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Abstract In this chapter we improve some results in literature on the general
financial equilibrium problem related to individual entities, called sectors, which
invest in financial instruments as assets and as liabilities. Indeed the model, studied
in the chapter, takes into account the insolvencies and we analyze how these
insolvencies affect the financial problem. For this improved model we describe a
variational inequality for which we provide an existence result. Moreover, we study
the dual Lagrange problem, in which the Lagrange variables, which represent the
deficit and the surplus per unit, appear and an economical indicator is provided.
Finally, we perform the contagion by means of the deficit and surplus variables.
As expected, the presence of the insolvencies makes it more difficult to reach
the financial equilibrium and increases the risk of a negative contagion for all the
systems.

1 Introduction

The term “insolvency” is often used to denote that an individual or an organization
can no longer meet its financial obligations with its lender. Usually, before getting
involved in insolvency proceedings, some informal arrangements with creditors are
attempted. Insolvency can be caused by poor cash management, a reduction in cash
inflow forecasts or by an increase in expenses.

When insolvent, the credit loans are revoked both at the credit institution
concerned and at all the institutions and banks to which the customer has had debts;
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further, it becomes impossible for the client/company to obtain liquidity from other
institutions.

In the USA the number of bankruptcies decreased to 23,106 companies in the
first quarter of 2018 from 23,157 companies in the fourth quarter of 2017. According
to The Guardian, the number of people who went bankrupt in 2017 in the United
Kingdom rose to the highest level after the financial crisis, revealing the devastating
toll of rising debts for the families. According to the Insolvency Service 99,196
people were declared insolvent in 2017, with an increase of 9.4% with respect
to the year before and very close to the peak recorded during the recession. Lots
of households (about 59,220 in 2017) are turning to “bankruptcy-lite” debt deals,
where individuals reschedule their debts and agree to much lower payments. Italy
confirms the unenviable leadership in the ranking of companies in difficulty among
the main Western European countries. According to the surveys of Coface, a group
at the top in credit insurance, in Italy there are 7.2% of companies in difficulty,
in Spain 6.3%, in France 5.7%, and in Germany 4.9%. The percentage takes into
account the insolvent companies and those indebted, unprofitable, who struggle
to honor the payments at maturity. In Italy, the current levels of insolvency are
more than double that of 2007, with one of the worst performances recorded at the
European level. In general, the trend of insolvencies at global level is almost stable
in 2017. The modest decline that was expected last year, equal to about a −1%, is
in fact the weakest result since 2009.

Some financial network models have already been studied in the literature. The
first authors to develop a multi-sector, multi-instrument financial equilibrium model
using the variational inequality theory were Nagurney et al. [35]. Recently, in [1, 7,
8, 11] more general models have been studied allowing that the data are evolving
over time.

In this chapter we improve the previous results, including the insolvencies of the
financial institutions.

We obtain such a result, considering in the utility function the presence of the

term
n∑

j=1

rj (t)(1 − τ ij (t))cj (t)(1 + hj (t))yij (t), which represents, by means of the

insolvency coefficients cj (t), the portion of liabilities that are not reimbursed. Since
a big number of critic situations have been caused by the fact that the banks or
the financial institutions were not able to recover a part of their debts, we focus
our attention on this more complete model, deriving the variational formulation,
applying the infinite-dimensional duality theory and examining the contagion effect
on the economy. In this context, a particular attention is devoted to the problem
of the contagion, in order to know when it happens and also to establish how the
insolvencies contribute to the occurrence of the contagion. We are able to control the
contagion, using the dual Lagrange problem and the dual Lagrange variables, which
represent the deficit and the surplus per unit, arising from instrument j . Considering
the dual problem, we can examine the financial model both from the Point of View
of the Sectors and from the System Point of View (see Section 3.3) and we can
clearly see that liabilities from the point of view of the sectors are investments for
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the economic system, namely a positive factor, upon which to base the development
of the economy. As expected, the presence of the insolvencies, that we are able to
quantify, makes it more difficult to reach the financial equilibrium, since reduced
income has to balance all the expenditure of the system.

The chapter is organized as follows: in Section 2 we present the detailed financial
model, together with the evolutionary variational inequality formulation of the
equilibrium conditions, and an existence result is provided; in Section 3 we apply the
duality to the general financial equilibrium problem, deriving the Deficit Formula,
the Balance Law, and the Liability Formula, we give the dual formulation of the
financial problem, we study the regularity of the Lagrange variables, deficit and
surplus, and we analyze, by means of these variables, the financial contagion; in
Section 4 we provide a numerical financial example and, finally, in Section 5 we
summarize our results and conclusions.

It is worth mentioning that the methods applied in this chapter may be used in
the study of many other equilibrium problems [4, 5, 10, 19–26, 34].

2 The Financial Model and the Equilibrium Conditions

2.1 Presentation of the Model

For the reader’s convenience, we present the detailed financial model (see also [1]).
We consider a financial economy consisting of m sectors, for example households,
domestic business, banks and other financial institutions, as well as state and local
governments, with a typical sector denoted by i, and of n instruments, for example
mortgages, mutual funds, saving deposits, money market funds, with a typical
financial instrument denoted by j , in the time interval [0, T ]. Let si(t) denote the
total financial volume held by sector i at time t as assets, and let li (t) be the total
financial volume held by sector i at time t as liabilities. Further, we allow markets of
assets and liabilities to have different investments si(t) and li (t), respectively. Since
we are working in the presence of uncertainty and of risk perspectives, the volumes
si(t) and li (t) held by each sector cannot be considered stable with respect to time
and may decrease or increase. For instance, depending on the crisis periods, a sector
may decide not to invest on instruments and to buy goods as gold and silver. At
time t , we denote the amount of instrument j held as an asset in sector i’s portfolio
by xij (t) and the amount of instrument j held as a liability in sector i’s portfolio
by yij (t). The assets and liabilities in all the sectors are grouped into the matrices
x(t), y(t) ∈ R

m×n, respectively. At time t we denote the price of instrument j held
as an asset and as a liability by rj (t) and by (1 + hj (t))rj (t), respectively, where
hj is a nonnegative function defined into [0, T ] and belonging to L∞([0, T ],R).

