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Abstract We present a method that allows to study approximate solutions to the
two-variable Jensen functional equation

2f
(x + z

2
,
y + w

2

)
= f (x, y) + f (z,w)

on a restricted domain. Namely, we show that (under some weak natural assump-
tions) functions that satisfy the equation approximately (in some sense) must be
actually solutions to it. The method is based on a quite recent fixed point theorem
in some functions spaces and can be applied to various similar equations in many
variables. Our outcomes are connected with the well-known issues of Ulam stability
and hyperstability.

2010 Mathematics Subject Classifications Primary 39B82, 39B62; Secondary
47H14, 47H10

1 Introduction

In this paper, N, R, and R+ denote the sets of all positive integers, real numbers, and
non-negative real numbers, respectively; N0 := N∪ {0}. Moreover, X and Y always
stand for normed spaces. The next definition describes the notion of hyperstability
that we apply here (AB denotes the family of all functions mapping a set B �= ∅ into
a set A �= ∅).

Definition 1 Let A be a nonempty set, (Z, d) be a metric space, χ : An → R+,
B ⊂ An be nonempty, and F1,F2 map a nonempty D ⊂ ZA into ZAn

. We say that
the conditional equation
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F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn), (x1, . . . , xn) ∈ B, (1)

is χ -hyperstable provided every ϕ0 ∈ D , satisfying

d
(
F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn)

) ≤ χ(x1, . . . , xn), (x1, . . . , xn) ∈ B,

(2)
is a solution to (1).

That notion is strictly connected with the well-known issue of Ulam’s stability for
various (e.g., difference, differential, functional, integral, operator) equations. Let
us recall that the study of such problems was motivated by the following question
of Ulam (cf. [24, 39]) asked in 1940.

Ulam’s question Let (G1, ·) and (G2, ·) be two groups and d : G2 ×G2 → [0,∞)

be a metric. Given ε > 0, does there exist δ > 0 such that if a mapping g : G1 → G2
satisfies the inequality

d(g(xy), g(x)g(y)) ≤ δ

for all x, y ∈ G1, then there is a homomorphism h : G1 → G2 with

d(g(x), h(x)) ≤ ε

for all x ∈ G ?

In 1941, Hyers [24] solved the well-known Ulam stability problem for additive
mappings subject to the Hyers condition on approximately additive mappings. The
following theorem is the most classical result concerning the Hyers-Ulam stability
of the Cauchy equation

f (x + y) = f (x) + f (y), x, y ∈ X. (3)

Theorem 1 Let f : X → Y satisfy the inequality

‖f (x + y) − f (x) − f (y)‖ ≤ θ(‖x‖p + ‖y‖p) (4)

for all x, y ∈ X\{0}, where θ and p are real constants with θ > 0 and p �= 1. Then
the following two statements are valid.

(a) If p ≥ 0 and Y is complete, then there exists a unique solution T : X → Y

of (3) such that

‖f (x) − T (x)‖ ≤ θ

|1 − 2p−1| ‖x‖p , x ∈ X\{0}. (5)

(b) If p < 0, then f is additive, i.e., (3) holds.
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Note that Theorem 1 reduces to the first result of stability due to Hyers [24] if
p = 0, Aoki [3] for 0 < p < 1 (see also Th.M. Rassias’ paper [35] in which it is
proved for the first time the stability of the linear mapping). Afterward, Gajda [22]
obtained this result for p > 1 and gave an example to show that Theorem 1 fails
whenever p = 1. Also, Rassias [36] proved Theorem 1 for p < 0 (see [38, page 326]
and [7]). Now, it is well known that the statement (b) is valid, i.e., f must be additive
in that case, which has been proved for the first time in [32] and next in [8] on the
restricted domain. For related results, concerning stability of the homomorphism
equation on restricted domains, we refer to [1, 13–16, 25, 26, 29, 30, 34, 37, 38].

We say that a function f : X → Y satisfies the Jensen equation if

2f
(x + y

2

)
= f (x) + f (y), x, y ∈ X. (6)

The stability of the Jensen equation has been investigated at first by Kominek
[31]. In 2006, Bae and Park [4] obtained the generalized Hyers-Ulam stability of
a bi-Jensen function. Moreover, the stability problem for the bi-Jensen functional
equation was discussed by a number of authors (see [27, 28]).

Recently Aghajani and Zahedi [2] investigated stability of the two-variable
Jensen functional equation of the following form:

2f
(x + z

2
,
y + w

2

)
= f (x, y) + f (z,w), x, y, z, w ∈ X. (7)

The term hyperstability was used for the first time probably in [33]; however, it
seems that the first hyperstability result was published in [6] and concerned the ring
homomorphisms. For further information concerning the notion of hyperstability
we refer to the survey paper [11] (for recent related results see, e.g., [5, 8–10, 17–
21, 23]).

