On Hyperstability of the Two-Variable )
Jensen Functional Equation on Qs
Restricted Domain

I1z-iddine EL-Fassi

Abstract We present a method that allows to study approximate solutions to the
two-variable Jensen functional equation

xX+z y+w
2 72

2£( )=+ few

on a restricted domain. Namely, we show that (under some weak natural assump-
tions) functions that satisfy the equation approximately (in some sense) must be
actually solutions to it. The method is based on a quite recent fixed point theorem
in some functions spaces and can be applied to various similar equations in many
variables. Our outcomes are connected with the well-known issues of Ulam stability
and hyperstability.

2010 Mathematics Subject Classifications Primary 39B82, 39B62; Secondary
47H14, 47H10

1 Introduction

In this paper, N, R, and R, denote the sets of all positive integers, real numbers, and
non-negative real numbers, respectively; Ny := NU {0}. Moreover, X and Y always
stand for normed spaces. The next definition describes the notion of hyperstability
that we apply here (A8 denotes the family of all functions mapping a set B # ¢ into
aset A # ().

Definition 1 Let A be a nonempty set, (Z, d) be a metric space, x : A" — Ry,
B C A" be nonempty, and .Z|, .%, map anonempty Z C Z* into ZA". We say that
the conditional equation
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F1o(xX1, ..., %) = Frp(x1, ..., X), (x1,...,xy) € B, (1)
is x-hyperstable provided every ¢, € Z, satisfying

d(ylwo(xlv"'5xn)5g\2(p0(x]5"'7x}’l)) S X(xla"‘yx}’l)7 (xlv"'5xn) € Ba
2

is a solution to (1).

That notion is strictly connected with the well-known issue of Ulam’s stability for
various (e.g., difference, differential, functional, integral, operator) equations. Let
us recall that the study of such problems was motivated by the following question
of Ulam (cf. [24, 39]) asked in 1940.

Ulam’s question Let (G, -) and (G2, -) be two groups andd : G, X G, — [0, 00)
be a metric. Given € > 0, does there exist§ > 0 such that if a mapping g : G1 — G2
satisfies the inequality

d(g(xy), g(x)g(y)) <o

for all x, y € G1, then there is a homomorphism h : G| — G with
d(g(x), h(x)) <e€

forallx e G?

In 1941, Hyers [24] solved the well-known Ulam stability problem for additive
mappings subject to the Hyers condition on approximately additive mappings. The
following theorem is the most classical result concerning the Hyers-Ulam stability
of the Cauchy equation

fx+y)=fx)+ f), x,y€X. 3

Theorem 1 Let f : X — Y satisfy the inequality

IfGxe+y) = fG) = fDI = 0dlxlI” + IylIP) C))
forall x,y € X\{0}, where 0 and p are real constants with > 0 and p # 1. Then
the following two statements are valid.

(@) If p = 0 and Y is complete, then there exists a unique solution T : X — Y
of (3) such that

0
Ifx) =T = T x1”, x € X\{0}. ®)

2=l

() If p <O, then f is additive, i.e., (3) holds.
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Note that Theorem 1 reduces to the first result of stability due to Hyers [24] if
p =0, Aoki [3] for 0 < p < 1 (see also Th.M. Rassias’ paper [35] in which it is
proved for the first time the stability of the linear mapping). Afterward, Gajda [22]
obtained this result for p > 1 and gave an example to show that Theorem 1 fails
whenever p = 1. Also, Rassias [36] proved Theorem 1 for p < 0 (see [38, page 326]
and [7]). Now, it is well known that the statement (b) is valid, i.e., f must be additive
in that case, which has been proved for the first time in [32] and next in [8] on the
restricted domain. For related results, concerning stability of the homomorphism
equation on restricted domains, we refer to [1, 13-16, 25, 26, 29, 30, 34, 37, 38].

We say that a function f : X — Y satisfies the Jensen equation if

xX+y
2

26 () =r@H ), xyeX. ©)
The stability of the Jensen equation has been investigated at first by Kominek
[31]. In 2006, Bae and Park [4] obtained the generalized Hyers-Ulam stability of
a bi-Jensen function. Moreover, the stability problem for the bi-Jensen functional
equation was discussed by a number of authors (see [27, 28]).

