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Abstract By considering a nonhomogeneous random walk with jumps (with steps
−1 or +1 or in the same position having a right-elastic barrier at 0) we investigate
the unique representations by directed circuits and weights of the corresponding
Markov chains (circuit chains) in fixed, random environments. This will give us
the possibility to find suitable criteria regarding the properties of recurrence and
transience of the above-mentioned circuit chains in fixed, random environments.
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1 Introduction

In recent years a systematic research has been developed (Kalpazidou [10], Mac-
Queen [12], Qian Minping and Qian Min [13], Zemanian [16] and others) in
order to investigate representations of the finite-dimensional distributions of Markov
processes (with discrete or continuous parameter) having an invariant measure, as
decompositions in terms of the circuit (or cycle) passage functions

Jc(i, j) =
{

1, if i, j are consecutive states of c,
0, otherwise,

for any directed sequence c = (i1, i2, . . . , iv, i1) (or ĉ = (i1, i2, . . . , iv)) of
states, called a circuit (or a cycle), v > 1 of the corresponding Markov process.
This research has stimulated a motivation towards the representation of Markov
processes through directed circuits (or cycles) and weights in terms of circuit (or
cycle) passage functions in fixed or random environments as well as the study
of specific problems associated with Markov processes in a different way. The
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representations are called circuit (or cycle) representations while the corresponding
discrete parameter Markov chains generated by directed weighted circuits are called
circuit chains [1, 10].

In parallel, random walks are one of the most basic and well-studied topics in
probability theory and one of the most fundamental types of stochastic processes
formed by successive summation of independent, identically distributed random
variables. For random walks on the integer lattice Zd the main reference is the
classic book by F. Spitzer [15]. They have a long rich history [2, 3, 8] which has
been advanced according to many directions of investigation. The term “random
walk” was coined by Karl Pearson [14], and the study of random walks dates
back to the “Gamblers Ruin” problem analyzed by Pascal, Fermat, Huygens,
Bernoulli, and others. Theoretical developments of random walks have involved
mathematics (especially probability theory), computer science, statistical physics,
operations research, and more. Random walk models have also been applied in
various domains, ranging from locomotion and foraging of animals, the dynamics
of neuronal firing and decision-making in the brain to population genetics, polymer
chains, descriptions of financial markets, rankings systems, dimension reduction,
and feature extraction from high-dimensional data (e.g., in the form of “diffusion
maps”), sports statistics, prediction of the arrival times of diseases spreading on
networks, etc.

Usually they are studied from the Markov chain point of view, where the random
mechanism of spatial motion is determined by the given transition probabilities
(probabilities of jumps) at each state in a non-random (fixed) environment. Although
random walks provide a simple conventional model to describe various transport
processes in many cases, the medium where the system evolves is highly irregular
due to many irregularities (defects, fluctuations, etc.) known as random environ-
ments which lead to the choice of the local characteristics of the motion at random
according to certain probability distribution. Such models are referred to as random
walks in random environments. The definition of these random walks involves two
special ingredients: the environment (randomly chosen but still fixed throughout the
time evolution) and the random walk (whose transition probabilities are determined
by the environment) [8].

It is known also that in various applications (physics, chemistry, genetics, etc.)
we are led to study Markov chains obtained by restricting the motion of a “particle”
which performs a random walk. This is done by introducing barriers. In this case
the Markov chain defined in this way having no longer independent increments
is called a random walk with barriers while its state space is a proper subset of
Z. Furthermore except for the homogeneous random walks with independent and
identically distributed increments there is a class of random walks formed by suc-
cessive summation of independent random variables which are no longer identically
distributed. This means that they still have independent increments which are no
longer identically distributed. These random walks are called nonhomogeneous and
they can be investigated from the Markov chain point of view which in general
coincides with that for chains with independent increments.
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Let us consider the nonhomogeneous random walk with state space S=N, right-
elastic barrier at 0 [7] and transition probabilities given by pij = 0, if |i − j | > 1,
pi,i−1 = qi , pi,i = ri , pi,i+1 = pi , pi + qi + ri = 1, i ≥ 1, p00 = r0, p01 =
p0 = 1 − r0, pi > 0, qi+1 > 0, ri ≥ 0, i ≥ 0, which expresses the movement of
a particle depending on the time that the particle begins to move. It is obvious that
all states form an essential class. It is known that regarding the classification of the
states through the use of proper theorems ensuring a bounded solution of the system
of equations

zi =
∞∑

j=1

pij zj , i ≥ 1

we have that: the states are positive recurrent if and only if

∞∑
i=1

ri = +∞ and
∞∑
i=1

1

ripi

< +∞

and null recurrent if and only if

∞∑
i=1

ri =
∞∑
i=1

1

ri · pi

= +∞ where ri = q1 · · · qi

p1 · · ·pi

, i ≥ 1 [9]

The main purpose of this work is to bring together the two subjects—random
walks and circuit chains—by discussing their interconnection. In particular follow-
ing the context of the theory of Markov processes’cycle-circuit representation, the
present work arises as an attempt to study the circuit and weight representation of
the above-mentioned nonhomogeneous random walk with jumps in fixed, random
environments as well as to investigate proper criteria regarding recurrence and
transience of the corresponding “adjoint” Markov chains (circuit chains) describing
uniquely the above-mentioned random walk by directed circuits and weights in
fixed, random environments giving a new perspective in the whole study and
especially in the classification of states.

