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Abstract We present some results on the existence of a unique selection of a set-
valued function satisfying some generalized set-valued inclusions.

1 Introduction

For a nonempty set Y we denote by F0(Y ) the family of all nonempty subsets of Y .
In a linear normed space Y we define the following families of sets:

ccl(Y ) := {A ∈ F0(Y ) : A is closed and convex set} ,

cclz(Y ) := {A ∈ F0(Y ) : A is closed and convex set containing 0} ,

ccz(Y ) := {A ∈ F0(Y ) : A is compact and convex set containing 0} .

The diameter of a set A ∈ F0(Y ) is defined by

δ(A) := sup {‖ a − b ‖: a, b ∈ A} .

Let K be a nonempty set. We say that a set-valued function F : K → F0(Y ) is
with bounded diameter if the function K � x �→ δ (F (x)) ∈ R is bounded. Finally
recall that a selection of a set-valued map F : K → F0(Y ) is a single-valued map
f : K → Y with the property f (x) ∈ F(x) for all x ∈ K .
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Smajdor [1] and Gajda and Ger [2] proved that if (S,+) is a commutative
semigroup with zero and Y is a real Banach space, then F : S → ccl(Y ) is a
subadditive set-valued function; i.e.,

F(x + y) ⊂ F(x) + F(y), x, y ∈ S,

with bounded diameter admits a unique additive selection (i.e., a unique mapping
f : S → Y such that f (x + y) = f (x) + f (y) and f (x) ∈ F(x) for all x, y ∈ S).
In 2001, Popa [3] proved that if K �= ∅ is a convex cone in a real vector space X

(i.e., sK + tK ⊆ K for all s, t ≥ 0) and F : K → ccl(Y ) (where Y is a real Banach
space) is a set-valued function with bounded diameter fulfilling the inclusion

F(αx + βy) ⊂ αF(x) + βF(y), x, y ∈ K,

for α, β > 0, α + β �= 1, then there exists exactly one additive selection of F .
Set-valued functional equations have been investigated by a number of authors

and there are many interesting results concerning this problem (see [4–14]).
We determine the conditions for which a set-valued function F : K → F0(Y )

satisfying one of the following inclusions

σy,zF (αx) + 8α−1F(x) ⊆ 2α−1 (
σyF (x) + σzF (x)

) + 4αF(x),

σ y,zF (αx) + 8F(x) ⊆ 2
(
σyF (x) + σzF (x)

) + 4α2F(x),

σ y,zF (αx) + 8αF(x) ⊆ 2α
(
σyF (x) + σzF (x)

) + 4α3F(x),

σ y,zF (αx) + 4α2 (2F(x) + F(y) + F(z)) ⊆ 2α2 (
σyF (x) + σzF (x)

)

+2σzF (y) + 4α4F(x) (1)

for all x, y, z ∈ K and any fixed positive integers α > 1 admits a unique selection
satisfying the corresponding functional equation. Here σyF (x) denotes σyF (x) =
F(x +y)+F(x −y), and σy,zF (x) denotes σy,zF (x) = σz

(
σyF (x)

) = σzF (x +
y) + σzF (x − y).

2 Selections of Set-Valued Mappings

In what follows we give some notations and present results which will be used in
the sequel.
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Definition 1 Let X be a real vector space. For A,B ∈ F0(X), the (Minkowski)
addition is defined as

A + B = {a + b : a ∈ A, b ∈ B}

and the scalar multiplication as

λA = {λa : a ∈ A}

for λ ∈ R.

Lemma 1 (Nikodem [15]) Let X be a real vector space and let λ,μ be real
numbers. If A,B ∈ F0(X), then

λ(A + B) = λA + λB,

(λ + μ)A ⊆ λA + μA.

In particular, if A is convex and λμ ≥ 0, then

(λ + μ)A = λA + μA.

Lemma 2 (Rådström’s Cancelation Law) Let Y be a real normed space and
A,B,C ∈ F0(Y ). Suppose that B ∈ ccl(Y ) and C is bounded. If A + C ⊆ B + C,
then A ⊆ B.