We introduce the term hj (t) because the prices of liabilities are generally greater
than or equal to the prices of assets. In this manner we describe, in a more realistic
way, the behavior of the markets for which the liabilities are more expensive than
the assets. We group the instrument prices held as an asset and as a liability
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into the vectors r(t) = [r1(t), r2(t), . . . , ri(t), . . . , rn(t)]T and (1 + h(t))r(t) =
[(1 + h1(t))r1(t), (1 + h2(t))r2(t), . . . , (1 + hi(t))ri(t), . . . , (1 + hn(t))rn(t)]T ,

respectively. In our problem the prices of each instrument appear as unknown
variables. Under the assumption of perfect competition, each sector will behave as
if it has no influence on the instrument prices or on the behavior of the other sectors,
but on the total amount of the investments and the liabilities of each sector.

We choose as a functional setting the very general Lebesgue space

L2([0, T ],Rp) =
{
f : [0, T ] → R

p measurable :
∫ T

0
‖f (t)‖2

pdt < +∞
}

,

with the norm

‖f ‖L2([0,T ],Rp) =
(∫ T

0
‖f (t)‖2

pdt

) 1
2

.

Then, the set of feasible assets and liabilities for each sector i = 1, . . . , m becomes

Pi =
{
(xi(t), yi(t)) ∈ L2([0, T ],R2n+ ) :
n∑

j=1

xij (t) = si(t),

n∑

j=1

yij (t) = li (t) a.e. in [0, T ]
}

and the set of all feasible assets and liabilities becomes

P =
{
(x(t), y(t)) ∈ L2([0, T ],R2mn) : (xi(t), yi(t)) ∈ Pi, i = 1, . . . , m

}
.

Now, we introduce the ceiling and the floor price associated with instrument j ,
denoted by rj and by rj , respectively, with rj (t) > rj (t) ≥ 0, a.e. in [0, T ]. The
floor price rj (t) is determined on the basis of the official interest rate fixed by the
central banks, which, in turn, take into account the consumer price inflation. Then
the equilibrium prices r∗

j (t) cannot be less than these floor prices. The ceiling price
rj (t) derives from the financial need to control the national debt arising from the
amount of public bonds and of the rise in inflation. It is a sign of the difficulty on
the recovery of the economy. However it should be not overestimated because it
produced an availability of money.

In detail, the meaning of the lower and upper bounds is that to each investor a
minimal price rj for the assets held in the instrument j is guaranteed, whereas each
investor is requested to pay for the liabilities in any case a minimal price (1+hj )rj .
Analogously each investor cannot obtain for an asset a price greater than rj and as
a liability the price cannot exceed the maximum price (1 + hj )rj .

We denote the given tax rate levied on sector i’s net yield on financial instrument
j , as τ ij . Assume that the tax rates lie in the interval [0, 1) and belong to
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L∞([0, T ],R). Therefore, the government in this model has the flexibility of
levying a distinct tax rate across both sectors and instruments.

We group the instrument ceiling and floor prices into the column vectors r(t) =
(rj (t))j=1,...,n and r(t) = (rj (t))j=1,...,n, respectively, and the tax rates τ ij into the

matrix τ(t) ∈ L2([0, T ],Rm×n).

The set of feasible instrument prices is:

R = {r ∈ L2([0, T ],Rn) : rj (t) ≤ rj (t) ≤ rj (t), j = 1, . . . , n, a.e. in [0, T ]},

where r and r are assumed to belong to L2([0, T ],Rn).
In order to determine for each sector i the optimal distribution of instruments held

as assets and as liabilities, we consider, as usual, the influence due to risk-aversion
and the optimality conditions of each sector in the financial economy, namely the
desire to maximize the value of the asset holdings while minimizing the value of
liabilities. In the current economic situation there is a serious problem caused by the
suffering that undermines the whole system. For this reason we intend to address
the study of the financial problem in the presence of insolvencies.

Hence, in order to meet this need, we take into account the non-performing loans,
introducing the insolvency coefficients cj (t), j = 1, . . . , n. We assume that the
insolvency coefficients cj (t) lie in the interval [0, 1) and belong to L∞([0, T ],R).

Then, we introduce the utility function Ui(t, xi(t), yi(t), r(t)), for each sector i,
defined as follows:

Ui(t, xi(t), yi(t), r(t)) = ui(t, xi(t), yi(t))

+
n∑

j=1

rj (t)(1 − τ ij (t))[xij (t) − (1 − cj (t))(1 + hj (t))yij (t)],

where the term −ui(t, xi(t), yi(t)) represents a measure of the risk of the financial
agent, the term

∑n
j=1 rj (t)(1 − τ ij (t))[xij (t) − (1 + hj (t))yij (t)] represents the

value of the difference between the asset holdings and the value of liabilities, and

the term
n∑

j=1

rj (t)(1 − τ ij (t))cj (t)(1 + hj (t))yij (t) represents, by means of the

insolvency coefficients cj (t), the portion of liabilities that are not reimbursed. Such
a term appears as a positive contribute for sector i and a loss for the system.

We suppose that the sector’s utility function Ui(t, xi(t), yi(t)) is defined on
[0, T ] × R

n × R
n, is measurable in t , and is continuous with respect to xi and

yi . Moreover we assume that
∂ui

∂xij

and
∂ui

∂yij

exist and that they are measurable in t

and continuous with respect to xi and yi . Further, we require that ∀i = 1, . . . , m,

∀j = 1, . . . , n, and a.e. in [0, T ] the following growth conditions hold true:

|ui(t, x, y)| ≤ αi(t)‖x‖‖y‖, ∀x, y ∈ R
n, (1)
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and

∣∣∣
∂ui(t, x, y)

∂xij

∣∣∣ ≤ βij (t)‖y‖,
∣∣∣
∂ui(t, x, y)

∂yij

∣∣∣ ≤ γ ij (t)‖x‖, (2)

where αi , βij , γ ij are nonnegative functions of L∞([0, T ],R). Finally, we suppose
that the function ui(t, x, y) is concave.

An example of measure of the risk aversion is given by a generalization to
the evolutionary case of the well-known Markowitz quadratic function based on
the variance-covariance matrix denoting the sector’s assessment of the standard
deviation of prices for each instrument (see [31, 32]). This evolutionary measure of
Markowitz type can be refined in such a way that it can incorporate the adjustment
in time which depends on the previous equilibrium states.

In Section 2.4 we define a utility function of Markowitz type.