The work is organized as follows. In Section 2, we give a brief account of certain
concepts of circuit-cycle representation theory of Markov processes that we shall
need throughout the paper. In Section 3, the above-mentioned nonhomogeneous
random walk with jumps (having one right-elastic barrier at 0) is considered and
the unique representations by directed circuits and weights of the corresponding
Markov chains (circuit chains) are investigated in fixed, random environments.
These representations will give us the possibility to find proper criteria regarding
positive/null recurrence and transience of the above-mentioned circuit chains in
fixed, random environments [4–6], as it is described in Section 4.
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Throughout the paper, we shall need the following notations:

N = {0, 1, 2, . . . }, N
∗ = {1, 2, . . . }, Z = {. . . ,−1, 0, 1, . . . },

Z
∗+ = {1, 2, 3, . . . }, Z

∗− = {. . . ,−2,−1}

2 Preliminaries

Let S be a denumerable set. The directed sequence c = (i1, i2, . . . , iv, i1) modulo
the cyclic permutations, where i1, i2, . . . , iv ∈ S, v > 1, completely defines a
directed circuit in S. The ordered sequence ĉ = (i1, i2, . . . , iv) associated with
the given directed circuit c is called a directed cycle in S. A directed circuit may be
considered as c = (c(m), c(m + 1), . . . , c(m + v − 1), c(m + v)), if there exists an
m ∈ Z, such that i1 = c(m+0), i2 = c(m+1), . . . , iv = c(m+v−1), i1 = c(m+v),
that is a periodic function from Z to S. The corresponding directed cycle is defined
by the ordered sequence ĉ = (c(m), c(m + 1), . . . , c(m + v − 1)). The values
c(k) are the points of c, while the directed pairs , (c(k), c(k + 1)), k ∈ Z, are the
directed edges of c. The smallest integer p ≡ p(c) ≥ 1 satisfying the equation
c(m + p) = c(m), for all m ∈ Z, is the period of c. A directed circuit c such that
p(c) = 1 is called a loop. (In the present work, we shall use directed circuits with
distinct point elements.)

Let a directed circuit c (or a directed cycle ĉ) with period p(c) > 1. Then we
may define by

J (n)
c (i, j)=

{
1, if there exists an m ∈ Z such that i = c(m), j = c(m + n),m ∈ Z

0, otherwise

the n-step passage function associated with the directed circuit c, for any i, j ∈
S, n ≥ 1.

We may also define by

Jc(i) =
{

1, if there exists an m ∈ Zsuch that i = c(m),

0, otherwise

the passage function associated with the directed circuit c, for any i ∈ S. The above
definitions are due to MacQueen [12] and Kalpazidou [10].

Given a denumerable set S and an infinite denumerable class C of overlapping
directed circuits (or directed cycles) with distinct points (except for the terminals)
in S such that all the points of S can be reached from one another following paths
of circuit-edges, that is, for each two distinct points i and j of S there exists a
finite sequence c1, c2 . . . , ck, k ≥ 1, of circuits (or cycles) of C such that i lies
on c1 and j lies on ck and any pair of consecutive circuits (cn, cn+1) have at least
one point in common. We may assume also that the class C contains, among its
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elements, circuits (or cycles) with period greater than or equal to 2. With each
directed circuit (or directed cycle) let us associate a strictly positive weight wc which
must be independent of the choice of the representative of c, that is, it must satisfy
the consistency condition, wcotk = wc, k ∈ Z, where tk is the translation of length k.

For a given class C of overlapping directed circuits (or cycles) and for a given
sequence (wc)c∈C of weights we may define by

pij =

∑
c∈C

wc · J (1)
c (i, j)

∑
c∈C

wc · Jc(i)
(2.1)

the elements of a Markov transition matrix on S, if and only if
∑
c∈C

wc · Jc(i) < ∞,

for any i ∈ S. This means that a given Markov transition matrix P = (pij ), i, j ∈ S

can be represented by directed circuits (or cycles) and weights if and only if
there exists a class of overlapping directed circuits (or cycles) C and a sequence
of positive weights (wc)c∈C such that the formula (2.1) holds. In this case, the
representation of the distribution of Markov process (with discrete or continuous
parameter) having an invariant measure as decomposition in terms of the circuit
(or cycle) passage functions is called circuit (or cycle) representation while the
corresponding discrete parameter Markov chain generated by directed circuits (or
cycles) is called circuit (or cycle) chain with Markov transition matrix P given
by (2.1) and unique stationary distribution p (a solution of p.P = p) defined by

p(i) =
∑
c∈C

wc · Jc(i), i ∈ S.

