Lagrangian variables.

6.3.1 Configuration Manifold for Flexible Tubes Conveying
Fluid

In addition to the rod variables (�, r) ∈ F ([0, L], SO(3)× R3) considered above,
the configuration manifold for the fluid-conveying tube also contains the description
of the wall and fluid motion. For the fluid, it is easier to start by defining the back-
to-labels map, which is an embedding ψ : [0, L] → R, assigning to a current fluid
label particle s ∈ [0, L] located at r(s) in the tube, its Lagrangian label s0 ∈ R.
Its inverse ϕ := ψ−1 : ψ([0, L]) ⊂ R → [0, L] gives the current configuration of

1We recall that SE(3) = SO(3)R3 � is the semidirect product of the Lie group SO(3) and the
vector space R3, with group multiplication given by (�1, r1)(�2, r2) = (�1�2,�1r2 + r1).
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the fluid in the tube. A time dependent curve of such maps thus describes the fluid
motion in the tube, i.e., s = ϕ(t, s0), with s ∈ [0, L].

We include the description of the motion of the wall in the simplest possible
way by considering the tube radius R(t, s) to be a free variable. In this case, the
Lagrangian depends on R, as well as on its time and space derivatives. If we assume
that R can lie on an interval IR , for example, IR = R+ (the set of positive numbers),
then the configuration manifold for the fluid-conveying tube is given by the infinite
dimensional manifold

Q := F ([0, L], SO(3)× R3 × IR
)×

{

ϕ : ϕ−1[0, L] → [0, L] | ϕ diffeom.
}

.

(6.20)
Note that as the system evolves in time, the domain of definition of the fluid motion
s = ϕ(t, s0) also changes in time since we have ϕ(t) : [a(t), b(t)] → [0, L], for
ϕ(t, a(t)) = 0 and ϕ(t, b(t)) = L. The time dependent interval [a(t), b(t)] contains
the labels of all the fluid particles that are present in the tube at time t . See Fig. 6.2
for an illustration of the geometrically exact and expandable flexible tube conveying
fluid.

In principle, we could have considered, e.g., an ellipsoidal shape with the semi-
axes

(

R1(t, s), R2(t, s)
)

, or, more generally, chosen a shape that is parameterized
by N variables (shape parameters). In that case, the Lagrangian depends on these
parameters and there are N additional Euler–Lagrange equations for these param-
eters. Such generalizations of our system are relatively straightforward from the

Fig. 6.2 Illustration of the geometrically exact and expandable flexible tube conveying fluid. Are
represented the two frames {Ei} and {ei (t, s)}, i = 1, 2, 3, the radius of the cross section R(t, s),
the back-to-labels map ψ and its inverse ϕ, and the Eulerian velocity u(t, s)
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abstract point of view, but very cumbersome from the practical point of view, since
one will need to compute the dependence of moments of inertia, potential energy
etc., on the shape parameters. While these considerations are useful to explain
certain regimes breaking the local radial symmetry of the tube, for simplicity, we
shall only consider the radially symmetric cross sections here.

6.3.2 Definition of the Lagrangian

In this section we derive the Lagrangian L : TQ→ R of the system, defined on the
tangent bundle TQ of the infinite dimensional configuration manifold Q. It has the
standard form

L = Krod +Kfluid − Erod − Eint , (6.21)

with Krod the kinetic energy of the rod, Kfluid the kinetic energy of the fluid, Erod
the elastic energy of the rod, and Eint the internal energy of the fluid.

Kinetic Energy The kinetic energy of the rod has the standard expression

Krod = 1

2

∫ L

0

(

α|γ |2 + aṘ2 + I(R)ω · ω
)

|�|ds ,

where α is the linear density of the tube and I(R) is its local moment of inertia. The
term 1

2aṘ
2 describes the kinetic energy of the radial motion of the tube.

We now derive the total kinetic energy of the fluidKfluid. In material description,
the total velocity of a fluid particle with label s0 is given by

d

dt
r(t, ϕ(t, s0)) = ∂tr(t, ϕ(t, s0))+ ∂sr(t, ϕ(t, s0))∂tϕ(t, s0)

= ∂tr(t, ϕ(t, s0))+ ∂sr(t, ϕ(t, s0))u(t, ϕ(t, s0)) ,
(6.22)

where the Eulerian velocity is defined as usual by

u(t, s) = (

∂tϕ ◦ ϕ−1)(t, s) , s ∈ [0, L] . (6.23)

Let us recall from Sect. 6.3.1 that for each t fixed, the map s0 �→ s = ϕ(t, s0)

is a diffeomorphism from some interval [a(t), b(t)] to the interval [0, L]. The map
s �→ s0 = ϕ−1(t, s) denotes its inverse, from [0, L] to [a(t), b(t)], for each fixed t .
The total kinetic energy of the fluid reads
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Kfluid = 1

2

∫ ϕ−1(t,L)

ϕ−1(t,0)
ξ0(s0)

∣
∣
∣
d

dt
r(t, ϕ(t, s0))

∣
∣
∣

2
ds0 = 1

2

∫ L

0
(ξ0 ◦ ϕ−1)∂sϕ

−1 |γ + �u|2 ds ,

where

ξ(t, s) =
[

(ξ0 ◦ ϕ−1)∂sϕ
−1
]

(t, s) (6.24)

is the mass density per unit length in the Eulerian description. Equation (6.24)
assumes that the fluid fills the tube completely. This assumption is clearly satisfied
for tubes filled with gas, and is also presumed to be satisfied for tubes filled with
fluid throughout the literature on this subject, as spontaneous creation of internal
voids in the tube seems unlikely. Note the relation ξ(t, s) = ρ(t, s)Q(t, s) , where
ρ(t, s) is the mass density of the fluid per unit volume, in units Mass/Length3, and
Q(t, s) is the area of the tube’s cross section, in units Length2. It is important to
note that, while ξ , ξ0 are related as in (6.24), such a relation does not hold for ρ, ρ0
andQ,Q0, e.g.,Q(s, t) �= (Q0 ◦ ϕ−1)∂sϕ

−1. That relationship betweenQ andQ0
is only valid when the fluid inside the tube is incompressible, as we shall see below.

It is interesting to note that mathematically, the Lagrangian mapping defines the
physical movement of particles from one cross-section to another, parameterized by
the Lagrangian label s0. All particles for one cross-section have the same Lagrangian
label s0 and move to the same cross-section s after time t . This corresponds to
the assumption of a ‘plug flow’. To generalize this notion for movement of fluid
with friction, one could consider (formally) the velocity u(t, s) given by (6.23)
to be an ‘effective’ Eulerian velocity (e.g., averaged over a given cross-section).
Then, one could derive an effective kinetic energy by adding experimentally relevant
coefficients to the kinetic energy of the fluid presented above. We shall avoid this
approach and all discussion of friction in this paper, as these are difficult subjects
beyond the scope of our considerations here. Instead, we assume an inviscid flow
and consider the plug flow assumption to be valid, consistent with the previous
literature on the subject.

Internal Energy We assume that the internal energy of the gas is described by the
specific energy function e(ρ, S), with ρ the mass density and S the specific entropy.
The total internal energy of the fluid is thus Eint = ∫ L

0 ξe(ρ, S)ds.

Elastic Energy The potential energy due to elastic deformation is a function of
�, � and R. While the equations will be derived for an arbitrary potential energy,
we shall assume the simplest possible quadratic expression for the calculations,
namely,
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Erod = 1

2

∫ L

0

(

J� · � + λ(R)|� − χ |2 + 2F(R,R′, R′′)
)

|�|ds , (6.25)

where χ ∈ R3 is a fixed vector denoting the axis of the tube in the reference
configuration, J is a symmetric positive definite 3 × 3 matrix, which may depend
on R, R′ and R′′, and λ(R) is the stretching rigidity of the tube. The stretching term
proportional to λ(R) can take the more general form K(� − χ) · (� − χ), where
K is a 3 × 3 tensor. The part of this expression for the elastic energy containing
the first two terms in (6.25) is commonly used for a Cosserat elastic rod, but more
general functions of deformations � are possible. A particular case is a quadratic
function of � leading to a linear dependence between stresses and strains. We have
also introduced the elastic energy of wall F(R,R′, R′′) which can be explicitly
computed for simple elastic tubes.

Mass Conservation We shall assume that the fluid fills the tube completely, and
the fluid velocity at each given cross-section is aligned with the axis of the tube.
Since we are assuming a one-dimensional approximation for the fluid motion inside
the tube, the mass density per unit length ξ(t, s) has to verify (6.24), from which we
deduce the conservation law

∂t ξ + ∂s(ξu) = 0. (6.26)

The physical meaning of Q can be understood through the fact that Qds is the
volume filled by the fluid in the tube for the parameter interval [s, s+ds]. Then, the
infinitesimal volume is A|dr|, where A is the area of the cross section. Since s is
not necessarily the arc length, it is useful to define the variable Q = A|r ′| = A|�|,
so the infinitesimal volume at a given point is then written as A|dr| = Qds.

Expression of the Cross Section Area In general Q is a given function of the
tube’s variables, i.e.,

Q = Q(R,�,�) = A(R,�,�)|�| . (6.27)

A dependence of the form A = A(�,�) was taken in [22, 23, 26]. Such choice
prevents the independent dynamics of the tube’s wall and states that the cross-
sectional area only depends on the deformation of the tube as an elastic rod. For
the physical explanation of possible particular expressions of A(�,�) we refer the
reader to [26]. The simplest choice allowing for independent dynamics of the wall
is A(R) = πR2, in which case the tube preserves its circular cross-section under
deformations, see [24].

Lagrangian From all the expressions given above and assuming there is a uniform
external pressure pext acting on the tube, we get the Lagrangian
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�(ω, γ ,�,�, u, ξ, S, R, Ṙ)

=
∫ L

0

[(1

2
α|γ |2 + 1

2
I(R)ω · ω + 1

2
aṘ2 − F(R,R′, R′′)− 1

2
J� · �

− 1

2
λ(R)|� − χ |2

)

|�| + 1

2
ξ |γ + �u|2 − ξe(ρ, S)− pextQ

]

ds

=:
∫ L

0

[

L0
(

ω, γ ,�,�, u, ξ, R, Ṙ, R′, R′′)− ξe(ρ, S)− pextQ
]

ds ,

(6.28)
where ρ, in the term ξe(ρ, S) in the above formula, is defined in terms of the
independent variables ξ,�,�, R as

ρ := ξ

Q(�,�, R)
. (6.29)

We have denoted L0 the part of the integrand of the Lagrangian related to just the
tube dynamics, without the incorporation of the internal energy.

6.3.3 Variational Principle and Equations of Motion

Recall that the Lagrangian of the system is defined on the tangent bundle TQ and is
therefore a function of the form L

(

�, �̇, r, ṙ, ϕ, ϕ̇, R, Ṙ
)

. The equations of motion
are directly obtained from the Hamilton principle with boundary forces

δ

∫ T

0
L
(

�, �̇, r, ṙ, ϕ, ϕ̇, R, Ṙ
)

dt =
∫ T

0

(

F� · δ�+ Fr · δr + Fϕδϕ + FRδR
)
∣
∣
∣
s=Ldt ,
(6.30)

for arbitrary variations δ�, δr, δϕ, δR vanishing at t = 0, T . This is a special
instance of the variational principle (6.2) with the boundary terms in (6.30) playing
the role of external forces in (6.2). We chose here the free boundary extremity to be
at s = L and denoted by F�, Fr , Fϕ the generalized forces exerted by the boundary
effects on the linear momentum equation for the tube, on the angular momentum
equation for the tube and on the fluid momentum equation. We will explain later
how these forces are chosen. We also assume that all variables are known at s = 0
hence all variations vanish at s = 0.

As we have seen in Sect. 6.3.2, the Lagrangian is naturally expressed in terms of
the convective variables ω, γ ,�,� for the rod and the spatial variables u, ξ, S for
the fluid, see (6.28). Here, the term ‘spatial’ is used to the motion with respect to
the rod’s coordinate frame, and not the corresponding quantities in the laboratory
frame. In a similar way with the case of the geometrically exact rod above, � can be
interpreted as the symmetry reduced Lagrangian associated to L defined on TQ.
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By the process of Lagrangian reduction by symmetries, (6.30) induces the
reduced Hamilton principle

δ

∫ T

0
�
(

ω, γ ,�,�, u, ξ, S, R, Ṙ
)

dt =
∫ T

0

(

f� ·� + f� · η + fuη+FRδR
)
∣
∣
∣
s=Ldt,

(6.31)
for variations δω, δγ , δ�, δ� given in (6.12) and (6.13), and δu, δξ , and δS
computed as

δu = ∂tη + u∂sη − η∂su , δξ = −∂s(ξη) , δS = −η∂sS , (6.32)

where η = δϕ ◦ ϕ−1. Note that η(t, s) is an arbitrary function vanishing at
t = 0, T . We have assumed that the forces in (6.30) have the same symmetry with
the Lagrangian and denoted by f�, f� , fu their reduced expressions. A lengthy
computation yields the system

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D

Dt

δ�

δω
+ γ × δ�

δγ
+ D

Ds

δ�

δ�
+ � × δ�

δ�
= 0 ,

D

Dt

δ�

δγ
+ D

Ds

δ�

δ�
= 0

∂t
δ�

δu
+ u∂s δ�

δu
+ 2

δ�

δu
∂su = ξ∂s

δ�

δξ
− δ�

δS
∂sS

∂t
δ�

δṘ
− δ�

δR
= 0 , ∂t ξ + ∂s(ξu) = 0 , ∂tS + u∂sS = 0 ,

∂t� = � × ω + ∂sω , ∂t� + ω × � = ∂sγ + � × γ ,

(6.33)

where we used the notations D/Dt , D/Ds introduced in (6.18) and the functional
derivatives as defined in (6.17). The principle also yields boundary conditions that
will be computed explicitly below.

Note that the first equation arises from the terms proportional to � in the
variation of the action functional and thus describes the conservation of angular
momentum. The second equation arises from the terms proportional to ψ and
describes the conservation of linear momentum. The third equation is obtained
by collecting the terms proportional to η and describes the conservation of fluid
momentum. The fourth equation comes from collecting the terms proportional to
δR and describes the elastic deformation of the walls due to the pressure. Finally,
the last four equations arise from the four definitions � = �−1�′, � = �−1r ′,
ξ = (ξ0 ◦ ϕ−1)∂sϕ

−1, and S = S0 ◦ ϕ−1.
For the Lagrangian given in (6.28), the functional derivatives are computed as

δ�

δ�
= ∂L0

∂�
+ (p − pext)

∂Q

∂�
,

δ�

δ�
= ∂L0

∂�
+ (p − pext)

∂Q

∂�

δ�

δR
= ∂L0

∂R
− ∂s ∂L0

∂R′ + ∂2
s

∂L0

∂R′′ + (p − pext)
∂Q

∂R

δ�

δξ
= ∂L0

∂ξ
− e − ρ ∂e

∂ρ
,

(6.34)
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where p(ρ, S) = ρ2 ∂e
∂ρ
(ρ, S) is the pressure and ∂L0/∂�, ∂L0/∂�, . . . denote the

ordinary partial derivatives of L0, whose explicit form can be directly computed
from the expression of L0 in (6.28).

Theorem 6.1 For the Lagrangian � in (6.28), the variational principle (6.31) with
constrained variations (6.12), (6.13), and (6.32) yields the equations of motion

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D

Dt

∂L0

∂ω
+ γ × ∂L0

∂γ
+ D

Ds

(
∂L0

∂�
+ (p − pext)

∂Q

∂�

)

+� ×
(
∂�0

∂�
+ (p − pext)

∂Q

∂�

)

= 0

D

Dt

∂L0

∂γ
+ D

Ds

(
∂L0

∂�
+ (p − pext)

∂Q

∂�

)

= 0

∂t
∂L0

∂u
+ u∂s ∂L0

∂u
+ 2

∂L0

∂u
∂su = ξ∂s

∂L0

∂ξ
−Q∂sp

∂t
∂L0

∂Ṙ
− ∂2

s

∂L0

∂R′′ + ∂s ∂L0

∂R′ − ∂L0

∂R
− (p − pext)

∂Q

∂R
= 0

∂t� = � × ω + ∂sω, ∂t� + ω × � = ∂sγ + � × γ

∂t ξ + ∂s(ξu) = 0, ∂tS + u∂sS = 0

(6.35)

together with the boundary conditions

∂L0

δ�
+ (p − pext)

∂Q

∂�
− f�

∣
∣
∣
∣
s=L
= 0 ,

∂L0

δ�
− (p − pext)

∂Q

∂�
− f�

∣
∣
∣
∣
s=L
= 0 ,

∂L0

∂u
u− ∂L0

∂ξ
ξ + hξ − fu

∣
∣
∣
∣
s=0,L

= 0 ,
∂L0

∂R′ − ∂s ∂L0

∂R′′

∣
∣
∣
∣
s=L

= FR ,
∂L0

∂R′′

∣
∣
∣
∣
s=L
= 0 ,

(6.36)
with h = e + p/ρ the enthalpy of the fluid.

Let us assume that there are no external forces acting on the system, and all the
extra work is provided by the nonconservative boundary conditions. In this case, the
boundary forces f�, fγ , fu are determined from the relations (6.36), by imposing
standard boundary conditions for the tube variables at s = L, such as vanishing
stresses of the elastic part of the Lagrangian, and a assuming specified velocity at
s = L (due, for example, to a special nozzle), see [22].

Note that by defining the variablem := 1
ρQ

∂L0
∂u

= � ·(γ + u�) the third equation
in (6.35) can be simply written as

∂tm+ ∂s
(

mu− ∂L0

∂ξ

)

= − 1

ρ
∂sp , (6.37)

which is strongly reminiscent of the 1D gas dynamics. For Q(R,�) = A(R)|�|,
Eq. (6.35) can be further simplified since � × ∂Q

∂�
= 0.
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6.3.4 Incompressible Fluids

The incompressibility of the fluid motion is imposed by requiring that the mass
density per unit volume is a constant number:

ρ(t, s) = ρ0 . (6.38)

For a given expression Q = Q(�,�, R) of the area in terms of the tube variables,
the relation (6.29) still holds with ρ = ρ0. The constraint (6.38) can thus be written
as

Q(�,�, R) = ξ

ρ0
. (6.39)

By recalling the relations ξ = (ξ0 ◦ ϕ−1)∂sϕ
−1, � = �−1�′, � = �−1r ′, we see

that condition (6.39) defines a constraint of the abstract form%(�, r, ϕ) = 0 which
is therefore holonomic on the infinite dimensional manifold Q. Following (6.4)
recalled in Sect. 6.2, the holonomic constraint is included in the Hamilton princi-
ple (6.30) as

δ

∫ T

0

[

L
(

�, �̇, r, ṙ, ϕ, ϕ̇, R, Ṙ
)+

∫ L

0
μ%

(

�, r, ϕ
)

ds

]

dt

=
∫ T

0

(

F� · δ�+ Fr · δr + Fϕδϕ + FRδR
)
∣
∣
∣
s=Ldt ,

(6.40)

for arbitrary variations δ�, δr , δϕ, δR, δμ. In the incompressible case, the variables
ξ and S are not present, as well as the terms associated to the internal energy,
Therefore the reduced Lagrangian takes the form

�(ω, γ ,�,�, u, R, Ṙ) =
∫ L

0

[

L0
(

ω, γ ,�,�, u, R, Ṙ, R′, R′′)− pextQ
]

ds ,

and (6.40) yields the reduced Hamilton’s principle with holonomic constraint and
forces

δ

∫ T

0

[

�
(

ω, γ ,�,�, u, R, Ṙ
)+

∫ L

0
μ
(

Q(�,�, R)− (Q0 ◦ ϕ−1)∂sϕ
−1
)

ds

]

dt

=
∫ T

0

(

f� · � + f� · η + fuη
)
∣
∣
∣
s=Ldt

(6.41)
from which the following system is obtained



6 Variational Methods for Fluid-Structure Interactions 193

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D

Dt

∂L0

∂ω
+ γ × ∂L0

∂γ
+ D

Ds

(
∂L0

∂�
+ (μ− pext)

∂Q

∂�

)

+� ×
(
∂L0

∂�
+ (μ− pext)

∂Q

∂�

)

= 0

D

Dt

∂L0

∂γ
+ D

Ds

(
∂L0

∂�
+ (μ− pext)

∂Q

∂�

)

= 0

∂t
∂L0

∂u
+ u∂s ∂L0

∂u
+ 2

∂L0

∂u
∂su = −Q∂sμ

∂t
∂L0

∂Ṙ
− ∂2

s

∂L0

∂R′′ + ∂s ∂L0

∂R′ − ∂L0

∂R
− (μ− pext)

∂Q

∂R
= 0

∂t� = ω × � + ∂sω , ∂t� + ω × � = ∂sγ + � × γ

∂tQ+ ∂s(Qu) = 0 ,

(6.42)

together with the boundary conditions

∂L0

δ�
+ (μ− pext)

∂Q

∂�
− f�

∣
∣
∣
∣
s=0,L

= 0 ,
∂L0

δ�
− (μ− pext)

∂Q

∂�
− f�

∣
∣
∣
∣
s=0,L

= 0 ,

∂L0

∂u
u+ μQ− fu

∣
∣
∣
∣
s=0,L

= 0 ,
∂L0

∂R′ − ∂s ∂L0

∂R′′

∣
∣
∣
∣
s=L

= FR ,
∂L0

∂R′′

∣
∣
∣
∣
s=L
= 0 .

(6.43)
A direct comparison with the compressible system (6.35) shows that the Lagrange
multiplier μ plays the role of the fluid pressure p.

Note that the fluid momentum equation in (6.42) takes the following simple
expression in terms of m := 1

Q
∂L0
∂u

∂tm+ ∂s(mu+ μ) = 0 . (6.44)

6.3.5 Comparison with Previous Models

The case of an inextensible unshearable tube can be easily obtained from the above
variational formulation by imposing the constraint �(t, s) = χ , for all t, s, via a
Lagrange multiplier approach, see [24]. If we further assume a straight tube without
rotational motion, the incompressible version (6.42) yields

⎧

⎪⎪⎨

⎪⎪⎩

∂t (ρ0Au)+ ∂s(ρ0Au
2) = −A∂sμ

aR̈ − ∂s ∂F
∂R′ + ∂F

∂R
= 2πR(μ− pext)

∂tA+ ∂s(Au) = 0 ,

(6.45)

where we chose A(R) = πR2. In the incompressible system (6.45), we have ξ =
ρ0A, with ρ0 = const . As is demonstrated in [24], system (6.45) reduces to previous
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models in the literature on the dynamics of tubes with expandable walls [32, 34, 36,
56, 61, 66, 67], as well as more complex models involving wall inertia [20, 58, 59],
as long as necessary friction terms are added as external forces.

6.3.6 Conservation Laws for Gas Motion
and Rankine–Hugoniot Conditions

Since we are concerned with the flow of compressible fluids, it is natural to
ask about the existence of shock waves and the conditions the shock solutions
must satisfy at the discontinuity. In the one-dimensional motion of a compressible
fluid, the constraints on jumps of quantities across the shock are known as the
Rankine–Hugoniot conditions. Let us for shortness denote by [a] the jump of the
quantity a across the shock, and c the velocity of the shock. The classical Rankine–
Hugoniot conditions for the one-dimensional motion of a compressible fluid gives
the continuity of the corresponding quantities as

c[ρ] = [ρu] (mass) , (6.46)

c[ρu] = [ρu2 + p] (momentum) , (6.47)

c[E] =
[(

1

2
ρu2 + ρe + p

)

u

]

, E = 1

2
ρu2 + ρe (energy) , (6.48)

see, e.g. [71], where we have defined E to be the total energy density of the gas.
As far as we are aware, the analogue of the Rankine–Hugoniot conditions for the
moving and expandable tube conveying gas have been first derived in [24], to which
we refer the reader for details.

The mass conservation (6.26) is already written in a conservation law form. We
rewrite the balance of fluid momentum in the following form

∂t
(

ξ� ·(γ + u�) )+∂s
(

uξ� ·(γ + u�)+pQ)−ξ(γ +u�)·(∂sγ +u∂s�) = p∂sQ ,

(6.49)
obtained by inserting the actual expressions of the functional derivatives in the third
equation of (6.35).

The derivation of the corresponding energy equation is rather tedious and we
will only sketch it, presenting the final solution. For simplicity, we set pext = 0.
We define the total energy E, including the thermal and mechanical terms, and the
energy density E as

E =
∫ L

0
Eds , E := ξe+Ṙ ∂L0

∂Ṙ
+ω · ∂L0

∂ω
+γ · ∂L0

∂γ
+u∂L0

∂u
−L0 . (6.50)
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Then, performing appropriate substitution for time derivatives of the terms in (6.50)
using equations of motion (6.35), we obtain the conservation laws for the energy
density E as

∂tE + ∂sJ = 0

for the energy flux J given by

J := ω · ∂�0

∂�
+ γ · ∂�0

∂�
+ Ṙ ∂�0

∂R′ + u2 ∂�0

∂u
− ξu∂�0

∂ξ
+ pγ · ∂Q

∂�
+
(
p

ρ
+ e

)

ξu.

(6.51)
Notice an interesting symmetry between time derivatives and spatial derivatives
in the expression for the energy flux J in (6.51). Taking only the jumps at the
discontinuous terms, and assuming the continuity of the tube, i.e., continuity of
γ , �, Q, as well as R and R′, we arrive at the following conservation laws for the
shock wave moving with velocity c [24]:

c[ρ] = [ρu] (6.52)

c [ρ] � · γ + c [ρu] |�|2 = [ρu] � · γ +
[

ρu2
]

|�|2 + [p] (6.53)

c

[

ρ

(

e + 1

2
|γ + �u|2

)]

=
[

1

2
ρu |γ + �u|2 + p

|�|2 � · (γ + �u)+ ρue
]

.

(6.54)

For comparison with the classical Rankine–Hugoniot condition we set the tube
to be circular, so R′ = 0 and Ṙ = 0, and static with a straight centerline, so
γ = 0, ω = 0, � = 0, � = E1, hence Q = A0. Then, the mass conservation
law (6.52) reduces to (6.46) and (6.53) reduces to (6.47), and (6.54) to (6.48). We
note that the extensions of the Rankine–Hugoniot conditions we have derived here
are valid for all configurations of the tube in our framework, and they account for
motion of the fluid, the motion of the tube in space and its deformations, and also the
expansion/contraction of its cross-section coming from the dynamics of the radius
R(t, s).

We also present numerical simulations of a traveling wave with a shock in the gas
propagating inside an elastic tube on Fig. 6.3, which is also the solution computed
in [24]. We are looking for a physical configuration coming from a shock tube
experiment, when the motion of the gas is driven by the initial jump in pressure
on one side of the tube, and consider the case when the motion has stabilized as a
traveling wave. Such a traveling wave solution will have all the variables depend on
the combination of s − ct , for some constant c depending on the parameters of the
problem. See the description presented in [24] for the exact values of parameters
of the tube and pressures used in simulations. We are looking for a solution R(x)
that is smooth for x > 0 and x < 0 and tends to steady states R = R± as
R → ±∞, which is a configuration expected for an experimental realization in
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Fig. 6.3 A shock
propagating along a tube.
Propagating shock is shown
in red, moving in the direction
of positive x with velocity c,
i.e. s = x − ct . The position
of the shock is chosen to be at
x = 0. The speed of the
shock is computed to be
c ∼ 447 m/s. The centerline
of the tube is shown with a
solid black line, and the
undisturbed position of the
cross-section of the tube are
shown by solid circles

a shock tube. The solution R(x) and R′(x) is expected to be continuous at the
shock, whereas the variable u(x), ρ(x), and S(x) have a jump at the shock satisfying
Rankine–Hugoniot conditions (6.52)–(6.54). For a chosen value of R = Rs at
the shock, such solution will only exist for a particular value of c, also yielding
the limiting value R = R− that is dependent on the choice of Rs . we present a
solution computed at c - 447 m/s, with the limiting pressure behind the shock wave
being p+ - 1.826 atm. The solution is presented in the dimensionless coordinates
(x, y, z)/R+.

6.4 Variational Discretization for Flexible Tubes Conveying
Fluids

6.4.1 Spatial Discretization

We first consider the spatial discretization of the variational approach outlined in
the previous section, keeping the time continuous. These results yield simplified,
but geometrically consistent, low-component models for further analytical and
numerical analysis of the system. This approach can be viewed as the development
of ideas put forward by Benjamin [6, 7] for the case of nonlinear dynamics in three
dimensions and with cross-sectional dependence.

Discrete Setting For simplicity, we consider a spatial discretization with equal
space steps, si+1 − si = �s. The linear and angular deformation gradients are
discretized by the elements

λi := �−1
i �i+1 ∈ SO(3) and κ i = �−1

i (r i+1 − r i ) ∈ R3, (6.55)
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which is a standard discretization on Lie groups, see [8, 46, 48], adapted here to
the spatial, rather than temporal, discretization, and for the special Euclidean group
SE(3). The discrete angular and linear velocities are given as before by

ωi := �−1
i �̇i ∈ so(3) and γi := �−1

i ṙ i ∈ R3. (6.56)

We also discretize the radius of the cross-section as Ri . This extends the method
of [23] to a cross-section with a variable radius having its own dynamics, rather than
being only a prescribed function of deformations.

As shown in [23], the main mathematical difficulty lies in the appropriate
discretization of the fluid velocity ui - u(t, si). It turns out that the key to the
solution lies in the discretization of the inverse of the Lagrangian mapping ϕ(t, s),
namely, the back-to-labels map ψ = ϕ−1 : [0, L] → R recalled in Sect. 6.3.1.
We discretize ψ(t, s) by its values at the points si by introducing the vector
ψ = (ψ1, ψ2, . . . , ψN), with ψi being functions of time t .

Consider a discretization of the spatial derivative ∂sψ(t, si) given by Diψ(t) :=
∑

k∈K akψi+k(t), whereK is a finite set of integers in a neighborhood ofm = 0 and
Di is the linear operator of differentiation acting on the vector ψ = (ψ1, . . . ψn).
In the more general case of unequal space steps, the discretization of the derivative
may depend explicitly on the index i and is described by the formula Diψ(t) :=
∑

k∈K Aikψi+k(t). We shall only consider, for simplicity, the case of uniform space
steps. In order to approximate the fluid velocity u(t, s) = (∂tϕ ◦ ϕ−1)(t, s), we
rewrite this relation in terms of the back-to-labels map ψ as

u(t, s) = (∂tϕ ◦ ψ)(t, s) = − ∂tψ(t, s)
∂sψ(t, s)

. (6.57)

This relation can be discretized as

ui = −ψ̇i/Diψ. (6.58)

Let us now show how to discretize the conservation law

ξ(t, s) = ξ0
(

ψ(t, s)
)

∂sψ(t, s) (compressible fluid),

Q(�,�, R) = Q0
(

ψ(t, s)
)

∂sψ(t, s) (incompressible fluid).
(6.59)

We shall focus on the incompressible fluid case, with the compressible fluid case
computed analogously by discretizing ξ(t, s). We assume that at rest, the cross-
section of the tube is constant and the tube is straight, which gives Q0 = const

in (6.59). This assumption is not essential for the derivation, but it does simplify
the final expressions, otherwise the resulting equations explicitly contain ψi . For a
constantQ0, the conservation law is discretized asQ0Diψ = Qi(λi, κ i , Ri) := Qi .
The appropriate discretization of the fluid conservation law, i.e. the last equation
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in (6.42), is found by differentiating this discrete conservation with respect to time
and using the definition of Eulerian velocity ui = −ψ̇i/Diψ , leading to

Q̇i +Di
(

uQ
) = 0 . (6.60)

Discrete Variational Principle The Lagrangian density is spatially discretized as

∫ si+1

si

L0
(

ω, γ ,�,�, u, R, Ṙ, R′, R′′)ds - �d
(

ωi , γ i , λi, κ i , ui, Ri, Ṙi ,DiR,D
2
i R

)

,

(6.61)
where on the right-hand side, we have used the notation DiR and D2

i R for the first
and second discrete derivatives of R. The expression (6.61) involves the value of R
at point si , and the discrete derivatives computed from the values R = (R1, . . . RN).

The discrete equations are obtained by a spatial discretization of the variational
principles developed in Sect. 6.3. In a similar way with the continuous case, we
have to start with the standard Hamilton principle with holonomic constraints in
the material (or Lagrangian) description, i.e., the discrete analogue of (6.40). This
principle is expressed in terms of the variables �i , �̇i , r i , ṙ i , ψi , ψ̇i , Ri , Ṙi , with
free variations δ�i , δr i , δψi , δRi , vanishing at t = 0, T .

From this, we deduce the variational principle in terms of the variables appearing
in (6.61) by computing the constrained variations δωi , δγ i , δλi , δκ i , δui induced by
the free variations δ�i , δr i , δψi . From the definitions (6.55), (6.56), and (6.58), we
compute

δωi = �̇i + ωi × �i , δγ i = η̇i + γ i × �i + ωi × ηi ,

∫

a

δλi = − iλi + λi i+1 , δκ i = −�i × κ i + λiηi+1 − ηi ,

δui = − δψ̇i

Diψ
+ ψ̇i

(Diψ)2

∑

k∈K
akδψi+k = − 1

Diψ

(

δψ̇i + uiDiδψ
)

,

(6.62)

where  i := �−1
i δ�i ∈ so(3) and ηi := �−1

i δr i ∈ R3. Therefore  i(t) ∈ so(3)
and ηi (t) ∈ R3 are arbitrary curves vanishing at t = 0, T . As before ωi = ω̂i
and  i = �̂i . From the definition of the variables λi and κ i we get the discrete
compatibility equations

λ̇i = −ωiλi + λiωi+1, κ̇ i = −ωi × κ i + λiγ i+1 − γ i . (6.63)

These are the discretization of the �- and �-equations in (6.42).
The next result is the discrete analogue of (6.41) and (6.42). For simplicity, we

do not consider the boundary effects and assume that all variations vanish at the
boundary. They can be included in a similar way with the continuous case.
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Theorem 6.2 The critical action principle for the spatially discretized flexible
collapsible tube conveying incompressible fluid reads

δ

∫ T

0

∑

i

[

�d
(

ωi , γ i , λi, κ i , ui, Ri, Ṙi ,DiR,D
2
i R

)− pextQi(λi, κ i , Ri)

+ μi
(

Qi(λi, κ i , Ri)−Q0Diψ
) ]

dt = 0 ,

(6.64)
with respect to the variations (6.62). It yields the equations of motion

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D

Dt

∂�d

∂ωi
+ γ i ×

∂�d

∂γ i
+ Zi + κ i ×

(
∂�d

∂κ i
+ (μi − pext)

∂Qi

∂κ i

)

= 0

D

Dt

∂�d

∂γ i
+ ∂�d

∂κ i
+ (μi − pext)

∂Qi

∂κ i
− λT

i−1

(
∂�d

∂κ i−1
+ (μi−1 − pext)

∂Qi

∂κ i−1

)

= 0

d

dt
mi +D+

i

(

um− μ) = 0 , mi := 1

Qi

∂�d

∂ui
d

dt

∂�d

∂Ṙi
−D2,+

i

∂�d

∂D2
i R

+D+
i

∂�d

∂DiR
− ∂�

∂Ri
− (μi − pext)

∂Qi

∂Ri
= 0 ,

(6.65)

together with conservation law (6.60).

In (6.65) we have defined for shortness the following quantities

Zi :=
[(
∂�d

∂λi
+ (μi − pext)

∂Q

∂λi

)

λT
i − λT

i−1

(
∂�d

∂λi−1
+ (μi−1 − pext)

∂Q

∂λi−1

)]∨

D+
i X := −

∑

k∈K
akXi−k ,

∑

i

(D2+
i X)Yi =

∑

i

XiD
2
i Y

(m∨)c := −1

2

∑

ab

εabcmab .

(6.66)
The term D+

i is the discrete analogue of the space derivative obtained using the
integration by parts; D2+

i is the discrete analogue of the second space derivative.
Equation (6.65) are the discrete equivalents of conservation laws for the angular,
linear, fluid and wall momenta in (6.42).

6.4.2 Variational Integrator in Space and Time

Let us now turn our attention to the derivation of a variational integrator for this
problem. The important novel step here is to provide a discretization of the fluid
part, as was done in [23]. The rest of the analysis can be obtained according
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to the methods of spacetime multisymplectic variational discretization [45]. In
particular, the recent work [14] derived a variational discretization based on the
multisymplectic nature of the exact geometric rods, which we shall use as the
foundation of our approach.

Discrete Setting Let us select a rectangular lattice of points in space and time
(si, tj ) and define the discretization of the back-to-labels map ψ(t, s) as ψ to have
discrete values ψi,j at the spacetime points (si, tj ). Assume that the spatial and time
derivatives are given by the discrete operators

Dsi,jψ :=
∑

k∈K
akψi+k,j , Dti,jψ :=

∑

m∈M
bmψi,j+m , (6.67)

where M and K are discrete finite sets of indices in a neighborhood of 0.
Using (6.57), we obtain the following relation between the velocity and back-to-
labels map

ui,j = −D
t
i,jψ

Dsi,jψ
. (6.68)

The discretization of the conservation law Q0∂sψ = Q, where we again assume
Q0 = const for simplicity, is then given as Q0D

s
i,jψ = Qi,j . Applying Dtij to

both sides of this conservation law, noticing that the operators Dtij and Dsij defined
by (6.67) commute on a rectangular lattice in (si, tj ), and using (6.68) to eliminate
Dti,jψ from the equations, we obtain the discrete conservation law

Dti,jQ+Dsi,j
(

uQ
) = 0 . (6.69)

We assume that the discretization of the spatial and temporal derivatives of R are
also given by (6.67).

Let us now define the spacetime discrete versions of the continuous deformations
(�,�) and velocities (ω, γ ). If (�i,j , r i,j ) ∈ SE(3) are the orientation and position
at (ti , sj ), we define

λi,j := �−1
i,j �i+1,j ∈ SO(3) κ i,j := �−1

i,j

(

r i+1,j − r i,j
) ∈ R3 ,

qi,j := �−1
i,j �i,j+1 ∈ SO(3) γ i,j := �−1

i,j

(

r i,j+1 − r i,j
) ∈ R3 .

(6.70)

Discrete Variational Principle We assume that the Lagrangian density is dis-
cretized in space and time as2

2Here, R denotes the matrix of space-time discretized variables Ri,j . Note that in the previous
section describing the spatial discretization and continuous time, R denoted a vector of functions
R1(t), . . . RN(t). We hope no confusion arises from this clash of notation.
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∫ tj+1

tj

∫ si+1

si

L0
(

ω, γ ,�,�, u, R, Ṙ, R′, R′′) ds dt

- Ld
(

λi,j , κ i,j , qi,j , γ i,j , ui,j , Rij ,D
t
ijR,D

s
ijR,D

s,2
ij R

)

.

The discrete equations are obtained by a spacetime discretization of the vari-
ational principles developed in Sect. 6.3. In a similar way with the continuous
case in Sect. 6.3.4 and the spatially discretized case in Sect. 6.4.1, we have to start
with the standard Hamilton principle with holonomic constraints in the material
(or Lagrangian) description, i.e., the spacetime discrete analogue of (6.40). This
principle is expressed in terms of the variables �i,j , r i,j , ψi,j , Ri,j , with free
variations δ�i,j , δr i,j , δψi,j , δRi,j , vanishing at temporal boundary.

From this, we deduce the variational principle in terms of the variables appearing
in (6.61) by computing the constrained variations δλi,j , δκ i,j , δqi,j , δγ i,j , δui,j
induced by the free variations δ�i,j , δr i,j , δψi,j . From the definitions (6.68)
and (6.70), we compute the variations δλi,j , δκ i,j , δγ i,j , δui,j similar to (6.62),
not shown here for brevity, to prove the following

Theorem 6.3 The critical action principle for the fully discretized flexible collapsi-
ble tube conveying incompressible fluid reads

δ

⎡

⎣
∑

i,j

Ld
(

λi,j , κ i,j , qi,j , γ i,j , ui,j , Rij ,D
t
i,jR,D

s
i,jR,D

s,2
i,j R

)

∑

i,j

−pextQi,j
(

λi,j , κ i,j , Rij
)+ μi,j

(

Qi,j
(

λi,j , κ i,j , Rij
)−Q0D

s
i,jψ

)

⎤

⎦ = 0,

(6.71)
with respect to the reduced variations. It yields the discrete equations of motion

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi,j + Zi,j + γ i,j × ∂Ld
∂γ i,j

+ κ i,j ×
(
∂Ld
∂κ i,j

+ (μi,j − pext)
∂Qi,j

∂κ i,j

)

=0

∂Ld
∂γ i,j

− qT
i,j−1

∂Ld
∂γ i,j−1

+
(
∂Ld
∂κ i,j

+ (μi,j − pext)
∂Qi,j

∂κ i,j

)

−λT
i−1,j

(
∂Ld
∂κ i−1,j

+ (μi−1,j − pext)
∂Qi−1,j

∂κ i−1,j

)

= 0

D
t,+
i,j m+Ds,+i,j (um+ μ) = 0 , m := 1

Qij

∂Ld
∂uij

Dti,j
∂Ld
∂Dti,jR

−Ds,2+i,j

∂Ld
∂D

2,s
i,j R

+Ds,+i,j
∂Ld
∂Dsi,jR

− ∂Ld
∂Rij

−(

μij − pext
) ∂Qi,j

∂Rij
= 0 .

(6.72)

In (6.72), we have defined the following quantities
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Yi,j =
[
∂Ld
∂qi,j

qT
i,j − qT

i,j−1
∂Ld
∂qi,j−1

]∨
,

Zi,j =
[(
∂Ld
∂λi,j

+ (μi,j − pext)
∂Q

∂λi,j

)

λT
i,j − λT

i−1,j

×
(
∂Ld
∂λi−1,j

+ (μi−1,j − pext)
∂Q

∂λi−1,j

)]∨

D
s,+
i,j X := −

∑

k∈K
akXi−k,j , D

t,+
i,j X := −

∑

m∈M
bmXi,j−m ,

∑

j

(

D
2,s+
i,j X

)

Yij =
∑

i

Xij

(

D
2,s
i,j Y

)

.

(6.73)

The terms Ds,+i,j and Dt,+i,j are the discrete analogues of the derivatives obtained

by integration by parts in the s- and t- directions, respectively; D2,s+
i,j is the discrete

analogue of the dual to second derivative obtained by two integration by parts.
The system (6.72) is solved by taking into account the relations (6.70) which

play the role of the compatibility conditions (6.63) in the spacetime discretized
case. Note that the third equation in (6.72) is the discrete version of the balance
of fluid momentum as expressed in (6.44). For simplicity of the exposition, we have
assumed that all the boundary terms arising from discrete integration by parts vanish
at the spatial extremities in the variational principles.

6.5 Further Developments

In this chapter, we presented a variational approach for a particular example of
fluid-structure interaction, namely, the elastic tube conveying fluid. By discretizing
this variational approach, we derived a structure preserving numerical scheme.
Other applications of the variational methods are possible, such as the linear
stability analysis of initially curved pipes which can be treated very efficiently
in this framework [26], whereas it is very difficult via the traditional approach.
Thus, variational methods are useful for both the analytical understanding of
the mechanics of complex problems, and the systematic derivation of structure
preserving numerical methods for these cases. Further interesting directions of
studies in the field are, to name a few examples, the variational methods and the
corresponding variational integrators for moving porous media (poromechanics)
[12] and waves and instabilities of fluid under elastic sheet (hydroelastic waves)
[57].
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Abstract Human visual perception is able to complete contours of objects even
if they are disrupted or occluded in images. A possible mathematical imitation
of this property is to represent object contours in the higher-dimensional space
of positions and directions, the so-called roto-translation space, and to use this
representation to promote contours with small curvature and separate overlapping
objects. Interpreting image level lines as contours then leads to curvature-penalizing
regularization functionals for image processing, which become convex through the
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additional dimension. We present the basic concept, some of its properties, as well
as numerical discretization approaches for those functionals.

7.1 Introduction

In the early twentieth century, psychologists such as Wertheimer, Köhler, and Koffka
investigated human perception experimentally and theoretically, which resulted
in the psychological branch of Gestalt theory. It describes how humans connect
different visual stimuli to a meaningful picture, typically via a number of basic,
experimentally found rules (e.g., the collection in [45]). A particular instance,
the “law of continuity”, states that humans tend to connect image elements that
are arranged along straight or slightly bent lines, which allows them to complete
partially occluded contours (cf. Fig. 7.1). In the 1950s, Hubel and Wiesel identified
a first physiological counterpart of these purely empirical rules [26], which won
them a Nobel Prize in 1981. They showed that certain neurons in cats are active
whenever the cats see lines of a certain orientation. Thus, orientation information is
explicitly represented in the visual cortex. This information could be aggregated to
curvature and ultimately be used for a promotion of straight lines or contours with
little curvature. Correspondingly, curvature regularization has been of interest to
mathematical image processing. Note that here we primarily speak about extrinsic
curvature.

7.1.1 Curvature-Dependent Functionals and Regularization

Promoting lines or contours of low curvature can be interpreted as an energy min-
imization principle: Human perception preferentially reconstructs those (smooth)
lines γ ⊂ R2 in an image that have small energy

R(γ ) =
∫

γ

α + βg(κγ ) dH1 , (7.1)

where κγ is the curvature of γ , α ≥ 0 and β ≥ 0 are weights given to the
curve length and to the curvature term, g : R → [0,∞), and Hm denotes the

Fig. 7.1 By the “law of continuity” of Gestalt theory, partially occluded contours can be
completed by human vision if they do not bend too strongly, as is illustrated by Kanizsa type
illusions [28]
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m-dimensional Hausdorff measure. The choice g(κ) = κ2 yields Euler’s elastica
functional which describes the bending energy of an elastically deformed rod [25].
Nitzberg et al. proposed its use in image processing for the completion of missing
lines in 1993 [34]. Until then first-order derivative-based regularization methods
prevailed, e.g., total variation [37]. In three-dimensional images, where an object
contour γ would be a surface and κγ its mean curvature (or more generally the
principal curvatures), this energy (with α = 0) is known as the Willmore energy
[46] and has been used for geometry processing [8, 15, 23, 40].

For binary images, i.e., characteristic functions of sets E ⊂ � for some domain
� ⊂ R2, a curvature regularization functional can simply be defined as R(∂E) if
∂E is sufficiently smooth. The relaxation (i.e., the lower semi-continuous envelope)
of this energy with respect to L1-convergence of the characteristic functions was
characterized in [3, 9, 10]. Such a functional can be extended to nonbinary images
by considering its convex relaxation (the convex lower semi-continuous envelope
or at least approximations thereof, which will be the approach considered here) or
by applying the curvature regularization to all individual level lines of the image
u : �→ R [30], in which case the regularization functional becomes

R(u) =
∫

�

|∇u|
(

α + βg
(

∇ · ∇u
|∇u|

))

dx (7.2)

for u ∈ C2(�). Its L1-relaxation, Euler–Lagrange equation, and application to
image inpainting in the setting of functions of bounded variation is considered
in [3, 42], a variant giving a more even emphasis to all level lines is proposed
and analyzed in [6, 7]. The strong nonlinearity and nonconvexity require efficient
optimization algorithms for which various augmented Lagrangian type methods
have been proposed [5, 43, 47, 48, 50]. In the next section we will discuss techniques
that embed functionals (7.1) or (7.2) into a higher-dimensional space to study
their variational properties (such as lower semi-continuity, coercivity, existence of
minimizers or convex relaxations) and to perform numerics. Those form the focus
of this article.

7.1.2 Convex Relaxation of Curvature Regularization
Functionals

Energies like (7.2) which penalize the curvature of image level lines are highly
nonconvex so that their use as a regularizer in image processing leads to many
local minima (for instance, a partially occluded object could either be reconstructed
as one piece or as two separate pieces, Fig. 7.1 right). As a remedy, one can
replace any energy with its convex relaxation, the largest convex lower semi-
continuous functional below the original energy, thereby removing local minima
without changing the global minimizers. The lifting approaches presented in this
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article all yield approximations to the convex relaxation of (7.2). In this respect it is
interesting to note that any functional penalizing solely curvature has trivial convex
relaxation.

Theorem 7.1 (Convex Hull of Images with Flat Level Sets, [14, Thm. 2.4]) Let
� ⊂ Rd be open. Any u ∈ C∞

0 (�) can be approximated in Ck(�) for any k ≥ 0 by
finite convex combinations of smooth images with flat level sets.

Proof Let Sd−1 be the unit sphere in Rd and S(Rd) and S(Sd−1×R) be the space of
Schwartz functions on the respective domains. The Radon transform R : S(Rd) →
S(Sd−1 ×R) and its dual R∗ : S(Sd−1 ×R)→ S(Rd) are defined by [33, Sec. II.1]

Rw(θ, r) =
∫

θ⊥
w(rθ + y) dy , R∗g(x) =

∫

Sd−1
g(θ, θ · x) dθ .

Obviously, g = Ru ∈ C∞
0 (S

d−1 × R), and by a classical inversion formula for
the Radon transform [33, Thm. 2.1], u = R∗(J n−1g), in which the operator J k

is defined via (J kg)ˆ(θ, ξ) = 1
2 | ξ2π |kĝ(θ, ξ) with ˆ denoting the Fourier transform

in the second argument. Since ĝ is a Schwartz function and thus (J n−1g)ˆ decays
rapidly, Jn−1g ∈ C∞(Sd−1 × R). Now for θ ∈ Sd−1 define uθ ∈ C∞(�)
by uθ (x) = Jn−1g(θ, θ · x), then uθ has flat level sets with normal θ , and
u = R∗Jn−1g = ∫

Sd−1 uθ dθ . Approximating the latter integral by a Riemann sum,
which can be shown to converge in Ck(�), yields an approximation of u by finite
convex combinations of uθ , θ ∈ Sd−1. ��

Consequently, for any energy which is zero for smooth images with flat level sets
(lines in 2D and surfaces in 3D), its convex relaxation is zero in any topology in
which C∞

0 (�) or C∞
0 (�̃) with� ⊂⊂ �̃ is dense, in particular in all Sobolev spaces

Wn,p(�) or Hölder spaces Cn,α(�) with n ≥ 0, p ∈ [1,∞), and α ∈ [0, 1).
In Sect. 7.2 we will present the mathematical concepts of lifting based curvature

regularization for 2D images, followed by corresponding discretization methods in
Sect. 7.3 and a lifting variant for 3D images in Sect. 7.4. Throughout, � ⊂ Rd is
an open Lipschitz domain (on which the images are defined), Sd−1 ⊂ Rd is the
(d − 1)-dimensional sphere, and Gr(m,Rd) is the Grassmannian, the space of m-
dimensional subspaces of Rd (G̃r(m,Rd) is used for oriented subspaces). The sets of
signed and unsigned Radon measures on some Borel space A are denoted by rca(A)
and rca+(A), respectively, and the pushforward of a measure μ ∈ rca(A×B) under
the projection of A×B onto A is written as μ(·, B). The m-dimensional Hausdorff
measure is Hm, and the restriction of a measure μ to a set S is denoted μ�S. The
set of functions of bounded variation on � is written as BV(�) with total variation
seminorm | · |TV. Finally, we assume α > 0, β ≥ 0, and the function g in (7.1) to be
nonnegative.
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7.2 Lifting-Type Methods for Curvature Regularization

We first set the discussed methods (which we will term the approaches of hyper-
varifolds, of curvature varifolds, of Gauss graph currents, and of jump set calibra-
tions) into context by providing a historical overview over lifting methods, after
which we present the methods’ details and their relations.

7.2.1 Concepts for Curve- (and Surface-) Lifting

The idea of lifting embedded curves and surfaces into a higher-dimensional space
containing also directional information is at least as old as L. C. Young’s work on
generalized curves and surfaces [49], which in modern mathematics correspond to
varifolds as introduced by Almgren [1, 2]. An m-dimensional varifold in Rd is a
Radon measure on Rd × Gr(m,Rd). A classical curve or surface γ (i.e., m = 1 or
m = 2, respectively) is represented by the varifold μγ with

μγ (ϕ) =
∫

γ

ϕ(x, τγ (x)) dHm(x) for all ϕ ∈ C∞
0 (R

d × Gr(m,Rd)) ,

where τγ (x) is the tangent space to γ in x. Replacing Gr(m,Rd) by G̃r(m,Rd)
yields oriented varifolds that can describe directed curves and oriented surfaces.

Curvature Varifolds Varifolds were used to study compactness and lower semi-
continuity of the (surface) area functional. Only much later their weak second
fundamental form was defined based on the (weak) first derivative of their tangent
or Grassmannian component [27]. Curvature varifolds (those for which this weak
second fundamental form exists) enjoy nice compactness properties and were
used to study lower semi-continuity and existence of minimizers for integral
functionals (7.1) whose integrand is convex in the curvature [27, 29]. We come back
to this approach in Sect. 7.2.2.

Hyper-Varifolds In a lower semi-continuous integral functional, the integrand
needs to be (poly-)convex in the weak derivatives of the argument (such as the weak
second fundamental form of the curvature varifolds). Thus, to study the relaxation
of functionals (7.1) with nonconvex g, one needs to add yet more dimensions in
which the curvature is encoded explicitly (rather than as a derivative). Just like
the Grassmannian dimensions of a varifold explicitly encode the tangent space of
the underlying manifold, one can enlarge Rd × G̃r(m,Rd) by the tangent space of
the Grassmannian, in which then the curvature will be encoded (one could speak
of a hyper-varifold). This is the approach taken in [14] (discussed in Sect. 7.2.3)
for curves: An oriented curve γ ⊂ R2 is represented by a Radon measure μγ on
R2 × G̃r(1,R2) × R (where factor R is viewed as the tangent space to G̃r(1,R2))
with
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μγ (ϕ) =
∫

γ

ϕ(x, τγ (x), κγ (x)) dH1(x) for all ϕ ∈ C∞
0 (R

2 × G̃r(1,R2)× R) .

A discrete version of this approach is obtained if R2 is replaced by a discrete planar
graph in R2 and only curves γ on the graph are considered. Each pair of adjacent
edges can then be interpreted as a (discrete version of) a point in R2 × G̃r(1,R2)×
R, leading to essentially the same curvature regularization functionals [24, 39]. A
discrete version for surfaces γ in R3 is described in [40].

Gauss Graph Currents So-called currents (or flat chains) can be viewed as a
slightly dimension-reduced version of oriented varifolds. Formally, the current μ̄
associated with a varifold μ is obtained as

μ̄(ϕ) =
∫

Rd×G̃r(m,Rd )
〈ϕ(x), τ 〉 dμ(x, τ) for all ϕ ∈ C∞

0 (R
d;
∧m

Rd) ,

where C∞
0 (R

d ;∧m Rd) are smoothm-forms,
∧m Rd are the real-valued alternating

m-linear functionals on (Rd)m, and 〈·, ·〉 is the bilinear pairing between
∧m Rd

and the exterior products
∧

m Rd . Roughly speaking, we reduce a measure on
Rd × G̃r(m,Rd) to a G̃r(m,Rd)-valued measure on Rd . To provide an example,
for curves in R2 we have μ̄γ = τγH1�γ , where τγ ∈ S1 is the tangent vector to
γ . The same dimension-reduction trick can be applied to the hyper-varifolds from
above: Instead of the Radon measure on Rd × G̃r(m,Rd)×R(d−m)×m one considers
a current on Rd × G̃r(m,Rd). Identifying G̃r(d − 1,Rd) with Sd−1, a (d − 1)-
dimensional surface γ in Rd is thus represented by the current associated to the
graph {(x, νγ (x)) | x ∈ γ } of its Gauss map x �→ νγ (x) ∈ Sd−1 (where νγ is the
normal to γ in x). Expressing curvature dependent functionals (7.1) as functionals
of these currents, Anzelotti et al. and Delladio et al. examined their relaxation and
coercivity properties as well as regularity properties of the minimizers [4, 21, 22].
The exact same representation is used in [18] for curves in R2 (discussed in
Sect. 7.2.4).

Sub-Riemannian Interpretation In mathematical image processing, the same lifting
of curves and image level lines into R2 × G̃r(1,R2) has been inspired by the
structure of the visual cortex, where to each point in the retina there belong neurons
for different orientations [19]. In this context, R2 × G̃r(1,R2) ≡ R2 × S1 is
often identified with the roto-translation space SE(2), the special Euclidean group,
since (7.1) is naturally invariant under the action of SE(2). SE(2) ≡ R2 × S1 is
endowed with a sub-Riemannian structure whose horizontal curves t �→ (x(t), τ (t))

satisfy ẋ(t) ∈ span(τ (t)). Thus, the position (x, τ ) of a horizontal curve explicitly
encodes the tangent direction just like varifolds do. An image u : R2 → R is then
represented by the measure μ on R2 × S1 with

μ(ϕ) =
∫

R2
ϕ
(

x,
∇u(x)
|∇u(x)|

)

|∇u(x)| dx for all ϕ ∈ C∞
0 (R

d × S1) ,



7 Convex Lifting-Type Methods for Curvature Regularization 213

and inpainting or denoising is performed by alternating between a step of sub-
Riemannian diffusion on μ and a projection of the smoothed measure μ̂ onto
a two-dimensional image by choosing the level line in each point x parallel to
argmaxμ̂(x, ·) [20]. Modified versions only use few discrete orientations [12, 35]
or an additional scale dimension [38, 41] and diffusion in the wavelet rather than
real domain.

Calibration for Mumford–Shah Type Functionals In (7.1) we think of a convex
regularization g of curvature along smooth curves γ . To allow piecewise smooth
curves one could add a concave term of the curvature singularities, just like the
well-known Mumford–Shah functional has both a convex term in the Lebesgue-
continuous part of the image gradient and a concave term in the singular part.
A common technique to convexify the Mumford–Shah problem is to represent
the sought image as a measure on its graph (typically as the gradient of the
characteristic function of its subgraph) [16]. The reformulation in this new variable
is a convex, generalized mass minimization problem whose dual solutions are
known as calibrations. Applying the same technique to curvature singularities, one
has to lift a curve γ to a measure on the graph of its tangent map x �→ τγ (x), thus
to an oriented varifold. This approach is detailed in Sect. 7.2.5.

7.2.2 The Curvature Varifold Approach

Even though convex curvature regularization functionals for image processing have
nowhere been formulated with curvature varifolds, this approach still deserves being
presented as it forms the first level of the lifting hierarchy from the previous section.
As explained before, (sufficiently) smooth oriented curves γ ⊂ � ⊂ R2 are
here represented as nonnegative Radon measures μγ ∈ rca+(� × G̃r(1,R2)) ≡
rca+(� × S1) with

∫

�×S1 ϕ(x, τ ) dμγ (x, τ ) = ∫

γ
ϕ(x, τγ (x)) dH1(x) for all

smooth test functions ϕ, where τγ is the unit tangent vector to γ . A curvature
dependent functional (7.1) can then be expressed as

R(γ ) =
∫

�×S1
α + βg

(
κ(μγ )
μγ

)

dμγ ,

where
κ(μγ )
μγ

is the Radon–Nikodym derivative of the measure κ(μγ ) with respect
to μγ , and κ(μγ ) represents the weak curvature of the varifold μγ as defined below.

Definition 7.2 (Generalized Curvature, [27, Def. 5.2.1], [14, Def. 2.1]) Given an
oriented varifold μγ ∈ rca+(� × S1), its generalized curvature, if it exists, is the
measure κ = κ(μγ ) ∈ rca(�× S1) defined via

∫

�×S1

∂ψ(x,τ )
∂τ

dκ(x, τ )=−
∫

�×S1
∇xψ(x, τ )·τ dμγ (x, τ ) for all ψ ∈C∞

0 (�×S1).
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This definition just generalizes the fact that along a closed curve γ and
for a smooth test function ψ we have 0 = ∫

γ
d

dγ ψ(x, τγ (x)) dH1(x) =
∫

γ
∇xψ(x, τγ (x)) · τγ (x) + ∂ψ(x,τγ (x))

∂τ
κγ (x) dH1(x). One can show that the

generalized curvature is unique, if it exists.
Next, we extend the approach to image level lines. If γ is the boundary ∂E of

some open set E ⊂ �, then this representation can be interpreted as a lifting of
the gradient DχE = τ⊥

γ H1�∂E of the corresponding characteristic function χE ,

where (·)⊥ denotes counterclockwise rotation by π
2 . Indeed, DχE is obtained from

μγ by a projection,

DχE = [τ⊥μγ ](·, S1) ,

where τ⊥μγ is the measure μγ multiplied with the continuous function (x, τ ) �→
τ⊥. A general image u : � → [0, 1] can now be represented as a convex
combination

∫ 1
0 χE(s) ds of such characteristic functions, and the corresponding

lifting of the image gradient Du is

μ = ∫ 1
0 μ∂E(s) ds .

A corresponding cost could thus be defined as
∫ 1

0 R(∂E(s)) ds. Representing
an image via different convex combinations of characteristic functions leads to
different lifted representations of its gradient, and picking the one with lowest cost
will produce the convex relaxation of (7.2). In fact, since convex combinations of
characteristic functions of smooth sets are difficult to characterize, we admit even
more liftings of the image gradient Du, which will be the reason for our functional
being actually smaller than the convex relaxation.

Definition 7.3 (Image Gradient Lifting) Given an image u ∈ BV(�), a measure
μ1 ∈ rca+(�× S1) is called a lifting of Du if

Du = [τ⊥μ1](·, S1) .

In summary, this leads to the following regularization functional.

Definition 7.4 (Curvature Varifold Regularization Functional) The curvature
varifold regularization functional for an image u ∈ BV(�) is given by

R1(u) = inf
{∫

�×S1 α + βg
(
κ(μ1)
μ1

)

dμ
∣
∣
∣μ1 is a lifting of Du, κ(μ1) exists

}

.

Above, if κ(μ1)(x)
μ1(x)

= ∞, then we shall tacitly interpret g(κ(μ1)(x)/μ1(x))

dμ1(x) = g∞(κ(μ1)(x)/|κ(μ1)(x)|)dκ(μ1)(x) with g∞(t) = lims→∞ g(st)/s the
recession function. The following properties, important to apply the direct method
in the calculus of variations, are straightforward to check and show that R1 is as nice
a curvature regularizing functional as one can think of.
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Theorem 7.5 (Coercivity and Lower Semi-continuity) We have R1(u) ≥
α|u|TV. If g is convex and lower semi-continuous, then

∫

�×S1 α + βg
(
κ(μ1)
μ1

)

dμ1
is jointly convex in κ(μ1) and μ1, and R1 is convex and lower semi-continuous on
L1(�).

7.2.3 The Hyper-Varifold Approach

Here we detail the approach of [14]. As already mentioned, (sufficiently) smooth
curves γ ⊂ R2 are here represented by nonnegative measures μγ ∈ rca+(� ×
S1 × R) with μγ (ϕ) = ∫

γ
ϕ(x, τγ (x), κγ (x)) dH1(x) for all smooth test functions

ϕ, where from any such hyper-varifold μγ one can retrieve the classical oriented
varifold of γ from the previous section as

redμγ = μγ (·, ·,R) .

Consequently, liftings of image gradients now have one more space dimension.

Definition 7.6 (Image Gradient Lifting, [14, (3.11)–(3.12)]) Given an image u ∈
BV(�), a measure μ2 ∈ rca+(�× S1 × R) is called a lifting of Du if

Du = [τ⊥redμ2](·, S1) and κ(redμ2) = [κμ2](·, ·,R)

or equivalently

∫

�×S1×R
φ(x) · τ⊥ dμ2(x, τ, κ) = −

∫

�

u(x)divφ(x) dx ∀φ ∈ C∞
0 (�;R2) ,

0 =
∫

�×S1×R
∇xψ(x, τ ) · τ + ∂ψ(x, τ )

∂τ
κ dμ2(x, τ, κ) ∀ψ ∈ C∞

0 (�× S1) .

Again, the first condition just ensures that μ2 fits to the given image u, and
the second condition ensures that the support of μ2 in the curvature dimension is
consistent with the orientation encoded in the Grassmannian dimension. Essentially,
the second condition means that the hyper-varifold μ2 represents the varifold redμ2,
while the first condition means that the varifold redμ2 representsDu. The curvature
regularizing functional then turns into the following.

Definition 7.7 (Hyper-Varifold Regularization Functional) The hyper-varifold
regularization functional for an image u ∈ BV(�) is given by

R2(u) = inf
{∫

�×S1×R α + βg(κ) dμ2(x, τ, κ)
∣
∣μ2 is a lifting of Du

}

.

Again, this regularization enjoys nice properties.
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Fig. 7.2 The hyper-varifold belonging to the 8-shaped discontinuity curve γ is a lifting of the
image gradientDu, even though it does not correspond to a convex combination of hyper-varifolds
μ∂E . Consequently, R2 is strictly smaller than the convex relaxation of (7.2) (which is finite
nevertheless, since u admits the shown decomposition into images with smooth level lines)

Theorem 7.8 (Coercivity and Lower Semi-continuity, [14, Thm. 3.3–3.6]) R2 is
convex with R2(u) ≥ α|u|TV. If g is lower semi-continuous, then R2 is so on L1(�).
If additionally g grows superlinearly, the minimum in the definition ofR2 is attained.

As in the previous section, we admit more hyper-varifolds as liftings of an image
gradient Du than just those that are convex combinations of hyper-varifolds μ∂E
corresponding to boundaries of (sufficiently) smooth open setsE ⊂ �. In particular,
the hyper-varifolds corresponding to self-intersecting curves γ are admissible
liftings that cannot be represented this way, see Fig. 7.2. As a consequence, R2 lies
below the convex relaxation of (7.2).

Theorem 7.9 (Convex Relaxation Gap, [14, Sec. 3.4]) R2 lies below the convex
relaxation of (7.2) in L1(�), and strictly so for some images u ∈ BV(�).

7.2.4 The Gauss Graph Current Approach

We now detail the ansatz in [18]. A closed curve γ ⊂ R2 is here represented
by the corresponding 1-current μγ on the graph of its Gauss map x �→ νγ (x)

or equivalently on the graph of its tangent space map x �→ τγ (which we shall
consider for consistency with the other models). This 1-current is nothing else than
a divergence-free vector-valued measure in R2 × S1 (more general 1-currents can
be more complicated), given by μγ (ϕ) = ∫

γ
ϕ(x, τγ (x)) · (τγ (x), κγ (x)) dH1(x)

for all R3-valued smooth test functions ϕ. Replacing ϕ with the gradient ∇(x,τ )ψ
of a smooth function ψ , the integrand becomes the directional derivative of ψ
along the curve (γ, τγ ), which integrates to zero since the curve is closed. Thus,
μγ = (μxγ , μ

τ
γ ) is divergence-free in the distributional sense. Furthermore,μxγ /|μxγ |

describes the tangent vector to γ and μτγ /|μxγ | its curvature. The transfer to lifted
image gradients and the corresponding curvature regularization functional are as
follows.

Definition 7.10 (Image Gradient Lifting) Given an image u ∈ BV(�), a measure
μ3 = (μx3, μ

τ
3) ∈ rca(�× S1;R3) is called a lifting of Du if

Du = [μx3]⊥(·, S1) and
μx3
|μx3 | (x, τ )=τ for |μx3 |-almost all (x, τ ) and divμ3=0.
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Definition 7.11 (Gauss Graph Current Regularization Functional) The Gauss
graph current regularization functional for an image u ∈ BV(�) is given by

R3(u) = inf
{∫

�×S1 α + βg
(
μτ3
|μx3 |

)

d|μx3 |
∣
∣
∣μ3 is a lifting of Du

}

.

It turns out that for each u ∈ BV(�) there exists a smooth recovery sequence
un → u in L1(�) along which the functional converges. Also, just like the previous
models, this one lies below the convex relaxation of (7.2), however, in [18] it is
shown that the convexification is tight for images u that are characteristic functions
of a set E ⊂ � with C2-boundary.

Theorem 7.12 (Approximation and Tightness, [18, Prop. 3.1, Thm. 1]) For any
u ∈ BV(�) there is a sequence un ∈ C∞(�) with un → u in L1(�) so that
R3(un)→ R3(u). Furthermore, R3(χE) = ∫

∂E
α + βg(κ∂E) dH1 for all E ⊂ �

with C2-boundary.

The latter result depends on the Smirnov-decomposition of divergence-free
vector-valued measures (or 1-currents of finite mass without boundary) into 1-
currents belonging to curves. Thus it implicitly makes use of the assumption
α > 0 (since otherwise the mass might be unbounded), as is necessary by
Theorem 7.1. The following relation between the different image gradient liftings is
straightforward to check.

Theorem 7.13 (Image Gradient Liftings) Let u ∈ BV(�). From an image
gradient lifting μi in one model one can construct an image gradient lifting μj
in any other model:

If κ(μ1)
μ1

exists, set μ2(ϕ)=
∫

R2×S1 ϕ
(

x,τ,
κ(μ1)(x,τ )
μ1(x,τ )

)

dμ1(x, τ ) ∀ϕ∈C∞
0 (R

2×S1×R).

Given μ2, set μ3(ϕ)=
∫

R2×S1×R ϕ(x,τ ) ·
(τ
κ

)

dμ2(x, τ, κ) ∀ϕ∈C∞
0 (R

2×S1;R3).

Given μ3, set μ1(ϕ)=
∫

R2×S1 ϕ(x, τ )τ · dμx3(x, τ ) ∀ϕ ∈ C∞
0 (R

2× S1),

and κ(μ1) = μτ3 .

A direct corollary is the equivalence of all three models presented so far. Note
that for nonconvex g, R2 still makes sense and is the same as if g is replaced by its
convex relaxation.

Corollary 7.14 (Model Equivalence, [18, Cor. 3.4]) If g is convex, R1 = R2 =
R3.

Proof Let u ∈ BV and μ1, μ2, μ3 denote liftings of Du according to the three
models.

R2(u) ≤ R1(u) Given μ1 with κ(μ1) 0 μ1, construct μ2 as in Theo-
rem 7.13. Then by construction

∫

�×S1×R α + βg(κ) dμ2(x, τ, κ) = ∫

�×S1 α +
βg

(
κ(μ1)
μ1

)

dμ1. If not κ(μ1) 0 μ1 (e.g., if g only has linear growth so that points

with infinite curvature are allowed), one needs to argue via duality as done in [18,
Cor. 3.4].
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Fig. 7.3 Image gradient lifting for the characteristic function of a disk with radius 1. Left: Scalar
lifting μ1 from Sects. 7.2.2 and 7.2.5 (the black line shows the support). The same graph illustrates
μ2 from Sect. 7.2.3 by depicting its κ = 1 slice (all other slices are empty). Right: Vector-valued
lifting μ3 from Sect. 7.2.4 (the arrows indicate the direction of the vector-valued measure)

R3(u) ≤ R2(u) Given μ2, by [14, Thm.3.11] we may assume the existence of
a function κ̄(x, τ ) such that μ2 has support on {(x, τ, κ̄(x, τ )) | (x, τ ) ∈ � ×
S1}. Construct μ3 as in Theorem 7.13, then (|μx3 |, μτ3) = (μ2, κ̄μ2)(·, ·,R)
so that μτ3/|μx3 | = κ̂ and thus

∫

�×S1 α + βg(μτ3/|μx3 |) d|μx3 | = ∫

�×S1 α +
βg(κ̂) dμ2(·, ·,R) = ∫

�×S1×R α + βg(κ) dμ2(x, τ, κ).

R1(u) ≤ R3(u) Given μ3, construct μ1 as in Theorem 7.13, then using μ1 =
τ · μx3 = |μx3 | and κ(μ1) = μτ3 one has

∫

�×S1 α + βg
(
κ(μ1)
μ1

)

dμ1 = ∫

�×S1 α +
βg

(
μτ3
|μx3 |

)

d|μx3 |. ��

Thus, all model properties previously cited actually hold for all three models. A
disadvantage of the hyper-varifold model is that it requires an additional dimension
and that an optimal lifting μ2 may not exist if g does not grow superlinearly. On
the other hand, it can deal with nonconvex g (though then R2 will be the same as
if g were replaced by its convex relaxation). The different liftings are illustrated in
Fig. 7.3.

7.2.5 The Jump Set Calibration Approach

This section presents the method from [13], where the same lifting μ1 of curves
and image gradients is used as in Sect. 7.2.2. In Sect. 7.2.2 the regularizer R1 was a
convex penalization of the μ1-continuous part of the generalized curvature κ(μ1).
Here instead we aim for a regularization of the μ1-singular part, which corresponds
to discontinuities in the tangent vector of curves or level lines. A corresponding
Mumford–Shah type regularization functional reads
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R(γ ) =
∫

γ

α + βg(κγ ) dH1 +
∫

{discontinuity points of τγ }
ρ(τ−

γ , τ
+
γ ) dH0 ,

where κγ is the H1-continuous part of the curvature, τ±
γ represents the tangent on

either side of a kink, and ρ : S1 × S1 → [0,∞) is lower semi-continuous and
satisfies the triangle inequality (both the classical requirements for well-posedness
of Mumford–Shah type energies). As explained in Sect. 7.2.1, the natural lifting in
which this problem becomes convex is the one of oriented varifolds as in Sect. 7.2.2.
Since the previous sections have already dealt with the nonsingular part, below we
simply assume g(0) = 0 and g ≡ ∞ otherwise (the more general case can be
obtained by combining the models from the previous sections and this section).

To derive the form of the lifted regularization functional, consider a closed
polygonal curve γ ⊂ � which is smooth except for a finite number of kinks � ⊂ γ .
Testing its lifting μ1 with τ · ∇xψ(x, τ ) for ψ ∈ C∞

0 (�× S1) yields

∫

�×S1
τ · ∇xψ(x, τ ) dμ1(x, τ ) =

∑

x∈�
ψ(x, τ−

γ (x))− ψ(x, τ+
γ (x)) .

Taking the supremum over all ψ with ψ(x, τ1) − ψ(x, τ2) ≤ ρ(τ1, τ2) for all
x, τ1, τ2 yields the desired R(γ ) = ∫

�
ρ(τ−

γ (x), τ
+
γ (x)) dH0.

Definition 7.15 (Jump Set Calibration Regularization Functional) The jump set
calibration regularization functional for an image u ∈ BV(�) is given by

Rρ(u) = inf

{∫

�×S1
α dμ1 + Tρ(μ1)

∣
∣
∣
∣
μ1 is a lifting of Du

}

with

Tρ(μ1) = sup

{∫

�×S1
τ · ∇xψ(x, τ ) dμ1(x, τ )

∣
∣
∣
∣
ψ ∈ Mρ

}

andMρ=
{

ψ ∈ C∞
0 (�×S1)

∣
∣ψ(x, τ1)−ψ(x, τ2)≤ρ(τ1, τ2)∀x∈�, τ1, τ2∈S1

}

.

Theorem 7.16 (Regularization Properties, [13, Prop. 4.4]) Rρ is convex, posi-
tively one-homogeneous, and lower semi-continuous on L1(�). Further, Rρ(u) ≥
α|u|TV.

Above, ψ plays the role of a calibration. Taking ρ as the discrete metric ρ0 (as
in the original Mumford–Shah functional) or the geodesic metric ρ1 on S1 yields
two interesting, extremal cases, the former measuring the number of kinks (only
allowing straight line segments) and the latter the total absolute curvature.

Theorem 7.17 (Singular Curvature Penalization, [13, Prop. 3.16]) Let γ ⊂ �

be a piecewise C2 curve and μ1 the corresponding oriented varifold. Then

Tρ0(μ1) = H0(�) if κγ = 0 and Tρ0(μ1) = ∞ else,
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Tρ1(μ1) =
∫

γ

|κγ | dH1 +
∑

x∈�
|θ(x)| ,

where � ⊂ γ is the set of kinks and θ(x) the exterior angle of γ at x ∈ �.

For numerical purposes note that the correspondingMρ can be reduced to

Mρ0 =
{

ψ ∈ C∞
0 (�× S1)

∣
∣
∣ |ψ(x, τ)| ≤ 1

2 ∀x ∈ �, τ ∈ S1
}

,

Mρ1 = {

ψ ∈ C∞
0 (�× S1)

∣
∣
∣
∣ ∂ψ(x,τ )

∂τ

∣
∣ ≤ 1 ∀x ∈ �, τ ∈ S1} .

7.3 Discretization Strategies

In order to make use of the models from the previous section numerically, their
discretization is required, in particular a discretization of the lifted image gradients
μ1, μ2, μ3. This discretization poses two major challenges, the high problem
dimensionality (due to the additional lifting dimensions) and the discretization
of very singular objects (varifolds and currents). Both are mutually dependent—
indeed, it is only due to the addition of the lifting dimensions that the lifted image
gradients μ1, μ2, μ3 are singular, concentrating essentially on two-dimensional
surfaces (or even one-dimensional lines) in a higher-dimensional space. A parame-
terized representation of these two-dimensional surfaces would thus eliminate both
challenges at the same time, but come at the expense of loosing convexity.

The choice of the discretization has a direct impact on the computational effort
or memory consumption and the quality of the computational results, and the
approaches discussed below try to balance both aspects. In essence, computational
effort has to be balanced with the discrete resolution of the additional orientation
(and curvature) dimension. Once this resolution is chosen, there is still a tradeoff
between the number of orientations that actually occur in the regularized images
and the blurriness of these images: Tying the level line orientations only weakly to
the discrete grid on S1 (in other words, using a discretization that is not localized
but rather a little diffuse in S1 direction) makes roughly all level line orientations
available, but results in blurry images, while a strict consistency constraint between
level line orientation and varifold support will result in sharp images, which however
only contain the small number of allowed discrete orientations. Section 7.3.4 will
present an adaptive discretization approach to address this dilemma. In any case, the
lifted image gradients can only be approximated in a weak sense.

We will not discuss corresponding optimization methods; typically, primal-dual
algorithms such as [17] work efficiently on these non-smooth convex optimization
problems, and the models of Sects. 7.2.3 and 7.2.5 can even be tackled with linear
program solvers such as [32].
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7.3.1 Finite Differences

A common discretization is the representation of functions by their values on
the nodes of a regular Cartesian grid (which is particularly natural in image
processing since image data typically is of this format) and the implementation
of derivatives via finite differences. In [13] such an approach is used to discretize
the model of Sect. 7.2.5: The image gradient lifting μ1 is replaced by a function
on � × S1 ≡ � × [0, 2π) (identifying 0 with 2π ), which is then represented
discretely by its values at the voxels of an evenly spaced voxel grid on �× [0, 2π).
The image u is analogously represented on the corresponding pixel grid on �, and
the same discretizations are used for the dual variables (ψ from Definition 7.15
and the Lagrange multiplier for the constraint in Definition 7.3). The difficulty
of this approach lies in the approximation of the directional derivative τ · ∇x in
Definition 7.15. In a primal-dual optimization, it is applied to ψ , and its adjoint,
which is of the same form, is applied to μ1. Since μ1 is expected to concentrate
along lines (think of the image gradient lifting of a characteristic function) and the
directional derivative is used to accurately detect the corresponding line orientation,
it turns out insufficient to simply implement τ · ∇x with nearest neighbor finite
differences (as would for instance be done in the upwind scheme for the transport
equation; just like the upwind discretization causes numerical dissipation when
solving the transport equation, it results in too blurry images in our context). Instead,
τ · ∇x is computed by finite differences along the stencil in Fig. 7.4 left, where
function values at the stencil endpoints are obtained by interpolation. Still, results
remain a little blurry (cf. Figs. 7.6 and 7.7), but as a great advantage this model is
easily parallelizable on a GPU. Note that the above discussion would not change if
a different model and image gradient lifting were considered.

Fig. 7.4 Stencil for finite difference discretization (left, showing only half the orientations); basis
of curved line measure discretization (second, for initial upwards orientation, indicated by red
arrow, and showing only half the final orientations); adaptively refinable basis of straight line
measures (third, showing only line measures into one quadrant); Raviart–Thomas discretization
with a voxel in �× S1 shifted relative to the pixels in � by half a grid width (right)
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7.3.2 Line Measure Segments

Measures are frequently approximated (weakly-∗) by linear combinations of Dirac
masses. Since image level lines are closed, the natural extension of this idea to
image gradient liftings would be an approximation by linear combinations of line
measure segments μi1 or μi2 belonging to curve segments γi ⊂ �, i = 1, . . . , N ,
i.e., μi1(ϕ) = ∫

γi
ϕ(x, τγi (x)) dH1(x) or μi2(ϕ) = ∫

γi
ϕ(x, τγi (x), κγi (x)) dH1(x)

for smooth test functions ϕ. All image level lines will then be composed of curve
segments γi , and the regularization functionals will turn into simple functionals
of the linear coefficients of the line measure segments. This discretization was
employed for the model of Sect. 7.2.3 in [14] and for the model of Sect. 7.2.5 in
[31, 44]. In principle, any collection of curves γi can be chosen, however, it is most
convenient to build these curves from the underlying 2D pixel grid. For the model
of Sect. 7.2.5 it suffices to use all straight lines γi that connect a pixel with one of its
nth-nearest neighbors (e.g., for n = 4 as in Fig. 7.4 middle right; if γi passes exactly
through another pixel, it can be shortened accordingly). For the model of Sect. 7.2.3
on the other hand one is especially interested in curves with minimal energy (7.1), so
one can precompute the optimal curves γi for each incoming and outgoing direction
at a pixel (where the same discrete directions are used as before, see the example
curves in Fig. 7.4 middle left). The discretization of the dual variables now follows
rather naturally: The discretization of ψ from Definition 7.6 or from Definition 7.15
lives at all points (x, τ ) ∈ �× S1 such that there is a curve γi which starts or ends
in x with direction τ . The Lagrange multiplier φ for Definition 7.3 or 7.6 lies in
the span of one-dimensional hat functions on all pairs of neighboring pixels, which
turns out to most naturally couple curves γi with piecewise constant pixel values.
This approach yields sharp images, but only uses a limited number of level line
directions, see Figs. 7.6 and 7.7.

7.3.3 Raviart–Thomas Finite Elements on a Staggered Grid

A Finite Element discretization is proposed in [18], where it is applied to the model
of Sect. 7.2.4. Essentially all models have an underlying divergence constraint,
which is most explicit in Definition 7.10, but translates to Definition 7.2 or the
second condition in Definition 7.6 in the other models. Therefore, a divergence
conforming method seems advantageous, for which the authors choose a first-order
Raviart–Thomas Finite Element discretization [36] of μ3 on a regular rectilinear
voxel grid over � × S1 ≡ � × [0, 2π) (identifying 2π with 0). The degrees
of freedom within each voxel element are the average (normal) fluxes through
each element face, and μx1

3 , μ
x2
3 , μ

τ
3 within each element are obtained as the

linear interpolation between the normal fluxes through the x1-, x2-, and τ -faces,
respectively (i.e., the faces orthogonal to these coordinate directions). The objective
functional as well as the directional constraint that μx3(x, τ ) must be parallel to
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τ are both evaluated in each element at the center. In contrast, the conditions
μ
x1
3 (·, S1) = ∂x2u and μx2

3 (·, S1) = −∂x1u (i.e., the requirement that μ3 is a lifting
of the image gradient Du) use the values of μx1

3 on the x1-faces and of μx2
3 on

the x2-faces. Since the image gradient is here defined via finite differences between
the pixels, the voxel grid is staggered with respect to the 2D image pixel grid (i.e.,
the voxels lie above the pixel corners, Fig. 7.4 right). Results seem to provide a
good compromise between allowing many level line directions and introduction of
blurriness, see Figs. 7.6 and 7.7.

7.3.4 Adaptive Line Measure Segments

As already mentioned before, the additional dimensions of the lifting models lead
to a substantial size increase of the discretized optimization problems and an
associated high computational effort. However, it is expected that the lifted image
gradients concentrate on two-dimensional surfaces in the higher-dimensional lifting
space (in the case of binary images as in segmentation applications the lifted image
gradient even concentrates on one-dimensional lines). Thus, a uniform discretization
of all of �× S1 or �× S1 × R is a waste of computational resources that could be
reduced by an adaptive discretization. We consider here an adaptive discretization
of the varifold lifting for the model from Sect. 7.2.5 using the line measure segments
from Sect. 7.3.2. As before, the image level lines will be composed of straight line
segments γi that connect different pixels. In contrast to Sect. 7.3.2, however, any
pixel can be (iteratively) refined by dividing it into four pixels of half the original
width, thereby introducing new and finer line segments γi . Furthermore, while the
line segment orientations were before chosen to be the ones associated with the
nth-nearest neighbors of a pixel for n fixed, the number n can now also be chosen
adaptively as a power of 2. Of course, not only the lifted image gradient μ1 is
discretized adaptively in this way, but also the image u itself, see Fig. 7.5.

The idea is to first solve the optimization problem on a very coarse discretization
and then to refine the image and lifting grid at those locations where a finer

Fig. 7.5 The image u (left) and the image gradient lifting μ1 (second) can be discretized
adaptively. For μ1 not only the spatial coordinates are adaptively refined, but also the directional
τ -coordinate, resulting in a locally high number of available line segments (right, the zoom shows
the active line measures of μ1 in red)
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Fig. 7.6 Binary segmentation of an image f : �→ [0, 1] (left) by minimizing λ
∫

�
( 1

2 − f )u x. +
R(u) among images u : � → [0, 1] with regularizer R chosen as Rρ0 (second, using finite
differences, and third, using adaptive line measure segments), as R2 with g(κ) = κ2 (third, using
curved line measure segments), and as R3 with g(κ) = κ2 (right, using Raviart–Thomas Finite
Elements). In all experiments � = [0, 1]2, β = 1, α = 25, λ = 2562

Fig. 7.7 Image inpainting from an image f with 95% missing pixels (left) by minimizing R(u)
among images u : � → [0, 1] coinciding with f at the given pixels. Same regularizers,
discretizations and parameters as in 7.6

resolution is needed (one may also coarsen the grid away from the support of
μ1). This process is repeated until a satisfactory resolution is obtained. As a local
refinement criterion, a combination of two indicators turned out to be useful.
One indicator for necessary refinement is the localized duality gap between the
optimization problem and its dual (as used for mere length regularization in [11]).
The other indicator marks a pixel for refinement if it is intersected by the support of
μ1 projected onto the image grid; furthermore, new line segments γi will be added in
the refined pixels with discrete directions neighboring the discrete directions of μ1.
Of course, unused line segments can be removed from the discretization. The results
are sharp and can be computed to a much higher resolution than with nonadaptive
methods, see Figs. 7.6 and 7.7.

7.4 The Jump Set Calibration Approach in 3D

Any lifting brings with it the curse of dimensionality. Thus, for models to be feasible
numerically one should try to add as few dimensions as possible. For curvature
regularization of surfaces in three space dimensions this requirement becomes even
more crucial than in 2D. Therefore, below we only discuss an approach based on
a lifting to a varifold (a discrete version of the hyper-varifold approach in 3D is
described in [40]), where we restrict ourselves to the jump set calibration approach.
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7.4.1 Regularization Model

Here again, we are interested in a regularization of the singular part of the curvature.
We concentrate on curvature singularities along curves (i.e., on creases of surfaces;
a model regularizing cone singularities is also conceivable). A corresponding
regularization functional for a surface γ ⊂ R3 reads

R(γ ) =
∫

γ

α + βg(κγ ) dH2 +
∫

{discontinuity lines of νγ }
ρ(ν−γ , ν+γ ) dH1 ,

where ν±γ represents the surface normal on either side of the discontinuity, κγ
represents the H2-continuous part of the curvatures (say, the second fundamental
form or the principal curvatures), and ρ is a lower semi-continuous metric on S2.
Again we restrict ourselves to the special case g(0) = 0 and g ≡ ∞ otherwise.

The varifold lifting μ1 of a (sufficiently) smooth surface γ ⊂ � ⊂ R3 is a
measure on�×G̃r(2,R3). Identifying (for notational simplicity) the surface tangent
space τγ ∈ G̃r(2,R3) with the surface normal νγ ∈ S2, μ1 is given by

μ1(ϕ) =
∫

γ

ϕ(x, νγ (x)) dH2(x) for all ϕ ∈ C∞
0 (�× S2) ,

and the corresponding lifting of an image gradient is defined as follows, simply
writing τ for the mapping (x, τ ) �→ τ .

Definition 7.18 (Image Gradient Lifting) Given an image u ∈ BV(�), a measure
μ1 ∈ rca+(�× S2) is called a lifting of Du if

Du = [νμ1](·, S2) .

To derive the regularization functional, we consider a closed oriented piecewise
C2 surface γ ⊂ � with oriented (potentially nonplanar) faces F1, . . . , FN ,
corresponding normals νFi = νγ , and edge set �. Further, on each Fi consider the
(spatially varying) principal curvatures κ1, κ2 and associated orthonormal principal
tangent vectors τ1, τ2 to γ . Note that for any ψ̂ ∈ C1(�;R3) and x ∈ γ \ � we can
write

curlψ̂(x)·νγ (x) = curlψ̂(x)·(τ1(x)×τ2(x)) = τ2(x)·∂τ1(x)ψ̂(x)−τ1(x)·∂τ2(x)ψ̂(x) ,

where ∂τ denotes the directional derivative in direction τ . Thus, for the choice
ψ̂(x) = ψ(x, νγ (x)) with ψ ∈ C1(�× S2;R3) we obtain

curlψ̂ · νγ = τ2 · (τ1 · ∇xψ)− τ1 · (τ2 · ∇xψ)+ τ2 · ∂ψ
∂ν
(∂τ1νγ )− τ1 · ∂ψ

∂ν
(∂τ2νγ )

=curlxψ ·νγ+τ2· ∂ψ∂ν (∂τ1νγ )−τ1· ∂ψ∂ν (∂τ2νγ )=curlxψ ·νγ+κ1τ2· ∂ψ∂ν (τ1)−κ2τ1· ∂ψ∂ν (τ2),
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where we used ∂τi νγ = κiτi (above, ψ and its derivatives are always evaluated
at points (x, νγ (x))). We now test the surface lifting μ1 with ν · curlxψ(x, ν) for
ψ ∈ C∞

0 (� × S2;R3), the ν-component of the curl in the x-variables. Via Stokes’
theorem, this yields

∫

�×S2
ν ·curlxψ(x,ν) dμ1(x,ν)=

N
∑

i=1

∫

Fi

νFi·curlψ(·, νFi )+κ2τ1· ∂ψ∂ν (τ2)

−κ1τ2· ∂ψ∂ν (τ1) dH2

=
N
∑

i=1

∫

∂Fi

τ∂Fi · ψ(·, νFi ) dH1 +
N
∑

i=1

∫

Fi

κ2τ1 · ∂ψ
∂ν
(τ2)− κ1τ2 · ∂ψ

∂ν
(τ1) dH2

=
∑

i<j

∫

Fi∩Fj
τ∂Fi ·[ψ(·,νFi)−ψ(·,νFj)] dH1+

N
∑

i=1

∫

Fi

κ2τ1· ∂ψ∂ν (τ2)−κ1τ2· ∂ψ∂ν (τ1) dH2,

(7.3)

where τ∂Fi is the unit tangent to ∂Fi consistent with the orientation of Fi . For
planar faces, the second sum vanishes, and taking the supremum over all ψ with
−ρ(ν1, ν2) ≤ [ψ(x, ν1)−ψ(x, ν2)]·(ν1×ν2) ≤ ρ(ν1, ν2) for all x, ν1, ν2 will yield
the desired R(γ ) = ∫

�
ρ(ν−γ (x), ν+γ (x)) dH1(x), hence the following definition.

Definition 7.19 (Jump Set Calibration Regularization Functional) The jump set
calibration regularization functional for a 3D image u ∈ BV(�) is given by

Rρ(u) = inf

{∫

�×S2
α dμ1 + Tρ(μ1)

∣
∣
∣
∣
μ1 is a lifting of Du

}

with

Tρ(μ1) = sup

{∫

�×S2
ν · curlxψ(x, ν) dμ1(x, ν)

∣
∣
∣
∣
ψ ∈ Mρ

}

and

Mρ = {

ψ ∈ C∞
0 (�× S2;R3)

∣
∣ − ρ(ν1, ν2) ≤ [ψ(x, ν1)−ψ(x, ν2)] · (ν1 × ν2) ≤

ρ(ν1, ν2)∀x ∈ �, ν1, ν2 ∈ S2
}

.

In the same way as in two space-dimensions, the following regularization
properties are obtained.

Theorem 7.20 (Regularization Properties) Rρ is convex, positively one-
homogeneous, and lower semi-continuous on L1(�). Further, Rρ(u) ≥ α|u|TV.

Again, taking ρ as the discrete metric ρ0 or the geodesic metric ρ1 on S2 with
corresponding (slightly simplified) sets

Mρ0 =
{

ψ ∈C∞
0 (�×S2;R3)

∣
∣
∣ψ(x, ν1) · ν2 ≤ 1

2 ∀x ∈ �, ν1, ν2 ∈ S2, ν1 ⊥ ν2

}

,
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Mρ1 =
{

ψ ∈ C∞
0 (�× S2;R3)

∣
∣
∣

−1 ≤ ν2·∇ν (ψ(x,ν1)·(ν1×ν2))
∂ν

≤1 ∀x∈�, ν1, ν2 ∈S2, ν1 ⊥ν2

}

yields two extremal cases, one measuring the H1-measure of all creases, the other
measuring the total absolute curvature.

Theorem 7.21 (Singular Curvature Penalization for Surfaces) Let γ ⊂ � be a
piecewise C2 surface and μ1 the corresponding oriented varifold. Then

Tρ0(μ1) = H1(�) if κγ = 0 and Tρ0(μ1) = ∞ else,

Tρ1(μ1) =
∫

γ

|κγ |1 dH2 +
∫

�

|θ(x)| dH1(x) ,

where � ⊂ γ is the set of creases (where νγ is discontinuous), θ is the change of the
surface normal across �, and |κγ |1 is the nuclear norm of the second fundamental
form of γ , i.e., the sum of the unsigned principal curvatures.

7.4.2 Derivation of Theorem 7.21

Theorem 7.21 directly follows from the below small Lemmas. As (7.3) tells us,
∫

�×S2 ν · curlxψ(x, ν) dμ1(x, ν) even makes sense for (and is continuous in)

ψ ∈ C(�;C1(S2;R3)), i.e., continuous functions that are once differentiable
in the second argument. By density we may replace C∞

0 (� × S2;R3) with
C0(�;C1(S2;R3)) in the definition ofMρ , which below we will do without explicit
mention. Further, we will use two test functions, one for the edges and one for the
faces.

Test Function for Edges Let δ, ε > 0. We use the notation of (7.3) and abbreviate
Eij = Fi ∩ Fj . Since γ is piecewise C2 we may assume the Eij to be C2 as
well (if the Eij contain kink or cusp singularities, we just split them up). We set
Eδij = Eij \ Bδ(∂Eij ) with Bδ(∂Eij ) the δ-neighborhood of the endpoints of Eij
(see Fig. 7.8 left). Further, we let ηδij ∈ C∞

0 (�; [0, 1]) be a smooth cutoff function

with support on Bδp(Eδij ) and ηδij = 1 on Eδij with p > 2. For δ small enough

and for sufficiently high p, all ηδij have disjoint support. Finally, let ψεi ∈ Mρ be a

mollification of the function Fi×S2 � (x, ν) �→ ρ(νFi (x), ν), smoothly extended to
�×S2. The mollification shall be such that |ψεi (x, νFk (x))−ρ(νFi (x), νFk (x))| < ε
for x ∈ Eij and k = i, j (which can for instance be achieved by a sufficiently short
time step of heat flow). Then ψδ,ε(x, ν) = ∑

Eij
ηδij (x)ψ

ε
i (x, ν)τEij (x) lies inMρ .
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Bδ (∂E ij)
Bδ (∂E ij)

Bδ p (Eδ
ij)

Fi

Fj

Fig. 7.8 Left: Neighborhoods of the joint edge Eij = Fi ∩ Fj of the surface patches Fi and Fj .
Right: Two exemplary surface patches connecting to each other

Test Function for Faces Without loss of generality we may assume κ1, κ2, τ1, τ2 to
depend continuously on x ∈ Fi for all i (otherwise we simply introduce artificial
edges at umbilics). For λ > 0, η ∈ C0(�; [0, 1]) and ζ ∈ C∞(R3;R3) with ζ(0) =
0 and ∇ζ(0) = I we set

ψλ,η,ζ (x, ν) = η(x)ζ (λM(x)ν) , M = sgn(κ2)τ1 ⊗ τ2 − sgn(κ1)τ2 ⊗ τ1 ,

where for x /∈ γ the quantities τ1(x), τ2(x), κ1(x), κ2(x) shall be the respective
quantities after projecting x orthogonally onto γ . The latter is well-defined in
a sufficiently small neighborhood of γ and away from the edge set � so that
ψλ,η,ζ is well-defined if the support of η is correspondingly chosen. We have
ψλ,η,ζ ∈ C0(�;C1(S2;R3)). Using M(x)νγ (x) = 0 and thus ψ(x, νγ (x)) = 0

and ∂ψ(x,νγ (x))

∂ν
= η(x)λM(x) for x ∈ γ , (7.3) simplifies to

∫

�×S2
ν ·curlxψλ,η,ζ (x, ν) dμ1(x, ν)=λ

N
∑

i=1

∫

Fi

η(x)[|κ2(x)| + |κ1(x)|] dH2(x) .

(7.4)

Lemma 7.22 Let ρ be a lower semi-continuous metric on S2 and μ1 the lifting of
a closed oriented polyhedron γ ⊂ �. Then

Tρ(μ1) =
∑

edges E of γ

ρ(ν−γ (E), ν+γ (E)) ·H1(E) .

Proof For planar faces, the second sum in (7.3) vanishes, thus implying

Tρ(μ1) ≤
∑

1≤i<j≤N

∫

Eij

ρ(νFi , νFj ) dH1 =
∑

edges E of γ

ρ(ν−γ (E), ν+γ (E)) ·H1(E) .

The opposite inequality follows from (7.3) with the test functions for edges,

Tρ(μ1) ≥
∫

�×S2
curlxψ

δ,ε(x, ν) dμ1(x, ν)
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=
∑

Eij

∫

Eij

τEij ·[ψδ,ε(x, νFi )−ψδ,ε(x, νFj )] dH1(x) ≥
∑

Eij

H1(Eδij )[ρ(νFi , νFj )−2ε],

which converges to the desired expression for ε, δ → 0. ��
Lemma 7.23 Let μ1 be the lifting of a nonpolyhedral piecewise C2 surface γ ⊂ �,
then Tρ0(μ1) = ∞.

Proof Pick a nonplanar face Fi ⊂ γ and a small open ball U ⊂ Fi with nonzero
second fundamental form κγ . Choosing ζ(w) = arctan |w|

π |w| w and η to be a nonzero
cutoff function with support in U , we have ψλ,η,ζ ∈ Mρ0 . Thus, (7.4) implies
Tρ0(μ1) ≥ λ ∫

U
η[|κ1| + |κ2|] dH2, which diverges for λ→ ∞. ��

Lemma 7.24 Under the assumptions of Theorem 7.21, Tρ1(μ1) = ∫

γ
|κγ |1 dH2 +

∫

�
|θ(x)| dH1(x).

Proof The definition of Mρ1 together with (7.3) immediately implies that the
right-hand side is an upper bound on Tρ1(μ1). To show that it is attained, set
ψ = ψ1,ηδ,id + ψδ,ε for ηδ : � → [0, 1] a smooth cutoff function with η = 1
on the δ2-neighborhood Bδ2(γ \B2δ(�)) and support in B2δ2(γ \B2δ(�)). Then the
two summands have disjoint support, and it is readily checked that ψ ∈ Mρ1 (if δ is
small enough). Now (7.4) implies

∫

�×S2
ν ·curlxψ1,ηδ,id(x, ν) dμ1(x, ν) =

N
∑

i=1

∫

Fi

ηδ[|κ2| + |κ1|] dH2 ,

while (7.3) can be used to estimate

∫

�×S2
ν · curlxψ

δ,ε(x, ν) dμ1(x, ν)

≥
∑

i<j

∫

Fi∩Fj
ρ(νFi , νFj )− 2ε dH1 −

N
∑

i=1

∫

Fi∩Bδp (∂Fi)
|κ2| + |κ1| dH2 .

Now Tρ1(μ1) ≥ ∫

�×S2 ν · curlxψ(x, ν) dμ1(x, ν), which is no smaller than the sum
of the above right-hand sides and for ε, δ → 0 converges to the desired expression.

��

7.4.3 Adaptive Discretization with Surface Measures

Since the image gradient liftings will be concentrated on three- or even two-
dimensional hypersurfaces in the five-dimensional space � × S2, an adaptive
discretization approach seems indispensable. We shall thus extend the approach of
Sect. 7.3.4. We discretize μ1 as linear combination of liftings μi1 of surface patches
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γi ⊂ �, i = 1, . . . , N , i.e., μi1(ϕ) = ∫

γi
ϕ(x, νγi (x)) dH2(x) for smooth test

functions ϕ. Considering a grid of cuboid voxels on �, for the γi we choose the
intersections of these voxels with planes of different normals νi ∈ S2. The choice
of appropriate discrete normals νi is much more complicated than in Sect. 7.3.4: the
surface patch sides have to be compatible so as to be able to connect the patches to
closed surfaces (cf. Figs. 7.8 right and 7.9 left). We choose the normals such that the
corresponding planes contain at least three grid points of the voxel grid. Even then,
a large class of surfaces cannot be built from these patches, for instance, a cylinder
is not allowed since it would require half a voxel side as a surface patch (Fig. 7.9
right). To avoid introducing such additional surface patches, we only introduce
them virtually. This leaves the discretization of the dual variables invariant and only
changes the discrete bilinear operator in the definition of Tρ . As a consequence, μ1
can now describe a discontinuous, non-closed surface in which the missing pieces
are the virtual surface patches, thereby increasing the class of representable surfaces.

As in Sect. 7.3.4, the underlying voxel grid and the number of considered discrete
normals νi in a voxel can be adaptively refined, using the same refinement criteria.
Corresponding segmentation results are shown in Fig. 7.10.

μ1 = 1
μ1 = 1

μ1 = 1

μ1 = 1
2

Fig. 7.9 Challenges when discretizing surfaces by intersections of planes with voxels. Left:
Surface patches with an edge aligned with the voxel grid are rectangular and consequently can
only connect to surface patches of the same class. Right: The top of a cylinder would require half
the red surface patch

Fig. 7.10 Binary segmentation of a 3D image f by minimizing λ
∫

�
( 1

2 − f )u dx + Rρ0 (u) with
α = β = 1 among images u : � → [0, 1], left for f the characteristic function of an octant
of a ball, right for the characteristic function of a kidney (data courtesy Werner Bautz, radiology
department at the university hospital Erlangen, Germany)
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7.5 Summary

We provided an overview over convex lifting based models for curvature regular-
ization in 2D image processing, focusing on four different modeling approaches
(three of which turned out to be equivalent). One of the models was extended
to 3D image processing. We also discussed different corresponding discretization
schemes, which need to balance computational effort, sharpness of the results, and
availability of a sufficiently large number of level line (or level surface) directions.
A novel adaptive line (or surface) measure discretization allowed to push the limits
of this balance to higher spatial and directional resolution.
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8.1 Introduction

Let (F , dF ) be a metric space and Fn = {fi ∈ F : i ∈ I} given data with |I| = n.
Assume that a predefined set of prototypes F∗ = {f ∗

j ∈ F : j ∈ J} is given with
|J | = c. Data labeling denotes the assignment

j → i, f ∗
j → fi (8.1)

of a single prototype f ∗
j ∈ F∗ to each data point fi ∈ Fn. Adopting the

common model assumption that Fn is a finite sample set generated by an unknown
underlying probability distribution μF , the quality of assignments may be defined
via the quantization of μF in terms of the selected (assigned) prototypes and by
corresponding optimality criteria of information theory [14, 16, 18]. The assignment
of indices j → i induces a partition (classification) of Fn. Accordingly, depending
on the research area, prototypes f ∗

j ∈ F∗ are also called class representatives,
feature dictionary, codebook or simply labels, and we will use interchangeably
these terms throughout this chapter.

What makes the data labeling problem challenging is that context-sensitive label
assignments are required: I forms the vertex set of a given undirected graph G =
(I,E) which defines a relation E ⊂ I× I and neighborhoods

Ni = {k ∈ I : ik ∈ E} ∪ {i}, (8.2)

where ik is a shorthand for the unordered pair (edge) (i, k) = (k, i). Indices i ∈ I
frequently index positions xi ∈ � ⊂ Rd in a Euclidean domain,1 and k ∈ Ni
indicates a small Euclidean distance ‖xi − xk‖. A basic example are image features
Fn extracted from raw pixel data on a image grid graph G and the corresponding
image labeling problem.

In such situations, it is plausible to assume that k ∈ Ni implies that the same label
is assigned to both i and k more frequently than different labels, which explains
the success of the total variation measure of ‘piecewise image homogeneity’ for
image denoising [45]. Yet, this assumption falls short of the enormous complexity
of assignment relations that define natural real image structure across the scales up
to a semantic level. While information theory clearly says that joint assignments are
more appropriate than individual assignments for the quantization of complex data
sources μF [14], how to accomplish this task in a mathematically and statistically
satisfying way using algorithms that are computationally feasible, has remained an
unsolved problem.

The aforementioned data encoding-decoding tasks are nowadays mainly per-
formed using deep networks, due to their striking empirical performance in
benchmark tests across many disciplines like, e.g., in image labeling [31]. However,

1This includes spatio-temporal data—like e.g. videos—observed at points (ti , xi ) ∈ [0, T ] ×� ⊂
R × Rd in time and space.
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this rapid development during recent years has not improved our mathematical
understanding in the same way, so far [15]. The ‘black box’ behavior of deep
networks and systematic failures [2] are worrying not only researchers from
mathematics and scientific computing, but also industrial partners in connection
with safety-critical applications.

In this context, assignment flows are introduced in this chapter as an attempt to
extend discrete graphical models in a systematic way, which defined the prevailing
framework for data modeling, inference and learning during the last three decades
[17, 30, 33, 36, 51]. Regarding inference algorithms using discrete graphical models,
we refer to [28] for an assessment of the state of the art.

Assignment flows are smooth dynamical systems defined using information
geometry [1, 4]. Elementary statistical manifolds [32] provide both a target space
for data embedding and a state space on which the assignment flow evolves in
order to determine a data labeling. Corresponding vector fields are parametrized
and thus enable to learn the adaptivity of regularized label assignments within
neighborhoods (8.2), rather than parameters of a fixed regularizer as with graphical
models or traditional variational approaches to inverse problems. Smoothness
and modular compositional design yield efficient algorithms based on numerical
geometric integration and enable to switch seamlessly between supervised and
unsupervised scenarios within a single framework.

The assignment flow for supervised data labeling is introduced in Sect. 8.2.
Unsupervised scenarios involving label evolution and learning labels from data are
discussed in Sect. 8.3. Section 8.4 reports first steps towards learning (estimating)
adaptivity parameters of the assignment flow via optimal control. Section 8.5
outlines current and future work that will be undertaken along this research
direction, in order to contribute to a better mathematical understanding of the
representation and inference of natural image structure.

This chapter focuses on the basic mathematical ingredients and the discussion
of corresponding modeling aspects. We refer to [3, 22, 23, 49, 56–59] for more
detailed expositions of the respective topics, numerical experiments and a discussion
of related work. Regarding the latter, we include few comments on historical
developments as Remarks 8.1 and 8.2 on page 241.

Basic Notation We set n = |I| (number of vertices), c = |J | (number of classes
resp. labels) and [m] = {1, 2, . . . , m} for m ∈ N. 1 = (1, 1, . . . , 1)! denotes the
one-vector whose dimension depends on the context. 〈·, ·〉 denotes the Euclidean
inner product. The probability simplex of dimension c − 1 is

�c =
{

p ∈ Rc+ : 〈1, p〉 =
∑

j∈[c]
pj = 1

}

. (8.3)

It is the convex hull of its vertices (extreme points) which are the unit vectors
e1 = (1, 0, . . . , 0)!, . . . , ec = (0, 0, . . . , 0, 1)!. The expectation with respect to
a distribution p ∈ �c is denoted by
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Ep[q] = 〈p, q〉, q ∈ Rc. (8.4)

I = Diag(1) denotes the identity matrix.
Inequalities between vectors Rc � p > 0 hold for each component, p1 >

0, . . . , pc > 0. Likewise, the exponential function and the logarithm apply to each
component of the argument vector,

ep = (ep
1
, . . . , ep

c

)!, logp = (logp1, . . . , logpc)!, (8.5)

and componentwise multiplication and subdivision are simply written as

uv = (u1v2, . . . , ucvc)!, v

p
=
( v1

p1 , . . . ,
vc

pc

)!
, u, v ∈ Rc, p > 0.

(8.6)
It will be convenient to write the exponential function with large expressions as
argument in the form ep = exp(p). The latter expression should not be confused
with the exponential map expp defined by (8.23) that always involves a subscript.
Likewise, log always means the logarithm function and should not be confused with
the inverse exponential maps defined by (8.23).

We write E(·) for specifying various objective functions in this chapter. The
context disambiguates this notation.

8.2 The Assignment Flow for Supervised Data Labeling

We collect in Sect. 8.2.1 basic notions of information geometry [1, 4, 10, 32] that
are required for introducing the assignment flow for supervised data labeling in
Sect. 8.2.2. See e.g. [27, 34] regarding general differential geometry and background
reading.

8.2.1 Elements of Information Geometry

We sketch a basic framework of information geometry and then consider the specific
instance on which the assignment flow is based.

8.2.1.1 Dually Flat Statistical Manifolds

Information geometry is generally concerned with smoothly parametrized families
of densities on some sample space X with open parameter set * in a Euclidean
space,
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* � ξ �→ p(x; ξ), x ∈ X, (8.7)

that are regarded as immersions into the space of all densities. Equipped with
the Fisher-Rao metric g which is a unique choice due to its invariance against
reparametrization,

(M, g) with M = {p( · ; ξ) : ξ ∈ *} (8.8)

becomes a Riemannian manifold. Let X(M) denote the space of all smooth vector
fields on M. The Riemannian (Levi-Civita) connection ∇g is the unique affine
connection being torsion-free (or symmetric) and compatible with the metric, i.e. the
covariant derivative of the metric tensor

(∇gZg)(X, Y ) = 0 ⇔ Zg(X, Y ) = g(∇gZX, Y )+ g(X,∇gZY ), (8.9)

vanishes for all X, Y,Z ∈ X(M). A key idea of information geometry is to replace
∇g by two affine connections ∇,∇∗ that are dual to each other, which means that
they jointly satisfy (8.9),

Zg(X, Y ) = g(∇ZX, Y )+ g(X,∇∗
ZY ), ∀X, Y,Z ∈M(X). (8.10)

In particular, computations simplify if in addition both ∇ and ∇∗ can be chosen flat,
i.e. for either connection and every point pξ ∈M there exists a chart U ⊂M and
local coordinates, called affine coordinates, such that the coordinate vector fields are
parallel inU. (M, g,∇,∇∗) is then called a dually flat statistical manifold.

8.2.1.2 The Assignment Manifold

Adopting the framework above, the specific instance ofM relevant to data labeling
(classification) is

(S, g), S = {p ∈ �c : p > 0} (8.11)

with sample space J = [c],

1S = 1

c
1 ∈ S, (barycenter) (8.12)

tangent bundle TS = S× T0,

T0 = {v ∈ Rc : 〈1, v〉 = 0}, (8.13)

orthogonal projection

�0 : Rc → T0, �0 = I − 1S1
!, (8.14)
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and Fisher-Rao metric

gp(u, v) =
∑

j∈J

ujvj

pj
, p ∈ S, u, v ∈ T0. (8.15)

Given a smooth function f : Rc → R and its restriction to S, also denoted by f ,
with Euclidean gradient ∂fp,

∂fp = (∂1fp, . . . , ∂cfp)
!, (8.16)

the Riemannian gradient reads

gradp f = Rp∂fp = p
(

∂fp − Ep[∂fp]1
)

(8.17)

with the linear map

Rp : Rc → T0, Rp = Diag(p)− pp!, p ∈ S (8.18)

satisfying

Rp = Rp�0 = �0Rp. (8.19)

The affine connections ∇,∇∗ are flat and given by the e-connection and m-
connection, respectively, where ‘e’ and ‘m’ stand for the exponential and mixture
representation of distributions p ∈ S [1]. The corresponding affine coordinates are
given by θ ∈ Rc−1 and 0 < μ ∈ Rc−1 with 〈1, μ〉 < 1 such that

p = pθ = 1

1 + 〈1, eθ 〉 (e
θ1
, . . . , eθ

c−1
, 1)! ∈ S, (8.20a)

p = pμ = (μ1, . . . , μc−1, 1 − 〈1, μ〉)! ∈ S. (8.20b)

Choosing affine geodesics in the parameter spaces

θ(t) = θ + t θ̇ , μ(t) = μ+ tμ̇, (8.21)

the affine e- and m-geodesics in S read with p = pθ = pμ ∈ S

pθ(t) = pe
t v
p

〈p, et vp 〉
, v =

(

μ̇

−〈1, μ̇〉
)

∈ T0, (8.22a)

pμ(t) = pμ + tv, t ∈ [tmin, tmax], (8.22b)
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where t in (8.22b) has to be restricted to an interval around 0 ∈ [tmin, tmax], depend-
ing on μ and v, such that pμ(t) ∈ S. Therefore, regarding numerical computations,
it is more convenient to work with the unconstrained e-representation.

Accordingly, with v ∈ T0, p ∈ S, we define the exponential maps and their
inverses

Exp : S× T0 → S, (p, v) �→ Expp(v) = pe
v
p

〈p, e vp 〉
, (8.23a)

Exp−1
p : S→ T0, q �→ Exp−1

p (q) = Rp log
q

p
, (8.23b)

expp : T0 → S, expp = Expp ◦Rp, (8.23c)

exp−1
p : S→ T0, exp−1

p (q) = �0 log
q

p
, (8.23d)

Applying the map expp to a vector in Rc = T0 ⊕R1 does not depend on the constant
component of the argument, due to (8.19).