2.2 The Equilibrium Flows and Prices

Now, we establish the equilibrium conditions for the prices, which express the
equilibration of the total assets, the total liabilities, and the portion of financial
transactions per unit Fj employed to cover the expenses of the financial institutions,
including possible dividends and manager bonus. Indeed, the equilibrium condition
for the price rj of instrument j is the following:

m∑

i=1

(1 − τ ij (t))
[
x∗
ij (t) − (1 − cj (t))(1 + hj (t))y

∗
ij (t)

]
+ Fj (t)

⎧
⎪⎨

⎪⎩

≥ 0 if r∗
j (t) = rj (t)

= 0 if rj (t) < r∗
j (t) < rj (t)

≤ 0 if r∗
j (t) = rj (t)

(3)

where (x∗, y∗, r∗) is the equilibrium solution for the investments as assets and as
liabilities and for the prices. In other words, the prices are determined taking into
account the amount of the supply, the demand of an instrument, and the charges
Fj , namely if there is an actual supply excess of an instrument as assets and of the
charges Fj in the economy, then its price must be the floor price. If the price of
an instrument is greater than the floor price, but not at the ceiling, then the market
of that instrument must clear. Finally, if there is an actual demand excess of an
instrument as liabilities in the economy, then the price must be at the ceiling.

Now, we can give different but equivalent equilibrium conditions, each of which
is useful to illustrate particular features of the equilibrium.

Definition 1 A vector of sector assets, liabilities, and instrument prices
(x∗(t), y∗(t), r∗(t)) ∈ P × R is an equilibrium of the dynamic financial model if
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and only if ∀i = 1, . . . , m, ∀j = 1, . . . , n, and a.e. in [0, T ], it satisfies the system
of inequalities

−∂ui(t, x
∗, y∗)

∂xij

− (1 − τ ij (t))r
∗
j (t) − μ

(1)∗
i (t) ≥ 0, (4)

−∂ui(t, x
∗, y∗)

∂yij

+ (1 − τ ij (t))(1 − cj (t))(1 + hj (t))r
∗
j (t) − μ

(2)∗
i (t) ≥ 0, (5)

and equalities

x∗
ij (t)

[
− ∂ui(t, x

∗, y∗)
∂xij

− (1 − τ ij (t))r
∗
j (t) − μ

(1)∗
i (t)

]
= 0, (6)

y∗
ij (t)

[
−∂ui(t, x

∗, y∗)
∂yij

+ (1−τ ij (t))(1−cj (t))(1+hj (t))r
∗
j (t)−μ

(2)∗
i (t)

]
= 0,

(7)

where μ
(1)∗
i (t), μ

(2)∗
i (t) ∈ L2([0, T ],R) are Lagrange multipliers, and verifies

conditions (3) a.e. in [0, T ].
We associate with each financial volumes si and li held by sector i the functions

μ
(1)∗
i (t) and μ

(2)∗
i (t), related, respectively, to the assets and to the liabilities and

which represent the “equilibrium disutilities” per unit of sector i. Then, (4) and (6)
mean that the financial volume invested in instrument j as assets x∗

ij is greater than

or equal to zero if the j -th component −∂ui(t, x
∗, y∗)

∂xij

− (1 − τ ij (t))r
∗
j (t) of the

disutility is equal to μ
(1)∗
i (t), whereas if −∂ui(t, x

∗, y∗)
∂xij

− (1 − τ ij (t))r
∗
j (t) >

μ
(1)∗
i (t), then x∗

ij (t) = 0. The same occurs for the liabilities.

The functions μ
(1)∗
i (t) and μ

(2)∗
i (t) are the Lagrange multipliers associated a.e.

in [0, T ] with the constraints
n∑

j=1

xij (t) − si(t) = 0 and
n∑

j=1

yij (t) − li (t) = 0,

respectively. They are unknown a priori, but this fact has no influence because we
will prove in the following theorem that Definition 1 is equivalent to a variational
inequality in which μ

(1)∗
i (t) and μ

(2)∗
i (t) do not appear (see [1, Theorem 2.1]).

Theorem 1 A vector (x∗, y∗, r∗) ∈ P × R is a dynamic financial equilibrium if
and only if it satisfies the following variational inequality:

Find (x∗, y∗, r∗) ∈ P × R:

m∑

i=1

∫ T

0

{ n∑

j=1

[
− ∂ui(t, x

∗
i (t), y∗

i (t))

∂xij

− (1 − τ ij (t))r
∗
j (t)

]

×[xij (t) − x∗
ij (t)]
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+
n∑

j=1

[
− ∂ui(t, x

∗
i (t), y∗

i (t))

∂yij

+ (1 − τ ij (t))(1 − cj (t))r
∗
j (t)(1 + hj (t))

]

×[yij (t) − y∗
ij (t)]

}
dt

+
n∑

j=1

∫ T

0

m∑

i=1

{
(1 − τ ij (t))

[
x∗
ij (t) − (1 − cj (t))(1 + hj (t))y

∗
ij (t)

]
+ Fj (t)

}

×[rj (t) − r∗
j (t)

]
dt ≥ 0, ∀(x, y, r) ∈ P × R. (8)

Remark 1 We would like to explicitly remark that our definition of equilibrium
conditions (Definition 1) is equivalent to the equilibrium definition given by a vector
(x∗, y∗, r∗) ∈ P × R satisfying (3) and, ∀i = 1, . . . , m :

max
Pi

∫ T

0

{
ui(t, xi (t), yi(t)) +

n∑

j=1

(1 − τ ij (t))r
∗
j (t)[xij (t) − (1 − cj (t))(1 + hj (t))yij (t)]

}
dt =

∫ T

0

{
ui(t, x

∗
i (t), y∗

i (t)) +
n∑

j=1

(1 − τ ij (t))r
∗
j (t)[x∗

ij (t) − (1 − cj (t))(1 + hj (t))y
∗
ij (t)]

}
dt.

We prefer to use Definition 1, since it is expressed in terms of equilibrium
disutilities.

2.3 Existence Theorem

Now, we would like to give an existence result. First of all, we remind some
definitions. Let X be a reflexive Banach space and let K be a subset of X and X∗ be
the dual space of X.