It is known that the following classes of Markov chains may be represented uniquely
by directed circuits (or cycles) and weights:

(i) the recurrent Markov chains [13],
(ii) the reversible Markov chains.

3 Circuit and Weight Representations

3.1 Fixed Environments

Let us consider the Markov chain (Xn)n∈N on N (Xn expresses the location of a
particle at time n, n ∈ N) which describes the nonhomogeneous random walk with
jumps having a right-elastic barrier at 0, with transitions k → (k + 1), k → (k − 1)

and k → k, in a fixed environment, whose elements of the corresponding Markov
transition matrix (transition probabilities) are defined by
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Fig. 1 The Markov chain (Xn)n∈N (fixed environments)

P(Xn+1 = 0/Xn = 0) = r0,

P (Xn+1 = 1/Xn = 0) = p0, p0 = 1 − r0

P(Xn+1 = k + 1/Xn = k) = pk, k ≥ 1

P(Xn+1 = k/Xn = k) = rk, k ≥ 1

P(Xn+1 = k − 1/Xn = k) = qk, k ≥ 1

such that pk + qk + rk = 1, pk > 0, qk+1 > 0, rk ≥ 0, for every k ∈ N, as it is
shown in Figure 1.

Assume that (pk)k∈N and (rk)k∈N are arbitrary fixed sequences with 0 < p0 =
1 − r0 ≤ 1, pk > 0, qk+1 > 0, rk ≥ 0, for every k ∈ N. If we consider the
directed circuits ck = (k, k + 1, k), c′

k = (k, k), k ∈ N and the collections of
weights (wck

)k∈N and (w
c
′
k
)k∈N respectively, then we may obtain the corresponding

transition probabilities

pk = wck

wck−1 + wck
+ wc′

k

,

with

p0 = wc0

wc0 + wc′
0

and

qk = wck−1

wck−1 + wck
+ wc′

k

, rk = wc′
k

wck−1 + wck
+ wc′

k

such that pk + qk + rk = 1 , for every k ≥ 1, with r0 = 1 − p0 = wc′
0

wc0 + wc′
0

.

Here the class C(k) contains the directed circuits ck = (k, k + 1, k), c′
k = (k, k)

and ck−1 = (k − 1, k, k − 1).
Equivalently the transition matrix P = (pij ) with
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pij =

∑
k∈N

wck
· J (1)

ck
(i, j)

∑
k∈N

[
wck

· Jck
(i) + wc′

k
· Jc′

k
(i)

] , for i 
= j, (3.1)

pii =

∑
k∈N

wc′
k
· J

(1)

c′
k

(i, i)

∑
k∈N

[
wck

· Jck
(i) + wc′

k
· Jc′

k
(i)

] , (3.2)

where J
(1)
ck

(i, j) = 1, if i, j are consecutive points of the circuit ck, Jck
(i) = 1 , if i

is a point of the circuit ck , and Jc′
k
(i) = 1, if i is a point of the circuit c′

k , expresses
the representation of the Markov chain (Xn)n∈N by directed circuits and weights.

Furthermore let us consider also the “adjoint” Markov chain (X′
n)n∈N on N

whose elements of the corresponding Markov transition matrix are defined by

P(X′
n+1 = 0/X′

n = 0) = r ′
0,

P (X′
n+1 = 1/X′

n = 0) = q ′
0, q

′
0 = 1 − r ′

0,

P (X′
n+1 = k − 1/X′

n = k) = p′
k, k ≥ 1,

P (X′
n+1 = k/X′

n = k) = r ′
k, k ≥ 1,

P (X′
n+1 = k + 1/X′

n = k) = q ′
k, k ≥ 1

such that p′
k +q ′

k + r ′
k = 1 ,p′

k+1 > 0,q ′
k > 0, r ′

k ≥ 0 for every k ∈ N, as it is shown
in Figure 2.

Assume that (q ′
k)k∈N, (r ′

k)k∈N are arbitrary fixed sequences with 0 < q ′
0 = 1 −

r ′
0 ≤ 1, p′

k+1 > 0, q ′
k > 0, r ′

k ≥ 0, for every k ∈ N. If we consider the directed
circuits c′′

k = (k + 1, k, k + 1), c′′′
k = (k, k) k ∈ N, and the collections of weights

(wc′′
k
)k∈N, (wc′′′

k
)k∈N , respectively, then we may have that

q ′
k = wc′′

k

wc′′
k−1

+ wc′′
k
+ wc′′′

k

,

with

Fig. 2 The “adjoiont” Markov chain (X′
n)n∈N (fixed environments)



192 C. Ganatsiou

q ′
0 = wc′′

0

wc′′
0
+ wc′′′

0

and

p′
k =

wc′′
k−1

wc′′
k−1

+ wc′′
k
+ wc′′′

k

, r ′
k = wc′′′

k

wc′′
k−1

+ wc′′
k
+ wc′′′

k

such that p′
k + q ′

k + r ′
k = 1, for every k ≥ 1, with r ′

0 = 1 − q ′
0 = wc′′′

0

wc′′
0
+ wc′′′

0

.