Recently Aghajani and Zahedi [2] investigated stability of the two-variable
Jensen functional equation of the following form:

x+z yt+w
272

2£( )=f@n+faw,  xyzweX. ™
The term hyperstability was used for the first time probably in [33]; however, it
seems that the first hyperstability result was published in [6] and concerned the ring
homomorphisms. For further information concerning the notion of hyperstability
we refer to the survey paper [11] (for recent related results see, e.g., [5, 8-10, 17—
21, 23)).

The purpose of this work is to prove hyperstability results for the equation of the
form (7) on restricted domains, that is some conditional versions of that equation.
The method is based on a quite recent fixed point theorem in some functions spaces
from [12]. In the same way, we can study approximate solutions on restricted
domains to various functional equations (in many variables) that are sufficiently
similar to (7).

Let U be a nonempty subset of X. We say that a function f : U> — Y fulfills
equation (7) on U (or is a solution to (7) on U) provided

x+z yt+w
272

2£( ) = £+ fw), ®)

x+z yt+w
,—— €U;
2 2

x,y,z,weU,

if U = X, then we simply say that f fulfills (or is a solution to) Equation (7).
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We consider functions f : U? — Y fulfilling (8) approximately, i.e., satisfying
the inequality

[2r (2 228 - rwn - e w]| s v vz, ©)
xX+z yt+w

2 7 2

x,y,z,we U, e U,

with a given y : U* — R,. We prove that, for some natural particular forms
of y (and under some additional assumptions on U), the conditional functional
equation (8) is y-hyperstable in the class of functions f : U> — VY, i.e., each
f : U? — Y satisfying inequality (9) with such y must fulfill Equation (8).

2 Auxiliary Results

One of the methods of proof is based on a fixed point result that can be derived from
[12]. To present it we need the following three hypothesis:

(H1) W is a nonempty set, Y is a Banach space, f1,....fx : W — W and
Ly,....Ly : W — Ry are given.
(H2) .7 : YW — YW is an operator satisfying the inequality

k
1.78(x) = Tu@l < ZLi(x) IECfi) = n(fiol,  &ner? xew.

i=1

(H3) A:R.Y — R, W is alinear operator defined by

k
A8(x) =Y Li(0)S(fi(x)), seRY, xew.

i=1
The mentioned fixed point theorem is stated in [12] as follows.

Theorem 2 Let hypotheses (H1)—(H3) be valid and functions ¢ : W — Ry and
¢ : W — Y fulfill the following two conditions:

IT7e(x) — @)l < ex), xew,

o0
g (x) := ZA”s(x) < 00, xew.
n=0
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Then, there exists a unique fixed point ¥ of 7 with

lox) — ¥ < e*(x), xeWw.

Moreover
Y(x) = lim J"¢(x)
n—0oo

forallx e W.

3 Hyperstability Results for Equation (8)

The following theorems are the main results in this paper and concern the y-
hyperstability of (8). Namely, for

y (v, zw) = x|y l?lzll" fwl*,
with suitable ¢, p, ¢, r, s € R, and
Yy, zow) = c(llx P+ Iy P2 + 1zl + w] P

with suitable c, p1, p2, p3, p4,t € R, under some additional assumptions on
nonempty U C X, we show that the conditional functional equation (8) is y-
hyperstable in the class of functions f mapping U? to a normed space.

In the remaining part of the paper, X and Y are normed spaces, X¢ := X \{0}, and
N,,, denotes the set of all positive integers greater than or equal to a given mg € N.

Theorem 3 Assume that U C X is nonempty and there is my € N, mg > 3, with
—x,nx €U, xeU,neN,n>my— 1. (10)

If f :U x U — Y satisfies

X+z yt+w
21 (555 220) - e = few)| < P Iyl i,
x,y,z,wel, %,HTUJGU,

with some ¢ > Qand p,q,r,s € Rsuchthat p+r < 0orq+s < 0, then (8) holds.