The above law has been formulated by Rådström [16], but the proof given there
is valid in topological vector spaces (see [17, 18]).

Corollary 1 Let Y be a real normed space and A,B,C ∈ F0(Y ). Assume that
A,B ∈ ccl(Y ), C is bounded, and A + C = B + C. Then A = B.

Nikodem and Popa in [9] and Piszczek in [12] proved the following theorem.

Theorem 1 Let K be a convex cone in a real vector space X, Y a real Banach
space and α, β, p, q > 0. Consider a set-valued function F : K → ccl(Y ) with
bounded diameter fulfilling the inclusion

F(αx + βy) ⊂ pF(x) + qF(y), x, y ∈ K.

If α + β < 1, then there exists a unique selection f : K → Y of F satisfying the
equation

f (αx + βy) = pf (x) + qf (y), x, y ∈ K.

If α + β > 1, then F is single valued.
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The case of p + q = 1 was investigated by Popa in [14], Inoan and Popa in [5]. By
means of the inclusion relation, Park et al. [7, 11] investigated the approximation of
some set-valued functional equations.

We now present some examples. A constant function F : K → ccl(Y ), F(x) =
M for x ∈ K , where K ⊆ X is a cone and M ∈ ccl(Y ) is fixed, satisfies the
equation

F(αx + βy) = pF(x) + qF(y), x, y ∈ K,

and each constant function f : K → Y , f (x) = m for x ∈ K , where m ∈ M is
fixed, satisfies

f (αx + βy) = pf (x) + qf (y), x, y ∈ K.

The set-valued function F : R → ccl(R) given by

F(x) = [x − 1, x + 1], x ∈ R,

satisfies the equation

F

(
x + y

2

)
= F(x) + F(y)

2
, x, y ∈ R,

and each function f : R → R,

f (x) = x + c, x ∈ R,

where c ∈ [−1, 1] is fixed, is a selection of F and satisfies

f

(
x + y

2

)
= f (x) + f (y)

2
, x, y ∈ R.

In the rest of this paper, unless otherwise explicitly stated, we will assume that
(K,+) is a commutative group, Y is a real Banach space, and k is a positive integer
less than or equal to 3.

Theorem 2 Let F : K → cclz(Y ) be a set-valued function with bounded
diameter.

(1) If

α2−kσ y,zF (αx) + 8F(x) ⊆ 2
(
σyF (x) + σzF (x)

) + 4α2F(x), (2)

for all x, y, z ∈ K , then there exists a unique selection f : K → Y of F such
that, for all x, y ∈ K , (i) f (x + y) = f (x) + f (y) if k = 1; (ii) σ yf (x) =
2f (x) + 2f (y) if k = 2; (iii) σ yf (2x) = 2σyf (x) + 12f (x) if k = 3.
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(2) If

2
(
σyF (x) + σzF (x)

) + 4α2F(x) ⊆ α2−kσ y,zF (αx) + 8F(x) (3)

for all x, y, z ∈ K , then F is single-valued.

Proof

(1) Letting y = z = 0 in (2), we have

α2−k (F (αx) + F(αx) + F(αx) + F(αx)) + 8F(x)

⊆ 2 (F (x) + F(x) + F(x) + F(x)) + 4α2F(x)

for all x ∈ K. Since the set F(x) is convex, we can conclude from Lemma 1
that

4α2−kF (αx) + 8F(x) ⊆ 8F(x) + 4α2F(x)

for all x ∈ K. Using the Rådström’s cancelation law, one obtains

F(αx) ⊆ αkF (x)

for all x ∈ K. Replacing x by αnx, n ∈ N, in the last inclusion, we see that

α−k(n+1)F (αn+1x) ⊆ α−knF (αnx)

for all x ∈ K. Thus
(
α−knF (αnx)

)
n∈N0

is a decreasing sequence of closed
subsets of the Banach space Y . We also get

δ
(
α−knF (αnx)

)
= α−knδ

(
F(αnx)

)

for all x ∈ K. Now since supx∈K δ (F (x)) < +∞, we get that

lim
n→+∞ δ

(
α−knF (αnx)