Definition 2 A mapping A : K → X∗ is pseudomonotone in the sense of Brezis
(B-pseudomonotone) iff

1. For each sequence un weakly converging to u (in short un ⇀ u) in K and such
that lim supn〈Aun, un − v〉 ≤ 0 it results that:

lim inf
n

〈Aun, un − v〉 ≥ 〈Au, u − v〉, ∀v ∈ K.

2. For each v ∈ K the function u �→ 〈Au, u − v〉 is lower bounded on the bounded
subset of K.



A Variational Approach to the Financial Problem with Insolvencies. . . 25

Definition 3 A mapping A : K → X∗ is hemicontinuous in the sense of Fan (F-
hemicontinuous) iff for all v ∈ K the function u �→ 〈Au, u − v〉 is weakly lower
semicontinuous on K.

The following existence result does not require any kind of monotonicity
assumptions.

Theorem 2 Let K ⊂ X be a nonempty closed convex bounded set and let A : K ⊂
E → X∗ be B-pseudomonotone or F-hemicontinuous. Then, variational inequality

〈Au, v − u〉 ≥ 0 ∀v ∈ K (9)

admits a solution.

In the following subsection we shall present an example of a function, which
satisfies the above assumptions.

2.4 An Example of a Markowitz-Type Risk Measure

We generalize and provide an evolutionary Markowitz-type measure of the risk
proposed with a memory term. This function is effective, namely an existence
theorem for the general financial problem holds (see [17]). In this way we cover
a lack, providing the existence of a significant evolutionary measure of the risk. The
particular, but significant, example of utility function is:

ui(xi(t), yi(t))

=
[

xi(t)

yi(t)

]T

Qi

[
xi(t)

yi(t)

]
+
∫ t

0

[
xi(t − z)

yi(t − z)

]T

Qi

[
xi(t − z)

yi(t − z)

]
dz, (10)

where Qi denotes the sector i’s assessment of the standard deviation of prices for
each instrument j.

In [17] it has been proven that Markowitz function verifies all the assumptions of
the existence theorem, hence a problem with a function like this admits solutions.

3 The Duality for the Financial Equilibrium Problem

In this section we study the duality for the financial equilibrium problem (see also
[6]).

To this end, for reader’s convenience, we recall here some definitions and results
of the infinite dimensional duality theory.
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3.1 The New Infinite-Dimensional Duality Theory

In order to obtain the strong duality, we need that some delicate conditions, called
“constraints qualification conditions,” hold. In the infinite dimensional settings the
next assumption, the so-called Assumption S, results to be a necessary and sufficient
condition for the strong duality (see [3, 9, 12, 13, 33]).

Let f : S → R, g : S → Y, h : S → Z be three mappings, where S is a convex
subset of a real normed space X, Y is a real normed space ordered by a convex cone
C, Z is a real normed space and consider the optimization problem:

{
f (x0) = min

x∈K f (x)

x0 ∈ K = {x ∈ S : g(x) ∈ −C, h(x) = θZ}, (11)

where θZ is the zero element in the space Z.

Its Lagrange dual problem is:

max
λ∈C∗, μ∈Z∗ inf

x∈S
[f (x) + 〈λ, g(x)〉 + 〈μ, h(x)〉] , (12)

where

C∗ := {u ∈ Y ∗ : 〈u, y〉 ≥ 0, ∀y ∈ C
}

is the dual cone of C and Z∗ is the dual space of Z. Then, we say that the strong
duality holds for problems (11) and (12) if and only if problems (11) and (12) admit
a solution and the optimal values coincide.

Some classical results due to Rockafellar [36], Holmes [27], Borwein and Lewis
[2] give sufficient conditions in order that the strong duality between problems (11)
and (12) holds, which use concepts such as the core, the intrinsic core, the
strong quasi-relative interior of C. Such concepts (see [2, 27, 29, 36]) require the
nonemptiness of the ordering cone, which defines the cone constraints in convex
optimization and variational inequalities. However, the ordering cone of almost all
the known problems, stated in infinite dimensional spaces, has the interior (and all
the above generalized interior concepts) empty. Hence, the above interior conditions
cannot be used to guarantee the strong duality.

Only recently, in [12] the authors introduced a new condition called S, which
turns out to be a necessary and sufficient condition for the strong duality and really
useful in the applications. This condition does not require the nonemptiness of the
interior of the ordering cone. This new strong duality theory was then refined in
[9, 13, 15, 28, 33].

Now we present in detail these new conditions.
Let us first recall that for a subset C ⊆ X and x ∈ X the tangent cone to C at x

is defined as

TC(x) = {y ∈ X : y = lim
n→∞ λn(xn − x), λn > 0, xn ∈ C, lim

n→∞ xn = x}.
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If x ∈ clC (the closure of C) and C is convex, we have

TC(x) = clcone(C − {x}),

where the coneA = {λx : x ∈ A, λ ∈ R
+} denotes the cone hull of a general

subset A of the space.

Definition 4 (Assumption S) Given the mappings f, g, h and the set K as above,
we shall say that Assumption S is fulfilled at a point x0 ∈ K if it results to be

TM̃(0, θY , θZ) ∩
(
] − ∞, 0[×{θY } × {θZ}

)
= ∅, (13)

where

M̃ = {(f (x) − f (x0) + α, g(x) + y, h(x)) : x ∈ S \ K, α ≥ 0, y ∈ C}.

The following theorem holds (see Theorem 1.1 in [13] for the proof):

Theorem 3 Under the above assumptions on f , g, h, and C, if problem (11) is
solvable and Assumption S is fulfilled at the extremal solution x0 ∈ K, then also
problem (12) is solvable, the extreme values of both problems are equal, namely, if
(x0, λ

∗, μ∗) ∈ K × C∗ × Z∗ is the optimal point of problem (12),

f (x0) = min
x∈K f (x) = f (x0) + 〈λ∗, g(x0)〉 + 〈μ∗, h(x0)〉

= max
λ∈C∗
μ∈Z∗

inf
x∈S

{f (x) + 〈λ, g(x)〉 + 〈μ, h(x)〉} (14)

and, it results to be:

〈λ∗, g(x0)〉 = 0.