Proof Without loss of generality we can assume that Y is complete, because if
this is not the case, then we can simply replace Y by its completion. Assume that
p +r < 0 (the case g + s < 01is analogous) and fix [ € N,,.
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Replacing (x, z, y, w) by (mx, (2 —m)x,ly, (2 —1)y) in (11), we get

H %f(mx, ly)—i—%f((Z —m)x, 2 = Dy) — f(x, ) H

_emP(m =219 = 2)°
= 2

P )9t (12)
forallm € Ny, and x, y € U. Fix m € N,,, and write

1 1
I (x,y) = F§mx. Iy) + 582 —m)x. (2= Dy).

cmP(m —2)"19(l — 2)*

> 1Py lle+s

em(x,y) =
forevery £ € Y UxU and x, y € U. Then inequality (12) takes the form
[T fx,9) = f, 0| <emx,y),  x,yeU.
Let

1 1
Apd(x,y) = ES(mx, ly) + 58((2 —m)x,(2—-10)y)

forx,y € U and § € R.Y*V. Then the operator A,, has the form described in
(H3) with k = 2,

Silx, y) = (mx, ly), L, y) =(@2—m)x, 2-Dy),
Li(x,y)=La(x,y)=1/2
for all x, y € U. Moreover, for every &, u € YY*V and x, y € U, we obtain
|- T (x, )= Tupaix, y)|
1 1
=|3&0mx.19) + 6@ = mx. 2= Dy
1 1
— SHm1y) = 3@ = m)x. 2= D)|

=<

1
1 = wyGmx, Iy) | + SNE = (@2 —m)x, 2 = Dy)l

(S

2
D Lite, | = w(fitx, )|
i=1
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with (6§ — ) (x,y) = &(x, y) + u(x, y). So, (H2) is valid for .7;,. Note yet that
Apem(x,y) < amem(x,y), m € Ny, x,y €U, (13)
with
1 1 .
am = EmP”ﬂ“ + 5(m — 2)PHT (] — 2)4FS,
Clearly, there is m| € N,,,, such that
a, <1, m € Ny, .
Therefore, by (13), we obtain that

(6, ) =Y Anen(x,y) < En(x,y) Y (am)"

n=0 n=0

_ em(x,y)

, x,yeU, meN,.
1—ay,

Thus, according to Theorem 2, for each m € N, the function J,, : U x U — Y,
given by Jy,, (x, y) = lim,, o J, f(x, y) for x, y € U, is a unique fixed point of
T, 1.e.,

1 1
Jn(x,y) = E-lm(mx» ly) + E-Im((z —m)x,(2—=10y)
for all x, y € U; moreover

em(x,y)

Hjm(x’ }’) - f(x’ y)” =< 1
—ap

, x,yeU.

We show that

x+z y+w
2 72

27 1( )= T ) = T faw)| < caly Ix? 119 N2l flwl®

(14)

for every n € Np and x, y, z, w € U with 3%, # eU.
Clearly, if n = 0, then (14) is simply (11). So, fix n € Ny and suppose

that (14) holds for n and every x,y,z,w € U with %, ”Tw € U. Then, for

every x, y, z, w € U with XTH HTw eU,
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szn-‘rlf(x —I—Z y 42‘ w) — T e, y) — T w)”

Pl ) s

—l)y + w>)
1
- Eﬂrff(mx,ly) - 5%”}‘((2 —m)x,(2—=1)y)

1 1
— 5Tz, 1w) = 27 f(2 = m)z. 2= Dw) H

<5 |2 (™52 25 = 72 ) = 7 pmz )|

+ ley,,';f((z—m)x ;FZ, (2—1)y;w) — (2 —m)x, 2 —D)y)

— Taf(@=m)z Q= Dhw)|

< Scay lmx||” [y mz]" Nlwll*

| =

1
+5canll @ =mx|PI2 =Dyl E = mzI" 12 = hw]®

1 1
= cap, [ SmP I 4 2 m = 27 @ = 2 P I 2

1 R
= can)" T 1Py I Dzl wl°

Thus, by induction, we have shown that (14) holds for all x, y, z, w € U such that
e, y+w € U and for all n € Ny. Letting n — oo in (14), we obtain that