The assignment manifold is defined as

(W, g), W = S× · · · × S. (n = |I| factors) (8.24)

PointsW ∈W are row-stochastic matricesW ∈ Rn×c with row vectors

Wi ∈ S, i ∈ I (8.25)

that represent the assignments (8.1) for every i ∈ I. The j th component of Wi is
interchangeably denoted byWj

i or as elementWi,j of the matrixW ∈W.
We set

T0 = T0 × · · · × T0 (n = |I| factors) (8.26)

with tangent vectors V ∈ Rn×c, Vi ∈ T0, i ∈ I. All the mappings defined above
factorize in a natural way and apply row-wise, e.g. ExpW = (ExpW1

, . . . ,ExpWn)
etc.

Remark 8.1 (Early Related Work: Nonlinear Relaxation Labeling) Regarding
image labeling, our work originates in the seminal work of Rosenfeld et al. [24, 43].
Similar to the early days of neural networks [46], this approach was not accepted
by researchers focusing on applications. Rather, support vector machines [13] were
prevailing later on in pattern recognition and machine learning due to the convexity
of the training problem, whereas graph cuts [9] became the workhorse for image
labeling (segmentation), for similar reasons.

Nowadays, deep networks predominate in any field due to its unprecedented
performance in applications. And most practitioners, therefore, accept it and ignore
the criticism in the past that has not become obsolete [2, 15].
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Remark 8.2 (Related Work: Replicator Equation and Evolutionary Game Dynam-
ics) The gradient flow

ṗ = gradp f, p(0) ∈ p0 ∈ S (8.27)

evolving on S, with gradp f due to (8.17), is known as the replicator equation
in connection with evolutionary dynamical games [21, 47]. More general ‘payoff
functions’ replacing ∂fp in (8.17) have been considered that may or may not derive
from a potential.

In view of Remark 8.1, we point out that Pelillo [39] worked out connections
to relaxation labeling from this angle and, later on, also to graph-based clustering
[38]. In our opinion, a major reason for why these approaches fall short of
the performance of alternative schemes is the absence of a spatial interaction
mechanism that conforms with the underlying geometry of assignments. Such a
mechanism basically defines the assignment flow to be introduced below.

8.2.2 The Assignment Flow

We introduce the assignment flow [3] and its components for supervised data
labeling on a graph.

8.2.2.1 Likelihood Map

Let i ∈ I be any vertex and (recall (8.1))

Di = (

dF (fi, f
∗
1 ), . . . , dF (fi, f

∗
c )
)!
, i ∈ I. (8.28)

Since the metric (feature) space F can be anything depending on the application
at hand, we include a scaling parameter2 ρ > 0 for normalizing the range of the
components ofDi and define the likelihood map in terms of the likelihood vectors

Li : S→ S, Li(Wi) = expWi

(

− 1

ρ
Di

)

= Wie
− 1
ρ
Di

〈Wi, e−
1
ρ
Di 〉
, i ∈ I.

(8.29)
By (8.23c) and (8.17), a likelihood vector (8.29) is formed by regarding Di as
gradient vector (see also Remark 8.4 below) and applying the exponential map
ExpWi .

Using (8.29) we define the single-vertex assignment flow

2The sizes of the components Dji , j ∈ J relative to each other only matter.
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Ẇi = RWiLi(Wi), Wi(0) = 1S (8.30a)

= Wi
(

Li(Wi)− EWi [Li(Wi)]1
)

, i ∈ I. (8.30b)

We have

Proposition 8.3 The solution to the system (8.30) satisfies

lim
t→∞Wi(t) = W ∗

i = 1

|J∗|
∑

j∈J∗
ej ∈ arg min

Wi∈�c
〈Wi,Di〉, J∗ = arg min

j∈J D
j
i .

(8.31)
In particular, if the distance vector Di has a unique minimal component Dj∗i , then
limt→∞Wi(t) = ej∗ .

Remark 8.4 (Data Term, Variational Continuous Cuts) A way to look at (8.29) that
has proven to be useful for generalizations of the assignment flow (cf. Sect. 8.3.2),
is to regard Di as Euclidean gradient of the data term

Wi �→ 〈Di,Wi〉 (8.32)

of established variational approaches (‘continuous cuts’) to image labeling, cf. [35,
Eq. (1.2)] and [11, Thm. 2] for the specific binary case of c = 2 labels. Minimizing
this data term over Wi ∈ �c yields the result (8.31). In this sense, (8.29)
and (8.30) provide a smooth geometric version of traditional data terms of vari-
ational approaches to data labeling and a dynamic ‘local rounding’ mechanism,
respectively.

8.2.2.2 Similarity Map

The flow (8.30) does not interact with the flow at any other vertex i′ ∈ I. In order to
couple these flows within each neighborhood Ni given by (8.2), we assign to each
such neighborhood the positive weights3

�i =
{

wi,k : k ∈ Ni , wi,k > 0,
∑

k∈Ni
wi,k = 1

}

, i ∈ I (8.33)

and define the similarity map in terms of the similarity vectors

Si :W→ S, Si(W) = ExpWi

( ∑

k∈Ni
wi,k Exp−1

Wi

(

Lk(Wk)
))

(8.34a)

3Here we overload the symbol � which denotes the Euclidean domain covered by the graph G, as
mentioned after Eq. (8.2). Due to the subscripts �i and the context, there should be no danger of
confusion.
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=
∏

k∈Ni Lk(Wk)
wi,k

〈

1,
∏

k∈Ni Lk(Wk)
wi,k

〉 , i ∈ I. (8.34b)

The meaning of this map is easy to see: The argument of (8.34a) in round brackets
corresponds to the optimality condition that determines the Riemannian mean of
the likelihood vectors Lk, k ∈ Ni with respect to the discrete measure �i , if
the exponential map of the Riemannian connection were used [27, Lemma 6.9.4].
Using instead the exponential map of the e-connection yields the closed-form
formula (8.34b) that can be computed efficiently.

Remark 8.5 (Parameters) Two parameters have been introduced at this point: the
size |Ni | of the neighborhoods (8.2) that we regard as a scale parameter, and the
weights (8.33). How to turn the weights in adaptivity parameters and to learn them
from data is discussed in Sect. 8.4.

8.2.2.3 Assignment Flow

The interaction of the single-vertex flows through the similarity map defines the
assignment flow

Ẇ = RWS(W), W(0) = 1W, (8.35a)

Ẇi = RWiSi(W), Wi(0) = 1S, i ∈ I, (8.35b)

where 1W ∈ W denotes the barycenter ofW, each row of which is equal to 1S.
System (8.35a) collects the local systems (8.35b), for each i ∈ I, which are coupled
through the neighborhoods Ni and the similarity map (8.34).

Observe the structural similarity of (8.30a) and (8.35) due to the composition of
the likelihood and similarity maps, unlike the traditional additive combination of
data and regularization terms.

Example Consider the case of two vertices I = {1, 2} and two labels c = 2.
Parametrize the similarity vectors by

S1 = (s1, 1 − s1)!, S2 = (s2, 1 − s2)!, si ∈ (0, 1), i ∈ I
(8.36a)

and the weights �i = {wi,1, wi,2} by

w11 = w1, w12 = 1 − w1, w21 = 1 − w2, w22 = w2, wi ∈ (0, 1)
(8.36b)

for i ∈ I. Due to this parametrization, one can show that the assignment flow for
this special case is essentially governed by the system

(

ṡ1

ṡ2

)

=
(

s1(1 − s1)
(

w1(2s1 − 1)+ (1 − w1)(2s2 − 1)
)

s2(1 − s2)
(

(1 − w2)(2s1 − 1)+ w2(2s2 − 1)
)

)

(8.37)
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Fig. 8.1 Vector field on the right-hand side of the ODE-system (8.37) that represents the
assignment flow for two vertices and two labels, for different weight values (w1, w2): (a) ( 1

2 ,
1
2 );

(b) (1, 1); (c) ( 7
10 ,

7
10 ); (d) (0, 0). Depending on these weights, we observe stable and unstable

stationary points at the vertices that represent the possible labelings, and throughout unstable
interior stationary points (including interior points of the facets) that correspond to ambiguous
labelings.

with initial values s1(0), s2(0) depending on the data D1,D2. Figure 8.1 illustrates
that the weights control the stability of stationary points at the extreme points that
correspond to unambiguous labelings to which the assignment flow may converge,
and the regions of attraction. Interior fixed points exist as well, including interior
points of the facets, but are unstable.

A corresponding study of the general case will be reported in future work.
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8.2.2.4 Geometric Integration

We numerically compute the assignment flow by geometric integration of the
system of ODEs (8.35). Among a range of possible methods [19], Lie group
methods [26] are particularly convenient if they can be applied. This requires to
point out a Lie group G and an action � : G ×M→M of G on the manifoldM at
hand such that the ODE to be integrated can be represented by a corresponding Lie
algebra action [26, Assumption 2.1].

In the case of the assignment flow, we simply identify G = T0 with the flat
tangent space. One easily verifies that the action � : T0 × S→ S defined as

�(v, p) = expp(v), (8.38)

satisfies

�(0, p) = p, (8.39a)

�(v1 + v2, p) = pev1+v2

〈p, ev1+v2〉 = �(v1,�(v2, p)). (8.39b)

Based on� the ‘Lie machinery’ can be applied [56, Section 3] and eventually leads
to the following tangent space parametrization of the assignment flow.

Proposition 8.6 ([56]) The solution W(t) to assignment flow (8.35) emanating
from anyW0 = W(0) admits the representation

W(t) = expW0

(

V (t)
)

(8.40a)

where V (t) ∈ T0 solves

V̇ = �T0S
(

expW0
(V )

)

, V (0) = 0 (8.40b)

and �T0 denotes the natural extension of the orthogonal projection (8.14) onto the
tangent space (8.26).

We refer to [56] for an evaluation of geometric RKMK methods [37] including
embedding schemes for adaptive stepsize selection and more. These algorithms
efficiently integrate not only the basic assignment flow but also more involved
extensions to unsupervised scenarios, as discussed in Sect. 8.3.
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8.2.2.5 Evaluation of Discrete Graphical Models: Wasserstein Message
Passing

In Sect. 8.1 the assignment flow was motivated and characterized as an approach that
extends discrete graphical models in a systematic way. A natural question, therefore,
is: How can one evaluate a given graphical model using the assignment flow?

This problem was studied in [22]. Let

� : I→ J (8.41)

denote a labeling variable defined on the graph G. We regard � both as a function
I � i �→ �i ∈ J and as a vector I � i �→ �i = (�1

i , . . . , �
c
i )

! ∈ {e1, . . . , e|J |}
depending on the context.

The basic MAP-inference problem (MAP = maximum a posteriori) amounts to
minimize a given discrete energy function with arbitrary local functions Ei,Eik ,

E(�) =
∑

i∈I
Ei(�i)+

∑

ik∈E
Eik(�i, �k), (8.42)

which is a combinatorially hard problem. The local interaction functions are
typically specified in terms of a metric dJ of the label space (J, dJ ),

Eik(�i, �k) = dJ (�i, �k), (8.43)

in which case the problem to minimize E(�) is also called the metric labeling
problem [29]. The basic idea of the approach [22] is

1. to rewrite the local energy terms in the form

E(�) =
∑

i∈I

(

〈θi, �i〉 + 1

2

∑

k∈Ni
〈�i,�ik�k〉

)

(8.44)

with local parameter vectors θi and matrices �ik given by

〈θi, ej 〉 = Ei(j), 〈ej ,�ikej ′ 〉 = dJ (j, j
′), i, k ∈ I, j, j ′ ∈ J;

(8.45)
2. to define the energy function (8.42) on the assignment manifold by substituting

assignment variables for the labeling variables,

�→ W ∈W, �i → Wi ∈ S, i ∈ I; (8.46)

this constitutes a problem relaxation;
3. to turn the interaction term into smoothed local Wasserstein distances
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d�ik,τ (Wi,Wk) = min
Wik∈�(Wi,Wk)

{

〈�ik,Wik〉 + τ
∑

j,j ′∈J
Wik,jj ′ logWik,jj ′

}

(8.47a)

subject to Wik1 = Wi, W!
ik1 = Wk (8.47b)

between the assignment vectors considered as local marginal measures and using
�ik as costs for the ‘label transport’. Problem (8.47) is a linear assignment
problem regularized by the negative entropy which can be efficiently solved by
iterative scaling of the coupling matrixWik [25].

As a result, one obtains the relaxed energy function

Eτ (W) =
∑

i∈I

(

〈θi,Wi〉 + 1

2

∑

k∈Ni
d�ik,τ (Wi,Wk)

)

(8.48)

with smoothing parameter τ > 0, that properly takes into account the interaction
component of the graphical model.

Objective function (8.48) is continuously differentiable. Replacing Di in the
likelihood map (8.29) by ∂WiEτ (W)—cf. the line of reasoning mentioned as
Remark 8.4—bases the likelihood map on state-dependent distances that take into
account the interaction of label assignment with the neighborhoods Ni of the
underlying graph, as specified by the given graphical model. This regularizing
component of ∂WiEτ (W) replaces the geometric averaging (8.34). An entropy term
αH(W) is added in order to gradually enforce an integral assignmentW . Numerical
integration yields W(t) which converges to a local minimum of the discrete
objective function (8.42) whose quality (energy value) depends on the tradeoff—
controlled by the single parameter α—between minimizing the relaxed objective
function (8.48) and approaching an integral solution (unambiguous labeling).

The corresponding ‘data flow’ along the edges of the underlying graph resembles
established belief propagation algorithms [55], yet with significant conceptual
differences. For example, the so-called local-polytope constraints of the standard
polyhedral relaxation of discrete graphical models (cf. Sect. 8.2.2.6) are satisfied
throughout the iterative algorithm, rather than after convergence only. This holds by
construction due to the ‘Wasserstein messages’ the result from the local Wasserstein
distances of (8.48), once the partial gradients ∂WiEτ (W), i ∈ I are computed. We
refer to [22] for further details and discussion.

8.2.2.6 Global Static vs. Local Dynamically Interacting Statistical Models

The standard polyhedral convex relaxation [54] of the discrete optimization prob-
lem (8.42) utilizes a linearization of (8.44), rewritten in the form
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E(�) =
∑

i∈I
〈θi, �i〉 +

∑

ik∈E

∑

j,j ′∈J
�ik,jj ′�

j
i �
j ′
k , (8.49)

by introducing auxiliary variables �ik,jj ′ that replace the quadratic terms �ji �
j ′
k .

Collecting all variables �ji , �ik,jj ′ , i, k ∈ I, j, j ′ ∈ J into vectors �I and �E
and similarly for the model parameters to obtain vectors θI and θE, enables to
write (8.49) as linear form

E(�) = 〈θI, �I〉 + 〈θE, �E〉, � = (�I, �E) (8.50)

and to define the probability distribution

p(�; θ) = exp
(〈θI, �I〉 + 〈θE, �E〉 − ψ(θ)), (8.51)

which is a member of the exponential family of distributions [5, 51]. p(�; θ) is the
discrete graphical model corresponding to the discrete energy function (8.42) with
log-partition function

ψ(θ) = log
∑

�∈labelings

exp
(〈θI, �I〉 + 〈θE, �E〉

)

. (8.52)

The aforementioned polyhedral convex relaxation is based on the substitution (8.46)
and replacing the integrality constraints on � by

Wi ∈ �c, i ∈ I (8.53a)

and further affine constraints

∑

j∈J
Wik,jj ′ = Wk,j ′ ,

∑

j ′∈J
Wik,jj ′ = Wi,j , ∀i, k ∈ I, ∀j, j ′ ∈ J

(8.53b)

that ensure local consistency of the linearization step from (8.49) to (8.50). While
this so-called local polytope relaxation enables to compute good suboptimal minima
of (8.42) by solving a (typically huge) linear program as defined by (8.50) and (8.53)
using dedicated solvers [28], it has also a major mathematical consequence: the
graphical model (8.51) is overcomplete or non-minimally represented [51] due to
linear dependencies among the constraints (8.53b). For this reason the model (8.51)
cannot be regarded as point on a smooth statistical manifold as outlined in
Sect. 8.2.1.1.

In this context, the assignment flow may be considered as an approach that
emerges from an antipodal starting point. Rather than focusing on the static global
and overcomplete model of the exponential family (8.51) defined on the entire graph
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G, we assign to each vertex i ∈ I a discrete distribution Wi = (W 1
i , . . . ,W

c
i )

!,
which by means of the parametrization (8.20a) can be recognized as minimally
represented member of the exponential family

W
�i
i = p(�i; θi) = exp

(〈(θi, 1), e�i 〉 − ψ(θi)
)

, �i ∈ J, i ∈ I (8.54a)

ψ(θi) = log(1 + 〈1, eθi 〉), (8.54b)

and hence as point Wi ∈ S of the statistical manifold S. These states of label
assignments dynamically interact through the smooth assignment flow (8.35).

We point out that the parameters θi of (8.54) are the affine coordinates of S and
have nothing to do with the model parameter θI, θE of the graphical model (8.51).
The counter part of θI are the distance vectors Di, i ∈ I (8.28) as part of the
likelihood map (8.29), whereas the counterpart of θE are the weights �i, i ∈
I (8.33) as part of the similarity map (8.34). The parameters θI, θE are static
(fixed), whereas the smooth geometric setting of the assignment flow facilitates
computationally the adaption of Di,�i, i ∈ I. Examples for the adaption of
distances Di are the state-dependent distances discussed in Sect. 8.2.2.5 (cf. the
paragraph after Eq. (8.48)) and in the unsupervised scenario of Sect. 8.3.2. Adapting
the weights �i by learning from data is discussed in Sect. 8.4.

Regarding numerical computations, using discrete graphical models to cope with
such tasks is more cumbersome.

8.3 Unsupervised Assignment Flow and Self-assignment

Two extensions of the assignment flow to unsupervised scenarios are considered in
this section. The ability to adapt labels on a feature manifold, during the evolution of
the assignment flow, defines the unsupervised assignment flow [57, 58] introduced
in Sect. 8.3.1. On the other hand, learning labels directly from data without any prior
information defines the self-assignment flow [59] introduced in Sect. 8.3.2.

8.3.1 Unsupervised Assignment Flow: Label Evolution

Specifying a proper set F∗ of labels (prototypes) beforehand is often difficult in
practice: Determining prototypes by clustering results in suboptimal quantizations
of the underlying feature space Fn. And carrying out this task without the context
that is required for proper inference (label assignment) makes the problem ill-posed,
to some extent.

In order to alleviate this issue, a natural approach is to adapt an initial label
set during the evolution of the assignment flow. This is done by coupling label
and assignment evolution with interaction in both directions: labels define a time-
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variant distance vector field that steers the assignment flow, whereas regularized
assignments move labels to proper positions in the feature space F .

In this section, we make the stronger assumption that (F , gF ) is a smooth
Riemannian feature manifold with metric gF . The corresponding linear tangent-
cotangent isomorphism ĝF connecting differentials and gradients of smooth func-
tions f : F → R is given by

grad f = ĝ−1
F (df ). (8.55)

Furthermore, we assume a smooth divergence function [6] to be given,

DF : F × F → R, DF (f, f
′) ≈ 1

2
dF (f, f

′)2, (8.56)

that approximates the squared Riemannian distance, including equality as special
case. A proper choice of DF is crucial for applications: It ensures that approximate
Riemannian means can be computed efficiently. See [58, Section 5] for few
scenarios worked out in detail.

Let

F ∗(t) = {f ∗
1 (t), . . . , f

∗
c (t)}, t ∈ [0, T ] (8.57)

denote set of evolving feature prototypes, with initial set F ∗(0) = F ∗
0 computed by

any efficient method like metric clustering [20], and with the final set F ∗(T ) = F∗
of adapted prototypes. In order to determine F ∗(t), the assignment flow (8.35) is
extended to the system

Ḟ ∗ = VF (W,F ∗), F ∗(0) = F ∗
0 , (8.58a)

Ẇ = VW(W,F ∗), W(0) = 1W. (8.58b)

The solution F ∗(t) to (8.58a) evolves on the feature manifold F . It is driven by local
Riemannian means that are regularized by the assignments W(t). Equation (8.58b)
is the assignment flow determining W(t), based on a time-variant distance vector
field in the likelihood map (8.29) due to the moving labels F ∗(t).

A specific formulation of (8.58) is worked out in [58] in terms of a one-parameter
family of vector fields (VF ,VW) that define the following unsupervised assign-
ment flow for given data Fn = {f1, . . . , fn},

ḟ ∗
j = −α

∑

i∈I
νj |i (W, F ∗)ĝ −1

F
(

d2DF (fi, f
∗
j )
)

, f ∗
j (0) = f ∗

0,j , j ∈ J,

(8.59a)

Ẇi = RWiSi(W), Wi(0) = 1S, i ∈ I,
(8.59b)

with parameter α > 0 controlling the speed of label vs. assignment evolution, and
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νj |i (W, F ∗) = Lσi,j (W, F
∗)

∑

k∈I Lσk,j (W, F ∗)
, Lσi,j (W, F

∗) = Wi,j e
− 1
σ
DF (fi ,f

∗
j )

∑

l∈J Wi,le−
1
σ
DF (fi ,f

∗
l )

(8.60)
with parameter σ > 0 that smoothly ‘interpolates’ between two specific formula-
tions of the coupled flow (8.58) (cf. [58]).

In Eq. (8.59a), the differential d2DF (fi, f
∗
j ) means dDF (fi, ·)|f ∗

j (t)
which

determines the evolution f ∗
j (t) by averaging geometrically data points F = {fi}i∈I,

using weights νj |i
(

W(t), F ∗(t)
)

due to (8.60) that represent the current assignments
of data points fi, i ∈ I to the labels f ∗

j (t), j ∈ J . This dependency on W(t)
regularizes the evolution F ∗(t).

Conversely, the dependency of W(t) on F ∗(t) due to the right-hand side
of (8.58b) is implicitly given through the concrete formulation (8.59b) in terms of
the time-variant distances

Di(t) = (

DF (fi, f
∗
1 (t)), . . . ,DF (fi, f

∗
c (t))

)! (8.61)

that generalize the likelihood map (8.29) and in turn (8.59b), through the similarity
map (8.34).

In applications, a large number c of labels (8.57) is chosen so as to obtain
an ‘overcomplete’ initial dictionary F ∗(0) in a preprocessing step. This helps to
remove the bias caused by imperfect clustering at this initial stage of the overall
algorithm. The final effective number c of labels F ∗(T ) is smaller, however, and
mainly determined by the scale of the assignment flow (cf. Remark 8.5): The
regularizing effect of the assignments W(t) on the evolution of labels F ∗(t) causes
many labels f ∗

j (t) to merge or to ‘die out’, which can be recognized by weights

νj |i
(

W(t), F ∗(t)
)

converging to 0. Extracting the effective labels from F ∗(T )
determines F∗.

The benefit of the unsupervised assignment flow (8.59) is that the remaining
labels moved to positions f ∗

j (T ) ∈ F that are difficult to determine beforehand in
supervised scenarios.

8.3.2 Self-assignment Flow: Learning Labels from Data

This section addresses the fundamental problem: How to determine labels F∗
directly from given data Fn without any prior information? The resulting self-
assignment flow generalizes the unsupervised assignment flow of Sect. 8.3.1 that
is based on an initial label set F ∗(0) and label adaption.

A naive approach would set F ∗(0) = Fn and apply the unsupervised assignment
flow. In applications this is infeasible because n generally is large. We overcome
this issue by marginalization as follows.
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Let F ′
n = {f ′

1, . . . , f
′
n} denote a copy of the given data and consider them as

initial labels by setting F ∗(0) = F ′
n. We interpret

Wi,j = Pr(j |i), Wi ∈ S, j ∈ J, i ∈ I (8.62)

as posterior probabilities of assigning label f ′
j to datum fi , as discussed in [3].

Adopting the uninformative prior Pr(i) = 1
|I| , i ∈ I and Bayes rule, we compute

Pr(i|j) = Pr(j |i)Pr(i)
∑

k∈I Pr(j |k)Pr(k)
= (

WC(W)−1)

i,j
, C(W) = Diag(W!1).

(8.63)
Next we determine the probabilities of self-assignments fi ↔ fk of data points by
marginalizing over the labels (data copies F ′

n) to obtain the self-assignment matrix

Ak,i(W) =
∑

j∈J
Pr(k|j)Pr(j |i) = (

WC(W)−1W!)
k,i
. (8.64)

Note that the initial labels are no longer involved. Rather, their evolution as hidden
variables is implicitly determined by the evolving assignmentsW(t) and (8.63).

Finally, we replace the data term 〈D,W 〉 = ∑

i∈I〈Di,Wi〉 of supervised
scenarios (cf. Remark 8.4) by

E(W) = 〈D,A(W)〉, (8.65)

with Di,k = dF (fi, fj ) and A(W) given by (8.64). In other words, we replace
the assignment matrix W by the self-assignment matrix A(W) that is parametrized
by the assignment matrix, in order to generalize the data term from supervised
scenarios to the current completely unsupervised setting.

As a consequence, we substitute the Euclidean gradient ∂WiE(W)) for the
distances vectors (8.28) on which the likelihood map (8.29) is based. These
likelihood vectors in turn generalize the similarity map (8.34) and thus define the
self-assignment flow (8.35).

The approach has attractive properties that enable interpretations from various
viewpoints. We mention here only two of them and refer to [59] for further
discussion and to the forthcoming report [60].

1. The self-assignment matrix A(W) (8.64) may be seen as a weighted adjacency
matrix of G and, in view of its entries, as a self-affinity matrix with respect
to given data fi, i ∈ I supported by G. A(W) is parametrized by W(t)
and (8.64) shows that it evolves in the cone of completely positive matrices
[8]. This reflects the combinatorial nature of label learning problem, exhibits
relations to nonnegative matrix factorization [12] and via convex duality to graph
partitioning [42].

2. A(W) is nonnegative, symmetric and doubly stochastic. Hence it may be seen
as transportation plan corresponding to the discrete optimal transport problem
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[40] of minimizing the objective function (8.65). Taking into account the factor-
ization (8.64) and the parametrization by W(t), minimizing the objective (8.65)
may be interpreted as transporting the uniform prior measure Pr(i) = 1

|I| , i ∈ I
to the support of data points fi that implicitly define latent labels. In this way, by
means of the solutionW(t) to the self-assignment flow, labels F∗ directly emerge
from given data Fn.

8.4 Regularization Learning by Optimal Control

A key component of the assignment flow is the similarity map (8.34) that couples
single-vertex flows (8.30) within neighborhoods Ni , i ∈ I. Based on the ‘context’
in terms of data observed within these neighborhoods, the similarity map discrimi-
nates structure from noise that is removed by averaging. In this section we describe
how the weights (8.33) that parametrize the similarity map can be estimated from
data [23].

Our approach is based on an approximation of the assignment flow that is
governed by an ODE defined on the tangent space T0 which linearly depends on the
weights (Sect. 8.4.1). Using this representation, the learning problem is subdivided
into two tasks (Sect. 8.4.2):

1. Optimal weights are computed from ground truth data and corresponding
labelings.

2. A prediction map is computed in order to extrapolate the relation between
observed data and optimal weights to novel data.

8.4.1 Linear Assignment Flow

We consider the following approximation of the assignment flow (8.35), introduced
by Zeilmann et al. [56].

Ẇ = RW

(

S(W0)+ dSW0RW0 log
W

W0

)

, W(0) = W0 = 1W. (8.66)

The ‘working point’W0 ∈W can be arbitrary, in principle. Numerical experiments
[56, Section 6.3.1] showed, however, that using the barycenter W0 = 1W suffices
for our purposes.

Assuming that elements of the tangent space V ∈ T0 ⊂ Rn×c are written as
vectors by stacking row-wise the tangent vectors Vi, i ∈ I, the Jacobian dSW0 is
given by the sparse block matrix
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dSW0 = (

Ai,k(W0)
)

i,k∈I, Ai,k(W0) =
{

wi,kRSi(W0)

(
Vk
W0,k

)

, if k ∈ Ni ,
0, otherwise.

(8.67)
We call the nonlinear ODE (8.66) linear assignment flow because it admits the
parametrization [56, Prop. 4.2]

W(t) = ExpW0

(

V (t)
)

, (8.68a)

V̇ = RW0

(

S(W0)+ dSW0V
)

, V (0) = 0. (8.68b)

Equation (8.68b) is a linear ODE. In addition, Eq. (8.67) shows that it linearly
depends on the weight parameters (8.33), which is convenient for estimating optimal
values of these parameters.

8.4.2 Parameter Estimation and Prediction

Let

P = {�i : i ∈ I} (8.69)

denote the parameter space comprising all ‘weight patches’ �i according to (8.33),
one patch assigned to every vertex i ∈ I within the corresponding neighborhood
Ni . Note that P is a parameter manifold: The space containing all feasible weight
values of each patch �i has the same structure (ignoring the different dimensions)
as S given by (8.11).

Parameter estimation is done by solving the constrained optimization problem

min
�∈P E

(

V (T )
)

(8.70a)

s.t. V̇ = f (V,�), t ∈ [0, T ], V (0) = 0, (8.70b)

where (8.70b) denotes the linear ODE (8.68b) and the essential variables V and
� = {�1,�2, . . . , �n} (all weight patches) in compact form. A basic instance of
the objective function (8.70a) is

E
(

V (T )
) = DKL

(

W ∗,ExpW0

(

V (t)
))

, (8.71)

which evaluates the Kullback–Leibler divergence of the labeling induced by V (T )
by (8.68a) from a given ground-truth labelingW ∗ ∈W.

Problem (8.70) can be tackled in two ways as indicated by the following diagram.
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E
(

V (T )
)

s.t. V̇ = f (V,�) adjoint system

nonlinear program sensitivity

differentiate

discretize discretize

differentiate

(8.72)

Differentiation yields the adjoint system which, together with the primal
system (8.70b) and proper discretization, enables to compute the sensitivity

d
d�E

(

V (T )
)

by numerical integration. Alternatively, one first selects a numerical
scheme for integrating the primal system (8.70b) which turns (8.70) into a nonlinear
program that can be tackled by established methods.

Most appealing are situations where these two approaches are equivalent, that is
when the above diagram commutes [44]. A key aspect in this context concerns the
symplectic numerical integration of the joint system. We refer to [23] for details and
to [48] for the general background.

The weight parameters are updated by numerically integrating the Riemannian
gradient descent flow

�̇ = − gradP E
(

V (T )
) = −R� d

d�
E
(

V (T )
)

, �(0) = 1P, (8.73)

based on the sensitivities determined using either (equivalent) path of dia-
gram (8.72). The linear map R� factorizes according to (8.69) into components
R�i , i ∈ I that are given by (8.18) and well-defined due to (8.33).

Running this algorithm for many instances of data F 1
n ,F 2

n , . . . and corre-
sponding ground-truth labelings W ∗1,W ∗2, . . . produces the optimal weights
�∗1,�∗2, . . . ,

{{F 1
n ,F 2

n , . . . }, {W ∗1,W ∗2, . . . }} −→ {{F 1
n ,F 2

n , . . . }, {�∗1,�∗2, . . . }}.
(8.74)

We rearrange the data patch-wise and denote them by F ∗
1 ,F

∗
2 , . . . , i.e. F ∗

i denotes a
feature patch4 extracted in any order from some F kn . Grouping these feature patches
with the corresponding optimal weight patches, extracted from �∗1,�∗2, . . . in the
same order, yields the input data

{

(F ∗
1 ,�

∗
1), . . . , (F

∗
N,�

∗
N)
}

(8.75)

for prediction, possible after data size reduction by condensing it to a coreset [41].
The predictor

ω̂ : F → P, Fi �→ �i (8.76)

4Not to be confused with labels F∗!
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returns for any feature patch Fi ⊂ Fn of novel data Fn a corresponding weight patch
�i (8.33) that controls the similarity map (8.34).

A basic example of a predictor map (8.76) is the Nadaraya–Watson kernel
regression estimator [52, Section 5.4]

ω̂(Fi ) =
∑

k∈[N ]

Kh(Fi ,F ∗
k )

∑

k′∈[N ]Kh(Fi ,F ∗
k′)
�∗
k (8.77)

with a proper kernel function (Gaussian, Epanechnikov, etc.) and bandwidth
parameter estimated, e.g., by cross-validation based on (8.75). We refer to [23] for
numerical examples.

Remark 8.7 (Feasibility of Learning) The present notion of context is quite limited:
it merely concerns the co-occurrence of features within local neighborhoods Ni .
This limits the scope of the assignment flow for applications, so far.

On the other hand, this limited scope enables to subdivide the problem of learn-
ing these contextual relationships into two manageable tasks (1), (2) mentioned in
the first paragraph of this section: Subtask (1) can be solved using sound numerics
(recall the discussion of (8.72)) without the need to resort to opaque toolboxes, as is
common in machine learning. Subtask (2) can be solved using a range of state-of-
the-art methods of computational statistics and machine learning, respectively.

The corresponding situation seems less clear for more complex networks that are
empirically investigated in the current literature on machine learning. Therefore, the
strategy to focus first on the relations between data, data structure and label assign-
ments at two adjacent scales (vertices ↔ neighborhoods Ni ↔ neighborhoods of
neighborhoods, and so forth) appears to be more effective, in the long run.

8.5 Outlook

This project has started about 2 years ago. Motivation arises from computational
difficulties encountered with the evaluation of hierarchical discrete graphical models
and from our limited mathematical understanding of deep networks. We outline our
next steps and briefly comment on a long-term perspective.

Current Work Regarding unsupervised learning, we are focusing on the low-
rank structure of the factorized self-assignment matrix (8.64) that is caused by
the regularization of the assignment flow and corresponds to the reduction of the
effective number of labels (cf. the paragraph below Eq. (8.61)). Our objective is to
learn labels directly from data in terms of patches of assignments for any class of
images at hand.

It is then a natural consequence to extend the objective (8.71) of controlling
the assignment flow to such dictionaries of assignment patches, that encode image
structure at the subsequent local scale (measured by |Ni |). In addition, the prediction
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map (8.77) should be generalized to feedback control that not only takes into
account feature similarities, but also similarities between the current state W(t) of
the assignment flow and assignment trajectories W ∗k(t). The latter are computed
anyway when estimating the parameters on the right-hand side of (8.74) from the
data on the left-hand side.

Coordinating in this way unsupervised learning and control using the assignment
flow will satisfactorily solve our current core problem discussed as Remark 8.7.

Perspective In order to get rid of discretization parameters, we are currently
studying variants of the assignment flow on continuous domains [50]. ‘Continuous’
here not only refers to the underlying Euclidean domain � replacing the graph
G, but also to the current discrete change of scale i → |Ni |, that should become
infinitesimal and continuous. This includes a continuous-domain extension of the
approach [49], where a variational formulation of the assignment flow was studied
that is inline with the additive combination of data term and regularization in
related work [7, 53]. Variational methods (�-convergence, harmonic maps) then
may provide additional mathematical insight into the regularization property of the
assignment flow, into a geometric characterization of partitions of the underlying
domain, and into the pros and cons of the compositional structure of the assignment
flow.
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Abstract In this chapter we present numerical methods for low-rank matrix and
tensor problems that explicitly make use of the geometry of rank constrained
matrix and tensor spaces. We focus on two types of problems: The first are
optimization problems, like matrix and tensor completion, solving linear systems
and eigenvalue problems. Such problems can be solved by numerical optimization
for manifolds, called Riemannian optimization methods. We will explain the basic
elements of differential geometry in order to apply such methods efficiently to
rank constrained matrix and tensor spaces. The second type of problem is ordinary
differential equations, defined on matrix and tensor spaces. We show how their
solution can be approximated by the dynamical low-rank principle, and discuss
several numerical integrators that rely in an essential way on geometric properties
that are characteristic to sets of low rank matrices and tensors.

9.1 Introduction

The following chapter is an outline of Riemannian optimization and integration
methods on manifolds of low-rank matrices and tensors. This field is relatively new.
While the minimization of functions or the time evolution of dynamical systems
under smooth manifold constraints is of course classical, and can be treated in a
quite general context, there are specific peculiarities to sets of low-rank matrices
and tensors that make Riemannian methods particularly amenable to these sets in
actual algorithms. There are at least two main reasons for this.

The first is that manifolds of low-rank matrices or tensors are images of
multilinear maps. This does not only have the advantage of having at hand an
explicit global parametrization of the manifold itself, but also provides a simple
representation of tangent vectors and tangent space projections by the product rule.
The second reason is the singular value decomposition (SVD), which for matrices
has the remarkable property of providing metric projections onto the non-convex
sets of bounded rank matrices. As we will see, for certain low-rank tensor manifolds
the SVD can be of a similar use.

A classical and powerful set of algorithms for handling low-rank constraints
for matrices or tensors is based on eliminating the constraints by using the afore-
mentioned multilinear parametrizations, and then optimize the block parameters
separately, typically in the form of alternating optimization. In contrast, Riemannian
methods try to take advantage of the actual geometry of the image, which for
instance can overcome problems of ill-conditioning of the typically non-unique
multilinear parametrizations. One of the earlier works where the tangent space
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geometry of non-symmetric fixed rank matrices was quite explicitly exploited in
numerical algorithms is [59]. It introduced the dynamical low-rank approximation
method for calculating low-rank approximations when integrating a matrix that
satisfies a set of ordinary differential equations (ODEs), as we will explain in
Sect. 9.5.1. In the context of finding rank bounded feasible points for linear matrix
inequalities, a similar exploitation of the tangent space for fixed rank symmetric
definite matrices already appeared in [84]. For optimization problems with rank
constraints, several Riemannian optimization methods were first presented in [79,
98, 113] that each use slightly different geometries of the sets fixed rank matrices.
However, all of them show in great detail how the geometry can be exploited in the
algorithms, and [98, 113] also include Riemannian Hessians to obtain superlinear
convergence. These algorithms fit in the general framework of optimization on
manifolds, summarized in the monograph [2], which however does not deal with
manifolds of fixed rank matrices. An influential earlier work using geometrical tools
close to the subject of this chapter is [45] about the best rank approximation problem
for matrices.

The geometric viewpoint on low-rank matrices can be carried over to low-
rank tensors as well. Here, some of the main ideas emanated from mathematical
physics, specifically spin systems and molecular dynamics which involves low-
rank representation of high-dimensional functions [69]. The embedded geometry of
tensor train and hierarchical Tucker manifolds has then been worked out in [46, 108]
with the goal of providing the tool of Riemannian optimization also to problems of
scientific computing and optimization with tensors. Some examples and references
for successful application of such methods will be presented in some details later.

9.1.1 Aims and Outline

Our aim in this chapter is to provide a high-level overview of the main ideas and
tools for optimization and time integration on low-rank manifolds. For this we
decided to avoid formal definitions, assumptions or arguments that we considered
too technical, and tried to develop the concepts in a more descriptive manner. As
a result the chapter contains few rigorous theorems, but the provided references
should enable the reader to look up most of the technical details. We also stick
to a quite concrete ‘matrix language’ as much as possible and avoid abstract tensor
product spaces. In this sense, a tensor will be just an array of numbers, and while this
is often sufficient when dealing with practical problems, coordinate-free multilinear
algebra can of course be essential for understanding the theoretical foundations, but
is out of scope here.

There are several topics that will not be touched at all in this chapter. First of
all, for tensors we have restricted to manifolds of tensors with fixed tensor train
rank, because it can be quite easily presented. The two other tensor formats that
allow for geometric methods in a similar spirit are the Tucker format (related to
the multilinear rank) and its hierarchical version, the hierarchical Tucker format.
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Another important ignored topic is about the choice of the rank. While we present
methods for optimization and integration on manifolds of fixed rank matrices and
tensors, the choice of the rank is quite problem dependent and needs to balance
the reachable model error with the numerical complexity. This is often achieved
adaptively. Of course, if a problem at hand does not allow for a ‘low-rank’ solution
in the first place, the methods presented in this chapter are of limited use, albeit still
mathematically interesting. Finding conditions that ensure low-rank solutions to a
class of optimization problems or ODEs can be challenging and several questions
in this context are still unanswered, especially for tensors.

Finally, the alternating optimization methods mentioned above, like the alternat-
ing least squares or DMRG algorithm, will not be further discussed in this chapter.
Compared to Riemannian optimization, these classic approaches to low-rank opti-
mization are much better known and have been used in countless applications.
For further reading we would like to refer to the several overview articles taking
different perspectives on low-rank optimization, see [6, 15–17, 37, 61, 100], and the
monographs [39, 51, 53].

The chapter is structured as follows. In Sect. 9.2 we provide an elementary out-
line of the geometry of the set of fixed rank matrices as an embedded submanifold
with focus on the geometric concepts that are needed in efficient algorithms. In
Sect. 9.3 we introduce the tensor train format and show that its geometry shares
many similarities to that of the matrix case. The next two Sects. 9.4 and 9.5,
are devoted to optimization problems and the integration of ODEs over low-rank
matrices and tensor train tensors. In both cases we will show how the geometry
that was just derived plays a crucial role. Finally, in Sect. 9.6 we mention typical
applications that can be treated well with low-rank tensor techniques and in
particular with geometric methods.

9.2 The Geometry of Low-Rank Matrices

As motivated in the introduction, many approximation and identification problems
involving low-rank matrices or tensors can be formulated as nonlinear, rank
constrained optimization problems. To design and understand efficient geometric
methods for their solution, it is therefore necessary to understand the geometry
of sets of matrices and tensors of bounded rank. The most basic ingredients for
such methods are the representation of tangent vectors, the computation of tangent
space projections and the availability of retractions. In this section we present these
concepts for the well known case of low-rank matrices in quite some detail as it
features all the core ideas on an easily understandable level. We will then in the
next section consider manifolds of tensors in low rank tensor train format as an
exemplary case for tensors, since it is a tensor decomposition with many parallels
to the matrix case.

We restrict the considerations to the linear space Rm×n of real m × n matrices,
although most of the following theory can be developed for complex matrices too.
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The Euclidean structure of this space is given by the Frobenius inner product of two
matrices,

(X, Y )F = trace(XT Y ) =
m
∑

i1=1

n
∑

i2=1

X(i1, i2)Y (i1, i2),

which induces the Frobenius norm ‖X‖F = (X,X)
1/2
F .

As is well known, the rank of a matrix X ∈ Rm×n is the smallest number r =
rank(X) such that there exist a decomposition

X = GHT , G ∈ Rm×r , H ∈ Rn×r . (9.1)

Necessarily, it holds r ≤ min(m, n). We call such a rank revealing decomposition
of X the (G,H)-format.

Note that the decomposition (9.1) is not unique, since we may replace G with
GA and H with HA−T , where A is an invertible r × r matrix. This ambiguity can
be removed by requiring additional constraints. A special case is the rank revealing
QR decomposition X = QR, where Q ∈ Rm×r has pairwise orthonormal columns,
and R ∈ Rr×n is an upper triangular matrix with positive diagonal entries. Such a
decomposition can be computed by the column pivoted QR algorithm; see [35].

When m or n are very large, but r is small, it is obviously beneficial in
computations to store the matrix X in the (G,H)-format (9.1): instead of storing
mn entries of the full matrix X, we only need to know the (m + n)r entries of the
matrices G and H . When (m + n)r is much smaller than mn, we may rightfully
say that X is of low rank. The key idea of low-rank approximation is that in many
applications X may not be of exact low rank, but still can be well approximated by
a low-rank matrix.

9.2.1 Singular Value Decomposition and Low-Rank
Approximation

The fundamental tool for low-rank approximation is the singular value decomposi-
tion (SVD). Let rank(X) ≤ r ≤ min(m, n), then the SVD of X is a decomposition

X = U V T =
r
∑

�=1

σ�u�v
T
� , (9.2)

where U = [

u1 · · · ur
] ∈ Rm×r and V = [

v1 · · · vr
] ∈ Rn×r have orthonormal

columns and  ∈ Rr×r is a diagonal matrix. Its diagonal entries σ1, . . . , σr are
called the singular values of X and will always be taken to be nonnegative and
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ordered: σ1 ≥ · · · ≥ σr ≥ 0. Note that if k = rank(X) < r , then σk > 0, while
σk+1 = · · · = σr = 0.

The discovery of the SVD is usually attributed to Beltrami and Jordan around
1873/1874, with important later contributions by Sylvester, Schmidt, and Weyl; see,
e.g., [104] for a history. Its existence is not difficult to show when appealing to the
spectral theorem for symmetric matrices. It is enough to consider r = rank(X). The
positive semidefinite matrix XXT then has r positive eigenvalues and admits an
eigenvalue decomposition XXT = U�UT with � ∈ Rr×r being a diagonal matrix
with a positive diagonal, and UT U = Ir . The matrix UUT is then the orthogonal
projector on the column space ofX, and henceUUTX = X. Now setting = �1/2

and V = XT U −1 we obtain U V T = UUTX = X, that is, an SVD of X.
Note that V indeed has orthonormal columns, as V T V =  −1UTXXT U −1 =
 −1� −1 = Ir .

The following theorem is the reason for the importance of the SVD in modern
applications involving low rank approximation of matrices and—as we will explain
later—of tensors.

Theorem 9.1 Consider an SVD (9.2) of a matrix X with σ1 ≥ · · · ≥ σr ≥ 0. For
any k < r , the truncated SVD

Xk =
k
∑

�=1

σ�u�v
T
�

provides a matrix of rank at most k that is closest in Frobenius norm to X. The
distance is

‖X −Xk‖F = min
rank(Y )≤k ‖X − Y‖F =

( r
∑

�=k+1

σ 2
�

)1/2

. (9.3)

If σk > σk+1, then Xk has rank k and is the unique best approximation of rank at
most k.

This famous theorem is due to Schmidt [96] dating 1907 who proved it for
compact integral operators. Later in 1936 it was rediscovered by Eckart and
Young [25]. In 1937, Mirksy [80] proved a much more general version of this
theorem stating that the same truncated SVD provides a best rank-k approximation
in any unitarily invariant norm. A norm ‖ · ‖ on Rm×n is called unitarily invariant
if ‖X‖ = ‖QXP ‖ for all orthogonal Q and P . For such a norm it holds that
‖X‖ = ‖ ‖, that is, the norm is entirely defined by the vector of singular values.

The SVD of an m × n matrix can be computed from a symmetric eigenvalue
problem or, better, using the Golub–Kahan algorithm [34]. The amount of work
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in double precision1 when m ≥ n is O(14mn2 + 8n3); see [35, Chapter 8.6].
For a large matrix X, computing the full SVD is prohibitively expensive if one
is only interested in its low-rank approximation Xk and if k 0 min(m, n). To this
end, there exist many so-called matrix-free methods based on Krylov subspaces or
randomized linear algebra; see, e.g., [43, 67]. In general, these methods are less
predictable than the Golub–Kahan algorithm and are not guaranteed to always give
(good approximations of) Xk . They can, however, exploit sparsity since they only
require matrix vector products with X and XT .

Observe that the existence of a best approximation of any matrix X by another
matrix of rank at most k implies that the set

M≤k = {X ∈ Rm×n : rank(X) ≤ k} (9.4)

is a closed subset of Rm×n. Therefore any continuous function f : Rm×n → R
with bounded sublevel sets attains a minimum onM≤k . The formula (9.3) for the
distance fromM≤k implies that a matrix admits a good low-rank approximation in
Frobenius norm if its singular values decay sufficiently fast. Consequently, low-rank
optimization is suitable for such matrix problems, in which the true solution can be
expected to have such a property.

9.2.2 Fixed Rank Manifold

Geometric optimization methods, like the ones we will discuss later, typically
operate explicitly on smooth manifolds. The set M≤k of matrices of rank at most
k is a real algebraic variety, but not smooth in those points X of rank strictly less
than k. The good news is that the setM≤k−1 of these points is of relative Lebesgue
measure zero.

The smooth part of the varietyM≤k is the set

Mk = {X ∈ Rm×n : rank(X) = k}

of matrices of fixed rank k. It is a folklore result in differential geometry (see,
e.g., [66, Example 8.14]) thatMk is a C∞ smooth embedded submanifold of Rm×n
of dimension

dim(Mk) = mn− (m− k)(n− k) = (m+ n− k)k. (9.5)

The easiest way to show this is by explicitly constructingMk as the union of level
sets of submersions. The idea is as follows.

1Like for eigenvalues, computing the SVD has to be done iteratively and hence will not terminate
in finite time in exact arithmetic for a general matrix.
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We partition the matrices in Rm×n as

X =
[

A B

C D

]

, A ∈ Rk×k,

and consider the open setU of all matrices, for which blockA is invertible. A matrix
X inU then has rank k if and only if the Schur complement F(X) = D − CA−1B

vanishes, that is, Mk ∩ U = F−1(0). The function F is a submersion from U
to R(m−k)×(n−k) because it is surjective (consider B = C = 0), and its partial
derivative at any point X ∈ U with respect to D is the identity, hence the derivative
F ′(X) atX is surjective. By the submersion theorem, the above preimageMk∩U is
therefore an embedded submanifold of the specified dimension (9.5), and it remains
to note that the full setMk is the finite union of such manifoldsMk ∩U over all
possible positions of a k × k invertible submatrix A.

As an alternative to the above proof, Mk can also be described as a smooth
quotient manifold as in [82]; see also [1] for an overview.

Another important remark concerning optimization is that for k < min(m, n)
both the sets Mk and M≤k are simply connected. This follows from the rank
revealing decomposition (9.1) and the connectivity of non-singular k frames in Rn.

9.2.3 Tangent Space

The explicit knowledge of the tangent spaces and the efficient representation of
tangent vectors is crucial for the practical implementation of geometric optimization
methods on a manifold. For the fixed rank manifold we have several options for
representing tangent vectors.

First of all, it follows from the bilinearity of the map (G,H) �→ GHT that
matrices of the form

ξ = •
GHT +G •

HT ,
•
G ∈ Rm×k,

•
H ∈ Rn×k, (9.6)

are tangent vectors toMk atX = GHT . Like the (G,H)-format, this representation
of tangent vectors has the disadvantage of not being unique, and it might be sensitive
to numerical errors when G or H are ill conditioned.

On the other hand, the representation (9.6) reveals that the tangent vector ξ lies
in the sum of two overlapping linear spaces, namely, the subspaces of all matrices
whose column (resp. row) space is contained in the column (resp. row) space of X.
Based on this observation we can find another representation for ξ . Let U ∈ Rm×k
and V ∈ Rn×k contain orthonormal bases for the column and row space ofX ∈Mk .
Then X = USV T for some S ∈ Rk×k (a possible choice here is the SVD (9.2) of
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X, that is, S =  ). We choose corresponding orthonormal bases U⊥ ∈ Rm×(m−k)
and V⊥ ∈ Rn×(n−k) for the orthogonal complements. Then the tangent vector ξ is
an element of the linear space

TXMk =
{
[

U U⊥
]
[

C11 C
T
12

C21 0

]
[

V V⊥
]T :

C11 ∈ Rk×k, C21 ∈ R(m−k)×k, C12 ∈ R(n−k)×k
}

. (9.7)

Vice versa, it is not too difficult to show that every element in TXMk can be written
in the form (9.6) and hence is a tangent vector. Since the dimension of TXMk equals
that ofMk , it follows that in fact TXMk is equal to the tangent space toMk at X.

In (9.7) we have decomposed the tangent space TXMk into three mutually
orthogonal subspaces represented by the three matrices C11, C21 and C12. The
orthogonal projection of any matrix Z ∈ Rm×n onto TXMk is hence obtained by
projecting on these three spaces separately. This gives

PX(Z) = PUZPV + (I − PU)ZPV + PUZ(I − PV ), (9.8)

where PU = UUT and PV = VV T are the orthogonal projections onto the column
and row space of X, respectively. Expanding this expression, gives the alternative
formula

PX(Z) = PUZ + ZPV − PUZPV . (9.9)

While the characterization (9.7) of TXMk is very convenient for theoretical
purposes, it is less suitable in calculations when k is small but m or n are very large,
since then also one of the matrices U⊥ or V⊥ will be very large. In that situation, the
factored representation proposed in [98, 113] is preferable:

ξ = U
•
SV T + •

UV T + U •
V T , (9.10)

where

•
S = C11 ∈ Rk×k,

•
U = U⊥C21 ∈ Rm×k,

•
V = V⊥C12 ∈ Rn×k. (9.11)

This only requires storing the smaller matrices
•
S,

•
U , and

•
V . Observe that the

columns of
•
U and

•
V are orthogonal to the columns of U and V , respectively, which

is also called a gauging condition.
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To conclude, once U , S and V are chosen to represent X = USV T , all the
factored parametrizations of tangent vectors at X belong to the linear subspace2

H(U,S,V ) = {( •
U,

•
S,

•
V ) : •

S ∈ Rk×k,
•
U ∈ Rn×k, UT

•
U = 0,

•
V ∈ Rm×k, V T

•
V = 0}.

The representation of TXMk by H(U,S,V ) is bijective. One can therefore directly
compute the result of the projection PX(Z) as a factored parametrization:

•
S = UT ZV,

•
U = (I − PU)ZV,

•
V = (I − PV )ZT V . (9.12)

Observe that this requires k matrix vector products with Z and ZT , hence sparsity
or a low rank of Z can be exploited nicely.

9.2.4 Retraction

The other main ingredient for efficient geometric methods are retractions. A
retraction for a manifold M is a smooth map R on the tangent bundle TM, and
maps at every X the tangent space TXM toM. The decisive property of a retraction
is that this mapping is exact to first order, that is,

RX(ξ) = X + ξ + o(‖ξ‖). (9.13)

Obviously, such a map will be useful in optimization methods for turning an
increment X + ξ on the affine tangent plane to a new point RX(ξ) on the manifold.
For Riemannian manifolds it can be shown that retractions always exist. A very
natural way from a differential geometry viewpoint is the so called exponential
map, which maps along geodesics in direction of the tangent vector. In practice,
the exponential map may be very complicated to compute. There are, however,
alternative choices. Retractions in our current context3 seem to be first introduced
in [99]; see also [2] for more details.

For the embedded submanifold Mk (more precisely, for M≤k) we are in the
fortunate situation that, by Theorem 9.1, we can compute the metric projection (best
approximation) in the ambient space equipped with the Frobenius norm as metric
through the truncated SVD. It hence provides an easy-to-use retraction with respect
to this metric. Note that in general for a Cm smooth embedded submanifoldM of an
Euclidean space withm ≥ 2 and a point X ∈M, there exists an open neighborhood
of 0 ∈ TXM on which a metric projection ξ �→ PM(X+ ξ) is uniquely defined and
satisfies the retraction property

2This subspace is a horizontal distribution for the smooth quotient manifold that factors out the
freedom in the parametrization X = USV T = (UA)(A−1SB−T )(V B)T ; see [1].
3Not to be confused with a (deformation) retract from topology.



9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 271

‖X + ξ − PM(X + ξ)‖ = o(‖ξ‖).

In addition, PM is Cm−1 smooth on that neighborhood; see, e.g., [68, Lemma 2.1].
When using truncated SVD as a retraction for Mk , the crucial question arises

whether it can be computed efficiently. This indeed is the case. If X = USV T

and ξ ∈ TXMk are represented in the factored form (9.10), we first compute QR
decompositions of

•
U and

•
V ,

•
U = Q1R1,

•
V = Q2R2.

It then holds

X + ξ =
[

U
•
U1

]
[

SV T + •
SV T + •

V T

V T

]

= [

U Q1
]

K
[

V Q2
]T

(9.14)

with the 2k × 2k block matrix

K =
[

S + •
S RT2

R1 0

]

.

Since the matrices
[

U Q1
]

and
[

V Q2
]

each have orthonormal columns (as before
we assume that both U and V have orthonormal columns), we can obtain an SVD
of the ‘big’ matrix X + ξ from an SVD of the small matrix K , which can be done
in O(k3) time.

9.3 The Geometry of the Low-Rank Tensor Train
Decomposition

In this section we present the tensor train decomposition as a possible generalization
of low-rank matrix decomposition to tensors. By tensors we simply mean higher-
order analogs of matrices: an n1×· · ·×nd tensorX is an array of this size containing
real valued entries X(i1, . . . , id ); see Fig. 9.1. Such data structures appear in many
applications. Another way to see them is as multivariate functions depending on
discrete variables/indices. The tensors of given size form a linear space denoted as
Rn1×···×nd . The number d of directions is called the order of the tensor. Matrices are
hence tensors of order d = 2. As for matrices, it is common to also call the natural
Euclidean inner product for tensors,

〈X, Y 〉F =
n1∑

i1=1

· · ·
nd∑

id=1

X(i1, . . . , id )Y (i1, . . . , id ), (9.15)

the Frobenius inner product, and it induces the Frobenius norm.
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Fig. 9.1 Tensors of order one
(vectors), two (matrices), and
three

An n× · · · × n tensor has nd entries, which can quickly become unmanageable
in practice when d is large. This is sometimes called a curse of dimensionality.
Besides other important reasons, the use of low-rank tensor formats provides a
tool to circumvent this problem and deal with high dimensional data structures in
practice. From a geometric viewpoint a low-rank tensor format defines a nonlinear
subset in the space Rn1×···×nd , like the setsM≤k from (9.4) in the space of matrices,
which can be conveniently represented as the image of a multilinear map. Several
choices are possible here.

Let us recall the (G,H)-format (9.1) for a matrix. One way to look at it is as a
separation of the variables/indices:

X(i1, i2) =
r
∑

�=1

G(i1, �)H(i2, �). (9.16)

The rank is the minimal number r needed for such a separation. A straightforward
analog for tensors would be a decomposition

X(i1, . . . , id ) =
r
∑

�=1

C1(i1, �) · · ·Cd(id , �)

with factor matrices Cμ ∈ Rnμ×r , μ = 1, . . . , d. This tensor format is called the
canonical polyadic (CP) format. The minimal r required for such a decomposition
is called the (canonical) tensor rank of X. As for matrices, if r is small then storing
a tensor in the CP format is beneficial compared to storing all n1 · · · nd entries since
one only needs to know the d factor matrices C1, . . . , Cd .

The CP format has numerous useful applications in data science and scientific
computing; see [61] for an overview. One major difference to the matrix case,
however, is that the set of all tensors with canonical rank bounded by k is typically
not closed. Moreover, while the closure of this set is an algebraic variety, its
smooth part is in general not equal to the set of tensors of fixed rank k and
does not admit an easy explicit description. An exception is the case of rank-one
tensors (k = 1): the set of all outer products X = c1 ◦ · · · ◦ cd , defined by
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X(i1, . . . , id ) = c1(i1) · · · cd(id), of nonzero vectors cμ ∈ Rnμ , μ = 1, . . . , d, is an
embedded submanifold of dimension (n1+· · ·+nd)−(d−1). (It is indeed a special
case of manifolds of fixed tensor train rank to be introduced below.) Riemannian
optimization in the CP format is hence possible by considering the d-fold sum of
rank-one tensors as a manifold, as proposed in [13]. We will, however, not consider
this format further in this chapter. Instead, we will present another way to separate
the indices of a tensor, which leads to the tensor train format and yields smooth
manifolds more similar to the matrix case.

9.3.1 The Tensor Train Decomposition

The tensor train (TT) format of a tensor X ∈ Rn1×···×nd can be derived recursively.
First, index i1 is separated from the others, that is,

X(i1, i2, . . . , id ) =
r1∑

�1=1

G1(i1, �1)H1(�1, i2, . . . , id). (9.17)

Note that this is a usual matrix decomposition of the form (9.16) when treating the
multi-index (i2, . . . , id) as a single index. Next, in the tensor H1 the indices (�1, i2)

are separated from the rest, again by a matrix decomposition,

H1(�1, i2, . . . , id ) =
r2∑

�2=1

G2(�1, i1, �2)H2(�2, i3, . . . , id ), (9.18)

yielding

X(i1, i2, . . . , id ) =
r1∑

�1=1

r2∑

�2=1

G1(i1, �1)G2(�1, i2, �2)H2(�2, i3, . . . , id ). (9.19)

Proceeding in this way, one arrives after d steps at a decomposition of the form

X(i1, . . . , id ) =
r1∑

�1=1

· · ·
rd−1∑

�d−1=1

G1(i1, �1)G2(�1, i2, �2) · · ·Gd−1(�d−2, id−1, �d−1)Gd(�d−1, id),

(9.20)

with core tensors Gμ ∈ Rrμ−1×nμ×rμ , μ = 1, . . . , d, and r0 = rd = 1. (The third
dummy mode was added to G1 and Gd to unify notation.) The core tensors G1
and Gd are hence just matrices, while G2, . . . ,Gd−1 are tensors of order three. A
decomposition (9.20) is called a tensor train or TT decomposition of X.
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The nested summation in formula (9.20) is in fact a long matrix product. If
we denote by Gμ(iμ) the rμ−1 × rμ matrix slices of Gμ, one gets the compact
representation

X(i1, . . . , id ) = G1(i1)G2(i2) · · ·Gd−1(id−1)Gd(id) (9.21)

of the TT format, which explains the alternative name matrix product state (MPS)
of this tensor decomposition common in physics. This formula clearly shows the
multilinearity of the TT decomposition with respect to the core tensors. Also it is
easy to see from (9.21) that a TT decomposition is never unique: we can insert the
identity AμA

−1
μ between any two matrix factors to obtain another decomposition. It

will turn out below that this group action is essentially the only ambiguity.
In the numerical analysis community, the TT format was developed by Oseledets

and Tyrtyshnikov in [86, 87] with related formats proposed in [36, 40]. In earlier
work, it appeared in theoretical physics under a variety of different forms and names,
but is now accepted as MPS; see [97] for an overview.

The number of parameters in the TT decomposition (9.20) is bounded by dnr2

where n = max nμ and r = max rμ. When r 0 nd−2, this constitutes a great
reduction compared to storing the n1 · · · nd entries in X explicitly. Hence the
minimal possible choices for the ‘ranks’ rμ appearing in the above construction
are of interest. The crucial concept in this context is unfoldings of a tensor into
matrices.

We define the μth unfolding of a tensorX as the matrixX〈μ〉 of size (n1 · · · nμ)×
(nμ+1 · · · nd) obtained by taking the partial multi-indices (i1, . . . , iμ) as row
indices, and (iμ+1, . . . , id ) as column indices.4 In other words,

X〈μ〉(i1, . . . , iμ; iμ+1, . . . , id ) = X(i1, . . . , id )

where the semicolon indicates the separation between the row- and column indices.
One can then show the following theorem.

Theorem 9.2 In a TT decomposition (9.20) it necessarily holds that

rμ ≥ rank(X〈μ〉), μ = 1, . . . , d − 1. (9.22)

It is furthermore possible to obtain a decomposition such that equality holds.

To get an insight into why the above statement is true, first observe that, by
isolating the summation over the index jμ, the TT decomposition (9.20) is in fact
equivalent to the simultaneous matrix decompositions

X〈μ〉 = G≤μGT≥μ+1, μ = 1, . . . , d − 1, (9.23)

4In the following, we silently assume that a consistent ordering of multi-indices is used.
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with ‘partial’ TT unfoldings

[G≤μ(i1, . . . , iμ; �μ)] = [G1(i1) · · ·Gμ(iμ)] ∈ Rn1···nμ×rμ

and

[G≥μ+1(iμ+1, . . . , id ; �μ)] = [Gμ+1(iμ+1) · · ·Gd(id)]T ∈ Rnμ+1···nd×rμ .

From (9.23) it follows immediately that the rank condition (9.22) is necessary.
Equality can be achieved using the constructive procedure leading to (9.20) with
minimal matrix ranks in every step. Let us explain this for the first two steps. Clearly,
the first step (9.17) is a rank revealing decomposition of X〈1〉, so the rank of that
matrix can be used as r1. The minimal admissible r2 in the second step (9.19) is
the rank of the second unfolding H 〈2〉

1 of tensor H1. Let us show that this rank
is not larger than the rank of X〈1〉, and hence both are equal by (9.22). Indeed,
if z = [z(i3, . . . , id )] is a vector of length n3 · · · nd such that X〈2〉z = 0 and
y = H 〈2〉z, then (9.17) yields 0 = ∑r1

�1=1G1(i1, �1)y(�1, i2), which implies y = 0,

since G1 has rank r1. This implies rank(H 〈2〉) ≤ rank(X〈2〉). One can proceed with
a similar argument for the subsequent ranks r3, . . . , rd .

Theorem 9.2 justifies the following definition.

Definition 9.3 The vector r = (r1, . . . , rd−1) with rμ = rank(X〈μ〉), μ =
1, . . . , d − 1 is called the TT rank of a tensor X ∈ Rn1×···×nd .

For matrices, the SVD-like decompositions X = USV T with U and V having
orthonormal columns are often particularly useful in algorithms since they provide
orthonormal bases for the row and column space. This was for instance important for
the projection onto the tangent space TXMk at X, see (9.8) and (9.9). It is possible
to impose similar orthogonality conditions in the TT decomposition. Recall, that
the TT decomposition of a tensor X is obtained by subsequent rank-revealing
matrix decompositions for separating the indices i1, . . . , id one from another. This
can actually be done from left-to-right, from right-to-left, or from both directions
simultaneously and stopping at some middle index iμ. By employing QR (resp. LQ)
matrix decompositions in every splitting step, it is not so difficult to show that one
can find core tensors U1, . . . , Ud−1, as well as V2, . . . , Vd such that for every μ
between 1 and d − 1 it holds

X〈μ〉 = U≤μSμV T≥μ+1, (9.24)

for some Sμ ∈ Rrμ×rμ , and

UT≤μU≤μ = V T≥μ+1V≥μ+1 = Irμ . (9.25)
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Note that these orthogonality conditions inductively imply that the unfoldings U 〈3〉
μ

as well as V 〈1〉
μ of core tensors itself have orthonormal columns. In general, for a

given μ, we call a TT decomposition with cores Gν = Uν for ν < μ, Gμ(iμ) =
Uμ(iμ)Sμ and Gν = Vν for ν ≥ μ + 1, and satisfying (9.25) a μ-orthogonal TT
decomposition of X. It implies (9.24).

One advantage of such a μ-orthogonal TT decomposition is that it provides the
orthogonal projections U≤μUT≤μ and V≥μ+1V

T≥μ+1 for the column and row space of

X〈μ〉 in the form of partial TT unfoldings that are hence easily applicable to tensors
in TT decomposition. From these projections it will be possible to construct the
tangent space projectors to TT manifolds in Sect. 9.3.4.

Note that if a TT decomposition with some cores G1, . . . ,Gd is already given,
a μ-orthogonal decomposition can be obtained efficiently by manipulating cores
in a left-to-right, respectively, right-to-left sweep, where each step consists of
elementary matrix operations and QR decompositions and costsO(dnr4) operations
in total. In particular, switching from a μ-orthogonal to a (μ + 1)- or (μ − 1)-
orthogonal decomposition, only one such step is necessary costingO(nr4). Observe
that the costs are linear in the order d and mode sizes nμ but fourth-order in the ranks
rμ. In practice, this means the limit for rμ is about 102 to 103, depending on the
computing power. We refer to [46, 72, 85] for more details on the implementation
and properties of the orthogonalization of TT decompositions.

We conclude with the general remark that algorithmically the TT tensor decom-
position is characterized by the concept of sweeping, which means that most
operations are performed recursively from left-to-right, then right-to-left, and so
on. Furthermore, the manipulations on the cores of a TT are based on basic
linear algebra. We have already seen that building the decomposition by itself or
orthogonalizing a given decomposition can be achieved by a left-to-right sweep
involving matrix decompositions only. Next we discuss the important operation of
rank truncation that is also achieved in this recursive way.

9.3.2 TT-SVD and Quasi Optimal Rank Truncation

Instead of QR decompositions, one can also use singular value decompositions for
constructing a μ-orthogonal TT representation (9.24). One then obtains

X〈μ〉 = U≤μ μV T≥μ+1 (9.26)

with  μ ∈ Rrμ×rμ being diagonal. In other words, (9.26) is an SVD of X〈μ〉.
The advantage of using SVDs for constructing the TT decomposition is that they

can be truncated ‘on the fly’, that is, the index splitting decompositions like (9.17)
and (9.19) are replaced by truncated SVDs to enforce a certain rank. Specifically, in
a left-to-right sweep, at the μth step, let us assume a partial decomposition
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X̃〈μ−1〉 = U≤μ−1Hμ−1

with U≤μ−1 having orthonormal columns has been constructed.5 Here we write X̃,
since the tensor may not equal X anymore due to previous rank truncations. The
next core Uμ is then obtained from the left singular vectors of a truncated SVD

of H 〈2〉
μ−1. This procedure is called the TT-SVD algorithm [86, 88]. Note that since

U≤μ−1 is orthogonal, the truncated SVD ofH 〈2〉
μ−1 is implicitly also a truncated SVD

of X̃〈μ〉.
So if at every step of the TT-SVD algorithm instead of the exact rank rμ a

smaller rank kμ is used, the result will be a tensor Xk of TT rank (at most)
k = (k1, . . . , kd−1) in d-orthogonal TT format. It now turns out that this result
provides a quasi-optimal approximation of TT rank at most k to the initial tensor
X. Thus the TT-SVD algorithm plays a similar role for TT tensors as the SVD
truncation for matrices.

To state this result, let us define the sets

M≤k = {X ∈ Rn1×···×nd : TT-rank(X) ≤ k}

of tensors of TT rank at most k = (k1, . . . , kd−1), where the inequality for the
rank vector is understood pointwise. By Theorem 9.2, this set is an intersection of
low-rank matrix varieties:

M≤k =
d−1
⋂

μ=1

{X ∈ Rn1×···×nd : rank(X〈μ〉) ≤ kμ}. (9.27)

Since each of the sets in this intersection is closed, the set M≤k is also closed in
Rn1×···×nd . As a result, every tensor X admits a best approximation by a tensor in
the setM≤k, which we denote by Xbest

k , that is,

‖X −Xbest
k ‖F = min

TT-rank(Y )≤k
‖X − Y‖F .

The TT-SVD algorithm, on the other hand, can be seen as an alternating projection
method for computing an approximation to X in the intersection (9.27).

The following theorem has been obtained in [88].

Theorem 9.4 Let X ∈ Rn1×···×nd have TT rank r and k ≤ r. Denote by Xk the
result of the TT-SVD algorithm applied toX with target rank k. Let εμ be the error in
Frobenius norm committed in the μth truncation step. Then the following estimates
hold:

5For consistency we set U≤0 = 1 and X〈0〉 = H0 = X.
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‖X −Xk‖2
F ≤

d−1
∑

μ=1

ε2
μ, (9.28)

and

ε2
μ ≤

∑

�>kμ

(σ
μ
� )

2 ≤ ‖X −Xbest
k ‖2

F , (9.29)

where σμ� are the singular values of the μth unfolding X〈μ〉.

The theorem has two immediate and equally important corollaries. The first
of them is that the sequential rank truncation performed by the TT-SVD is, as
announced above, a quasi-optimal projection:

‖X −Xk‖F ≤ √
d − 1‖X −Xbest

k ‖F . (9.30)

The second corollary is a complete characterization of low-rank approximability
in the TT format. Since ‖X −Xbest

k ‖F ≤ ‖X −Xk‖F , the above inequalities imply

‖X −Xbest
k ‖2

F ≤
d−1
∑

μ=1

∑

�μ>kμ

(σ
μ
�μ
)2.

A tensor X will therefore admit good approximation by TT tensors of small rank
if the singular values of all the unfoldings X〈1〉, . . . , X〈d−1〉 decay sufficiently
fast to zero. By (9.29) such a decay is also a necessary condition. Similar to the
comment on matrix problems, the low-rank TT format is hence suitable in practice
for tensor problems where the solution has such a property. Justifying this a-priori
can be, however, a difficult task, especially for very large problems, and will not be
discussed.

We now sketch a proof of Theorem 9.4. The main argument is the observation
that while the best rank-k truncation of a matrix is a nonlinear operation, it is for
every input indeed performing a linear orthogonal projection that can be realized by
multiplying from the left an orthogonal projector onto the subspace spanned by the
dominant k left singular vectors of the input. Therefore, before the μth truncation
step, the current μth unfolding is the result of some μ − 1 previous orthogonal
projections

X̃〈μ〉 = P̃μ−1 · · · P̃1X
〈μ〉, (9.31)

which, however, have all been achieved by a matrix multiplication from the left
(since only indices i1, . . . , iμ−1 have been separated at this point). By comparing to
the projected best rank-kμ approximation of X〈μ〉, it is then easy to prove that X̃〈μ〉
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has no larger distance (in Frobenius norm) to the set of rank-kμ matrices than X〈k〉
itself. Hence

εμ ≤ min
rank(Y 〈μ〉)≤kμ

‖X〈μ〉 − Y 〈μ〉‖F ≤ min
TT-rank(Y )≤k

‖X − Y‖F = ‖X −Xbest
k ‖F ,

where the second inequality is due to (9.27). Since the squared Frobenius distance
of X〈μ〉 to M≤kμ equals

∑

�>kμ
(σ
μ
� )

2, this proves the second statement (9.29) of
the theorem.

Showing the first statement (9.28) is more subtle. One writes Xk as the result of
corresponding d − 1 orthogonal projections in tensor space:

Xk = Pd−1 · · ·P1X.

The error can then be decomposed into

X −Xk = (Pd−2 · · ·P1X − Pd−1 · · ·P1X)+ (X − Pd−2 · · ·P1X).

The Frobenius norm of the first term is precisely εd−1. One now has to show that
both terms are orthogonal to proceed by induction. Indeed, an easy way to see that
for every μ = 1, . . . , d − 1 the result Pμ · · ·P1X after the μth truncation is still
in the range of the operator Pμ−1 · · ·P1 is that the rank truncation of X̃〈μ〉 as given
by (9.31) may equally be achieved by multiplying from the right an orthogonal
projector on the dominant kμ right singular values. Then it is clear that multiplying
P̃μ−1 · · · P̃1 from the left again will have no effect.

We conclude with two remarks. The first is that the TT-SVD algorithm can
be implemented very efficiently if X is already given in a μ-orthogonal TT
decomposition as in (9.24), say, with μ = 1, with moderate TT rank. Then in
a left-to-right sweep it is sufficient to compute SVDs of single cores, which is
computationally feasible if ranks are not too large. This is important in practice
when using the TT-SVD algorithm as a retraction as explained below.

The second remark is that the target ranks in the TT-SVD procedure can be
chosen adaptively depending on the desired accuracies εμ. Thanks to Theorem 9.4
this gives full control of the final error. In this scenario the algorithm is sometimes
called TT-rounding [86].

9.3.3 Manifold Structure

It may appear at this point that it is difficult to deal with the TT tensor format (and
thus with its geometry) computationally, but this is not the case. Tensors of low TT
rank can be handled very well by geometric methods in a remarkably analogous way
as to low-rank matrices. To do so, one first needs to reveal the geometric structure.



280 A. Uschmajew and B. Vandereycken

Similar to matrices, the set M≤k of tensors of TT rank bounded by k =
(k1, . . . , kd−1) is a closed algebraic variety but not a smooth manifold. Let us
assume that the set of tensors of fixed TT rank k, that is, the set

Mk = {X ∈ Rn1×···×nd : TT-rank(X) = k},

is not empty (the conditions for this are given in (9.32) below). Based on Theo-
rem 9.2 it is then easy to show thatMk is relatively open and dense inM≤k. One
may rightfully conjecture that Mk is a smooth embedded manifold in Rn1×···×nd .
Note that whileMk is the intersection of smooth manifolds (arising from taking the
conditions rank(X〈μ〉) = kμ in (9.27)), this by itself does not prove that Mk is a
smooth manifold.

Instead, one can look again at the global parametrization (G1, . . . ,Gd) �→ X

of TT tensors given in (9.20) but with ranks kμ. This is a multilinear map τ
from the linear parameter space Wk = Rk0×n1×k1 × · · · × Rkd−1×nd×kd (with
k0 = kd = 1) to Rn1×···×nd and its image is M≤k. One can now show that the
condition TT-rank(X) = k is equivalent to the conditions rank(G〈1〉

μ ) = kμ−1 and

rank(G〈2〉
μ ) = kμ on the unfoldings of core tensors, which defines a subsetW∗

k of
parameters. The conditions

kμ−1 ≤ nμkμ, kμ ≤ nμkμ−1, μ = 1, . . . , d, (9.32)

are necessary and sufficient for the existence of such cores, and hence forMk being
non-empty. Given these conditions the set W∗

k is open and dense in Wk and its
image under τ is Mk. Yet this parametrization is not injective. From the compact
matrix product formula (9.21), we have already observed that the substitution

Gμ(iμ)→ A−1
μ−1Gμ(i1)Aμ, (9.33)

where Aμ are invertible rμ × rμ matrices, does not change the resulting tensor X.
One can show that this is the only non-uniqueness in case that X has exact TT rank
k, basically by referring to the equivalence with the simultaneous matrix decompo-
sitions (9.23). After removing this ambiguity by suitable gauging conditions, one
obtains a locally unique parametrization ofMk and a local manifold structure [46].

An alternative approach, that provides a global embedding of Mk, is to define
an equivalence relation of equivalent TT decompositions of a tensor X ∈Mk. The
equivalence classes match the orbits of the Lie group Gk of tuples (A1, . . . , Ad−1)

of invertible matrices acting onW∗
k through (9.33). One can then apply a common

procedure in differential geometry and first establish that the quotient spaceW∗
k/Gk

possesses a smooth manifold structure such that the quotient mapW∗
k →W∗

k/Gk
is a submersion. As a second step, one shows that the parametrizationW∗

k/Gk →
Mk by the quotient manifold is an injective immersion and a homeomorphism in
the topology of the ambient space Rn1×···×nd . It then follows from standard results
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(see, e.g., [66, Prop. 8.3]), thatMk is an embedded submanifold of Rn1×···×nd and
its dimension is

dim(Mk) = dim(W∗
k)− dim(Gk) = 1 +

d
∑

μ=1

rμ−1nμrμ − r2
μ. (9.34)

The details of this construction can be found in [108].

9.3.4 Tangent Space and Retraction

In view of the practical geometric methods on the manifoldMk to be described later,
we now consider the efficient representation of tangent vectors and the computation
of retractions. These are quite analogous to the matrix case. First of all, using,
e.g., the compact notation (9.21) for the multilinear and surjective parametrization
(G1, . . . ,Gd) �→ X of the TT manifoldW∗

k, it is clear that the tangent space TXMk
at a point X ∈Mk with TT-cores (G1, . . . ,Gd) ∈W∗

k (see Sect. 9.3.3) consists of
all tensors ξ of the form

ξ(i1, . . . , id ) =
d
∑

μ=1

G1(i1) · · ·Gμ−1(iμ−1)
•
Gμ(iμ)Gμ+1(iμ+1) · · ·Gd(id),

(9.35)
where the cores

•
Gμ at position μ can be chosen freely. In view of (9.34),

this representation has too many degrees of freedom, even when fixing the TT
decomposition G1, . . . ,Gd of X, but this redundancy can be removed by gauging
conditions.

A very reasonable way to do this is the following [56, 103]. We assume that
the cores U1, . . . , Ud−1 and V2, . . . , Vd for the orthogonal decompositions (9.24)–
(9.25) are available. Then, since the

•
Gμ in (9.35) are entirely free, we do not loose

generality by orthogonalizing every term of the sum around
•
Gμ:

ξ(i1, . . . , id ) =
d
∑

μ=1

U1(i1) · · ·Uμ−1(iμ−1)
•
Gμ(iμ)Vμ+1(iμ+1) · · ·Vd(id).

(9.36)
We now can add the gauging conditions

(U 〈2〉
μ )T

•
G〈2〉
μ = 0, μ = 1, . . . , d − 1, (9.37)

which remove r2
μ degrees of freedom from each of the cores

•
G1, . . . ,

•
Gd−1. The last

core
•
Gd is not constrained.



282 A. Uschmajew and B. Vandereycken

What this representation of tangent vectors achieves is that all d terms in (9.36)
now reside in mutually orthogonal subspaces T1, . . . , Td . In other words, the tangent
space TXMk is orthogonally decomposed:

TXMk = T1 ⊕ · · · ⊕ Td.

This allows to write the orthogonal projection onto TXMk as a sum of orthogonal
projections onto the spaces T1, . . . , Td . To derive these projections, consider first
the operators that realize the orthogonal projection onto the row and column space
of the unfoldings X〈μ〉. They read

P≤μ(Z) = Tenμ(U≤μUT≤μZ〈μ〉) and P≥μ+1(Z) = Tenμ(Z
〈μ〉V≥μ+1V

T≥μ+1),

(9.38)
where Tenμ denotes the inverse operation of the μth unfolding so that P≤μ and
P≥μ+1 are in fact orthogonal projectors in the space Rn1×···×nd . Note that P≤μ and
P≥ν commute when μ < ν. Furthermore, P≤μP≤ν = P≤ν and P≥νP≥μ = P≥μ if
μ < ν.

By inspecting the different terms in (9.36) and taking the gauging (9.37) into
account, it is not so difficult to verify that the projection on T1 is given by

Z �→ (I− P≤1)P≥2Z,

the projection on T2 is given by

Z �→ P≤1(I− P≤2)P≥3Z = (P≤1 − P≤2)P≥3Z

and so forth. Setting P≤0 = P≥d+1 = I (identity) for convenience, the overall
projector PX onto the tangent space TXMk is thus given in one of the two following
forms [72]:

PX =
d−1
∑

μ=1

(P≤μ−1 − P≤μ)P≥μ+1 + P≤d−1

= P≥2 +
d
∑

μ=2

P≤μ−1(P≥μ+1 − Pμ).
(9.39)

The formulas (9.39) for the projector on the tangent space are conceptually
insightful but still extrinsic. An efficient implementation of this projection for
actually getting the gauged components

•
Gμ that represent the resulting tangent

vector is possible if Z is itself a TT tensor of small ranks or a very sparse tensor.
For example, due to the partial TT structure of projectors (9.38), when computing
P≤μ+1Z, the partial result from P≤μZ can be reused and so on. The full details
are cumbersome to explain so we do not present them here and refer to [73, §7]
and [103, §4].
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It is also interesting to note that the tangent space TXMk itself contains only
tensors of TT rank at most 2k. This is due to the structure (9.35) of tangent vectors
as sums of TT decompositions that vary in a single core each [50]. Since X itself is
in TXMk, we directly write the TT decomposition of X + ξ , since this will be the
tensors that need to be retracted in optimization methods. In terms of the left- and
right-orthogonal cores U1, . . . , Ud−1 and V2, . . . , Vd from (9.25) we have [103]

(X + ξ)(i1, . . . , id ) = W1(i1)W2(i2) · · ·Wd−1(id−1)Wd(id), (9.40)

with the cores

W1(i1) =
[

U1(i1)
•
G1(i1)

]

, Wμ(iμ) =
[

Uμ(iμ)
•
Gμ(iμ)

0 Vμ(iμ)

]

for μ = 2, . . . , d − 1, and

Wd(id) =
[

SdVd(id)+
•
Gd(id)

Vd(id)

]

,

where Sd is the matrix from the d-orthogonal decomposition (9.24) of X. The
formula (9.40) is the TT analog to (9.14).

Finally we mention that sinceMk is a smooth manifold, the best approximation
of X + ξ would be in principle a feasible retraction from the tangent space to the
manifold. It is, however, computationally not available. The TT-SVD algorithm
applied to X + ξ with target ranks k is a valid surrogate, which due to the
TT representation (9.40) of tangent vectors is efficiently applicable. As discussed
in Sect. 9.3.2 the TT-SVD procedure is essentially a composition of nonlinear
projections on low-rank matrix manifolds, which are locally smooth around a
given X ∈ Mk. This provides the necessary smoothness properties of the TT-
SVD algorithm when viewed as a projection on Mk. On the other hand, the
quasi-optimality of this projection as established in (9.30) implies the retraction
property (9.13); see [103] for the details.

9.3.5 Elementary Operations and TT Matrix Format

Provided that the ranks are small enough, the TT representation introduced above
allows to store very high-dimensional tensors in practice and to access each entry
individually by computing the matrix product (9.21). Furthermore, it is possible to
efficiently perform certain linear algebra operations. For instance the sum of two TT
tensors X and X̂ with TT coresG1, . . . ,Gd and Ĝ1, . . . , Ĝd has the matrix product
representation
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(X + X̂)(i1, . . . , id ) =
[

G1(i1) Ĝ1(i1)
]
[

G2(i2) 0
0 Ĝ2(i2)

]

· · ·
[

Gd−1(id−1) 0
0 Ĝd−1(id−1)

] [

Gd(id)

Ĝd(id)

]

.

Hence the core tensors are simply augmented, and no addition at all is required
when implementing this operation. Note that this shows that the TT rank of X + X̂
is bounded by the (entry-wise) sum of TT ranks of X and X̂.

As another example, the Frobenius inner product ofX and X̂ can be implemented
by performing the nested summation in

〈X, X̂〉F =
n1∑

i1=1

· · ·
nd∑

id=1

G1(i1) · · ·Gd(id)Ĝd(id)T · · · Ĝ1(i1)
T

sequentially: first, the matrix

Zd =
nd∑

id=1

Gd(id)Ĝd(id)
T

is computed, then

Zd−1 =
nd−1∑

id−1=1

Gd−1(id−1)ZĜd−1(id−1)
T

and so on. These computations only involve matrix products and the final result
Z1 will be the desired inner product. The computational complexity for computing
inner products is hence O(dnr3) with n = max nμ and r = max{rμ, r̂μ}, where r
and r̂ are the TT-ranks of X and X̂, respectively. As a special case, the Frobenius
norm of a TT tensor can be computed.

Obviously, these elementary operations are crucial for applying methods from
numerical linear algebra and optimization. However, in many applications the most
important operation is the computation of the ‘matrix-vector-product’, that is, in our
case the action of a given linear operatorA on a tensor X. In order to use low-rank
techniques like Riemannian optimization it is mandatory that the given operator A
can be applied efficiently. In some applications, sparsity of A makes this possible.
More naturally, most low-rank formats for tensors come with a corresponding low-
rank format for linear operators acting on such tensors that enable their efficient
application. For the TT format, the corresponding operator format is called the TT
matrix format [86] or matrix product operator (MPO) format [115].

A linear mapA : Rn1×···×nd → Rn1×···×nd can be identified with an (n1 · · · nd)×
(n1 · · · nd) matrix with entries [A(i1, . . . , id ; j1, . . . , jd)], where both the rows and
columns are indexed with multi-indices. The operatorA is then said to be in the TT
matrix format with TT matrix ranks (R1, . . . , Rd−1) if its entries can be written as
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A(i1, . . . , id ; j1, . . . , jd) = O1(i1, j1)O2(i2, j2) · · ·Od(id, jd),

where Oμ(iμ, jμ) are matrices of size Rμ−1 × Rμ (R0 = Rd = 1). Clearly, the TT
matrix format becomes the usual TT format when treating A as an n2

1 × · · · × n2
d

tensor.
Note that if A is an operator on matrices, that is, in the case d = 2, O1(iμ, jμ)

and O2(iμ, jμ) are just vectors of length R1 = R, and the formula can be written as

A(i1, i2; j1, j2) =
R
∑

�=1

O1,�(i1, j1)O2,�(i2, j2).

In other words, such an operatorA is a sum

A =
R
∑

�=1

A� ⊗ B�

of Kronecker products of matrices [A�(i, j)] = [O1,�(i, j)] and [B�(i, j)] =
[O2,�(i, j)].

An operator in the TT matrix format can be efficiently applied to a TT tensor,
yielding a result in the TT format again. Indeed, let Y = A(X), then a TT
decomposition of Y can be found using the properties of the Kronecker product
⊗ of matrices [86]:

Y (i1, . . . , id ) =
n1∑

j1=1

· · ·
nd∑

jd=1

A(i1, . . . , id ; j1, . . . , jd)X(j1, . . . , jd)

=
n1∑

j1=1

· · ·
nd∑

jd=1

(

O1(i1, j1) · · ·Od(id, jj )
)⊗ (

G1(j1) · · ·Gd(jd)
)

=
n1∑

j1=1

· · ·
nd∑

jd=1

(

O1(i1, j1)⊗G1(j1)
) · · · (Od(id, jd)⊗Gd(jd)

)

= Ĝ1(i1) · · · Ĝd(id)

with resulting TT cores

Ĝμ(iμ) =
nμ
∑

jμ=1

Oμ(iμ, jμ)⊗Gμ(jμ), μ = 1, . . . , d.

Forming all these cores has a complexity of O(dnr2R2), where R = maxRμ.
Note that Gμ(iμ) is a matrix of size rμ−1Rμ−1 × rμRμ so the TT ranks of A

and X are multiplied when applying A to X. In algorithms where this operation is
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performed several times it therefore can become necessary to apply the TT-SVD
procedure to the result as a post-processing step for reducing ranks again. This
is akin to rounding in floating point arithmetic and is therefore also called TT-
rounding.

9.4 Optimization Problems

As we have explained above, the sets of matrices of fixed rank k and tensors of
fixed TT rank k are smooth submanifolds Mk ⊂ Rm×n and Mk ⊂ Rn1×···×nd ,
respectively. In this section we will see how to efficiently exploit these smooth
structures in optimization problems.

Here and in the following V denotes a finite dimensional real vector space, that
depending on the context, can be just RN , a space Rm×n of matrices, or a space
Rn1×···×nd of tensors.

9.4.1 Riemannian Optimization

We start with a relatively general introduction to local optimization methods on
smooth manifolds; see [2] for a broader but still self-contained treatment of this
topic.

Let M be a smooth submanifold in V, like Mk or Mk. Since M ⊂ V, we can
represent a point X onM as an element of V. We can do the same for its tangent
vectors ξ ∈ TXM since TXM ⊂ TXV - V. This allows us to restrict any smoothly
varying inner product on V to TXM and obtain a Riemannian metric (·, ·)X onM.
For simplicity, we choose the Euclidean metric:

(ξ, η)X = ξT η, ξ, η ∈ TXM ⊂ V.

Consider now a smooth objective function f : V → R. If we restrict its domain
toM, we obtain an optimization problem on a Riemannian manifold:

min f (X) s.t. X ∈M. (9.41)

The aim of a Riemannian optimization method is to generate iterates X1, X2, . . .

that remain onM and converge to a (local) minimum of f constrained toM; see
Fig. 9.2. It uses only local knowledge of f , like first and second-order derivatives.
It thus belongs to the family of feasible methods for constrained optimization,
which is a very useful property in our setting since general tensors or matrices in
V with arbitrary rank might otherwise be too large to store. A distinctive difference
with other methods for constrained optimization is that a Riemannian optimization
method has a detailed geometric picture of the constraint setM at its disposal.
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Fig. 9.2 A Riemannian
optimization method
generates iterates X� starting
from X1 to minimize f on a
manifoldM. The thin gray
lines are level sets of f and
X∗ is a (local) minimum of f
onM

X1

X2

X3

X4 X*

Fig. 9.3 One step of a typical Riemannian optimization method with step direction ξ on the
submanifold (left). Example of one step of steepest descent on the pullback (right)

In its most basic form, a Riemannian optimization method is the update formula

X+ = RX(t ξ), (9.42)

that is then repeated after replacing X by X+. The formula (9.42) is defined by the
following ‘ingredients’; see also the left panel of Fig. 9.3.

1. The search direction ξ ∈ TXM that indicates the direction of the update. Similar
as in Euclidean unconstrained optimization, the search direction can be obtained
from first-order (gradient) or second-order (Hessian) information.6 Generally,
f will locally decrease in the direction of ξ , that is, the directional derivative
satisfies f ′(X) ξ < 0.

2. As explained in Sect. 9.2.4, the retraction RX : TXM→M is a smooth map that
replaces the usual update X + t ξ from Euclidean space to the manifold setting.
Running over t , we thus replace a straight ray with a curve that (locally) lies on
M by construction. By the retraction property (9.13), the curve is rigid at t = 0,
which means that RX(0) = X and d

dt
R(tξ)|t=0 = ξ for all ξ ∈ TXM.

3. The step size t > 0 is usually chosen to guarantee sufficient decrease of f inX+,
although non-monotone strategies also exist. Given ξ , the step size is typically

6We stick here to more standard smooth optimization on purpose but also nonsmooth and stochastic
methods are possible for Riemannian manifolds; see [38, 47, 48, 95].
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found by line search strategies like backtracking, whereas an exact line search
would provide a global minimum along direction ξ , if it exists. As an alternative
one can use the trust-region mechanism to generate t ξ .

To explain the possible search directions ξ at a point X ∈ M, we take a slight
detour and consider the pullback of f at X:

f̂X = f ◦ RX : TXM→M.

Since f̂X is defined on the linear subspace TXM, we can for example minimize it
by the standard steepest descent method; see the right panel of Fig. 9.3. Observe that
rigidity of RX implies f̂X(0) = f (X). Hence, the starting guess is the zero tangent
vector, which will get updated as

ξ+ = 0 − β�β0 ∇f̂X(0)

and Armijo backtracking determines the smallest � = 0, 1, . . . such that

f̂X(ξ+) ≤ f̂X(0)− c β�β0‖∇f̂X(0)‖2
F . (9.43)

Here, β = 1/2, β0 = 1, and c = 0.99 are standard choices. We could keep on
iterating, but the crucial point is that in Riemannian optimization, we perform such
a step only once, and then redefine the pullback function for X+ = RX(ξ+) before
repeating the procedure.

Formally, the iteration just described is clearly of the form as (9.42), but it is
much more fruitful to regard this procedure from a geometric point of view. To this
end, observe that rigidity of RX also implies

f̂ ′
X(0) ξ = f ′(X)R′

X(0) ξ = f ′(X) ξ for all ξ ∈ TXM.

With PX : V → TXM the orthogonal projection, we thus obtain

(∇f̂X(0), ξ)F = (∇f (X),PX(ξ))F = (PX(∇f (X)), ξ)F . (9.44)

These identities allow us to define the Riemannian gradient of f at X toM simply
as the tangent vector PX(∇f (X)). This vector is conveniently also a direction of
steepest ascent among all tangent vectors at X with the same length. We can thus
define the Riemannian steepest descent method as

X+ = RX(−t PX(∇f (X))), with t = β�β0. (9.45)

Here, Armijo backtracking picks again the smallest � (since 0 < β < 1) such that

f (RX(X+)) ≤ f (X)− c β�β0‖PX∇f (X)‖2
F .
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Observe that we have arrived at the same iteration as above but instead of
using a pullback we derived it directly from geometric concepts, where we have
benefited from choosing the Euclidean metric on TXM for obtaining the simple
formula (9.44) for the Riemannian gradient. Using the notion of second-order
retractions, one can in this way derive the Riemannian Newton method either using
the Riemannian Hessian with pullbacks or directly with the Riemannian connection.
We refer to [2] for details, where also trust-region strategies are discussed.

The ‘recipe’ above leaves a lot of freedom, which can be used to our advantage
to choose computational efficient components that work well in practice. Below we
will focus on approaches that are ‘geometric versions’ of classical, non-Riemannian
algorithms, yet can be implemented efficiently on a manifold so that they become
competitive.

9.4.2 Linear Systems

We now explain how Riemannian optimization can be used to solve very large linear
systems. Given a linear operator L : V → V and a ‘right-hand side’ B ∈ V, the aim
is to calculate any Xex that satisfies the equation

L(Xex) = B.

Since our strategy is optimization, observe that Xex can also be found as a global
minimizer of the residual objective function

fLS(X) = (L(X)− B,L(X)− B)F = ‖L(X)− B‖2
F .

If in addition L is symmetric and positive semi-definite on V, the same is true for
the energy norm function

fL(X) = (X,L(X))F − 2(X,B)F

= (X −Xex,L(X −Xex))F − (Xex,L(Xex))F .

The second identity shows that fL(X) is indeed, up to a constant, the square of
the error in the induced L-(semi)norm. In the following, we will assume that L is
positive semi-definite and focus only on f = fL since it leads to better conditioned
problems compared to fLS .

When Xex is a large matrix or tensor, we want to approximate it by a low-rank
matrix or tensor. Since we do not know Xex we cannot use the quasi-best truncation
procedures as explained in Sect. 9.3. Instead, we minimize the restriction of f = fL
onto an approximation manifoldM =Mk orM =Mk:

min f (X) s.t. X ∈M.



290 A. Uschmajew and B. Vandereycken

This is exactly a problem of the form (9.41) and we can, for example, attempt to
solve it with the Riemannian steepest descent algorithm. With X ∈ Mk and the
definition of fL, this iteration reads

X+ = RX(−t PX(L(X)− B)). (9.46)

When dealing with ill-conditioned problems, as they occur frequently with dis-
cretized PDEs, it is advisable to include some preconditioning. In the Riemannian
context, one way of doing this is by modifying (9.46) to

X+ = RX(−t PX(Q(L(X)− B))), (9.47)

whereQ : V → V is a suitable preconditioner forL. This iteration is called truncated
Riemannian preconditioned Richardson iteration in [65] since it resembles a
classical Richardson iteration.

9.4.3 Computational Cost

Let us comment which parts of (9.46) are typically the most expensive. Since the
retraction operates on a tangent vector, it is cheap both for matrices and tensors
in TT format as long as their ranks are moderate; see Sect. 9.3. The remaining
potentially expensive steps are therefore the application of the projector PX and
the computation of the step size t .

Let Z = L(X) − B be the residual. Recall that the projected tangent vector
ξ = PX(Z) will be computed using (9.12) for matrices and (9.36)–(9.37) for TT
tensors. As briefly mentioned before, these formulas are essentially many (unfolded)
matrix multiplications that can efficiently be computed if Z is a sparse or low rank
matrix/tensor.

Sparsity occurs for example in the matrix and tensor completion problems
(see Sect. 9.6 later) where L is the orthogonal projector P� onto a sampling set
� ⊂ {1, . . . , n1} × · · · × {1, . . . , nd} of known entries of an otherwise unknown
matrix/tensor Xex ∈ V. The matrix/tensor B in this problem is then the sparse
matrix/tensor containing the known entries of Xex. Then if, for example, X =
USV T ∈ Mk is a matrix in SVD-like format, the residual Z = P�(X) − B is
also a sparse matrix whose entries are computed as

Z(i1, i2) =
{∑r

�=1 U(i1, �)S(�, �)V (i2, �)− B(i1, i2) if (i1, i2) ∈ �,
0 otherwise.

Hence the computation of PX(Z) now requires two sparse matrix multiplications
ZU and ZT V ; see [112]. For tensor completion, a little bit more care is needed but
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an efficient implementation for applying the tangent space projector exists; see [103,
§4.2]. In all cases, the computation becomes cheaper the sparser Z is.

If on the other hand L is a low-rank TT matrix operator as explained in
Sect. 9.3.5, and B is a low-rank TT tensor, then Z = L(X) − B will be also of
low-rank sinceX ∈Mk. This makes the tangent space projection PX(Z) efficiently
applicable afterwards as explained before. Operators with TT matrix structure are
the most typical situation when TT tensors are used for parametric PDEs and for the
Schrödinger equation; see again Sect. 9.6 later.

Regarding the computation of the step size t , we can approximate an exact line
search method by minimizing the first-order approximation

g(t) = f (X − t ξ ) ≈ f (RX(−t ξ )).

For quadratic functions f , the function g(t) is a quadratic polynomial in t and can
thus be exactly minimized. For instance, with fL it satisfies

g(t) = (ξ,L(ξ))F t2 − 2(ξ,L(X)− B)F t + constant.

Recall that, by (9.40), the matrix or TT rank of a tangent vector ξ is bounded
by two times that of X. Hence, in the same situation as for L above, these inner
products can be computed very efficiently. It has been observed in [112] that with
this initialization of the step size almost no extra backtracking is needed.

9.4.4 Difference to Iterative Thresholding Methods

A popular algorithm for solving optimization problems with low-rank constraints,
like matrix completion [49] and linear tensor systems [8, 54], is iterative hard
thresholding (IHT).7 It is an iteration of the form

X+ = PM(X − t ∇f (X)),

where PM : V →M denotes the (quasi) projection on the setM, like the truncated
SVD for low-rank matrices and TT-SVD for tensors as explained in Sects. 9.2.1
and 9.3.2. Variations of this idea also include alternating projection schemes like
in [101]. Figure 9.4 compares IHT to Riemannian steepest descent. The main
difference between the two methods is the extra tangent space projection PX of the
negative gradient −∇f (X) for the Riemannian version. Thanks to this projection,
the truncated SVD in the Riemannian case has to be applied to a tangent vector
which can be implemented cheaply with direct linear algebra and is thus very
reliable, as explained in Sects. 9.2.4 and 9.3.4. In IHT on the other hand, the

7Also called singular value projection and truncated Richardson iteration.
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IHT Riemannian SD

Fig. 9.4 Iterative hard thresholding (IHT) and Riemannian steepest descent (SD) for fixed-rank
matrices and tensors
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Fig. 9.5 Convergence of the Riemannian and non-Riemannian versions of preconditioned
Richardson iteration. The approximation quality of the preconditioner is proportional to the
k value. (We do not explain the other Riemannian method “approx. Newton”.) Picture taken
from [65]. Copyright 2016 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved

truncated SVD is applied to a generally unstructured search direction and needs
to be implemented with sparse or randomized linear algebra, which are typically
less reliable and more expensive.

This difference becomes even more pronounced with preconditioning for linear
systems L(X) = B as in (9.47). As approximate inverse of L, the operator Q there
has typically high TT matrix rank and so the additional tangent space projector
in (9.47) is very beneficial compared to the seemingly more simpler truncated
preconditioned Richardson method

X+ = PM(X − t Q(L(X)− B)).

The numerical experiments from [65] confirm this behavior. For example, in Fig. 9.5
we see the convergence history when solving a Laplace-type equation with Newton
potential in the low-rank Tucker format, which has not been discussed, but illustrates
the same issue. Since the Newton potential is approximated by a rank 10 Tucker
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Fig. 9.6 Relative testing error in function of number of iterations (left) and time (right). For an
IHT algorithm (denoted “Hard”) and a Riemannian method (denoted by “geomCG”) for different
sampling sizes when solving the tensor completion problem. Picture taken from [64]

matrix, applying QL greatly increases the rank of the argument. Thanks to the
tangent space projections, the time per iteration is reduced significantly and there
is virtually no change in the number of iterations needed.

There is another benefit of Riemannian algorithms over more standard rank
truncated schemes. Thanks to the global smoothness of the fixed-rank manifoldsM,
it is relatively straightforward to accelerate manifold algorithms using non-linear
CG or BFGS, and perform efficient line search. For example, Fig. 9.6 compares
the Riemannian non-linear CG algorithm from [64] to a specific IHT algorithm
based on nuclear norm relaxation from [101] for the low-rank tensor completion
problem as explained in Sect. 9.6.3. We can see that the Riemannian algorithm
takes less iterations and less time. While this example is again for fixed-rank Tucker
tensors, the same conclusion is also valid for fixed-rank matrices and TT tensors;
see, e.g., [112, Fig. 5.1].

9.4.5 Convergence

Theoretical results for Riemannian optimization parallel closely the results from
Euclidean unconstrained optimization. In particular, with standard line search
or trust-region techniques, limit points are guaranteed to be critical points, and
additional Hessian information can enforce attraction to local minimal points;
see [2]. For example, when the initial point X1 is sufficiently close to a strict local
minimizerX∗ of f onM, Riemannian gradient descent will converge exponentially
fast. Specifically, if the Riemannian Hessian of f at X∗ has all positive eigenvalues
λp ≥ · · · ≥ λ1 > 0, then the iterates X� with exact line search satisfy the following
asymptotic Q-linear convergence rate [74]:
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lim
�→∞

‖X�+1 −X∗‖F
‖X� −X∗‖F = λp − λ1

λp + λ1
≤ 1 − κ, with κ = λ1

λp
.

With more practical line searches, like those that ensure the Armijo condition (9.43),
this rate deteriorates but remains 1−O(κ); see [2]. As in the Euclidean non-convex
case, non-asymptotic results that are valid for arbitrary X1 can only guarantee
algebraic rates; see [12]. If however X1 is in a region where f is locally convex,
then also fast exponential convergence is guaranteed; see [107]. Results of this kind
but specific to matrix completion are available in [117].

For particular problems, one can show that gradient schemes converge to the
global minimum when started at anyX1. The main idea is that, while these problems
are not convex, their optimization landscape is still favorable for gradient schemes
in the sense that all critical points are either strict saddle points or close to a global
minimum. Strict saddles are characterized as having directions of sufficient negative
curvature so that they push away the iterates of a gradient scheme that might be
attracted to such a saddle [76]. This property has been established in detail for matrix
sensing with RIP (restricted isometry property) operators, which are essentially
very well-conditioned when applied to low-rank matrices. Most of the results are
formulated for particular non-Riemannian algorithms (see, e.g., [90]), but landscape
properties can be directly applied to Riemannian algorithms as well; see [18, 110].
As far as we know, such landscape results have not been generalized to TT tensors
but related work on completion exists [93].

9.4.6 Eigenvalue Problems

Another class of optimization problems arises when computing extremal eigen-
values of Hermitian operators. This is arguably the most important application of
low-rank tensors in theoretical physics since it includes the problem of computing
ground-states (eigenvectors of minimal eigenvalues) of the Schrödinger equation.

The main idea is similar to the previous section. Suppose we want to compute
an eigenvector X ∈ V of a minimal eigenvalue of the Hermitian linear operator
H : V → V. Then, instead of minimizing the Rayleigh function on V, we restrict the
optimization space to an approximation manifold:

min ρ(X) = (X,H(X))F
(X,X)F

s.t. X ∈M.

Since f is homogeneous in X, the normalization (X,X)F = 1 can also be imposed
as a constraint:

min ρ̃(X) = (X,H(X))F s.t. X ∈ M̃ =M ∩ {X : (X,X)F = 1}.
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This intersection is transversal in cases whenM is a manifold of low-rank matrices
or tensors, so M̃ is again a Riemannian submanifold of V with a geometry very
similar to that ofM; see [91] for details on the matrix case. One can now proceed
and apply Riemannian optimization to either problem formulation.

Standard algorithms for eigenvalue problems typically do not use pure gradient
schemes. Thanks to the specific form of the problem, it is computationally feasible
to find the global minimum of ρ on a small subspace of V. This allows to enrich
the gradient direction with additional directions in order to accelerate convergence.
Several strategies of this type exist of which LOBPCG and Jacob–Davidson
have been extended to low-rank matrices and tensors. In particular, thanks to the
multilinear structure of the TT format, it is feasible to minimize globally over a
subspace in one of the TT cores. Proceeding in a sweeping manner, one can mimic
the Jacob–Davidson method to TT tensors; see [91, 92].

9.5 Initial Value Problems

Instead of approximating only a single (very large) matrix or tensor X by low
rank, we now consider the task of approximating a time-dependent tensor X(t)
directly by a low-rank tensor Y (t). The tensor X(t) is either given explicitly, or
more interesting, as the solution of an initial value problem (IVP)

•
X(t) = F(X(t)), X(t0) = X0 ∈ V, (9.48)

where
•
X means dX/dt . As it is usual, we assume that F is Lipschitz continuous

with constant �,

‖F(X)− F(Z)‖ ≤ � ‖X − Z‖ for all X,Z ∈ V, (9.49)

so that the solution to (9.48) exists at least on some interval [t0, T ]. We took
F autonomous, which can always be done by adding t as an extra integration
parameter. For simplicity, we assume that the desired rank for the approximation
Y (t) is known and constant. In most applications, it will be important however that
the numerical method that computes Y (t) is robust to overestimation of the rank
and/or allows for adapting the rank to improve the accuracy.

The aim is to obtain good approximations of X(t) on the whole interval [t0, T ].
This is usually done by computing approximations X� ≈ X(t0 + �h) with h the
time step. Classical time stepping methods for this include Runge–Kutta and BDF
methods. Sometimes, one is only interested in the steady-state solution, that is,X(t)
for t → ∞. This is for example the case for gradient flows, where F is the negative
gradient of an objective function f : V → R. The steady state solution of (9.48)
is then a critical point of f , for example, a local minimizer. However, in such
situations, it may be better to directly minimize f using methods from numerical
optimization as explained in Sect. 9.4.
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Fig. 9.7 Graphical depiction
of the dynamical low-rank
approximation Y (t) at time t

Y (t)Y (t)

X(t)
TY (t )

9.5.1 Dynamical Low-Rank Approximation

We now explain how to obtain a low-rank approximation to (9.48) without needing
to first solve for X(t). Given an approximation submanifoldM =Mk orM =Mk

of fixed-rank matrices or tensors, the idea is to replace
•
X in (9.48) by the tangent

vector inM that is closest to F(X); see also Fig. 9.7. It is easy to see that for the
Frobenius norm, this tangent vector is PX(F (X)) where PX : V → TXM is the
orthogonal projection. Applying this substitution at every time t , we obtain a new
IVP

•
Y (t) = PY (t)F (Y (t)), Y (t0) = Y0 ∈M, (9.50)

where Y0 = PM(X0) is a quasi-best approximation of X0 in M. In [59], the
IVP (9.50) (or its solution) is aptly called the dynamical low-rank approximation
(DLRA) of X(t). Thanks to the tangent space projection, the solution Y (t) will
belong to M as long as PY (t) exists, that is, until the rank of Y (t) drops. In the
following we assume that (9.50) can be integrated on [t0, T ].

The DLRA (9.50) can equivalently be defined in weak form as follows: find, for
each t ∈ [t0, T ], an element Y (t) ∈M such that

(
•
Y (t), Z)F = (F (Y (t)), Z)F for all Z ∈ TY(t)M, (9.51)

and Y (0) = Y0 ∈ M. Observe that this can be seen as a time-dependent Galerkin
condition since TY(t)M is a linear subspace that varies with t .

In the concrete case of low-rank matrices, DLRA appeared first in [59]. The same
approximation principle, called dynamically orthogonal (DO), was also proposed
in [94] for time-dependent stochastic PDEs. It was shown in [32, 83] that DO
satisfies (9.50) after discretization of the stochastic and spatial domain. In theoretical
physics, the time-dependent variational principle (TDVP) from [41] seems to be the
first application of DLRA for simulating spin systems with uniform MPS, a variant
of TT tensors. It is very likely similar ideas appeared well before since obtaining
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approximations in a manifold from testing with tangent vectors as in (9.51) goes
back as far as 1930 with the works of Dirac [22] and Frenkel [33]. We refer to [69]
for a mathematical overview of this idea in quantum physics.

9.5.2 Approximation Properties

The local error at t of replacing (9.48) by (9.50) is minimized in Frobenius norm by
the choice

•
Y ; see also Fig. 9.7. In order to quantity the effect of this approximation

on the global error at the final time T , the simplest analysis is to assume as in [57, 58]
that the vector field F is ε close to the tangent bundle ofM, that is,

‖F(Y (t))− PY (t)F (Y (t))‖F ≤ ε for all t ∈ [t0, T ].

A simple comparison of IVPs then gives

‖Y (t)−X(t)‖F ≤ eλt δ + (eλt − 1)λ−1ε = O(ε + δ), (9.52)

where ‖X0 − Y0‖F ≤ δ and λ is a one-sided Lipschitz constant of F satisfying8

(X − Z,F(X)− F(Z))F ≤ λ ‖X − Z‖2
F for all X,Z ∈ V.

From (9.52), we observe that Y (t) is guaranteed to be a good approximation ofX(t)
but only for (relatively) short time intervals when λ > 0.

Alternatively, one can compare Y (t)with a quasi-best approximation Yqb(t) ∈M
to X(t). Assuming Yqb(t) is continuously differentiable on [t0, T ], this can be done
by assuming thatM is not too curved along Yqb(t). In the matrix case, this means
that the kth singular value of Yqb(t) is bounded from below, i.e., there exists ρ > 0
such that σk(Yqb(t)) ≥ ρ for t ∈ [t0, T ]. Now a typical result from [59] is as follows:

Let F be the identity operator and assume ‖ •
X(t)‖F ≤ c and ‖X(t) − Yqb(t)‖F ≤

ρ/16 for t ∈ [t0, T ]. Then,

‖Y (t)− Yqb(t)‖F ≤ 2βeβt
∫ t

0
‖Yqb(s)−X(s)‖F ds with β = 8cρ−1

for t0 ≤ t ≤ min(T , 0.55β−1). Hence, the approximation Y (t) stays close to Yqb(t)

for short times. We refer to [59] for additional results that also include the case of
F not the identity. Most of the analysis was also extended to manifolds of fixed
TT rank (as well as to Tucker and hierarchical) tensors in [60, 73] and to Hilbert
spaces [83].

8We remark that λ can be negative and is bounded from above by � from (9.49).
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We remark that these a-priori results only hold for (very) short times. In practice,
they are overly pessimistic and in actual problems the accuracy is typically much
higher than theoretically predicted; see [57, 71, 72, 83, 94], and the numerical
example from Fig. 9.8 further below.

9.5.3 Low-Dimensional Evolution Equations

The dynamical low-rank problem (9.50) is an IVP that evolves on a manifoldM of
fixed-rank matrices or tensors. In relevant applications, the rank will be small and
hence we would like to integrate (9.50) by exploiting thatM has low dimension.

Let us explain how this is done for m × n matrices of rank k, that is, for the
manifoldMk . Then rank(Y (t)) = k and we can write Y (t) = U(t)S(t)V (t)T where
U(t) ∈ Rm×k and V (t) ∈ Rm×k have orthonormal columns and S(t) ∈ Rk×k . This
is an SVD-like decomposition but we do not require S(t) to be diagonal. The aim is
now to formulate evolution equations for U(t), S(t), and V (t).

To this end, recall from (9.10) that for fixed U, S, V every tangent vector
•
Y has

a unique decomposition
•
Y = •

USV T + U •
SV T + US •

V T with UT
•
U = 0, V T

•
V = 0.

Since
•
Y = PY (F (Y )), we can isolate

•
U,

•
S,

•
V by applying (9.12) with Z = F(Y ).

The result is a new IVP equivalent to (9.50) but formulated in the factors:
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

•
U = (I − UUT )F (Y )V S−1,

•
S = UT F(Y )V,

•
V = (I − VV T )F (Y )T US−T .

(9.53)
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Fig. 9.8 Errors of the dynamical low-rank approximation for (9.55) integrated by a standard
explicit Runge–Kutta scheme for (9.53) and the projector-splitting integrator (9.58). Picture taken
from [58]. Copyright 2016 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved
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(Here, U, S, V all depend on t .) Observe that this is a set of coupled non-linear
ODEs, parametrized using (m+ n)k + k2 entries.