Here the class C′(k) contains the directed circuits c′′
k = (k + 1, k, k + 1),c′′

k−1 =
(k, k − 1, k) and c′′′

k = (k, k). As a consequence, the transition matrix P ′ = (p′
ij )

with elements equivalent to that given by the above-mentioned formulas (3.1), (3.2)
expresses also the representation of the “adjoint” Markov chain (X′

n)n∈N by directed
circuits and weights.

Consequently we have the following:

Proposition 1 The Markov chain (Xn)n∈N defined as above has a unique represen-
tation by directed circuits and weights.

Proof Let us consider the set of directed circuits ck = (k, k + 1, k) and c′
k = (k, k),

for every k ∈ N, since only the transitions from k to k + 1, k to k − 1 and k to k

are possible. There are three circuits through each point k ≥ 1ck−1, ck, c
′
k , and two

circuits through 0 : c0, c
′
0.

The problem we have to manage is the definition of the weights. We may
symbolize by wk the weight wck

of the circuit ck and by w′
k the weight wc′

k
of

the circuit c′
k , for any k ∈ N. The sequences (wk)k∈N ,(w′

k)k∈N must be a solution of

pk = wk

wk−1 + wk + w′
k

, k ≥ 1 with p0 = w0

w0 + w′
0
,

rk = w′
k

wk−1 + wk + w′
k

, k ≥ 1 with r0 = w′
0

w0 + w′
0
,

qk = 1 − pk − rk, k ≥ 1.

Let us take by bk = wk

wk−1
, γ k = w′

k

w′
k−1

, k ≥ 1. As a consequence we may have

bk = pk

qk

= pk

1 − pk − rk
, γ k = rk

rk−1

pk−1

pk

bk, for every k ≥ 1.
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Given the sequences (pk)k∈N and (rk)k∈N it is clear that the above sequences
(bk)k≥1,(γ k)k≥1 exist and are unique. This means that the sequences (wk)k∈N ,(w′

k)k∈N

are defined uniquely, up to multiplicative constant factors, by

wk = w0 · b1 . . . bk,

w′
k = w′

0 · γ 1 . . . γ k

(the unicity is understood up to the constant factors w0, w
′
0).

Proposition 2 The “adjoint” Markov chain (X′
n)n∈N defined as above has a unique

representation by directed circuits and weights.

Proof Following an analogous way of that given in the proof of Proposition 1
the problem we have also to manage here is the definition of the weights. To this
direction we may symbolize by w′′

k the weight wc′′
k

of the circuit c′′
k and by w′′′

k the
weight wc′′′

k
of the circuit c′′′

k , for every k ∈ N. The sequences (w′′
k )k∈N ,(w′′′

k )k∈N

must be solutions of

q ′
k = w′′

k

w′′
k−1 + w′′

k + w′′′
k

, k ≥ 1 with q ′
0 = w′′

0

w′′
0 + w′′′

0
,

r ′
k = w′′′

k

w′′
k−1 + w′′

k + w′′′
k

, k ≥ 1 with r ′
0 = w′′′

0

w′′
0 + w′′′

0
,

p′
k = 1 − q ′

k − r ′
k, k ≥ 1

By considering the sequences (sk)k ,(tk)k where sk = w′′
k−1

w′′
k

, tk = w′′′
k−1

w′′′
k

, k ≥ 1 we

may obtain that

sk = 1 − q ′
k − r ′

k

q ′
k

, tk = r ′
k−1

r ′
k

· q ′
k

q ′
k−1

· sk, for every k ≥ 1.

For given sequences (q ′
k)k∈N, (r ′

k)k∈N it is obvious that (sk)k≥1,(tk)k≥1 exist and
are unique for those sequences, that is, the sequences (w′′

k )k∈N ,(w′′′
k )k∈N are defined

uniquely, up to multiplicative constant factors, by

w′′
k = w′′

0

s1 · s2 . . . sk

w′′′
k = w′′′

0

t1 · t2 . . . tk

(the unicity is based on the constant factors w′′
0 , w′′′

0 ).
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3.2 Random Environments

Let us consider the random walk on Z, with transitions k → (k+1), k → (k−1) and
k → k whose transition probabilities (pk)k∈Z , (rk)k∈Z constitute stationary ergodic
sequences. A realization of these stationary ergodic sequences is called a random
environment for this random walk. In order to investigate the unique circuit and
weight representation of this random walk in random environments, for almost every
environment, let us consider a probability space (Ω,F , μ), a measure preserving
ergodic automorphism of this space m : Ω �→ Ω and the measurable functions
p : Ω �→ (0, 1), r : Ω �→ (0, 1) such that every ω ∈ Ω generates the random
environment pk ≡ p(mkω), rk ≡ r(mkω), k ∈ Z. Since m is measure preserving
and ergodic, the sequences (pk)k∈Z, (rk)k∈Z are stationary ergodic sequences of
random variables.