)
= 0

for all x ∈ K. Hence

lim
n→+∞ α−knF (αnx) =

⋂

n∈N0

α−knF (αnx) =: f (x)

is a singleton. Thus we obtain a function f : K → Y which is a selection of F .
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We will now prove that f for m = 1, 2, and 3 is additive, quadratic, and
cubic, respectively. We have

α2−k(n+1)σ αny,αnzF (αn+1x) + 8α−knF (αnx)

⊆ 2α−kn
(
σαnyF (αnx) + σαnzF (αnx)

) + 4α−kn+2F(αnx)

for all x, y, z ∈ K and n ∈ N. By the definition of f , we get

α2−kσ y,zf (αx) + 8f (x)

= α2−kσαny,αnz

⋂
n∈N0

α−knF (αn+1x) + 8
⋂

n∈N0
α−knF (αnx)

= ⋂
n∈N0

(
α2−k(n+1)σ αny,αnzF (αn+1x) + 8α−knF (αnx)

)

⊆ ⋂
n∈N0

(
2α−kn

(
σαnyF (αnx) + σαnzF (αnx)

) + 4α−kn+2F(αnx)
)

for all x, y, z ∈ K. Thus we obtain

∥∥α2−kσ y,zf (αx) + 8f (x) − 2σyf (x) − 2σzf (x) − 4α2f (x)
∥∥

≤ δ
(
2α−kn

(
σαnyF (αnx) + σαnzF (αnx)

) + 4α−kn+2F(αnx)
)

= 2δ
(
α−knσαnyF (αnx)

) + 2δ
(
α−knσαnzF (αnx)

) + 4α2δ
(
α−knF (αnx)

)

which tends to zero as n tends to ∞. Thus

α2−kσ y,zf (αx) = 2
(
σyf (x) + σzf (x)

) + 4
(
α2 − 2

)
f (x) (4)

for all x, y, z ∈ K. Setting x = y = z = 0 in (4), we have f (0) = 0. Putting
y = 0 in (4) and using f (0) = 0, one gets

α2−kσ zf (αx) = σzf (x) + 2
(
α2 − 1

)
f (x)

for all x, z ∈ K. Based on Theorem 2.1 of [19] (also see [20, 21]), we conclude
that, for all x, y ∈ K , if k = 1, then f (x + y) = f (x) + f (y), if k = 2, then
σyf (x) = 2f (x) + 2f (y) and if k = 3, then σyf (2x) = 2σyf (x) + 12f (x).

Next, let us prove the uniqueness of f . Suppose that f and g are selections
of F . We have (kn)kf (x) = f (knx) ∈ F(knx) and (kn)kg(x) = g(knx) ∈
F(knx) for all x ∈ K and n ∈ N. Then we get

(kn)k ‖f (x) − g(x)‖ = ∥
∥(kn)kf (x) − (kn)kg(x)

∥
∥

= ‖f (knx) − g(knx)‖
≤ 2δ (F (knx))
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for all x ∈ K and n ∈ N. It follows from supx∈K δ (F (x)) < +∞ that f (x) =
g(x) for all x ∈ K .

(2) Letting y = z = 0 in (3) and using the Rådström’s cancelation law, one gets
F(x) ⊆ α−kF (αx) for all x ∈ K. Hence,

F(x) ⊆ α−knF (αnx) ⊆ α−k(n+1)F (αn+1x)

for all x ∈ K. It follows that
(
α−knF (αnx)

)
n∈N0

is an increasing sequence of
sets in the Banach space Y . It follows from supx∈K δ (F (x)) < +∞ that

lim
n→+∞ δ

(
α−knF (αnx)

)
= lim

n→+∞ α−knδ
(
F(αnx)

) = 0

for all x ∈ K. Then, for all n ∈ N0 and x ∈ K , α−knF (αnx) is single-valued
and

α2−kσ y,zF (αx) = 2
(
σyF (x) + σzF (x)

) + 4
(
α2 − 2

)
F(x)

for all x, y, z ∈ K. By adopting the method used in case (1), we see that,
for all x, y ∈ K , if k = 1, then F(x + y) = F(x) + F(y), if k = 2, then
σyF (x) = 2F(x)+ 2F(y) and if k = 3, then σyF (2x) = 2σyF (x)+ 12F(x).