+z y+
20 (S5 I = I 3) + I w) (15)

for every x, y, z, w € U with 22, X% e U,

In this way, for each m € Nmo, we obtain a function J,, such that (15) holds for
x,y,z,w € U with £, Hw € U and

1 y) = dn o) < La”

, x,yeU, meNy,,.
— Um

Since

lim a, =0, lim &,(x,y) =0, x,yeU,
m—00 m—0Q

it follows, with m — oo, that f fulfills (8).

In a similar way we can prove the following theorems.
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Theorem 4 Assume that U C X is nonempty and there is my € N, with

1 1 1

—x,—(l—l——)er, xeU,neN,n>my. (16)
n 2 n

If f : U x U — Y satisfies (11) with some ¢ > 0 and p,q,r,s € R such that

"p4+r>1landg+s>0"or"g+s > 1land p+r > 0", then (8) holds.

Proof Without loss of generality we can assume that Y is complete, because if
this is not the case, then we can simply replace Y by its completion. Assume that
p+r > 1withg+s > 0 (the case ¢ +s > 1 with p 4+ r > 0 is analogous) and fix
I € Npy,.

Replacing (z, w) by (;711)" %y) in (11), we get

c

m’ls

HZf(m+1 I+1

P Iy 4ts (17
iy I 27 Nyl (17)

) -sen-i(E )]

2m
for all m € Ny, and x, y € U. Fix m € Ny, and we define
m+1 [1+1 Xy

Tné(x, ) =26 (T, ) —E (S, 2), ey
2m 21 m 1

c

s Py

em(x,y) =

m+1 [+1 Xy UxU
A8 (x, :=25< —) 3(-,—, 5 € RUX
md(x y) 2mx21y+ml) +

for every x, y € U. Then inequality (17) takes the form

||<%nf(-xvy)_f(xvy)”ng(xvy)’ xﬂyEUv
and the operator A,, has the form described in (H3) with k = 2,

m+1 [+1
mEl IEly

ey = (5—x =

Ay =(52).

Li(x,y) =2, Ly(x,y) =1

YU><U

for all x, y € U. Moreover, for every &, u € and x, y € U, we obtain

| T (2, 9) = T e, m| < 2| =0 (free, )| + [ = w(falx, )|

2
= Y Litx, )| E —wfitx, ).

i=1
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So, (H2) is valid for .7,. Note yet that
Amem(x,y) < bmem(x, y), m € Ny, x,y €U, (18)

with

b 14+ m\ptr /1 4 [\a+s 1
me= ( 2m ) ( 21 ) +mP+VM+S'

Clearly, there is m| € N, such that
by < 1, m € Ny, .

Therefore, by (18), we obtain that

e y) =D Alen(x,y) < Em(x, Y)Y (@n)"
n=0 n=0
— Em(x, )’)

1 —b, x,yeU, meN,.

Hence, according to Theorem 2, for each m € Ny, the function J,, : U x U — Y,
given by J,, (x, y) = lim,—.o 7} f(x, y) for x, y € U, is a unique fixed point of
T, 1.€.,

Il+m 141 Xy
I (x,y) = 2Jm(—x, —y) - Jm(—, —)
2m 21 m
for all x, y € U; moreover

em(x,y)

, ,yeU.
1= b, Y

[T, y) = fx, )| <

Similarly as in the proof of Theorem 3, we show that

x+z ytw
2 72

l271( ) = TGy = T few)| < bl Il 11 el

19)

foreveryn € Nand x, y, z, w € U with £$%, HT’” elU.
Moreover, we obtain a function J,, satisfies (8) and

em(x,y)

b, x,yeU, meN,.