3.2 Existence of Lagrange Multipliers

Now, we can apply the infinite-dimensional duality for the financial equilibrium
problem expressed by variational inequality (8), which ensures the existence of the
Lagrange multipliers. To this end, let us set:

f (x, y, r) =
∫ T

0

{ m∑

i=1

n∑

j=1

[
−∂ui(t, x

∗(t), y∗(t))

∂xij
− (1 − τ ij (t))r∗

j (t)

]

× [xij (t) − x∗
ij (t)]
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+
m∑

i=1

n∑

j=1

[
−∂ui(t, x

∗(t), y∗(t))

∂yij
+ (1 − τ ij (t))(1 − cj (t))(1 + hj (t))r∗

j (t)

]

× [yij (t) − y∗
ij (t)]

+
n∑

j=1

⎡

⎣
m∑

i=1

(1 − τ ij (t))
[
x∗
ij (t) − (1 − cj (t))(1 + hj (t))y∗

ij (t)
]

+ Fj (t)

⎤

⎦

×
[
rj (t) − r∗

j (t)
] }

dt.

Then, the Lagrange functional is

L (x, y, r, λ(1), λ(2), μ(1), μ(2), ρ(1), ρ(2)) = f (x, y, r)

−
m∑

i=1

n∑

j=1

∫ T

0
λ

(1)
ij (t)xij (t) dt −

m∑

i=1

n∑

j=1

∫ T

0
λ

(2)
ij yij (t) dt

−
m∑

i=1

∫ T

0
μ

(1)
i (t)

⎛

⎝
n∑

j=1

xij (t) − si(t)

⎞

⎠ dt (15)

−
m∑

i=1

∫ T

0
μ

(2)
i (t)

⎛

⎝
n∑

j=1

yij (t) − li (t)

⎞

⎠ dt

+
n∑

j=1

∫ T

0
ρ

(1)
j (t)(rj (t) − rj (t)) dt +

n∑

j=1

∫ T

0
ρ

(2)
j (t)(rj (t) − rj (t)) dt,

where (x, y, r) ∈ L2([0, T ],R2mn+n), λ(1), λ(2) ∈ L2([0, T ],Rmn+ ), μ(1), μ(2) ∈
L2([0, T ], R

m), ρ(1), ρ(2) ∈ L2([0, T ],Rn+) and λ(1), λ(2), ρ(1), ρ(2) are the
Lagrange multipliers associated, a.e. in [0, T ], with the sign constraints xi(t) ≥ 0,

yi(t) ≥ 0, rj (t) − rj (t) ≥ 0, rj (t) − rj (t) ≥ 0, respectively, whereas the functions

μ(1)(t) and μ(2)(t) are the Lagrange multipliers associated, a.e. in [0, T ], with the

equality constraints
n∑

j=1

xij (t) − si(t) = 0 and
n∑

j=1

yij (t) − li (t) = 0, respectively.

Applying the new strong duality theory, the following theorem holds.

Theorem 4 Let (x∗, y∗, r∗) ∈ P × R be a solution to variational inequality (8)
and let us consider the associated Lagrange functional (15). Then, the strong duality
holds and there exist λ(1)∗, λ(2)∗ ∈ L2([0, T ],Rmn+ ), μ(1)∗, μ(2)∗ ∈ L2([0, T ],Rm),

ρ(1)∗, ρ(2)∗ ∈ L2([0, T ],Rn+) such that (x∗, y∗, r∗, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗,
ρ(1)∗, ρ(2)∗) is a saddle point of the Lagrange functional, namely
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L (x∗, y∗, r∗, λ(1), λ(2), μ(1), μ(2), ρ(1), ρ(2))

≤ L (x∗, y∗, r∗, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗, ρ(1)∗, ρ(2)∗) = 0 (16)

≤ L (x, y, r, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗, ρ(1)∗, ρ(2)∗)

∀(x, y, r) ∈ L2([0, T ],R2mn+n), ∀λ(1), λ(2) ∈ L2([0, T ],Rmn+ ), ∀μ(1), μ(2) ∈
L2([0, T ],Rm), ∀ρ(1), ρ(2) ∈ L2([0, T ],Rn+) and, a.e. in [0, T ],

−∂ui(t, x
∗(t), y∗(t))
∂xij

− (1 − τ ij (t))r
∗
j (t) − λ

(1)∗
ij (t) − μ

(1)∗
i (t) = 0,

∀i = 1, . . . , m, ∀j = 1 . . . , n;

−∂ui(t, x
∗(t), y∗(t))
∂yij

+(1−cj (t))(1−τ ij (t))(1+hj (t))r
∗
j (t)−λ

(2)∗
ij (t)−μ

(2)∗
i (t)=0,

∀i = 1, . . . , m, ∀j = 1 . . . , n;
m∑

i=1

(1−τ ij (t))
[
x∗
ij (t) − (1 − cj (t))(1 + hj (t))y

∗
ij (t)

]
+Fj (t)+ρ

(2)∗
j (t)= ρ

(1)∗
j (t),

(17)
∀j = 1, . . . , n;

λ
(1)∗
ij (t)x∗

ij (t) = 0, λ
(2)∗
ij (t)y∗

ij (t) = 0, ∀i = 1, . . . , m, ∀j = 1, . . . , n (18)

μ
(1)∗
i (t)

⎛

⎝
n∑

j=1

x∗
ij (t) − si(t)

⎞

⎠ = 0, μ
(2)∗
i (t)

⎛

⎝
n∑

j=1

y∗
ij (t) − li (t)

⎞

⎠ = 0, (19)

∀i = 1, . . . , m

ρ
(1)∗
j (t)(rj (t)−r∗

j (t)) = 0, ρ
(2)∗
j (t)(r∗

j (t)−rj (t)) = 0, ∀j = 1, . . . , n. (20)

Formula (17) represents the Deficit Formula. Indeed, if ρ
(1)∗
j (t) is positive, then

the prices are minimal and there is a supply excess of instrument j as an asset and
of the charge Fj (t), namely the economy is in deficit and, for this reason, ρ

(1)∗
j (t)

is called the deficit variable and represents the deficit per unit.
Analogously, if ρ

(2)∗
j (t) is positive, then the prices are maximal and there is

a demand excess of instrument j as a liability, namely there is a surplus in the
economy. For this reason ρ

(2)∗
j (t) is called the surplus variable and represents the

surplus per unit.
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From (17) it is possible to obtain the Balance Law

m∑

i=1

li (t) =
m∑

i=1

si(t) −
m∑

i=1

n∑

j=1

τ ij (t)
[
x∗
ij (t) − y∗

ij (t)
]

−
m∑

i=1

n∑

j=1

(1 − τ ij (t))hj (t)y
∗
ij (t) +

m∑

i=1

n∑

j=1

(1 − τ ij (t))cj (t)(1 + hj (t))y
∗
ij (t)

+
n∑

j=1

Fj (t) −
n∑

j=1

ρ
(1)∗
j (t) +

n∑

j=1

ρ
(2)∗
j (t).