The ODE (9.53) appeared in [59, Prop. 2.1]. For DO [94], one uses the
parametrization Y (t) = U(t)M(t)T where only U has orthonormal columns and
obtains

⎧

⎨

⎩

•
U = (I − UUT )F (UMT )M(MTM)−1,

•
M = F(UMT )T U.

(9.54)

These two coupled non-linear ODEs are very similar to (9.53) with respect to
theoretical and numerical behavior. In particular, they also involve the normalization
condition UT

•
U = 0 and an explicit inverse (MTM)−1.

The derivation of these ODEs can be generalized to TT tensors with factored and
gauged parametrizations for the tangent vectors. The equations are more tedious to
write down explicitly, but relatively easy to implement. We refer to [73] for details.
See also [4, 60] for application to the (hierarchical) Tucker tensor format.

For matrices and for tensors, the new IVPs have the advantage of being
formulated in low dimensional parameters. However, they both suffer from a major
problem: the time step in explicit methods needs to be in proportion to the smallest
positive singular value of (each unfolding) of Y (t). If these singular values become
small (which is typically the case, since the DLRA approach by itself is reasonable
for those applications where the true solution exhibits fast decaying singular values),
Eq. (9.53) is very stiff. The presence of the terms S−1 in (9.53) and (MTM)−1

in (9.54) already suggests this and numerical experiments make this very clear. In
Fig. 9.8, we report on the approximation errors for DLRA applied to the explicit
time-dependent matrix

A(t) = exp(tW1) exp(t)D exp(tW2), 0 ≤ t ≤ 1, (9.55)

withW1,W2 being skew-symmetric of size 100×100 andD a diagonal matrix with
entries 2−1, · · · , 2−100; see [58] for details. The left panel shows the results of a
Runge–Kutta method applied to the resulting system (9.53). The method succeeds
in computing a good low-rank approximation when the step size h is sufficiently
small, but becomes unstable when h is larger than the smallest singular value of
Y (t). Due to this step-size restriction it hence becomes very expensive when aiming
for accurate low-rank approximations. See also [57, Fig. 3] for similar results.

One solution would be to use expensive implicit methods or an ad-hoc regular-
ization of S−1. In the next subsection, a different approach is presented that is based
on a splitting of the tangent space projector, and is robust to small singular values.

9.5.4 Projector-Splitting Integrator

Instead of immediately aiming for an ODE in the small factors U, S, V , the idea
of the splitting integrator of [71] is to first apply a Lie splitting to the orthogonal
projector PY in
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•
Y (t) = PY (t)F (Y (t)), Y (t0) = Y0 ∈M, (9.56)

and then—thanks to some serendipitous observation—obtain low dimensional
ODEs at a later stage. For instance, in the matrix case, as stated in (9.9), the projector
can be written as

PY (Z) = ZVV T − UUT ZVV T + UUT V with Y = USV T . (9.57)

When we integrate each of these three terms consecutively (labeled a, b, c) from t0
to t1 = t0 + h, we obtain the following scheme (all matrices depend on time):

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

•
Ya = F(Ya)VaV

T
a , Ya(t0) = Y0 = UaSaV

T
a ,

•
Yb = −UbUTb F (Yb)VbV Tb , Yb(t0) = Ya(t1) = UbSbV

T
b ,

•
Yc = UcU

T
c F (Yc), Yc(t0) = Yb(t1) = UcScV

T
c .

(9.58)

Here, all Ux and Vx are matrices with orthonormal columns. Observe the minus
sign for Yb. The result Yc(t1) is an O(h2) approximation to Y (t1). We then repeat
this scheme starting at Yc(t1) and integrate from t1 to t2 = t1 + h, and so on. By
standard theory for Lie splittings, this scheme is first-order accurate for (9.56), that
is, ‖Yc(T )− Y (T )‖F = O(h) where T = �h.

To integrate (9.58) we will first write it using much smaller matrices. To this end,
observe that with exact integration Ya(t1) ∈ Mk since

•
Ya ∈ TYaMk and Ya(t0) ∈

Mk . Hence, we can substitute the ansatz Ya(t) = Ua(t)Sa(t)Va(t)
T in the first

substep and obtain

•
Ya = d

dt
[Ua(t)Sa(t)]Va(t)T + Ua(t)Sa(t)

•
Va(t)

T = F(Ya(t))Va(t)Va(t)
T .

Judiciously choosing
•
Va(t) = 0, we can simplify to

Va(t) = Va(t0),
d

dt
[Ua(t)Sa(t)] = F(Ya(t))Va(t0).

Denoting K(t) = Ua(t)Sa(t), the first substep is therefore equivalent to

•
K(t) = F(K(t)Va(t0)

T )Va(t0), K(t0) = Ua(t0)S(t0). (9.59)

Contrary to the earlier formulation, this is an IVP for an n × k matrix K(t). The
orthonormal matrix Ub for the next substep can be computed in O(nk2) work by a
QR decomposition of K(t1).

The second and third substeps can be integrated analogously in terms of evolution
equations only for Sb(t) and Lc(t) = Vc(t)Sc(t). Also note that we can take Vb =
Va and Uc = Ub. We thus get a scheme, called KSL, that integrates in order K , S,
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and L. A second-order accurate scheme is the symmetric Strang splitting: one step
consists of computing the K , S, L substeps for F with h/2 and afterwards the L, S,
K substeps for the adjoint of F with h/2.

In both versions of the splitting scheme, care must be taken in the integration of
the substeps since they are computationally the most expensive part. Fortunately, the
ODEs in the substeps are formally of the same form as the original equation for the
vector field F(Y ) since the projected subspace is constant; see, e.g., Va(t0) in (9.59).
This means that one can usually adapt specialized integrators for F(Y ). In [28], for
example, the substeps arising from the Vlasov–Poisson equations in plasma physics
(see also Sect. 9.6.5) can be integrated by spectral or semi-Lagrangian methods. In
addition, when F is linear and has low TT matrix rank, the large matrixK(t)Va(t0)T

in (9.59), for example, does not need to be formed explicitly when evaluating F . As
illustration, for the Lyapunov operator F(Z) = LZ + ZLT , the equation for K
becomes

•
K(t) = F(K(t)Va(t0)

T )Va(t0) = LK(t)+K(t)La, La = Va(t0)
T LVa(t0)

where L ∈ Rn×n is large but usually sparse, and La ∈ Rk×k is small. Hence, an
exponential integrator with a Krylov subspace method is ideally suited to integrate
K(t); see, e.g., [70].

Let us finish by summarizing some interesting properties of the splitting integra-
tor for matrices. Let Y� be the solution after � steps of the scheme explained above
with step size h. For simplicity, we assume that each substep is solved exactly (or
sufficiently accurately). Recall that X(t) is the solution to the original ODE (9.48)
that we approximate with the dynamical low-rank solution Y (t) of (9.50).

(a) Exactness [71, Thm. 4.1]: If the solution X(t) of the original ODE lies onMk ,
then Y� = X(t�) when F equals the identity.

(b) Robustness to small singular values [58, Thm. 2.1]: There is no step size
restriction due to small singular values. Concretely, under the same assumptions
that lead to (9.52), the approximation error satisfies

‖Y� −X(t0 + �h)‖F ≤ C(δ + ε + h) for all �, h such that t0 + �h ≤ T

where C only depends on F and T . Observe that this only introduced the time
step error h. For the integration error ‖Y�−Y (t0 +�h)‖F , a similar bound exists
in [71, Thm. 4.2] but it requires rather technical assumptions on F .

(c) Norm and energy conservation [70, Lemma 6.3]: If the splitting scheme is
applied to complex tensors for a Hamiltonian problem F(X) = −iH(X) with
complex HermitianH , the Frobenius norm and energy are preserved:

‖Y�‖F = ‖Y0‖F and 〈Y�,H(Y�)〉F = 〈Y0,H(Y0)〉F for all n.

In the case of real tensors, the norm is preserved if 〈F(Y ), Y 〉F = 0.
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Property (a) does not seem very useful but it is key to showing the much more
relevant property (b). All three properties are not shared when solving (9.53) by a
standard integrator, like explicit Runge–Kutta. Even more, properties (a) and (b) are
also lost for a different ordering of the splitting scheme, like KLS, even though that
would still result in a first-order scheme. We remark that these properties also hold
for the solution Y (t) of the continuous problem by (formally) replacing h by 0.

To extend the idea of projector splitting to TT tensors Y (t) ∈ Mk, the correct
splitting of the tangent space projector PY : V → TYMk has to be determined. The
idea in [72] is to take the sum expression (9.39) and split it as

PY = P+
1 − P−

1 + P+
2 − P−

2 · · · − P−
d−1 + P+

d (9.60)

where

P+
μ(Z) = P≤μ−1(P≥μ+1(Z)) and P−

μ(Z) = P≤μ(P≥μ+1(Z)).

Observe that P±
μ depends on Y and that this splitting reduces to the matrix case

in (9.57) when d = 2. The projector-splitting integrator for TT is now obtained by
integrating each term in (9.60) from left to right:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

•
Y+

1 = P+
1 (F (Y

+
1 )), Y+

1 (t0) = Y0,

•
Y−

1 = −P−
1 (F (Y

−
1 )), Y−

1 (t0) = Y+
1 (t1),

•
Y+

2 = P+
2 (F (Y

+
2 )), Y+

2 (t0) = Y−
1 (t1),

...
...

•
Y+
d = P+

d (F (Y
+
d )), Y+

d (t0) = Y−
d−1(t1).

(9.61)

Quite remarkably, this splitting scheme for TT tensors shares many of the important
properties from the matrix case. In particular, it allows for an efficient integration
since only one core varies with time in each substep (see [72, Sec. 4]) and it is robust
to small singular values in each unfolding (see [58, Thm. 3.1]). We refer to [42] for
more details on its efficient implementation and its application to quantum spin
systems in theoretical physics.

9.6 Applications

In this section, we explain different types of problems that have been solved by
low-rank matrix and tensor methods in the literature. We will in particular focus on
problems that can be approached by the geometry-oriented methods considered in
this chapter, either via optimization on low-rank manifolds or via dynamical low-
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rank integration. Our references to the literature are meant to give a broad and recent
view of the usefulness of these methods, but we do not claim they are exhaustive.

9.6.1 Matrix Equations

In control and systems theory (see, e.g., [3]), a number of applications requires
solving the following types of matrix equations:

Lyapunov: AX +XAT = C,

Sylvester: AX +XB = C,

Riccati: AX +XAT +XBX = C.

(9.62)

Here,A,B,C are given matrices andX is the unknown matrix (of possible different
size in each equation). The first two equations are linear, whereas the second is
quadratic. For simplicity, we assume that these equations are uniquely solvable but
there exist detailed results about conditions for this.

In large-scale applications, the matrix X is typically dense and too large to store.
Under certain conditions, one can prove that X has fast decaying singular values
and can thus be well approximated by a low-rank matrix; see [102] for an overview.
For the linear equations, one can then directly attempt the optimization strategy
explained in Sect. 9.4.2 and minimize the residual function or the energy-norm error.
The latter is preferable but only possible when A and B are symmetric and positive
definite; see [111] for a comparison. If the underlying matrices are ill-conditioned,
as is the case with discretized PDEs, a simple Riemannian gradient scheme will
not be effective and one needs to precondition the gradient steps or perform a
quasi-Newton method. For example, in case of the Lyapunov equation, it is shown
in [113] how to efficiently solve the Gauss–Newton equations for the manifold
Mk . If the Riccati equation is solved by Newton’s method, each step requires
solving a Sylvester equation [102]. When aiming for low-rank approximations,
the latter can again be solved by optimization on Mk; see [81]. We remark that
while most methods for calculating low-rank approximations to (9.62) are based on
Krylov subspaces and rational approximations, there exists a relation between both
approaches; see [11].

The matrix equations from above have direct time-dependent versions. For
example, the differential Riccati equation is given by

•
X(t) = AX(t)+X(t)AT +G(t,X(t)), X(t0) = X0, (9.63)

whereG(t,X(t)) = C−X(t)BX(t). Uniqueness of the solution X(t) for all t ≥ t0
is guaranteed when X0, C, and B are symmetric and positive semi-definite [21].
In optimal control, the linear quadratic regulator problem with finite time horizon
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requires solving (9.63). In the large-scale case, it is typical that X0 and C are low
rank and it has been observed [20, 76] that X(t) has then fast decaying singular
values, even on infinite time horizons.

Other examples are the differential Lyapunov equation (G(t,X) = 0) and the
generalized differential Riccati equation (G(t,X(t)) = C + ∑J

j=1D
T
j X(t)Dj −

X(t)BX(t)); see, e.g. [20, 75], for applications. When matrices are large, it is
important to exploit that applying the right hand side in (9.63) does not increase
the rank of X(t) too much, which is guaranteed here, if J is not too large and the
matrix C is of low rank. In [89] a low-rank approximation to X(t) is obtained with
the dynamical low-rank algorithm. Like in the time-independent case, discretized
PDEs might need special treatment to cope with the stiff ODEs. In particular, an
exponential integrator can be combined with the projector-splitting integrator by
means of an additional splitting of the vector field for the stiff part; see [89] for
details and analysis.

9.6.2 Schrödinger Equation

Arguably the most typical example involving tensors of very high order is the time-
dependent Schrödinger equation,

•
ψ = −iH(ψ),

where H is a self-adjoint Hamiltonian operator acting on a (complex-valued) multi-
particle wave function ψ(x1, . . . , xd , t) with xμ ∈ Rp, p ≤ 3. This equation is
fundamental in theoretical physics for the simulation of elementary particles and
molecules. Employing a Galerkin discretization with i = 1, . . . , nμ basis functions

ϕ
(μ)
i in each mode μ = 1, . . . , d, the wave function will be approximated as

ψ(x1, . . . , xd, t) ≈
n1∑

i1

· · ·
nd∑

id

X(i1, . . . , id ; t) ϕ(1)i1 (x1) · · ·ϕ(d)id (xd).

By regarding the unknown complex coefficient X(i1, . . . , id ; t) as the (i1, . . . , id )th
element of the time-dependent tensorX(t) of size n1 ×· · ·×nd , we obtain the linear
differential equation

•
X(t) = −iH(X(t)) (9.64)

where H is the Galerkin discretization of the Hamiltonian H. More complicated
versions of this equation allow the Hamiltonian to be time-dependent.

The size of the tensor X(t) will be unmanageable for large d but, fortunately,
certain systems allow it to be approximated by a low-rank tensor. For example,
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Fig. 9.9 Spectrum computed
by the second-order splitting
integrator and by the
MCTDH package. Picture
taken from [72]. Copyright
2015 Society for Industrial
and Applied Mathematics.
Reprinted with permission.
All rights reserved
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in the multilayer multiconfiguration time-dependent Hartree model (ML-MCDTH)
in [78, 116] for simulating quantum dynamics in small molecules, the wave func-
tions are approximated by hierarchical Tucker tensors. Spin systems in theoretical
physics, on the other hand, employ the TT format and can simulate systems of very
large dimension (since nμ are small); see [97] for an overview. For both application
domains, the solution of (9.64) can be obtained by applying dynamical low-rank;
see, e.g., [77] for MCDTH and [41] for spin systems.

Numerical experiments for (9.64) with the Henon–Heiles potential were per-
formed in [72]. There the second-order splitting integrator with a fixed time step
h = 0.01 and a fixed TT rank of 18 was compared to an adaptive integration of
the gauged ODEs, similar to (9.53). In particular, the ML-MCDTH method [10]
was used in the form of the state-of-the art code mcdth v8.4. Except for the
slightly different tensor formats (TT versus hierarchical Tucker) all other modeling
parameters are the same. For similar accuracy, a 10 dimensional problem is
integrated by mcdth in 54 354 s, whereas the TT splitting integrator required only
4425 s. The reason for this time difference was mainly due to the ill conditioned
ODEs in the gauged representation. In addition, there was no visible difference in
the Fourier transform of the auto-correlation functions; see Fig. 9.9.

There is an interesting link between the computation of the ground state
(eigenvector of the minimal eigenvalue) ofH via the minimization of the Rayleigh
quotient

ρ(X) = (X,H(X))F
(X,X)F

and so-called imaginary time evolution [41] for a scaled version of (9.64) that
conserves unit norm. The latter is a formal way to obtain a gradient flow for ρ(X)
using imaginary time τ = −it by integrating
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•
X = −H(X)+ (X,H(X))F X.

For both approaches, we can approximate their solutions with low-rank tensors,
as we explained before, either via optimization or dynamical low rank on Mk.
However, methods based on optimization of the multilinear TT representation of X
remain the more popular approach since they easily allow to reuse certain techniques
from standard eigenvalue problems, like subspace corrections, as is done in the
DMRG [118] or AMEn [23, 63] algorithm.

For an overview on tensor methods in quantum physics and chemistry we refer
to [51, 97, 105].

9.6.3 Matrix and Tensor Completion

Let � ⊂ {1, . . . , m} × {1, . . . , n} be a sampling set. The problem of matrix
completion consists of recovering an unknown m × n matrix M of rank k based
only on the values M(i, j) for all (i, j) ∈ �. Remarkably, this problem has a
unique solution if |�| ≈ O(dimMk) = O(k(m+n)) and under certain randomness
conditions on � and M; see [14]. If the rank k is known, this suggests immediately
the strategy of recovering M by minimizing the least-squares fit

f (X) =
m
∑

i=1

n
∑

j=1

(X(i, j)−M(i, j))2 = ‖P�(X −M)‖2
F

on the manifold Mk , where P� is the orthogonal projection onto matrices that
vanish outside of �. Since P� is well-conditioned onMk when the iterates satisfy
an incoherence property, the simple Riemannian gradient schemes that we explained
above perform very well in recoveringM; see, e.g., [82, 112].

The problem of matrix completion can be generalized to tensors, and Riemannian
methods for tensor completion have been developed for the Tucker format in [64],
and for the TT format in [103].

In addition, instead of element-wise sampling, the observations can also be
constructed from a general linear operator S : V → Rq . This problem remains well-
posed under certain randomness conditions on S and also Riemannian optimization
performs well if applied to the least-square version of the problem for which
L = STS; see [117].

9.6.4 Stochastic and Parametric Equations

Other interesting applications for low-rank tensors arise from stochastic or paramet-
ric PDEs [7, 9, 24, 26, 31, 54, 55]. For simplicity, suppose that the system matrix of
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a finite-dimensional linear system Ax = b of equations depends on p parameters
ω(1), . . . , ω(p), that is,

A(ω(1), . . . , ω(p)) x(ω(1), . . . , ω(p)) = b. (9.65)

One might be interested in the solution x ∈ Rn for some or all choices of parameters,
or, in case the parameters are random variables, in expectation values of certain
quantities of interest.

By discretizing each parameter ω(μ) with mμ values, we can gather all the
m1 · · ·mp solution vectors x into one tensor

[X(j, i1, . . . , ip)] = [xj (ω(1)i1 , . . . , ω
(p)
ip
)]

of order p + 1 and size n × m1 × · · · × mp. When A depends analytically on
ω = (ω(1), . . . , ω(p)), the tensor X can be shown [62] to be well approximated
by low TT rank and it satisfies a very large linear system L(X) = B. If L is a
TT matrix of low rank, we can then approximate X on Mk by the optimization
techniques we discussed in Sect. 9.4. This is done, for example, in [65] with an
additional preconditioning of the gradient.

A similar situation arises for elliptic PDEs with stochastic coefficients. After
truncated Karhunen–Loève expansion, one can obtain a deterministic PDE of the
same form as (9.65); see [106]. The following time-dependent example with random
variable ω,

∂tψ + v(t, x;ω) · ∇ψ = 0, ψ(0, x) = x,

was solved by dynamical low-rank in [32].

9.6.5 Transport Equations

Transport equations describe (densities of) particles at position x ∈ Rp and velocity
v ∈ Rp. They are typically more challenging to integrate than purely diffusive
problems. For example, the Vlasov equation

∂tu(t, x, v)+ v · ∇xu(t, x, v)− F(u) · ∇vu(t, x, v) = 0 (9.66)

is a kinetic model for the density u of electrons in plasma. The function F is a
nonlinear term representing the force. These equations can furthermore be coupled
with Maxwell’s equations resulting in systems that require specialized integrators to
preserve conservation laws in the numerical solution. After spatial discretization on
a tensor product grid, Eq. (9.66) becomes a differential equation for a large tensor of
order d = 6. In the case of the Vlasov–Poisson and Vlasov–Maxwell equations, [28,
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30] show the splitting integrator gives very good approximations with modest TT
rank, even over relatively large time intervals. In addition, the numerical integration
of the substeps can be modified to ensure better preservation of some conservation
laws; see [29, 30].

Similar approaches appear for weakly compressible fluid flow with the Boltz-
mann equation in [27] and stochastic transport PDEs in [32]. The latter also shows
that numerical filters can be used in combination with dynamical low-rank to
successfully reduce artificial oscillations.

9.7 Conclusions

In this chapter we have shown how the geometry of low-rank matrices and TT
tensors can be exploited in algorithms. We focused on two types of problems:
Riemannian optimization for solving large linear systems and eigenvalue problems,
and dynamical low-rank approximation for initial value problems. Our aim was
to be sufficiently explanatory without sacrificing readability and we encourage the
interested reader to refer to the provided references for a more in depth treatment of
these subjects.

Several things have not been discussed in this introductory chapter. The most
important issue is arguably the rank adaptation during the course of the algorithms
to match the desired tolerance at convergence. For this, truncation of singular values
with a target error instead of a target rank can be used both for matrices and
TT tensors, but from a conceptual perspective such an approach is at odds with
algorithms that are defined on manifolds of fixed rank matrices or tensors. However,
it is possible to combine geometric methods with rank adaptivity as in [109] for
greedy rank-one optimization and in [42] for a two-site version of the splitting
scheme for time integration, yet many theoretical and implementation questions
remain. Other important topics not covered are the problem classes admitting a-
priori low-rank approximability [19, 44], the application of low-rank formats to
seemingly non-high dimensional problems like quantized TT (QTT) [52, 53], the
efficient numerical implementation of truly large-scale and stiff problems, schemes
with guaranteed and optimal convergence as in [5], and more general tensor
networks like PEPS [114].
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Abstract Very generally speaking, statistical data analysis builds on descriptors
reflecting data distributions. In a linear context, well studied nonparametric descrip-
tors are means and PCs (principal components, the eigenorientations of covariance
matrices). In 1963, T.W. Anderson derived his celebrated result of joint asymptotic
normality of PCs under very general conditions. As means and PCs can also be
defined geometrically, there have been various generalizations of PC analysis (PCA)
proposed for manifolds and manifold stratified spaces. These generalizations play
an increasingly important role in statistical dimension reduction of non-Euclidean
data. We review their beginnings from Procrustes analysis (GPA), over principal
geodesic analysis (PGA) and geodesic PCA (GPCA) to principal nested spheres
(PNS), horizontal PCA, barycentric subspace analysis (BSA) and backward nested
descriptors analysis (BNDA). Along with this, we review the current state of the
art of their asymptotic statistical theory and applications for statistical testing,
including open challenges, e.g. new insights into scenarios of nonstandard rates and
asymptotic nonnormality.
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10.1 Introduction

The mean and the covariance are among the most elementary statistical descriptors
describing a distribution in a nonparametric way, i.e. in the absence of a distribu-
tional model. They can be used for dimension reduction and for statistical testing
based on their asymptotics. Extending these two quantities to non-Euclidean random
deviates and designing statistical methods for these has been the subject of intense
research in the last 50 years, beginning with Procrustes analysis introduced by
Gower [23] and the strong law of large numbers for Fréchet means by Ziezold [51].
This chapter intends to provide a brief review of the development of this research
until now and to put it into context.

We begin with the Euclidean version including classical PCA, introduce the
more general concept of generalized Fréchet ρ-means, their strong laws and recover
general Procrustes analysis (GPA) as a special case. Continuing with principal
geodesic analysis we derive a rather general central limit theorem for generalized
Fréchet ρ-means and illustrate how to recover from this Anderson’s asymptotic
theorem for the classical first PC and the CLT for Procrustes means. Next, as
another application of our CLT we introduce geodesic principal component analysis
(GPCA), which, upon closer inspection, turns out to be a nested descriptor. The
corresponding backward nested descriptor analysis (BNDA) requires a far more
complicated CLT, which we state. We put the rather recently developed methods of
principal nested spheres (PNS), horizontal PCA and barycentric subspace analysis
(BSA) into context and conclude with a list of open problems in the field.

10.2 Some Euclidean Statistics Building on Mean
and Covariance

Asymptotics and the Two-Sample Test

Let X1, . . . , Xn
i.i.d.∼ X be random vectors in RD , D ∈ N, with existing population

mean E[X]. Denoting the sample mean by

X̄n = 1

n

n
∑

j=1

Xj ,

the strong law of large numbers (SLLN) asserts that (e.g. [8, Chapter 22])

X̄n
a.s.→ E[X] .

Upon existence of the second moment E[‖X‖2], the covariance cov[X] exists and
the central limit theorem (CLT) asserts that the fluctuation between sample and
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population mean is asymptotically normal (e.g. [14, Section 9.5]), namely that

√
n
(

X̄n − E[X]) D→ N
(

0, cov[X]) . (10.1)

Using the sample covariance

 ̂ = 1

n− 1

n
∑

j=1

(Xj − E[X])(Xj − E[X])T

as a plugin estimate for cov[X] in (10.1), asymptotic confidence bands for E[X] can
be obtained as well as corresponding tests.

A particularly useful test is the two-sample test, namely that for random vectors

X1, . . . , Xn
i.i.d.∼ X in RD and independent random vectors Y1, . . . , Ym

i.i.d.∼ Y in RD

with full rank population and sample covariance matrices, cov[X] and cov[Y ],  ̂Xn
and  ̂Ym, respectively,

T 2 = n+m−2
1
n
+ 1
m

(X̄n−Ȳm)T
(

(n−1) ̂Xn + (m− 1) ̂Ym
)−1

(X̄n − Ȳm) (10.2)

follows a Hotelling distribution if X and Y are multivariate normal, cf. [40, Section
3.6.1]. More precisely, T 2 nm(n+m−D−1)

(n+m)(n+m−2)D follows a FD,n+m−D−1-distribution.
Remarkably, this holds also asymptotically under nonnormality of X and Y , if
cov[X] = cov[Y ] or n/m→ 1, cf. [45, Section 11.3].

Principal Component Analysis (PCA)

Consider again random vectors X1, . . . , Xn
i.i.d.∼ X in RD , D ∈ N, with sample

covariance matrix  ̂ and existing population covariance  = cov[X]. Further
let  = ���T and  ̂ = �̂�̂�̂T be spectral decompositions, i.e. � =
(γ1, . . . , γD), �̂ = (γ̂1, . . . , γ̂D) ∈ SO(D) and � = diag(λ1, . . . , λD), �̂ =
diag(λ̂1, . . . , λ̂D) with λ1 ≥ . . . λD ≥ 0 and λ̂1 ≥ . . . λ̂D ≥ 0, respectively.
Then the vectors γj (j = 1, . . . , D) are called population principal components
and γ̂j (j = 1, . . . , D) are called sample principal components, abbreviated as
PCs. These PCs can be used for dimension reduction, namely considering instead
of X1, . . . , Xn ∈ RD their projections, also called scores,

(

XT1 γ̂j

)J

j=1
, . . . ,

(

XTn γ̂j

)J

j=1
∈ RJ ,

to the first 1 ≤ J ≤ D PCs. The variance explained by the first J PCs is

λ̂1 + . . .+ λ̂J .

Due to the seminal result by Anderson [1], among others, there is a CLT for γ̂j
(1 ≤ j ≤ D), stating that if X is multivariate normal,  > 0 and λj simple,
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√
n(γ̂j − γj ) D→ N

⎛

⎝0,
D
∑

j �=k=1

λjλk

λj − λk γkγ
T
k

⎞

⎠ . (10.3)

Here, we have assumed, w.l.o.g., that γ Tj γ̂j ≥ 0.
This CLT has been extended to nonnormal X with existing fourth moment

E[‖X‖4] by Davis [11] with a more complicated covariance matrix in (10.3). With
little effort we reproduce the above result in Corollary 10.4 for j = 1 in the context
of generalized Fréchet ρ-means.

10.3 Fréchet ρ-Means and Their Strong Laws

What is a good analog to E[X] when data are no longer vectors but points on a
sphere, as are principal components, say? More generally, one may want to statis-
tically assess points on manifolds or even on stratified spaces. For example, data
on stratified spaces are encountered in modeling three-dimensional landmark-based
shapes by Kendall [36] (cf. Sect. 10.4) or in modeling phylogenetic descendants
trees in the space introduced by Billera et al. [7].

For a vector-valued random variableX in RD , upon existence of second moments
E[‖X‖2] note that,

E[X] = argmin
x∈RD

E
[

‖X − x‖2
]

.

For this reason, [21] generalized the classical Euclidean expectation to random
deviates X taking values in a metric space (Q, d) via

E(X) = argmin
q∈Q

E
[

d(X, q)2
]

. (10.4)

In contrast to the Euclidean expectation, E(X) can be set-valued, as is easily seen
by a symmetry argument for Q = SD−1 equipped with the spherical metric d and
X uniform on SD−1. Then E(X) = SD−1.

Revisiting PCA, note that PCs are not elements of the data space Q = RD but
elements of SD−1, or more precisely, elements of real projective space of dimension
D − 1

RPD−1 = {[x] : x ∈ SD−1} = SD−1/S0 with [x] = {−x, x} .

Moreover, the PCs (as elements in SD−1) are also solutions to a minimization
problem, e.g. for the first PC we have
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γ1 ∈ argmin
γ∈SD−1

(

var[X] − γ T cov[X]γ
)

. (10.5)

Since var[X] − γ T cov[X]γ = E
[

‖X − γ T Xγ ‖2
]

, in case of E[X] = 0, this

motivates the following distinction between data space and descriptor space leading
to Fréchet ρ-means.

Definition 10.1 (Generalized Fréchet Means) Let Q,P be topological spaces
and let ρ : Q× P → R be continuous. We call Q the data space, P the descriptor

space and ρ the link function. Suppose that X1, . . . , Xn
i.i.d.∼ X are random elements

onQ with the property that

F(p) = E[ρ(X, p)2], Fn(p) = 1

n

n
∑

j=1

ρ(Xj , p)
2 ,

called the population and sample Fréchet functions, are finite for all p ∈ P . Every
minimizer of the population Fréchet function is called a population Fréchet mean
and every minimizer of the sample Fréchet function is called a sample Fréchet mean.
The corresponding sets are denoted by

E = argmin
p∈P

F (p), En = argmin
p∈P

Fn(p) . ��

Remark By construction, En and E are closed sets, but they may be empty without
additional assumptions. ��

For the following we require that the topological space P is equipped with a loss
function d, i.e.

1. d : P × P → [0,∞), is a continuous function
2. that vanishes only on the diagonal, that is d(p, p′) = 0 if and only if p = p′.

We now consider the following two versions of a set valued strong law,

∞
⋂

n=1

⋃

k=n
Ek ⊆ E a.s. (10.6)

∀ε > 0 ∃N ∈ N such that En ⊆ {p ∈ P : d(E, p) < ε} ∀n ≥ N a.s. (10.7)

In (10.7), N is random as well.
Ziezold [51] established (10.6) for separable P = Q and ρ = d a quasi-metric.

Notably, this also holds in case of voidE. Bhattacharya and Patrangenaru [5] proved
(10.7) under the additional assumptions that E �= ∅, ρ = d is a metric and P =
Q satisfies the Heine–Borel property (stating that every closed bounded subset is
compact). Remarkably, (10.6) implies (10.7) for compact spaces P ; this has been
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observed by Bhattacharya and Patrangenaru [5, Remark 2.5] for P = Q and ρ = d

a metric and their argument carries over at once to the general case.
For generalized Fréchet ρ-means we assume the following strongly relaxed

analogs of the triangle inequality for (quasi-)metrics.

Definition 10.2 LetQ,P be topological spaces with link function ρ and let d be a
loss function on P . We say that (ρ, d) is uniform if

∀p ∈ P, ε > 0 ∃δ = δ(ε, p) > 0 such that

|ρ(x, p′)− ρ(x, p)| < ε ∀x ∈ Q,p′ ∈ P with d(p, p′) < δ.

Further, we say that (ρ, d) is coercive, if ∀p0, p
∗ ∈ P and pn ∈ P with

d(p∗, pn)→ ∞,

d(p0, pn)→ ∞ and ∃C > 0 such that

ρ(x, pn)→ ∞ ∀x ∈ Q with ρ(x, p0) < C

Theorem ([27]) With the notation of Definition 10.1 we have (10.6) if (ρ, d)
is uniform and P is separable. If additionally (ρ, d) is coercive, E �= ∅ and
∩∞
n=1∪k=nEk satisfies the Heine Borel property with respect to d then (10.7) holds

true. ��
Let us conclude this section with another example. In biomechanics, e.g.

traversing skin markers placed around the knee joint (e.g. [49]), or in medical
imaging, modeling deformation of internal organs via skeletal representations (cf.
[47]), typical motion of markers occurs naturally along small circles in S2, c.f. [46].
For a fixed number k ∈ N, considering k markers as one point q = (q1, . . . , qk) ∈
(S2)k , define the descriptor space P of k concentric small circles p = (p1, . . . , pk)

defined by a common axis w ∈ S2 and respective latitudes 0 < θ1 < . . . < θk < π .
Setting

ρ(q, p) =

√
√
√
√
√

k
∑

j=1

min
y∈pj

arccos2 yT qj

and

d(p, p′) =

√
√
√
√
√arccos2(wT w′)+

k
∑

j=1

(θj − θ ′
j )

2

we obtain a link ρ and a loss d which form a uniform and coercive pair. Moreover,
even P satisfies the Heine–Borel property.
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10.4 Procrustes Analysis Viewed Through Fréchet Means

Long before the notion of Fréchet means entered the statistics of shape, Procrustes
analysis became a tool of choice and has been ever after for the statistical analysis
of shape.

Kendall’s Shape Spaces
Consider n geometric objects in Rm, each described by k landmarks (n, k,m ∈ N),
i.e. every object is described by a matrix Xj ∈ Rm×k (1 ≤ j ≤ n), the columns of
which are the k landmark vectors in Rm of the j -th object. When only the shape of
the objects is of concern, consider every

λjRj (Xj − aj 1Tk /n)

equivalent with Xj , where λj ∈ (0,∞) reflects size, Rj ∈ SO(m) rotation and
aj ∈ Rm translation. Here, 1k is the k-dimensional column vector with all entries
equal to 1. Note that the canonical quotient topology of Rm×k/(0,∞) gives a non-
Hausdorff space which is a dead end for statistics, because all points have zero
distance from one another. For this reason, one projects instead to the unit sphere
Sm×k−1 and the canonical quotient

 km = Sm×k−1/SO(m)/Rm ∼= Sm×(k−1)−1/SO(m)

is called Kendall’s shape space, for details see [13].

Procrustes Analysis
Before the introduction of Kendall’s shape spaces, well aware that the canonical
quotient is statistically meaningless, [23] suggested to minimize the Procrustes sum
of squares

n
∑

j=1

∥
∥
∥λiRi(Xi − ai 1Tk /n)− λjRj (Xj − aj 1Tk /n)

∥
∥
∥

2

over λj , Rj , aj ∈ (0,∞) × SO(m) × Rm (1 ≤ j ≤ n) under the constraining
condition

∥
∥
∥
∥
∥
∥

n
∑

j=1

λjRj (Xj − aj 1Tk /n)

∥
∥
∥
∥
∥
∥

= 1 .

It turns out that the minimizing aj are the mean landmarks, so for the following,
we may well assume that every Xj is centered, i.e. Xj1k = 0 and dropping one
landmark, e.g. via Helmertizing, i.e. by multiplying each Xj with a sub-Helmert
matrixH
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H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
2

1√
6
. . . 1√

k(k−1)

− 1√
2

1√
6
. . . 1√

k(k−1)

0 − 2√
6
. . . 1√

k(k−1)

...
...
. . .

...

0 0 . . . − k−1√
k(k−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ M(k, k − 1)

from the right, see [13], we may even more assume that Xj ∈ Rm×(k−1) (j =
1, . . . , n). Further, with minimizing λj , Rj , every Procrustes mean

μ = 1

n

n
∑

j=1

λjRjXj

is also a representative of a Fréchet mean on Q = P =  km using the canonical
quotient ρ = d of the residual quasi-metric

ρ̃(X, Y ) = ‖X − (XT Y )Y‖ (10.8)

on Sm×(k−1)−1, in this context, called the pre-shape space, see [26] for a detailed
discussion.

If μ is a Procrustes mean with minimizing λj , Rj (j = 1, . . . , n), notably, this
implies trace(RjXTj μ) = λj , then

λjRjXj − μ

are called the Procrustes residuals. By construction they live in the tangent space
TμSm×(k−1)−1 of Sm×(k−1)−1 at μ. In particular, this is a linear space and hence, the
residuals can be subjected to PCA. Computing the Procrustes mean and performing
PCA for the Procrustes residuals is full Procrustes analysis as proposed by Gower
[23].

Note that at this point, we have neither a CLT for Procrustes means nor can we
apply the CLT (10.3) because the tangent space is random.

This nested randomness can be attacked directly by nested subspace analysis
in Sect. 10.7 or circumvented by the approach detailed in the Sect. 10.6. Let us
conclude the present section by briefly mentioning an approach for Riemannian
manifolds similar to Procrustes analysis.

Principal Geodesic Analysis
Suppose that Q = P is a Riemannian manifold with intrinsic geodesic distance
ρ = d. Fréchet means with respect to ρ are called intrinsic means and [20] compute
an intrinsic mean μ and perform PCA with the data mapped under the inverse
exponential at μ to the tangent space TμQ of Q at μ. Again, the base point of
the tangent space is random, prohibiting the application of the CLT (10.3).
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10.5 A CLT for Fréchet ρ-Means

For this section we require the following assumptions.

(A1) X1, . . . , Xn
i.i.d.∼ X are random elements in a topological data space Q, which

is linked to a topological descriptor space P via a continuous function ρ :
Q× P → R, featuring a unique Fréchet ρ-mean μ ∈ P .

(A2) There is a loss function d : P×P → [0,∞) and P has locally the structure of
aD-dimensional manifold near μ, i.e. there is an open set U ⊂ P , μ ∈ U and
a homeomorphism φ : U → V onto an open set V ⊂ RD . W.l.o.g. assume
that φ(μ) = 0 ∈ V .

(A3) In local coordinates the population Fréchet function is twice differentiable at
μ with non-singular Hessian there, i.e. for p ∈ U , x = φ−1(p),

F(p) = F(μ)+ xT 1

2
Hess

(

F ◦ φ−1
)

(0) x + o(‖x‖2) ,

H := Hess
(

F ◦ φ−1
)

(0) > 0 .

(A4) The gradient ρ̇0(X) := gradxρ(X, φ
−1(x))2|x=0 exists almost surely and

there is a measurable function ρ̇ : Q → R, satisfying E[ρ̇(X)2] < ∞, such
that the following Lipschitz condition

|ρ(X, φ−1(x1))
2 − ρ(X, φ−1(x2))

2| ≤ ρ̇(X)‖x1 − x2‖ a.s.

holds for all x1, x2 ∈ U .

Theorem 10.3 Under the above Assumptions (A1)–(A4), if μn ∈ En is a measur-

able selection of sample Fréchet ρ-means with μn
P→ μ, then

√
nφ−1(μn)

D→ N
(

0,H−1cov[ρ̇0(X)]H−1
)

.

Proof We use [17, Theorem 2.11] for r = 2. While this theorem has been
formulated for intrinsic means on manifolds, upon close inspection, the proof
utilizing empirical process theory from [50], rests only on the above assumptions,
so that it can be transferred word by word to the situation of Fréchet ρ-means. ��
Remark Since the seminal formulation of the first version of the CLT for intrinsic
means on manifolds by Bhattacharya and Patrangenaru [6] there has been a vivid
discussion on extensions and necessary assumptions (e.g. [2–4, 19, 24, 25, 33,
37, 39, 41]). Recently it has been shown that the rather complicated assumptions
originally required by Bhattacharya and Patrangenaru [6] could be relaxed to the
above. Further relaxing the assumption H > 0 yields so-called smeary CLTs, cf.
[17]. ��
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Classical PCA as a Special Case of Fréchet ρ-Means
As an illustration how asymptotic normality of PCs shown by Anderson [1] in an
elaborate proof follows simply from Theorem 10.3 we give the simple argument for
the first PC.

Corollary 10.4 Suppose that X1, . . . , Xn
i.i.d.∼ X are random vectors in RD with

E[X] = 0, finite fourth moment and orthogonal PCs γ1, . . . , γD ∈ SD−1 to
descending eigenvalues λ1 > λ2 ≥ . . . ≥ λD > 0. Further let γ̂1 be a first
sample PC with γ̂ T1 γ1 ≥ 0 and local coordinates x̂n = γ̂1 − γ T1 γ̂1 γ1. Then, with

H−1 = ∑D
k=2

1
λ1−λk γkγ

T
k ,

√
nx̂n

D→ N(0,H−1cov[XXT γ1]H−1) ,

If X is multivariate normal then the covariance of the above r.h.s. is given by the
r.h.s. of (10.3) for j = 1. ��

Proof With the representation γ = x + √

1 − ‖x‖2 γ1 ∈ SD−1, γ1 ⊥ x ∈ U ⊂
Tγ1S

D−1 ⊂ RD , we have that the link function underlying (10.5) is given by

ρ(X, x)2 = ‖X − γ T X γ ‖2 = ‖X‖2 − (γ T X)2

= ‖X‖2 − (xT X +
√

1 − ‖x‖2 γ T1 X)
2

= ‖X‖2 − xT XXT x − (1 − ‖x‖2)(γ T1 X)
2 − 2xT X

√

1 − ‖x‖2 γ T1 X .

From

gradxρ(X, x)
2 = −2XXT x+2x(γ T1 X)

2 −2

(
√

1 − ‖x‖2X − xT Xx
√

1 − ‖x‖2

)

γ T1 X

and, with the unit matrix I ,

Hessxρ(X, x)
2=−2XXT+2I (γ T1 X)

2+2

(

XxT + xXT −XxT
√

1−‖x‖2
+ xT XxxT

(1−‖x‖2)3/2

)

γ T1 X,

verify that it satisfies Assumption (A4) with ρ̇0(X) = −2XXT γ1 and ρ̇(X) =
4‖XXT γ1‖ for U sufficiently small, which is square integrable by hypothesis. Since
Hessxρ(X, x)2|x=0 = 2(γ T1 XX

T γ1I −XXT ), with

H = 2E[γ T1 XXT γ1I −XXT ] = 2
D
∑

k=2

(λ1 − λk)γkγ Tk ,

which is, by hypothesis, positive definite in Tγ1S
D−1, we obtain the first assertion

of Theorem 10.3. Since in case of multivariate normality X = ∑D
k=1 ckγk with

independent real random variables c1, . . . , cD , the second assertion follows at once.
��
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The CLT for Procrustes Means
For m ≥ 3, Kendall’s shape spaces are stratified as follows. There is an open and
dense manifold part ( km)

∗ and a lower dimensional rest ( km)
0 that is similarly

stratified (comprising a dense manifold part and a lower dimensional rest, and so
on), e.g. [9, 32, 38]. For a precise definition of stratified spaces, see the following
Sect. 10.6.

As a toy example one may think of the unit two-sphere S2 = {x ∈ R3 : ‖x‖ = 1}
on which SO(2) ⊂ SO(3) acts via

⎛

⎝

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎞

⎠

⎛

⎝

x1

x2

x3

⎞

⎠ =
⎛

⎝

x1 cosφ + x2 sinφ
−x1 sinφ + x2 cosφ

x3

⎞

⎠ .

The canonical quotient space has the structure of the closed interval S2/SO(2) ∼=
[−1, 1] in which (−1, 1) is an open dense one-dimensional manifold and {1,−1} is
the rest, a zero-dimensional manifold.

Let Z1, . . . , Zn
i.i.d.∼ Z be random configurations of m-dimensional objects

with k landmarks, with pre-shapes X1, . . . , Xn
i.i.d.∼ X in Sm×(k−1)−1 and shapes

ξ1, . . . , ξn
i.i.d.∼ ξ in  km with the link function ρ given by the Procrustes metric from

the pre-shape (i.e. residual) quasi-metric (10.8).

Theorem (Manifold Stability, cf. [28, 29]) If, with the above setup, P{ξ ∈
( km)

∗} > 0 and if the probability that two shapes are maximally remote is zero
then every Procrustes mean μ is assumed on the manifold part. ��

In consequence, for Q = P =  km, if the manifold part is assumed at all,
Assumption (A1) implies Assumption (A2). With the same reasoning as in the proof
of Corollary 10.4, Assumption (A4) is verified. This yields the following.

Corollary Let Z1, . . . , Zn
i.i.d.∼ Z be random configurations of m-dimensional

objects with k landmarks, with pre-shapes X1, . . . , Xn
i.i.d.∼ X in SD×(k−1)−1 and

shapes ξ1, . . . , ξn
i.i.d.∼ ξ in  km such that

• P{ξ ∈ ( km)∗} > 0, the probability that two shapes are maximally remote is zero
and

• Assumptions (A1) and (A3) are satisfied.

Then, every measurable selection μn of Procrustes sample means satisfies a CLT as
in Theorem 10.3. ��
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10.6 Geodesic Principal Component Analysis

In this section we assume that random deviates X1, . . . , Xn
i.i.d.∼ X take values in a

Riemann stratified spaceQ.

Definition (Stratified Space) A stratified space Q of dimension m embedded in a
Euclidean space can be defined as a direct sum

Q =
k
⋃

j=1

Qdj

such that 0 ≤ d1 < . . . < dk = m, each Qdj is a dj -dimensional manifold and
Qdj ∩Qdl = ∅ for j �= l.

A stratified spaceQ ⊂ Rs is called Whitney stratified, if for every j < l

(i) IfQdj ∩Qdl �= ∅ thenQdj ⊂ Qdl .
(ii) For sequences x1, x2, . . . ∈ Qdj and y1, y2, . . . ∈ Qdl which converge to the

same point x ∈ Qdj such that the sequence of secant lines ci between xi and
yi converges to a line c as i → ∞, and such that the sequence of tangent
planes TyiQdl converges to a dl dimensional plane T as i → ∞, the line c is
contained in T .

We call a Whitney stratified space Riemann stratified, if

(iii) for every j < l and sequence y1, y2, . . . ∈ Qdl which converges to the point
x ∈ Qdj the Riemannian metric tensors gl,yi ∈ T 2

yi
Qdl converge to a rank two

tensor gl,x ∈ T ⊗ T and the Riemannian metric tensor gj,x ∈ T 2
x Qdj is given

by the restriction gj,x = gl,x |T 2
x Qdj

.
��

Geodesics, i.e. curves of locally minimal length, exist locally in every stratum
Qdj . Due to the Whitney condition, a geodesic can also pass through strata of
different dimensions if these strata are connected. Property (ii) is called Whitney
condition B and it follows from this condition that TxQdj ⊂ T , which is called
Whitney condition A, e.g. [22].

Of course, all Riemannian manifolds are stratified spaces. Typical examples for
stratified spaces that are not Riemannian manifolds are Kendall’s shape spaces
 km for m ≥ 3 dimensional objects with k ≥ 4 landmarks or the BHV space of
phylogenetic descendants trees Tn with n ≥ 3 leaves.

Let �(Q) be the space of point sets of maximal geodesics inQ. With the intrinsic
geodesic metric dQ onQ we have the link function

ρ : Q× �(Q)→ [0,∞), (q, γ ) �→ inf
q ′∈γ

dQ(q, q
′) .
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Further, we assume that �(Q) also carries a metric d� . This can be either Hausdorff
distance based on dQ, or a quotient metric, e.g. induced from �(Q) = (Q×Q)/ ∼
with a suitable equivalence relation. An example for the latter is the identification of
�(SD−1)withG(D, 2), the Grassmannian structure of the space of two-dimensional
linear subspaces in RD (every geodesic on SD−1 is a great circle which is the
intersection with SD−1 ⊂ RD of a plane through the origin).

Definition 10.5 (cf. [32]) With the above assumptions, setting P0 = �(Q), every
population Fréchet ρ-mean on P = P0 is a first population geodesic principal
component (GPC) and every such sample mean is a first sample GPC.

Given a unique first population GPC γ1, setting P1 = {γ ∈ �(Q) : γ ∩ γ1 �=
∅ and γ ⊥ γ1 there}, every population Fréchet ρ-mean on P = P1 is a second
population GPC.

Higher order population GPCs are defined by requiring them to pass through
a common point p ∈ γ1 ∩ γ2 and being orthogonal there to all previous unique
population GPCs.

Similarly, for the second sample GPC, for a given unique first GPC γ̂1 use P =
P̂1 = {γ ∈ �(Q) : γ ∩ γ1 �= ∅ and γ ⊥ γ̂1 there} and higher order sample GPCs
are defined by requiring them to pass through a common point p̂ ∈ γ̂1 ∩ γ̂2 and
being orthogonal there to all previous unique sample GPCs.

The GPC scores are the orthogonal projections of X, or of the data, respectively,
to the respective GPCs. ��
Remark In case of valid assumptions (A1) – (A4) the CLT from Theorem 10.3
yields asymptotic

√
n-normality for the first PC in a local chart. An example and an

application toQ =  k2 (k ≥ 3) can be found in [27]. ��
Obviously, there are many other canonical intrinsic generalizations of PCA to

non-Euclidean spaces, e.g. in his horizontal PCA [48] defines the second PC by a
parallel translation of a suitable tangent space vector, orthogonally along the first
PC. One difficulty is that GPCs usually do not define subspaces, as classical PCs
do, which define affine subspaces. However, there are stratified spaces which have
rich sets of preferred subspaces.

Definition (Totally Geodesic Subspace) A Riemann stratified space S ⊂ Q with
Riemannian metric induced by the Riemannian metric of a Riemann stratified space
Q is called totally geodesic if every geodesic of S is a geodesic ofQ. ��

The totally geodesic property is transitive in the following sense. Consider a
sequence of Riemann stratified subspaces Q1 ⊂ Q2 ⊂ Q3 where Q1 is totally
geodesic with respect toQ2 andQ2 is totally geodesic with respect toQ3. ThenQ1
is also totally geodesic with respect toQ3.

In the following, we will use the term rich space of subspaces for a space of k-
dimensional Riemann stratified subspaces of an m-dimensional Riemann stratified
space, if it has dimension at least (m − k)(k + 1). This means that the space of
k-dimensional subspaces has at least the same dimension as the space of affine
k-dimensional subspaces in Rm. If a Riemann stratified space has a rich space of
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sequences of totally geodesic subspaces Q0 ⊂ Q1 ⊂ · · · ⊂ Qm−1 ⊂ Qm = Q

where everyQj is a Riemann stratified space of dimension j , a generalization which
is very close in spirit to PCA can be defined. This is especially the case, if Q has a
rich space of (m− 1)-dimensional subspaces which are of the same class asQ. For
example, the sphere Sm has a rich space of great subspheres Sm−1, which are totally
geodesic submanifolds. Therefore, spheres are well suited to introduce an analog
of PCA, and [34, 35] have defined principal nested spheres (PNS) which even
exist as principal nested small spheres, which are not totally geodesic, however.
In the latter case the dimension of the space of k-dimensional submanifolds is even
(m− k)(k + 2), cf. [30].

Generalizing this concept [43], has introduced barycentric subspaces, cf. Chap-
ter 18 of this book.

In the following penultimate section we develop an inferential framework for
such nested approaches.

10.7 Backward Nested Descriptors Analysis (BNDA)

As seen in Definition 10.5, higher order GPCs depend on lower order GPCs and
are hence defined in a nested way. More generally, one can consider sequences
of subspaces of descending dimension, where every subspace is also contained in
all higher dimensional subspaces. Here we introduce the framework of backward
nested families of descriptors to treat such constructions in a very general way.

In Sect. 10.9 we introduce several examples of such backward nested families of
descriptors.

Definitions and Assumptions 10.6 LetQ be a separable topological space, called
the data space and let {Pj }mj=0 be a family of separable topological spaces called
descriptor spaces, each equipped with a loss function dj : Pj ×Pj → [0,∞) (i.e. it
is continuous and vanishes exactly on the diagonal) with Pm = {Q} (j = 1, . . . , m).

Next, assume that every p ∈ Pj (j = 1, . . . , m) is itself a topological space
giving rise to a topological space ∅ �= Sp ⊆ Pj−1 with a continuous function
ρp : p × Sp → [0,∞) called a link function.

Further, assume that for all p ∈ Pj (j = 1, . . . , m) and s ∈ Sp there exists a
measurable mapping πp,s : p → s called projection.

Then for j ∈ {1, . . . , m} every

f = {pm, . . . , pj }, with pl−1 ∈ Spl , l = j + 1, . . . , m

is a backward nested family of descriptors (BNFD) from Pm to Pj which lives in
the space

Pm,j =
{

f = {pl}jl=m : pl−1 ∈ Spl , l = j + 1, . . . , m
}

,
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with projection along each descriptor

πf = πpj+1,pj ◦ . . . ◦ πpm,pm−1 : pm → pj

For another BNFD f ′ = {p′l}jl=m ∈ Tm,j set

dj (f, f ′) =
√
√
√
√

j
∑

l=m
dj (pl, p′l )2 .

Definition With the above Definitions and Assumptions 10.6, random elements

X1, . . . , Xn
i.i.d.∼ X on the data space Q admitting BNFDs give rise to backward

nested population and sample means (BN-means) f = (pm, . . . , pj ) and fn =
(pmn , . . . , p

j
n), respectively, recursively defined via f m = {Q} = f mn , i.e. pm =

Q = pmn and for j = m, . . . , 2,

pj−1 ∈ argmin
s∈S

pj

E[ρpj (πf j ◦X, s)2], f j−1 = {pl}j−1
l=m

p
j−1
n ∈ argmin

s∈S
p
j
n

n
∑

i=1

ρ
p
j
n
(π
f
j
n

◦Xi, s)2, f
j−1
n = {pln}j−1

l=m .

If all of the population minimizers are unique, we speak of unique BN-means.

Remark A nested sequence of subspaces is desirable for various scenarios. Firstly,
it can serve as a basis for dimension reduction as is also often done using PCA
in Euclidean space. Secondly, the residuals of projections along the BNFD can
be used as residuals of orthogonal directions in Euclidean space in order to
achieve a “Euclideanization” of the data (e.g. [44]). Thirdly, lower dimensional
representations of the data or scatter plots of residuals can be used for more
comprehensible visualization.

Backward approaches empirically achieve better results than forward
approaches, starting from a point and building up spaces of increasing dimension,
in terms of data fidelity. The simplest example, determining the intrinsic mean
first and then requiring the geodesic representing the one-dimensional subspace to
pass through it, usually leads to higher residual variance than fitting the principal
geodesic without reference to the mean. ��

For a strong law and a CLT for BN-means we require assumptions corresponding
to Definition 10.2 and corresponding to assumptions in [4]. Both sets of assumptions
are rather complicated, so that they are only referenced here.

(B1) Assumptions 3.1–3.6 from [31]
(B2) Assumption 3.10 from [31]
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To the best knowledge of the authors, instead of (B2), more simple assumptions
corresponding to (A1)–(A4) from Sect. 10.5 have not been derived for the backward
nested descriptors scenario.

Theorem ([31]) If the BN population mean f = (pm, . . . , pj ) is unique and if
fn = (pmn , . . . , p

j
n) is a measurable selection of BN sample means then under (B1),

fn → f a.s.

i.e. there is �′ ⊆ � measurable with P(�′) = 1 such that for all ε > 0 and ω ∈ �′,
there is N(ε, ω) ∈ N with

d(fn, f ) < ε for all n ≥ N(ε, ω) .

Theorem 10.7 ([31]) Under Assumptions (B2), with unique BN population mean
f ∈ P = Pm,j and local chart φ with φ−1(0) = f , for every measurable selection

fn of BN sample means fn
P→ f , there is a symmetric positive definite matrix Bφ

such that

√
nφ−1(fn)

D→ N(0, Bφ) .

Remark 10.8 Under factoring charts as detailed in [31], asymptotic normality also

holds for the last descriptor pj−1
n

a.s.→ pj−1,

√
nφ−1(p

j−1
n )

D→ N(0, Cφ)

with a suitable local chart φ such that φ−1(0) = pj−1 and a symmetric positive
definite matrix Cφ . ��

10.8 Two Bootstrap Two-Sample Tests

Exploiting the CLT for ρ-means, BN-means or the last descriptor of BN-means
(cf. Remark 10.8) in order to obtain an analog of the two-sample test (10.2),

we inspect its ingredients. Suppose that X1, . . . , Xn
i.i.d.∼ X and Y1, . . . , Ym

i.i.d.∼ Y

are independent random elements on Q. In case of ρ-means, we assume that
Assumptions (A1)–(A4) from Sect. 10.5 are valid and in case of BN-means (or a
last descriptor thereof) assume that Assumption (B2) from Sect. 10.7 is valid for
X and Y , in particular that unique means μX and μY lie within one single open
set U ⊂ P that homeomorphically maps to an open set V ⊂ RD under φ. With
measurable selections μ̂Xn and μ̂Ym of sample means, respectively, replace X̄n − Ȳm
with φ−1

(

μ̂Xn
)− φ−1

(

μ̂Ym
) ∈ RD .



10 Statistical Methods Generalizing Principal Component Analysis . . . 333

Obviously,  ̂Xn and  ̂Ym are not directly assessable, however. If one had a large
number B of samples {X1,1, . . . , X1,n}, . . . , {XB,1, . . . , XB,n}, one could calculate
the descriptors φ−1

(

μ̂Xn,1

)

, . . . , φ−1
(

μ̂Xn,B

)

and estimate the covariance of these.
But since we only have one sample, we use the bootstrap instead. The idea of
the n out-of n non-parametric bootstrap (e.g. [12, 15]) is to generate a large
number B of bootstrap samples {X∗1

1 , . . . , X
∗1
n }, . . . , {X∗B

1 , . . . , X∗B
n } of the same

size n by drawing with replacement from the sample X1, . . . , Xn. From each of
these bootstrap samples one can calculate estimators φ−1

(

μ
X,∗1
n

)

, . . . , φ−1
(

μ
X,∗B
n

)

,
which serve as so-called bootstrap estimators of μ. From these, one can now
calculate the estimator for the covariance of μ̂Xn

 X,∗n := 1

B

B
∑

j=1

(

φ−1(μ
X,∗j
n )− φ−1(μ̂Xn )

) (

φ−1(μ
X,∗j
n )− φ−1(μ̂Xn )

)T

(10.9)

For the First Test
Perform BX times n out-of n bootstrap from X1, . . . , Xn to obtain Fŕechet ρ-means
μ
X,∗1
n , . . . , μ

X,∗BX
n and replace  ̂Xn with the n-fold of the bootstrap covariance X,∗n

as defined in Eq. (10.9). With the analog m out-of m bootstrap, replace  ̂Ym with
m 

Y,∗
m .

Then, under H0 : μX = μY , if m/n → 1 or n cov
[

φ−1(μXn )
] =

m cov
[

φ−1(μYm)
]

, under typical regularity conditions, e.g. [10], the statistic

T 2 =(φ−1(μ̂Xn )− φ−1(μ̂Ym))
T

((
1

n
+ 1

m

)

 ∗
p

)−1

(φ−1(μ̂Xn )− φ−1(μ̂Ym))

(10.10)

 ∗
p := 1

n+m− 2

(

n(n− 1) X,∗n +m(m− 1) Y,∗m
)

adapted from Eq. (10.2), is asymptotically Hotelling distributed as discussed in
Sect. 10.2.

For the Second Test
Observe that, alternatively, the test statistic

T 2 =
(

φ−1(μX̃n )− φ−1(μỸm)
)T (

 X,∗n + Y,∗m
)−1 (

φ−1(μX̃n )− φ−1(μỸm)
)

,

can be used. Notably, this second test for H0 : μX = μY does not rely on
n/m → 1 or equal covariances, as does the first. However, the test statistic is only
approximately F distributed, even for normally distributed data and the parameters
of the F distribution have to be determined by an approximation procedure.

To enhance the power of either test, quantiles can be determined using the
bootstrap. A naive approach would be to pool samples and use X̃ for the first n
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data points, Ỹ for the last m data points of bootstrapped samples from the pooled
data X1, . . . , Xn, Y1, . . . , Ym. However, it turns out that this approach suffers from
significantly diminished power.

Instead, we generate the same number B of bootstrap samples from X1, . . . , Xn

and Y1, . . . , Ym separately, thus getting μX,∗1
n , . . . , μ

X,∗B
n and μY,∗1

m , . . . , μ
Y,∗B
m .

Due to the CLT 10.7 and Remark 10.8, φ−1(μ
X,∗1
n ), . . . , φ−1(μ

X,∗B
n ) are samples

from a distribution which is close to normal with mean φ−1(μ̂Xn ). The analog holds

for Y . As a consequence, the residuals dX,∗jn = φ−1(μ
X,∗j
n ) − φ−1(μ̂Xn ) are close

to normally distributed with mean 0. To simulate quantiles from the null hypothesis
μXn = μYm, we therefore only use the residuals dXn,∗j and dYm,∗j and calculate

T 2
j =

(

d
X,∗j
n − dY,∗jm )

)T (

 X,∗n + Y,∗m
)−1 (

d
X,∗j
n − dY,∗jm

)

. (10.11)

Then we order these values ascendingly and use them as (j − 1/2)/B-quantiles
as usual for empirical quantiles. Tuning the corresponding test to the right level, its
power is usually larger than using the F-quantiles corresponding to the Hotelling
distribution.

For a detailed discussion and justification see [16, 31].

10.9 Examples of BNDA

Scenarios of BNDA are given by flags, namely, by nested subspaces,

Q ⊇ pm ⊇ pm−1 ⊇ . . . ⊇ p0 ∈ Q.

We give three examples.

The Intrinsic Mean on the First GPC
It is well known, that the intrinsic mean usually comes not to lie on the first GPC.
For example a distribution on S2 that is uniform on a great circle has this great
circle as its first GPC with respect to the spherical metric. The Fréchet mean with
respect to this metric is given, as is easily verified, by the two poles having this great
circle as the equator. In order to enforce nestedness, we consider the first GPC on
a Riemannian manifold and the intrinsic mean on it. The corresponding descriptor
spaces are

P2 = {Q}, SQ = P1 = {

γq,v : (q, v) ∈ TQ, v �= 0
}

/ ∼, P0 = Q.

with the tangent bundle TQ over Q, the maximal geodesic γq,v through q with
initial velocity v ∈ TqQ and γq,v ∼ γq ′,v′ if the two geodesics agree as point sets.
Denoting the class of γq,v by [γq,v], it turns out that
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T2,0 = {(p, s) : p = [γq,v] ∈ P1, s ∈ p} ∼= PQ,

([γq,v], s) ∼=
(

s,

{
w

‖w‖ ,−
w

‖w‖
})

,

where [γq,v] = [γs,w] and PQ denotes the projective bundle overQ. With the local
trivialization of the tangent bundle one obtains a local trivialization of the projective
bundle and thus factoring charts, so that, under suitable conditions, Theorem 10.7
and Remark 10.8 are valid. In fact, this construction also works for suitable Riemann
stratified spaces, e.g. also forQ =  km with m ≥ 3, cf. [31].

Principal Nested Spheres (PNS)
For the special case of Q = SD−1 ⊂ RD let Pj be the space of all j -dimensional
unit-spheres (j = 1, . . . , D − 1) and PD−1 = SD−1. Note that Pj can be given
the manifold structure of the Grassmannian G(D, j + 1) of (j + 1)-dimensional
linear subspaces in RD . The corresponding BNDA has been introduced by Jung et al.
[34, 35] as principal nested great spheres analysis (PNGSA) in contrast to principal
nested small sphere analysis (PNSSA), when allowing also small subspheres in
every step. Notably, estimation of small spheres involves a test for great spheres
to avoid overfitting, cf. [18, 34].

Furthermore, PNSSA offers more flexibility than PNGSA because the family of
all j -dimensional small subspheres in SD−1 has dimension dim

(

G(D, j + 1)
) +

D − j , cf. [18].
As shown in [31], under suitable conditions, Theorem 10.7 and Remark 10.8 are

valid for both versions of PNS.

Extensions of PNS to general Riemannian manifolds can be sought by consid-
ering flags of totally geodesic subspaces. While there are always geodesics, which
are one-dimensional geodesic subspaces, there may be none for a given dimension
j . And even, if there are, for instance on a torus, totally geodesic subspaces
winding around infinitely are statistically meaningless because they approximate
any given data set arbitrarily well. As a workaround, tori can be topologically and
geometrically deformed into stratified spheres and on these PNS with all of its
flexibility, described above, can be performed, as in [18].

Barycentric Subspace Analysis (BSA) by Pennec [43] constitutes another
extension circumventing the above difficulties. Here Pj is the space of exponential
spans of any j + 1 points in general position. More precisely, with the geodesic
distance d onQ, for q1, . . . , qj+1 ∈ Q, define their exponential span by

M(q1, . . . , qj+1) =
⎧

⎨

⎩
argmin
q∈Q

j+1
∑

k=1

akd(qk, q)
2 : a1, . . . , aj+1 ∈ R,

j+1
∑

k=1

ak = 1

⎫

⎬

⎭
.

For anm-dimensional manifoldQ a suitable choice ofm+1 points q1, . . . , qm+1 ∈
Q thus yields the flag
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Q = M(q1, . . . , qm+1) ⊃ M(q1, . . . , qm) ⊃ . . . ⊃ M(q1, q2) ⊃ {q1} .

For the space of phylogenetic descendants tree by Billera et al. [7] in a similar
approach by Nye et al. [42] the locus of the Fréchet mean of a given point set has
been introduced along with corresponding optimization algorithms.

Barycentric subspaces and similar constructions are the subject of Chapter 11.
To the knowledge of the authors, there have been no attempts, to date, to

investigate applicability of Theorem 10.7 and Remark 10.8 to BSA.

10.10 Outlook

Beginning with Anderson’s CLT for PCA, we have sketched some extensions of
PCA to non-Euclidean spaces and have come up with a rather general CLT, the
assumptions of which are more general than those of [4, 6]. Let us conclude
with listing a number of open tasks, which we deem of high importance for the
development of suitable statistical non-Euclidean tools.

1. Formulate the CLT for BNFDs in terms of assumptions corresponding to
Assumptions (A1)–(A4).

2. Apply the CLT for BNFDs to BSA if possible.
3. Formulate BNFD not as a sequential but as a simultaneous optimization problem,

derive corresponding CLTs and apply them to BSA with simultaneous estimation
of the entire flag.

4. In some cases we have no longer
√
n-Gaussian CLTs but so-called smeary CLTs

which feature a lower rate, cf. [17]. Extend the CLTs presented here to the general
smeary scenario.

5. Further reduce and generalize Assumptions (A1)–(A4), especially identify nec-
essary and sufficient conditions for (A3).
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Abstract Geometric statistics aim at shifting the classical paradigm for inference
from points in a Euclidean space to objects living in a non-linear space, in a
consistent way with the underlying geometric structure considered. In this chapter,
we illustrate some recent advances of geometric statistics for dimension reduction in
manifolds. Beyond the mean value (the best zero-dimensional summary statistics of
our data), we want to estimate higher dimensional approximation spaces fitting our
data. We first define a family of natural parametric geometric subspaces in manifolds
that generalize the now classical geodesic subspaces: barycentric subspaces are
implicitly defined as the locus of weighted means of k + 1 reference points with
positive or negative weights summing up to one. Depending on the definition of
the mean, we obtain the Fréchet, Karcher or Exponential Barycentric subspaces
(FBS/KBS/EBS). The completion of the EBS, called the affine span of the points
in a manifold is the most interesting notion as it defines complete sub-(pseudo)-
spheres in constant curvature spaces. Barycentric subspaces can be characterized
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very similarly to the Euclidean case by the singular value decomposition of a certain
matrix or by the diagonalization of the covariance and the Gram matrices. This
shows that they are stratified spaces that are locally manifolds of dimension k at
regular points. Barycentric subspaces can naturally be nested by defining an ordered
series of reference points in the manifold. This allows the construction of inductive
forward or backward properly nested sequences of subspaces approximating data
points. These flags of barycentric subspaces generalize the sequence of nested
linear subspaces (flags) appearing in the classical Principal Component Analysis.
We propose a criterion on the space of flags, the accumulated unexplained variance
(AUV), whose optimization exactly lead to the PCA decomposition in Euclidean
spaces. This procedure is called barycentric subspace analysis (BSA). We illustrate
the power of barycentric subspaces in the context of cardiac imaging with the
estimation, analysis and reconstruction of cardiac motion from sequences of images.

11.1 Introduction

Statistical computing on simple manifolds like spheres or flat tori raises problems
due to the non-linearity of the space. For instance, averaging points on a sphere using
the properties of the embedding Euclidean space leads to a point located inside the
sphere and not on its surface. More generally, the classical mean value of random
numeric values with distribution P is defined through an integral x̄ = ∫

xdP (x),
which can be rewritten as an implicit barycentric equation

∫

(x − x̄)dP (x). Notice
that this notion is intrinsically affine. However, since an integral is a linear operator,
this definition of the mean is bound to fail for general non-linear spaces. Geometric
statistics were born out of this observation by Maurice Fréchet in the 1940’s.

Geometric statistics is a rapidly evolving domain at the confluent of several
mathematical and application domains. It was driven in the 1980s by Kendall’s
shape spaces, which encode the configuration of k points under a transformation
group, often rigid body transformations or similarities, see e.g. [9, 24, 29, 46].
Applied mathematicians and computer scientists got interested in the 1990s in
computing and optimizing on specific matrix manifolds, like rotations, rigid body
transformations, Stiefel and Grassmann manifolds [10, 16, 17, 34, 42]. In the context
of computer vision and medical image analysis applications, the Fréchet mean
was used to develop a practical toolbox for statistics on manifolds in the 1990s
[36, 37], with applications to the uncertainty of medical image registration and
statistics on shapes. For instance, statistical distances such as the Mahalanobis
distance were developed to define some simple statistical tests on manifolds. With
the example of diffusion tensor images, this statistical toolbox was generalized in
[43] to many manifold valued image processing algorithms such as interpolation,
filtering, diffusion and restoration of missing data. Some of these statistics were
generalized to even more non-Euclidean data like trees and graphs with object-
oriented data analysis [32].
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In this chapter, we illustrate some recent advances for dimension reduction in
manifolds. Beyond the mean value, which is a good zero-dimensional summary
statistic of our data, we want to estimate higher dimensional approximation spaces
fitting our data. In [39], we have proposed a new and general family of subspaces
in manifolds, barycentric subspaces, implicitly defined as the locus of weighted
means of k + 1 reference points. Barycentric subspaces can naturally be nested
and allow the construction of inductive forward or backward nested subspaces
approximating data points. We can also consider the whole hierarchy of embedded
barycentric subspaces defined by an ordered series of points in the manifold (a flag
of affine spans): optimizing the accumulated unexplained variance (AUV) over all
the subspaces actually generalizes PCA to non Euclidean spaces, a procedure named
Barycentric Subspaces Analysis (BSA). We illustrate the power of barycentric
subspaces in the context of cardiac imaging with the estimation, analysis and
reconstruction of cardiac motion from sequences of images.

11.2 Means on Manifolds

The Fréchet Mean
Maurice Fréchet was the first to try to generalize the notion of mean, median
and other types of typical central values to abstract spaces for statistical purposes.
In a preparatory work [14] he first investigated different ways to compute mean
values of random triangles, independently of their position and orientation in space.
In the same paper he reports a series of experiments with careful measurements
to reproduce the theoretical values. In this respect, he was really pioneering the
statistical study of shapes. In a second study, motivated by the study of random
curves, he first introduced a mean value and a law of large numbers defined by a
generalization of the integral to normed vector (Wiener of Banach) spaces. Finally,
Fréchet considered in [15] the generalization of many central values (including the
mean and the median) to random elements in abstract metric spaces.

Definition 11.1 (Fréchet Mean in a Metric Space [15, p. 233]) The p-mean
(typical position of order p according to Fréchet) of a distribution μ (a random
element) in an abstract metric space M is set of minimizers of the mean p-distance
(MpD):

Meanp(μ) =
{

arg min
y∈M

1
p

∫

M dist(x, y)p dμ(x)

}

. (11.1)

In a Euclidean space, this defines the usual arithmetic mean for p = 2, the median
(valeur équiprobable in Fréchet’s words) for p = 1 and the barycenter of the support
of the distribution for p = ∞.
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The first key contribution of Fréchet was to consider many different types of typical
elements, including of course the mean but also the median. Fréchet considered
mainly the case p ≥ 1, but he observed that many of the properties could be also
generalized to 0 < p < 1. The second key contribution of Fréchet was to consider
the mean as a set of elements rather than one unique element.1 This key innovation
was later developed by Ziezold [54] with a strong law of large numbers for sets
of random elements in separable finite quasi-metric spaces. These two innovations
justify the name naming of Fréchet mean that is used in geometric statistics.

The Riemannian Center of Mass
In a complete metric space, the existence of the Fréchet p-mean is ensured if the
MpD is finite at one point, thus at all points thanks to the triangle inequality. The
uniqueness is a much more difficult problem. For smooth differential geometric
spaces like Riemannian spaces, and restricting to the classical mean with p = 2,
it has been argued in [2, p. 235] that the existence of a unique center of mass in
the large for manifolds with non-positive curvature was proven and used by Élie
Cartan back in the 1920’s. In order to find the fixed point of a group of isometries,
Cartan indeed showed in [4]2 that the sum of the square distance to a finite number
of points has a unique minimum in simply connected Riemannian manifolds with
non-positive curvature (now called Hadamard spaces). This result was extended in
[5] to closed subgroups of isometries3: “Let us apply to the point at origin O the
displacements defined by the transformations of γ . The group γ being closed, we
obtain a closed manifold V (that can be reduced to a point). But in a Riemann space
without singular point at finite distance, simply connected, with negative or zero
curvature, given points in finite number, we can find a fixed point invariant by all
the displacements that exchanges these points: this is the point for which the sum
of square distances to the given point is minimal [4, p. 267]. This property is still
true if, instead of a finite number of points, we have an infinite number forming a
closed manifold: we arrive at the conclusion that the group γ , which leave evidently
the manifold V invariant, also leaves invariant a fixed point of the space. Thus,
this point belongs to the group or (isometric) rotations around this point. But this
group is homologous to g in the continuous adjoint group, which demonstrate the

1Page 259: “It is not certain that such an element exists nor that it is unique.”
2Note III on normal spaces with negative or null Riemannian curvature, p. 267.
3Appliquons au point origine O les différents déplacements définis par les transformations de γ . Le
groupe γ étant clos, nous obtenons ainsi une variété fermée V (qui peut se réduire à un point). Or,
dans un espace de Riemann sans point singulier à distance finie, simplement connexe, a courbure
negative ou nulle, on peut trouver, étant donnés des points en nombre fini, un point fixe invariant
par tous les déplacements qui échangent entre eux les points donnés: c’est le point pour lequel la
somme des carrés des distances au point donné est minima [4, p. 267]. Cette propriété est encore
vraie si, au lieu d’un nombre fini de points, on en a une infinité formant une variété fermée: nous
arrivons donc à la conclusion que le groupe γ qui laisse évidemment invariante la variété V, laisse
invariant un point fixe de l’espace, il fait done partie du groupe des rotations (isométriques) autour
de ce point. Mais ce groupe est homologue à g dans le groupe adjoint continu, ce qui démontre le
théoreme.



11 Advances in Geometric Statistics for Manifold Dimension Reduction 343

theorem.” It is obvious in this text that Cartan is only using the uniqueness of the sum
of square distances as a tool in the specific case of negative curvature Riemannian
manifolds and not as a general definition of the mean on manifolds as is intended in
probability or statistics.

In 1973, for similar purposes, Grove and Karcher extended Cartan’s idea to
positive curvature manifolds. However, they restricted their definition to distribution
with sufficiently small support so that the mean exists and is unique [18]. The notion
was coined as The Riemannian center of mass. In this publication and in successive
ones, Karcher and colleagues used Jacobi field estimates to determine the largest
convex geodesic ball that support this definition. The Riemannian barycenter is
commonly referred to as being introduced in [22]. However, the most complete
description of the related properties is certainly found in [3], where a notion of
barycenter in affine connection manifolds is also worked out. A good historical note
on the history of the Riemannian barycenter is given in [1] and by Karcher himself
in [23].

Exponential Barycenters
In all the above works, the Riemannian center of mass is by definition unique.
Considering a set-valued barycenter on an affine connection manifold was the
contribution of Emery and Mokobodzki [11]. In a Riemannian manifold, at the
points x ∈ M where the cut locus has null measure for the measure μ, the critical
points of the mean square distance are characterized by the barycentric equation:

M1(x) =
∫

M
logx(y)dμ(y) = 0, (11.2)

where logx(z) is the initial tangent vector of the minimizing geodesic joining x
to z (the Riemannian log). This barycentric equation was taken as the definition
of exponential barycenters of the probability measure [11] in more general affine
connection spaces. Notice that the notion remains purely affine, provided that
the distribution has a support on a convex neighborhood in which the logarithm
can be defined uniquely. The non-uniqueness of the expectation of a random
variable considerably extended the usability of this definition, in particular in
positive curvature spaces. In the Riemannian case, exponential barycenters contain
in particular the smooth local (and the global) minimizers of the mean square
distance (MSD) σ 2(x) = ∫

M
dist2(x, y)μ(dy) (except those at which the MSD

is not differentiable). Exponential barycenters were later used in [7, 35] and in
[31, 40, 41] for bi-invariant means on Lie groups endowed with the canonical
symmetric Cartan-Schouten connection.

Uniqueness of the Fréchet Mean
Conditions for the uniqueness of the minimum of the sum of square distance have
been studied by Karcher [3, 22] and further optimized in [25, 27, 28].

Theorem 11.2 (Karcher and Kendall Concentration (KKC) Conditions) Let
M be a geodesically complete Riemannian manifold with injection radius inj(x)
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at x. Let μ is a probability distribution on M whose support is contained a closed
regular geodesic ball B̄(x, r) of radius r < 1

2 inj(x). We assume moreover that the
upper bound κ = supx∈B(x,r)(κ(x)) of the sectional curvatures in that ball satisfies
κ < π2/(4r)2. This second condition is always true on spaces of negative curvature
and specifies a maximal radius r∗ = π

2
√
κ

when there is positive sectional curvature.

These concentration assumptions ensure that the Mean square distance has a unique
global minimum that belongs to the ball B̄(x, r).

The result has been extended to Fréchet p-means defined as the minimizers of the
mean p-distance in [1, 51, 52].

In order to differentiate the different notions of means in Riemannian manifolds,
it has been agreed in geometric statistics to name Fréchet mean the set of global
minimizers of the MSD, Karcher mean the set of local minimizers, and exponential
barycenters the set of critical points satisfying the implicit equation M1(x) = 0.
It is clear that all these definition boils down for the classical 2-mean to the same
unique point within the ball B(x, r) of the KKC conditions. Notice that we may still
have local minima and critical points located outside this ball.

11.3 Statistics Beyond the Mean Value: Generalizing PCA

The mean value is just a zero-dimensional summary statistics of the data. If we want
to retain more information, we need to add more degrees of freedom, and Principal
Component Analysis (PCA) is the ubiquitous tool for that. In a Euclidean space,
the principal k-dimensional affine subspace of the PCA procedure is equivalently
defined by minimizing the MSD of the residuals (the projection of the data point to
the subspace) or by maximizing the explained variance within that affine subspace.
This double interpretation is available through Pythagoras’ theorem, which does not
hold in more general manifolds. A second important observation is that principal
components of different orders are nested, enabling the forward or backward
construction of nested principal components.

Tangent PCA
Generalizing PCA to manifolds and to potentially more general stratified spaces
is currently a very active research topic. The first step is the generalization of
affine subspaces in manifolds. For the zero-dimensional subspace, the Fréchet
mean is the natural intrinsic generalization of the mean around which PCA is
performed. The one-dimensional component can naturally be a geodesic passing
through the mean point. Higher-order components are more difficult to define.
The simplest generalization is tangent PCA (tPCA), which amounts unfolding the
whole distribution in the tangent space at the mean, and computing the principal
components of the covariance matrix in the tangent space. The method is thus
based on the maximization of the explained variance, which is consistent with the
entropy maximization definition of a Gaussian on a manifold proposed by Pennec
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[37]. tPCA is actually implicitly used in most statistical works on shape spaces and
Riemannian manifolds because of its simplicity and efficiency. However, if tPCA
is good for analyzing data which are sufficiently centered around a central value
(unimodal or Gaussian-like data), it is often not sufficient for distributions which
are multimodal or supported on large compact subspaces (e.g. circles or spheres).

Principal Geodesic Analysis (PGA)
Instead of an analysis of the covariance matrix, [13] proposed the minimization of
squared distances to subspaces which are totally geodesic at a point, a procedure
coined Principal Geodesic Analysis (PGA). These Geodesic Subspaces (GS) are
spanned by the geodesics going through a point with tangent vector restricted to
a linear subspace of the tangent space. In fact, the tangent vectors also need to
be restricted to the interior of the tangential cut locus within this linear subspace
if we want to generate a submanifold of the original manifold [39]. The idea
of minimizing the unexplained variance (i.e. the norm of the residuals) is really
interesting and corresponds exactly to what we want to do in manifold dimension
reduction. However, the non-linear least-squares procedure to optimize the geodesic
subspace is computationally expensive, so that [13] approximated in practice PGA
with tPCA. This is really unfortunate because this led many people to confuse PGA
ant tPCA. A real implementation of the original PGA procedure was only recently
provided by Sommer et al. [48]. PGA is allowing to build a flag (sequences of
embedded subspaces) of principal geodesic subspaces consistent with a forward
component analysis approach. Components are built iteratively from the mean point
by selecting the tangent direction that optimally reduces the square distance of data
points to the geodesic subspace.

Geodesic PCA
In the PGA procedure, the mean always belongs to geodesic subspaces even when it
is out of the distribution support. To alleviate this problem Huckemann [19, 20]
proposed to start at the first order component directly with the geodesic that
best fits the data, which is not necessarily going through the mean. The second
principal geodesic is chosen orthogonally at a point of the first one, and higher
order components are added orthogonally at the crossing point of the first two
components. The method was named Geodesic PCA (GPCA). Further relaxing
the assumption that second and higher order components should cross at a single
point Sommer proposed a parallel transport of the second direction along the first
principal geodesic to define the second coordinates, and iteratively define higher
order coordinates through horizontal development along the previous modes [47].

Principal Nested Spheres
All the previous extensions of PCA are intrinsically forward methods that build
successively larger approximation spaces for the data. A notable exception to this
principle is the concept of Principal Nested Spheres (PNS), proposed by Jung et al.
[21] in the context of planar landmarks shape spaces. A backward analysis approach
determines a decreasing family of nested subspheres by slicing a higher dimensional
sphere with affine hyperplanes. In this process, the nested subspheres are not of



346 X. Pennec

radius one, unless the hyperplanes pass through the origin. Damon and Marron have
recently generalized this approach to manifolds with the help of a “nested sequence
of relations” [6]. However, such a sequence was only known so far for spheres or
Euclidean spaces.

11.3.1 Barycentric Subspaces in Manifolds

The geodesic subspaces used for tPCA, PGA and GPCA are described by one point
and k tangent vectors at that point. This give a special role to this reference point
which is not found in the higher dimensional descriptors. Moreover, these spaces are
totally geodesic at the reference point but generally nowhere else. This asymmetry
may not be optimal for multimodal distributions that do not have a single ‘pole’.

Fréchet, Karcher and Exponential Barycentric Subspaces
In order to have a fully symmetric and ‘multi-pole’ description of subspaces, we
have proposed in [39] a new and more general type of subspaces in manifolds:
barycentric subspaces are implicitly defined as the locus of weighted means of k+1
reference points with positive or negative weights summing up to one. This time the
descriptors are fully symmetric (they are all standard points). Depending on the
definition of the mean, we obtain the Fréchet, Karcher or exponential barycentric
subspaces (FBS/KBS/EBS). The Fréchet (resp. Karcher) barycentric subspace of
the points (x0, . . . xk) ∈ Mk+1 is the locus of weighted Fréchet (resp. Karcher)
means of these points, i.e. the set of global (resp. local) minimizers of the weighted
mean square distance: σ 2(x, λ) = 1

2

∑k
i=0 λi dist2(x, xi):

FBS(x0, . . . xk) =
{

arg min
x∈M

σ 2(x, λ), λ ∈ Rk+1,1!λ = 1

}

.

The EBS is the locus of weighted exponential barycenters of the reference points
(critical points of the weighted MSD) defined outside their cut-locus as follows.

Definition 11.3 (Exponential Barycentric Subspace (EBS) and Affine Span) A
set of k + 1 points {x0, . . . xk} ∈ Mk+1 is affinely independent if no point is in the
cut-locus of another and if all the k+1 sets of k vectors {logxi (xj )}0≤j �=i≤k ∈ TxiMk

are linearly independent.
The EBS of k+1 affinely independent points (x0, . . . xk) is the locus of weighted

exponential barycenters of the reference points:

EBS(x0, . . . xk)={x ∈ M\Cut(x0, . . . xk)|∃λ ∈ Rk+1,1!λ=1 : ∑i λi logx(xi)=0}.

The affine span is the closure of the EBS in M: Aff(x0, . . . xk) = EBS(x0, . . . xk).

Because we assumed that M is geodesically complete, this is equivalent to the
metric completion of the EBS.
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Thus, outside the cut locus of the reference points, we clearly see the inclusion
FBS ⊂ KBS ⊂ EBS. The completeness of the affine span allows ensuring
that a closest point exists on the subspace, which is fundamental in practice for
optimizing the subspaces by minimizing the distance of the data to their projection.
This definition works on metric spaces more general than Riemannian manifolds.
In stratified metric spaces, the barycentric subspace spanned by points belonging to
different strata naturally maps over several strata [50].

Barycentric subspaces can be characterized very similarly to the Euclidean case
by the singular value decomposition of a certain matrix or by the diagonalization
of the covariance and the Gram matrices. Let Z(x) = [logx(x0), . . . logx(xk)] be
the matrix field of the log of the reference points xi in a local coordinate system.
This is a smooth field outside the cut locus of the reference points. The EBS is the
zero level-set of the smallest singular value of Z(x). The associated right singular
vector gives the weights λ that satisfy the barycentric equation

∑

i λi logx(xi) = 0.
Denoting G(x) the matrix expression of the Riemannian metric, we can also define
the smooth (k + 1) × (k + 1) Gram matrix field �(x) = Z(x)TG(x)Z(x) with
components �ij (x) = 〈−→

xxi
∣
∣−→xxj

〉

x
and the (scaled) n× n covariance matrix field

of the reference points  (x) = ∑k
i=0

−→
xxi

−→
xxi

T = Z(x)Z(x)T. With these notations,
EBS(x0, . . . xk) is the zero level-set of det(�(x)), the minimal eigenvalue σ 2

k+1 of
�(x), the k + 1 eigenvalue (in decreasing order) of the covariance  (x).

Example in Constant Curvature Spaces
It is interesting to look at the barycentric subspaces in the most simple non-linear
spaces: constant curvature spaces. The sphere can be represented by the classical
embedding of the unit sphere Sn ⊂ Rn+1 and the hyperbolic space as the unit
pseudo-sphere of the Minkowski space R1,n. With this model, the affine span of
k + 1 reference points is particularly simple: it is the great subsphere (resp great
sub-pseudosphere) obtained by the intersection of the (pseudo) sphere with the
hyperplane generated by the reference points in the embedding space. Notice that
the EBS in the sphere case is the great subsphere (the affine span) minus the
antipodal points (the cut locus) of the reference points. However, even if the affine
span is simple, understanding the Fréchet/Karcher barycentric subspaces is much
more involved. In order to find the local minima among the critical points, we have
to compute the Hessian matrix of the weighted MSD, and to look at the sign of its
eigenvalues: at the critical points with a non-degenerate Hessian (regular points),
local minima are characterized by a positive definite Hessian. In fact, the zero-
eigenvalues of the Hessian subdivide the EBS into a cell complex according to the
index (the number of positive eigenvalues) of the Hessian. This index is illustrated
on Fig. 11.1 for a few configuration of 3 affinely independent reference points on the
2-sphere: we clearly see that the positive points of the KBS do not in general cover
the full subsphere containing the reference points. It may even be disconnected,
contrarily to the affine span which consistently covers the whole subsphere. For
subspace definition purposes, this shows that the affine span is a more interesting
definition than KBS/FBS.
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Fig. 11.1 Signature of the weighted Hessian matrix for different configurations of 3 reference
points (in black, antipodal point in red) on the 2-sphere: the locus of local minima (KBS) in brown
does not cover the whole sphere and can even be disconnected (first example). Reproduced from
[39]

Properties of Barycentric Subspaces
For k + 1 affinely independent reference points, the affine span is a smooth
submanifold of dimension k in a neighborhood of each of the reference points.
Further away from the reference points, one can show that the EBS is a stratified
spaces of maximal dimension k at the regular points [39]. At the degenerate points
where the Hessian has null eigenvalues, pathological behavior with an increasing
dimension may perhaps appear although this has not been observed in constant
curvature spaces.

When the reference points belong to a sufficiently small regular geodesic ball
(typically satisfying the KKC conditions of Theorem 11.2), then the FBS with
positive weights, called the barycentric simplex, is the graph of a k dimensional
function. The barycentric k-simplex contains all the reference points and the
geodesics segments between the reference points. The (k − l)-faces of a simplex
are the simplices defined by the barycentric subspace of k − l + 1 points among
the k+ 1. They are obtained by imposing the l remaining barycentric coordinates to
be zero. Barycentric simplexes were investigated in [50] as extensions of principal
subspaces in the negatively curved metric space of trees under the name Locus of
Fréchet mean (LFM).

Making the k+1 reference points become closer together, we may imagine that at
the limit they coalesce at one point x along k directions (v1, . . . vk) ∈ TxMk . In that
case, one can show that the EBS converges to the geodesic subspace generated by
geodesics starting at x with tangent vectors that are linear combination of the vectors
(v1, . . . vk) (up to the cut locus of x). More generally, the reference points may
converge to a non local jet,4 which may give a new way to define multi-dimensional
splines in manifolds.

4p-jets are equivalent classes of functions up to order p. Thus, a p-jet specifies the Taylor
expansion of a smooth function up to order p. Non-local jets, or multijets, generalize subspaces of
the tangent spaces to higher differential orders with multiple base points.
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11.3.2 From PCA to Barycentric Subspace Analysis

The nestedness of approximation spaces is one of the most important characteristics
for generalizing PCA to more general spaces [6]. Barycentric subspaces can easily
be nested by adding or removing one or several points at a time, which corresponds
to put the barycentric weight of this (or these) point(s) to zero. This gives a family of
embedded submanifolds called a flag because this generalizes flags of vector spaces.

Forward and Backward Approaches
With a forward analysis, we compute iteratively the flag of affine spans by adding
one point at a time keeping the previous ones fixed. Thus, we begin by computing
the optimal barycentric subspace Aff(x0) = {x0}, which is the set of exponential
barycenters. This may be a Fréchet mean or more generally a critical value of the
unexplained variance. Adding a second point amounts to computing the geodesic
passing through the mean that best approximates the data. Adding a third point now
generally differs from PGA. In practice, the forward analysis should be stopped at
a fixed number or when the variance of the residuals reaches a threshold (typically
5% of the original variance). We call this method the forward barycentric subspace
(FBS) decomposition of the manifold data. Due to the greedy nature of this forward
method, the affine span of dimension k defined by the first k + 1 points is not in
general the optimal one minimizing the unexplained variance.

The backward analysis consists in iteratively removing one dimension. Starting
with a set of points x0, . . . xn which generates the full manifold, we could start
to choose which one to remove. However, as the affine span of n + 1 linearly
independent points generate the full manifold, the optimization really begins with n
points. Once they are fixed, the optimization boils down to test which point should
be removed. In practice, we may rather optimize k + 1 points to find the optimal
k-dimensional affine span, and then reorder the points using a backward sweep to
find inductively the one that least increases the unexplained variance. We call this
method the k-dimensional pure barycentric subspace with backward ordering (k-
PBS). With this method, the k-dimensional affine span is optimizing the unexplained
variance, but there is no reason why any of the lower dimensional ones should.

Barycentric Subspace Analysis: Optimizing a Criterion on the Whole Flag of
Subspaces
In order to obtain optimal subspaces which are embedded consistency across
dimensions, it is necessary to define a criterion which depends on the whole flag of
subspaces and not on each of the subspaces independently. In PCA, one often plots
the unexplained variance as a function of the number of modes used to approximate
the data. This curve should decreases as fast as possible from the variance of the
data (for 0 modes) to 0 (for n modes). A standard way to quantify the decrease
consists in summing the values at all steps. This idea gives the Accumulated
Unexplained Variances (AUV) criterion [39], which sums the unexplained variance
(the sum of squared norm of the residuals) by all the subspaces of the flag. AUV is
analogous to the Area-Under-the-Curve (AUC) in Receiver Operating Characteristic
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(ROC) curves. In practice, one can stop at a maximal dimension k like for the
forward analysis in order to limit the computational complexity. This analysis
limited to a flag defined by k + 1 points is denoted k-BSA. Let us denote by
σ 2
out (Aff(x0, ..xk)) the sum of the squared distance of the data points to the affine

subspace Aff(x0, ..xk) (the variance unexplained by this subspace). The AUV of the
flag Aff(x0) ⊂ Aff(x0, x1) ⊂ . . .Aff(x0, ..xk) is

AUV (x0, x1, . . . , xk) = σ 2
out (Aff(x0))+σ 2

out (Aff(x0, x1))+. . .+σ 2
out (Aff(x0, ..xk)).

(11.3)
In a Euclidean space, minimizing the unexplained variance with respect to a k-

dimensional affine subspace leads to select the hyperplane going through the mean
of the data and spanned by the eigenvectors (v1, . . . vk) of the covariance matrix
associated to the largest k eigenvalues. However, this subspace is independent of
the ordering of the k selected eigenvectors, and nothing in this criterion helps us
to select an optimal smaller dimensional subspace. Thus, the PCA ordering of the
subspaces that produces a hierarchy of embedded subspaces of larger dimension is
not specified by the unexplained variance criterion (nor by the explained variance)
alone. If we now consider the AUV criterion on a flag of subspaces (say up to
order k), then one can show that the unique solution is the flag generated with the
increasing ordering of the eigenvalues. This shows that PCA is actually optimizing
the AUV criterion on the space of affine flags. The generalization to the optimization
of the AUV criterion on the space of flags of affine spans in Riemannian manifolds
is called Barycentric Subspaces Analysis (BSA).

Forward, Backward and Optimal Flag Estimation
In summary, we may consider three main algorithms to estimate a flag of barycentric
subspaces of maximal dimension k:

• The Forward Barycentric Subspace decomposition (k-FBS) iteratively adds the
point that minimizes the unexplained variance up to k + 1 points. With this
method, only the first (usually zero or one dimensional) subspace optimized is
optimal and all the larger ones are suboptimal for the unexplained variance.

• The optimal Pure Barycentric Subspace with backward reordering (k-PBS)
estimates the k+ 1 points that minimize the unexplained variance for a subspace
of dimension k, and then reorders the points accordingly for lower dimensions.
Here only the largest subspace si optimal, and all the smaller ones are suboptimal.

• The Barycentric Subspace Analysis of order k (k-BSA) looks for the flag of
affine spans defined by k + 1 ordered points that optimized the AUV. Here none
of the subspaces are optimal for the unexplained variance of the corresponding
dimension, but the whole flag is optimal for the AUV criterion.
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11.3.3 Sample-Limited Lp Barycentric Subspace Inference

Sample-Limited Inference
In order to compute the optimal subspaces or flags of subspaces, we need to set-
up an optimization procedure. This can be realized by standard gradient descent
techniques for optimization on manifolds. However, to avoid gradient computations
but also to avoid finding optima that are far away from any data point, it has
been proposed to limit the inference of the Fréchet mean to the data-points only.
For instance, in neuroimaging studies, the individual image minimizing the sum
of square deformation distance to other subject images was found to be a good
alternative to the mean template (a Fréchet mean in deformation and intensity space)
because it conserves the original characteristics of a real subject image [30]. Beyond
the Fréchet mean, Feragen et al. proposed to define the first principal component
mode as the unexplained variance minimizing geodesic going through two of the
data points [12]. The method named set statistics was aiming to accelerate the
computation of statistics on tree spaces. Zhai [53] further explored this idea under
the name of sample-limited geodesics in the context of PCA in phylogenetic tree
space. In both cases, defining principal modes of order larger than two was seen as
an unsolved challenging research topic.

With barycentric subspaces, the idea of sample-limited statistics naturally
extends to any dimension by restricting the search to the (flag of) affine spans
that are parametrized by points sampled from the data. The implementation boils
down to an enumeration problem. With this technique, the reference points are never
interpolated as they are by definition sampled from the data. This is a important
advantage for interpreting the modes of variation since we may go back to other
information about the samples like the medical history and disease type. The
search can be done exhaustively for a small number of reference points. The main
drawback is the combinatorial explosion of the computational complexity with the
dimension for the optimal order-k flag of affine spans, which is involving O(Nk+1)

operations, where N is the number of data points. In [38] we perform an exhaustive
search, but approximate optima can be sought using a limited number of randomly
sampled points [12].

Adding Robustness with Lp Norms
Since barycentric subspaces minimize the weighted MSD, one could think of
taking a power p of the metric to define the mean p-distance (MpD) σp(x) =
1
p

∑k
i=0 distp(x, xi). We recall that the global minimizers of this MdP defines the

Fréchet median for p = 1, the Fréchet mean for p = 2 and the barycenter of the
support of the distribution for p = ∞. This suggests to further generalize barycen-
tric subspaces by taking the locus of the minima of the weighted unexplained MpD
σp(x, λ) = 1

p

∑k
i=0 λi distp(x, xi). However, it turns out that the critical points of

the weighted this criterion are necessarily included in the EBS: since the gradient of
the criterion is (except at the reference points and their cut loci):
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∇xσp(x, λ) = ∇x 1
p

∑k
i=0 λi( dist2(x, xi))p/2 = −∑k

i=0 λi distp−2(x, xi) logx(xi).

Thus, we see that the critical points of the MpD satisfy the equation
∑k
i=0 λ

′
i logx(xi) = 0 for the new weights λ′

i = λi distp−2(x, xi). Thus, they
are also elements of the EBS and changing the power of the metric just amounts
to a reparameterization of the barycentric weights. This stability of the EBS/affine
span with respect to the power of the metric p shows that the affine span is really a
central notion.

While changing the power does not change the subspace definition, it has a
drastic impact on its estimation: minimizing the sum of Lp distance to the subspace
for non-vanishing residuals obviously changes the relative influence of points [38].
It is well known that medians are more robust than least-squares estimators: the
intuitive idea is to minimize the power of residuals with 1 ≤ p ≤ 2 to minimize
the influence of outliers. For 0 < p < 1, the influence of the closest points
becomes predominant, at the cost of non-convexity. In general, this is a problem
for optimization. However, there is no gradient estimation in the sample-limited
setting as we have to rely on an exhaustive search for the global minimum or on
a stochastic approximation by testing only a subset of reference configurations. At
the limit of p = 0, all the barycentric subspaces containing k + 1 points (i.e. all
the sample-limited barycentric subspaces of dimension k that we consider) have the
same L0 sum of residuals, which is a bit less interesting.

For a Euclidean space, minimizing the sum of Lp norm of residuals under a
rank k constraint is essentially the idea of the robust R1-PCA [8]. However, an
optimal rank k subspace is not in general a subspace of the optimal subspace of
larger ranks: we loose the nestedness property. An alternative PCA-L1 approach,
which maximizes the L1 dispersion within the subspace, was proposed in [26].
On manifolds, this would lead to a generalization of tangent-PCA maximizing the
explained p-variance. In contrast, we proposed in [38] to minimize the Accumulated
Unexplained p-Variance (Lp AUV) over all the subspaces of the flag under
consideration. Since the subspace definition is not affected by the power p, we can
compare the subspaces’ parameters (the reference points) for different powers. It
also allows to simplify the algorithms: as the (positive) power of a (positive) distance
is monotonic, the closest point to an affine span for the 2-distance remains the closest
point for the p-distance. Thus, the forward barycentric subspace analysis (k-FBS),
the pure subspace with backward reordering analysis (k-PBS) and the barycentric
subspace analysis (k-BSA) can be seamlessly generalized to their robust Lp version
in the sample-limited setting.
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11.4 Example Applications of Barycentric Subspace Analysis

11.4.1 Example on Synthetic Data in a Constant Curvature
Space

The Lp variant of the forward (FBS), backward (PBS) and BSA algorithms were
evaluated on synthetically generated data on spheres and hyperbolic spaces in [38].
The projection of a point of a sphere on a subsphere is almost always unique and
corresponds to the renormalization of the projection on the Euclidean subspace
containing the subsphere. The same property can be established for hyperbolic
spaces, which can be viewed as pseudo-spheres embedded in a Minkowski space.
Affine spans are great pseudo-spheres (hyperboloids) generated by the intersection
of the plane containing the reference points with the pseudo-sphere, and the closest
point on the affine span is the renormalization of the unique Minkowski projection
on that plane [39]. In both cases, implementing the Riemannian norm of the
residuals is very easy and the difficulty of sample-limited barycentric subspace
algorithms analysis resides in the computational complexity of the exhaustive
enumeration of tuples of points.

We illustrate in Fig. 11.2 the results of the Lp barycentric subspace algorithms on
a set of 30 points in the 5D hyperbolic space generated at follows: we draw 5 random
points (tangent Gaussian with variance 0.015) around each vertex of an equilateral
triangle of length 1.57 centered at the bottom of the 5D hyperboloid embedded in the
(1,5)-Minkowski space. As outliers, we add 15 points drawn according to a tangent
Gaussian of variance 1.0 truncated at a maximum distance of 1.5 around the bottom
of the 5D hyperboloid. This simulates three clusters living on a lower dimensional
2-pseudo-sphere with 50% of outliers (Fig. 11.2). With the L2 hyperbolic distance,
the 1-FBS and 1-BSA methods select outliers for their two reference points. 1-
PBS manages to get one point in a cluster. For the two dimensional approximation

Fig. 11.2 Analysis of 3 clusters on a 5D hyperbolic space, projected to the expected 2-pseudo-
sphere, with p = 2 (left), p = 1 (middle) and p = 0.5 (right). For each method (FBS in blue,
1-PBS in green, 1-BSA in red), the 1d mode is figured as a geodesic joining the two reference point
(unseen red, blue or green geodesics are actually hidden by another geodesic). The three reference
points of 2-PBS are represented with dark green solid circles, and the ones of 2-BSA with deep
pink solid boxes. Reproduced, with permission from [38]
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again with the L2 distance, the 2-FBS and the 2-PBS select only one reference
points within the clusters while 2-BSA correctly finds the clusters (Fig. 11.2 left,
dark green points). With the L1 distance, FBS, PBS and BSA select 3 very close
points within the three clusters (Fig. 11.2 center). Lowering the power to p = 0.5
leads to selecting exactly the same points optimally centered within the 3 clusters
for all the methods (Fig. 11.2 right). Thus, it seems that we could achieve some
kind of Principal Cluster Analysis with the sample-limited Lp barycentric subspace
analysis.

11.4.2 A Symmetric Group-Wise Analysis of Cardiac Motion
in 4D Image Sequences

Understanding and analyzing the cardiac motion pattern in a patient is an important
task in many clinical applications. The cardiac motion is usually studied by finding
correspondences between each of the frames of the sequence and the first frame
corresponding to the end-diastole (ED) image. This image registration process
yields a dense displacement field that tracks the motion of the myocardium over the
image sequence. Taking the ED image as a reference is natural as it is the starting
point of the contraction of the heart which is the most important phase in evaluating
the efficiency of the cardiac function. However, this specific choice can lead to
important biases in quantifying the motion, especially at end-systole (ES) where
the deformations to be evaluated are large. In [45], we proposed to build a multi-
reference registration to a barycentric subspaces of the space of images representing
cardiac motion instead of taking a unique reference image to evaluate the motion.

In the context of diffeomorphic medical image registration, 3D images are the
“points” of our manifold while “geodesics” are the optimal deformations found by
image registration to map one image to the other. In the Large Diffeomorphic Metric
Mapping (LDDMM) at well as in the Stationary Velocity Field (SFV) registration
frameworks, diffeomorphic deformations are obtained by the flow of velocity fields,
and the tangent vector (i.e. a vector field over the image) at the initial point of
the deformation trajectory registering image I to image J may be interpreted as
logI (J ). We refer the reader to [31, 41] for a more in-depth description of the SVF
framework and its application in medical image registration.

The barycentric subspace of dimension k spanned by k + 1 reference images R1
to Rk+1 is then defined as the set of images Î for which there exists weights λi such
that

∑k+1
j=1 λj log

Î
(Rj ) = 0. Thus, projecting image I on this subspace amounts to

find the smallest SVF V̂ deforming image I to image Î such that the SVFs V̂1,V̂2
and V̂3 encoding the deformation from this projected image to the three references
R1, R2 and R3 are linearly dependent (Fig. 11.3). The weights λj are the barycentric
coordinates of image I in the “basis” (R1, R2, R3). This process can be repeated for
each image I1 to IN of the temporal sequence of one subject. This allows us to
compute the unexplained variance σ 2(R1, R2, R3) = ∑N

i=1 ‖V̂ (Ii)‖2 and to choose
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Fig. 11.3 Barycentric subspace of dimension 2 built from 3 references images (R1, R2, R3). Î
is the projection of the image I within the barycentric subspace such that ‖ V̂ ‖2 is minimal under
the conditions

∑

j λj V̂ j = 0 and V̂ + V̂ j = Vj . Reproduced from [45]

0% % cardiac cycle

= ED = ES = diastasis

R1

R1

R2

R3

R2 R3

100%

λ = (1,0,0) λ = (0,0,1)

λ = (0,1,0)

λ3 < 0

λ2 < 0

λ1 < 0

Fig. 11.4 Cardiac motion signature of 10 sequences of control subjects (in blue) and 16 sequences
of Tetralogy of Fallot subjects (in red). Left: the time-index of the three optimal references
superimposed on the average cardiac volume curve for each population. Right: the curve of
barycentric coordinates of the images along the sequence of each subject, projected on the plane
∑

i λi = 1. Modified from [44, 45]

the optimal basis by repeating the experiment for all possible triplets of reference
images within our sequence.

This methodology was used in [45] to compare the cardiac motion signature
of two different populations. The first group consists of 10 healthy subjects from
the STACOM 2011 cardiac motion tracking challenge dataset [49], and the second
group is made of 10 Tetralogy of Fallot (ToF) patients [33]. Short axis cine MRI
sequences were acquired with T = 15–30 frames. For each subject, we projected
each of the frames of the cardiac sequence to a barycentric subspace of dimension
2 built by 3 reference images belonging to that sequence. A significant differences
in the time-index of the optimal references frames can be seen between the two
populations (Fig. 11.4, left). In particular, the second reference—corresponding
to the end-systole—is significantly later for the ToF patients showing that this
population has on average longer systolic contraction. The barycentric coefficients
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(Fig. 11.4, right) also show significant differences between the groups, especially in
the region λ1 < 0. This demonstrates that this signature of the motion is encoding
relevant features. Last but not least, the reconstruction based on the 3 reference
images and the 30 barycentric coefficients along the sequence (a compression rate
of 1/10) turned out to achieve a reconstruction error in intensity which is 40% less
than the one of a classical tangent PCA with two deformation modes at the mean
image of the sequence (compression rate 1/4 only). This demonstrates that the multi-
reference approach based on barycentric subspaces can outperform the classical
statistical shape analysis methods on real medical imaging problems.

11.5 Conclusion and Perspectives

We have drafted in this chapter a summary of some of the recent advances on
manifold dimension reduction and generalization of principal component analysis
to Riemannian manifolds. The first observation is that generalizing affine subspaces
to manifolds with a minimization procedure (i.e. Fréchet or Karcher barycentric
subspaces) leads to small disconnected patches that do not cover complete lower
dimensional subspheres (resp. sub-pseudospheres) in constant curvature spaces.
Considering the completion (the affine span) of all critical points (the exponential
barycentric subspace) is needed to cover the full sub-(pseudo)-sphere. The fact that
changing the MSD for the MpD does not change the affine span is an unexpected
stability result which suggests that the notion is quite central. The second important
point is that geodesic subspaces that were previously proposed for PGA or GPCA
are actually particular cases of barycentric subspaces that can be obtained by taking
reference points highly concentrated with respect to the distribution of our data
points. The framework is thus more general. Last but not least, following [6],
any interesting generalization of PCA should rely on sequences of properly nested
spaces. Generalizing linear flags in Euclidean space, an ordering of the reference
points naturally defines a flag of nested affine spans in a manifold. Now instead
of defining the subspaces of the flag iteratively in a forward or backward manner,
which is sub-optimal for each subspace considered independently, it turns out that
PCA can be rephrase as an optimization of the AUV criterion (the sum of all
unexplained variances by all the subspaces of the hierarchy) on the space of flags.
Such a method coined Barycentric Subspace Analysis can be naturally extended to
the Lp norm of residuals to account for outliers or different type of noises. BSA
can also be performed by restricting reference points defining the subspaces to be a
subset of the data points, thus considerably extending the toolbox of sample-limited
statistics to subspaces of dimension larger than one, and an example application on
3D image sequences of the heart showed that many insights can be brought by this
new methodology.
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Abstract This chapter begins with a review of variational inference (VI) as a fast
approximation alternative to Markov Chain Monte Carlo (MCMC) methods, solving
an optimization problem for approximating the posterior. VI is scaled to stochastic
variational inference and generalized to black-box variational inference (BBVI).
Amortized VI leads to the variational auto-encoder (VAE) framework which is
introduced using deep neural networks and graphical models and used for learning
representations and generative modeling. Finally, we explore generative flows, the
latent space manifold, and Riemannian geometry of generative models.

12.1 Variational Inference

We begin with observed data x, continuous or discrete, and suppose that the process
generating the data involved hidden latent variables z. For example, x may be an
image of a face and z a hidden vector describing latent variables such as pose,
illumination, gender, or emotion. A probabilistic model is a joint density p(z, x)
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of the hidden variables z and the observed variables x. Our goal is to estimate the
posterior p(z|x) to explain the observed variables x by the hidden variables z. For
example, answering the question what are the hidden latent variables z for a given
image x. Inference about the hidden variables is given by the posterior conditional
distribution p(z|x) of hidden variables given observations. By definition:

p(z, x) = p(z|x)p(x) = p(x|z)p(z) = p(x, z), (12.1)

where p(z, x) is the joint density, p(z|x) the posterior, p(x) the evidence or
marginal density, p(z) the prior density, and p(x|z) the likelihood function. We
may extend p(x|z)p(z) to multiple layers by:

p(x|z1)p(z1|z2) · · ·p(zl−1|zl)p(zl), (12.2)

by using deep generative models. For now we will focus on a single layer
p(x|z)p(z). Rearranging terms we get Bayes rule:

p(z|x) = p(x|z)p(z)
p(x)

. (12.3)

For most models the denominator p(x) is a high dimensional intractable integral
which requires integrating over an exponential number of terms for z:

p(x) =
∫

p(x|z)p(z)dz. (12.4)

Therefore, instead of computing p(z|x) the key insight of variational inference (VI)
[6, 7, 29, 30, 39, 58, 61] is to approximate the posterior by a variational distribution
qφ(z) from a family of distributions Q, defined by variational parameters φ such
that qφ(z) ∈ Q. In summary, we choose a parameterized family of distributions Q
and find the distribution qφ�(z) ∈ Q which is closest to p(z|x). Once found, we
use this approximation qφ�(z) instead of the true posterior p(z|x) as illustrated in
Fig. 12.1.

Compared with this formulation, methods such as mean-field variational infer-
ence (MFVI) [23, 39] and Markov Chain Monte Carlo (MCMC) sampling have
several shortcomings. The mean-field method [40] assumes that the variational
distribution may be factorized, however such a factorization of variables is often
inaccurate. Stochastic variational inference scales MFVI to large datasets [27].
MCMC sampling methods [10], such as the Metropolis Hastings algorithm generate
a sequence of samples with a distribution which converges to a probability
distribution, such as the posterior distribution. The Metropolis Hastings algorithm
decides which proposed values to accept or reject, even though the functional form
of the distribution is unknown, by using the ratio between consecutive samples.
The limitations of MCMC methods are that they may not be scalable to very large
datasets and require manually specifying a proposal distribution. Integrated nested
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Fig. 12.1 Variational
inference: optimizing an
approximation qφ� (z) ∈ Q
closest to the posterior p(z|x)

Laplace approximations (INLA) [33, 49] are faster and more accurate than MCMC,
however are used for the class of latent Gaussian models.