The purpose of this work is to prove hyperstability results for the equation of the
form (7) on restricted domains, that is some conditional versions of that equation.
The method is based on a quite recent fixed point theorem in some functions spaces
from [12]. In the same way, we can study approximate solutions on restricted
domains to various functional equations (in many variables) that are sufficiently
similar to (7).

Let U be a nonempty subset of X. We say that a function f : U2 → Y fulfills
equation (7) on U (or is a solution to (7) on U ) provided

2f
(x + z

2
,
y + w

2

)
= f (x, y) + f (z,w), (8)

x, y, z,w ∈ U,
x + z

2
,
y + w

2
∈ U ;

if U = X, then we simply say that f fulfills (or is a solution to) Equation (7).
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We consider functions f : U2 → Y fulfilling (8) approximately, i.e., satisfying
the inequality

∥∥∥2f
(x + z

2
,
y + w

2

)
− f (x, y) − f (z,w)

∥∥∥ ≤ γ (x, y, z,w), (9)

x, y, z,w ∈ U,
x + z

2
,
y + w

2
∈ U,

with a given γ : U4 → R+. We prove that, for some natural particular forms
of γ (and under some additional assumptions on U ), the conditional functional
equation (8) is γ -hyperstable in the class of functions f : U2 → Y , i.e., each
f : U2 → Y satisfying inequality (9) with such γ must fulfill Equation (8).

2 Auxiliary Results

One of the methods of proof is based on a fixed point result that can be derived from
[12]. To present it we need the following three hypothesis:

(H1) W is a nonempty set, Y is a Banach space, f1, . . . .fk : W → W and
L1, . . . .Lk : W → R+ are given.

(H2) T : YW → YW is an operator satisfying the inequality

‖T ξ(x) − T μ(x)‖ ≤
k∑

i=1

Li(x) ‖ξ(fi(x)) − μ(fi(x))‖ , ξ , μ ∈ YW , x ∈ W.

(H3) Λ : R+W → R+W is a linear operator defined by

Λδ(x) :=
k∑

i=1

Li(x)δ(fi(x)), δ ∈ R+W, x ∈ W.

The mentioned fixed point theorem is stated in [12] as follows.

Theorem 2 Let hypotheses (H1)–(H3) be valid and functions ε : W → R+ and
ϕ : W → Y fulfill the following two conditions:

‖T ϕ(x) − ϕ(x)‖ ≤ ε(x), x ∈ W,

ε∗(x) :=
∞∑

n=0

Λnε(x) < ∞, x ∈ W.
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Then, there exists a unique fixed point ψ of T with

‖ϕ(x) − ψ(x)‖ ≤ ε∗(x), x ∈ W.

Moreover

ψ(x) = lim
n→∞T nϕ(x)

for all x ∈ W.

3 Hyperstability Results for Equation (8)

The following theorems are the main results in this paper and concern the γ -
hyperstability of (8). Namely, for

γ (x, y, z,w) = c‖x‖p‖y‖q‖z‖r‖w‖s ,

with suitable c, p, q, r, s ∈ R, and

γ (x, y, z,w) = c(‖x‖p1 + ‖y‖p2 + ‖z‖p3 + ‖w‖p4)t

with suitable c, p1, p2, p3, p4, t ∈ R, under some additional assumptions on
nonempty U ⊂ X, we show that the conditional functional equation (8) is γ -
hyperstable in the class of functions f mapping U2 to a normed space.

In the remaining part of the paper, X and Y are normed spaces, X0 := X\{0}, and
Nm0 denotes the set of all positive integers greater than or equal to a given m0 ∈ N.

Theorem 3 Assume that U ⊂ X0 is nonempty and there is m0 ∈ N, m0 > 3, with

− x, nx ∈ U, x ∈ U, n ∈ N, n ≥ m0 − 1. (10)

If f : U × U → Y satisfies

∥∥∥2f
(x + z

2
,
y + w

2

)
− f (x, y) − f (z,w)

∥∥∥ ≤ c‖x‖p‖y‖q‖z‖r‖w‖s , (11)

x, y, z,w ∈ U,
x + z

2
,
y + w

2
∈ U,

with some c ≥ 0 and p, q, r, s ∈ R such that p+ r < 0 or q + s < 0, then (8) holds.

Proof Without loss of generality we can assume that Y is complete, because if
this is not the case, then we can simply replace Y by its completion. Assume that
p + r < 0 (the case q + s < 0 is analogous) and fix l ∈ Nm0 .
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Replacing (x, z, y,w) by (mx, (2 − m)x, ly, (2 − l)y) in (11), we get

∥∥∥1

2
f (mx, ly)+1

2
f ((2 − m)x, (2 − l)y) − f (x, y)

∥∥∥

≤ cmp(m − 2)r lq(l − 2)s

2
‖x‖p+r ‖y‖q+s (12)

for all m ∈ Nm0 and x, y ∈ U. Fix m ∈ Nm0 and write

Tmξ(x, y) := 1

2
ξ(mx, ly) + 1

2
ξ((2 − m)x, (2 − l)y),

εm(x, y) := cmp(m − 2)r lq(l − 2)s

2
‖x‖p+r ‖y‖q+s

for every ξ ∈ YU×U and x, y ∈ U . Then inequality (12) takes the form

∥∥Tmf (x, y) − f (x, y)
∥∥ ≤ εm(x, y), x, y ∈ U.

