On Selections of Some Generalized Set-Valued Inclusions

Bahman Hayati, Hamid Khodaei, and Themistocles M. Rassias

Abstract We present some results on the existence of a unique selection of a setvalued function satisfying some generalized set-valued inclusions.

1 Introduction

For a nonempty set *Y* we denote by $\mathfrak{F}_0(Y)$ the family of all nonempty subsets of *Y*. In a linear normed space *Y* we define the following families of sets:

 $ccl(Y) := \{A \in \mathfrak{F}_0(Y) : A \text{ is closed and convex set}\},\$

 $\text{ccl}_z(Y) := \{A \in \mathfrak{F}_0(Y) : A \text{ is closed and convex set containing } 0\},$

 $ccz(Y) := \{A \in \mathfrak{F}_0(Y) : A \text{ is compact and convex set containing 0}\}.$

The diameter of a set $A \in \mathfrak{F}_0(Y)$ is defined by

 $\delta(A) := \sup \{ \|a - b\| : a, b \in A \}.$

Let *K* be a nonempty set. We say that a set-valued function $F: K \to \mathfrak{F}_0(Y)$ is with bounded diameter if the function $K \ni x \mapsto \delta(F(x)) \in \mathbb{R}$ is bounded. Finally recall that a selection of a set-valued map $F: K \to \mathfrak{F}_0(Y)$ is a single-valued map *f* : $K \to Y$ with the property $f(x) \in F(x)$ for all $x \in K$.

B. Hayati ∙ H. Khodaei (⊠)

Department of Mathematics, Malayer University, Malayer, Iran e-mail: [hayati@malayeru.ac.ir;](mailto:hayati@malayeru.ac.ir) hkhodaei@malayeru.ac.ir

T. M. Rassias Department of Mathematics, Zografou Campus, National Technical University of Athens, Athens, Greece e-mail: trassias@math.ntua.gr

© Springer Nature Switzerland AG 2019

T. M. Rassias, P. M. Pardalos (eds.), *Mathematical Analysis and Applications*, Springer Optimization and Its Applications 154, https://doi.org/10.1007/978-3-030-31339-5_7

Smajdor [\[1\]](#page-10-0) and Gajda and Ger [\[2\]](#page-10-1) proved that if $(S, +)$ is a commutative semigroup with zero and *Y* is a real Banach space, then $F : S \rightarrow \text{ccl}(Y)$ is a subadditive set-valued function; i.e.,

$$
F(x + y) \subset F(x) + F(y), \ \ x, y \in S,
$$

with bounded diameter admits a unique additive selection (i.e., a unique mapping $f: S \to Y$ such that $f(x + y) = f(x) + f(y)$ and $f(x) \in F(x)$ for all $x, y \in S$). In 2001, Popa [\[3\]](#page-10-2) proved that if $K \neq \emptyset$ is a convex cone in a real vector space X (i.e., $sK + tK \subseteq K$ for all $s, t \ge 0$) and $F: K \to \text{ccl}(Y)$ (where *Y* is a real Banach space) is a set-valued function with bounded diameter fulfilling the inclusion

$$
F(\alpha x + \beta y) \subset \alpha F(x) + \beta F(y), \ \ x, y \in K,
$$

for α , $\beta > 0$, $\alpha + \beta \neq 1$, then there exists exactly one additive selection of *F*.

Set-valued functional equations have been investigated by a number of authors and there are many interesting results concerning this problem (see [\[4](#page-10-3)[–14\]](#page-10-4)).

We determine the conditions for which a set-valued function $F: K \to \mathfrak{F}_0(Y)$ satisfying one of the following inclusions

$$
\sigma_{y,z}F(\alpha x) + 8\alpha^{-1}F(x) \subseteq 2\alpha^{-1}(\sigma_y F(x) + \sigma_z F(x)) + 4\alpha F(x),
$$

$$
\sigma_{y,z}F(\alpha x) + 8F(x) \subseteq 2(\sigma_y F(x) + \sigma_z F(x)) + 4\alpha^2 F(x),
$$

$$
\sigma_{y,z}F(\alpha x) + 8\alpha F(x) \subseteq 2\alpha(\sigma_y F(x) + \sigma_z F(x)) + 4\alpha^3 F(x),
$$