A choice for Q is the exponential family of distributions and a choice for
closeness of distributions is the relative entropy also known as the Kullback–Leibler
(KL) divergence , defined by:

KL(q(x)||p(x)) =
∫

q(x) log
q(x)

p(x)
dx, (12.5)

and other divergences may be used. The KL divergence is the special case of the
α-divergence [35] with α = 1, and the special case of the Bregman divergence
generated by the entropy function. Making the choice of an exponential family and
KL divergence, we minimize the KL divergence between q(z) and p(z|x):

minimize
φ

KL(qφ(z)||p(z|x)), (12.6)

to find the approximate posterior:

qφ�(z) = arg min
qφ(z)

KL(qφ(z)||p(z|x)), (12.7)

as illustrated in Fig. 12.1. Notice that the KL divergence is non-negative
KL(q||p) ≥ 0 and is not symmetric KL(q||p) �= KL(p||q). Using the definition
of the KL divergence in Eq. (12.5) for the variational distribution and posterior we
get:

KL(q(z)||p(z|x)) =
∫

q(z) log
q(z)

p(z|x)dz. (12.8)

Unfortunately, the denominator contains the posterior p(z|x), which is the term that
we would like to approximate. So how can we get close to the posterior without
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knowing the posterior? By using Bayes rule, replacing the posterior in Eq. (12.8)
using Eq. (12.1) we get:

∫

q(z) log
q(z)

p(z|x)dz =
∫

q(z) log
q(z)p(x)

p(z, x)
dz (12.9)

Separating the logp(x) term and replacing the log of the ratio with a difference
yields:

∫

q(z) log
q(z)p(x)

p(z, x)
dz = logp(x)−

∫

q(z) log
p(z, x)

q(z)
dz. (12.10)

In summary minimizing the KL divergence between q(z) and p(z|x) is equiva-
lent to minimizing the difference:

logp(x)−
∫

q(z) log
p(z, x)

q(z)
dz ≥ 0, (12.11)

which is non-negative since the KL divergence is non-negative. Rearranging terms
we get:

logp(x) ≥
∫

q(z) log
p(z, x)

q(z)
dz := L. (12.12)

The term on the right, denoted by L, is known as the evidence lower bound
(ELBO). Therefore, minimizing the KL divergence is equivalent to maximizing
the ELBO. We have turned the problem of approximating the posterior p(z|x) into
an optimization problem of maximizing the ELBO. The ELBO is a non-convex
function which consists of two terms:

L = Eqφ(z)[logp(x, z)] − Eqφ(z)[log qφ(z)]. (12.13)

The term on the left is the expected log likelihood, and the term on the right is the
entropy. Therefore, when optimizing the ELBO, there is a trade-off between these
two terms. The first term places mass on the MAP estimate; whereas the second
term encourages diffusion, or spreading the variational distribution. In variational
inference (VI) we maximize the ELBO in Eq. (12.13) to find qφ�(z) ∈ Q closest to
the posterior p(z|x).

12.1.1 Score Gradient

Now that our objective is to maximize the ELBO, we turn to practical optimization
methods. The ELBO is not convex so we can hope to find a local minimum. We
would like to scale up to large data x with many hidden variables z. A practical
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optimization method which scales to large data is stochastic gradient descent [8, 47].
Gradient descent optimization is a first order method which requires computing the
gradient. Therefore our problem is of computing the gradient of the ELBO:

∇φL = ∇Eqφ(z)[logp(x, z)− log qφ(z)]. (12.14)

We would like to compute the gradients of the expectations ∇φEqφ(z)[fφ(z)] for a
cost function fφ(z) = logp(x, z)− log qφ(z). Expanding the gradient results in:

∇φEqφ(z)[fφ(z)] = ∇φ
∫

qφ(z)fφ(z)dz, (12.15)

and using the chain rule yields:

∇φ
∫

qφ(z)fφ(z)dz =
∫

(∇φqφ(z))fφ(z)+ qφ(z)(∇φfφ(z))dz. (12.16)

We cannot compute the expectation with respect to qφ(z), which involves the
unknown term ∇φqφ(z), and therefore we will take Monte Carlo estimates of the
gradient by sampling from q and use the score function estimator as described next.

Score Function
The score function is the derivative of the log-likelihood function:

∇φ log qφ(z) = ∇φqφ(z)
qφ(z)

. (12.17)

Score Function Estimator
Using Eq. (12.15) and multiplying by the identity we get:

∇φ
∫

qφ(z)fφ(z)dz =
∫
qφ(z)

qφ(z)
∇φqφ(z)fφ(z)dz, (12.18)

and plugging in Eq. (12.17) we derive:

∫
qφ(z)

qφ(z)
∇φqφ(z)fφ(z)dz =

∫

qφ(z)∇φ log qφ(z)fφ(z)dz, (12.19)

which equals:

∫

qφ(z)∇φ log qφ(z)fφ(z)dz = Eqφ(z)[fφ(z)∇φ log qφ(z)]. (12.20)

In summary, by using the score function, we have passed the gradient through the
expectation:
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∇φEqφ(z)[fφ(z)] = Eqφ(z)[fφ(z)∇φ log qφ(z)]. (12.21)

Score Gradient
The gradient of the ELBO with respect to the variational distribution ∇φL is
computed using Eq. (12.21) as:

∇φL = Eqφ(z)[(logp(x, z)− log qφ(z))∇φ log qφ(z)]. (12.22)

Now that the gradient is inside the expectation we can evaluate using Monte Carlo
sampling. For stochastic gradient descent we average over samples zi from qφ(z) to
get:

∇φL = 1

k

k
∑

i=1

[(logp(x, zi)− log qφ(zi)∇φ log qφ(zi)], (12.23)

where ∇φ log qφ(zi) is the score function. The score gradient works for both discrete
and continuous models and a large family of variational distributions and is therefore
widely applicable [42]. The problem with the score function gradient is that the
noisy gradients have a large variance. For example, if we use Monte Carlo sampling
for estimating a mean and there is high variance we would require many samples
for a good estimate of the mean.

12.1.2 Reparametrization Gradient

Distributions can be represented by transformations of other distributions. We there-
fore express the variational distribution z ∼ qφ(z) = N(μ, σ ) by a transformation:

z = g(ε, φ), (12.24)

where ε ∼ s(ε) for a fixed distribution s(ε) independent of φ, and get an equivalent
way of describing the same distribution:

z ∼ qφ(z). (12.25)

For example, instead of z ∼ qφ(z) = N(μ, σ ) we use:

z = μ+ σ 6 ε, (12.26)

where ε ∼ N(0, 1) is a distribution w.r.t. which the others are parametrized, to get
the same distribution:

z ∼ N(μ, σ ). (12.27)
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Although these are two different ways of describing the same distribution, the
advantages of this transformation are that we can (1) express the gradient of the
expectation, (2) achieve a lower variance than the score function estimator, and (3)
differentiate through the latent variable z to optimize by backpropagation.

We reparameterize ∇φEqφ(z)[fφ(z)], and by a change of variables Eq. (12.15)
becomes:

∇φEqφ(z)[fφ(z)] = ∇φ
∫

s(ε)
dε

dz
f (g(ε, φ))g′(ε, φ)dε, (12.28)

and:

∇φ
∫

s(ε)
dε

dz
f (g(ε, φ))g′(ε, φ)dε = ∇φEs(ε)[f (g(φ, ε)] = Es(ε)[∇φf (g(φ, ε)],

(12.29)
passing the gradient through the expectation:

∇φEqφ(z)[fφ(z)] = Es(ε)[∇φf (g(φ, ε))]. (12.30)

Since the gradient is inside the expectation, we can use Monte Carlo sam-
pling to estimate Es(ε)[∇φf (g(φ, ε))]. The reparameterization method given by
Eq. (12.30) has a lower variance compared with the score function estimator given
in Eq. (12.21).

In the case of the ELBO L, the reparameterized gradient [32, 46] is given by:

∇φL = Es(ε)[∇φ[logp(x, z)− log qφ(z)]∇φg(ε, φ)], (12.31)

and re-writing the expectation:

∇φL = 1

k

k
∑

i=1

(∇φ[logp(x, g(εi, φ))− log qφ(g(εi, φ))], (12.32)

provided the entropy term has an analytic derivation and logp(x, z) and log q(z)
are differentiable with respect to z. Similarly, the reparametrization gradient in
Eq. (12.31) has a lower variance than the score gradient in Eq. (12.22). In addition,
we can use auto-differentiation for computing the gradient and reuse different
transformations [34]. The gradient variance is further reduced by changing the
computation graph in automatic differentiation [48]. However, a limitation of the
reparameterization gradient is that it requires a differentiable model, works only for
continuous models [22], and is computationally more expensive.
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12.2 Variational Autoencoder

Instead of optimizing a separate parameter for each example, amortized variational
inference (AVI) approximates the posterior across all examples together [32, 46].
Meta amortized variational inference (meta-AVI) goes a step further and approxi-
mates the posterior across models [13]. Next, we give a formulation of autoencoders,
which motivates the AVI algorithm of variational autoencoders (VAE).

12.2.1 Autoencoder

An autoencoder is a neural network which performs non-linear principle component
analysis (PCA) [20, 26]. Non-linear PCA extracts useful features from unlabeled
data by minimizing:

minimize
W

m
∑

i=1

‖xi −WT g(Wxi)‖2
2 (12.33)

where for single layer networks, W and WT are matrices which are the networks
parameters and g is a pointwise non-linear function. An autoencoder is composed
of two neural networks. The first maps an input x by matrix multiplication and a
non-linearity to a low dimensional variable z, and the second reconstructs the input
as x̃ usingWT (Fig. 12.2). When g is the identity this is equivalent to PCA.

The goal of variational inference is to find a distribution q which approximates
the posterior p(z|x), and a distribution p(x) which represents the data well.
Maximizing the ELBO minimizes the KL divergence between q and the posterior
and approximately maximizes the marginal likelihood. Motivated by autoencoders,
we represent q and p using two neural networks and optimize for the variational
parameters φ and the model parameters θ simultaneously. An encoder network

Fig. 12.2 Autoencoder:
input x is passed through a
low dimensional bottleneck z
and reconstructed to form x̃

minimizing a loss between
the input and output. The
parametersW of the encoder
and decoder are optimized
end-to-end
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represents q and a decoder network represents p. These neural networks are non-
linear functions F which are a composition of functions F(x) = f (f (· · · f (x))),
where each individual function f has a linear and non-linear component, and the
function F is optimized given a large datasets by stochastic gradient descent (SGD).

12.2.2 Variational Autoencoder

The ELBO as defined in Eq. (12.12) can be re-written as:

L =
∫

q(z) logp(x|z)dz−
∫

q(z) log
p(z)

q(z)
dz, (12.34)

which is the lower bound consisting of two terms:

L = Eq(z)[logp(x|z)] −KL(q(z)||p(z)). (12.35)

Reconstruction Error The first term logp(x|z), on the left, is the log-likelihood
of the observed data x given the sampled latent variable z. This term measures how
well the samples from q(z) explain the data x. The goal of this term is to reconstruct
x from z and therefore is called the reconstruction error, representing a decoder
which is implemented by a deep neural network.

Regularization The second term, on the right, consists of sampling z ∼ q(z|x),
representing an encoder which is also implemented by a deep neural network. This
term ensures that the explanation of the data does not deviate from the prior beliefs
p(z) and is called the regularization term, defined by the KL divergence between q
and the prior p(z).

The objective function in Eq. (12.35) is analogous to the formulation of autoen-
coders, and therefore gives rise to the variational autoencoder (VAE) [32]. The VAE
is a deep learning algorithm, rather than a model, which is used for learning latent
representations. The VAE algorithm is considered amortized variational inference
(AVI) since it shares the variational parameters across all data examples. The
learnt representations can be used for applications such as synthesizing examples or
interpolation between samples, of different modalities such as images [25], video,
audio, geometry, and text [9].

The variational autoencoder algorithm is defined by two back-to-back neural
networks as illustrated in Fig. 12.3. The first is an encoder neural network which
infers a hidden variable z from an observations x (Fig. 12.4). The second is a
decoder neural network which reconstructs an observation x̃ from a hidden variable
z. The encoder qφ and decoder pθ are trained end-to-end, optimizing for both the
encoder parameters φ and decoder parameters θ . Neural networks are optimized
by backpropagation [50] which is a special case of differentiable programming
[4, 60]. Differentiation in a backward pass using the chain rule, results in the partial
derivative of the output with respect to all input variables, namely the gradient, in a
single pass which is highly efficient.
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Fig. 12.3 Variational autoencoder (VAE): the input x is passed through a low dimensional
bottleneck z and reconstructed to form x̃ minimizing a loss between the input and output. The
variational parameters φ of the encoder qφ and the model parameters θ of the decoder pθ neural
networks are optimized simultaneously end-to-end by backpropagation

Fig. 12.4 Variational
Encoder: rather than sampling
directly z ∼ N(μ, σ ) in the
latent space,
reparameterization allows for
backpropagation through the
latent variable
z = μ+ σ 6 ε, which is a
sum of the mean μ and
covariance. The covariance σ
is pointwise multiplied by
noise ε ∼ N(0,I) sampled
from a normal distribution

If we assume q(z|x) and p(x|z) are normally distributed then q is represented
by:

q(z|x) = N(μ(x), σ (x)6 I), (12.36)

for deterministic functions μ(x) and σ(x), and p is represented by:

p(x|z) = N(μ(z), σ (z)6 I), (12.37)

and

p(z) = N(0,I). (12.38)

The variational predictive natural gradient [54] rescales the gradient to capture
the curvature of variational inference. The correlated VAE [55] extends the VAE
to learn pairwise variational distribution estimations which capture the correlation
between data points.

In practice, very good synthesis results for different modalities are achieved using
a vector quantized variational autoencoder (VQ-VAE) [57] which learns a discrete
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latent representation. Using an autoregressive decoder or prior with VQ-VAE [15,
44] generates photorealistic high resolution images [43].

12.3 Generative Flows

This section describes transformations of simple posterior distribution approxi-
mations to complex distributions by normalizing flows [45]. We would like to
improve our variational approximation qφ(z) to the posterior p(z|x). An approach
for achieving this goal is to transform a simple density, such as a Gaussian, to
a complex density using a sequence of invertible transformations, also known as
normalizing flows [17, 31, 45]. Instead of parameterizing a simple distribution
directly, a change of variables allows us to define a complex distribution by warping
q(z) using an invertible function f . Given a random variable z ∼ qφ(z) the log
density of x = f (z) is:

logp(x) = logp(z)− log det
∣
∣
∣
∂f (z)
∂z

∣
∣
∣ . (12.39)

A composition of multiple invertible functions results in a sequence of transfor-
mations, called normalizing flows. These transformations may be implemented by
neural networks, performing end-to-end optimization of the network parameters.
For example, for a planar flow family of transformations:

f (z) = z+ uh(wT z+ b), (12.40)

where h is a smooth differentiable non-linear function, and the log-det Jacobian is
computed by:

ψ(z) = h′(wT z+ b)w, (12.41)

and
∣
∣
∣det

∂f
∂z

∣
∣
∣ = ∣

∣I + uT ψ(z)∣∣ . (12.42)

If z is a continuous random variable z(t) depending on time t with distribution
p(z(t)) then for the differential equation dz

dt
= f (z(t), t) the change in log

probability is:

∂ logp(z(t))

∂t
= −tr

(
∂f
∂z(t)

)

, (12.43)

and the change in log density is:
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logp(z(t1)) = logp(z(t0))−
∫ t1

t0

tr
(
∂f
∂z(t)

)

. (12.44)

also known as continuous normal flows [11, 24].
For the planar flow family of transformations:

dz(t)

dt
= uh(wT z(y)+ b), (12.45)

and

logp(z(t))

∂t
= −uT ∂h

∂z(t)
, (12.46)

such that given p(z(0)), p(z(t)) is sampled and the density evaluated by solving an
ODE [11]. Finally, invertible ResNets [3] use continuous normal flows to define an
invertible model for both discriminative and generative applications.

12.4 Geometric Variational Inference

This section generalizes variational inference and normalizing flows from Euclidean
to Riemannian spaces [37], describing families of distributions which are compati-
ble with a Riemannian geometry and metric [1, 14, 28, 51]. Finally, we consider the
geometry of the latent space in variational autoencoders [12, 52, 59].

We briefly define a Riemannian manifold and metric, geodesic, tangent space,
exponential and logarithm maps [18, 19, 38, 53, 56]. A manifold of dimension d
has at each p0 ∈ M a tangent space Tp0M of dimension d consisting of vectors θ
corresponding to derivatives of smooth paths p(t) ∈M, t ∈ [0, 1], with p(0) = p0.
A Riemannian manifold has a metric on the tangent space. If for tangent vectors θ
we adopt a specific coordinate representation θi , this quadratic form can be written
as

∑

ij gij (p)θiθj . Between any two points p0 and p1 in the manifold, there is at
least one shortest path, having arc length �(p0, p1). Such a geodesic has an initial
position, p0, an initial direction, θ

‖θ‖2
and an initial speed ‖θ‖2. The procedure of

fixing a vector in θ ∈ TpM as an initial velocity for a constant speed geodesic
establishes an association between Tp0M and a neighborhood of p ∈ M. This
association is one-to-one over a ball of sufficiently small size. The association is
formally defined by the exponential map p1 = expp0

(θ). Within an appropriate
neighborhood p0, the inverse mapping is called the logarithm map and is defined by
θ = logp0

(p1) as illustrated in Fig. 12.5.
Normalizing flows have been extended from Euclidean space to Riemannian

space [37]. A simple density on a manifoldM is mapped to the tangent space TpM.
Normalizing flow transformations are then applied to the mapped density in the
tangent space, and the resulting density is mapped back to the manifold.
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Fig. 12.5 Manifold and tangent plane: exponential and logarithm maps between the tangent plane
and the manifold. A line in the tangent plane corresponds to a geodesic in the manifold

In variational inference, several transformation choices of a family of distribu-
tions are compatible with a Riemannian geometry [14, 21, 28, 51]. For example,
transforming a distribution by the square-root to the positive orthant of the sphere,
results in the square-root density of probability distributions. Probability distribu-
tions are then represented by square-root densities, and the geodesic distance is
defined by the shortest arc length. Again, p1 = expp0

(θ) maps the tangent space
to the sphere, and θ = logp0

(p1) maps the sphere to the tangent space. Densities
are represented in the tangent space, and in a similar fashion to normalizing flows,
parallel transport is used to map one tangent space to another.

The decoder in the variational autoencoder is used for both reconstruction and
synthesis, generating new samples x from latent variables z. In the past decade,
generating a sequence of samples which smoothly morph or warp graphical objects
required meticulously specifying correspondence between landmarks on the objects.
In contrast, using the decoder as a generator and interpolating between hidden
variables in latent space allows to perform this transformation without specifying
correspondence. A question which arises is whether performing linear interpolation
is suitable in the latent space? Interpolation may be performed by walking along a
manifold rather than linear interpolation in the latent space. Specifically the latent
space of a variational autoencoder can be considered as a Riemannian space [12].
Using a Riemannian metric rather than an Euclidean metric in the latent space
provides better distance estimates [2, 36] which improve interpolation and synthesis
results [52], as well as text generation results [59], increasing the mutual information
between the latent and observed variables.
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12.5 Summary

In this chapter we introduced variational inference (VI) and its extension to black-
box variational inference (BBVI) which is used in practice for inference on large
datasets. The variational autoencoders (VAE) algorithm consists of an encoder
neural network for inference and decoder network for generation, trained end-to-
end by backpropagation. We described a way in which the variational approximation
of the posterior is improved using a series of invertible transformations, known as
normalizing flows, in both discrete and continuous domains. Finally, we explored
the latent space manifold and extended variational inference and normalizing flows
to Riemannian manifolds. Scalable implementations of variational inference and
variational autoencoders are available as part of Google’s Tensorflow Probability
library [16] and Uber’s Pyro library [5] for Facebook’s PyTorch deep learning
platform [41].
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Abstract Functional data is one of the most common types of data in our
digital society. Such data includes scalar or vector time series, Euclidean curves,
surfaces, or trajectories on nonlinear manifolds. Rather than applying past statistical
techniques developed using standard Hilbert norm, we focus on analyzing functions
according to their shapes. We summarize recent developments in the field of
elastic shape analysis of functional data, with a perspective on statistical inferences.
The key idea is to use metrics, with appropriate invariance properties, to register
corresponding parts of functions and to use this registration in quantification
of shape differences. Furthermore, one introduces square-root representations of
functions to help simplify computations and facilitate efficient algorithms for large-
scale data analysis. We will demonstrate these ideas using simple examples from
common application domains.
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13.1 Introduction

Statistical shape analysis aims to study the shapes of given geometric objects by
statistical methods. It has wide applications in biology, computer vision, medical
images, etc. For instance, in bioinformatics, it is important to associate the shapes
of biological objects like RNAs and proteins with their functionality. Given a sample
of shapes, one would like to use some statistical tools to summarize the information
and make the inference. Some important techniques include an appropriate metric
for quantifying shape difference, geodesics to study a natural deformation between
two shapes, summary statistics (mean, covariance) of shapes, shape models to
characterize shape populations and regression models using shapes as predictors
or responses.

The object of interest varies depending on different applications. Examples
include scalar functions, planar or 3D curves, surfaces, etc. As the result, shape
analysis is naturally related to the subject of differential geometry. A typical frame-
work for shape analysis starts with mathematical representations of objects and
removes certain shape-preserving transformations as pre-processing. The remaining
transformations that cannot be removed by pre-processing are dealt with equivalent
classes defined by group actions. For example, since shape is invariant with respect
to different rotations, an equivalent class defined by rotation of a specific shape is a
set that contains all the possible rotations of that shape. And one treats this set as a
specific observation in shape analysis.

Since shape analysis is an important branch of statistics, numerous methods have
been developed in the literature. In the earlier works, shapes are represented by
landmarks, a finite set of points [6, 9, 19]. One of the earliest formal mathematical
frameworks is introduced in [9] where one removes rigid motions and global scaling
from landmarks to reach final shape representations. Translation and scaling are first
removed by centering and rescaling the landmarks, as a pre-processing. The space
achieved is also called preshape space. The remaining transformation, rotation, is
removed by forming orbits (equivalent classes) under the group action. A metric is
then imposed on the space of orbits, which is also called quotient space, followed
with rich methods in statistical analysis. More recently, there is a trend that shapes
are more continuously represented other than using the finite, discrete points as
landmarks.

One of the important challenges in shape analysis is the registration problem,
which means finding the correspondence points between different objects. His-
torically, some shape analysis methods presume that objects have been already
registered while others use different methods to register first and use this registration
in subsequent own methods for analyzing shapes. However, both approaches are
restrictive and questionable. A simultaneous registration and shape analysis called
elastic shape analysis [20] has achieved significant recognition over the past few
years. This is a class of Riemannian metrics based solutions that perform registration
along with the process of shape analysis. The key idea is to equip the shape space
with an elastic Riemannian metric that is invariant under the action of registration
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group. Such elastic metrics are often complicated if used directly. However, a
square-root transformation can simplify them into the standard Euclidean metric
and results in an efficient solution.

In this chapter, we summarize advances in elastic shape analysis. As mentioned
earlier, there are different objects of shapes. For example, planar curves come from
boundaries or silhouettes of objects in images [22]. 3D curves can be extracted from
complex biomolecular structures like proteins or RNAs [13]. A special case of this
problem is when the functional data is in R, i.e., real numbers, which is also called
functional data analysis (FDA) [17], where one analyzes shapes of scalar functions
on a fixed interval [23]. The use of elastic Riemannian metrics and square-root
transformations for curves were first introduced in [29, 30] although this treatment
used complicated arithmetic and was restricted to planar curves. Later on, a family
of elastic metrics are presented [16] that allowed for different levels of elasticity in
shape comparisons. The works [21, 23] introduced a square-root representation that
was applicable to curves in any Euclidean space. Subsequently, several other elastic
metrics and square-root representations, each representing a different strength and
limitation, have been discussed in the literature [2, 3, 11, 15, 31]. In this paper, we
focus on the framework in [21, 23] and demonstrate that approach using a number
of examples involving functional and curve data.

In addition to methods summarized in this chapter, we mention that elastic
frameworks have also been developed for curves taking values on nonlinear domains
also, including unit spheres [32], hyperbolic spaces [5], the space of symmetric
positive definite (SPD) matrices [33], and some other manifolds. In the case where
the data is a trajectory of functions or curves, for instance, the blood oxygenation
level-dependent (BOLD) signal along tracts can be considered as trajectories of
functions. A parallel transported square-root transformation in [24] can be used
to effectively analyze and summarize the projection pathway. Additionally, elastic
metrics and square-root representations have also been used to analyze shapes of
surfaces in R3. These methods provide techniques for registration of points across
objects, as well as comparisons of their shapes, in a unified metric-based framework.
Applications include modeling parameterized surfaces of endometrial tissues that
reconstructed from 2D MRI slices [12], shape changes of brain structures associated
with Alzheimer [8], etc. For details, we refer to the textbook [7].

13.2 Registration Problem and Elastic Framework

We provide a comprehensive framework in a similar spirit of Kendall’s [9] approach
for comparing shapes of functional objects. The essence is to treat them as
parameterized objects and use an elastic metric to register them. The invariant
property with respect to reparameterization of the elastic metric enable us to conduct
registration and shape analysis simultaneously.
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13.2.1 The Use of the L2 Norm and Its Limitations

The problem of registration is fundamental for comparing shapes of functional
data. To formulate the problem, we consider F as all the parameterized functional
objects, whose elements are f : D → Rn where D represents the domain of
parameterization. As an example, for open planar curves, n = 2 and D is the unit
interval [0, 1]. While for analyzing shapes of surfaces, D can be a unit sphere S2,
unit disk, etc. The reparametrization of f is given by the composition with γ : f ◦γ ,
where γ : D → D is a boundary-preserving diffeomorphism that is an invertible
function maps from domain D to itself that both the function and its inverse are
smooth. We denote � as all the boundary-preserving diffeomorphisms of domain
D. One can show that � forms a group with action as composition and the identity
element is γid(t) = t, t ∈ D. Therefore, for any two γ1, γ2 ∈ �, γ1 ◦ γ2 ∈ D

is also a (cumulative) reparameterization. Reparametrization does not change the
shape of f ∈ Rn, n ≥ 2, i.e., f and f ◦ γ, γ ∈ � has the exact same shape. For
scalar functions f ∈ R, the reparametrization is usually called time warping, and
we will discuss details later. An example of reparametrization of 2D curves can
be found in Fig. 13.1. The top row shows the sine functions in the plane in different
reparametrizations plotted in the bottom row. The middle column shows the original
parametrization while left and right columns visualize different reparametrizations.
For any t ∈ D and any two functional object f1, f2 ∈ F , f1(t) are registered to
f2(t). Therefore, if we reparametrize f2 to f2 ◦ γ , we can change the registration
between f1 and f2, controlled by the diffeomorphism γ .

In order to quantify the problem, one needs an objective function to measure
the quality of registration. A seemingly natural choice is using L2 norm. Let ‖ · ‖
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Fig. 13.1 An illustration of reparametrization of a 2D open curve. Top row is the curve in different
parametrization. Bottom row shows the corresponding γ (diffeomorphism)
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Fig. 13.2 Pinching effect when using L2 norm to align scalar functions. The rightmost is the time
warping function

represents the L2 norm, i.e., ‖f ‖ =
√
∫

D
|f (t)|2dt . Therefore, the corresponding

objective function becomes infγ∈� ‖f1 − f2 ◦ γ ‖. There are several problems
related to it. The main issue is that it leads to degeneracy solution. In other words,
one can find a γ to reduce the cost to be infinitesimal even if f1, f2 are quite
different. Such γ minimize the cost by eliminating the part of f2 that is greatly
different from the part of f1, which is referred to pinching problem in the literature
[20]. Figure 13.2 shows a simple example to illustrate the idea using two scalar
functions. We have two scalar functions on the unit interval [0, 1] showed in the left
panel. If we optimize the previous L2 based objective functions, the obtained time
warping function γ is plotted on the right panel while the middle panel visualizes
the reparameterization f2 ◦ γ . As we can see, it kills the height of f2 to get
this degenerate solution. To avoid this, people proposed the modified solution that
penalize large time warpings by some roughness penalties:

inf
γ∈�(‖f1 − f2 ◦ γ ‖ + λR(γ )) , (13.1)

where R(γ ) represents the roughness of γ . For example, it can be the norm of the
first or the second derivatives.

While this solution prevents the pinching problem, it introduces new issues. For
example, the solution is not inverse consistent. That is, the registration of f2 to
f1 is no longer equivalent with that of f1 to f2. We use Fig. 13.3 to explain this
issue. The task is to align two scalar functions f1 and f2, shown in the top panel of
Fig. 13.3. And in this example, we use the first order penalty R(γ ) = ∫

γ̇ (t)2dt in
Eq. (13.1). To study the property of symmetry, for each row, we perform registration
using different template and target on a fixed λ, i.e., warping f2 to register to f1
to get γ1 and warping f1 to register to f2 to get γ2. Then, we compose the two
obtained optimal warping functions. If the solution is symmetric, the composition
γ1 ◦ γ−1

2 should be the identity function: γid(t) = t . The last column shows the
compositions. As we can see, when λ = 0, the solution is symmetric. However,
it suffers the pinching problem. As λ increases, the pinching effect is reducing but
the solution is no longer inverse consistent. In the last row, where λ is large, the



384 X. Guo and A. Srivastava

Fig. 13.3 Example of penalized-L2 based alignment. The top row shows the two original
functions. From the second row to the bottom row, the roughness tuning parameter is set to
λ = 0, 0.03, 0.3, respectively. As λ increases, the solution becomes more and more asymmetric

pinching problem disappears. However, the alignment is also largely limited. It is
not obvious to select the appropriate λ for this example. In reality, it is even difficult
to tune this parameter.

In the following sections, we will go through the shape analysis in elastic
framework for scalar functions, parametrized curves.

13.2.2 Elastic Registration of Scalar Functions

Among various functional objects one comes across in shape analysis, the simplest
types are real-valued functions on a fixed interval. For simplicity, functional data
in this section refers to the scalar functions. Examples include human activities
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collected by wearable devices, biological growth data, weather data, etc. Shape
analysis on scalar functions is reduced to alignment problem in FDA. If one does
not account for misalignment in the given data, which happens when functions are
contaminated with the variability in their domain, this can inflate variance artificially
and can overwhelm any statistical analysis. The task is warping the temporal domain
of functions so that geometric features (peaks and valleys) of functions are well-
aligned, which is also called curve registration or phase-amplitude separation [14].
While we have illustrated the limitation of L2 norm earlier, we will introduce a
desirable solution in elastic framework as follows.

Definition 13.1 For a function f (t) : [0, 1] → R, define the square-root velocity
function (SRVF) (or square-root slope function (SRSF)) q(t) as follows:

q(t) = sign(ḟ (t))

√

|ḟ (t)| . (13.2)

It can be shown if f (t) is absolutely continues, q(t) is square-integrable,
i.e., q(t) ∈ L2. The representation is invertible given f (0): f (t) = f (0) +
∫ t

0 q(s)|q(s)|ds. If the function f is warped as f ◦ γ , then the SRVF becomes: (q ◦
γ )

√
γ̇ , denoted by (q∗γ ). One of the most import properties of the representation is

isometry under the action of diffeomorphism: ‖q1−q2‖ = ‖(q1∗γ )−(q2∗γ )‖,∀γ ∈
�. In other words, L2 norm of SRVFs is preserved under time warping. One can
show that the L2 metric of SRVF is non-parametric Fisher-Rao metric on f , given
f is absolutely continuous and ḟ > 0, and it can be extended to the larger space
F0 = {f ∈ F |f is absolute continuous} [20]. Then, in order to register f1 and f2,
the problem becomes

inf
γ∈� ‖q1 − (q2 ∗ γ )‖ = inf

γ∈� ‖q2 − (q1 ∗ γ )‖ . (13.3)

One can efficiently solving above objective function using Dynamic Programming
[4]. Gradient based algorithm or exact solutions [18] are also available.

For aligning multiple functions, one can easily extend the framework to align
every function to their Karcher mean [20] by iteratively updating the following
equations:

γi = arg inf
γ∈� ‖μ− (qi ∗ γ )‖ ,

μ = 1

n

n
∑

i=1

(qi ∗ γi)

We demonstrate an application of function alignment using the famous Berkeley
growth data [27], where observations are heights of human subjects in the age
domain recorded from birth to age 18. In order to understand the growth pattern, we
use a smoothed version of the first time derivative (growth velocity) of the height
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Fig. 13.4 Alignment on Berkeley growth data. (a) Original male growth function. (b) Aligned
male growth function. (c) Time warping functions for male. (d) Original female growth function.
(e) Aligned female growth function. (f) Time warping functions for female

functions, instead of the height functions themselves, as functional data, plotted in
(a) and (d) of Fig. 13.4 for male and female subjects, respectively. The task is to align
the growth spurts of different subjects in order to make inferences about the number
and placement of such spurts for the underlying population. The aligned functions
are presented in (b) and (e) of Fig. 13.4. After alignment, it becomes much easier to
estimate the location and size of the growth spurts in observed subjects, and make
inferences about the general population.

There are many studies related to the elastic functional analysis in the literature.
For example, one can construct a generative model for functional data, in terms of
both amplitude and phase parts [25]. One can also take account the elastic part into
functional principal component analysis [26]. For regression models using elastic
functions as predictors, readers can refer to [1].

13.2.3 Elastic Shape Analysis of Curves

13.2.3.1 Registration of Curves

As previously mentioned, square-root transformations were first proposed for planar
curves [29, 30]. We can register curves in R2 and R3 using SRVFs as defined below.
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Fig. 13.5 Registration of signatures

Definition 13.2 Define SRVF of 2D or 3D parametrized curves:

q(t) =
⎧

⎨

⎩

ḟ (t)√
|ḟ (t)| , |ḟ (t)| �= 0

0 , |ḟ (t)| = 0
. (13.4)

Here f : [0, 1] → Rn, n = 2, 3, is an absolutely continuous parametrized curve.
(For closed curves, S1 is a more appropriate domain.) It is worth noting that this
definition is valid for Rn. The L2 metric in the space of SRVFs is a special elastic
metric in the space of curves, which measures the bending and stretching from the
curves [20]. To register curves, we again use Eq. (13.3). An example of registering
2D curves is shown in Fig. 13.5, where we are registering signatures.

13.2.3.2 Shape Space

Now we know how to align functions and to register curves using the SRVF
framework. And these will now serve as fundamental tools for our ultimate goal:
shape analysis. One has to note that shapes are invariant to some nuanced group
actions: translation, scaling, rotation, and reparametrization. For example, Fig. 13.6
illustrates that using a bird shape. On the left panel, although the bird contour is
shifted, scaled and rotated, the shape is keeping the same as the original one. One
the right panel, two shapes have different reparametrizations but they need to be
treated as the same shape. Therefore, it is important to identify what is the space
that shapes reside in. We represent a curve f by its SRVF q and thus it is invariant
to translation (because it is a derivative). The curve can be rescaled into unit length
to remove scaling. Since the length of f isL[f ] = ‖q‖, after rescaling, ‖q‖ = 1. As
the result, the unit length q is on the unit Hilbert sphere. Let C = {q ∈ L2|‖q‖ = 1}
denote the unit Hilbert sphere inside L2, which is also called preshape space. The
geometry of C is simple: the distance between any two point q1, q2 ∈ C is given
by the arc length dC(q1, q2) = cos−1(〈q1, q2〉), where <,> represents L2 inner
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Fig. 13.6 Example of bird shapes

product. The geodesic (shortest path) between q1 and q2 is α : [0, 1] → C is the
shortest arc length on the greater circle:

α(τ) = 1

sin θ
(sin((1 − τ)θ)q1 + sin(τθ)q2), τ ∈ [0, 1]

The remaining variability that has not been removed is rotation and
reparametrization. We will remove them by using equivalent classes that are defined
by group actions. Let SO(n) represent the set of all the rotation matrices in Rn. For
any O ∈ SO(n) and q ∈ C, Oq has exactly same shape with q. (The SRVF of
Of is Oq.) The same holds for a reparametrization (q ∗ γ ),∀γ ∈ �. We will treat
them as the same object in the shape space as follows. Define the action of group
SO(n)× � on C according to:

(SO(n)× �)× C→ C, (O, γ ) ∗ q = O(q ∗ γ ) ,

which leads to the equivalent classes or orbits:

[q] = {O(q ∗ γ )|O ∈ SO(n), γ ∈ �} .

Therefore, each orbit [q] represents a unique shape of curves. The shape space
(quotient space) S is the collection of all the orbits:

S = C/(SO(n)× �) = {[q]|q ∈ C} .

As we mentioned earlier, the inner product or L2 norm of SRVF is preserved under
reparametrization. This is also true for rotation actions: 〈q1, q2〉 = 〈Oq1,Oq2〉. As
the result, we can inherit the metric from preshape space into shape space as follows:
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Definition 13.3 For two representations of shapes [q1] and [q2], define the shape
metric as:

dS([q1], [q2]) = inf
γ∈�,O∈SO(n) dC(q1,O(q2 ∗ γ )) . (13.5)

The above equation is a proper metric in the shape space [20] and thus can be used
for ensuing statistical analysis. The optimization over SO(n) is performed using
Procrustes method [10]. For instance, for curves in 2D, the optimal rotation O∗ is
given by

O∗ =

⎧

⎪⎪⎨

⎪⎪⎩

UV T if det (A) > 0

U

[

1 0

0 −1

]

V T otherwise
, (13.6)

where A = ∫ 1
0 q1q

T
2 dt and A = U V T (singular value decomposition). While

the optimization of γ can be implement by Dynamic Programming or gradient
based methods [20]. For [q1] and [q2] in S, the geodesic path is given by the
geodesic between q1 and q̃2, while q̃2 is rotated and reparemetrized w.r.t. q1. We
present an example geodesic in Fig. 13.7. The top row is the geodesic in S. For
comparison, we also plot the geodesic path in C in bottom row. It is clear to see
that elastic registration makes a more reasonable deformation since it matches the
corresponding parts.

Shape Spaces of Closed Curves For parametrized closed curves, there is one more
constraint: f (0) = f (1). Therefore, as we mentioned earlier, S1 is a more natural
domain for parametrized closed curves. Let q denote the SRVF of a closed curve f ,

Fig. 13.7 Comparison
between geodesic and
interpolation for a toy 2D
open curve. (a) Geodesic in
S. (b) Geodesic in C

(a)

(b)
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Fig. 13.8 Some geodesic paths between two closed planar curves in Sc

the above condition f (0) = f (1) becomes
∫

S1 q(t)|q(t)|dt = 0. As the result, the
prespace Cc for unit length closed curve is:

Cc =
{

q ∈ L2(S1,Rn)|
∫

S1
|q(t)|dt = 1,

∫

S1
q(t)|q(t)|dt = 0

}

⊂ C .

One can still use dC as the extrinsic metric in Cc [20]. Unlike the open curves, the
geodesics in Cc have no closed form. A numerical approximation method called
path straightening [20] can be used to compute the geodesic. The shape space is
Sc = Cc/(SO(n) × �). whose elements, equivalence classes or orbits, are [q] =
{O(q ∗ γ )|q ∈ Cc,O ∈ SO(n), γ ∈ �}. Some examples of geodesic paths can be
found in Fig. 13.8, where we can see natural deformations between two shapes.

13.3 Shape Summary Statistics, Principal Modes and Models

The framework we have developed so far is able to define and compute several
statistics for analysis of shapes. For instance, we may want to compute the mean
shape from a sample of curves to represent the underlying population. The intrinsic
sample mean on a nonlinear manifold is typically defined as the Fréchet mean or
Karcher mean, defined as follows.

Definition 13.4 (Mean Shape) Given a set of curves f1, f2, . . . , fn ∈ F0 with
corresponding shapes [q1], [q2], . . . , [qn], we define the mean shape [μ] as:

[μ] = arg min[q]

n
∑

i=1

d2
S([q], [qi]) .
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Fig. 13.9 Examples of mean
shapes

The algorithm for computing a mean shape [20] is similar to the one described
earlier in multiple function alignment. We iteratively find the best one from rotation,
registration and average while fixing the other two, in way of coordinate descent
[28]. Figure 13.9 illustrates some mean shapes. One the left hand side, there are
some sample shapes: glasses and human beings. Their corresponding mean shapes
are plotted on the right.

Besides the Karcher mean, the Karcher covariance and modes of variation can
be calculated to summarize the given sample shapes. As it is known that the
shape space S is a non-linear manifold, we will use tangent PCA [20] to flatten
the space. Let T[μ]S denote the tangent space to S at the mean shape [μ] and
log[μ]([q]) denote the mapping from the shape space S to this tangent space using
inverse exponential map. Let vi = log[μ]([q]), for i = 1, 2, . . . , n be the shooting
vectors from the mean shape to the given shapes in the tangent space. Since these
shooting vectors are in the linear space, we are able to compute the covariance
matrix C = 1

n−1

∑n
i=1 viv

t
i . Performing Principal Component Analysis (PCA) of

C provides the directions of maximum variability in the given shapes and can be
used to visualize (by projecting back to the shape space) the main variability in that
set. Besides that, one can impose a Gaussian model on the principal coefficients
si, i = 1, 2, . . . , n in the tangent space. To valid the model, one can generate a
random vector ri from the estimated model and project back to the shape space using
exponential map exp[μ](ri), where random vectors become random shapes. We use
Figs. 13.10 and 13.11 as illustrations. We have several sample shapes of apples and
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(a) (b) 

(c) (d)

Fig. 13.10 Principal modes and random samples of apple shapes. (a) Sample shapes. (b) Mean
shapes. (c) Principal modes. (d) Random samples from Tangent Gaussian model

butterflies in panel (a) and the mean shapes are presented in panel (b). We perform
tangent PCA as described above and show the results in panel (c). While the mean
shapes are the red shapes in the shape matrix, the modes in first and second principal
direction are plotted horizontally and vertically, respectively, which explain the first
and second modes of variation in the given sample shapes. Finally, we generate
some random shapes from the estimated tangent Gaussian model and show them in
panel (d). The similarity between random shapes and given samples validates the
fitness of the shape models.

13.4 Conclusion

In this chapter, we describe the elastic framework for shape analysis of scalar
functions and curves in Euclidean spaces. The SRVF transformation simplifies the
registration and makes the key point for the approach. Combining with L2 norm,
it derives an appropriate shape metric that unifies registration with comparison
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(a) (b)

(c) (d)

Fig. 13.11 Principal modes and random samples of butterfly shapes. (a) Sample shapes. (b) Mean
shapes. (c) Principal modes. (d) Random samples from Tangent Gaussian model

of shapes. As the result, one can compute geodesic paths, summary statistics.
Furthermore, these tools can be used in statistical modeling of shapes.

References

1. Ahn, K., Derek Tucker, J., Wu, W., Srivastava, A.: Elastic handling of predictor phase in
functional regression models. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops (2018)

2. Bauer, M., Bruveris, M., Marsland, S., Michor, P.W.: Constructing reparameterization invariant
metrics on spaces of plane curves. Differ. Geom. Appl. 34, 139–165 (2014)

3. Bauer, M., Bruveris, M., Harms, P., Møller-Andersen, J.: Second order elastic metrics on the
shape space of curves (2015). Preprint. arXiv:1507.08816

4. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)
5. Brigant, A.L.: Computing distances and geodesics between manifold-valued curves in the SRV

framework (2016). Preprint. arXiv:1601.02358
6. Dryden, I., Mardia, K.: Statistical Analysis of Shape. Wiley, London (1998)



394 X. Guo and A. Srivastava

7. Jermyn, I.H., Kurtek, S., Laga, H., Srivastava, A.: Elastic shape analysis of three-dimensional
objects. Synth. Lect. Comput. Vis. 12(1), 1–185 (2017)

8. Joshi, S.H., Xie, Q., Kurtek, S., Srivastava, A., Laga, H.: Surface shape morphometry for
hippocampal modeling in alzheimer’s disease. In: 2016 International Conference on Digital
Image Computing: Techniques and Applications (DICTA), pp. 1–8. IEEE, Piscataway (2016)

9. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull.
Lond. Math. Soc. 16(2), 81–121 (1984)

10. Kendall, D.G.: A survey of the statistical theory of shape. Stat. Sci. 4(2), 87–99 (1989)
11. Kurtek, S., Needham, T.: Simplifying transforms for general elastic metrics on the space of

plane curves (2018). Preprint. arXiv:1803.10894
12. Kurtek, S., Xie, Q., Samir, C., Canis, M.: Statistical model for simulation of deformable elastic

endometrial tissue shapes. Neurocomputing 173, 36–41 (2016)
13. Liu, W., Srivastava, A., Zhang, J.: A mathematical framework for protein structure comparison.

PLoS Comput. Biol. 7(2), e1001075 (2011)
14. Marron, J.S., Ramsay, J.O., Sangalli, L.M., Srivastava, A.: Functional data analysis of

amplitude and phase variation. Stat. Sci. 30(4) 468–484 (2015)
15. Michor, P.W., Mumford, D., Shah, J., Younes, L.: A metric on shape space with explicit

geodesics (2007). Preprint. arXiv:0706.4299
16. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73(3),

307–324 (2007)
17. Ramsay, J.O.: Functional data analysis. In: Encyclopedia of Statistical Sciences, vol. 4 (2004)
18. Robinson, D., Duncan, A., Srivastava, A., Klassen, E.: Exact function alignment under elastic

riemannian metric. In: Graphs in Biomedical Image Analysis, Computational Anatomy and
Imaging Genetics, pp. 137–151. Springer, Berlin (2017)

19. Small, C.G.: The Statistical Theory of Shape. Springer, Berlin (2012)
20. Srivastava, A., Klassen, E.P.: Functional and Shape Data Analysis. Springer, Berlin (2016)
21. Srivastava, A., Jermyn, I., Joshi, S.: Riemannian analysis of probability density functions with

applications in vision. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–8. IEEE, Piscataway (2007)

22. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in
euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415–1428 (2011)

23. Srivastava, A., Wu, W., Kurtek, S., Klassen, E., Marron, J.S.: Registration of functional data
using Fisher-Rao metric (2011). Preprint. arXiv:1103.3817

24. Su, J., Kurtek, S., Klassen, E., Srivastava, A., et al.: Statistical analysis of trajectories on
riemannian manifolds: bird migration, hurricane tracking and video surveillance. Ann. Appl.
Stat. 8(1), 530–552 (2014)

25. Tucker, J.D., Wu, W., Srivastava, A.: Generative models for functional data using phase and
amplitude separation. Comput. Stat. Data Anal. 61, 50–66 (2013)

26. Tucker, J.D., Lewis, J.R., Srivastava, A.: Elastic functional principal component regression.
Stat. Anal. Data Min.: ASA Data Sci. J. 12(2), 101–115 (2019)

27. Tuddenham, R.D., Snyder, M.M.: Physical growth of california boys and girls from birth to
eighteen years. Publ. Child Dev. Univ. Calif. 1(2), 183 (1954)

28. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)
29. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–

586 (1998)
30. Younes, L.: Optimal matching between shapes via elastic deformations. Image Vis. Comput.

17(5–6), 381–389 (1999)
31. Younes, L.: Elastic distance between curves under the metamorphosis viewpoint (2018).

Preprint. arXiv:1804.10155
32. Zhang, Z., Klassen, E., Srivastava, A.: Phase-amplitude separation and modeling of spherical

trajectories. J. Comput. Graph. Stat. 27(1), 85–97 (2018)
33. Zhang, Z., Su, J., Klassen, E., Le, H., Srivastava, A.: Video-based action recognition using

rate-invariant analysis of covariance trajectories (2015). Preprint. arXiv:1503.06699



Chapter 14
Statistical Analysis of Trajectories
of Multi-Modality Data

Jingyong Su, Mengmeng Guo, Zhipeng Yang, and Zhaohua Ding

Contents

14.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
14.2 Elastic Shape Analysis of Open Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
14.3 Elastic Analysis of Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
14.4 Joint Framework of Analyzing Shapes and Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

14.4.1 Trajectories of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
14.4.2 Trajectories of Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

14.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Abstract We develop a novel comprehensive Riemannian framework for analyz-
ing, summarizing and clustering trajectories of multi-modality data. Our framework
relies on using elastic representations of functions, curves and trajectories. The
elastic representations not only provide proper distances, but also solve the problem
of registration. We propose a proper Riemannian metric, which is a weighted
average of distances on product spaces. The metric allows for joint comparison and
registration of multi-modality data. Specifically, we apply our framework to detect
stimulus-relevant fiber pathways and summarize projection pathways. We evaluate
our method on two real data sets. Experimental results show that we can cluster
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fiber pathways correctly and compute better summaries of projection pathways. The
proposed framework can also be easily generalized to various applications where
multi-modality data exist.

14.1 Introduction and Background

This chapter describes geometric ideas for analyzing trajectories of multi-modality
data. There are a lot of multi-modality data in medical imaging, computer vision
and many other applications. Examples of multi-modality data include white matter
fibers associated with functional data (BOLD (blood oxygenation level dependent)
signals) and symmetric positive definite (SPD) matrices (diffusion tensors). BOLD
signals in white matter fibers encode neural activity related to their functional roles
connecting cortical volumes. Functional MRI has proven to be effective in detecting
neural activity in brain cortices on the basis of BOLD contrast. A diffusion tensor
MRI scan of the brain generates a field of 3 × 3 SPD matrices that describes the
constraints on local Brownian motion of water molecules [19]. At each observation
of white matter fiber, we are able to detect and extract BOLD signal and SPD matrix.
Therefore, white matter fibers associated with functional data (BOLD signals) and
SPD matrices (diffusion tensors) are two examples of multi-modality data. For such
data types, we analyze the data by considering them as three dimensional open
curves and trajectories of functional data or SPD matrices jointly. There have been
a number of studies on quantifying and clustering white matter fibers. The top
row of Fig. 14.1 displays three different views of some white matter fibers of one
subject. Motivated by the goal of diagnosing different white matter diseases, various
techniques have been developed to analyze brain fibers. Previous work on fiber
analysis mostly involves diffusion MRI. Figure 14.2 displays the internal capsule
structure of a human, 12 representative projection pathways passing through internal
capsule and the corresponding trajectories of tensors (SPD matrices).

There are some important reasons for studying multi-modality data using a
Riemannian geometric approach. The data incorporates curve features and asso-
ciated functions or tensors along curves. Since functions, curves and trajectories
are observed with domain flexibility, they have some obvious geometric features
and local characteristic pattern such as ridges and valleys. An important task lies in
matching and finding correspondences between them, quantifying the differences by
defining distances and calculating statistical summaries such as means and covari-
ances. We integrate the registration into shape analysis, which involves a matching
of points or shapes across objects when the shapes or trajectories are quantified.
At the same time, these shape or trajectory objects can preserve their shapes and
have invariant properties. For example, shapes are invariant to arbitrary rotation,
scaling, translation, and re-parameterization. For the multi-modality data of curves
associated with functions or tensors, our goal is to match and find correspondences
between them by analyzing these two types of information jointly. We apply a
metric-based geometric approach for representing functions, curves and trajectories.
Our Riemnnian framework allows for computing their differences and registration
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Fig. 14.1 Top: Three different views of white matter fibers of one subject; Bottom: Left: BOLD
signals transmitted at each point of one fiber along this white matter fiber. Right: BOLD signals
transmitted at each point of another fiber along this white matter fiber

Fig. 14.2 Data acquisition: (a) projection pathways; (b) and (c) 12 fibers and corresponding SPD
trajectories

of them at the same time. We develop a comprehensive Riemnnian framework for
providing registration and computing statistical summaries by incorporating and
analyzing curves associated with functions or tensors jointly.

In this chapter, we apply the framework to two medical imaging studies. We use
it to detect stimulus-relevant fiber pathways and summarize projection pathways.
There are few different methods to quantify and analyze diffusion tensor and white
matter data such as regional basis analysis [1], voxel based analysis [20, 34] and
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tract based analysis [6, 16, 17, 28, 44]. An important and challenging task in
analyzing white matter bundles lies in fiber clustering. There are some previous
tract based methods to cluster fibers such as [8, 14, 16, 17, 27, 45, 47]. Another
important task in fiber analysis is parcellation based connectome analysis such as
[7, 27, 48]. Quantifying the similarity of fiber tracts can be addressed with different
shape statistics such as fractional anisotropy (FA), mean diffusivity (MD) and
mean squared difference (MSD) [2, 5, 21]. Other works using diffusion tensor MRI
include atlas building for group studies [22, 26], statistical methods for quantitative
analysis [22, 50] and other measures of white matter integrity along fibers [15].

With the increasing importance of analyzing and clustering white matter tracts
for clinical needs, there has been a growing demand for a mathematical framework
to perform quantitative analysis of white matter fibers incorporating their shape
features and underlying physical significance. Shape analysis has been studied with
a variety of mathematical representations of shapes. The representation proposed
in [35] has been applied to summarize and cluster white matter fibers. Based on
such representation, [23] proposes a comprehensive Riemannian framework for the
analysis of whiter matter tracts based on different physical features. Under this
framework, shape of curves can be compared, aligned, and deformed in chosen
metrics. Zhang et al. [49] avoids discarding the rich functional data on the shape,
size and orientation of fibers, developing flexible models for characterizing the
population distribution of fibers between brain regions of interest within and across
different individuals.

Recently, neuroimaging techniques based on blood oxygenation level-dependent
(BOLD) from fMRI are also used for detecting neural activity in human brain. The
bottom row of Fig. 14.1 displays BOLD signals from two different fibers. BOLD
signal changes are associated with hemodynamic responses to stimuli. Ding et al.
[9] suggests that changes are associated to neural activity. With BOLD signals in
functional loading, white matter fibers can be studied as trajectories of functions.
There has been a lot of work on handling and analyzing functional data. Functional
data analysis (FDA) has been studied extensively in [30, 31]. However, none of
these papers studies trajectories of functions as a whole. Su et al. [39] proposed
a general framework for statistical analysis of trajectories on manifolds. We will
apply it to functional data for our purpose. Our goal in this chapter is to develop
a comprehensive framework for analyzing and clustering white matter fibers that
can incorporate both physical properties of fibers and BOLD signals along fibers. A
proper metric on the product space of shapes and functions is proposed to compare,
align, and summarize white matter tracts.

The rest of this chapter is organized as follows. We will follow the metric-based
Riemannian framework for analyzing functions, curves, trajectories and curves
associated with trajectories. The mathematical framework for elastic shape analysis
of open curves is presented in Sect. 14.2. In Sect. 14.3, we present a mathematical
framework for elastic analysis of trajectories. The joint framework of analyzing
shapes and trajectories is displayed in Sect. 14.4. We study two types of trajectories:
functions and tensors. In the study of detecting stimulus-relevant fiber pathways,
we display clusters of fibers and compute correlation between stimuli and BOLD
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signals. In the study of summarizing projection pathways, we calculate and compare
statistical summaries by considering fibers as 3D open curves and trajectories of
tensors. In Sect. 14.5, we conclude with a summary.

14.2 Elastic Shape Analysis of Open Curves

As discussed before, we may consider fiber tracts as 3D open curves with physical
features. We adopt the mathematical representation of curves proposed in [36], and
now briefly summarize the main idea. The representation of shape data is based on
the use of square-root velocity function (SRVF) of curves by [36]. The set of all
re-parameterizations is defined as:

� = {γ : [0, 1] → [0, 1]|γ (0) = 0, γ (1) = 1, γ is a diffeomorphism}, (14.1)

Considering an absolutely continuous, parametrized 3D open curve β : [0, 1] →
R3, a reparametrization of the curve β can be defined as the composition β ◦ γ .
A major problem lies in defining distance between two curves β1 and β2 using
standard metrics. Most papers apply the standard Euclidean metric L2 to define
the distance and perform registration by using the distance infγ∈�‖β1 − β2 ◦ γ ‖.
However, there are various difficulties with such a distance. The first problem is it is
not symmetric. The optimal alignment of β1 to β2 is different from the alignment of
β2 to β1, that is infγ∈�‖β1 − β2 ◦ γ ‖ �= infγ∈�‖β1 ◦ γ − β2‖. The second problem
is pinching problem in [24], that is, even when β1 and β2 are quite different, the cost
can be reduced to be close to zero. To address this problem, a penalty term R can be
imposed on this criterion infγ∈�‖β1 −β2 ◦γ ‖+λR(γ ). R is a smooth penalty on γ .
But how to choose parameter λ still remains open. The third problem is that it is not
invariant to re-parameterizations. That is, for γ ∈ �, ‖β1 −β2‖ �= ‖β1 ◦γ −β2 ◦γ ‖.
Therefore, the standard L2 metric is not isometric to the group action of �. In order
to achieve this property, [36] introduces a representation of curves by the square-root
velocity function (SRVF), which is defined as

q(t) = β̇(t)
√

|β̇(t)|
. (14.2)

Due to the SRVF representation, the elastic metric in [25] becomes a standard L2

metric, thus we have access to more efficient ways of computing geodesics distances
with SRVF. If a curve β is re-parameterized by any γ ∈ �, then the SRVF of
re-parameterized curve is given by (q, γ ) : = (q ◦ γ )√γ̇ . If β is rotated by a
rotation matrix O ∈ SO(3), its SRVF also rotates by the same O. It is easy to
show that for two SRVFs q1 and q2, ‖q1 − q2‖ = ‖O(q1, γ )−O(q2, γ )‖. That is,
the L2 distance between SRVFs of any two curves is unchanged by simultaneous
re-parameterization γ ∈ � and rotation O ∈ SO(3) of these curves. Therefore,
actions of the group � and O are isometric on the space of SRVFs under L2
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Fig. 14.3 (a) Fibers before registration; (b) fibers after registration; (c) re-parameterization
function for these two fibers

metric. This isometry property avoids the pinching problems. Since the fact that
re-parameterization is shape preserving, the cost function for pairwise registration
of curves can be written as: inf(γ,O)∈�×SO(3)‖q1 − O(q2 ◦ γ )√γ̇ ‖, which has the
advantage of being symmetric, positive definite and satisfying triangle inequality.
We unify all SRVFs from re-parameterizations and rotations of same curve by the
notation of orbits under the actions of SO(3) and �. That is, each curve is associated
with a equivalent class defined as the set: [q] = {O(q◦γ )√γ̇ |(γ,O) ∈ �×SO(3)}.
The set S of all orbits is considered as our shape space. The distance between β1
and β2, represented by their SRVF orbits [q1] and [q2] is given by

dS([q1], [q2]) = inf(γ,O)∈�×SO(3)‖q1 −O(q2 ◦ γ )√γ̇ ‖. (14.3)

The optimal rotation is found by O∗ = UV ′, where U
∑
V ′ = svd(B) and B =

∫ 1
0 (q1(s)q2(s)

T ) ds, and the optimal re-parametrization is computed by dynamic
programming in [3] for solving:

γ ∗ = argminγ∈�(‖q1 −O∗(q2 ◦ γ )√γ̇ ‖).

An example of registration of 3D curves can be shown in Fig. 14.3. Figure 14.3
shows two fibers before registration, after registration and re-parameterization
function for these two fibers. The blue fiber β1 is registered with the red fiber β2
through re-parameterization function γ . The black lines are the correspondences in
these two fibers.

14.3 Elastic Analysis of Trajectories

In addition to fiber tracts, there are BOLD signals or tensors available along
tracts, which can be considered as trajectories of functions or tensors. Su et al.
[39] has introduced a general framework of analyzing trajectories on manifolds,
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including spheres, Lie groups and shape spaces. In this section, we will discuss the
mathematical framework in [39] and apply it to functional data or SPD matrices
space for our purpose. Let α denote a smooth trajectory on Riemannian manifold
M and P denote the set of all such trajectories, for any two smooth trajectories
α1, α2 ∈ P, we desire to register functions along trajectories and calculate a time-
warping invariant distance between them. We assume for any points p, q ∈ M ,
we have an expression for parallel transporting any vector v ∈ Tp(M) along the
geodesic from p to q, denoted by (v)p→q , the geodesic between them is unique and
the parallel transport is well defined.

In order to achieve the property of invariance, we propose a novel representation
of trajectories for comparison and registration. Given a trajectory α ∈ P, we define
a representation called the trajectory square-root vector field (TSRVF) according to:

hα(t) = α̇(t)α(t)→c√|α̇(t)| ∈ Tc.

where | · | denotes the norm related to the Riemannian metric and the tangent space
at c is denoted by Tc(M), where c is a reference point on P, the choice of c depends
on P. Riemannian metric depends on the point c where it is evaluated. There is a
one-to-one correspondence between trajectories and their TSRVFs. DefineH be the
set of smooth curves in Tc as TSRVFs of trajectories,H = {hα|α ∈ P}. IfM is Rd

with the Euclidean metric then h is exactly the square-root velocity function defined
in Sect. 14.2. Since hα is a vector field, we can use the L2 norm to compare such
trajectories and perform alignment. For calculating the distance between any two
trajectories, one can solve for the optimal correspondence between them by:

γ ∗ = argminγ∈�((
∫ 1

0
|hα1(t)− hα2(γ (t))

√

γ̇ (t)|2dt) 1
2 ). (14.4)

Again, the norm also depends on c. Every hα is associated with an equivalent class
defined as the set: [hα] = {(hα ◦ γ )√γ̇ | γ ∈ �}. The distance between two orbits,
is given by

dh([hα1], [hα2 ]) = infγ∈�(
∫ 1

0
|hα1(t)− hα2(γ (t))

√

γ̇ (t)|2dt) 1
2 . (14.5)

It can be shown that the distance dh defined in Eq. (14.5) is a proper metric [39],
and it will be used for comparing trajectories of functions or tensors.

14.4 Joint Framework of Analyzing Shapes and Trajectories

In Sect. 14.3, we have described the general elastic analysis of trajectory α ∈ M.
For analyzing trajectories of functions or tensors for special case, M can be the
functional space or the space of SPD matrices. We use P in general. Since we are
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interested in functions or tensors that are defined along curves, it is only meaningful
to find a common correspondence under a unified framework for joint analysis of
shapes and trajectories of functions or tensors. To this end, we propose a joint metric
for comparison and registration.

The original data is the integration of 3D curves and trajectories of BOLD signals
or tensors. Let the pair (β, ω) denote a curve and a trajectory of BOLD signals or
tensors associated with it.M denote the set of all such trajectories, the underlying
spaces becomes the product space of R3 ×P. Let (q, hα) denote the representations
of SRVF and TSRVF. To compare two pairs (β1, ω1) and (β2, ω2), we define a
metric on the product space, which is a weighted sum of dS and dh on R3 × L2,
given by

d((β1, ω1), (β2, ω2)) = φ1dS([q1], [q2])+ φ2dh([hα1 ], [hα2]). (14.6)

φ1 and φ2 denote the weights of metrics dS in Eq. (14.3) and dh in Eq. (14.5)
respectively. And this is also the new metric for joint parametrization of shapes and
trajectories. The choice of different weights gives a great flexibility. Larger values
of weights will imply higher importance of the information in comparison. Since dS
and dh are proper metrics on each individual space, it can be shown that this distance
d is also a proper metric on the product space R3×L2. It satisfies symmetry, positive
definiteness and triangle inequality. Since the distance is a proper metric, it can be
further used to compute statistical summaries, such as mean and covariance, and
perform multiple registration.

When two pairs (β1, ω1) and (β2, ω2) are compared using the metric d, optimal
correspondence between them are also solved. Rather than finding the optimal
registration under dS and dh separately, this needs to be performed under the joint
metric d in Eq. (14.6). The optimal common correspondence, denoted as γ ∗, is
given by:

γ ∗ = argminγ ∗∈�(φ1dS(q1,O
∗(q2 ◦ γ )√γ̇ )

+φ2dh(hα1 , (hα2 ◦ γ )√γ̇ )).
(14.7)

14.4.1 Trajectories of Functions

In case the multi-modality data includes both curve features and trajectories of
functions, we need a comprehensive framework to compare and register such data.
Let f be a real-valued function with the domain [0, 1], and P is the set of all such
functions. In a pairwise alignment problem, the goal is to align any two functions
f1 and f2. A majority of past methods uses the standard L2 metric. However,
this alignment is neither symmetric nor positive definite. To address this and other
related problems, we adopt a mathematical expression for representing a function
introduced in [37, 41]. This function, qf : [0, 1] → R, is called the square-root
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Fig. 14.4 (a) Functions before registration; (b) functions after registration; (c) re-parameterization
function for these two functions

slope function or SRSF of f , and is defined as qf (t) = sign(ḟ (t))
√

|ḟ (t)|. There
is a one-to-one correspondence between functions and their SRSFs. It can be shown
that if the function f is absolutely continuous, then the resulting SRSF is square-
integrable. Thus we define L2([0, 1],R), or simply L2, to be the set of all SRSFs.
That is, for all functions f ∈ P, we use SRSF to make all functions from functional
space P to L2. Then we register qf (t) on different fibers. The benefit of using SRSF
is the same as using SRVF for curves. For more details and applications, please refer
to [29, 42, 43]. Figure 14.4 shows two simulated functions before registration, after
registration and re-parameterization function for these two functions. We can see
these two simulated functions have different peaks and valleys. After registration,
they are same.

A trajectory of functions now can be expressed as a trajectory of SRSFs. Now, α
in Sect. 14.2 becomes a smooth trajectory of SRSFs on L2. We now apply the joint
framework of analyzing shapes and trajectories of functions in this study. First, we
take the example of stimulus-relevant pathways to show an application of multi-
modality data. The corpus callosum is the largest collection of fiber bundles and it
connects the left and the right brain hemisphere. Some regions of corpus callosum
can be affected by pathologies such as multiple sclerosis [11] and schizophrenia
[13], which motivates the study of segmenting different regions of corpus callosum.
In the example we consider full brain MRI data were acquired from three healthy
right-handed adult volunteers.

White matter fibers are tracked and extracted across corpus callosum on each
subject. The numbers of fibers are 661, 771, and 520 respectively. Every fiber
consists of 100 points. We have imposed two different stimuli including motor and
touch, denoted as MR and TR, and measured BOLD signals under three scenarios,
including resting state (RS), MR and TR. Prior to administration of the stimuli, each
subject is in a resting state. TR represents the sensory stimulus, which is imposed
in a block format on each subject. It begins with 30 s of right palm stimulations
by continuous brushing followed by 30 s of no stimulation, and so on [46]. MR
represents the movement of the right hand in the same way as TR. There are 145
points on each BOLD signal.
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Methodology Given fiber tracts along with BOLD signals transmitted along them,
we will compare results of clustering in three cases:

• Consider white matter fibers as 3D continuous open curves, and cluster them
based on the metric introduced in Eq. (14.3).

• Consider BOLD signals as trajectory on L2, and cluster them based on the metric
introduced in Eq. (14.5).

• Consider fiber tracts along with BOLD signals together, and cluster them based
on the joint metric in Eq. (14.6). We have chosen optimal weights to achieve the
best result.

In addition, we also compare with the method of functional principal component
analysis (FPCA). Principal component analysis (PCA) plays a very important role
in analyzing and modeling functional data. There are some other approaches using
FPCA to estimate regularized or sparse empirical basis functions and compute their
corresponding scores [4, 18, 38]. Here, we reduce the dimension of functions to 10,
and augment 10 principal scores to fiber positions. Now we can consider fibers as
open curves in R13 and apply elastic shape analysis to cluster them using Eq. (14.3).

Choice of Weights The choice of weights φ1 and φ2 in Eq. (14.6) will lead to
different clustering results. Figure 14.5 displays outcomes under TR for one subject.
For each combination of weights, we display results from 3 different views. Three
clusters are obtained by structure of corpus callosum, denoted by green, red and blue
colors. When φ1 = 1, φ2 = 0, it’s equivalent as clustering fibers by considering
them as 3D continuous open curves based on the distance in Eq. (14.3). When
φ1 = 0, φ2 = 1, it’s equivalent as clustering fibers according to BOLD signals using
the distance in Eq. (14.5). It is clear that clustering results are quite different for
different combinations of weights. The precentral gyrus (also known as the motor
strip) controls the voluntary movements of skeletal muscles and the postcentral
gyrus is a prominent gyrus in the lateral parietal lobe of the human brain. It is the
location of the primary somatosensory cortex, the main sensory receptive area for
the sense of touch. Here, we apply the K-means algorithm to cluster them based on

Fig. 14.5 Clustering results of different combinations of weights φ1 and φ2 under TR for one
subject
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the distance matrix computed by Eq. (14.6). By the anatomical structure of brain,
we take K = 3 in the K-means clustering method. According to the anatomical
structure of brain and distribution of regions, the underlying fact is that clusters
with green and red colors should be active to touch stimuli (TR), while clusters with
red and blue colors should be active to motor stimuli (MR). The fact is verified once
we find proper values of weights in the following.

By evaluating these clustering results, we want to seek the optimal combination
of weight coefficients φ1 and φ2 that can yield more meaningful clusters based
on the structure of corpus callosum. BOLD signals are characterized in both the
time and frequency domains. In the time domain, temporal correlations between
the sensory stimuli and stimuli evoked BOLD signals from identified white matter
tracts are analyzed. In the frequency domain, power spectra of the BOLD signals
are computed for mean function of each cluster, and the magnitudes of frequency
corresponding to the fundamental frequency of the periodic stimuli are determined,
yielding three magnitude maps of stimulus frequency respectively for the acquired
three clusters. We select the optimal weights of φ1 and φ2 by comparing correlations,
temporal variations and power spectra between stimuli and BOLD signals. Since
the BOLD signals are influenced by many factors during transmission along brain
fibers, it is hard to measure such influences in the transmission process. Thus, for
each point on each fiber, we calculate correlation between the BOLD signal and
the stimulus, compute the mean correlation on each point of all fibers. Finally, for
each cluster, we select the maximum of these mean correlations for comparison.
Taking subject 1 for instance, a summary of these maximum correlations for each
stimulus state for different combinations of weight coefficients φ1 and φ2, is shown
in Table 14.1. According to the anatomical structure of corpus callosum, stimulus

Table 14.1 Comparison of correlations between BOLD signals and stimuli under different
combinations of φ1 and φ2

Different states φ1 φ2 Green cluster Red cluster Blue cluster

MR 1 1 0.348 0.377 0.454

MR 10 1 0.339 0.361 0.431

MR 1 10 0.355 0.490 0.437
MR 1 0 0.467 0.369 0.296

MR 0 1 0.355 0.490 0.437

TR 1 1 0.472 0.255 0.281

TR 10 1 0.375 0.212 0.271

TR 1 10 0.474 0.467 0.276

TR 1 0 0.465 0.253 0.274

TR 0 1 0.276 0.467 0.474

RS 1 1 0.171 0.195 0.194

RS 10 1 0.189 0.192 0.171

RS 1 10 0.193 0.180 0.168

RS 1 0 0.109 0.124 0.176

RS 0 1 0.008 0.040 0.040
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Fig. 14.6 Left: power spectra of TR stimulus and BOLD signals in each cluster for φ1 = 1, φ2 =
10; Right: Enlarged view near the first peak

MR should activate red and blue clusters, stimulus TR should activate green and
red clusters. Through this table, we can see correlations for stimuli MR and TR are
much larger then that under the resting state, which indicates that BOLD signals
exhibit greater correlations with stimuli than in the resting state. When φ1 = 1,
φ2 = 10, stimulus MR exhibits higher correlations in red and blue clusters, and
stimulus TR exhibits higher correlations in green and red clusters. Such higher
correlations are highlighted in bold values for the activated clusters in stimuli MR
and TR of Table 14.1. These cluster results are consistent with the anatomical
structure of corpus callosum. Results of clusters on another two subjects lead to
the same conclusion as expected.

Also, the performance of clustering can be evaluated by checking periodicity of
BOLD signals in each cluster. These periodic variations are reflected by their much
greater magnitudes at the stimulus frequency. We use the fast Fourier transform
(FFT) to sample a signal over a period of time (or space) and divides it into its
frequency components. Figure 14.6 shows power spectra of stimuli and BOLD
signals in clusters using FFT for φ1 = 1, φ2 = 10. When φ1 = 1, φ2 = 10, the
magnitudes of clusters with red and green color are much higher than others. This
agrees with the fact that the stimulus TR evokes cluster with red and green colors.
We choose φ1 = 1, φ2 = 10 for our problem.

Comparison with Different Methods We compare our method with two other
methods. One is shape analysis of fibers alone by considering them as 3D open
curves as in [48, 49]. The second one is joint analysis of shapes and functions by
FPCA, as discussed before. Taking TR for one subject as an example, the clusters
based on three different methods are shown in Fig. 14.7. The clusters obtained by
our method are better in terms of consistency with the structure of corpus callosum
than clustering results by shape analysis and shape analysis with PCA.
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Fig. 14.7 Comparison of clusters based on different methods

Table 14.2 Comparison of different methods under MR and TR

Green cluster Red cluster Blue cluster

Different clusters under MR

Shape analysis [48, 49] 0.280 0.370 0.264

Shape analysis and FPCA 0.281 0.309 0.276

Our method 0.256 0.308 0.389
Different clusters under TR

Shape analysis [48, 49] 0.271 0.405 0.283

Shape analysis and FPCA 0.361 0.251 0.391

Our method 0.422 0.309 0.235

We compute correlations for all 3 subjects under MR, TR and the resting state.
Table 14.2 reports the averages of correlations for MR and TR. Based on the
anatomical structure of corpus callosum, stimulus MR evokes red and blue clusters,
stimulus TR evokes red and green clusters. Therefore, stimulus MR is expected to
have higher correlations in red and blue clusters than green cluster, stimulus TR is
expected to have higher correlations in red and green clusters than blue cluster.

For stimulus MR, red and blue clusters have higher correlations than green cluster
by our method. For stimulus TR, green and red clusters have higher correlations
than blue cluster by our method. These higher correlations are highlighted in bold
values in Table 14.2, which match the ground truth only with our method. Based
on the correlations, we have clustered fibers correctly by our method as expected
according to the structure of corpus callosum.
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Finally, the mean correlations are converted to Fisher’s Z-scores for statistical
testing. The two-tailed, paired students’ t-tests are used to evaluate differences
between green cluster versus red and blue clusters for MR, differences between
green and red clusters versus blue cluster for TR. In both cases, the p-values are
less than 0.0001, which indicates the clustering results by our method are very
significant.

14.4.2 Trajectories of Tensors

In case the multi-modality data includes both the curve features and trajectories of
tensors, we also need a comprehensive framework to compare and register them
jointly. There has been a great interest in statistical analysis of SPD matrices using
the Riemannian metric in tensor space (like [10, 12, 32, 33]). Let P(n) be the space
of n × n SPD matrices. And, P̃(n) = {P |P ∈ P(n) and det (P ) = 1}. For the
diffusion tensor, we take n = 3. The identity matrix I3×3 is chosen as reference
point c in 2.2. M = {α : [0, 1] → P̃(n)|α is smooth}. Because of det (P̃ ) > 0,
for any P̃ ∈ P̃(n), we can write P̃ = (P, 1

n
log(det (P̃ ))), in which P̃(n) can be

regarded as product space of P(n) and R. Let V be a tangent vector to P(n) at P̃ ,
we can denote Ṽ as Ṽ = (V , v), where V is a tangent vector of P̃(n) at P . The
parallel transport of V from P to I3×3 is P−1V , the parallel transport of v is still
itself. We visualize each SPD matrix as an ellipsoid. The left figure of Fig. 14.8
shows two simulated trajectories of tensors (1st and 2nd row) and registration of the
first trajectory with second trajectory (3rd row). The right figure of Fig. 14.8 shows
re-parameterization function for these two trajectories of tensors. We can see the two
simulated trajectories have very different pattern. After registration, the registered
trajectory have similar pattern with second trajectory.
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Fig. 14.8 Left: Registration of simulated trajectories of tensors; Right: Re-parameterization
function
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Statistical Summary of Trajectories One of advantage of this comprehensive
framework is that one can calculate an average of several fibers both incorporating
fibers’ physical features and diffusion tensors. More specifically, we consider
fibers as 3D open curves and trajectories of tensors. Then, we use this template
for registering multiple trajectories. We use Karcher mean to define and calculate
average trajectories. Given a set of sample trajectories α1, . . . , αn on M, their
Karcher mean is defined by: μh = argminα

∑n
1 ds([α], [αi])2. The algorithm

to compute the Karcher mean both incorporating fibers’ physical features and
trajectories of tensors is given as follows:

Algorithm: Karcher Mean of Multiple Trajectories
1. Initialization step: Select μf and μh to be the initialized mean of fibers and mean of trajectories

of tensors.
2. Align each fiber βi, i = 1, . . . , n to μf and align each trajectory hi, i = 1, . . . , n to μh

by finding an optimal γ ∗. That is solve for γ ∗ using the DP algorithm in Eq. (14.7) and set
β̃i = βi ◦ γ ∗

i , α̃i = αi ◦ γ ∗
i .

3. Compute TSRVFs of the warped trajectories, hα̃i , and calculate the average of them according
to: h̄(t) = 1

n

∑n
1 hα̃i (t). Compute SRVFs of the warped fibers, qβ̃i , and calculate the average of

them according to q̄(t) = 1
n

∑n
1 qβ̃i

(t).
4. Compute E = φ1dS(μf , qβ̃i ) + φ2dh(μh, hα̃i ) and check for convergence. If not converged,

update μf with q̄(t) and μh with h̄(t), then return to step 2.

Besides the Karcher mean, one would also like to quantify the amount by which
each curve deviates from the mean and to analyze the most variation of curves from
mean. This can be done by computing the covariance matrix and modes of variation.
Since the trajectory space is a nonlinear manifold, we use the tangent space Tc(M)
ofM at the mean μh, which is a vector space, to perform statistical analysis and find
statistical summaries. We find hα̃i , the element of [hi] that has the shortest geodesic
distance to μh. Then, we find the shooting vector from μh to hα̃i using the inverse
exponential map, denoted as vi ∈ Tc(M). One can compute a covariance matrix of
all shooting vectors from μh to hα̃i by K = 1

n−1

∑n
i=1 viv

T
i .

We apply our method on projection pathway data. The data includes 12 fibers,
which are denoted asXi, i = 1, . . . , 12. It is shown in the second figure of Fig. 14.2.
The corresponding trajectories of SPD matrices, denoted as αi, i = 1, . . . , 12,
shown in the third figure of Fig. 14.2. We extract these 12 fibers from 12 subjects,
they are the representative projection pathways passing through internal capsule. In
this study, we try three methods to calculate mean of fibers with different colors.
The variances of fibers are also shown along the mean fibers. First, we consider
12 fibers as open curves, we compute a mean fiber using method in [48, 49]. In
this method, we consider fibers as 3D open curves. The mean is shown in first
figure of Fig. 14.9. Second, we compute a mean tensor-based path using method
in [40], denoted as μh, then for each trajectory α, find the registration γ ∗

i as in
Eq. (14.4). In this method, we consider fibers as trajectories of tensors only. The
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Fig. 14.9 Comparison of
mean and variance based on
different methods
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Table 14.3 Comparison of
variance by different methods

Different methods Variance

Shape analysis [48, 49] 115.45

Tensor only [40] 124.77

Our method 108.71

mean and variance are shown in second figure of Fig. 14.9. Third, we compute a
mean by considering fibers as 3D open curves and trajectories of tensors. We use the
algorithm in Sect. 14.4.2 to compute the mean fiber. We choose φ1 = 1, φ2 = 5 by
trying different pairs of weight coefficients and comparing their variances. The mean
and variance are shown in third figure of Fig. 14.9. There are not much difference
of mean fibers by these three different methods. However, the mean fiber has the
smallest variance by analyzing fibers as open curves and trajectories of tensors
jointly, see Table 14.3. This means our comprehensive Riemannian framework is
more effective in summarizing multi-modality data.

14.5 Conclusion

In this chapter, we have presented a comprehensive Riemannian framework for
analyzing, clustering and summarizing multi-modality data. The elastic represen-
tation on a product space provides a proper metric for registration, clustering
and summarization. We use our framework in two applications, which consider
white matter fibers associated with BOLD signals or tensors. We have presented
a proper metric, which is a weighted average of distances on the product space
of shapes and trajectories of functions or tensors. The metric allows for joint
comparison and registration of fibers associated with BOLD signals and tensors. Our
framework has correctly identified clusters with different stimuli, which agree with
the underlying truth from the brain structure. Also, our framework is very effective
in summarizing projection pathways. The proposed framework is flexible such that
it can be generalized to other applications where multi-modality data exist.
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Abstract In this chapter, we present an overview of recent techniques from the
emerging area of topological data analysis (TDA), with a focus on machine-
learning applications. TDA methods are concerned with measuring shape-related
properties of point-clouds and functions, in a manner that is invariant to topological
transformations. With a careful design of topological descriptors, these methods
can result in a variety of limited, yet practically useful, invariant representations.
The generality of this approach results in a flexible design choice for practitioners
interested in developing invariant representations from diverse data sources such as
image, shapes, and time-series data. We present a survey of topological representa-
tions and metrics on those representations, discuss their relative pros and cons, and
illustrate their impact on a few application areas of recent interest.
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15.1 Introduction

Questions surrounding geometry have evoked interest for over several millennia.
Topology on the other hand, is relatively new and has been studied for just a
few centuries in mathematics. As said by Galileo Galilei, “To understand the
universe one must first learn its language, which is mathematics, with its characters
being different geometric shapes like lines, triangles and circles”. Topological
Data Analysis (TDA) is a collection of mathematical tools that aim to study the
invariant properties of shape or underlying structure in data. Real-world data can
often be represented as a point cloud, i.e., a discrete set of points lying in a high-
dimensional space. Identification and use of suitable feature representations that
can both preserve intrinsic information and reduce complexity of handling high-
dimensional data is key to several applications including machine-learning, and
other data-driven applications. In this chapter, we survey recent developments in
the field of topological data analysis, with a specific focus towards applications
in machine-learning (ML). ML applications require the generation of descriptors,
or representations, that encode relevant invariant properties of a given point-cloud.
This is then followed by choices of metrics over the representations, which leads to
downstream fusion with standard machine-learning tools.

One of the core unsolved problems in ML algorithms is the characterization of
invariance. Invariance refers to the ability of a representation to be unaffected by
nuisance factors, such as illumination variations for face recognition, pose variations
for object recognition, or rate-variations for video analysis. Provably invariant
representations have been very hard to find, especially in a manner that also results
in discriminative capabilities. One category of approaches involves ad-hoc choices
of features or metrics between features that offer some invariance to specific factors
(c.f. [14]). However, this approach suffers from a lack of generalizable solutions.
The second approach involves increasing the size of training data by collecting
samples that capture different possible variations in the data, allowing the learning
algorithm to implicitly marginalize out the different variations. This can be achieved
by simple data augmentation [106]. Yet, the latter approach does not offer any
theoretical insight, and it is known that contemporary deep-learning methods are
quite brittle to unexpected changes in factors like illumination and pose. Based
on recent work in the field, and including our own, we feel that topological data
analysis methods may help in creating a third category of approaches for enforcing
practically useful invariances, while being fusible with existing ML approaches.

Rooted in algebraic topology, Persistent Homology (PH) offers a simple way
to characterize the intrinsic structure and shape of data [29, 48, 61]. It does so by
finding the number of k-dimensional holes when we connect nearby discrete data
points. An easier way to describe PH is by comparing it to humans trying to identify
constellation patterns by connecting neighboring stars in the sky [60]. PH employs a
multi-scale filtration process and produces a series of nested simplicial complexes.
We will describe what a simplicial complex is in the next section. By sweeping
the scale parameter over a range, one can encode the structural information of the
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data by capturing the duration of existence of different topological invariants such
as connected components, cycles, voids, higher-dimensional holes, level-sets and
monotonic regions of functions defined on the data [29, 49]. Often topological
invariants of interest live longer in these multi-scale simplicial complexes. The
lifespan of these invariants is directly related to the geometric properties of interest.

Although the formal beginnings of topology is already a few centuries old,
dating back to Leonhard Euler, algebraic topology has seen a revival in the past
two decades with the advent of computational tools and software like JavaPlex [4],
Perseus [94], DIPHA [12], jHoles [18], GUDHI [90], Ripser [11], PHAT [13], R-
TDA [52], Scikit-TDA [114], etc. This has caused a spike in interest to use TDA
as a complementary analysis tool to traditional data analysis and machine learning
algorithms. TDA has been successfully implemented in various applications like
general data analysis [29, 86, 96, 109, 128], image analysis [8, 37, 45, 54, 62,
67, 88, 97, 104], shape analysis [19, 66, 83, 119, 137, 139], time-series analysis
[7, 89, 115, 119, 124, 129, 138], computer vision [7, 53, 119, 126], computational
biology [27, 44, 98], bioinformatics [74], materials science [91], medical imaging
[38, 79, 80], sphere packing [111], language and text analysis [65, 140], drug design
[24–26, 95, 133], deep-learning model selection and analysis [23, 25, 45, 55, 56,
70, 107, 110], sensor networks [3, 41, 42, 57, 131], financial econometrics [63, 64]
and invariance learning [119]. However, three main challenges exist for effectively
combining PH and ML, namely—(1) topological representations of data; (2) TDA-
based distance metrics; (3) TDA-based feature representations. A lot of progress
has been made on all three fronts, with the literature scattered across different
research areas [59, 93, 103, 130]. In this chapter we will briefly go over the various
topological feature representations and their associated distance metrics. The rest of
the chapter is outlined as follows: In Sect. 15.2 we will go over necessary theoretical
background and definitions. Section 15.3 provides details of various topological
feature representations. Section 15.4 describes the different metrics defined to
compare topological features. Section 15.5 goes over some of the application areas
mentioned earlier in more detail and Sect. 15.6 concludes the chapter.

15.2 Background and Definitions

In this section we will briefly go over some of the history and a few important
definitions that will help us both appreciate and better understand the underlying
complexities involved in topology. A convex polyhedron is the intersection of
finitely many closed half-spaces. A half-space is either of the two parts when a
hyperplane divides an affine space. The 5 convex regular polyhedrons known to exist
in three dimensional spaces are the tetrahedron, cube, octahedron, dodecahedron
and icosahedron, also known as the 5 Platonic solids, named after the Greek
philosopher Plato. He theorized that the natural elements were constructed from
them. In addition, Euclid gave a complete description of the Platonic solids in
the XIII Books of the Elements [69]. An interesting fact to note is that the face
vector (#vertices, #edges, #faces) of the octahedron (6, 12, 8) is reverse of that of
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the cube (8, 12, 6). Similarly, the face vector of the dodecahedron (20, 30, 12) is
reverse of the icosahedron (12, 30, 20). However, the face vector of the tetrahedron
is a palindrome (4, 6, 4). A pattern that can be observed for all 5 Platonic solids
is the alternating sum of the face numbers is always equal to 2, i.e., #vertices −
#edges + #faces = 2. Leonhard Euler discovered this relationship and is widely
considered as the starting point in the field of topology. The relation is referred
to as the Euler characteristic of the polyhedron and is a global statement, without
depending on the precise geometric shape. It has taken more than a century to show
Euler’s original observation as a special case and to prove when the relation holds
[78]. This generalization is due to Henri Poincaré, which is why the more general
result is referred to as the Euler-Poincaré formula. It relates the alternating sums of
face numbers and Betti numbers, where fi is the number of i-dimensional faces, and
βi is the ith Betti number. βi is defined as the rank of the ith homology group.

∑

i≥0

(−1)ifi =
∑

i≥0

(−1)iβi (15.1)

Despite having existed for a few hundred years, the recent revival and gain in
popularity of algebraic topology is greatly attributed to the development of various
software packages [4, 11–13, 18, 52, 90, 94, 114]. Most of these packages are well
documented and offer simple tutorials making it easy for beginners to try out the
software. However, it is important to know the definitions of some of the underlying
steps that go into capturing different topological invariants from the data being
analyzed. Many definitions and examples below are inspired by and adapted from
[140]. We discuss only geometric realizations, but simplicial persistent homology
discussed below is applicable to abstract settings also [68] is an excellent reference
for further reading.

Definition 15.1 ([140]) A p-simplex is the convex hull of p + 1 affinely indepen-
dent points x0, x1, . . . , xp ∈ Rd . It can be denoted as σ = conv{x0, . . . , xp}.

The p + 1 points are said to be affinely independent if the p vectors xi − x0,

with i = 1, . . . , p are linearly independent. Simplices can be treated as the
building blocks of discrete spaces. The convex hull formed by these points is simply
the solid polyhedron. In the point cloud space, the points or vertices represent
0-simplices, edges represent 1-simplices, triangles represent 2-simplices and a
tetrahedron represents a 3-simplex. These are illustrated in Fig. 15.1. A p-simplex
is also referred to as a pth order hole or as a topological feature in theHp homology
group.

Fig. 15.1 Illustration of
p-simplices, with
p = 0, 1, 2, 3

0-Simplex 1-Simplex 2-Simplex 3-Simplex
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Fig. 15.2 Example of
simplicial complex (left) and
not a simplicial complex
(right)

Definition 15.2 ([140]) A face of a p-simplex σ is the convex hull of a subset of
the p + 1 vertices.

For example, the tetrahedron shown in Fig. 15.1 has 4 triangle faces, 6 edge faces
and 4 vertex faces. Similarly, a triangle has 3 edge faces and 3 vertex faces. Finally,
an edge has just 2 vertex faces.

Definition 15.3 ([140]) Given a set of points x ∈ X, the simplicial complex of this
point set can be denoted by K = (X, ), where  is a family of non-empty subsets
of X, and each subset σ ∈  is a simplex.

In a simplicial complex K , if τ is a face of σ , then τ ∈  . It is also important
to note that both σ, σ ′ ∈  , which implies that their intersection is either empty or
a face of both σ and σ ′. This forces the simplices to be either glued together along
whole faces or be separate. An example of what constitutes a simplicial complex
is shown in Fig. 15.2. In TDA we use simplicial complexes to construct and study
shapes from point cloud data.

Definition 15.4 ([140]) A p-chain is a subset of p-simplices in a simplicial
complex.

As an example, let us consider a tetrahedron as the target simplicial complex. It
has four triangle faces. A 2-chain for a tetrahedron is a subset of these four triangles,
bringing the total number of distinct 2-chains to 24. Similarly, we can construct 26

distinct 1-chains using the six edges of a tetrahedron. A p-chain does not have to be
connected, in spite of having the term chain in it.

Definition 15.5 ([140]) A p-chain group Cp is a set of p-chains in a simplicial
complex along with a group operation (addition).

The addition of p-chains gives us another p-chain with the duplicate p-simplices
cancelling out. See Fig. 15.3 for an example.

Definition 15.6 ([140]) The boundary ∂p of a p-simplex is the set of (p − 1)-
simplices faces. For example, a tetrahedron’s boundary consists of the set of 4
triangle faces. A triangle’s boundary is its three edges, and finally the boundary
of an edge is its two vertices. The boundary of a p-chain is the XOR or mod-2
addition of the boundaries of its simplices.

Definition 15.7 ([140]) A p-cycle is a p-chain with empty boundary. Figure 15.3
illustrates both the boundary operator and the notion of cycle.
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Fig. 15.3 Example of the boundary operator ∂2 acting on the 2-chain (collection of two triangles)
to create a 1-chain (collection of 4 edges). The addition operation of the two 1-chains leads to
cancellation of the common 1-simplex. Applying ∂1 on the resulting 1-chain results in 0, and
hence this 1-chain is also a 1-cycle

With the definitions out of the way, let us now look at the process of constructing
simplicial complexes and summarizing the topology of data. Consider a point cloud
x0, x1, . . . , xn ∈ Rd . We can construct a simplicial complex by identifying any
subset of p+1 points that are close enough, such that we add a p-simplex σ , where
the points serve as vertices to the complex. An easy way to do this is by constructing
a Vietoris-Rips complex [143]. At scale ε, the Vietoris-Rips complex can be defined
as VR(ε) = {σ | diam(σ ) ≤ ε}, with diam(σ ) being the largest distance between
any two points in the simplex σ . Increasing the scale ε produces a sequence of
increasing simplicial complexes, i.e., VR(ε1) ⊆ VR(ε2) ⊆ · · · ⊆ VR(εm). This
process is referred to as filtration. Persistent homology keeps a track of how the
pth homology holes change as ε changes and summarizes this information using a
persistence diagram or persistence barcode plot. In this section we briefly discuss the
barcode representation and will explain both persistence diagrams and persistence
barcodes in more detail in Sect. 15.3. We provide an example adapted from [140].
Consider six points positioned at (0, 0), (0, 1), (2, 0), (2, 1), (5, 0), (5, 1) in a two-
dimensional (2D) Cartesian coordinate axis as shown in Fig. 15.4. Varying scale
ε causes the appearance and disappearance of H0 and H1 homology holes. For
instance, at ε = 0 there are six disconnected vertices, making β0 = 6. Three edges
are formed at ε = 1, reducing β0 to 3. Two more edges are formed at ε = 2, which
sets β0 = 2. The points become fully connected at ε = 3, and β0 becomes 1. With
respect toH1 homology, we observe the first hole form at ε = 2. However, this hole
is short-lived as it disappears at ε = √

5 = 2.236. A second hole is formed at ε = 3
and disappears at ε = √

10 = 3.162. The above information can be best summaried
using a persistence barcode. The persistence barcodes for H0 and H1 homology
groups is also shown in Fig. 15.4. Each bar in the barcode represents the birth-
death of each hole in the Hp homology group. Just like the Vietoris-Rips complex,
other types of complexes also exist, such as C̆ech complex, Alpha complex, Clique
complex, Cubical complex, and Morse-Smale complex [103]. In the next section
we will look at persistence diagrams, persistence barcodes and other topological
representations in more detail.
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Fig. 15.4 An example of the filtration process of a Vietoris-Rips simplicial complex

15.3 Topological Feature Representations

From an application perspective, persistent homology (PH) is the most popular
tool in topological data analysis (TDA). It offers a useful multi-scale summary
of different topological invariants that exist in the data space. This information is
represented using a Persistence Diagram (PD) [39] which is a set of points on
a two-dimensional (2D) Cartesian plane. The two axis in this plane represent the
birth-time (BT), i.e., the filtration value or scale at which a topological invariant is
formed; and death-time (DT), the scale at which the topological invariant ceases to
exist. The DT is always greater than the BT. This results in utilizing just the top
half plane of the PD. The persistence or life-time (LT) of a point is the absolute
difference between the DT and BT. For point j in the PD we will refer to the BT,
DT, LT as bj , dj , lj respectively.

Points in a PD can also be represented using a set of bars, with the length of each
bar reflecting the LT of the point, i.e., [lj ] = [bj , dj ]. This representation is called a
Persistence Barcode (PB) [61]. An example of a PD and its PB is shown in Fig. 15.5.
In a PD only half of the 2D plane is utilized. To fully use the entire 2D surface one
can employ a rotation function R(bj , dj ) = (bj , dj − bj ) = (bj , lj ). Now, the new
set of axis represent BT and LT respectively. Since it is a multi-set of points, it is
not possible to directly use this representation in ML algorithms that use fixed-size
features and operate in the Euclidean space. This has resulted in various topological
representations being proposed to better understand the information captured using



422 A. Som et al.

Fig. 15.5 H1-Homology persistence diagram and persistence barcode for a 2D point cloud. In the
persistence diagram, point (b1, d1) represents the smaller circle and point (b2, d2) represents the
larger circle

PDs/PBs and that can be used along with ML tools [5–7, 21, 25, 27, 28, 41, 73,
119, 120, 134]. In the remainder of this section we will briefly go over the different
topological representations.

The Persistent Betti Number (PBN) is defined as the summation of all k-
dimensional holes in the PD and is defined in Eq. (15.2) [50]. It transforms the 2D
points in the PD to a 1D function that is not continuous. Here, X[bj ,dj ] is a step
function, i.e., it equals 1 where there is a point and 0 otherwise.

fPBN(x) =
∑

j

X[bj ,dj ](x) (15.2)

Kelin Xia proposed the Persistent Betti Function (PBF) defined in Eq. (15.3)
[134]. It is a 1D continuous function and there is a strict one-to-one correlation
between PDs and PBFs. The weight variable wj needs to be suitable set and σ is
the resolution parameter.

fPBF(x) =
∑

j

wj exp

(

− (x − ( bj+dj2 ))

σ (dj − bj )
)2

(15.3)

Peter Bubenik proposed the Persistence Landscape (PL) feature in [21]. PLs are
stable, invertible functional representations of PDs. A PL lies in the Banach space
and is a sequence of envelope functions defined on the points in the PD. These
functions are ordered based on their importance. PLs were primarily motivated to
derive a unique mean representation for a set of PDs which is comparatively difficult
to do using other techniques such as Fréchet means [92]. However, their practical
utility has been limited since they provide decreasing importance to secondary and
tertiary features in PDs that are usually useful in terms of discriminating between
data from different classes. For a PL, a piece-wise linear function can be defined on
each point in the PD as shown below. The PL can be defined using a sequence of
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functions λm : R → [0,∞], m = 1, 2, 3, . . . where λm(x) is the mth largest value
of fPL(x). It is set to zero if the mth largest value does not exist.

fPL(x) =

⎧

⎪⎪⎨

⎪⎪⎩

0 if x /∈ (bj , dj );
x − bj if x ∈ (bj , bj+dj2 ];
−x + dj if x ∈ [ bj+dj2 , dj ).

(15.4)

The Persistence Surface (PS) is defined in Eq. (15.5) [5]. It is a weighted sum of
Gaussian functions, with each function centered at each point in the PD.

ρ(x, y) =
∑

j

w(x, y, t1, t2) φ(x, y, bj , dj ) (15.5)

Here, φ(.) is a differentiable probability distribution function and is defined as

φ(x, y, bj , dj ) = 1
2πσ 2 exp

(

− (x−bj )2+(y−(dj−bj ))2
2σ 2

)

. A simple choice of weighting

function depends on the death-time. To weight the points of higher persistence more
heavily, non-decreasing functions like sigmoid functions are a natural choice. The
weight function with constants t1, t2 is defined as

w(x, y, t1, t2) =

⎧

⎪⎪⎨

⎪⎪⎩

0 if y ≤ t1;
y−t1
t2−t1 if t1 < y < t2;
1 if y ≥ t2.

(15.6)

We can discretize the continuous PS function by fitting a Cartesian grid on top of
it. Integrating the PS over each grid gives us a Persistence Image (PI) [5]. The
Persistent Entropy (PE) function is proposed to quantify the disorder of a system
and is defined as fPE = ∑

j

−pj ln(pj ), where pj = dj−bj
∑

j

(dj−bj ) [112].

One can also collect different statistical measurements from a PD and use
it as a feature representation. Examples of such measurements include maxima,
minima, variance, and summation, of the BT, DT, and LT. Cang et al. used 13 such
different measurements to characterize the topological structural information [27].
One can also consider doing algebraic combinations or using tropical functions
of BT, DT and LT [6, 73]. Binning approaches have gained more popularity as
one can construct well-structured features that can easily be used as input to ML
algorithms. For instance, binning with respect to PBN and PBF can be done by
collecting values at grid points, i.e., the set {f (xi) | i = 0, 1, . . . , n; k = 0, 1, 2},
n corresponds to the grid number and k is the homology group [25, 28]. The same
binning approach can be adopted for PLs as well. However, it needs to be repeated
m times and thus the m set of {λm(xi) | i = 0, 1, . . . , n} values are used as features
[22]. In the case of PIs, we first rotate the PD so that the 2D Cartesian coordinate
axis are BT and LT respectively. Next, we compute the PI for the rotated PD and
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discretize it into a n×n grid. We can evaluate the values along each grid which will
result in feature vector containing total of n2 elements. The distribution functions
of BTs, DTs and PLs can be discretized and used as feature vectors. For each
interval [xi, xi+1], we can count the numbers of the k dimensional BTs, DTs, PLs
located in this range and denote them as NiBT, N

i
DT, N

i
PL, respectively. These sets

of counts {(NiBT, N
i
DT, N

i
PL) | i = 0, 1, . . . , n; k = 0, 1, 2} can be assembled as

a feature vector. It should be noticed that normally for β0 (rank of H0 homology
group), the BTs are 0, thus DTs are usually equal to PLs. So only the set of
{NiPL | i = 0, 1, . . . , n} is used instead [25, 28].

Just like bagging, Persistent Codebooks are also popular for getting fixed-
size feature representations by using different clustering or bagging methods over
the points in the PD [19, 142]. For instance the Persistent Bag-of-Words (P-
BoW) method matches each point in a rotated PD R(bi,m, di,m) to a precomputed
dictionary/codebook to get a feature vector representation [142]. k-means clustering
is used to cluster the points into c clusters NN(R(bi,m, di,m)) = i, with i =
1, 2, . . . , c and m = 1, 2, . . . , si . NN(x, y) = i means that point (x, y) belongs to
cluster i and si is the total number of points present in cluster i. The center of each
cluster is represented as zi = (xi, yi). Thus the P-BoW is denoted by fP-BoW =
(zi)i=1,2,...,c. One could also take the persistence information into account during
clustering. This would result in a more adaptive codebook. The Persistent Vector
of Locally Aggregated Descriptors (P-VLAD) captures more information than P-
BoW [142]. It also employs k-means clustering. The aggregated distance between
each rotated point R(bi,m, di,m) and its closest codeword zi is defined as follows
fP-VLAD = ∑

m=1,2,...,si

(R(bi,m, di,m) − zi). The c vectors are concatenated into a 2c

dimensional vector.
The Persistent Fisher Vector (PFV) captures the rotated PD with a gradient

vector from a probability model [142]. Let the set of Gaussian Mixture Model
(GMM) parameters be represented using λGMM = {wi, μi, i}. Here, wi, μi, i
denote the weight, Gaussian center and covariance matrix of the ith Gaussian
respectively. The likelihood that the rotated point R(bj , dj ) is generated by the ith
Gaussian is shown in Eq. (15.7) and the function is defined in Eq. (15.8).

pi(R(bj , dj ) | λGMM) = exp(− 1
2 (R(bj , dj )− μi)′ −1

i (R(bj , dj )− μi))
2π | i | 1

2

(15.7)

f (R(PDb,d) | λGMM) =
∑

j

log
(∑

i

wipi(R(bj , dj ) | λGMM)
)

(15.8)

Another feature representation was proposed by Chevyrev et al., where the PB is
first represented as a persistent path which in turn is represented as a tensor series
[35].
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Anirudh et al., proposed a feature representation denoted by fHS, that is based
on Riemannian geometry [7]. This feature is obtained by modeling PDs as 2D
probability density functions (PDF) that are represented using the square-root
framework on the Hilbert Sphere. The resulting space is more intuitive with closed
form expressions for common operations and statistical analysis like computing
geodesics, exponential maps, inverse-exponential maps and computing means.
Assuming that the supports for each 2D PDF p is in [0, 1]2, the Hilbert Sphere
feature representation of the PD is shown in Eq. (15.9). Here, ψ = √

p.

fHS = {ψ : [0, 1] × [0, 1] → R ∀x, y | ψ ≥ 0; with
∫ 1

0

∫ 1

0
ψ2(x, y)∂x∂y = 1}

(15.9)
Motivated from the successful use of Riemannian geometry to encode PDs,

Som et al. proposed Perturbed Topological Signatures (PTS), a more robust
topological descriptor where a set of PDs can be projected to a point on the
Grassmann manifold [119]. We refer our readers to the following papers that provide
a good introduction to the geometry, statistical analysis, and techniques for solving
optimization problems on the Grassmann manifold [1, 2, 36, 47, 132]. Instead of
creating more variations in the data space and then computing PDs, the authors
induce variations by directly augmenting in the space of PDs. They do so by creating
a set of randomly perturbed PDs from the original PD. Each perturbed PD in this set
has its points randomly shifted but within a certain defined radius about the original
position of the points. The extent of perturbation is constrained to ensure that the
topological structure of data being analyzed is not abruptly changed. A perturbed PD
is analogous to extracting the PD from data that is subjected to topological noise.
Next, 2D PDFs are computed for each of the PDs in this set. Finally, the set of
2D PDFs are vectorized, stacked and then mapped to a point on the Grassmannian.
Mapping to a point on the Grassmann manifold is done by applying singular value
decomposition (SVD) on the stacked matrix of perturbed PDFs. Once in this space,
we can use the various metrics defined for the Grassmann manifold to do basic
operations and statistical analysis, just like in [7].

There is also recent interest bringing the areas of topological representation
learning and deep learning closer, and explore how they can help each other. In
[70], the authors propose to use PDs in deep neural network architectures using a
novel input layer that performs necessary parametrizations. Som et al. also explored
the use of deep learning models for computing topological representations directly
from data [120]. They proposed simple convolutional architectures called PI-Net to
directly learn mappings between time-series or image data and their corresponding
PIs, thereby reducing the amount of time taken to compute PIs from large datasets
significantly. Given a new dataset, they also discuss ways of using transfer learning
to fine-tune a pre-trained model on a subset of the new dataset. This opens doors to
exploring deep learning methods for computing topological features from the target
datasets. In the next section we will go over the different metrics and kernel methods
defined for the various topological representations described earlier.
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15.4 Geometric Metrics for Representations

As mentioned earlier, a persistence diagram (PD) is a multi-set of points that lies
on a 2D Cartesian plane. Its unique format poses a challenge for a finding a suitable
metric to compare PDs. However, several metrics have been proposed that are
suited specifically for PDs. Metrics have also been formulated for other topological
representations that are functional approximations of PDs [7, 30, 34, 92, 119, 123].
In addition, various kernel functions for topological data have been proposed to
replace the role of features. In this section, we will briefly go over these geometric
metrics and topological kernels.

The two classical metrics used to measure the dissimilarity between PDs are
the Bottleneck and p-Wasserstein distances [92, 123]. Both of these are transport
metrics, and are computed by matching corresponding points in PDs. For Hk
homology group, the bottleneck distance between a pair of PDs D and D′ is shown
in Eq. (15.10), with γ ranging over all bijections from D to D′, and xj representing
the j th point.

dB(D,D
′) = inf

γ
sup
j

‖xj − γ (xj )‖∞ (15.10)

Here, ‖xj − xj ′ ‖∞ = max{|bj − bj ′ |, |dj − dj ′ |}, with (b, d) corresponding to
BT and DT respectively. The p-Wasserstein distance between two PDs D and D′ is
shown in Eq. (15.11), with p > 0.

dW,p(D,D
′) = inf

γ

[
∑

j

||xj − γ (xj )||p∞
] 1
p

(15.11)

Despite being principled metrics that can quantify the changes between the PDs,
these metrics are computationally expensive. For example, to compare two PDs with
n points each, the worst-case computational complexity is of the order of O(n3)

[15]. This and the fact that the PDs are not vector space representations makes
the computation of statistics in the space of PDs challenging. This has led to the
emergence of other topological representations with their corresponding metrics.

The Sliced Wasserstein distance [105] between two PDs is defined as

dSW(D,D
′) = 1

2π

∫

W(μ(θ,D)+ μ�(θ,D′), μ(θ,D′)+ μ�(θ,D)) dθ.
(15.12)

Since the points in a PD live in a restriction of the 2D Euclidean space, we can define
a line f (θ) = {λ(cos(θ), sin(θ)) | λ ∈ R} for θ ∈ [−π/2, π/2] in this space. Further
πθ : R2 → f (θ) is defined as the orthogonal projection of a point onto this line
and the π� is the orthogonal projection onto the diagonal line (i.e., θ = π/4). We
denote μ(θ,D) = ∑

j

δπθ (xj ) and μ�(θ,D) = ∑

j

δπθ◦π�(xj ) andW is the generic
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Kantorovich formulation of optimal transport. The main idea behind this metric is
to slice the plane with lines passing through the origin, to project the measures onto
these lines whereW is computed, and to integrate those distances over all possible
lines. Based on this metric, Carriere et al. proposed the Sliced Wasserstein kernel
[31].

Reininghaus et al., proposed the Persistence Scale Space Kernel (PSSK) [108]
that is defined as

KPSSK(D,D
′, σ ) = 1

8πσ

∑

xj ,xj ′
exp

(

−‖xj − xj ′ ‖2

8σ

)

− exp

(

−‖xj − xj ′ ‖2

8σ

)

.

(15.13)
Here, xj ′ is xj ′ mirrored at the diagonal. The proposed kernel is positive definite and
is defined via anL2-valued feature map, based on ideas from scale space theory [71].
The authors also show that the proposed kernel is Lipschitz continuous with respect
to the 1-Wasserstein distance and apply it to different shape classification/retrieval
and texture recognition experiments. Kwitt et al. proposed the Universal Persistence
Scale Space Kernel (u-PSSK) [77], which is a modification of PSSK and is defined
as,

Ku-PSSK(D,D
′, σ ) = exp(KPSSK(D,D

′, σ )). (15.14)

The Persistence Weighted Gaussian Kernel (PWGK) is also a positive definite
kernel, proposed by Kusano et al. [76] and defined as

KPWGK(D,D
′, σ ) =

∑

xj ,xj ′
warc(xj )warc(xj ′) exp

(

−‖xj − xj ′ ‖2

2σ 2

)

. (15.15)

Here, warc(xj ) = arctan(C(dj − bj )
p), with parameters p and C being positive

values. PWGK has the following 3 advantages over PSSK: (1) PWGK can better
control the effect of persistence using parameters p,C in warc, which are indepen-
dent of the bandwidth parameter σ in the Gaussian factor, while PSSK has just σ ; (2)
approximation by random Fourier features is applicable only in PWGK, since PSSK
is not shift-invariant in total; (3) PWGK is a non-linear kernel on the reproducing
kernel Hilbert space (RKHS), where as PSSK is a linear kernel.

The Geodesic Topological Kernel (GTK) is proposed by Padellini and Brutti [99]
and is defined as

KGTK(D,D
′, σ ) = exp

(
1

h
dW,2(D,D

′)2
)

(15.16)

where dW,2 is the 2-Wasserstein distance and h > 0. Similarly the Geodesic
Laplacian Kernel (GLK) is defined as
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KGLK(D,D
′, σ ) = exp

(
1

h
dW,2(D,D

′)
)

. (15.17)

Unlike PSSK and PWGK, both GTK and GLK are not positive definite kernels.
However, the authors show that this does not affect the performance of the kernel
in a supervised learning setting, as they exploit the predictive power of the negative
part of the kernels and can do better in a narrowed class of problems.

The Persistence Fisher Kernel (PFK) proposed by Le and Yamada is a positive
definite kernel that preserves the geometry of the Riemannian manifold as it is
built upon the Fisher information metric for PDs without approximation [81]. The
PFK is defined in Eq. (15.18). Here, t0 is a positive scalar value; dFIM is the
Fisher information metric; ρ(x, y,D) = 1

Z

∑

j

N(x, y|lj , σ ) with j ranging over

all points in the PD; Z = ∫ ∑

j

N(x, y|lj , σ )∂x∂y and N(x, y|lj , σ ) is the normal

distribution.

KPFK(D,D
′) = exp(−t0dFIM(ρ(x, y,D), ρ(x, y,D

′)) (15.18)

Zhu et al. proposed three persistent landscape-based kernels namely: Global Per-
sistent Homology Kernel (GPHK), Multi-resolution Persistent Homology Kernel
(MPHK) and Stochastic Multi-resolution Persistent Homology Kernel (SMUR-
PHK) [141]. However, both GPHK and MPHK do not scale well to point clouds
with large number of points. SMURPHK solves the scalability issue with Monte
Carlo sampling.

The PTS representation by Som et al. is a point on the Grassmann manifold
[119]. This allows one to utilize the different distance metrics and Mercer kernels
defined for the Grassmannian. The minimal geodesic distance (dG) between two
points Y1 and Y2 on the Grassmann manifold is the length of the shortest constant
speed curve that connects these points. To do this, the velocity matrix AY1,Y2 or the
inverse exponential map needs to be calculated, with the geodesic path starting at
Y1 and ending at Y2. AY1,Y2 can be computed using the numerical approximation
method described in [85]. The geodesic distance between Y1 and Y2 is represented
in Eq. (15.19). Here θ is the principal angle matrix between Y1,Y2 and can be
computed as θ = arccos(S), where USV T = svd(YT1 Y2). The authors show the
stability of the proposed PTS representation using the normalized geodesic distance
represented by dNG(Y1,Y2) = 1

D
dG(Y1,Y2), where D is the maximum possible

geodesic distance on Gp,n [72, 82].

dG(Y1,Y2) = trace(AY1,Y2AY1,Y2
T) =

√

trace(θT θ) (15.19)

The symmetric directional distance (d�) is another popular metric to compute
distances between Grassmann representations with different subspace dimension
p [121, 127]. Its been used areas like computer vision [9, 10, 40, 87, 135],
communications [116], and applied mathematics [46]. It is equivalent to the chordal
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metric [136] and is defined in Eq. (15.20). Here, k and l are subspace dimensions
for the orthonormal matrices Y1 and Y2 respectively. The following papers
propose methods to compute distances between subspaces of different dimensions
[121, 127, 136].

d�(Y1,Y2) = (

max(k, l)−
k,l
∑

i,j=1

(y1,i
Ty2,j )

2)
1
2 (15.20)

15.5 Applications

In this section, we describe three application areas that have benefited from
topological methods, including time-series modeling, image and shape analysis.
We also compare the performance of some of the topological representations and
metrics described in Sects. 15.3 and 15.4.

15.5.1 Time-Series Analysis

A lot of work has gone into modeling dynamical systems. A popular approach
involves reconstructing the phase space of the dynamical system by implementing
Takens’ embedding theorem on a 1D time-series signal [122]. For a discrete
dynamical system with a multi-dimensional phase space, the embedding or time-
delay vectors are obtained by stacking time-delayed versions of the 1D signal. This
can be easily expressed through Eq. (15.21).

x(n) = [x(n), x(n+ τ), . . . , x(n+ (m− 1)τ )]T (15.21)

Here, x is the 1D time-series signal, m is the embedding dimension and τ
is the embedding delay or delay factor. An example of reconstructing the phase
space of the Lorenz attractor is shown in Fig. 15.6. Takens’ embedding theorem has

Fig. 15.6 Phase space reconstruction of the Lorenz attractor using Takens’ embedding theorem.
The Lorenz attractor (left) is obtained using a system of three ordinary differential equations:
x(t), y(t), z(t), with control parameters ρ = 28, σ = 10, β = 2.667. Takens’ embedding theorem
is applied on x(t) (middle), with m = 3, τ = 10 to get the reconstructed phase space (right)
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been successfully employed in various applications [117–119, 125]. Skraba et al.
proposed a framework that analyzes dynamical systems using persistent homology,
that requires almost no prior information of the underlying structure [43]. The
authors observed that the reconstructed phase space can reveal the recurrent nature
of the system in the form of loops and returning paths. Persistent homology can
be used to quantify these recurrent structures using persistent diagrams or Betti
numbers. It is important to note that these loops need not necessarily exist in the
1D signal, thereby making the reconstructed phase space even more attractive. A
periodic dynamical system exhibits Betti numbers equivalent to that of a circle, a
quasi-periodic system with p periods will have Betti numbers equal to that of a p-
dimensional torus. Apart from counting the number of loops in the reconstructed
phase space, persistent homology also allows one to measure the periodicity of a
signal which is represented by the size of the loops or holes.