£, y) = I, 0| <
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Since p + r > 1, one of p, r must be positive, let » > 0, then we obtain

lim b, <1, lim ¢,(x,y) =0, x,yeU,
m—00 m—0o0
it follows, with m — oo, that f fulfills (8). O

Theorem 5 Assume that U C X is nonempty and there is my € N, with
1 1
(2+—>x,——x,eU, xeU,neN, n>my. 20)
n n
If f:UxU — Y satisfies (11), with some ¢ > 0 and p,q,r,s € R such that

"O<p+r<landqg+s <0"or"0<qg+s <landp+r <0, then (8) holds.

Proof Assume that Y is complete, 0 < p+r < 1 and g + s < 0 (the case
0 <g+s < 1and p+r < 0is analogous) and fix / € N,,,. Then, one of p, r must
be positive, let p > 0.

Replacing (x, 2, y, w) by (—4x, @+ H)v, =}y, @+ }y) in (11), we get

H%f(_ = -0+ %f((2+ %)x (2+ %)y) — fe )|

o (2 l)r(2 + %) bl P flyfats @1)

<
— 2mPl4 m

forallm € Ny, and x, y € U. Fix m € N,;,, and similarly as previously we define

Tk, = 56( - 20+ (2 nll)x (2+ ;)y) £ yUsU

1\ I
2+ =) (2+7) IxI7* e
m [

em(x,y) = TPl

And(x, y) = %5( - % —%) n %5((2 n %)x (2+ ;)y) 5 e RUXV

for every x, y € U. Then inequality (21) takes the form

| T fx,y) = fx. )| <emlx,y),  x,y€eU.
Obviously A, has the form described in (H3) with k = 2,
- Xy _ 1 1
A =(==-2)  pe=(2+)x (2+7)y).

Li(x,y)=La(x,y) =1/2
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YU><U

for all x, y € U. Itis clear that, for every &, u € and x, y € U, we obtain

2
| T (. 3) = T, )| < D LiCe, 0| & = ) (fix, y)).

i=1
So, (H2) is valid for .7,. Note yet that
Apem(x,y) < dpem(x,y), meNy, x,yeU, (22)

with

d'—12 1p+r21q+s 1
m-—z( W) (+7) Y et

Clearly, there is m| € N, such that
d, <1, m € Ny, .

Therefore, by (22), we obtain that

o0
Em(x,y)
en(r, ) Sen(r, ) Y (an)" =, x,yeU, meNy,.
n=0 m
The remaining reasonings are analogous as in the proof of that Theorem 3. O

Remark 1 Letc > O and p,q,r,s € Rsuchthat p4+¢g 47 +s5 € R\{0, 1}. If
U = Xopand f : X — Y satisfies (11) on X, then f satisfies (8) on Xj.

Theorem 6 Let U be a nonempty subset of X\{0} fulfilling condition (10) with
some mg € N. Let ¢ > 0 and pi1, p2, p3, pa,t € R be such that tp; < 0 for
i=1,2,3,4If f : U* — Y satisfies the functional inequality

x+z yt+w
127 (555 557) = £ = F@w)| < eQxI? + 1317 + 12 + w7,
23)

xX+z yt+w

27 2

x,y,z,wel, eU,

then (8) holds.
Proof As in the proof of Theorem 3, without loss of generality we can assume that

Y is complete. Write p(m) = m'P° for m € N3, where

max{pi, p2, p3, pa} ift > 0;
min{p1, p2, p3, pa} ift <O.
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Clearly, if t > 0, then p; < Ofori =0, ..., 4 and consequently

max {mP', mP2 mP3 mP4} = m?, m € N3. 24)
Analogously, if t < 0, then p; > 0fori =0,...,4 and

min {mP', mP2, mP3, mP*} = m?0, m € Nj. (25)