Let also S = Z
N be the infinite product space with coordinates (Xn)n∈N . Then

we may define a family (Pω)ω∈Ω of probability measures such that, for every
ω ∈ Ω , the sequence (Xn)n∈N forms a Markov chain on Z whose elements of
the corresponding Markov transition matrix are defined by

P
ω(X0 = 0) = 1,

P
ω(Xn+1 = k + 1/Xn = k) = p(mkω),

P
ω(Xn+1 = k/Xn = k) = r(mkω),

P
ω(Xn+1 = k − 1/Xn = k) = 1 − p(mkω) − r(mkω) ≡ q(mkω), k ∈ Z,

as it is shown in Figure 3.
We have the following:

Proposition 3 For μ almost every environment ω ∈ Ω the chain (Xn)n∈N has a
unique circuit and weight representation.

Proof Following an analogous way of that given in Section 3.1, let us consider the
set of directed circuits ck = (k, k + 1, k) and c′

k = (k, k), for every k ∈ Z, since
only the transitions from k to k + 1, k to k − 1 and k to k are possible. There are
three circuits through each point k ∈ Z : ck−1, ck and c′

k .

The problem we have to manage is the definition of the weights of the circuits.
We may symbolize by wk(ω) the weight of the circuit ck and by w′

k(ω) the weight

Fig. 3 The Markov chain (Xn)n∈N (random environments)
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of the circuit c′
k , for every k ∈ Z. For the definition of weights let us consider the

sequences (bk(ω))k∈Z, (γ k(ω))k∈Z defined by

bk(ω) = wk(ω)

wk−1(ω)
, γ k(ω) = w′

k(ω)

w′
k−1(ω)

, k ∈ Z.

As a consequence, we may have

bk(ω) = p(mkω)

1 − p(mkω) − r(mkω)
= p(mkω)

q(mkω)
≡ p

q
(mkω), (3.3)

γ k(ω) = r(mkω)

r(mk−1ω)
· p(mk−1ω)

p(mkω)
· bk(ω), for every k ∈ Z. (3.4)

Given the stationary ergodic sequences (pk)k∈Z,(rk)k∈Z, for which every ω ∈ Ω

generates the random environment pk ≡ p(mkω), rk ≡ r(mkω), k ∈ Z, we have
that the preceding equations (3.3), (3.4) give a unique definition of the sequences
(bk(ω))k∈Z, (γ k(ω))k∈Z for μ-almost every ω, by the ergodicity of m. Then the
sequences of weights (wk(ω))k∈Z and (w′

k(ω))k∈Z are defined uniquely by

wk(ω) = w0(ω)b1(ω) · b2(ω) . . . bk(ω), k ∈ Z
∗+,

wk(ω) = w0(ω)

b0(ω) · b−1(ω) · b−2(ω) · · · bk+1(ω)
, k ∈ Z

∗−,

and

w′
k(ω) = w′

0(ω)γ 1(ω) · γ 2(ω) · · · γ k(ω), k ∈ Z
∗+,

w′
k(ω) = w′

0(ω)

γ 0(ω) · γ −1(ω) · γ −2(ω) · · · γ k+1(ω)
, k ∈ Z

∗−.

(the unicity of the weight sequences (wk(ω))k∈Z, (w′
k(ω))k∈Z is understood up to

the constant factors w0(ω) and w′
0(ω)).

Let us now introduce the “adjoint” random walk in random environment
(X′

n)n∈N . For every ω ∈ Ω and for the family (Pω)ω∈Ω of probability measures,
the sequence (X′

n)n∈N is a Markov chain on Z whose elements of the corresponding
Markov transition matrix are defined by

P
ω(X′

0 = 0) = 1,

P
ω(X′

n+1 = k − 1/X′
n = k) = p(mkω),

P
ω(X′

n+1 = k/X′
n = k) = r(mkω),

P
ω(X′

n+1 = k + 1/X′
n = k) = 1 − p(mkω) − r(mkω) ≡ q(mkω), k ∈ Z,

as it is shown in Figure 4.
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Fig. 4 The “adjoint” Markov chain (X′
n)n∈N (random environments)

So we have the following:

Proposition 4 For μ almost every environment ω ∈ Ω , the chain (X′
n)n∈N has a

unique circuit and weight representation.

Proof As in Proposition 3, the problem we have also to manage here is the definition
of the weights of the circuits. To this direction we may denote by w′′

k (ω) the weight
of the circuit c′′

k = (k + 1, k, k + 1) and by w′′′
k (ω) the weight of the circuit c′′′

k =
(k, k), for every k ∈ Z. By using an analogous way of that given before for the chain
(Xn)n∈N , let us consider the sequences (�k(ω))k∈Z, (tk(ω))k∈Z, defined by

�k(ω) = w′′
k−1(ω)

w′′
k (ω)

, tk(ω) = w′′′
k−1(ω)

w′′′
k (ω)

,

such that

�k(ω) = p(mkω)

1 − p(mkω) − r(mkω)
= p(mkω)

q(mkω)
≡ p

q
(mkω), (3.5)

tk(ω) = r(mk−1ω)

r(mkω)
· 1 − p(mkω) − r(mkω)

1 − p(mk−1ω) − r(mk−1ω)
· �k(ω), (3.6)

for every k ∈ Z.