$$
\sigma_{y,z}F(\alpha x) + 4\alpha^2(2F(x) + F(y) + F(z)) \subseteq 2\alpha^2(\sigma_y F(x) + \sigma_z F(x))
$$

$$
+2\sigma_z F(y) + 4\alpha^4 F(x) \tag{1}
$$

for all *x*, $y, z \in K$ and any fixed positive integers $\alpha > 1$ admits a unique selection satisfying the corresponding functional equation. Here $\sigma_y F(x)$ denotes $\sigma_y F(x) =$ $F(x + y) + F(x - y)$, and $\sigma_{y,z}F(x)$ denotes $\sigma_{y,z}F(x) = \sigma_z(\sigma_yF(x)) = \sigma_zF(x + y) + \sigma_zF(x - y)$ $y) + \sigma_z F(x - y)$.

2 Selections of Set-Valued Mappings

In what follows we give some notations and present results which will be used in the sequel.

Definition 1 Let *X* be a real vector space. For $A, B \in \mathfrak{F}_0(X)$, the (Minkowski) addition is defined as

$$
A + B = \{a + b : a \in A, b \in B\}
$$

and the scalar multiplication as

$$
\lambda A = \{\lambda a : a \in A\}
$$

for $\lambda \in \mathbb{R}$.

Lemma 1 (*Nikodem* **[\[15\]](#page-11-0))** *Let X be a real vector space and let λ, μ be real numbers. If* $A, B \in \mathfrak{F}_0(X)$ *, then*

$$
\lambda(A + B) = \lambda A + \lambda B,
$$

$$
(\lambda + \mu)A \subseteq \lambda A + \mu A.
$$

In particular, if A is convex and $\lambda \mu \geq 0$ *, then*

$$
(\lambda + \mu)A = \lambda A + \mu A.
$$

Lemma 2 (Rådström's Cancelation Law) *Let Y be a real normed space and* $A, B, C \in \mathfrak{F}_0(Y)$ *. Suppose that* $B \in \text{ccl}(Y)$ *and C is bounded.* If $A + C \subseteq B + C$ *, then* $A \subseteq B$ *.*

The above law has been formulated by Rådström $[16]$, but the proof given there is valid in topological vector spaces (see [\[17,](#page-11-2) [18\]](#page-11-3)).

Corollary 1 *Let Y be a real normed space and* $A, B, C \in \mathfrak{F}_0(Y)$ *. Assume that* $A, B \in \text{ccl}(Y)$, *C is bounded, and* $A + C = B + C$ *. Then* $A = B$ *.*

Nikodem and Popa in [\[9\]](#page-10-5) and Piszczek in [\[12\]](#page-10-6) proved the following theorem.

Theorem 1 *Let K be a convex cone in a real vector space X, Y a real Banach space and* α , β , p , $q > 0$ *. Consider a set-valued function* $F : K \to \text{ccl}(Y)$ *with bounded diameter fulfilling the inclusion*

$$
F(\alpha x + \beta y) \subset pF(x) + qF(y), \ \ x, y \in K.
$$

If $\alpha + \beta < 1$ *, then there exists a unique selection* $f : K \rightarrow Y$ *of F satisfying the equation*

$$
f(\alpha x + \beta y) = pf(x) + qf(y), \quad x, y \in K.
$$

If $\alpha + \beta > 1$ *, then F is single valued.*

The case of $p + q = 1$ was investigated by Popa in [\[14\]](#page-10-4), Inoan and Popa in [\[5\]](#page-10-7). By means of the inclusion relation, Park et al. [\[7,](#page-10-8) [11\]](#page-10-9) investigated the approximation of some set-valued functional equations.