(21)
Finally, assuming that the taxes τ ij (t), i = 1, . . . , m, j = 1, . . . , n, have a

common value θ(t), the increments hj (t), j = 1, . . . , n, have a common value
i(t), and the insolvency coefficients cj (t), j = 1, . . . , n, have a common value
c(t), otherwise we can consider the average values (see Remark 7.1 in [1]), the
significant Liability Formula follows

(1−c(t))

m∑

i=1

li (t) =
(1 − θ(t))

m∑

i=1

si(t) +
n∑

j=1

Fj (t) −
n∑

j=1

ρ
(1)∗
j (t) +

n∑

j=1

ρ
(2)∗
j (t)

(1 − θ(t))(1 + i(t))
.

(22)
From (22) we can deduce that in this situation to reach the equilibrium is even

more difficult than in the case of absence of insolvencies, because only a portion of
liabilities must balance all the expenses.

3.3 The Viewpoints of the Sector and of the System

The financial problem can be considered from two different perspectives: one from
the Point of View of the Sectors, which try to maximize the utility and a second point
of view, that we can call System Point of View, which regards the whole equilibrium,
namely in respect of the previous laws. For example, from the point of view of the
sectors, li (t), for i = 1, . . . , m, are liabilities, whereas for the economic system they
are investments and, hence, the Liability Formula, from the system point of view,
can be called “Investments Formula.” The system point of view coincides with the
dual Lagrange problem (the so-called shadow market) in which ρ

(1)
j (t) and ρ

(2)
j (t)

are the dual multipliers, representing the deficit and the surplus per unit arising from
instrument j . Formally, the dual problem is given by

Find (ρ(1)∗, ρ(2)∗) ∈ L2([0, T ],R2n+ ) such that

n∑

j=1

∫ T

0
(ρ

(1)
j (t) − ρ

(1)∗
j (t))(rj (t) − r∗

j (t))dt (23)
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+
n∑

j=1

∫ T

0
(ρ

(2)
j (t) − ρ

(2)∗
j (t))(r∗

j (t) − rj (t))dt ≤ 0,

∀(ρ(1), ρ(2)) ∈ L2([0, T ],R2n+ ).

Indeed, taking into account inequality (16), we get

−
m∑

i=1

n∑

j=1

∫ T

0
(λ

(1)
ij (t) − λ

(1)∗
ij (t))x∗

ij (t) dt −
m∑

i=1

n∑

j=1

∫ T

0
(λ

(2)
ij − λ

(2)∗
ij )y∗

ij (t) dt

−
m∑

i=1

∫ T

0
(μ

(1)
i (t) − μ

(1)∗
i (t))

⎛

⎝
n∑

j=1

x∗
ij (t) − si(t)

⎞

⎠ dt

−
m∑

i=1

∫ T

0
(μ

(2)
i (t) − μ

(2)∗
i (t))

⎛

⎝
n∑

j=1

y∗
ij (t) − li (t)

⎞

⎠ dt

+
n∑

j=1

∫ T

0
(ρ

(1)
j (t) − ρ

(1)∗
j (t))(rj (t) − r∗

j (t)) dt

+
n∑

j=1

∫ T

0
(ρ

(2)
j (t) − ρ

(2)∗
j (t))(r∗

j (t) − rj (t)) dt ≤ 0

∀λ(1), λ(2) ∈ L2([0, T ],Rmn+ ), μ(1), μ(2) ∈ L2([0, T ],Rm), ρ(1), ρ(2) ∈
L2([0, T ],Rn+).

Choosing λ(1) = λ(1)∗, λ(2) = λ(2)∗, μ(1) = μ(1)∗, μ(2) = μ(2)∗, we obtain the
dual problem (23)

Note that, from the System Point of View, also the expenses of the institutions
Fj (t) are supported from the liabilities of the sectors.

Remark 2 Let us recall that from the Liability Formula we get the following index
E(t), called “Evaluation Index,” that is very useful for the rating procedure:

E(t) =
(1 − c(t))

m∑

i=1

li (t)

m∑

i=1

s̃i (t) +
n∑

j=1

F̃j (t)

, (24)

where we set

s̃i (t) = si(t)

1 + i(t)
, F̃j (t) = Fj (t)

(1 + i(t))(1 − θ(t))
.
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From the Liability Formula we obtain

E(t)=1−

n∑

j=1

ρ
(1)∗
j (t)

(1 − θ(t))(1 + i(t))

⎛

⎝
m∑

i=1

s̃i (t) +
n∑

j=1

F̃j (t)

⎞

⎠

+

n∑

j=1

ρ
(2)∗
j (t)

(1 − θ(t))(1 + i(t))

⎛

⎝
m∑

i=1

s̃i (t) +
n∑

j=1

F̃j (t)

⎞

⎠

(25)

If E(t) is greater than or equal to 1, the evaluation of the financial equilibrium is
positive (better if E(t) is proximal to 1), whereas if E(t) is less than 1, the evaluation
of the financial equilibrium is negative.

The term (1 − c(t))

m∑

i=1

li (t) in (24) represents the effective liabilities (or the

effective investments from the system point of view). The evaluation index (25)
is less than the one in the model in [1], where the insolvency coefficients are not
considered, and this means that, in presence of insolvency, it is more difficult to
reach the financial equilibrium.

3.4 Regularity Results

In [16] a regularity result of ρ
(1)∗
j (t), ρ

(2)∗
j (t), has been proved. Let us set

F(t) = [F1(t), F2(t), . . . , Fn(t)]T ;

ν = (x, y, r) =
((

xij

)
i=1,...,m
j=1,...,n

,
(
yij

)
i=1,...,m
j=1,...,n

,
(
rj
)
j=1,...,n

)
;

A(t, ν) =
([

−∂ui(t, x, y)

∂xij

− (1 − τ ij (t))rj (t)

]

i=1,...,m
j=1,...,n

,

[
−∂ui(t, x, y)

∂yij

+ (1 − τ ij (t))(1 − cj (t))(1 + hj (t))rj (t)

]

i=1,...,m
j=1,...,n

, (26)
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[
m∑

i=1

(1 − τ ij (t))
(
xij (t) − (1 − cj (t))(1 + hj (t))yij (t)

)+ Fj (t)

]

j=1,...,n

)
;

A : K → L2([0, T ],R2mn+n),

with

K = P × R.