Perea and Harer also used persistent homology to discover periodicity in sliding
windows of noisy periodic signals [101]. Perea later extended the same idea to quasi-
periodic signals and also provide details for finding the optimal time-delay, window
size for sliding window embedding [100]. Berwald and Gidea used persistence
diagrams constructed using Vietoris-Rips filtration to discover important transitions
in genetic regulatory systems by identifying significant topological difference in
consecutive time-series windows [16, 17]. Garland et al. constructed persistence
diagrams using Witness complex filtrations to model the underlying topology of
noisy samples in dynamical systems [58]. Chazal et al. proposed the idea of
persistence-based clustering, where they showed that stable peaks possessed longer
life-times [33]. The life-time of points in the persistence diagram can reflect the
hierarchy of importance of the cluster centroids. Based on this other persistence-
based clustering ideas have also come up in recent years [32, 102]. Emrani et al. used
Betti-1 persistence barcodes for wheeze detection [51]. Sanderson et al. used TDA
to capture differences between same musical notes played on different instruments
[113]. They used persistent rank functions as features from a persistent diagram
and observed better results than a classifier trained on fast fourier transform (FFT)
features [111]. Ideas from [100, 101] were also used for identifying early signs
of important transitions in financial time-series trends using persistent homology
[63, 64].

15.5.2 Image Analysis

Topological methods have played a crucial role for different image-based applica-
tions, including image analysis [8, 37, 45, 54, 62, 67, 88, 97, 104], computer vision
[7, 53, 119, 126], medical imaging [38, 79, 80] and so on. Li et al. used persistence
diagrams together with bag-of-features representation for texture classification.
They theorized that while bag-of-features capture the distribution of functional
values defined over the data, PDs on the other hand capture structural properties
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that reflect spatial information in an invariant way. Similarly, Som et al. used
Perturbed Topological Signature (PTS) features along with self-similarity matrix
based representations for multi-view human activity recognition task. Lawson
et al. used persistent homology for classification and quantitative evaluation of
architectural features in prostate cancer histology [79, 80].

TDA methods are also being investigated as complementary representations to
those afforded by deep-learning representations for image classification problems
[45, 120]. Given an image, one can consider it as a point-cloud of pixels with
additional information associated to each pixel. In [45], the authors suggest a
mapping from each pixel—f : I �→ R5 mapping the RGB values of a given pixel at
location (x, y) to a point ( r−μr

σr
,
g−μg
σg
,
b−μb
σb
, x−x, y−y), where μ and σ represent

the mean and standard deviations of individual R,G,B channels in the image, and
x, y represent the mean spatial co-ordinates. Under this mapping, it can be shown
with some simple analysis that the topological properties of the resulting point cloud
will be invariant to spatial transforms like affine transforms, or simple monotonic
intensity transforms like gamma correction. The author proposed using a persistence
barcode features as a way to extract these invariant representations. The study shows
that fusion with features from deep-nets is possible, using methods like Fisher
vector encoding. The performance improvements shown are significant across many
different datasets like CIFAR-10, Caltech-256, and MNIST. Another interesting
approach involves directly computing topological representations from data using
deep learning. For example, Som et al. build simple convolution neural networks to
learn mappings between images and their corresponding persistence images [120].
However, this would require us to first compute the ground-truth persistence images
using conventional TDA methods. Nevertheless, the trained network offers a speed
up in the computation time by about two orders of magnitude. We feel that the
above approaches open a new class of image representations, with many possible
design choices, beginning with how an image can be converted to a topological
representation, all the way to fusion approaches.

15.5.3 Shape Analysis

Point cloud shape analysis is a topic of major current interest due to emergence
of Light Detection and Ranging (LIDAR) based vision systems in autonomous
vehicles. The different invariances one tries to seek include shape articulation, i.e.,
stretching, skewing, rotation of shape that does not alter the fundamental object
class. These invariances are optimally defined in terms of topological invariants.

For 3D shape analysis we conduct an experiment on 10 random shapes selected
from the SHREC 2010 dataset [84]. The dataset consists of 200 near-isometric
watertight 3D shapes with articulating parts, equally divided into 10 classes. Each
3D mesh is simplified to 2000 faces. The 10 shapes used in the experiment are
denoted as Si , i = 1, 2, . . . , 10 and are shown in Fig. 15.7. The minimum bounding
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Fig. 15.7 Sample shapes from SHREC 2010 dataset

sphere for each of these shapes has a mean radius of 54.4 with standard deviation
of 3.7 centered at (64.4, 63.4, 66.0) with coordinate-wise standard deviations of
(3.9, 4.1, 4.9) respectively. Next, we generate 100 sets of shapes, infused with
topological noise. Topological noise is applied by changing the position of the
vertices of the triangular mesh face, which results in changing its normal. We do
this by applying a zero-mean Gaussian noise to the vertices of the original shape,
with the standard deviation σ varied from 0.1 to 1 in steps of 0.1. For each shape
Si , its 10 noisy shapes with different levels of topological noise are denoted by
Ni,1, . . . ,Ni,10.

A 17-dimensional scale-invariant heat kernel signature (SIHKS) spectral descrip-
tor function is calculated on each shape [75], and PDs are extracted for each
dimension of this function resulting in 17 PDs per shape. To know more about
the process of extracting PDs from the SIHKS descriptor, we refer our readers to
the paper by Li et al. [83]. The 3D mesh and PD representation for 5 of the 10
shapes (shown in Fig. 15.7) and their respective noisy-variants (Gaussian noise with
standard deviation 1.0) is shown in Fig. 15.8. Now we evaluate the robustness of
each topological representation by trying to correctly classify shapes with different
levels of topological noise. Displacement of vertices by adding varying levels of
topological noise, interclass similarities and intraclass variations of the shapes make
this a challenging task. A simple unbiased one-nearest-neighbor (1-NN) classifier is
used to classify the topological representations of the noisy shapes in each set. The
classification results are averaged over the 100 sets and tabulated in Table 15.1. We
compare the performance of the following topological representations: PI [5], PL
[20], PSSK [108], PWGK [76] and PTS [119]. For PTS, we set the discretization
of the grid k = 50 and use σ = 0.0004. For PIs we chose the linear ramp
weighting function, set k and σ for the Gaussian kernel function, same as the
PTS feature. For PLs we use the first landscape function with 500 elements. A
linear SVM classifier is used instead of the 1-NN classifier for the PSSK and
PWGK methods. The classification results and the average time taken to compare
topological representations is shown in Table 15.1.

We observe that PIs, PLs and PWGK take the least amount of time to compare
topological features. PDs on the other hand take the most amount of time. At lower
levels of topological noise, there is little difference in the overall performance
of each topological feature. However, with the increase in topological noise the
classification performance deteriorates drastically for PIs, PLs, PSSK and PWGK.
Even PDs with the Bottleneck distance and 2-Wasserstein metric show poor results
as the noise level increases. The PTS representation shows the most stability with
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Fig. 15.8 PD representations for 5 shapes and their noisy variants. Columns 1 and 4 represent the
3D shape with triangular mesh faces; columns 2 and 3 show the corresponding ninth dimension
SIHKS function-based PDs. A zero mean Gaussian noise with standard deviation 1.0 is applied on
the original shapes in column 1 to get the corresponding noisy variant in column 4

respect to the applied topological noise. This is attributed to the fact that the PTS
representation takes into account different possible perturbations that are artificially
induced in the PD space before being mapped to a point on the Grassmann
manifold. Also, both Grassmannian metrics dG, d� still observe about two orders
of magnitude faster times to compare PTS representations.
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15.6 Conclusion

TDA methods are continuing to find more applications in diverse domains, as a
new lens to encode ‘shape’-related information. The theoretical work of the past
two decades has resulted in a variety of tools, which are being actively transitioned
to many different applications. We feel that TDA methods will continue to attract
interest from machine-learning practitioners, as we need newer methods to address
outstanding issues in standard ML approaches. Our conjecture is that the problem
of enforcing invariances in ML architectures will be one of the significant points
of transitions of TDA tools to the ML field. TDA methods are also being used to
throw light on how deep-learning methods learn, and generalize to other tasks. In
conclusion, we feel that TDA methods are poised to advance ML techniques as well
as many different applications where analysis of the shape of underlying data is
important.
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Abstract Extracting meaningful representations from geometric data has prime
importance in the areas of computer vision, computer graphics, and image pro-
cessing. Classical approaches use tools from differential geometry for modeling the
problem and employed efficient and robust numerical techniques to engineer them
for a particular application. Recent advances in learning methods, particularly in
the areas of deep-learning and neural networks provide an alternative mechanism of
extracting meaningful features and doing data-engineering. These techniques have
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proven very successful for various kinds of visual and semantic cognition tasks
achieving state-of-the art results. In this chapter we explore the synergy between
these two seemingly disparate computational methodologies. First, we provide a
short treatise on geometric invariants of planar curves and a scheme to discover them
from data in a learning framework, where the invariants are modelled using neural
networks. Secondly, we also demonstrate the reverse, that is, imputing principled
geometric invariants like geometric moments into standard learning architectures
enables a significant boost in performance. Our goal would not only be to achieve
better performance, but also to provide a geometric insight into the learning process
thereby establishing strong links between the two fields.

16.1 Introduction

Geometric invariance is an important issue in various problems of geometry
processing, computer vision and image processing, having both a theoretical and
a computational aspect to it. In order to solve problems like shape correspondence
and retrieval, it is essential to develop representations which do not change under the
action of various types of transformations. The difficulty of estimating invariants is
usually related to the complexity of the transform for which the invariance is desired
and the numerical construction of invariant functions from discrete sampled data is
typically non-trivial.

Learning methods involve the study and design of algorithms that develop
functional architectures which can be trained to perform a specific task when they
are endowed with an objective cost function and a sufficient amount of data. Recent
advances in convolutional neural networks and deep learning have catapulted their
use in solving a multitude of problems in computer vision, speech processing,
pattern recognition and many other data-sciences. Their success has been largely
attributed to the meaningful semantic features they generate from the data which
enables them to perform tasks like recognition, classification, discrimination etc.
with state-of-the-art superiority.

This chapter provides a synergy between the principled computation of numerical
geometry and the learning based schemes of neural networks and deep learning. In
this chapter, we aim to explore and highlight possible benefits of using learning
to enable better estimation of geometric invariants as well as using principled
geometric constructions to enable superior learning. By bringing these two disparate
themes together we hope to advocate the research for discovery of novel methods
that can combine the valuable insight and understanding provided by principled
axiomatic methods in geometry with the black-box-yet superior data dependant
models of deep learning. To this aim, we make two such demonstrations in this
chapter. First, in Sect. 16.2 we design a setup to learn the curvature (specifically
an invariant representation) of a curve from examples. A first course on differential
geometry shows that the arc-length and curvature are fundamental invariants of a
curve and provably invariant to specific class of transformations [1, 6, 7, 35]. Hence,
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the Euclidean arc-length and curvature are the simplest invariants to Euclidean
transformations, Affine arc-length and affine curvature to affine transformations
[29], and so on. We demonstrate experimentally that, by synthetically generating
examples of these transformations, we can train a neural network to learn these
invariants [24] from data. Importantly, we demonstrate that such invariants have
superior numerical properties in terms of a much improved robustness to noise and
sampling as compared to their axiomatic counterparts.

Second, in Sect. 16.3 we demonstrate that the input of geometric moments
into neural network architectures well known for point cloud processing result
in an improved shape recognition performance. Classically, geometric moments
have been used to define invariant signatures for classification of rigid objects
[19]. Comparing two point clouds by correlating their shape moments is a well
known method in the geometry processing literature. At the other end, geometric
moments are composed of high order polynomials of the points coordinates, and
approximation those polynomial is not trivial to a neural networks [40]. Here, we
propose to add polynomial functions of the coordinates to the network inputs, which
will allow the network to learn the elements of the moments and should better
capture the geometric structure of the data.

16.2 Learning Geometric Invariant Signatures for Planar
Curves

16.2.1 Geometric Invariants of Curves

Invariant representations or invariants are functions defined over geometries which
do not change despite the action of a certain type of transformation. These invariants
are essential to facilitate our understanding of the idea of a shape. Kendall [18]
provides a very apt definition: shape is what remains after translation, rotation and
scale have been factored out. In general invariant theory, this can be extended to
any general Lie group of transformation. Hence, we can state that shape is what
remains after the effects of a certain type of deformation is factored out. Importantly,
geometric invariants provide a means to characterize the shape and hence their
efficient and robust computation is essential to the success of a given geometric
processing framework.

In the next two subsections, we enumerate on two different types of invariants
for the simplest geometric structures: planar curves. We discuss their theoretical
properties and also numerical considerations for their efficient implementation. We
show that the computational schematic involving these invariants correlates very
aptly to convolutional neural networks. Therefore, by following the same overall
computational pipeline, and replacing the key structural components with learnable
options like convolutional kernels, and rectified linear units, we can learn the
invariants from examples in a metric learning framework.
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16.2.1.1 Differential Invariants

A classic theorem from E. Cartan and Sophus Lie [1, 9] characterize the space of
invariant signatures for two and three dimensional geometric entities. For planar
curves, it begins with the concept of invariant arc-length, which is a generalized
notion of length of the curve. Given a particular Lie-group transformation, one
can define an invariant arc-length and an invariant curvature with respect to this
arc-length. The set of differential invariant signatures comprises of this invariant
curvature and its successive derivatives with respect to the invariant arc-length [6, 7].

The basic idea is that, one can formulate a differential notion of length and a
local signature, based on identifying invariance properties of a particular group of
transformations. Consider the simple case of euclidean invariants as demonstrated

in Fig. 16.1. Consider C(p) =
[

x(p)

y(p)

]

: a planar curve with coordinates x and y

parameterized by some parameter p. Locally at any given point p on the curve, we
have the euclidean arclength given by:

ds =
√

dx2 + dy2 =
√
(dx

dp

)2 +
(dy

dp

)2
dp (16.1)

It is straightforward to observe that expression 16.1 is provably invariant to any
euclidean transformations of the curve. Therefore, the length of a curve from point
p0 to p1 is given by integrating the differential lengths:

s =
∫ p1

p0

|Cp| dp =
∫ p1

p0

√

x2
p + y2

p dp, (16.2)

where xp = dx
dp

, and yp = dy
dp

. Similarly, a local signature at a point on the curve
can be obtained by observing that the rate of change of the unit tangent vector with
respect to the arc-length is invariant to euclidean transformations. This gives us the
principal invariant signature, that is the Euclidean curvature, given by

Fig. 16.1 Schematic for
differential invariants:
Euclidean arclength s and
Euclidean curvature κ which
is the inverse of the radius of
curvature of the osculating
circle at a given point

CC
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Fig. 16.2 Cartans theorem demonstrating differential invariant signatures. The curves (red and
blue) are related by a Euclidean transformation. The plot of the first two differential signatures:
{κ, κs} are identical

κ(p) = det(Cp, Cpp)

|Cp|3 = xpypp − ypxpp
(x2
p + y2

p)
3
2

. (16.3)

In addition, the euclidean curvature of Eq. (16.3) is also the inverse of radius of the
osculating circle at the point as shown in Fig. 16.2.

A similar philosophy can used for the derivation of arc-length and curvature for
the equiffine case: C̃ = AC + t with det(A) = 1. We refer the interested reader to
[29] for a comprehensive and detailed treatise on affine differential geometry. We
have the differential equi-affine arc-length given by

dv = |κ| 1
3 |Cp| dp (16.4)

and hence the equi-affine length between points p0 and p1:

v =
∫ p1

p0

|κ| 1
3 |Cp| dp, (16.5)

and the equi-affine curvature,
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μ = (Cvv, Cvvv)

μ = 4(xppyppp − yppxppp)+ (xpypppp − ypxpppp)
3(xpypp − ypxpp) 5

3

− 5(xpyppp − ypxppp)2
9(xpypp − ypxpp) 8

3

.

(16.6)

These differential invariant signatures are unique, that is, two curves are related
by the corresponding transformation if and only if their differential invariant
signatures are identical. Moreover, every invariant of the curve is a function of
these fundamental differential invariants and its successive derivatives with respect
to the invariant arc-length. Thus, we have the set of euclidean differential invariants:
Seuclidean, and the set of equi-affine differential invariants: Sequi−aff ine, for every
point on the curve:

Seuclidean = {κ, κs, κss, . . .} (16.7)

Sequi−aff ine = {μ, μv, μvv, . . .} (16.8)

Cartan’s theorem provides a strong characterization of the invariant signatures
and establishes invariant curvature as the principal signature of a curve. For planar
curves, any contour can be recovered up to the transformation given only the first
two sets of invariants, that is {κ, κs}, for euclidean, and {μ,μv} for the equi-affine.
Figure 16.2 demonstrates this phenomenon.

An important observation is that differential invariants are, as the name implies,
differential in nature, that is, the formulas involving their computation involve
derivatives of the curve. From a signal processing perspective, this is equivalent to
high-pass filtering over the coordinate functions of the curve combined with further
non-linearities. Therefore, numerical estimation of these invariants is a challenge in
low signal-to-noise ratio settings.

16.2.1.2 Integral Invariants

Integral invariants are functions computed using integral measures along the curve
using parameterized kernels hr(p, x) : R2 × R2 → R

Ir (p) =
∫

C
hr(p, x)dμ(x) (16.9)

In contrast to differential invariants, integral invariants are constructed by designing
invariant functions that are a result of local integral computations on the curve.
Typically, integral invariants are associated with a parameter r that characterizes
the extent of the integration locally at each point. Typical examples are the integral
distance invariant for which hr(p, x) is the distance function of the point p to all
points on the curve within a ball of radius r . Another more prominent example is the
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Fig. 16.3 (Top) Schematic for integral invariants: the integral area invariant. At each point, for a
predefined radius r , the signature is evaluated as the area of the yellow region. (Bottom) Integral
invariant signatures plotted for a closed contour for different raddii of the ball. Each signature
captures structure at a different scale as defined by the radius of the ball

integral area invariant which, for each point on the contour, computes the area of the
intersection between a ball of radius r and the interior of the curve. [11, 13, 21, 25]
provide a detailed treatise on various kinds of integral invariants and their theoretical
and numerical properties.

In contrast to differential invariants, integral invariants are more robust to noise
due to the integral nature of their computation. Moreover, The radius r provides a
scale-space like property, where a big enough r can be set to compensate for all
noise within that magnitude. Figure 16.3 shows an example of Integral Invariants.
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16.2.2 Learning Geometric Invariant Signatures of Planar
Curves

16.2.2.1 Motivation

It is straightforward to observe that differential and integral invariants can be thought
of as being obtained from non-linear operations of convolution filters. The construc-
tion of differential invariants employ filters for which the action is equivalent to
numerical differentiation (high pass filtering) whereas integral invariants use filters
which act like numerical integrators (low pass filtering) for stabilizing the invariant.
This provides a motivation to adopt a learning based approach and we demonstrate
that the process of estimating these filters and functions can be outsourced to a
learning framework.

We use the Siamese configuration (see Fig. 16.4) for implementing this idea.
Siamese configurations have been used in signature verification [4], face-verification
and recognition [14, 31, 32], metric learning [10], image descriptors [8], dimension-
ality reduction [12] and also for generating 3D shape descriptors for correspondence
and retrieval [22, 38]. In these papers, the goal was to learn the descriptor and hence
the similarity metric from data using notions of only positive and negative examples.
We use the same framework for estimation of geometric invariants. However, in
contrast to these methods, we also discuss and analyze the output descriptor and
provide a geometric context to the learning process. The contrastive loss function
(Eq. (16.10)) driving the training ensures that the network chooses filters which push
and pull different features of the curve into the invariant by balancing a mix of
robustness and fidelity.

16.2.2.2 Training for Invariance

A planar curve can be represented either explicitly by sampling points on the curve
or implicitly using a representation like level sets [19]. We work with an explicit
representation of simple curves (open or closed) with random variable sampling of
the points along the curve. Thus, every curve is a N × 2 array denoting the 2D
coordinates of the N points. We build a convolutional neural network which inputs
a curve and outputs a representation or signature for every point on the curve (see
(bottom) in Fig. 16.4). We can interpret this architecture as an algorithmic scheme
of representing a function over the curve.

A Siamese configuration (see Fig. 16.4) for training neural networks comprises
of stacking two identical copies of a network (hence shared parameters as shown in
Fig. 16.4), that process two separate inputs of data. A training example comprises
of a pair of data points (X1 and X2 in Fig. 16.4) and a label: λ, which deems them
as a positive (λ = 1) or a negative (λ = 1) example. During training, for each pair
of positive examples (λ = 1), the loss forces the network to adjust its parameters
so as to reduce the difference in signatures for this pair. For each pair of negative
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Fig. 16.4 (Top) Siamese configuration for learning an invariant signature of the curve. The cost
function comprises of two components: positive examples to train for invariance and negative
examples to train for descriptiveness. (Bottom) An example of a straightforward one dimensional
convolutional neural network architecture that inputs a curve and outputs a point-wise signature of
the curve

examples (λ = 0), the loss tries to maximise the difference in signature outputs
of the network. We extract geometric invariance by requiring that the two arms of
the Siamese configuration minimize the distance between the outputs for curves
which are related by a transformations and maximize for carefully constructed
negative examples. For a detailed discussion on the choice of negative examples,
[24] provides an explanation that connects invariant curve-evolution and multiscale
curve descriptors to the proposed learned signatures.
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The intuition behind this positive-negative example based contrastive training is
as follows. Training with only positive examples will yield a trivial signature like
an all-ones for every curve irrespective of its content. Hence training with negative
examples λ = 0 enables the injection of a sense of descriptiveness into the signature.
Minimizing the contrastive cost function (Eq. (16.10)) of the Siamese configuration
directs the network architecture to model a function over the curve which is invariant
to the transformation and yet descriptive enough to encapsulate the salient features
of the curve.

We build a sufficiently large dataset comprising of such positive and negative
examples of the transformation from a database of curves. Let X1

(i),X2
(i) ∈ R2×n

be two n-point curves inputted to the first and the second arm of the configuration
for the ith example of the data with label λi . Let S�(X) denote the output of the
network for a given set of weights� for input curve X. The contrastive loss function
is given by,

L(�) =
∑

i

λi || S�(X1
(i))− S�(X2

(i)) ||

+ (1 − λi) max
(

0, μ − || S�(X1
(i))− S�(X2

(i)) ||
)

(16.10)

where μ is a cross validated hyper-parameter, known as margin, which defines
the metric threshold beyond which negative examples are penalized. Minimizing
the contrastive cost function of the Siamese configuration directs the network
architecture to model a function over the curve which is invariant to the prevailing
transformation.

16.2.2.3 Results

Figures 16.5 and 16.6 visualize the output of the learned invariant. To test the
numerical stability and robustness of the invariant signatures we add increasing
levels of zero-mean Gaussian noise to the curve and compare the three types
of signatures: differential (euclidean curvature), integral (integral area invariant)
and the output of our network (henceforth termed as network invariant) as shown
in Fig. 16.5. The network invariant shows a much improved robustness to noise
in comparison to its axiomatic counterparts. Apart from adding noise, we also
transform the curve to obtain a better assessment of the invariance property.

The results demonstrate that deep learning architectures can indeed be used
for learning geometric invariants of planar curves from examples. We show that
the learned invariants are more robust to noise in comparison to their axiomatic
counterparts. More importantly, our experiments lay out a discussion that provides
two different viewpoints to the very important topic of geometric invariance: that of
classical differential geometry and deep learning.
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Fig. 16.5 Stability of different signatures in varying levels of noise and Euclidean transformations.
The correspondence for the shape and the signature is the color. All signatures are normalized

Fig. 16.6 Equi-affine
Invariants: A simple smooth
curve, equi-affine
transformed along with a
small addition of noise. The
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16.3 Geometric Moments for Advanced Deep Learning
on Point Clouds

In the previous section we use a learning mechanism to train for a geometric
invariant. We argue that the computational mechanism of differential and integral
invariants caters well to a convolutional neural network architecture and demon-
strate a framework to learn these invariants from examples. In the this section,
we demonstrate the reverse, that is, we input geometric moments into a learning
architecture and discuss the benefits of this approach.

In recent years the popularity and demand of 3D sensors has vastly increased.
Applications using 3D sensors include robot navigation [34], stereo vision, and
advanced driver assistance systems [39] to name just a few. Recent studies attempt
to adjust deep neural networks to operate on 3D data representations for diverse
geometric tasks. Motivated mostly by memory efficiency, our choice of 3D data
representation is to process raw point clouds. An interesting concept is applying
geometric features as input to neural networks acting on point clouds for the geo-
metric task of rigid object classification. This is a fundamental problem in analyzing
rigid bodies which their isometry group includes only rigid transformations.

16.3.1 Geometric Moments as Class Identifiers

Historically, geometric moments have been used to define invariant signatures
for classification of rigid objects [5]. Geometric moments of increasing order
represent distinct spatial characteristics of the object, implying a strong support
for construction of global shape descriptors. By definition, first order moments
represent the extrinsic centroid; second order moments measure the covariance and
can also be thought of as moments of inertia. We restrict ourselves to point clouds
that can be seen as a set of unstructured 3D points that approximate the geometry of
the surface. A point cloud is a set of points X ∈ R3, where each point xj is given
by its coordinates (xj , yj , zj )T , the moments in that discrete case are defined in
Eq. (16.11). Note that in Eq. (16.11b) the sum is over matrices, while in Eq. (16.11c)
the sum is over the point coordinates and only one (p+q+r)th moment is computed.

1st Order Moment : x0 =
∑

j

xj (16.11a)

2nd Order Moment :  =
∑

j

xjx
T
j (16.11b)

(p + q + r)th Order Moment : mpqr =
∑

j

(xj )
p(yj )

q(zj )
r (16.11c)
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Higher-order geometric moments provide us descriptors of the surface: taking
more orders improves our ability to identify our object. Sampled surfaces, such
as point clouds can be identified by their estimated geometric moments, see
Eq. (16.11). Moreover, a finite set of moments is often sufficient as a compact
signature that defines the surface. This idea was classically used for classification of
rigid objects and estimation of surface similarity.

Our goal is to allow a neural network to simply lock onto variations of geometric
moments. One of the main challenges of this approach is that training a neural
network to approximate polynomial functions requires the network depth and
complexity to be logarithmically inversely proportional to the approximation error
[40]. In practice, in order to approximate polynomial functions of the coordinates
for the calculation of geometric moments the network requires a large number of
weights and layers.

In the recent years an extended research has been done on processing point
clouds [2, 3, 15, 16, 20, 27, 33] for object classification. Qi et al. [26] were the
pioneers proposing a network architecture for directly processing point sets. The
framework they suggested includes lifting the coordinates of each point into a high
dimensional learned space, while ignoring the geometric structure. At the other end,
networks that attempt to process other representations of low dimensional geometric
structures such as meshes, voxels (volumetric grids) [23, 28, 36, 37] and multi-view
projections [17, 30, 41] are often less efficient when considering both computational
and memory complexities (Fig. 16.7).

16.3.2 Raw Point Cloud Classification Based on Moments

Here, we propose a new layer that favors geometric moments for point cloud object
classification. The most prominent element of the network is supplementing the
given point cloud coordinates together with polynomial functions of the coordinates.
This simple operation allows the network to account for higher order moments of
a given shape. Explicitly, we simply add polynomial functions of the coordinates
to the network inputs that will allow the network to learn the elements of  (see

Fig. 16.7 The first and
second geometric moments
displayed on a point cloud.
Using the first order moments
(red disc), the translation
ambiguity can be removed.
The principal directions
d1, d2, d3 (blue arrows) are
defined by the second order
geometric moments
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Eq. (16.11)) and, assuming consistent sampling, should better capture the geometric
structure of the data.

First, we present a toy example to illustrate that extra polynomial expansions
as an input can capture geometric structures well. Figure 16.8 (up) shows the data
and the network predictions for 1000 noisy 2D points, each point belongs to one
of two spirals. We achieved 98% success with extra polynomial multiplications, i.e
x2, y2, xy, as input to a one layer network with only 8 hidden ReLU nodes, contrary
to the same network without the polynomial multiplications (only 53% success).
Figure 16.8 (down) shows the decision boundaries that were formed from the eight
hidden nodes of the network in Fig. 16.8 (up left). As expected, radial boundaries
can be formed from the additional polynomial extensions and are crucial to forming
the entire decision surface.

Second, we present our approach that consumes directly point clouds with their
second order polynomial expansions for object classification. An early attempt to

Fig. 16.8 Output response surfaces of a network comprised of 8 hidden nodes with polynomial
expansions (up left) and without (up right). The output responses of each hidden node of (up
left) is presented in (down). The training set (data points) are colored in red/blue, which indicate
positive/negative class respectively while orange/light blue areas are the corresponding network
predictions
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treat point clouds as non-structured data sets from which a neural network is trained
to extract discriminative properties is the PointNet [26] architecture proposed by
Qi et al. The classification architecture of PointNet is based on fully connected
layers and symmetry functions, like max pooling, to establish invariance to potential
permutations of the points. The architecture pipeline commences with Multi-Layer
Perceptrons (MLPs) to generate a per point feature vector, then, applies max pooling
to generate global features that serve as a signature of the point cloud. Finally, fully
connected layers produce output scores for each class. Note that all MLPs operations
are performed per point, thus, interrelations between points are accomplished only
by weight sharing.

The idea of integrating the coordinates of points in space into ordered vectors
that serve as class identifiers motivated us to extend this line of thought in that
of classification by comparing shape moments [5]. We claim that PointNet is an
implicit way for approximating moments. With this fundamental understanding in
mind, the next question is how could we assist the network by lifting it into a more
convenient space. This observation allows us to use a classical simple lifting of
the feature coordinates. It improves significantly both complexity and accuracy as
validated in the experimental results.

The baseline architecture of the suggested network, see Fig. 16.9, is based on the
PointNet architecture. Our main contribution is the addition of polynomial functions
as part of the input domain. The addition of point coordinate powers to the input is a
simple procedure that improves accuracy and decreases the run time during training
and inference.

Performance Evaluation

Evaluation is performed on the ModelNet40 benchmark [36]. ModelNet40 is a syn-
thetic dataset composed of Computer-Aided Design (CAD) models. ModelNet40
contains 12,311 CAD models given as triangular meshes. Preprocessing of each
triangular mesh as proposed in [26] yields 1024 points sampled from each triangular
mesh using the farthest point sampling (FPS) algorithm. Rotation by a random angle

Fig. 16.9 Illustration of the proposed object classification architecture. The input of the network
includes the point cloud coordinates as well as second order polynomial functions of these
coordinates. It enables the network to efficiently learn the shape moments. The output is a
probability distribution over the k classes, M is the number of features per point and n denotes
the number of points
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and additive noise are used for better data augmentation. The database contains
samples from similar categories, like the flower-pot, plant and vase, for which
separation is impossible even for a human observer.

We explore our implicit way of generating second order moments with respect
to ModelNet40 database accuracy as a function of the number of nodes in the
feature layer, see Table 16.1. The results show that there is a strong relation between
the accuracy and the additional inputs that simplify the realization of geometric
moments by the network. Our network has better accuracy percentage than the
network without second order polynomials for all tested number of neurons in the
feature layer. The only difference between the networks is the polynomial functions
in the input domain.

A direct comparison with PointNet was also conducted and the experimental
results confirm the superiority of such design. Our design is similar to that of Point-
Net in term of number of feature layers, however we consider also the polynomial
expansions of the point coordinates. Table 16.2 presents a comparison with PointNet
in term of accuracy, inference time and memory. The computational requirements
are with respect to the number of the network’s parameters (memory) and with
respect to the run-time required by the models for computing the predictions. Our
results show that adding polynomial functions to input improve the classification
performance, and in the same time lead to computational and memory efficiency.

In conclusion, we proposed to feed the input domain with polynomial functions
that represent geometric moments for 3D object classification. We combine an
established method from the geometry processing literature with a neural network
model to reinforce the model’s capacity with a geometric concept. It is vital to

Table 16.1 Comparison of accuracy on ModelNet40 [36] (in %) between implicit 1st order input
to our suggested network with implicit 1st + 2nd order input for different number of neurons in
the feature layer

M—Number of features per point 16 32 64 128 256 512

1st order 84.0 84.8 85.5 85.7 85.6 85.7

1st + 2nd order 84.6 85.6 86.5 86.5 86.7 87.2

1st order denotes only the point coordinates while 1st + 2nd order refer to the point coordinates
concatenate with their polynomial functions as can been see in Fig. 16.9. The bold values are made
to highlight the improved performance of our proposed solution

Table 16.2 Comparison of time and space complexity

Memory (MB) Inference time (msec) Overall accuracy (%)

PointNet (baseline) 20 5.1 87.9

PointNet 40 5.6 89.2

Our method 20 5.1 89.6

Memory is the size of the model in mega-byte (MB) and the inference run-time was measured in
milli-seconds (ms). Overall Accuracy stands for the suggested network accuracy on ModelNet40.
The bold values are made to highlight the improved performance of our proposed solution
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develop methods which combine proven geometrical methods with deep neural
networks to leverage their ability to generalize and produce more accurate models.

16.4 Conclusion

This chapter discusses the synergy between the principled axiomatic computations
of geometric invariants and modern learning mechanisms like deep learning. Our
attempt is to discover the space of computational methods that smoothly integrate
principled axiomatic computation (geometric invariants) and data dependant models
of deep learning. To this aim we demonstrated both ends of the coin: superior
numerical geometry from learning and also improved deep learning using geometry.
First, we have demonstrated a method to learn geometric invariants of planar
curves. Using just positive and negative examples of transformations, we show
that a convolutional neural network is able to train for an invariant which is
numerically more robust as compared to differential and integral invariants. Second,
we combined a geometric understanding about the ingredients required to construct
compact shape signatures with neural networks that operate on clouds of points
to leverage the network’s abilities to cope with the problem of rigid objects
classification. We demonstrated that lifting the input coordinates of points allowed
the network to classify the objects with better efficiency and accuracy compared
to previous methods that operate in the same domain. We believe that the ideas
introduced in this chapter could be applied in other fields where geometric analysis
is involved and could improve the ability of neural networks to efficiently and
accurately handle geometric structures.
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diffeomorphisms. It describes sub-Riemannian methods that are based on control
points, possibly enhanced with geometric information, and their generalization to
deformation modules. It also discusses the introduction of implicit constraints on
geodesic evolution, and the associated computational challenges. Several examples
and numerical results are provided as illustrations.

17.1 Introduction

One of the main focuses in shape analysis is the study, modeling and quantification
of shape variation, as observed in various datasets encountered in computer vision,
medical research, archaeology etc. It is essential, in this analysis, to properly define
relevant shape spaces and equip them with suitable metrics allowing for comparison
and defining plausible modes of shape transformation. A significant number of
approaches have been introduced in the literature with this goal in mind. They
include methods using Riemannian metrics on point sets [16, 17, 31, 32], curves
[29, 33, 42, 44, 52, 62, 66] and surfaces [10, 11, 39, 40, 43], conformal and pseudo-
conformal approaches [50, 61, 67], or techniques based on medial axes [51] or
spherical harmonics [54], among many others.

Our focus in this chapter will be on methods that are inspired by D’Arcy-
Thompson’s theory of transformation [55], or by the more modern work of Grenan-
der on deformable templates [25, 26] in which motion in shape spaces is obtained
through a time-dependent diffeomorphic deformation from the initial shape. When
working in this framework, it becomes necessary to control the transformation that
is acting on the shape, or preferably its time derivative, or velocity, by minimizing a
cost that accumulates during the transformation. This leads to natural definitions of
path distances in shape spaces, which, in our discussion, will be Riemannian or sub-
Riemannian. The cost can be defined in multiple ways, for example as measures of
the smoothness of the velocity field, and how much it differs from zero. One can, in
addition, represent the velocity in a small-dimensional parametric form, or impose
some constraints that condition admissible shape motions.

We will discuss these approaches from situations in which a minimal prior
information is used on the velocity fields to situations where the design and
modeling efforts become central. The paper is organized as follows. Section 17.2
discusses the general framework of shape spaces, with an emphasis on spaces
of curves as illustration. It will be followed (Sect. 17.3) by a discussion of
sub-Riemannian methods that can be introduced for computational efficiency, as
approximations of the general framework. Section 17.4 introduces the general
framework of deformation modules, while Sect. 17.5 provides a short overview of
sub-Riemannian methods with implicit constraints. Finally, we conclude the chapter
in Sect. 17.6.
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17.2 Shape Spaces, Groups of Diffeomorphisms and Shape
Motion

17.2.1 Spaces of Plane Curves

The simplest example of infinite-dimensional shape space is arguably the space of
plane curves. We will focus on this example to describe the main components of the
construction of metrics induced by the action of diffeomorphisms, before describing
how the approach is extended to other spaces in Sect. 17.2.3.

We define a parametrized shape (sometimes called pre-shape) to be a Cr

embedding of the unit circle (denoted S1) in R2, as defined below.

Definition 17.1 A Cr embedding of S1 in R2 is a one-to-one r times continuously
differentiable function m : S1 → R2 such that m−1 : m(S1) → S1 is continuous
(where m(S1) inherits the topology of R2) and such that the derivative ∂m never
vanishes. We let Embr (S1,R2), or simply Embr , denote the space ofCr embeddings
of S1 in R2.

In simpler terms we define a parametrized shape as a sufficiently differentiable, non-
intersecting, closed curve. In Definition 17.1, and in the rest of the chapter, we use
the notation ∂f to denote the derivative of a function f , or ∂xf when the variable
with respect to which the derivative is taken needs to be specified. Higher derivatives
will be denoted, e.g., ∂2

xf , or ∂x∂yf .
We note that Embr is an open subset of the Banach space Cr(S1,R2) of Cr

functions from S1 to R2, equipped with

‖m‖r,∞ = max
k≤r max

u∈S1
|∂km(u)|,

where the single bars in the right-hand side refer to the standard Euclidean norm.
Embr therefore has a trivial Banach manifold structure, with tangent space at m ∈
Embr given by TmEmbr = Cr(S1,R2).

We let Cp(R2,R2) denote the space of p times continuously differentiable vector
fields v : R2 → R2 and Cp0 (R

2,R2) the space of v ∈ C
p

0 (R
2,R2) that converge,

together with their its first p derivatives, to 0 at infinity. Both form Banach spaces
when equipped with ‖m‖p,∞. We will consider the group

Diffp0 (R
2) =

{

ϕ = id + v : ϕ diffeomorphism of R2, v ∈ Cp0 (R2,R2)
}

(17.1)

(Here, id denotes the identity mapping.) This space is a group for the composition
of functions, and has a simple differential structure because Diffp0 (R

2) − id is an
open subset of Cp0 (R

2,R2).
If p ≥ r , the mapping (ϕ,m) �→ ϕ · m = ϕ ◦ m forms a group action of

Diffp0 (R
2) on Embr . If v ∈ Cp0 (R2,R2) andm ∈ Embr , we will also use the notation
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v · m �= v ◦ m ∈ Cr(S1,R2), which provides the so-called infinitesimal action of
C
p

0 (R
2,R2) on Embr , i.e., the derivative of the mapping ϕ �→ ϕ ·m at ϕ = id, given

in our case by

v ·m �= ∂t ((id + tv) ·m)|t=0 = v ◦m .

17.2.2 Basic Sub-Riemannian Structure

Recall that a Riemannian metric on a differential manifold Q specifies an inner
product, denoted 〈· , ·〉q , on each tangent space TqQ. The length of a differentiable
curve q : t ∈ [a, b] → q(t) ∈ Q is

∫ b

a

‖∂tq(t)‖q(t) dt,

and the geodesic distance between two points q0 and q1 is the minimum length
among all differentiable curves q that satisfy q(0) = q0 and q(1) = q1. It is
equivalently given by the square root of the minimal energy

∫ b

a

‖∂tq(t)‖2
q(t) dt,

among all such curves. Curves that achieve the minimal energy are called geodesics.
We now introduce some notation and definitions relative to sub-Riemannian

metrics.

Definition 17.2 (Sub-Riemannian Metric) Let Q is a differential manifold of
dimension N and class Cr . Let H be a fixed vector space. A distribution on Q
is a collection (Wq, q ∈ Q) withWq = w(q,H), where w : Q×H → TQ is a Cr

mapping such that, for all q ∈ Q, the mapping wq : h �→ w(q, h) is linear from H

to TqQ.
A sub-Riemannian metric on Q is provided by a distribution (Wq, q ∈ Q) with

eachWq equipped with an inner product, denoted 〈· , ·〉q , which is Cr as a function
ofQ. The norm associated with the inner product is denoted ‖ · ‖q , q ∈ Q.

A differential manifold equipped with a sub-Riemannian metric is called a sub-
Riemannian manifold.

In the finite-dimensional setting, with H = RK for some K , one often assumes that
wq is one-to-one, so that all spaces Wq have dimension K . We do not enforce this
condition here, since it is harder to satisfy in infinite dimensions.

Definition 17.3 (Geodesics) Let Q be a Cr sub-Riemannian manifold with distri-
bution (Wq, q ∈ Q). One says that a differentiable curve t �→ q(t) from [0, 1] toQ
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is admissible if ∂tq(t) ∈ Wq(t) for all t . A point q1 ∈ Q is attainable from another
point q0 is there exists an admissible curve with q0 and q1 as extremities.

The length of an admissible curve t �→ q(t) is defined by
∫ 1

0 ‖∂tq(t)‖q dt and

its energy by
∫ 1

0 ‖∂tq(t)‖2
q dt . The sub-Riemannian distance between two points q0

and q1 is defined as the square root of the minimal energy among all curves that
connect them, and curves achieving this minimum, when they exists, are called sub-
Riemannian geodesics.

One can show that the sub-Riemannian distance between q0 and q1 is also the
minimal length among all curves that connect them.

We now describe how these concepts apply to shape spaces, keeping, how-
ever, the discussion at a formal level in this infinite-dimensional context. In the
deformable template approach, the focus is placed on curves that result from
diffeomorphic transformations, therefore taking the formm(t) = ϕ(t)◦m(0), where
t �→ ϕ(t) ∈ Diffp0 (R

2) is differentiable. This implies that ∂tm(t) = v(t) ◦ m(t) for

v(t) = ∂tϕ(t) ◦ ϕ(t)−1. Thus, ∂tm(t) ∈ Ŵm(t), where

Ŵm
�= {v ◦m : v ∈ Cp0 (R2,R2)} .

This space is generally a strict subset of Cr(S1,R2), and the family (Ŵm,m ∈
Embr ) is a distribution in Embr , with w(m, v) = v ◦ m in Definition 17.2. Define
ξ̂m : Cp0 (R2,R2) → Cr(S1,R2) by ξ̂mv = v ◦ m, so that ξ̂m is the infinitesimal

action considered for fixed m. Here, we have Ŵm = ξ̂m(C
p

0 (R
2,R2)), and many of

the concepts below will naturally be expressed in terms of this operator.
To define a sub-Riemannian metric on Embr , we need to equip the distribution

with an inner product. Still in line with the deformable template paradigm, this
inner product will be defined by transporting an inner product on Cp0 (R

2,R2) to
Cr(S1,R2). Interesting inner products will however be defined only on subspaces of
C
p

0 (R
2,R2) rather than on the full space, and we introduce such a subspace V , with

inner product denoted as 〈· , ·〉V . In order to specify well-posed and computationally
friendly variational problems, we require that (V , ‖·‖V ) form a Hilbert space, which
implies that V must be a strict subset of Cp0 (R

2,R2). (More precisely, we assume
that the inclusion of (V , ‖ · ‖V ) in (Cp0 (R

2,R2), ‖ · ‖p,∞) is a continuous linear
map, i.e., an embedding.) Given this, we let

Wm
�= ξ̂m(V ) = {v ◦m : v ∈ V } . (17.2)

We will let ξm denote the restriction of the infinitesimal action map, ξ̂m, to V .
Given ζ ∈ Wm, we now define

‖ζ‖m = min{‖v‖V : ζ = v ◦m}, (17.3)

which represents the minimum cost (as measured by the norm in V ) needed to
represent ζ as an infinitesimal deformation of m. Equivalently, if we let Nm denote
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the null space of ξm, containing all v ∈ V such that v ◦m = 0, then one can check
that

‖v ◦m‖m = ‖πN⊥
m
(v)‖V , (17.4)

where πN⊥
m

denotes the orthogonal projection (for the inner-product in V ) on the
space perpendicular to Nm. Because v ◦m = v′ ◦m if v − v′ ∈ Nm, one has

Wm = ξm(N⊥
m) (17.5)

with ‖v◦m‖m = ‖v‖V if v ∈ N⊥
m . This provides our basic construction, upon which

we will build in the rest of the chapter, and which is summarized in the following
definition.

Definition 17.4 (Basic Sub-Riemannian Metric on Shape Space) Let V be a
Hilbert space continuously embedded in Cp0 (R

2,R2). Let ξmv = v ◦m and

Nm = {v ∈ V : ξmv = 0}.

One defines a sub-Riemannian structure on Embr by letting Wm = ξm(V ) =
ξm(N⊥

m), with norm defined by ‖ξmv‖m = ‖v‖V for v ∈ N⊥
m .

By definition, a geodesic between two shapes m0 and m1 must minimize (with
respect to t �→ m(t))

∫ 1

0
‖∂tm‖2

m(t) dt

subject to m(0) = m0, m(1) = m1 and ∂tm(t) ∈ Wm(t). From the definition of
‖ ·‖m, one may also rephrase this optimization problem as minimizing (with respect
to t �→ v(t))

∫ 1

0
‖v(t)‖2

V dt

subject to m(0) = m0, m(1) = m1 and ∂tm(t) = v ◦m(t).
We have so far only considered sub-Riemannian geodesics in Embr (S1,R2),

which is a space of parametrized shapes. When comparing geometric objects, one
needs to identify two curves m and m̃ such that m = m̃ ◦ ψ , where ψ is a Cr

diffeomorphism of S1, i.e.,ψ ∈ Diffr (S1), leading to the minimization (with respect
to t �→ v(t) and ψ) of

∫ 1

0
‖v(t)‖2

V dt

subject to m(0) = m0, m(1) = m1 ◦ ψ and ∂tm(t) = v ◦m(t).
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This results in a very challenging optimization problem, both numerically and
theoretically. It is, for example, difficult to determine whether a shape m1 is
attainable from a givenm0 through a curve with finite energy. Such issues disappear,
however, if one relaxes the fixed end-point constraint and replaces it with a penalty.
Introducing an end-point cost (m, m̃) �→ U(m, m̃) that measures the difference
between m and m̃, the new problem becomes minimizing (with respect to t �→ v(t)

and ψ)

1

2

∫ 1

0
‖v(t)‖2

V dt + U(m(1),m1 ◦ ψ)

subject to m(0) = m0 and ∂tm(t) = v ◦ m(t). If, in addition, the function U
only depends on the geometry of the compared curves, ensuring that U(m, m̃) =
U(m, m̃ ◦ψ) for ψ ∈ Diffr (S1), then the problem simplifies to a minimization in v
of

1

2

∫ 1

0
‖v(t)‖2

V dt + U(m(1),m1)

subject to m(0) = m0 and ∂tm(t) = v ◦ m(t). This is the basic optimal control
problem leading to the large deformation diffeomorphic metric mapping (LDDMM)
framework for curves, discussed, in particular, in [24].

17.2.3 Generalization

A very similar discussion can be made for parametrized sub-manifolds in a d-
dimensional space, i.e., the space Emb(S,Rd) of embeddings m : S → Rd where
S (which replaces S1) is a k-dimensional manifold providing the parameter space.
The space V in this case is a Hilbert space of vector fields in Rd embedded in
C
p

0 (R
d ,Rd) for p ≥ 1. This leads to instances of the LDDMM algorithm for

manifolds. The important case of S = S2 (the two-dimensional unit sphere) and
d = 3 provides closed surfaces of genus 0 in R3, and is the framework of most
applications in medical imaging.

Several geometric end-point costs that are amenable to computations have been
proposed for such manifolds, many of them using shape representations as bounded
linear forms on suitably chosen reproducing kernel Hilbert spaces (and defining U
using the associated norm on their dual spaces). They include representations as
measures [23], currents [58], varifolds [14, 30] and more recently normal cycles
[47]. We refer the reader to the cited papers for more details.

The existence of optimal geodesics in such frameworks has been discussed in
several places (see [5, 19, 56, 65], for example) and is essentially ensured by the
embedding assumption of the Hilbert space V .
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The special case when S = {s1, . . . , sN } is a finite set is especially interesting,
because it applies to most numerical implementations of the previous family of
problems (and also to situations in which the compared structures are simply point
sets, or landmarks). In this case, the set N⊥

m in Definition 17.4 can be explicitly
described in terms of the reproducing kernel of the space V , requiring a few
additional definitions.

One says that a Hilbert space H of functions from a domain � in Rd to Rk is
a reproducing Kernel Hilbert space (RKHS) if the evaluation maps δx : H → Rk

defined by δx(v) = v(x) are continuous. For such spaces, the Riesz representation
theorem implies that, for any x ∈ � and any a ∈ Rk , the linear form v �→ aT v(x)

can be represented using the inner product in H as a mapping v �→ 〈

wx,a , v
〉

H
for some wx,a ∈ H . Because, for any y ∈ �, the transformation a �→ wx,a(y) is
linear from Rk to itself, this representation can be expressed in the form wx,a(y) =
KH(y, x)a where KH : �2 → Mk(R) takes values in the space of k × k real
matrices and is called the reproducing kernel of H . It satisfies the equation

〈KH(·, x)a , KH (·, y)b〉H = aT KH (x, y)b (17.6)

which will be used several times in this paper. In practice, one prefers RKHS’s for
which the kernel is known explicitly, and they are used extensively in approximation
theory, machine learning or random field modeling. The theory of reproducing
kernels Hilbert spaces was introduced in [7], and has been described since then
in many books and papers, such as [12, 15, 18, 38, 48, 60]. The reader can also refer
to [41, 65] for a discussion including vector-valued functions.

Returning to V , the assumption that this space is continuously embedded in
C
p

0 (R
d ,Rd) obviously implies that the evaluation mapping is continuous, so that

V is an RKHS, and we will let K = KV denote its kernel, therefore a function
defined on Rd ×Rd and taking values in Md(R). The spaceNm is, by definition, the
space of all functions v ∈ V such that v(m(s)) = 0 for all s ∈ S, which, using the
kernel representation, makes it the space perpendicular to the vector space

V (r)m
�= span(K(·,m(s))α : s ∈ S, α ∈ Rd).

If S is finite, then V (r)m is finite dimensional, hence closed in V , and N⊥
m =

((

V
(r)
m

)⊥)⊥ = V
(r)
m . (In the general case, N⊥

m is the closure of V (r)m in V , which is

seldom known explicitly.)
As a consequence, the optimal solution t �→ v(t) of the LDDMM problem must,

when S is finite, take the form

v(t) =
∑

s∈S
K(·,m(t, s))α(t, s)

where (α(t, s), s ∈ S) is a collection of vectors in Rd . One can use this property
to reparametrize the problem in terms of a time-dependent family of vectors
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(α(t, s), s ∈ S), minimizing (using (17.6))

1

2

∫ 1

0

∑

s,s′∈S
α(t, s)T K(m(t, s),m(t, s′))α(t, s′) dt + U(m(1),m1)

subject to m(0) = m0 and

∂tm(t, s) =
∑

s′∈S
K(m(t, s),m(t, s′))α(t, s′)

for all s ∈ S.
We note that, in this case, we have obtained an explicit representation of the

distributionWm = {v ◦m : v ∈ V } in the formWm = {v ◦m : v ∈ V (r)m } where

V (r)m =
{
∑

s∈S
K(·,m(s))α(s) : α(s) ∈ Rd , s ∈ S

}

. (17.7)

This fully describes the basic reduction of the LDDMM sub-Riemannian frame-
work in the case of point sets. The same reduction is not always explicitly available
for infinite-dimensional structures, or, at least, not in full generality. However, under
some assumptions on the data attachment term U (namely that it is differentiable,
in an appropriate space, with respect to its first variable), which is satisfied in most
practical cases, one can show that, at all times t , the optimal vector field v(t) belongs
to the space V (r)m(t) where V (r)m is defined by

V (r)m =
{

v =
∫

S
K(·,m(s))α(s)dμ0(s) : α : S→ Rd

}

. (17.8)

Here, μ0 is the volume measure on S and the functions α in the definition of V (r)m
are assumed to be measurable and to satisfy

∫

S×S
α(m(s))T K(m(s),m(s′))α(s′)dμ0(s)dμ0(s

′) <∞.

Note that, unlike the case of finite point sets, V (r)m here is not equal toN⊥
m , but turns

out to be the space that contain the optimal solution for “good” data attachment
terms. This however shows that, in such contexts, there is no loss of generality in
restricting oneself to the distribution on Embr (S,Rd) given by

W(r)
m = {v ◦m : v ∈ V (r)m } ⊂ Wm

(where the inclusion is strict in general) when considering the solutions of the
LDDMM problem.
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In the sections that follow, we will consider various sub-Riemannian frameworks
that differ from LDDMM in at least one of the following features.

1. LettingM denote the (pre-)shape space, e.g., Emb(S,Rd), introduce an extended
space M̂ , on which diffeomorphisms also act, with an action denoted (ϕ, m̂) �→
ϕ ·m̂ and infinitesimal action (v, m̂) �→ v ·m̂. We will also ensure the existence of
a surjection π : M̂ → M satisfying π(ϕ · m̂) = ϕ ◦π(m̂). Typically, m̂ ∈ M̂ will
take the form m̂ = (m, θ), where θ is a “geometric attribute,” with π(m, θ) = m

and the first component of ϕ · (m, θ) is ϕ ◦m.
2. Associate to each extended shape a space V (s)

m̂
⊂ V , typically of finite

dimensions, which will be designed with the dual role of reducing the complexity
of the original problem and of allowing for fine and interpretable modeling of the
deformations that are physically or biologically relevant for a given application.
The distribution in the extended shape space will then be

W
(s)

m̂
= {v · m̂ : v ∈ V (s)

m̂
} .

3. Replace ‖v‖V in (17.3) (properly generalized to M̂) by another norm ‖v‖m̂
defined for all v ∈ V

(s)

m̂
, which is shape dependent and allows for increased

modeling flexibility for the deformation process. The shape-dependent norms
are generally assumed to control the V norm (i.e., ‖v‖V ≤ c‖v‖m̂ for some
c > 0), an assumption which is usually sufficient to ensure the existence of sub-
Riemannian geodesics.

4. Given two shapes m0 and m1, and an initial extended shape m̂0 such that
π(m̂0) = m0, one then minimizes

1

2

∫ 1

0
‖v(t)‖2

m̂(t)
dt + U(π(m̂(1)),m1)

subject to m̂(0) = m̂0 and ∂t m̂(t) = v(t) · m(t). (Alternatively, instead of
assuming that m̂0 is given, one can treat it as a partially free variable with the
constraint π(m̂(0)) = m0.)

As an immediate example, the basic reduction of LDDMM falls in this frame-
work, with M̂ = M , m̂ = m, V (s)

m̂
= V

(r)
m and ‖v‖m̂ = ‖v‖V .

Remark 17.5 A general framework for infinite-dimensional shape spaces with
precise regularity assumptions on the considered objects was described in [3, 5].
In particular it builds the LDDMM sub-Riemannian metric and develops the basic
LDDMM reduction in the general case of a generic shape space. We refer to this
paper for more technical details on the relevant theory, while we remain in this
chapter at a semi-informal level in terms of theoretical accuracy.



17 Sub-Riemannian Methods in Shape Analysis 473

17.2.4 Pontryagin’s Maximum Principle

The minimization problems that were sketched in the previous section are special
cases of optimal control problems, which generically take the form: Minimize

∫ 1

0
g(q(t), u(t)) dt +G(q(1)) (17.9)

subject to q(0) = q0 and ∂tq(t) = f (q(t), u(t)). Here, q is the state, belonging to
a state space Q (assumed to simplify to form an open subset of a finite-dimensional
space Q) and u is the control, belonging to a space U. The function g(q, u),
which takes values in [0,+∞), is the state-dependent cost associated to the control,
and f (q, u), which takes values in Q, determines the state evolution equation for
a given control. More precisely, the control u(t) specifies at time t a direction
f (q(t), u(t)) for the evolution of q(t) with f (q(t),U) = Wq(t). Then, under mild
assumptions, since (17.9) is a constrained minimization problem under dynamic
equality constraints, there exists a time-dependent p : [0, 1] → Q (the co-state),
such that the problem boils down to an unconstrained minimization problem for the
Lagrangian

L(q(.), p(.), u(.)) =
∫ 1

0
(g(q, u)+ pT (∂tq − f (q, u)))dt +G(q(1))

= [pT q]1
0 −

∫ 1

0
(∂tp

T q +Hu(q, p))dt +G(q(1))

where for u ∈ U the function Hu on Q × Q (the Hamiltonian) is defined by

Hu(p, q) = pT f (q, u)− g(q, u) .

Now, the optimality conditions ∂p(.)L = ∂u(.)L = ∂q(.)L = 0 induce the following
equations

⎧

⎪⎪⎨

⎪⎪⎩

∂tq(t) = ∂pHu(t)(p(t), q(t)) = f (q(t), u(t))

∂tp(t) = −∂qHu(t)(p(t), q(t)) = ∂qg(q(t), u(t))− ∂qf (q(t), u(t))T p(t)
∂uHu′(p(t), q(t)) = 0

with the boundary conditions q(0) = q0 and p(1) = −∂qG(q(1)). In our case,
u �→ g(q(t), u(t)) is convex so that ∂hH(q, u) = 0 corresponds to a maximum of
the Hamiltonian (i.e. u(t) = argmaxu′Hu′(p(t), q(t))) which is a particular case of
the Pontryagin’s maximum principle [1, 36, 37, 59].

The maximum principle also provides equations for the computation of the
gradient of the optimal control problem’s objective function. More precisely, let
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F(u(·)) =
∫ 1

0
g(q(t), u(t)) dt +G(q(1)) (17.10)

in which q is considered as a function of u(·) through the equations ∂tq = f (q, u),
q(0) = q0. Then

∂u(·)F (u(·))(t) = ∂ug(q(t), u(t))− ∂uf (q(t), u(q))T p(t) (17.11)

where p(·) and q(·) are obtained by solving ∂tq = f (q, u), with q(0) = 0, followed
by ∂tp = ∂qg(q(t), u(t))− ∂qf (q(t), u(t))T p(t), with p(1) = −∂qG(q(1)). (This
computation is often referred to as the “adjoint method” in optimal control.)

Returning to LDDMM, and to the case of finite S, the state is q(t) = m(t) =
(m(t, s), s ∈ S). Writing v(t) ∈ V (r)m(t) in the form

v(t, ·) =
∑

s∈S
K(·,m(t, s))α(t, s),

one can use u(t) = (α(t, s), s ∈ S) as control, with

‖v(t)‖2
V =

∑

s,s′∈S
α(t, s)T K(m(t, s),m(t, s′))α(t, s′).

Using this identity, and introducing the co-state p, one has

Hu(t)(p(t),m(t)) =
∑

s,s′∈S
p(t, s)T K(m(t, s),m(t, s′))α(t, s′)

− 1

2

∑

s,s′∈S
α(t, s)T K(m(t, s),m(t, s′))α(t, s′) .

The third condition of the PMP implies that optimal controls must satisfy p = α,
and that m and α should be such that

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tm(t, s) =
∑

s′∈S
K(m(t, s),m(t, s′))α(t, s′), s ∈ S

∂tα(t, s) = −∂q
(
∑

s′∈S
α(t, s)T K(q,m(t, s′))α(t, s′)

)

q=m(t,s)
, s ∈ S

(17.12)

Notice that, as a result, each evaluation of the right-hand side of the system of ODE’s
involved in the adjoint method requires an order of |S|2 computations.
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17.3 Approximating Distributions

17.3.1 Control Points

We now start discussing approaches that apply the program detailed at the end of
Sect. 17.2.3 and modify the basic LDDMM framework by specifically designing
distributions and/or metrics in this sub-Riemannian context. The first methods we
address are motivated by computational efficiency. Indeed, when one works with
fine discretizations of curves or surfaces, the basic reduction may still involve too
many points to allow for efficient implementations on sequential computers (recent
advances in GPU parallelization have however pushed the size limit significantly
further; see [13, 34, 57]).

In [63, 64], it is proposed to use small-dimensional approximations of V (r)m
in (17.8) when the approximation obtained after discretization (given by (17.7)) is
still too high dimensional. In this framework, one introduces a space� of geometric
attributes, with an action of diffeomorphisms (ϕ, θ) �→ ϕ · θ . To each θ ∈ �

is associated a family of vector fields ζ 1
θ (·), . . . , ζ nθ (·) ∈ V , and one lets, for

m̂ = (m, θ):

V
(s)

m̂
=
{

n
∑

i=1

hiζ
i
θ : h ∈ Rn

}

(17.13)

Assuming that S is finite, the basic reduction corresponds to the case θ = m (so that
M̂ is the diagonal ofM ×M), and the vector fields generating V (s)

m̂
are provided by

all the columns of the matrices K(·,m(s)), s ∈ S (so that n = d|S| in this case).
To reduce the dimension, one can set θ = (c(1), . . . , c(k)), a family of k “control
points” in Rd and use the kd-dimensional space provided by the columns of the
matrices K(·, c(j)), j = 1, . . . , k. Let us make explicit the registration problem
in this special case, using ‖v‖m̂ = ‖v‖V . A generic element v ∈ V

(s)

m̂
takes the

form v(·) = ∑k
j=1K(·, c(j))α(j) for α(1), . . . , α(k) ∈ Rd . Because K is the

reproducing kernel of V , one has, using (17.6)

‖v‖2
V =

k
∑

i,j=1

α(i)T K(c(i), c(j))α(j) .

Given two shapes m0 and m1 and an initial family of control points c0, one then
needs to minimize

1

2

∫ 1

0

k
∑

i,j=1

α(t, i)T K(c(t, i), c(t, j))α(t, j) dt + U(m(1),m1)

subject to m(0) = m0, and
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⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tm(t, s) =
k
∑

j=1

K(m(t, s), c(t, j))α(t, j), s ∈ S

∂t c(t, i) =
k
∑

j=1

K(c(t, i), c(t, j))α(t, j), i ∈ {1, . . . , k}
(17.14)

Note that the right-hand side of these equations now involves an order of k|S|
computations (with k typically much smaller than |S|) instead of |S|2.

To apply the PMP to this problem, one must introduce a co-state variable p that
has the same dimension as the state, decomposing as p̂ = (pm, pc) for the two
components of m̂ = (m, c). The Hamiltonian in this case takes the form

Hα(p̂, m̂) =
∑

s∈S

k
∑

j=1

pm(s)
T K(m(s), c(j))α(j)+

k
∑

i,j=1

pc(i)
T K(c(i), c(j))α(j)

− 1

2

k
∑

i,j=1

α(i)T K(c(i), c(j))α(j).

The PMP implies that, in addition to (17.14) the following equations are satisfied by
optimal controls:

∂tpm(t) = −
∑

s∈S

k
∑

j=1

∂q(pm(t, s)
T K(q, c(t, j))α(t, j))q=m(t,s), (17.15)

∂tpc(t, i) = −
∑

s∈S

k
∑

j=1

∂q(pm(t, s)
T K(m(t, s), q)α(t, j))q=c(t,j) (17.16)

−
k
∑

i,j=1

∂q(pc(t, i)
T K(q, c(t, j))α(t, j))q=c(t,i)

−
k
∑

i,j=1

∂q(α(t, i)
T K(q, c(t, j))pc(t, j))q=c(t,i)

+
k
∑

i,j=1

∂q(α(t, i)
T K(q, c(t, j))α(t, j))q=c(t,i),
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and
∑

s∈S
K(c(t, j),m(t, s))pm(t, s)+

k
∑

i=1

K(c(t, i), c(t, j))(pc(t, j)−α(t, j)) = 0

with pm(1) = −∂qU(q,m1)q=m(1) and pc(1) = 0. Equations (17.15) and (17.16)
also describe the computation required to evaluate the derivative of the objective
function, with (17.11) becoming

∂u(·)F (u(·))(t) =
k
∑

i=1

K(c(t, i), c(t, j))(α(t, j)− pc(t, j))

−
∑

s∈S
K(c(t, j),m(t, s))pm(t, s).

Here also, the complexity has order k|S|.
Control points have also been introduced in [20–22], where the authors took

additional steps in order to reduce the computational complexity. In these references,
the authors use (17.12) applied to control points only as a constraint in the
optimization problem, i.e., they enforce the equations

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t c(t, i) =
k
∑

j=1

K(c(t, i), c(t, j))α(t, j)

∂tα(t, i) = −∂q
⎛

⎝

k
∑

j=1

α(t, i)T K(q, c(t, j))α(t, j)

⎞

⎠

q=c(t,i)

(17.17)

These constraints imply that
∑k
i,j=1 α(t, i)

T K(c(t, i), c(t, j))α(t, j) is constant
over time, and the objective function becomes

1

2

k
∑

i,j=1

α(0, i)T K(c(0, i), c(0, j))α(0, j)+ U(m(1),m1)

which is minimized (with respect to α(0)) subject to (17.17), m(0) = m0 and
∂tm(t, s) = ∑k

j=1K(m(t, s), c(t, j))α(t, j). We refer to the cited references for
a full description of this problem (which is not sub-Riemannian anymore) and
its solution. Note that, in these references, the authors also address the issue of
optimizing for the best positioning of the initial control points given the initial m0
and a collection of target shapes m1.



478 L. Younes et al.

17.3.2 Scale Attributes

In most applications, the reproducing kernelK is a radial basis function, i.e., it takes
the form

K(x, y) = �

( |x − y|
σ

)

for some function �. For example, the function �(u) = e−u2/2IdRd (where IdRd is
the identity matrix in Rd ) provides a Gaussian kernel. Alternatively, Matérn kernels
of order � are such that

�(u) = P�(u)e
−|u|IdRd

where P� is a reverse Bessel polynomial of order �.
In such cases, the function x �→ K(x, c) quickly vanishes when x is far from

c. In order to be able to use sparse sets of control points while making sure that no
gap is created in the velocity field, one needs to use generating functions in V (s)

m̂

who decay more slowly than the original kernelK . A simple choice is to let V (s)
m̂

be

generated by the columns of the matrices K̃(·, cj ), j = 1, . . . , k, with

K̃(x, y) = �

( |x − y|
σ̃

)

and σ̃ > σ . The previously considered minimization problem generalizes immedi-
ately, with one difficulty, which is that, in order to compute ‖v‖2

V for some v ∈ V (s)
m̂

,
one needs to have a closed form expression of inner products of the form

〈

K̃(·, c)α , K̃(·, c′)α′〉

V

for c, c′, α, α′ in Rd to ensure that the computation is tractable. (This product is
simply equal to αT K(c, c′)α′ when K̃ = K .) Such a closed form can be obtained
for Gaussian kernels, as described in [8, 53].

Returning to the basic reduction for curves or surfaces, for which the representa-
tion in (17.7) can be seen as a discretization of (17.8), it is natural to expect that a
basis of V (s)

m̂
associated with a sparse discretization should scale anisotropically,

with a preferred direction tangent to the deforming manifold. In [63, 64], it is
suggested to use basis functions provided by columns of the matrices

χ(x; Sj , cj ) = �

(∣
∣(σ 2IdRd + Sk)−1/2(x − cj )

∣
∣

2

)

, j = 1, . . . , k
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Fig. 17.1 Surface registration using anisotropic diffeons. First row: Initial and target surfaces.
Second row: Initial and final surfaces with superimposed glyphs representing the rank-two diffeon
matrices S1, . . . , Sk visualized as ellipses at positions c2, . . . , ck

with parameters θ = (S1, c1, . . . , Sk, ck), S1, . . . , Sk being non-negative symmetric
matrices that vanish when applied to vectors normal to the manifold. The action of
a diffeomorphism on θ is ϕ · θ = (S′

1, c
′
1, . . . , S

′
k, c

′
k) with S′

j = dϕ(cj )Sj dϕ(cj )
T

and c′j = ϕ(cj ). The resulting minimization problem is detailed in the cited
references. Here again, the inner product between these basis functions has a closed
form when V has a Gaussian kernel. An example of surface registration using this
approach is presented in Fig. 17.1.

Remark 17.6 As suggested by the complexity of Eq. (17.16), the analytical evalua-
tion of the differential of the objective function for these control problems becomes
increasingly involved when the geometric attributes that specify the basis functions
are refined. (The reader may want to refer to [64] where such differentials are
made explicit.) In this regard, it is important to point out recent developments of
automatic differentiation software specially adapted to kernel computations [13],
which significantly simplify the implementation of such methods.
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17.4 Deformation Modules

In the previous sections, the sub-Riemannian point of view emerged naturally for its
links with low-dimensional approximations of the tangent bundle that are important
for numerically efficient algorithms to compute geodesic paths. This point of view
can, however, also be used for modeling purposes, for which it provides a powerful
set of tools.

Indeed, a geodesic path computed between two shapes results from the action
of a path ϕ(t) of diffeomorphisms on the starting shape inducing a complex
global transformation process of the shape and its environment (interior, exterior,
subvolumes, etc.). This process is obviously of strong interest: for instance local
change of volume, distortions or global large scale changes are potentially important
markers of underlying transformation processes and connected to interpretable
variables. In this regard, the design of good and interpretable sub-Riemannian
structures is an important issue connecting geometry to modeling and analysis.
We now describe recent attempts in this direction that emphasize modularity in the
design of sub-Riemannian structures, introducing deformation modules that capture
desirable and interpretable elementary local or global behavior of the shapes. This
framework (that can be sourced again in Grenander’s Pattern Theory [26]) can
furthermore be organised in a hierarchical way.

This point of view follows the previously introduced idea of augmenting a
observable shape m ∈ M with new geometric attributes θ ∈ � to produce an

augmented shape m̂ ∈ M̂ �= M ×� where � is itself a new shape.

17.4.1 Definition

An abstract deformation module M involves a space of geometric descriptors
�, a finite-dimensional control space H and a field generator ζ associating to
any geometric descriptor θ ∈ � and control parameter h ∈ H a vector field
ζθ (h) ∈ C

p

0 (R
d ,Rd) on Rd (so that ζ can be seen as a function ζ : � × H →

C
p

0 (R
d ,Rd)). The field generator should be seen as an elementary interpretable

source of transformation of the shape itself and several deformation modules can
be combined and act simultaneously to produce a global vector field as we will see
later.

During the transformation process, the geometric descriptor will be affected
by the resulting vector field v, so that we assume that Diffp0 (R

r ) acts on � and
induces an infinitesimal action ξ : � × C

p

0 (R
d ,Rd) → T�. Given a geometric

descriptor, the control h will be weighted by an energy function or a cost cθ (h) ≥ 0.
Assuming that cθ (h) is a positive-definite quadratic form on H , we end up with
a sub-Riemannian framework on � with distribution W�

θ = ζθ (H) and metric
〈h, h〉θ = cθ (h).

To summarize, a deformation module M is a tuple M = (�,H, ζ, ξ, c), as
schematically described in Fig. 17.2.
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Fig. 17.2 Deformation
module overview. H is the
control space, and h→ ζθ (h)

gives the contribution of the
module to the instantaneous
deformation fields when the
module is geometrically
instantiated by the geometric
descriptor θ ∈ �. The cost
for generating ζθ (h) is cθ (h)

fields

A key point in the construction is the possibility to combine simple mod-
ules into more complex ones using a direct sum. More specifically, if Ml =
(�l,H l, ζ l, ξ l, cl), l = 1, . . . , L, are L deformation modules of order p, their
compound module is C(Ml , l = 1 · · ·L) = (�,H, ζ, ξ, c) where �

�= ∏

l �
l ,

H
�= ∏

l H
l and for θ = (θ1, . . . , θL) ∈ �, h = (h1, . . . , hL) ∈ H , v ∈ C�0(Rd),

ζθ (h) =
L
∑

l=1

ζ l
θ l
(hl) ∈ C�0(Rd),

ξθ (v) = (ξ1
θ1(v), . . . , ξ

L
θL
(v)) ∈ Tθ�,

cθ (h) =
L
∑

l=1

αlc
l
θ l
(hl).

where the coefficients αl are positive scalars that weight the costs of the different
modules. By lowering a weight αl , we favor the use of the corresponding module
Ml in geodesics (trajectories minimizing the total cost).

Remark 17.7 The geometric descriptors will be in general the augmented part θ in
the total augmented shape m̂ = (m, θ). But in order to have a unified framework, we
will often interpret the input shape m as geometric descriptors of a special module,
called a silent module, which is deformed according to its infinitesimal action, but
does not contribute to the global velocity field (i.e., H = {0}). The combination of
deformation modules defined above allows these silent shapes to deform according
to the action of the vector fields generated by other modules.

The optimal control model associated with a deformation module requires the
minimization of

1

2

∫ 1

0
cθ(t)(h(t)) dt +D(θ(1))
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subject to an initial condition θ(0) = θ0, and to the evolution equation ∂t θ =
ξθ (ζθ (h)). Here, the function D is an end-point cost, typically depending on the
transported shape represented as a silent component in the module θ , as described in
Remark 17.7. The initial condition θ0 is partially fixed (e.g., the part that represents
the initial shape), but several of its components can, and should, be optimized, as
illustrated in Sect. 17.4.3.

The existence of solutions to this control problem can be guaranteed if one
enforces a uniform embedding condition that requires that ‖ζθ (h)‖2

p,∞ ≤ Ccθ (h)

uniformly on �×H for some large enough p (see [27]). Note that one can always
take cθ (h) = ‖ζθ (h)‖2

V , where V is defined as in Sect. 17.2, and the resulting cost
satisfies the condition. However, this choice is not stable under module combination
and would not allow for the use of the convenient module algebra that was defined
above. In contrast the uniform embedding condition is stable under combination, in
the sense that it is satisfies by a compound module as soon as it is satisfied by each
of its components.

17.4.2 Basic Deformation Modules

The discussion of Sect. 17.3 immediately provides instances of deformation mod-
ules, with, using the notation already introduced in that section (e.g., Eq. (17.13)),
H = Rn, ζθ (h) = ∑n

l=1 h
lζ lθ , cθ (h) = ‖ζθ (h)‖2

V , and the representation m̂ =
(m, θ) is equivalent to a combination of θ with the silent module associated withm.
Indeed, a simple example of modules is provided by what we refer to as “sums of
local free translations.” Here, given a finite set I , and a control h = (hi)i∈I ∈ H =
(Rd)I , the module generates a vector field

v = ζθ (h) with v(x) =
∑

i∈I
Kσ (x, θi)hi

where θ = (θi)i∈I ∈ � = (Rd)I is the list of the centers of the individual
translations, and the kernel (e.g. a Gaussian kernel) with scale σ determines the
scope of each local translation. One can take cθ (h) = ∑

i,j∈I Kσ (θi, θj )hTi hj ,
which coincides with ‖v‖Vσ for the RKHS Vσ associated withKσ . The infinitesimal
action is here straightforward: ξθ (w) = (w(θi))i∈I . Note that, in this case, these
modules are exactly those associated with control points in Sect. 17.3.

The flexibility of deformation modules, and their usefulness as modeling tools, is
however provided by the ability to start with simple modules and to combine them
into complex infinitesimal transformations.

A first illustration of such basic modules is provided by a fixed translation at
some location c, with direction u ∈ Sd−1 (the unit sphere in Rd ), at a given scale
σ . These modules are defined by θ = (c, u), � = Rd × Sd−1, H = R, and the
vector field v = ζθ (h) is given by v(x) = hKσ (x, c)u where Kσ is a kernel (e.g.
a Gaussian kernel) at scale σ . In contrast to free translations described above, the
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Fig. 17.3 Examples of simple deformation modules. Left: fixed translation where θ = (c, u);
Right: local scaling where θ = c. In both cases dim(H) = 1

control is one-dimensional, constraining strongly the possible vector fields, but the
geometric descriptor is (d2 − d)-dimensional (see Fig. 17.2). The cost cθ (h) can
simply be chosen as ch2 for a fixed constant c.

The choice of the infinitesimal action in this simple example is interesting.
Indeed, c and u can be affected by the action of a vector field w in three different
ways, providing three modeling options: (1) ξθ (w) = (w(c), 0) (no action on
the direction), (2) ξθ (w) = (w(c), dw(c)u − (uT dw(c)u)u) (advection of the
direction u), or (3) ξθ (w) = (w(c),−dwT (c)u + (uT dw(c)u)u) (co-advection of
the direction u considered as a normal direction to a hyperplane advected by the
flow).

One can build basic deformation modules as local scaling or rotation in a
similar way (see [27]), providing natural steps towards combinations of local affine
deformations [9, 49, 68]. We present here the case of local scaling, which will be
used in the example described in the next section. For such modules, one takes

� = Rd , H = R, ζθ (h)
�= h

∑3
j=1Kσ (·, zj (θ))dj , where Kσ is again possibly a

Gaussian kernel at scale σ and, for j ∈ {0, 1, 2}, dj = (sin(2jπ/3), cos(2jπ/3))
and zj (θ) = θ + σ

3 dj . (See Fig. 17.3 for an illustration of this construction.) The
infinitesimal action is given by ξθ : w ∈ C

p

0 (R
2) �→ w(θ), the velocity field at

the scaling center, and the cost by cθ (h) = h2 ∑
j,j ′ Kσ (zj , zj ′)d

T
j dj ′ . Different

choices for vectors zj lead to other types of local deformations.

17.4.3 Simple Matching Example

As an illustration, we consider a very simple but meaningful example with shapes
evocating “peanut pods,” displaying random variations of a simple template in the
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Fig. 17.4 Left: Peanut-pod shaped template. Right: Typical shape variations (with the template
(cyan) in at the center)

size of left and right rounded ends (generated as level curves of the sum of two
Gaussian functions) as well as a global translation misalignment and more random
local perturbations of the boundary (see Fig. 17.4).

Here we see that the major effect is the differential dilations of the left and right
parts that we model as a first deformation moduleMls given as the sum of two local
scaling with geometric descriptors located at the center on the each rounded part and
with scale σ = 1 associated with a control space H of dimension 2. Moreover, the
global translation misalignment can be handled by a moduleMgt defined by a free
translation at a large scale centered at the center of the object and associated with a
another control space of dimension 2. The two modules define the core parametric
part of the modelling. On top of that, a third moduleMlt given by a sum a free local
translations at a small scale σ = 0.2 supported by geometric descriptors distributed
along the boundary that can accommodate more arbitrary small scale variations.
The cost for this latter deformation modules is assigned a larger weight than those
of the first two so that deformations are preferably (when possible) generated by the
scaling modules and the large translation.

In Fig. 17.5 we present the results of registration between the template and two
different targets. For each target we consider two deformation models, using or not
the local scaling module Mls . Without this module, the situation boils down to a
classical LDMMM registration (modified by the global translation module Mgt ,
which here is mandatory when target and template are not pre-aligned by rigid
motion). Comparing the left (LDDMM) and right (parametric model with scaling
modules) columns, one can clearly see that, even if both models yield a perfect
registration, the underlying optimal diffeomorphisms acting on the template are
quite different, in particular in the interior regions of the rounded ends. The module
Mls gives a preference, as expected, to shape changes due to local scaling within
theses regions. Note also that all the modules interact to produce the final quasi-
perfect matching. Of particular modeling interest is the possibility to decompose the
overall deformation into its different components by following the flow generated by
the corresponding module and its geodesic controls (see Fig. 17.6). This clarifies the
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Fig. 17.5 Geodesic matching between template (in blue) and two different targets (top and
bottom) in black. The final registered curve is in green. Left: LDDMM-like registration using
only a combination of Mgt and Mlt . Right: parametric registration with a combination of Mls

(scalings), Mgt and Mlt . The initial and final centers of the scaling modules are represented as
blue and green points, respectively. In both cases, a varifold data attachment term is considered
[14]

Fig. 17.6 Decomposition along submodules: the initial shape (and centers of the scaling modules)
are in blue, the target is in black and the final curve (and centers) obtained following a single
module are in green in green. First row: following the global translation Mgt . Second row,
Left: following the local scalings Mls ; Right: following the local translations Mlt (see text for
comments)
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contribution of each module in the total deformation. In particular, the deformation
generated by local translations illustrates how the data differs from the template
in addition to the global translation and the standard variation of the sizes of the
rounded parts.

17.4.4 Population Analysis

Given a population of shapes (mTi )1≤N , let us define the cost

J (m̂0, h1, . . . , hN)
�=

N
∑

i=1

(∫ 1

0
cθi (t)(hi(t))dt + U(mi(1),mTi )

)

,

where m̂i(t = 0) = m̂0 = (m0, θ0) for all i and ∂t m̂i(t) = ξm̂i (t)ζθi (t)(hi(t)). In the
following, the shape m0, called the template, is assumed to be fixed.

Minimizing this cost J with respect to the time-varying controls hi and the
common initial geometric descriptors θ0 defines the atlas of the population of shapes
(mti)1≤N for the chosen deformation model. The optimal geometric descriptor θ0
corresponds to the best element, within the proposed vocabulary (defined by the
deformation module), enabling one to describe the variation of the population with
respect to the initial template m0.

In addition, the variables parametrizing the geodesics transforming m0 into each
shape belong to a common vector space, and can be used to represent the population
when performing a statistical study.

We present here the atlas of the population in Fig. 17.7, obtained with the same
deformation module as in the previous section, i.e. combination of 3 modules:Mgt

(global translations),Mlt (sum of local translations at scale 0.2) andMls (sum of
two scalings at scale 1.). In Fig. 17.7 we show the initial positions of the centers of
scaling, before and after optimization. We also present in Fig. 17.8 the final shapes

Fig. 17.7 Atlas with scalings of scale 1. Left: Population of shapes and the initial template (in
blue). Right: Initial template and centres of scalings before (+) and after (o) optimisation
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Fig. 17.8 Atlas with scalings of scale 1. Initial (blue) and final (green) shapes mi and centres of
scalings for two elements of the population. The targets are in black

Fig. 17.9 Atlas with scalings of scale 0.6. Top: initial template and centres of scalings before (+)
and after (o) optimisation. Bottom: initial (blue) and final (green) shapesmi and centres of scalings
for two elements of the population. The targets are in black

mi(1) for the same elements as in Fig. 17.5. Finally, in Fig. 17.9, we present results
using the same atlas, but withMls generating scalings that are now of scale 0.6. We
show the optimized positions of the geometric descriptors as well as the final shapes
mi(1) as before.

We see here that even though the registrations are satisfactory with both
deformation models, the optimal initial centers of the scalings are not at the same
positions. The optimal position in each case is the best one, given the constraints of
the chosen vocabulary (deformation module).
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17.5 Constrained Evolution

In the previous sections, the spacesWm (orWθ ) were described using a parametrized
basis and were in most cases small dimensional. Here, we switch to a situation in
which this space is described using linear constraints on the vector fields, without an
explicit description of a generative family. Returning to the notation of Sect. 17.2,
we will assume that, for all m ∈ M , a linear operator C(m) is defined from V into a
Banach space Y, and let

Vm = {v ∈ V : C(m)v = 0}, (17.18)

defining the spaceWm = {v ·m : m ∈ M}.
On both theoretical and numerical levels, such formulations can be significantly

more complex than those we have previously considered, especially when the
constraints are also infinite dimensional. We refer the reader to [2, 3, 5] in which
these issues are addressed, with, in particular, a version of the PMP in the
constrained case that is obtained under the assumption that the operator C(m) is
onto for all m.

When both state and constraints have been discretized, a reduction similar to that
made for LDDMM can be derived and the control reduced to a finite-dimensional
setting too. Among possible constrained optimization algorithms that can be used
for this problem, the one that leads to the simplest formulation is the augmented
Lagrangian method, which was used in [4, 6, 46], and we refer to these references for
more details on its implementation. We now describe a few examples of applications
of this framework.

Normal Streamlines
As we have remarked in (17.8), LDDMM applied to manifold matching results,
under mild conditions on the end-point cost U , in solutions for which the vector
field takes the form

v(t, x) =
∫

S
K(x,m(t, s))α(t, s)dμ0(s) . (17.19)

When the end-point cost is parametrization invariant, the optimal function α

can furthermore be shown to be perpendicular to the evolving manifold, so that
∂sm(t, s)

T α(t, s) = 0 for all t ∈ [0, 1] and s ∈ S. This normality property
is not conserved after applying the kernel in (17.19), i.e., ∂sm(t, s)T v(t,m(t, s))
does not vanish in general. In [46] the problem of building intermediate layers
between two open surfaces (with parametrizations m0 and m1) was considered
and formulated as a search for a coordinate system ψ : [0, 1] × S → R3 such
that ψ(0,m0(s)) = m0(s) for all s ∈ S and ψ(1, ·) maps S onto m1(S) (i.e., it
provides a reparametrization of m1). The surfaces St = ψ(t,S) are then interpreted
as “layers” associated with the resulting foliation. The curves γs(t) = ψ(t, s),
t ∈ [0, 1] provide “streamlines” and ψ is build with the requirement that the
streamlines are perpendicular to the layers. This construction provides (among other
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Fig. 17.10 Normal streamlines estimated between two inverted spherical caps are depicted in the
left panel. Intermediate layers at times t = 0.3 and t = 0.7 are visualized in the right panel

things) a suitable way to define the “thickness” of the space separating m0 and m1,
as the length of the streamlines, i.e.,

θ(s) =
∫ 1

0
|∂tψ(t, s)| dt.

(This definition of thickness was used, in particular, in [35] within a study of the
impact of Alzheimer’s disease on the trans-entorhinal cortex.)

The approach that was used to build such a coordinate system uses LDDMM
to compute a flow of diffeomorphisms ϕ(t, ·) such that ϕ(1,m0(·)) provides a
reparametrization of m1(·) (up to the error measured by the end-point cost), and
defines ψ(t, s) = m(t, s) = ϕ(t,m0(s)). Letting v denote the velocity field
associated with ϕ, the normality condition requires that ∂sm(t, s)T v(t,m(t, s)) = 0,
so that C(m)v = 0 in the definition of Vm is ∂smT v ◦ m = 0. We refer to [46] for
implementation details (see Fig. 17.10 for an illustration).

Multi-Shapes
In [6], the problem of mapping complexes formed by multiple shapes is considered.
In this context, we assume the one starts with several non-intersecting shapes,
m
(1)
0 , . . . , m

(k)
0 that need to be aligned with another collection of shapes, say

m
(1)
1 , . . . , m

(l)
1 (depending on the choice of end-point function, one may not need

to require k = l, or to assume that the shapes are labelled). In the multi-shape
model, each m(j)0 is deformed via its own diffeomorphism ϕ(j)(t, ·) and associated
vector field v(j)(t, ·), providing a time-dependent shapem(j)(t, ·). To ensure that the
deformation process is consistent, so that, for example, shapes are prevented from
intersecting along the deformation path, an additional shape, denotedm(0), is created
to represent the background and simply defined as the union of the k shapes forming
the complex. More precisely, if all shapes are represented as functions from S to Rd ,
then m(0) is parametrized by

⋃k
j=1 S × {j} with m(0)(t, (s, j)) = m(j)(t, s). This

latter identity forms a set of constraints that is imposed on the deformation process,
which, assuming that the identity holds at t = 0 (defining m(0)0 ), can also be written
as

v(0)(t, m(0)(t, (s, j))) = v(j)(t, m(j)(t, s)). (17.20)
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Fig. 17.11 Multi-shape geodesic with sliding constraints. The pair of black curves for a multi-
shape that evolves towards the targets drawn in green in the upper-left panel. The red grid represents
the background deformation along the process, and the blue ones provide the deformation that
is attached to each curve, with the former significantly more pronounced than the latter due to
different choices of kernel widths for both processes. Times t = 0, 0.3, 0.7 and 1 are provided
from top to bottom and left to right

This results in a sub-Riemannian framework on the shape space formed by
complexes m = (m(0), m(1), . . . , m(k)), in which these consistency constraints are
enforced. This framework offers increased modeling flexibility, with, in particular,
the possibility of specifying different Hilbert space V (j) for each vector field v(j),
allowing each shape to have its own deformation properties. This is especially
useful for the background (j = 0) for which one typically wants to allow large
deformations with low cost.

Still in [6], a variant of (17.20) is introduced in order to allow each shape to
“slide” along the background, in contrast to being “stitched” to it as enforced
by (17.20). For this purpose, one still assumes that m(0)(0, (s, j)) = m(j)(0, s),
but it is only assumed that the normal components of v(0) and v(j) coincide over
times. Here again, we refer to the cited reference for implementation details, and
in particular for the way the constraints are discretized in the case of curves and
surfaces. An example of curve registration using these constraints is provided in
Fig. 17.11.
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Atrophy Constraints
As a last example, we note the approach developed in [4] in which evolving
shapes are assumed to evolve with a pointwise velocity making an acute angle with
the inward normal. This results in a problem that deviates from that considered
in (17.18) in that in involves inequality constraints. Indeed, Letting Nm(s) denote
the inward unit normal to a surface m : S → R3, the constraint is simply
Nm(s)

T v(m(s)) ≥ 0 for all s ∈ S. Once the constraint is discretized on triangulated
surfaces, the implementation uses augmented Lagrangian (adapted for inequality
constraints, see [45]) and is fully described in [4].

17.6 Conclusion

As we have seen, sub-Riemannian geometry is a natural ingredient in the shape
space framework where the infinitesimal evolutions around a given shape are driven
by the action of smooth vector fields. However, the beauty of the Riemannian
setting in the context of shapes spaces brings with it an embarrassment of riches,
since one needs to design the metric on every tangent spaces in a high- (in fact
infinite-) dimensional situation. The extension to a sub-Riemannian setting makes
the situation even worse.

Of course, one can opt for relatively “simple” models, such as the standard
LDDMM construction, which, as we have seen, requires two key parameters,
namely a Hilbert space V on vector fields, itself determined by the choice of its
kernel and an infinitesimal action (which is usually quite straightforward). Given
these, we get from any shape exemplar an induced Riemannian shape space that
comes with a computational framework for the analysis of the variations of shapes,
including the computation of geodesics, linear approximations in tangent spaces
leading to tangent principal components analysis, etc. However, the success of a
Riemannian point of view is connected with its ability to generate realistic geodesics
for interpolation and extrapolation. Usual translation and rotation invariance on
the metric in V induces corresponding natural invariance under rigid motions.
Smoothness requirements on V at a given scale induce corresponding smoothness
requirement on the shape space. But stronger dependencies of metrics on the shape
are usually necessary to incorporate prior knowledge on the differential structural
properties of computed optimal deformations, which can be useful in several
important situations:

1. when prior knowledge is available and needs to be incorporated, as material
differences between foreground and background in the situation of multishapes,
homogeneous behavior inside a shape, or known deformation patterns.

2. when one wants to test various hypothetical patterns inside a structured frame-
work.

The modeling framework provided by deformation modules delineates an interest-
ing route to produce a structured analysis of shape ensembles with different levels
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of complexity, addressing the points (1) and (2) and managing in an organized way
the otherwise overwhelming expressiveness of the sub-Riemannian setting.

This framework also provides opportunities for future advances. As a final
example, recent developments and work in progress in this context include the
introduction of possibly infinite-dimensional spaces Vm based on physically moti-
vated priors. In [28], for example, admissible vector fields are defined as regularized
equilibrium solutions of a linear elasticity model subject to external forces that serve
as alternative controls. These forces can themselves be parametrized, leading to
finite- or infinite-dimensional distributions. When these forces are associated with
events happening in the modeled shapes (such as disease propagation), it is natural
to have them follow the shape evolution, and therefore be advected by the motion,
leading to a model very similar to deformations module that we discussed in this
chapter. These forces may also have their own evolution dynamics, which, combined
to the advection, lead to more complex models that are currently investigated.
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18.1 Introduction

Over the years, the interest in using Riemannian geometry tools to solve constrained
optimization problems has been increasing. This is largely due to the fact that a wide
range of optimization problems can be naturally posed in a Riemannian setting,
which can then be exploited to greatly reduce the cost of obtaining the solutions.
For this reason, the number of papers dealing with extensions of concepts and
techniques of nonlinear programming from the Euclidean context to the Riemannian
scenario are also increasing. Such extensions are necessary, usually natural and not
trivial. They are intended to provide theoretical support for efficient computational
implementations of algorithms. Works on this subject include, but are not limited
to [1, 2, 32, 42, 45, 48, 55, 57, 59, 60, 73, 81, 87]. The Riemannian machinery
from the theoretical point of view allows, by the introduction of a suitable metric, a
nonconvex Euclidean problem to be seen as a Riemannian convex problem. From an
algorithmic point of view, it enables modifications of numerical methods in order
to find global minimizer of the considered problems; see [30, 36, 37, 67, 75, 76]
and references therein. Furthermore, in order to take advantage of the inherent
geometric structure in the problems, it is preferable to treat constrained optimization
problems as intrinsic Riemannian problems (i.e., as unconstrained Riemannian
problems), rather than using Lagrange multipliers, penalty methods, or projection
methods; see [2, 35, 53, 54, 78]. In addition to the theoretical and algorithmic issues
addressed in Riemannian optimization—which have an interest of their own—it is
worth mentioning that several interesting practical applications in this context have
appeared over the last few years. Although we are not concerned with practical
issues at this time, we emphasize that practical applications appear whenever the
natural structure of the data is modeled as an optimization problem on a Riemannian
manifold. For example, several problems in image processing, computational vision
and signal processing can be modeled as problems in this setting, papers dealing
with this subject include [6, 16, 17, 22, 43, 85, 86], and problems in medical imaging
modeled in this context are addressed in [8, 33]. Problems of tracking, robotics and
scene motion analysis are also posed in Riemannian manifolds, see [39, 64]. We
also mention that there are many papers on statistics in Riemannian context, see for
example [18, 38]. Finally, it is worth mentioning that many other applications can be
found through this book. In this chapter, we are interested in the following convex
optimization problem:

min{f (p) : p ∈M}, (18.1)

where the constraint setM is endowed with a Riemannian structure and f :M→
R is a convex function. For future reference we denote the optimal value of (18.1)
by f ∗ := infp∈M f (p) and its solution set by �∗, which will be assumed to be
nonempty only when explicitly stated. We will present asymptotic and iteration-
complexity analysis for gradient, subgradient and proximal point methods to solve
Problem (18.1). In the presented analysis of gradient and subgradient methods we
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assume that the curvature of M is bounded from below and in the analysis of
proximal point method that M is a Hadamard manifold. Despite the long history
of these methods, it seems that their simplicity still attracts the attention of the
optimization researchers. In fact, this simplicity has given renewed emphasis to
recent applications in large-scale problems. In addition, these methods are the
starting point for designing many more sophisticated and efficient methods. All
these questions motivated this review.

This chapter is organized as follows. Section 18.2 presents definitions and
auxiliary results. In Sect. 18.3 we present some examples of convex functions. In
Sect. 18.4, we study properties of the gradient method. In Sect. 18.5 we study the
main properties of the subgradient method. Section 18.6 is devoted to the analysis
of the proximal point method and, in Sect. 18.7 we end the chapter with some
perspectives.

18.2 Notations and Basic Results

In this section, we recall some concepts, notations, and basics results about Rieman-
nian manifolds and optimization. For more details see, for example, [31, 67, 71, 76].
Let us begin with concepts about Riemannian manifolds. We denote byM a finite
dimensional Riemannian manifold and by TpM the tangent plane ofM at p. The
corresponding norm associated to the Riemannian metric 〈· , ·〉 is denoted by ‖ · ‖.
We use �(γ ) to denote the length of a piecewise smooth curve γ : [a, b] → M.
The Riemannian distance between p and q in M is denoted by d(p, q), which
induces the original topology on M, namely, (M, d), which is a complete metric
space. Let (N, 〈〈· , ·〉〉) and (M, 〈· , ·〉) be Riemannian manifolds, a mapping
% : N → M is called an isometry, if % is C∞, and for all q ∈ N and
u, v ∈ TqN , we have 〈〈u, v〉〉 = 〈d%qu, d%qv〉, where d%q : TqN → T%(q)M
is the differential of % at q ∈ N . One can verify that % preserves geodesics,
that is, β is a geodesic in N iff % ◦ β is a geodesic in M. Denote by X(M),
the space of smooth vector fields on M. Let ∇ be the Levi-Civita connection
associated to (M, 〈· , ·〉). For f :M→ R a differentiable function, the Riemannian
metric induces the mapping f �→ grad f which associates its gradient via the
following rule 〈grad f (p),X(p)〉 := df (p)X(p), for all p ∈ M. For a twice-
differentiable function, the mapping f �→ Hessf associates its Hessian via the rule
〈HessfX,X〉 := d2f (X,X), for all X ∈ X(M), where the last equalities imply
that HessfX = ∇X grad f , for all X ∈ X(M). A vector field V along γ is said
to be parallel iff ∇γ ′V = 0. If γ ′ is itself parallel, we say that γ is a geodesic.
Given that the geodesic equation ∇ γ ′γ ′ = 0 is a second order nonlinear ordinary
differential equation, then the geodesic γ := γv(·, p) is determined by its position
p and velocity v at p. The restriction of a geodesic to a closed bounded interval
is called a geodesic segment. A geodesic segment joining p to q in M is said to
be minimal if its length is equal to d(p, q). For each t ∈ [a, b], ∇ induces an
isometry, relative to 〈·, ·〉, Pγ,a,t : Tγ (a)M → Tγ (t)M defined by Pγ,a,t v = V (t),
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where V is the unique vector field on γ such that ∇γ ′(t)V (t) = 0 and V (a) = v,
the so-called parallel transport along the geodesic segment γ joining γ (a) to
γ (t). When there is no confusion, we consider the notation Pγ,p,q for the parallel
transport along the geodesic segment γ joining p to q. A Riemannian manifold
is complete if the geodesics are defined for any values of t ∈ R. Hopf-Rinow’s
theorem asserts that any pair of points in a complete Riemannian manifoldM can
be joined by a (not necessarily unique) minimal geodesic segment. In this chapter,
all manifolds are assumed to be connected, finite dimensional, and complete. Owing
to the completeness of the Riemannian manifold M, the exponential map expp :
TpM → M can be given by expp v = γv(1, p), for each p ∈ M. A complete,
simply connected Riemannian manifold of non-positive sectional curvature is called
a Hadamard manifold. ForM a Hadamard manifold and p ∈ M, the exponential
map expp : TpM → M is a diffeomorphism and exp−1

p : M → TpM denotes its

inverse. In this case, d(q , p) = || exp−1
p q|| and the function d2

q :M→ R defined

by d2
q (p) := d2(q, p) is C∞ and grad d2

q (p) := −2 exp−1
p q.

Now, we recall some concepts and basic properties about optimization in the
Riemannian context. For that, given two points p, q ∈ M, �pq denotes the set of
all geodesic segments γ : [0, 1] → M with γ (0) = p and γ (1) = q. A function
f :M→ R is said to be convex if, for any p, q ∈M and γ ∈ �pq , the composition
f ◦ γ : [0, 1] → R is convex, i.e., (f ◦ γ )(t) ≤ (1 − t)f (p) + tf (q), for all
t ∈ [0, 1]. A vector s ∈ TpM is said to be a subgradient of a convex function f at
p, iff f (expp v) ≥ f (p)+〈s, v〉, for all v ∈ TpM. Let ∂f (p) be the subdifferential
of f at p, namely, the set of all subgradients of f at p. Then, f is convex iff there
holds f (expp v) ≥ f (p) + 〈s, v〉, for all p ∈ M and s ∈ ∂f (p) and v ∈ TpM. If
f : M → R is convex, then ∂f (p) is nonempty, for all p ∈ M and, in particular,
for a differentiable function we have ∂f (p) = {grad f (p)}.
Definition 18.1 A function f : M → R is said to be Lipschitz continuous with
constant L ≥ 0 on � ⊂ M if, for any p, q ∈ � and γ ∈ �pq , there holds
|f (p)− f (q)| ≤ L�(γ ). Given p ∈ M, if there exists δ > 0 such that f is
Lipschitz continuous on Bδ(p), then f is said to be Lipschitz continuous at p.
Moreover, if for all p ∈ M, f is Lipschitz continuous at p, then f is said to be
locally Lipschitz continuous onM.

All convex functions f are locally Lipschitz continuous. Consequently, the map
∂f is bound on a bounded set. In particular we have the following result, see [81,
Proposition 2.5].

Proposition 18.2 Let f : M → R be convex and {pk} ⊂ M be a bounded
sequence. If {sk} is such that sk ∈ ∂f (pk), for each k = 0, 1, . . . ., then {sk} is
also bounded.

The concept of Lipschitz continuity of gradient vector fields, which was introduced
in [28], is stated as follows.
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Definition 18.3 Let f : M → R be a differentiable function. The gradient vector
field of f is said to be Lipschitz continuous with constant L > 0 if, for any p, q ∈
M and γ ∈ �pq , it holds that ‖Pγ,p,q grad f (p)− grad f (q)‖ ≤ L�(γ ).
For f : M → R twice differentiable, the norm of the Hessian Hess f at p ∈ M
is defined by ‖Hess f (p)‖ := sup

{‖Hess f (p)v‖ : v ∈ TpM, ‖v‖ = 1
}

. The
following result presents a characterization for twice continuously differentiable
functions with Lipschitz continuous gradient, its proof is similar to the Euclidean
counterpart.

Lemma 18.4 Let f :M→ R be a twice continuously differentiable function. The
gradient vector field of f is Lipschitz continuous with constant L > 0 iff there exists
L > 0 such that ‖Hess f (p)‖ ≤ L, for all p ∈M.

Next we present the concept of quasi-Fejér convergence, which play an important
role in the asymptotic convergence analysis of the methods studied in this chapter.

Definition 18.5 A sequence {yk} in the complete metric space (M, d) is quasi-Fejér
convergent to a set W ⊂ M if, for every w ∈ W , there exist a sequence {εk} ⊂ R
such that εk ≥ 0,

∑∞
k=1 εk < +∞, and d2(yk+1, w) ≤ d2(yk, w) + εk , for all

k = 0, 1, . . ..

In the following we state the main property of the quasi-Fejér concept, its proof is
similar to its Euclidean counterpart proved in [23].

Theorem 18.6 Let {yk} be a sequence in the complete metric space (M, d). If
{yk} is quasi-Fejér convergent to a nonempty set W ⊂ M, then {yk} is bounded.
If furthermore, a cluster point ȳ of {yk} belongs toW , then limk→∞ yk = ȳ.

18.3 Examples of Convex Functions on Riemannian
Manifolds

In this section our purpose is to present some examples of convex functions on
Riemannian manifolds. In Sect. 18.3.1 we recall usual examples in general Rie-
mannian manifolds. In Sects. 18.3.2–18.3.4 we present some examples in particular
Riemannian manifolds. In all examples presented, the functions are not convex and
their gradients are not continuous Lipschitz with respect to the Euclidean metric.
However, by changing the metric, all that functions become convex with Lipschitz
continuous gradient with respect to the new metric. As we will show in next
sections, this property is particularly interesting in the complexity analysis of the
optimization methods to solve the Problem (18.1). Moreover, despite the Euclidean
nonconvexity of the objective function, its Riemannian convexity ensures that a
local solution is globally optimal. In particular, these examples show how to take
advantage of using Riemaninan geometry concept to study the Problem (18.1); see
[3, 36, 37, 67, 75, 76].
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18.3.1 General Examples

It is well known that new convex functions can be designed from other convex func-
tions through operations that preserve convexity. For instance, letting f1, . . . , fm
be convex functions on the Riemannian manifoldsM, the following functions are
also convex f (p) = ∑m

i=1 μifi(p), where μi ≥ 0 for all i = 1, . . . , m and
f (p) = max{f1(p), . . . , fm(p)}. Let N and M be Riemannian manifolds and
% : N → M an isometry. The function f : M → R is convex if only if
f ◦ % : N → R is convex. One of the most important functions in a Riemannian
manifolds is the distance function. Let us present some examples of convex function
that arise from the distance function. Let M be a Hadamard manifold and d the
Riemannian distance. The function h(p) = d(p,%(p)) is convex. Moreover, for
any p̄ ∈ M the function M � p �→ d(p, p̄) is a convex function. We end this
section with an important family of convex functions which has applications in
different areas,

fa(p) :=
{

1
a

∑m
i=1wid

a(p, pi) 1 ≤ a <∞
maxi d(p, pi), a = ∞. (18.2)

where {pi : i = 1, . . . , m} ⊂M and {wi : i = 1, . . . m} ⊂ R such that
∑m
i=1wi =

1 and 0 ≤ wi ≤ 1, for all i = 1, . . . , m. We recall that a local minimizer of fa
is called local center of mass of the data set {pi : i = 1, . . . , m} with respect to
the weights {wi : i = 1, . . . m}; see [3]. WhenM is the cone of positive definite
matrices, (18.2) is called Karcher (Fréchet) mean, see for example [3, 4, 46, 75, 90].

18.3.2 Example in the Euclidean Space with a New
Riemannian Metric

In this section, we use the concept of an isometry between two Riemannian
manifolds to study convex functions. In particular, we change the metric of Rn so
that the extended Rosenbrock’s banana function becomes convex with Lipschitz
gradient in this new manifold. Let f : R2n → R be the Rosenbrock’s banana

function, defined by f (x1, . . . , x2n) = ∑n
i=1 ai

(

x2
2i−1 − x2i

)2 + (x2i−1 − bi)2 ,
ai ∈ R++, and bi ∈ R. Denote by M̄ the Euclidean space R2n with the usual
metric. It is well known that f is non-convex and its gradient is non-Lipschitz
continuous in M̄. Endowing R2n with the new Riemannian metric 〈u, v〉 :=
uT G(x)v, where u, v ∈ R2n and G(x) is the 2n × 2n block diagonal matrix
G(x) = diag(G1(x), . . . ,Gn(x)) with

Gi(x) :=
(

1 + 4x2
2i−1 −2x2i−1

−2x2i−1 1

)

, i = 1, . . . , n,
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and x = (x1, . . . , x2n), we obtain a Hadamard manifoldM := (R2n,G). Let % :
M̄ → M be defined by %(z1, . . . , z2n) = (

z1, z
2
1 − z2, . . . , z2n−1, z

2
2n−1 − z2n

)

.

We can prove that the function % is an isometry. Now, let g : M̄ → R be
defined by g(z1, . . . , z2n) = (f ◦ %)(z1, . . . , z2n) = ∑n

i=1 aiz
2
2i + (z2i−1 − bi)2.

Since g is a convex quadratic function and % is a isometry, the last equality
implies that f is convex in M. Moreover, due to the gradient of g be Lipschitz
continuous with constant L := max{2, 2a1, . . . , 2an}, we also have that f has
Lipschitz gradient with constantL. On the other hand, note that%−1(x) = (x1, x

2
1 −

x2, . . . , x2n−1, x
2
2n−1 − x2n). Therefore, taking any convex function with Lipschitz

continuous gradient g in M̄, we can define a new convex function with Lipschitz
continuous gradient inM by setting f = g◦%−1. This idea leads to a way to obtain
new convex functions from others, whenever an isometry is known. The convexity
of Rosenbrock’s banana function in two dimension was first presented in [76, p. 83].

18.3.3 Examples in the Positive Orthant with a New
Riemannian Metric

In this section, we present examples in the positive orthant. For that we denote the
set of n× n matrices with real entries by Rn×n, the n-dimensional Euclidean space
by Rn ≡ Rn×1, the positive orthant by Rn+ = {

x = (x1, . . . , xn)
T ∈ Rn×1 : xi ≥ 0,

i = 1, . . . , n}, and its interior by Rn++. Set diag(y) = diag(y1, . . . , yn) ∈ Rn×n the
diagonal matrix with (i, i)-th entry equal to yi , i = 1, . . . , n. LetM := (Rn++,G)
be the Hadamard manifold obtained by endowing Rn++ with the new Riemannian
metric 〈u, v〉 := uT G(x)v, for all x ∈ Rn++ and u, v ∈ TxRn++ ≡ Rn, where

G(x) := diag(x−2
1 , . . . , x−2

n ) ∈ Rn×n. (18.3)

Let f : M → R be a twice differentiable function, f ′(x) and f ′′(x) be the
Euclidean gradient and Hessian of f at x, respectively. Thus, (18.3) implies that
the Riemannian gradient and Hessian of f at x ∈M are given, respectively, by

grad f (x) = diag(x)2f ′(x), f (x) = diag(x)2f ′′(x)+ diag(x)diag
(

f ′(x)
)

,

(18.4)
where diag(x)2 := diag(x2

1 , . . . , x
2
n). Below we present three functions that are non-

convex with non-Lipschitz continuous gradient on Rn++. However, by using (18.4)
and Lemma 18.4, we can prove that these functions are convex with their gradients
being Lipschitz continuous onM; for more details see [36].

1. Let ai, ci, bi, di ∈ R+ satisfy ci > ai , for all i = 1, . . . n. The function
f : Rn++ → R defined by f (x) = −∑n

i=1 aie
−bixi + ∑n

i=1 ci ln (xi)2 +
∑n
i=1 di ln (xi) , is convex with Lipschitz gradient with constant L <

∑n
i=1(ai+

2ci)2 onM.
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2. Let ai, bi, ci , di ∈ R++ satisfy ci < aidi and di ≥ 2, for all i = 1, . . . n.
The function f : Rn++ → R defined by f (x) = ∑n

i=1 ai ln(xdii + bi) −
∑n
i=1 ci ln (xi) , is convex with Lipschitz gradient with constant L <

∑n
i=1 a

2
i d

4
i

onM.
3. Let u := (u1, . . . , un), w := (w1, . . . , wn) ∈ Rn++ and a, b, c ∈ R++.

The function f : Rn++ → R defined by f (x) = a ln
(∏n

i=1 x
ui
i + bi

) −
∑n
i=1wi ln(xi)+c∑n

i=1 ln2(xi), is convex with Lipschitz gradient with constant
L ≤ auT u/b + 2c onM.

18.3.4 Examples in the Cone of SPD Matrices with a New
Riemannian Metric

In this section, our examples are on symmetric positive definite (SPD) matrices cone
Pn++. Following Rothaus [69], let M := (Pn++, 〈·, ·〉) be the Hadamard manifold
endowed with the new Riemannian metric given by 〈U,V 〉 := tr(VX−1UX−1),

for X ∈ M and U,V ∈ TXM, where tr(X) denotes the trace of the matrix X,
TXM ≈ Pn is the tangent plane of M at X and Pn denotes the set of symmetric
matrices of order n× n. We recall thatM is a Hadamard manifold, see for example
[50, Theorem 1.2. p. 325]. The gradient and Hessian of f : Pn++ → R are given by

grad f (X)=Xf ′(X)X, Hess f (X)V=Xf ′′(X)VX+1

2

[

Vf ′(X)X +Xf ′(X)V
]

,

respectively, where V ∈ TXM, f ′(X) and f ′′(X) are the Euclidean gradient and
Hessian of f at X, respectively. In the following, we present two functions that
are non-convex with non-Lipschitz continuous gradient on Pn++ endowed with the
Euclidean metric. However, by using Lemma 18.4, we can prove that these functions
are convex with Lipschitz continuous gradient onM; for more details see [36].

1. Let a, b ∈ R++ and f : Pn++ → R defined by f (X) = a ln(det(X))2 −
b ln (det(X)) . The function f is convex with Lipschitz continuous gradient with
constant L ≤ 2a

√
n onM.

2. Let a, b1, b2, c ∈ R++ with c < ab1. The function f : Pn++ → R defined by
f (X) = a ln(det(X)b1 + b2)− c ln (detX) , is convex with Lipschitz continuous
gradient with constant L < ab2

1n onM.

Bibliographic Notes and Remarks

A comprehensive study of convex functions in Riemannian manifolds can be found
in [76]. Interesting examples of convex function on the SPD matrices cone are
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presented in [75]. As far as we know, the first studies on geometric properties of
SPD matrices cone with new metric have appeared in [69]. Applications and related
studies about convex function on Riemannian manifolds include [4, 12, 49, 60, 67,
70, 75, 90].

18.4 Gradient Method for Optimization

In this section we study properties of the gradient method for solving Problem (18.1)
with the two most commonly used strategies for choosing the step-size. For that we
assume that f : M → R is a continuously differentiable function and that the
solution set �∗ of the Problem (18.1) is nonempty.

Algorithm: Gradient method in the Riemanian manifoldM
Step 0. Let p0 ∈M. Set k = 0.
Step 1. If grad f (pk) = 0, then stop; otherwise, choose tk > 0 and compute

pk+1 := exppk (−tk grad f (pk)) .

Step 2. Set k ← k + 1 and proceed to Step 1.

In the following we present the two most commonly used strategies for choosing
the step-size tk > 0 in the gradient method.

Strategy 18.7 (Lipschitz Step-Size) Assume that grad f is Lipschitz continuous
with constant L > 0. Let ε > 0 and take

ε < tk ≤ 1

L
. (18.5)

Strategy 18.8 (Armijo’s step-size) Choose δ ∈ (0, 1) and take

tk := max
{

2−i : f
(

γk(2
−i )

)

≤ f (pk)− δ2−i ‖grad f (pk)‖2 , i = 0, 1, . . .
}

,

(18.6)
where γk(2−i ) := exppk

(−2−i grad f (pk)
)

. ��
The next lemma can be found in [14, Corollary 2.1]. Its proof is a straight forward
application of the fundamental theorem of calculus.

Lemma 18.9 Let f : M → R be a differentiable function. Assume that grad f is
Lipschitz continuous. Then there holds

f
(

expp(−t grad f (p))
) ≤ f (p)−

(

1 − L

2
t

)

t ‖grad f (p)‖2 , ∀ t ∈ R.
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Remark 18.10 Asume that grad f is Lipschitz continuous onM with constant L >
0. Thus, Lemma 18.9 implies that

f (exppk (−t grad f (pk))) ≤ f (pk)+
(
Lt

2
− 1

)

t ‖grad f (pk)‖2 , ∀ t ∈ R.

Hence, by taking any t ∈ (0, 2[1 − δ]/L] we conclude from the last inequality that

f (exppk (−t grad f (pk))) ≤ f (pk)− δt‖ grad f (pk)‖2.