Theorem 3 Let F : K → cclz(Y ) be a set-valued function with bounded
diameter.

(1) If F satisfies the inclusion (1), then there exists a unique selection f : K → Y

of F such that σyf (2x) = 4σyf (x) + 24f (x) − 6f (y) for all x, y ∈ K .
(2) If

2α2 (
σyF (x) + σzF (x)

) + 2σzF (y) + 4α4F(x)

⊆ σy,zF (αx) + 4α2 (2F(x) + F(y) + F(z)) (5)

for all x, y, z ∈ K , then F is single-valued.

Proof

(1) Letting y = z = 0 in (1), we have

F(αx) + F(αx) + F(αx) + F(αx) + 4α2 (2F(x) + F(0) + F(0))

⊆ 2α2 (F (x) + F(x) + F(x) + F(x)) + 2 (F (0) + F(0)) + 4α4F(x)

for all x ∈ K. Hence, from the convexity of F(x) and Lemma 1, we see from
that

F(αx) + 2α2F(x) + 2α2F(0) ⊆ 2α2F(x) + F(0) + α4F(x) (6)
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for all x ∈ K. Setting x = 0 in (6), we have

(
4α2 + 1

)
F(0) ⊆

(
α4 + 2α2 + 1

)
F(0),

and using the Rådström’s cancelation law, one obtains

{0} ⊆ F(0). (7)

Again applying (6) and the Rådström’s cancelation law, one gets

F(αx) + (2α2 − 1)F (0) ⊆ α4F(x) (8)

for all x ∈ K. It follows from (7) and (8) that

F(αx) ⊆ F(αx) + (2α2 − 1)F (0) ⊆ α4F(x)

for all x ∈ K. Hence

α−4(n+1)F (αn+1x) ⊆ α−4nF (αnx)

for all x ∈ K. In the same way as in Theorem 2, we obtain a function f : K →
Y which is a selection of F and

σy,zf (αx) = 2α2
(
σyf (x) + σzf (x) + 2

(
α2 − 2

)
f (x)

)

+2
(
σzf (y) − 2

(
α2

)
f (y)

)
− 4α2f (z) (9)

for all x, y, z ∈ K. Setting x = y = z = 0 in (9), we have f (0) = 0. Putting
y = 0 in (9) and using f (0) = 0, one gets

σzf (αx) = α2σzf (x) + 2α2(α2 − 1)f (x) + 2(1 − α2)f (z)

for all x, z ∈ K. Based on Theorem 2.1 of [22], we conclude that f is quartic;
i.e., σyf (2x) = 4σyf (x) + 24f (x) − 6f (y) for all x, y ∈ K .

(2) Letting y = z = 0 in (5) and using the convexity of F(x) and the Rådström’s
cancelation law, we obtain

α4F(x) + F(0) ⊆ F(αx) + 2α2F(0)

for all x ∈ K. Substituting x, y, and z by zero in (5) yields

F(0) ⊆ {0}.
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From the last two inclusions, it follows that

α4F(x) ⊆ F(αx) + (2α2 − 1)F (0) ⊆ F(αx)

for all x ∈ K. Hence,

F(x) ⊆ α−4nF (αnx) ⊆ α−4(n+1)F (αn+1x)

for all x ∈ K. In the same way, as in Theorem 2, we deduce that F is single-
valued and σyF (2x) = 4σyF (x) + 24F(x) − 6F(y) for all x, y ∈ K .

3 Set-Valued Dynamics and Applications

In this section we present a few applications of the results presented in the previous
sections.

Theorem 4 If W ∈ ccz(Y ) and f : K → Y satisfies

ασy,zf (αx) − 2σyf (x) − 2σzf (x) + 4
(

2 − α2
)

f (x) ∈ W (10)

for all x, y, z ∈ K , then there exists a unique function T : K → Y such that

⎧
⎪⎨

⎪⎩

ασy,zT (αx) = 2
(
σyT (x) + σzT (x)

) + 4
(
α2 − 2

)
T (x),

T (x) − f (x) ∈ 1
4(α2−α)

W

for all x, y, z ∈ K.