Let

Λmδ(x, y) := 1

2
δ(mx, ly) + 1

2
δ((2 − m)x, (2 − l)y)

for x, y ∈ U and δ ∈ R+U×U . Then the operator Λm has the form described in
(H3) with k = 2,

f1(x, y) ≡ (mx, ly), f2(x, y) ≡ ((2 − m)x, (2 − l)y),

L1(x, y) ≡ L2(x, y) ≡ 1/2

for all x, y ∈ U . Moreover, for every ξ, μ ∈ YU×U and x, y ∈ U , we obtain

∥∥Tmξ(x, y)−Tmμ(x, y)
∥∥

=
∥∥∥1

2
ξ(mx, ly) + 1

2
ξ((2 − m)x, (2 − l)y)

− 1

2
μ(mx, ly) − 1

2
μ((2 − m)x, (2 − l)y)

∥∥∥

≤1

2
‖(ξ − μ)(mx, ly)‖ + 1

2
‖(ξ − μ)((2 − m)x, (2 − l)y)‖

=
2∑

i=1

Li(x, y)
∥∥(ξ − μ)(fi(x, y))

∥∥.
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with (ξ − μ)(x, y) ≡ ξ(x, y) + μ(x, y). So, (H2) is valid for Tm. Note yet that

Λmεm(x, y) ≤ amεm(x, y), m ∈ Nm0 , x, y ∈ U, (13)

with

am := 1

2
mp+r lq+s + 1

2
(m − 2)p+r (l − 2)q+s .

Clearly, there is m1 ∈ Nm0 , such that

am < 1, m ∈ Nm1 .

Therefore, by (13), we obtain that

ε∗
m(x, y) : =

∞∑
n=0

Λn
mεm(x, y) ≤ εm(x, y)

∞∑
n=0

(am)n

= εm(x, y)

1 − am

, x, y ∈ U, m ∈ Nm1 .

Thus, according to Theorem 2, for each m ∈ Nm1 the function Jm : U × U → Y ,
given by Jm(x, y) = limn→∞ T n

m f (x, y) for x, y ∈ U , is a unique fixed point of
Tm, i.e.,

Jm(x, y) = 1

2
Jm(mx, ly) + 1

2
Jm((2 − m)x, (2 − l)y)

for all x, y ∈ U ; moreover

∥∥Jm(x, y) − f (x, y)
∥∥ ≤ εm(x, y)

1 − am

, x, y ∈ U.

We show that

∥∥∥2T n
m f

(x + z

2
,
y + w

2

)
−T n

m f (x, y) − T n
m f (z, w)

∥∥∥≤ can
m ‖x‖p ‖y‖q ‖z‖r ‖w‖s

(14)

for every n ∈ N0 and x, y, z,w ∈ U with x+z
2 ,

y+w
2 ∈ U .

Clearly, if n = 0, then (14) is simply (11). So, fix n ∈ N0 and suppose
that (14) holds for n and every x, y, z,w ∈ U with x+z

2 ,
y+w

2 ∈ U . Then, for
every x, y, z,w ∈ U with x+z

2 ,
y+w

2 ∈ U ,
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∥∥∥2T n+1
m f

(x + z

2
,
y + w

2

)
− T n+1

m f (x, y) − T n+1
m f (z,w)

∥∥∥

=
∥∥∥2

(1

2
T n

m f
(
m

x + z

2
, l

y + w

2

)
+ 1

2
T n

m f
(
(2 − m)

x + z

2
, (2 − l)

y + w

2

))

− 1

2
T n

m f (mx, ly) − 1

2
T n

m f ((2 − m)x, (2 − l)y)

− 1

2
T n

m f (mz, lw) − 1

2
T n

m f ((2 − m)z, (2 − l)w)

∥∥∥

≤1

2

∥∥∥2T n
m f

(
m

x + z

2
, l

y + w

2

)
− T n

m f (mx, ly) − T n
m f (mz, lw)

∥∥∥

+ 1

2

∥∥∥2T n
m f

(
(2 − m)

x + z

2
, (2 − l)

y + w

2

)
− T n

m f ((2 − m)x, (2 − l)y)

− T n
m f ((2 − m)z, (2 − l)w)

∥∥∥

≤ 1

2
can

m ‖mx‖p ‖ly‖q ‖mz‖r ‖lw‖s

+ 1

2
can

m‖(2 − m)x‖p‖(2 − l)y‖q‖(2 − m)z‖r‖(2 − l)w‖s

= can
m

[1

2
mp+r lq+s + 1

2
(m − 2)p+r (l − 2)q+s

]
‖x‖p‖y‖q‖z‖r‖w‖s

= c(am)n+1‖x‖p‖y‖q‖z‖r‖w‖s .