Therefore, tk in Strategy 18.8 satisfies the inequality tk > [1 − δ]/L, for all k =
0, 1, . . . .

The proof of the well-definedness of Strategy 18.8 follows the same usual arguments
as in the Euclidean setting. Hence, we assume that the sequence {pk} generated by
the gradient method with any of the Strategies 18.7 or 18.8 is well-defined. Finally
we remark that grad f (p) = 0 if only if p ∈ �∗. Therefore, from now on we also
assume that grad f (pk) �= 0, or equivalently, pk /∈ �∗, for all k = 0, 1, . . ..

18.4.1 Asymptotic Convergence Analysis

In this section our goal is to present some convergence results for the gradient
method to solve the Problem (18.1) with Strategy 18.7 or 18.8.

Lemma 18.11 Let {pk} be generated by the gradient method with Strategies 18.7
or 18.8. Then,

f (pk+1) ≤ f (pk)− νtk ‖grad f (pk)‖2 , k = 0, 1, . . . , (18.7)

where ν = 1/2 for Strategy 18.7 and ν = δ for Strategy 18.8. Consequently, {f (pk)}
is a non-increasing sequence and limk→+∞ tk‖ grad f (pk)‖2 = 0.

Proof For Strategy 18.8, inequality (18.7) follows directly from (18.6). Now, we
assume that {pk} is generated by using Strategy 18.7. In this case, Lemma 18.9
implies that

f (pk+1) = f (exppk (−tk grad f (pk))) ≤ f (pk)−
(

1 − L

2
tk

)

tk ‖grad f (pk)‖2 ,

for all k = 0, 1, . . .. Hence, taking into account (18.5) we have 1/2 ≤ (1 − Ltk/2)
and then (18.7) follows for Strategy 18.7. It is immediate from (18.7) that {f (pk)}
is non-increasing. Moreover, (18.7) implies that
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�
∑

k=0

tk ‖grad f (pk)‖2 ≤ 1

ν

�
∑

k=0

f (pk)− f (pk+1) ≤ 1

ν

(

f (p0)− f ∗) ,

for each nonnegative integer �. As a consequence, the sequence {tk ‖grad f (pk)‖2}
converges to zero, completing the proof. ��
Theorem 18.12 Let {pk} be generated by the gradient method with Strategies 18.7
or 18.8. Then any cluster point of {pk} is a solution of the Problem (18.1).

Proof Let p̄ be a cluster point of {pk} and t̄ ∈ [0,max{1/L, 1}] a cluster point of
{tk}. Take a subsequence {(tkj , pkj )} of {(tk, pk)} such that limj→∞{(tkj , pkj )} =
{(t̄, p̄)}. Since Lemma 18.11 implies that limk→∞ tk ‖grad f (pk)‖2 = 0 and
considering that grad f is continuous, we have 0 = limj→∞ tkj ‖ grad f (pkj )‖ =
t̄ ‖grad f (p̄)‖ . If Strategy 18.7 is used we have t̄ > 0, consequently, grad f (p̄) = 0
and then p̄ ∈ �∗. If Strategy 18.8 is used and t̄ > 0, then we also have p̄ ∈ �∗.
Now, consider the case t̄ = 0 for Strategy 18.8. Since {tkj } converges to t̄ = 0,
we take r ∈ N such that tkj < 2−r for j sufficiently large. Thus the Armijo’s
condition (18.6) is not satisfied for 2−r , i.e.,

f (exppkj
(2−r [− grad f (pkj )])) > f (pkj )− 2−r δ‖ grad f (pkj )‖2.

Letting j go to +∞ in the above inequality and taking into account that grad f and
the exponential mapping are continuous, we have

− 1

2−r
(

f (expp̄(2
−r [− grad f (p̄)]))− f (p̄)) ≤ δ ‖grad f (p̄)‖2 .

Thus, letting r go to +∞ we obtain ‖grad f (p̄)‖2 ≤ δ ‖grad f (p̄)‖2, which implies
grad f (p̄) = 0, i.e., p̄ ∈ �∗. ��

In order to simplify the notations we define two auxiliary constants. Let p0 ∈M.
By using (18.7) together with (18.5) and (18.6) we define the first constant ρ > 0
as follows

∞
∑

k=0

t2k ‖ grad f (pk)‖2 ≤ ρ :=
{

2[f (p0)− f ∗]/L, for Strategy 18.7;
[f (p0)− f ∗]/δ, for Strategy 18.8.

(18.8)
Let κ ∈ R and q ∈M. The second auxiliary constant Kqρ,κ > 0 is defined by

Kqρ,κ := sinh
(√|κ|ρ)√|κ|ρ

cosh−1
(

cosh(
√|κ|d(p0, q))e

1
2
√|κ|ρ sinh(

√|κ|ρ)
)

tanh cosh−1
(

cosh(
√|κ|d(p0, q))e

1
2
√|κ|ρ sinh(

√|κ|ρ)
) ,

(18.9)
where ρ is given in (18.8) and κ < 0. Since limκ→0Kqρ,κ = 1, we defineKqρ,0 := 1.
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The proof of the next lemma follows the same arguments used to prove [36,
Lemma 6]. Since its proof is quite technical it will be omitted here. It is worth
mentioning that this result is a generalization of the corresponding classical one
that has appeared in, see for example, [26, Lemma 1.1]. Finally, to establish the
full convergence and iteration-complexity results for the gradient method, we need
to assume that the Riemannian manifolds M under consideration has sectional
curvature bounded from below.

Lemma 18.13 LetM be a Riemannian manifold with sectional curvature K ≥ κ ,
and {pk} be generated by the gradient method with Strategies 18.7 or 18.8. Then,
for each q ∈ �∗, there holds

d2(pk+1, q) ≤ d2(pk, q)+Kqρ,κ t2k ‖ grad f (pk)‖2 + 2tk[f ∗ − f (pk)], (18.10)

for all k = 0, 1, . . ., where ρ is defined in (18.8).

Finally, we are ready to prove the full convergence of {pk} to a minimizer of f .

Theorem 18.14 LetM be a Riemannian manifolds with sectional curvatureK ≥ κ
and {pk} be generated by the gradient method with Strategies 18.7 or 18.8. Then
{pk} converges to a solution of the Problem (18.1).

Proof Lemma 18.13, (18.8) and Definition 18.5 imply that {pk} is quasi-Fejér
convergent to the set �∗. Let p̄ a cluster point of {pk}, by Theorem 18.12 we have
p̄ ∈ �∗. Therefore, since {pk} is quasi-Fejér convergent to �∗, we conclude from
Theorem 18.6 that {pk} converges to p̄ and the proof is completed. ��

18.4.2 Iteration-Complexity Analysis

In this section, it will be also assumed that M is a Riemannian manifolds with
sectional curvature K ≥ κ and {pk} is generated by the gradient method with
Strategies 18.7 or 18.8. Our aim is to present iteration-complexity bounds related
to the gradient method for minimizing a convex function with Lipschitz continuous
gradient with constant L > 0. For this purpose, by using (18.5) and Remark 18.10,
define

ξ :=
{

ε , for Strategy 18.7;
[1 − δ]/L , for Strategy 18.8.

(18.11)

We recall that the constants ρ andKqρ,κ are defined in (18.8) and (18.9), respectively.

Theorem 18.15 For every N ∈ N and q ∈ �∗, there holds
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f (pN)− f ∗ ≤ d2(p0, q)+Kqρ,κρ
2ξN

. (18.12)

Proof Since f (pk)−f ∗ ≥ 0, by using Lemma 18.13 and (18.11), we conclude that

2ξ
(

f (pk)− f ∗) ≤ d2(pk, q)− d2(pk+1, q)+Kqρ,κ t2k ‖ grad f (pk)‖2.

Thus, by summing both sides for k = 0, 1, . . . , N − 1 and using (18.8), we have

2ξ
N−1
∑

k=0

(

f (pk)− f ∗) ≤ d2(p0, q)+Kqρ,κρ.

Therefore, due to {f (pk)} be a decreasing sequence, this inequality implies (18.12).
��

Theorem 18.16 For every N ∈ N and q ∈ �∗, there holds

min {‖ grad f (pk)‖ : k = 0, 1, . . . , N} ≤
[

2
(

d2(p0, q)+Kqρ,κρ
)

νξ2

] 1
2 1

N
,

where ν = 1/2 for Strategy 18.7 and ν = δ for Strategy 18.8.

Proof Let N ∈ N and denote by 8N/29 the least integer that is greater than or
equal to N/2. It follows from Lemma 18.11 that νtk ‖grad f (pk)‖2 ≤ f (pk) −
f (pk+1), for all k = 0, 1, . . .. Thus, by summing both sides of this inequality for
k = 8N/29, . . . , N and using (18.11), we obtain

νξ

N
∑

k=8N/29
‖ grad f (pk)‖2 ≤ f (p8N/29)− f (pN+1) ≤ f (p8N/29)− f ∗.

Thus, from Theorem 18.15 and considering that N/2 ≤ 8N/29 it follows that

N
∑

k=8N/29
‖ grad f (pk)‖2 ≤ d2(p0, q)+Kqρ,κρ

2νξ28N/29 ≤ d2(p0, q)+Kqρ,κρ
νξ2N

.

Hence, min{‖ grad f (pk)‖2 : k = 8N/29, . . . , N} ≤ 2(d2(p0, q) +
Kqρ,κρ)/(νξ2N2), which implies the desired inequality. ��

Bibliographic Notes and Remarks

In order to deal with constrained optimization problems in Euclidean space,
Luenberger [56] proposed and established important convergence properties of the
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projected gradient method by using the Riemannian structure of the constraint
set induced by the Euclidean structure. To the best of our knowledge, this was
the first result involving concepts of Riemannian geometry to study optimization
methods. After this seminal work, the gradient method has been studied in general
Riemannian settings. Early works dealing with this method include [40, 67, 73, 76].
However, the obtained results in these previous works demand some sort of bound-
edness of the sequence, establishing only that all its cluster points are stationary.
By assuming convexity of the objective function and that the manifold has non-
negative curvature, it has been proven in [28] that, for a suitable choice of the
step size and without any boundedness assumption, the whole sequence converges
to a solution. It is worth noting that this was the first Riemannian optimization
result using the concept of curvature. Other variants and generalizations of this
method can be found in [20, 49, 63, 88]. In the last years important properties of
the gradient method in Riemannian settings have been obtained. For instance, in
[92] the authors provided iteration-complexity bounds of the method for convex
optimization problems on Hadamard manifolds. In [21], the authors established
iteration-complexity bounds without assuming convexity of the objective function
and curvature of the manifold. In [19] the gradient method is considered to compute
the Karcher mean in the cone of symmetric positive definite matrices endowed
with a suitable Riemannian metric. In [3] the authors study properties of the
gradient method for the problem of finding the global Riemannian center of mass
of a set of data points on a Riemannian manifold. The paper [15] extends the
convergence analysis of the gradient method to Hadamard setting for functions
which satisfy the Kurdyka-Lojasiewicz inequality. In [14] an iteration-complexity
analysis of the method for convex optimization problems on Riemannian manifolds
with nonnegative sectional curvature is presented. In [36] the full convergence
and iteration-complexity analysis of the gradient method for convex optimization
problems on Riemannian manifolds with lower bounded sectional curvature are
presented without any assumptions on the boundedness of level sets.

18.5 Subgradient Method for Optimization

In this section we study properties of the subgradient method for solving Prob-
lem (18.1) with the two most commonly used strategies for choosing the step-size.
We recall that f :M→ R is a convex function. Throughout this section we assume
thatM is a Riemannian manifold with sectional curvature K ≥ κ and κ ≤ 0. We
recall that �∗, the solution set of Problem (18.1), will be assumed to be nonempty
only when explicitly stated.
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Algorithm: Subgradient method in Riemanian manifoldM
Step 0. Let p0 ∈M and s0 ∈ ∂f (p0). Set k = 0.
Step 1. If sk = 0, then stop; otherwise, choose a step-size tk > 0 , sk ∈ ∂f (pk) and compute

pk+1 := exppk

(

−tk sk‖sk‖
)

;

Step 2. Set k ← k + 1 and proceed to Step 1.

In the following we present two different strategies for choosing the step-size
tk > 0.

Strategy 18.17 (Exogenous Step-Size)

tk > 0,
∞
∑

k=0

tk = +∞, σ :=
∞
∑

k=0

t2k < +∞. (18.13)

The subgradient method with the step-size in Strategy 18.17 has been analyzed
in several papers; see, for example, [26, 34, 79].

Strategy 18.18 (Polyak’s Step-Size) Assume that p0 ∈M, �∗ �= ∅ and set

tk = α
f (pk)− f ∗

‖sk‖ , 0 < α < 2
tanh

(√|κ|d0
)

√|κ|d0
, d0 := d(p0,�

∗),
(18.14)

where d(p0,�
∗) := inf{d(p0, q) : q ∈ �∗} > 0 and κ �= 0, and 0 < α < 2 for

κ = 0. ��
The step-size rule of Strategy 18.18 was introduced in [66] and has been used in
several papers, including [11, 14, 81].

Remark 18.19 Since (0,+∞) �→ tanh(t)/t is decreasing, for any d̂ > d0,
we choose 0 < α < 2 tanh(

√|κ|d̂)/(√κ|d̂)) < 2 tanh(
√|κ|d0)/(

√
κ|d0)) in

Strategy 18.18. As limt→0 tanh(t)/t = 1, we choose 0 < α < 2 in (18.14) for a
Riemannian manifold with non-negative curvature, i.e., κ = 0. Note that all results
in this section can be obtained by assuming only that f is convex in a subset ofM,
see the details in [37].

18.5.1 Asymptotic Convergence Analysis

Firstly, we assume that the sequence {pk} is generated by the subgradient method
with Strategy 18.17. To proceed with the analysis, define

� :=
{

q ∈M : f (q) ≤ inf
k
f (pk)

}

.
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The next result contains an inequality that is of fundamental importance to analyze
the subgradient method. For each q ∈ � and κ ∈ R, let us define

Cq,κ := sinh
(√|κ|σ )√|κ|σ

[

1 + cosh−1
(

cosh(|κ|d(p0, q))e
1
2
√|κ|σ sinh(

√|κ|σ)
)]

,

where σ is given in (18.13) and κ < 0. Since limκ→0 Cq,κ = 1, we defineCq,0 := 1.
It is important to note that Cq,κ is well defined only under the assumption � �= ∅.
The inequality in the next lemma is a version of (18.10) for the subgradient method.
Since its proof is quite technical it will be also omitted here, for details see [37,
Lemma 3.2].

Lemma 18.20 Let {pk} be generated by the subgradient method with Strat-
egy 18.17. If � �= ∅ then, for each q ∈ � and k = 0, 1, . . ., there holds

d2(pk+1, q) ≤ d2(pk, q)+ Cq,κ t2k + 2
tk

‖sk‖[f (q)− f (pk)], sk ∈ ∂f (pk).

Now, we are ready to establish the asymptotic analysis of the sequence {pk}. We
first consider the subgradient method with Strategy 18.17.

Theorem 18.21 Let {pk} be generated by the subgradient method with Strat-
egy 18.17. Then

lim inf
k

f (pk) = f ∗. (18.15)

In addition, if �∗ �= ∅ then the sequence {pk} converges to a point p∗ ∈ �∗.

Proof Assume by contradiction that lim infk f (pk) > f ∗ = infp∈M f (p). In this
case, we have � �= ∅. Thus, from Lemma 18.20, we conclude that {pk} is bounded
and, consequently, by using Proposition 18.2, the sequence {sk} is also bounded.
Let C1 > ‖sk‖, for k = 0, 1, . . .. On the other hand, letting q ∈ �, there exist
C2 > 0 and k0 ∈ N such that f (q) < f (pk) − C2, for all k ≥ k0. Hence, using
Lemma 18.20 and considering that ‖sk‖ < C1, for k = 0, 1, . . ., we have

d2(pk+1, q) ≤ d2(pk, q)+ Cq,κ t2k − 2
C2

C1
tk, k = k0, k0 + 1, . . . .

Let � ∈ N. Thus, from the last inequality, after some calculations, we obtain

2C2

C1

�+k0∑

j=k0

tj ≤ d2(pk0 , q)−d2(pk0+�, q)+Cq,κ
�+k0∑

j=k0

t2j ≤ d2(pk0 , q)+Cq,κ
�+k0∑

j=k0

t2j .

Hence, using the inequality in (18.13), we have a contraction. Therefore, (18.15)
holds.

For proving the last statement, let us assume that �∗ �= ∅. In this case, we have
� �= ∅ and, from Lemma 18.20, {pk} is quasi-Féjer convergent to � and, conse-
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quently, a bounded sequence. The equality (18.15) implies that {f (pk)} possesses a
decreasing monotonous subsequence {f (pkj )} such that limj→∞ f (pkj ) = f ∗.
We can assume that {f (pk)} is decreasing, monotonous and converges to f ∗.
Being bounded, the sequence {pk} possesses a convergent subsequence {pk�}. Let
us say that lim�→∞ pk� = p∗, which by the continuity of f implies f (p∗) =
lim�→∞ f (pk�) = f ∗, and then p∗ ∈ �. Hence, {pk} has an cluster point p∗ ∈ �,
and due to {pk} be quasi-Féjer convergent to �, it follows from Theorem 18.6 that
the sequence {pk} converges to p∗. ��
Now, we will assume that {pk} is generated by the subgradient method with
Strategy 18.18. Let α and d0 be as in (18.14) and define

Cκ,d0 := 2

α
−

√|κ|d0

tanh
(√|κ|d0

) > 0. (18.16)

Remark 18.22 Since limt→0 tanh(t)/t = 1, we conclude that for Riemannian
manifolds with nonnegative curvature, namely, for κ = 0, (18.16) become Cκ,d0 ≡
2/α − 1 > 0.

The next lemma plays an important role in our analysis, its proof can be found in
[37, Lemma 3.3]. For stating the lemma, we set

q̄ ∈ �∗ such that d0 = d(p0, q̄). (18.17)

Lemma 18.23 Let {pk} be generated by the subgradient method with Strat-
egy 18.18. Let q̄ ∈ �∗ satisfy (18.17). Then the following inequality holds

d2(pk+1, q̄) ≤ d2(pk, q̄)−Cκ,d0α
2

[

f (pk)− f ∗]2

‖sk‖2 , k = 0, 1, . . . . (18.18)

Remark 18.24 For κ̄ = 0, we do not need a q̄ satisfying (18.17) to prove
Lemma 18.23. In this case, (18.18) becomes d2(pk+1, q) ≤ d2(pk, q)−(2/α−1)t2k ,
for k = 0, 1, . . . and q ∈ �∗.

Theorem 18.25 Let {pk} be generated by the subgradient method with Strat-
egy 18.18. Then, limk→∞ f (pk) = f ∗. Consequently, each cluster point of the
sequence {pk} is a solution of the Problem (18.1).

Proof Let q̄ satisfy (18.17). In particular, Lemma 18.23 implies that {d2(pk, q̄)}
is monotonically nonincreasing and, being nonnegative, it converges. Moreover,
{pk} is bounded. Thus, from Proposition 18.2 we conclude that {sk} is also bonded.
Hence, letting k go to +∞ in (18.18), we conclude that limk→∞ f (pk) = f ∗. Now,
let p̄ be an accumulation point of {pk} and {pki } a subsequence of {pk} such that
limki→+∞ pki = p̄. Therefore, f (p̄) = limki→∞ f (pki ) = f ∗ and then p̄ ∈ �∗
and the proof is concluded. ��
Corollary 18.26 For κ = 0 the sequence {pk} converges to a point q ∈ �∗.
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Proof Lemma 18.23 and Remark 18.24 imply that {pk} is bounded. Let p̄
be an accumulation point of {pk} and {pki } a subsequence of {pk} such that
limki→+∞ pki = p̄. Thus, Theorem 18.25 implies that p̄ ∈ �∗. Using again
Lemma 18.23, we obtain also that {d(pk, p̄)} is monotonically nonincreasing
and, being nonegative, it converges. Since limk→∞ d(pkj , p̄) = 0, we have
limk→∞ d(pk, p̄) = 0. Therefore, {pk} converges. ��

18.5.2 Iteration-Complexity Analysis

In this section, we present iteration-complexity bounds related to the subgradient
method. Throughout this section we assume that �∗ �= ∅. Set p∗ ∈ �∗ such that
limk→∞ pk = p∗ and τ > 0 such that

‖sk‖ ≤ τ, k = 0, 1, . . . . (18.19)

For instance, if f :M→ R is Lipschitz continuous, then τ in (18.19) can be taken
as the Lipschitz constant of f .

Theorem 18.27 Let {pk} be generated by the subgradient method with Strat-
egy 18.17. Then, for all p∗ ∈ �∗ and every N ∈ N, the following inequality holds

min
{

f (pk)− f ∗ : k = 0, 1, . . . , N
} ≤ τ d

2(p0, p∗)+ Cp∗,κ
∑N
k=0 t

2
k

2
∑N
k=0 tk

.

Proof Let p∗ ∈ �∗. Since�∗ ⊂ �, applying Lemma 18.20 with q = p∗, we obtain

d2(pk+1, p∗) � d2(pk, p∗)+ Cp∗,κ t
2
k + 2

tk

‖sk‖[f ∗ − f (pk)], sk ∈ ∂f (pk),

for all k = 0, 1, . . .. Hence, summing up the above inequality for k = 0, 1, . . . , N ,
after some algebraic manipulations, we have

2
N
∑

k=0

tk

‖sk‖[f (pk)− f ∗] ≤ d2(p0, p∗)− d2(pN+1, p∗)+ Cp∗,κ

N
∑

k=0

t2k .

By (18.19) we have ‖sk‖ ≤ τ , for all k = 0, 1, . . .. Therefore, we conclude

2

τ
min

{

f (pk)− f ∗ : k = 0, 1, . . . , N
}
N
∑

k=0

tk ≤ d2(p0, p∗)+ Cp∗,κ

N
∑

k=0

t2k ,

which is equivalent to the desired inequality. ��
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The next result presents an iteration-complexity bound for the subgradient method
with the Polyak’s step-size rule.

Theorem 18.28 Let {pk} be generated by the subgradient method with Strat-
egy 18.18. Let q̄ ∈ �∗ satisfy (18.17). Then, for every N ∈ N, there holds

min
{

f (pk)− f ∗ : k = 0, 1, . . . , N
} ≤ τd(p0, q̄)

√

Cκ,d0

1√
N + 1

.

Proof It follows from Lemma 18.23 and (18.19) that

[f (pk)− f ∗]2 ≤ τ 2

Cκ,d0α
2 [d2(pk, q̄)− d2(pk+1, q̄)], k = 0, 1, . . . .

Performing the sum of the above inequality for k = 0, 1, . . . , N , we obtain

N
∑

k=0

[f (pk)− f ∗]2 ≤ τ 2d2(p0, q̄)

Cκ,d0

.

The statement of the theorem is an immediate consequence of the last inequality.
��

Remark 18.29 It is worth noting that if κ = 0 we have Cq,κ = 1 and then the
inequality of Theorem 9 reduces to the inequality in [14, Theorem 3.4].

Bibliographic Notes and Remarks

The subgradient method was originally developed by Shor and others in the 1960s
and 1970s and since of then, it and its variants have been applied to a far wider
variety of problems in optimization theory; see[41, 66]. In order to deal with non-
smooth convex optimization problems on Riemanian manifolds, [34] extended and
analyzed the subgradient method under the assumption that the sectional curvature
of the manifolds is non-negative. As in the Euclidean context, the subgradient
method is quite simple and possess nice convergence properties. After this work, the
subgradient method in the Riemannian setting has been studied in different contexts;
see, for instance, [9, 11, 37, 42, 79, 81, 91–93]. In [11] the subgradient method
was introduced to solve convex feasibility problems on complete Riemannian
manifolds with non-negative sectional curvatures. Significant improvements for this
method were introduced in [81], by extending its analysis to manifolds with lower
bounded sectional curvature. More recently, in [37, 79] an asymptotic and iteration-
complexity analysis of the subgradient method for convex optimization was carried
out in the context of manifolds with lower bounded sectional curvatures. In [37]
the authors establish an iteration-complexity bound of the subgradient method with
exogenous step-size and Polyak’s step-size, for convex optimization problems on
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complete Riemannian manifolds with lower bounded sectional curvatures. These
results, in some sense, increase the range of applicability of the method compared
to the respective results obtained in [14, 92, 93]. We end this section by remarking
that [91] proposes and analyzes an incremental subgradient method for Riemannian
optimization.

18.6 Proximal Point Method for Optimization

In this section we study properties of the proximal point method for solving
Problem (18.1), where f : M → R is a convex function. Throughout this section
we assume that M is a Hadamard manifold. We recall that �∗, the solution set of
Problem (18.1), will be assumed to be nonempty only when explicitly stated.

Algorithm: Proximal point method in the Riemanian manifoldM
Step 0. Let p0 ∈M and {λk} ⊂ (0,+∞). Set k = 0.
Step 1. Compute

pk+1 = argminp∈M
{

f (p)+ λk

2
d2(pk, p)

}

; (18.20)

Step 2. Set k ← k + 1 and proceed to Step 1.

The parameter λk will be chosen later, in order to guarantee a specific conver-
gence property. The well-definedness of the iteration (18.20) is presented in detail
in [35, Theorem 5.1]. On the other hand, since in Hadamard manifolds the square of
the Riemannian distance is strongly convex, see [29, Corollary3.1], there is also
an alternative proof of the well-definedness of the iteration (18.20). In the next
lemma we present an important inequality, which is the main tool to establish both
asymptotic convergence and iteration-complexity to the method. At this point we
emphasize that to obtain this inequality it is fundamental that M is a Hadamard
manifold or a more general manifold where the square of the distance is strongly
convex. As the proof of this inequality is quite technical we skip it, see the details
in [35, Lemma 6.2].

Lemma 18.30 Let {pk} be the sequence generated by the proximal point method.
Then, for every q ∈M, there holds

d2(pk+1, q) ≤ d2(pk, q)−d2(pk+1, pk)+ 2

λk
(f (q)− f (pk+1)) , k = 0, 1, . . . .
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18.6.1 Asymptotic Convergence Analysis

In this section we present an asymptotic convergence analysis of the proximal
point method. As aforementioned, the convergence result is an application of
Lemma 18.30.

Theorem 18.31 Let {pk} be the sequence generated by the proximal method. If the
sequence {λk} is chosen satisfying

∑∞
k=0(1/λk) = +∞, then limk→+∞ f (pk) =

f ∗. In addition, if �∗ is nonempty then limk→+∞ pk = p∗ and p∗ ∈ �∗.

Proof It follows from (18.20) that f (pk+1) + (λk/2)d2(pk, pk+1) ≤ f (p) +
λk
2 d

2(pk, p), for all p ∈ M. Thus, f (pk+1) + (λk/2)d2(pk, pk+1) ≤ f (pk), for
all k = 0, 1, . . ., which implies f (pk+1) ≤ f (pk), for all k = 0, 1, . . .. Thus
the sequence {f (pk)} is non increasing. To prove that limk→+∞ f (pk) = f ∗, we
assume for contradiction that limk→+∞ f (pk) > f ∗. This, assumption implies
that there exist q ∈ M and δ > 0 such that f (q) < f (pk) − δ, for all
k = 0, 1, . . .. The combination of the last inequality with Lemma 18.30 yield
d2(pk+1, q) < d

2(pk, q)− 2δ/λk , for all k = 0, 1, . . .. Thus,

j
∑

k=0

1

λk
� 1

2δ
(d2(p0, q)− d2(p0, pj+1)) <

1

2δ
d2(p0, q), ∀j ∈ N,

which contradicts the equality
∑∞
k=0(1/λk) = +∞ and the desired equality holds.

Now assume that �∗ is nonempty. Thus taking q̄ ∈ �∗ we have f (q̄) � f (pk) for
all k = 0, 1, . . .. Hence, by Lemma 18.30 we obtain d2(pk+1, q̄) < d

2(pk, q̄), for
all k = 0, 1, . . .. Therefore, the sequence {pk} is Féjer convergent to set �∗, and
then {pk} is bounded. Let {pkj } be a subsequence of {pk} such that limk→+∞pkj =
p∗. Since f is continuous and limk→+∞ f (pk) = f ∗ it follows that f (p∗) =
limk→+∞ f (pkj ) = f ∗. Hence, p∗ ∈ �∗. Therefore the cluster point p∗ of {pk}
belongs to �∗, again by Theorem 18.6 we conclude that limk→+∞ pk = p∗. ��

18.6.2 Iteration-Complexity Analysis

In the next theorem we present an iteration-complexity bound for the proximal point
method. As we will see, it is a straight application of the inequality in Lemma 18.30.
For stating the theorem we need to assume that the solution set �∗ is nonempty. Let
p∗ ∈ �∗ and f ∗ = f (p∗).

Theorem 18.32 Let {pk} be the sequence generated by the proximal method with
λk ∈ (0, λ), for all k = 0, 1, . . . and λ > 0. Then, for every N ∈ N, there holds

f (pN)− f ∗ ≤ λd2(p∗, p0)

2(N + 1)
.
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As a consequence, given a tolerance ε > 0, the number of iterations required by the
proximal point method to obtain pN ∈ M such that f (pN) − f ∗ ≤ ε, is bounded
by O(λd2(p∗, p0)/ε).

Proof It follows from Lemma 18.30 by taking q = p∗ and using f ∗ = f (p∗), that

0 ≤ f (pk+1)− f ∗ ≤ λk

2

[

d2(p∗, pk)− d2(p∗, pk+1)
]

, k = 0, 1, . . . .

Hence, summing both sides of the last inequality for k = 0, 1, . . . , N and using that
λk ∈ (0, λ), we obtain

N
∑

k=0

(f (pk+1)− f ∗) ≤ λ

2

[

d2(p0, p
∗)− d2(p∗, pN)

]

≤ λ

2
d2(p0, p

∗). (18.21)

As in the proof of Theorem 18.31, we can prove that f ∗ ≤ f (pk+1) ≤ f (pk),
for all k = 0, 1, . . .. Therefore, (18.21) implies that (N + 1)(f (pN) − f ∗) ≤
λd2(p0, p

∗)/2, which proves the first statement of the theorem. The last statement
of the theorem is an immediate consequence of the first one. ��

Bibliographic Notes and Remarks

The proximal point method is one of the most interesting optimization methods,
which was first proposed in the linear context by [58] and extensively studied by
[68]. In the Riemannian setting, the proximal point method was first studied in [35]
for convex optimization problems on Hadamard manifolds. This method has been
quite explored since then in different contexts; see, for example, [7, 10, 12, 13, 47,
52, 54, 62, 74]. After introducing the method to optimization problem in Riemannian
manifolds in [35], a significant improvement in this context was presented in [54].
In [54] the method was generalize to find a singularity of a monotone vector fields
on Hadamard manifolds and new developments emerged after this work; see [7, 53,
82]. Besides generalizing this method, new concepts were also introduced allowing
to extend the study of new methods, including [7, 55, 80, 83]. Another important
development along these lines was presented in [5], which introduced the method
into geodesic metric spaces of non-positive curvature, the so-called CAT (0) spaces;
other studies in this direction include [24, 25, 27, 51, 61, 65, 77]. Finally, we mention
that the first iteration-complexity result to the proximal point method in manifolds
context appeared in [5].
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18.7 Conclusions

In this chapter we presented some results related to the asymptotic convergence and
iteration-complexity of subgradient, gradient and proximal point methods. We know
that a comprehensive study about first order methods on Riemannian manifolds
should also include at least some results concerning the conjugate gradient and
conditional gradient methods. At this point, we have included only a few comments
on them and a more detailed study should be presented in the future. The conjugate
gradient method on Riemannian setting was introduced by [73]. As in the Euclidean
context, this method has become quite popular in the Riemannian scenario, papers
addressing theoretical and applications of this method include [44, 72, 89, 94].
The Frank-Wolfe algorithm or conditional gradient is one of the oldest first-order
methods for constrained convex optimization, dating back to the 1950s. It is
surprising that this method has only recently been considered in the Riemannian
context, see [84]. Numerical experiments have been presented in [84] indicating that
this is a promising method for solving some important special classes of Riemannian
convex optimization problems. We conclude this chapter with some perspectives and
open problems. Under the hypothesis of boundedness from below of the sectional
curvature of the Riemannian manifolds we were able to prove full convergence
of the gradient and subgradient method. A natural issue to be investigated would
be to extend the results of full convergence of these methods to more general
manifolds, in particular, to extend the results for Riemannian manifolds with Ricci
curvature bounded from below. It is also worth noting that the results on the
proximal point method for minimizing convex functions so far were only for
manifolds and/or geodesics spaces with negative curvature. Then, one would be
interesting to investigate versions of this method for minimizing convex functions in
general manifolds extending the results for Riemannian manifolds with nonnegative
sectional curvature. We know that the distance on a Riemannian manifold with
nonpositive curvature is, in general, not convex in the whole manifold. In this
case, the difficulty of proving the well-definedess of the method emerges. Then,
one possibility would be to develop a local theory for the method.
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Abstract Stochastic and finite-sum optimization problems are central to machine
learning. Numerous specializations of these problems involve nonlinear constraints
where the parameters of interest lie on a manifold. Consequently, stochastic
manifold optimization algorithms have recently witnessed rapid growth, also in part
due to their computational performance. This chapter outlines numerous stochastic
optimization algorithms on manifolds, ranging from the basic stochastic gradient
method to more advanced variance reduced stochastic methods. In particular, we
present a unified summary of convergence results. Finally, we also provide several
basic examples of these methods to machine learning problems, including learning
parameters of Gaussians mixtures, principal component analysis, and Wasserstein
barycenters.
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19.1 Introduction

In this chapter we outline first-order optimization algorithms used for minimizing
the expected loss (risk) and its special case, finite-sum optimization (empirical
risk). In particular, we focus on the setting where the parameters to be optimized
lie on a Riemannian manifold. This setting appears in a variety of problems in
machine learning and statistics, including principal components analysis [33], low-
rank matrix completion [9, 39], fitting statistical models like Gaussian mixture
models [17, 18, 38], Karcher mean computation [22, 33], Wasserstein barycen-
ters [40], dictionary learning [12], low rank multivariate regression [27], subspace
learning [28], and structure prediction [34]; see also the textbook [1].

Typical Riemannian manifolds used in applications can be expressed by a set
of constraints on Euclidean manifolds. Therefore, one can view a Riemannian
optimization problem as a nonlinearly constrained one, for which one could use
classical approaches. For instance, if the manifold constitutes a convex set in
Euclidean space, one can use gradient projection like methods,1 or other nonlinear
optimization methods [6]. These methods could suffer from high computational
costs, or as a more fundamental weakness, they may fail to satisfy the constraints
exactly at each iteration of the associated algorithm. Another problem is that the
Euclidean gradient does not take into account the geometry of the problem, and
even if the projection can be done and the constraints can be satisfied at each
iteration, the numerical conditioning may be much worse than a method that
respects geometry [1, 42].

Riemannian optimization has shown great success in solving many practical
problems because it respects the geometry of the constraint set. The definition of
the inner product in Riemannian geometry makes the direction of the gradient to
be more meaningful than Euclidean gradients because it considers the geometry
imposed by constraints on the parameters of optimization. By defining suitable
retractions (geodesic like curves on manifolds), the constraint is always satisfied.
Sometimes the inner product is defined to also take into account the curvature
information of the cost function. The natural gradient is an important example of
the Riemannian gradient shown to be successful for solving many statistical fitting
problems [2]. The natural gradient was designed for fitting statistical models and it
is a Riemannian gradient on a manifold where the metric is defined by the Fisher
information matrix.

1Some care must be applied here, because we are dealing with open sets, and thus projection is not
well-defined.
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Additional Background and Summary

Another key feature of Riemannian optimization is the generalization of the widely
important concept of convexity to geodesic convexity. We will see later in this
chapter that geodesic convexity help us derive convergence results for accelerated
gradient descent methods akin to their famous Euclidean counterpart: Nesterov’s
accelerated gradient method. Similar to the Euclidean case, there are works that
develop results for recognizing geodesic convexity of functions for some special
manifolds [37]. Reformulating problems keeping an eye on geodesic convexity also
yields powerful optimization algorithms for some practical problems [18].

After summarizing key concepts of Riemannian manifolds, we first sketch the
Riemannian analogue of the widely used (Euclidean) stochastic gradient descent
method. Though some forms of stochastic gradient descent (SGD) such as natural
gradient were developed decades ago, the version of SGD studied here and its
analysis has a relatively short history; Bonnabel [8] was the first to give a unifying
framework for analyzing Riemannian SGD and provided an asymptotic analysis
on its almost sure convergence. We recall his results after explaining SGD on
manifolds. We then note how convergence results of [15] for Euclidean non-
convex SGD generalize to the Riemannian case under similar conditions [18].
Among recent progress on SGD, a notable direction is that of faster optimization
by performing variance reduction of stochastic gradients. We will later outline
recent results of accelerating SGD on manifolds and give convergence analysis
for geodesically non-convex and convex cases. Finally, we close by summarizing
some applications drawn from machine learning that benefit from the stochastic
Riemannian algorithms studied herein.

Apart from the algorithms given in this chapter, there exist several other methods
that generalize well from the Euclidean to the Riemannian setting. For example
in [4] the SAGA algorithm [13] is generalized to Riemannian manifolds along with
convergence theory assuming geodesic convexity. In [23] a Riemannian stochastic
quasi-Newton method is studied; in [21] an inexact Riemannian trust-region method
is developed and applied to finite-sum problems. Adaptive stochastic gradient
methods such as ADAM and RMSProp have also been generalized [5, 24, 25]. It
was observed however that ADAM works inferior to plain SGD for fitting Gaussian
mixture models [16], where momentum and Nesterov SGD offered the best variants
that improve on the performance of plain SGD.

The convergence results presented in this chapter are for general Riemannian
manifolds and hold for a fairly general class of cost functions. For specific manifolds
and functions, one can obtain better convergence results for the algorithms. For
example for the case of quadratic optimization with orthogonality constraint, the
authors in [26] proved convergence results. The authors in [41] proved convergence
for a block eigensolver.
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19.2 Key Definitions

We omit standard definitions such as Riemannian manifolds, geodesics, etc.; and
defer to a standard textbook such as [20]. Readers familiar with concepts from
Riemannian geometry can skip this section and directly move onto Sect. 19.3;
however, a quick glance will be useful for getting familiar with our notation.

A retraction is a smooth mapping Ret from the tangent bundle TM to the
manifoldM. The restriction of a retraction to TxM, Retx : TxM→M, is a smooth
mapping that satisfies the following:

1. Retx(0) = x, where 0 denotes the zero element of TxM.
2. D Retx(0) = idTxM, where D Retx denotes the derivative of Retx and idTxM

denotes the identity mapping on TxM.

One possible candidate for retraction on Riemannian manifolds is the exponential
map. The exponential map Expx : TxM→M is defined as Expx v = γ (1), where
γ is the geodesic satisfying the conditions γ (0) = x and γ̇ (0) = v.

A vector transportT :M×M×TM→ TM, (x, y, ξ) �→ Tx,y(ξ) is a mapping
that satisfies the following properties:

1. There exists an associated retraction Ret and a tangent vector ν satisfying
Tx,y(ξ) ∈ TRetx(ξ), for all ξ ∈ TxM.

2. Tx,xξ = ξ , for all ξ ∈ TxM.
3. The mapping Tx,y(·) is linear.

We use T Retx
x,y to denote the vector transport constructed by the differential of the

retraction, i.e., T Retx
x,y (ξ) = D Retx(η)[ξ ], wherein Retx(η) = y (in the case of

multiple η, we make it clear by writing the value of η), while PRetx
x,y denotes the

parallel transport along the retraction curve (again, if there are multiple curves where
Retx(η) = y, we make it clear from context which curve is meant).

The gradient on a Riemannian manifold is defined as the vector ∇f (x) in tangent
space such that

Df (x)ξ = 〈∇f (x), ξ 〉, for ξ ∈ TxM,

where 〈·, ·〉 is the inner product in the tangent space TxM.Df (x)ξ is the directional
derivative of f along ξ . Let γ : [−1, 1] →M be a differentiable curve with γ (0) =
x and γ̇ (0) = ξ (for example γ (t) = Exp(tξ)), then the directional derivative can
be defined by

Df (x)ξ = d

dτ
f (γ (τ))

∣
∣
∣
∣
τ=0
.

Differentials at each point on the manifold forms the cotangent space. The cotangent
space on the smooth manifoldM at point x is defined as the dual space of the tangent
space. Elements of the cotangent space are linear functionals on the tangent space.
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The Hessian of a function is a symmetric bilinear formD2f (x) : TxM×TxM→
R, (ξ, η) → 〈∇η∇f (x), ξ 〉, where ∇η is the covariant derivative with respect to
η [1]. The Hessian as a operator ∇2f (x) : TxM → TxM is a linear operator
that maps ν in TxM onto the Riesz representation D2f (x)(ν, .). Alternatively, the
operator Hessian can be defined by

d

dτ
〈∇f (γ (τ)), ∇f (γ (τ))〉

∣
∣
∣
∣
τ=0

= 2〈∇f (x), (∇2f )ξ〉,

where γ : [−1, 1] → M is a differentiable curve with γ (0) = x and γ̇ (0) = ξ .In
the following, we give some conditions and definitions needed for the complexity
analysis of the algorithms in this book chapter.

Definition 19.1 (ρ-Totally Retractive Neighborhood) A neighborhood � of a
point x is called ρ-totally retractive if for all y ∈ �, � ⊂ B(0y, ρ) and Rety(·)
is a diffeomorphism on B(0y, ρ).

All optimization algorithms given in this book chapter start from an initial point
and the point is updated based on a retraction along a direction with a certain
step size. The following condition guarantees that all points along retraction in all
interactions stay in a set.

Definition 19.2 (Iterations Stay Continuously in X) The iterate xk+1 =
Retxk (αkξk) is said to stay continuously in X if Retxk (tξk) ∈ X for all t ∈ [0, αk].

Most of the optimization algorithms explained in this chapter need a vector
transport. The convergence analysis for many of them is available for the specific
case of parallel transport. Some works that go beyond parallel transport still need
some extra conditions on the vector transport as explained below. These conditions
hold a forteriori for parallel transport.

Definition 19.3 (Isometric Vector Transport) The vector transport T is said to be
isometric onM if for any x, y ∈M and η, ξ ∈ TxM, 〈Tx,y(η), Tx,y(ξ)〉 = 〈η, ξ 〉.
Definition 19.4 (θ-Bounded Vector Transport) The vector transport T with its
associated retraction Ret is said to be θ -bounded onM if for any x, y = Retx(ξ) ∈
M and ξ ∈ TxM,

‖Tx,yη − PRetx
x,y η‖ ≤ θ‖ξ‖‖η‖, (19.1)

where P is the parallel transport along this associated retraction curve.

Definition 19.5 (θ-Bounded Inverse Vector Transport) The inverse vector trans-
port with its associated retraction Ret is said to be θ -bounded on M if for any
x, y = Retx(ξ) ∈M and ξ ∈ TxM,

‖(Tx,y
)−1

χ −
(

PRetx
x,y

)−1
χ‖ ≤ θ‖χ‖‖ξ‖,
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where P is the parallel transport along this associated retraction curve.

The following proposition helps in checking if a vector transport satisfies some
of the conditions expressed above.

Proposition 19.6 (Lemma 3.5 in Huang et al. [19]) Assume that there
exists a constant c0 > 0 such that T satisfies ‖Tx,y − T Retx

x,y ‖ ≤ c0‖ξ‖,

‖(Tx,y
)−1 −

(

T Retx
x,y

)−1‖ ≤ c0‖ξ‖, for any x, y ∈ M and the retraction

y = Retx(ξ). Then, the vector transport and its inverse are θ -bounded on M,
for a constant θ > 0.

We note that if the vector transport is C0, then the condition of this proposition
holds.

For the convergence analysis of the algorithms in this chapter, the cost function
needs to satisfy some of the properties given below.

Definition 19.7 (G-Bounded Gradient) A function f : X → R is said to have a
G-bounded gradient in X if ‖∇f (x)‖ ≤ G, for all x ∈ X.

Definition 19.8 (H-Bounded Hessian) A function f : X → R is said to have an
H -bounded Hessian in X if ‖∇2f (x)‖ ≤ H , for all x ∈ X.

Definition 19.9 (Retraction L-Smooth) A function f : X → R is said to be
retraction L-smooth if for any x, y = Retx(ξ) in X, we have

f (y) ≤ f (x)+ 〈∇f (x), ξ 〉 + L

2
‖ξ‖2.

If the retraction is the exponential map, then the function is called geodesically
L-smooth.

Definition 19.10 (Retraction L-Upper-Hessian Bounded) A function f : X →
R is said to be upper-Hessian bounded in a subsetU ⊂ X if Retx(tξ) stays in X for
all x, y = Retx(ξ) inU and t ∈ [0, 1], and there exists a constant L > 0 such that
d2f (Retx(tξ))

dt2
≤ L.

Definition 19.11 (Retraction μ-Lower-Hessian Bounded) A function f : X →
R is said to be lower-Hessian bounded in a subsetU ⊂ X if Retx(tξ) stays in X for
all x, y = Retx(ξ) inU and t ∈ [0, 1], and there exists a constant μ > 0 such that
d2f (Retx(tξ))

dt2
≥ μ.

Definition 19.12 (Retraction Ll-Lipschitz) A function f : X → R is said to be
retraction Ll-Lipschitz in X, if there exists Ll > 0 such that for all x, y ∈ X,

‖PRetx
x,y ∇f (x)− ∇f (y)‖ ≤ Ll‖ξ‖, (19.2)

where P is the parallel transport along this associated retraction curve y = Retx(ξ).
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If the retraction is the exponential map, then this condition is called geodesically
Ll-Lipschitz. A function that is geodesically Ll-Lipschitz is also geodesically L-
smooth with L = Ll [44].

In the following, we give two propositions and a theorem for checking if a func-
tion satisfies some of the conditions explained before. The following proposition is
based on a Lemma in [22].

Proposition 19.13 Suppose that the function f : X → R is retraction L-upper-
Hessian bounded inU ⊂ X. Then, the function is also retraction L-smooth inU.

Proposition 19.14 (Lemma 3.8 in Kasai et al. [22]) Let Ret be a retraction on
M and the vector transport associated with the retraction and its inverse be θ -
bounded. Assume a function is twice continuously differentiable with H -bounded
Hessian. Then the function is retraction Ll-Lipschitz with Ll = H(1 +*θ) with *
being an upper bound for ‖ξ‖ in (19.2).

For showing retraction L-smoothness, we can use the following theorem.

Theorem 19.15 (Lemma 2.7 in Boumal et al. [11]) LetM be a compact Rieman-
nian submanifold of a Euclidean space. Let Ret be a retraction onM. If a function
has a Euclidean Lipschitz continuous gradient in the convex hull of M, then the
function is retraction L-smooth for some constant L for any retraction.

The aforementioned conditions of function are quite general. In the following we
give some conditions on functions that help to develop stronger convergence results.

Definition 19.16 (g-Convex) A set X is geodesically convex (g-convex) if for any
x, y ∈ X, there is a geodesic γ with γ (0) = x, γ (1) = y and γ (t) ∈ X for
t ∈ [0, 1]. A function f : X→ R is called geodesically convex in this set if

f (γ (t)) ≤ (1 − t)f (x)+ tf (y).

Definition 19.17 (μ-Strongly g-Convex) A function f : X → R is called
geodesically μ-strongly convex if for any x, y = Expx(ξ) ∈ X and gx subgradient
of f at x (gradient if f is smooth), it holds

f (y) ≥ f (x)+ 〈gx, ξ 〉 + μ

2
‖ξ‖2.

Definition 19.18 (τ -Gradient Dominated) A function f : X → R is called τ -
gradient dominated if x∗ is a global minimizer of f and for every x ∈ X we have

f (x)− f (x∗) ≤ τ‖∇f (x)‖2. (19.3)

The following proposition shows that strongly convex functions are also gradient
dominated. Therefore, the convergence analysis developed for gradient dominated
functions also holds for strongly convex functions [44].
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Algorithm 1 Riemannian SGD

Given: Smooth manifoldM with retraction Ret; initial value x0; a differentiable cost function
f ; number of iterations T .
for t = 0, 1, . . . , T − 1 do

Obtain the direction ξt = ∇fi(xt ), where ∇fi(xt ) is the noisy version of the cost gradient
Use a step-size rule to choose the step-size αt
Calculate xt+1 = Retxt (−αt ξt )

end for
return xT

Proposition 19.19 τ -gradient domination is implied by 1
2τ -strong convexity as in

Euclidean case.

19.3 Stochastic Gradient Descent on Manifolds

In the most general form, consider the following constrained optimization problem:

min
x∈M

f (x). (19.4)

We assume M is a Riemannian manifold and that at each step of SGD we obtain
a noisy version of the Riemannian gradient. Riemannian SGD uses the following
simple update rule:

xt+1 = Retxt
(−ηt∇fit (xt )

)

, (19.5)

where ∇fit is a noisy version of the Riemannian gradient at time step t and the
noise terms at different time steps are assumed to be independent. Note that there
is stochasticity in each update. Therefore, the value xt can be seen as a sample
from a distribution depending on the gradient noise until time step t . A sketch of
Riemannian SGD is given in Algorithm 1. For providing convergence results for all
algorithms, it is assumed the stochastic gradients in all iterations are unbiased, i.e.,

E[∇fit (xt )− ∇f (xt )] = 0.

This unbiasedness condition is assumed in all theorems and we do not state it
explicitly in the statements of the theorems.

The cost function used in many practical machine learning problems which is
solved by SGD can be defined by

f (x) = E[f (z; x)] =
∫

f (z; x)dP (z), (19.6)

where x denotes the parameters, dP is a probability measure and f (z; x) is the risk
function. For this cost function fit = f (zit , xt ) is the risk evaluated at the current
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sample zit from the probability law dP . Apparently, the stochastic gradients for this
cost function satisfy the condition that stochastic gradients are unbiased. A special
case of the above-mentioned cost function is the following finite-sum problem:

f (x) = 1

n

n
∑

i=1

fi(zi, x). (19.7)

If we assume z1, . . . , zn to be our data, then the empirical distribution over the
data P(Z = zi) = 1

n
gives rise to the above noted cost function. Therefore, the

theoretical analysis for SGD works both for online-algorithms and also finite-sum
optimization problems. To further elucidate this consider the following example.

Example: Maximum Likelihood Parameter Estimation
Consider we want to estimate the parameters of a model distribution given
by the density q(z; x), where x denotes the parameters. In the online learning
framework, we observe a sample zt from the underlying distribution p(z) at
each time step. Observing this new sample, the parameter set is updated by a
rule. The update rule should be designed such that in the limit of observing
enough samples, the parameters converge to the optimal parameters. The
optimal parameters are commonly defined as the parameters that minimize the
Kullback-Leibler divergence between the estimated and the true distributions.
The following cost function minimizes this divergence:

f (x) = E[− log q(z; x)] = −
∫

log q(z; x)p(z)dz,

where q is the density of model distribution and p is the true density.
Apparently, this cost function is in the form of cost function defined in (19.6).
One of the common update rules for online learning is SGD. For Riemannian
SGD, we have ∇f (zt , xt ) = ∇fit (xt ) and we use the update rule as in (19.5).

In the finite sample case, consider z1, . . . , zn to be i.i.d. samples from
the underlying density q(z; x). A common approach for estimating the
parameters is the maximum-likelihood estimate where we are minimizing the
following cost function:

f (x) = 1

n

n
∑

i=1

− log q(zi; x).

The cost function is a finite-sum cost that can be minimized using SGD.
Therefore, it is important to know the conditions under which SGD guarantees
convergence.
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The following theorem gives the convergence to stationary points of the cost
function.

Theorem 19.20 (Theorem 2 in Bonnabel [8]) Consider the optimization problem
in (19.4), where the cost function is the expected risk (19.6). Assume

– The manifold M is a connected Riemannian manifold with injectivity radius
uniformly bounded from below by I > 0.

– The steps stay within a compact set.
– The gradients of the fis are G-bounded.

Let the step-sizes in Algorithm 1 satisfy the following standard condition

∑

α2
t <∞ and

∑

αt = ∞, (19.8)

Then f (xt ) converges a.s. and ∇f (xt )→ 0 a.s.

Staying within a compact set of the previous theorem is a strong requirement. Under
milder conditions, [18] were able to prove the rate of convergence.

Theorem 19.21 (Theorem 5 in Hosseini and Sra [18]) Assume that the following
conditions hold

– The functions fi are retraction L-smooth.
– The expected square norm of the gradients of the fis are G2-bounded.

Then for the following constant step-size in Algorithm 1

αt = c√
T
,

we have

min
0≤t≤T−1

E[‖∇f (xt )‖2] ≤ 1

T

T−1
∑

t=0

E[‖∇f (xt )‖2]≤ 1√
T

(
f (x0)−f (x∗)

c
+Lc

2
G2

)

.

(19.9)
where f (x0) is the function value at the initial point and f (x∗) is the minimum
function value.

The following theorem shows that it is possible to get a convergence rate without
needing bounded gradients with a randomized rule. For this theorem, the stochastic
gradients needs to have σ -bounded variance, i.e.,

E[‖∇fit (xt )− ∇f (xt )‖2] ≤ σ 2, 0 ≤ σ <∞.

The conditions and the resulting rate are similar to that of Euclidean case [15], and
no further assumptions are necessary.
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Theorem 19.22 (Theorem 4 in Hosseini and Sra [18]) Assume that the following
conditions hold.

– The functions fi are retraction L-smooth.
– The functions fi have σ -bounded variance.

Assume a slightly modified version of SGD that outputs a point xa by randomly
picking one of the iterates, say xt , with probability pt := (2αt − Lα2

t )/ZT , where
ZT = ∑T

t=1(2αt − Lα2
t ). Furthermore, choose αt = min{L−1, cσ−1T −1/2} in

Algorithm 1 for a suitable constant c. Then, we obtain the following bound on
E[‖∇f (xa)‖2], which measures the expected gap to stationarity:

E[‖∇f (xa)‖2] ≤ 2L�1

T
+ (

c + c−1�1
) Lσ√
T

= O
(

1

T

)

+ O
(

1√
T

)

. (19.10)

For Hadamard manifolds (complete, simply-connected Riemannian manifolds with
nonpositive sectional curvature), one can prove a.s. convergence under milder condi-
tions. Hadamard manifolds have strong properties, for example the exponential map
at any point is globally invertible. Concerning convergence for Hadamard manifolds
there is the following result requiring milder assumptions.

Theorem 19.23 (Theorem 3 in Bonnabel [8]) Consider the optimization problem
in (19.4), where the cost function is the expected risk (19.6). Assume

– The exponential map is used for the retraction.
– The manifoldM is a Hadamard manifold.
– There is a lower bound on the sectional curvature denoted by κ < 0.
– There is a point y ∈ M such that the negative gradient points towards y when
d(x, y) becomes larger than s > 0, i.e.,

inf
d(x,y)>s

〈Exp−1
x (y), ∇f (x)〉 < 0

– There is a continuous function g :M→ R that satisfies

g(x) ≥ max
{

1,E
[‖∇f (z; x)‖2(1 + √

κ(d(x, y)+ ‖∇f (z; x)‖))],
E
[(

2‖∇f (z; x)‖d(x, y)+ ‖∇f (z; x)‖2)2]}

Then for the step size rule αt = − βt
g(xt )

in Algorithm 1, wherein βt satisfying (19.8),
f (xt ) converges a.s. and ∇f (xt )→ 0 a.s.
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Algorithm 2 Riemannian SVRG

1: Given: Smooth manifold M with retraction Ret and vector transport T ; initial value x0; a
finite-sum cost function f ; update frequency m; number of epochs S and K .

2: for k = 0, . . ., K-1 do
3: x̃0 = xk
4: for s = 0, . . ., S-1 do
5: Calculate the full Riemannian gradient ∇f (x̃s )
6: Store xs+1

0 = x̃s

7: for t = 0, . . . , m− 1 do
8: Choose it ∈ {1, . . . , n} uniformly at random
9: Calculate ξ s+1

t = ∇fit (xs+1
t )− T

x̃s ,xs+1
t
(∇fit (x̃s )− ∇f (x̃s ))

10: Use a step-size rule to choose the step-size αs+1
t

11: Calculate xs+1
t+1 = Ret

xs+1
t
(−αs+1

t ξ s+1
t )

12: end for
13: Option I-a: Set x̃s+1 = xs+1

m

14: Option II-a: Set x̃s+1 = xs+1
t for randomly chosen t ∈ {0, . . . , m− 1}

15: end for
16: Option I-b: Set xk+1 = x̃S

17: Option II-b: Set xk+1 = x̃st for randomly chosen s ∈ {0, . . . , S−1} and t ∈ {0, . . . , m−1}
18: end for
19: return xK

19.4 Accelerating Stochastic Gradient Descent

Mainly for finite-sum problems but also for expected risk (19.6) problems, acceler-
ated algorithms have been developed with faster convergence rates than plain SGD.
In this section, we review several popular accelerated algorithms that are based on
variance reduction ideas. Stochastic variance reduced gradient (SVRG) is a popular
variance reduction technique that has a superior convergence than plain SGD. A
Riemannian version of SVRG (R-SVRG) was proposed in [33] and generalized to
use retractions and vector transports in [36]. Variance reduction can be seen in the
line 9 of Algorithm 2, where the average gradient is used for adjust the current
gradient. Consider a stochastic gradient that has high variance; then subtracting the
difference between this gradient and the average gradient at a reference point from
this gradient in the current point reduces the effect of high variance. Because we are
on a Riemannian manifold, gradients live in different tangent spaces, and a vector
transport is needed to make the subtraction meaningful as can be seen in the line 9
of Algorithm 2.

The authors in [33] were able to prove that R-SVRG has the same convergence
as in the Euclidean case [32]. Though, the statement on the convergence rate needs
additional assumptions and a bound depending on the sectional curvature.

Theorem 19.24 (Theorem 2 in Zhang et al. [33]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we
run Riemannian SVRG to solve this problem with K = 1, Option I-a, Option II-b.
Assume
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– The exponential map is used for the retraction and the parallel transport is used
for the vector transport.

– The iterations stay in a compact subset X, and the diameter of X is bounded by
D, that is maxx,y∈X d(x, y) ≤ D.

– The exponential map on X is invertible.
– The sectional curvature is upper-bounded.
– There is a lower bound on the sectional curvature denoted by κ .
– The functions fi are geodesically L-smooth.
– The function f attains its minimum at x∗ ∈ X.

Define ζ to be a constant that captures the impact of the manifold curvature.

ζ =
⎧

⎨

⎩

√|κ|D
tanh

(√|κ|D
) , κ < 0.

1, κ ≥ 0.
(19.11)

Then there exist universal constants μ0 ∈ (0, 1), ν > 0 such that if we set αt =
μ0

Lnα1 ζα2 , α1 ∈ (0, 1], α2 ∈ (0, 2] and m = ' n3α1

3μ0ζ
1−2α2

( in Algorithm 2, we have

E[‖∇f (x1)‖2] ≤ Lnα1ζ α2 [f (x0)− f (x∗)]
T ν

,

where T = mS is the number of iterations.

The abovementioned theorem was stated based on the exponential map and the
parallel transport that can be expensive making SVRG impractical for some appli-
cations. In [36] the following convergence result is proved when using retractions
and vector transports.

Theorem 19.25 (Theorem 4.6 in Sato et al. [36]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we
run the Riemannian SVRG algorithm to solve this problem with K = 1, Option I-a
and Option I-b. Assume

– The retraction is of the class C2.
– The iterations stay in a compact subset X.
– For each s ≥ 0, there exists ηs+1

t ∈ Tx̃sM such that Retx̃s (η
s+1
t ) = xs+1

t .
– There exists I > 0 such that, for any x ∈ X, Retx(.) is defined in a ball B(0x, I ) ∈
TxM, which is centered at the origin 0x in TxM with radius I .

– The vector transport is continuous and isometric onM.
– The functions fi are twice-differentiable.

Assume the step-size αst in Algorithm 2 is chosen by the rule (19.8). Then f (xst )
converges a.s. and ∇f (xst )→ 0 a.s.

Note that existence of ηs+1
t is guaranteed if Retx has ρ-totally retractive neighbor-

hood for all x ∈ X. For the special case of the exponential map and the parallel



540 R. Hosseini and S. Sra

transport, many of the conditions of the aforementioned theorem are automatically
satisfied or simplified: The parallel transport is an isometry, the exponential map
is of class C2, and the third and fourth conditions can be satisfied by having a
connected manifold with the injectivity radius uniformly bounded from below by
I > 0.

Stochastic recursive gradient (SRG) [29] is another variance reduction algorithm
similar to SVRG proposed. It was recently shown that the algorithm achieves
the optimal bound for the class of variance reduction methods that only assume
the Lipschitz continuous gradients [30]. Recently, the Riemannian counterpart of
this algorithm (R-SRG) shown in Algorithm 3 has also been developed [22]. The
following theorem gives a convergence result with the minimalistic conditions
needed for the proof.

Theorem 19.26 (Theorem 4.5 in Kasai et al. [22]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we
run the Riemannian SRG algorithm to solve this problem with S = 1. Assume

– The iterations stay continuously in a subset X.
– The vector transport is θ -bounded.
– The vector transport is isometric on X.
– The functions fi are retraction L-smooth.
– The functions fi are retraction Ll-Lipschitz.
– The gradients of the fis are G-bounded.
– The function f attains its minimum at x∗ ∈ X.

Assume a constant step-size α ≤ 2

L+
√

L2+8m(L2
l +G2θ2)

in Algorithm 3. Then, we

have

E[‖∇f (x̃)‖2] ≤ 2

α(m+ 1)
[f (x0)− f (x∗)].

A very similar idea to R-SRG was used in another algorithm called Riemannian
SPIDER (R-SPIDER) [45]. The Euclidean counterpart of the R-SPIDER algorithm
was shown to have near optimal complexity bound. It can be applied to both the
finite-sum and the stochastic optimization problems [14]. The details of the R-
SPIDER method are given in Algorithm 4. The algorithm uses retraction and vector
transport while the original algorithm and proofs of [45] were for the exponential
mapping and the parallel transport. For the analysis of general non-convex functions
in this section, we set T = 1 meaning that we have a single outer-loop.

Theorem 19.27 (Theorem 1 in Zhou et al. [45]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we run
the Riemannian SPIDER algorithm with option I to solve this problem. Assume

– The exponential map is used for the retraction and the parallel transport is used
for the vector transport.

– The functions fi are geodesically L-Lipschitz.
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Algorithm 3 Riemannian SRG

1: Given: Smooth manifold M with retraction Ret and vector transport T ; initial value x̃0; a
finite-sum cost function f ; update frequency m; number of epochs S.

2: for s = 0, . . ., S-1 do
3: Store x0 = x̃s

4: Calculate the full Riemannian gradient ∇f (x0)

5: Store ξ0 = ∇f (x0)

6: Store x1 = Retx0 (−α0ξ0)

7: for t = 1, . . . , m− 1 do
8: Choose it ∈ {1, . . . , n} uniformly at random
9: Calculate ξt = ∇fit (xt )− Txt−1,xt

(∇fit (xt−1)− ξt−1
)

10: Use a step-size rule to choose the step-size αt
11: Calculate xt+1 = Retxt (−αt ξt )
12: end for
13: Set x̃s+1 = xt for randomly chosen t ∈ {0, . . . , m}
14: end for
15: return x̃S

– The stochastic gradients have σ -bounded variance.

Let T = 1, s = min
(

n, 16σ 2

ε2

)

, p = n0s
1
2 ,αk = min

(
ε

2Ln0
,

‖ξk‖
4Ln0

)

,|S1| = s, |S2| =
4s

1
2

n0
and n0 ∈ [1, 4s 1

2 ] in Algorithm 4. Then, we achieve E[‖∇f (x̃1)‖] ≤ ε in

at most K = 14Ln0�

ε2 iterations in expectation, where � = f (x0) − f (x∗) with
x∗ = arg minx∈M f (x).

For the online case, the following theorem considers the iteration complexity of the
algorithm.

Theorem 19.28 (Theorem 2 in Zhou et al. [45]) Consider the optimization
problem in (19.4), where the cost function is the expected risk (19.6). Assume the
same conditions as in Theorem 19.27. Consider we run the Riemannian SPIDER
algorithm with option I to solve this problem. Let T = 1, p = n0σ

ε
,αk =

min
(

ε
2Ln0

,
‖ξk‖
4Ln0

)

,|S1| = 64σ 2

ε2 , |S2| = 4σ
εn0

for n0 ∈ [1, 4σ
ε
] in Algorithm 4. Then,

we achieve E[‖∇f (x̃1)‖] ≤ ε in at most K = 14Ln0�

ε2 iterations in expectation,
where � = f (x0)− f (x∗) with x∗ = arg minx∈M f (x).

The authors of [44] give the following convergence theorem for the same algorithm.
The following theorems are for finite-sum and online settings.

Theorem 19.29 (Theorem 2 in Zhang et al. [44]) Consider the same problem and
assume the same conditions as in Theorem 19.27. Consider, we run the Riemannian
SPIDER algorithm with option II to solve this problem. Let T = 1, p = 8n1/29,
αk = min{ 1

2L,
ε

‖ξk‖L }, |S1| = n, and |S2| = 8n1/29 for each iteration in

Algorithm 4. Then, we achieve E[‖∇f (x̃1)‖2] ≤ 10ε2 in at most K = 4L�
ε2

iterations, where � = f (x0)− f (x∗) with x∗ = arg minx∈M f (x).
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Algorithm 4 Riemannian SPIDER

1: Given: Smooth manifoldM with retraction Ret and vector transport T ; initial value x̃0; noisy
version of the cost function fi ; iteration interval pt , mini-batch sizes |St1| and |St2,k |; number
of epochs T and Kt .

2: for t = 0, . . ., T − 1 do
3: x0 = x̃t

4: for k = 0, . . ., Kt − 1 do
5: if mod(k, pt ) = 0 then
6: Draw minibatch size |St1| and compute ξk = ∇fSt1 (xk)
7: else
8: Draw minibatch size |St2| and compute ∇fSt2 (xk)
9: Compute ξk = ∇fSt2 (xk)− Txk−1,xk

(∇fSt2 (xk−1)− ξk−1
)

10: end if
11: if ξk ≤ 2εk then
12: Option II: x̃t+1 = xk , break
13: end if
14: Use a step-size rule to choose the step-size αtk
15: Calculate xk+1 = Retxk (−αtkξk)
16: end for
17: Option I: Output x̃t+1 = xk for randomly chosen k ∈ {0, . . . , K − 1}
18: end for
19: return x̃T

Theorem 19.30 (Theorem 1 in Zhang et al. [44]) Consider the same problem and
assume the same conditions as in Theorem 19.28. Consider, we run the Riemannian
SPIDER algorithm with option II to solve this problem. Let T = 1, p = 1

ε
, αk =

min{ 1
2L,

ε
‖ξk‖L }, |S1| = 2σ 2

ε2 , and |S2| = 2
ε

for each iteration in Algorithm 4. Then,

we achieve E[‖∇f (x̃1)‖2] ≤ 10ε2 in at most K = 4L�
ε2 iterations, where � =

f (x0)− f (x∗) with x∗ = arg minx∈M f (x).

Among the convergence results presented in this section, R-SPIDER is the only
algorithm that has strong convergence without the need for the strong condition that
the iterates stay in a compact set. This condition is hard to ensure even for simple
problems. Another important point to mention is that the step-sizes suggested by the
theorems are very small, and in practice much larger step-sizes with some decaying
rules are usually used.

19.5 Analysis for G-Convex and Gradient Dominated
Functions

For g-convex or gradient dominated functions, we obtain faster convergence rates
for the algorithms explained in the previous sections. For plain SGD, [43] proved
faster convergence for g-convex functions as stated in the following theorem.
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Theorem 19.31 (Theorem 14 in Zhang et al. [43]) Consider the R-SGD Algo-
rithm for solving the optimization problem in (19.4), where the cost function is the
expected risk (19.6). Assume

– The function f is g-convex.
– The exponential map is used for the retraction.
– The iterations stay in a compact subset X, and the diameter of X is bounded by
D, that is maxx,y∈X d(x, y) ≤ D.

– There is a lower bound on the sectional curvature denoted by κ .
– The functions fi are geodesically L-smooth.
– The function f attains its minimum at x∗ ∈ X.
– The functions fi have σ -bounded variance.
– The manifold is Hadamard (Riemannian manifolds with global non-positive

curvature).

Define ζ to be a constant that captures the impact of manifold curvature defined by

ζ =
√|κ|D

tanh
(√|κ|D) . (19.12)

Then the R-SGD algorithm with αt = 1
L+ σ

D

√
(t+1)ζ

in Algorithm 1 satisfies

E[f (x̄T )− f (x∗)] ≤ ζLD2 + 2Dσ
√
ζT

2(ζ + T − 1)
,

where x̄1 = x1, x̄t+1 = Expx̄t (
1
t+1 Exp−1

x̄t
(xt+1)), for 1 ≤ t ≤ T − 1 and x̄T =

Expx̄T−1
(

ζ
ζ+T−1 Exp−1

x̄T−1
(xT )).

The aforementioned theorem shows that we need a decaying step size for
obtaining faster convergence for the R-SGD algorithm, while Theorem 19.22
needed constant step size for getting a convergence rate for general non-convex
functions. Decaying step-size is usually used in practice and the above theorem can
be a motivation, because near local minima the function can be assumed to be g-
convex. For the case of strongly g-convex functions, the authors of [43] proved a
stronger convergence result stated below.

Theorem 19.32 (Theorem 12 in Zhang et al. [43]) Consider the R-SGD Algo-
rithm for solving the optimization problem in (19.4), where the cost function is the
expected risk (19.6). Assume

– The function f is μ-strongly g-convex.
– The exponential map is used for the retraction.
– The iterations stay in a compact subset X, and the diameter of X is bounded by
D, that is maxx,y∈X d(x, y) ≤ D.

– There is a lower bound on the sectional curvature denoted by κ .
– The function f attains its minimum at x∗ ∈ X.
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– The expected square norm of the gradients of the fis are G2-bounded.
– The manifold is Hadamard (Riemannian manifolds with global non-positive

curvature).

Then the R-SGD algorithm with αt = 2
μ(t+2) in Algorithm 1 satisfies

E[f (x̄T )− f (x∗)] ≤ 2ζG

(T + 2)
,

where x̄0 = x0, x̄t+1 = Expx̄t (
2
t+2 Exp−1

x̄t
(xt+1)) and ζ is a constant given

in (19.12).

For strongly g-convex functions, [33] proved a linear convergence rate for the
R-SVRG algorithm given in the following theorem.

Theorem 19.33 (Theorem 1 in Zhang et al. [33]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we
run the Riemannian SVRG algorithm to solve this problem with K = 1, Option I-
a and Option I-b. Assume the same conditions as in Theorem 19.24. Furthermore,
assume that the function f is μ-strongly g-convex. If we use an update frequency
and a constant step size in Algorithm 2 such that the following holds

a = 3ζαL2

μ− 2ζαL2 + (1 + 4ζα2 − 2αμ)m(μ− 5ζαL2)

μ− 2ζαL2 < 1,

then the iterations satisfy

E[f (x̃S)− f (x∗)] ≤ L

2
E[d2(x̃S, x∗)] ≤ L

2
aSd2(x0, x∗).

For a class of functions more general than strongly g-convex functions, that is
gradient-dominated functions, it is also possible to prove that R-SVRG has a strong
linear convergence rate.

Theorem 19.34 (Theorem 3 in Zhang et al. [33]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Consider, we
run the Riemannian SVRG algorithm to solve this problem with Option II-a, Option
I-b. Assume the same conditions as in Theorem 19.24. Furthermore, assume that
the function f is τ -gradient dominated. If we use the parameters α = μ0

Ln2/3ζ 1/3 ,

m = ' n
3μ0

(, S = 8(6 + 18μ0
n−3 )

Lτζ 1/2μ0
νn1/3 9 for some universal constants μ0 ∈ (0, 1)

and ν > 0 in Algorithm 2, then we have

E[‖∇f (xK)‖2] ≤ 2−K‖∇f (x0)‖2,

E[f (xK)− f (x∗)] ≤ 2−K [‖f (x0)− f (x∗)‖].
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The aforementioned strong convergence results for R-SVRG are valid when
using the exponential map and the parallel transport. For the general retraction and
the vector transport there is not any global rate of convergence result yet. However,
the authors in [36, Theorem 5.14] proved a local linear convergence result for the
R-SVRG algorithm.

For the R-SRG algorithm, [22] gives a convergence result for the g-convex case
as stated in the following.

Theorem 19.35 (Theorem 4.1 in Kasai et al. [22]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Assume the same
conditions as in Theorem 19.26 hold, and furthermore assume that

‖PRetx
x,y ∇fi(x)− ∇fi(y)‖2 ≤ L〈PRetx

x,y ∇fi(x)− ∇fi(y), Exp−1
y x〉,

where L is the constant for the retraction smooth function f . For the Euclidean
case, this condition is equal to have a convex and L-smooth function. Consider, we
run the Riemannian SRG algorithm to solve this problem using the parameters α
and m in Algorithm 3 such that α < 2/L and (β − L2)α2 + 3Lα − 2 ≤ 0, where

β := 2
(

(2Ll + 2θG+ L)θG+ νL)m. (19.13)

Then for s > 0,

E[‖∇f (x̃s)‖2] ≤ 2

α(m+ 1)
E[‖f (x̃s−1)− f (x∗)‖] + αL

2 − αLE[‖∇f (x̃s−1)‖2].

For μ-strongly g-convex functions, the authors of [22] proved linear convergence
as stated below. The nice feature of the R-SRG algorithm is that it is the only
method that achieves linear convergence without needing the exponential map and
the parallel transport.

Theorem 19.36 (Theorem 4.3 in Kasai et al. [22]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Assume the
same conditions as in Theorem 19.35 and furthermore assume that the function
f is μ-strongly convex. Consider, we run the Riemannian SRG algorithm to solve
this problem using the parameters α and m in Algorithm 3 such that such that
αm := 1

μα(m+1) + αL
2−αL < 1. Then,

E[‖∇f (x̃s)‖2] ≤ σ smE[‖∇f (x̃0)‖2].

Similarly for τ gradient dominated functions, the authors of [22] obtained linear
convergence.

Theorem 19.37 (Theorem 4.6 in Kasai et al. [22]) Consider the optimization
problem in (19.4), where the cost function is the finite sum (19.7). Assume the same
conditions as in Theorem 19.26 hold and furthermore assume that the function is



546 R. Hosseini and S. Sra

τ -gradient dominated. Consider, we run Riemannian SRG algorithm to solve this
problem with the same α in Algorithm 3 as that of Theorem 19.26 and assume
σ̄m := 2τ

α(m+1) < 1. Then for s > 0,

E[‖∇f (x̃s)‖2] ≤ σ̄ smE[‖∇f (x̃0)‖2].

For τ -gradient dominated functions, [45] was able to prove stronger convergence
results for the R-SPIDER algorithm. The following two theorems are convergence
results for the finite-sum and online cases. Unlike the analysis for the general non-
convex case, here the authors use a fixed step-size and adaptive batch sizes.

Theorem 19.38 (Theorem 3 in Zhou et al. [45]) Consider the finite sum prob-
lem (19.7) solved using the R-SPIDER algorithm with option I. Assume the same
conditions as in Theorem 19.27, and furthermore assume that the function f is

τ -gradient dominated. At iteration t of Algorithm 4, set ε0 =
√
�

2
√
τ

, εt = ε0
2t ,

st = min(n, 32σ 2

ε2
t−1
), pt = nt0s

1
2
t ,αk = ‖ξk‖

2Ln0
,|St1| = st , |St2,k| = min

( 8pt‖ξk−1‖2

(nt0)
2ε2
t−1
, n
)

and Kt = 64Lnto�
t

ε2
t−1

where nt0 ∈ [1, 8
√
s‖ξk−1‖2

ε2
t−1

] and � = f (x0) − f (x∗) with

x∗ = arg minx∈M f (x). Then the sequence x̃t satisfies

E[‖∇f (x̃t )‖2] ≤ �

4t τ
.

Theorem 19.39 (Theorem 4 in Zhou et al. [45]) Consider the optimization
problem in (19.4) solved using the R-SPIDER algorithm with option I. Assume the
same conditions as in Theorem 19.28, and furthermore assume that the function

f is τ -gradient dominated. At iteration t of Algorithm 4, set ε0 =
√
�

2
√
τ

, εt = ε0
2t ,

pt = σnt0
εt−1

, αtk = ‖ξk‖
2Llnt0

, |St1| = 32σ 2

ε2
t−1

, |St2,k| = 8σ‖ξk−1‖2

nt0ε
3
t−1

and Kt = 64Lnto�
t

ε2
t−1

where

n0 ∈ [1, 8σ‖ξk−1‖2

ε3
t−1

] and � = f (x0)− f (x∗) with x∗ = arg minx∈M f (x). Then the

sequence x̃t satisties,

E[‖∇f (x̃t )‖2] ≤ �

4t τ
.

The authors of [44] give the following analysis of the R-SPIDER algorithm for
τ -gradient dominated functions.

Theorem 19.40 (Theorem 3 in Zhang et al. [44]) Consider the same problem and
assume the same conditions as in Theorem 19.28. Consider, we run the Riemannian
SPIDER algorithm with option II to solve this problem. Let p = 8n1/29,εt =
√

M0
10τ2t ,αt = εt

L
,|S1| = n, and |S2| = 8n1/29 in each iteration of Algorithm 4, where

M0 > f (x0) − f (x∗) with x∗ = arg minx∈M f (x). Then the algorithm returns x̃T

that satisfies
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E[f (x̃T )− f (x∗)] ≤ M0

2T
.

The authors of [44] also give another proof for the R-SPIDER algorithm with
different parameters that give better iteration complexity for τ -gradient dominated
functions with respect to n.

Theorem 19.41 (Theorem 4 in Zhang et al. [44]) Consider the same problem
and assume the same conditions as in Theorem 19.28. Consider, we run the
Riemannian SPIDER algorithm with option II to solve this problem. In Algo-
rithm 4, let T = 1, p = 84Lτ log(4)9, α = 1

2L , |S1| = n, and |S2,k| =
8min

{

n,
4τpL2‖ Exp−1

xk−1
(xk)‖228k/p9

M0

}

9, where M0 > f (x0) − f (x∗) with x∗ =
arg minx∈M f (x). Then, the algorithm returns x̃K after K = pS iterations that
satisfies

E[f (x̃K)− f (x∗)] ≤ M0

2S
.

The theorems of the algorithms in the previous sections showing convergence
speed of different algorithms are summarized in Tables 19.1 and 19.2. The incre-
mental first order oracle (IFO) complexity for different algorithms are calculated
by counting the number of evaluations needed to reach the ε accuracy of gradient
(E[‖∇f (x)‖2] ≤ ε) or function (E[f (x)−f (x∗)] ≤ ε) in the theorems given in the
previous sections.

Table 19.1 Comparison of the IFO complexity for different Riemannian stochastic optimization
algorithms under finite-sum and online settings

Method general non-convex g-convex Theorem

Finite-sum R-SGD* [18] O
(
L
ε

+ L2σ 2

ε2

)

– 19.22

R-SRG [22] O
(

n+ L2

ε2

)

O
((

n+ 1
ε

)

log
( 1
ε

))

19.26, 19.35

R-SRG* [22] O
(

n+ L2ρ2
l +θ2

ε2

)

O
( (

n+ 1
ε

)

log( 1
ε
)

log(c(1−β/L2))

)

19.26, 19.35

R-SVRG [33] O
(

n+ ζ 1/2n2/3

ε

)

– 19.24

R-SPIDER [45] O
(

min
(

n+ L
√
n
ε
, Lσ
ε3/2

))

– 19.27, 19.38

R-SPIDER [44] O
(

n+ L
√
n
ε

)

– 19.29

(continued)
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Table 19.1 (continued)

Online R-SGD* [18] O
(
L
ε

+ L2σ 2

ε2

)

– 19.22

R-SPIDER [45] O
(
Lσ
ε3/2

)

– 19.28

R-SPIDER [44] O
(
Lσ 2

ε3/2

)

– 19.30

The ε-accuracies of gradients are reported for general non-convex and g-convex functions. Star in
front of the method names means using the general retraction and the parallel transport, and no
star means using the exponential map and the parallel transport in the method. The parameter
ζ (19.11) is determined by manifold curvature and diameter, σ is the standard deviation of
stochastic gradients, θ is the constant in θ-bounded vector transport, ρl = Ll/L for retraction
L-smooth and retraction Ll-Lipschitz function, the parameter β is defined in (19.13) and c > 1 is
a constant. Apparently for the parallel transport θ = 0 and ρl = 1

Table 19.2 Comparison of the IFO complexity for different Riemannian stochastic optimization
algorithms under finite-sum and online settings

Method τ -gradient dominated μ-strongly g-convex Theorem

Finite-sum R-SGD [44] – ζG
ε

19.32

R-SRG [22] O
((

n+ L2
τ

)

log
( 1
ε

))

O
((

n+ Lμ
)

log
( 1
ε

))

19.36,
19.37

R-SRG* [22] O
((

n+ τ 2(L2ρ2
l + θ2)

)

log
( 1
ε

))

O
(

(n+Lμ) log( 1
ε
)

log(c(1−β/L2))

)

19.36,
19.37

R-SVRG [33] O
(

(n+ Lτ ζ 1/2n2/3) log
( 1
ε

))

O
(

(n+ ζL2
μ) log

( 1
ε

))

19.33,
19.34

R-SPIDER [45] O
(

min
((

n+ Lτ√n
)

log
( 1
ε

)

, Lτ σ
ε1/2

)) ← 19.38

R-SPIDER [44] O
((

n+ min
(

Lτ
√
n,L2

τ

))

log
( 1
ε

)) ← 19.40,
19.41

Online R-SGD [44] – ζG
ε

19.32

R-SPIDER [45] O
(
Lτ σ

ε1/2

)

← 19.39

The ε-accuracies of functions are reported for μ-strongly g-convex and τ -gradient dominated
functions. The results of Theorems 19.34, 19.36, 19.37, 19.38 are originally given for the ε-
accuracy of gradient, and they also hold for the ε-accuracy of function because of (19.3). The
parameters Lτ = 2τL and Lμ = L

μ
are condition numbers, G is the bound for the norm of

the stochastic gradients, and other parameters are the same as those given in Table 19.1. From
Proposition 19.19, it is clear that the complexity results for τ -gradient dominated functions also
hold for μ-strongly g-convex functions, and to obtain complexity results it is enough to change Lτ
to Lμ in the equations
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19.6 Example Applications

We list below a few finite-sum optimization problems drawn from a variety of
applications. Riemannian stochastic methods turn out to be particularly effective
for solving these problems. We only include the formulation, and refer the reader
to the cited works for details about implementation and empirical performance. The
manifolds occurring in the examples below are standard, and the reader can find
explicit implementations of retractions, vector transport, etc., within the MANOPT

software [10], for instance.

Stochastic PCA
Suppose we have observations z1, . . . , zn ∈ Rd . The stochastic PCA problem
is to compute the top eigenvector of the matrix

∑n
i=1 ziz

T
i . This problem can

be written as a finite-sum optimization problem on the sphere Sd−1 as follows

min
xT x=1

−xT
(∑n

i=1
ziz

T
i

)

x = −
∑n

i=1
(zTi x)

2. (19.14)

Viewing (21.100) as a Riemannian optimization problem was proposed
in [33], who solved it using R-SVRG, in particular, by proving that the cost
function satisfies a Riemannian gradient-dominated condition (probabilisti-
cally). One can extend this problem to solve for the top-k eigenvectors by
considering is as an optimization problem on the Stiefel manifold.

A challenge for the methods discussed in the present paper, except R-SGD
and R-SPIDER explained in Sect. 19.4 is the requirements for the iterates to
remain within a predefined compact set. While the whole manifold is com-
pact, for obtaining a precise theoretical characterization of the computational
complexity of the algorithms involved, the requirement to remain within a
compact set is important.

GMM
Let z1, . . . , zn be observations in Rd that we wish to model using a Gaussian
mixture model (GMM). Consider the mixture density

p(z; {μj , j }kj=1) :=
∑k

j=1
πjN(z;μj , j ),

whereN(z;μ, ) denotes the Gaussian density evaluated at z and parameter-
ized by μ and  . This leads to the following maximum likelihood problem:

(continued)
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max
{πj ,μj , j }kj=1

∑n

i=1
logp(zi; {μj , j }kj=1). (19.15)

In [18], the authors reformulate (21.52) to cast it as a problem well-suited for
solving using R-SGD. They consider the reformulated problem

max
{ωj ,Sj<0}kj=1

n
∑

i=1

log
(∑k

j=1

exp(ωj )
∑k
k=1 exp(ωk)

q(yi; Sj )
)

, (19.16)

where yi = [zi; 1], and q(y; Sj ) is the centered normal distribution

parameterized by Sj =
[

 j + μjμTj μj
μTj 1

]

. With these definitions, prob-

lem (21.61) can be viewed as an optimization problem on the product
manifold

(∏k
j=1 Pd+1)× Rk−1.

Importantly, in [18] it was shown that SGD generates iterates that remain
bounded, which is crucial, and permits one to invoke the convergence analysis
without resorting to projection onto a compact set.

Karcher Mean
Let A1, . . . , An be hermitian (strictly) positive definite (hpd) matrices.
This set is a manifold, commonly endowed with the Riemmanian metric
〈η, ξ 〉 = tr(ηX−1ξX−1). This metric leads to the distance d(X, Y ) :=
‖ log(X−1/2YX−1/2)‖F between hpd matrices X and Y . The Riemannian
centroid (also called the “Karcher mean”) is defined as the solution to the
following finite-sum optimization problem:

min
X<0

∑n

i=1
wid

2(X,Ai), (19.17)

where the weights wi ≥ 0 and
∑n
i=1wi = 1. This problem is often used as a

defacto benchmark problem for testing Riemannian optimization problems
(see e.g., [33]). The objective function in (19.14) is both geodesically L-
smooth as well as strongly convex, both properties can be exploited to obtain
faster convergence [22, 33].

It is important to note that this problem is over the manifold of hpd matri-
ces, which is a noncompact manifold. Hence, to truly invoke the convergence
theorems (except for R-SGD and R-SPIDER explained in Sect. 19.4), we need
to ensure lower bounds on the curvature as well as ensure that iterates remain
within a compact set. Lower bounds on the curvature can be obtained in terms

(continued)
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of min1≤i≤n λmin(Ai); ensuring that the iterates remain within a compact set
can be ensured via projection. Fortunately, for (19.17), a simple compact set
containing the solution is known, since we know that (see e.g., [7]) its solution
X∗ satisfies HM(A1, . . . , An) > X∗ > Am(A1, . . . , An), where HM and AM

denote the Harmonic and Arithmetic Means, respectively. A caveat, however,
is that R-SVRG and related methods do not permit a projection operation and
assume their iterates to remain in a compact set by fiat; R-SGD, however,
allows metric projection and can be applied. Nevertheless, in practice, one
can invoke any of the methods discussed in this chapter.

We note in passing here that the reader may also be interested in considering the
somewhat simpler “Karcher mean” problems that arise when learning hyperbolic
embeddings [35], as well as Fréchet-means on other manifolds [3, 31].

Wasserstein Barycenters
Consider two centered multivariate Gaussian distributions with covariance
matrices  1 and  2. The Wasserstein W2 optimal transport distance between
them is given by

d2
W( 1,  2) := tr( 1 + 2)− 2 tr[( 1/2

1  2 
1/2
1 )1/2]. (19.18)

The Wasserstein barycenter of n different centered Gaussians is then given by
the solution to the optimization problem

min
X<0

∑n

i=1
wid

2
W(X, i). (19.19)

While (21.83) is a (Euclidean) convex optimization problem, it lends itself
to more efficient solution by viewing it as a Riemannian convex optimization
problem [40]. A discussion about compact sets similar to the Karcher mean
example above applies here too.

Riemannian Dictionary Learning
Dictionary learning problems seek to encode input observations using a
sparse combination of an “overcomplete basis”. The authors of [12] study
a Riemannian version of dictionary learning, where input hpd matrices must
be encoded as sparse combinations of a set of hpd “dictionary atoms.” This
problem may be cast as the finite-sum minimization problem

(continued)
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min
B,α1,...,αn

∑n

i=1
d2

(

Xi,
∑m

j=1
αijBj

)

+ R(B, α1, . . . , αn). (19.20)

In other words, we seek to approximate each input matrix Xi ≈ ∑m
j=1 αijBj ,

using Bj < 0 and nonegative coefficients αij . The function R(·) is a suitable
regularizer on the tensor B and the coefficient matrix α, and d(·, ·) denotes
the Riemannian distance.

For this particular problem, we can invoke any of the discussed stochastic
methods in practice; though previously, results only for SGD have been
presented [12]. By assuming a suitable regularizer R(·, ·) we can ensure that
the problem has a solution, and that the iterates generated by the various
methods remain bounded.

Acknowledgements SS acknowledges partial support from an NSF-CAREER grant, the DARPA-
Lagrange program, and Amazon Research.
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Abstract Symmetric positive definite (SPD) matrices have become fundamental
computational objects in many areas, such as medical imaging, radar signal
processing, and mechanics. For the purpose of denoising, resampling, clustering or
classifying data, it is often of interest to average a collection of symmetric positive
definite matrices. This paper reviews and proposes different averaging techniques
for symmetric positive definite matrices that are based on Riemannian optimization
concepts.

20.1 Introduction

A symmetric matrix is positive definite (SPD) if all its eigenvalues are positive. The
set of all n× n SPD matrices is denoted by

Sn++ = {A ∈ Rn×n | A = AT ,A < 0},

where A < 0 denotes that all the eigenvalues of A are positive; and an ellipse or an
ellipsoid {x ∈ Rn | xT Ax = 1} is used to represent a 2 × 2 SPD matrix or larger
SPD matrix, see Fig. 20.1. SPD matrices have become fundamental computational
objects in many areas. For example, they appear as diffusion tensors in medical
imaging [25, 32, 60], as data covariance matrices in radar signal processing [15, 42],
and as elasticity tensors in elasticity [50]. In these and similar applications, it is often
of interest to average or find a central representative for a collection of SPD matrices,
e.g., to aggregate several noisy measurements of the same object. Averaging also
appears as a subtask in interpolation methods [2] and segmentation [16, 59]. In
clustering methods, finding a cluster center as a representative of each cluster is
crucial. Hence, it is desirable to find a center that is intrinsically representative and
can be computed efficiently.

2 × 2 SPD matrix

u
λ u

v
λ v

3 × 3 SPD matrix

u
λ u

v
λ v

w
λw

Fig. 20.1 Visualization of an SPD matrix. The axes represent the directions of eigenvectors and
the lengths of the axes are the reciprocals of the square roots of the corresponding eigenvalues
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20.2 ALM Properties

A natural way to average a collection of SPD matrices, {A1, . . . , AK }, is to take
their arithmetic mean, i.e., G(A1, . . . , AK) = (A1 + · · · + AK)/K . However,
this is not appropriate in applications where invariance under inversion is required,
i.e., G(A1, . . . , AK)

−1 = G(A−1
1 , . . . , A−1

K ). In addition, the arithmetic mean
may cause a “swelling effect" that should be avoided in diffusion tensor imaging.
Swelling is defined as an increase in the matrix determinant after averaging, see
Fig. 20.2 or [32] for more examples. An alternative is to generalize the definition
of the geometric mean from scalars to matrices, which yields G(A1, . . . , AK) =
(A1 . . . AK)

1/K . However, this generalized geometric mean is not invariant under
permutation since matrices are not commutative in general. Ando et al. [8]
introduced a list of fundamental properties, referred to as the ALM list, that a matrix
“geometric” mean should possess:

P1 Consistency with scalars. If A1, . . . , AK commute then G(A1, . . . , AK) =
(A1 · · ·AK)1/K .

P2 Joint homogeneity. G(α1A1, . . . , αKAK) = (α1 · · ·αK)1/KG(A1, . . . , AK).
P3 Permutation invariance. For any permutation π(A1, . . . , AK) of (A1, . . . ,

AK), G(A1, . . . , AK) = G(π(A1, . . . , AK)).
P4 Monotonicity. If Ai ≥ Bi for all i, then G(A1, . . . , AK) ≥ G(B1, . . . , BK)

in the positive semidefinite ordering, i.e., A ≥ B iff A − B ? 0, i.e., A ≥ B

means that A−B is positive semidefinite (all its eigenvalues are nonnegative).
P5 Continuity from above. If {A(n)1 }, . . . , {A(n)K } are monotonic decreasing

sequences (in the positive semidefinite ordering) converging to A1, . . . , AK ,
respectively, then G(A(n)1 , . . . , A

(n)
K ) converges to G(A1, . . . , AK).

P6 Congruence invariance. G(ST A1S, . . . , S
T AKS) = ST G(A1, . . . , AK)S for

any invertible S.
P7 Joint concavity.G(λA1 + (1 − λ)B1, . . . , λAK + (1 − λ)BK) ≥ λG(A1, . . . ,

AK)+ (1 − λ)G(B1, . . . , BK).
P8 Invariance under inversion. G(A1, . . . , AK)

−1 = G(A−1
1 , . . . , A−1

K ).
P9 Determinant identity. detG(A1, . . . , AK) = (detA1 · · · detAK)1/K .

These properties are known to be important in numerous applications, e.g. [19,
44, 50]. In the case of K = 2, the geometric mean is uniquely defined by the above
properties and given by the following expression [17]

Fig. 20.2 An example of the
swelling effect of the
arithmetic mean
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G(A,B) = A
1
2 (A− 1

2BA− 1
2 )

1
2A

1
2 , (20.1)

where Z
1
2 for Z < 0 is the unique SPD matrix such that Z

1
2Z

1
2 = Z. However, the

ALM properties do not uniquely define a mean for K ≥ 3. There can be many
different definitions of means that satisfy all the properties. The Karcher mean,
discussed in Sect. 20.3.1, is one of them.

20.3 Geodesic Distance Based Averaging Techniques

Since Sn++ is an open submanifold of the vector space of n×n symmetric matrices,
its tangent space at a point X, denoted by TX Sn++, can be identified with the set
of n × n symmetric matrices. The manifold Sn++ becomes a Riemannian manifold
when endowed with the affine-invariant metric,1 see [59], given by

gX(ξX, ηX) = trace(ξXX
−1ηXX

−1). (20.2)

The length of a continuously differentiable curve γ : [0, 1] → M on a Riemannian
manifold is

∫ 1

0

√

gγ (t)(γ̇ (t), γ̇ (t))dt.

It is known that, for all X and Y on the Riemannian manifold Sn++ with respect to
the metric (20.2), there is a unique shortest curve such that γ (0) = X and γ (1) = Y .
This curve, given by

X
1
2 (X− 1

2 YX− 1
2 )tX

1
2 ,

is termed a geodesic. Its length, given by

δ(X, Y ) = ‖ log(X−1/2YX−1/2)‖F,

is termed the geodesic distance between X and Y ; see, e.g., [18, Proposition 3]
or [59, §3.3].

1The family of Riemanian metrics that satisfy the affine invariance property is described in [34];
see also Sect. 20.5. The Riemannian metric (20.2) is also called the natural metric [31], the trace
metric [43], or the Rao–Fisher metric [63].
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20.3.1 Karcher Mean (L2 Riemannian Mean)

The Karcher mean of {A1, . . . , AK }, also called the Fréchet mean, the Riemannian
barycenter, or the Riemannian center of mass, is defined as the minimizer of the sum
of squared distances

μ = arg min
X∈Sn++

F(X), with F : Sn++ → R, X �→ 1

2K

K
∑

i=1

δ2(X,Ai), (20.3)

where δ is the geodesic distance associated with metric (20.2). It is proved in [17, 18]
that F is strictly convex and therefore has a unique minimizer. Hence, a point μ ∈
Sn++ is a Karcher mean if it is a stationary point of F , i.e., gradF(μ) = 0, where
gradF denotes the Riemannian gradient of F with respect to the metric (20.2). The
Karcher mean in (20.3) satisfies all properties in the ALM list [19, 44], and therefore
is often used in practice. However, a closed-form solution for problem (20.3) is not
known in general, and for this reason, the Karcher mean is usually computed by
iterative methods.

Various methods have been used to compute the Karcher mean of SPD matrices.
Most of them resort to the framework of Riemannian optimization (see, e.g., [1]).
One exception in [77] resorts to a majorization minimization algorithm. This
algorithm is easy to use in the sense that it is a parameter-free algorithm. However,
it is usually not as efficient as other Riemannian-optimization-based methods [38].
Several stepsize selection rules have been investigated for the Riemannian steepest
descent (RSD) method. A constant stepsize strategy is proposed in [62] and a
convergence analysis is given. An adaptive stepsize selection rule based on the
explicit expression of the Riemannian Hessian of the cost function F is studied
in [61, Algorithm 2], and is shown to be the optimal stepsize for strongly convex
cost functions in Euclidean space, see [52, Theorem 2.1.14]. That is, the stepsize is
chosen as αk = 2/(Mk + Lk), where Mk and Lk are the lower and upper bounds
on the eigenvalues of the Riemannian Hessian of F , respectively. A Riemannian
version of the Barzilai-Borwein stepsize (RBB) has been considered in [38]. A
version of Newton’s method for the Karcher mean computation is also provided
in [61]. A Richardson-like iteration is derived and evaluated empirically in [21],
and is available in the Matrix Means Toolbox.2 Yuan has shown in [73] that the
Richardson-like iteration is a steepest descent method with stepsize αk = 1/Lk .
In [48], a computationally cheap per iteration sequence is analyzed. The method is
an incremental gradient algorithm for the cost function (20.3) based on a shuffled
inductive sequence. It is shown that a few iterations gives a matrix that is the
best initialization for the state-of-the-art optimization algorithms when compared
to commonly-used initial guesses, such as arithmetic-harmonic mean.

2http://bezout.dm.unipi.it/software/mmtoolbox/.

http://bezout.dm.unipi.it/software/mmtoolbox/
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A survey of several optimization algorithms for averaging SPD matrices is
presented in [39], including Riemannian versions of steepest descent, conjugate gra-
dient, BFGS, and trust-region Newton methods. The authors conclude that the first
order methods, steepest descent and conjugate gradient, are the preferred choices
for problem (20.3) in terms of computation time. The benefit of fast convergence
of Newton’s method and BFGS is nullified by their high computational costs per
iteration, especially as the size of the matrices increases. It is also empirically
observed in [39] that the Riemannian metric yields much faster convergence for
the tested algorithms compared with the induced Euclidean metric, which is given
by gX(ηX, ξX) = trace(ξXηX).

It is known that a large condition number of the Hessian of the objective
function slows down the first order optimization methods. Therefore, a recent
paper [75] justifies the observations in [39] by analyzing the condition number
of the Hessian in (20.3). Specifically, it is proven therein that in double precision
arithmetic, the condition number of the Hessian of the objective function in (20.3)
under the affine-invariance metric (20.2) is bounded above by a small positive
number whereas the condition number of the Hessian under the Euclidean metric
is bounded below by a potential large positive number, which linearly depends on
the square of the condition number of the minimizer matrix μ. In addition, a limited-
memory Riemannian BFGS method is proposed in [74] and empirically shown to
be competitive with or superior to other state-of-the-art methods.

20.3.2 Riemannian Median (L1 Riemannian Mean)

In the Euclidean space, it is known that the median is preferred to the mean in the
presence of outliers due to the robustness of the former and the sensitivity of the
latter. This is illustrated in Fig. 20.3, where the mean is dragged towards the outliers
lying at the top right corner, while the median appears to be a better estimator of
centrality. It is shown in [45] that half of the points must be corrupted in order to
corrupt the median.

Given a set of points {a1, . . . , aK } ∈ Rn, with the usual Euclidean distance ‖ · ‖,
the geometric median is defined as the pointm ∈ Rn minimizing the sum of distance

f (x) =
K
∑

i=1

‖x − ai‖.

The geometric median is not available in closed form in general, even for Euclidean
points. The geometric median can be computed by an iterative algorithm intro-
duced by Weiszfeld [71], which is essentially a Euclidean steepest descent. Later
Ostresh [57] improved Weiszfeld’s algorithm and proposed an update iteration with
convergence result.
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Fig. 20.3 The geometric mean and median in R2 space

This notion of the geometric median can be extended to the Sn++ manifold. Given
a set of SPD matrices {A1, . . . , AK }, their Riemannian median is defined as the
minimizer to the sum of distances

μ1 = arg min
X∈Sn++

K
∑

i=1

δ(Ai,X), (20.4)

where δ(·, ·) is the geodesic distance. It was proven in [33] that the Riemannian
median defined by (20.4) exists and is unique in the case of a non-positively curved
manifold such as Sn++ when all the data points Ai do not lie on the same geodesic.
Note that the cost function in (20.4) is not differentiable at the data matrices, i.e.,
X = Ai for i = 1, . . . , K .

The computation of medians on Sn++ has not received as much attention as
the mean [23, 33, 73]. Fletcher et al. [33] generalized the Weiszfeld-Ostresh’s
algorithm to the Riemannian median computation on an arbitrary manifold, and
proved that the algorithm converges to the unique solution when it exists. Charfi
et al. [23] considered the computation of multiple averaging techniques, including
the Riemannian median. A Euclidean steepest descent method and a fixed point
algorithm are proposed. However, for the Euclidean steepest descent method, it is
not guaranteed that each iterate stays on Sn++. No stepsize selection rule is given
for the steepest descent method. In [73], Yuan explores Riemannian optimization
techniques, in particular smooth and nonsmooth Riemannian quasi-Newton based
methods, to compute the Riemannian median, and empirically shows that the
limited-memory Riemannian BFGS method is more robust and more efficient than
the Riemannian Weiszfeld-Ostresh algorithm.



562 X. Yuan et al.

20.3.3 Riemannian Minimax Center (L∞ Riemannian Mean)

Finding the unique smallest enclosing ball of a finite set of points in a Euclidean
space is a fundamental problem in computational geometry and has been explored
in e.g., [13, 14, 54, 66, 72]. This can be formulated as finding the minimizer of
the cost function f (x) = max1≤i≤K ‖x − ai‖. Many data sets from machine
learning, medical imaging, or computer vision consist of points on a nonlinear
manifold [58, 68]. Therefore, finding the smallest enclosing ball of a collection of
points on a manifold is of interest and has been studied in [11]. The center of the
smallest enclosing ball is defined to be the L∞ Riemannian center of mass or the
minimax center.

Specifically, given a set of SPD matrices {A1, . . . , AK }, the minimax center is
defined as the point minimizing the maximum geodesic distance δ to the point set

μ∞ = arg min
X∈Sn++

max
1≤i≤K δ(Ai,X). (20.5)

In general, there is no known closed form of the solution. In Euclidean space,
a fast and simple iterative procedure for solving (20.5) has been proposed in [13].
The procedure is extended to arbitrary Riemannian manifolds in [11] with a study of
the convergence rate. The existence and uniqueness of the minimax center defined
in (20.5) have been studied in [3, 4, 11]. The SPD minimax center has been used
in [9] to denoise tensor images.

The optimization problem in (20.5) is defined on the Riemannian manifold
Sn++. Therefore, Riemannian optimization techniques are natural options for solving
this problem. Unlike the cases of the Karcher mean and the median, the solution
of (20.5) usually lies at a non-differentiable point. Therefore, one must utilize
nonsmooth optimization techniques on Riemannian manifolds. In [73], Yuan uses
the modified Riemannian BFGS method [37] and the subgradient-based Riemannian
BFGS method [36] to solve the SPD minimax center problem more efficiently than
the state-of-the-art method of Arnaudon and Nielsen [11].

20.4 Divergence-Based Averaging Techniques

The averaging techniques based on the geodesic distance provide an attractive
approach to averaging a collection of SPD matrices since (1) the approach yields
nice geometric interpretations of the optimization problems and (2) its L2-based
Riemannian mean (Karcher mean) satisfies all the desired geometric properties in
the ALM list [8].

A divergence is similar to a distance and provides a measure of dissimilarity
between two elements. However, in general, it need not satisfy symmetry or the
triangle inequality. In recent years, matrix divergences have been of increasing
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interest due to their simplicity, efficiency and robustness to outliers, e.g., see [7,
10, 23, 27, 28, 56, 69, 70]. The idea of using divergences to define the mean of a
collection of SPD matrices has been studied in the literature [24, 26, 50, 51, 64, 65].

20.4.1 Divergences

20.4.1.1 The α-Divergence Family

Let ϕ : � → R be a strictly convex and differentiable real-valued function defined
on a convex set � ⊂ Rm. The α divergence family [76] is defined to be

δ2
ϕ,α(x, y) = 4

1 − α2 [1 − α
2

ϕ(x)+ 1 + α
2

ϕ(y)−ϕ(1 − α
2

x+ 1 + α
2

y)], (20.6)

where α ∈ (−1, 1). The α-divergence possesses a dual symmetry with respect to
the change α → −α, i.e., δϕ,α(x, y) = δϕ,−α(y, x).

For the values α = 1 and α = −1, the α-divergence is defined by taking the limit
as α → 1 and α → −1, i.e.,

δ2
ϕ,1(x, y) = ϕ(x)− ϕ(y)− 〈�ϕ(y), x − y〉 and δ2

ϕ,−1(x, y) = δ2
ϕ,B(y, x).

(20.7)

Note that δ2
φ,−1(x, y) in (20.7) is actually the Bregman divergence defined in [22],

denoted by δ2
ϕ,B(x, y).

Both the α-divergence (20.6) and the Bregman divergence (20.7) can be naturally
extended to Sn++, e.g., see [24, 50, 55]. Given a strictly convex (in the classical
Euclidean sense) and differentiable real-valued function φ : Sn++ → R and X, Y ∈
Sn++, the α-divergence with −1 < α < 1 is defined as

δ2
φ,α(X, Y ) = 4

1 − α2
[1 − α

2
φ(X)+ 1 + α

2
φ(Y )− φ(1 − α

2
X + 1 + α

2
Y )].
(20.8)

The Bregman divergence, δ2
φ,B on Sn++, is therefore defined as

δ2
φ,B((X, Y ) = φ(X)− φ(Y )− 〈�φ(Y ),X − Y 〉, (20.9)

where 〈X, Y 〉 = tr(XY ). Different choices of φ give different divergences.
Commonly used convex functions on Sn++ are [55]:

• quadratic entropy:

φ(X) = tr(XT X), (20.10)
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• log-determinant (also called Burg) entropy:

φ(X) = − log detX, (20.11)

• von Neumann entropy:

φ(X) = tr(X logX −X). (20.12)

20.4.1.2 Symmetrized Divergence

A divergence is not symmetric in general. There are two common ways to
symmetrize a divergence [28]:

• Type 1:

δ2
Sφ(X, Y ) = 1

2
(δ2
φ(X, Y )+ δ2

φ(Y,X)), (20.13)

• Type 2:

δ2
Sφ(X, Y ) = 1

2
(δ2
φ(X,

X + Y
2

)+ δ2
φ(Y,

X + Y
2

)). (20.14)

20.4.1.3 The LogDet α-Divergence

When the associated function φ(X) in (20.8) is the log-determinant (LogDet)
function (20.11), we get the LogDet α-divergence [24]:

δ2
LD,α(X, Y ) = 4

1 − α2 log
det( 1−α

2 X + 1+α
2 Y )

[det(X)] 1−α
2 [det(Y )] 1+α

2

, for −1 < α < 1. (20.15)

The most frequently mentioned advantage of the LogDet α-divergence (20.15)
compared to the geodesic distance δ is its computational efficiency. The computation
of (20.15) requires three Cholesky factorizations (for 1−α

2 X + 1+α
2 Y , X, and Y ),

while computing the geodesic distance involves eigenvalue decomposition. In addi-
tion, the LogDet α-divergence enjoys several desired invariance properties [24]:

1. Invariance under congruence transformations

δ2
LD,α(SAS

T , SBST ) = δ2
LD,α(A,B) for any invertible S. (20.16)

2. Dual-invariance under inversion

δ2
LD,α(A

−1, B−1) = δ2
LD,−α(A,B). (20.17)
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3. Dual symmetry

δ2
LD,α(A,B) = δ2

LD,−α(B,A). (20.18)

The LogDet α-divergence (20.15) is asymmetric except for α = 0. But it can
be symmetrized using (20.13) and (20.14), and the corresponding two symmetric
forms of the LogDet α-divergence are

δ2
S1LD,α(X, Y ) = 2

1 − α2 log
det

[

( 1−α
2 X + 1+α

2 Y )( 1−α
2 Y + 1+α

2 X)
]

det(XY )
, (20.19)

and

δ2
S2LD,α(X, Y ) = 2

1 − α2 log
det

[

( 3−α
4 X + 1+α

4 Y )( 3−α
4 Y + 1+α

4 X)
]

[det(XY )] 1−α
2 [det(X+Y

2 )]1+α
. (20.20)

The divergence δ2
LD,0 is also called the Stein divergence and is studied in [64, 65].

It is shown in [65] that δ2
LD,0 is the square of a distance function (i.e., δLD,0 is a

distance function in the sense that δLD,0 is symmetric, nonnegative, definite, and
satisfies the triangle inequality), and it shares several common geometric properties
with the geodesic distance δ, such as P6 (congruence invariance) and P8 (inversion
invariance) in the ALM properties, see [65, Table 4.1].

20.4.1.4 The LogDet Bregman Divergence

The LogDet Bregman divergence is defined using φ(X) = − log detX, and is given
by

δ2
LD,B(X, Y ) = tr(Y−1X − I )− log det(Y−1X). (20.21)

The LogDet Bregman divergence is also called the Kullback-Leibler divergence
in [51]. It is easy to verify that the LogDet Bregman divergence is invariant
under congruence transformations. In addition, the LogDet Bregman divergence is
asymmetric. When it is symmetrized using (20.13) and (20.14), we have

δ2
S1LD,B(X, Y ) = 1

2
tr(Y−1X +X−1Y − 2I ), (20.22)

and

δ2
S2LD,B(X, Y ) = log det(

X + Y
2

)− 1

2
log det(XY ). (20.23)
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Notice that (20.23) coincides with the LogDet α-divergence with α = 0. The
Type 1 symmetrized LogDet Bregman divergence (20.22) is also called the Jeffrey
divergence (or J-divergence) in [35, 70]. It is easily verified that both (20.22)
and (20.23) are invariant under congruence and inversion.

20.4.1.5 The von Neumann α-Divergence

The von Neumann function φ(X) = tr(X logX − X) arises in quantum mechan-
ics [53]. Its domain is the set of positive semidefinite matrices by using the
convention that 0 log 0 = 0. The von Neumann α-divergence is defined as

δ2
VN,α(X, Y ) = 4

1 − α2 tr

{
1 − α

2
X logX + 1 + α

2
Y logY

−(1 − α
2

X + 1 + α
2

Y ) log(
1 − α

2
X + 1 + α

2
Y )

}

. (20.24)

From (20.24), we can verify that the von Neumann α-divergence satisfies the
following invariance properties:

1. Invariance under rotations

δ2
VN,α(OXO

T ,OYOT ) = δ2
VN,α(X, Y ) for any O ∈ SO(n). (20.25)

2. Dual symmetry

δ2
VN,α(X, Y ) = δ2

VN,−α(Y,X). (20.26)

It is clear from the dual symmetry that the von Neumann divergence is asymmetric
except for α = 0, which is given by

δ2
VN,0(X, Y ) = 4 tr{1

2
X logX + 1

2
Y log Y − (X + Y

2
) log(

X + Y
2

)}. (20.27)

We note that the computation of the von Neumann α-divergence (20.24) requires
three eigenvalue decompositions, which makes it more expensive than the compu-
tation of the geodesic distance δ, the LogDet α-divergence δ2

LD,α , and the LogDet

Bregman divergence δ2
LD,B. Therefore, we neglect the sided means based on this

divergence in Sect. 20.4.2.

20.4.1.6 The von Neumann Bregman Divergence

The von Neumann Bregman divergence [55], denoted by δ2
VN,B, is defined using

φ(X) = tr(X logX −X) for the Bregman divergence (20.9) and is given by
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δ2
VN,B(X, Y ) = tr(X(logX − logY )−X + Y ). (20.28)

Note that (20.28) is referred to as the von Neumann divergence in [29, 40, 55]
and the quantum relative entropy in [53]. The von Neumann Bregman diver-
gence (20.28) is invariant under rotations, and its computation requires two eigen-
value decompositions. It is shown in [29] that (20.28) is finite if and only if the range
of Y contains the range of X, i.e., range(X) ⊆ range(Y ). For this reason, the von
Neumann Bregman divergence is often used in low-rank matrix nearness problems,
e.g., see [29, 40, 41].

The von Neumann Bregman divergence is not symmetric, and its symmetrized
versions are given by

δ2
S1VN,B(X, Y ) = 1

2
tr(X(logX − logY )+ Y (logY − logX)), (20.29)

and

δ2
S2VN,B(X, Y ) = tr(

1

2
X logX + 1

2
Y logY − (X + Y

2
) log(

X + Y
2

)). (20.30)

Note that (20.29) is finite if and only if range(X) = range(Y ). That is, the Type
1 symmetrized von Neumann Bregman divergence δ2

S1VN,B(X, Y ) enjoys a range-
space preserving property, which is important for the analysis of rank deficient
matrices [40]. In addition, we note that the symmetrized von Neumann Bregman
divergence (20.30) coincides with the von Neumann α-divergence with α = 0, i.e.,
Eq. (20.27).

20.4.2 Left, Right, and Symmetrized Means Using Divergences

Given a divergence function on Sn++, one can define the mean of a collection of SPD
matrices {A1, . . . , AK } in a way similar to that used for the Karcher mean. Due to
the asymmetry of divergence functions, the notion of right mean and left mean are
used and coincide if the divergence is symmetric.