Then the sequences of weights (w′′
k (ω))k∈Z, (w′′′

k (ω))k∈Z are defined uniquely by

w′′
k (ω) = w′′

0(ω)

�1(ω) · �2(ω) · �3(ω) · · · �k(ω)
, k ∈ Z

∗+,

w′′
k (ω) = w′′

0(ω) · �0(ω) · �−1(ω) · �−2(ω) · · · �k+3(ω) · �k+2(ω) · �k+1(ω), k ∈ Z
∗−

and

w′′′
k (ω) = w′′′

0 (ω)

t1(ω) · t2(ω) · · · tk(ω)
, k ∈ Z

∗+

w′′′
k (ω) = w′′′

0 (ω)t0(ω) · t−1(ω) · t−2(ω) · · · tk+3(ω) · tk+2(ω) · tk+1(ω), k ∈ Z
∗−

(the unicity of the weight sequences (w′′
k (ω))k∈Z, (w′′′

k (ω))k∈Z is understood up to
the constant factors w′′

0(ω),w′′′
0 (ω)).



Circuit Chains associated with a Random Walk: Recurrence and Transience 197

4 Recurrence and Transience

4.1 Fixed Environments

We have that for the chain (Xn)n∈N there is a unique invariant measure up to a
multiplicative constant factor μk = wk−1 + wk + w′

k , k ≥ 1, μ0 = w0 + w′
0 , while

for the chain (X′
n)n∈N,μ′

k = w′′
k−1 + w′′

k + w′′′
k , k ≥ 1 with μ′

0 = w′′
0 + w′′′

0 . In
the case that an irreducible chain is recurrent there is only and only one invariant
measure (finite or not), so we may obtain the following:

Proposition 5

(i) The chain (Xn)n∈N defined as above is positive recurrent if and only if

∞∑
k=1

(b1b2 . . . bk) < +∞
(

or
1

w0
·

∞∑
k=1

wk < +∞
)

,

∞∑
k=1

(γ 1 · γ 2 · · · γ k) < +∞
(

or
1

w′
0

·
∞∑

k=1

w′
k < +∞

)
.

(ii) The chain (X′
n)n∈N defined as above is positive recurrent if and only if

∞∑
k=1

1

s1 · s2 · · · sk < +∞
(

or
1

w′′
0

·
∞∑

k=1

w′′
k < +∞

)
,

∞∑
k=1

1

t1 · t2 · · · tk < +∞
(

or
1

w′′′
0

·
∞∑

k=1

w′′′
k < +∞

)
.

In order to obtain recurrence and transience criteria for the chains (Xn)n∈N, (X′
n)n∈N

we shall need the following proposition [11]:

Proposition 6 Let us consider a Markov chain on N which is irreducible. Then if
there exists a strictly increasing function that is harmonic on the complement of a
finite interval and that is bounded, then the chain is transient. In the case that there
exists such a function which is unbounded the chain is recurrent.

Following this direction we shall use a well-known method-theorem based on the
Foster-Kendall theorem ([11]) by considering the harmonic function g = (gk, k ≥
1). For the chain (Xn)n∈N this is a solution of

p0 · g1 + r0 · g0 = g0,

pk · gk+1 + qk · gk−1 + rk · gk = gk, k ≥ 1.
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Since Δgk = gk − gk−1, for every k ≥ 1, we obtain that

pk · gk+1 + qk · gk − qk · gk + qk · gk−1 + rk · gk = gk

or

pk · (Δgk+1 + gk) + qk · gk − qk · gk + qk · gk−1 + rk · gk = gk

or

pk · Δgk+1 + (pk + qk + rk) · gk − qk · gk + qk · gk−1 = gk

or

pk · Δgk+1 − qk · (gk − gk−1) = 0

or

pk · Δgk+1 = qk · Δgk.

If we put αk = Δgk

Δgk+1
we get αk = pk

qk

(with pk = 1 − qk − rk), k ≥ 1,

which is the equation of the definition of the sequences (sk)k≥1 and (tk)k≥1 (as a
multiplicative factor of the (sk)k≥1 ) for the chain (X′

n)n∈N such that q ′
k = qk ,

r ′
k = rk , for every k ≥ 1. This means that the strictly increasing harmonic functions

of the chain (Xn)n∈N are in correspondence with the weight representations of the
chain (X′

n)n∈N such that

q ′
k = P(X′

n+1 = k + 1/X′
n = k) = P(Xn+1 = k − 1/Xn = k) = qk,

r ′
k = P(X′

n+1 = k/X′
n = k) = P(Xn+1 = k/Xn = k) = rk, (4.1)

p′
k = 1 − q ′

k − r ′
k = 1 − qk − rk = pk, for every k ≥ 1.