Thus, by induction, we have shown that (14) holds for all x, y, z,w ∈ U such that
x+z

2 ,
y+w

2 ∈ U and for all n ∈ N0. Letting n → ∞ in (14), we obtain that

2Jm

(x + z

2
,
y + w

2

)
= Jm(x, y) + Jmf (z,w) (15)

for every x, y, z,w ∈ U with x+z
2 ,

y+w
2 ∈ U.

In this way, for each m ∈ Nm0 , we obtain a function Jm such that (15) holds for
x, y, z,w ∈ U with x+z

2 ,
y+w

2 ∈ U and

∥∥f (x, y) − Jm(x, y)
∥∥ ≤ εm(x, y)

1 − am

, x, y ∈ U, m ∈ Nm1 .

Since

lim
m→∞ am = 0, lim

m→∞ εm(x, y) = 0, x, y ∈ U,

it follows, with m → ∞, that f fulfills (8). ��
In a similar way we can prove the following theorems.
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Theorem 4 Assume that U ⊂ X0 is nonempty and there is m0 ∈ N, with

1

n
x,

1

2

(
1 + 1

n

)
x ∈ U, x ∈ U, n ∈ N, n ≥ m0. (16)

If f : U × U → Y satisfies (11) with some c ≥ 0 and p, q, r, s ∈ R such that
′′p + r > 1 and q + s ≥ 0′′or ′′q + s > 1 and p + r ≥ 0′′, then (8) holds.

Proof Without loss of generality we can assume that Y is complete, because if
this is not the case, then we can simply replace Y by its completion. Assume that
p + r > 1 with q + s ≥ 0 (the case q + s > 1 with p + r ≥ 0 is analogous) and fix
l ∈ Nm0 .

Replacing (z, w) by
(

1
m

x, 1
l
y
)

in (11), we get

∥∥∥2f
(m + 1

2m
x,

l + 1

2l
y
)

− f (x, y) − f
( x

m
,
y

l

)∥∥∥ ≤ c

mr ls
‖x‖p+r ‖y‖q+s (17)

for all m ∈ Nm0 and x, y ∈ U. Fix m ∈ Nm0 and we define

Tmξ(x, y) := 2ξ
(m + 1

2m
x,

l + 1

2l
y
)

− ξ
( x

m
,
y

l

)
, ξ ∈ YU×U

εm(x, y) := c

mr ls
‖x‖p+r ‖y‖q+s

Λmδ(x, y) := 2δ
(m + 1

2m
x,

l + 1

2l
y
)

+ δ
( x

m
,
y

l

)
, δ ∈ R

U×U+

for every x, y ∈ U . Then inequality (17) takes the form

∥∥Tmf (x, y) − f (x, y)
∥∥ ≤ εm(x, y), x, y ∈ U,

and the operator Λm has the form described in (H3) with k = 2,

f1(x, y) ≡
(m + 1

2m
x,

l + 1

2l
y
)
, f2(x, y) ≡

( x

m
,
y

l

)
,

L1(x, y) ≡ 2, L2(x, y) ≡ 1

for all x, y ∈ U . Moreover, for every ξ, μ ∈ YU×U and x, y ∈ U , we obtain

∥∥Tmξ(x, y) − Tmμ(x, y)
∥∥ ≤ 2

∥∥(ξ − μ)(f1(x, y))
∥∥ + ∥∥(ξ − μ)(f2(x, y))

∥∥

=
2∑

i=1

Li(x, y)
∥∥(ξ − μ)(fi(x, y))

∥∥.
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So, (H2) is valid for Tm. Note yet that

Λmεm(x, y) ≤ bmεm(x, y), m ∈ Nm0 , x, y ∈ U, (18)

with

bm := 2
(1 + m

2m

)p+r(1 + l

2l

)q+s + 1

mp+r lq+s
.

Clearly, there is m1 ∈ Nm0 , such that

bm < 1, m ∈ Nm1 .

Therefore, by (18), we obtain that

ε∗
m(x, y) : =

∞∑
n=0

Λn
mεm(x, y) ≤ εm(x, y)

∞∑
n=0

(am)n

= εm(x, y)

1 − bm

, x, y ∈ U, m ∈ Nm1 .

Hence, according to Theorem 2, for each m ∈ Nm1 the function Jm : U × U → Y ,
given by Jm(x, y) = limn→∞ T n

m f (x, y) for x, y ∈ U , is a unique fixed point of
Tm, i.e.,

Jm(x, y) = 2Jm

(1 + m

2m
x,

1 + l

2l
y
)

− Jm

( x

m
,
y

l

)

for all x, y ∈ U ; moreover

∥∥Jm(x, y) − f (x, y)
∥∥ ≤ εm(x, y)

1 − bm

, x, y ∈ U.