We now present some examples. A constant function $F: K \to \text{ccl}(Y)$, $F(x) =$ *M* for $x \in K$, where $K \subseteq X$ is a cone and $M \in \text{ccl}(Y)$ is fixed, satisfies the equation

$$
F(\alpha x + \beta y) = pF(x) + qF(y), \quad x, y \in K,
$$

and each constant function $f: K \to Y$, $f(x) = m$ for $x \in K$, where $m \in M$ is fixed, satisfies

$$
f(\alpha x + \beta y) = pf(x) + qf(y), \quad x, y \in K.
$$

The set-valued function $F : \mathbb{R} \to \text{ccl}(\mathbb{R})$ given by

$$
F(x) = [x - 1, x + 1], \ \ x \in \mathbb{R},
$$

satisfies the equation

$$
F\left(\frac{x+y}{2}\right) = \frac{F(x) + F(y)}{2}, \ \ x, y \in \mathbb{R},
$$

and each function $f : \mathbb{R} \to \mathbb{R}$,

$$
f(x) = x + c, \ \ x \in \mathbb{R},
$$

where $c \in [-1, 1]$ is fixed, is a selection of *F* and satisfies

$$
f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}, \ \ x, y \in \mathbb{R}.
$$

In the rest of this paper, unless otherwise explicitly stated, we will assume that $(K, +)$ is a commutative group, Y is a real Banach space, and k is a positive integer less than or equal to 3.

Theorem 2 *Let* $F : K \rightarrow \text{ccl}_z(Y)$ *be a set-valued function with bounded diameter.*

(1) *If*

$$
\alpha^{2-k}\sigma_{y,z}F(\alpha x) + 8F(x) \subseteq 2(\sigma_y F(x) + \sigma_z F(x)) + 4\alpha^2 F(x), \qquad (2)
$$

for all $x, y, z \in K$ *, then there exists a unique selection* $f: K \rightarrow Y$ *of F such that, for all* $x, y \in K$ *, (i)* $f(x + y) = f(x) + f(y)$ *if* $k = 1$ *; (ii)* $\sigma_y f(x) =$ $2f(x) + 2f(y)$ *if* $k = 2$; *(iii)* $\sigma_y f(2x) = 2\sigma_y f(x) + 12f(x)$ *if* $k = 3$.

(2) *If*

$$
2(\sigma_y F(x) + \sigma_z F(x)) + 4\alpha^2 F(x) \subseteq \alpha^{2-k} \sigma_{y,z} F(\alpha x) + 8F(x) \tag{3}
$$

for all $x, y, z \in K$ *, then F is single-valued.*

Proof

(1) Letting $y = z = 0$ in [\(2\)](#page-3-0), we have

$$
\alpha^{2-k} (F(\alpha x) + F(\alpha x) + F(\alpha x) + F(\alpha x)) + 8F(x)
$$

\n
$$
\subseteq 2 (F(x) + F(x) + F(x) + F(x)) + 4\alpha^2 F(x)
$$

for all $x \in K$. Since the set $F(x)$ is convex, we can conclude from Lemma [1](#page-2-0) that

$$
4\alpha^{2-k}F(\alpha x) + 8F(x) \subseteq 8F(x) + 4\alpha^2 F(x)
$$

for all $x \in K$. Using the Rådström's cancelation law, one obtains

$$
F(\alpha x) \subseteq \alpha^k F(x)
$$

for all $x \in K$. Replacing x by $\alpha^n x$, $n \in \mathbb{N}$, in the last inclusion, we see that

$$
\alpha^{-k(n+1)} F(\alpha^{n+1} x) \subseteq \alpha^{-kn} F(\alpha^n x)
$$

for all $x \in K$. Thus $(\alpha^{-kn} F(\alpha^n x))_{n \in \mathbb{N}_0}$ is a decreasing sequence of closed subsets of the Banach space Y. We also get subsets of the Banach space *Y* . We also get

$$
\delta\left(\alpha^{-kn}F(\alpha^nx)\right)=\alpha^{-kn}\delta\left(F(\alpha^nx)\right)
$$

for all $x \in K$. Now since $\sup_{x \in K} \delta(F(x)) < +\infty$, we get that

$$
\lim_{n \to +\infty} \delta\left(\alpha^{-kn} F(\alpha^n x)\right) = 0
$$

for all $x \in K$. Hence

$$
\lim_{n \to +\infty} \alpha^{-kn} F(\alpha^n x) = \bigcap_{n \in \mathbb{N}_0} \alpha^{-kn} F(\alpha^n x) =: f(x)
$$

is a singleton. Thus we obtain a function $f : K \to Y$ which is a selection of *F*.