Replacing (x, z, y, w) by (mx, (2 — m)x, my, (2 — m)y) in (23), we get

|5 onemy) + 3 7@ = mix, @ = myw) — £z, )|

C
=< 5( lmx |71+ [lmy |72 + 12 — m)x |7 + (|2 = m)y[|P*)'
(26)

forallx,y € U and m € Ny, Let

c
em(x,y) = 5( lmx |71+ lmy |72 + [[2 = m)x |75 + 12 — m)y[|P)',

1 1
T (x) = F8(mx,my) + 2§(2 —m)x, 2 —m)y)

forx,y € U,m € Ny, and & € YY*U_ Then, by (24) (if t > 0) and (25) (if t < 0),
we get

em(£mx, £my) < p(m)e(x, y), x,yeU,me Ny, 27
and inequality (26) takes the form
[T f(x,y) = F, DI = emlx, y), x,y €U,m € Npy,.
Write

1 1
Amd(x, y) = Z8(mx, my) + 58(2 —m)x, (2 —m)y)

forx,y e U,m e N, andé € R+Y*V Then, for each m € N,,,, operator A,, has
the form described in (H3) with k = 3 and

fix, y) = (mx, my), o lx,y) = (2 —m)x,( 2—m)y), Li(x,y) =La(x,y) =1/2.

Moreover, for every &, u € YUXU e N, and x, y € U, we have
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3
1 TmE (6, 3) = Tpa (e I < Y LiGe, y) 16 — ) (fi (x, )1 -

i=1
So, (H2) is valid. Next, it is easily seen that, by induction on n, from (27) we obtain
Al em(x,y) < oe(x,y), n,me Ny, x,yeU, (28)
where «,, := %p(m) + %p(m — 2). Note that we can find m; € N, with
oy < 1, m € Ny,
which means that

em(x,y)
1—a,

En(x,y) =Y Ane(x,y) <em(x,y) Y (@n)" =

n=0 n=0

forallx,y € U andm € N,,.
Similarly as in the proof of Theorem 3, we show that

xX+z ytw
27 (555 250 ) - p ) = Z few)|
< cap (IxNP + Iy 172 + [1zI17 + lw]|P4) (29)
for every n € N and x,y,z,w € U with %, HT“’ € U. Also the remaining
reasonings are analogous as in the proof of that theorem. O

The next theorem shows the hyperstability of the two-variable Jensen functional
equation on the set containing 0.

Theorem 7 Assume that Y is complete and U C X is nonempty with 0, such that
2UCUand%UCU.Iff:UXU—>Ysatisﬁes

x+z ytw

£ (55252 - reeon = few| = Pl el 30y
x+z yt+w

s, —— €U,

2 2

x,y,z,we U,

with some ¢ > 0 and p,q,r,s > 0 such that p +q +r + s # 1, then (8) holds.

Proof Putting z = w = 0 in (30), we obtain

2/(53) = f@ D+ 0.0, xyel.
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i.e.,

2(£(5:3) — £0.0) = ) = 0.0 xyeU.

Thus g defined as g(x, y) = f(x, y) — f(0, 0) satisfies (30) and

Xy

2%(5.3) =@y, xyeu. 31)
2°2

Next we divide the proof into two cases.

Casel: p+qg+r+s < 1. Using (31) to (30) we can prove by induction that for
every n € Ny

x4z y+w 2P AT \n
[26(57 220 - st = 8w | = e S——) I Iy 12 ol
2 2 2
(32)
x,y,z,weU, X;Z,M_TweU,

Indeed, if n = 0, then (32) is simply (30). So, fix n € Ny and assume that (32)
holds for n. Then using (31) to (32) we have

(575 ) o) (3 B = (B e

x+z y+w
27 2

x,y,z,welU, e U,

dividing by 2 and replacing (x, y, z, w) by (2x, 2y, 2z, 2w) in the last inequality
we obtain

x+z y+w 2PFHqHrEs | 4l
l26(*5= 257) — s m =g w)| < e(F=—)" W21 T,
(34)
x,y,z,weU, X;Z,HTLUGU,

s0 (32) holds for everyn € Nog. As p+¢q +r +s < 1, lettingn — oo in (32),
we obtain that g satisfies (8) on U. Obviously f satisfies (8) on U, too.
Case2: p+qg+r+s > 1. Replacing (x, y) by (2x,2y) in (31) we get

2g(x,y) = g(2x,2y), x,yeU. 35)
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Similarly as in 1) using (30), (35) and induction we obtain

x+z ytw 2 n
J2s( ) = 8603 = 2w = e(Spmmr ) IKIP IV I T,

2 72
(36)
x+z ytw
U —eU
X, y, L, wel, ) ev,
for every n € Ny. With n — o0 in the last inequality we have

2 (% erTw) =g, »+gz, w), x,y,z,weU, x;rz, erTw eU
Thus f also satisfies (8) on U. =

4 Some Applications and Examples

The above theorems imply in particular the following corollary, which shows their
simple application.