Similarly as in the proof of Theorem 3, we show that

∥∥∥2T n
m f

(x + z

2
,
y + w

2

)
− T n

m f (x, y) − T n
m f (z, w)

∥∥∥ ≤ cbn
m ‖x‖p ‖y‖q ‖z‖r ‖w‖s

(19)

for every n ∈ N and x, y, z,w ∈ U with x+z
2 ,

y+w
2 ∈ U .

Moreover, we obtain a function Jm satisfies (8) and

∥∥f (x, y) − Jm(x, y)
∥∥ ≤ εm(x, y)

1 − bm

, x, y ∈ U, m ∈ Nm1 .
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Since p + r > 1, one of p, r must be positive, let r > 0, then we obtain

lim
m→∞ bm < 1, lim

m→∞ εm(x, y) = 0, x, y ∈ U,

it follows, with m → ∞, that f fulfills (8). ��
Theorem 5 Assume that U ⊂ X0 is nonempty and there is m0 ∈ N, with

(
2 + 1

n

)
x,−1

n
x,∈ U, x ∈ U, n ∈ N, n ≥ m0. (20)

If f : U × U → Y satisfies (11), with some c ≥ 0 and p, q, r, s ∈ R such that
′′0 < p + r < 1 and q + s ≤ 0′′ or ′′0 < q + s < 1 and p + r ≤ 0′′, then (8) holds.

Proof Assume that Y is complete, 0 < p + r < 1 and q + s ≤ 0 (the case
0 < q + s < 1 and p + r ≤ 0 is analogous) and fix l ∈ Nm0 . Then, one of p, r must
be positive, let p > 0.

Replacing (x, z, y,w) by
(
− 1

m
x, (2 + 1

m
)x,− 1

l
y, (2 + 1

l
)y

)
in (11), we get

∥∥∥1

2
f

(
− x

m
, − y

l

)
+ 1

2
f

((
2 + 1

m

)
x,

(
2 + 1

l

)
y
)

− f (x, y)

∥∥∥

≤ c

2mplq

(
2 + 1

m

)r(
2 + 1

l

)s ‖x‖p+r ‖y‖q+s (21)

for all m ∈ Nm0 and x, y ∈ U. Fix m ∈ Nm0 and similarly as previously we define

Tmξ(x, y) := 1

2
ξ
(

− x

m
,−y

l

)
+ 1

2
ξ
((

2 + 1

m

)
x,

(
2 + 1

l

)
y
)
, ξ ∈ YU×U

εm(x, y) := c

2mplq

(
2 + 1

m

)r(
2 + 1

l

)s ‖x‖p+r ‖y‖q+s

Λmδ(x, y) := 1

2
δ
(

− x

m
,−y

l

)
+ 1

2
δ
((

2 + 1

m

)
x,

(
2 + 1

l

)
y
)
, δ ∈ R

U×U+

for every x, y ∈ U . Then inequality (21) takes the form

∥∥Tmf (x, y) − f (x, y)
∥∥ ≤ εm(x, y), x, y ∈ U.

Obviously Λm has the form described in (H3) with k = 2,

f1(x, y) ≡
(

− x

m
,−y

l

)
, f2(x, y) ≡

((
2 + 1

m

)
x,

(
2 + 1

l

)
y
)
,

L1(x, y) ≡ L2(x, y) ≡ 1/2
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for all x, y ∈ U . It is clear that, for every ξ, μ ∈ YU×U and x, y ∈ U , we obtain

∥∥Tmξ(x, y) − Tmμ(x, y)
∥∥ ≤

2∑
i=1

Li(x, y)d
∥∥(ξ − μ)(fi(x, y))

∥∥.

So, (H2) is valid for Tm. Note yet that

Λmεm(x, y) ≤ dmεm(x, y), m ∈ Nm0 , x, y ∈ U, (22)

with

dm := 1

2

(
2 + 1

m

)p+r(
2 + 1

l

)q+s + 1

2mp+r lq+s
.

Clearly, there is m1 ∈ Nm0 , such that

dm < 1, m ∈ Nm1 .

Therefore, by (22), we obtain that

ε∗
m(x, y) ≤ εm(x, y)

∞∑
n=0

(am)n = εm(x, y)

1 − dm

, x, y ∈ U, m ∈ Nm1 .

The remaining reasonings are analogous as in the proof of that Theorem 3. ��
Remark 1 Let c ≥ 0 and p, q, r, s ∈ R such that p + q + r + s ∈ R\{0, 1}. If
U = X0 and f : X → Y satisfies (11) on X0, then f satisfies (8) on X0.