We will now prove that f for $m = 1, 2$, and 3 is additive, quadratic, and cubic, respectively. We have

$$
\alpha^{2-k(n+1)}\sigma_{\alpha^n y, \alpha^n z}F(\alpha^{n+1}x) + 8\alpha^{-kn}F(\alpha^n x)
$$

$$
\subseteq 2\alpha^{-kn}(\sigma_{\alpha^n y}F(\alpha^n x) + \sigma_{\alpha^n z}F(\alpha^n x)) + 4\alpha^{-kn+2}F(\alpha^n x)
$$

for all *x*, $y, z \in K$ and $n \in \mathbb{N}$. By the definition of f, we get

$$
\alpha^{2-k}\sigma_{y,z}f(\alpha x) + 8f(x)
$$

= $\alpha^{2-k}\sigma_{\alpha^n y, \alpha^n z} \bigcap_{n \in \mathbb{N}_0} \alpha^{-kn} F(\alpha^{n+1} x) + 8 \bigcap_{n \in \mathbb{N}_0} \alpha^{-kn} F(\alpha^n x)$
= $\bigcap_{n \in \mathbb{N}_0} (\alpha^{2-k(n+1)}\sigma_{\alpha^n y, \alpha^n z} F(\alpha^{n+1} x) + 8\alpha^{-kn} F(\alpha^n x))$
 $\subseteq \bigcap_{n \in \mathbb{N}_0} (2\alpha^{-kn} (\sigma_{\alpha^n y} F(\alpha^n x) + \sigma_{\alpha^n z} F(\alpha^n x)) + 4\alpha^{-kn+2} F(\alpha^n x))$

for all $x, y, z \in K$. Thus we obtain

$$
\begin{aligned} \|\alpha^{2-k}\sigma_{y,z}f(\alpha x) + 8f(x) - 2\sigma_y f(x) - 2\sigma_z f(x) - 4\alpha^2 f(x)\| \\ &\leq \delta \left(2\alpha^{-kn} \left(\sigma_{\alpha^n y} F(\alpha^n x) + \sigma_{\alpha^n z} F(\alpha^n x)\right) + 4\alpha^{-kn+2} F(\alpha^n x)\right) \\ &= 2\delta \left(\alpha^{-kn} \sigma_{\alpha^n y} F(\alpha^n x)\right) + 2\delta \left(\alpha^{-kn} \sigma_{\alpha^n z} F(\alpha^n x)\right) + 4\alpha^2 \delta \left(\alpha^{-kn} F(\alpha^n x)\right) \end{aligned}
$$

which tends to zero as *n* tends to ∞ . Thus

$$
\alpha^{2-k}\sigma_{y,z}f(\alpha x) = 2(\sigma_y f(x) + \sigma_z f(x)) + 4(\alpha^2 - 2)f(x) \tag{4}
$$

for all *x*, *y*, *z* \in *K*. Setting *x* = *y* = *z* = 0 in [\(4\)](#page-5-0), we have $f(0) = 0$. Putting $y = 0$ in [\(4\)](#page-5-0) and using $f(0) = 0$, one gets

$$
\alpha^{2-k}\sigma_z f(\alpha x) = \sigma_z f(x) + 2(\alpha^2 - 1) f(x)
$$

for all $x, z \in K$. Based on Theorem 2.1 of [\[19\]](#page-11-4) (also see [\[20,](#page-11-5) [21\]](#page-11-6)), we conclude that, for all $x, y \in K$, if $k = 1$, then $f(x + y) = f(x) + f(y)$, if $k = 2$, then $\sigma_y f(x) = 2f(x) + 2f(y)$ and if $k = 3$, then $\sigma_y f(2x) = 2\sigma_y f(x) + 12f(x)$.

Next, let us prove the uniqueness of *f* . Suppose that *f* and *g* are selections of *F*. We have $(kn)^k f(x) = f(knx) \in F(knx)$ and $(kn)^k g(x) = g(knx) \in$ *F*(knx) for all $x \in K$ and $n \in \mathbb{N}$. Then we get

$$
(kn)^k || f(x) - g(x) || = ||(kn)^k f(x) - (kn)^k g(x) ||
$$

= || f(knx) - g(knx) ||

$$
\leq 2\delta (F(knx))
$$

for all $x \in K$ and $n \in \mathbb{N}$. It follows from $\sup_{x \in K} \delta(F(x)) < +\infty$ that $f(x) = g(x)$ for all $x \in K$. *g*(*x*) for all *x* ∈ *K*.
I etting $y = z = 0$