Corollary 1 Let U C X be nonempty and F : U* — Y be a function such that
F(x0, Y0, 20, wo) # 0 for some xo, yo, 20, wo € U with 2520 0F0 ¢ 1 gnd

xX+z yt+w
IF Gy, z,wll < cllxlPiyl?izl™ izl x, v, z,we U, 5 €U
(37
or
IF Gy, zow)ll < (P + Iy 172 + 1121172 + llw]7),
xX+z y+w

£ £ 9 G Ua E) G U,

YL 2 2
(38)

where c > 0and p,q,r,Ss, p1, p2, P3, P4, t € R. Assume that one of the conditions
(1)—(@v) is valid in a case F satisfies (37) and (v) is valid in a case F satisfies (38),
where

1) p+r<0orq+s<0,0¢ U, and (10) holds with some mqy € Ny,
i) p+r>1landg+s>0(rqg+s>1land p+r > 0),0 ¢ U and (16) holds
with some mg € N,
(i) O < p+r<landgq+s <0(r0<qg+s<landp+r <0),0¢ U
and (20) holds with some mqg € N,
@iv) p,q,r,s >Osuchthatp+q~|—r+s;éI,OEU,ZUCUand%UC U,
V) tpi <0fori =1,2,3,4,0¢ U and (10) holds with some my € N\{1, 2}.
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Then the functional equation

x+Z y+w

(5

T5) = fole ) + folz w) + Flx, v, 2 w), (39)

xX+z y+tw
2 72

x,y,z,welU eU,

has no solution in the class of functions fo: U — Y.

Proof Suppose that there exists a solution fy : U — Y to (39). Then (11)
or (23) holds, and consequently, according to the above theorems, fy is a solution
to (8), which means that F(xq, yo, 2o, wo) = 0 for some xg, yo, zo, wo € U with

%, W—Two € U. This is a contradiction. ]

Now, we give some examples which show that in the above theorems the
additional assumption on U are necessary.

Example ] LetX =Y =R, U =[—1, 1]\{0}, p.q.r.s <0,c=4and f : U? —
R be defined by f(x, y) = |x + y|. Then f satisfies

}Zf(x_‘_z yt+w

S55) - fee = few)| S APyl ol xy.zw e U

but f is not a solution of equation (8) on U. We see that 0 ¢ U and U does not
satisfy the assumption of Theorem 3 .

Example2 Let X =Y =R, U =[1,00), p,q,r,s >0,c =4 and [ : U? >R
be defined by f(x, y) = )lC + % Then f satisfies

)2f<x+z y+w

> ) —fx,y) = fw| <4xPlylz|" |wl®, x,y,z,welU

but f is not a solution of equation (8) on U. It is easy to check that the assumptions
of Theorems 4, 5, and 7 are not satisfied.

In this example, we show that the condition —x € U for every x € U in
Theorem 6 is necessary.

Example 3 Let X =Y =R, U =(0,00),t =1,pi =p <O0fori=1,...,4,and
f : U* = R be defined by f(x, y) = xP + yP. Then f satisfies

x+z y+w
2

‘2f< ) — f,y) = f@w)| <2"7Px|P + |y + 1z2]P + [w]P),

x,y,z,welU

but f is not a solution of equation (8) on U, which shows that in Theorem 6 the
assumption that —x € U for every x € U is necessary.

We end the paper with an open problem.
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Remark 2 For the cases p +r = qg+s = 0andtp; = O0fori = 1,...,4, the
method used in the proofs of the above theorems cannot be applied, thus this is still
an open problem.
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