To express this kind of duality we shall call the chain (X′
n)n∈N , the adjoint of the

chain (Xn)n∈N and reciprocally in the case that the relation (4.1) is satisfied.
Equivalently for the chain (X′

n)n∈N the harmonic function g′ = (g′
k, k ≥ 1)

satisfies the equation

r ′
0 · g′

0 + q ′
0 · g′

1 = g′
0,

q ′
k · g′

k+1 + p′
k · g′

k−1 + r ′
k · g′

k = g′
k, k ≥ 1.

Since Δg′
k = g′

k − g′
k−1, for every k ≥ 1, we have that

q ′
k · (Δg′

k+1 + g′
k) + p′

k · g′
k − p′

k · g′
k + p′

k · g′
k−1 + r ′

k · g′
k = g′

k
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or

(p′
k + q ′

k + r ′
k) · g′

k + q ′
k · Δg′

k+1 − p′
k · g′

k + p′
k · g′

k−1 = g′
k

or

q ′
k · Δg′

k+1 = p′
k · (g′

k − g′
k−1) = p′

k · Δg′
k.

If we put βk = Δg′
k+1

Δg′
k

we get βk = p′
k

q ′
k

(with q ′
k = 1−p′

k − r ′
k),k ≥ 1, which is the

equation of the definition of the sequences (bk)k≥1 and (γ k)k≥1 (as a multiplicative
factor of the (bk)k≥1 ) for the chain (Xn)n∈N such that p′

k = pk, r
′
k = rk for

every k ≥ 1. By considering a similar approximation of that given before for the
chain (Xn)n∈N we may say that the strictly increasing harmonic functions of the
chain (X′

n)n∈N are in correspondence with the weight representations of the chain
(Xn)n∈N such that equivalent equations of (4.1) are satisfied.

So we may have the following:

Proposition 7 The chain (Xn)n∈N defined as above is transient if and only if the
adjoint chain (X′

n)n∈N is positive recurrent and reciprocal. Moreover the adjoint
chains (Xn)n∈N ,(X′

n)n∈N are null recurrent simultaneously.

In particular

(i) The chain (Xn)n∈N defined as above is transient if and only if

1

w′′
0

·
∞∑

k=1

w′′
k < +∞ and

1

w′′′
0

·
∞∑

k=1

w′′′
k < +∞.

(ii) The chain (X′
n)n∈N defined as above is transient if and only if

1

w0
·

∞∑
k=1

wk < +∞ and
1

w′
0

·
∞∑

k=1

w′
k < +∞.

(iii) The adjoint chains (Xn)n∈N ,(X′
n)n∈N are null recurrent if

1

w0
·

∞∑
k=1

wk = 1

w′
0

·
∞∑

k=1

w′
k = +∞ and

1

w′′
0

·
∞∑

k=1

w′′
k = 1

w′′′
0

·
∞∑

k=1

w′′′
k = +∞.

Proof The proof of Proposition 7 is an application mainly of Proposition 6 as well
as of Proposition 5.
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4.2 Random Environments

Regarding the criteria of recurrence and transience in the case of fixed environments,
we have already proved that the behaviors of recurrence and transience for the
“adjoint” chains (Xn)n∈N ,(X′

n)n∈N are tied together and depend on the convergence
or not of the series

+∞∑
k=1

wk,

+∞∑
k=1

w′
k,

+∞∑
k=1

w′′
k and

+∞∑
k=1

w′′′
k .

In the case of random environments the recurrence and transience are properties
which are true for μ almost every environment ω ∈ Ω or for μ almost no
environment, because the system (Ω,F , μ,m) is supposed to be ergodic. This is
true in general for a random walk in a random environment which is irreducible.

In order to investigate suitable criteria for the transience and recurrence of
the corresponding uniquely defined circuit chains describing the above-mentioned
random walk with jumps in a random environment, we may use the criteria given in
the study for fixed environments for the chains (Xn)n∈N , (X′

n)n∈N restricted to the
half-lines [i,+∞) with reflection in i. According to the criterion in the case that

+∞∑
k=1

wk(ω) < +∞ and
+∞∑
k=1

w′
k(ω) < +∞, μ − a.e.

we have that the restricted chain (Xn)n∈N is positive recurrent on [i,+∞), while the
restricted “adjoint” chain (X′

n)n∈N is transient on [i,+∞), since it is known that the
chain (Xn)n∈N defined as above is positive recurrent if and only if its “adjoint” chain
(X′

n)n∈N is transient and reciprocal. An analogous result is obtained in the case of
the half-lines (− ∝, j ] with reflection in j .

Therefore we have the following:

Proposition 8 The random walk (Xn)n∈N in random environments defined as
above is transient, for μ − a.e. environment ω ∈ Ω , if and only if its “adjoint”
random walk (X′

n)n∈N is positive recurrent and reciprocal. Moreover the adjoint
random walks (Xn)n∈N and (X′

n)n∈N are null recurrent simultaneously.