(2) Letting $y = z = 0$ in [\(3\)](#page-4-0) and using the Rådström's cancelation law, one gets $F(x) \subset \alpha^{-k} F(\alpha x)$ for all $x \in K$. Hence $F(x) \subset \alpha^{-k} F(\alpha x)$ for all $x \in K$. Hence,

$$
F(x) \subseteq \alpha^{-kn} F(\alpha^n x) \subseteq \alpha^{-k(n+1)} F(\alpha^{n+1} x)
$$

for all $x \in K$. It follows that $(\alpha^{-kn} F(\alpha^n x))_{n \in \mathbb{N}_0}$ is an increasing sequence of sets in the Banach space Y It follows from sup sets in the Banach space *Y*. It follows from $\sup_{x \in K} \delta(F(x)) < +\infty$ that

$$
\lim_{n \to +\infty} \delta\left(\alpha^{-kn} F(\alpha^n x)\right) = \lim_{n \to +\infty} \alpha^{-kn} \delta\left(F(\alpha^n x)\right) = 0
$$

for all $x \in K$. Then, for all $n \in \mathbb{N}_0$ and $x \in K$, $\alpha^{-kn}F(\alpha^n x)$ is single-valued and

$$
\alpha^{2-k}\sigma_{y,z}F(\alpha x) = 2(\sigma_y F(x) + \sigma_z F(x)) + 4(\alpha^2 - 2)F(x)
$$

for all $x, y, z \in K$. By adopting the method used in case (1), we see that, for all $x, y \in K$, if $k = 1$, then $F(x + y) = F(x) + F(y)$, if $k = 2$, then $\sigma_y F(x) = 2F(x) + 2F(y)$ and if $k = 3$, then $\sigma_y F(2x) = 2\sigma_y F(x) + 12F(x)$.

Theorem 3 Let $F: K \rightarrow \text{ccl}_z(Y)$ be a set-valued function with bounded *diameter.*

[\(1\)](#page-1-0) If *F* satisfies the inclusion (1), then there exists a unique selection $f : K \to Y$ *of F* such that $\sigma_y f(2x) = 4\sigma_y f(x) + 24f(x) - 6f(y)$ for all $x, y \in K$. (2) *If*

$$
2\alpha^{2} \left(\sigma_{y} F(x) + \sigma_{z} F(x) \right) + 2\sigma_{z} F(y) + 4\alpha^{4} F(x)
$$

\n
$$
\subseteq \sigma_{y,z} F(\alpha x) + 4\alpha^{2} \left(2F(x) + F(y) + F(z) \right)
$$
\n(5)

for all $x, y, z \in K$ *, then* F *is single-valued.*

Proof

[\(1\)](#page-1-0) Letting $y = z = 0$ in (1), we have

$$
F(\alpha x) + F(\alpha x) + F(\alpha x) + F(\alpha x) + 4\alpha^2 (2F(x) + F(0) + F(0))
$$

\n
$$
\subseteq 2\alpha^2 (F(x) + F(x) + F(x) + F(x)) + 2(F(0) + F(0)) + 4\alpha^4 F(x)
$$

for all $x \in K$. Hence, from the convexity of $F(x)$ and Lemma [1,](#page-2-0) we see from that

$$
F(\alpha x) + 2\alpha^2 F(x) + 2\alpha^2 F(0) \subseteq 2\alpha^2 F(x) + F(0) + \alpha^4 F(x)
$$
 (6)

for all $x \in K$. Setting $x = 0$ in [\(6\)](#page-6-0), we have

$$
\left(4\alpha^2+1\right)F(0) \subseteq \left(\alpha^4+2\alpha^2+1\right)F(0),
$$

and using the Rådström's cancelation law, one obtains

$$
\{0\} \subseteq F(0). \tag{7}
$$

Again applying [\(6\)](#page-6-0) and the Rådström's cancelation law, one gets

$$
F(\alpha x) + (2\alpha^2 - 1)F(0) \subseteq \alpha^4 F(x)
$$
 (8)

for all $x \in K$. It follows from [\(7\)](#page-7-0) and [\(8\)](#page-7-1) that