Let us note that K is a convex, bounded, and closed subset of L2([0, T ],R2mn+n).
Moreover assumption (2) implies that A is lower semicontinuous along line
segments.

The following result holds true (see [16, Theorem 2.4]):

Theorem 5 Let A ∈ C0([0, T ],R2mn+n) be strongly monotone in x and y,
monotone in r , namely, there exists α such that, for t ∈ [0, T ],

〈〈A(t, ν1) − A(t, ν2), ν1 − ν2〉〉 ≥ α(‖x1 − x2‖2 + ‖y1 − y2‖2), (27)

∀ν1 = (x1, y1, r1), ν2 = (x2, y2, r2) ∈ R
2mn+n.

Let r(t), r(t), h(t), F (t) = [F1(t), F2(t), . . . , Fn(t)]T , C(t) = [c1(t), c2(t), . . . ,

cn(t)]T ∈ C0([0, T ],Rn+), let τ(t) ∈ C0([0, T ],Rmn) and let s, l ∈ C0([0, T ],Rm),
satisfying the following assumption (β):

• there exists δ1(t) ∈ L2([0, T ]) and c1 ∈ R such that, for a.a. t ∈ [0, T ]:

‖s(t)‖ ≤ δ1(t) + c1;

• there exists δ2(t) ∈ L2([0, T ]) and c2 ∈ R such that, for a.a. t ∈ [0, T ]:

‖l(t)‖ ≤ δ2(t) + c2.

Then the Lagrange variables, ρ(1)∗(t), ρ(2)∗(t), which represent the deficit and
the surplus per unit, respectively, are continuous too.

3.5 The Contagion Problem

In this section we want to show that it is possible to establish when the economy
becomes negative by means of the dual variables ρ(1)∗(t), ρ(2)∗(t) (see also [14]).

Contagion can be explained as a situation when a crisis in a particular economy or
region spreads out and affects others (see [18] for a complete survey on the financial
contagion). The Lehman Brothers’ failure in the USA is an example of contagion.
Fundamental problems in the contagion are to try to know when it can happen, to
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give a measure of it, and to understand why it occurs. In the particular financial
problem we are dealing with, which is based on portfolio flows and investment
positions, namely on assets and liabilities of different sectors, we perform the
contagion by using the deficit and the surplus variables as well as the balance
law. Specifically, we recall that ρ(1)∗(t) represents the deficit variable and ρ(2)∗(t)
represents the surplus variable. For our purpose it is useful to recall also the balance
law:

m∑

i=1

li (t) −
m∑

i=1

si (t) +
m∑

i=1

n∑

j=1

τ ij (t)
[
x∗
ij (t) − y∗

ij (t)
]

+
m∑

i=1

n∑

j=1

(1 − τ ij (t))hj (t)y∗
ij (t) −

m∑

i=1

n∑

j=1

(1 − τ ij (t))cj (t)(1 + hj (t))y∗
ij (t) −

n∑

j=1

Fj (t)

= −
n∑

j=1

ρ
(1)∗
j

(t) +
n∑

j=1

ρ
(2)∗
j

(t).

(28)
We realize that when the left-hand side is negative, it means that the sum of
the liabilities, namely the investments of the system, cannot cover the expenses
incurred. The sign of the left-hand side depends on the difference

−
n∑

j=1

ρ
(1)∗
j (t) +

n∑

j=1

ρ
(2)∗
j (t).

When such a difference is negative, from (28) it follows that the whole system is at a
loss. In this case we say that a negative contagion is determined and we can assume
that the insolvencies of individual entities propagate through the entire system. It
is sufficient that only one deficit component ρ

(1)∗
j (t) is very large to obtain, even

if the other ρ
(2)∗
j (t) are lightly positive, a negative balance for the whole system.

In addition, if even only one ρ
(1)∗
j (t) is positive, then for that instrument j all the

sectors are already in crisis.
When

n∑

j=1

ρ
(1)∗
j (t) >

n∑

j=1

ρ
(2)∗
j (t),

namely the sum of all the deficit exceeds the sum of all the surplus, we get E(t) ≤ 1
and, hence, also E(t) is a significant indicator that the financial contagion happens.
Causes of contagion are the lack of investments, the financial insolvency, or the
excess in the expenses.



A Variational Approach to the Financial Problem with Insolvencies. . . 35

4 A Numerical Example

Let us analyze a numerical financial example in which we consider as the risk
aversion function an evolutionary measure of Markowitz type, which expresses
at each instant t ∈ [0, T ] the risk aversion by means of variance-covariance
matrices denoting the sector’s assessment of the standard deviation of prices for
each instrument.

Let us consider an economy with two sectors and two financial instruments, as
shown in Figure 1, and choose as variance-covariance matrices of the two sectors
the following ones:

Q1(t) =

⎡

⎢⎢⎣

1 0 −0.5t 0
0 1 0 0

−0.5t 0 1 0
0 0 0 1

⎤

⎥⎥⎦ , Q2(t) =

⎡

⎢⎢⎣

1 0 0 0
0 1 −0.5t 0
0 −0.5t 1 0
0 0 0 1

⎤

⎥⎥⎦ .

We define the feasible set as follows:

K =
{
(x11(t), x12(t), x21(t), x22(t), y11(t), y12(t), y21(t), y22(t), r1(t), r2(t)) ∈ L2([0, 1],R10+ ) :

x11(t) + x12(t) = t + 2, x21(t) + x22(t) = 2t + 3, a.e. in [0, 1]
y11(t) + y12(t) = 2t, y21(t) + y22(t) = 3t, a.e. in [0, 1]

Fig. 1 Two sectors and two financial instruments network a.e. in [0, 1]
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4t ≤ r1(t) ≤ 5t + 12, t ≤ r2(t) ≤ 6t + 5, a.e. in [0, 1]
}
.