Proof Taking into account the Birkoff’s ergodic theorem for the sequences
(bk(ω))k∈Z, (γ k(ω))k∈Z for μ-almost every ω (see relations (3.3), (3.4)), we may
write

wk(ω) = w0(ω)

k∏
d=1

bd(ω) ∼ ekc, k ∈ Z
∗+,

wk(ω) = w0(ω)

⎡
⎣−(k+1)∏

d=0

b−d(ω)

⎤
⎦

−1

∼ e−kc, k ∈ Z
∗−,
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w′
k(ω) = w′

0(ω)

k∏
d=1

γ d(ω) ∼ ekc, k ∈ Z
∗+,

w′
k(ω) = w′

0(ω)

⎡
⎣−(k+1)∏

d=0

γ −d(ω)

⎤
⎦

−1

∼ e−kc, k ∈ Z
∗−

for the sequences of weights (wk(ω))k∈Z, (w′
k(ω))k∈Z of the chain (Xn)n∈N .

Following an analogous way for the “adjoint” chain (X′
n)n∈N we have

w′′
k (ω) = w′′

0(ω)

[
k∏

d=1

�d(ω)

]−1

∼ e−kc, k ∈ Z
∗+,

w′′
k (ω) = w′′

0(ω)

−(k+1)∏
d=0

�−d(ω) ∼ ekc, k ∈ Z
∗−,

w′′′
k (ω) = w′′′

0 (ω)

[
k∏

d=1

td (ω)

]−1

∼ e−kc, k ∈ Z
∗+,

w′′′
k (ω) = w′′′

0 (ω)

−(k+1)∏
d=0

t−d(ω) ∼ ekc, k ∈ Z
∗−,

for the sequences of weights (w′′
k (ω))k∈Z, (w′′′

k (ω))k∈Z, of the chain (X′
n)n∈N . We

take into account the following cases:

(i) c < 0. We get

+∞∑
k=1

wk(ω) < +∞,

0∑
k=−∞

wk(ω) < +∞,

+∞∑
k=1

w′
k(ω) < +∞,

0∑
k=−∞

w′
k(ω) < +∞,

+∞∑
k=1

w′′
k (ω) = +∞,

0∑
k=−∞

w′′
k (ω) = +∞,

+∞∑
k=1

w′′′
k (ω) = +∞,

0∑
k=−∞

w′′′
k (ω) = +∞.

By using the criterion given in subsection 4.1 for the chains (Xn)n∈N and (X′
n)n∈N

restricted

(a) to the half-lines [i,+ ∝) with reflection in i, we have that the restricted chain
(Xn)n∈N is positive recurrent on [i,+ ∝), while the restricted chain (X′

n)n∈N is
transient,

(b) to the half-lines (− ∝, j ] with reflection in j , we have also that the restricted
chain (Xn)n∈N is positive recurrent on (− ∝, j ], while its adjoint chain
(X′

n)n∈N is transient.
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(ii) c > 0. We get

+∞∑
k=1

wk(ω) = +∞,

0∑
k=−∞

wk(ω) = +∞,

+∞∑
k=1

w′
k(ω) = +∞,

0∑
k=−∞

w′
k(ω) = +∞,

+∞∑
k=1

w′′
k (ω) < +∞,

0∑
k=−∞

w′′
k (ω) < +∞,

+∞∑
k=1

w′′′
k (ω) < +∞,

0∑
k=−∞

w′′′
k (ω) < +∞.

Regarding the criterion given in subsection 4.1 for the chains (Xn)n∈N and (X′
n)n∈N

restricted

(a) to the half-lines [i,+ ∝) with reflection in i, we have that the restricted chain
(Xn)n∈N is transient on [i,+ ∝), while the restricted chain (X′

n)n∈N is positive
recurrent,

(b) to the half-lines (− ∝, j ] with reflection in j , we have also that the restricted
chain (Xn)n∈N is transient on (− ∝, j ], while its adjoint chain (X′

n)n∈N is
positive recurrent.

(iii) c = 0. Regarding the ergodic theorem, it is well-known that the averages

1

k

k−1∑
n=0

(fomn) take infinitely many values greater than the limit and infinitely many

values smaller than the limit. This means that in the sequences of weights

(wk(ω))k∈Z, (w′
k(ω))k∈Z, (w′′

k (ω))k∈Z, (w′′′
k (ω))k∈Z,

for a.e. ω ∈ Ω , infinitely many values in both directions are greater than 1. As a
consequence, we may have that

+∞∑
k=1

wk(ω) = +∞,

0∑
k=−∞

wk(ω) = +∞,

+∞∑
k=1

w′
k(ω) = +∞,

0∑
k=−∞

w′
k(ω) = +∞,

+∞∑
k=1

w′′
k (ω) = +∞,

0∑
k=−∞

w′′
k (ω) = +∞,

+∞∑
k=1

w′′′
k (ω) = +∞,

0∑
k=−∞

w′′′
k (ω) = +∞.

By using the criterion of null recurrence for the chains (Xn)n∈N, (X′
n)n∈N restricted

to the half-lines [i,+∞) and (− ∝, j ] with reflection in i, j respectively, in the case
of fixed environments, we may have also that both chains are null recurrent on Z,
for μ − a.e.ω ∈ Ω .
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