$$
F(\alpha x) \subseteq F(\alpha x) + (2\alpha^2 - 1)F(0) \subseteq \alpha^4 F(x)
$$

for all $x \in K$. Hence

$$
\alpha^{-4(n+1)} F(\alpha^{n+1} x) \subseteq \alpha^{-4n} F(\alpha^n x)
$$

for all $x \in K$. In the same way as in Theorem [2,](#page-3-1) we obtain a function $f: K \to$ *Y* which is a selection of *F* and

$$
\sigma_{y,z} f(\alpha x) = 2\alpha^2 \left(\sigma_y f(x) + \sigma_z f(x) + 2\left(\alpha^2 - 2\right) f(x) \right) + 2\left(\sigma_z f(y) - 2\left(\alpha^2\right) f(y) \right) - 4\alpha^2 f(z)
$$
(9)

for all *x*, *y*, *z* \in *K*. Setting *x* = *y* = *z* = 0 in [\(9\)](#page-7-2), we have $f(0) = 0$. Putting $y = 0$ in [\(9\)](#page-7-2) and using $f(0) = 0$, one gets

$$
\sigma_z f(\alpha x) = \alpha^2 \sigma_z f(x) + 2\alpha^2 (\alpha^2 - 1) f(x) + 2(1 - \alpha^2) f(z)
$$

for all $x, z \in K$. Based on Theorem 2.1 of [\[22\]](#page-11-7), we conclude that f is quartic; i.e., $\sigma_y f(2x) = 4\sigma_y f(x) + 24f(x) - 6f(y)$ for all $x, y \in K$.

(2) Letting $y = z = 0$ in [\(5\)](#page-6-1) and using the convexity of $F(x)$ and the Rådström's cancelation law, we obtain

$$
\alpha^4 F(x) + F(0) \subseteq F(\alpha x) + 2\alpha^2 F(0)
$$

for all $x \in K$. Substituting *x*, *y*, and *z* by zero in [\(5\)](#page-6-1) yields

$$
F(0) \subseteq \{0\}.
$$

From the last two inclusions, it follows that

$$
\alpha^4 F(x) \subseteq F(\alpha x) + (2\alpha^2 - 1)F(0) \subseteq F(\alpha x)
$$

for all $x \in K$. Hence,

$$
F(x) \subseteq \alpha^{-4n} F(\alpha^n x) \subseteq \alpha^{-4(n+1)} F(\alpha^{n+1} x)
$$

for all $x \in K$. In the same way, as in Theorem [2,](#page-3-1) we deduce that *F* is singlevalued and $\sigma_y F(2x) = 4\sigma_y F(x) + 24F(x) - 6F(y)$ for all $x, y \in K$.

3 Set-Valued Dynamics and Applications

In this section we present a few applications of the results presented in the previous sections.

Theorem 4 *If* $W \in ccz(Y)$ *and* $f: K \rightarrow Y$ *satisfies*

$$
\alpha \sigma_{y,z} f(\alpha x) - 2 \sigma_y f(x) - 2 \sigma_z f(x) + 4 \left(2 - \alpha^2\right) f(x) \in W \tag{10}
$$

for all $x, y, z \in K$ *, then there exists a unique function* $T : K \to Y$ *such that*

$$
\begin{cases}\n\alpha \sigma_{y,z} T(\alpha x) = 2 (\sigma_y T(x) + \sigma_z T(x)) + 4 (\alpha^2 - 2) T(x), \\
T(x) - f(x) \in \frac{1}{4(\alpha^2 - \alpha)} W\n\end{cases}
$$

for all $x, y, z \in K$.

Proof Let $F(x) := f(x) + \frac{1}{4\alpha(\alpha-1)}W$ for $x \in K$. Then

$$
\alpha \sigma_{y,z} F(\alpha x) + 8F(x) = \alpha \sigma_{y,z} f(\alpha x) + 8f(x) + \frac{\alpha+2}{\alpha(\alpha-1)} W
$$

\n
$$
\subseteq 2\sigma_y f(x) + 2\sigma_z f(x) + 4\alpha^2 f(x) + \frac{\alpha+2}{\alpha(\alpha-1)} W + W
$$