Theorem 6 Let U be a nonempty subset of X\{0} fulfilling condition (10) with
some m0 ∈ N. Let c ≥ 0 and p1, p2, p3, p4, t ∈ R be such that tpi < 0 for
i = 1, 2, 3, 4. If f : U2 → Y satisfies the functional inequality

∥∥∥2f
(x + z

2
,
y + w

2

)
− f (x, y) − f (z,w)

∥∥∥ ≤ c(‖x‖p1 + ‖y‖p2 + ‖z‖p3 + ‖w‖p4)t ,

(23)

x, y, z,w ∈ U,
x + z

2
,
y + w

2
∈ U,

then (8) holds.

Proof As in the proof of Theorem 3, without loss of generality we can assume that
Y is complete. Write p(m) = mtp0 for m ∈ N3, where

p0 :=
{

max{p1, p2, p3, p4} if t > 0;
min{p1, p2, p3, p4} if t < 0.
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Clearly, if t > 0, then pi < 0 for i = 0, . . . , 4 and consequently

max {mp1,mp2 ,mp3 ,mp4} = mp0 , m ∈ N3. (24)

Analogously, if t < 0, then pi > 0 for i = 0, . . . , 4 and

min {mp1,mp2 ,mp3 ,mp4} = mp0 , m ∈ N3. (25)

Replacing (x, z, y,w) by (mx, (2 − m)x,my, (2 − m)y) in (23), we get

∥∥∥1

2
f (mx, my) + 1

2
f ((2 − m)x, (2 − m)y) − f (x, y)

∥∥∥

≤ c

2

( ‖mx‖p1 + ‖my‖p2 + ‖(2 − m)x‖p3 + ‖(2 − m)y‖p4
)t

(26)

for all x, y ∈ U and m ∈ Nm0 . Let

εm(x, y) := c

2

( ‖mx‖p1 + ‖my‖p2 + ‖(2 − m)x‖p3 + ‖(2 − m)y‖p4
)t

,

Tmξ(x) := 1

2
ξ(mx,my) + 1

2
ξ((2 − m)x, (2 − m)y)

for x, y ∈ U , m ∈ Nm0 and ξ ∈ YU×U . Then, by (24) (if t > 0) and (25) (if t < 0),
we get

εm(±mx,±my) ≤ p(m)ε(x, y), x, y ∈ U,m ∈ Nm0 , (27)

and inequality (26) takes the form

‖Tmf (x, y) − f (x, y)‖ ≤ εm(x, y), x, y ∈ U,m ∈ Nm0 .

Write

Λmδ(x, y) = 1

2
δ(mx,my) + 1

2
δ((2 − m)x, (2 − m)y)

for x, y ∈ U , m ∈ Nm0 and δ ∈ R+U×U . Then, for each m ∈ Nm0 , operator Λm has
the form described in (H3) with k = 3 and

f1(x, y) ≡ (mx,my), f2(x, y) ≡ ((2 − m)x, (2 − m)y), L1(x, y) ≡ L2(x, y) ≡ 1/2.

Moreover, for every ξ, μ ∈ YU×U , m ∈ Nm0 and x, y ∈ U , we have
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‖Tmξ(x, y) − Tmμ(x, y)‖ ≤
3∑

i=1

Li(x, y) ‖(ξ − μ)(fi(x, y))‖ .

So, (H2) is valid. Next, it is easily seen that, by induction on n, from (27) we obtain

Λn
mεm(x, y) ≤ αn

mε(x, y), n,m ∈ Nm0 , x, y ∈ U, (28)

where αm := 1
2p(m) + 1

2p(m − 2). Note that we can find m1 ∈ Nm0 with

αm < 1, m ∈ Nm1 ,

which means that

ε∗
m(x, y) : =

∞∑
n=0

Λn
mε(x, y) ≤ εm(x, y)

∞∑
n=0

(αm)n = εm(x, y)

1 − αm

for all x, y ∈ U and m ∈ Nm1 .
Similarly as in the proof of Theorem 3, we show that

∥∥∥2T n
m f

(x + z

2
,
y + w

2

)
−T n

m f (x, y) − T n
m f (z,w)

∥∥∥
≤ cαn

m(‖x‖p1 + ‖y‖p2 + ‖z‖p3 + ‖w‖p4)t (29)

for every n ∈ N and x, y, z,w ∈ U with x+z
2 ,

y+w
2 ∈ U . Also the remaining

reasonings are analogous as in the proof of that theorem. ��
The next theorem shows the hyperstability of the two-variable Jensen functional

equation on the set containing 0.

Theorem 7 Assume that Y is complete and U ⊂ X is nonempty with 0, such that
2U ⊂ U and 1

2U ⊂ U. If f : U × U → Y satisfies

∥∥∥2f
(x + z

2
,
y + w

2

)
− f (x, y) − f (z,w)

∥∥∥ ≤ c‖x‖p‖y‖q‖z‖r‖w‖s , (30)

x, y, z,w ∈ U,
x + z

2
,
y + w

2
∈ U,

with some c ≥ 0 and p, q, r, s > 0 such that p + q + r + s �= 1, then (8) holds.