Let us assume that

h1(t) = 3

2
t, and h2(t) = t

2
.

Finally, let us consider

τ 11(t) = t

2
, τ 12(t) = 3

4
t, τ 21(t) = t

2
, τ 22(t) = t

4

and

c1(t) = 0.1 c2(t) = 0.15.

Then, variational inequality (8) becomes:

∫ 1

0

{[
2x∗

11(t) − ty∗
11(t) −

(
1 − t

2

)
r∗

1 (t)
](

x11(t) − x∗
11(t)

)

+[2x∗
12(t) −

(
1 − 3

4
t

)
r∗

2 (t)
](

x12(t) − x∗
12(t)

)

+[2x∗
21(t) −

(
1 − t

2

)
r∗

1 (t)
](

x21(t) − x∗
21(t)

)

+[2x∗
22(t) − ty∗

21(t) −
(

1 − t

4

)
r∗

2 (t)
](

x22(t) − x∗
22(t)

)

+[2y∗
11(t) − tx∗

11(t) + 0.9

(
1 + 3

2
t

)(
1 − t

2

)
r∗

1 (t)
](

y11(t) − y∗
11(t))

+[2y∗
12(t) + 0.85

(
1 + t

2

)(
1 − 3

4
t

)
r∗

2 (t)
](

y12(t) − y∗
12(t))

+[2y∗
21(t) − tx∗

22(t) + 0.9

(
1 + 3

2
t

)(
1 − t

2

)
r∗

1 (t)
](

y21(t) − y∗
21(t))

+[2y∗
22(t) + 0.85

(
1 + t

2

)(
1 − t

4

)
r∗

2 (t)
](

y22(t) − y∗
22(t))

+[
(

1 − t

2

)
x∗

11(t) +
(

1 − t

2

)
x∗

21(t) − 0.9

(
1 + 3

2
t

)

[(
1 − t

2

)
y∗

11(t) +
(

1 − t

2

)
y∗

21(t)

]
+ F1(t)

](
r1(t) − r∗

1 (t))
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+[
(

1 − 3

4
t

)
x∗

12(t) +
(

1 − t

4

)
x∗

22(t) − 0.85

(
1 + t

2

)

[(
1 − 3

4
t

)
y∗

12(t) +
(

1 − t

4

)
y∗

22(t)

]
+ F2(t)

](
r2(t) − r∗

2 (t))
}
dt ≥ 0,

∀(x, y, r) ∈ K. (29)

Using the direct method we get the following solution:

x
11(t) = − 381t4 − 610t3 − 600t2 + 3200t + 2560

160(t2 − 16)
; x

12(t) = 381t4 − 450t3 − 280t2 + 640t − 2560

160(t2 − 16)

x
21(t) = −−415t4 + 222t3 − 2120t2 + 4480t + 3840

160(t2 − 16)
; x

22(t) = −415t4 + 542t3 − 1640t2 − 640t − 3840

160(t2 − 16)

y
11(t) = − 331t3 − 410t2 + 360t

40(t2 − 16)
; y

12(t) = 411t3 − 410t2 − 920t

40(t2 − 16)

y
21(t) = − 485t3 − 502t2 + 760t

40(t2 − 16)
; y

22(t) = 605t3 − 502t2 − 1160t

40(t2 − 16)

r
1 (t) = 4t; r

2 (t) = t

(30)
Since r

1(t) e r
2(t) are the floor prices then ρ

(2)
1 (t) = ρ

(2)
2 (t) = 0 . From the Deficit

Formula (17) we obtain that:

ρ
(1)
1 (t) = (2 − t)

160(t2 − 16)
[2220.2t4 − 799.6t3 + 2742.4t2 − 1824t − 3200] + F1(t),

ρ
(1)
2 (t) = 1

160(t2 − 16)
[(2396.6t5 −2932t4 −17320.8t3 +4259.2t2 +39808t −25600)]+F2(t).

ρ
(1)∗
1 (t) is strictly positive for each F1(t) ≥ 0, whereas, for each F2(t)

nonnegative, ρ
(1)∗
2 (t) is positive in the interval

[
0, t
]

t = 0.827636. In such an
interval the solution of the problem is given by (30).

The deficits can be reduced only if F1(t) and F2(t) decrease, even if we cannot
obtain the financial equilibrium.

In the interval
[
t, 1
]

it is possible that the financial equilibrium can be reached
obtaining also a surplus. A suggestion in this sense is given by the Evaluation
Index, which gives complete information on the behavior of the economy and of
the contagion.

Actually we have

θ(t) = t

2
; i(t) = t; c(t) = 0.125;

2∑

i=1

li (t) = 5t;
2∑

i=1

si(t) = 3t + 5;
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2∑

i=1

s̃i (t) = 3t + 5

1 + t
;

2∑

j=1

F̃j (t) = F1(t) + F2(t)

(1 + t)(1 − t
2 )

.

Thus, the Evaluation Index is:

E(t) =
(1 − c(t))

2∑
i=1

li (t)

2∑
i=1

s̃i (t) +
2∑

j=1
F̃j (t)

= (4.375t)(1 + t)(2 − t)

(2 − t)(5 + 3t) + 2(F1(t) + F2(t))
. (31)

In the interval

[√
5721 − 11

70
, 1

]
(where 3t2 + 11t − 40 > 0), the economy has

a positive average evaluation, if the condition

F1(t) + F2(t) ≤ 2 − t

16
(35t2 + 11t − 40)

is verified.
This result has been obtained considering the average θ(t) and i(t), however it

seems convenient and desirable that the data τ ij (t) and hj (t) are not too different.
In our model, which takes into account the insolvencies, the Evaluation

index (31) is less than the one obtained in [1], in which the insolvencies are
not considered. Then, as expected, in the presence of insolvencies the economy gets
worse. If we do not take into account the insolvencies, the Evaluation index (31)
coincides with the one in [1].

5 Conclusions

In the chapter, we assessed the influence of the insolvencies on the financial model
and on the financial contagion. Our results show that the risk of contagion increases
with the presence of insolvencies, with decreasing investments and increasing
expenditure. Then, our conclusion is that it is necessary to focus on these three
factors, in order to improve the financial equilibrium. The suggestion to the
governments, that follows from our analysis, is to reduce the insolvencies, deferring
in time the payment of the liabilities, and supporting the sectors.
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