\n
$$
= 2\left(\sigma_y f(x) + \frac{1}{2\alpha(\alpha-1)} W\right) + 2\left(\sigma_z f(x) + \frac{1}{2\alpha(\alpha-1)} W\right)
$$

\n
$$
+ 4\alpha^2 \left(f(x) + \frac{1}{4\alpha(\alpha-1)} W\right)
$$

\n
$$
= 2\left(\sigma_y F(x) + \sigma_z F(x)\right) + 4\alpha^2 F(x)
$$

for all *x*, *y*, *z* \in *K*. Now, according to Theorem [2](#page-3-1) with $k = 1$, there exists a unique function $T: K \to Y$ such that

$$
\alpha \sigma_{y,z} T(\alpha x) = 2 (\sigma_y T(x) + \sigma_z T(x)) + 4 (\alpha^2 - 2) T(x)
$$

for all $x, y, z \in K$ and $T(x) \in F(x)$ for all $x \in K$.

Corollary 2 *Suppose* $W \in ccz(Y)$ *and* $f: K \rightarrow Y$ *satisfies* [\(10\)](#page-8-0) *for all* $x, y, z \in$ *K. Then there exists a unique additive function* $T : K \to Y$ *such that, for all* $x \in K$ *,*

$$
T(x) - f(x) \in \frac{1}{4(\alpha^2 - \alpha)}W.
$$

We recall that a semigroup $(S, +)$ is called left (right) amenable if there exists a left (right) invariant mean on the space $B(S, \mathbb{R})$ of all real bounded functions defined on *S*. By a left (right) invariant mean we understand a linear functional *M* satisfying

$$
\inf_{x \in S} f(x) \le M(f) \le \sup_{x \in S} f(x),
$$

and

$$
M(_{a}f) = M(f) \qquad (M(f_{a}) = M(f))
$$

for all $f \in B(S, \mathbb{R})$ and $a \in S$, where $af (f_a)$ is the left (right) translate of f defined by $_a f(x) = f(a + x)$, $(f_a(x) = f(x + a))$, $x \in S$. If, on the space $B(S, \mathbb{R})$, there exists a real linear functional which is simultaneously a left and right invariant mean, then we say that *S* is two-sided amenable or just amenable.

One can prove that every Abelian semigroup is amenable. For the theory of amenability see, for example, Greenleaf [\[23\]](#page-11-8). Finally, let us see a result in [\[24\]](#page-11-9).

Theorem 5 Let $(S, +)$ be a left amenable semigroup and let X be a Hausdorff *locally convex linear space. Let* $F : S \to \mathfrak{F}_0(X)$ *be set-valued function such that F*(s) *is convex and weakly compact for all* $s \in S$ *. Then F admits an additive selection if, and only if, there exists a function* $f : S \rightarrow X$ *such that*

$$
f(s+t) - f(t) \in F(s) \tag{11}
$$

for all $s, t \in S$ *.*

As a consequence of the above theorem, we have the following corollaries.

Corollary 3 *Let (S,* ⁺*) be a left amenable semigroup and let X be a reflexive Banach space. In addition, let* $\rho : S \to [0, \infty)$ *and* $g : S \to X$ *be arbitrary functions. Then there exists an additive function* $a: S \rightarrow X$ *such that*

$$
\parallel a(s) - g(s) \parallel \leq \rho(s) \tag{12}
$$

for all $s \in S$ *, if, and only if, there exists a function* $f : S \rightarrow X$ *such that*

$$
\| f(s+t) - f(t) - g(s) \| \le \rho(s)
$$
 (13)

for all $s, t \in S$ *.*

Proof Define a set valued map $F : S \to \mathfrak{F}_0(X)$ by

$$
F(s) = \{x \in X : \ \|x - g(s)\| \le \rho(s)\}
$$

for all $s \in S$. Then, due to the reflexivity of X, F has weakly compact nonempty convex values. It follows from (12) that *a* is a selection of *F*, and (13) is equivalent to [\(11\)](#page-9-1). Now, the result follows from Theorem [5.](#page-9-2)

Corollary 4 (*Ger* [\[25\]](#page-11-10)) *Let* $(S, +)$ *be a left amenable semigroup, let X be a reflexive Banach space, and let* $\rho : S \to [0, \infty)$ *be an arbitrary function. If the function* $f: S \to X$ *satisfies* $|| f(s + t) - f(s) - f(t) || \le \rho(s)$ *for all s,t in S, then there exists an additive function* $a : S \to X$ *such that* $|| f(s) - a(s) || \le \rho(s)$ *holds for all s in S.*