Proof Putting z = w = 0 in (30), we obtain

2f
(x

2
,
y

2

)
= f (x, y) + f (0, 0), x, y ∈ U,
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i.e.,

2
(
f

(x

2
,
y

2

)
− f (0, 0

)
= f (x, y) − f (0, 0), x, y ∈ U.

Thus g defined as g(x, y) ≡ f (x, y) − f (0, 0) satisfies (30) and

2g
(x

2
,
y

2

)
= g(x, y), x, y ∈ U. (31)

Next we divide the proof into two cases.

Case 1: p + q + r + s < 1. Using (31) to (30) we can prove by induction that for
every n ∈ N0

∥∥∥2g
(x + z

2
,
y + w

2

)
− g(x, y) − g(z,w)

∥∥∥ ≤ c
(2p+q+r+s

2

)n‖x‖p‖y‖q‖z‖r‖w‖s ,

(32)

x, y, z,w ∈ U,
x + z

2
,
y + w

2
∈ U,

Indeed, if n = 0, then (32) is simply (30). So, fix n ∈ N0 and assume that (32)
holds for n. Then using (31) to (32) we have

∥∥∥4g
(x + z

4
,
y + w

4

)
− 2g

(x

2
,
y

2

)
− 2g

( z

2
,
w

2

)∥∥∥ ≤ c
(2p+q+r+s

2

)n‖x‖p‖y‖q‖z‖r‖w‖s ,

(33)

x, y, z,w ∈ U,
x + z

2
,
y + w

2
∈ U,

dividing by 2 and replacing (x, y, z,w) by (2x, 2y, 2z, 2w) in the last inequality
we obtain

∥∥∥2g
(x + z

2
,
y + w

2

)
− g(x, y) − g(z, w)

∥∥∥ ≤ c
(2p+q+r+s

2

)n+1‖x‖p‖y‖q‖z‖r‖w‖s ,

(34)

x, y, z, w ∈ U,
x + z

2
,
y + w

2
∈ U,

so (32) holds for every n ∈ N0. As p + q + r + s < 1, letting n → ∞ in (32),
we obtain that g satisfies (8) on U . Obviously f satisfies (8) on U, too.

Case 2: p + q + r + s > 1. Replacing (x, y) by (2x, 2y) in (31) we get

2g(x, y) = g(2x, 2y), x, y ∈ U. (35)
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Similarly as in 1) using (30), (35) and induction we obtain

∥∥∥2g
(x + z

2
,
y + w

2

)
− g(x, y) − g(z, w)

∥∥∥ ≤ c
( 2

2p+q+r+s

)n‖x‖p‖y‖q‖z‖r‖w‖s ,

(36)

x, y, z, w ∈ U,
x + z

2
,
y + w

2
∈ U,

for every n ∈ N0. With n → ∞ in the last inequality we have

2g
(x + z

2
,
y + w

2

)
= g(x, y)+g(z,w), x, y, z,w ∈ U,

x + z

2
,
y + w

2
∈ U

Thus f also satisfies (8) on U . ��

4 Some Applications and Examples

The above theorems imply in particular the following corollary, which shows their
simple application.

Corollary 1 Let U ⊂ X be nonempty and F : U4 → Y be a function such that
F(x0, y0, z0, w0) �= 0 for some x0, y0, z0, w0 ∈ U with x0+z0

2 ,
y0+w0

2 ∈ U and

‖F(x, y, z,w)‖ ≤ c‖x‖p‖y‖q‖z‖r‖z‖s , x, y, z,w ∈ U,
x + z

2
,
y + w

2
∈ U,

(37)

or

‖F(x, y, z,w)‖ ≤ c
(‖x‖p1 + ‖y‖p2 + ‖z‖p3 + ‖w‖p4

)t
,

x, y, z,w ∈ U,
x + z

2
,
y + w

2
∈ U,

(38)

where c ≥ 0 and p, q, r, s, p1, p2, p3, p4, t ∈ R. Assume that one of the conditions
(i)–(iv) is valid in a case F satisfies (37) and (v) is valid in a case F satisfies (38),
where

(i) p + r < 0 or q + s < 0, 0 /∈ U , and (10) holds with some m0 ∈ N4,
(ii) p + r > 1 and q + s ≥ 0 (or q + s > 1 and p + r ≥ 0), 0 /∈ U and (16) holds

with some m0 ∈ N,
(iii) 0 < p + r < 1 and q + s ≤ 0 (or 0 < q + s < 1 and p + r ≤ 0), 0 /∈ U

and (20) holds with some m0 ∈ N,
(iv) p, q, r, s > 0 such that p + q + r + s �= 1, 0 ∈ U , 2U ⊂ U and 1

2U ⊂ U ,
(v) tpi < 0 for i = 1, 2, 3, 4, 0 /∈ U and (10) holds with some m0 ∈ N\{1, 2}.
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Then the functional equation

2f0

(x + z

2
,
y + w

2

)
= f0(x, y) + f0(z, w) + F(x, y, z,w), (39)

x, y, z,w ∈ U
x + z

2
,
y + w

2
∈ U,

has no solution in the class of functions f0 : U → Y.