Proof Let F(x) := f (x) + 1
4α(α−1)

W for x ∈ K. Then

ασy,zF (αx) + 8F(x) = ασy,zf (αx) + 8f (x) + α+2
α(α−1)

W

⊆ 2σyf (x) + 2σzf (x) + 4α2f (x) + α+2
α(α−1)

W + W

= 2
(
σyf (x) + 1

2α(α−1)
W

)
+ 2

(
σzf (x) + 1

2α(α−1)
W

)

+4α2
(
f (x) + 1

4α(α−1)
W

)

= 2
(
σyF (x) + σzF (x)

) + 4α2F(x)
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for all x, y, z ∈ K . Now, according to Theorem 2 with k = 1, there exists a unique
function T : K → Y such that

ασy,zT (αx) = 2
(
σyT (x) + σzT (x)

) + 4
(
α2 − 2

)
T (x)

for all x, y, z ∈ K and T (x) ∈ F(x) for all x ∈ K.

Corollary 2 Suppose W ∈ ccz(Y ) and f : K → Y satisfies (10) for all x, y, z ∈
K . Then there exists a unique additive function T : K → Y such that, for all x ∈ K ,

T (x) − f (x) ∈ 1

4(α2 − α)
W.

We recall that a semigroup (S,+) is called left (right) amenable if there exists a
left (right) invariant mean on the space B(S,R) of all real bounded functions defined
on S. By a left (right) invariant mean we understand a linear functional M satisfying

inf
x∈S

f (x) ≤ M(f ) ≤ sup
x∈S

f (x),

and

M(af ) = M(f ) (M(fa) = M(f ))

for all f ∈ B(S,R) and a ∈ S, where af (fa) is the left (right) translate of f

defined by af (x) = f (a + x), (fa(x) = f (x + a)), x ∈ S. If, on the space
B(S,R), there exists a real linear functional which is simultaneously a left and right
invariant mean, then we say that S is two-sided amenable or just amenable.

One can prove that every Abelian semigroup is amenable. For the theory of
amenability see, for example, Greenleaf [23]. Finally, let us see a result in [24].

Theorem 5 Let (S,+) be a left amenable semigroup and let X be a Hausdorff
locally convex linear space. Let F : S → F0(X) be set-valued function such that
F(s) is convex and weakly compact for all s ∈ S. Then F admits an additive
selection if, and only if, there exists a function f : S → X such that

f (s + t) − f (t) ∈ F(s) (11)

for all s, t ∈ S.

As a consequence of the above theorem, we have the following corollaries.

Corollary 3 Let (S,+) be a left amenable semigroup and let X be a reflexive
Banach space. In addition, let ρ : S → [0,∞) and g : S → X be arbitrary
functions. Then there exists an additive function a : S → X such that

‖ a(s) − g(s) ‖≤ ρ(s) (12)
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for all s ∈ S, if, and only if, there exists a function f : S → X such that

‖ f (s + t) − f (t) − g(s) ‖≤ ρ(s) (13)

for all s, t ∈ S.

Proof Define a set valued map F : S → F0(X) by

F(s) = {x ∈ X : ‖ x − g(s) ‖≤ ρ(s)}

for all s ∈ S. Then, due to the reflexivity of X, F has weakly compact nonempty
convex values. It follows from (12) that a is a selection of F , and (13) is equivalent
to (11). Now, the result follows from Theorem 5.

Corollary 4 (Ger [25]) Let (S,+) be a left amenable semigroup, let X be a
reflexive Banach space, and let ρ : S → [0,∞) be an arbitrary function. If the
function f : S → X satisfies ‖ f (s + t) − f (s) − f (t) ‖≤ ρ(s) for all s, t in S,
then there exists an additive function a : S → X such that ‖ f (s) − a(s) ‖≤ ρ(s)

holds for all s in S.
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