Definition 20.1 The right mean of a collection of SPD matrices {A1, . . . , AK }
associated with divergence function δ2

φ(x, y) is defined as the minimizer of the sum
of divergences

μr = arg min
X∈Sn++

f (X), with f : Sn++ → R, X �→
K
∑

i=1

δ2
φ(Ai,X). (20.31)
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Definition 20.2 The left mean of a collection of SPD matrices {A1, . . . , AK }
associated with divergence function δ2

φ(x, y) is defined as the minimizer of the sum
of divergences

μl = arg min
X∈Sn++

f (X), with f : Sn++ → R, X �→
K
∑

i=1

δ2
φ(X,Ai). (20.32)

Definition 20.3 The symmetrized mean of a collection of SPD matrices
{A1, . . . , AK } associated with divergence function δ2

φ(x, y) is defined as the
minimizer of the sum of divergences

μs = arg min
X∈Sn++

f (X), with f : Sn++ → R, X �→
K
∑

i=1

δ2
Sφ(X,Ai). (20.33)

where δ2
Sφ is defined as (20.13) or (20.14). ��

20.4.2.1 The LogDet α-Divergence

When δ2
φ is the LogDet α-divergence δ2

LD,α , the optimization problems in Defini-
tions 20.1, 20.2 and 20.3 have been studied in [24], where it is proved that the
optimization problems have unique minimizers. Sra [65] analyzes the optimization
problem for α = 0, and proves that δ2

LD,0 is jointly geodesically convex under the

affine-invariant metric gX(ξ, η) = tr(ξX−1ηX−1) where ξ, η ∈ TX Sn++. In [73],
Yuan extends the result and shows that δ2

LD,α is jointly geodesically convex for any
−1 < α < 1. Hence, any local minimum point is also a global minimum point.

A closed-form solution is unknown, except for K = 2. Unlike the Karcher mean
computation that is extensively tackled by Riemannian optimization methods, the
LogDet α-divergence based mean is often computed by fixed point algorithms,
see [24, 55]. A Euclidean Newton’s method is considered in [24] which, however,
fails to converge in some numerical experiments. The special case of α = 0 is
studied in [24] and a fixed point algorithm to compute the divergence-based mean
is given and its convergence investigated. This fixed point algorithm is applied
to computing the divergence-based mean in [26, 27, 64, 65]. Yuan [73] studies
solving the sided mean problem using Riemannian optimization algorithms and
explains the fixed point algorithm in [24] in a Riemannian optimization framework.
The Riemannian approaches, in particular the limited-memory Riemannian BFGS
method, are shown to outperform other state-of-the-art methods for a wide range of
problems.

20.4.2.2 The LogDet Bregman Divergence

Means based on the LogDet Bregman divergence have the following closed
forms [51, Lemma 17.4.3]:
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Lemma 20.4 ([51, Lemma 17.4.3]) Let {A1, . . . , AK } be a collection of SPD

matrices, let A(A1, . . . , AK) = 1
K

K∑

i=1
Ai be their arithmetic mean, let H(A1,

. . . , AK) = K(
K∑

i=1
A−1
i )

−1 be their harmonic mean, and let G(A,B) denote the

geometric mean of A and B (20.1).

1. The right mean based on δ2
LD,B (20.21) is given by the arithmetic mean, i.e.,

A(A1, . . . , AK) = arg min
X∈Sn++

K
∑

i=1

δ2
LD,B(Ai,X). (20.34)

2. The left mean based on δ2
LD,B (20.21) is given by the harmonic mean, i.e.,

H(A1, . . . , AK) = arg min
X∈Sn++

K
∑

i=1

δ2
LD,B(X,Ai). (20.35)

3. The symmetric mean based on δ2
S1LD,B (20.22) is given by the geometric mean of

the arithmetic mean and the harmonic mean, i.e.,

G(A(A1, . . . , AK),H(A1, . . . , AK)) = arg min
X∈Sn++

K
∑

i=1

δ2
S1LD,B(Ai,X).

(20.36)

20.4.2.3 The von Neumann Bregman Divergence

Given a collection of SPD matrices {A1, . . . , AK } ∈ Sn++, the right mean μr and
left mean μl associated with the von Neumann Bregman divergence are given by,
respectively,

μr = arg min
X∈Sn++

δ2
VN,B(Ai,X) = arg min

X∈Sn++

K
∑

i=1

tr(Ai logAi − Ai logX − Ai +X)
(20.37)

and

μl = arg min
X∈Sn++

δ2
VN,B(X,Ai) = arg min

X∈Sn++

K
∑

i=1

tr(X logX −X logAi −X + Ai).
(20.38)

In [73], it is pointed out that the left mean based on the von Neumann Bregman
divergence has a closed form, which coincides with the Log-Euclidean Fréchet
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mean in [12]. A closed form of the right mean based on von Neumann Bregman
divergence is not known. In addition, no efficient algorithm for computing the right
mean currently exists since the closed form of the gradient of tr(Ai logX) is not
known.

20.4.3 Divergence-Based Median and Minimax Center

Similar to the geodesice-distance-based median and minimax center, one can define
median and minimax center based on various types of divergences,

right median: arg min
X∈Sn++

K
∑

i=1

δφ,α(Ai,X), (20.39)

right minimax center: arg min
X∈Sn++

max δφ,α(Ai,X), (20.40)

where δφ,α can be any of the divergences in Sect. 20.4.1. The left mean and left
minimax center can be defined in a similar way.

In [23], Charfi et al. considered the computation of medians based not only on
the geodesic distance, but also on Log-Euclidean distance and the Stein divergence.
The Stein divergence median is also studied in [65], and a convergence proof of the
fixed point iteration in [23] is given. A median based on the total Kullback-Leibler
divergence is proposed in [69], which has a closed form expression. Yuan [73]
reviews various types of the divergence-based medians and minimax centers and
uses Riemannian optimization techniques to compute those based on the LogDet
α-divergences. It is shown empirically that Riemannian optimization methods are
usually more efficient than other state-of-the-art methods.

20.5 Alternative Metrics on SPD Matrices

Besides the geodesic distance and divergences, there exist other metrics to measure
the similarity between two SPD matrices.

Log-Euclidean Metric
The Log-Euclidean metric proposed in [12] utilizes the observation that the
matrix logarithm log: Sn++ → Rn×n is a one-to-one mapping. Therefore, the
distance between two SPD matrices X, Y can be defined by

δLogEuc(X, Y ) = ‖ log(X)− log(Y )‖F .
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The Karcher mean defined by this distance has a closed form and coincides with the
left mean based on the von Neumann Bregman divergence in Sect. 20.4.2.3.

Wasserstein Metric
The Wasserstein metric defines a general distance between arbitrary probability
distributions on a general metric space. Note that the centered multivariate normal
distribution N (0, X),X ∈ Sn++ is uniquely characterized by X ∈ Sn++. Therefore,
when the Wasserstein metric is used to measure the distance between the multivari-
ate normal distributions with zero mean, it defines a distance metric on Sn++, given
by [46]

δWass(X, Y ) =
[

tr(X)+ tr(Y )− 2 tr[(X 1
2 YX

1
2 )

1
2 ]
] 1

2
.

The Karcher mean (also called the barycenter) in the Wasserstein space is introduced
in [5] and has been used to define the mean on the manifold of Sn++. A fixed
point algorithm for computing the Karcher mean of a finite set of probabilities was
proposed in [6], and used to find the Karcher mean of SPD matrices. The Wassertein
distance can also be interpreted as the geodesic distance in the quotient geometry
studied in [20, §4] and [47].

Affine Invariant Metric Family
The affine invariance metric family in Sn++ has been studied in [34] and the
corresponding geodesic distance is given by

δAIF(X, Y ) =
[
α

4
tr((log(X−1/2YX−1/2))2)+ β

4
(tr(log(X−1/2YX−1/2)))2

] 1
2

,

where α > 0 and β > −α/n. The metric in (20.2) corresponds to α = 4 and β = 0.
In general, the relationship between the Karcher mean based on δAIF , the choice of
parameters of α and β, and the ALM properties, is not fully understood.

Other Metrics
Other possibilities include the Bogoliubov-Kubo-Mori [49], the polar affine met-
ric [78] and the broader class of the power Euclidean metrics [30], and the families
of balanced metrics introduced in [67].

20.6 Conclusion

In this paper, we have briefly summarized the optimization problems of geodesic-
distance-based and divergence-based mean, median and minimax center, and
the existing optimization techniques. We have pointed out that the optimization
problems in this paper can be nicely solved by Riemannian optimization techniques
since the domain Sn++ is a well-studied smooth manifold.
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Abstract In this chapter we study solutions to certain interpolation problems on
Riemannian manifolds. Our methodology is based on rolling motions of those man-
ifolds considered as rigid bodies, subject to holonomic as well as non-holonomic
constraints. Although our approach is quite general, we focus our attention to three
specific examples, namely spheres, Graßmannians and special orthogonal groups
due to their importance in applications.

21.1 Introduction

Solving interpolation problems on Riemannian manifolds in an efficient way
became an important research objective in recent years. Designing algorithms which
can be easily implemented on a computer is of high interest in physics or astronomy,
but mainly in engineering areas, such as robotics, computer vision, signal and image
processing, machine learning, just to mention a few. Many well known approaches
for solving interpolation problems on Euclidean spaces have been already extended
to Riemannian manifolds. For a first example we mention the generalized de
Casteljau algorithm, see e.g. [22, 58], which is theoretically appealing. However,
although it leads to Bézier curves on curved spaces, the implementation of those
algorithms often lacks efficiency as the curves are defined by highly nonlinear
implicit equations. Another example includes variational methods of Hamiltonian
or Lagrangian type to produce interpolation curves which are optimal in a certain
sense. However, those curves are often solutions of high order nonlinear implicit
differential equations. The approach we take here is based on an extrinsic point
of view. The Riemannian manifold where the data to be interpolated is defined
is embedded isometrically into a Euclidean space. As a consequence all (affine)
tangent spaces are also embedded into the same space. In the sequel, rolling the
manifold along one of its affine tangent spaces will play a prominent role. Rolling
can be seen as a rigid motion under additional constraints. These side conditions
are of holonomic as well as of non-holonomic type. The holonomic ones are
specified by imposing that during the rolling motion the manifold together with
that affine tangent space are kept tangent to each other along a prescribed curve on
the manifold. The non-holonomic constraints are specified by imposing no-slip and
no-twist. In other words the latter means that the manifold is neither allowed to spin
nor to slide. These constraints are made mathematically precise in the next section.
It turns out that the approach in this chapter is often very efficient, as for many cases
the interpolating curves are given in closed form. The reader might argue that one
does not get an isometric embedding for a given Riemannian manifold in a simple
way. However, firstly, Nash’s theorem, see e.g. [30], ensures the existence of such
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an isometric embedding in the finite dimensional setting, together with bounds on
its dimension. Secondly, it seems fair to say that in many important cases, such
as for instance for compact symmetric spaces, an isometric embedding is naturally
associated with the given Riemannian manifold, see e.g. [46].

Many of the results presented here have already appeared in the literature.
Nevertheless, we tried to keep the material in this chapter as selfcontained as
possible.

21.2 Rolling Manifolds Along Affine Tangent Spaces

21.2.1 Mathematical Setting

Let us fix the mathematical background and terminology needed for our subsequent
considerations and calculations. Denote by M a finite dimensional Riemannian
manifold and by T aff

p M its affine tangent space at p ∈ M, both embedded into
some fixed Euclidean vector space V . Moreover, consider a finite dimensional Lie
group G. We will make the following assumptions.

Assumption The group G acts transitively and isometrically on M. The action
σ:G × M → M can be linearly extended to an isometric action on V . ��
As a subgroup of the special Euclidean group SE(V ), i.e., rotations and translations
of the vector space V , we define another group SE(V ) ⊃ Ĝ := G � V (semidirect
product) acting isometrically on V via

σ̂ : Ĝ × V → V,
(

(g, s), v
) �→ gv + s. (21.1)

Clearly, group multiplication in Ĝ is given by (g1, s1) · (g2, s2) = (g1g2, g1s2 + s1)
with inverse (g, s)−1 = (

g−1,−g−1s
)

. To fix notation, we define as usual:

GLn := {

X ∈ Rn×n| det(X) �= 0
}

, general linear group,

SOn := {

X ∈ GLn|X!X = I, det(X) = 1
}

, special orthogonal group,

gln := Rn×n, Lie algebra of GLn,

son := {

X ∈ gln|X = −X!}, Lie algebra of SOn,

Symn := {

X ∈ gln|X = X!}, vector space of symmetric
matrices,

[X, Y ] := XY − YX, for all X, Y ∈ gln, Lie bracket or commutator,

adX : gln → gln, Y �→ [X, Y ], ad-operator.

We proceed with three well known examples important for our considerations.
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Example The Euclidean sphere:
M := Sn−1 ⊂ Rn =: V with isometry group G := SOn and transitive action

σ : G × Sn−1 → Sn−1 defined by (R, p) �→ Rp and Ĝ := G � Rn = SEn. The
embedding space V is equipped with the usual Euclidean inner product 〈v,w〉Rn :=
v!w. We have the tangent space at p ∈ Sn−1

TpS
n−1 = (In − pp!)Rn = {w ∈ Rn|w ⊥ p}, (21.2)

with T aff
p S

n−1 = p + TpSn−1, and the normal space

T ⊥
p S

n−1 = pp!Rn = Rp. (21.3)

Corresponding orthogonal projection operators are

�TpSn−1 : Rn → Rn, x �→ (I − px!)p = x − px!p,

�T ⊥
p S

n−1 : Rn → Rn, x �→ px!p.
(21.4)

Example The Graßmannian:
M := Grn,k is defined to be the set of all proper k-dimensional subspaces of Rn,

considered here as the set of rank k orthogonal projection operators on Rn. Take

V := Symn, dimV = n(n+ 1)/2, (21.5)

equipped with the Frobenius inner product induced from Rn×n, namely
〈S, T 〉Symn := tr(S!T ) = tr(ST ). Then we have

Grn,k := {P ∈ Symn|P 2 = P, trP = k}, dimGrn,k = k(n− k). (21.6)

For later purposes we introduce three proper subspaces of gln, Symn, and son,
respectively. See [8] for a slightly different notation. For fixed P ∈ Grn,k we define

glP := {

M ∈ gln|M = PM +MP },
symP := Symn ∩ glP ,
soP := son ∩ glP .

(21.7)

There exist several useful relations and properties for the above subspaces proved in
[8], some of them are listed here.

Lemma 21.1 Let P ∈ Grn,k andM ∈ glP then

1. ad2
P M = M ,

2. the restriction adP |glP is a global isometry,
3. adP symP = soP .
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The special orthogonal group acts transitively and isometrically via conjugation

σ : SOn ×Grn,k → Grn,k, (R, P ) �→ RPR!. (21.8)

Here Ĝ = SOn � Symn ⊂ SEn(n+1)/2.
An obvious corollary of the definitions in (21.7) is:

Corollary 21.2 Let P ∈ Grn,k and � ∈ SOn then

gl�P�! = �glP�
!, sym�P�! = �symP�

!, so�P�! = �soP�
!.
(21.9)

We will use several equivalent descriptions of the tangent space, see [8, 35], namely

TPGrn,k = ad2
P Symn = {S ∈ Symn|SP + PS = S}

= symP = adP son = adP soP ,
(21.10)

with T aff
P Grn,k = P + TPGrn,k , and for the normal space

T ⊥
P Grn,k = (id −ad2

P )Symn. (21.11)

The related orthogonal projection operators are as

�TPGrn,k : Symn → Symn, S �→ ad2
P S = [P, [P, S]],

�T ⊥
P Grn,k

: Symn → Symn, S �→ (id − ad2
P )S = S − [P, [P, S]]. (21.12)

The following characterizations will turn out to be useful.

Lemma 21.3 We have

1.
[

TPGrn,k, sop
] ⊂ T ⊥

P Grn,k ,
2. adP

[

TPGrn,k, TPGrn,k
] = 0.

Proof We exploit the invariance properties, see Corollary 21.2, i.e., it is sufficient
to show the statements at the standard projector P0 := [

I 0
0 0

]

.
For the first statement consider A ∈ TP0Grn,k and B ∈ soP0 . They are then

of the form A =
[

0 C
C! 0

]

and B =
[

0 D
−D! 0

]

. Their commutator [A,B] =
[

−CD!−DC! 0
0 C!D+D!C

]

then lies in the kernel of ad2
P0

.

For the second statement consider the same A and another E =
[

0 F
F! 0

]

∈
TP0Grn,k . It follows that their commutator being equal to

[
CF!−FC! 0

0 C!F−F!C

]

lies in the kernel of adP0 . ��
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Remark 21.4 Note that we cannot replace the inclusion in Lemma 21.3 by equality,
simply because elements in T ⊥

P Grn,k do not necessarily have zero trace, whereas in
[

TPGrn,k, sop
]

all elements are traceless.

Example The special orthogonal group:
M := SOn ⊂ Rn×n =: V with Euclidean metric 〈X, Y 〉Rn×n := tr(X!Y ). Again

we have several equivalent descriptions of the tangent space at � ∈ SOn, namely

T�SO(n) = � · son = son ·� = id −�(·)!�
2

· Rn×n, (21.13)

with T aff
� SO(n) = �+ T�SO(n), and normal space

T ⊥
� SO(n) = Symn ·� = � · Symn = id +�(·)!�

2
· Rn×n. (21.14)

Consequently, the corresponding orthogonal projection operators are

�T�SOn : Rn×n → Rn×n, X �→ X −�X!�
2

,

�T ⊥
� SOn

: Rn×n → Rn×n, X �→ X +�X!�
2

.

(21.15)

The product of two copies of the special orthogonal group acts transitively and
isometrically on itself via left-right multiplication

σ : (SOn × SOn)× SOn → SOn, ((R1, R2),�) �→ R1�R
!
2 . (21.16)

The extended group reads Ĝ = (SOn × SOn)� Rn×n ⊂ SEn2 . ��

21.2.2 Rolling Manifolds

Here we first fix some notation and further terminology for the analysis we use later
on. In all the above cases we have the isometric action of the corresponding Ĝ on V ,
i.e.,

σ̂ : Ĝ × V → V, (ĝ, v) �→ ĝ ◦ v =: ĝv (21.17)

and the closely related map

σ̂ĝ : V → V, v �→ ĝv. (21.18)

We compute the tangent map of (21.18), or differential for short, as
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dσ̂ĝ(v) : TvV ∼= V → TĝvV ∼= V,

w �→ dσ̂ĝ(v)w := dv(̂σĝ)w := d
dε σ̂ĝ(v + εw)

∣
∣
∣
ε=0

.
(21.19)

In the sequel we will be interested in restricting smooth vector fields v defined on
the embedding V to M. In particular, we explicitly need an additive decomposition
into tangent and normal part of the derivative of v. By the extrinsic view we adopt
in this paper, i.e., embedding the Riemannian manifold M isometrically into some
Euclidean space V , covariant derivatives of vector fields on M get a particular
simple meaning. The covariant derivative of the vector field v evaluated at p ∈ M
is defined to be the orthogonal projection of the ordinary derivative of v evaluated
at p into the tangent space TpM. The formulas (21.4), (21.12), (21.15) are now
particularly useful. Consequently, using standard notation we get for the covariant
derivative of v evaluated at p

D

dt
v(t)|t=0 := �Tα(0)M

d

dt
(v ◦ α)(t)|t=0 (21.20)

with an arbitrary smooth curve α : (−ε, ε)→ M and α(0) = p. Analogously,

D⊥

dt
v(t)|t=0 := �T ⊥

α(0)M
d

dt
(v ◦ α)(t)|t=0. (21.21)

Definition 21.5 Let J := [0, τ ] denote a nonzero interval. A smooth mapping

χ : J → Ĝ, t �→ χ(t) := (

R(t), v(t)
)

(21.22)

satisfying for all t ∈ J the three properties below, is called a rolling of M on T aff
p M

(or simply a rolling map) without slipping and without twisting.

1. Rolling conditions: There exists a smooth curve α : J → M with p = α(0)
such that

a. β(t) := χ(t)α(t) ∈ T aff
p M,

b. dα(t)χ(t)Tα(t)M = Tβ(t)(T
aff
p M) ∼= TpM.

The curve α is called the rolling curve, whereas β is the development curve of α.
2. No-slip condition:

β̇(t) = dα(t)χ(t)α̇(t). (21.23)

3. No-twist conditions:

a. Tangential part: For any tangent vector field Z(t) along α(t)

dα(t)χ(t)
D
dt Z(t) = D

dt dα(t)χ(t)Z(t). (21.24)
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b. Normal part: For any normal vector field Z(t) along α(t)

dα(t)χ(t)
D⊥
dt Z(t) = D⊥

dt dα(t)χ(t)Z(t). (21.25)

At this stage some remarks are in order.

Remark 21.6 Definition 21.5 is equivalent to Sharpe’s, see [60]. For a proof of this
equivalence we refer to [28]. Moreover, in [60] it is shown that for a given smooth
curve α in M, with α(0) = p, there exists a unique rolling of M on T aff

p M.

Remark 21.7 In Definition 21.5, conditions 2.–3., smoothness of α can be relaxed
to piecewise smoothness, simply by replacing for all t ∈ J essentially by for almost
all t ∈ J .

Remark 21.8 From the no-twist conditions it follows that a tangent (resp. normal)
vector field Z along the rolling curve α is parallel iff dα(t)χ(t)Z(t) is a tangent
(resp. normal) parallel vector field along the development curve β.

Remark 21.9 As we roll M along an affine tangent space, the covariant derivatives
on the right hand sides in (21.24) and (21.25) are equal to ordinary derivatives as
the corresponding vector fields live in a linear space.

We now revisit the above three examples presenting for each one explicitly the
rolling map associated to a given curve α.

Rolling Sn−1

Any smooth curve α : J → Sn−1 with α(0) = p is of the form α(t) = R(t)p with
smooth R : J → SOn satisfying R(0) = I .

Theorem 21.10 Consider the unique solution
(

R(t), v(t)
)

of the initial value
problem

Ṙ(t) = R(t)
(

u(t)p! − pu!(t)
)

, R(t) ∈ SOn, R(0) = I,

v̇(t) = u(t), u(t) ∈ TpSn−1, v(0) = 0.
(21.26)

Then χ(t) = (

R!(t), v(t)
) ∈ SEn is the unique rolling map of Sn−1 on T aff

p S
n−1

along the smooth curve α(t) = R(t)p. Equations (21.26) are called the kinematic
equations of Sn−1.

Proof Obviously, α(t) ∈ Sn−1. Moreover,

β(t) = χ(t)α(t) = (

R!(t), v(t)
)◦α(t) = R!(t)α(t)+v(t) = p+v(t). (21.27)

By the initial condition v(0) = 0 together with u(t) ∈ TpS
n−1 it is ensured that

v(t) ∈ TpSn−1. Hence β(t) ∈ T aff
p S

n−1. The second rolling condition is fulfilled as
well. Indeed,

dα(t)χ(t)
(

Tα(t)S
n−1) = R!(t)

(

TR(t)pS
n−1) = TpS

n−1. (21.28)
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We now check the no-slip condition. From (21.26) and (21.27) we get

β̇(t) = v̇(t) = u(t). (21.29)

On the other hand, using (21.28) and (21.26), we get

dα(t)χ(t)α̇(t) = R!(t)α̇(t) = R!(t)Ṙ(t)p

= (

u(t)p! − pu!(t)
)

p = u(t)
(21.30)

as required.
It remains to check the no-twist conditions. For the tangent part let z(t) be any

tangent vector field along α(t). We first evaluate the left hand side (LHS) of (21.24).
In fact, by ommitting t-dependence for convenience

dα(t)χ(t)
( D

dt z(t)
) = R! D

dt z = R!(I − αα!)ż

= R!ż− pp!R!ż = R!ż− p〈p,R!ż〉.
(21.31)

Correspondingly for the RHS of (21.24)

D
dt

(

dα(t)χ(t)z(t)
) = d

dt (R
!z) = Ṙ!z+ R!ż

= (

pu! − up!)R!z+ R!ż = p〈u,R!z〉 + R!ż.
(21.32)

By requiring (21.31) being equal to (21.32), it remains to show that −p〈p,R!ż〉 =
p〈u,R!z〉. This is correct as 〈α, z〉 = 0 implies 〈α̇, z〉 = −〈α, ż〉, and together with
the definition α = Rp and imposing (21.26) the result follows.

For the normal part of the no-twist condition, we proceed as follows. Let z(t) be
now any normal vector field along α(t). Hence, we know that such a z is always of
the form z(t) = γ (t)α(t) with some suitable smooth scalar valued function γ . For
the derivative we get ż = γ̇ α + γ α̇ = γ̇ α + γ Ṙp = γ̇ α + γRu. Evaluating the
LHS of (21.25) gives

dα(t)χ(t)
D⊥
dt z(t) = R! D⊥

dt z = R!αα!ż = pα!ż

= p(γ̇ + γ α!Ru
︸ ︷︷ ︸

=0

) = pγ̇.
(21.33)

Correspondingly, for the RHS of (21.24)

D⊥
dt

(

dα(t)χ(t)z(t)
) = d

dt (R
!z) = Ṙ!z+ R!ż = (

pu! − up!)R!z+ R!ż

= (

pu! − up!)pγ + R!(γ̇ α + γRu) = −uγ + γ̇p + γ u
= pγ̇

(21.34)
as required. ��
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The kinematic equations (21.26) form a differential system on the Lie group SEn.
They are in accordance with [42], p. 467.

Corollary 21.11 If u(t) = u is constant, the kinematic equations (21.26) can be
solved explicitly to obtain R(t) = et�, where � := up! − pu!, and v(t) = tu. In
this case, the rolling curve α(t) = et� p is a geodesic.

Proof The first statement is an immediate consequence of Theorem 21.10. For the
second statement it is enough to show that for α(t) = et� p, we get D

dt α̇ = α̈ −
〈α, α̈〉α = 0. But this follows from the following computations: α̇(t) = et� u,
α̈(t) = − et� p〈u, u〉, 〈α(t), α̈(t)〉 = −〈u, u〉. So, α̈ − 〈α, α̈〉α = et�(−〈u, u〉p +
〈u, u〉p) = 0. ��
Rolling Grn,k
Any smooth curve α : J → Grn,k with α(0) = P is of the form α(t) =
R(t)PR!(t) with smooth R : J → SOn satisfying R(0) = I .

Theorem 21.12 Consider the unique solution
(

R(t), S(t)
)

of the initial value
problem

Ṙ(t) = R(t)[U(t), P ], R(t) ∈ SOn, R(0) = I,

Ṡ(t) = U(t), U(t) ∈ TpGrn,k, S(t) ∈ Symn, S(0) = 0.
(21.35)

Then χ(t) = (

R!(t), S(t)
) ∈ SEn(n+1)/2 is the rolling map of Grn,k on T aff

P Grn,k

along the smooth curve α(t) = R(t)PR!(t). Equations (21.35) are called the
kinematic equations of Grn,k .

Proof Obviously, α(t) ∈ Grn,k . Moreover,

β(t) = χ(t)α(t) = R!(t)α(t)R(t)+ S(t) = P + S(t). (21.36)

By the initial condition S(0) = 0 together with U(t) ∈ TPGrn,k we have
S(t) ∈ TpGrn,k . Then β(t) ∈ T aff

P Grn,k . Similar to the Sn−1 case the second rolling
condition is fulfilled as well. Indeed,

dαχ
(

TαGrn,k
) = R!(TRPR!Grn,k)R = TPGrn,k. (21.37)

We now check the no-slip condition. From (21.35) and (21.36) we get

β̇(t) = Ṡ(t) = U(t). (21.38)

On the other hand, using (21.37) we get

dα(t)χ(t)α̇(t) = R!α̇R = R!(ṘPR! + RPṘ!)R = R!ṘP + P Ṙ!R

= [U,P ]P + P [U,P ]! = ad2
P U = U

(21.39)
as required.
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It remains to check the no-twist conditions. For the tangent part, let Z(t) be any
tangent vector field along α(t). I.e., Z ∈ TαGrn,k implying R!ZR ∈ TPGrn,k .
In particular, there exists an �(t) ∈ son with R!ZR = [�,P ]. Hence, using the
kinematic equations (21.35) we get

R!ŻR = [[U,P ], [�,P ]]+ [�̇, P ]. (21.40)

Evaluating the LHS of (21.24) gives

dα(t)χ(t)
( D

dt Z(t)
) = R!( D

dt Z
)

R = R!(ad2
α Ż)R = ad2

P (R
!ŻR)

= ad2
P

([[U,P ], [�,P ]]+ [�̇, P ]
)

= ad2
P

[[U,P ], [�,P ]]− ad3
P �̇ = [�̇, P ].

(21.41)

The vanishing of the first summand in the last line of (21.41) follows from the
fact that [U,P ] ∈ soP and [�,P ] ∈ TPGrn,k and by Lemma 21.3. Note that the
minimal polynomial of the adP -operator is equal to ad3

P − adP , see [35] for a proof.
Correspondingly, for the RHS of (21.24), and using (21.35),

D
dt dα(t)χ(t)Z(t) = d

dt (R
!ZR) = Ṙ!ZR + R!ZṘ + R!ŻR

= [U,P ]!R!ZR + R!ZR[U,P ] + R!ŻR

= [[�,P ], [U,P ]]+ [[U,P ], [�,P ]]+ [�̇, P ] = [�̇, P ].
(21.42)

It remains to show the normal part of the no-twist condition. Let Z be any normal
vector field along α, i.e., Z ∈ T ⊥

α Grn,k and R!ZR ∈ T ⊥
P Grn,k . Moreover, there

exists a B ∈ Symn such that Z = (id − ad2
α)B, or equivalently, such that R!ZR =

(id − ad2
P )(R

!BR). Now R!α̇R = ad2
P U = U by (21.35). Consequently,

Ż = (

id − ad2
α

)

Ḃ − [α̇, [α,B]] − [α, [α̇, B]], (21.43)

implying by invariance

R!ŻR = (

id − ad2
P

)

R!ḂR − [U, [P,R!BR]] − [P, [U,R!BR]]. (21.44)

Afterall, the LHS of (21.25) for Grn,k gives

D
dt dα(t)χ(t)Z(t) = R!( id − ad2

α

)

(Ż)R = (id − ad2
P )(R

!ŻR)

= R!ŻR + ad2
P

([

U, [P,R!BR]]+ [

P, [U,R!BR]]
)

= R!ŻR + ad2
P

([U, [P,R!BR]])+ [

P, [U,R!BR]]

= R!ŻR + [

P, [U,R!BR]]. (21.45)

Here we have used
[

U, [P,R!BR]] ∈ T ⊥
P Grn,k , by Lemma 21.3.
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For the RHS of (21.25) for Grn,k we calculate, using (21.35) and the Jacobi
identity,

d
dt (R

!ZR) = R!ŻR + Ṙ!ZR + R!ZṘ = R!ŻR + [

R!ZR, [U,P ]]

= R!ŻR + [(

id − ad2
P

)

(R!BR), [U,P ]]

= R!ŻR − [

U, [P, (id − ad2
P )(R

!BR)]
︸ ︷︷ ︸

=0 as ad3
P=adP

]

− [

P, [(id − ad2
P )(R

!BR),U ]]

= R!ŻR − [

P, [R!BR,U ]]+ [

P, [ad2
P (R

!BR),U ]]
︸ ︷︷ ︸

=0 by Lemma 21.3

= R!ŻR + [

P, [U,R!BR]]
(21.46)

as required. ��
Corollary 21.13 If U(t) = U is constant, the kinematic equations (21.35) can be
solved explicitly to obtain R(t) = et�, where � := [U,P ], and S(t) = tU . In this
case, the rolling curve α(t) = et� P e−t� P is a geodesic.

Proof The first statement is an immediate consequence of Theorem 21.12. For
the second statement it is enough to show that D

dt α̇ := �TαGrn,k (α̈) = 0, which,
according to (21.12), is equivalent to having ad2

α α̈ = 0. A proof of this equality can
be found, for instance, in [8]. An even shorter proof is included next.

For α(t) = et� P e−t�, we have α̇(t) = et� ad� P e−t�, and α̈(t) =
et� ad2

� P e−t�. So, ad2
α α̈ = 0 is equivalent to ad2

P ad2
� P = 0. But, by the Jacobi

identity, adP ad2
� P = [ad2

P �,�], and since � = [U,P ] ∈ soP , according to
Lemma 21.1, ad2

P � = �, so adP ad2
� P = 0, proving that α is indeed a geodesic.

��
Rolling SOn
Any smooth curve α : J → SOn with α(0) = P is of the form α(t) = V (t)PW!(t)
with smooth V,W : J → SOn satisfying V (0) = W(0) = I .

Theorem 21.14 Consider the unique solution
(

V (t),W(t),X(t)
)

of the initial
value problem

V̇ (t) = 1
2V (t)U(t), V (t) ∈ SOn, V (0) = I,

Ẇ (t) = − 1
2W(t)P

!U(t)P, W(t) ∈ SOn, W(0) = I,

Ẋ(t) = U(t)P, U(t) ∈ son, X(t) ∈ Rn×n, X(0) = 0.

(21.47)
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Then χ(t) = (

V !(t),W(t),X(t)
) ∈ SEn2 is the rolling map of SOn on T aff

P SOn

along the smooth curve α(t) = V (t)PW!(t). Equations (21.47) are called the
kinematic equations of SOn.

Proof Obviously, α(t) ∈ SOn. Moreover,

β(t) = χ(t)α(t) = V !(t)α(t)W(t)+X(t) = P +X(t). (21.48)

By the initial condition X(0) = 0 together with U(t)P ∈ TP SOn, we have X(t) ∈
TP SOn. Moreover, β(t) ∈ T aff

P SOn. In addition, the second rolling condition is
fulfilled as well as

dαχ
(

TαSOn
) = V !(TαSOn)W = V !(TVPW!SOn)W = TP SOn. (21.49)

We now check the no-slip condition. From (21.47) and (21.48) we get

β̇(t) = Ẋ(t) = U(t)P . (21.50)

On the other hand, using (21.49) and (21.47) we get

dα(t)χ(t)α̇(t) = V !α̇W = V !(V̇ PW! + VPẆ!)W = V !V̇ P + PẆ!W

= 1
2UP − 1

2U
!P = UP

(21.51)
as required.

It remains to check the no-twist conditions. For the tangent part let Z(t) be
any tangent vector field along α(t). I.e., Z ∈ TαSOn implying V !(t)Z(t)W(t) ∈
TPGrn,k . In particular there exists a curve �(t) ∈ son with

V !(t)Z(t)W(t) = �(t)P . (21.52)

Taking derivates on both sides and using the kinematic equations (21.47) give

V̇ !ZW + V !ZẆ + V !ŻW = �̇P ⇐⇒ V !ŻW = �̇P + 1
2 (U�+�U)P.

(21.53)
Evaluating the LHS of (21.24) gives

dα(t)χ(t)
D
dt Z(t) = V ! 1

2

(

Ż − αŻ!α
)

W = 1
2

(

V !ŻW − P (V !ŻW
)!
P
)

= 1
2

(

�̇P+ 1
2 (U�+�U)P−P (�̇P+ 1

2 (U�+�U)P )!P
)

=�̇P .
(21.54)

Correspondingly, for the RHS of (21.24) using (21.53)

D
dt dα(t)χ(t)Z(t) = d

dt (V
!ZW) = �̇P (21.55)
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as required. It remains to show the normal part of the no-twist condition. Let Z be
any normal vector field along α, i.e., Z ∈ T ⊥

α SOn and V !ZW = S(t)P ∈ T ⊥
P SOn

with curve S(t) ∈ Symn. Analogously to the tangent part, we take derivatives

V̇ !ZW + V !ZẆ + V !ŻW = ṠP ⇐⇒ V !ŻW = ṠP + 1
2 (US + SU)P.

(21.56)
Evaluating the LHS of (21.25) gives

dα(t)χ(t)
D⊥
dt Z(t) = V ! 1

2

(

Ż + αŻ!α
)

W = 1
2

(

V !ŻW + P (V !ŻW
)!
P
)

= 1
2

(

ṠP+ 1
2 (US+SU)P+P (ṠP+ 1

2 (US+SU)P )!P
)

= ṠP .
(21.57)

Correspondingly, for the RHS of (21.25) using (21.56)

D⊥
dt dα(t)χ(t)Z(t) = d

dt (V
!ZW) = ṠP (21.58)

as required. ��
Corollary 21.15 If U(t) = U is constant, the kinematic equations (21.47) can be

solved explicitly to obtain V (t) = e
1
2 tU , W(t) = P! e− 1

2 tU P , and X(t) = tUP .
In this case, the rolling curve α(t) = etU P is a geodesic.

Proof This follows from Theorem 21.14 and from the fact that α̇ = Uα implies
α̈ = U2α, which clearly belongs to T ⊥

α SOn. So, D
dt α̇ = 0 and α is a geodesic. ��

Remark 21.16 Clearly, for the three kinematic equations (21.26), (21.35), and
(21.47), standard results for solving initial value problems apply, in particular,
existence and uniqueness of solutions.

Remark 21.17 In all the three examples presented, we start with an arbitrary curve
α as the rolling curve, but later the nonholonomic constraints of no-twist force α
to have a special form. This might seem a contradiction, but indeed it has a very
interesting explanation that involves the theory of symmetric spaces. Going into
these details here is out of scope for this chapter, but we give a brief explanation,
referring the interested reader to [34, 43] for further developments.

We mention a specific case. If G is a Lie group acting transitively and effectively
on a Riemannian manifold M with K the isotropy subgroup of G at a point P ∈ M,
then M = G/K and the Lie algebra of G, here denoted by g, admits a direct sum
decomposition g = k⊕ p, called Cartan decomposition. Here k is the Lie algebra of
K, p is a vector subspace of g, and furthermore [k, p] ⊂ p, and [p, p] ⊂ k. It turns
out that p ∼= TPM.

A curve t �→ g(t) in G is said to be horizontal if g(t)−1ġ(t) ∈ p. An important
fact, whose proof can be found in [43, page 131], is that any curve in M is the
projection of a horizontal curve in G. This statement is what resolves the seeming
contradiction mentioned above.

Since Sn−1, Grn,k and SOn are all (compact) symmetric spaces, the last state-
ment applies. So, even though the rolling curve for each example was considered
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the projection of any curve in the group G that acts on the manifold, the “rotational
part” of the kinematic equations shows that it could be considered the projection of
a horizontal curve from the very beginning. In order to fully understand that, one
would have to go into the Cartan decomposition for each example and conclude that
the curve on G that projects on α is indeed horizontal.

21.2.3 Parallel Transport

Consider a tangent (resp. normal) vector field Z(t) along the rolling curve α(t).
Denote by χ(t) the corresponding rolling map. Then Z is tangent (resp. normal)

parallel along α iff D
dt Z(t) = 0 (resp. D⊥

dt Z(t) = 0). Equivalently, from the no-twist
conditions we therefore get

D
dt

(

dα(t)χ(t)Z(t)
) = 0

(

resp. D⊥
dt

(

dα(t)χ(t)Z(t)
) = 0

)

. (21.59)

Explicit formulas for the parallel transport of an arbitrary tangent Z(0) ∈ Tα(0)M
(resp. normal Z(0) ∈ T ⊥

α(0)M) is then straightforward by the following fact (rolling
conditions).

dα(t)χ(t) : Tα(t)M → Tχ(t)α(t)
(

χ(t)M
) = Tβ(t)

(

T aff
α(0)M

) = Tα(0)M,

Z(t) �→ dα(t)χ(t)Z(t) = Z(0),
(21.60)

or equivalently

Z(0) �→ (

dα(t)χ(t)
)−1
Z(0) = Z(t). (21.61)

That is,
(

dα(t)χ(t)
)−1 is the isometric isomorphism denoting the parallel vector

transport along α. In particular, for the three examples:

Sphere Sn−1 Consider the rolling curve α(t) = R(t)p. An arbitrary tangent vector
field has the form Z(t) = R(t)�(t)p ∈ TαSn−1 with � = u(t)p! − pu!(t) ∈ son

and u(t) ∈ TpS
n−1. Consequently, Z(t) is parallel along α iff u(t) is constant.

Similarly, an arbitrary normal vector fieldZ(t) = R(t)γ (t)p ∈ T ⊥
α S

n−1 with γ ∈ R
is parallel along α iff γ is constant. Explicitly, given any Z0 ∈ TpRn ∼= Rn its
parallel transport Z(t) along α(t) is then Z(t) = R(t)Z0.

Graßmannian Grn,k With rolling curve α(t) = R(t)PR!(t), an arbitrary tangent
vector field Z(t) along α(t) has the form Z(t) = R(t)[�(t), P ]R!(t) ∈ TαGrn,k
with� ∈ soP . SoZ(t) is parallel along α iff� is constant. Analogously, an arbitrary
normal vector field along α(t) has the form Z(t) = R(t)(S(t)− ad2

P S(t))R
!(t) ∈

T ⊥
α Grn,k with S ∈ Symn. It is parallel iff S(t)− ad2

P S(t) is constant. More general,
consider Z0 ∈ TP Symn ∼= Symn, then its parallel transport along α is as Z(t) =
R(t)Z0R

!(t).



592 K. Hüper et al.

Special Orthogonal Group SOn In this case the rolling curve α(t) =
V (t)PW!(t). An arbitrary tangent vector field Z(t) along α(t) is of the form
Z(t) = V (t)�(t)PW!(t) with � ∈ son Consequently, Z(t) is parallel
along α iff � is constant. Similarly, an arbitrary normal vector field looks like
Z(t) = V (t)S(t)PW!(t) with S ∈ Symn. Consequently, Z(t) is parallel along α
iff S is constant. Finally, let Z0 ∈ TPRn×n ∼= Rn×n, then its parallel transport along
α(t) is as Z(t) = V (t)Z0W

!(t).

Remark 21.18 The fact that the computation of parallel transport of vector fields
along curves is that simple for the above examples, as we have shown, was
already noticed in [57, page 630]. There, the author is referring to the kinematic
interpretation of the Levi-Civita connection for the special case of 2-surfaces in R3.
These results can also be found for arbitrary dimension in [60], prop. 3.7, app. B.

21.3 Rolling to Solve Interpolation Problems on Manifolds

As before, the manifolds M and T aff
p0

M are considered to be embedded into some
Euclidean vector space V . In this section we assume that if χ(t) = (

R!(t), s(t)
)

is
a rolling map of M on T aff

p0
M, along the curve α(t), then α(t) = R(t)p0. Note that

the rolling maps for the three examples considered in previous sections, M = Sn,
M = SOn, and M = Grn,k , satisfy this property. With this assumption, we propose
an algorithm to generate an interpolating curve on M that is given explicitly in terms
of the coordinates of the embedding space.

21.3.1 Formulation of the Problem

Problem 21.19 Given a set of k + 1 distinct points pi ∈ M, two vectors ξ0 and ξk
tangent to M at p0 and pk , respectively, and fixed times ti , where 0 = t0 < · · · <
tk = τ , find a C2-smooth curve

γ : [0, τ ] → M (21.62)

satisfying interpolation conditions

γ (ti) = pi, 1 ≤ i ≤ k − 1, (21.63)

and boundary conditions

γ (0) = p0, γ (τ ) = pk, γ̇ (0) = ξ0, γ̇ (τ ) = ξk. (21.64)

�
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21.3.2 Motivation

If M is the Euclidean space Rn, the unique solution of this problem is a cubic spline,
i.e., a curve whose restriction to each subinterval [ti , ti+1] is a cubic polynomial. It
can be obtained, for instance, through the de Casteljau algorithm [25], or using a
variational/Hamiltonian approach since the cubic spline is the curve that minimizes
the cost functional

∫ τ

0

〈

γ̈ (t), γ̈ (t)
〉

dt. (21.65)

The de Casteljau algorithm is a geometric construction simple to implement, based
on successive linear interpolation, cf. [25, 27]. The optimality property of the
Euclidean cubic splines makes them particularly useful in applications. But its
generalization to Riemannian manifolds, where in the cost functional above γ̈ is
replaced by the intrinsic acceleration D

dt
γ̇ and 〈·, ·〉 is the Riemannian metric on

M, is even more useful since nonlinear data appears naturally in many engineering
applications. Cubic splines on manifolds have been studied by several authors,
starting with the pioneer work in [56], followed by further developments, cf.
[12, 19, 20]. Contrary to the Euclidean situation, the Euler-Lagrange equations
associated to this variational problems are highly nonlinear and can only be solved
explicitly in some trivial cases. This is the main drawback of the variational
approach.

To overcome this problem, the de Casteljau algorithm has also been generalized
to Riemannian manifolds, cf. [22, 58]. The basic idea is to replace linear inter-
polation by geodesic interpolation, which for specific manifolds requires that one
knows explicit formulas for the geodesic that joins two points. The implementation
of this algorithm also requires to solve nonlinear implicit equations which makes it
computationally expensive. Moreover, it does not give the interpolation curve in an
explicit form.

Interpolation schemes for manifolds with a complicated geometry, based on
the idea of projecting the interpolating data to a simpler manifold using local
diffeomorphisms, are available in the literature, cf. [26, 54]. But the most successful
scheme combines rolling with other local diffeomorphisms parameterized by time.
They are based on rolling and unwrapping techniques. The term unwrapping, coined
in [41], is used to describe how the diffeomorphism maps data from the manifold to
data on its affine tangent space at a point. A similar concept appearing in the setting
of optimization on manifolds, namely a retraction, appeared in [3].

These schemes were used for the first time in [41] for the sphere S2, generalized
in [36] for spheres of any dimension, and in [37] for SOn and Grn,k . They can be
used to solve interpolation problems on general manifolds as long as the kinematic
equations of rolling can be solved explicitly. The result is an interpolating curve
given in closed form.
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21.3.3 Solving the Interpolation Problem

To solve Problem 21.19, we propose the following algorithm which is based on
rolling and unwrapping techniques. The resulting curve will be given explicitly in
terms of the coordinates of the embedding space. The algorithm can be described in
the following 5 steps.

Algorithm: Interpolation Algorithm
1. Compute an arbitrary smooth curve α : [0, τ ] → M, connecting p0 with pk , such that α(0) =
p0 and α(τ) = pk.

2. Unwrap the boundary data from M to T aff
p0

M, by rolling M along α : [0, τ ] → M with rolling

map χ(t) = (

R!(t), s(t)
)

. This produces a smooth curve β : [0, τ ] → T aff
p0

M and the rolling

conditions ensure that all the boundary conditions (21.64) are mapped to T aff
p0

M as follows:

p0 �→ β(0) = χ(0)p0 = p0 =: q0, pk �→ β(τ) = χ(τ)pk =: qk
ξ0 �→ dα(t)χ(t)

∣
∣
t=0ξ0 = ξ0 =: η0, ξk �→ dα(t)χ(t)

∣
∣
t=τ ξk =: ηk.

(21.66)

3. Unwrap the remaining data p1, . . . , pk−1 onto T aff
p0

M, using a suitable local diffeomorphism

φ : M ⊃ �→ T aff
p0

M, p0 ∈ � open, (21.67)

satisfying

φ(p0) = p0 and dp0φ = id, (21.68)

as follows:

pi �→ φ
(

R!(ti )pi
)+ s(ti ) =: qi . (21.69)

4. Solve the interpolation problem (similar to Problem 21.19) on T aff
p0

M using the mapped data

{q0, . . . , qk, η0, ηk}. This will generate a C2-smooth curve

y : [0, τ ] → T aff
p0

M (21.70)

that satisfies the following boundary and interpolation conditions:

y(0) = p0 = q0, y(τ ) = qk, ẏ(0) = ξ0 = η0, ẏ(τ ) = ηk, (21.71)

and

y(ti ) = qi , i = 1, · · · , k − 1. (21.72)

5. Wrap y([0, τ ]) back onto the manifold M, using the inverse of the rolling map and the inverse
of the diffeomorphism, to obtain the solution γ of Problem 21.19 on M by means of the
following explicit formula:

γ (t) := χ(t)−1
(

φ−1(y(t)− s(t))+ s(t)
)

(21.73)

Note that, since y(t) is a curve in T aff
p0

M and the assumption at the beginning of this section

sets s(t) ∈ Tp0M, then t �→ y(t)− s(t) is a curve in T aff
p0

M and so γ (t) is well defined.
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Theorem 21.20 If α(t) = R(t)p0, the curve t �→ γ (t) defined by (21.73) solves
Problem 21.19.

Proof The inverse of the rolling map is given by χ(t)−1 = (

R(t),−R(t)s(t)). So,
we may write

γ (t) = R(t)
(

φ−1(y(t)− s(t))+ s(t)
)

− R(t)s(t) = R(t)
(

φ−1(y(t)− s(t))
)

.

(21.74)

Therefore, since y(ti) = qi and (21.69) holds, we have y(ti)− s(ti) = φ
(

R!(ti)pi
)

and, consequently,

γ (ti) = R(ti)
(

φ−1(y(ti)− s(ti)
)) = R(ti)R

!(ti)pi = pi,

that is, the curve γ interpolates the points pi at time ti , for all i = 0, . . . , k.
We now prove that the initial and final velocity of the curve γ also match the

boundary conditions. Note that the constraint α(t) = R(t)p0 implies that s(t) ∈
Tp0M and β(t) = p0 + s(t). For simplicity, define z(t) := y(t) − s(t), so that,
z(0) = p0 and ż(0) = 0. Taking derivatives on both sides of (21.74), we obtain

γ̇ (t) = Ṙ(t)
(

φ−1(z(t)
))+ R(t)dz(t)φ−1(ż(t)). (21.75)

Evaluating at t = 0 and taking into account that Ṙ(0)p0 = η0 and φ satisfies
conditions (21.68), it follows that

γ̇ (0) = Ṙ(0)
(

φ−1(p0)
)

+ R(0)dp0φ
−1(0) = η0. (21.76)

Similarly, evaluating at t = τ , we easily obtain

γ̇ (τ ) = Ṙ(τ )
(

φ−1(z(τ )
))+ R(τ)dp0φ

−1(0) = ηk. (21.77)

Finally, the resulting curve γ is C2-smooth by construction, since χ and φ are
smooth and β is C2-smooth. This concludes the proof. ��
Remark 21.21

1. It is important to point out that step 4. of the algorithm can be easily implemented,
since a cubic spline on a flat space can be obtained explicitly and uniquely from
the smooth, boundary and interpolation conditions.

2. However, the interpolating curve γ depends on the choice of the rolling curve
used in steps 1. and 2. and the choice of the local diffeomorphism used in step 3..
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21.3.4 Examples

Using the results of previous sections about rolling Sn−1, SOn, and Grn,k on
the corresponding affine space at a point, we present explicit formulas for an
interpolating curve γ .

Sphere Sn−1 χ(t) = (

R!(t), v(t)
)

is the rolling map along the curve α(t) =
R(t)p. So, the interpolating curve generated by the previous algorithm is given by

γ (t) = R(t)
(

φ−1(y(t)− v(t))
)

, (21.78)

where R, v are the solutions of the kinematic equations (21.26), that satisfy R(0) =
I, v(0) = 0.

Graßmannian Grn,k χ(t) = (

R!(t), S(t)
)

is the rolling map along the curve
α(t) = R(t)PR!(t). So, the interpolating curve generated by the previous
algorithm is given by

γ (t) = R(t)
(

φ−1(y(t)− S(t))
)

− > R!(t), (21.79)

where R, S are the solutions of the kinematic equations (21.35), that satisfy R(0) =
I, S(0) = 0.

Special Orthogonal Group SOn χ(t) = (

V !(t),W!(t)
)

, X(t)) is the rolling
map along the curve α(t) = V (t)PW!(t). So, the interpolating curve generated
by the previous algorithm is given by

γ (t) = V (t)
(

φ−1(y(t)−X(t))
)

W!(t), (21.80)

where V,W,X are the solutions of the kinematic equations (21.47), that satisfy
V (0) = W(0) = I,X(0) = 0.

The interpolating curve γ now depends on the choice of the rolling curve used
in steps 1. and 2. and the choice of the local diffeomorphism used in step 3.
Since the kinematic equations of rolling can be explicitly solved when the rolling
curve is a geodesic, this is the natural choice when implementing the algorithm. In
which concerns the diffeomorphism, we can choose, for instance, the stereographic
projection or the orthogonal projection for the sphere and the Riemannian normal
coordinates for all the examples.

21.3.5 Implementation of the Algorithm on S2

Here we present an example, for the two-sphere S2 = {x ∈ R3|x2
1 + x2

2 + x2
3 = 1}

rolling on its tangent plane T aff
p0
S2 at the south pole p0 = [0, 0,−1]! ∈ S2. We
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want to solve Problem 21.19 for M = S2 using Algorithm :. Two choices have to
be made: the rolling curve α and the diffeomorphism φ. For the first, the obvious
choice is the geodesic that joins p0 (at t = 0) to pk (at t = τ ). In this case, the
rolling map is given by

χ(t) = (

R(t)!, s(t)
) = (

e−t�, t�p0
)

, (21.81)

where � is the constant matrix

� =
⎡

⎣

0 0 −u1

0 0 −u2

u1 u2 0

⎤

⎦ ∈ so3. (21.82)

The development β([0, τ ]) is a straight line segment in T aff
p0
S2, parameterized by

t , starting at t = 0 in p0 as one would expect.
Let us now fix the diffeomorphism. We do it in two situations, the stereographic

projection denoted by φstereo, and the normal projection denoted by φortho.

φstereo : S2 \ {[0, 0, 1]!} → T aff
p0
S2,

⎡

⎣

x1

x2

x3

⎤

⎦ �→
⎡

⎢
⎣

2x1
1−x3
2x2

1−x3

−1

⎤

⎥
⎦ , (21.83)

with inverse

(φstereo)−1 : T aff
p0
S2 → S2 \ {[0, 0, 1]!},

⎡

⎣

ξ1

ξ2

−1

⎤

⎦ �→
⎡

⎣

4ξ1
4ξ2

ξ2
1 + ξ2

2 − 4

⎤

⎦ 1
ξ2

1 +ξ2
2 +4

.

(21.84)
Orthogonal projection onto the sphere is defined by

φortho : S2 \ {x ∈ S2 | x3 ≥ 0} → T aff
p0
S2,

⎡

⎣

x1

x2

x3

⎤

⎦ �→
⎡

⎢
⎣

− x1
x3

− x2
x3

−1

⎤

⎥
⎦ , (21.85)

with inverse

(φortho)−1 : T aff
p0
S2 → S2 \ {x ∈ S2 | x3 ≥ 0},

⎡

⎣

ξ1

ξ2

−1

⎤

⎦ �→
⎡

⎣

ξ1

ξ2

−1

⎤

⎦ 1
√

ξ2
1 +ξ2

2 +1
.

(21.86)
Obviously, for the south pole p0 = [0, 0,−1]!,

φstereo(p0) = φortho(p0) = p0. (21.87)
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Fig. 21.1 Wrapping back by orthogonal projection, see (21.85) and (21.86). The sphere is still at
rest at the south pole

Moreover, the differential of these diffeomorphisms satisfy the following, for any
tangent vector h ∈ Tp0S

2:

dp0φ
stereo(h) = dp0φ

ortho(h) = h, (21.88)

so, both diffeomorphisms satisfy the conditions (21.68).
Interpolating the mapped data on T aff

p0
S2 can be done by computing a cubic

spline, for instance, by means of the classical de Casteljau algorithm, see [25] or
[27]).

According to Problem 21.19 we are given n points on S2 together with n instants
of time. For demonstration purposes and keeping the plots clear we decided to
choose n = 5. Following the above algorithm we compute the great circle segment
α connecting the initial point (south pole) with the final point. The development
β is then a straight line segment in the affine tangent plane attached to the south
pole. Great circles and straight lines are blue coloured in all five figures (see the
Appendix). In Fig. 21.1 the sphere is attached to the tangent plane at p0 at time
t0. One can see the cubic spline (red) lying in the tangent plane and the solution
curve of the interpolation problem living on the sphere (red as well). Figure 21.2
shows the sphere after rolling along the blue straight line segment. The black ray
emanating from the mid point of the sphere clarifies that we have used orthogonal
projection. In contrast, Figs. 21.3 and 21.4 show the result by using stereographic
projection instead of orthogonal projection. The black ray emanating from the top
of the sphere connects corresponding points on the sphere and the tangent plane.
Cubic spline and solution curve are both plotted in white. The last picture Fig. 21.5
allows for a qualitative comparison of the two methods.
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Fig. 21.2 Wrapping back by orthogonal projection, see (21.85) and (21.86). The sphere is rolling
along the straight line segment

Fig. 21.3 Wrapping back by stereographic projection, see (21.83) and (21.84). The sphere is still
at rest at the south pole

Fig. 21.4 Wrapping back by stereographic projection, see (21.83) and (21.84). The sphere is
rolling along the straight line segment
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Fig. 21.5 Comparison of different interpolation curves which both solve the problem

21.4 Some Extensions

21.4.1 Rolling a Hypersurface

Let Hn−1 denote a smooth orientable manifold of dimension n− 1 embedded in Rn

and η : Hn−1 → Sn−1 the Gauß map that assigns a unit normal vector to every point
in Hn−1. Let α : J → Hn−1 be a smooth curve with α(0) = p and η : J → Sn−1

be the Gauß map along α. Then, the following theorem holds.

Theorem 21.22 Consider the unique solution
(

R(t), v(t)
)

of the initial value
problem

Ṙ(t) = (

η̇(t) η(t)! − η(t) η̇(t)!)R(t), R(t) ∈ SOn, R(0) = I,

v̇(t) = −Ṙ!(t) α(t), v(t) ∈ Rn, v(0) = 0.
(21.89)

Then χ(t) = (

R!(t), v(t)
) ∈ SEn is the unique rolling map of Hn−1 on T aff

p Hn−1

along the smooth curve α(t). Equation (21.89) are called the kinematic equations
of the hypersurface.

For an alternative proof, and some useful geometric properties of the special case of
the ellipsoid, see [50].

Proof The development curve β : J → Rn is given by β(t) = χ(t) α(t) =
R!(t) α(t)+ v(t). By the second equality in (21.89), (we have omitted dependance
on t for clarity)

β̇ = Ṙ!α + R!α̇ + v̇ = Ṙ!α + R!α̇ − Ṙ!α = R!α̇, (21.90)

verifying the no-slip condition (21.23) of Definition 21.5.
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To verify the rolling conditions consider the Gauß map η, which is a unit normal
vector field η along α and note that R!η remains constant during rolling. To see this
calculate the derivative

d
dt

(

R!η
) = Ṙ!η + R!η̇ = R!(η〈η̇, η〉 − η̇〈η, η〉)+ R!η̇ = 0.

Therefore the rolling motion has no effect on the image of the tangent space
R!(TαHn−1

)

, identified as a subspace of Rn. By the initial condition, R!(TαHn−1
)

and TpHn−1 coincide at t = 0 thus they remain parallel because the latter tangent
space is stationary. Since by (21.90)

〈R!η, β̇〉 = 〈R!η,R!α̇〉 = 〈η, α̇〉 = 0

it follows that β̇ ∈ R!(TαHn−1
)

and by the previous conclusion β̇ also belongs to
TpHn−1. But β(0) = p thus β(t) ∈ T aff

p Hn−1 verifying the first rolling condition.

This also proves the second rolling condition R!(TαHn−1
) = Tβ

(

T aff
p Hn−1

)

.
It remains to verify the tangential part of the no-twist condition of Defini-

tion 21.5. Let ζ be a tangent vector field along α. Then

dαχ D
dt ζ = R!(ζ̇ − ζ̇⊥) = R!ζ̇ − R!η〈ζ̇, η〉 = R!ζ̇ + R!η〈ζ, η̇〉.

On the other hand, by Remark 21.9

D
dt dαχζ = d

dt

(

R!ζ
) = Ṙ!ζ + R!ζ̇ = R!(η η̇! − η̇ η!)ζ + R!ζ̇

= R!(η〈η̇, ζ 〉 − η̇〈η, ζ 〉)+ R!ζ̇ = R!η〈η̇, ζ 〉 + R!ζ̇

thus confirming (21.24) and completing the proof. ��
We now show that when Hn−1 is the unit sphere Sn−1, the kinematic equations
(21.89) reduce to the kinematic equations (21.26). In this case η(t) = α(t) =
C(t) p, for some curve C : J → SOn with C(0) = I . Then, omitting dependance
on t for clarity

η̇η! − ηη̇! = Ċpp!C! − Cpp!Ċ! = C
(

C!Ċpp! − pp!Ċ!C
)

C!.

Take R = C then the equations in (21.89) become

Ċ = C
(

C!Ċpp! − pp!Ċ!C
)

, v̇ = −Ċ!Cp = C!Ċp,

or equivalently Ċ = C
(

up! −pu!) and v̇ = u, where we denote u = C!Ċp. Thus
we arrive at the system of kinematic equations (21.26) in Sect. 21.2.2.
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21.4.2 The Case of an Ellipsoid

Given a positive definite diagonal matrix D = diag(d1, d2, . . . , dn) < 0, define an
ellipsoid En−1, with positive semi-axes d1, d2, . . . , dn, by

En−1 :=
{

x ∈ Rn
∣
∣
∣ 〈x,D−2x〉 = 1

}

. (21.91)

The normal space at p ∈ En−1 is spanned by D−2p and the Gauß map η along a
curve α : J → En−1 is given by

η(t) = D−2α(t)
∥
∥D−2α(t)

∥
∥
. (21.92)

Then the first equation of (21.89) becomes somewhat unpleasant

Ṙ(t) =
(

D−2α̇(t)

‖D−2α(t)‖2

(

D−2α(t)
)! − D−2α(t)

‖D−2α(t)‖2

(

D−2α̇(t)
)!)

R(t). (21.93)

One can remedy these complexities in the following way, see also [48]. Suppose
that α(t) = D2C(t)D−1p/‖DC(t)D−1p‖, for some p ∈ En−1, C : J → SOn with
C(0) = I . Then

η(t) = C(t)D−1p
∥
∥C(t)D−1p

∥
∥

= C(t)D−1p (21.94)

and

η̇(t)η!(t)− η(t)η̇!(t) = Ċ(t)D−1pp!D−1C!(t)− C(t)D−1pp!D−1Ċ!(t).
(21.95)

Denoting q = D−1p one gets a similar expression to that of the previous example
of the sphere, namely

η̇(t)η!(t)− η(t)η̇!(t) = Ċ(t)qq!C!(t)− C(t)qq!Ċ!(t). (21.96)

Thus we have just shown that the problem of rolling En−1 can be reduced, at least
in principle, to the problem of rolling the unit sphere. However, finding explicit
solutions for the rolling map even along simple curves, such as geodesics, is a
difficult task, making it harder to implement the interpolating algorithm without
sophisticated methods, as e.g. geometric integration algorithms or Lie integrators,
cf. [33]. To overcome this problem, it is convenient to consider the ellipsoid
embedded in a space with a different metric. This is explained in the next subsection.
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21.4.2.1 Changing the Metric on the Ellipsoid

We give here yet another example of rolling that combines the cases of the sphere
and ellipsoid described before. In essence, this is a short study of rolling the unit
sphere in Rn equipped with a left-invariant metric. Let us start with the following
observation.

Let GD := D SOn D
−1 = {

DXD−1
∣
∣ X ∈ SOn

}

. Then GD is a group that
acts transitively on En−1, although not isometrically, according to x �→ DRD−1x,
where R ∈ SOn. However, by a change of metric on the ambient space Rn to

(v,w) �→ 〈v,w〉D−2 := 〈v,D−2w〉 = v!D−2w, (21.97)

for any vectors v,w ∈ Rn, definition (21.91) becomes

En−1 := {

x ∈ Rn
∣
∣ 〈x, x〉D−2 = 1

}

,

the sphere in Rn endowed with the left-invariant metric (21.97). With this metric,
the normal space at p ∈ En−1 is spanned by p and

TpEn−1 =
{

D�D−1p

∣
∣
∣ � ∈ son

}

,

where D son D
−1 is the Lie algebra of GD . The Gauß map η along α : J → En−1

is η(t) = α(t), precisely as in the case of the Euclidean sphere, as expected. The
following result whose proof can be found in [49] describes the kinematic equations
for rolling the ellipsoid over its affine tangent space at the south pole p = −dnen.

Theorem 21.23 Let A(t) := u(t)p!D−1 − D−1pu!(t), where u =
[u1, · · · , un−1, 0]!. If R : J → SOn and s : J → Rn are the unique solutions
of the following set of equations

Ṙ(t) = A(t)R(t),

ṡ(t) = −DA(t)D−1p,
(21.98)

with R(0) = I and s(0) = 0, then, χ : J → GD � Rn given by

χ(t) = (

DR(t)D−1, s(t)
)

(21.99)

is the rolling map of the ellipsoid rolling on its affine tangent space at p, with rolling
curve α(t) = DR−1(t)D−1p and its development β(t) = s(t)+ p.

When u(t) = u is constant, the kinematic equations can be solved explicitly and
the rolling curve, which is a geodesic in this case, is given in closed form.



604 K. Hüper et al.

Thus, the implementation in Sect. 21.3.5 of the interpolation algorithm on the
sphere is applicable to an ellipsoid, with some adjustments, as the following
example illustrates.

21.4.2.2 Implementation of the Interpolation Algorithm on E2

We shall be interested in

E2 := {

x ∈ R3 | x2
1
d2

1
+ x2

2
d2

2
+ x2

3
d2

3
= 1

}

(21.100)

rolling on its affine tangent plane T aff
p0

E2 at point p0 = [0, 0,−d3]! ∈ E2,

embedded in R3 endowed with the metric (21.97), see [49]. The rolling curve is a
geodesic and the development curve therefore is a straight line in T aff

p0
E2. Geodesic

segments γi joining two non-antipodal points pi, pi+1 ∈ E2 at ti and ti+1 are great
arcs, given by

γi(t) = 1
sin θi

(

pi sin
( ti+1−t
ti+1−ti θi

)+ pi+1 sin
(
t−ti
ti+1−ti θi

))

, ti ≤ t ≤ ti+1,

where θi = arccos〈pi, pi+1〉D−2 . The stereographic projection is given by

φstereo : E2 \ {[0, 0, d3]!
} → T aff

p0
E2

φstereo :
⎡

⎣

x1

x2

x3

⎤

⎦ �→
⎡

⎢
⎣

2d3x1
d3−x3
2d3x2
d3−x3

−d3

⎤

⎥
⎦ ,

(21.101)

with inverse

(φstereo)−1 :
⎡

⎣

ξ1

ξ2

−d3

⎤

⎦ �→ 1

d2
2ξ

2
1 + d2

1ξ
2
2 + 4d2

1d
2
2

⎡

⎢
⎢
⎣

4d2
1d

2
2ξ1

4d2
1d

2
2ξ2

(d2
2ξ

2
1 + d2

1ξ
2
2 − 4d2

1d
2
2 )d3

⎤

⎥
⎥
⎦
.

(21.102)
Note that when d1, d2 and d3 are all set to 1 then formulae (21.101), and (21.102)
simplify to (21.83), and (21.84), respectively. An example of interpolation on an
ellipsoid with the above algorithm using the change of metric is illustrated with
Fig. 21.6.
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Fig. 21.6 Wrapping back by stereographic projection, see (21.101) and (21.102). The ellipsoid is
rolling along the straight line segment

21.4.3 Related Work

In this section we start with a brief review of work related to rolling motions and
alternative methods to solve interpolating problems on Riemannian manifolds. The
cited literature below is far from being exhaustive. To shed some light on the rich
potential of the material in this chapter towards applications, we mention at the end
of this section a number of scientific areas where our developments can be used
successfully.

21.4.3.1 Rolling Symmetric Spaces

In this chapter we focussed our attention on three classes of manifolds that are
particular cases of compact symmetric spaces. Rolling motions of these more
general Riemannian manifolds have already been studied in [51], using an extrinsic
approach similar to the one presented here. The work [40] addresses the rolling
motions of even broader classes of Riemannian manifolds from a theoretical
perspective.
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21.4.3.2 Rolling Stiefel Manifolds

Stiefel manifolds Stn,k , consisting of orthonormal k-frames in Rn play a key role
in many engineering applications. Besides Sn−1 = Stn,1, Stn,n−1 ∼= SOn and
On = Stn,n, Stiefel manifolds are in general not symmetric spaces. Finding the
kinematic equations for rolling Stiefel manifolds is a much harder challenge. In spite
of that, there has been some successful attempts to overcome those difficulties, e.g.
[38, 39, 64], but there are still open questions that have not been addressed in a
satisfactory manner.

21.4.3.3 Rolling Pseudo-orthogonal and Symplectic Manifolds

The concept of rolling extends quite naturally to pseudo-Riemannian or even to
symplectic manifolds. Examples are Lorentzian spheres, pseudo-orthogonal groups
and symplectic groups. For instance see [21, 47], and [53], respectively.

21.4.3.4 Control Theoretic Aspects Including Controllability of Rolling

Rolling maps and the corresponding kinematic equations also play an important role
in certain optimal control and controllability problems, often related to geometric
mechanics; see [5, 9, 24, 42], and more recently, [44, 45, 67]. Ongoing work relating
rolling motions to sub-Riemannian optimal control problems will highlight other
interesting connections.

21.4.3.5 Intrinsic Rolling

In more recent years, an intrinsic viewpoint has also been successfully applied to
study rolling motions of Riemannian and pseudo-Riemannian manifolds. In this
approach, the geometric description of the rolling does not depend on any particular
embedding. Examples of works that follow this viewpoint are, for instance, [11],
[13–15], and [28]. This extends to the study of controllability of the rolling, see for
instance [16, 17, 31], and even the rolling of a manifold over another one of different
dimension, such as in [18] and [55].

21.4.3.6 Variational and Hamiltonian Approach to Interpolation

Cubic splines and their higher order extensions have been generalized to Rieman-
nian manifolds and are instrumental in many areas of science and technology.
Variational cubic splines, in particular, are minimizers of the acceleration under
suitable interpolation and boundary conditions. Although the theory of splines
on manifolds is already well established, there are still geometric integration
challenges to be addressed [12, 19, 20, 56]. The alternative Hamiltonian approach
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becomes very cumbersome as the degree of the polynomial splines increases.
The optimal control problems associated to cubic spline curves already face the
complexity that results from the appearence of higher order bundles, cf. [1, 2, 23].
In [6], the Hamiltonian viewpoint was applied to simple variational splines and the
corresponding Hamiltonian dynamics studied in detail.

21.4.3.7 The de Casteljau Algorithm and Bézier-like Curves
on Riemannian Manifolds

The classical de Casteljau algorithm has a significant importance in modeling and
computer aided geometric design. Its generalisation to solve interpolation problems
on manifolds was motivated by many engineering applications where the data does
not lie on Euclidean spaces, cf. [22, 58, 59].

Recently, another method to solve the problem of fitting a smooth curve to data
points on a Riemannian manifold appeared in [29]. Although this method uses the de
Casteljau construction to produce Bézier-like curves, a careful choice of the control
points guarantees that the solutions also satisfy optimality criteria.

21.4.3.8 Some Applications

There is a considerable amount of real life problems where one has to deal with
nonlinear data living in a Riemannian manifold, Lie group or more generally
symmetric space. Works might include computer vision [52], pattern recognition
[7, 65], robotics [61], even spin dynamics [10], pure mathematics, namely some
interplay between geometry and algebra, see [4], or sliding-rolling [32].

For instance, in computer vision applications the data may correspond to a
sequence of images of a dynamical scene captured at different times and the
objective is to reconstruct the scene from that limited number of observations,
[63]. Face recognition problems or age estimation from several facial images is
another example where interpolating data is important. In medical applications,
interpolation methods may help to follow the evolution of a disease or to set
appropriate diagnostics. One application where rolling motions have already been
used for recognizing human actions from 3D skeletal data can be found in [65].
In robotics and in space science path planning is particularly important and can be
achieved through interpolating methods in the Lie group of Euclidean motions, cf.
[62, 66].

Acknowledgements The work of the third author has been supported by OE - national funds of
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is that sensors either directly record structured data, e.g., object poses, or are used
to record data of a certain type, i.e., magnetic resonance images of the human heart.
In both cases, the measured data is subject to physical or physiological constraints
causing the measured data to enjoy a manifold structure. In this chapter, we make
extensive use of this observation and discuss several applications within the realm
of medical imaging. We briefly discuss the general mathematical structure of
these problems and elaborate on why recently proposed formulations of manifold-
valued regularizers are applicable to them. We describe the employed numerical
schemes to provide application-focused readers with a guide to manifold-valued
regularization techniques. Further, we discuss three entirely disjoint applications:
regularization of pose signals for 3D freehand ultrasound compounding, estimation
and regularization of diffusion tensors measured by magnetic resonance imaging,
and estimation and regularization of shape signals. Finally, we discuss possible
extensions.

22.1 Introduction

The foundation of this chapter is the observation that sensor or imaging data itself
as well as data derived from such data is highly structured. This observation is
particularly true in the realm of medical imaging, because many physiological
systems are subject to physical and biochemical constraints. In the course of this
chapter we will make heavy use of this observation and demonstrate how variational
techniques for manifold-valued data can be applied to medical imaging as well as
the understanding of it.

22.1.1 Motivation

Let us start by considering the case of 3D freehand ultrasound, where a series of 2D
ultrasound images is compounded into a 3D ultrasound volume by using the data of
an external tracking system. This imaging modality has become very popular over
the course of the last two decades due to the availability of low-cost 2D ultrasound
systems as well as reasonably cheap optical or electromagnetic tracking systems of
sufficient quality. The compounding process itself, i.e., the process of generating a
3D volume out of the 2D measurements, can be explained in a very picturesque way:
We can consider all 2D ultrasound images as being attached to a clothesline. Next,
we define a 3D grid of sampling points with respect to an arbitrarily chosen world
coordinate system. Finally, we compute the intensity value at each 3D grid point via
a specified interpolation method taking into account image data from surrounding
2D ultrasound images. Thereby, the position and orientation, i.e., the pose, of each
ultrasound image is determined by the output of the employed tracking system. The
whole process is obviously highly influenced by how accurately the position and
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orientation of the individual ultrasound frames can be determined or measured in
3D space. Inaccuracies in the measurements process thus affect the interpolation
process of all grid points in the proximity of one 2D ultrasound frame. By noting
that the series of poses measured by the tracking system can be interpreted as a time-
series with values in the manifold SE(3), we will see that it is possible to improve
the compounding outcome via regularization techniques for manifold-valued data.

As a second imaging technique, we consider diffusion tensor imaging which
is a special form of magnetic resonance imaging that exploits the diffusion of
water molecules within an organism’s tissue. Based on multiple diffusion-weighted
acquisitions, it is possible to fit diffusion tensors at each location within the
measurement volume, which indicate the main directions of water diffusion. By
taking the orientations of multiple neighboring tensors into account, it is then
possible to track fibrous structures within the imaged tissue, e.g., in order to
visualize connected areas in the human brain as an important planning step before
cranial interventions. This imaging modality is inherently manifold-valued as each
grid point of the imaging volume carries a positive definite 3 × 3 matrix which
represents the covariance matrix of a normal distribution. In the corresponding
section, we see how to extend pure regularization techniques for manifold-valued
data to simultaneously fit and regularize diffusion tensors and demonstrate how this
approach benefits the creation of connectomes, i.e., wiring diagrams of the human
brain via fibre tracking.

While the manifold structure is quite obvious in the case of pose signals and DTI,
there are situations where this is less obvious. Consider two and three dimensional
shapes of organs imaged by various medical imaging modalities. A good example
is the human heart; due to its bio-mechanical and functional properties its shape
cannot vary arbitrarily. Thus, an image of the heart, be it acquired with magnetic
resonance imaging (MRI), computed tomography (CT) or ultrasound (US), cannot
vary arbitrarily either. As a consequence, two-dimensional (short-axis) images of the
human heart acquired with MRI have a specific appearance and, roughly speaking,
less degrees of freedom than the plain number of pixels. This observation translates
well to two-dimensional shapes obtained from segmentations of the myocardial wall
or other parts of the human circulatory system, such as the abdominal aorta. By
approximating these manifold structures with classical parametric shape manifolds,
we will demonstrate how techniques for regularization of manifold-valued signals
can be applied to geometry processing and image segmentation.

22.1.2 General Model

Each of the applications described previously has its peculiarities in regards to
the chosen manifold (including the Riemannian metric). However, all of these
applications have a lot of commonalities as well and we will briefly describe them in
this section. For the moment, we restrict ourselves to a one-dimensional setting (as
appearing in time series of poses or shapes) and consider manifold-valued signals
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y = (y1, . . . , yn) ∈ Mn. The problems discussed in this chapter are either of the
form

min
x∈Mn

n
∑

i=1

D(xi , yi )+ λ
n−1
∑

i=1

R(xi , xi+1), (22.1)

or

min
x∈Mn

n
∑

i=1

D(A(xi ), yi)+ λ
n−1
∑

i=1

R(xi , xi+1), (22.2)

as well as their multivariate analogues. In both scenarios, D is an atomic data
fidelity term, ensuring that the computed solution x = (x1, . . . , xn) is well explained
by the input data y, R is a regularizing term incorporating a priori regularity
knowledge such as piecewise smoothness of the computed solution x and λ > 0
is a regularization parameter allowing the user to trade data fidelity for regularity.
In the first scenario, the input data is necessarily manifold-valued, e.g., in case of
pose signals. In the second scenario, there is an operatorA which can be an indirect
measurement operator or a “construction” operator as in the case of DTI, as well
as m measurements yi, i = 1, . . . , n. (More precisely, in DTI, a reasonable model
involves the operator A which maps a diffusion tensor to a set of corresponding
DWIs.) Generally, in case of the second scenario, we typically have a series of real
valued measurements y = (y1, . . . , yn) ∈ Rd×n from which the manifold-valued
signal is estimated via the imaging operatorA.

The atomic data terms in the first scenario, as well as the regularizers in both the
first and the second one, are defined via a previously chosen Riemannian metric d.
We recall that a Riemannian metric is defined as a smoothly varying scalar product
in every point ofM.A Riemannian manifoldM becomes a metric space by defining
the distance d(p,q) between points p,q as the smallest length of the arcs connecting
p,q. In our setting, we employ the distance d to define

D(xi , yi ) = h ◦ d(xi , yi ) (22.3)

and

R(xi , xi+1) = h ◦ d(xi , xi+1). (22.4)

Here, h is one of the following functions: h(s) = s leading to an �1-type
penalization, h(s) = s2/2 leading to an �2-type penalization, and

h(s) =
{

s2, s < 1/
√

2,√
2s − 1/2, otherwise,

(22.5)
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yielding the manifold-valued equivalent of the well-known Huber-norm [43], i.e., a
differentiable compromise between the �1-norm and the �2-norm. As we will see in
the remainder of this chapter, Huber-type weighting of the Riemannian metric has
proven to yield very good results.

In case of the second scenario, i.e., the manifold-valued signal being estimated
during the optimization process, the data terms will be discussed in the respective
subsections. Further, we consider the multivariate situation in Sect. 22.3 in the
context of DTI. Methods to compute (approximate) solutions of the respective
model are presented in the corresponding sections.

22.1.3 Organization of the Chapter

We start out by considering pose signals in Sect. 22.2. We explain a Riemannian
manifold structure on the space of poses, formulate the total variation model and
related models for pose signals, and explain the algorithmic approach. We apply the
developed method for the compounding of ultrasound images. Then, in Sect. 22.3,
we deal with diffusion tensor imaging. We discuss the data manifold and introduce
a multivariate TV model incorporating indirect measurements in the DTI setting.
We present a generalized forward-backward scheme for solving the model. We
show the benefit of the method for nerve fiber tracking. Finally, in Sect. 22.4,
we consider geometry processing and medical image segmentation. We discuss
the manifold structure of the considered shape spaces, derive a basic model for
denoising and a corresponding algorithm. We apply the method for regularizing
slicewise segmentations of a part of an abdominal aorta. Finally, we point out
extensions to joint segmentation and regularization as well as to the multivariate
setup.

22.2 Pose Signals and 3D Ultrasound Compounding

In this section we consider denoising time series of poses and apply it to ultrasound
compounding. In order to explain the model and the algorithm, we need some basics
on the underlying manifold SE(3). We gather these facts and specify the model in
Sect. 22.2.1, the numerical approach is explained in Sect. 22.2.2 and experiments
are conducted in Sect. 22.2.3. We conclude with a discussion in Sect. 22.2.4. This
section is mostly based on [35].

22.2.1 Problem-Specific Manifold and Model

The output of a tracking system is a series of Euclidean transformations, often called
poses, consisting of a rotation matrix R and a translation vector t. The set of all
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such tuples of the form (R, t) constitute the Euclidean motion group SE(3). As a
group, SE(3) is a semi-direct product of the rotation group SO(3) and the translation
group on R3 represented by t ∈ R3. This means that the rotational component of the
second pose acts on the translational component of the first pose before adding them
up. This structure is reflected by the matrix representation of SE(3) of the form

SE(3) =
{(

R t

0 1

)

: R ∈ SO(3), t ∈ R3
}

. (22.6)

Then, SE(3) can be viewed as a subgroup of the group of invertible 4 × 4 matrices
GL(4,R) with the matrix multiplication as group operation.

We consider the manifoldM = SE(3) of Euclidean transformations and endow
it with a Riemannian metric as follows. For a pose p ∈ M we denote the tangent
space at p by TpM. We have a closer look at the elements of the tangent space TeM
at the identity e: Any v ∈ TeM is of the form

v =
(

ωv tv

0 0

)

, (22.7)

where tv ∈ R3 and the skew symmetric matrix ωv is given by

ωv =
⎛

⎝

0 −ωzv ω
y
v

ωzv 0 −ωxv
−ωyv ωxv 0

⎞

⎠ . (22.8)

Here ωxv , ω
v
y, ω

v
z denote a kind of infinitesimal angular displacements with respect

to the corresponding axis. A Riemannian metric in the identity is given by

ge(v,w) = trace(ωTv ωw)+ tv · tw, (22.9)

where v,w ∈ TeM. For a general pose q =
(

R t

0 1

)

, and tangent vectors qv,qw

sitting in q which are represented as matrix products of q and v,w as in (22.7),
we let

gq(qv,qw) = ge(v,w) (22.10)

to obtain a left-invariant Riemannian metric. This means that the metric is invariant
with respect to the choice of a global coordinate frame. However, g is not right-
invariant, which means that it is not invariant regarding the choice of a body-fixed
reference frame. In the context of 3D freehand ultrasound compounding, this means
that by using this metric the computed results are independent of the choice of a
global reference frame, such as the one provided by the tracking system itself, but
not independent regarding the calibration of the ultrasound transducer. We point
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out that the proposed approach can also be carried out for right-invariant metrics
(by symmetry) if desired. Achieving both left- and right-invariance is not possible,
but this is not a shortcoming of the proposed method, rather than an intrinsic
structural issue of SE(3). (We note that such problems do not appear for compact
or commutative groups in which case every left or right invariant metric is bi-
invariant; however, SE(3) is neither compact nor commutative.) In this chapter, we
concentrate on the left-invariant metric defined in (22.9) and refer the interested
reader to [17, 58, 87, 88] for further reading.

Next, we consider the exponential mapping expp : TpM → M, which maps a
tangent vector w in the tangent space TpM of the pose p to a new pose expp(w) by
following the geodesic starting at p with direction w w.r.t. the above Riemannian
metric. (We note that this exponential function does not agree with the Lie group
exponential in SE(3).) We consider a vector v ∈ se(3), where se(3) denotes the
tangent space at the identity and where v is given by (22.7) with tv ∈ R3 being the
translational part and ωv being the so3 part of v.Here, so3 denotes the tangent space
of SO(3) at the identity which equals the space of skew-symmetric matrices. Given

a pose p =
(

Rp tp

0 1

)

∈ SE(3), we have with w = pv that

expp(pv) =
(

Rp exp(ωv) tp + tv
0 1

)

, (22.11)

where exp(ωv) on the right hand side denotes the matrix exponential function of
ωv ∈ so3. To compute the matrix exponential of the skew-symmetric matrix ωv, we
use the Rodrigues’ formula as explained in [54]. We note that the geodesics induced
by the Riemannian metric (22.9) on SE(3) are precisely the geodesics in the product
manifold of SO(3) and R3, where SO(3) is equipped with its bi-invariante metric.

The inverse of the Riemannian exponential mapping in SE(3) at p, denoted by
logp, maps another pose q to the tangent vector logp(q) in TpM sitting at the pose
p pointing towards q. Note that this mapping is locally defined in a neighborhood
of p.We get for poses p,q that

logp(q) =
(

Rp log(RqRTp ) tq − tp
0 0

)

, (22.12)

where the log on the right hand side denotes the principal logarithm of matrices
(which may be viewed as componentwise principal logarithm on the eigenvalues).
Concerning the computation of the principal matrix logarithm of the rotation matrix
RqR

T
p , we again refer to [54]. We have that expp(logp(q)) = q. Further, if q is in

the domain of logp, we have for the distance d(p,q) between p and q that

d(p,q) =
√

gp(logp(q), logp(q)) =
√

‖ log(RqRTp )‖2
F + ‖tp − tq‖2, (22.13)
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where ‖ log(RqRTp )‖F denotes the Frobenius norm of log(RqRTp ), and where ‖tp−
tq‖ denotes the euclidean norm of tp − tq .
Model for Pose Denoising. We specify the general model explained in Sect. 22.1.2
to the situation of pose denoising. Since we have a time series y = (yi )ni=1 of poses
as an input, we consider the problem

min
x∈Mn

n
∑

i=1

h ◦ d(xi , yi )+ λ h′ ◦ d(xi , xi+1), (22.14)

where d is the distance on the manifold of poses induced by the Riemannian metric
and which is given by (22.13); further, h, h′ are potentials given by either h(s) = s,

h(s) = s2/2 or by the Huber potential given by (22.5), and for h′ analogously;
λ > 0 is the regularization parameter. In order to distinguish these three cases in
an intuitive manner, we denote the case h(s) = s by �1, the case h(s) = s2/2 by
�2 and the case (22.5) by HUBER. As d(xi , xi+1) can be considered as a manifold-
valued, first-order forward difference, we interpret R as a first order approximation
of the classical Tikhonov regularizer in case of h′(s) = s2/2, or the total variation
in case of h′(s) = s, respectively. In case of (22.5), R can be regarded as a pose-
valued differentiable approximation of the total variation regularizer, which can be
used to avoid staircasing problems associated with total variation denoising, cf.
Chambolle and Pock [62]. Similar to the data term, we use abbreviations for the
different regularization types, i.e., TV (�1-case), TKHV (�2-case), and HUBER.

22.2.2 Numerical Approach

As a strategy to minimize the functional in (22.14) we employ a cyclic proximal
point algorithm (CPPA) as proposed in [83]; see also Chapter 2 of this book for
details and for a discussion of further algorithmic approaches. CPPAs for Hadamard
spaces have been proposed in [7] and inspired their use in [83]. A reference for
CPPAs in vector spaces is [19]. We recall that a CPPA consists of a cyclic application
of proximal mappings to the individual atomic data terms D(xi , yi ) = h ◦ d(xi , yi )
and the atomic regularization termsR(xi , xi+1) = h′ ◦d(xi , xi+1).A pseudo-code is
given in Algorithm 1. The function compLambda determines the step size and the
functions proxData and proxR1 realize and the proximal mappings on SE(3).

We now discuss this approach in more details. We recall that the general
definition of the proximal mapping of a function F with parameter λ is given by

proxλF (u) = argminvF (v)+ 1
2λd(v, u)2, (22.15)

i.e., the result of the proximal mapping is a point v∗ which minimizes the right hand
side and is a compromise between closeness to u and having a small functional
value. The crucial point in our situation of TV minimization is that the proximal
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Algorithm 1 CPPA scheme for solving (22.14)
1: Input: Signal y, regularization parameter λ, number of steps l, and chosen potential functions
h, h′.

2: Ouput: Denoised signal x.
3: for j = 1, . . . , l
4: λj ← CompLambda(j ) //compute rel. parameter
5: for i = 1, . . . , n
6: xi ← ProxData(λj ,xi ,yi ) //proximal mapping data term
7: for i = 1, . . . , n− 1
8: (xi ,xi+1)← ProxFirstOrder(λj , λ, xi ,xi+1) //proximal mapping TV atom

mappings of the data and the first order difference terms can be explicitely computed
in terms of geodesics in the manifold; for derivations, we refer to [83]. We have the
following explicit formulae for the appearing proximal mappings where the exp and
the log function in SE(3) are implemented via (22.11) and (22.12), respectively. The
proximal mapping for the data term atom Di(xi ) = h ◦ d(xi , yi ), for a given data
point yi is given by

proxλDi (xi ) = expxi

(

t logxi yi
)

, (22.16)

where the parameter t is chosen, depending on the kind of data term used. For the
�2-type data term t = λ/(1 + λ), and for the �1 type data term t = λ/d(xi , yi ), if
λ < d(xi , yi ), and t = d(xi , yi ) else. For the Huber type data term, we have

t =
⎧

⎨

⎩

2λ
1+2λ , if d(xi , yi ) <

ω(1+2λ)√
2
,

min
(

d(xi , yi ),
√

2λ
)

/d(xi , yi ), otherwise.
(22.17)

The proximal mapping for the TV, the Huber and the analogue of the classical
Tichonov regularizer atoms Ri(xi , xi+1) = h ◦ d(xi , xi+1), are given by

(proxλRix)i = expxi

(

t logxi xi+1
)

, (22.18)

(proxλRix)i+1 = expxi+1

(

t logxi+1
xi
)

, (22.19)

where t = λ/(1 + 2λ) for the �2-type regularization. For the TV regularization
t = λ, if λ < d(xi , xi+1)/2, t = d(xi , xi+1)/2 otherwise. In case of Huber
regularization, we have

t =
⎧

⎨

⎩

2λ
1+4λ , if d(xi , xi+1) <

1+4λ√
2
,

min
(

d(xi , xi+1)/2,
√

2λ
)

/d(xi , xi+1), otherwise.
(22.20)

During the iteration of Algorithm 1, the step size parameter λr of the proximal
mappings is successively decreased. In this way, the penalty for deviation from
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the previous iterate is successively increased. It is chosen in a way such that the
sequence λr is square-summable but not summable. This is moderate enough to
not enforce convergence by step size decay. More precisely, we use the sequence
λr = 0.25r−0.95 in the algorithmic realization.

At this point, let us note that the proximal mappings are possibly multivalued in
the general manifold-setting since the uniqueness of the minimizers cannot always
be guaranteed. However, in the scenarios we consider, this is a rather mathematical
pathology which we did not observe in practice. In fact, such situations only occur
on negligible sets of data; we refer to the discussion in [83].

22.2.3 Experiments

We start by considering entirely synthetic experiments using an artificial ground
truth pose signal. We added noise to the translational as well as the rotational
components of each pose as shown in the first row of Fig. 22.1. More precisely, for
the rotational components, we employed Gibbs sampling for a vector-valued von
Mises-Fisher distribution with the probability density function being proportional
to

exp((κ, 0, 0, 0)T · p) for ‖p‖2 = 1, (22.21)

where p ∈ S3 denotes the directional component of a pose p [21]. By choosing
κ = 1000, 100, 10 and σ = 0.05, 0.25, 1.0 for the Gaussian noise which we used
on the translational part we obtain the three test data items depicted in the first row
of Fig. 22.1. In order to determine the best parameter settings we performed a large
grid search with the various weightings for the data term, i.e., �1, �2 and HUBER
and different regularization types, i.e., TV, TKHV and HUBER. In addition to first
order regularization, we also tried out second order regularization approaches [8,
18]. While we noticed that including second order regularization yield slightly better
results than the best parameter combination for first order regularization, it increases
the total runtime significantly. Thus, we derived a set of recommended parameters
for first order Huber-type regularization which yields a good compromise between
regularization performance and algorithm runtime, cf. third row of Fig. 22.1. We
display the results of first order TV regularization in the second row of Fig. 22.1 and
again refer the interested reader to [35] for further details.

For demonstrating the potential of manifold-valued regularization for pose
signals, we consider 3D freehand ultrasound imaging. We designed a setup that
facilitates to track an Ultrasonix L14-5/38 GPS linear probe with multiple tracking
systems simultanously: besides an integrated EM sensor, we used an external EM
sensor (in conjunction with a NDI Ascension EM tracking system) as well as an
optical marker, visible to an NDI Polaris optical tracking system standing on a
tripod, and a KUKA iiwa 7 R800 as a mechanical tracking system. For a detailed



22 Manifold-Valued Data in Medical Imaging Applications 623

Fig. 22.1 Visual comparison of regularization results: synthetic data with various noise levels is
displayed in the first row. Results obtained with �2-type data term and total variation regularization
are displayed in the second row. The best results, also indicated by the respective root mean squared
deviation values, are obtained with Huber regularization (third row)

description of the setup, and in particular of its calibration procedure, we refer
the interested reader to [35] again. To visualize the impact of the regularization,
particularly on the small EM coil integrated in the US transducer, we built an
artificial Lego phantom as described in [86], immersed it in water and performed
the image acquisition with the aforementioned system. Due to the regularity of
the Lego pieces a good visual feedback of the quality of the compounding can be
obtained. One can observe in Fig. 22.2 that the reconstruction using the tracking data
of the integrated EM coil is significantly degraded in comparison to the compounded
volume obtained from the regularized data.

The same setup was used for a scan of a human forearm, where the robot was
set into gravity-compensation-mode in order to simulate a freehand acquisition, cf.
Fig. 22.3. The highly degraded tracking data of the internal tracking system leads
to jagged reconstructions. After applying the proposed regularization method, one
obtains a significant reduction of these artifacts. It is important to note though,
that the presented regularization technique can only correct for the more local
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Fig. 22.2 Lego Phantom experiment: rendering of a 3D compounding of the built Lego phantom
immersed in water. The compounding computed with the original data of the electromagnetic
tracking system integrated in the ultrasound probe is shown on the left. The compounding obtained
after applying the regularization is shown on the right

Fig. 22.3 Human Forearm experiment: due to the presence of a heavy metallic object, which
has been deliberately introduced into the magnetic field of the tracking system, the compounding
using the original tracking data of the internal tracking system shows severe artifacts. By applying
manifold-valued regularization, these artifacts can be corrected to a large extend

perturbations causing the jags, but it has obviously no means of distinguishing
coarse scale perturbations, yielding the wavy appearance, from intentional motions
made by the operator.

22.2.4 Discussion

We have demonstrated that applying the proposed variational regularization meth-
ods to the output of noisy tracking systems can be highly beneficial for freehand
imaging modalities, such as 3D freehand ultrasound imaging. This is particularly
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Fig. 22.4 Discontinuity preservation: In contrast to naive smoothing algorithms, the presented
regularization maintains discontinuities in the pose data. Whereas the reconstruction using original
data of the integrated EM system shows significant artifacts as well as a clearly visible discontinuity
in the tissue layers caused by a sudden movement of the probe (left panel), the compounding using
the regularized data yields much more evident tissue layers (right panel), while still preserving the
discontinuity which manifests itself in a clearly visible darkening of the tissue layers (indicated by
the white arrows)

true in case of EM tracking when using small coils, which is the case for the coil
integrated in the ultrasound transducer itself.

In contrast to related approaches for pose filtering, the proposed approach has
several desirable properties: In contrast to Gaussian filtering of the six parameters
individually it respects the intrinsic geometry of the space of poses as it models
each pose as an element of SE(3). In contrast to Kalman filtering [80], to Kalman
filtering in combination with fusing additional information [1, 34, 48, 50, 79], or
to Bayesian approaches [66], the presented method exhibits information flow in
both directions—not only in forward direction which is due to the fact that the
regularization terms couple all poses. Information flow in both directions also
facilitates the preservation of sharp discontinuities due to sudden pose changes as
demonstrated in Fig. 22.4. Furthermore, it is model-free as opposed to model-based
approaches, cf. Lugez et al. [51] and Sadjadi et al. [65].

Concerning limitations, we notice that the method is suited to remove local
inconsistencies or noise in the tracking data, but not to remove global distortions.
As shown in Fig. 22.3, after applying the proposed regularization technique, local
inconsistencies are removed yielding a smoother appearance of the image, but global
distortions are still present.

We conclude this section with a recommendation for obtaining good parameter
settings: We suggest to start with an �2-type data term, first order Huber-TV
regularization (α = 5), and 2000 iteration steps which should yield already very
good results. If desired or necessary, we suggest to refine these parameters and
possibly add some second order regularization in order to obtain even better results.
This strategy is particularly suited for time-critical applications, because the first
order method regularizes even long pose signals with more than 100 entries in below
one second.
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22.3 Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) is an imaging modality based on nuclear magnetic
resonance and it has become extremely popular during the last decades. Applica-
tions of DTI include the determination of fiber tract orientations, e.g., in order
to plan surgeries, for the detection of ischemia, or the investigation of neuro-
degenerative diseases such as schizophrenia or autism.

In this section, we introduce models of the form (22.2) incorporating indirect
measurement operators in the setting of DTI. We discuss the data manifold, the
measurement operator as well as the variational model in Sect. 22.3.1. In Sect. 22.3.2
we present a generalized forward-backward scheme proposed in [16] for the
numerical treatment. In Sect. 22.3.3 we consider experimental results; in particular,
we see the benefit of the proposed method by applying it to fiber tracking.

22.3.1 Problem-specific Manifold and Model

We start out to discuss the data space as well as the measurement process, and
discuss details on the manifold structure afterwards.

In DTI, each pixel (or voxel) contains a positive definite matrix, i.e., a diffusion
tensor. These positive matrices can be interpreted as covariance matrices of
multivariate zero mean normal distributions and they model the diffusivity of water
molecules in space, which is determined by a series of diffusion weighted images
(DWIs). We denote the space of 3 × 3 diffusion tensors by Pos3 and equip it with
the Riemannian metric

gX(W,V ) = trace(X− 1
2WX−1VX

− 1
2 ), (22.22)

where the symmetric matricesW,V represent tangent vectors at the pointX ∈ Pos3
which constitutes a positive matrix. For details, we refer to [61] for instance.

Measurements. The DTIs are generated from a series of diffusion weighted images
(DWIs.) Each of the DWIs, denoted by yk , measures the directional diffusivity with
respect to a given direction vk . The relationship between a diffusion tensor X and a
corresponding measurement yk is modeled by the Stejskal-Tanner equation

yk = A0 exp(−b vTk Xvk), (22.23)

with a global constant b > 0 and a voxel-wise constantA0 > 0, whereA0 represents
the intensity of the unweighted measurement. For details we refer to [70] or the
discussion in [16]. This means that fitting the tensor Xij at location (i, j) can be
achieved by minimizing the atomic data term
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D(A(Xij ), {ykij }k)) =
∑

k

∣
∣
∣bv

T
k Xij vk − log(A0

ij /y
k
ij )

∣
∣
∣

2
, (22.24)

with b,A0
ij > 0. As a consequence, we can write the overall data term (which is a

two-dimensional specification of (22.2) to DTI) as

D(A(Xij )ij , ({ykij }k)ij ) =
∑

i,j

∑

k

∣
∣
∣Ak(Xij )− log(A0

ij /y
k
ij )

∣
∣
∣

2
, (22.25)

where Ak(Xij ) = bvTk Xij vk denotes the imaging operator as introduced in (22.2).
From a statistical point of view, this data term assumes that the noise on the
logarithm of the DWIs is Gaussian noise. It often causes a so-called shrinking effect
which manifests itself in the reconstructed tensor being too small due to assuming
a Gaussian distribution. A refined noise model for DWIs is Rician noise. An atomic
data term which is suited for this noise model is

D(A(Xij )ij , ({ykij }k)ij ) =
∑

i,j

D(A(Xij ), {ykij }k), (22.26)

where

D(A(Xij ), {ykij }k) = −
∑

k

log

(
ykij

σ 2 exp

(

−pkij (Xij )
2+(ykij )2

2σ 2

)

I0

(
pkij (Xij )y

k
ij

σ 2

))

.

(22.27)

Here, pkij (Xij ) = A0
ij exp(−bvTk Xij vk) [36, 67], and I0 denotes the modified

“cosh”-like Bessel function of the first kind of order zero; cf. [36]. This term is
not based on a measurement operator combined with an Euclidean norm; however
we can well deal with it since its structure is similar to the data term in (22.2) as it
combines the measurement operator with a differentiable function.

Manifold Structure. Equipped with the Riemannian metric (22.22) the space
of positive matrices becomes a Cartan-Hadamard manifold which is a simply
connected complete Riemannian manifold of non-positive sectional curvature.
Cartan-Hadamard manifolds are a particularly nice class of manifolds in which for
instance geodesics do not intersect and are always length-minimizing. In particular,
the Riemannian exponential function and its inverse are diffeomorphisms. For
details, we refer to the book [26] for instance.

For the space of positive matrices, the Riemannian exponential mapping expX is
given by

expX(W) = X
1
2 exp(X− 1

2WX− 1
2 )X

1
2 . (22.28)



628 M. Baust and A. Weinmann

X is a positive matrix and the symmetric matrix W represents a tangent vector
in X. The mapping exp on the right-hand side denotes the matrix exponential
function. Furthermore, there is also a closed form expression for the inverse of the
Riemannian exponential mapping: we have, for positive matrices X, Y that

exp−1
X (Y ) := logX(Y ) := X

1
2 log(X− 1

2 YX− 1
2 )X

1
2 . (22.29)

The log symbol on the right-hand side denotes the matrix logarithm; we note that
it is well-defined since the argument is a positive matrix. The matrix exponential
and logarithm can be computed by diagonalizing the symmetric matrix under
consideration and then applying the scalar exponential and logarithm functions to
the eigenvalues. The distance between two positive matrices X and Y is given by

d(X, Y ) =
√
∑3

l=1
log(κl)2, (22.30)

where the κl denote the eigenvalues of the matrix X− 1
2 YX− 1

2 .

Model. For the DTI case, we restrict ourselves to considering total variation
regularization; we switch from a univariate (one-dimensional) to a multivariate
two-or three-dimensional scenario and incorporate indirect measurement terms.
Switching from a one-dimensional scenario to a two- or three-dimensional one
has certain implications for the regularizer. In the bivariate setting, we may use
a neigborhood system, for instance e1 = (1, 0), e2 = (1, 1), e3 = (0, 1),
e4 = (−1, 1), or e1 = (1, 0), e2 = (0, 1), to obtain a finite difference discretization

TV(X) =
∑

l

∑

i,j

αld(X(i,j)+el , Xi,j ). (22.31)

Here, the weights for the four-directional discretization are given by α1 = α2 =√
2 − 1 and α3 = α4 = 1 − √

2/2 and for the discretization using the coordinate
directions by α1 = α2 = 1. The first neighborhood system yields a near isotropic
finite difference discretization. In our experiments, we compared both neighborhood
systems and found that the anisotropy effects are rather mild, and do not justify the
additional computational cost due to additional directions in a larger neighborhood
system. In the three-dimensional setting, we may use the coordinate axes and the
planar diagonals as directions, or simply the coordinate axes. We use the latter in
our experiments. Concerning details on finite-difference discretizations, we refer the
interested reader to [24, 71, 84]. As models for regularizing diffusion tensor images
or volumes we consider

min
X∈Posn×m3

n,m
∑

i,j=1

D(A(Xij ), {ykij }k)+ λTV(X), (22.32)



22 Manifold-Valued Data in Medical Imaging Applications 629

where TV is given by (22.31) and its three-dimensional analogue, respectively and
λ > 0 denotes a regularization parameter. As data term in 3D we replace the pixel-
wise sum by the voxel-wise sum of the atomic data terms given by (22.24) and
(22.27), respectively.

22.3.2 Algorithmic Approach

In [16], we have proposed a generalized forward-backward algorithm for the
model (22.32). We first describe the scheme and then explain how to compute the
particular quantities. In a vector space setting, forward-backward algorithms have
been considered in [63]; see also the references therein.

Generalized Forward-Backward Algorithm. The basic idea is as follows. We
decompose the functional (22.32) into the data term

F(X) :=
n,m
∑

i,j=1

Fij (Xij ) :=
n,m
∑

i,j=1

D(A(Xij ), {ykij }k) (22.33)

and the regularizer TV(X). As a forward step, we perform a gradient step for the
data term F of (22.33). The computation of the required gradients is discussed
below. As a backward step, we apply the proximal mappings for the atoms of
the TV term in a cyclic way. More precisely, for each summand of (22.31) we
apply its proximal mapping in a cyclic way. (We can see this as one sweep of
the CPPA for the TV term as discussed in Sect. 22.2.2.) The proximal mappings
of the summands of (22.31) are explicitly given as discussed in Sect. 22.2.2 since,
in the manifold of positive matrices, we have explicit formulae for the distance,
the exponential mapping and its inverse as explained before. Then, the generalized
forward-backward algorithm consists of iterating the gradient step w.r.t. the data
term and the cyclic application of the proximal mappings on the TV regularizer. We
refer to Algorithm 2 where the concept of the algorithm is presented, and for further
details, we refer to [16].

Computing Gradients. We explain how to compute the Riemannian gradients ∇Fij
of the summands Fij of the data term F.More precisely, we need the gradients of

Fij (Xij ) = D(A(Xij ), {ykij }k) (22.34)

with the data termD either given by (22.24) and (22.27), respectively. We first notice
that Posn is an open subset of the linear space of symmetric matrices Symn. Hence,
the differential in the manifold setting agrees with the differential in the vector space
setting. So let V be an arbitrarily chosen element in the tangent space of Xij . Then
the first variation of Fij at Xij in the direction V is expressed via the Riemannian
metric (22.22) by Algorithm 2
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Algorithm 2 Generalized forward backward algorithm (with cyclic backward step)
for the TV problem (22.32) for joint diffusion tensor fitting and denoising

1: Input: DWI images yk = (ykij ), regularization parameter λ, number of steps S.
2: Ouput: Signal X (solution of (22.32)).
3: Initialize X
4: for m = 1, . . . , S
5: λm ← CompLambda(m) //compute stepsize
6: //Riemannian gradient step
7: for i = 1, . . . , I, j = 1, . . . , J
8: Gij ← CompGradient(Xij ,yij ) // Riem. grad. of (22.24),(22.27)
9: λm ← min( searchLine(Gij ,Uij ,Fij ,λm)) // adapt step length

10: for i = 1, . . . , I, j = 1, . . . , J
11: Xi,j ← expXi,j (−λmGi,j ) //update according to (22.42)
12: //proximal mappings for TV atoms (numbered by n = 1, .., N)
13: for n = 1, . . . , N
14: t ← min(λmλαln ,

1
2 ) // determine t, cf. (22.18)

15: X̄in,jn ← expXin,jn

(

t logXin,jn X(in,jn)+vln
)

16: X̄(in,jn)+vln ← expXin,jn+vln
(

t logXin,jn+vln X(in,jn)
)

17: Xin,jn ← X̄in,jn , X(in,jn)+vln ← X̄(in,jn)+vln // update

d
dt

|t=0Fij (Xij + tV ) = d
dt

|t=0D(A(Xij + tV ), {ykij }k) = gXij (∇Fij (Xij ), V ).
(22.35)

We first consider the situation when the data term D is given by (22.24).
For the computation of ∇Fij , we first use that any diffusion tensor is a
symmetric matrix which implies that there is a canonical isomorphism I

mapping a tensor W to its six components in its upper triangular part, I(W) =
(W(1,1), . . . ,W(1,3),W(2,2), . . . ,W(3,3)). Using this isomorphism we reformulate
Fij in the form

1

2
‖Axij − ȳij‖2

2. (22.36)

Here xij is the vector in R6 with components from the upper triangle of Xij , A ∈
RN×6 is determined by all N gradient vectors yk (independent of i, j ) and ȳij ∈ RN

is a vector with components ȳkij = log(ykij /A0). The first variation of this least

squares problem can now be represented by the euclidean scalar product of R6 as

d
dt

|t=0Fij (xij + tv) = 〈m, v〉 , (22.37)

where m = AT (Axij − ȳij ) for arbitrarily chosen v ∈ R6. Defining M = I−1(m)

and V = I−1(v) we rewrite this first variation as 〈m, v〉 = trace(MT V ). In other
words, MT is the Euclidean gradient of Fij . Employing the Riesz representation
theorem and the definition of the Riemannian metric (22.22) we find



22 Manifold-Valued Data in Medical Imaging Applications 631

trace
(

X−1
ij ∇FijX−1

ij V
)

= trace(MT V ). (22.38)

(Note that we here suppress the dependence on ∇Fij andMT onXij in the notation.)
As this equality holds true for all tangent vectors V at the point Xij ,

∇Fij (Xij ) = XijM
TXij . (22.39)

If the data term D is given by (22.27) we proceed similarly and obtain

∇Fij (Xij ) = Xij M̂
T Xij , (22.40)

where

M̂T =
∑

k

−bpkij (Xij )
σ 2

(

pkij (Xij )−
I ′0
I0

(
pkij (Xij )F

k
ij

σ 2

)

Fkij

)

vkv
T
k (22.41)

and I ′0/I0 denotes the logarithmic derivative of the Bessel function I0. Here, vkvTk
is the rank one matrix obtained from the direction vk .

Once the gradients are computed, we can perform a gradient descent step

Xm+1
ij = expXmij (−λm∇D(Xmij )), (22.42)

using (22.39) and (22.40) for ∇D, respectively, depending on weather the data term
D is either given by (22.24) or by (22.27); here λm denotes the step size chosen at
the m-th iteration.

22.3.3 Experiments

We evaluate the proposed method on synthetic data as well as on real data from the
UCL Camino Diffusion MRI Toolkit [30]. The algorithm is implemented in C++
and the operations which are necessary for computing matrix roots, logarithms, and
exponential functions have been implemented using Eigen v.3.2.4.1 The parameter

λm in Algorithm 2 is chosen as λm = Cm− 1
2 , with C = 100. For the visualization,

we used a modified version of the fanDTasia ToolBox [10].
At first, we performed a quantitative evaluation using synthetic test data similar to

the one in Fillard et al. [36] and the original publication [16]. In short, we generated
a ground truth volume that has two “phases” of tensors, used the Stejskal-Tanner
equation to create ten ground truth DWIs and finally imposed Rician noise on

1Available at http://eigen.tuxfamily.org.

http://eigen.tuxfamily.org
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Fig. 22.5 Synthetic experiments (examples). Unregularized tensor fitting is severely affected by
the noise which makes regularization necessary. All TV-based regularization methods yield edge-
preserving regularization. We observe an undesired shrinking effect for the schemes based on the
LSQ data term (22.24). The presented approach of combined fitting and regularization based on
the model (22.32) using the Rice-MLE data term (22.27) yields the most convincing results

the produced DWIs. (The Rician noise distribution is given by the distribution of
the radial part of a bivariate centered normally distributed random variable with
covariance matrix being a multiple of the identity.) We compare the proposed
combined method with the (uncombined) sequential baseline method which works
as follows: we first fit the tensors using the data term (22.24) (or (22.32)) without
any spatial regularization. Then, in a next step, we perform TV regularization on
the fitted tensors as described in [83]. It can be observed in Fig. 22.5 that the
combined fitting and TV denoising approach using the Rice-MLE data term (22.27)
further improves the results obtained by the combined approach using the least
squares (LSQ) data term (22.24); in particular, it does not show the aforementioned
shrinking effect. Furthermore, we observe that the proposed approach yields better
results than the corresponding baseline approach which first fits the tensors using
the respective data term and subsequently performs TV regularization. For details
on the quantitative evaluation we refer the reader to [16].

In order to demonstrate the potential of the proposed method on real data, we
have applied it to diffusion weighted data of the human brain from the Camino
project [30]. We reconstructed the tensors in three dimensions with the proposed
approach using joint tensor fitting and TV-regularization using the Rice-MLE data
term, where we performed 1000 steps (S = 1000). We estimated a Rician noise
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level of σr = 16777.5 using the method proposed in [46]. Since the maximum
DWI magnitude is of order 105, magnitude of the unweighted measurements is of
order 106 the noise level can be considered as low to moderate. For comparison,
we computed the DTI volumes using the Camino software; see Fig. 22.6. We first
observe the denoising capabilities of the proposed scheme. Comparing the upper
left panel and the upper right panel of Fig. 22.6, we further observe that the tensors
obtained by the Camino software are slightly smaller than the tensors obtained by
the presented method. This effect might be explained by the fact that the CAMINO
software uses a least squares fit on the real data (containing noise well modeled by
Rician noise) which causes shrinkage and by the fact that the Rice-MLE data term
of the presented method seems more suited to the noise and so avoids shrinkage.

In order to indicate the relevance of the proposed method for fiber tracking, we
employed the fiber tracking module implemented in 3D Slicer (www.slicer.org). For
all experiments we used the following settings: 1.0 seed spacing (in voxel), 0.3 min
seed FA, 0.3 stopping min FA, 0.1 mm integration step, 0 mm minimum path length,
2000 mm maximum path length. The lower left panel in Fig. 22.6 shows the fiber
tracking results obtained with the UKFT-module (Slicer plugin) which implements
the method of [13]. The lower right panel finally shows the result obtained with
the proposed reconstruction algorithm exhibiting an improved reconstruction of the
(vertical) fibers corresponding to the cingulum (indicated by white squares), which
has been confirmed by a clinical expert.

22.3.4 Discussion

We have presented an approach for combined tensor fitting and edge-preserving
regularization which is a TV regularization approach in a combined (non-flat)
manifold and inverse problem setup; in particular, we have considered an energy
with a data fidelity term adapted to Rician noise on the DWIs. As minimization
strategy, we have developed a generalized forward-backward scheme. We have
applied the derived algorithms to real DTI data and shown its benefit for fiber
tracking.