Proof Suppose that there exists a solution f0 : U → Y to (39). Then (11)
or (23) holds, and consequently, according to the above theorems, f0 is a solution
to (8), which means that F(x0, y0, z0, w0) = 0 for some x0, y0, z0, w0 ∈ U with
x0+z0

2 ,
y0+w0

2 ∈ U . This is a contradiction. ��
Now, we give some examples which show that in the above theorems the

additional assumption on U are necessary.

Example 1 Let X = Y = R, U = [−1, 1]\{0}, p, q, r, s < 0, c = 4 and f : U2 →
R be defined by f (x, y) = |x + y|. Then f satisfies

∣∣∣2f
(x + z

2
,

y + w

2

)
− f (x, y) − f (z,w)

∣∣∣ ≤ 4|x|p|y|q |z|r |w|s , x, y, z,w ∈ U

but f is not a solution of equation (8) on U . We see that 0 /∈ U and U does not
satisfy the assumption of Theorem 3 .

Example 2 Let X = Y = R, U = [1,∞), p, q, r, s > 0, c = 4 and f : U2 → R

be defined by f (x, y) = 1
x

+ 1
y

. Then f satisfies

∣∣∣2f
(x + z

2
,

y + w

2

)
− f (x, y) − f (z,w)

∣∣∣ ≤ 4|x|p|y|q |z|r |w|s , x, y, z,w ∈ U

but f is not a solution of equation (8) on U . It is easy to check that the assumptions
of Theorems 4, 5, and 7 are not satisfied.

In this example, we show that the condition −x ∈ U for every x ∈ U in
Theorem 6 is necessary.

Example 3 Let X = Y = R, U = (0,∞), t = 1, pi = p < 0 for i = 1, . . . , 4, and
f : U2 → R be defined by f (x, y) = xp + yp. Then f satisfies

∣∣∣2f
(x + z

2
,

y + w

2

)
− f (x, y) − f (z,w)

∣∣∣ ≤ 21−p(|x|p + |y|p + |z|p + |w|p),

x, y, z,w ∈ U

but f is not a solution of equation (8) on U , which shows that in Theorem 6 the
assumption that −x ∈ U for every x ∈ U is necessary.

We end the paper with an open problem.



182 I.-i. EL-Fassi

Remark 2 For the cases p + r = q + s = 0 and tpi = 0 for i = 1, . . . , 4, the
method used in the proofs of the above theorems cannot be applied, thus this is still
an open problem.
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21. Iz. El-Fassi, J. Brzdęk, A. Chahbi, S. Kabbaj, On hyperstability of the biadditive functional
equation. Acta Math. Sci. 37B(6), 1727–1739 (2017)

https://doi.org/10.1186/2251-7456-7-45
https://doi.org/10.1186/2251-7456-7-45


Hyperstability of the Two-Variable Jensen Equation 183

22. Z. Gajda, On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431–434 (1991)
23. E. Gselmann, Hyperstability of a functional equation. Acta Math. Hungar. 124, 179–188 (2009)
24. D.H. Hyers, On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27,

222–224 (1941)
25. D.H. Hyers, Th.M. Rassias, Approximate homomorphisms. Aequat. Math. 44, 125–153 (1992)
26. G. Isac, Th.M. Rassias, On the Hyers - Ulam stability of ψ- additive mappings. J. Approx.

Theory 72, 131–137 (1993)
27. K.W. Jun, M.H. Han, Y.H. Lee, On the Hyers-Ulam-Rassias stability of the bi-Jensen functional

equation. Kyungpook Math. J. 48, 705–720 (2008)
28. K.W. Jun, Y.H. Lee, J.H. Oh, On the Rassias stability of a bi-Jensen functional equation. J.

Math. Inequalities 2, 363–375 (2008)
29. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis

(Springer, New York, 2011)
30. Pl. Kannappan, Functional Equations and Inequalities with Applications (Springer, New York,

2009)
31. Z. Kominek, On a local stability of the Jensen functional equation. Demonstratio Math. 22,

499–507 (1989)
32. Y.-H. Lee, On the stability of the monomial functional equation. Bull. Korean Math. Soc. 45,

397–403 (2008)
33. G. Maksa, Z. Páles, Hyperstability of a class of linear functional equations. Acta Math. 17,

107– 112 (2001)
34. C. Mortici, M.Th. Rassias, S.-M. Jung, On the stability of a functional equation associated with

the Fibonacci numbers. Abstr. Appl. Anal. (2014). Art. ID 546046, 6 pp.
35. Th.M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc.

72, 297–300 (1978)
36. Th.M. Rassias, On a modified Hyers-Ulam sequence. J. Math. Anal. Appl. 158, 106–113

(1991)
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