References

- 1. W. Smajdor, Superadditive set-valued functions. Glas. Mat. **21** (1986), 343–348
- 2. Z. Gajda, R. Ger, Subadditive multifunctions and Hyers-Ulam stability. Numer. Math. **80**, 281– 291 (1987)
- 3. D. Popa, Additive selections of *(α, β)*-subadditive set valued maps. Glas. Mat. Ser. III **³⁶**, 11–16 (2001)
- 4. J. Brzdęk, D. Popa, B. Xu, Selections of set-valued maps satisfying a linear inclusion in a single variable. Nonlin. Anal. **74**, 324–330 (2011)
- 5. D. Inoan, D. Popa, On selections of generalized convex set-valued maps. Aequat. Math. **88**, 267–276 (2014)
- 6. H. Khodaei, On the stability of additive, quadratic, cubic and quartic set-valued functional equations. Results Math. **68**, 1–10 (2015)
- 7. G. Lu, C. Park, Hyers-Ulam stability of additive set-valued functional equations. Appl. Math. Lett. **24**, 1312–1316 (2011)
- 8. K. Nikodem, On quadratic set-valued functions. Publ. Math. Debrecen **30**, 297–301 (1984)
- 9. K. Nikodem, D. Popa, On selections of general linear inclusions. Publ. Math. Debrecen **75**, 239–249 (2009)
- 10. K. Nikodem, D. Popa, On single-valuedness of set-valued maps satisfying linear inclusions. Banach J. Math. Anal. **3**, 44–51 (2009)
- 11. C. Park, D. O'Regan, R. Saadati, Stability of some set-valued functional equations. Appl. Math. Lett. **24**, 1910–1914 (2011)
- 12. M. Piszczek, On selections of set-valued inclusions in a single variable with applications to several variables. Results Math. **64**, 1–12 (2013)
- 13. M. Piszczek, The properties of functional inclusions and Hyers-Ulam stability. Aequat. Math. **85**, 111–118 (2013)
- 14. D. Popa, A property of a functional inclusion connected with Hyers-Ulam stability. J. Math. Inequal.**4**, 591–598 (2009)
- 15. K. Nikodem, K-Convex and K-Concave Set-Valued Functions, Zeszyty Naukowe, Politech, Krakow, 1989
- 16. H. Rådström, An embedding theorem for space of convex sets. Proc. Am. Math. Soc. **3**, 165– 169 (1952)
- 17. W. Smajdor, Subadditive and subquadratic set-valued functions, Prace Nauk. Uniw. Śląsk, 889, Katowice (1987)
- 18. R. Urbanski, A generalization of the Minkowski-Rådström-Hörmander theorem. Bull. Polish ´ Acad. Sci. **24**, 709–715 (1976)
- 19. M.E. Gordji, Z. Alizadeh, H. Khodaei, C. Park, On approximate homomorphisms: a fixed point approach. Math. Sci. **6**, 59 (2012)
- 20. J.H. Bae, W.G. Park, A functional equation having monomials as solutions. Appl. Math. Comput. **216**, 87–94 (2010)
- 21. M.E. Gordji, Z. Alizadeh, Y.J. Cho, H. Khodaei, On approximate *^C*∗-ternary *m*homomorphisms: a fixed point approach. Fixed Point Theory Appl. (2011), Art. ID 454093
- 22. Y.S. Lee, S.Y. Chung, Stability of quartic functional equation in the spaces of generalized functions. Adv. Differ. Equ. (2009), Art. ID 838347
- 23. F.P. Greenleaf, *Invariant Mean on Topological Groups and their Applications*, Van Nostrand Mathematical Studies, vol. 16, New York/Toronto/London/Melbourne, 1969
- 24. R. Badora, R. Ger, Z. Páles, Additive selections and the stability of the Cauchy functional equation. ANZIAM J. **44**, 323–337 (2003)
- 25. R. Ger, The singular case in the stability behaviour of linear mappings. Grazer Math. Ber. **316**, 59–70 (1992)