The affine invariant metric on Pos3 we employ is well-established in DTI and
used in various contexts; see Pennec et al. [61] or Cheng et al. [29]. In particular
this metric corresponds to the Fisher-Rao metric on normal distributions which
yields a strong statistical motivation to precisely consider this metric. Instead of
endowing Pos3 with the Fisher-Rao metric (and thus considering it as a manifold)
there are approaches which impose different mathematical structures. One approach
is to consider them as the positive cone in the space of matrices and to equip it with
the Euclidean distance; see, for instance, [49, 82, 85]. Methods based on this concept
typically have to ensure that the computations done in the ambient space do not leave
the cone of positive matrices. This is usually achieved by using projections which
are a somewhat problematic concept in this context, since the positive matrices form
an open set which means that they have no boundary onto which one could project.

www.slicer.org
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Fig. 22.6 Experiments using the Camino Dataset. We compare the presented approach with the
reconstruction result obtained by the Camino software (http://cmic.cs.ucl.ac.uk/camino/) in the
upper panels. We observe that the tensors reconstructed with this software are slightly smaller than
the tensors reconstructed with the presented approach, which is especially visible in the respective
close-ups. In the lower panels, we apply the fiber tracking implemented in Slicer (www.slicer.org)
to the result of the respective reconstruction method. As indicated by the white rectangles, the
presented method leads to an improved reconstruction of the (vertical) fibers corresponding to the
cingulum

http://cmic.cs.ucl.ac.uk/camino/
www.slicer.org
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Also, using the Euclidean metric for DTI data, a swelling effect has been reported
in [5, 74]. In this case, the dispersion of the corresponding covariance matrices, i.e.,
their determinant, tends to be larger than the original ones [5] when reconstructing
noisy data with known ground truth. Another mathematical structure for DTI is the
so-called log-Euclidean framework as employed by Arsigny et al. [5, 6] and Fillard
et al. [36]. By using this metric, one essentially works in the tangent space of the
identity matrix and then solves the present problem in this linear space. One of the
main advantages of the log-Euclidean approach is that it is computationally very
efficient. This advantage comes with not being affine invariant and the drawback
of being restricted to a particular base point, i.e., the identity matrix. Going to the
tangent space at the identity matrix yields good results for nearby points, but one
loses quality the further the considered points are away.

Because the positive definiteness of the reconstructed tensors is a non-linear
constraint and as such hard to enforce [36] there is a large body of literature on
DTI reconstruction. One can distinguish four types of approaches: (1) fitting the
tensors independently per voxel while imposing constraints to enforce the positive
definiteness of the reconstructed tensors [47, 81], (2) denoising the DWIs first and
then fitting the tensors individually [9, 11, 52], (3) regularizing the tensors after
reconstruction [5, 22, 23, 28, 40, 61, 74], and (4) reconstructing and regularizing the
tensors simultaneously [6, 27, 36, 56, 59, 76]. Methods related to the latter approach
are more intricate, but they show the best performance with respect to reconstruction
quality [36, 75]. The presented approach falls in the last category. Due to the amount,
diversity, and variety of related work, we refer the interested reader to [16] for a
detailed discussion.

The major limitation of classical DTI appears in the representation of intravoxel
crossings of fibers [4, 78]. Here, the diffusion process is no longer well described
by a single tensor and leads to falsely fitted plate or sphere shaped tensors. In order
to deal with crossings several approaches have been proposed, e.g., [4, 32, 38, 57].
They can be categorized into two groups: (1) the single-tensor-model is replaced by
a multi-tensor one; see for instance [3, 60, 78]; (2) model-free approaches where
the major assumption is that the diffusion process can be described by a orientation
distribution function (ODF) on the 3D unit sphere; see for example [32, 42, 44, 73,
77]. The latter imaging approach is also called Q-ball imaging. For a review on
both types of approaches we refer to [2]. Similar to standard DTI the model space
in the Q-ball setup can be interpreted as a Riemannian manifold [39]. Hence, the
framework presented here can be applied to the corresponding manifold as well. We
refer the reader to the paper [84] where an a posteriori regularization method in
the Q-ball setup is proposed and where the needed differential-geometric operations
are described to implement the framework of this section in the Q-ball setting. The
concrete application in the Q-ball setting is a promising topic of future work.

Finally, we point out that the employed model and algorithm are fairly general.
In particular, to make the approach work for another manifold, we basically need an
implementation of the gradient of the measurement operator as well as methods to
compute the Riemannian exponential and its inverse.
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22.4 Geometry Processing and Medical Image Segmentation

The main reason of defining and studying shape spaces is the wish to be able
to compare two or multiple shapes in a mathematically meaningful way, i.e.,
by introducing a (Riemannian) metric. There are various approaches leading to
different classes of shape spaces. The most straightforward way of categorizing
them is possibly to distinguish discrete formulations which comprises the original
approach by Kendall as well as most types of active and statistical shape models,
e.g., [31, 41, 45], from continuous formulations, e.g., [12, 53, 68, 72]. We also refer
to the Chapters 13, 14, 24 and 16 of this book which also deal with shape spaces. In
this chapter, we consider (discrete) parametric shape spaces, where the parameters
consist of a fixed number of two-dimensional points. To this end, let us consider
polygonal discretizations of simple planar shapes, i.e., two-dimensional and non-
intersecting closed curves. We obtain a simple n-gon which can be represented by a
complex vector

z = (z1, . . . , zn) ∈ Cn, (22.43)

where each entry zi encodes the coordinates of one boundary point with its real and
imaginary part. In the following, we employ the shape representation of Kendall
[45] (see also Chapter 10 in this book or the book [33]) which is based on such
closed polygonal lines. In particular, all quantities needed from an algorithmic point
of view (in particular, the exponential mapping and its inverse) can be implemented
very efficiently. We will use Kendall shapes, as well as Kendall preshapes which we
will also call oriented Kendall shapes.

The advantage of using such parametric shape spaces is that they allow a
geometrically meaningful treatment of shapes, e.g., by introducing invariance
regarding translation or scale, without the need for learning the shape of an object
class from a collection of previously segmented shapes. Particularly in cases, where
no or little training data is available, this property comes in handy. The fact that such
generic shape spaces are very powerful can also be seen when using them in a joint
segmentation and regularization framework as discussed at the end of this section.

In Sect. 22.4.1 we discuss the manifold structure of the considered Kendall shape
spaces, the basic model for denoising and describe a corresponding algorithm. In
Sect. 22.4.2 we apply the scheme for regularizing slicewise segmentations of a part
of an abdominal aorta. In Sect. 22.4.3 we discuss extensions to joint segmentation
and regularization as well as to the multivariate situation.

22.4.1 Problem-Specific Manifold, Basic Model and Algorithm

We will briefly recall the original representation of Kendall [45]. For a concise
description of this representation we refer to [37] for instance. According to Kendall,
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a shape is that which “is left when the effects associated with translation, scaling
and rotation are filtered away.” More mathematically, the above operations form
a (Lie) group, the group of similarity transforms. Then a shape is an equivalence
class of polygons, where two polygons define the same shape/belong to the same
equivalence class if they are congruent w.r.t. a similarity transform. A more general
definition is obtained by replacing the group of similarity transforms by any
reasonable group of transformations.

We first consider the translation part. We normalize the polygon (22.43) such
that its center of mass equals the coordinate center. Hence, we may assume the
representation (22.43) to be normalized w.r.t. translation, i.e.,

n
∑

i=1

zi = 0 ∈ C. (22.44)

The mean value (translation vector) is stored for all shapes to position the regular-
ized shapes correctly. This operation is usually done before applying the proposed
method and can be reversed after the regularization. By normalizing z w.r.t. to
translation we may represent shapes in the (n− 1)-dimensional subspace

Vn−1 = {z ∈ Cn :
n
∑

i=1

zi = 0} ⊂ Cn, (22.45)

which can itself be identified with Cn−1. Loosely speaking, normalizing w.r.t.
translation removes one complex degree of freedom.

Frequently, we consider the real-valued representation of z via identifying Cn

with R2n, i.e.,

x = (x1
1 , x

2
1 , x

1
2 , x

2
2 , . . . , x

1
n, x

2
n) ∈ R2n, (22.46)

where x1
i = @(zi) and x2

i = A(zi) denote the real and imaginary part of zi . In this
representation, the normalization (22.44) reads

∑n
i=1 x

1
i = 0, and

∑n
i=1 x

2
i = 0.

So, by normalizing x w.r.t. translation, we are removing two real degrees of freedom.
Thus, the shape representation is restricted to the real subspace

V2n−2 = {x ∈ R2n :
n
∑

i=1

x2i = 0, and
n
∑

i=1

x2i−1 = 0} ⊂ R2n. (22.47)

Next we consider scaling. We notice that a polygon x ∈ V2n−2 can be scaled by
multiplying all real components xi with a real number s > 0 and still defines the
same shape w.r.t. translation and scaling. In other words, all y ∈ V2n−2 which lie on
the real half-line

Lx = {s · x : s ∈ R, s > 0} (22.48)
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define the same Kendall preshape or oriented Kendall shape meaning that Lx is the
equivalence class of all polygons which are equivalent w.r.t. translations and scaling.
We emphasise that this shape representation is not invariant w.r.t. rotations. The set
of all these equivalence classes can now be identified with the real unit sphere S2n−3

R .

We note that by requiring scale invariance we are removing another real degree of
freedom.

In order to incorporate rotation, we consider the complex representation (22.45).
We observe that a polygon z ∈ Vn−1 can be scaled by a factor s > 0 and rotated
by an angle θ ∈ [0, 2π) by multiplying all complex components zi with the
complex number w = s exp(iθ) = s cos(θ) + is sin(θ) to define the same shape.
Consequently, all polygons z which are equivalent w.r.t. translation, rotation, and
scaling lie on the complex line

Lz = {w · z : w ∈ C\{0}}. (22.49)

In other words, the shape Lz is the equivalence class of all polygons which are
equivalent w.r.t. rigid transformations and scaling. The classical Kendall shape
space which consists of the set of all these equivalence classes can now be identified
with the complex projective space CPn−2 or, equivalently, the complex unit sphere
Sn−2
C (with antipodal points identified). We note that by requiring rotation and scale

invariance we are removing another complex degree of freedom.
As a consequence, for the Kendall shape space, the exponential mapping and the

inverse exponential mapping are given by the respective mappings of Sn−2
C , i.e.,

expz(v) = cos(φ) · z+ ‖z‖ sin(φ)

φ
· v, φ = ‖v‖ (22.50)

and

logz(y) = φ · y −�z(y)
‖y −�z(y)‖ , φ = arccos(

|〈z, y〉|
‖z‖ ‖y‖ ), (22.51)

where �z(y) = z · 〈z, y〉 / ‖z‖2 denotes the projection of y onto z. We notice
that 〈·, ·〉 denotes the complex scalar product, i.e., 〈z, y〉 = ∑n

i=1 ziyi, where ·
denotes the complex conjugation, and ‖ · ‖ is the norm induced by the complex
scalar product.

For the oriented Kendall shape space, the exponential mapping and the inverse
exponential mapping are given by the respective mappings of Sn−3

R , -> i.e., by
formulas (22.50) and (22.51) but this time with the real-valued scalar product 〈x, y〉
and its induced norm. To put it in a nutshell: By exchanging the scalar product for the
computation of the exponential and the inverse exponential mappings we can switch
between the rotationally invariant and the non-rotationally invariant representation.
All mappings can be implemented very efficiently as they only require basic linear
algebra subroutines (BLAS).
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Model for Shape Denoising. We specify the general model explained in Sect. 22.1.2
to the situation of shape denoising. We here first consider a basic model as done in
[15] and note that there is an extension proposed in [69] which incorporates an
indirect measurement term as briefly discussed in Sect. 22.4.3. Since we deal with a
time series y = (yi )ni=1 of shapes as input, the basic model reads

min
x∈Mn

n
∑

i=1

h ◦ d(xi , yi )+ λ h′ ◦ d(xi , xi+1), (22.52)

where d is the distance on the Kendall shape space or the oriented Kendall shape
space. The model is similar to the model (22.14) in Sect. 22.2.1 with the Kendall
shape space or the oriented Kendall shape space replacing the poses. (We note that
historically the case of shapes was considered first.) As in Sect. 22.2.1 h, h′ are
potentials given by either h(s) = s, h(s) = s2/2 or by the Huber potential (22.5)
and λ > 0 is the regularization parameter. We refer to the discussion in Sect. 22.2.1.

Algorithm. In order to solve the problem (22.52) we employ a cyclic proximal
point algorithm as described in Sect. 22.2.2 for pose signals. In order to implement
all needed proximal mappings (cf. Sect. 22.2.2) in the Kendall shape space or the
oriented Kendall shape space we only need explicit expressions for the distance and
the Riemannian exponential mapping as given by (22.50) and (22.51).

We emphasize that this algorithm can be instantiated for any shape space
by providing implementations of the corresponding exponential mapping and its
inverse.

22.4.2 Experiments

We here restrict ourselves to considering one example from geometry processing
and leave some space for possible extensions discussed in the next subsection.

Let us consider the slice-wise segmentation of organs, such as the abdominal
part of the aorta from computed tomography angiography (CTA), cf. Fig. 22.7. The
contrasted lumen of the aorta, was segmented with the method of Baust et al. [14].
The segmentation boundaries were discretized with 360 equally spaced points and
the presented algorithm regularized the whole signal consisting of 68 shapes in
1.35 s, where we chose α = 15.0 as well as �1 penalties for data term and regularizer.

As depicted in Fig. 22.7a, b, the presented algorithm successfully regularizes the
segmentation of the aortic lumen. Thereby, it is particularly useful in removing
little cusps and concavities which is shown in Fig. 22.7c where we colorized the
original segmentation with the (signed) surface distance between the original and the
regularized signal. The cusps correspond to erroneously segmented calcifications
in the aortic wall. Since the algorithm does not alter the segmentation in an
unreasonable way, it is perfectly suited for processing geometric models which are
later used in biomechanical simulations.
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Fig. 22.7 Geometry processing example: Application of the presented algorithm to a segmenta-
tion of the lumen of the abdominal part of a human aorta. The model consists of 68 CTA slices
segmented with the method of Baust et al. [14]. The original model is shown in (a) with every
second shape highlighted in blue. The regularized signal is shown in (b) with every second contour
highlighted in yellow. The method successfully removes little cusps and concavities of the original
contours, where we colorized the original segmentation with the signed surface distance (in voxel)
to the regularized model (c)

22.4.3 Extensions

Besides regularizing already existing shape signals, it is also possible to simultane-
ously generate and regularize them. Similar to the case of DTI, we have to define a
suitable imaging operatorA to be used in (22.2).

Let us assume that we are already given a shape signal x = (xi )i . As the oriented
Kendall shapes are scale- and translation-invariant, the imaging operator has to
endow each shape with these components in order to make them usable in a classical
image segmentation scenario. Therefore, we actually have a series of measurement
operatorsAi which augment each oriented shape xi with a translational component
t ∈ R2 and a scaling factor s > 0 to obtain a particular implicit representation of the
form

At,s (xi ) = μin1�t,s + μout1�Ct,s , (22.53)

where �t,s denotes the interior of the shape xi anchored at t and normalized such
that the sum over the squared distances to the anchor equals s2. In order to keep the
notation simple, we frequently drop the dependency of t and s on i.�Ct,s denotes the
complement of�t,s which is the outer part determined by the curve xi . Furthermore,
μin ∈ [0, 1] and μout ∈ [0, 1] denote the means of intensity values of Ii (ith frame)
computed w.r.t. �x,s and �Cx,s , respectively. This process is illustrated in Fig. 22.8.

Assuming that Ii is discretized on a k× l-grid with intensity values normalized to
[0, 1], we can now formulate the (frame-wise) measurement operation as a classical
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Fig. 22.8 Action of the measurement operator: At,s maps a Kendall shape xi to a translated, i.e.,
positioned, and scaled version At,s (xi ) in the image space. �t,s and �Ct,s denote the areas inside
and outsideAt,s (xi ), respectively

piece-wise constant segmentation problem, similar to the data term employed in the
Chan-Vese model [25], i.e., the two-phase version of the Potts model [55]:

D(Ai (xi ), Ii) = min
t,s

( ∑

j∈�t,s
|(Ii)j − μin|2 +

∑

j∈�Ct,s
|(Ii)j − μout|2

)

, (22.54)

where j denotes the (vectorized) pixel index. It is important to note that by keeping
the shape fixed, the minimization problem in (22.54) reduces to a registration
problem w.r.t. position and scale. The minimization over t and s in (22.54) thus
reflects the necessary scale selection process as the shapes xi do not carry the
respective information any more. Since already one function evaluation requires
solving a registration problem, a naive approach to the this problem is not reasonable
from a computational perspective. Thus, we developed an approximate strategy
in [69] based on the concept of active contour evolutions: Starting from a set of
triplets (xi , ti , si), we compute a deformation field vi which deforms the scaled and
positioned version of xi . Next, we can easily estimate the scale and translational
changes from vi and update ti and si in a gradient descent fashion. After normalizing
vi with respect to ti and si , we are left with a tangent vector in TxiM, which can
be used for an explicit gradient descent step. This way, we end up with solving
the registration problem in an incremental way while solving the shape estimation
problem in a forward-backward fashion similar to the DTI case.

It is further possible to extend the whole concept to shape fields. A typical
application scenario is 3D+t cardiac MRI, where the human heart is imaged
throughout the entire heart cycle in a slice-wise fashion; here, we obtain a shape
signal for each slice and hence we term the collection of these slice-wise signal
shape field as visualized in Fig. 22.9. Applying the presented framework to shape
fields is relatively straightforward: Similar to the DTI case, cf. Sect. 22.3, we add
regularization terms for both directions, i.e., in direction of the slices as well as in
temporal direction. Then the algorithmic approach described in Algorithm 2 can be
applied with the modification that the imaging/measurement operators depend on
the individual frames.
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Fig. 22.9 Joint segmentation and regularization of a shape fields: We apply the presented
framework to 3D+t short-axis MRI scans of the human heart. The two coordinate axes for
regularization are the slice-direction (top to bottom) and the temporal direction (left to right)

22.4.4 Discussion

Both applications (cf. Figs. 22.7 and 22.9) demonstrate the broad applicability and
potential of Riemannian approaches for both geometry processing and segmentation
problems. We point out that the presented approach can be well combined with
machine-learning-based techniques for segmentation, such as the recently proposed
deep active contours framework by Rupprecht et al. [64]. Further extensions might
also include an additional total-variation-based regularization of the translation
and scale components which are currently only implicitly optimized via the active
contour evolution.

22.5 Conclusion and Outlook

In this chapter, we have presented a collection of medical examples covering not
only various applications, such as imaging, image compounding, segmentation and
geometry processing, but also different imaging modalities themselves: Ultrasound,
MRI, DTI, and CT. Depending on the chosen manifold, the presented framework
can yield very efficient algorithms, such as in the case of pose regularization,
where short run times are beneficial for many real-time applications. As discussed
in the DTI case, it is also possible to extend the presented framework to more
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advanced setups such as Q-Ball imaging. With computers becoming more and
more powerful, more and more image segmentation algorithms that tackle 3D data
directly appear. Thus, we anticipate that the presented slice-wise segmentation and
regularization approach might soon be replaced by approaches considering one-
dimensional signals consisting of three-dimensional shapes.

We have mostly considered the application of TV regularization techniques in
this chapter. They constitute a convincing compromise between quality and run
time; they yield good regularization and the rather short runtimes are acceptable
for many applications. In order to improve the quality (which comes with higher
runtimes; cf. Sect. 22.2.3) it is interesting to further investigate higher order TV type
methods such as total generalized variation [20] or different first order methods of
Mumford-Shah type [84].

We hope that this overview inspires further applications. All the more, since
the observation of medical image and sensor data being subject to physical and
physiological constraints is a fairly general one and not restricted to any specific
modality or application.
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Abstract Recent advances in human 2D and 3D landmarks tracking have made it
possible to model facial expression and action recognition as a temporal sequence of
landmarks. We work directly with the Euclidean or affine invariants of landmarks.
These invariants are represented as points in different shape spaces (Positive
Semi-Definite (PSD) manifold, Grassmann manifold) and therefore their temporal
evolution can be seen as a trajectory in these spaces. Using Riemannian geometry,
these trajectories can be compared and classified, which has immediate applications
in facial expression and action recognition.

23.1 Landmark Representation

In the last decades, automatic analysis of human behavior has been an active
research topic, with applications that have been exploited in a number of different
contexts, including video surveillance, semantic annotation of videos, entertain-
ment, human computer interaction and home care rehabilitation, to say a few. For
years, the approaches could be distinguished in two main classes: those operating
on pixel values extracted from the RGB stream and those building upon the higher
level representation of body skeletons and face landmarks.These latter approaches
were supported by the diffusion of low cost RGB-D cameras (such as the Microsoft
Kinect) that can operate in real-time, while reliably extracting the 3D coordinates
of body joints. In this chapter, we will focus on designing effective landmark
based solutions for facial expression and action recognition. One of our motivations
for using landmarks representation is driven by the recent impressive advances
in human landmark tracking. As mentioned above, recently landmark detection
and tracking methods from human faces and bodies became reliable and accurate.
They are robust to illumination changes that occur in RGB images. By considering
the tracked landmarks instead of the original images, we take advantage of the
robustness of tracking methods to these classical problems in Computer Vision and
expect the same robustness for our landmark based solutions. Figure 23.1 shows
examples of landmarks and skeleton.

Furthermore, considering only tracked landmarks reduces the complexity of the
visual data. Instead of using a large number of pixels in each frame of the original
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Fig. 23.1 (a) Facial landmarks, (b) Kinect skeleton, (c) Frame from a MoCap skeleton sequence,
(d) OpenPose skeleton

video, which could make the analysis computationally intense, landmark trackers
bring a brief summary of the frame by providing only a set of relevant 2D/3D points
(the number of points typically varies from 15 to 90 points). Hence, landmark based
solutions are expected to be more efficient and less computational expensive than
other solutions, which makes them more suitable for real-time applications.

23.1.1 Challenges

While powerful and robust to many Computer Vision problems, human landmark
tracking techniques generate temporal sequences of landmark configurations which
exhibit several challenges:

• View variations: The 2D or 3D locations provided by the coordinates of the
tracked landmarks are relative to the position of the camera. However, human
behavioral signals belonging to the same category (e.g., drinking water), can
occur in different positions w.r.t the camera.

• Rate variations: The human behavioral signals that we would like to analyze are
subject to high temporal variations. For instance, two persons do not perform the
same action (e.g., drinking water) at the same time and for the same duration.
Consequently, we cannot simply compare the static landmark configurations of
the two corresponding landmark sequences in order to know whether they are
similar or not. Effective landmark based solutions should take into account these
temporal (rate) variations in the analysis of human landmark sequences.

• Intra-class variations: Another challenge of stastical analyis of landmark
sequences consists of the large variations that can be present within the same
category of human behavioral signals. Indeed, behavioral signals of the same
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category could be different from one person to another or even for the same
person.1

• Inaccurate tracking and missing data: Despite the advances in tracking human
landmarks, inaccurate tracking can occur especially in unconstrained environ-
ments and challenging conditions.

While there have been many efforts in the analysis of temporal sequences of
landmarks, the problem is far from being solved and the current solutions are facing
many technical and practical problems.

23.2 Static Representation

In this chapter we adopt the notations defined in [26, 28]. Let us consider an
arbitrary sequence of landmark configurations {Z0, . . . , Zτ }. Each configuration
Zi (0 ≤ i ≤ τ) is an n × d matrix of rank d encoding the positions of n distinct
landmark points in d dimensions. In our applications, we only consider the
configurations of landmark points in two- or three-dimensional space (i.e., d=2
or d=3) given by, respectively, p1 = (x1, y1), . . . , pn = (xn, yn) or p1 =
(x1, y1, z1), . . . , pn = (xn, yn, zn). We are interested in studying such sequences
or curves of landmark configurations up to Euclidean motions. In the following,
we will first propose a representation for static observations, then adopt a time-
parametrized representation for temporal analysis.

As a first step, we seek a shape representation that is invariant up to Euclidean
transformations (rotation and translation). Arguably, the most natural choice is the
matrix of pairwise distances between the landmarks of the same shape augmented
by the distances between all the landmarks and their center of mass p0. Since we are
dealing with Euclidean distances, it will turn out to be more convenient to consider
the matrix of the squares of these distances. Also note that by subtracting the center
of mass from the coordinates of the landmarks, these can be considered as centered:
the center of mass is always at the origin. From now on, we will assume p0 = (0, 0)
for d = 2 (or p0 = (0, 0, 0) for d = 3). With this provision, the augmented pairwise
square-distance matrixD takes the form,

D :=

⎛

⎜
⎜
⎜
⎝

0 ‖p1‖2 · · · ‖pn‖2

‖p1‖2 0 · · · ‖p1 − pn‖2

...
...

...
...

‖pn‖2 ‖pn − p1‖2 · · · 0

⎞

⎟
⎟
⎟
⎠
,

where ‖ · ‖ denotes the norm associated to the l2-inner product 〈·, ·〉. A key
observation is that the matrixD can be easily obtained from the n× n Gram matrix

1Example taken from www.slideshare.net/NaverEngineering/human-action-recognition.

www.slideshare.net/NaverEngineering/human-action-recognition
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G := ZZT . Indeed, the entries of G are the pairwise inner products of the points
p1, . . . , pn,

G = ZZT , (23.1)

G =

⎛

⎜
⎜
⎜
⎝

〈p1, p1〉 〈p1, p2〉 · · · 〈p1, pn〉
〈p2, p1〉 〈p2, p2〉 · · · 〈p2, pn〉

...
...

...
...

〈pn, p1〉 〈pn, p2〉 · · · 〈pn, pn〉

⎞

⎟
⎟
⎟
⎠

and the equality

Dij = 〈pi, pi〉 − 2〈pi, pj 〉 + 〈pj , pj 〉, 0 ≤ i, j ≤ n , (23.2)

establishes a linear equivalence between the set of n × n Gram matrices and the
augmented square-distance (n+ 1)× (n+ 1) matrices of distinct landmark points.
On the other hand, Gram matrices of the form ZZT , where Z is an n × d matrix
of rank d are characterized as n × n positive semidefinite matrices of rank d. For
a detailed discussion of the relation between positive semidefinite matrices, Gram
matrices, and square-distance matrices, we refer the reader to Section 6.2.1 of [14].
The space of these matrices, called the positive semidefinite cone S+(d, n), is a not
a vector space and is mostly studied when endowed with a Riemannian metric. In
the next section, we will briefly review some basics of the Riemannian geometry
of the manifolds of interest, then express the Riemannian geometry of the space of
Gram matrices (i.e., positive semi-definite matrices of fixed rank).

23.3 Riemannian Geometry of the Space of Gram Matrices

23.3.1 Mathematical Preliminaries

A manifold is a topological space that is locally homeomorphic to the dim-
dimensional Euclidean space Rdim, where dim is the dimensionality of the mani-
fold. A differentiable manifold is a topological manifold equipped with a differential
structure that allows differential calculus on the manifold. The tangent space at a
given point on a differentiable manifold is a vector space that consists of the tangent
vectors of all possible curves passing through the point. A Riemannian manifold
is a differentiable manifold equipped with a smoothly varying inner product on
each tangent space. The family of inner products on all tangent spaces is known
as the Riemannian metric of the manifold [24]. By defining a Riemannian metric
on the manifold, one can exploit the vector space structure of the tangent space to
define various geometric notions on the manifold. One can compute the geodesic
distance between two points on the manifold which is the length of the shortest
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curve (i.e., geodesic) connecting these two points. Two other important operations
in Riemannian manifolds are the logarithm (log) and exponential (exp) maps. To
illustrate these two operations, let us consider two points X and Y lying on a
Riemannian manifoldM. The logarithm map logX(Y ) of the point Y to the tangent
space TX(M) attached toX results in a vector V in TX(M). This vector summarizes
the path that should be taken inM to connect X and Y . In contrast, the exponential
map expX(V ) maps back the vector V to the manifold M resulting in a curve
γ (t) in M connecting X and Y . It is important to note that the computation of
these operations depends on the nature of the manifold and the defined Riemannian
metric.

Conveniently for us, the Riemannian geometry of the space of positive semidef-
inite matrices of fixed rank (i.e., Gram matrices) was studied in [11, 18, 37, 46].
To have a better understanding of the geometry of this space, we first define two
manifolds that are extensively used in Computer Vision namely, the Grassmann
manifold and the Riemannian manifold of positive definite matrices.

23.3.1.1 Grassmann Manifold

A Grassmann manifold G(d, n) is the set of the d-dimensional subspaces of Rn,
where n > d. A subspaceU of G(d, n) is represented by an n× d matrix U , whose
columns store an orthonormal basis of this subspace. Thus, U is said to span U,
and U is said to be the column space (or span) of U , and we writeU = span(U).
Indeed, the set of n×d matrices with orthonormal columns forms a manifold known
as the Stiefel manifold Vd,n. Points on G(d, n) are equivalence classes of n × d

matrices with orthonormal columns (i.e., points on Vd,n), where two matrices are
equivalent if their columns span the same d-dimensional subspace. The geometry
of the Grassmannian G(d, n) is then easily described by the map

span : Vd,n → G(d, n) , (23.3)

that sends an n × d matrix with orthonormal columns U to their span span(U).
Given two subspacesU1 = span(U1) andU2 = span(U2) ∈ G(d, n), the geodesic
curve connecting them is

span(U(t)) = span(U1 cos(�t)+M sin(�t)) , (23.4)

where � is a d × d diagonal matrix formed by the d principal angles between U1
and U2, while the matrix M is given by M = (In − U1U

T
1 )U2F , with F being

the pseudo-inverse of �. The Riemannian geodesic distance betweenU1 andU2 is
given by

d2
G(U1,U2) = ‖�‖2

F . (23.5)
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23.3.1.2 Riemannian Manifold of Positive Definite Matrices

A symmetric d × d matrix R is said to be positive definite if and only if vTRv >

0 for every non-zero vector v ∈ Rd . Pd is mostly studied when endowed with a
Riemannian metric, thus forming a Riemannian manifold. A number of metrics have
been proposed for Pd , the most popular ones being the Affine-Invariant Riemannian
Metric (AIRM) and the log-Euclidean Riemannian metric (LERM) [4]. In this study,
we only consider the AIRM for its robustness [44].

With this metric, the geodesic curve connecting two SPD matrices R1 and R2 in
Pd is

R(t) = R
1/2
1 exp(t log(R−1/2

1 R2R
−1/2
1 ))R

1/2
1 , (23.6)

where log(.) and exp(.) are the matrix logarithm and exponential, respectively. The
Riemannian distance between R1 and R2 is given by

d2
Pd
(R1, R2) = ‖ log (R−1/2

1 R2R
−1/2
1 )‖2

F , (23.7)

where ‖.‖F denotes the Frobenius matrix norm.
For more details about the geometry of the Grassmannian G(d, n) and the

positive definite cone Pd , readers are referred to [2, 8, 11, 38].

23.3.2 Riemannian Manifold of Positive Semi-Definite
Matrices of Fixed Rank

Given an n × d matrix Z of rank d, its polar decomposition Z = UR with R =
(ZT Z)1/2 allows us to write the Gram matrix ZZT as UR2UT . Since the columns
of the matrix U are orthonormal, this decomposition defines a map

� :Vd,n × Pd → S+(d, n)

(U,R2) �→ UR2UT ,

from the product of the Stiefel manifoldVd,n and the cone of d×d positive definite
matricesPd to the manifold S+(d, n) of n×n positive semidefinite matrices of rank
d. The map � defines a principal fiber bundle over S+(d, n) with fibers

�−1(UR2UT ) = {(UO,OT R2O) : O ∈ O(d)} ,

where O(d) is the group of d×d orthogonal matrices. Bonnabel and Sepulchre [11]
used this map and the geometry of the structure space Vd,n × Pd to introduce a
Riemannian metric on S+(d, n) and study its geometry.
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23.3.2.1 Tangent Space and Riemannian Metric

The tangent space T(U,R2)(Vd,n×Pd) consists of pairs (M,N), whereM is a n×d
matrix satisfyingMTU+UTM = 0 andN is any d×d symmetric matrix. Bonnabel
and Sepulchre defined a connection (see [30, p. 63]) on the principal bundle � :
Vd,n × Pd → S+(d, n) by setting the horizontal subspace H(U,R2) at the point
(U,R2) to be the space of tangent vectors (M,N) such thatMTU = 0 and N is an
arbitrary d × d symmetric matrix. They also defined an inner product on H(U,R2):
given two tangent vectors A = (M1, N1) and B = (M2, N2) onH(U,R2), set

〈(A,B)〉H
U,R2 = tr(MT

1 M2)+ k tr(N1R
−2N2R

−2) , (23.8)

where k > 0 is a real parameter.
It is easily checked that the action of the group of d × d orthogonal matrices

on the fiber�−1(UR2UT ) sends horizontals to horizontals isometrically. It follows
that the inner product on TUR2UT S+(d, n) induced from that of H(U,R2) via the
linear isomorphism D� is independent of the choice of point (U,R2) projecting
onto UR2UT . This procedure defines a Riemannian metric on S+(d, n) for which
the natural projection

ρ : S+(d, n)→ G(d, n)

G �→ range(G) ,

is a Riemannian submersion. This allows us to relate the geometry of S+(d, n) with
that of the Grassmannian G(d, n).

23.3.2.2 Pseudo-Geodesics and Closeness in S+(d, n)

Bonnabel and Sepulchre [11] defined the pseudo-geodesic connecting two matrices
G1 = U1R

2
1U

T
1 and G2 = U2R

2
2U

T
2 in S+(d, n) as the curve

CG1→G2(t) = U(t)R2(t)UT (t),∀t ∈ [0, 1] , (23.9)

where R2(t) = R1 exp(t logR−1
1 R2

2R
−1
1 )R1 is a geodesic in Pd connecting R2

1 and
R2

2, and U(t) is the geodesic in G(d, n) given by Eq. (23.4). They also defined the
closeness between G1 and G2, dS+(G1,G2), as the square of the length of this
curve:

dS+(G1,G2) = d2
G(U1,U2)+ kd2

Pd (R
2
1, R

2
2) = ‖�‖2

F + k‖ logR−1
1 R2

2R
−1
1 ‖2

F ,

(23.10)
where Ui (i = 1, 2) is the span of Ui and � is a d × d diagonal matrix formed by
the principal angles betweenU1 andU2.
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The closeness dS+ consists of two independent contributions: the square of the
distance dG(span(U1), span(U2)) between the two associated subspaces, and the
square of the distance dPd (R

2
1, R

2
2) on the positive cone Pd . Note that CG1→G2 is

not necessarily a geodesic and therefore, the closeness dS+ is not a true Riemannian
distance.

23.3.3 Affine-Invariant and Spatial Covariance Information
of Gram Matrices

An alternative affine shape representation, considered in [8] and [43], associates to
each configuration Z the d-dimensional subspace span(Z) spanned by its columns.
This representation, which exploits the geometry of the Grassmann manifold
G(d, n) of d-dimensional subspaces in Rn is invariant under all invertible linear
transformations. By fully encoding the set of all mutual distances between landmark
points, the proposed Euclidean shape representation supplements the affine shape
representation with the knowledge of the d × d positive definite matrix R2 that lie
on Pd .

From the viewpoint of the landmark configurations Z1 and Z2, withG1 = Z1Z
T
1

and G2 = Z2Z
T
2 , the closeness dS+ encodes the distances measured between

the affine shapes span(Z1) and span(Z2) in G(d, n) and between their spatial
covariances in Pd . Indeed, the spatial covariance of Zi (i = 1, 2) is the d × d

symmetric positive definite matrix

C = ZTi Zi

n− 1
= (UiRi)

T (UiRi)

n− 1
= R2

i

n− 1
. (23.11)

The weight parameter k controls the relative weight of these two contributions.
Note that for k = 0 the distance on S+(d, n) collapses to the distance on G(d, n).
Nevertheless, the authors in [11] recommended choosing small values for this
parameter.

23.4 Gram Matrix Trajectories for Temporal Modeling
of Landmark Sequences

We are able to compare static landmark configurations based on their Gramian
representation G, the induced space, and closeness introduced in the previous
Section. We need a natural and effective extension to study their temporal evolution.
Following [9, 43, 48], we defined curves βG : I → S+(d, n) (I denotes the
time domain, e.g., [0, 1]) to model the spatio-temporal evolution of elements on
S+(d, n). Given a sequence of landmark configurations {Z0, . . . , Zτ } represented
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by their corresponding Gram matrices {G0, . . . ,Gτ } in S+(d, n), the corresponding
curve is the trajectory of the point βG(t) on S+(d, n), when t ranges in [0, 1]. These
curves are obtained by connecting all successive Gramian representations of shapes
Gi and Gi+1, 0 ≤ i ≤ τ − 1, by pseudo-geodesics in S+(d, n).2

23.4.1 Rate-Invariant Comparison of Gram Matrix
Trajectories

A relevant issue to our classification problems is—how to compare trajectories while
being invariant to rates of execution? One can formulate the problem of temporal
misalignment as comparing trajectories when parameterized differently. The param-
eterization variability makes the distance between trajectories distorted. This issue
was first highlighted by Veeraraghavan et al. [47] who showed that different rates
of execution of the same activity can greatly decrease recognition performance if
ignored. Veeraraghan et al. [47] and Abdelkader et al. [1] used the Dynamic Time
Warping (DTW) for temporal alignment before comparing trajectories of shapes of
planar curves that represent silhouettes in videos. Following the above-mentioned
state-of-the-art solutions, we adopt here a DTW solution to temporally align our
trajectories. More formally, givenm trajectories {β1

G, β
2
G, . . . , β

m
G} on S+(d, n), we

are interested in finding functions γi such that the βiG(γi(t)) are matched optimally
for all t ∈ [0, 1]. In other words, two curves β1

G(t) and β2
G(t) represent the same

trajectory if their images are the same. This happens if, and only if, β2
G = β1

G ◦ γ ,
where γ is a re-parameterization of the interval [0, 1]. The problem of temporal
alignment is turned to find an optimal warping function γ � according to,

γ � = arg min
γ∈�

∫ 1

0
dS+(β1

G(t), β
2
G(γ (t))) dt , (23.12)

where � denotes the set of all monotonically-increasing functions γ : [0, 1] →
[0, 1]. The most commonly used method to solve such optimization problem is
DTW. Note that accommodation of the DTW algorithm to the manifold-value
sequences can be achieved with respect to an appropriate metric defined on the
underlying manifold S+(d, n). Having the optimal re-parametrization function γ �,
one can define a (dis-)similarity measure between two trajectories allowing a rate-
invariant comparison:

dDTW (β
1
G, β

2
G) =

∫ 1

0
dS+(β1

G(t), β
2
G(γ

�(t))) dt. (23.13)

2To compute the polar decomposition, we used the SVD based implementation proposed in [21].
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From now, we shall use dDTW (., .) to compare trajectories in our manifold of
interest S+(d, n).

23.5 Classification of Gram Matrix Trajectories

Our trajectory representation reduces the problem of landmark sequence
classification to that of trajectory classification in S+(d, n). That is, let us
consider T = {βG : [0, 1] → S+(d, n)}, the set of time-parameterized
trajectories of the underlying manifold. Let L = {(β1

G, y
1), . . . , (βmG, y

m)} be
the training set with class labels, where βiG ∈ T and yi ∈ Y, e.g. L =
{Happiness, Sadness, Surprise, Fear,Disgust, Anger} such that yi = f (βiG).
The goal here is to find an approximation h to f such that h : T → L. In
Euclidean spaces, any standard classifier (e.g., standard SVM) may be a natural and
appropriate choice to classify the trajectories. Unfortunately, this is no more suitable
in our modeling, as the space T built from S+(d, n) is non-linear. As mentioned
and discussed in the previous chapter, a function that divides the manifold is rather a
complicated notion compared with the Euclidean space. To overcome this issue, we
adopt two classification schemes based on the (dis-)similarity measure dDTW that
uses the geometry-aware closeness dS+ namely, k-Nearest Neighbor and Pairwise
proximity function SVM classifiers.

23.5.1 Pairwise Proximity Function SVM

Inspired by a recent work of [6] for action recognition, we adopted the pairwise
proximity function SVM (ppfSVM) [19, 20]. The ppfSVM requires the definition
of a (dis-)similarity measure to compare samples. In our case, it is natural to
consider the dDTW defined in Eq. (23.13) for such a comparison. This strategy
involves the construction of inputs such that each trajectory is represented by its
(dis-)similarity to all the trajectories, with respect to dDTW , in the dataset and then
apply a conventional SVM to this transformed data [20]. The ppfSVM is related to
the arbitrary kernel-SVM without restrictions on the kernel function [19].

Givenm trajectories {β1
G, β

2
G, . . . , β

m
G} in T , following [6], a proximity function

PT : T × T → R+ between two trajectories β1
G, β

2
G ∈ T is defined as,

PT (β1
G, β

2
G) = dDTW (β

1
G, β

2
G) . (23.14)

According to [19], there are no restrictions on the function PT . For an input
trajectory βG ∈ T , the mapping φ(βG) is given by,

φ(βG) = [PT (βG, β1
G), . . . ,PT (βG, β

m
G)]T . (23.15)
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The obtained vector φ(βG) ∈ Rm is used to represent a sample trajectory βG ∈
T . Hence, the set of trajectories can be represented by a m × m matrix P , where
P(i, j) = PT (βiG, βjG), i, j ∈ {1, . . . , m}. Finally, a linear SVM is applied to this
data representation. Further details on ppfSVM can be found in [6, 19, 20].

23.6 Application to Facial Expression and Action
Recognition

23.6.1 2D Facial Expression Recognition

We evaluated our approach also in the task of facial expression recognition from 2D
landmarks. In this case, the landmarks are in a 2D coordinate space, resulting in a
Gram matrix of size n × n of rank 2 for each configuration of n landmarks. The
facial sequences are then seen as time-parameterized trajectories on S+(2, n).

23.6.1.1 Datasets

We conducted experiments on two publicly available datasets—CK+, MMI.

Cohn-Kanade Extended (CK+) Dataset [36]—It contains 123 subjects and 593
frontal image sequences of posed expressions. Among them, 118 subjects are
annotated with the seven labels—anger (An), contempt (Co), disgust (Di), fear (Fe),
happy (Ha), sad (Sa) and surprise (Su). Note that only the two first temporal phases
of the expression, i.e., neutral and onset (with apex frames), are present.

MMI Dataset [45]—It consists of 205 image sequences with frontal faces of 30
subjects labeled with the six basic emotion labels. In this dataset each sequence
begins with a neutral facial expression, and has a posed facial expression in the
middle; the sequence ends up with the neutral facial expression. The location of the
peak frame is not provided as a prior information.

23.6.1.2 Experimental Settings and Parameters

All our experiments were performed once facial landmarks were extracted using
the method proposed in [5] on the CK+, MMI, and Oulu-CASIA datasets. On the
challenging AFEW dataset, we have considered the corrections provided in3 after
applying the same detector. The number of landmarks is n = 49 for each face.

3http://sites.google.com/site/chehrahome.

http://sites.google.com/site/chehrahome
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To evaluate our approach, we followed the experimental settings commonly used
in recent works. Following [17, 25, 33], we have performed 10-fold cross validation
experiments for the CK+, MMI, and Oulu-CASIA datasets. In contrast, the AFEW
dataset was divided into three sets: training, validation and test, according to the
protocols defined in EmotiW’2013 [16]. Here, we only report our results on the
validation set for comparison with [16, 17, 33].

23.6.1.3 Results and Discussion

On CK+, the average accuracy is 96.87%. Note that the accuracy of the trajectory
representation on G(2, n), following the same pipeline is 2% lower, which confirms
the contribution of the covariance embedded in our representation.

An average classification accuracy of 79.19% is reported for the MMI dataset.
Note that based on geometric features only, our approach grounding on both
representations on S+(2, n) and G(2, n) achieved competitive results with respect
to the literature (see Table 23.1).

We highlight the superiority of the trajectory representation on S+(2, n) over
the Grassmannian. This is due to the contribution of the covariance part further
to the conventional affine-shape analysis over the Grassmannian. Recall that k
serves to balance the contribution of the distance between covariance matrices
living in P2 with respect to the Grassmann contribution G(2, n). The optimal
performance are achieved for the following values—k∗CK+ = 0.081, k∗MMI =
0.012, k∗Oulu−CASIA = 0.014 and k∗AFEW = 0.001.

Comparative Study with the State-of-the-Art In Table 23.1, we compare our
approach over the recent literature. Overall, our approach achieved competitive
performance with respect to the most recent approaches. On CK+, we obtained
the second highest accuracy. The ranked-first approach is DTAGN [25], in which
two deep networks are trained on shape and appearance channels, then fused. Note
that the geometry deep network (DTGN) achieved 92.35%, which is much lower
than ours. Furthermore, our approach outperforms the ST-RBM [17] and the STM-
ExpLet [33]. On the MMI dataset, our approach outperforms the DTAGN [25] and
the STM-ExpLet [33]. However, it is behind ST-RBM [17].

On the Oulu-CASIA dataset, our approach shows a clear superiority to existing
methods, in particular STM-ExpLet [33] and DTGN [25]. Elaiwat et al. [17] do
not report any results on this dataset, however, their approach achieved the highest
accuracy on AFEW. Our approach is ranked second showing a superiority to
remaining approaches on AFEW.

Then, we have used different distances defined on S+(2, n). Specifically, given
two matrices G1 and G2 in S+(2, n): (1) we used dPn to compare them by
regularizing their ranks, i.e., making them n full-rank, and considering them in
Pn (the space of n-by-n positive definite matrices), dPn(G1,G2) = dPn(G1 +
εIn,G2+εIn); (2) we used the Euclidean flat distance dF+(G1,G2) = ‖G1−G2‖F ,
where ‖.‖F denotes the Frobenius-norm. The closeness dS+ between two elements
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Table 23.1 Overall accuracy (%) on CK+ and MMI datasets

Method CK+ MMI
(A) 3D HOG (from [25]) 91.44 60.89
(A) 3D SIFT (from [25]) – 64.39
(A) Cov3D (from [25]) 92.3 –
(A) STM-ExpLet [33] (10-fold) 94.19 75.12
(A) CSPL [56] (10-fold) 89.89 73.53
(A) F-Bases [39] (LOSO) 96.02 75.12
(A) ST-RBM [17] (10-fold) 95.66 81.63
(A) 3DCNN-DAP [32] ∗ (15-fold) 87.9 62.2
(A) DTAN [25] ∗ (10-fold) 91.44 62.45
(A+G) DTAGN [25] ∗ (10-fold) 97.25 70.24
(G) DTGN [25] ∗ (10-fold) 92.35 59.02
(G) TMS [23] (4-fold) 85.84 –
(G) HMM [50] (15-fold) 83.5 51.5
(G) ITBN [50] (15-fold) 86.3 59.7
(G) Velocity on G(n, 2)[43] 82.8 –
(G) traj. on G(2, n) (10-fold) 94.25 ± 3.71 78.18 ± 4.87
(G) traj. on S+(2, n) (10-fold) 96.87 ± 2.46 79.19 ± 4.62

Here, (A): appearance (or color); (G): geometry (or shape); ∗: Deep Learning based approach; last
row: ours

Table 23.2 Distance
performances and
computational complexity on
the CK+

Distance CK+ (%) Time (s)

Flat distance dF+ 93.78 ± 2.92 0.020

Distance dPn in Pn 92.92 ± 2.45 0.816

Closeness dS+ 96.87± 2.46 0.055

of S+(2, n) defined in Eq. (23.7) is more suitable, compared to the distance dPn
and the flat distance dF+ defined in literature. The results in Table 23.2 show the
importance of being faithful to the geometry of the manifold of interest.

23.6.2 3D Action Recognition

Action recognition has been performed on 3D skeleton data as provided by a Kinect
camera in different datasets. In this case, landmarks correspond to the estimated
position of 3D joints of the skeleton (d=3). With this assumption, skeletons are
represented by n × n Gram matrices of rank 3 lying on S+(3, n), and skeletal
sequences are seen as trajectories on this manifold.

23.6.2.1 Datasets

We performed experiments on two publicly available datasets showing different
challenges. All these datasets have been collected with a Microsoft Kinect sensor.
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UT-Kinect Dataset [52]—It contains 10 actions performed by 10 different
subjects. Each subject performed each action twice resulting in 199 valid action
sequences. The 3D locations of 20 joints are provided with the dataset.

Florence3D Dataset [41]—It contains 9 actions performed two or three times by
10 different subjects. Skeleton comprises 15 joints. This is a challenging dataset due
to variations in the view-point and large intra-class variations.

23.6.2.2 Experimental Settings and Parameters

For all the datasets, we used only the provided skeletons. As discussed in
Sect. 23.3.3, our body movement representation involves a parameter k that controls
the contribution of two information: the affine shape of the skeleton at time t , and
its spatial covariance. The affine shape information is given by the Grassmann
manifold G(3, n), while the spatial covariance is given by the SPD manifold P3. We
recall that for k = 0, the skeletons are considered as trajectories on the Grassmann
manifold G(3, n). For each dataset, we performed a cross-validation grid search,
k ∈ [0, 3] with a step of 0.1, to find an optimal value k∗. To allow a fair comparison,
we adopted the most common experimental settings in literature. For the UT-Kinect
dataset, we used the leave-one-out cross-validation (LOOCV) protocol [52], where
one sequence is used for testing and the remaining sequences are used for training.
For the Florence3D dataset, a leave-one-subject-out (LOSO) schema is adopted
following [13, 51, 53]. All our programs were implemented in Matlab and run on
a 2.8 GHZ CPU. We used the multi-class SVM implementation of the LibSVM
library [12].

23.6.2.3 Results and Discussion

In Table 23.3, we compare our approach with existing methods dealing with
skeletons and/or RGB-D data. Overall, our approach achieved competitive results
compared to recent state-of-the-art approaches. On the UT-Kinect dataset, we
obtained an average accuracy of 96.48%. On the Florence3D dataset, we obtained
an average accuracy of 88.07%.

From the reported results on the two different datasets, we can observe the
large superiority of the Gramian representation over the Grassmann representation.
For the Florence3D, we report an improvement of about 12%. For UT-Kinect,
the performance increased by about 3%. Note that these improvements over the
Grassmannian representation are due to the additional information of the spatial
covariance given by the SPD manifold in the metric. The contribution of the
spatial covariance is weighted with a parameter k. As discussed in Sect. 23.6.2.2,
we performed a grid search cross-validation to find the optimal value k∗ of this
parameter. The optimal values are k∗ = 0.05 and k∗ = 0.25 for the the UT-
Kinect and Florence3D respectively. These results are in concordance with the
recommendation of Bonnabel and Sepulchre [11] to use relative small values of k.
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Table 23.3 Overall accuracy (%) on the UT-Kinect and Florence3D datasets

UT-Kinect Florence3D

Method Prot. Acc (%) Prot. Acc (%)
(G+D) 3D2CNN [35]∗ LOSO 95.5 – –
(G) LARP [48] 5-fold 97.08 5-fold 90.88
(G) Gram Hankel [53] LOOCV 100 – –
(G) Motion trajectories [13] LOOCV 91.5 LOSO 87.04
(G) Elastic func. coding [3] 5-fold 94.87 5-fold 89.67
(G) Mining key poses [51] LOOCV 93.47 LOSO 92.25
(G) NBNN+parts+time [41] – – LOSO 82
(G) LSTM-trust gate [34]∗ LOOCV 97.0 – –
(G) JL-distance LSTM[54]∗ 5-fold 95.96 – –

Traj. on G(3, n) LOOCV 92.46 LOSO 75 ± 5.22

Traj. on S+(3, n) LOOCV 96.48 LOSO 88.07± 4.8

Here, (D): depth; (C): color (or RGB); (G): geometry (or skeleton); ∗: Deep Learning based
approach; last row: ours

23.7 Affine-Invariant Shape Representation Using
Barycentric Coordinates

The analysis of moving landmarks may be distorted by view variations. The
problem is more acute when it comes to dealing with 2D landmarks. Indeed, in
the 2D case these distortions are due to undesirable projective transformations
which should be filtered out to have a robust representation of 2D landmarks to
view variations. These projective transformations are difficult to be filtered out, but
they can be approximated by affine transformations, especially when the face is
far from the camera [43]. In this section we briefly review the main definitions of
the affine-invariance with barycentric coordinates and their use in 2D facial shape
analysis [27].

In order to study the motion of an ordered list of n landmarks Z1(t), Z2(t), . . . ,

Zn(t), where t represents the time parametrization and Zi(t) = (xi(t), yi(t)), 1 ≤
i ≤ n, in the plane up to the action of an arbitrary affine transformation, a standard
technique is to consider the span of the columns of the n× 3 time-dependent matrix

M(t) :=
⎛

⎜
⎝

x1(t) y1(t) 1
...

...
...

xn(t) yn(t) 1

⎞

⎟
⎠ .

If at any time t there exists a fixed triplet of landmarks forming a non-degenerate
triangle, the rank of the matrix M(t) is constantly equal to 3 and the span of its
columns is a curve of three-dimensional subspaces in Rn. In other words, a curve
in the Grassmannian G(3, n), which is well known [8] to be an affine-invariant of



23 The Riemannian and Affine Geometry of Facial Expression and Action. . . 665

Fig. 23.2 Example of the
automatically tracked 49
facial landmarks. The three
red points denote the facial
landmarks used to form the
non-degenerate triangle
required to compute the
barycentric coordinates

the motion. This convenient way of filtering out the affine transformations opens
the way to the use of metric and differential-geometric techniques in the study and
classification of moving landmarks [3, 9, 13, 26, 27, 48].

It is worth noting that this representation in G(3, n) is equivalent to the
Grassmann representation in G(2, n) which was studied and described in the
previous work [26, 43]. The latter was obtained by centering the 2D landmarks
and considering the span of the columns of the n × 2 matrix as an affine-invariant
representation in G(2, n) without adding a column of ones to the matrix formed by
the 2D coordinates.

Another convenient and more classic way to filter out affine transformations
is through the use of barycentric coordinates. This method can be applied given
three of the landmarks which form a non-degenerate triangle throughout all their
motion. Indeed, assume, without loss of generality, that Z1(t), Z2(t), and Z3(t) are
the vertices of a non-degenerate triangle for every value of t . In the case of facial
shapes, the right and left corners of the eyes and the tip of the nose are chosen to
form a non-degenerate triangle (see the red triangle in Fig. 23.2). For i = 4, .., n
and at any time t , we can write

Zi(t) = λi1(t)Z1(t)+ λi2(t)Z2(t)+ λi3(t)Z3(t) ,

where the numbers λi1(t), λi2(t), and λi3(t) satisfy

λi1(t)+ λi2(t)+ λi3(t) = 1.

The last condition renders the triplet of barycentric coordinates (λi1(t), λi2(t),
λi3(t)) unique. In fact, it is equal to

(xi(t), yi(t), 1)

⎛

⎝

x1(t) y1(t) 1
x2(t) y2(t) 1
x3(t) y3(t) 1

⎞

⎠

−1

.



666 M. Daoudi et al.

If T is an affine transformation of the plane, the barycentric representation of
T Zi(t) in terms of the frame given by T Z1(t), T Z2(t), and T Z3(t) is still
(λi1(t), λi2(t), λi3(t)). This allows us to derive the (n− 3)× 3 matrix

�(t) :=
⎛

⎜
⎝

λ41(t) λ42(t) λ43(t)
...

...
...

λn1(t) λn2(t) λn3(t)

⎞

⎟
⎠ .

as the affine shape representation of the moving landmarks.

23.7.1 Relationship with the Conventional Grassmannian
Representation

A topological spaceM is a topological manifold of dimension dim if it is locally
Euclidean. That means that every point X ∈ M has a neighborhood that is
homeomorphic to an open subset of Rdim. A coordinate chart (or just a chart on
M) is a pair ( ,%), where  is an open subset of M and % :  →  ̃ is
homeomorphism from  to the open set  ̃ ∈ Rdim. The definition of topological
manifold implies that each point X ∈ M is contained in the domain of some
coordinate chart [7]. In the case of the affine-invariant Grassmannian representation
in G(3, n), the points on the Grassmannian corresponding to the facial landmarks
are naturally contained in one of the standard charts. It turns out that passing to
this chart is nothing more than taking the barycentric coordinates with respect to a
specific triplet of landmark points.

In order to expose the basic relationship between the Grassmannian represen-
tation and the barycentric one, let us recall, in a particular case, the usual way to
construct charts in the Grassmannian. If ζ ∈ G(3, n) is a subspace that intersects the
(n− 3)-dimensional subspace

W = {(0, 0, 0, x4, . . . , xn) : xi ∈ Rn for i between 4 and n}

only at the origin, and x = (x1, . . . , xn), y = (y1, . . . , yn), and z = (z1, . . . , zn) is
a basis for ζ , then the 3 × 3 matrix

⎛

⎝

x1 y1 z1

x2 y2 z2

x3 y3 z3

⎞

⎠

is invertible and the (n− 3)× 3 matrix
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⎛

⎜
⎝

x4 y4 z4
...
...
...

xn yn zn

⎞

⎟
⎠

⎛

⎝

x1 y1 z1

x2 y2 z2

x3 y3 z3

⎞

⎠

−1

is independent of the chosen basis. In this way, the open and dense set of 3-
dimensional subspaces transverse to W are put in a bijective correspondence with
R(n−3)×3.

If we consider the curve inG(3, n) given by the span of the columns of the matrix

M(t) :=
⎛

⎜
⎝

x1(t) y1(t) 1
...

...
...

xn(t) yn(t) 1

⎞

⎟
⎠

and if the landmarks Z1(t) = (x1(t), y1(t)), Z2(t) = (x2(t), y2(t)), and Z3(t) =
(x3(t), y3(t)) form a non-degenerate triangle throughout all their motion, then
composing this curve with a chart in the Grassmannian yields the curve of matrices

⎛

⎜
⎝

x4(t) y4(t) 1
...

...
...

xn(t) yn(t) 1

⎞

⎟
⎠

⎛

⎝

x1(t) y1(t) 1
x2(t) y2(t) 1
x3(t) y3(t) 1

⎞

⎠

−1

,

which is just the curve �(t) encoding the barycentric representation of the land-
marks. For more details about the affine-invariance with barycentric coordinates,
please refer to the page 81 of the book [10]. In what follows, we will consider the
introduced affine-invariant vector �, with dimension m = (n− 3)× 3, to represent
a static facial shape and the curve �(t) to denote a facial shape sequence.

23.8 Metric Learning on Barycentric Representation for
Expression Recognition in Unconstrained Environments

Given the facial shape represented by the affine-invariant vector �, with dimension
m = (n − 3) × 3, we seek a suitable metric that is discriminative enough in terms
of expression to compare them. The Euclidean distance, defined as the squared l2-
norm of the difference of the vectors, could be a reasonable choice since the defined
shapes lie in Euclidean space. However, such distance disregards the specific nature
of the considered facial shapes. To overcome this issue, we propose to learn a
Mahalanobis distance instead of using the standard Euclidean distance [31]. Given
two facial shapes represented by the affine-invariant vectors �i and �j in Rm, the
Mahalanobis distance is defined by

d2
lij
(�i,�j ) = (�i −�j)T A(�i −�j) , (23.16)
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where A is a positive semi-definite (p.s.d) matrix of size m × m. The problem of
metric learning is then to find the best p.s.d matrix A that best discriminates the
facial expressions, i.e., results in small distances when the facial shapes represent
similar expressions and large distances when they represent different expressions.

Let D = {(�1, c1), . . . , (�N, cN)} represent a set of affine-invariant shapes in
Rm annotated with the corresponding expressions (e.g., c =‘happy’, ‘angry’, etc.).
Let {�i,�j ,�k} be a triplet of affine-invariant shapes from D such that (�i,�j )
have the same label (ci = cj ), and (�i,�k) with different labels (ci �= ck). We aim
to find an optimal p.s.d matrix A such that d2

lij
(�i,�j ) < d

2
lik
(�i,�k). That is, we

wish to find a p.s.d matrix A that minimizes d2
lij

−d2
lik

= (�i −�j)T A(�i −�j)−
(�i − �k)

T A(�i − �k). In order to solve this optimization problem, we follow
the convenient method described by Shen et al. [42], where a boosting is used. This
method is based on the observation that any positive semidefinite matrix can be
decomposed into a linear combination of trace-one rank-one matrices. It uses rank-
one positive semidefinite matrices as weak learners within an efficient and scalable
boosting-based learning process.

23.8.1 Experimental Results

In order to learn the metric, we use only peak frames from each facial sequence,
where the expression reaches its peak. Since peak frames are difficult to detect in
uncontrolled facial expressions, we performed the metric learning using extracted
landmarks from CK+ dataset [36] which is captured in strict controlled conditions.
In this dataset, 309 facial sequences of 118 subjects are annotated with the six labels
(the six basic emotions). In all the sequences, the actors start by being neutral then
perform the expression until reaching a peak. In our experiments, we only used the
five last frames and the first frame from all the sequences. The labels of the five last
frames are assigned according to the label of the sequence, while the label of the
first frame is always considered as ‘neutral’. A total number of 16,686 facial shapes
are used for the training phase to learn the Mahalanobis distance.

To evaluate the proposed approach, we conducted experiments on the well-
known AFEW dataset [15] collected from movies showing close-to-real-world
conditions, which depict or simulate the spontaneous expressions in uncontrolled
environment. The task is to classify each video clip into one of the seven expression
categories (the six basic emotions plus the neutral). Note that our experiments are
made once the facial landmarks are extracted using the method proposed in [5]. The
three points used to form the non-degenerate triangle, essential to build the affine-
invariant shapes from the landmarks, are the points positioned at the left and right
corners of the eye and the nose tip.

All our programs were implemented in Matlab and run on a 2.8 GHZ CPU. We
used the multi-class SVM implementation of the LibSVM library [12], and the
codes given by [42] for the metric learning.
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23.8.1.1 Results and Discussions

Following the experimental settings mentioned in the previous Section, we report
an accuracy of 38.38%. Our results are outperformed by the Gram trajectory
representation proposed in the previous chapter [26]. However, the execution time of
comparing two arbitrary sequences on AFEW dataset is 0.064 s with the barycentric
approach against 0.84 s with the Gram approach. In Table 23.4, we can observe that
our results compared to the Gram approach are outperformed by only 1% while
being 10 times faster.

To evaluate the different steps of the proposed pipeline, we performed baseline
experiments. Firstly, we conducted the same experiments while using alternative
representations and metrics. We compared our results with a conventional Grass-
mann affine-invariant representation coupled with a Riemannian metric given by the
subspace angles [8, 43]. The achieved accuracy is around 2.5% lower than ours. We
also replaced the learned Mahalanobis distance with a standard Euclidean distance.
Here also, the performance decreases by about 3%. In Table 23.5, we show the
achieved accuracies by the described alternative representations and metrics and the
necessary execution time to compare two arbitrary facial shapes. One can observe
that the proposed representation achieves better performance than the Grassmannian
while being less time consuming. These results show the effectiveness of the
proposed representation and the importance of the metric learning step in our
pipeline. As mentioned in the previous Section, we used the five last (peak) frames
from the sequences of CK+ dataset to learn the Mahalanobis distance. In Table 23.5,
we provide the obtained accuracies when using one, two, five and seven last peak
frames from each sequence. The highest accuracy is obtained with the last five
frames.

Table 23.4 Overall accuracy
AFEW dataset (FER with
Barycentric representation)

Method Accuracy (%)
(A) HOG 3D [29] 26.90
(A) HOE [49] 19.54
(A) 3D SIFT [40] 24.87
(A) LBP-TOP [55] 25.13
(A) EmotiW [16] 27.27
(A) STM [33] 29.19
(A) STM-ExpLet [33] 31.73
(A) SPDNet [22] 34.23
(G) Gram Trajectories [26] 39.94
(G) Ours 38.38
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Table 23.5 Baseline
experiments (FER with
barycentric representation)

Distance Accuracy (%) Time (μs)

Subspace angles in G(3, n) 36.81 2967

Euclidean distance 36.55 530

Mahalanobis distance dl 38.38 568

Number of peak frames Accuracy (%)

1 peak frame 37.07

2 peak frames 37.59

5 peak frames 38.38

7 peak frames 36.29

23.9 Conclusion

In this chapter, we proposed geometric tools for facial expression and action
recognition based on the analysis of landmark sequences. Firstly, we proposed a
novel geometric framework on Gram matrix trajectories. To overcome the non-
linear nature of the space of Gram matrices, its Riemannian geometry was studied
to derive suitable analyzing tools for the Gram matrix trajectories. Applications
were shown to facial expression recognition from 2D landmarks tracked on
the human face in RGB videos and 3D action recognition from 3D skeletons
detected on the human body in depth streams. Secondly, we proposed an affine-
invariant representation for the specific case of 2D facial landmarks based on their
barycentric coordinates. While being related to the Gram matrix representation,
the barycentric representation has the advantage of lying in Euclidean space where
standard computational and machine learning tools are applicable. The barycentric
representation was evaluated in facial expression recognition by applying a standard
metric learning algorithm.
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Abstract In this chapter, we describe several biomedical applications of geomet-
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allow for computationally efficient implementations of statistical procedures on
the appropriate representation spaces, including computation of the Karcher mean
and exploration of variability via principal component analysis. We then showcase
applications of these tools in multiple biomedical case studies based on various
datasets including Glioblastoma Multiforme tumors, Diffusion Tensor Magnetic
Resonance Image-based white matter tracts and fractional anisotropy functions,
electrocardiogram signals, endometrial tissue surfaces and subcortical surfaces in
the brain.

24.1 Introduction

Improvements in medical data acquisition technology, especially non-invasive imag-
ing technology, have resulted in proliferation of large, complex datasets. There are
many goals in analyzing such data depending on the application of interest, ranging
from assessment of regular aging patterns to diagnosis and monitoring of various
diseases. The types of imaging data of interest greatly vary in their properties,
e.g., functional Magnetic Resonance Imaging (fMRI) measures dynamic brain
activity through changes in blood flow, structural Magnetic Resonance Imaging
(MRI) produces images of the anatomy using magnetic fields and Diffusion Tensor
Magnetic Resonance Imaging (DT-MRI) maps diffusion of water molecules in
biological tissues. In spite of this apparent heterogeneity, many medical imaging
datasets share two common characteristics: (1) the representation space of the data
is fundamentally non-Euclidean and (2) the data is functional (infinite-dimensional)
in nature. These two properties of the data introduce a major challenge for
statistical analysis as most traditional statistical methods apply to data residing
in relatively low-dimensional Euclidean spaces. Our focus in this book chapter is
on representation and statistical analysis of various aspects of biomedical imaging
data including (1) patterns of voxel values via probability density functions (pdfs,
smoothed histograms of voxel intensities) [44], (2) elastic functional data that
contains amplitude and phase variabilities [48], (3) shapes of curves [30, 47] and
(4) shapes of surfaces representing objects in medical images [19, 35]. As will be
seen later, all of these data types benefit from a Riemannian geometric approach
to data analysis. To unify these different data objects of interest, we refer to them
commonly as geometric data objects throughout.

Statistical analysis of geometric data objects starts with the definition of a suit-
able mathematical representation and metric that can be used for their comparison.
Once an appropriate representation space and a Riemannian metric on that space
have been defined, statistical analysis proceeds via the metric structure. In particular,
this approach allows one to (1) compute summary statistics such as the mean
and covariance, (2) explore variability in a sample via adaptations of principal
component analysis and (3) define basic statistical models [20, 49]. We consider
each of pdfs, elastic functional data, and shapes of curves and surfaces separately
to define the relevant Riemannian geometric representation spaces. To tie all of
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the frameworks together, we point out the commonalities between the Riemannian
geometry used for statistical analysis in each case.

We begin with statistical analysis of texture via a pdf representation. Texture
here refers to the pattern of voxel values inside an object of interest in a medical
image; it is a fundamental appearance property of objects in images [49]. We form
the pdf by (1) vectorizing the relevant voxel values, (2) generating their histogram
and (3) smoothing the histogram [44]. The result is a functional data object with two
constraints: the pdf must be positive everywhere on its domain and it must integrate
to one. The representation space of pdfs is the infinite-dimensional simplex, a
constrained linear space. To define a Riemannian structure on this space, we use the
well-known Fisher-Rao metric [25, 42, 46]. An important property of this metric
is that it is invariant to reparameterization [7], a property used later for defining a
Riemannian structure on the space of elastic functions and shapes.

The second type of geometric data objects of interest are elastic functions. Elastic
functions naturally contain two different sources of variability: amplitude variability
and phase, warping or parameterization variability [38]. A main goal in elastic
functional data analysis is to separate these two sources of variability and define
statistical methods to analyze them. The Riemannian setting for this type of analysis
necessitates invariance to function reparameterization. Conveniently, we apply an
extension of the Fisher-Rao metric used for pdfs in this setting [48].

Finally, we use methods from elastic shape analysis to study outlines (boundaries
of objects resulting in curves and surfaces) representing objects in medical images
[20, 30, 47]. The shape of such boundaries is a fundamental physical property of the
objects, and provides indispensable information about the health and development
of anatomical structures in the medical setting. The notion of shape is invariant
to translations, scales, rotations and reparameterizations of the curves and surfaces
[26]. In this setting, we use elastic Riemannian metrics which have been shown
to have such desired invariances. These elastic metrics are also extensions of the
Fisher-Rao metric introduced for pdfs.

In all of the above-mentioned settings, the initial Riemannian geometric struc-
ture of the representation spaces is quite complicated and necessitates numerical
methods for simple tasks such as computing geodesic distances. Luckily, there exist
square-root transforms in each of the cases that greatly simplify the geometry, and
result in Riemannian geometric tools with analytical expressions. This, in turn,
allows for development of large-scale data analytic approaches that can be applied
in various biomedical settings.

Our focus in this book chapter is not on describing recent methodological
advances in this area, but rather on elucidating various biomedical applications of
geometric methods for functional data analysis. While we outline the relevant math-
ematical details to keep our discussion self-contained, the main aim is to showcase
the breadth of applicability of the methods in medical imaging. As a result, our
methodological descriptions are terse and avoid many technical details; we refer the
interested readers to the recent books [49] and [20] for specific details. Additionally,
we highlight two closely related chapters in this volume that present complementary
material. In Chapter 13, the authors focus on the problem of registering different
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types of functional data as well as related mathematical/statistical properties; they
also present many intuitive examples to introduce this topic. In Chapter 14, the
authors provide an extension of the methods described in our chapter to trajectories
on general manifolds and present examples that consider multimodal data. The
rest of this chapter is organized as follows. Section 24.2 describes the Riemannian
geometry of representation spaces for the four geometric data objects of interest:
(1) pdfs, (2) elastic functional data, (3) shapes of curves and (4) shapes of surfaces.
In Sect. 24.3, we describe a general nonparametric framework, based on tools
provided by the Riemannian geometric backdrops, for computing summary statistics
and assessing variability in random samples. Section 24.4 discusses multiple case
studies for each type of geometric data object. Here, we draw on previous studies to
showcase the breadth of biomedical applications of the described methods. Finally,
we close with a brief summary in Sect. 24.5.

24.2 Mathematical Representation: Riemannian Metrics
and Simplifying Transforms

We begin with a brief review of the different Riemannian metrics and representa-
tions for pdfs, amplitude and phase components of elastic functional data, shapes
of curves and shapes of surfaces. In each case, we highlight a particular square-root
transformation, which greatly simplifies the computational implementation of the
framework. For more details on these approaches, please refer to Chapters 4 (pdfs
and elastic functional data), 5 and 6 (shapes of open and closed curves, respectively)
in [49], and [20] (shapes of surfaces). Throughout, we use ‖ · ‖ and 〈〈·, ·〉〉 to denote
functional norms and inner products (not necessarily L2), and | · | and 〈·, ·〉 to denote
the norm and inner product in a finite-dimensional Euclidean space Rk .

24.2.1 Probability Density Functions

Without loss of generality, our description focuses on univariate densities on [0, 1].
However, the methods described here can be generalized to the multivariate setting
in a straightforward manner (see Section 4 in [44] for an example). Let P denote the
Banach manifold of such pdfs defined as P = {p : [0, 1] → R+| ∫ 1

0 p(t)dt = 1}.
For any point p ∈ P, the tangent space is defined as Tp(P) = {v : [0, 1] →
R| ∫ 1

0 v(t)dt = 0}; this is a vector space of all possible perturbations of the pdf
p. We proceed to define a Riemannian metric on P, which will be used to compute
geodesic distances between two pdfs and summary statistics of samples of pdfs. The
nonparametric Fisher-Rao Riemannian metric (simply FR metric hereafter), for any
two tangent vectors v1, v2 ∈ Tp(P) is defined as [25, 42, 46]
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〈〈v1, v2〉〉p =
∫ 1

0
v1(t)v2(t)

1

p(t)
dt. (24.1)

The FR metric is invariant to reparameterizations of densities [7], a nice mathemati-
cal property. One drawback of this metric is the difficulty associated with computing
geodesic paths and distances due to the fact that the metric changes from point to
point on the space of pdfs, requiring numerical procedures.

To simplify computation, we choose an equivalent representation of the space
P via the square-root density (SRD) representation [4]. Under this representation,
the complicated FR metric becomes the standard L2 metric and the space of pdfs P
becomes the positive orthant of the unit hypersphere in L2. In other words, we define
an isometric transformation that greatly simplifies computing. The SRD is defined
as a function ψ = +√

p (we omit the + sign hereafter for notational convenience).
Then, the inverse mapping is unique and is simply given by p = ψ2. Hence, the
space of all SRDs is given by � = {ψ : [0, 1] → R+| ∫ 1

0 ψ(t)
2dt = 1}. The

L2 Riemannian metric on � is defined as 〈〈w1, w2〉〉 = ∫ 1
0 w1(t)w2(t)dt , where

w1, w2 ∈ Tψ(�) and Tψ(�) = {w : [0, 1] → R| ∫ 1
0 ψ(t)w(t)dt = 0}.

As the Riemannian geometry of � equipped with the L2 metric is well-known,
geodesic paths and their lengths can now be computed analytically. The geodesic
distance between ψ1, ψ2 ∈ � is simply given by

d(ψ1, ψ2) = θ = cos−1
( ∫ 1

0
ψ1(t)ψ2(t)dt

)

. (24.2)

The corresponding geodesic path between ψ1, ψ2 ∈ � is

η(τ) = 1/ sin(θ){ψ1 sin(θ(1 − τ))+ ψ2 sin(τθ)}, τ ∈ [0, 1]. (24.3)

It is easy to see that the geodesic distance θ is bounded above by π/2. In addition to
geodesic paths and distances, we often use the exponential and inverse exponential
maps for computing statistical summaries of a sample of pdfs. The exponential map
at a point ψ1 ∈ �, denoted by exp : Tψ1(�) �→ �, is defined as

expψ1
(w) = cos(‖w‖)ψ1 + sin(‖w‖)(w/‖w‖), (24.4)

where ‖w‖ =
( ∫ 1

0 w(t)
2dt

)1/2
. The inverse exponential map, denoted by exp−1

ψ1
:

� �→ Tψ1(�), is given by

exp−1
ψ1
(ψ2) = (θ/ sin(θ))(ψ2 − ψ1 cos(θ)). (24.5)

These two mappings can be used to transfer points from the nonlinear representation
space � to linear tangent spaces of �, and vice versa.
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24.2.2 Amplitude and Phase in Elastic Functional Data

One can extend the above FR metric-based framework to more general functional
data. One difficulty that arises in this setting is the need for registration when
comparing or modeling such observations. This is due to the fact that functional
data often contains two forms of variability: amplitude and phase [38, 41, 48, 49].
Amplitude describes the vertical variability along the y-axis while phase describes
the horizontal variability along the x-axis (also called domain warping), i.e., the
parameterization of the functional observations. Thus, extracting phase variability
from functional data through a registration procedure requires a metric that is
invariant to reparameterization. As we have already established that the FR metric
is invariant to reparameterizations of pdfs, we will use its extension for functional
data.

We introduce some additional notation to formalize the discussion. Without
loss of generality, we restrict our attention to absolutely continuous functions
on the domain [0, 1], and focus only on nonlinear warpings of this domain;
thus, we define the function space of interest as F = {f : [0, 1] →
R|f is absolutely continuous}. We use the set � = {γ : [0, 1] → [0, 1]|γ (0) =
0, γ (1) = 1, γ is a diffeomorphism} to represent all possible nonlinear domain
warpings. Then, for a function f ∈ F , the composition f ◦ γ denotes the domain
warping of f using γ , i.e., a reparameterization of the function f . To extend the
FR metric for pdfs to this more general class of functions, we start with absolutely
continuous functions f : [0, 1] → R such that ḟ > 0; call the set of such functions
F0 and let Tf (F0) denote the tangent space to F0 at f . For any f ∈ F0 and
v1, v2 ∈ Tf (F0), the FR metric can be redefined as [48]

〈〈v1, v2〉〉f =
∫ 1

0
v̇1(t)v̇2(t)

1

ḟ (t)
dt. (24.6)

As in the case of densities, this metric is invariant to domain warpings, 〈〈v1 ◦γ, v2 ◦
γ 〉〉f ◦γ = 〈〈v1, v2〉〉f , for all γ ∈ �, f ∈ F0 and v1, v2 ∈ Tf (F0), but also difficult
to work with computationally.

To alleviate this issue, we define a square-root transform similar to the SRD.
Define the square-root slope function (SRSF) of f as q = sign(ḟ )

√

|ḟ (t)|. Since
we have assumed ḟ > 0, the SRSF in this case simply becomes q =

√

ḟ , i.e., the
square-root of an unnormalized pdf. Importantly, under the SRSF representation,
the FR metric becomes the standard L2 metric. While we have so far restricted our
attention to functions with positive derivative, the SRSF allows us to treat more
general cases. Next, we return to the space F of all absolutely continuous functions,
i.e., ḟ is allowed to take arbitrary values including zero (when ḟ = 0, the SRSF also
takes value 0). Then, using the L2 metric on the space of all SRSFs corresponding
to functions in F , the FR metric implicitly extends from F0 to F . If the function f
is absolutely continuous then the resulting SRSF is square-integrable or an element
of L2([0, 1],R) (simply L2 for brevity) [43]. The inverse mapping from an SRSF to
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its corresponding function is unique up to a vertical translation. If one additionally
keeps track of the starting point f (0), then the mapping is unique and is given by
f (t) = f (0)+ ∫ t

0 q(s)|q(s)|ds. Furthermore, the SRSF of a warped function f ◦ γ
is given by (q, γ ) = (q ◦ γ )√γ̇ .

This basic setup allows us to define amplitude and phase mathematically. The
amplitude of a function remains unchanged under warping, i.e., f and f ◦ γ have
the same amplitude for any γ ∈ �. The amplitude is thus defined as the equivalence
class [f ] = {f ◦ γ |γ ∈ �}, which contains all possible domain warpings of f .
The space of all amplitudes is the quotient space F /�. In contrast to amplitude, the
definition of phase is only relative. Given two functions f1 and f2, the relative phase
of f2 with respect to f1 is defined as

γ21 = arg min
γ∈� ‖q1 − (q2 ◦ γ )√γ̇ ‖, (24.7)

where q1 and q2 are the SRSFs of f1 and f2, respectively. This minimization is
usually solved using the dynamic programming algorithm [43]. The optimization
problem in Eq. (24.7) is referred to as the pairwise registration of f2 to f1.

Next, we focus on defining a distance for amplitude and phase components. The
distance between amplitudes of two functions f1 and f2 is defined as

da(f1, f2) = d([q1], [q2]) = min
γ∈� ‖q1 − (q2 ◦ γ )√γ̇ ‖ = ‖q1 − (q2 ◦ γ21)

√

γ̇21‖.
(24.8)

A geodesic path between two amplitude functions can then be constructed using a
straight line connecting q1 and (q2 ◦ γ21)

√
γ̇21. Similarly, in order to compare the

phase components of the two functions f1 and f2, we use the relative phase between
them, γ21. Then, the phase distance is defined as

dp(f1, f2) = cos−1
( ∫ 1

0

√

γ̇21(t)dt
)

. (24.9)

This definition is based on an adaptation of the FR metric to �, and is measured
using the SRSFs of warping functions [27]. In fact, the SRSF of any warping
function is simply an SRD. Thus, the phase distance uses the SRD representation
introduced earlier to compute distances between warping functions. To construct
a geodesic path between two warping functions, after transforming them to their
SRSFs, one can simply use Eq. (24.3).

24.2.3 Shapes of Open and Closed Curves

The extension of methods for functional data analysis to curves in higher-
dimensional Euclidean spaces comes from so-called elastic shape analysis. While
functional data requires invariance to reparameterization only, shape analysis
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additionally requires invariance to translation, scale and rotation, also referred
to as similarity shape-preserving transformations. As in the two previous sections,
we begin by introducing a Riemannian metric, which is naturally invariant to all
such transformations.

Let f : D → Rk, k > 1 denote an absolutely continuous, parameterized curve
in the Euclidean space Rk with the domain of parameterization given byD = [0, 1]
for open curves and D = S1 for closed curves. With a slight abuse of notation, let
F denote the set of all such curves. While the framework described here applies to
k-dimensional curves, biomedical applications generally consider 2D and 3D curves
as data objects, as seen in later sections. The most difficult of the aforementioned
invariances is that to parameterization, and it requires the definition of a nonstandard
Riemannian metric on F referred to as the elastic metric. We begin by identifying

the curve f with the pair (r, θ) where r = |ḟ | is the speed function and θ = ḟ

|ḟ |
is the angle function. The only information lost when passing from f to the pair
(r, θ) is translation, which is one of the nuisance, shape-preserving transformations.
Also, let (δr1, δθ1) and (δr2, δθ2) be two tangent vectors at (r, θ). Then, the elastic
Riemannian metric is defined as

〈〈(δr1, δθ1), (δr2, δθ2)〉〉(r,θ) = a

∫

D
δr1(t)δr2(t)

1

r(t)
dt+b

∫

D
δθ1(t)

T δθ2(t)r(t)dt.

(24.10)
We note three important properties of this metric. First, it is a weighted combination
of two terms, one capturing changes in the speed function, i.e., stretching deforma-
tions, and one capturing changes in the angle function, i.e., bending deformations.
Second, the stretching term in the metric should look familiar: it is the same
as the FR metric introduced earlier for densities. Third, this metric is invariant
to reparameterizations of curves, in addition to translation, scaling and rotation.
Unfortunately, as in the two previous cases, this metric is difficult to use in practice.

Fortunately, one can extend the SRSF representation introduced for functional
data to this more general case. This new representation of curves is called the square-

root velocity function (SRVF) [21] and is defined as q = √
rθ = ḟ√

|ḟ | . In fact,

the SRVF and SRSF are equivalent for univariate curves. The SRVFs of absolutely
continuous curves reside in L2(D,Rk) (simply L2 for brevity). An important prop-
erty of this representation is that the complicated elastic metric, with a = 1/4 and
b = 1, simplifies to the standard L2 metric under the SRVF transform. We note that
the SRVF is not the only transform that simplifies a specific instance of the elastic
metric to the L2 metric; for alternative approaches see [2, 28, 53, 54]. We will use the
SRVF to mathematically formalize the notion of shape so that any two curves that
are within a translation, rescaling, rotation and reparameterization of each other are
considered to be the same data object. Since the SRVF is a function of the derivative
of the original curve, it is automatically translation invariant (this is obvious since
the elastic metric is translation invariant). Forcing a unit length constraint on the
curves results in unit L2 norm SRVFs, i.e., ‖q‖2 = 1. Hence, the set of unit length
open curves is C = {q : [0, 1] → Rk|‖q‖2 = 1}, i.e., a unit sphere in L2; C is



24 Biomedical Applications of Geometric Functional Data Analysis 683

also referred to as the pre-shape space. Restricting attention to closed curves, the
pre-shape space becomes Cc = {q : S1 → Rk|‖q‖2 = 1,

∫

S1 q(t)|q(t)|dt = 0},
which is a subspace of C due to the closure constraint. In the remainder, to keep the
discussion general, we do not make a distinction between these two pre-shape spaces
and simply use C. The rotation and reparameterization variabilities can be filtered
out through a suitable definition of equivalence classes. Let [q] = {O(q, γ )|γ ∈
�,O ∈ SO(k)} denote all possible rotations and reparameterizations of q, where
SO(k) = {O ∈ Rk×k|OTO = OOT = 1, det(O) = 1} is the special orthogonal
group of rotations, � = {γ : D → D|γ is a diffeomorphism} is the set of (order-
preserving) reparameterizations and (q, γ ) = (q ◦ γ )√γ̇ . Each equivalence class
represents a shape uniquely and the collection of all equivalence classes is the shape
space S = C/(SO(k) × �). The final ingredient is the ability to compare shapes
using a distance on S. Under the SRVF representation, this distance is given by

d([q1], [q2]) = min
O∈SO(k),γ∈� cos−1

( ∫

D
q1(t)

T Oq2(γ (t))
√

γ̇ (t)
)

dt. (24.11)

The optimization problem in Eq. (24.11) is solved using a combination of Procrustes
analysis [10] and dynamic programming [43]. For visualization, a geodesic path
between two shapes can be constructed using Eq. (24.3) with inputs q1 and
O∗(q2, γ

∗), where O∗ and γ ∗ denote the minimizers of Eq. (24.11).

24.2.4 Shapes of Surfaces

Lastly, we consider shape analysis of surfaces. This case evolves similarly to the
case of curves. Again, with a slight abuse in notation, let F denote the space of
smooth embeddings f : D→ R3, where the domain of parameterization D can be
a unit sphere (closed surfaces), a unit square (quadrilateral surfaces), a unit cylinder
(cylindrical surfaces), a unit disk (hemispherical surfaces), etc. Furthermore, let �
be the set of all diffeomorphisms ofD. We use n(t) ∈ R3 to denote the normal vector
to the surface at the point t ∈ D, i.e., n(t) = ∂f

∂u
(t) × ∂f

∂v
(t), where (u, v) are the

coordinates on the domainD. The infinitesimal area measure at a point t is given by
r(t) = |n(t)| and the normalized normal vector is ñ(t) = n(t)

r(t)
. We will represent the

surface f using the pair (r, ñ); as this representation depends on partial derivatives
only, it is automatically invariant to translations. Let (δr1, δñ1) and (δr2, δñ2) be
two tangent vectors at (r, ñ). A reparameterization invariant Riemannian metric on
the space of surfaces is given by [19]

〈〈(δr1, δñ1), (δr2, δñ2)〉〉(r,ñ) = 1

4

∫

D
δr1(t)δr2(t)

1

r(t)
dt+

∫

D

δñ1(t)
T δñ2(t)r(t)dt.

(24.12)
Again, the first term in this metric resembles the FR metric introduced earlier,
and captures changes in the infinitesimal areas of surface patches, i.e., stretching
deformations. The second term captures changes in the direction of the unit normal
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vector, i.e., bending deformations. The metric in Eq. (24.12) is a special case of a
more general elastic metric for surfaces [19]. Due to the difficulty of working with
this metric in practice, we define an alternative representation of surfaces, called the
square-root normal field (SRNF), which simplifies this metric to the standard L2

metric. The SRNF of a surface f is given by q = √
rñ = n√|n| . The SRNF of a

reparameterized surface f ◦γ , for a γ ∈ �, is given by (q, γ ) = (q ◦γ )√Jγ , where
Jγ is the determinant of the Jacobian of γ .

As in the case of curves, we seek a framework that is invariant to all shape-
preserving transformations (translation, scale, rotation and reparameterization).
The SRNF representation is automatically invariant to translations. To produce
invariance to scaling, we rescale all surfaces to unit area, resulting in SRNFs with
unit L2 norm. As in the case of curves, this amounts to restricting attention to the unit
sphere in L2. We then define a distance on the shape space of surfaces by minimizing
over equivalence classes of the form [q] = {O(q, γ )|γ ∈ �, O ∈ SO(3)}

d([q1], [q2]) = min
O∈SO(3),γ∈� cos−1

( ∫

D
q1(t)

T Oq2(γ (t))

√

Jγ (t)
)

dt. (24.13)

As in the case of curves, the optimal rotation is found using Procrustes analysis
[10]. Computation of the optimal reparameterization requires a gradient descent
algorithm [29]. A geodesic path between two shapes can be constructed using
Eq. (24.3) with inputs q1 and O∗(q2, γ

∗), where O∗ and γ ∗ are the minimizers
of Eq. (24.13).

24.3 Nonparametric Metric-Based Statistics

We provide a general recipe for computing the sample mean, covariance and
performing principal component analysis (PCA). Our tools rely on Karcher means
for metric spaces and local linear approximations via the Riemannian structure.
Since all four geometric data objects described in Sect. 24.2 rely on L2 Riemannian
geometry, we provide a single description here for brevity.

24.3.1 Karcher Mean

The sample Karcher mean [24] of a collection of points (i.e., pdfs, amplitude
functions, phase functions or shapes) x1, . . . , xn from a metric space (X, d) is
defined as the minimizer of the Karcher variance

μ̂ = arg min
x∈X

1

n

n
∑

i=1

d(x, xi)
2. (24.14)
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This definition, with slight modification when dealing with equivalence classes, is
applicable to all four metric spaces discussed in Sect. 24.2. Computation of the
Karcher mean is carried out using gradient-based algorithms [31, 36, 40], which
generally iterate between three steps: (1) projection of data from the representation
space to the linear tangent space at the current estimate of the mean via the inverse
exponential map, (2) computation of the gradient of the cost function in Eq. (24.14),
and (3) update of the current estimate of the mean using the exponential map. In the
case of functional data, the Karcher mean is used as a template for mutliple function
registration. That is, once the Karcher mean is estimated, the amplitude components
of all functions are defined through pairwise registration to the Karcher mean; this
also results in the phase component, computed with respect to the mean [48].

24.3.2 Covariance Estimation and Principal Component
Analysis

Exploration of variability in a sample of geometric data objects can be carried out by
choosing local coordinates in the vicinity of the Karcher mean μ̂. The Riemannian
structure allows one to conveniently linearize the data representation space via the
tangent space at the mean, Tμ̂, and to select Euclidean coordinates in this space.

As before, let x1, . . . , xn and μ̂ represent the data objects of interest and their
Karcher mean, respectively. We begin by projecting each xi, i = 1, . . . , n onto
the tangent space at the mean using the inverse exponential map resulting in
tangent vectors v1, . . . , vn. Using this tangent space representation, we estimate the
covariance matrix based on discretized versions of the tangent vectors denoted by
vi , i = 1, . . . , n. Assuming the dimension of each vi is M , the sample covariance
matrix is given by KM := 1/(n − 1)

∑n
i=1 viv

T
i . To study variability using PCA,

we apply the spectral decomposition to the covariance matrix KM = U UT ,
where the orthogonal matrixU contains the principal components (PCs) or principal
directions of variability, and the diagonal matrix  contains the PC variances. In
typical biomedical applications, the number of observations is smaller than the
dimensionality of each tangent vector, i.e., n < M . Thus, there are at most n − 1
positive values in the matrix  . The submatrix formed by the first r columns of
U , Ur , spans the r-dimensional principal subspace of the observed data, and one
can reexpress the data using coordinates in this subspace via principal coefficients
computed as ci = UTr vi , i = 1, . . . , n. One can then use these principal coefficients
for further statistical modeling, e.g., PC regression [3]. A common approach to
modeling complex data objects is through tangent PCA-based models such as the
truncated wrapped Gaussian distribution [30] or by directly modeling the principal
coefficients.
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24.4 Biomedical Case Studies

We focus on multiple biomedical case studies that consider (1) pdfs, (2) amplitude
and phase in functional data, (3) shapes of curves, and (4) shapes of surfaces
as data objects. While the theoretical underpinnings outlined in Sect. 24.2 con-
sider infinite-dimensional data representations, computer implementation of these
methods requires appropriate discretization. We represent pdfs and other univariate
functions (amplitude/phase) as 1 × N vectors, where N denotes the number
of discretization points selected on the function domain. Shapes of curves are
represented as d × N matrices, where d = 2, 3 depending on whether the curve
is planar or 3D, and N is again the number of points selected on the curve domain.
Finally, shapes of surfaces are represented as N1 × N2 × 3 arrays, where N1 × N2
defines a discretization grid on the surface, and each point on the grid takes a value
in R3.

24.4.1 Probability Density Functions

Assessment of Glioblastoma Multiforme Tumor Texture Variability Glioblas-
toma multiforme (GBM), also known as grade IV glioma, is the most common form
of a malignant brain tumor in adults [15]. It is a morphologically heterogeneous
disease with extremely poor prognosis; also, predicting the impact of standard
cancer treatments such as chemotherapy and radiation therapy becomes consider-
ably challenging. Thus, exploring tumor heterogeneity is critical in cancer research
as inter- and intra-tumor differences have stymied the systematic development of
targeted cancer therapies [9]. MRI is one of the modern medical imaging techniques
that has been used to investigate tumor development in various contexts. MRI
scans are primarily used to exhibit and evaluate the location, size, growth and
progression of tumors, which serve as indicators for clinical decision making.
Various physiological features are extracted by using voxel-level data to visualize
the progression (or regression) of tumors. This is generally done by constructing
voxel value histograms. However, in most cases, only simple summaries of the entire
histograms are used for statistical analysis. This approach has two main drawbacks.
First is the subjectivity in the choice of the number and location of the summary
features (e.g., quantiles or percentiles, etc.). Second, and more importantly, these
summary features fail to capture the entire information in a histogram of voxel
intensities, and thus cannot detect small-scale and sensitive changes in the tumor
due to treatment effects [23].

Alternatively, one can exploit the entire histogram, or its corresponding smoothed
density profile, for the tumor region in an MRI. This was the approach taken in a
recent paper that introduces DEMARCATE, a self-contained pipeline for geometric
clustering and validation of GBM tumor texture profiles [44]. Semi-automated
segmentation methods [1] can be employed to delineate the tumor region in the
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Fig. 24.1 (a) MRI slice for a subject with GBM; the delineated region corresponds to the tumor.
(b) Mask identifying the tumor region. (c) Estimated voxel intensity pdf corresponding to the tumor

whole brain MRI scan. In subsequent analyses we use the voxel-level information
from the axial slice with the largest tumor area only. This is done for simplicity of
visualization and can be easily extended to the full 3D tumor. Figure 24.1a shows
a single slice of an MRI scan for a subject with GBM, where the delineated region
corresponds to the tumor. This region is displayed as a binary mask in panel (b).
The voxel values inside the tumor are used to compute a Gaussian kernel density
estimate (a pdf), which is displayed in panel (c); it contains detailed and refined
information about the voxel-level tumor characteristics. Hence, under this setup, a
sample of GBM scans is represented by a sample of voxel value pdfs corresponding
to the tumor region in the MRI scan of each subject. For a more detailed description
of the image processing pipeline, we refer the interested reader to [44]. The imaging
data used in this study was retrieved from The Cancer Imaging Archive (www.
cancerimagingarchive.net).

Next, we consider a comparison of two subjects based on their voxel value pdfs.
Figure 24.2a, b shows the MRI slice for two subjects, and the corresponding pdfs
of the tumor intensity values. The geodesic path between the two pdfs under the
FR metric is shown in Fig. 24.2c. The displayed geodesic was discretized with five
equally spaced points on the interior of the path. Finally, we consider a random
sample of ten subjects with GBM. The densities for these ten subjects (dashed),
along with their Karcher mean (solid red) are displayed in Fig. 24.3a. The Karcher
mean in this case provides a simple summary of the sample of voxel intensity pdfs,
and was computed using the FR Riemannian framework. We do not display the
corresponding MRI slices in this case for brevity (note that there doesn’t exist a
unique MRI slice corresponding to the Karcher mean pdf). Given an estimate of the
Karcher mean, we perform PCA and show the first principal direction of variability
in the given sample. This result is provided in Fig. 24.3b and reflects the relative
heights of the different modes in the sample of voxel value pdfs. While not shown
here, principal coefficients can be subsequently used as covariates in regression
models, e.g., to predict subject survival [3].

www.cancerimagingarchive.net
www.cancerimagingarchive.net
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Fig. 24.2 (a and b) MRI slices from two different GBM subjects, with the pdf corresponding to
the tumor intensity values. (c) Geodesic path between the pdfs for subject (a) and subject (b)
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Fig. 24.3 (a) Karcher mean (solid red line) of a random sample of ten voxel value pdfs (dashed
lines) extracted from tumor regions of GBM subjects. (b) Principal direction of variability in the
sample, displayed at −2, −1, 0, +1, +2 standard deviations around the mean (red)

24.4.2 Amplitude and Phase in Elastic Functional Data

Automatic Segmentation and Clustering of Electrocardiogram Signals The
electrocardiogram (ECG) is a cheap and widely-applied diagnostic tool for assess-
ment of various heart diseases including myocardial infarction (MI). Automated
algorithms, based on sound mathematical and statistical principles, that can accu-
rately and efficiently analyze ECG signals are thus useful in monitoring and
identifying the risk or onset of a particular disease. The ECG captures fluctuations
in electrical potential of the heart muscle on the body surface and results in a vector
that represents the magnitude and direction of the electric field generated through
the heart [8]. The ECG represents an example of a highly periodic biomedical signal.
The two main challenges in analyzing such data include (1) automatic segmentation
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Fig. 24.4 (a) Pictorial description of automatic algorithm for segmentation of long ECG signals.
Bottom: Registration of PQRST complexes to a common template. (b) Given PQRST complexes.
(c) Phase component. (d) Amplitude component. (e) Comparison of average PQRST complex
without (blue) and with (green) registration. Image courtesy of [32]

of cycles called PQRST complexes (PQRST refer to semantic features of each cycle:
the P peak, QRS complex and the T peak) from a long temporal ECG signal, and
(2) automatic registration of cycles to extract amplitude and phase variabilities of
individual cycles. The ECG data used here for demonstrative purposes is a subset of
the PTB Diagnostic ECG Database [5] obtained from Physionet [12].

In [32], the authors solve these two problems using techniques from elastic
functional data analysis described in Sect. 24.2.2. First, they define an automatic
signal segmentation algorithm based on a sliding window approach. In particular,
they construct a PQRST complex template, based on the amplitude component of
a few manually segmented PQRST complexes, and slide it along the long periodic
signal. The cost function that is then used for segmentation is the phase distance,
defined in Eq. (24.9), between the part of the long signal in the current window
and the defined template. The PQRST cycles are identified as local minima of this
cost function. Figure 24.4a provides a pictorial description of this process. Once the
cycles have been extracted, their amplitude components are found by registering to
a new common template. This result is displayed in the bottom panel of Fig. 24.4. In
(b), we show the segmented PQRST complexes. The extracted phase components
are displayed in (c) with corresponding amplitude components in (d). Finally, in
(e), we compare the amplitude means computed without (blue) and with (green)
registration. Note the enhanced features of the PQRST complex average computed
after registration.
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In addition to extracting the amplitude and phase components from PQRST
complexes, the authors in [32] use the amplitude components for (1) classification
of subjects as healthy controls or as having MI and (2) localization of the MI as
anterior or inferior. The data they use for this experiment consists of 80 healthy
control ECGs, 28 of which are repeated measures for the same subject, and 80 MI
ECGs with no repeated measures. For each subject, they first segment the long ECG
signal into corresponding PQRST complexes and then use the amplitude of the
average PQRST complex for classification using the nearest neighbor procedure.
They report an accuracy of MI classification of 90% by combining information
from different ECG leads (the data contains a total of 15 different ECG signals
called leads per subject). Also, they report a localization accuracy of 92.21%, again
based on combining multiple single lead classifiers.

Assessment of Variability in DT-MRI Fractional Anisotropy Functions in
Multiple Sclerosis DT-MRI is a neuroimaging modality that traces the diffusion
of water molecules in the brain. A DT-MRI scan of a subject’s brain provides a
3×3 tensor matrix, at each voxel in the image, that describes the constraints of local
Brownian motion of water molecules. This information is essential to understanding
white matter in the brain which constitutes areas made up of axons or tracts. Tracts
connect neurons and allow for the transmittance of electric signals from one area of
the brain to another, affecting overall brain function. Because the diffusion of water
in tracts is anisotropic, tracts themselves can be extracted from the information
contained in a DT-MRI, along with other quantities of interest that describe the
quality of tract connection by summarizing its degree of anisotropy.

Here, we focus on Fractional Anisotropy (FA) measurements along tracts,
which provide a voxel-wise summary of the eigenvalues of the diffusion tensors,
denoted by λ1, λ2, λ3. At each voxel, FA is given by the scalar quantity FA =
√

3
2

√

(λ1−λ̄)2+(λ2−λ̄)2+(λ3−λ̄)2
λ2

1+λ2
2+λ2

3
, where λ̄ = λ1+λ2+λ3

3 . A larger FA value indicates

a large degree of anisotropy. For practitioners, this summary is interpreted as
measuring the quality of connections between neurons connected by the tracts in
a particular region of interest, and has been found to be a useful quantity to study
subjects with various diseases, e.g., multiple sclerosis (MS) [13], Alzheimer’s [39],
etc. In the MS setting, the autoimmune disease causes lesions and damage to tracts
that results in a decrease in FA. Thus, this quantity can be used to distinguish
between healthy controls and subjects with MS, and to predict cognitive and motor
disease outcomes. The data of interest takes a functional form, with the domain of
the functions representing locations along tracts. Determining the voxels that the
tracts pass through in the image is a practical challenge in itself and will be further
discussed in Sect. 24.4.3.

The functional FA data we analyze here is available as part of the ‘refund’
package in R [14]. In particular, we study the mean and principal directions of
variability in a sample of 66 subjects with MS whose FA values were measured at 55
locations along the right corticospinal tract that contributes to fine motor movements
in ipsilateral limbs. The domain of parameterization for each FA function was
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Fig. 24.5 (a) Observed FA functions. (b) Amplitude component. (c) Phase component

normalized to [0, 1] for convenience. It is important to note that due to differences in
the geometry of different subjects’ white matter, there generally exist both phase and
amplitude variabilities in the FA functional data, as demonstrated next. The raw FA
functions for the 66 subjects are shown in Fig. 24.5a. The amplitude components of
the functions, after registration to a common template, are displayed in Fig. 24.5b.
Finally, the warping functions which constitute the phase components are shown
in Fig. 24.5c. Visual inspection of panel (b) reveals that the number of extreme
values in the FA functions is roughly the same across subjects. The main source of
variability in this case are the heights of the extreme values. The phase components
in panel (c) suggest that the extreme values occur at different parameter values
for different subjects, which is intuitive given natural geometric variability of the
tracts across subjects. These insights are only made possible through the separation
of amplitude and phase by registering all functions to a common template; such
patterns are much more difficult to observe by looking at the observed functions in
panel (a).

Figure 24.6 further highlights the importance of elastic functional data analysis
methods by contrasting averages computed without (panel (a)) and with (panel (b))
registration. While the general patterns in the two means are similar, the amplitude
mean in panel (b) reveals much more local structure through small peaks and
valleys. Finally, to understand patterns of variability in the given sample of FA
functions, we perform PCA on the amplitude components. Since the translation
of the functions is also informative in this setting, we include it as an additional
feature in the PCA model (it is appropriately weighted to make the scales of the
two components, amplitude and translation, comparable). The first three principal
directions of amplitude (and translation) variability are visualized in Fig. 24.6c–e.
The first direction predominantly captures variability in translation as well as the
initial portion of the functions, as some functions in the sample initially decrease and
others increase. The second direction captures fine features of the different peaks
and valleys of the FA functions, especially the fourth peak, as well as large amount
of variability at the end of the functions. Finally, the third direction (and subsequent
directions not displayed here) capture bigger differences in the relative heights of
peaks and valleys.
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Fig. 24.6 (a) Pointwise mean of the FA functions in Fig. 24.5a. (b) Karcher mean of the FA
functions after registration in Fig. 24.5b. (c)–(e) First three principal directions of amplitude (and
translation) variability of the FA functions, respectively. We display a path of functions sampled at
−2 and +2 (dotted lines), −1 and +1 (dashed lines), and 0 (solid line) standard deviations from
the mean

24.4.3 Shapes of Open and Closed Curves

Comparison and Summarization of Planar Shapes of GBM Tumors We return
to the study of the GBM tumor dataset, as described in Sect. 24.4.1. However,
instead of modeling the internal texture of the tumors, we instead model the shapes
of tumor outlines. This allows us to study growth patterns and shape heterogeneity of
tumors, which are features that are complementary to voxel intensity values. Tumor
shape is affected by the location of the tumor in the brain due to constraints posed
by the brain anatomy such as white matter and blood vessels. In [3], the authors
suggest that tumor shape could enhance our understanding of disease prognosis and
help in prediction of therapeutic success. As in Sect. 24.4.1, the imaging data is a
subset of The Cancer Imaging Archive, and the tumor shape is obtained through
semi-automated segmentation; a segmented tumor is visualized in Fig. 24.1. The
geometric data object of interest in this case is the red outline of the tumor rather
than the entire MRI slice. In this case study, we consider 63 GBM tumor outlines,
which are represented as planar closed curves. We focus on characterization of
tumors through the visualization of geodesic paths, the Karcher mean shape and
shape PCA. Similar results appear in [3]; the scope of their study is broader and
additionally includes shape clustering, hypothesis testing and survival modeling.
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We begin with a visualization of a geodesic path between two tumor shapes in
Fig. 24.7. If the two endpoints of the geodesic path are a single subject’s tumor at
different timepoints, the points along the path can be viewed as an interpolation
along different stages of tumor growth. This, in turn, can help a practitioner
retrospectively understand how the subject’s tumor has evolved over time without
collecting MRI data at intermediate timepoints. On the other hand, when the two
endpoints are shapes of tumors coming from two different subjects, as in Fig. 24.7,
the path can help formulate a qualitative understanding of how tumor shapes differ in
the population. In this case, the shapes of the tumors seem to differ by how bulbous
or skinny their protrusions are. By viewing more subjects’ tumors in Fig. 24.8, this
seems to be a common discrepancy between the different subjects. The insight
that this is a primary source of variability in GBM tumor shapes is formalized by
viewing the principal directions of variability in the entire dataset; the first four
directions are shown in Fig. 24.9. Notice that the first direction, which captures
approximately 41% of the total variability, describes the types of differences in

Fig. 24.7 Geodesic path between shapes of GBM tumors for two subjects (blue and black
endpoints), sampled uniformly using five interior points along the path

Fig. 24.8 Five randomly
selected GBM tumor outlines

Fig. 24.9 (a)–(d) First four
principal directions of shape
variability in the GBM
dataset, respectively, sampled
at −3, −2, −1, 0, +1, +2 and
+3 standard deviations
around the mean shape (red)
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protrusions described before. The remaining directions describe other shapes of the
bulbous features of the tumors. The second, third and fourth principal directions of
variation capture about 33%, 16%, and 10% of the total variability, respectively;
essentially all of the variation is contained in these first four directions. This implies
that a low dimensional model, based on these PCs, could be used for subsequent
statistical analyses.

Clustering Shapes of 3D DT-MRI Tracts As previously mentioned in
Sect. 24.4.2, DT-MRI tracts are of interest when studying structural connections
between different regions of the brain. Tractography is the field of study
concerned with discerning tracts from the tensor-based DT-MRIs [37]. Conventional
tractography relies on the principle that water diffuses anisotropically in white
matter tracts in a principal direction that is encoded in the diffusion tensor. This
implies that the direction that the tract is pointing in a voxel will coincide with
the eigenvector corresponding to the maximum eigenvalue of the diffusion tensor.
Consequently, an entire tract can be traced using information from the observed
diffusion tensors associated with voxel locations. The application described in [30]
deals with tracts that connect Broca’s and Wernicke’s regions of the left hemisphere
of the brain; these two regions are associated with the human language circuit.
While two main routes of connection are widely recognized, there is an ongoing
debate on whether the white matter tracts connecting the two regions can be further
broken down into smaller subroutes.

The data in this study contains different numbers of fiber tracts for four subjects.
We identify different routes of connectivity by clustering the shapes of these tracts
using distance-based methods. This was also done in [30], but there the authors
used shape in conjunction with other features of the tracts. To determine if the
tracts can be put in different clusters representing major pathways connecting the
regions of interest, a hierarchical clustering algorithm, with a complete linkage
criterion, is used to cluster the observations for each individual based on the elastic
shape distance defined in Eq. (24.11). The results for all four subjects are shown in
Fig. 24.10. The tracts, represented as 3D open curves, are plotted in the top panel of
the figure and are colored by cluster membership. In the middle panel, we show the
pairwise shape distance matrix as an image, rearranged according to the computed
clusters. Note the nice separation of clusters in this distance matrix. Finally, in the
bottom panel, we show a plot of the tracts after applying multidimensional scaling
(MDS) to the distance matrices. This 2D scatterplot provides a lower dimensional
visualization of the clustered data. Some of the subjects exhibited tracts that could
be separated into more than two clusters, e.g., Fig. 24.10b, c. The case for more than
two clusters is hard to justify for the subject in Fig. 24.10a. Based on these results,
it appears that the hypothesis that there are two or three main pathways connecting
Broca’s and Wernicke’s regions in the left hemisphere is plausible for all of the
subjects considered in this case study.
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Fig. 24.10 (a)–(d) Results of hierarchichal shape clustering for four subjects. Top: Tracts colored
by cluster membership. Middle: Image of distance matrix. Bottom: MDS plot of tracts

24.4.4 Shapes of Surfaces

Simulation of Endometrial Tissue Shapes We define a PCA-based statistical
model for efficient simulation of random endometrial tissue shapes, which can be
used for validation of various image processing algorithms such as multimodal
registration of MRI and transvaginal ultrasound (TVUS). This is an important
task in the context of diagnosis and surgery planning for endometriosis [45, 52],
a complex gynecological disease in which endometrial cells appear outside their
usual locations in the uterine cavity [6]. Endometriosis affects approximately 10%
of women in the reproductive age group and may cause chronic pelvic pain, severe
dysmenorrhea, infertility, rectal bleeding and digestive problems.

In this study [33, 34], we use real data from ten subjects with small endometrial
implants in the pelvic area. The available data are cylindrically parameterized
surfaces of endometrial tissues, reconstructed from 2D MRI slices. The entire
dataset can be found in Figure 1(b) in [34]. There is a lot of variation in this data,
and thus, parsimonious shape models are very important in this application. Of main
interest is random generation of realistic endometrial tissue shapes as they’d appear
in an MRI scan and a corresponding TVUS image. Unfortunately, endometrial tissue
is soft and undergoes a significant deformation during TVUS imaging due to the
transducer’s pressure. Thus, in addition to generating a random endometrial tissue
shape we must additionally apply a deformation on the surface of the shape that is
consistent with the TVUS imaging protocol.
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Fig. 24.11 (a) Randomly
sampled shape from the
Gaussian model resembling
MRI data. (b) Random
sample after additional
deformation resembling
TVUS data. (c) Deformation
applied to the random sample
displayed on a perfect
cylinder. Image courtesy of
[34]

To achieve the two goals outlined above, we first compute the Karcher mean
of and perform PCA on the ten given endometrial tissue shapes. This allows us to
express the data in terms of the principal coefficients. We model these coefficients
using a simple zero-mean multivariate Gaussian distribution with the covariance
structure informed by the PCA. A major advantage of this shape model is that it is
very easy and computationally efficient to sample from. Figure 24.11a shows four
randomly generated endometrial tissue shapes as they’d appear in an MRI. Then,
to simulate the semi-synthetic deformation needed for the corresponding TVUS-
based endometrial tissue shape, we define a simple diffusion model with different
degrees of deformation on the previously computed Karcher mean; the deformation
is centered at a randomly selected point on the mean. These deformations can then
be transported from the Karcher mean to each of the random samples from our
model using parallel transport [51]. Figure 24.11c displays the deformations applied
to a perfect cylinder. The magnitude of deformation increases from the top row to
the bottom row. Finally, the TVUS-based, deformed endometrial tissue shapes are
displayed in (b). The random samples generated using this approach (as well as
their deformed counterparts) naturally resemble the given data. In [34], the authors
provide a thorough validation of their models and a formal assessment by a clinician.

Classification of Attention Deficit Hyperactivity Disorder (ADHD) via Shapes
of Subcortical Structures Recently, many researchers have become interested
in studying shape changes of brain structures and associating these changes with
various diseases including Alzheimer’s [22, 50], Parkinson’s [11], autism [16] and
ADHD [29], among others. Statistical analysis of the shapes of such structures plays
a central role in the ability to diagnose and monitor such diseases, as well as to
develop novel treatment strategies. The current standard of practice is to use clinical
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Fig. 24.12 Subcortical structures used for classification of ADHD. Image courtesy of [20]

symptoms, including various behavioral tests, to detect and quantify abnormalities
due to disease status. Such an approach has clear limitations as the tests are often
subjective and mainly qualitative, relying entirely on a doctor’s assessment and
judgment.

As an alternative, our final case study considers classification of ADHD based
on the shapes of four distinct subcortical structures, represented as closed surfaces:
pallidum, caudate, thalamus and putamen; a single example of each structure is
displayed in Fig. 24.12. The surfaces of these subcortical structures were segmented
from T1-weighted MRIs of young adults aged between 18 and 21 who were
recruited from the Detroit Fetal Alcohol and Drug Exposure Cohort [17, 18].
Among the 34 subjects in this dataset, 19 were diagnosed with ADHD and the
remaining 15 were controls. The classifier in this study was constructed in the
following way. First, the training data was used to estimate the Karcher mean in
each class. Then, shape PCA was used to define a Gaussian model on the principal
coefficients. The resulting classifier simply uses the likelihood ratio under these
two models to classify test shapes into control or ADHD classes. This classifier
was applied in a leave-one-out manner to the above-described dataset, i.e., at each
iteration a single case was left out for testing while the rest were used to learn the
classification model. The best classification result obtained using this method was
based on the shape of the left putamen, 94.1%. The shape of the right pallidum
yielded a classification accuracy of 76.5%, and the shapes of the left caudate, left
thalamus and right thalamus resulted in a slightly worse classification accuracy of
67.7%. Comprehensive results of this study are reported in [20], where the approach
outlined here was compared to other classifiers and other shape representations [29].

24.5 Summary

We consider several biomedical applications of geometric functional data analysis.
We begin by assessing variability in a sample of GBM voxel intensity pdfs to
model tumor appearance. We then shift our focus to the use of elastic functional
data methods for analyzing amplitude and phase components of electrocardiogram
signals and FA functions extracted from DT-MRI. For the GBM tumor data, we
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additionally study shape variability of tumor outlines extracted from single MRI
slices, which form planar closed curves. Shapes of white matter tracts in DT-MRI
provide information about connectivity of different brain areas. We cluster particular
sets of tracts to elucidate connection pathways between Broca’s and Wernicke’s
areas, which are associated with the language circuit. Finally, we use shape models
to simulate 3D endometrial tissue shapes, and to define classifiers for ADHD based
on shapes of subcortical structures.
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